
IBM Cúram Social Program Management

Inside Cúram Eligibility and Entitlement
Using Cúram Express Rules

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011-2012 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Audience .. 1
1.3 Related Reading ... 2
1.4 Chapters in this Guide .. 2

Chapter 2 Eligibility and Entitlement Processing at a Glance ... 5
2.1 Introduction .. 5
2.2 Product Configuration .. 6

2.2.1 Example .. 7
2.3 Recording of Input Data ... 8

2.3.1 Example .. 9
2.4 Rules Calculations and Determination Results .. 10

2.4.1 What a Determination Result Contains ... 10
2.4.2 What Triggers the Calculation of a Determination Result 13
2.4.3 How a Determination Result Is Calculated ... 15
2.4.4 Example .. 16

2.5 Determination Storage ... 17
2.5.1 Example .. 18

2.6 Scheduling Financials .. 18
2.6.1 Example .. 18

2.7 Determination Retrieval ... 19
2.7.1 Example .. 20

Chapter 3 Navigating Determinations ... 23
3.1 Introduction .. 23
3.2 Manual Check Determinations .. 23
3.3 Snapshot Determinations ... 24
3.4 Assessment Determinations ... 24

3.4.1 Current Assessment Determination .. 24
3.4.2 Historical Assessment Determinations ... 25
3.4.3 Manual Reassessments .. 25

Chapter 4 Calculating and Displaying Eligibility and Entitlement 26
4.1 Introduction .. 26
4.2 How It Looks ... 27

4.2.1 Viewing a Determination's Coverage Periods .. 27

iii

4.2.2 Basic Eligibility/entitlement Decision Details .. 27
4.3 How It Works ... 28

4.3.1 Calculation of Eligibility and Entitlement .. 29
4.3.2 Display of Eligibility and Entitlement .. 33

4.4 How to Use It ... 35
4.4.1 Understanding Eligibility and Entitlement Concepts 35
4.4.2 Analysis ... 37
4.4.3 Implementation ... 41
4.4.4 Testing ... 61

Chapter 5 Calculating and Displaying Key Decision Factors ... 63
5.1 Introduction .. 63
5.2 How It Looks ... 64

5.2.1 Viewing Key Decision Factors Graphically ... 64
5.2.2 Viewing Key Decision Factors in a List ... 64

5.3 How It Works ... 65
5.3.1 Calculation of Key Decision Factors .. 66
5.3.2 Display of Key Decision Factors .. 68

5.4 How to Use It ... 69
5.4.1 Understanding Key Decision Factor Concepts ... 69
5.4.2 Analysis ... 70
5.4.3 Implementation ... 72
5.4.4 Testing ... 80

Chapter 6 Calculating and Displaying Decision Details .. 81
6.1 Introduction .. 81
6.2 How It Looks ... 82

6.2.1 Summary Display Category .. 82
6.2.2 Decision Comparison .. 82
6.2.3 Sub-screens ... 83
6.2.4 Basic Eligibility/entitlement Information ... 83

6.3 How It Works ... 83
6.3.1 Calculation of Decision Details .. 85
6.3.2 Display of Decision Details .. 91

6.4 How to Use It ... 95
6.4.1 Understanding Decision Details Concepts .. 96
6.4.2 Analysis ... 96
6.4.3 Implementation ... 98
6.4.4 Testing ... 110

Chapter 7 Understanding Rule Object Converters and Propagators 113
7.1 Introduction .. 113
7.2 An Initial Assessment Example ... 114

7.2.1 A System Administrator Creates and Publishes Rule Set Information for a
Product ... 114
7.2.2 A System Administrator Creates and Publishes a New Rate Table 115
7.2.3 A Case Worker Registers a Person ... 116
7.2.4 A Case Worker Creates a New Case for that Person 116
7.2.5 A Case Worker Adds an Additional Member to the Case 117
7.2.6 A Case Worker Captures and Activates Some Income Evidence 117

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

iv

7.2.7 A Case Worker Activates the Case ... 118
7.3 The Framework for Converters and Propagators ... 119
7.4 Rule Objects for Use with Eligibility and Entitlement Processing 120

7.4.1 Product Delivery Rule Objects ... 120
7.4.2 Rate Rule Objects ... 123
7.4.3 Entity Rule Objects ... 126
7.4.4 Active Succession Set Rule Objects ... 137
7.4.5 Active Evidence Row Rule Objects .. 154

7.5 Data Configuration Problems .. 167
7.6 Data Access Points ... 167

7.6.1 Normal Conversion ... 167
7.6.2 Temporary Access to In-Edit Evidence Changes 168
7.6.3 Incremental Propagation ... 169
7.6.4 Bulk Maintenance of Rate Rule Objects ... 169

7.7 Logging .. 170
7.8 Supported Domain Types .. 171

Chapter 8 How Determinations Are Stored ... 176
8.1 Introduction .. 176
8.2 The Database Tables .. 177

8.2.1 CREOLECaseDetermination .. 177
8.2.2 CREOLECaseDeterminationData ... 180
8.2.3 CaseDecision ... 181
8.2.4 CaseDecisionObjective ... 183
8.2.5 CaseDecisionObjectiveTag ... 184
8.2.6 CREOLECaseDecision ... 186

8.3 Decision Periods .. 186
8.4 Determination Comparison Strategies ... 186

8.4.1 Strategy Implementations Included with the Engine 188
8.4.2 Developing your own Strategy Implementation ... 188

Chapter 9 Scheduling Financials ... 190
9.1 Introduction .. 190
9.2 Scheduling Financials for Eligible Case Decisions ... 190

9.2.1 How It Looks .. 191
9.2.2 How It Works .. 191
9.2.3 How to Use It .. 196

9.3 Scheduling Financials for Case Deductions .. 198
9.3.1 How It Looks .. 199
9.3.2 How It Works .. 199
9.3.3 How to Use It .. 201

9.4 Scheduling Financials for Payment Corrections .. 202
9.4.1 How It Looks .. 202
9.4.2 How It Works .. 203
9.4.3 How to Use It .. 205

Chapter 10 Reassessment - Handling Changes in Circumstance ... 208
10.1 Introduction .. 208
10.2 Case-level Reassessment ... 209

10.2.1 Overview ... 209

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

v

10.3 Bulk Reassessment ... 210
10.3.1 Types of Change that Cause Bulk Reassessment 210
10.3.2 Approaches to Identifying and Reassessing All Affected Cases 213
10.3.3 Writing your own Bulk Reassessment Batch Process 221
10.3.4 Bulk Reassessment for Multiple Simultaneous Changes 224
10.3.5 Scheduling ... 225

Chapter 11 Incremental Design and Evolution .. 228
11.1 Introduction .. 228
11.2 Starting with Rule Sets Included with the Application .. 228

11.2.1 How Rule Sets Inter-relate .. 228
11.2.2 Cloning CER Rule Sets ... 230

11.3 Incremental Design .. 233
11.3.1 Choose Default Configuration Options for Your Product 233
11.3.2 Implement a Single Product Period First .. 234
11.3.3 Focus on Eligibility/Entitlement Rules ... 234
11.3.4 Spin-off a Task to Write Rule Classes for Custom Entities and/or Evidence
Types .. 234
11.3.5 Top-down Implementations .. 235
11.3.6 Bottom-up Implementations ... 236
11.3.7 Hard-code Rates at First .. 236
11.3.8 Keep an Eye on Rule Class Dependencies ... 237
11.3.9 Try Key Decision Factors before Decision Details 237
11.3.10 Re-use the Basic Decision Details before Writing Your Own 238
11.3.11 Start Slowly with Decision Details ... 238
11.3.12 Throughout Your Product's Development .. 239

11.4 Handling Legislation Change .. 240
11.4.1 Branching Logic in Your CER Rule Sets ... 241
11.4.2 Multiple Product Periods for Your Product .. 242
11.4.3 Choosing the Right Approach ... 242

11.5 Changing Product Configuration Settings ... 247
11.5.1 Decision Summary Display Strategy .. 247
11.5.2 Determination Comparison Strategy ... 247
11.5.3 Allow Open-Ended Cases ... 248
11.5.4 Reassessment Strategy .. 248

Appendix A Compliancy ... 250
A.1 The Public API .. 250

A.1.1 Identifying the Public API ... 250
A.2 Code Package Restrictions .. 250
A.3 Code Table Restrictions .. 251

A.3.1 CaseAssessmentDetReason ... 251
A.3.2 CaseSnapshotDetReason .. 251
A.3.3 Restricted Code Table Packages .. 252
A.3.4 Restricted Code Tables .. 252

A.4 Database Restrictions .. 252
A.4.1 RuleObjectPropagatorControl .. 253
A.4.2 Restricted Database Tables .. 253

A.5 CER Rule Sets Included with the Application .. 255

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

vi

Appendix B The Eligibility and Entitlement Engine API and Customizability 256
B.1 Eligibility and Entitlement Engine API .. 256
B.2 Customizability ... 256

B.2.1 Eligibility and Entitlement Engine Events ... 257
B.2.2 Eligibility and Entitlement Engine Hooks ... 257

Appendix C Extensions to Cúram Express Rules .. 258
C.1 Introduction ... 258
C.2 Expressions .. 258

C.2.1 combineSuccessionSets .. 258
C.2.2 legislationChange ... 266
C.2.3 rate .. 271

C.3 Annotations ... 275
C.3.1 Display ... 275
C.3.2 DisplaySubscreen ... 277
C.3.3 Legislation .. 279
C.3.4 SuccessionSetPopulation .. 280
C.3.5 relatedEvidence .. 281
C.3.6 relatedSuccessionSet .. 282

Appendix D Environment Variables .. 284
D.1 Cúram Environment Variables Governing Behavior of Engine 284

Appendix E Glossary ... 288
E.1 Terms Used throughout this Guide .. 288

Notices ... 299

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

vii

Chapter 1

Introduction

1.1 Purpose

The purpose of this guide is twofold:

• To provide an inside look at how a case's eligibility and entitlement is
assessed using Cúram Express Rules (CER)

• To provide instructions on how to set up and use the application to re-
turn eligibility and entitlement results

To achieve this purpose, the guide provides detailed examples of eligibility
and entitlement results, descriptions of the processing that returns these res-
ults, and instructions on how to use this processing.

The guide promotes a "designing in stages" approach, focusing first on re-
turning the basic eligibility and entitlement results (i.e. eligible periods and
entitlement amounts), and then on designing solutions that return more com-
plex eligibility and entitlement results (e.g. returning eligibility and entitle-
ment results with detailed explanations of how those results were derived).

Note

The assessment of cases is carried out by the Eligibility and Entitle-
ment Engine, which for the sake of brevity is referred to as simply
"the Engine" throughout this guide.

1.2 Audience

This guide is intended for a technical audience interested in understanding
how the Engine fits into case processing. Designers and developers respons-
ible for building and customizing products will find this document useful in
conjunction with reading the How to Build a Product guide.

This guide is also intended to help system operators understand the opera-

1

tional requirements of the Engine, particular with regard to bulk case reas-
sessment.

1.3 Related Reading

There are several related documents, some of which provide helpful back-
ground information, others that provide more detailed information on topics
covered in this guide. The following provides a brief description of the re-
lated reading materials available:

Document Name Description
Cúram Integrated Case Management
Guide

This provides a business overview of
Cúram Integrated Case Management,
focusing specifically on the needs-
to-delivery side of case processing.

Cúram Integrated Case Management
Configuration Guide

This describes the configuration set-
tings for cases including product
configuration, configuration options
for case pages, and a description of
the application properties relating to
case processing.

How to Build a Product This provides sample-based instruc-
tions on how to build a product. It
starts off with a simple product
sample, and builds upon complexity
with varying product samples.

Cúram Dynamic Evidence Configur-
ation Guide

This describes the configuration set-
tings for Cúram Dynamic Evidence
and includes instructions on how to
use the Cúram Dynamic Evidence
Editor to manage case evidence.

Cúram Express Rules Reference
Manual

This describes the Cúram Express
Rules language and provides instruc-
tions on how to design rule sets us-
ing the Cúram Express Rules Editor.

Table 1.1 Description of Related Reading

1.4 Chapters in this Guide

The following list describes the chapters within this guide:

Chapter 2, Eligibility and Entitlement Processing at a Glance
This chapter provides an overview of the end-to-end eligibility/entitle-
ment processing performed by the Engine. It provides an 'at a glance'
view of this processing, with the remaining chapters in this guide ex-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

2

amining eligibility and entitlement processing 'under the microscope'.

Chapter 3, Navigating Determinations
This chapter describes the different types of determinations and how
case workers can view the details of those determinations.

Chapter 4, Calculating and Displaying Eligibility and Entitlement
This chapter describes in detail how the Engine calculates and displays
core eligibility/entitlement information for a case.

Chapter 5, Calculating and Displaying Key Decision Factors
This chapter describes in detail how the Engine calculates and displays
"key decision factors" to help case workers understand a case's eligibil-
ity/entitlement

Chapter 6, Calculating and Displaying Decision Details
This chapter describes in detail how the Engine calculates and displays
free-form "decision details" to help case workers understand a case's eli-
gibility/entitlement

Chapter 7, Understanding Rule Object Converters and Propagators
This chapter describes how the Engine uses configurable "converters"
and "propagators" to make custom entities and evidence types available
for CER rules calculations.

Chapter 8, How Determinations Are Stored
This chapter describes how the Engine stores determination results so
that they can be retrieved later for viewing by case workers and as in-
puts into financial processing.

Chapter 9, Scheduling Financials
This chapter describes how the Engine interacts with Cúram Financials
to make payments, deductions and corrections.

Chapter 10, Reassessment - Handling Changes in Circumstance
This chapter describes how the Engine processes changes of circum-
stances and reassesses cases.

Chapter 11, Incremental Design and Evolution
This chapter provides advice on how to implement complex products
and how to maintain them when legislation changes.

Appendix A, Compliancy
This appendix describes how to develop with the Engine in a compliant
manner.

Appendix B, The Eligibility and Entitlement Engine API and Customiz-
ability

This appendix describes the API and extension points for the Engine.

Appendix C, Extensions to Cúram Express Rules
This appendix describes the assessment-specific CER expressions and
annotations contributed by the Engine.

Appendix D, Environment Variables

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

3

This appendix lists the Cúram Environment Variables that you can set
to change the Engine's behavior.

Appendix E, Glossary
This appendix provides a glossary of terms used with the Engine.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

4

Chapter 2

Eligibility and Entitlement Processing at a Glance

2.1 Introduction

At a glance, the main objective of the Engine is to work with Cúram Ex-
press Rules (CER) to determine case eligibility and entitlement over the life-
time of the case. CER is responsible for applying rules logic to real world
data in order to make decisions regarding eligibility and entitlement.

The starting point for case eligibility and entitlement is the Product. A
Product contains all the configuration details which specify which CER
rules to use when determining eligibility entitlement. Once a Product has
been configured , its configuration can be used to calculate and store a de-
termination result based on input data.

This determination result is used to generate financials and is retrieved
when a case worker user views eligibility and entitlement details for the
case. When circumstances change which affect an assessment for an active
case, the Engine can automatically reassess the case.

The Engine manages the reassessment of case eligibility and entitlement
through the use of a Dependency Manager. The Dependency Manager stores
dependencies when they are identified during the calculation of eligibility
and entitlement, and then identifies items that have changed and queues
them for later processing, typically in deferred processing. When the de-
ferred process is executed, the Dependency Manager examines its stored de-
pendency records to identify the cases that require reassessment, and for
each identified case it uses to CER to re-calculate the determination result.

The below list describes each of the stages in eligibility and entitlement pro-
cessing, incorporating the above-mentioned terms.

• Configure. A product must be configured before it can be used to create
product delivery cases. Over its lifetime, a product's configuration can
be updated, e.g. in response to changes in legislation.

5

• Input. Any input data which affects the case's eligibility and entitlement
must be gathered so that it can be converted into CER Rule Objects that
are used by CER to perform calculations on that data.

• Calculate. The Engine requests that CER performs calculations to
provide an initial determination result for a case. The dependencies on
input data used during the calculations are stored and thereafter, if any
input data changes which has a bearing on the determination result, the
Dependency Manager will automatically use the stored dependencies
and run the CER calculations again to see if the overall result has
changed.

• Determination Result. A Determination Result is the overall output
from CER eligibility/entitlement rules calculations, and contains the
"three Es" (Eligibility, Entitlement, Explanation) over the full lifetime of
the case.

• Store. The Engine takes a snapshot of the Determination Result and
stores it so that it can be used to generate financials, display details to
users and act as an audit of how decisions regarding a case were arrived
at.

• Schedule Financials. The Engine integrates with the application's Fin-
ancial Engine to schedule financials (typically, payments). If cases are
retrospectively reassessed, then over and under-payments are automatic-
ally handled.

• Retrieve. Case workers can view the full history of a case. They can see
the eligibility, entitlement and explanation for a case over its full life-
time (including cases which are open-ended). A full history of determin-
ations is kept, so that the user can see how corrections have been made
to determinations as circumstances have changed in the real world and/
or corrections have been made to input data held on the system.

• Assessment. The first determination for an active case is recorded as its
initial assessment. This assessment is based on the circumstances of the
case at the time it was activated and gives rise to the initial financials for
the case.

• Reassessment. When circumstances change for an active case, or there
is a change to the product which affects many cases, then the Engine re-
assesses the case, possibly leading to a new determination result which
in turn can affect the financials for the case.

The remaining sections in this chapter provide more detail on eligibility and
entitlement processing and include an example story that spans the sections.

2.2 Product Configuration

An agency must decide what products to offer its clients, and must create a
Product in their application.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

6

There are several details that must be configured for a product (for details,
see the How to Build a Product guide). Some important configura-
tion items highlighted here are:

• the types of evidence available on integrated cases and product delivery
cases;

• the types of input data that can affect eligibility and entitlement calcula-
tions;

• the business rules for how to calculate eligibility and entitlement to the
product (and explanations), based on input data; and

• how the product's lifetime divides up into different "product periods",
with different business rules for legislation changes.

Once a product has been set up in the application, case workers are able to
create individual product delivery cases and progress those cases through a
case life cycle, including eligibility and entitlement processing. For more
details on the case life cycle, see the Cúram Integrated Case Man-
agement Guide .

2.2.1 Example

An agency decides to offer a new product to provide financial assistance to
lone parents (the "Lone Parent" Benefit).

The business rules for the product dictate that eligibility decisions are based
on a number of criteria, including:

• the age of the child;

• evidence that the child normally resides with the parent, and that the par-
ent has no live-in partner; and

• a means test, of the family's income.

Product-design users in the agency design a new product configuration,
which includes:

• New types of evidence for personal circumstances details pertinent to
the Lone Parent Benefit product (relationships from the claimant to their
child(ren), living arrangements, employments and incomes, etc.);

• Eligibility/Entitlement/Explanation rules that calculate based on the par-
ent's living arrangements and their child(ren)'s ages; and

• Rule Object data configurations that allow the personal details of the
parent and child, and the new types of evidence, to be made available to
CER for rules processing.

The product-design users notify the agency's case workers that the new
product is now available for use in the creation of product delivery cases to

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

7

deliver benefits.

2.3 Recording of Input Data

Changes to data which may affect case eligibility and entitlement decisions
can come in many forms, including:

• new evidence records for events that have occurred in the real world;

• corrections to data which were recorded incorrectly or declared fraudu-
lently; and

• product-wide data common to all cases.

Changes to such data can affect both:

• eligibility/entitlement decisions already made; and/or

• eligibility/entitlement decisions to be made in the future.

To accommodate both these needs, the Engine knows the types of data re-
quired by rules processing, and uses the Dependency Manager to manage
changes made to this data through the use of "precedent change sets". When
a change is made to data that can affect eligibility/entitlement decisions, an
item is added to a precedent change set. The points in the data capture life
cycle where this typically occurs are below:

What input data is recorded? When is an item added to a pre-
cedent change set?

Product Delivery Case When the case is created

Personal details When the personal details are recor-
ded on the system, but only for types
of data configured to be pertinent to
eligibility/entitlement calculations
(any other details are ignored).

Evidence records for a case When the evidence is activated, for
the types of evidence configured to
be pertinent to eligibility/entitlement
calculations (NB not when the evid-
ence is first recorded, as only when
the evidence is activated is it deemed
trustworthy for eligibility/entitlement
calculations).

Product-wide configuration informa-
tion

When an administrator publishes
changes to rate tables, rule sets, data
configurations, or product configura-
tions, for those items configured to
be pertinent to eligibility/entitlement
calculations.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

8

Table 2.1 When Do Precedent Change Set Items Get Created?

For all input data aside from product-wide configuration information, when
an item is written to a precedent change set this results in the creation of a
deferred process that when executed uses the dependencies stored by the
Dependency Manager to determine if any dependents exist for the precedent
change set item, and if so re-calculates those dependents. For changes to
product-wide configuration information an item is written to a precedent
change set that is executed in batch mode.

2.3.1 Example

A case worker interviews a claimant who is a single father of a young
daughter. The case worker advises the father to apply for Lone Parent Bene-
fit, and the father agrees to make such an application.

The case worker checks whether the father is already registered on the sys-
tem, and finds that he is not registered, and so the case worker must register
the father's personal details before a case can be created.

When the case worker completes the registration of the father's personal de-
tails, the system stores those details. The system also creates a precedent
change set item which results in the execution of a deferred process. Be-
cause no dependencies on the father's personal details have yet been estab-
lished, no recalculations occur.

Having registered the father on the system, the case worker can now pro-
ceed to create a case for the Lone Parent Benefit for the father. The case
worker creates a product delivery case for the father's claim, and the system
stores a case record. The system also creates a precedent change set item for
the creation of the case that results in the execution of a deferred process,
but again because no dependencies have yet been established, no recalcula-
tions occur.

The case worker asks the father for information which the agency needs in
order to make a determination on the case. Initially, the case worker asks for
personal details of the daughter (including her date of birth). The case work-
er searches for the daughter on the system, but finds no registration records
and proceeds to register the daughter's personal details and also records the
daughter as an additional member of the case. The system stores these de-
tails and creates a precedent change set item for each, but again deferred
processing results in no recalculation.

The case worker goes on to ask the father for details of his living arrange-
ment (i.e. partners and spouses) and income for the household. The case
worker records this information (which can change over time) as temporal
evidence. The evidence is "in edit" and so has not yet become trusted data,
and so at this point no precedent change set items are created.

The case worker satisfies herself that the evidence presented by the father is
indeed correct, and goes on to activate the evidence. The system marks the
evidence records as active.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

9

2.4 Rules Calculations and Determination Results

When eligibility is determined within a product delivery case (for CER-
based products) the system retrieves any input data which affects the case's
eligibility and entitlement from the relevant entities and creates CER rule
objects in memory which are used by CER to perform calculations on that
data. This includes the creation of a "case" rule object responsible for calcu-
lating the determination result for a case. A determination result includes the
eligibility, entitlement and explanation for the lifetime of a case, and a re-
quest to calculate this result can occur in either a "active" or "reactive" way.

The following sections give a high-level summary of:

• what a determination result contains;

• what triggers the calculation of a determination result; and

• how a determination result is calculated.

2.4.1 What a Determination Result Contains

Each determination result contains information regarding the eligibility and
entitlement of a case over the case's lifetime and can include detailed ex-
planations on the case eligibility and entitlement.

The Three Es: Eligibility, Entitlement, and Explanation

A determination result includes a range of decision information (provided
by business rules) which can be broken down into the categories referred to
as the 'three Es': eligibility, entitlement, and explanation.

• Eligibility. The overall "yes" or "no" for whether the claimant is eligible
for the product. Typically there will be business rules which either "rule
in" or "rule out" the case according to details of the case (including per-
sonal details of the members of the case and evidence of their circum-
stances).

• Entitlement. The objectives which the claimant (and possibly other
parties) are entitled to. For benefit products, typically there will be mon-
etary objectives, perhaps broken down into separate components. The
case's entitlement is often an answer to the question "how much should
the claimant receive?", but objectives can be used for other purposes too.
Note that a case's entitlement only applies during periods of eligibility -
whenever the case is ineligible, there is no entitlement.

• Explanation. The explanation (aimed at the case worker) for why the
eligibility and entitlement calculation results are what they are. For peri-
ods of eligibility, the explanation typically contains a description of why
the case is eligible, and for periods of ineligibility the explanation typic-
ally contains one or more reasons why the case is ineligible. The explan-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

10

ation (when shown to the case worker) contains a number of tabs for ex-
plaining entitlement calculations broken down into different categories,
and also a display of important events which have a bearing on the case's
eligibility and entitlement.

Visually, the Engine presents explanations in these ways:

• a graphical view showing key decision factors . Each factor is shown as
a date on which either an important event occurred (e.g. the date of birth
of a new child) or an important quantity changes value (e.g. a rise in in-
come); and

• display of arbitrary decision details laid out on a dynamic UIM page, for
a period during the case's lifetime for which the explanation is unchan-
ging.

It can be useful to observe that the requirements that underpin eligibility/
entitlement and explanation calculations can come from very different
sources:

• Eligibility and Entitlement. The requirements for eligibility and enti-
tlement calculation typically have their roots in legislation or policy doc-
uments, and thus are more-or-less "set in stone" when it comes to the
implementation of CER rules for providing those calculations. The job
of the rules analyst and developers is the science of translating "le-
galese" into CER rules, clarifying any uncertainties along the way. The
acid test of the implemented CER rules is whether they meet the pro-
scribed legislation and/or policy. The rules developer can exercise in-
genuity in implementing the rules in the simplest way possible, but in
the main there is little creativity involved in the implementation task.

• Explanation. By contrast, the requirements for explanation are much
looser, and typically center around "whatever can be displayed in order
to help the case worker understand the case, and/or help the case worker
answer questions from claimants about the case". As such, the analysis
and development of CER rules for explaining a determination are much
more akin to art than science. The initial implementation of explanation
rules may be based around the best guesses of what questions might be
asked of case workers, and so it is recommended that explanation rules
be implemented in such a way that they can be easily enhanced later
without needing any changes to the underlying (set-in-stone) eligibility
and entitlement rules.

The Determination Result Covers the Lifetime of a Case

The eligibility, entitlement and explanation may vary over the lifetime of a
case. The lifetime of a case is the period of time between the case's start and
end dates, inclusive. Each case may bear an actual or expected start date; if
an actual start date is present then it is used as the start of the case, other-
wise the expected start date will be used. Similarly, a case may have an ac-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

11

tual end date and/or an expected end date, which governs the end date of the
case's lifetime (with the actual date taking precedence over any expected
date).

Important

The end date for a product delivery case is optional. A case without
an end date is known as an "open-ended" case.

Each product is configured to specify whether or not it allows open-
ended cases.

Open-ended cases may give rise to open-ended decisions and, ulti-
mately, open-ended financial schedules (i.e. "pay until further no-
tice").

In practice, each open-ended case will ultimately end due to some
real-world event (and an end date will be recorded, and the case will
eventually be closed).

The lifetime of a case may include:

• Periods in the past. These are periods which have already occurred, and
(assuming that the agency has a correct record of all pertinent real-world
events) will have been correctly calculated and assessed. For financial
components, these past periods will have already been paid (or billed).
Any retrospective reassessment of past periods (arising from corrections,
or a lag between events occurring in the real world and their subsequent
notification to the agency) may result in changes to the determination for
a past period, and for these periods the system may need to make correc-
tions to financials, e.g. through the use of over/under payment cases.

• Periods in the future. These are periods which have yet to occur, and
represent the system's "best guess" regarding determination according to
what is already known about the real world. New events which come to
light may cause this "best guess" to change, but in general a change in
prediction of future eligibility/entitlement will not require corrections to
financials (except, perhaps, if payments are made in advance rather than
in arrears).

Because a case's determination is a value calculated for the case's lifetime,
any change in the case's start or end date (e.g. the extension of a case's ex-
pected end date) will cause the case to be reassessed. From a CER perspect-
ive, the case's start and end dates are simply input data in the same way that
evidence, personal data and rates are.

In general, the eligibility, entitlement and explanation for a case will tend to
change on the same dates. However, in some cases, not all will change - for
example, it is possible for a case to remain constantly ineligible, but the
reason for why the case is ineligible may vary over time, and hence the
case's explanation may change value on a date even though the case's eligib-
ility does not change value on that date.

Of course, the future gradually becomes the past at every passing moment;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

12

and so if "left unchecked" (i.e. there are no changes to input data), the pre-
dictions made about future eligibility/entitlement will gently flow into past
"actual" eligibility/entitlement, and will be used as the basis for new finan-
cials.

2.4.2 What Triggers the Calculation of a Determination Result

The calculation of a determination is triggered at various points of the case
life cycle, in one of two ways:

• Active. For various user-initiated case events, the Engine explicitly re-
quests the value of a determination result from CER. CER rule objects
are created in memory through the use of a converter that retrieves data
from the relevant database entities and rules are then executed against
this data.

• Reactive. Whenever the Dependency Manager detects that the values
used in a case's assessment determination result have changed, the De-
pendency Manager invokes the Engine to reassess the case.

The following sections explain Active and Reactive determinations in more
detail.

Active Determination Calculation Requests

The Engine explicitly requests the value of a determination result from CER
at these points in the case life cycle:

• Prior to evidence activation. A case worker can manually request an
interim determination for a case, based on either the active evidence
only, or the active and in-edit evidence on the case. This kind of determ-
ination is made available on a "what if" basis, and the results are essen-
tially disposable once seen by the case worker who requested the de-
termination. A request for an interim determination does not result in the
storage of any dependencies by the Dependency Manager.

• Approval. The system automatically records a snapshot of a case's de-
termination result when the case is submitted for approval, approved or
rejected. This snapshot provides an audit trail of the state of the case's
eligibility/entitlement at the point at which important decisions are made
about the case (e.g. the information available to a supervisor at the point
when the supervisor chose to accept or reject the case). Determinations
created during the approval process do not result in the storage of any
dependencies by the Dependency Manager.

• Activation. When a case is first activated, the system automatically re-
cords a snapshot of the case's determination result, and this result is used
as an input into financials processing. The Engine also uses the Depend-
ency Manager to store the dependencies that were identified and used by
CER during its calculations.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

13

• Manual Redetermination. To support the ability to take a snapshot of a
case's determination result at key points in the life cycle of a case, for
example when an appeal is created, a facility exists for a case worker to
manually request a redetermination for a case. For CER-based cases, the
system will in most situations be up-to-date with changes that affect a
case and so any manual request to redetermine the case will likely not
result in a change to the case's determination. Determinations created
during a manual request for redetermination may cause changes to de-
pendencies to be stored by the Dependency Manager.

At a CER level, a request for the value of a determination result is a request
for the value of a particular rule attribute on the CER rule object for the
product delivery case. As described above, upon activation of the case and
creation of the initial assessment determination, the Engine will store the de-
pendencies that were identified and used by CER during its calculations.
This includes all of the dependencies of the rule attribute that holds the de-
termination result. Once identified, these dependencies are now established
so that the system can react to changes in input data which may affect its
value (and may cause reactive re-determinations).

Reactive Determination Calculations

Once a case has been activated and an initial assessment determination has
been created, then the items upon which the determination result depends
will be established as dependents so that the system may react to changes
which may affect it. This is in sharp contrast to traditional case processing
which is centered around having to write processing to identify affected
cases; instead, the paradigm is much closer to that of a "spreadsheet", which
automatically calculates results whenever input values change.

When any data that affects eligibility and entitlement is subsequently
changed, an item will be written to a precedent change set, and a request for
a deferred process made. When executed, the deferred process will then use
the stored dependencies to determine the dependents for the precedent items
that were changed and recalculate those dependents. A dependent which
relates to a case 1 will cause that case to be reassessed.

The Dependency Manager does not really "understand" different types of in-
put data; rather, it just knows that a dependency exists from a determination
result value to the various input data values used to calculate it (in the same
way as a spreadsheet does not understand the purpose of the data typed into
it). From a business perspective, the types of input data change that can af-
fect determination results will typically include:

• changes to case data, e.g. start and end dates;

• changes to personal data, e.g. the correction of a date of birth or the re-
cording of a date of death;

• changes to rate data, e.g. an increase in a benefit payment rate; and

• changes to product configuration, e.g. the introduction of a new period

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

14

of legislation.

The Dependency Manager's lack of understanding of types of input data is
the strength underpinning how reactive determinations work. In a spread-
sheet-like way, the Dependency Manager will reassess all cases that are de-
pendent upon the data that has been changed, regardless of whether that
change ends up affecting zero, one or very many cases. For some changes to
input data, the Engine may reassess cases but find that the overall determin-
ation result value has not changed, and in these circumstances no new de-
termination will be stored.

2.4.3 How a Determination Result Is Calculated

A determination result is calculated by the execution of a chain of CER
rules.

These rules fall into two categories:

• Fixed Rules. The Engine includes some fixed rules which cannot be
customized. These rules are responsible for calculating the determina-
tion over different legislative periods, and for creating product-specific
rule objects for the execution of product-specific rules.

• Product-Specific Rules. Each product will have rules which contain the
business and technical logic for the calculation of eligibility/entitlement
and explanations for that product. These rules also effectively link the
product to types of evidence, personal data and rates to be used in de-
termination calculations for the product.

A high-level summary of the chain of CER rules execution for a determina-
tion is as follows:

• the case's lifetime is calculated, with reference to its actual and expected
start and end dates;

• the case's lifetime is checked against the product periods for the product,
to see which of these periods overlap with the case's lifetime. These
product periods will contribute to the case's determination (any other
product periods lying wholly outside the case's lifetime are ignored);

• for each contributing product period, product-specific rule objects for
the case are created (one rule object for the case's eligibility/entitlement,
optionally 2 one rule object for key decision factors, and one rule object
for each category of decision details 3), according to the configuration
of the product period;

• for each product-specific rule object created, its output attribute values
are calculated to get the eligibility/entitlement/explanation results for a
portion of the case's lifetime;

• the calculation of eligibility/entitlement/explanation results will involve
the execution of lower-level rules, which may perform searches to re-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

15

trieve personal data, evidence and/or rate data. These searches effect-
ively link the case to the input data on which the case determination res-
ult ultimately depends.

• the results arising from different product periods are then "spliced to-
gether" to arrive at an overall determination result which covers the full
lifetime of the case.

2.4.4 Example

When the case worker has gathered evidence for the father's Lone Parent
Benefit case, the father asks how much benefit he is likely to receive. The
case worker requests a manual determination based on the in-edit evidence
gathered (the evidence has not yet been approved).

The system actively calculates a determination result that:

• shows the father is eligible for benefit from 1st January 2001, up until
his daughter is expected to reach the age of majority on 14th December
2010 (which, at the time the claim is created, is many years in the fu-
ture);

• shows the father is entitled to $20 per week, but that this amount will
rise to $25 per week from 1st June 2002, when there is a planned in-
crease in benefit payment rates;

• explains that the father meets all the eligibility criteria but has been
means tested and thus is entitled to a reduced rate of benefit due to his
income.

At this point, no dependencies are stored by the Dependency Manager be-
cause the case has not yet been activated.

The case worker activates the evidence, which results in items being written
to a precedent change set, and a deferred process being created. Because no
dependencies yet exist for the case, no recalculation occurs when the de-
ferred process is executed.

The case worker then submits the case for approval. The system creates a
snapshot of the determination result (recalculated above) for audit purposes,
and routes the case to a supervisor. The supervisor reviews the case and ap-
proves it, and the system creates another snapshot of the determination res-
ult, and links it to the record of the case approval. The case is activated and
the system creates the initial assessment determination result. The depend-
encies that were identified during the calculation of the determination result
are stored.

On 1st March 2003, the father remarries, and thus stops being a lone parent.
The father is somewhat lax with regard to informing the agency, and only
gets around to telling a case worker about his new marriage three months
after it occurred. The case worker records the change in the father's personal
circumstances and activates the change in evidence. An item is written to a

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

16

precedent change set, and because the case is dependent upon the evidence
in the case, CER recalculates a new determination for the case. The determ-
ination shows that the father's eligibility stopped three months previously
(on 1st March 2003, his date of marriage) and that he has been overpaid in
the meantime. The system initiates overpayment processing to recover the
amount overpaid. The case worker can see from the latest determination that
the reason that eligibility ended was due to the father no longer satisfying
the "lone" condition of the product's business rules.

On 1st May 2008, the father's wife dies, and the father notifies the agency
that he is again a lone parent. The change in his personal circumstances
again results in an item being written to a precedent change set, and the case
once again being recalculated. It transpires that over the last few years, in-
creases in the father's income have pushed him out of the low-income brack-
et, and so despite now being "lone", he is ineligible for the Lone Parent Be-
nefit due to his income level. The determination viewed by the case worker
shows that when his wife died, the father continued to be ineligible for be-
nefit, but the reason for ineligibility changed (prior to his wife's death, the
reason was that he was not "lone", after her death the reason was that his
means test failed due to his income level). The determination continues to
show that when his daughter finally reaches the age of majority (which is
still in the future), he will continue to be ineligible, but for a different reason
again (namely that the father has no minor dependent). The determination
also continues to show all the historical changes in eligibility, entitlement
and explanation since the start of the case.

On 14th December 2010, the daughter becomes an adult. A case worker,
who periodically reviews cases, notices that the case has been inactive for
some time and closes the case, recording an end date. The open-ended de-
termination result is replaced with a closed-period determination result.

Throughout the evolving history for the case, each determination shows key
decision factors such as the date that the daughter was born, the date that the
daughter became an adult, and changes in the household's total income. For
any constant period of explanation, there are different categories of explana-
tion, one showing a summary of which eligibility criteria have been met,
and another showing how the means test was applied during that period.

2.5 Determination Storage

For both active and reactive determinations, the Engine stores a snapshot of
a determination.

There are two main groups of database tables used to store the determina-
tion data:

• CREOLECaseDetermination and its related tables - stores full details of
the determination for later viewing by a case worker; and

• CaseDecision and its related tables - stores details of the eligibility/en-
titlement result for input into financial processing (typically to make be-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

17

nefit payments to the claimant).

For more details on these database tables and the processing that occurs
around the storage of determinations, see Chapter 8, How Determinations
Are Stored .

2.5.1 Example

When the father's Lone Parent Benefit case was initially activated (i.e. prior
to his marriage and other changes of circumstances), the father's entitlement
was $20 per week from 1st January 2001, rising to $25 per week from 1st
June 2002, with eligibility halting when his daughter reaches the age of ma-
jority on 14th December 2010.

This initial assessment determination would be stored as a single "current"
record on the CREOLECaseDetermination family of database tables, with
these related records on the CaseDecision family of database tables:

• eligible and entitled to $20 per week from 1st January 2001 to 31st May
2002 inclusive;

• eligible and entitled to $25 per week from 1st June 2002 to 13th Decem-
ber 2010 inclusive; and

• ineligible from 13th December 2010 until further notice.

When the evidence on the case and/or payment rates change, the records
above are superseded and replaced with a new set of "current" records.

2.6 Scheduling Financials

The financial scheduler is responsible for scheduling financial transactions
based on the eligibility and entitlement results and the case deductions.
These financial schedules, known as financial components, are used by the
Financial Manager to create financial instruction line items. The financial
scheduler sits between the Eligibility and Entitlement Engine and the Finan-
cial Manager, translating eligibility and entitlement results, as well as case
deductions, into financial schedules that can be processed into actual pay-
ments or bills.

Financial schedules will only be created from assessment determinations
(for more details on the different types of case determinations, see
Chapter 3, Navigating Determinations).

2.6.1 Example

The case determination calculated earlier shows that from 1st January 2001
to 31st May 2002 inclusive the father is entitled to $20 per week and that
from 1st June 2002 to 13th December 2010 inclusive the father is entitled to
$25 per week.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

18

Using this information the financial scheduler will produce one financial
component to deliver $20 weekly from the 1st January 2001 to 31st May
2002 inclusive and a second financial component to deliver $25 weekly
from the 1st June 2002 to 13th December 2010 inclusive.

A few months later, the new case determination created following the
budgetary review shows that the father will be entitled to $28 from 1st Janu-
ary 2003.

Using this information the financial scheduler cancels the existing financial
components and creates two new ones. The first will continue to deliver $25
weekly until the current rate expires. The second will deliver $28 weekly
from the date that the revised rate comes into effect until the daughter
reaches the age of majority.

The following year, the new determination created following the father's
marriage shows that the father's eligibility stopped three months earlier (on
the date of his marriage) and that the entitlement from that date onwards
was $0.

Using this information the financial scheduler cancels the existing financial
component (for $28 weekly) and creates a payment correction case for the
amount overpaid to the father. The financial schedule created within the
payment correction case indicates that the father is liable for a once-off liab-
ility to allow the agency to recoup the amount he has been overpaid.

Five years later, the new determination created after the father's wife dies
shows that the father is still ineligible, due to his income level. Since no eli-
gible case decisions exist no financial schedules will be created.

The daughter becomes an adult and the case is closed. When a case is closed
any live financial components on the case are also cancelled. However in
this example no live financial components exist so there is nothing for the
financial scheduler to do.

The actual number of financial components required to represent these vari-
ous financial schedules depends on a number of factors including the nom-
inee component assignments, the nominee delivery patterns, the period to
which the schedule applies and the case decision objective tags which have
been specified.

For more details on scheduling financials, see Chapter 9, Scheduling Finan-
cials .

2.7 Determination Retrieval

A case worker can view determination snapshots for a product delivery
case, including:

• the current assessment determination, if any - i.e. the determination
which is the basis of the actual delivery of the product (e.g. the basis for
financials for benefit payments);

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

19

• historical assessment determinations, each of which was at one time cur-
rent but has since been superseded;

• snapshots taken when a case was submitted for approval, approved or
rejected; and

• the result of requesting a manual determination.

When the case worker views a determination snapshot, then the system will
analyse the determination result to find the dates on which one or more of
the eligibility/entitlment/explanation changes, and will use these dates to
carve up the case lifetime into coverage periods.

Each coverage period is shown with its from and to dates. If the case is
open-ended, then the last coverage period will be open-ended. If the case
worker chooses to see decision details for a coverage period, then the sys-
tem will display a "vertical slice" through the determination data for that
date.

2.7.1 Example

A determination for the father's case establishes the following:

• the claim is eligible from 1st January 2001 up to 30th June 2005 inclus-
ive

• the father is entitled to:

• $20 per week from 1st January 2001 to 31st May 2002 inclusive;
and

• $25 per week from 1st June 2002 to 30th June 2005 inclusive;

• the explanation of the case varies:

• father passes all eligibility criteria from 1st January 2001 to 30th
June 2005 inclusive;

• father fails the "lone" condition from 1st July 2005 to 31st January
2010 inclusive; and

• father fails the income means test from 1st February 2010 until fur-
ther notice.

The dates on which items change can be combined to carve up the case's
lifetime into these coverage periods (where the eligibility, entitlement and
explanation is constant throughout each coverage period):

• 1st January 2001 to 31st May 2002 inclusive;

• 1st June 2002 to 30th June 2005 inclusive;

• 1st July 2005 to 31st January 2010 inclusive; and

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

20

• 1st February 2010 until further notice.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

21

Notes
1The Dependency Manager manages dependencies for items other than
cases, too - e.g. Advice.
2It is optional whether to configure the product period for key decision
factors. If key decision factors are not configured for the product period then
no key decision factors rule object is created.
3It is optional whether to configure the product period for any decision de-
tails categories. If no decision details categories are configured for the
product period then no decision details rule objects are created.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

22

Chapter 3

Navigating Determinations

3.1 Introduction

The Engine calculates and stores different types of determination results at
various points of the case lifecycle. This section describes how a case work-
er user can navigate the determinations using the screens included with the
Engine.

The Engine supports these types of determination:

• Manual eligibility check determinations;

• Snapshot determinations; and

• Assessment determinations.

Once the Engine displays a determination, then the case worker can drill in-
to details of the determination. The different types of details shown in the
determination are described in later chapters:

• Eligibility/entitlement calculation results. See Section 4.2, How It
Looks ;

• Key decision factors. See Section 5.2, How It Looks ; and

• Decision details. See Section 6.2, How It Looks .

3.2 Manual Check Determinations

The case worker can request a manual eligibility check on a product deliv-
ery case and choose whether that check should include "in edit" evidence
changes.

If the case worker chooses to base the eligibility check on in-edit evidence,
then the Engine provides a determination as if pending evidence changes

23

had already been applied (see Section 7.6.2, Temporary Access to In-Edit
Evidence Changes), i.e. as if:

• newly-added evidence had been activated;

• corrections to existing evidence had been activated; and

• pending-removal evidence had been removed.

If the case worker instead chooses to use active evidence only, then any
pending changes to evidence are ignored.

The Engine displays the determination result for the manual eligibility
check, noting whether or not in-edit evidence was used. Once a manual eli-
gibility check determination has been created, then the case worker can nav-
igate to the last manual eligibility check created.

3.3 Snapshot Determinations

The Engine automatically records a snapshot of a case's determination result
when the case is:

• submitted for approval; and

• approved/rejected.

Snapshot determinations are displayed on the Case Calendar and a decision
summary can be accessed from the calendar view.

3.4 Assessment Determinations

The Engine creates an assessment determination whenever there is an active
or reactive request to assess a case. The Current Determination page dis-
plays the active assessment determination result. The active assessment de-
termination feeds through to financial processing, typically to dictate the
amount payable on a case.

The Determination History displays the list of all assessment determination
results, the active assessment determination result and superseded assess-
ment determination results. There is also an option to manually force the re-
assessment of an active case and view these results.

3.4.1 Current Assessment Determination

When a case worker clicks on the Determinations tab, the Engine displays
the current assessment determination, if any. This current assessment de-
termination is the determination which currently governs how the product is
being delivered (typically, how much is payable).

If there is no current assessment determination (for example if the case has
not yet been activated), then the Engine displays a message explaining that

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

24

no current assessment determination is available.

3.4.2 Historical Assessment Determinations

Within the Determinations tab, when a case worker clicks on the Determina-
tion History option, the Engine displays a list of assessment determinations
on the case (if any). The most recent (current) assessement determinations
(if any) are displayed at the top and the remainder are superseded determin-
ations (if any) - i.e. determinations which were "current" at some time in the
past, but have been replaced due to a change which affected the case's de-
termination result.

Recall that each determination covers the complete case lifetime, and typic-
ally includes past periods based on real-world events and predictions based
on expected events. Thus each superseded determination contains the pre-
dictions about a case that the Engine made based on the known facts at the
time; if facts change, then the prediction must be superseded and replaced
with a more accurate prediction based on more accurate facts. The current
determination represents the best prediction about the case's future eligibil-
ity and entitlement based on facts known today.

3.4.3 Manual Reassessments

To support the ability to take a snapshot of a case's determination result at
key points in the life cycle of a case, for example when an appeal is created,
the case worker can manually request that an active case be reassessed. The
case worker must confirm the request to manually reassess a case:

When a case is manually reassessed, the Engine displays the new determina-
tion result and notes that it was due to a manual reassessment request.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

25

Chapter 4

Calculating and Displaying Eligibility and
Entitlement

4.1 Introduction

Eligibility and entitlement results are the core data calculated by the Engine
and underpin how the case is treated by financial processing. The Engine
contains features to calculate additional "explanation" results (see Chapter 5,
Calculating and Displaying Key Decision Factors and Chapter 6, Calculat-
ing and Displaying Decision Details), but it is critical to understand how
the core eligibility and entitlement results are calculated by the system and
displayed to the user.

This chapter describes the flow of processing that allows eligibility and enti-
tlement data to be displayed to the user. The processing is intentionally de-
scribed in reverse-chronological order; firstly we describe the end results,
followed by the Engine processing that produces those results, before finally
describing how the data was calculated.

This "backwards" perspective will echo how your rules designers will need
to think when designing your product; they will need to start with the end in
mind (namely how case workers and financial processing will use the eligib-
ility and entitlement results to perform subsequent work on the case).

This chapter is structured as follows:

• How it looks. Describes how eligibility and entitlement information is
displayed to a case worker.

• How it works. Describes how fixed processing by the Engine and cus-
tom processing combine to calculate and display eligibility/entitlement
results.

• How to use it. Describes the steps you will need to follow to implement
eligibility/entitlement calculations for your product.

26

4.2 How It Looks

This section describes how eligibility and entitlement information is dis-
played (in summary form) to a case worker.

The structure of eligibility and entitlement data is intentionally restrictive; it
contains the information required to allow Cúram Financials to subsequently
process the case, such as whether the case can be paid, and if so how much
and to whom.

Because the structure of the eligibility and entitlement data is fixed by the
Engine, the Engine knows how to display this information for any CER-
based case, and so includes standard screens capable of displaying summar-
ies of a case's eligibility and entitlement. (For the display of more flexible
data specific to your product, see Chapter 5, Calculating and Displaying
Key Decision Factors and Chapter 6, Calculating and Displaying Decision
Details .)

Eligibility/Entitlement data is also used as input into Cúram Financials; for
more details on this use of the data, see Chapter 8, How Determinations Are
Stored and Chapter 9, Scheduling Financials .

4.2.1 Viewing a Determination's Coverage Periods

The case worker can navigate to an assessment determination for a product
delivery case as described in Section 3.4, Assessment Determinations .

A determination covers the full lifetime of the case (as known at the time
the determination was made - the case's lifetime may have subsequently
changed and a newer determination recorded). The determination is open-
ended because the case itself is open-ended, so the latest decision for this
determination applies until further notice.

The determination is divided into a number of contiguous "Coverage Peri-
ods". Broadly each coverage period is a period of constant eligibility, enti-
tlement and explanation for a determination.

For each coverage period, the system shows the eligibility result for that
period, and a summary of the amount payable. This coverage period data is
standard eligibility/entitlement information and the Engine ships with a
standard screen for displaying this information for any CER-based case.
You should not need to write your own coverage period screens unless you
have special requirements.

4.2.2 Basic Eligibility/entitlement Decision Details

The Engine also provides the ability to present a case's entitlement informa-
tion in a very basic way. The details are presented in a somewhat technical
way, as a list of objectives and their respective tags.

The Engine does not automatically show this information for your product;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

27

however it is relatively easy to configure your product to show this informa-
tion, typically as a stepping stone on the way to fully developing your
product.

These "basic" eligibility/entitlement details are a simple implementation of
Decision Details rules (see Chapter 6, Calculating and Displaying Decision
Details); typically these details are too simple to be useful to a case worker,
but may be useful to your developers during the development of your
product, and so may be used as "scaffolding" during your development
cycle. See Section 11.3.10, Re-use the Basic Decision Details before Writ-
ing Your Own for a description of how to enable these basic details for your
product.

4.3 How It Works

This section describes how fixed processing by the Engine and product-spe-
cific processing combine to calculate and display eligibility/entitlement res-
ults.

The calculation and display of a determination involves a mixture of:

• fixed processing contributed by the Engine; and

• custom product-specific processing contributed by you (i.e. the imple-
mentation of your product).

The Engine follows the following high-level steps to arrive at eligibility and
entitlement data that can be displayed to a case worker:

• At Determination Calculation time:

• An action occurs which triggers the determination of a case (either
an active or reactive determination);

• The Engine identifies the product periods (configured for the
product) that cover the case's lifetime;

• The Engine uses CER rules (specific to the product) to calculate the
eligibility and entitlement for each contributing product period;

• The Engine calculates the eligibility and entitlement across the life-
time of the case by "splicing together" the eligibility and entitlement
from each contributing product period;

• The Engine calculates the eligibility and entitlement across the life-
time of the case by "splicing together" the eligibility and entitlement
from each contributing product period;

• The Engine stores (on the database) a determination result contain-
ing the eligibility and entitlement data (as well as key decision
factors and decision details, covered elsewhere in this document).

• At Determination View time:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

28

• A case worker requests to view a determination on a case;

• The Engine retrieves the determination result from the database and
identifies its coverage periods; and

• The Engine lists the coverage periods for the case, and uses the de-
cision summary display strategy configured for the product to pro-
duce a summary of the entitlement for each coverage period.

The data interfaces and implementation for calculation of eligibility/enti-
tlement, and subsequent display of eligibility/entitlement data are described
in more detail below.

4.3.1 Calculation of Eligibility and Entitlement

The responsibilities for calculating a case's eligibility and entitlement are di-
vided between fixed implementations provided by the application and
product specific implementations for a product (some of which must adhere
to application-provided interfaces). This section describes the important in-
terfaces and implementations involved in the calculation of the eligibility/
entitlement results that form part of a determination result.

Sections A, B, and I describe a layer of fixed implementations that are re-
sponsible for calculating and storing the overall determination result.

The processing described in sections C, D, and E represents a combination
of fixed interfaces and custom product-specific processing that is respons-
ible for determining the eligibility and entitlement for the case across
product periods.

Section C describes a fixed interface included with the Engine that serves as
the interface between the fixed eligibility/entitlement processing provided
by the Engine and the product-specific rules for the calculation of eligibility
and entitlement results.

Sections D and E both describe custom product-specific processing.

The final layer described in sections F, G, and H represents a mixture of
fixed implementation and fixed interfaces contributed by the engine, as well
as custom product-specific processing that is responsible for retrieving the
data from entities, evidence and rate tables used by the custom product-spe-
cific processing described in section D.

A) ProductEligibilityEntitlementRule-
Set.ProductDeliveryCase rule object

When the calculation of a determination is triggered, the Engine automatic-
ally creates a ProductEligibilityEntitlementRule-
Set.ProductDeliveryCase rule object for the case in memory and
populates it with case data, including the case ID, start date, expected start
date, end date, and expected end date. This processing is critical to the En-
gine and cannot be customized. The rule object is responsible for calculating

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

29

the overall determination result (including the calculation of eligibility/en-
titlement information).

In particular, the rules for the rule object's calculated attributes are fixed and
cannot be customized:

• the value of contributingProductPeriods is provided by the
static method
curam.core.sl.infrastructure.assessment.impl.Sta
tics.contributingProductPeriods (which is included with
the Engine), which returns a timeline of ProductPeriod rule objects
(see below); and

• the value of determinationResult is provided by the static meth-
od
curam.core.sl.infrastructure.assessment.impl.Sta
tics.determinationResult (which is included with the Engine),
which returns a
curam.core.sl.infrastructure.assessment.impl.Det
erminationResult Java data object (see below).

B) ProductEligibilityEntitlementRule-
Set.ProductPeriod rule objects

The Engine also retrieves product period information from the database, in-
cluding the start date and end date, and creates a ProductPeriod rule
object in memory for each published product period in the system. For a
new product, there is typically only one period covering the lifetime of the
product, but as new legislation is introduced, then it is possible (depending
on design approach) for the product to have more than one period. For more
information on adding product periods over time, see Chapter 11, Incre-
mental Design and Evolution .

These product periods allow the Engine to identify which ones will contrib-
ute to a determination on a case - namely the periods that overlap in any
way with the case's lifetime. Other product periods outside the case's life-
time (i.e. before the case started or after it ended) do not contribute. The
structure and maintenance of the ProductPeriod rule objects is fixed by
the Engine and cannot be customized.

C) ProductEligibilityEntitlementRuleSet.AbstractCase
rule class

The Engine creates an Abstract Case rule object in memory for each Product
Period rule object stored in memory. The AbstractCase rule class acts
as the interface between the fixed eligibility/entitlement processing provided
by the Engine, and the product-specific rules for the calculation of eligibility
and entitlement results.

This "interface" rule class ensures that concrete sub-rule-classes have imple-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

30

mentations for the following calculated rule attributes, which provide the
fixed-structure eligibility and entitlement results required by the Engine:

• isEligibleTimeline. Responsible for calculating the intervals of time
during which the case is/is not eligible during the product period; and

• objectiveTimelines. Responsible for calculating the objectives that the
case may be entitled to, and for each objective, the intervals of time
when the case is/is not entitled to the objective, and the tag values avail-
able (see Section 4.4.3.2, Write the Case Eligibility/Entitlement Calcula-
tion Rule Classes for more details).

The Engine-supplied interface rule set has no implementations for these at-
tributes - rule classes must be written (see below) to provide implementa-
tions for the business requirements of the product; rather the interface rule
class allows the Engine to communicate with the rule classes by specifying
a contract for the data structures that it requires.

D) Custom rule classes for eligibility/entitlement

When the Engine calculates eligibility/entitlement results for a product peri-
od, the Engine first asks the product period which rule class should be used
(which is recorded on the product period as part of setting up a product).

The rule class specified on the product period must ultimately extend from
the ProductEligibilityEntitlementRule-
Set.AbstractCase interface rule class. For ease of upgrades, it is re-
commended that the rule class extends the DefaultProductEligib-
ilityEntitlementRuleSet.DefaultCase rule class which
provides default implementations.

The rule class must provide implementations of the isEligible-
Timeline and objectiveTimelines rule attributes, which is where
the bulk of the implementation effort for eligibility/entitlement calculations
will lie (and in fact this effort may form the bulk of the overall product im-
plementation). See Section 4.4.3.2, Write the Case Eligibility/Entitlement
Calculation Rule Classes for more details on the work involved in imple-
menting these attributes.

If the product has different product periods, due to a change in legislation
that affects how eligibility and/or entitlement is calculated, then each
product period will be configured to use a different rule class.

E) Custom rule classes for calculations

Typically the calculations of eligibility and entitlement stored in the isE-
ligibleTimeline and objectiveTimelines rule attributes may
involve complex business calculations, and CER rule classes can be created
to structure these calculations in line with business requirements.

Any such rule classes do not need to adhere to any application-supplied in-
terfaces (although the CER "extends" mechanism may be used to create a

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

31

hierarchy of rule classes to treat rule objects in a polymorphic way if use-
ful).

Some of the calculations will involve accessing stored data, by retrieving
rule objects of these types:

• rate cells (see Section 4.3.1.6, F) RateRuleSet.RateCell rule objects and
propagation configuration);

• custom entities (see Section 4.3.1.7, G) Custom Entity rule objects); and
/or

• custom evidence (see Section 4.3.1.8, H) Custom Evidence rule objects .

Note

These retrievals cause a dependency to be stored between the case's
determinationResult and the underlying stored data, which
is how the Engine handles reassessment of cases when data changes
(see Chapter 10, Reassessment - Handling Changes in Circumstance
.

F) RateRuleSet.RateCell rule objects and propagation config-
uration

The Engine stores and maintains RateCell rule objects on CER's database
tables for cells from certain rate tables. The data from the rate table cells is
propagated to these rule objects when modified and is stored in a value-
Timeline rule attribute that stores the value of the rate over time. The list
of rate tables that are propagated to rule objects is configurable (see Sec-
tion 7.4.2.2, Configuration), but otherwise the processing is supplied by the
Engine and cannot be customized.

Typically the eligibility and/or entitlement calculations for a product will in-
volve comparisons with or multiplications by rates (in addition to case-
specific data); and rules for calculations will access such rates via Rate-
Cell rule objects.

G) Custom Entity rule objects

When the calculation of a determination is triggered, the Engine queries rule
object data configurations to determine what entities contain data that is re-
quired by CER for rules processing and supports the population of CER rule
objects in memory for each of the relevant entities. The Engine contains a
generic mechanism for populating the rule objects with the data from these
custom entities (see Section 7.4.3, Entity Rule Objects).

H) Custom Evidence rule objects

When the calculation of a determination is triggered, the Engine queries rule
object data configurations to determine what custom evidence types (both

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

32

static and dynamic evidence) contain data that is required by CER for rules
processing and supports the population of CER rule objects in memory for
each of the relevant evidence types. The Engine contains a generic mechan-
ism for populating the rule objects with the data from these custom evidence
types (see Section 7.4.4, Active Succession Set Rule Objects and Sec-
tion 7.4.5, Active Evidence Row Rule Objects).

Each rule class for a custom evidence type must ultimately extend the En-
gine-supplied PropagatorRuleSet.ActiveSuccessionSet or
PropagatorRuleSet.ActiveEvidenceRow rule classes.

The population of CER rule objects for dynamic evidence types is handled
automatically (see the section on "Generated Rule Sets" in the CÃºram
Dynamic Evidence Configuration Guide).

I) DeterminationResult

The ultimate determination output from the ProductEligibilityEn-
titlementRule-
Set.ProductDeliveryCase.determinationResult attribute is
an immutable instance of the
curam.core.sl.infrastructure.assessment.impl.Determ
inationResult interface.

This object holds data only (the methods on the interface are accessors
only). The determination result is created by the Engine when splicing to-
gether the individual eligibility and entitlement results across the case's divi-
sion into different product periods and is stored on the database. Note that in
the simple case (typically for recently-created products) where the product
has only one product period, the entire eligibility and entitlement results are
exactly those contributed by the single product period which covers the en-
tire case lifetime.

The DeterminationResult data holds the following:

• productDeliveryID. The unique identifier of the product delivery case;

• determinationDateRange. The "lifetime" of the determination, which
was the lifetime of the case at the time the determination was taken;

• determinationEligibilityEntitlementTimeline. The varying eligibility/
entitlement data for the case, spliced together from the isEligible-
Timeline and objectiveTimelines values from the rule objects
created for each of the contributing product periods; and

• Other data not directly relevant to eligibility and entitlement (and so
covered elsewhere in this document - see Section 5.3.1.5, E) Determina-
tionResult and Section 6.3.1.7, G) DeterminationResult).

The DeterminationResult structure is provided by the Engine and
cannot be customized in any way.

4.3.2 Display of Eligibility and Entitlement

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

33

The vast majority of data processing for eligibility and entitlement occurs at
the time when the determination result was calculated, as described in the
previous section.

However, some data processing for eligibility and entitlement occurs at the
time that the data is viewed; and this section describes the display-time pro-
cessing of eligibility and entitlement data.

When a case worker views a determination then the Engine automatically:

• divides the determination into coverage periods; and

• displays a summary of entitlement for each coverage period.

Dividing the Determination into Coverage Periods

When a case worker views a determination, the Engine automatically di-
vides up the case lifetime into a number of coverage periods. Each coverage
period is a period within the determination where the following are constant:

• The eligibility (yes/no);

• The entitlement (which objectives, their targets and references, and their
tag values); and

• The decision details data (see Chapter 6, Calculating and Displaying
Decision Details).

Or, to put it another way, any change in eligibility, entitlement and/or de-
cision details along the lifetime of the determination causes a new coverage
period to come into effect on that date.

Note

A change in a key decision factor on a particular date does not in it-
self cause a new coverage period to start on that date.

Typically, though, the fact that there is a change to a key decision
factor on that date tends to mean that the eligibility/entitlement and/
or decision details are likely to change on that date, too (and the
change in eligibility/entitlement and/or decision details will cause a
new coverage period to start on that date).

The division of the determination into contiguous coverage periods occurs
automatically on the Engine's standard screens for viewing a determination,
and cannot be customized.

Displaying a Summary of Entitlement for a Coverage Period

The Engine includes an interface for providing a summary description of the
entitlement for a coverage period:
curam.core.sl.infrastructure.assessment.impl.Determ
inationIntervalSummarizerStrategy interface. See the JavaDoc

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

34

for this interface for more details.

When you set up your product, you may specify an implementation of this
interface that the Engine will use when displaying a coverage period. The
Engine invokes this strategy implementation whenever it displays a cover-
age period for a determination, and the strategy implementation is respons-
ible for returning an appropriate summary line of text (in the user's locale).

Note that:

• if you do not specify a strategy implementation for your product, then no
summary for the coverage period will be displayed; and

• if you subsequently change the strategy implementation for your
product, then only the display output shown to users is affected; the sys-
tem will not reassess cases nor cause any changes in financial output.

As such, specifying a strategy implementation for entitlement summaries is
not critical to getting your product up and running; this task can be deferred
until later in the development cycle if need be.

4.4 How to Use It

Most of the high-level processing for eligibility and entitlement is fixed lo-
gic provided by the Engine. However, you will have to provide implementa-
tions for certain lower-level logic. In order to do this, you must understand
the basic concepts of eligibility and entitlement.

In addition to providing an understanding of these concepts, this section de-
scribes the work you will need to do to complete the eligibility and entitle-
ment logic for your product, as follows:

• Analysis;

• Implementation; and

• Testing.

Note

This section describes the complete work for eligibility/entitlement
logic; however, for short-cuts you can take to get your product up-
and-running quickly, see Section 11.3, Incremental Design .

4.4.1 Understanding Eligibility and Entitlement Concepts

The Engine has a fixed data structure for eligibility and entitlement data.
Understanding the structure of this data is critical as you must map your
business requirements to the concepts in this structure.

Case Lifetime

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

35

The lifetime of a case is the period of time between the case's start and end
dates, inclusive.

Each case may bear an actual or expected start date; if an actual start date is
present then it is used as the start of the case, other- wise the expected start
date will be used.

Similarly, a case may have an actual end date and/or an expected date,
which governs the end date of the case's lifetime (with the actual date taking
precedence over any expected date).

A case without an end date is known as an "open-ended" case. A determina-
tion for an open-ended case will thus be an open-ended determination; and
the final coverage period in that determination will be open-ended too.

Eligibility

On any given day in the case's lifetime, the case is either eligible or in-
eligible for delivery (depending on the circumstances of the case).

The Engine thus treats the case's eligibility as a Boolean value which can
vary over the lifetime of the case (and thus in CER terms is a Timeline of
Boolean values).

For example, a claim for child benefit may be eligible today but will cease
to be eligible once the child being claimed for reaches the age of majority.

Objectives

An objective is something "delivered" by a product delivery case to a partic-
ular target. Commonly an objective is a payment of some kind of benefit or
allowance paid to a client, but an objective could also be (for example) an
amount to bill, or a non-monetary outcome such as a recommendation to the
client.

The Engine has separate concepts for:

• the types of objective supported by your product, e.g. your product sup-
ports the concept of a personal benefit allowance; each type of objective
defines its name and other fixed data such as the type of client that it tar-
gets; vs.

• an instance of an objective on a particular product delivery case, e.g. on
case 123 for your product, claimant John Smith is entitled to personal
benefit allowance from 1st Jan 2011 until 15th Feb 2011; each objective
instance describes the particular target to deliver to and the period(s) for
which that target is entitled to the objective.

On any given day in the case's lifetime, if the case is eligible then the case is
either entitled or not entitled to any particular objective instance. Equival-
ently, we say that an objective instance was attained or not attained on that
day.

The rule classes for objective types and instances described later in this sec-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

36

tion show the full details available.

Objective Tags

An objective tag is a frequency at which an objective may be delivered.
Commonly for payment objectives, the objective will support a mixture of
delivery frequencies, e.g. daily and weekly, to support:

• Different frequencies of payment offered to the client; and

• Payments for ramp-up and ramp-down periods. These are described
more in Section 9.2.2.4, Calculating Financial Component Cover Peri-
ods

The Engine has separate concepts for:

• the types of tag supported by a particular type of objective, e.g. the per-
sonal benefit allowance (supported by your product) may be paid either
weekly or daily; vs.

• an instance of a tag on a particular objective instance, e.g. on case 123
for your product, claimant John Smith can be paid $10 per week, when
receiving the personal benefit allowance to which he is entitled.

The rule classes for objective tag types and instances described later in this
section show the full details available.

4.4.2 Analysis

You must understand the requirements for your product, and analyze how
these requirements broadly map to the Engine's eligibility/objective/tag con-
cepts before starting implementation.

Typically, the requirements for eligibility/entitlement are enshrined in legis-
lation, and so the task of implementing the requirements is, to a certain ex-
tent, a translation exercise (albeit a complex one). We note this here as the
tasks described later in this document (for key decision factors and decision
details) differ in nature.

The following steps should aid your analysis.

Identify the product periods for your product

You must understand whether there are any significant changes in legisla-
tion already in place for your product, and whether you will implement
these changes using multiple product periods.

Typically, for new products there is (to date) only a single version of the le-
gislation, and so usually a new product will initially have only a single
product period set up. Subsequent changes in legislation may occur once
your product matures, of course.

See Section 11.4, Handling Legislation Change for how to decide whether

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

37

your product should have multiple product periods for legislation changes,
or rules that branch based on legislation change. This will help you analyze
how many periods your product is split up into.

Each product period will typically have its own special rule class for eligib-
ility and entitlement calculations.

For a new benefit product created via the dynamic product wizard a default
product period is automatically inserted and has a default eligibility and en-
titlement rule set associated with it. Although the default product period is
published upon creation of the benefit product, the default eligibility and en-
titlement rule set is left in an in-edit state following completion of the dy-
namic product wizard. The rule set appears in the list of rule sets available
for publication on the CÃºram Express Rule Sets page of the Administration
Workspace and is a generic rule set which is not suitable for product use pri-
or to update. The rule set should be edited within the CÃºram Express Rules
editor to meet product requirements prior to use of the newly created
product. See the section "Configuring the Product in the Administration
Workspace" in the How to Build a Product Guide for additional
information about new products created using the dynamic product wizard.

Identify what types of objective are delivered by your product,
and at what frequencies

For each product period, you must identify the types of objectives that your
product supports.

Identify what it is that your product "delivers". A common type of delivery
is that of a benefit payment to a person or a household. There may be more
than one type of thing delivered by your product, for example your product
may deliver two different financial components (aimed at different types of
nominees - for example a personal allowance and a child allowance), and
also a recommendation.

Once you have identified what it is that your product delivers, you need to
map these deliverable things to types of objectives. You may have a design
decision to make regarding whether to have a smaller number of complex
objective types, or a larger number of simple objective types.

To answer this you may need to consider such things as whether each case
needs to have the flexibility to pay certain types of benefits to one nominee
and other types of benefit to different types of nominee:

• if so, you may well need to have separate types of objectives for the dif-
ferent types of benefit that your product delivers; however

• if benefit payments are always to a single nominee, then your choice of
whether to implement separate objective types may rest on whether the
total benefit paid is a simple aggregation of all objectives achieved, or
whether there are complex rules to come up with the total amount pay-
able (if the latter, then one complex objective type is likely to be more
suitable).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

38

You may find it useful to come up with a trial design of objectives, and
walk through different business scenarios and how they are treated by the
Engine and financial processing, to ensure that your business requirements
mapping to objective types allows your business requirements for your
product to be met.

Once you are happy with your types of objectives, then for each type of ob-
jective, identify at what frequency it can be delivered. Typically a daily rate
is always required (to handle ramp up and ramp down periods) but you can
implement longer periods such as weekly or monthly too. These longer peri-
ods can be useful if your daily rate represents a rounded-up fraction of a
weekly or monthly rate, or if your eligibility results are always exactly some
larger unit, e.g. if you have business requirements that say each case is
either entitled to an objective for an entire month or not at all.

At this point, you have identified the types of things delivered by your
product in general; now you need to turn your attention to how the system
will decide HOW to deliver a particular product delivery CASE.

Identify the rules that govern when a case is eligible

You must analyze the rules for how the system should determine a case's
eligibility. The structure of these rules can vary very much from product to
product.

It is common for eligibility rules to be centred around the claimant or house-
hold falling into a particular category, where each category is determined by
the claimant or household meeting a number of conditions. The categories
and the rules for each typically form the "highest level" of rules for eligibil-
ity.

For some products, the case's overall eligibility can be determined without
reference to the entitlement to any objectives; for other products the eligibil-
ity and entitlement calculations are much more intertwined (e.g. for some
products, you may only want the case to be deemed eligible if one or more
objectives are attained). You will need to visit your business requirements to
understand the interplay (if any) between eligibility and entitlement calcula-
tions for your product.

The eligibility result calculated by the Engine is a Timeline of Boolean res-
ults, and thus allows for the eligibility to vary over time. For some simple
products, the eligibility on any given day is purely determined by the case's
circumstances on that day; however, for some more complex products, the
eligibility on one day may be influenced by events that have occurred on
other days (e.g. an event that occurred in on a different day in the same
month). You should take care to understand your business requirements for
applying events that occur on one day to an overall eligibility result for dif-
ferent days.

For more information on CER's support for Timelines, (see "4.5 Handling
Data that Changes Over Time" in the CÃºram Express Rules Ref-
erence Manual)

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

39

Identify the rules that govern the objectives for each case

You must analyze which objective instances are required for each case.
Typically the creation of objectives falls into one of these patterns:

• Single Objective. For a given objective type, there is always exactly one
objective instance for the case; and/or

• Multiple Objective. For a given objective type, there is one objective
instance for each member of the case who meets certain criteria.

For example, a product aimed at a household with children might always de-
liver exactly one "basic household allowance" objective to the overall
household, but also deliver a "child allowance" objective to each child. Thus
a household with 3 children would be have 4 objectives created - one for the
household and one for each child. A household with no children would have
only a "basic household allowance" objective created.

Note that the Engine does not impose these single/multiple objective pat-
terns; the creation of objectives can be as complex as your business require-
ments dictate.

Identify the rules that determine when an objective has been at-
tained and its target

For each objective instance that will be created for a case, you must analyze
the rules for deciding at which points in the case lifetime the case is entitled
to the objective.

Whether or not a particular objective has been attained can vary over time -
e.g. an allowance payable whenever a parent is absent from the household
will be attained when a parent leaves and will cease to be attained once the
parent returns; if the parent leaves and returns many times over the case's
lifetime, then the case's entitlement to the objective will similarly vary many
times.

For some simple products, the case is always entitled to an objective by dint
of the case being eligible for that period of time, and thus there is no real en-
titlement calculation required. For other more complex products, the rules
for entitlement to a given objective can rival those for overall case eligibility
in terms of their complexity. It can be useful to have an understanding of the
relative complexity of your overall case eligibility rules vs. the entitlement
rules for your various objective types.

You must also analyze the requirements for the target of each objective in-
stance, and any useful related reference information. The Engine allows the
values these to vary over time, but for typical products the values are con-
stant.

Identify the rules that determine the values at which an object-
ive can be delivered

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

40

For each objective, you must analyze the value(s) to be used when it is de-
livered (i.e. during periods when the overall case is eligible, and also that
the case is entitled to the objective).

Earlier you analyzed each type of objective to understand the frequencies at
which instances may be delivered; now for each these frequencies you must
analyze how the Engine will calculate value of an objective instance at that
frequency.

For some simple products, the value may be a fixed rate (possibly retrieved
from a rate table); for other more complex products, the value may be a
complex calculation involving the case's circumstances.

It is common to see a pattern whereby the value for one frequency provided
by a calculation, and then values for other frequencies based on it. For ex-
ample, on one product there may be a complex calculation to provide a daily
rate for an entitlement, but the calculation for the weekly rate is simple 7 x
<daily rate>; or on another product, there may be a complex calculation for
a monthly rate, and then the daily rate is calculated as 12 x <monthly rate> /
365, rounded up to the nearest cent (in favour of the claimant).

Note that the Engine does not enforce these patterns; the calculation of each
frequency's value can be as complex as business requirements dictate.

4.4.3 Implementation

Having analyzed your business requirements, you are now in a position to
start the implementation of your eligibility and entitlement calculations for
your product. A default eligibility and entitlement rule set is automatically
created for benefit products by the dynamic product wizard, and this rule set
should be edited in line with the guidelines below to suit your product
needs. The default name of this default eligibility and entitlement rule set is
ProductNameWithBlankSpacesRemoved DefaultEligibil-
ityEntitlementRuleSet , but it is possible to override the name of
this rule set on the Eligibility Determination page of the dynamic product
wizard. It is also possible to create a new eligibility and entitlement rule set
for your product, which should follow the guidelines below.

If your product is complex, then consider sketching out the implementation
rule classes on paper or in an object-oriented modelling tool prior to creat-
ing CER rule sets. You can then use the sketch to validate your rule classes
against various business scenarios.

The rule classes that you create will end up interrelating (as illustrated in
Figure 4.1, Eligibility and Entitlement Interface Rule Classes). It will be
useful to keep these interrelationships in mind as you implement your rule
classes. The sections below this figure provide a step-by-step path to imple-
ment your eligibility/entitlement calculations.

Figure 4.1 Eligibility and Entitlement Interface Rule Classes

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

41

Write the Product Structure Rule Classes

For each product period, you must create a rule class which is responsible
for describing the structure of your product, i.e. which types of objectives it
supports. Typically the structure of your product will be identical across
product periods and you need only create one set of rule classes which will
be used on each product period.

For a new benefit product created via the dynamic product wizard, a product
structure rule class will be included in the default eligibility and entitlement
rule set that is associated with the default product period created for the
product at the completion of the dynamic product wizard. This default
product structure rule class should be edited to meet your product require-
ments prior to product use.

You will require the following rule classes:

• one Product rule class for your overall Product;

• one or more Objective Type rule classes, one for each type of objective
supported by your product; and

• one or more Objective Tag Type rule classes, one for each frequency
supported for each of the types of objective supported by your product.

You will also relate these rule classes to each other by implementing rules
that return instances of your rule classes; thus the product rule class has an
attribute for identifying its types of objectives, and each objective type has
an attribute for identifying its supported tags. The default eligibility and en-
titlement rule set created for the benefit product by the dynamic product
wizard will already contain each of these rule classes, but they should be ed-
ited to meet your product requirements prior to product use.

The following sections describe the creation of these rule classes and their
interrelations in detail.

Write the Product rule class

Your rule class to describe your product's structure must ultimately extend
from the ProductEligibilityEntitlementRule-
Set.AbstractProduct interface rule class. For ease of upgrades, it is
recommended that your rule class extends the DefaultProductEli-
gibilityEntitlementRuleSet.DefaultProduct rule class
which provides default implementations. The default eligibility and entitle-
ment rule set that is automatically created for benefit products by the dy-
namic product wizard will contain a Product rule class which extends the
DefaultProductEligibilityEntitlementRule-
Set.DefaultProduct rule class.

Here is a description of the attributes inherited from AbstractProduct :

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

42

Rule Attribute
name

Data type Description

objective-
Types

List of Ab-
stractOb-
jectiveType

The types of objective supported by
this product.

Table 4.1 Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.

AbstractProduct

To write the Product rule class, create a rule class which extends De-
faultProductEligibilityEntitlementRule-
Set.DefaultProduct . The rule class should be named in line with
your product, e.g. ProductName Product (the Engine does not have
any technical constraint on the rule class name - rather a good name for your
rule class may make it easier to develop and maintain your rule sets). The
default name of the Product rule class within the default eligibility and enti-
tlement rule set that is automatically created for a benefit product by the
product wizard is ProductNameWithBlankSpacesRemoved
Product .

The inherited implementation of objectiveTypes returns an empty list;
leave this implementation for now and you will return to it once you have
created your objective type and tag rule classes.

Write the Objective Type rule classes

For each type of objective supported by your product (for example, a Per-
sonal Benefit Allowance or a Child Benefit Allowance), you must create a
rule class which must ultimately extend from the ProductEligibil-
ityEntitlementRuleSet.AbstractObjectiveType interface
rule class. For ease of upgrades, it is recommended that your rule class ex-
tends the DefaultProductEligibilityEntitlementRule-
Set.DefaultObjectiveType rule class which provides default imple-
mentations. The default eligibility and entitlement rule set created for bene-
fit products by the dynamic product wizard will contain two Objective Type
rule classes each of which extends the DefaultProductEligibil-
ityEntitlementRuleSet.DefaultObjectiveType rule class.

Here is a description of the attributes inherited from AbstractObject-
iveType :

Rule Attribute
name

Data type Description

objective-
TypeID

String Identifier of the object type, which
must be unique within the product.
The length of this identifier must be
no more than the number of charac-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

43

Rule Attribute
name

Data type Description

ters dictated by the
RULES_OBJECTIVE_ID domain
(which by default is 16 characters).

name Code from the
RulesCompon-
entType code
table

The code for the display name of this
objective type.

financial-
Component-
Type

Code from the
RulesCompon-
entFCType
code table

The financial component type associ-
ated with this objective, CT1 if this
is a benefit, CT2 if it is a liability.

rateTarget Code from the
RulesCompon-
entTarget
code table

The target for this objective, Client,
Product Provide, Service Supplier,
Employer, etc..

tagTypes List of Ab-
stractTag-
Type

The tag types available for this ob-
jective type, indicating the frequen-
cies at which this objective can be
delivered

description Localizable mes-
sage

A description of this type of object-
ive

comments Localizable mes-
sage

Comments describing this type of
objective

isDeduction-
Allowable

Boolean Whether case workers are allowed to
select objective instances of this type
when creating case deductions.

Table 4.2 Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractObjectiveType

For each objective type supported by your product, create a rule class which
extends DefaultProductEligibilityEntitlementRule-
Set.DefaultObjectiveType . The default eligibility and entitlement
rule set that is automatically created for benefit products by the dynamic
product wizard will already contain two rule classes which extend the De-
faultProductEligibilityEntitlementRule-
Set.DefaultObjectiveType rule class. These two default rule
classes are named PersonalBenefitAllowanceObjectiveType
and ChildBenefitAllowanceObjectiveType . If you are writing a
new rule class, the name of your rule class should be in line with the name
of your objective type (ObjectiveTypeName ObjectiveType), to
ease development and maintenance, e.g. PersonalBenefitAllow-
anceObjectiveType or ChildBenefitAllowanceObjective-
Type .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

44

The inherited implementation of tagTypes returns an empty list; leave
this implementation for now and you will return to it once you have created
your objective tag rule classes.

For all other inherited rule attributes, use your analysis of your business re-
quirements to implement rules to return values appropriate to your objective
type. The default eligibility and entitlement rule set should be edited to ref-
erence values suitable to your product. If you are writing a new eligibility
and entitlement rule set rather than using the default rule set created by the
product wizard, typically you will add a new value to the RulesCompon-
entType code table to implement the name for your objective type, but
you will use one of the values provided from the RulesComponentFC-
Type and RulesComponentTarget code tables when implementing
the rules for financialComponentType and rateTarget respect-
ively.

Write the Objective Tag Type rule classes

For each of your product's supported objectives (e.g. a Personal Benefit Al-
lowance), your analysis determined frequencies at which that objective may
be delivered (e.g. a Personal Benefit Allowance might be payable either
daily or weekly, at the choice of the claimant or to handle ramp-
up/ramp-down periods).

For each frequency for an objective type, you must create a rule class which
must ultimately extend from the ProductEligibilityEntitlemen-
tRuleSet.AbstractTagType interface rule class. For ease of up-
grades, it is recommended that your rule class extends the DefaultPro-
ductEligibilityEntitlementRuleSet.DefaultTagType rule
class which provides default implementations. The default eligibility and
entitlement rule set created for benefit products by the dynamic product wiz-
ard will already contain three objective tag type rule classes each of which
extends the DefaultProductEligibilityEntitlementRule-
Set.DefaultTagType rule class.

Here is a description of the attributes inherited from AbstractTagType :

Rule Attribute
name

Data type Description

tagTypeID Long Identifier of the tag type, which must
be unique within the product.

name Localizable mes-
sage

The display name of this tag type.

pattern Frequency Pattern The frequency at which this tag type
is delivered. For more information,
see the JavaDoc for
curam.util.type.Frequency
Pattern .

valueType Code from the The type of value held in instances

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

45

Rule Attribute
name

Data type Description

RulesTagType
code table

of this tag type.

description Localizable mes-
sage

A description of this type of object-
ive tag.

Table 4.3 Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractTagType

The three objective tags defined in the default eligibility and entitlement
rule set created for benefit products by the dynamic product wizard are
daily, weekly and monthly tags. If you are extending this default rule set to
include additional objective tags, or if you are creating a new eligibility and
entitlement rule set, for each objective tag supported by your product create
a rule class which extends DefaultProductEligibilityEntitle-
mentRuleSet.DefaultTagType . Again the name of your rule class
should be in line with the name of your objective tag type (TagTypeName
TagType), to ease development and maintenance, e.g. Personal-
BenefitAllowanceWeeklyDeliveryTagType or Personal-
BenefitAllowanceDailyDeliveryTagType .

For all the inherited rule attributes, use your analysis of your business re-
quirements to implement rules to return values appropriate to your objective
tag type. Typically you will use one of the values provided from the
RulesTagType code table when implementing the rules for valueType
.

Relate each Objective Type to its supported Objective Tag Types

Now that you have created rule classes for your objective types and object-
ive tag types, you must relate each objective type to its list of supported ob-
jective tag types.

For each objective type rule class that you created, you must now implement
its tagTypes attribute to create a list of instances of the rule classes which
represent its tag types. Typically this list is a <fixedlist> where each
member in the list is a simple <create> expression.

For example, for the PersonalBenefitAllowanceObjectiveType
, its implementation of tagTypes , in pseudo-code, would be:

• Create a list of AbstractTagType , with members:

• Create an instance of PersonalBenefitAllowanceWeekly-
DeliveryTagType ; and

• Create an instance of PersonalBenefitAllowanceDaily-
DeliveryTagType .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

46

Relate the Product to its supported Objective Types

Now that you have created rule classes for your product and objective types,
you must relate the product to its list of supported objective tag types. This
association will already be in place if you are using the default eligibility
and entitlement rule set that is automatically created for benefit products by
the dynamic product wizard.

For your product rule class, you must now implement its objective-
Types attribute to create a list of instances of the rule classes which repres-
ent its objective types. Typically this list is a <fixedlist> where each
member in the list is a simple <create> expression.

For example, for a product which supports Personal Benefit Allowance and
Child Benefit Allowance objective types, its implementation of object-
iveTypes , in pseudo-code, would be:

• Create a list of AbstractObjectiveType , with members:

• Create an instance of PersonalBenefitAllowanceObject-
iveType ; and

• Create an instance of ChildBenefitAllowanceObjective-
Type .

Write the Case Eligibility/Entitlement Calculation Rule Classes

Now that you have implemented rule classes to describe the structure of
your product, you can start to implement the rule classes which calculate the
eligibility and entitlement results for a given product delivery case.

For each product period that you are creating, you must create a rule class
which is responsible for calculating the eligibility and entitlement for a case,
i.e. which objectives must be created on the case and their entitlement.

Typically the eligibility and entitlement calculations for your product will
be different across product periods (because it was these differences which
led you to identify multiple product periods in the first place). However, it is
likely that large swathes of the eligibility/entitlement logic are identical
between product periods and you should consider factoring your rule classes
so that common logic is implemented and maintained in a single place, just
as you would do in most kinds of development work.

In a development environment, initially it is recommended that you do just
enough implementation work for eligibility and entitlement calculations so
that you can view your product in a development database and assure your-
self that you can create cases against it and see early eligibility/entitlement
results.

You can then return to the non-trivial task of fleshing out your eligibility/
entitlement calculation rules to provide the full logic required by your busi-
ness requirements.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

47

You will require the following rule classes:

• one Case rule class responsible for the overall eligibility/entitlement cal-
culations for a particular case;

• for each Objective Type supported by your product, one Objective In-
stance rule class; and

• for each Objective Tag Type supported by each of your Objective
Types, one Objective Tag Instance rule class.

The default eligibility and entitlement rule set created for the benefit product
by the dynamic product wizard will already contain each of these rule
classes, but they should be edited to meet your product requirements prior to
product use.

Write the Case rule class

Your rule class to calculate a case's eligibility/entitlement must ultimately
extend from the ProductEligibilityEntitlementRule-
Set.AbstractCase interface rule class. For ease of upgrades, it is re-
commended that your rule class extends the DefaultProductEligib-
ilityEntitlementRuleSet.DefaultCase rule class which
provides default implementations. The default eligibility and entitlement
rule set that is automatically created for benefit products by the dynamic
product wizard will already contain a rule class which extends the De-
faultProductEligibilityEntitlementRule-
Set.DefaultCase rule class.

Here is a description of the attributes inherited from AbstractCase :

Rule Attribute
name

Data type Description

productDe-
liveryCase

ProductDe-
liveryCase

The controlling rule object which is
responsible for splicing together the
determination result from the contri-
butions made by the product period.
Passed in when the instance of Ab-
stractCase is created.

isEligible-
Timeline

Timeline of
Boolean

The varying overall eligibility of the
case.

objective-
Timelines

List of Ab-
stractOb-
jective-
Timeline

The objectives created for this case.

Table 4.4 Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractCase

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

48

Create a rule class which extends DefaultProductEligibilityEn-
titlementRuleSet.DefaultCase . The default eligibility and enti-
tlement rule set that is automatically created for benefit products by the dy-
namic product wizard will name the rule class in line with the newly created
product. The default name of the rule class is ProductNameWithB-
lankSpacesRemoved Case . If you are creating a new eligibility and
entitlement rule set, the rule class should be named in line with your
product, e.g. ProductName Case (the Engine does not have any tech-
nical constraint on the rule class name - rather a good name for your rule
class may make it easier to develop and maintain your rule sets).

The value of productDeliveryCase will be automatically set to be the
Engine's rule object for the overall case. This rule object can be used to ac-
cess information about the case, such as its unique identifier.

You must provide an implementation for isEligibleTimeline . The
isEligibleTimeline is created by default within the default eligibility
and entitlement rule set that is automatically created for benefit products by
the dynamic product wizard, but should be edited prior to use in line with
your product requirements. Typically this implementation will be non-trivial
(and in fact its implementation may well be the bulk of the effort in the de-
velopment of your product), as it is responsible for ultimately calculating
your case's overall eligibility during the product period, and its full imple-
mentation will need to access data about the case (e.g. using rule objects for
evidence recorded on the case) and/or product-wide data such as rates. The
implementation may involve the creation of many "calculator" rule classes
which provide interim calculated results required to perform the complex
calculations dictated by your business requirements for case eligibility on
your product.

In a development environment, you may choose to initially implement a
very simple cut-down version of your eligibility rules, e.g. that the case is
eligible whenever the claimant fits into one of a number of very broad cat-
egories, or (even more simply) that the case is always eligible. Once you
have completed the skeleton implementation of your eligibility rules and
checked that cases can be created against it, then you can return to the
much-longer development task of implementation your full eligibility rules,
which will involve the creation of other rule classes, e.g. which map to your
custom evidence types, or which provide intermediate calculation results.

The inherited implementation of objectiveTimelines returns an
empty list (i.e. your case never has any objectives at all); leave this imple-
mentation for now and you will return to it once you have created your ob-
jective instance and tag instance classes.

Write the Objective Instance rule classes

Each objective rule object created for your case will be an AbstractOb-
jectiveTimeline , which is responsible for calculating the periods
when the case is entitled to the objective.

For each type of objective supported by your product (for example, a Per-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

49

sonal Benefit Allowance or a Child Benefit Allowance), you must create a
rule class which must ultimately extend from the ProductEligibil-
ityEntitlementRuleSet.AbstractObjectiveTimeline inter-
face rule class. For ease of upgrades, it is recommended that your rule class
extends the DefaultProductEligibilityEntitlementRule-
Set.DefaultObjectiveTimeline rule class which provides default
implementations. This rule class will already have been created for each
type of objective within the default eligibility and entitlement rule set that is
automatically created for benefit products by the dynamic product wizard,
but they should be edited in line with your product requirements prior to
product use.

Here is a description of the attributes inherited from AbstractObject-
iveTimeline :

Rule Attribute
name

Data type Description

objective-
Type

AbstractOb-
jectiveType

The type of this objective timeline.

isEntitled-
Timeline

Timeline of
Boolean

The varying entitlement to this ob-
jective. The value of this timeline is
only taken into account during peri-
ods when the case is eligible.

targetID-
Timeline

Timeline of Long The varying ID of the target parti-
cipant (e.g. Person, Service Supplier,
Product Provider, Employer, etc.)
which is targeted by this objective.

tagTimelines List of Ab-
stractTag-
Timeline

The frequencies at which this object-
ive can be delivered.

re-
latedRefer-
enceTimeline

Timeline of
String

The varying reference to additional
business-specific information relat-
ing to this objective. The re-
latedReference attribute can be
used to store information that will
help distinguish the difference
between one instance of a rules ob-
jective and another, which may be
important for financial processing to
explain the breakdown of a payment.
The length of this identifier must be
no more than the number of charac-
ters dictated by the RE-
LATED_REFERENCE_TEXT do-
main (which by default is 4000 char-
acters).

description Localizable mes- A description of this objective in-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

50

Rule Attribute
name

Data type Description

sage stance

Table 4.5 Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractObjectiveTimeline

For each objective type supported by your product, create a rule class which
extends DefaultProductEligibilityEntitlementRule-
Set.DefaultObjectiveTimeline . The default eligibility and enti-
tlement rule set that is automatically created for benefit products by the dy-
namic product wizard will already contain two rule classes which extend the
DefaultProductEligibilityEntitlementRule-
Set.DefaultObjectiveTimeline rule class. These two default rule
classes are named PersonalBenefitAllowanceObjective-
Timeline and ChildBenefitAllowanceObjectiveTimeline .
If you are writing a new rule class, again the name of your rule class should
be in line with the name of your objective type (ObjectiveTypeName
ObjectiveTimeline), to ease development and maintenance, e.g.
PersonalBenefitAllowanceObjectiveTimeline or Child-
BenefitAllowanceObjectiveTimeline .

The inherited implementation of tagTimelines returns an empty list (i.e.
your objective has no supported frequencies at which it can be delivered);
leave this implementation for now and you will return to it once you have
created your objective tag instance rule classes.

Implement the other rule attributes on the rule class. Typically the bulk of
the work is in the implementation of isEntitledTimeline , the com-
plexity of which depends on your requirements. For some types of object-
ive, the objective is always attained whenever the case is eligible; for other
types of objective, the case is only entitled to the objective if the circum-
stances of the case allow it.

Some types of objective will require additional context in order to calculate
their entitlement. For any additional context required, create extra rule at-
tributes to hold the context. Later when you create instances of your object-
ive rule class, the <create> expressions will need to pass in the values for
these "context" rule attributes.

Tip

In particular, multiple objectives (i.e. multiple instances of your rule
class) will need some sort of context to distinguish them, e.g. the
person to which the multiple objective relates.

Write the Objective Tag Instance rule classes

Each objective rule object created for your case needs to list its supported
tags (as instances of AbstractTagTimeline which are responsible for

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

51

calculating the values at which the objective can be delivered).

For each type of tag supported by each type of objective supported by your
product (for example, a weekly delivery of a Personal Benefit Allowance or
a daily delivery of a Child Benefit Allowance), you must create a rule class
which must ultimately extend from the ProductEligibilityEnti-
tlementRuleSet.AbstractTagTimeline interface rule class. For
ease of upgrades, it is recommended that your rule class extends the De-
faultProductEligibilityEntitlementRule-
Set.DefaultTagTimeline rule class which provides default imple-
mentations. The default eligibility and entitlement rule set created for bene-
fit products by the dynamic product wizard will already contain four such
rule classes each of which extends the DefaultProductEligibil-
ityEntitlementRuleSet.DefaultTagTimeline rule class.
These default rule classes should be edited or added to in line with your
product requirements prior to product use.

Here is a description of the attributes inherited from AbstractTag-
Timeline :

Rule Attribute
name

Data type Description

tagType AbstractTag-
Type

The type of this tag timeline.

value-
Timeline

Timeline of Ob-
ject

The varying value of this tag
timeline. When converted to a
String, the length of this value must
be no more than the number of char-
acters dictated by the
RULES_OBJECT_TAG_VALUE
domain (which by default is 1024
characters).

Table 4.6 Rule attributes inherited from
ProductEligibilityEntitlementRuleSet.AbstractTagTimeline

For each tag type supported by your product, create a rule class which ex-
tends DefaultProductEligibilityEntitlementRuleSet.
DefaultTagTimeline . Again the name of your rule class should be in
line with the name of your tag type (TagTypeName TagTimeline),
to ease development and maintenance, e.g. PersonalBenefitAllow-
anceWeeklyDeliveryTagTimeline or ChildBenefitAllow-
anceDailyDeliveryTagTimeline . The four default tag timeline
rule classes that are defined in the default eligibility and entitlement rule set
created for benefit products by the dynamic product wizard are Person-
alBenefitAllowanceDailyDeliveryTagTimeline , Person-
alBenefitAllowanceWeeklyDeliveryTagTimeline , Per-
sonalBenefitAllowanceMonthlyDeliveryTagTimeline and
ChildBenefitAllowanceDailyDeliveryTagTimeline .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

52

The inherited implementation of tagTimelines returns an empty list;
leave this implementation for now and you will return to it once you have
created your objective tag instance rule classes.

Implement the tagType rule attribute, typically to just <create> an in-
stance of the appropriate tag type rule class (see Section 4.4.3.1.2, Write the
Objective Type rule classes).

Implement the valueTimeline rule attribute to calculate the varying
value of the tag. The complexity of the implementation will hinge on the
complexity of your requirements; some objectives have fixed value tags
(e.g. the payment value on any attained objective is identical across cases -
the payment amount does not take into account any circumstances on the
case), whereas for other objectives, the amount to pay for an attained object-
ive varies according to the circumstances of the case (e.g. reductions in pay-
ment amounts due to means tests). It is also possible for the implementation
of a tag's value for one frequency to lean on the calculation for a related tag
for a different frequency (see the example in Section 4.4.2.6, Identify the
rules that determine the values at which an objective can be delivered).

The implementation of valueTimeline may require that extra context is
passed in when the tag timeline is created. If required, create additional rule
attributes to hold this context. Later when you create instances of your tag
rule class, the <create> expressions will need to pass in the values for
these "context" rule attributes.

Create tag instances from your objective rule classes

Now that you have created rule classes for your objective instances and tag
instances, you must implement how each objective instance will create its
tag instances.

The default implementation of tagTimelines inherited from Default-
ProductEligibilityEntitlementRule-
Set.DefaultObjectiveTimeline returns an empty list - i.e. no tags
are supported for the objective.

For each objective instance rule class that you created, you must now over-
ride and implement its inherited tagTimelines attribute to create a list
of instances of the rule classes which represent its tag instances. Typically
this list is a <fixedlist> where each member in the list is a simple
<create> expression.

For example, for the PersonalBenefitAllowanceObjective-
Timeline rule class, its implementation of tagTimelines , in pseudo-
code, would be:

• Create a list of AbstractTagTimeline , with members:

• Create an instance of PersonalBenefitAllowanceWeekly-
DeliveryTagTimeline ; and

• Create an instance of PersonalBenefitAllowanceWeekly-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

53

DeliveryTagTimeline .

When creating tags, you will need to pass in any additional context required
by that tag (by specifying values to set in the <create> expressions). In
turn, this additional context may give rise to additional "context" rule attrib-
utes being required on the objective rule class itself.

For example, if the value of an objective's tag depends on total income of
the person targeted by the objective, then the tag instance rule class may re-
quire the person to be set as a context rule attribute; in turn, the objective in-
stance rule class will need such a rule attribute in order to pass it to the tag
instance at creation time.

Create objective instances from your case rule class

Now that you have created rule classes for your objective instances, you
must implement how the case calculates which objectives are available.

The default implementation of objectiveTimelines inherited from
DefaultProductEligibilityEntitlementRule-
Set.DefaultCase returns an empty list - i.e. the case has no objective
instances at all.

For your case rule class that you created, you must now override and imple-
ment its inherited objectiveTimelines attribute to create a list of in-
stances of the rule classes which represent its objective instances. This at-
tribute will already have been created within the default eligibility and enti-
tlement rule set that is created for benefit products by the dynamic product
wizard, but it should be edited prior to product use.

If your product contains only single objectives, your implementation of ob-
jectiveTimelines will typically be a <fixedlist> where each
member in the list is a <create> expression, e.g. (in pseudo-code):

• Create a list of AbstractObjectiveTimeline , with members:

• Create an instance of BasicHouseholdAllowanceObject-
iveTimeline , setting productDeliveryCase =
this.productDeliveryCase ; and

• Create an instance of ColdWeatherPaymentObjectiveType
, setting productDeliveryCase =
this.productDeliveryCase .

If your product has multiple objective instances of a given type, your imple-
mentation of objectiveTimelines will typically be a
<dynamiclist> to create an objective instance for each object of a par-
ticular kind, e.g.

• For each child in the household:

• Create an instance of ChildBenefitAllowanceObjective-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

54

Type , setting child = current child.

Your product may contain a mixture of single objective instances and mul-
tiple objective instances (and indeed many different types of multiple ob-
jectives for different types), in which case you will need to nest the
<fixedlist> and <dynamiclist; creations within a <joinlists>
expression.

It may be clearer to factor out the creation of different types of objectives to
their own rule attribute before joining the lists together, e.g.

• Create an attribute called singleObjectiveTimelines , which
creates a fixed list of all the single objective instances for your product;

• Create an attribute called childBenefitAllowanceObjective-
Timelines , which creates a dynamic list containing one objective in-
stance per child on the case;

• Implement objectiveTimelines to join together the singleOb-
jectiveTimelines and childBenefitAllowanceObject-
iveTimelines lists.

Important

The list of object timelines for your case is a simple list which does
not vary over time; rather, the case's entitlement to each objective is
the thing that varies over time.

You must create an objective instance for any objective which could
in theory be attained at some point in the case lifetime, even if for
some or all of the case lifetime it is not attained.

For example, if a product has an objective type is aimed at paying
child benefit for each child on the case, then at some point those
children will each become adults but possibly remain resident in the
household. At that point, the objective for that person (who was a
child, but now an adult) will not longer be attained; but it still must
be listed in the simple list of objective timelines for the case. As
such, typically each person (rather than just each child) in the
household should have a child benefit objective instance created for
them; however, for a person who was already an adult when the case
began will never be entitled to that objective.

When creating objective instances, you will need to pass in any additional
context required by that objective instance (by specifying values to set in the
<create> expressions).

For example, if the case requires there to be one objective targeted at each
person in the household, then the objective instance rule class may require
the person to be set as a context rule attribute; when creating the multiple
objectives, the implementation of objectiveTimelines will have to
create an objective for each person in the household, and pass that person to
the objective instance so that it can use that person as its target.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

55

Tip

It can be useful to pass the case rule object's productDeliv-
eryCase value to objective and tag instance classes, so that they
can access its value of caseID and other data.

A note on manipulating Timelines in CER

Your output data from eligibility/entitlement calculations are centered
around CER Timelines. For example, the isEligibleTimeline for the
case and the isEntitledTimeline for your objectives are both
timelines of Boolean values.

In general, most of your input data into eligibility/entitlement calculations is
already in timeline format, as populated by the Active Succession Set Rule
Object Converter (see Section 7.4.4, Active Succession Set Rule Objects).

Typically, then, your rules for eligibility/entitlement calculations will gener-
ally transform input timelines into output timelines (via intermediate
timelines). CER contains a number of expressions for manipulating
timelines, but given the nature of eligibility/entitlement calculations, the ex-
pressions you should expect to see most commonly are
<timelineoperation> and <intervalvalue> .

Use of other CER expressions for creating timelines is rare, but may be use-
ful:

• to create timeline data from non-timeline data, such as custom entities
(as opposed to custom evidence); and/or

• as "scaffolding" to hard-code timeline data (such as a rate that changes
over time) during the early days of your product's implementation.

Write the Product Periods

For each period in your product, you must create a product period record
and link it to the rule classes you created to:

• describe the product structure; and

• calculate eligibility/entitlement results for cases.

The way you create and link these records differs depending on whether you
are working in a development environment or a running system. A default
product period is automatically inserted for a benefit product that is created
via the dynamic product wizard, and this product period will have been
automatically linked to the rule classes of the default eligibility and entitle-
ment rule set that is also automatically inserted by the product wizard for the
benefit product.

Working in a Development Environment

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

56

Create DMX entries for any new rule sets you created for your rule classes
(see section D.5.1. in the CÃºram Express Rules Reference
Manual).

For each product period, perform the following steps in the custom compon-
ent:

• Create an entry in a CREOLERuleClassLink.dmx file, which points
to the rule class for your product structure:

Attribute Name Value
creoleRuleClassLinkID A unique ID from your custom key

range.

creoleRuleSetID The value of CREOLERule-
Set.creoleRuleSetID you as-
signed above for the rule set contain-
ing your product structure rule class.

ruleClassName The unqualified name of your
product structure rule class.

versionNo 1

Table 4.7 DMX data for CREOLERuleClassLink for your
product structure rule class

Important

You must create a separate record for use by each product peri-
od, even if multiple product periods point to the same product
structure rule class.

• Create an entry in a CREOLERuleClassLink.dmx file, which points
to the rule class for your case eligibility/entitlement calculations:

Attribute Name Value
creoleRuleClassLinkID A unique ID from your custom key

range.

creoleRuleSetID The value of CREOLERule-
Set.creoleRuleSetID you as-
signed above for the rule set contain-
ing your eligibility/entitlement rule
class.

ruleClassName The unqualified name of your eligib-
ility/entitlement rule class.

versionNo 1

Table 4.8 DMX data for CREOLERuleClassLink for your
eligibility/entitlement rule class

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

57

Important

You must create a separate record for use by each product peri-
od, even if multiple product periods point to the same eligibility/
entitlement rule class.

• Create an entry in a CREOLEProductPeriod.dmx file:

Attribute Name Value
creoleProductPeriodID A unique ID from your custom key

range.

productID The ID of your CER-based product.

startDate The start date of this product period.

If your product has a single period,
typically this start date should be the
same as Product.startDate .

endDate The end of this product period.

If your product has a single period,
typically this end date should be
blank.

productStructureRCLID The value of CREOLERuleClass-
Link.creoleRuleClassLinkI
D you assigned for your product
structure rule class.

decisionRCLID The value of CREOLERuleClass-
Link.creoleRuleClassLinkI
D you assigned for your case eligibil-
ity/entitlement calculation rule class.

otherKeyDataRCLID Leave blank.

(You will change this later if you im-
plement key decision factor rules for
your product.)

nameID The value of Localizable-
Text.localizableTextID you
assigned above.

versionNo 1

Table 4.9 DMX data for CREOLEProductPeriod

See the core data dictionary for a full description of these database columns.

Working in a Running System

Publish your rule sets containing your new rule classes.

Start the admin application and navigate to Product Delivery Cases, select

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

58

your product, choose Rule Sets and copy the product for edit (if it is not
already in edit).

For each product period in your analysis, perform the following steps:

• Create a product period;

• Set the value of "Product Structure Rule" to be the rule class you created
for your product's structure; and

• Set the value of "Eligibility/Entitlement Rule" to the rule class you cre-
ated for the calculation of a case's eligibility/entitlement results for your
product.

• (Leave the value of "Key Decision Factors Rule" blank - it is not re-
quired for eligibility/entitlement rules.)

Do not set up any display categories - they are not required for eligibility/
entitlement rules.

Publish your changes to the product.

Choose or Create a Summarizer Strategy

Section 4.3.2.2, Displaying a Summary of Entitlement for a Coverage Peri-
od described how the Engine can summarize the entitlement for a coverage
period within a determination.

To use this feature, you must configure your Product to specify a strategy
implementation to use. You must either:

• in development, change your CREOLEProduct.dmx file to populate
your product's detIntSummarizerStrategyType column with
the code (from the DetIntSummarizerStrategy code table) for
your chosen strategy implementation; or

• in a running system, start the admin application and navigate to Product
Delivery Cases, select your product, choose Rule Sets and choose Eli-
gibility Determination, change "Decision Summary Display Strategy" to
be your chosen strategy implementation.

When choosing a strategy implementation to use, you can either:

• use a strategy implementation included with the Engine (described be-
low); or

• develop your own strategy implementation (described below).

Strategy Implementations Included with the Engine

The Engine includes these implementations which are suitable for most
products:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

59

Display/
code

Implementation Class

blank curam.core.sl.infrastructure.assessment.
im-
pl.BlankDeterminationIntervalSummarizerS
trategy

Total daily
monetary en-
titlement

curam.core.sl.infrastructure.assessment.
im-
pl.TotalDailyMonetaryEntitlementDetermin
ationIntervalSummarizerStrategy

Total weekly
monetary en-
titlement

curam.core.sl.infrastructure.assessment.
im-
pl.TotalMonthlyMonetaryEntitlementDeterm
inationIntervalSummarizerStrategy

Total monthly
monetary en-
titlement

curam.core.sl.infrastructure.assessment.
im-
pl.TotalWeeklyMonetaryEntitlementDetermi
nationIntervalSummarizerStrategy

Table 4.10 Summarizer Strategy Implementations Included with
the Engine

See the JavaDoc for the above classes for more details on the behavior of
each strategy implementation.

Developing your own Strategy Implementation

If you have custom requirements not met by the implementations, you may
develop your own strategy implementation(s) for use in your products as
follows:

• Add a new entry to the DetIntSummarizerStrategy code table
(using custom .ctx files);

• Create an implementation class which implements the Determina-
tionIntervalSummarizerStrategy interface; implement the
required method to return an appropriate summary of the coverage peri-
od;

• Bind the code table entry to your implementation, in your custom Guice
Module:

{
// Register your custom determination interval summarizer strategies
final MapBinder<DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry,
DeterminationIntervalSummarizerStrategy>

determinationIntervalSummarizerStrategies = MapBinder
.newMapBinder(binder(),
DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry.class,
DeterminationIntervalSummarizerStrategy.class);

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

60

determinationIntervalSummarizerStrategies.addBinding(
DETERMINATIONINTERVALSUMMARIZERSTRATEGYEntry.YOUR_STRATEGY).to(
YourDeterminationIntervalSummarizerStrategy.class);

}

(replacing YOUR_STRATEGY with the constant for your new code table
code and YourDeterminationIntervalSummarizer-
Strategy with your strategy implementation class as appropriate)

• Build your application;

• Configure your product to use your new strategy (see instructions
above).

4.4.4 Testing

For a complex product created in a development environment, you should
create unit tests for individual parts of your product's eligibility/entitlement
rules, using CER's support for rules testing.

You might consider creating end-to-end unit tests that test full scenarios in-
volving the creation and activation of evidence, and the creation and activa-
tion of product delivery cases, to test that the overall eligibility and entitle-
ment results are calculated as expected.

You might also perform manual testing of the online system to check that
your eligibility/entitlement scenarios are handled as expected.

The Engine will be unable to calculate eligibility/entitlement results for a
period in the case's lifetime if there is no product period covering part of the
case's lifetime - to fix this you must change the product periods configured
for your product so that all cases created have their entire lifetimes covered
by exactly one product period. In particular, if your product allows open-
ended cases, then typically the last product period for your product should
be open-ended too (unless you intend your product to reach its end-of-life
soon).

If the Engine detects a missing product period for a particular period in the
case's lifetime, then:

• at determination calculation time, the Engine will:

• store one or more instances of DeterminationProblem in the
determination result (each problem stores a message and a stack
trace of the underlying error, if any); and

• write out the problem to the application logs (according to the setting
of the CÃºram Environment Variable
curam.creole.log.case.determination.problems);
and

• at determination display time, the Engine will display to the case worker
an eligibility result of "Eligibility could not be determined" (as opposed

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

61

to "Eligible" or "Not Eligible") for the coverage period within the case.

If there is a runtime error in the calculation of a CER attribute value for eli-
gibility/entitlement, such as a reference not found (analogous to a Null-
PointerException in Java), or a division by zero, or any other calcula-
tion problem, then the Engine will throw an exception. The application logs
will contain details of this exception including its stack trace. For CER cal-
culation errors, the stack trace can include important information regarding
the location within a CER rule set where the error occurred. To fix this, you
will need to debug and retest your rules.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

62

Chapter 5

Calculating and Displaying Key Decision Factors

5.1 Introduction

The Engine contains features to calculate and display key decision factors -
pieces of data which were important in arriving at eligibility and entitlement
results.

When you design your product, you can choose to output such factors. The
structure of the output data for key decision factors is imposed by the En-
gine; and since the structure is fixed, the Engine contains a generic set of
screens to display the key decision factors to case worker users.

Typically, the rules for calculation of key decision factors will "sit on top
of" the rules for calculating a case's eligibility and entitlement. If you follow
the best practice recommendation and layer your rules this way, then you
can make changes to the output of key decision factors for cases while guar-
anteeing not to affect any case's underlying eligibility/entitlement results.
Data calculated for key decision factors never affects financial processing or
any other processing - the data is used for display purposes only.

This chapter describes the flow of processing that allows key decision
factors to be displayed to the user. The processing is intentionally described
in reverse-chronological order; firstly we describe the end results, followed
by the Engine processing that produces those results, before finally describ-
ing how the data was calculated.

This "backwards" perspective will echo how your rules designers will need
to think when designing your product; they will need to start with the end in
mind (namely how case workers will benefit from the additional ability to
comprehend a case's details through the medium of key decision factors).

This chapter is structured as follows:

• How it looks. Describes how key decision factors are displayed to a
case worker.

63

• How it works. Describes how fixed processing by the Engine and cus-
tom processing combine to calculate and display key decision factors.

• How to use it. Describes the steps you will need to follow to implement
key decision factors for your product.

5.2 How It Looks

This section describes how key decision factors are displayed to a case
worker.

The structure of eligibility and entitlement data is intentionally restrictive; it
contains very basic information such as the name of a key decision factor,
the dates on which its value changes and/or text describing certain events
that occurred.

Because the structure of the key decision factor data is fixed by the Engine,
the Engine knows how to display this information for any CER-based case,
and so includes standard screens capable of displaying key decision factors.
When you require to display data outside of this fixed structure, consider
implementing decision details rules instead (see Chapter 6, Calculating and
Displaying Decision Details).

5.2.1 Viewing Key Decision Factors Graphically

A graphical view of the key decision factors for a determination is provided
via the 'Graphical View' tab, for a case on a product which has key decision
factors enabled.

A mixture of different types of event are displayed:

• Case events, which are automatically generated by the Engine - e.g.
"Case Started";

• Eligibility/Entitlement events, which are automatically generated by the
Engine - e.g. "Eligible $150 Weekly", "Not Eligible";

• Custom events specific to this product, for changes in a data value, e.g.
"Total Income $50.00 Weekly", "Total Income $60.00 Weekly"; and

• Custom events specific to this product, for important events, e.g. "Client
Turned 65: James Smith turned 65 and is no longer eligible.".

The events are displayed with earlier dates on the left and later dates to the
right. A filter is provided to allow the user to restrict the events displayed to
those of a particular type or to narrow the date range.

5.2.2 Viewing Key Decision Factors in a List

A list view of key decision factors for a determination is also provided as an
alternative to the graphical view (described in the previous section), for a

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

64

case on a product which has key decision factors enabled.

The list displays the events with the latest event shown first (which may be
in the future). The list can be sorted in the standard way, by clicking on the
column headings.

The list displays the date that the event occurred (or is expected to occur, for
future events), the type of event and its text description. For Decision-type
events, the user can click on the action to view the coverage period contain-
ing the decision event.

5.3 How It Works

This section describes how fixed processing by the Engine and custom pro-
cessing combine to calculate and display key decision factors.

The calculation and display of a determination involves a mixture of:

• fixed processing contributed by the Engine; and

• custom product-specific processing contributed by the implementation
of the product.

Note that it is not mandatory to configure custom key decision factors for
your product periods; any or all of the product periods can opt not to use key
decision factors, and if so no custom key decision factors will be displayed
for those periods.

The Engine follows the following high-level steps to arrive at key decision
factors that can be displayed to a case worker:

• At Determination Calculation time:

• An action occurs which triggers the determination of a case (either
an active or reactive determination);

• The Engine identifies the product periods (configured for the
product) that cover the case's lifetime;

• The Engine uses CER rules (specific to the product) to calculate the
custom key decision factors for each contributing product period;

• The Engine calculates the key decision factors across the lifetime of
the case by "splicing together" the key decision factors from each
contributing product period;

• The Engine stores (on the database) a determination result contain-
ing the key decision factors data (as well as eligibility/entitlement
results and decision details, covered elsewhere in this document).

• At Determination View time:

• A case worker requests to view a determination on a case;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

65

• The Engine retrieves the determination result from the database and
interrogates the determination result to obtain its key decision
factors;

• the fixed case and decision factors for the determination, using
the summarizer strategy configured for the product to produce a
summary of the case's entitlement for each decision; and

• the custom key decision factors for the determination (if any).

The data interfaces and implementation for calculation of key decision
factors, and subsequent display of key decision factors are described in
more detail below.

5.3.1 Calculation of Key Decision Factors

The system of interfaces and implementations involved in the calculation of
the key decision factors that form part of a determination result follow a
similar pattern to that for eligibility/entitlement calculations (see Sec-
tion 4.3.1, Calculation of Eligibility and Entitlement).

The responsibilities for calculating a case's key decision factors are divided
between fixed implementations provided by the application and custom im-
plementations for a product (some of which must adhere to interfaces in-
cluded with the application).

Sections A and E describe a layer of fixed implementations similar to that of
the eligibility/entitlement calculations, and contribute to calculating and
storing the overall determination result, which includes the key decision
factors. Although not described below, this layer also includes the calcula-
tion of contributing product periods.

The processing described in sections B, C, and D represents a combination
of fixed interfaces and custom product-specific processing that is respons-
ible for determining the key decisions factors across product periods.

Similar to eligibility/entitlement calculations, section B describes a fixed in-
terface included with the Engine and sections C and D both describe custom
product-specific processing.

Although not described below, the fixed implementation and fixed inter-
faces contributed by the engine that are responsible for retrieving the data
from entities, evidence and rate tables for eligbility/entitlement calculations
are also used by the custom product-specific processing described in section
D.

A) ProductEligibilityEntitlementRule-
Set.ProductDeliveryCase rule object

This is the single rule object that controls the overall determination for the
case, described in Section 4.3.1.1, A) ProductEligibilityEntitlementRule-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

66

Set.ProductDeliveryCase rule object

B) ProductKeyDataRuleSet.AbstractCase rule class

The AbstractCase rule class acts as the interface between the fixed key
decision factor processing provided by the Engine, and the product-specific
rules for the calculation of key decision factors for a case.

This "interface" rule class ensures that concrete sub-rule-classes have an im-
plementation for the following rule attribute, which provides the fixed-
structure key decision factors required by the Engine:

• keyDataTimelines - responsible for calculating the named key data
items, and their dates when the key decision factor changes value or un-
dergoes a significant event.

The Engine-supplied interface rule set has no implementations for this at-
tribute - rule classes must be written (see below) to provide an implementa-
tion for the business requirements of the product; rather the interface rule
class allows the Engine to communicate with the rule classes by specifying
a contract for the data structures that it requires.

C) Custom rule classes for key decision factors

When the Engine calculates key decision factors for a product period, the
Engine first asks the product period which rule class should be used (which
is recorded on the product period as part of setting up the product).

The rule class specified on the product period must ultimately extend from
the ProductKeyDataRuleSet.AbstractCase interface rule class.
For ease of upgrades, it is recommended that the rule class extends the De-
faultProductKeyDataRuleSet.DefaultCase rule class which
provides default implementations.

The rule class must provide an implementation of keyDataTimelines ,
which is where the bulk of the implementation effort for the key decision
factor work will lie.

D) Custom rule classes for calculations

The calculation of the key decision factors may require complex business
recalculation, which may be served by custom "calculator" rule classes.

Typically the implementation of keyDataTimelines will reuse calcula-
tion rules which you have already implemented for eligibility/entitlement
calculations, although on rare occasions some refactoring of the existing
rules may be required to make the common rules suitable for both eligibil-
ity/entitlement and key decision factor purposes.

The calculations will typically ultimately retrieve (and thus depend on) en-
tity, evidence or rate data. These dependencies behave in a similar way to
those for eligibility/entitlement calculations (see Section 4.3.1.5, E) Custom
rule classes for calculations).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

67

E) DeterminationResult

The Determination Result (described in Section 4.3.1.9, I) Determination-
Result) also holds the key decision factors for the case, as determina-
tionKeyDataTimelines .

When splicing together key decision factors across different product peri-
ods, the Engine matches contributions from different product periods by the
description of each key decision factor. For each key decision factor found,
the Engine draws event dates from the different product periods; naturally
enough, only the dates that fall within each product period's effective range
are used.

The Engine shows the key decision factors in the order they are listed in the
keyDataTimelines rule attribute value. Typically each product period
will define the same key decision factors, in the same order, but in the rare
situation where the ordering of key decision factors is different across con-
tributing product periods, then the order is determined by the latest product
period to contain that key decision factor.

5.3.2 Display of Key Decision Factors

The vast majority of data processing for key decision factors occurs at the
time when the determination result was calculated, as described in the previ-
ous section.

However, some data processing for key decision factors occurs at the time
that the data is viewed; and this section describes the display-time pro-
cessing of key decision factors.

When a case worker views key decision factors for a determination (whether
using the Graphical View or the List View), then the Engine retrieves the
custom key decision factors stored in the case determination but also auto-
matically adds in:

• case lifetime events; and

• case decision events.

Adding Case Lifetime Events

The Engine automatically adds key decision events for:

• the case's start date (with the actual start date taking precedence over an
expected start date); and

• the case's end date (if the case has an end date, with the actual end date
taking precedence over an expected end date).

These key decision events are part of the Engine's processing and cannot be
customized.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

68

Adding Case Decision Events

The Engine automatically adds key decision events for each decision period
within a determination. The event shows whether the case is eligible or not
during a decision period, and if eligible shows a summary of entitlement.

These key decision events are part of the Engine's processing and cannot be
customized.

The Engine uses the Summarizer Strategy configured for the product to cal-
culate the text to show on the event for the decision period. See Sec-
tion 4.3.2.2, Displaying a Summary of Entitlement for a Coverage Period
for more details.

5.4 How to Use It

Most of the high-level processing for key decision factors is fixed logic
provided by the Engine. However, you will have to provide implementa-
tions for certain lower-level logic. In order to do this, you must understand
the basic concepts of key decision factors.

In addition to providing an understanding of these concepts, this section de-
scribes the work you will need to do to complete the key decision factors lo-
gic for your product, as follows:

• Analysis;

• Implementation; and

• Testing.

Note

This section describes the complete work for key decision factors
logic; however, for short-cuts you can take to get your product up-
and-running quickly, see Section 11.3, Incremental Design .

5.4.1 Understanding Key Decision Factor Concepts

The Engine has a fixed data structure for key decision factors. Understand-
ing the structure of this data is critical as you must map your business re-
quirements to the concepts in this structure. Each case (for a product where
key decision factors have been implemented) will calculate a list of key de-
cision factors when a determination is stored.

Key decision factors can represent a value which changes over time, e.g. a
person's income. They can also represent key events that happen once over
the lifetime of a case, e.g, a person's date of birth. Once-off key events must
be explicitly in a logical fashion that makes sense to a case worker.

Fixed Data Structure for Key Decision Factors

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

69

Each key decision factor is an object with:

• a localizable description (displayed as the name of the key decision
factor);

• a value which changes over time such as a person's income (optional);
and

• a list of named key events such as a person's date of birth (optional and
described in more detail below).

Typically each key decision factor uses exactly one of these optional fea-
tures - i.e. the key decision factor is centered around a value which changes
or a list of key events. It is possible to combine both features if you require.
(Technically it is also possible to use neither feature; however, such a key
decision factor would not be displayed and would be somewhat pointless.)

Explicitly Named Key Events

In contrasts to key decision factors with values that change over time, cer-
tain key events do not represent changes in a single piece of data, but rather
a once-off significant event.

These key events are objects with:

• a localizable description, describing the event, e.g. person's date of birth;
and

• the date on which the event occurred.

It is possible to combine a key decision factor that changes over time, e.g.
an employment with earnings that vary over time, and the named events
such as when the employment started and ended. For named events, you
should analyze whether each event always occurs for the key decision
factor, or just may occur. For example, an employment key decision factor
will always have a start date but may or may not have an end date.

5.4.2 Analysis

You must understand the requirements for your product, and analyze how
these requirements broadly map to the Engine's key decision factor/key
event concepts before starting implementation.

Unlike the requirements for eligibility/entitlement, typically requirements
for key decision factors are not enshrined in legislation, but instead are
based off informed predictions of the kinds of information that may be use-
ful to a case worker, when the case worker is trying to understand a complex
case (and perhaps answer questions about the case from customers.)

As such, producing requirements for your key decision factors is perhaps
more art than science. For a new product, you might consider revisiting your
key decision factor requirements once a product has been live for some

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

70

time, in light with the kinds of information that case workers are attempting
to understand when they view determinations. If you layer your require-
ments and implementation according to the recommendations, you should
be able to implement and deploy changes to your key decision factor rules
without affecting any underlying eligibility/entitlement calculations.

The following steps should aid your analysis.

Identify which decision factors are "key"

For a non-trivial product, the eligibility/entitlement calculations are likely to
be complex, with many layers and interactions.

Ultimately each of these calculations has a bearing on the overall eligibility/
entitlement result; however, you must decide which of these results are
"key" to aiding a case worker's understanding of a case. You might prepare
a candidate list of key decision factors and discuss them with your business
experts and/or senior end-users.

If you identify too few key decision factors, then case workers might not be
able to readily understand a determination. By contrast, if you identify too
many key decision factors, then the key decision view may become too
cluttered for case workers to easily use. In particular, take care to distin-
guish candidates for key decision factor output from requirements for de-
cision details (which are amenable to more detailed display - see Chapter 6,
Calculating and Displaying Decision Details).

For example, let's say you have a product where a household is means
tested, by comparing the total household income against a set of income
thresholds.

The total household income is calculated by adding up the total household
income for each person in the household. Moreover, each person can have
many concurrent employments (e.g. a day job, a night job and/or a weekend
job) and so the total income for each person is calculated by adding up the
earnings from each income.

In this example, the following are candidates for key decision factors:

• which income threshold the household falls into;

• the income thresholds themselves (which happen to be constant across
all products - still potentially useful to show to the case worker, though);

• the total household income;

• for each person in the household, the total person income;

• for each income, the earnings for that income, and the dates that the in-
come started and ended.

An implementation which included all of the above key decision factors
could well be too cluttered to use, so business analysts producing require-
ments for key decision factors must choose carefully.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

71

Identify the cardinality and descriptions for your key decision
factors

Each type key decision factor that you have identified will typically fall into
one of these patterns:

• Single key decision factor. Each case has exactly one instance of this
key decision factor, e.g. a "total household income" key decision factor
for the case;

• Multiple key decision factor. Each case has a number of instances of
this key decision factor, depending on the case's circumstances, e.g. a
"total person income" key decision factor for each of the people in the
case's household.

Note that the Engine does not impose these single/multiple key decision
factor patterns; the creation of key decision factors can be as complex as
your business requirements dictate.

For a single key decision factor, the description of the factor can be a fixed
piece of (localized) text, e.g. "Total Household Income".

For a multiple key decision factor, each instance of the factor in a determin-
ation must have a unique name - this uniqueness is required by the Engine
and also is necessary for the case worker to distinguish between multiple in-
stances of the key decision factor. Thus the description for a multiple key
decision factor typically requires a calculation involving some fixed text and
some variable data from the case, e.g. "Total Person Income for
<person-full-name>". Your analysis should include the calculation require-
ments for these kinds of descriptions.

Identify the data type for each key decision factor

For each key decision factor identified, you must analyze whether the key
decision factor will display:

• the changes in value of a single piece of data; and/or

• important named events.

Each of these relay events to the case worker, as each change in value of an
important piece of data (such as total household income) is a kind of event
in itself - with the pattern that visually, reporting the new value of the data
(such as $100) is enough information to communicate the event (since text
for a named event such as "The total household income is now $100" could
well be overly-wordy).

By contrast, events such as a person being born or dying are not changes in
a single piece of data, and must be explicitly named events.

5.4.3 Implementation

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

72

Having analyzed your business requirements, you are now in a position to
start the implementation of your key decision factors for your product.

You are likely to re-use calculation results already implemented for your eli-
gibility/entitlement calculations, as typically the factors that identify as
"key" are those already part of your eligibility and entitlement logic. As
such, the effort required to implement key decision factors is typically far
smaller than that required for eligibility/entitlement logic calculations.

It is recommended that you implement your key decision factors rule classes
in a rule set separate from your eligibility/entitlement rule set(s), but allow
your key decision factor rule classes to depend on your eligibility/entitle-
ment rule classes (but not the other way around).

This approach means that you can evolve your key decision factor imple-
mentation in the future without having to retest your eligibility/entitlement
implementation; this can be important since key decision factors are merely
"view" data to aid the case worker, whereas eligibility/entitlement results
may affect more critical business functions such as how much a client is ac-
tually paid.

It can be helpful to track the dependencies between your rule sets so that as
your product evolves, you have an insight into how changes in one rule set
might affect other rule sets that depend on it.

For each product period, you must create a rule class which is responsible
for identifying and calculating the key decision factors for the case.

It is possible that your key decision factors are calculated in an identical
way across product periods, in which case you may be able to re-use one
case rule class for many product periods. Your factoring of common calcu-
lated eligibility/entitlement results may affect how you must factor your
case rule classes for key decision factors.

You will write the following rule classes:

• one case rule class (per product period) to hold the overall identification
and calculation of key decision factors;

• one or more key decision factor rule classes, one for each type key de-
cision factor supported by your product; and

• zero or more key event rule classes, one for each type of named event
supported by any of your key decision factors.

The sections below detail a step-by-step path to implement your key de-
cision factors.

Write the Case rule class

Your rule class to identify and calculate key decision factors for a case must
ultimately extend from the ProductKeyDataRule-
Set.AbstractCase interface rule class. For ease of upgrades, it is re-
commended that your rule class extends the DefaultProductKey-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

73

DataRuleSet.DefaultCase rule class which provides default imple-
mentations.

Here is a description of the attributes inherited from AbstractCase :

Rule Attribute
name

Data type Description

productDe-
liveryCase

ProductDe-
liveryCase

The controlling rule object which is
responsible for splicing together the
determination result from the contri-
butions made by the product period.
Passed in when the instance of Ab-
stractCase is created.

key-
DataTimeline
s

List of Ab-
stractKey-
DataTimeline

The list of key decision factors for
the case.

Table 5.1 Rule attributes inherited from
ProductKeyDataRuleSet.AbstractProduct

Create a rule class which extends DefaultProductKeyDataRule-
Set.DefaultCase . The rule class should be named in line with your
product, e.g. ProductName KeyDecisionFactors (the Engine does
not have any technical constraint on the rule class name - rather a good
name for your rule class may make it easier to develop and maintain your
rule sets).

The inherited implementation of keyDataTimelines returns an empty
list; leave this implementation for now and you will return to it once you
have created your key decision factor classes.

Write the Key Decision Factor rule classes

For each type of key decision factor that you have identified, you must cre-
ate a rule class which must ultimately extend from the ProductKey-
DataRuleSet.AbstractKeyDataTimeline interface rule class. For
ease of upgrades, it is recommended that your rule class extends the De-
faultProductKeyDataRuleSet.DefaultKeyDataTimeline
rule class which provides default implementations.

Here is a description of the attributes inherited from AbstractKey-
DataTimeline :

Rule Attribute
name

Data type Description

description Localizable mes-
sage

The identifying description of this
key decision factor (as displayed to
the user)

timeline Timeline of Ob- The single varying value whose

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

74

Rule Attribute
name

Data type Description

ject changes will be reported as events
for this key decision factor.

keyEvents List of Ab-
stractKeyEve
nt

The named events for this key de-
cision factor.

Table 5.2 Rule attributes inherited from
ProductKeyDataRuleSet.AbstractKeyDataTimeline

Create a rule class which extends DefaultProductKeyDataRule-
Set.DefaultKeyDataTimeline . The rule class should be named in
line with your key decision factor (KeyDecisionFactorName Key-
DecisionFactor) , e.g. TotalHouseholdIncomeKeyDe-
cisionFactor (the Engine does not have any technical constraint on the
rule class name - rather a good name for your rule class may make it easier
to develop and maintain your rule sets).

Implement a meaningful description attribute for your rule class. For a
single key decision factor, a fixed localizable message (typically from a re-
source file, using CER's ResourceMessage expression) may suffice, e.g.
"Total Household Income".

For a multiple key decision factor, the implementation of the description at-
tribute will need to have some variable text, e.g. "Total Person Income for
<person-full-name>", typically using CER's <ResourceMessage> ex-
pression to substitute variable text for placeholder in a message from a re-
source file, e.g. "Total Person Income for {0}".

Your key decision factor rule class will typically need some context in order
to calculate its events and its description (for key decision factors which
support multiple instances). This context will typically be a rule object
which will be passed in when an instance of your rule class is created (see
sections below). You should identify the context and model rule attribute(s)
for the context in your rule class.

For example, if your key decision factor shows the total income for a per-
son, then the context required may be a rule object for that person, so that
your key decision factor rule class can use that person's data to calculate
total income.

Leave the keyEvents with its inherited implementation; you may revisit it
later if required.

The inherited implementation of timeline returns a Timeline with a con-
stant value (and thus has no change events); if your key decision factor has
only named events (as supplied by the keyEvents attribute), then do not cre-
ate an implementation for the timeline attribute.

If your key decision factor does require events for a single varying value,

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

75

then you must implement the timeline attribute to obtain that value, typ-
ically retrieving an existing Timeline attribute from another rule class, per-
haps creating a rule object instance based off the context passed in to your
key decision factor rule class.

For example, if your key decision factor displays the total income for a per-
son, then:

• your key decision factor rule class will have a person attribute, of type
Person (another rule class);

• your key decision factor rule class will have a personCalculator
attribute, which creates a PersonCalculator instance (Person-
Calculator is another rule class), passing in the person instance;

• your implementation of the timeline attribute on your key decision rule
class will retrieve the personCalculator.totalIncome rule at-
tribute value (which is already a Timeline).

Write the Key Event rule classes

For each type of key decision factor that supports named events, you must
create a rule class for each type of event. For example, if your key decision
factor describes an employment, you might write these rule classes:

• EmploymentStartedEvent ; and

• EmploymentEndedEvent .

For each type of key event that you have identified (if any), you must create
a rule class which must ultimately extend from the ProductKey-
DataRuleSet.AbstractKeyEvent interface rule class. For ease of
upgrades, it is recommended that your rule class extends the Default-
ProductKeyDataRuleSet.DefaultKeyEvent rule class which
provides default implementations.

Here is a description of the attributes inherited from AbstractKeyEvent
:

Rule Attribute
name

Data type Description

description Localizable mes-
sage

The description of this key event (as
displayed to the user)

date Date The date on which the event oc-
curred (or is expected to occur).

Table 5.3 Rule attributes inherited from
ProductKeyDataRuleSet.AbstractKeyEvent

Create a rule class which extends DefaultProductKeyDataRule-
Set.DefaultKeyEvent . The rule class should be named in line with

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

76

your key event (EventName Event), e.g. EmploymentStarte-
dEvent (the Engine does not have any technical constraint on the rule class
name - rather a good name for your rule class may make it easier to develop
and maintain your rule sets).

Implement a description for your event, which may or may not require
context data to be passed into your rule class, e.g.:

• (no context required) "Employment started"; or

• (age context required) "Customer turned <new age on birthday>".

If the calculation of the date is complex, you may wish to implement a de-
rivation for the date attribute. Otherwise, the value of date can be set by the
calling rules when implementing the keyEvents rule attribute (see be-
low).

Tip

Events which have a date of null will not be displayed. This can
be useful for optional events such as those for an end date. If you
have an EmploymentEndedEvent which applies only if an em-
ployment has an end date, then you can simply create an Employ-
mentEndedEvent instance and set its date to the end date of the
employment; if the end date is null (i.e. the employment is ongoing),
the event will not display, but if the employment has an end date re-
corded then the event will have a non-null date and will display.

This treatment of null dates typically results in more maintainable
rule logic that the alternative approach whereby there is conditional
logic governing which event instances to create.

Relate each Key Decision Factor to its supported Key Events

For each key decision factor rule class, you must consider whether to imple-
ment the keyEvents attribute. The inherited implementation of keyEvents
returns an empty list; if your key decision factor has only events for a single
varying value (as supplied by the timeline attribute), then do not create an
implementation for the keyEvents attribute.

If your key decision factor does require named events, then your implement-
ation of keyEvents must create a list of event objects. Depending on your
implementation of the key event rule class, the each key event rule object
may require additional context to be passed in when it is created.

For a fixed set of events (e.g. a start event and an end event), your imple-
mentation of keyEvents will typically be a <fixedlist> where each
member in the list is a <create> expression, e.g. (in pseudo-code):

• Create a list of AbstractKeyEvent , with members:

• Create an instance of EmploymentStartedEvent , setting
date = myEmployment.startDate ; and

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

77

• Create an instance of EmploymentEndedEvent , setting date =
myEmployment.endDate (see tip above about how a null date
prevents an event from being displayed).

For some events, there may be an arbitrary number depend on other condi-
tions, such as a number of birthdays. For these types of events, you will
need to use other constructs such as <dynamiclist> or <joinlists>
to create your list of key events for the key decision factor.

Relate the Case to its supported Key Decision Factors

You must implement the keyDataTimelines attribute on your case rule
object to return a list of key decision factors for the case.

If your product contains only single key decision factors, your implementa-
tion of keyDataTimelines will typically be a <fixedlist> where
each member in the list is a <create> expression, e.g. (in pseudo-code):

• Create a list of AbstractKeyDataTimeline , with members:

• Create an instance of TotalHouseholdIncomeKeyDe-
cisionFactor , setting productDeliveryCase be
this.productDeliveryCase ; and

• Create an instance of ClaimantLifeEvents , setting pro-
ductDeliveryCase be this.productDeliveryCase .

If your product has multiple key decision factor instances of a given type,
your implementation of keyDataTimelines will typically be a
<dynamiclist> to create a key decision factor for each object of a par-
ticular kind, e.g.:

• For each person in the household:

• Create an instance of PersonIncomeKeyDecisionFactor ,
setting person = current person.

Typically your product may contain a mixture of single key decision factors,
and multiple key decision factors (and indeed many different types of mul-
tiple key decision factors), in which case you will need to nest the
<fixedlist> and <dynamiclist; creations within a <joinlists>
expression.

It may be clearer to factor out the creation of different types of events to
their own rule attribute before joining the lists together, e.g.:

• Create an attribute called singleKeyDecisionFactors , which
creates a fixed list of all the single key decision factors for your product;

• Create an attribute called personIncomeKeyDecisionFactors ,
which creates a dynamic list containing one key decision factor per per-
son on the case;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

78

• Implement keyDataTimelines to join together the singleKey-
DecisionFactors and personIncomeKeyDecisionFactors
lists.

Update the Product Periods

For each period in your product, you must modify the product periods you
created for eligibility/entitlement calculations (see Section 4.4.3.3, Write the
Product Periods) to link each period to your case rule class for key decision
factors.

The way you link these records differs depending on whether you are work-
ing in a development environment or a running system.
Working in a Development Environment

Create DMX entries for any new rule sets you created for your rule classes
(see section D.5.1. in the Cúram Express Rules Reference
Manual).

For each product period, perform the following steps in the custom compon-
ent:

• Create an entry in a CREOLERuleClassLink.dmx file, which points
to the rule class for your case rule class for key decision factors:

Attribute Name Value
creoleRuleClassLinkID A unique ID from your custom key

range.

creoleRuleSetID The value of CREOLERule-
Set.creoleRuleSetID you as-
signed above for the rule set contain-
ing your key decision factors rule
class.

ruleClassName The unqualified name of your key
decision factors rule class.

versionNo 1

Table 5.4 DMX data for CREOLERuleClassLink for your key
decision factors rule class

Important

You must create a separate record for use by each product peri-
od, even if multiple product periods point to the same key de-
cision factors rule class.

• Update your entry in your CREOLEProductPeriod.dmx file, setting
the following attribute:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

79

Attribute Name Value
otherKeyDataRCLID The value of CREOLERuleClass-

Link.creoleRuleClassLinkI
D you assigned for your key decision
factors rule class.

Table 5.5 DMX data for CREOLEProductPeriod

Working in a Running System

Publish your rule sets containing your new rule classes.

Start the admin application and navigate to Product Delivery Cases, select
your product, choose Rule Sets and copy the product for edit (if it is not
already in edit).

For each product period, set the value of "Key Decision Factors Rule" to be
the rule class you created for your case's key decision factors.

Publish your changes to the product. Note that if the product has existing
cases, these cases will be reassessed if batch processes are run to reassess all
potentially affected cases, so that the new determination contains key de-
cision factor data. If you have followed the recommendations regarding the
dependencies between your rule sets, then no eligibility/entitlement changes
should result from the reassessment (and thus no payments for cases will be
affected).

5.4.4 Testing

For a complex product created in a development environment, you should
create unit tests for individual parts of your product's key decision factor
rules, using CER's support for rules testing.

You might consider creating end-to-end unit tests that test full scenarios in-
volving the creation and activation of evidence, and the creation and activa-
tion of product delivery cases, to test that the overall key decision factor res-
ults are calculated as expected.

You might also perform manual testing of the online system to check that
your overall key decision factor scenarios are handled as expected.

The Engine may encounter runtime problems when calculating key decision
factors, due to calculation errors in CER attribute values.

If there is a runtime error in the calculation of a CER attribute value for a
key decision factor, such as a reference not found (analogous to a Null-
PointerException in Java), or a division by zero, or any other calcula-
tion problem, then the Engine will throw an exception. The application logs
will contain details of this exception including its stack trace. For CER cal-
culation errors, the stack trace can include important information regarding
the location within a CER rule set where the error occurred. To fix this, you
will need to debug and retest your rules.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

80

Chapter 6

Calculating and Displaying Decision Details

6.1 Introduction

The Engine contains features to calculate and display decision details on
free-form screens for displaying the detailed breakdown of eligibility/enti-
tlement calculations.

When you design your product, you can choose to output such decision de-
tails. Unlike the structure of eligibility/entitlement results and key decision
factors, the structure of the output data for decision details is product-specif-
ic and so the content and layout of the data shown on screens must be
defined (using dynamic UIM screens). The Engine uses these product-spe-
cific UIM screens to display the decision details to case worker users.

Typically, the rules for calculation of decision details will "sit on top of" the
rules for calculating a case's eligibility and entitlement. If you follow the
best practice recommendation and layer your rules this way, then you can
make changes to the output of decision details for cases while guaranteeing
not to affect any case's underlying eligibility/entitlement results. Data calcu-
lated for decision details never affects Cúram financials or other processing
- the data is used for display purposes only.

This chapter describes the flow of processing that allows decision details to
be displayed to the user. The processing is intentionally described in re-
verse-chronological order; firstly we describe the end results, followed by
the Engine processing that produces those results, before finally describing
how the data was calculated.

This "backwards" perspective will echo how your rules designers will need
to think when designing your product; they will need to start with the end in
mind (namely how case workers will navigate decision details, which details
to display and how they are laid out on the screen).

This chapter is structured as follows:

• How it looks. Describes how decision details are displayed to a case

81

worker.

• How it works. Describes how fixed processing by the Engine and cus-
tom processing combine to calculate and display decision details.

• How to use it. Describes the steps you will need to follow to implement
decision details for your product.

6.2 How It Looks

This section describes how decision details are displayed to a case worker.

Unlike eligibility/entitlement and key decision factor data, the structure of
decision details data is intentionally very flexible; rules designers can in-
clude all different types of information in decision details.

Because the structure of the decision details data is very flexible, the Engine
cannot know by itself how to display this information, and product design-
ers must create dynamic UIM screens which can extract their required data
from the decision details and format it appropriately for a case worker user.

6.2.1 Summary Display Category

A decision details tab is provided for a coverage period within a determina-
tion.

The header area of the screen displays summary information about the case
(its start and end dates) and the coverage period selected (its date range and
the eligibility decision during that date range). This header area is supplied
automatically by the Engine.

Below the header area is a strip of tabs, one for each display category con-
figured for the product. It is recommended that the first tab shown should be
an overall summary of the case's eligibility and entitlement calculation, be-
cause:

• This tab is displayed by default when the coverage period is shown; and

• The details from this first tab are also shown when the user expands a
coverage period listed on the overall determination.

The main body of the screen contains "summary" details for the coverage
period, using standard UIM features such as headers, tabular labels and val-
ues, and formatting such as bold text and a total line.

6.2.2 Decision Comparison

The Engine contains features that allow a decision details page to also show
data from the previous case decision within the determination. This feature
can be useful to see how details of the case have changed along the determ-
ination.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

82

6.2.3 Sub-screens

The Engine contains features that allow rows of data on a decision details
page to be expanded to show further details on a sub-screen. This feature
can be useful to allow a case worker to drill down into further detail.

6.2.4 Basic Eligibility/entitlement Information

The Engine includes "basic" screens and decision detail rules to display:

• the overall case eligibility; and

• (if eligible) the objectives and tags that the case is entitled to.

This information is too basic to be of genuine use to a case worker, however
you may find it useful to re-use this output in the early days of developing
your product (with a view to removing this "basic" category once you have
implemented custom decision details rules and screens for your product).

The screen definitions and decision details rules included with the applica-
tion also serve as examples which may be useful when you come to imple-
ment your custom decision details; and these "basic" artifacts are also used
as examples in the remainder of this chapter.

6.3 How It Works

This section describes how fixed processing by the Engine and custom pro-
cessing combine to calculate and display decision details.

The calculation and display of a determination involves a mixture of:

• fixed processing contributed by the Engine; and

• custom product-specific processing contributed by you (i.e. the imple-
mentation of your product).

The list of display categories are configured at a product level; in other
words, the strip of display category tabs available for a determination are the
same no matter which product period contributes to a coverage period.

Note that for any display category, it is not mandatory to configure decision
details rules for your product periods; any or all of your product periods can
opt not to use decision details rules for a display category, and if so the En-
gine will display a message on the screen to say that no details are available.
This situation can arise if a change in legislation means that a new display
category must be introduced for a product, yet only new (later) product peri-
ods need to display details for that category (because that category of details
are simply not relevant to an earlier period).

For example, let's say that a product is implemented which has a means test
against a household's income. The product is configured to show an "In-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

83

come" decision details tab which provides details of how the total income
for the household was derived. However, in 2010 legislation changed so that
from 2010 onwards, the means test includes the value of a household's as-
sets as well as total income. To implement the new legislation, the following
steps would be taken:

• a new evidence type would be created to record Asset details for
people in a household;

• the product's configuration would be changed to include a new "Assets"
tab;

• the product's lifetime would be divided into two product periods
("pre-2010" and "2010 onwards"); in other words the existing single
product period would be ended and a new product period created;

• the "2010 onwards" product period would implement decision details
rules for the "Assets" tab, but the "pre-2010" product period would not
implement any new decision details rules, as the household assets have
no relevance to that period on the case (and in any case there would be
no historical asset evidence recorded prior to 2010, because the evidence
type is new and did not exist at the time that older cases were created).

The Engine follows the following high-level steps to arrive at decision de-
tails that can be displayed to a case worker:

• At Determination Calculation time:

• An action occurs which triggers the determination of a case (either
an active or reactive determination);

• The Engine identifies the product periods (configured for the
product) that cover the case's lifetime;

• For each display category configured for the product:

• The Engine uses CER rules (specific to the product) to calculate
the decision details for each contributing product period;

• The Engine calculates the decision details across the lifetime of
the case by "splicing together" the decision details from each
contributing product period;

• The Engine stores (on the database) a determination result contain-
ing the decision details for each display category (as well as eligibil-
ity/entitlement results and key decision factors, covered elsewhere in
this document).

• At Determination View time:

• A case worker requests to view the details for a display category on
a coverage period within a determination on a case;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

84

• The Engine retrieves the determination result from the database, and
extracts from the determination the decision details for the required
category (the value of which may vary over the lifetime of the case).

• The Engine gets the value of the decision details for the coverage
period required, and creates an XML document containing the de-
cision details data;

• The Engine retrieves the dynamic UIM page configured to display
decision details for the required display category;

• The Engine displays header details for the case and coverage period;
and

• The dynamic UIM page extracts data from the XML document and
formats that data to display the body of the decision details.

• If the screen contains expandable rows of data, then there is further pro-
cessing at the time a row is expanded:

• A case worker expands a row on a decision details page (which dis-
plays details for a display category on a coverage period within a de-
termination on a case);

• As above, the Engine retrieves the determination result from the
database, and extracts from the determination the decision details for
the required category. The Engine gets the value of the decision de-
tails for the coverage period required.

• The Engine uses the subscreenName passed in from the screen to
identify the required attribute from the case rule object. The Engine
obtains its value, and then looks through the list of rule objects to
match on the businessObjectID passed in from the screen.

• The Engine creates an XML document for the matching rule object
details.

• The top-level dynamic UIM page opens an inner dynamic UIM
page; the inner page receives the XML document, extracts data from
it and formats it to display the expanded details.

The data interfaces and implementation for calculation of decision details,
and subsequent display of decision details are described in more detail be-
low.

6.3.1 Calculation of Decision Details

The system of interfaces and implementations follows a similar pattern to
that for eligibility/entitlement calculations (see Section 4.3.1, Calculation of
Eligibility and Entitlement) and key decision factors Section 5.3.1, Calcula-
tion of Key Decision Factors ; however, given the free-form structure of de-
cision details data, there are some important differences which are described

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

85

throughout this section.

The responsibilities for calculating a case's decision details are divided
between fixed implementations provided by the application and custom im-
plementations for a product (some of which must adhere to application-
shipped interfaces).

Sections A and G describe a layer of fixed implementations similar to that
of the eligibility/entitlement calculations, and contribute to calculating and
storing the overall determination result, which also holds the decision de-
tails. Although not described below, this layer also includes the calculation
of contributing product periods.

The processing described in sections B, C, D, E, and F represents a layer
that results in rule objects that are created in-memory only and are not
stored on the database. Similar to eligibility/entitlement calculations, section
B and D describes a fixed interface shipped by the Engine and sections C, E,
and F describe custom product-specific processing.

Although not described below, there is also a final layer similar to that de-
scribed in Section 4.3.1, Calculation of Eligibility and Entitlement that is re-
sponsible for the creation of rule objects that are retrieved by the custom
product-specific processing described in section F.

This section describes the important interfaces and implementations in-
volved in the calculation of the decision details that form part of a determin-
ation result.

A) ProductEligibilityEntitlementRule-
Set.ProductDeliveryCase rule object

This is the single rule object that controls the overall determination for the
case, described in Section 4.3.1.1, A) ProductEligibilityEntitlementRule-
Set.ProductDeliveryCase rule object .

B) ProductDecisionDetailsRuleSet.AbstractCase rule
class

The AbstractCase rule class acts as the interface between the fixed de-
cision details processing provided by the Engine, and the product-specific
rules for the calculation of decision details for a case (to provide details for
a top-level display category screen; the interface for sub-screens is de-
scribed below).

Unlike the interface rule classes for eligibility/entitlement and key decision
factors, the ProductDecisionDetailsRuleSet.AbstractCase
interface rule class does not mandate a fixed data structure for concrete sub-
rule-classes to implement. Later we will see how the Engine "walks" free-
form data to calculate decision details for the case.

C) Custom rule classes for decision details

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

86

When the Engine calculates decision details for a display category on a
product period, the Engine first asks the product period which rule class
should be used for that display category (which is recorded on the product
period as part of setting up your product).

The rule class specified on the product period/display category must ulti-
mately extend from the ProductDecisionDetailsRule-
Set.AbstractCase interface rule class. For ease of upgrades, it is re-
commended that your rule class extends the DefaultProductDe-
cisionDetailsRuleSet.DefaultCase rule class which provides
default implementations.

Your rule class will have one or more attributes annotated with Display
or DisplaySubscreen , which is where the bulk of the implementation
effort for your decision details work will lie.

D) ProductDecisionDetailsRule-
Set.AbstractCaseSubscreenDisplay rule class

The AbstractCase rule class acts as the interface between the fixed de-
cision details processing provided by the Engine, and the product-specific
rules for the calculation of decision details for a case (to provide details for
a sub-screen expanded from within a top-level display category screen).

This "interface" rule class ensures that concrete sub-rule-classes have an im-
plementation for the following rule attribute:

• businessObjectID - identifies the object being expanded on the
screen, so that details relevant to that object only can be retrieved and
displayed.

E) Custom rule classes for sub-screen details

When the Engine accumulates decision details for a determination, the data
accumulated may include data to be included on a sub-screen, i.e. a panel
shown when a row on a dynamic UIM screen is expanded by a user.

Data for sub-screens must be specified by a rule class which must ultimately
extend from the ProductDecisionDetailsRule-
Set.AbstractCaseSubscreenDisplay interface rule class. For
ease of upgrades, it is recommended that your rule class extends the De-
faultProductDecisionDetailsRule-
Set.DefaultCaseSubscreenDisplay rule class which provides de-
fault implementations.

Your rule class will have one or more attributes annotated with Display ,
which is where the bulk of the implementation effort for your decision de-
tails work will lie.

F) Custom rule classes for calculations

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

87

The calculation of your decision details (and/or sub-screen data) may re-
quire complex business recalculation, which may be served by custom "cal-
culator" rule classes.

Typically the implementation of your attributes annotated with Display or
DisplaySubscreen will reuse calculation rules which you have already
implemented for eligibility/entitlement calculations, although on rare occa-
sions some refactoring of your existing rules may be required to make the
common rules suitable for both eligibility/entitlement and decision details
purposes.

You may also create new rule classes to accumulate data for display and/or
transform data into a format more suitable for display. Your rule classes will
have one or more attributes annotated with Display , but may also have
non-annotated attributes to hold interim calculation results.

The calculations will typically ultimately retrieve (and thus depend on) en-
tity, evidence or rate data. These dependencies behave in a similar way to
those for eligibility/entitlement calculations (see Section 4.3.1.5, E) Custom
rule classes for calculations).

G) DeterminationResult

The Determination Result (described in Section 4.3.1.9, I) Determination-
Result) also holds the decision details for the case, as determination-
DecisionDetailsTimelines . determinationDecisionDe-
tailsTimelines is a map from each display category to a timeline of
XML data (which holds the varying decision detail data for that display cat-
egory).

Each product period can contribute to the XML data for a particular display
category. If a product period does not have rules configured for a particular
display category, then for the period of time that the product period contrib-
utes to the case's determination, the XML data will be empty and no de-
cision details can be displayed for that period.

The Engine calculates the XML data for a product period's contribution to a
display category by starting with a rule object created for that product peri-
od/display category, and then "walking" the values on that rule object to
gather XML data as follows:

• The Engine walks all the displayable data to find out all the "change
dates" on which any timeline values change (because the eventual over-
all XML will change on each of these change dates). The Engine walks
the displayable data in a recursive fashion as follows:

• Create an instance of the decision details rule class (see Sec-
tion 6.3.1.3, C) Custom rule classes for decision details);

• Find every attribute on the rule object which is annotated with the
Display annotation (other non- Display attributes are ignored).

• For each Display attribute, processing differs according to the

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

88

type of the attribute:

• Timeline. If the value is a timeline, then inspect the timeline
value to find the dates on which it changes value, and contribute
these dates to the overall change dates.

• Rule Object. If the value is another rule object (which has not
yet been walked), then recurse to inspect its Display attributes
and add their change dates to the overall change dates.

• List. If the value is a list of rule objects or Timelines, then each
item in the list is checked to identify change dates to contribute
to the overall change dates.

• Other. If the value type is not a Timeline, Rule Object or List
then it does not contribute to the overall change dates.

• For each date on which any display data changes, the Engine creates an
XML document by re-walking the data above, to find the value of each
displayable item on that date (see the example below in Section 6.3.1.8,
Basic Eligibility/Entitlement example XML output). There are special
cases for sub-screen data and their business object IDs to automatically
include them.

• The Engine combines the XML documents for each change date into a
timeline of XML documents. This timeline holds all the displayable data
for a display category on the case, and the Engine stores it in the map of
display categories to XML timelines.

Basic Eligibility/Entitlement example XML output

Here is an example of an XML document for a particular change date, pro-
duced by the AbstractBasicProductDecisionDetailsRule-
Set.AbstractBasicCase rule class included with the Engine (to dis-
play basic eligibity/entitlement details):

<DecisionDetails>
<BasicCase>

<isEligibleTimeline domain="SVR_BOOLEAN">true</isEligibleTimeline>
<displayObjectiveTimelines>
<Item>

<relatedReferenceTimeline domain="SVR_UNBOUNDED_STRING" />
<index domain="SVR_INT64">0</index>
<objectiveTypeID

domain="SVR_UNBOUNDED_STRING">CREOLE 1</objectiveTypeID>
<targetIDTimeline domain="SVR_INT64">123</targetIDTimeline>
<isEntitledTimeline

domain="SVR_BOOLEAN">true</isEntitledTimeline>
</Item>

</displayObjectiveTimelines>
<displayObjectiveTimelineSubscreens>
<Item>

<displayTagTimelines>
<Item>

<pattern domain="FREQUENCY_PATTERN">000120100</pattern>
<valueTimeline

domain="SVR_UNBOUNDED_STRING">0</valueTimeline>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

89

</Item>
</displayTagTimelines>
<businessObjectID domain="SVR_INT64">0</businessObjectID>

</Item>
</displayObjectiveTimelineSubscreens>

</BasicCase>
</DecisionDetails>

Example 6.1 Example XML document for Basic
Eligibility/Entitlement data for a coverage period

The XML has the following structure:

• A top-level DecisionDetails element; this is a fixed-named ele-
ment provided by the Engine;

• A BasicCase element; the name of this element is that of a rule class
used to provide decision details rules (in this example, for the "basic"
objectives/tags output); this element represents a BasicCase rule ob-
ject and the child elements represent the point-in-time values for attrib-
ute values from the rule object (for attributes which have been annotated
with Display , to command them to be recorded in this XML);

• A isEligibleTimeline element for the value of the BasicCase .
isEligibleTimeline timeline during this coverage period (in this
case "true"); also specifies the domain type of the value so that the dy-
namic UIM understands the type of the data and can display or process it
appropriately.

Note

The domain type is automatically provided by the Engine by in-
specting the data type of the rule attribute; usually this is suffi-
cient but in some data conversion scenarios, you may explicitly
specify the domain to use within the Display annotation.

• A displayObjectiveTimelines element for another attribute on
BasicCase which is annotated with Display . This attribute returns
a list of rule objects, and so this XML element has a child Item element
(because in this example the list holds a single rule object - there will be
one Item child element for each entry in the list value).

• The child elements of Item correspond to the attributes of the rule object
in the displayObjectiveTimelines list value (in this case, at-
tributes on the AbstractBasicProductDecisionDetailsRule-
Set.DisplayObjectiveTimeline rule class)

• A displayObjectiveTimelineSubscreens element for an at-
tribute on BasicCase which is annotated with DisplaySubscreen
. This data will be used to allow the user to expand a row on the screen
to drill down its detail by displaying a sub-screen of a data, keyed on the
businessObjectID of the required item.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

90

6.3.2 Display of Decision Details

Some data processing for decision details occurs at the time when the de-
termination result was calculated, as described in the previous section.

However, in contrast to eligibility/entitlement and key decision factors, dis-
play of decision details also involves some considerable processing, de-
scribed in this section.

A case worker can choose to view Decision Details in these ways:

• When viewing a determination's list of coverage periods, the user can
expand a row for a coverage period, to display the decision details for
the first display category configured on the product; and/or

• The user can click on the date range shown for a coverage period to dis-
play the full decision details pages, which show a clickable tab for each
display category (with the first display category shown by default).

Either of these actions instructs the Engine to display decision details for a
particular date and display category on a determination for a case. When in-
structed, the Engine performs the following steps:

• The Engine looks up the Dynamic UIM page to display, based on the
display category requested. The configuration for which page to display
is stored on the CREOLEProductDecisionDisp-
Cat.displayPageName database column.

• The web server loads the Dynamic UIM page, which will specify an ap-
propriate server interface to call to retrieve data for the screen. The sup-
ported server interfaces are as follows:

Server interface Description
CaseDetermina-
tion.viewDecisionDisplayR
ulesCategoryXML

Retrieves XML data for the top-level
decision details screen for a single
coverage period.

CaseDetermina-
tion.viewDecisionDisplayR
uleCategorySubscreenXML

Retrieves XML data for a sub-screen
of decision details screen for a single
coverage period and business object
ID (identifying the sub-screen being
expanded).

CaseDetermina-
tion.viewPreviousDecision
DisplayRulesCategoryXML

Retrieves XML data for the case de-
cision period succeeded by the cov-
erage period requested. Typically
used in addition to CaseDeter-
mina-
tion.viewDecisionDisplayR
ulesCategoryXML to provide
data for a comparison screen.

CaseDetermina- Retrieves XML data for the same

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

91

Server interface Description
tion.viewPreviousDetermin
ationDecisionDisplayR-
ulesCategoryXML

period in the determination super-
seded by the requested determination
- reserved for use by Engine screens
to compare under/over-payment de-
terminations only.

Table 6.1 Supported server interfaces for decision details UIM
pages

• The Dynamic UIM page calls its server interface(s) to retrieve XML
data for the coverage period.

• The Dynamic UIM page contains XPath-like expressions for querying
the XML data returned. The Dynamic UIM page executes these XPath-
like expressions against the XML data obtained from the calls to server
interface(s), and obtains data to use in UIM constructs (such as field val-
ues and conditions).

• The web server displays the formatted page of decision details.

Basic Eligibility/Entitlement UIM examples

The Engine includes with a set of screens to display decision details for ba-
sic objective and tag information (see Section 4.2.2, Basic Eligibility/enti-
tlement Decision Details). This section uses those screens to illustrate the
mechanisms used for displaying decision details.

You should refer to the full Dynamic UIM page definitions and associated
.properties files for the following pages:

• CREOLEDisplayRules_basicCaseDisplay ; and

• CREOLEDisplayR-
ules_basicCaseDisplay_objectiveTagSubscreen .

Use of data in a condition

CREOLEDisplayRules_basicCaseDisplay.uim makes use of a
Boolean value in a condition, which governs which cluster is displayed
when the case is eligible or ineligible:
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRulesCategoryXML"

/>
...

<CLUSTER
NUM_COLS="1"
SHOW_LABELS="FALSE"
TITLE="Cluster.Title.Eligibility"

>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

92

<CONDITION>
<IS_FALSE

EXTENDED_PATH=
"/DecisionDetails/BasicCase/isEligibleTimeline"

NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONDITION>

...

The XPath-like syntax of /DecisionDe-
tails/BasicCase/isEligibleTimeline retrieves the value from
the XML returned. In the example XML shown in Section 6.3.1.8, Basic
Eligibility/Entitlement example XML output , the value retrieved would be
"true" (as a SVR_BOOLEAN) from the xmlData, which enables it to be
used in the condition for the cluster.

Displaying a list of data

CREOLEDisplayRules_basicCaseDisplay.uim makes use of a
list to display the list of objectives to which an eligible case is entitled. The
Item[] syntax is used to refer to an item in the list.
...
<CLUSTER

NUM_COLS="1"
TITLE="Cluster.Title.Entitlement"

>
<LIST>

<DETAILS_ROW>
...

</DETAILS_ROW>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.ObejctiveTypeID"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/objectiveTypeID"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>

<FIELD
DOMAIN="SVR_BOOLEAN"
LABEL="Field.Label.Entitled"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/isEntitledTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>

<FIELD
DOMAIN="SVR_INT64"

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

93

LABEL="Field.Label.Target"
>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/targetIDTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.RelatedReference"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/relatedReferenceTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>
</LIST>

</CLUSTER>
...

Connecting a top-level screen to a sub-screen

CREOLEDisplayRules_basicCaseDisplay.uim allows each ob-
jective in its list to be expanded to show makes use of a list to display the
list of objectives to which an eligible case is entitled. The Item[] syntax is
used to refer to an item in the list. This is the top-level, or "outer" screen in
the example:
<CLUSTER

NUM_COLS="1"
TITLE="Cluster.Title.Entitlement"

>
<LIST>

<DETAILS_ROW>
<INLINE_PAGE PAGE_ID=

"CREOLEDisplayRules_basicCaseDisplay_objectiveTagSubscreen">
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="determinationID"

/>
<TARGET

NAME="PAGE"
PROPERTY="determinationID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="displayDate"

/>
<TARGET

NAME="PAGE"
PROPERTY="displayDate"

/>
</CONNECT>
<CONNECT>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

94

<SOURCE
EXTENDED_PATH=

"/DecisionDetails/BasicCase/displayObjectiveTimelines/Item[]/index"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
<TARGET

NAME="PAGE"
PROPERTY="businessObjectID"

/>
</CONNECT>

</INLINE_PAGE>
</DETAILS_ROW>
...

</LIST>
</CLUSTER>

This is the "inner" screen, CREOLEDisplayR-
ules_basicCaseDisplay_objectiveTagSubscreen :
<PAGE_PARAMETER NAME="determinationID"/>

<PAGE_PARAMETER NAME="displayDate"/>
<PAGE_PARAMETER NAME="businessObjectID"/>

The inner screen receives the parameters from the outer screen.
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRuleCategorySubscreenXML"

/>

The inner screen calls the CaseDetermination
.viewDecisionDisplayRuleCategorySubscreenXML bean to
get details for the businessObjectID passed. The bean returns XML
for the required "Item".
<CLUSTER NUM_COLS="1">

<LIST>

<FIELD
DOMAIN="SVR_UNBOUNDED_STRING"
LABEL="Field.Label.Value"

>
<CONNECT>

<SOURCE
EXTENDED_PATH=

"/Item/displayTagTimelines/Item[]/valueTimeline"
NAME="DISPLAY"
PROPERTY="xmlData"

/>
</CONNECT>

</FIELD>
...

The inner screen contains XPath-like expressions to query the sub-screen
XML to populate its sublist.

6.4 How to Use It

Most of the high-level processing for decision details is fixed logic provided
by the Engine. However, you will have to provide implementations for cer-
tain lower-level logic. In order to do this, you must understand the basic
concepts of decision details.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

95

Note that for eligibility/entitlement and key decision factor work, you
needed only to provide server-side logic, because the Engine contains fixed
screens to display eligibility/entitlement and key decision factor output. By
contrast, you must implement not only server-side logic but also Dynamic
UIM screens for your decision details logic, and ensure that these imple-
mentations integrate correctly.

In addition to providing an understanding of decision details, this section
describes the work you will need to do to complete the decision details logic
for your product, as follows:

• Analysis;

• Implementation; and

• Testing.

Note

This section describes the complete work for decision details logic;
however, for short-cuts you can take to get your product up-
and-running quickly, see Section 11.3, Incremental Design .

6.4.1 Understanding Decision Details Concepts

The Engine contains these high-level concepts:

• Top-level screen. A screen of decision details that is displayed when the
user views a display category for a coverage period, showing a point-
in-time view of the details of a case.

• Sub-screen. A panel of details which is displayed when the user ex-
pands a row on a top-level screen (or parent sub-screen).

• Case Rule Class. The rule class configured by a product period on a
display category, responsible for identifying all the data to be made
available for display.

• Display attribute. A rule attribute annotated with the Display an-
notation, indicating that its data should be made available in decision de-
tails XML;

• DisplaySubscreen attribute. A rule attribute on a Case Rule Class an-
notated with the DisplaySubscreen annotation, indicating that it re-
turns a list of rule objects which can be queried for display on an expan-
ded sub-screen.

• businessObjectID. A unique numerical identifier for data displayed
when a row of data is expanded to show a sub-screen.

6.4.2 Analysis

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

96

You must understand the requirements for your product, and analyze how
these requirements broadly map to the Engine's decision details concepts be-
fore starting implementation.

Unlike the requirements for eligibility/entitlement, typically requirements
for decision details are not enshrined in legislation, but instead are based off
informed predictions of the kinds of information that may be useful to a case
worker, when the case worker is trying to understand a complex case (and
perhaps answer questions about the case from customers.)

As such, producing requirements for your decision details is perhaps more
art than science (in a similar way as for key decision factors; however, re-
quirements for decision details tend to be more complex than those for key
decision factors, given the flexibility of the Engine's support for decision de-
tails and the wealth of data items that are candidates for display).

For a new product, you might consider revisiting your decision details re-
quirements once a product has been live for some time, in light with the
kinds of information that case workers are attempting to understand when
they view determinations. If you layer your requirements and implementa-
tion according to the recommendations, you should be able to implement
and deploy changes to your decision details rules without affecting any un-
derlying eligibility/entitlement calculations.

The following steps should aid your analysis.

Identify the Display Categories

You must identify and name your display categories, and consider the order
in which the categories will be displayed to a case worker.

Recall that the first category will be displayed by default when the user is
presented with a row of tabs, and moreover the first category will also be
used when the user expands a coverage period row when viewing details of
a determination. It is recommended that you design your first display cat-
egory to show overall "summary" details of the case's eligibility and entitle-
ment calculations.

Sketch out the Screens

For anything other than the most trivial of screens, it can be helpful to
sketch out an example of the data to be shown on each of your display cat-
egory screens.

For each display category that you have identified, sketch out an example of
the screen with some realistic data laid out appropriately, giving particular
attention to:

• whether any expandable sub-screens are required to display further de-
tails on any data; and indeed whether the sub-screens themselves require
further sub-screens (possibly creating separate sketches if warranted by
the complexity of the sub-screens);

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

97

• any data which is only to be displayed if a particular condition is met
(and possibly create a separate sketch for how the screen should look if
this condition is not met); and/or

• any non-standard layout such as bold characters, total lines, etc.

Map displayed data to eligibility/entitlement data

For each data item displayed on your screen examples (and any data item
used as a condition), you must identify where the data will come from.

Some data may be sourced from existing data used or derived during eligib-
ility/entitlement calculations. Other data may need further transformation
before being suitable for display.

For example, your rules for eligibility may state that, under certain circum-
stances, the household must be means-tested in order to determine eligibility
(whereas under other circumstances, the household must fulfil other condi-
tions to be eligible, but those conditions do not include a means-test).

You may require to display a "Means test" item on your decision details
screen with values "Passed", "Failed" and "Not applicable". To populate this
item, you may need a calculation specific to decision details to translate the
condition of whether or not a means test is required, and if so whether it
passed. This calculated "means test status" value is probably of no relevance
to your underlying eligibility/entitlement rules and thus will require imple-
menting specifically to support your decision details screen.

It may be helpful to keep track of which data for your screens is already
available directly from eligibility/entitlement rules vs. which data requires
screen-specific calculations.

Identify keys for sub-screens

For any expandable sub-screens, you must identify a numerical key (
businessObjectID) that can be used to uniquely identify the row be-
ing expanded (and thus also uniquely identifies the sub-screen to display for
the row).

Identify comparison data

Each of your screens will show data from a coverage period within a de-
termination. However it also possible for a top-level screen to display addi-
tional data from the previous case decision.

For each top-level screen, you must identify whether (in addition to data
from the "current" coverage period), the top-level screen will also display
data from the previous case decision period (if any). Typically most top-
level screens do not display comparison data.

6.4.3 Implementation

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

98

Having analyzed your business requirements, you are now in a position to
start the implementation of your decision details for your product.

You are likely to re-use some of the calculation results already implemented
for your eligibility/entitlement calculations, as some decision details are
already part of your eligibility and entitlement logic. Other decision details
may require additional calculations to make them suitable for display.

It is recommended that you implement your decision details rule classes in a
rule set separate from your eligibility/entitlement rule set(s), but allow your
decision details rule classes to depend on your eligibility/entitlement rule
classes (but not the other way around).

This approach means that you can evolve your decision details implementa-
tion in the future without having to retest your eligibility/entitlement imple-
mentation; this can be important since key decision details are merely
"view" data to aid the case worker, whereas eligibility/entitlement results
may affect more critical business functions such as how much a client is ac-
tually paid.

It can be helpful to track the dependencies between your rule sets so that as
your product evolves, you have an insight into how changes in one rule set
might affect other rule sets that depend on it.

For each product period and display category, you must create:

• a rule class which is responsible for identifying and calculating the de-
cision details for the case; and

• a dynamic UIM page which is responsible for retrieving the details and
formatting them for display to a case worker.

It is possible that your decision details are calculated in an identical way
across product periods, in which case you may be able to re-use one case
rule class for many product periods. Your factoring of common calculated
eligibility/entitlement results may affect how you must factor your case rule
classes for decision details.

You may also create an arbitrary number of rule classes to model the data
for display and/or provide intermediate calculations for decision details
data. The flexibility of decision details data means that there are no fixed
data structures to adhere to (unlike the steps for implementing eligibility/
entitlement and key decision factor rules).

The sections below detail a step-by-step path to implement your decision
details.

Write the Case rule class

Your rule class to identify and calculate decision details for a particular dis-
play category on a case must ultimately extend from the ProductDe-
cisionDetailsRuleSet.AbstractCase interface rule class. For
ease of upgrades, it is recommended that your rule class extends the De-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

99

faultProductDecisionDetailsRuleSet.DefaultCase rule
class which provides default implementations.

Here is a description of the attributes inherited from AbstractCase :

Rule Attribute
name

Data type Description

productDe-
liveryCase

ProductDe-
liveryCase

The controlling rule object which is
responsible for splicing together the
determination result from the contri-
butions made by the product period.
Passed in when the instance of Ab-
stractCase is created.

Table 6.2 Rule attributes inherited from
ProductDecisionDetailsRuleSet.AbstractCase

Create a rule class which extends DefaultProductKeyDataRule-
Set.DefaultCase . The rule class should be named in line with your
product and display category, e.g. ProductName DisplayCategory-
Name (the Engine does not have any technical constraint on the rule class
name - rather a good name for your rule class may make it easier to develop
and maintain your rule sets).

The inherited implementation from DefaultCase means that you have a
valid rule class for use with decision details, but as yet your rule class will
not gather any useful data for display.

Implement attributes to return top-level screen data

You must add new Display attributes to your case rule class to identify
data that must be made available for display.

For calculated data which is already implemented via eligibility/entitlement
calculations, you should implement an attribute to obtain this data. Typic-
ally you will use CER's <create> expression to create an instance of the eli-
gibility/entitlement rule object (specifying the productDeliveryCase
value passed in), and then use CER's <reference> expression to obtain
data from the eligibility/entitlement rule object. The eligibility/entitlement
rule object will tend to be required by many Display attributes and can be
created in its own rule attribute which is not annotated with Display .

For data which requires display-specific calculations, then you must imple-
ment these calculations. Typically any intermediate steps in these calcula-
tions are not required for display, and so any attributes you implement for
intermediate-only steps should not be annotated with Display . You may
also create your own display-specific rule classes which contain a mixture
of Display/non-Display rule attributes.

For a list of data items, you will typically use CER's <dynamiclist> expres-
sion to transform a list of data into a list of "wrapper" rule objects, where

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

100

each rule object has annotated attributes which identify which values to dis-
play and which provide any display-specific calculations.

For example, you may require a summary display category to show the fol-
lowing:

• The name of the claimant;

• The number of people in the household; and

• A list of assets owned by the claimant.

You identify that all these details are available by manipulation of data
already used in eligibility/entitlement calculations, and so your decision de-
tails need to create an instance of your eligibility/entitlement rule class (as is
typically the case).

The name of the claimant can be obtained by navigating to the person rule
object already retrieved by your eligibility/entitlement rules, and so create a
claimantName Display attribute on your case rule object, which nav-
igates the eligibility/entitlement rules to obtain the required data.

The number of people in the household is not directly relevant to eligibility/
entitlement rules, so you implement a householdCount Display at-
tribute which retrieves the list of household members from your eligibility/
entitlement rules and then provides display-specific processing to count the
number of items in the list.

To display the list of assets, you implement a rule class named AssetDis-
play with the responsibility for display each asset. You implement an as-
sets rule attribute on your case rule class which retrieves the eligibility/en-
titlement Asset instances and for each one creates an AssetDisplay in-
stance, passing in the eligibility/entitlement Asset instance.

In pseudo-code, your case rule class ends up containing rule attributes like
this:

• eligibilityEntitlementCase (not annotated with Display):

• Create an instance of the eligibility/entitlement rule class for the
product, specifying the value of productDeliveryCase

• claimantName (annotated with Display):

• Retrieve the value of personName from the value of claimant
from the value of eligibilityEntitlementCase worked out
above (or, in a more Java-like notation, eligibilityEntitle-
mentCase.claimant.personName)

• householdCount (annotated with Display):

• Retrieve the value of householdMembers from the value of
eligibilityEntitlementCase worked out above; and

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

101

• Count the number of items in the householdMembers list.

• assets (annotated with Display):

• Retrieve the value of assets from the value of eligibility-
EntitlementCase worked out above.

• For each asset, create an instance of AssetDisplay , passing in
the current asset .

• Return a list of AssetDisplay instances.

Tip

To aid parallel development of dynamic UIM screens while rules
are being developed, initially you can create your Display attributes
with dummy implementations which return fixed values; the real at-
tribute implementations can then be developed while another de-
veloper creates the Dynamic UIM screens and tests them against the
dummy rule attribute implementations.

Implement attributes and rule classes for sub-screen data

If your top-level screen allows rows to be expanded to show sub-screens,
then you must create an attribute on your case rule class that returns a list of
rule objects and annotate that attribute with the DisplaySubscreen an-
notation. This annotation allows the data to be searched by the Engine when
a user expands a row of data. It is recommended that you name your attrib-
ute datatype Subscreens .

The rule objects returned in the list from your DisplaySubscreen at-
tribute must ultimately extend the ProductDecisionDetailsRule-
Set.AbstractCaseSubscreenDisplay rule class shipped by the
Engine. For ease of upgrades, it is recommended that your rule class extends
the DefaultProductDecisionDetailsRule-
Set.DefaultCaseSubscreenDisplay rule class which provides de-
fault implementations.

Here is a description of the attributes inherited from AbstractCaseSub-
screenDisplay :

Rule Attribute
name

Data type Description

businessOb-
jectID

Number Identifier of the row being expanded
(must be unique amongst all sibling
rows).

Table 6.3 Rule attributes inherited from
ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay

Create a rule class which extends DefaultProductDecisionDe-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

102

tailsRuleSet.DefaultCaseSubscreenDisplay rule. It is re-
commended that you name your rule class Datatype Subscreen , in
line with the attribute you created above.

Typically, instances of your rule class will be constructed passing some un-
derlying eligibility/entitlement rule object to be displayed on the sub-screen.
You must provide an implementation of businessObjectID on your
sub-screen rule class, and typically this implementation will refer to some
identifier on the underlying eligibility/entitlement rule object.

The implementation of the attribute on your case rule class will typically use
CER's <dynamiclist> expression to create an instance of your rule class to
wrap some eligibility/entitlement rule object.

For example, let's say that the AssetDisplay rule class in the previous
section is used to populate a list of assets on the summary decision details
screen, and that furthermore we want the user to be able to expand each as-
set to see further details such as purchase date and a list of valuations for
that asset.

You would write the following:

• A ValuationDisplay rule class, with the following attributes:

• valuation (the underlying eligibility/entitlement rule class), not
annotated;

• valuationAmount , annotated with Display , which retrieves
the valuationAmount value from the underlying valuation;

• An AssetSubscreen rule class, extending DefaultProductDe-
cisionDetailsRuleSet.DefaultCaseSubscreenDisplay
, with the following attributes:

• asset (the underlying eligibility/entitlement rule class), not annot-
ated;

• businessObjectID , not annotated, which retrieves the as-
setID from the underlying asset;

• purchaseDate , annotated with Display , which retrieves the
purchaseDate from the underlying asset;

• valuations , annotated with Display , which retrieves the un-
derlying valuations for the asset and for each one creates a Valu-
ationDisplay to wrap it;

• An assetSubscreens attribute on your case rule object, annotated
with DisplaySubscreen , which retrieves all the assets on the case
and for each one creates an AssetSubscreen to wrap it.

It is possible that your top-level screen allows multiple types of expansion
(i.e. your top-level screen shows multiple lists, each of which may be expan-
ded). For each type of expansion, you must create separate DisplaySub-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

103

screen attributes in your case rule class.

It is also possible that your sub-screens also allow further drill down into
sub-screens. In this situation, all data for the lower sub-screens still needs to
be returned by a DisplaySubscreen attribute on your case rule class.

Tip

CER's <joinlists> expression can sometimes be useful to ag-
gregate lists of lists into a single list in such a situation.

Write the Dynamic UIM screens

For each top-level screen and sub-screen, you must write a Dynamic UIM
file and associated .properties file, and then store these files on the
database.

Top-level screens

For each top-level screen, write UIM including the following:

• Accept these page parameters:
<PAGE_PARAMETER NAME="determinationID"/>
<PAGE_PARAMETER NAME="displayDate"/>

• Call the standard interface to retrieve XML data for a display category
for a coverage period, and connect the parameters required by the call:
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRulesCategoryXML"

/>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="determinationID"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$determinationID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="displayDate"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$date"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$categoryRef"

/>
</CONNECT>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

104

• Decide on a "category reference" for your display category (which will
be used later when configuration your product's display categories). Cre-
ate a .properties entry for the CategoryRef of the display cat-
egory:
CategoryRef=MY_CATEGORY_REF

• If your top-level screen requires data from the previous decision period
to compare to, then write a call to perform additional retrievals and con-
nect the parameters:
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY_PREV"
OPERATION="viewPreviousDecisionDisplayRulesCategoryXML"

/>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="determinationID"

/>
<TARGET

NAME="DISPLAY_PREV"
PROPERTY="key$determinationID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="displayDate"

/>
<TARGET

NAME="DISPLAY_PREV"
PROPERTY="key$date"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"

/>
<TARGET

NAME="DISPLAY_PREV"
PROPERTY="key$categoryRef"

/>
</CONNECT>

• Write custom UIM to query the xmlData returned from the server
call(s) via XPath-like expressions, and lay out this data on the screen.
(This step is typically where the bulk of your screen implementation ef-
fort will lie.)

• If the screen allows the expansion of rows to show sub-screens, write
UIM to connect to your sub-screen.

See the screen CREOLEDisplayRules_basicCaseDisplay.uim
included with the Engine for a full example of a decision details top-level
screen (including connection to a sub-screen).

Sub-Screens

For each sub-screen, write UIM including the following:

• Accept these page parameters:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

105

<PAGE_PARAMETER NAME="determinationID"/>
<PAGE_PARAMETER NAME="displayDate"/>
<PAGE_PARAMETER NAME="businessObjectID"/>

• Call the standard interface to retrieve XML data for a business object
within a display category for a coverage period, and connect the para-
meters required by the call:
<SERVER_INTERFACE

CLASS="CaseDetermination"
NAME="DISPLAY"
OPERATION="viewDecisionDisplayRuleCategorySubscreenXML"

/>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="determinationID"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$determinationID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="displayDate"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$date"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="CategoryRef"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$categoryRef"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="PAGE"
PROPERTY="businessObjectID"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$businessObjectID"

/>
</CONNECT>
<CONNECT>

<SOURCE
NAME="TEXT"
PROPERTY="SubscreenName"

/>
<TARGET

NAME="DISPLAY"
PROPERTY="key$subscreenName"

/>
</CONNECT>

• Create a .properties entry for the CategoryRef of the display
category, and the SubscreenName (which is the name of the attribute on
the case rule object which is annotated with DisplaySubscreen):
CategoryRef=MY_CATEGORY_REF
SubscreenName=myCaseRuleAttributeWithDisplaySubscreenAnnotation

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

106

• Write custom UIM to query the xmlData returned from the server call
via XPath-like expressions, and lay out this data on the screen. (This
step is typically where the bulk of your screen implementation effort
will lie.)

• If the screen allows the expansion of rows to show further sub-screens,
write UIM to connect to your sub-screen.

See the screen CREOLEDisplayR-
ules_basicCaseDisplay_objectiveTagSubscreen.uim in-
cluded with the Engine for a full example of a decision details sub-screen.

Storing your screens

Refer to the Cúram Web Client Reference Manual for more details.

Configure the Product

For each display category identified for your product, you must create a dis-
play category record and link your product period(s) to it.

The way you create these records differs depending on whether you are
working in a development environment or a running system.

Working in a Development Environment

Create DMX entries for any new rule sets you created for your rule classes
(see section D.5.1. in the Cúram Express Rules Reference
Manual).

For each display category, perform the following steps in the custom com-
ponent:

• Create an entry in a LocalizableText.dmx file with the following
attributes (to point to the name of your display category):

Attribute Name Value
localizableTextID A unique ID from your custom key

range.

richTextInd 0

versionNo 1

Table 6.4 DMX data for LocalizableText

• Create an entry in a TextTranslation.dmx file with the following
attributes (to name your display category in your default locale):

Attribute Name Value
textTranslationID A unique ID from your custom key

range.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

107

Attribute Name Value
localizableTextID The value of Localizable-

Text.localizableTextID you
assigned above.

localeCode Your default locale code, e.g. "en".

Table 6.5 DMX data for TextTranslation

• Create an entry in a CREOLEProductDecisionDispCat.dmx file
with the following attributes:

Attribute Name Value
creoleProductDecisionDis-
pCatID

A unique ID from your custom key
range.

categoryRef The category reference you assigned
to your display category (and used in
your UIM .properties files).

displayOrder The placement 1 of this display cat-
egory amongst those for the same
product.

displayPageName The name of your Dynamic UIM
page that you created for this display
category.

nameID The value of Localizable-
Text.localizableTextID you
assigned above.

productID The ID of your CER-based product.

versionNo 1

Table 6.6 DMX data for CREOLEProductDecisionDispCat

For each product period, you must decide whether the product period will
support display of decision details for your display category.

For each product period that supports your display category, perform the
following steps in the custom component to link your product period to your
display category:

• Create an entry in a CREOLERuleClassLink.dmx file, which points
to the rule class for your case rule class for decision details:

Attribute Name Value
creoleRuleClassLinkID A unique ID from your custom key

range.

creoleRuleSetID The value of CREOLERule-
Set.creoleRuleSetID you as-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

108

Attribute Name Value
signed above for the rule set contain-
ing your decision details rule class.

ruleClassName The unqualified name of your de-
cision details rule class.

versionNo 1

Table 6.7 DMX data for CREOLERuleClassLink

Important

You must create a separate record for use by each product peri-
od, even if multiple product periods point to the same decision
details rule class.

• Create an entry in a CREOLEProductPeriodDispCat.dmx file
with the following attributes:

Attribute Name Value
creoleProductPeriodDisp-
CatID

A unique ID from your custom key
range.

creoleProductPeriodID The ID of your product period.

creoleProductDecisionDis-
pCatID

The value of CREOLEProductDe-
cisionDisp-
Cat.creoleProductDecision
DispCatID you assigned above.

decisionDetailsRCLID The value of CREOLERuleClass-
Link.creoleRuleClassLinkI
D you assigned above.

versionNo 1

Table 6.8 DMX data for CREOLEProductPeriodDispCat

See the core data dictionary for a full description of these database columns.

Working in a Running System

Publish your rule sets containing your new rule classes.

Start the admin application and navigate to Product Delivery Cases, select
your product, choose Rule Sets and copy the product for edit (if it is not
already in edit).

Click on "Display Categories", and for each display category in your analys-
is, perform the following steps:

• Create a new display category;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

109

• Set the value of "Name" to be the name of the display category in the
user's locale;

• Set the value of "Display Order" to be the placement of this display cat-
egory amongst those for the same product;

• Set the value of "Display Page" to be the placement of this display cat-
egory amongst those for the same product;

• Set the value of "Display Order" to be the name of your Dynamic UIM
page that you created for this display category; and

• Set the value of "Category Reference" to be the category reference you
assigned to your display category (and used in your UIM
.properties files).

Click on "Product Periods" and for each product period perform the follow-
ing steps:

• For each display category that the product period must support, choose
"Associate Decision Details Rule...";

• Choose the Display Category; and

• Search for your case rule class that you created for the display category.

Publish your changes to the product.

6.4.4 Testing

For a complex product created in a development environment, you should
create unit tests for individual parts of your product's decision details rules,
using CER's support for rules testing.

You might consider creating end-to-end unit tests that test full scenarios in-
volving the creation and activation of evidence, and the creation and activa-
tion of product delivery cases, to test that the overall decision details results
are calculated as expected.

You might also perform manual testing of the online system to check that
your overall decision details scenarios are handled as expected. This step is
particularly important for decision details, as the implementation of decision
details involves custom screens (unlike the display of eligibility/entitlement
and key decision factor results, which use screens included with the En-
gine).

It is particularly important to ensure that the XPath-like expressions in your
Dynamic UIM screens matches the structure of the XML data produced by
the Engine when it creates a determination; the structure of the XML data is
in turn mandated by the annotations on your case rule object for the product
period/display category.

Tip

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

110

In a development environment, it can be useful to set breakpoints on
the CaseDetermination façade method(s) called from your
Dynamic UIM pages, so that you can inspect the XML returned. In
a situation where a screen value is failing to display as intended, it
can be useful to see if:

• the value is present in the returned XML, in which case the error
most likely lies with your XPath-like expression in the Dynamic
UIM; or

• The value is not present in the returned XML, in which case the
error most likely lies with the annotations in your rule classes for
decision details.

Note that it is possible for the XML returned from the server to contain data
which is not used on any decision details screen. Under rare circumstances,
it is possible for a case worker to view a determination, shown as a number
of coverage periods, with the decision details for those coverage periods
seeming (to the case worker) to appear as identical. In this situation, it is
possible that the Engine is splitting the determination into coverage periods
based on some data in the XML which is not shown to the user. You should
take care to ensure that there is no such extraneous data in your XML - i.e.
that all Display attributes do in fact appear on one or more decision detail
screens or subscreens.

The Engine may encounter runtime problems when calculating decision de-
tails for a particular display category, due to calculation errors in CER at-
tribute values.

If there is a runtime error in the calculation of a CER attribute value for a
display category, such as a reference not found (analogous to a Null-
PointerException in Java), or a division by zero, or any other calcula-
tion problem, then the Engine will throw an exception. The application logs
will contain details of this exception including its stack trace. For CER cal-
culation errors, the stack trace can include important information regarding
the location within a CER rule set where the error occurred. To fix this, you
will need to debug and retest your rules.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

111

Notes
1 Thus the display category with the lowest displayOrder value for the
product will be displayed first (and also displayed when a coverage period
row is expanded).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

112

Chapter 7

Understanding Rule Object Converters and
Propagators

7.1 Introduction

Cúram's eligibility and entitlement processing relies on CER to calculate de-
termination results based on details of the case, evidence recorded against
the case and stand-alone data such as personal details and rates. CER is able
to access such data via the use of rule object converters , which are respons-
ible for retrieving data from business tables and converting that data into
rule objects that can be used by CER.

Cúram's eligibility and entitlement processing also relies on the Dependency
Manager to track the data that a determination result depends on, and for the
Dependency Manager to request a reassessment whenever such data
changes. The Engine contains a number of rule object propagators which
are responsible for listening for changes in data which could affect calcula-
tions, and for informing the Dependency Manager that such data has
changed.

Typically, for each type of data that is used in determination calculations,
there is a corresponding converter and propagator pair which complement
each other; the converter retrieves data of that type when requested by CER
calculations while the propagator listens for changes to that data of that
type.

For some of these converter/propagator pairs, there are configuration op-
tions to set exactly which business data will be converted/propagated; and
where there are such configuration options, both the converter and the
propagator use the same underlying configuration data.

This chapter describes in details how the rule object converters and propag-
ators work and how you can configure them for your business needs.

113

7.2 An Initial Assessment Example

This section walks through an example of how business data on the database
is converted to CER rule objects throughout the lifecycle of a product and
case and how changes in that data are propagated to the Dependency Man-
ager.

The example follows these steps:

• A system administrator creates and publishes rule set information for a
Product;

• A system administrator creates and publishes a new Rate Table;

• A case worker registers a Person;

• A case worker creates a new Case for that Person;

• A case worker adds an additional member to the Case;

• A case worker captures and activates some Income evidence; and

• A case worker activates the Case.

As these steps progress, we will see how data from various parts of the sys-
tem is converted into CER rule objects.

Propagation processing (to inform the Dependency Manager of changes) oc-
curs later in the case lifecycle when changes of circumstances occur (see
Chapter 10, Reassessment - Handling Changes in Circumstance).

7.2.1 A System Administrator Creates and Publishes Rule Set
Information for a Product

Before any kind of eligibility and entitlement processing can occur for a
Product, that Product must first be created and rule set information for that
Product published. For details on how a Product is built, see the see the How
to Build a Product guide.

In this example, the Product is for a Sickness Benefit. The system adminis-
trator sets up the new Product details, associates rule set information to the
Product, and submits the rule set information for publication.

When the rule set information is published, rows are written to a number of
database tables, and in particular the data from the database tables listed
here will be required later, during the calculation of each case's determina-
tion result:

• CREOLEProductPeriod ;

• CREOLEProductPeriodDispCat ; and

• CREOLERuleClassLink .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

114

Important

These database tables are configured to be converted and propagated
by the Entity converter and propagator respectively (see Sec-
tion 7.4.3, Entity Rule Objects).

The configuration is included by the application in the
.../EJBServer/components/core/data/initial/bl
ob/EntityPropagatorConfiguration.xml file.

This configuration is critical to the correct operation the Engine, and
must not be modified or removed by customers.

Note that the data on the CREOLEProductDecisionDispCat data-
base table is not required by rules processing and is not present in
the configuration included in the application.

Later, during the calculation of a case's determination result, the Entity con-
verter will populate rule object instances of these rule classes from the
ProductEligibilityEntitlementRuleSet rule set:

• ProductPeriod ;

• ProductPeriodDisplayCategory ; and

• RuleClassLink .

Important

The rule ProductEligibilityEntitlementRuleSet rule
set provided by the application is critical to the correct operation of
Cúram Eligibility and Entitlement, and must not be modified or re-
moved by customers.

7.2.2 A System Administrator Creates and Publishes a New
Rate Table

The rules for the new Sickness Benefit require a household's total income to
be tested against a maximum threshold (i.e. if the total household income
exceeds this threshold, then the case is not eligible).

This threshold will vary over time (as policy makers decide from time to
time), so rather than hard-code the threshold into rules, the rule set designer
has required that the threshold be stored in a new "Income Limits" rate ta-
ble. The rates for this year and next year have already been decided.

The administrator creates the new rate table including an effective-dated
change when this year's limit will increase to next year's limit.

When finished, the administrator adds the new rate table to the configura-
tion for the Rate Rule Object Propagator (see Section 7.4.2, Rate Rule Ob-
jects), and chooses to "Apply Changes" to the new rates.

The system is now configured to create rule objects for the cells in the new
Income Limits rate table, and so creates a CER rule object (of class

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

115

RateRuleSet.RateCell) for each distinct cell in the new rate table.
CER stores these new rule objects on its database tables, for later retrieval
during the calculation of a case's determination result.

The income threshold rate varies over time, and so the valueTimeline
in the rule object reflects both this year's and next year's rate.

7.2.3 A Case Worker Registers a Person

An unmarried father applies for Sickness Benefit. Before his claim can be
registered, the case worker user must register the father as a person on the
system.

When the system registers the father, a row is inserted onto the Person data-
base table.

The Entity Rule Object Propagator (see Section 7.4.3, Entity Rule Objects)
is configured to listen for changes to the Person database table, because that
table is mapped to a rule class (ParticipantEntitiesRule-
Set.Person), and so the Entity Rule Object Propagator informs the De-
pendency Manager that data that could potentially affect calculations has
changed.

In this situation, the Dependency Manager identifies that the new data for
the father does not affect any existing calculations and thus takes no further
action.

7.2.4 A Case Worker Creates a New Case for that Person

Now that the father has been registered, the case worker goes on to register
a Sickness Benefit case for the father.

When the system registers the case, it writes a row to each of these database
tables:

• CaseHeader ; and

• ProductDelivery .

Later, during case determination, the data on these rows will be converted to
a ProductEligibilityEntitlementRule-
Set.ProductDeliveryCase rule object by the Product Delivery Rule
Object Converter (see Section 7.4.1, Product Delivery Rule Objects). This
rule object will be used to calculate the determination result for the case.

When the system registers the case, it also records the father as a member of
the case, by writing a row to the CaseParticipantRole database table. Later,
during case determination, the Entity Rule Object Converter will convert the
data on this row to a CaseEntitiesRule-
Set.CaseParticipantRole rule object for the father's role on the
case.

At this point we now have:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

116

• RateCell rule objects stored on CER's database tables rule objects for
the new rate table; and

• business data stored on Cúram's application database tables, ready to be
converted into CER rule objects during later processing:

• product data;

• non-case business data (personal details); and

• case-specific data (product delivery/case details and case participant
role details).

7.2.5 A Case Worker Adds an Additional Member to the Case

The father has a daughter who must be added to the case. The case worker
registers the daughter on the system and adds her to the case.

The system creates additional rows on Person and CaseParticipantRole , and
as before these rows are ready to be converted to rule objects during case
determination processing later.

7.2.6 A Case Worker Captures and Activates Some Income
Evidence

The rules for Sickness Benefit rely on calculating the total income for a
household, and comparing that total income to a predetermined threshold.

The total income for the household can vary over time (as can the threshold,
shown earlier as a rate table). In order that the system can calculate the total
income (later), a record of the father's varying income must be stored on the
system.

The case worker captures the history of the father's income since the start of
the case, and the system stores the income data using temporal evidence (see
Designing Cúram Temporal Evidence Solutions).

The father has received pay rises over the lifetime of the income, and so a
number of income records are stored within the same evidence succession
set. Each evidence record bears the income effective from a particular date
(i.e. the date of the pay rise).

While the income evidence is being recorded, each evidence record is "in
edit", and so generally is not available to case determination calculations
(i.e. would not be converted into rule objects by the active evidence convert-
ers). For eligibility and entitlement processing, rule objects represent the
"best known truth" about real-world data, and while the evidence is in-edit,
it has not yet become "truth", so to speak.

After all the income evidence has been captured and verified, the case work-
er chooses to activate the evidence, at which point its data becomes part of
the system's "best known truth". Later, during case determination, evidence

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

117

in the "active" state is converted into rule objects so that the evidence data
can be used in CER's calculation of the determination result.

Later, during case determination, CER will make a request for the rule ob-
ject for the father's income. The Active Succession Set Rule Object Con-
verter will retrieve all the active evidence versions for the father's income
(which form a single "succession set" of evidence) and create a single rule
object representing the father's income changing over time. The rule object
created has:

• static values for non-changing details regarding the Income (e.g. its
owning caseParticipantRoleID and its startDate , which
cannot vary over time); and

• timeline values for details which may change over time (e.g. its
amount).

At this point we have all the data required in order to calculate the case's eli-
gibility and entitlement (but no such calculation has yet occurred for this
case).

7.2.7 A Case Worker Activates the Case

The members of the case and the case evidence have now been recorded,
and so the case worker progresses the case through its approval and activa-
tion steps (see the Cúram Integrated Case Management Guide
).

When the case is activated, the system assesses the case. The system:

• searches for the ProductDeliveryCase rule object for the case,
matching on its caseID (in this example, search for a caseID value of
1234). The Product Delivery Rule Object Converter (see Section 7.4.1,
Product Delivery Rule Objects) reads the CaseHeader and ProductDe-
livery rows for caseID 1234 and forms a ProductDeliveryCase
rule object which is returned to the Engine;

• requests the value of the determinationResult attribute value on
the ProductDeliveryCase rule object, which causes CER to per-
form calculations in order to calculate the requested value. During the
calculation, there are calculation rules which require data for the:

• Product. Data regarding the structure of the product (e.g. the
product periods which make up the product) is retrieved by the En-
tity Rule Object Converter and converted into CER rule objects;

• Personal Details. Data from stand-alone entities such as personal
details are also retrieved by the Entity Rule Object Converter;

• Rates. Rule objects for rates are retrieved directly from CER's data-
base tables for stored rule objects; and

• Evidence. Data for temporal evidence is retrieved by the Active

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

118

Succession Set Rule Object Converter and converted into CER rule
objects.

• gathers dependencies by analysing the kinds of data retrieved by CER
(above). These dependencies are then passed to the Dependency Man-
ager for storage, so that there is now a record of which data the case's
determination result depends on. The record of these dependencies will
be checked whenever data (such as personal details or evidence)
changes, so that the case can be automatically reassessed.

• stores the varying determination result on the CREOLECaseDetermina-
tion and CREOLECaseDeterminationData database tables, and stores
the point-in-time financial decisions on the CaseDecision , Case-
DecisionObjective and CaseDecisionObjectiveTag database tables (see
Chapter 8, How Determinations Are Stored).

Note

CER does not store on the database any of the rule objects populated
by rule object converters. The rule objects are brought into memory
as required and are released when no longer required in memory.

7.3 The Framework for Converters and Propagators

The application maintains a registry of converter and propagators that allow
application components to contribute to rule object conversion and rule ob-
ject propagation processing.

At runtime, the application invokes the appropriate converter or propagator
implementation from amongst those registered.

Some converters and propagators have fixed behavior, whereas others have
configurable behavior. Typically each type of data is handled by a convert-
er/propagator pair, which are responsible for managing their own configura-
tion.

Important

The application will validate that each rule class is mapped at most
once by the data configurations for a particular converter/propagat-
or.

Do not attempt to use the same rule class in data configurations
across different converter/propagator implementations.

The following types of rule objects are handled by the converters and
propagators included with the application:

• Product Delivery Rule Objects;

• Rate Rule Objects;

• Entity Rule Objects;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

119

• Active Succession Set Rule Objects; and

• Active Evidence Row Rule Objects.

Important

Some other application components also contribute their own rule
object converters and propagators targeted at their own functional
needs.

These other rule object converters and propagators are not suitable
for eligibility/entitlement processing are so are not listed in this
guide.

The sections below cover:

• rule objects for use with eligibility and entitlement processing;

• data configuration problems;

• data access points;

• logging; and

• supported domain types.

7.4 Rule Objects for Use with Eligibility and Entitle-
ment Processing

This section describes the types of rule objects which can be used with eli-
gibility and entitlement processing.

The Engine includes a number of rule object converters which are respons-
ible for reading data from the database and populating rule objects so that
CER can access their data in calculations.

The Engine also includes a number of rule object propagators which are re-
sponsible for listening for changes in data and notifying the Dependency
Manager that data has changed, so that the Dependency Manager can re-
quest the Engine to reassess cases which may be affected by the data
changes.

7.4.1 Product Delivery Rule Objects

Overview

The Product Delivery Rule Object Converter is responsible for populating
the rule object for a product delivery case for a CER-based product. The
Product Delivery Rule Object Propagator is responsible for detecting when
changes in data occur that would affect the data populated on the case rule
object and for interacing with the Dependency Manager.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

120

Note

Any product delivery case for a product which is configured to use
Cúram Rules is ignored by this converter and propagator.

Configuration

The behavior of the propagator can be configured via the "Reassessment
Strategy" option on each CER-based product. See Section 7.4.1.5, Propaga-
tion Processing below.

Conversion Processing

The details of a CER-based product delivery case are converted to a Pro-
ductEligibilityEntitlementRule-
Set.ProductDeliveryCase rule object. This rule object contains a
calculated attribute determinationResult which has the responsibil-
ity of calculating the overall determination result for the case (see Sec-
tion 4.3.1.1, A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase
rule object).

The rule object will be converted on demand whenever assessment pro-
cessing requires it. For case assessment determinations (see Section 3.4, As-
sessment Determinations), the Engine will analyse which input values were
accessed by CER during the calculation of the determination result and re-
cord dependencies in the Dependency Manager. In particular, the determina-
tion result calculation will access the case's start and end dates (both actual
dates and expected dates), and the dependencies recorded on these dates
gives rise to CER's ability to automatically recalculate the determination
result when these dates change.

The following case-level data items are used to populate the attributes on
the rule object:

• from the CaseHeader database row:

• caseID ;

• concernRoleID ;

• integratedCaseID ;

• startDate ;

• endDate ;

• expectedStartDate ; and

• expectedEndDate ; and

• from the ProductDelivery database row:

• productID .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

121

Precedents Identified

Access to Product Delivery Rule Objects during CER calculations does not
give rise to any precedents being identified.

Product Delivery Rule Objects are intended to be used to calculate determ-
ination results only.

Propagation Processing

Whenever the CaseHeader or ProductDelivery data changes for a CER-
based product delivery, the propagator requests the ProductEligibil-
ityEntitlementRuleSet.ProductDeliveryCase rule object for
the case and manipulates it in memory.

For a product which has its reassessment strategy set to "Do not reassess
closed cases", then:

• when a product delivery case for the product is closed, then the propag-
ator removes the rule object in memory and also deletes all dependency
records for the case's determination result, to prevent automatic reassess-
ment of the case; and

• when a product delivery case for the product is re-opened and sub-
sequently re-activated, then the Engine will calculate the case's determ-
ination result and will also build back up the dependency records for the
case's determination result, to allow automatic reassessment of the case
if data changes in the future.

For a product which has its reassessment strategy set to "Automatically re-
assess all cases", then no such processing occurs and the continuing pres-
ence of the dependency records in the Dependency Manager while a case is
closed means that the case will continue to be reassessed due to data
changes even if it is closed.

See Section 11.5.4, Reassessment Strategy for details of the processing that
occurs if an administrator chooses to change the reassessment strategy for
an existing product that has product delivery cases created against it.

Example

A CER-based product is set up in the system with a reassessment strategy
set of "Do not reassess closed cases".

A case worker registers a new product delivery case for the product, with
concernRoleID 2345, and an actual start date of 1st January 2001, but
with no expected or actual end date (i.e. an open-ended case). When the
case is activated, the Engine requests the rule object for the case, and CER
invokes the Product Delivery Rule Object Converter to convert the case data
into the required CER rule object. The Engine requests the rule object's de-
terminationResult and also requests CER to determine the data de-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

122

pendencies for the calculation. The Engine passes these dependencies to the
Dependency Manager for storage.

Some time later, a user maintains the case and enters an expected end date
of 31st December 2001. The Entity Rule Object Propagator notifies the De-
pendency Manager that a CaseHeader row has changed, and the Depend-
ency Manager identifies that the case requires reassessment. The Engine re-
assesses the case, and when it requests the rule object for the case the
Product Delivery Rule Object Converter retrieves the latest data for the case
and forms a rule object that has its expected end date set. The Engine gets
the determination result from the rule object, which now takes into account
the expected end date. The Engine detects that the determination result has
changed (due to the expected end date now set) and stores the new determ-
ination.

The case comes to a natural end and is closed by the case worker. The
Product Delivery Rule Object Propagator removes the dependency records
for the case's determination result (because the product is set not to reassess
closed cases).

Later, new evidence comes to light which requires the case to be re-opened.
When the case worker re-activates the case, the Product Delivery Rule Ob-
ject Propagator triggers the Engine to reassess the case to build back up the
dependency records for the case's determination result. The Engine finds
that there is no change in the case's determination result since it was last as-
sessed and so does not store a new determination. The case worker records
and activates the changes in evidence, and the Active Succession Set Rule
Object Propagator notifies the Dependency Manager that evidence on the
case has changed. The Dependency Manager identifies that the case requires
reassessment and triggers the Engine to reassess the case, which will now
take into account the recently-activated changes in evidence. The Engine
finds that the determination result has changed and stores a new determina-
tion.

7.4.2 Rate Rule Objects

Overview

The Rate Rule Object Propagator is responsible for the creation, mainten-
ance and removal of rate cell rule objects for nominated rate tables. In con-
trast to the other propagators, this propagator stores rule objects on CER's
database tables.

The Engine contributes a rate expression to CER (see Section C.2.3, rate)
which can be used to retrieve a rule object populated by the Rate Rule Ob-
ject Converter.

Configuration

This propagator accepts configurations which adhere to the following struc-
ture:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

123

• propagator type must be "ROPT2006" (the code for 'Rate' from the
RuleObjectPropagatorType code table); and

• each rate table to be propagated must be listed in a ratetable ele-
ment with a type matching the rate table's type code.

Configurations are cumulative, i.e. there may be many configurations of
type "ROPT2006", and if a rate table's code is present in any of those con-
figurations then the rate table will be propagated; otherwise, the rate table
will be ignored.

The following type of configuration problem will be detected by the Rate
Rule Object Converter:

• Rate table type code not specified in the ratetable element.

Any configuration problems detected will be processed according to Sec-
tion 7.5, Data Configuration Problems .

Conversion Processing

There is no converter for rate data - CER rule objects for rates are read dir-
ectly from CER's database tables when retrieved during CER calculations.

Precedents Identified

If Rate Rule Objects are accessed during a CER calculation, and the CER
utility is used to identify precedents, then internal IDs for the rate values on
the CER rule objects will be identified directly by CER.

See the Cúram Express Rules Reference Manual .

Propagation Processing

This propagator creates CER rule objects for rate data, which are stored by
CER on its database tables.

In contrast to other propagators, rate data is not propagated incrementally.
This is because typically a user may want to change several rate tables be-
fore applying all the changes in one go, at which point the system will
identify all the cases affected.

As such, rates are only propagated during initial/full propagation (as for the
other propagators), or when the user explicitly chooses to apply rate changes
to CER products. When any of these propagation triggers occur, the system
will:

• read the configurations for the Rate Rule Object Propagator (i.e. those of
type "ROPT2006");

• read all the rate cells for the configured rate tables;

• identify each rate cell's varying value over the history of the rate table

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

124

(ignoring any range data);

• for each rate cell's varying value, create or update the corresponding
RateCell rule object;

• remove any RateCell rule objects for rate cells which have been re-
moved; and

• for any rates which have been created, updated or removed, inform the
Dependency Manager of the changes in data so that the Dependency
Manager can identify which cases require reassessment. Dependencies
on rate data are stored at the Attribute Value level (i.e. per rate cell).

Important

Only rate cells which are in top-level rows and columns are propag-
ated. Any rate cell which belongs to a sub-row and/or sub-column is
ignored.

Only the value of a rate cell is used during propagation. Any min or
max range data for the rate cells is ignored during propagation.

For more information on rate tables, see "Implementing Rate
Tables" in the Cúram Integrated Case Management
Configuration Guide .

Each rate cell will only be valid as far back as its earliest rate header record.
Before this date, the timeline for the rate's varying value will be defaulted to
zero.

Example

Let's say that a user creates a new rate table named "Income Limits", with a
single column named "Maximum Allowable Limit" and a single row named
"Sickness Benefit". Furthermore, the user specifies that the initial rate for
this single column/row is 10,000 valid from 1st January 2000, rising to
12,000 effective 1st January 2001 (until further notice).

The administrator configures the Rate Rule Object Propagator to propate the
new "Income Limits" rate table, and then chooses the "Apply Changes" op-
tion for rate tables.

The Rate Rule Object Propagator will create a single RateCell rule object
with a valueTimeline populated as follows:

• Beginning of time - 31st December 1999: 0 (the default value for rates
for periods before the rate comes into effect);

• 1st January 2000 - 31st December 2000: 10,000; and

• 1st January 2001 - End of time: 12,000.

A case is registered and assessed, and the calculation of the determination
result involves the use of the rate expression to retrieve the "Maximum
Allowable Limit" and "Sickness Benefit" rate timelines.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

125

The Engine invokes the CER utility to identify these dependencies (which
are stored using the Dependency Manager):

Dependent Precedent
Case 453's Entitlement depends on Attribute 'valueTimeline' on rule ob-

ject ID '23423456'
(RateRuleSet.RateCell)

Case 453's Entitlement depends on Attribute 'valueTimeline' on rule ob-
ject ID '9879872342'
(RateRuleSet.RateCell)

Table 7.1 Example Dependency Storage for Rate Rule Objects

7.4.3 Entity Rule Objects

Overview

The Entity Rule Object Converter is responsible for converting a generic
database row into a CER rule object. You should use this converter to popu-
late CER rule objects from your CRUD-style entity data.

Caution

You should not use the Entity Rule Object Converter to populate
rule objects from:

• Rate tables. See Section 7.4.2, Rate Rule Objects instead; or

• Temporal evidence. See Section 7.4.4, Active Succession Set
Rule Objects instead.

The Entity Rule Object Propagator is responsible for listening for database
writes that occur in the application's processing and for notifying the De-
pendency Manager that data for entity rule objects has changed.

Configuration

The converter and propagator share a common set of configuration data, and
accept configurations which adhere to the following structure:

• propagator type must be "ROPT2003" (the code for 'General CRUD en-
tity' from the RuleObjectPropagatorType code table);

• each entity to be converted or propagated must be listed in a table ele-
ment with a name exactly matching the database table's name, as per the
application model;

• each propagation target must be listed as a ruleset element (within
the table element), specifying the name of the rule set to target and
optionally the rule class (if the name of the rule class differs from that of

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

126

the database table);

• each table element may optionally specify a column/value combina-
tion which identifies the row as "canceled"; any row on the table which
has this column/value combination will not be propagated - this feature
allows physically and logically deleted rows to behave the same (i.e. to
cause the Entity Rule Object Converter to not populate a rule object
where the underlying database row is marked as logically deleted); and

• each ruleset element may optionally specify a filter element to
specify a custom filter class which determines whether each row should
be included or excluded from the Entity Rule Object Converter and
Propagator. The filter element must specify the name of the filter
implementation, and may include a filterconfig element to
provide filter configuration specifc to the filter implementation. The En-
gine includes an EntityAttributePropagationFilter which
provides a simple ANT-like filtering mechanism based on include
and exclude elements.

Configurations are cumulative, i.e. there may be many configurations of
type "ROPT2003", and if an entity is present in any of those configurations
then the entity will be converted and propagated; otherwise, the entity will
be ignored.

Note

Any database tables which are on the "exclude" list (see Sec-
tion 7.4.3.5.2, The "Exclude" List for Entity Propagation) cannot be
propagated (and will be ignored).

Tip

You are free to create your own rule classes to match database entit-
ies whose data you require in CER rules. However, you should first
check whether existing rule classes are already suitable for your
needs - while it is possible to convert each database row to many
different rule classes, this flexibility comes with a potential mainten-
ance cost for your rule sets.

In particular, the application includes configurations to convert and
propagate data which is particularly often used in eligibility/enti-
tlement processing to rule classes included with the Engine in these
rule sets:

• ParticipantEntitiesRuleSet ; and

• CaseEntitiesRuleSet .

You should consider reusing these rule classes when creating your
own rule sets, in order to avoid maintenance overhead for your rule
sets.

When you create your own rule classes for propagated data, it is re-
commended that you:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

127

• implement a meaningful calculation of the description rule
attribute (which can be useful for debugging); but

• do not implement any other calculated attributes on the rule
class (in order to promote re-use of your rule classes across
products).

If you require to map all rows from a database table to one rule class, but
only the non-canceled rows to a different rule class, then you should create
separate table elements which name the same database table, but only
specify the canceledValue and statusColumn attributes on one of
the table elements. Similarly, if you require different filters for different
rule classes, create separate table elements which name the same database
table.

The following types of configuration problems will be detected by the En-
tity Rule Object Converter/Propagator processing:

• Entity name not specified in the table element;

• The modeled database table with the specified name could not be found;

• The modeled database table does not have a single-field primary key;

• The modeled database table is propagated to a rule class which does not
contain an attribute corresponding to the primary key of the rule class.

• A rule class is targeted by more than one source entity;

• The filter class specified for a filter is invalid; and

• The name or value is missing when using the EntityAttribute-
PropagationFilter .

Any configuration problems detected will be processed according to Sec-
tion 7.5, Data Configuration Problems .

Conversion Processing

When a database row is converted to a rule object, then the values of the
database columns are used to map to identically-named rule attributes on the
rule object. Any database column without a corresponding rule attribute is
ignored. The key column for the database table must have a corresponding
rule attribute, as this rule attribute will be used to identify the rule object.

Rows from a database table may only be converted if the database table has
been modeled to have a primary key which contains a single column, with a
data type supported by the converter (see Section 7.8, Supported Domain
Types). If a database table has no primary key, or has a primary key made
up of more than one column, then any attempt to use that database table in
this converter's configuration will result in a warning being logged and the
configuration for the database table will be ignored.

Restrictions on Access

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

128

In your CER rule sets you will use CER's <readall>/<match> expres-
sion to access rule objects converted from entity data.

You may only specify a retrievedattribute which matches a data-
base column on the underlying database row used to populate the CER rule
object. The data type of the attribute must be Number or String .

If you attempt to specify a retrievedattribute to be the name of an
attribute which is calculated by CER, or which is of a data type other than
Number or String , then the Entity Rule Object Converter will throw a
runtime exception when the CER <readall>/<match> expression is
executed.

Do not attempt to search for a retrievedattribute passing a value
which would be stored as a NULL by the application's Data Access Layer.
No rule objects will be found for such values, e.g. for a unique identifier
value of 0 or an empty string.

You may specify the ruleset and ruleclass for the <readall> ex-
pression to be a rule class mapped by the data configuration. If you attempt
to specify a rule class which is not directly mapped (e.g. a base rule class
that you have created from which your concrete rule classes inherit) then no
rule objects will be found.

Important

You can use <readall> without a <match> to retrieve all rule
objects converted from the entity, but you should do so with care,
because:

• there may be a large number of instances of rule objects for that
entity; and/or

• the dependent will be recalculated every time a new row is
stored for that entity or an existing row removed.

A <readall> without a <match> is likely to useful only to con-
vert rule objects from a "control" entity which holds only a small
number of rows and it is expected that additions to or removals from
those control rows should cause dependents to be recalculated.

Precedents Identified

If Entity Rule Objects are accessed during a CER calculation, and the CER
utility is used to identify precedents, then the following precedents will be
identified:

Name When Identified Trigger for Recalculation
Entity Row Identifies any entity row for

which:

• a search was executed
against the row's primary

A precedent change item for
the entity row will be written
to a precedent change set if:

• any data on the entity row

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

129

Name When Identified Trigger for Recalculation

key (regardless of wheth-
er a row with that
primary key value was
found); and/or

• one or more attribute val-
ues were accessed for the
rule object populated data
from the entity row with
that primary key value.

The precedent ID refers to
the name of the entity, the
name of the entity's primary
key field and the primary key
value sought.

changes;

• a new entity row is inser-
ted onto the database 1 ;
and/or

• an existing entity row is
removed from the data-
base.

'readall'
search

Identifies any searches to re-
trieve all Entity Rule Objects
for a given rule class.

The precedent ID refers to
the name of the rule class
sought by the readall ex-
pression.

A precedent change item for
the rule class will be written
to a precedent change set if:

• a new entity row is inser-
ted into the database;

• an existing entity row is
removed from the data-
base;

• the data on the entity row
changes in such a way
that it is now considered
logically deleted, or
ceases to be considered
logically deleted (if the
logical deletion feature of
the Entity data configura-
tion is in use); and/or

• the data on the entity row
changes in such a way
that it now passes the fil-
ter, or ceases to pass the
filter (if the filter feature
of the Entity data config-
uration is in use).

'readall/match'
search

Identifies any readall/
match searches against En-
tity Rule Objects other than
by primary key.

A precedent change item for
the rule class and its attribute
name and match value will
be written to a precedent

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

130

Name When Identified Trigger for Recalculation

The precedent ID refers to
the name of the rule class
sought by the readall/
match expression, together
with the attribute name and
value used as the search cri-
terion.

change set if, for the entity
that is mapped to the rule
class by the data configura-
tions:

• a new entity row is inser-
ted into the database;

• an existing entity row is
removed from the data-
base;

• the data on the entity row
changes in such a way
that it is now considered
logically deleted, or
ceases to be considered
logically deleted (if the
logical deletion feature of
the Entity data configura-
tion is in use);

• the data on the entity row
changes in such a way
that it now passes the fil-
ter, or ceases to pass the
filter (if the filter feature
of the Entity data config-
uration is in use); and/or

• the value of the attribute's
data on the entity row
changes.

Rule Object
Data Config-
urations

Identifies the use of the con-
figuration for the Entity Rule
Object Converter if any En-
tity Rule Object is accessed
during the calculation.

If changes to the data config-
uration for the Entity Rule
Object Converter are pub-
lished, then a precedent
change item for the convert-
er's data configuration will be
written to a precedent change
set.

Table 7.2 Precedents Identified for Entity Rule Objects

Propagation Processing

When a row of data changes for a table which is configured for Entity rule
objects, then the Entity Rule Object Propagator requests the corresponding

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

131

rule object and manipulates it in memory.

A rule object may be created, modified or removed, according to the nature
of the change to the underlying database row (and taking into account con-
figurations for logical deletions and/or filters).

The Entity Rule Object Propagator informs the Dependency Manager of any
rows that have changed so that the Dependency Manager can determine the
effects of those changes. Dependencies on entity data are stored at the entity
row level, by recording a dependency on the entity's name and the row's key
value.

Each database row may map to a number of target rule classes, according to
the configurations for the Entity Rule Object Propagator held on the system.
However, for the sake of clarity, the rest of this section describes the behavi-
or of the Entity Rule Object Propagator in the situation where an entity is
configured to be propagated to a single rule class only.

Support for Entity Operation Stereotypes

Cúram database tables are modeled as entities in the application model.
Each modeled entity may contain several database operations, each with
their own stereotype. Not all of these operations stereotypes can be reliably
propagated. The table below shows the support for propagating data from
invocations of methods for these stereotypes:

Entity Operation Stereotype Support in Entity Rule Objec
tPropagator

(unstereotyped) Ignored - no data written.

batchinsert Supported. Each row in the batch
will be propagated, if possible (as
per nsinsert).

batchmodify Supported 2 . Each row in the batch
will be propagated, if possible (as
per nsmodify).

insert Supported.

modify Supported.

nkmodify Supported.

nkread Ignored - no data written.

nkreadmulti Ignored - no data written.

nkremove Supported.

ns For read operations, ignored.

For write operations, not supported,
as the operation can contain arbitrary
SQL and in general it is not possible
to reliably detect which database
rows have been affected by the oper-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

132

Entity Operation Stereotype Support in Entity Rule Objec
tPropagator

ation.

nsinsert Supported, as long as the details be-
ing written to the database include a
value for the primary key (i.e. no re-
liance on database-level key assign-
ment).

nsmodify Supported.

nsmulti Ignored - no data written.

nsread Ignored - no data written.

nsreadmulti Ignored - no data written.

nsremove Supported.

read Ignored - no data written.

readmulti Ignored - no data written.

remove Supported.

Table 7.3 Support for Entity Operation Stereotypes

Any operation that has the "no generated SQL" option set will not be sup-
ported by the rule object propagators included with the application.

If the EntityRuleObjectPropagator detects that an unsupported
operation has occurred, then its behavior is governed by the value of the
curam.ruleobjectpropagation.nonpropagatableoperatio
n.errorlevel environment variable:

Value of
curam.ruleobject

propaga-

tion.nonpropagat

ableopera-

tion.errorlevel

Behavior of Entity
Rule Object Propag-
ator

Comments

warn (default value) The Entity Rule Object
Propagator writes a
warning to the applica-
tion logs.

This is the default beha-
vior and should be suit-
able for most environ-
ments.

ignore The Entity Rule Object
Propagator ignores the
non-propagatable opera-
tion.

Consider using this set-
ting if you have very
many invocations of
non-propagatable opera-
tions, and you already
have in place proced-
ures to identify and re-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

133

Value of
curam.ruleobject

propaga-

tion.nonpropagat

ableopera-

tion.errorlevel

Behavior of Entity
Rule Object Propag-
ator

Comments

calculate any depend-
ents potentially affected.

error The Entity Rule Object
Propagator raises an ex-
ception with the details
of the non-propagatable
operation (which will
typically result in the
overall database transac-
tion being rolled back).

Consider using this set-
ting if you do not expect
to have any non-
propagatable operations.

Table 7.4 Behavior when non-propagatable operations are
invoked

If a non-propagatable operation occurs (and the Entity Rule Object Propag-
ator is configured to warn the operator), then the operator should follow
your procedures to identify and recalculate any dependents potentially af-
fected.

The "Exclude" List for Entity Propagation

Some database tables are unsuitable for consideration by the Entity Rule
Object Propagator because:

• they contain non-business data only;

• they have abnormally high numbers of data writes; and/or

• access to their data occurs before the propagation framework has been
initialized.

The application allows components to register such database tables on an
"exclude" list, and writes to these database tables are never considered for
propagation to the Dependency Manager. The application's components may
contribute to the exclude list, and customers may add further entries to the
list by adding a binding inside a Guice module as follows:

import com.google.inject.AbstractModule;
import curam.core.sl.infrastructure.propagator.impl.

RuleObjectDatabaseWriteListener.ExcludedTable;

public class MyModule extends AbstractModule {

// ___

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

134

@Override
public void configure() {

...
{
// register excluded tables

final Multibinder<ExcludedTable> excludedTables = Multibinder
.newSetBinder(binder(), ExcludedTable.class);

excludedTables
.addBinding()
.toInstance(

new ExcludedTable(
curam.core.sl.infrastructure.assessment.intf.
MyEntity1.class));

excludedTables
.addBinding()
.toInstance(

new ExcludedTable(
curam.core.sl.infrastructure.assessment.intf.
MyEntity2.class));

}
...

}
}

For information on writing Guice modules, see the Persistence
Cookbook .

Example

Let's say that a user creates a new rule set (MyRuleSet) with a MyPer-
son rule class. The user adds some rule attributes to the rule class named
after some columns on the Person database table:

• concernRoleID (the primary key of the database table);

• dateOfBirth ; and

• dateOfBirthVerInd .

The user creates a new configuration to propagate Person database rows to
the new MyRuleSet.MyPerson rule class. There also continues to be an
existing configuration (provided by the application) to propagate Person
database rows to the ParticipantEntitiesRuleSet.Person rule
class.

After a new row is inserted into the Person database table, then if a MyR-
uleSet.MyPerson rule object is requested for that person row during
CER calculations, then the Entity Rule Object Converter will create a rule
object in memory from the data on that row. The MyRuleSet.MyPerson
rule object has its values for concernRoleID , dateOfBirth and
dateOfBirthVerInd populated from the database row. It does not have
any value for dateOfDeath because there is no such rule attribute on the
MyPerson rule class.

By contrast, if a ParticipantEntitiesRuleSet.Person rule ob-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

135

ject is requested for that person row during CER calculations, then the En-
tity Rule Object Converter will populate the ParticipantEntities-
RuleSet.Person rule object from the same underlying database row.
ParticipantEntitiesRuleSet.Person does have an attribute for
dateOfDeath but not for dateOfBirthVerInd . Both rule classes
have a concernRoleID rule attribute, which is required because con-
cernRoleID is the primary key of the Person database table.

If the person row is subsequently modified on the database, then the Entity
Rule Object Propagator notifies the Dependency Manager that the row has
changed, and the Dependency Manager identifies all case determination res-
ults that depend on that row and requests that those cases be reassessed.

Let's say there are rules which require access to a claimant's personal de-
tails, and also requires access to details of other people related to the
claimant, such as spouses and relatives. The rules would:

• use the claimant's concernRoleID to search for the Parti-
cipantEntitiesRuleSet.Person rule object by con-
cernRoleID (a primary key search) and access the claimant's personal
details;

• use the claimant's concernRoleID to search for Parti-
cipantEntitiesRuleSet.ConcernRoleRelationship rule
objects by concernRoleID (not a primary key search); and

• for each ParticipantEntitiesRule-
Set.ConcernRoleRelationship found, use the relCon-
cernRoleID to search for the ParticipantEntitiesRule-
Set.Person rule object by concernRoleID (a primary key search)
and access the related person's details.

Claimant Joe (concernRoleID 392) has relationships to wife Mary
(concernRoleID 393) and brother Frank (concernRoleID 394) stored as con-
cern role relationships (concernRoleRelationshipIDs 773 and 774 respect-
ively). These details are retrieved during the eligibility/entitlement calcula-
tion for Joe's case (caseID 453).

The Engine invokes the CER utility to identify these dependencies (which
are stored using the Dependency Manager):

Dependent Precedent
Case 453's Entitlement depends on Entity row from table 'Person' where

attribute 'concernRoleID' has value
'392'

Case 453's Entitlement depends on <readall>/<match> expression
against rule attribute 'Parti-
cipantEntitiesRule-
Set.ConcernRoleRelationship.concer
nRoleID', matching value 392

Case 453's Entitlement depends on Entity row from table 'Con-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

136

Dependent Precedent
cernRoleRelationship' where attrib-
ute 'concernRoleRelationshipID' has
value '773'

Case 453's Entitlement depends on Entity row from table 'Person' where
attribute 'concernRoleID' has value
'393'

Case 453's Entitlement depends on Entity row from table 'Con-
cernRoleRelationship' where attrib-
ute 'concernRoleRelationshipID' has
value '774'

Case 453's Entitlement depends on Entity row from table 'Person' where
attribute 'concernRoleID' has value
'394'

Case 453's Entitlement depends on Data configuration for conversion of
Entity rule objects

Table 7.5 Example Dependency Storage for Entity Rule Objects

7.4.4 Active Succession Set Rule Objects

Overview

The Active Succession Set Rule Object Converter is responsible for con-
verting a succession set of active evidence records into a CER rule object.

The Active Succession Set Rule Object Propagator is responsible for listen-
ing for changes to active evidence records and for notifying the Dependency
Manager that active evidence data for succession set rule objects has
changed.

Caution

Do not confuse the Active Succession Set Rule Object Converter
and Propagator (suitable for use in eligibility/entitlement pro-
cessing) with the Active/In-Edit Succession Set Rule Object Con-
verter and Propagator class (which is not suitable for eligibility/en-
titlement processing, and thus not described in this guide - see the
Cúram Advisor Configuration Guide).

Temporal evidence (see Designing Cúram Temporal Evidence
Solutions) allows developers to store records of evidence that can
change over time. When circumstances change in the real world, a user can
record those changes in the system by "succeeding" an earlier version of
evidence. These versions of evidence make up a "succession set" which de-
scribe the history of some real-world evidence.

By contrast, in CER rules it is typically far easier to treat each piece of

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

137

changeable evidence as one rule object, which has timeline-based attributes
(see "4.5 Handling Data that Changes Over Time" in the Cúram Express
Rules Reference Manual). The Active Succession Set Rule Object
Converter automates the conversion of a succession set of evidence rows in-
to a single rule object with a mixture of timeline and non-timeline attributes.

Changes to evidence go through an edit/activate lifecycle. Only evidence
changes which have been activated are considered by the Active Succession
Set Rule Object Converter; any pending additions, changes or removals are
ignored.

Each rule class targeted by the Active Succession Set Rule Object Converter
must extend the PropagatorRuleSet.ActiveSuccessionSet rule
class included by the Engine. This rule class contains a successionID
rule attribute which is used as a unique identifier, since the rule object rep-
resents the entire succession set of evidence.

Both dynamic and non-dynamic evidence types can be used with the Active
Succession Set Rule Object Converter.

The Active Succession Set Rule Object Converter also populates relation-
ships between rule objects for parent and child succession sets, if required.

Configuration

This converter and propagator share a common set of configuration data,
and accept configurations which adhere to the following structure:

• propagator type must be "ROPT2005" (the code for 'Active succession
set' from the RuleObjectPropagatorType code table);

• each evidence type to be converted or propagated must be listed in an
evidence element with a type exactly matching the evidence's type
from the EvidenceType code table; and

• each conversion/propagation target must be listed as a ruleset ele-
ment (within the evidence element), specifying the name of the rule
set to target and optionally the rule class (if the name of the rule class
differs from that of the database table).

Configurations are cumulative, i.e. there may be many configurations of
type "ROPT2005", and if an evidence type is present in any of those config-
urations then the evidence type will be converted and propagated; otherwise,
the evidence type will be ignored.

The following types of configuration problems will be detected by the Act-
ive Succession Set Rule Object Converter:

• Evidence type not specified in the evidence element;

• The evidence type with the specified type code could not be found;

• The targeted rule class does not extend the PropagatorRule-
Set.ActiveSuccessionSet rule class; and

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

138

• A rule class is targeted by more than one source evidence type.

Any configuration problems detected will be processed according to Sec-
tion 7.5, Data Configuration Problems .

Conversion Processing

Each evidence type may map to a number of target rule classes, according to
the configurations for the Active Succession Set Rule Object Converter held
on the system. However, for the sake of clarity, the rest of this section de-
scribes the behavior of the Active Succession Set Rule Object Converter in
the situation where an evidence type is mapped to a single rule class only.

When an Active Succession Set Rule Object is requested during a CER cal-
cuation, the Active Succession Set Rule Object Converter is invoked to pop-
ulate that rule object. The Active Succession Set Rule Object Converter will
retrieve all the active evidence rows in the succession set and use them to
populate the attribute values on the rule object.

The values of the evidence fields are used to map to identically-named rule
attributes on the rule class. Any evidence field without a corresponding rule
attribute is ignored. Evidence fields are defined by:

• Dynamic evidence. The evidence fields available are those defined by
the dynamic evidence metadata for the evidence type (see the Cúram
Dynamic Evidence Configuration Guide); and

• Non-dynamic evidence. The evidence fields available are those
defined on the evidence-specific database table modeled for the static
evidence type (see the Cúram Temporal Evidence Guide and
the Cúram Evidence Generator guides).

When populating a particular attribute value on a rule object, the behavior of
the Active Succession Set Rule Object Converter differs according to
whether the rule attribute's type is a Timeline. The Active Succession Set
Rule Object Converter also contains special processing to populate rule at-
tributes to point to rule objects for related succession sets.

The following sections detail how the Active Succession Set Rule Object
Converter populates timeline and non-timeline data, and relationship data,
along with some useful rule attributes inherited from the ActiveSucces-
sionSet rule class.

Timeline-based data types

If the data type of the attribute is Timeline< some data type > ,
then the Active Succession Set Rule Object Converter allows the possibility
of the evidence value to differ (across different evidence versions in the suc-
cession set).

The identification of the "lifetime" of the succession set depends on the use
of the SuccessionSetPopulation annotation on the rule class (see

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

139

Section C.3.4, SuccessionSetPopulation).

The Active Succession Set Rule Object Converter will form a timeline value
from the evidence versions as follows:

• Calculate the start of the evidence lifetime. The Active Succession
Set Rule Object Converter inspects the SuccessionSetPopula-
tion annotation on the rule class to get the name of the attribute which
the rule designer has designated as holding the start date of the evid-
ence's lifetime. If no such rule attribute has been designated, or the rule
attribute holds a blank value, then the evidence is deemed to have started
from the beginning of time.

• Calculate the end of the evidence lifetime. The Active Succession Set
Rule Object Converter inspects the inspects the SuccessionSet-
Population annotation on the rule class to get the name of the attrib-
ute which the rule designer has designated as holding the end date of the
evidence's lifetime. If no such rule attribute has been designated, or the
rule attribute holds a blank value, then the evidence is deemed to contin-
ue to exist until the end of time (i.e. "until further notice").

• Accumulate the varying values for the timeline. The Active Succes-
sion Set Rule Object Converter uses the evidence versions in the succes-
sion set to work out which values apply from which dates. The succes-
sion set will typically hold a single EvidenceDescriptor with a blank ef-
fective date, and the value of the evidence field on this evidence version
will be used from the start of the evidence lifetime. The other Evidence-
Descriptor rows will each have a populated effective date (on which the
change of circumstances occurred), and the value of the evidence field
will be used from that date in the timeline.

• Assemble the timeline. The Active Succession Set Rule Object Con-
verter inspects the effective dates for the varying values. Any dates
which occur outside of the lifetime start and end are discarded. For peri-
ods before the lifetime start and after the lifetime end (if any), a default
value is used (see Section 7.8, Supported Domain Types). A timeline
value is built 3 from the values and used to populate the rule attribute
value.

Tip

Because only values from within the evidence lifetime are used,
then typically the timeline value will change to the default value on
the day after the end date for the evidence (if any).

Non-timeline data types

If the data type of the attribute is not Timeline< some data type >
, then the Active Succession Set Rule Object Converter does not allow the
possibility of the evidence value to differ (across different evidence versions
in the succession set). Ordinarily each version of evidence in the succession
set should bear the same data value for the evidence field, and this single

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

140

data value will be used to populate the rule attribute value.

However, it is possible that for such fields, either the rules designer has
made an incorrect assumption that the data should not change over time,
and/or a case worker has not consistently applied a correction to data con-
sistently across the versions in the succession set. In these circumstances,
the value of the evidence field may be inconsistent across the versions in the
succession set, and if so the Active Succession Set Rule Object Converter
will:

• propagate the value from the evidence version with the latest effective
date (on the grounds that this is the version that a case worker is most
likely to have maintained); and

• write a warning to the application logs saying that inconsistent evidence
data was found.

Tip

If you see many warnings in your application logs pertaining to in-
consistent evidence data, you should revisit your evidence and/or
rule class design to resolve the inconsistency.

It is especially important to investigate any warnings which pertain
to evidence fields which are designated as the start or end date of
your succession set's lifetime, as any errors in such dates can lead to
unreliable timelines being used to populate CER attribute values.

For more information about whether data should be modeled as a
Timeline or not, see "What Is Timeline Data?" in the Cúram Ex-
press Rules Reference Manual .

Population of relationships to rule objects for other succession
sets

When a succession set of active evidence is converted into a rule object,
then any rule attributes which are annotated with relatedSuccession-
Set will be automatically populated with rule objects for related succession
sets:

• parent. the attribute will be populated with the rule objects for the suc-
cession sets for the parent(s) of the evidence; or

• child. the attribute will be populated with the rule objects for the succes-
sion sets for the child(ren) of the evidence.

The type of the related evidence is identified from the type of the attribute,
which can either be a rule class (extending ActiveSuccessionSet) or
a list of such rule classes. The behavior of the Active Succession Set Rule
Object Converter differs according to whether a list is used:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

141

Number of related
versions found

Value propagated
when attribute type
is a rule class

Value propagated
when attribute type
is a List<rule class>

0 null Empty list

1 The rule object for the
related succession set
found

A list with a single item
(the rule object for the
related succession set
found)

many (An exception is thrown
at population time)

A list with the rule ob-
jects for all the related
succession sets found

Table 7.6 Population of related ActiveSuccessionSet rule
objects

Note

Typically in evidence design, a parent evidence item has 0, 1 or
many child items (of a given type), while each child evidence item
relates to exactly 1 parent.

However, the evidence infrastructure does not impose any con-
straints in this area, and so on occasion you may encounter child
evidence types which relate to multiple parent types, and/or parent
evidence types which expect only a single child evidence type.

Tip

The relationships between parent and child rule objects are not
stored as timelines - a relationship between a parent and child rule
object holds "for all time", even outside the parent or child's life-
time.

Typically any rules for the parent rule object, which retrieve the re-
lated children, will make reference to the lifetime of the child rule
object (i.e. will use the value of the child's exists timeline (see
Section 7.4.4.3.4, Rule attributes inherited from ActiveSuccessionSet
).

Rule attributes inherited from ActiveSuccessionSet

Each rule class targeted by the Active Succession Set Rule Object Converter
must ultimately extend the PropagatorRule-
Set.ActiveSuccessionSet rule class, and so will inherit the follow-
ing rule attributes:

• successionID. Populated from the successionID value on the Evidence-
Descriptor rows, and used to uniquely identify the rule object (amongst
other rule objects of the same rule class);

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

142

• caseID. Populated from the caseID value on the EvidenceDescriptor
row. If the evidence relates to an integrated case, the case ID will be that
of an integrated case; if the evidence relates to a product delivery case,
the case ID will be that of the particular product delivery that holds the
evidence;

• description. Contains a default rule to derive a description for the suc-
cession set rule object; sub-classes are free to override this descrip-
tion if required;

• exists. A Boolean timeline which indicates the period of time for which
the succession set rule object "exists", i.e. true for the dates between the
designated start and end dates (inclusive), and false for dates before the
start of the lifetime or after its end, if any; and

• evidenceDescriptorID. A Number timeline, populated from the evid-
enceDescriptorID value on the EvidenceDescriptor rows which make up
the succession set. The values vary according to the evidence row "in ef-
fect" at various points along the lifetime of the succession set rule ob-
ject. Each value uniquely identifies the active EvidenceDescriptor row
which contains the source of the data in effect on a particular date on the
timeline-based attributes on the rule object. Note that these values will
change when an evidence correction is activated, because at that point a
different evidence row becomes an active member of the succession set.

Tip

The exists rule attribute can be useful for certain eligibility/en-
titlement calculations.

For example, if a particular objective is attained whenever one of
the parents of a minor is absent from the household, and periods of
Absence are recorded as succession sets of Temporal Evidence
(with start and end dates naturally mapping to the start and end of
the period of absence), then the value of the objective's isEn-
titledTimeline is (in psuedo-code, using appropriate timeline
operations):

• Get the periods of absence for the minor's parents;

• Entitled when any :

• (iterate through the periods of absence)

• the current period of absence "exists"

Handling of in-edit evidence changes

In general, the Active Succession Set Rule Object Converter ignores in-edit
pending changes to evidence.

However, during manual determinations using in-edit evidence, the Active

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

143

Succession Set Rule Object Converter supports a special processing mode to
allow in-edit pending changes to be taken into account. See Section 7.6.2,
Temporary Access to In-Edit Evidence Changes for more details.

Restrictions on Access

In your CER rule sets you will use CER's <readall>/<match> expres-
sion to access rule objects converted from active succession set data.

You may only specify the retrievedattribute to be the caseID .

If you attempt to specify a retrievedattribute to be the name of any
other attribute, then the Active Succession Set Rule Object Converter will
throw a runtime exception when the CER <readall>/<match> expres-
sion is executed.

Tip

If you require only some of the active evidence row evidence of a
given type for a case, then consider wrapping the
<readall>/<match> expression within a <filter> expres-
sion to return only the data you require, e.g. use
<readall>/<match> matching on caseID to find all the In-
come active succession set rule objects for a case, and then use a
<filter> to restrict the rule objects to just those for a particular
member of the case.

You may specify the ruleset and ruleclass for the <readall> ex-
pression to be a rule class mapped by the data configuration. If you attempt
to specify a rule class which is not directly mapped (e.g. a base rule class
that you have created from which your concrete rule classes inherit) then no
rule objects will be found.

Caution

Do not use a <readall> without a <match> .

Such an unqualified <readall> would typically retrieve a very
large number of rule objects and no dependency on the overall set of
rule objects will be stored.

Precedents Identified

If Active Succession Set Rule Objects are accessed during a CER calcula-
tion, and the CER utility is used to identify precedents, then the following
precedents will be identified:

Name When Identified Trigger for Recalculation
Active Evid-
ence

Identifies any case for which
4 :

• a search was executed to
retrieve Active Succes-

If in-edit evidence changes
for a case are activated, then
a precedent change item for
the case will be written to a
precedent change set.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

144

Name When Identified Trigger for Recalculation

sion Set Rule Objects;
and/or

• one or more attribute val-
ues were accessed for one
or more Active Succes-
sion Set Rule Objects for
the case's evidence

The precedent ID refers to
the caseID which owns the
evidence that was accessed.

Rule Object
Data Config-
urations

Identifies the use of the con-
figuration for the Active Suc-
cession Set Rule Object Con-
verter if any Active Succes-
sion Set Rule Object is ac-
cessed during the calculation.

If changes to the data config-
uration for the Active Suc-
cession Set Rule Object Con-
verter are published, then a
precedent change item for the
converter's data configuration
will be written to a precedent
change set.

Table 7.7 Precedents Identified for Active Succession Set Rule
Objects

Propagation Processing

When evidence changes are applied for an evidence type that is configured
for Active Succession Set Rule Objects, then the Active Succession Set
Rule Object Propagator listens to internal events from the Evidence Control-
ler, requests the corresponding rule object and manipulates it in memory.

A rule object may be created, modified or removed, according to whether
evidence is being activated for the first time, is undergoing corrections or
changes of circumstances, or is being canceled.

The Active Succession Set Rule Object Propagator informs the Dependency
Manager of active evidence data that has changed so that the Dependency
Manager can determine the effects of those changes. Dependencies on act-
ive evidence are stored at the case level, by recording a dependency on the
caseID of the case that owns the evidence.

Example

Let's say that a person's Income from an employment is modeled as tempor-
al evidence. The income starts when a person starts an employment, and
ends if the employment is subsequently terminated. The name of the em-
ployer is constant throughout the period of income, because the designer of
the evidence structure made a design decision that if a person moves from

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

145

one job to another, then the first employment comes to an end and a separate
employment starts.

Over the lifetime of an employment, the income amount (i.e. the per annum
pay) can vary, as the employee receives pay rises. Similarly, but independ-
ently, the person can be employed on a permanent or temporary basis, and
this "employment status" can change over the lifetime of the employment. It
is possible for the income's amount to change on the same date as the em-
ployment status, but a change in income amount can occur without a change
in employment status, and vice versa.

The evidence designer designs an Income evidence entity as follows:

• startDate. The date that the income (i.e. the overall employment) star-
ted;

• endDate. The date that the income (i.e. the overall employment) ended,
if any;

• employer. Identifier of the employer, constant throughout the income
(see the design decision described above);

• amount. The per-annum pay amount; and

• employmentStatus. Code for whether the employment status is perman-
ent or temporary.

A rules designer then models an new Income rule class, extending the
ActiveSuccessionSet rule class, and adds rule attributes, identifying
which have values that change over time (i.e. those which should be allowed
to vary across different records in the same succession set):

• Should be constant across records in the succession set:

• startDate ;

• endDate ;

• employer ; and

• Should be allowed to vary across records in the succession set:

• amount ; and

• employmentStatus .

The rules designer also identifies which rule attributes identify the "lifetime"
of the Income :

• startDate ; and

• endDate

and annotates the rule class to identify these rule attributes.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

146

An administrator publishes the rule set changes, and then publishes a data
configuration configuration for Active Succession Set Rule Object Convert-
er to map the Income evidence type to the new rule class.

A case worker records some new Income evidence (for an employment
which started on 1st January 2000). Initially the evidence is "in edit" .

The details stored on the data are as follows (not all evidence details are in-
cluded here, only those of interest to the converter):

Database Column Evidence Version Record 1
Evidence-
Descriptor.evidenceDescriptorID

978

EvidenceDescriptor.caseID 453

EvidenceDescriptor.successionID 376

EvidenceDescriptor.effectiveFrom (blank)

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount $10,000

Income.employmentStatus Temporary (code)

Table 7.8 Database Details Stored for New Evidence

When evidence capture is complete, the case worker activates the evidence
and activates the case.

During the calculation of the case's determination result, the Active Succes-
sion Set Rule Object Converter retrieves the succession set for the newly-
activated Income evidence and populates a rule object for it, with values as
follows:

Rule Attribute Name Value
ActiveSuccessionSet.description "Income, successionID 376"

ActiveSuccessionSet.caseID 453

ActiveSuccessionSet.successionID 376

ActiveSuccessionSet.exists Timeline:

• Beginning of time - 31st Decem-
ber 1999: false

• 1st January 2000 - End of time:
true

ActiveSuccession-
Set.evidenceDescriptorID

Timeline:

• Beginning of time - 31st Decem-
ber 1999: 0 (default)

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

147

Rule Attribute Name Value

• 1st January 2000 - End of time:
978

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount Timeline:

• Beginning of time - 31st Decem-
ber 1999: $0 (default)

• 1st January 2000 - End of time:
$10,000

Income.employmentStatus Timeline:

• Beginning of time - 31st Decem-
ber 1999: (blank) (default)

• 1st January 2000 - End of time:
Temporary

Table 7.9 Active Succession Set Rule Object after Initial
Activation of Evidence

The Engine invokes the CER utility to identify these dependencies (which
are stored using the Dependency Manager):

Dependent Precedent
Case 453's Entitlement depends on Active Evidence for case 453

Case 453's Entitlement depends on Data configuration for conversion of
Active Succession Set rule objects

Table 7.10 Example Dependency Storage for Active Succession
Set Rule Objects

Over time, real-world circumstances change:

• on 1st January 2001, the income amount increases; and

• on 1st May 2002, the employment status changes from "temporary" to
"permanent".

The agency is informed of these evidence changes and a case worker re-
cords new versions of the Income evidence, leading to the system storing
new EvidenceDescriptor / Income pairs of rows for the evidence data effect-
ive from each change date:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

148

Database
Column

Evidence Ver-
sion Record 1

Evidence Ver-
sion Record 2

Evidence Ver-
sion Record 3

Evidence-
Descriptor.eviden
ceDescriptorID

978 979 980

Evidence-
Descriptor.caseID

453 453 453

Evidence-
Descriptor.succes
sionID

376 376 376

Evidence-
Descriptor.effecti
veFrom

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) (blank)

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

In-
come.employmen
tStatus

Temporary (code) Temporary (code) Permanent (code)

Table 7.11 Database Details Stored for Changes of Circumstances

Note how each version of the evidence shows a snapshot of all the evidence
data as it was at a point in time. A different version of the evidence must be
stored for a date on which any of the data items change on that evidence.

When the case worker activates the change-of-circumstances evidence
changes, the Evidence Controller notifies the Active Succession Set Rule
Object Propagator of the evidence changes, and the Active Succession Set
Rule Object Propagator in turn notifies the Dependency Manager that evid-
ence for a case has changed. The Dependency Manager identifies the
product delivery case that depends on the changed evidence and requests
that the Engine reassesses the case. During reassessment, the Engine in-
vokes CER to calculate the determination result, and as part of this calcula-
tion the Active Succession Set Rule Object Converter is called upon to pop-
ulate the rule object for the changed evidence, which is now populated as
follows:

Rule Attribute Name Value
ActiveSuccessionSet.description "Income, successionID 376"

ActiveSuccessionSet.caseID 453

ActiveSuccessionSet.successionID 376

ActiveSuccessionSet.exists Timeline:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

149

Rule Attribute Name Value

• Beginning of time - 31st Decem-
ber 1999: false

• 1st January 2000 - End of time:
true

ActiveSuccession-
Set.evidenceDescriptorID

Timeline:

• Beginning of time - 31st Decem-
ber 1999: 0 (default)

• 1st January 2000 - 31st Decem-
ber 2000: 978

• 1st January 2001 - 30th April
2001: 979

• 1st May 2001 - End of time: 980

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount Timeline:

• Beginning of time - 31st Decem-
ber 1999: $0 (default)

• 1st January 2000 - 31st Decem-
ber 2000: $10,000

• 1st January 2001 - End of time:
$12,000

Income.employmentStatus Timeline:

• Beginning of time - 31st Decem-
ber 1999: (blank) (default)

• 1st January 2000 - 30th April
2001: Temporary

• 1st May 2001 - End of time: Per-
manent

Table 7.12 Active Succession Set Rule Object after Changes of
Circumstances

Note how, in contrast to the way evidence versions are stored, each data
item that can vary over time has its own timeline independently of other
data items which may or may not change value on the same dates.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

150

On 30th June 2002, the employment comes to an end and a case worker re-
cords the end date on the latest record in the succession set:

Database
Column

Evidence Ver-
sion Record 1

Evidence Ver-
sion Record 2

Evidence Ver-
sion Record 3

Evidence-
Descriptor.eviden
ceDescriptorID

978 979 981

Evidence-
Descriptor.caseID

453 453 453

Evidence-
Descriptor.succes
sionID

376 376 376

Evidence-
Descriptor.effecti
veFrom

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) 30th June 2002

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

In-
come.employmen
tStatus

Temporary (code) Temporary (code) Permanent (code)

Table 7.13 Database Details Stored for Ended Evidence

The case worker activates the changes, which causes the existing latest
EvidenceDescriptor / Income pair to become "superseded"
(evidenceDescriptorID 980) and a new pair to become "active"
(evidenceDescriptorID 981).

Again the Active Succession Set Rule Object Propagator causes the case to
be reassessed on foot of the evidence changes. During reassessment the Act-
ive Succession Set Rule Object Converter populates the rule object with
these values:

Rule Attribute Name Value
ActiveSuccessionSet.description "Income, successionID 376"

ActiveSuccessionSet.caseID 453

ActiveSuccessionSet.successionID 376

ActiveSuccessionSet.exists Timeline:

• Beginning of time - 31st Decem-
ber 1999: false

• 1st January 2000 - 30th June

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

151

Rule Attribute Name Value

2002: true

• 1st July 2002 - End of time: false

ActiveSuccession-
Set.evidenceDescriptorID

Timeline:

• Beginning of time - 31st Decem-
ber 1999: 0 (default)

• 1st January 2000 - 31st Decem-
ber 2000: 978

• 1st January 2001 - 30th April
2001: 979

• 1st May 2001 - 30th June 2002:
981

• 1st July 2002 - End of time: 0
(default)

Income.startDate 1st January 2000

Income.endDate 30th June 2002

Income.employer Acme Ind.

Income.amount Timeline:

• Beginning of time - 31st Decem-
ber 1999: $0 (default)

• 1st January 2000 - 31st Decem-
ber 2000: $10,000

• 1st January 2001 - 30th June
2002: $12,000

• 1st July 2002 - End of time: $0
(default)

Income.employmentStatus Timeline:

• Beginning of time - 31st Decem-
ber 1999: (blank) (default)

• 1st January 2000 - 30th April
2001: Temporary

• 1st May 2001 - 30th June 2002:
Permanent

• 1st July 2002 - End of time:
(blank) (default)

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

152

Table 7.14 Active Succession Set Rule Object after Evidence
Ended

At some time later, a review of the case finds that the entire history of the
income has been recorded against the wrong person. All the evidence re-
cords for the Income are canceled by the case worker, and the evidence re-
recorded against the correct person (in a new succession set). When the case
is reassessed, the Active Succession Set Rule Object Converter does not
populate a rule object for the evidence because now none of its succession
set records are "active".

Some new legislation is introduced which affects how eligibility and entitle-
ment must be calculated, and in order to comply with this legislation, the
agency must now capture more details about periods of employment, spe-
cifically to capture details of the varying responsibilities that a person had
during each employment. An employee may have several responsibilities at
the same time during an employment, and each responsibility may begin
and end independently of others.

An evidence designer models a new type of temporal evidence named Re-
sponsibility , which is a child evidence type of the Income evidence
type:

• income. The parent Income evidence of which the Responsibil-
ity evidence is a child;

• type. Code for the type of responsibility (e.g. management, clerical
tasks, financial control, etc.);

• startDate. The date that the responsibility started; and

• endDate. The date that the responsibility ended, if any.

A rules designer creates a new Responsibility rule class, and identi-
fies that rules centered around the Responsibility will need to navig-
ate to parent Income rule objects:

• parentIncome , of type Income , annotated to mark it to be popu-
lated from parent related succession sets; the attribute holds a single rule
object of type Income , because each Responsibility succession
set relates to exactly one parent Income succession set;

• type ;

• startDate ; and

• endDate .

The rules designer identifies that none of the Responsibility details
undergo changes over time, but regardless chooses to use the Active Succe-
sion Set Rule Object features to get an automatically populated exists
timeline for the Responsibility rule object (which will be referenced
by new rules on the parent Income rule class). The rules designer accord-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

153

ingly annotates the startDate and endDate attributes on Respons-
ibility (as these are the attributes which determine the Responsibil-
ity 's "lifetime").

The rules designer also identifies that rules centered around the Income
will need to navigate to child Responsibility rule objects, and so adds
a new rule attribute to the existing Income rule class:

• childResponsibilities , of type List<Responsibility> ,
annotated to mark it to be populated from child related succession sets;
the attribute holds a list of rule objects of type Income , because each
Income succession set may relate to 0, 1 or many child Responsib-
ility succession sets.

The evidence design changes, rules changes and new data configuration to
the Responsibility rule class are published.

A case worker records details for an employment where there is a pay rise
on 1st January 2005. From the start of the employment, the employee is re-
sponsible for clerical tasks, but from 1st July onwards, the employee is also
responsible for financial tasks (in addition to still be responsible for clerical
tasks).

When the case is assessed, the Active Succession Set Rule Object Converter
populates these rule objects :

• A parent Income rule object, with an amount timeline showing the
pay rise and with its childResonsibilities value set to be a list
containing the two Responsibility rule objects below;

• A child Responsibility rule object for the clerical tasks, with its
parentIncome value set to be the Income rule object above; and

• Another child Responsibility rule object for the financial tasks,
with its parentIncome value also set to be the Income rule object
above.

Note that there are two Responsibility rule objects, because there are
two distinct real-world responsibilities, each stored as different succession
sets. The single Income rule object represents the changes in the Income
evidence item over time (i.e. represents the single succession set of Income
evidence).

7.4.5 Active Evidence Row Rule Objects

Overview

The Active Evidence Row Rule Object Converter is responsible for convert-
ing a row of active evidence into a CER rule object. Each active version of
the evidence is converted to its own CER rule object (unlike the Active Suc-
cession Set Rule Object Converter which converts all active evidence rows
from a single succession set into a single rule object).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

154

Each rule class targeted by the Active Evidence Row Rule Object Converter
must extend the PropagatorRuleSet.ActiveEvidenceRow rule
class included by the Engine. This rule class contains a correctionSet-
ID rule attribute which is used as a unique identifier, since in any correction
set of evidence there can be at most one active record.

Both dynamic and non-dynamic evidence types can be used with the Active
Evidence Row Rule Object Converter.

The Active Evidence Row Rule Object Converter also populates relation-
ships between rule objects for parent and child evidence versions, if re-
quired.

Tip

The Active Evidence Row Rule Object Converter is likely to be use-
ful only for evidence which is not temporal in nature, and/or which
does not use standard temporal evidence facilities for recording real-
world changes of circumstances, because any CER eligibility/enti-
tlement rules which handle changes of circumstances will typically
need to manipulate the separate rule objects into timelines.

If you have evidence which does use standard temporal evidence fa-
cilities, see Section 7.4.4, Active Succession Set Rule Objects in-
stead.

Configuration

The converter and propagator share a common set of configuration data, and
accept configurations which adhere to the following structure:

• propagator type must be "ROPT2004" (the code for 'Active evidence
row' from the RuleObjectPropagatorType code table);

• each evidence type to be converted or propagated must be listed in an
evidence element with a type exactly matching the evidence's type
from the 'EvidenceType' code table; and

• each conversion/propagation target must be listed as a ruleset ele-
ment (within the evidence element), specifying the name of the rule
set to target and optionally the rule class (if the name of the rule class
differs from that of the database table).

Configurations are cumulative, i.e. there may be many configurations of
type "ROPT2004", and if an evidence type is present in any of those config-
urations then the evidence type will be converted and propagated; otherwise,
the evidence type will be ignored.

The following types of configuration problems will be detected by the Act-
ive Evidence Row Rule Object Converter/Propagator:

• Evidence type not specified in the evidence element;

• The evidence type with the specified type code could not be found;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

155

• The targeted rule class does not extend the PropagatorRule-
Set.ActiveEvidenceRow rule class; and

• A rule class is targeted by more than one source evidence type.

Any configuration problems detected will be processed according to Sec-
tion 7.5, Data Configuration Problems .

Conversion Processing

Each evidence type may map to a number of target rule classes, according to
the configurations for the Active Evidence Row Rule Object Converter held
on the system. However, for the sake of clarity, the rest of this section de-
scribes the behavior of the Active Evidence Row Rule Object Converter in
the situation where an evidence type is mapped to a single rule class only.

When an Active Evidence Row Rule Object is requested during a CER cal-
cuation, the Active Evidence Row Rule Object Converter is invoked to pop-
ulate that rule object. The Active Evidence Row Rule Object Converter will
retrieve the active row for the evidence's correction set and use it populate
the attribute values on the rule object.

The values of the evidence fields are used to map to identically-named rule
attributes on the rule object. Any evidence field without a corresponding
rule attribute is ignored. Evidence fields are defined by:

• Dynamic evidence. The evidence fields available are those defined by
the dynamic evidence metadata for the evidence type (see the Cúram
Dynamic Evidence Configuration Guide); and

• Non-dynamic evidence. The evidence fields available are those
defined on the evidence-specific database table modeled for the static
evidence type (see the Cúram Temporal Evidence Guide and
the Cúram Evidence Generator guides).

Population of relationships to rule objects for other evidence
rows

When a row of active evidence is converted to a rule object, then any rule
attributes which are annotated with relatedEvidence will be automat-
ically populated with rule objects for related evidence versions:

• parent. the attribute will be populated with the rule objects for the ver-
sion(s) for the parent evidence item(s) of the evidence version; or

• child. the attribute will be populated with the rule objects for the ver-
sion(s) for the child evidence item(s) of the evidence version.

The type of the related evidence is identified from the type of the attribute,
which can either be a rule class (extending ActiveEvidenceRow) or a
list of such rule classes. The behavior of the Active Evidence Row Rule Ob-
ject Converter differs according to whether a list is used:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

156

Number of related
versions found

Value populated
when attribute type
is a rule class

Value populated
when attribute type
is a List<rule class>

0 null Empty list

1 The rule object for the
related instance found

A list with a single item
(the rule object for the
related instance found)

many (An exception is thrown
at propagation time)

A list with the rule ob-
jects for all the related
instances found

Table 7.15 Propagation of related ActiveEvidenceRow rule
objects

Important

Remember that the related ActiveEvidenceRow rule objects are
each a version of evidence.

Even if a real-world child object can only have one real-world par-
ent, if that parent has data that changes over time, then each child
version may relate to many parent versions.

For a rule attribute that holds related parent or child rule objects,
you should model that rule attribute as a list of rule classes, unless
you can guarantee that there will only ever be one active version of
the related parent/child evidence (which would generally only be the
case if the related evidence type does not store data which can un-
dergo a change of circumstances).

Rule attributes inherited from ActiveEvidenceRow

Each rule class targeted by the Active Evidence Row Rule Object Converter
must ultimately extend the PropagatorRule-
Set.ActiveEvidenceRow rule class, and so will inherit the following
rule attributes:

• correctionSetID. Populated from the correctionSetID value on the
EvidenceDescriptor row, and used to uniquely identify the rule object
(amongst other rule objects of the same rule class);

• caseID. Populated from the caseID value on the EvidenceDescriptor
row. If the evidence relates to an integrated case, the case ID will be that
of an integrated case; if the evidence relates to a product delivery case,
the case ID will be that of the particular product delivery that holds the
evidence;

• description. Contains a default rule to derive a description for the evid-
ence rule object; sub-classes are free to override this description if

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

157

required;

• effectiveDate. Populated from the effectiveFrom value on the Eviden-
ceDescriptor row; will be null for evidence effective from the start of the
case;

• evidenceDescriptorID. Populated from the evidenceDescriptorID
value on the EvidenceDescriptor row; uniquely identifies the active
EvidenceDescriptor row which contains the source of the data on the
rule object. Note that this value will change when an evidence correction
is activated, because at that point a different evidence row becomes the
only active row in the correction set; and

• successionID. Populated from the successionID value on the Evidence-
Descriptor row.

Handling of in-edit evidence changes

In general, the Active Evidence Row Rule Object Converter ignores in-edit
pending changes to evidence.

However, during manual determinations using in-edit evidence, the Active
Evidence Row Rule Object Converter supports a special processing mode to
allow in-edit pending changes to be taken into account. See Section 7.6.2,
Temporary Access to In-Edit Evidence Changes for more details.

Restrictions on Access

In your CER rule sets you will use CER's <readall>/<match> expres-
sion to access rule objects converted from active evidence row data.

You may only specify the retrievedattribute to be the caseID .

If you attempt to specify a retrievedattribute to be the name of any
other attribute, then the Active Evidence Row Rule Object Converter will
throw a runtime exception when the CER <readall>/<match> expres-
sion is executed.

Tip

If you require only some of the active evidence row evidence of a
given type for a case, then consider wrapping the
<readall>/<match> expression within a <filter> expres-
sion to return only the data you require, e.g. use
<readall>/<match> matching on caseID to find all the In-
come active evidence row rule objects for a case, and then use a
<filter> to restrict the rule objects to just those for a particular
member of the case.

You may specify the ruleset and ruleclass for the <readall> ex-
pression to be a rule class mapped by the data configuration. If you attempt
to specify a rule class which is not directly mapped (e.g. a base rule class
that you have created from which your concrete rule classes inherit) then no

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

158

rule objects will be found.

Caution

Do not use a <readall> without a <match> .

Such an unqualified <readall> would typically retrieve a very
large number of rule objects and no dependency on the overall set of
rule objects will be stored.

Precedents Identified

If Active Evidence Row Rule Objects are accessed during a CER calcula-
tion, and the CER utility is used to identify precedents, then the following
precedents will be identified:

Name When Identified Trigger for Recalculation
Active Evid-
ence

Identifies any case for which
5 :

• a search was executed to
retrieve Active Evidence
Row Rule Objects; and/or

• one or more attribute val-
ues were accessed for one
or more Active Evidence
Row Rule Objects for the
case's evidence

The precedent ID refers to
the caseID which owns the
evidence that was accessed.

If in-edit evidence changes
for a case are activated, then
a precedent change item for
the case will be written to a
precedent change set.

Rule Object
Data Config-
urations

Identifies the use of the con-
figuration for the Active
Evidence Row Rule Object
Converter if any Active Evid-
ence Row Rule Object is ac-
cessed during the calculation.

If changes to the data config-
uration for the Active Evid-
ence Row Rule Object Con-
verter are published, then a
precedent change item for the
converter's data configuration
will be written to a precedent
change set.

Table 7.16 Precedents Identified for Active Evidence Row Rule
Objects

Propagation Processing

When evidence changes are applied for an evidence type that is configured
for Active Evidence Row Rule Objects, then the Active Evidence Row Rule
Object Propagator listens to internal events from the Evidence Controller,

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

159

requests the corresponding rule object and manipulates it in memory.

A rule object may be created, modified or removed, according to whether
evidence is being activated for the first time, is undergoing corrections or
changes of circumstances, or is being canceled.

The Active Evidence Row Rule Object Propagator informs the Dependency
Manager of active evidence data that has changed so that the Dependency
Manager can determine the effects of those changes. Dependencies on act-
ive evidence are stored at the case level, by recording a dependency on the
caseID of the case that owns the evidence.

Example

Let's say that a person's Income from an employment is modeled as tempor-
al evidence. The income starts when a person starts an employment, and
ends if the employment is subsequently terminated. (This example is inten-
tionally similar to that for Section 7.4.4, Active Succession Set Rule Objects
.)

Over the lifetime of an employment, the income amount (i.e. the per annum
pay) can vary, as the employee receives pay rises. Similarly, but independ-
ently, the person can be employed on a permanent or temporary basis, and
this "employment status" can change over the lifetime of the employment. It
is possible for the income's amount to change on the same date as the em-
ployment status, but a change in income amount can occur without a change
in employment status, and vice versa.

The evidence designer designs an Income evidence entity as follows:

• startDate. The date that the income (i.e. the overall employment) star-
ted;

• endDate. The date that the income (i.e. the overall employment) ended,
if any;

• employer. Identifier of the employer;

• amount. The per-annum pay amount; and

• employmentStatus. Code for whether the employment status is perman-
ent or temporary.

A rules designer then models an new Income rule class, extending the
ActiveEvidenceRow rule class, and adds rule attributes:

• startDate ;

• endDate ;

• employer ;

• amount ; and

• employmentStatus .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

160

An administrator publishes the rule set changes, and then publishes a data
configuration for Active Evidence Row Rule Object Converter and Propag-
ator to map the Income evidence type to the new rule class.

A case worker records some new Income evidence (for a temporary employ-
ment which started on 1st January 2000, salary $10,000). Initially the evid-
ence is "in edit".

The details stored on the data are as follows (not all evidence details are in-
cluded here, only those of interest to the converter):

Database Column Evidence Version Record 1
Evidence-
Descriptor.evidenceDescriptorID

978

EvidenceDescriptor.caseID 453

EvidenceDescriptor.correctionSetID 476

EvidenceDescriptor.effectiveFrom (blank)

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount $10,000

Income.employmentStatus Temporary (code)

Table 7.17 Database Details Stored for New Evidence

When evidence capture is complete, the case worker activates the evidence
and activates the case.

During the calculation of the case's determination result, the Active Evid-
ence Row Rule Object Converter retrieves the data for the newly-activated
Income evidence and populates a rule object for it, with values as follows:

Rule Attribute Name Value for Rule Object 1
ActiveEvidenceRow.description "Income, correctionSetID 476"

ActiveEvidenceRow.caseID 453

ActiveEvidenceRow.correctionSetID 476

ActiveEviden-
ceRow.evidenceDescriptorID

978

ActiveEvidenceRow.effectiveDate (blank)

Income.startDate 1st January 2000

Income.endDate (blank)

Income.employer Acme Ind.

Income.amount $10,000

Income.employmentStatus Temporary

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

161

Table 7.18 Active Evidence Row Rule Object after Initial
Activation of Evidence

The Engine invokes the CER utility to identify these dependencies (which
are stored using the Dependency Manager):

Dependent Precedent
Case 453's Entitlement depends on Active Evidence for case 453

Case 453's Entitlement depends on Data configuration for conversion of
Active Evidence Row rule objects

Table 7.19 Example Dependency Storage for Active Evidence
Row Rule Objects

Over time, real-world circumstances change:

• on 1st January 2001, the income amount increases; and

• on 1st May 2002, the employment status changes from "temporary" to
"permanent".

The agency is informed of these evidence changes and a case worker re-
cords new versions of the Income evidence, leading to the system storing
new EvidenceDescriptor / Income pairs of rows for the evidence data effect-
ive from each change date:

Database
Column

Evidence Ver-
sion Record 1

Evidence Ver-
sion Record 2

Evidence Ver-
sion Record 3

Evidence-
Descriptor.eviden
ceDescriptorID

978 979 980

Evidence-
Descriptor.caseID

453 453 453

Evidence-
Descriptor.correct
ionSetID

476 477 478

Evidence-
Descriptor.effecti
veFrom

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) (blank)

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

In-
come.employmen
tStatus

Temporary (code) Temporary (code) Permanent (code)

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

162

Table 7.20 Database Details Stored for Changes of Circumstances

When the case worker activates the change-of-circumstances evidence
changes, the Evidence Controller notifies the Active Evidence Row Rule
Object Propagator of the evidence changes, and the Active Evidence Row
Rule Object Propagator in turn notifies the Dependency Manager that evid-
ence for a case has changed. The Dependency Manager identifies the
product delivery case that depends on the changed evidence and requests
that the Engine reassesses the case. During reassessment, the Engine in-
vokes CER to calculate the determination result, and as part of this calcula-
tion the Active Evidence Row Rule Object Converter is called upon to pop-
ulate the rule objects for the changed evidence, which are populated as fol-
lows:

Rule Attribute
Name

Value for Rule
Object 1

Value for Rule
Object 2

Value for Rule
Object 3

ActiveEviden-
ceRow.descriptio
n

"Income, correc-
tionSetID 476"

"Income, correc-
tionSetID 477"

"Income, correc-
tionSetID 478"

ActiveEviden-
ceRow.caseID

453 453 453

ActiveEviden-
ceRow.correction
SetID

476 477 478

ActiveEviden-
ceRow.evidenceD
escriptorID

978 979 980

ActiveEviden-
ceRow.effectiveD
ate

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) (blank)

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

In-
come.employmen
tStatus

Temporary Temporary Permanent

Table 7.21 Active Evidence Row Rule Objects after Changes of
Circumstances

On 30th June 2002, the employment comes to an end and a case worker re-
cords the end date on the latest version of the evidence:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

163

Database
Column

Evidence Ver-
sion Record 1

Evidence Ver-
sion Record 2

Evidence Ver-
sion Record 3

Evidence-
Descriptor.eviden
ceDescriptorID

978 979 981

Evidence-
Descriptor.caseID

453 453 453

Evidence-
Descriptor.correct
ionSetID

476 477 478

Evidence-
Descriptor.effecti
veFrom

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) 30th June 2002

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

In-
come.employmen
tStatus

Temporary (code) Temporary (code) Permanent (code)

Table 7.22 Database Details Stored for Ended Evidence

The case worker activates the changes, which causes the existing latest
EvidenceDescriptor / Income pair to become "superseded"
(evidenceDescriptorID 980) and a new pair to become "active"
(evidenceDescriptorID 981).

Again the Active Evidence Row Rule Object Propagator causes the case to
be reassessed on foot of the evidence changes. During reassessment the Act-
ive Evidence Row Rule Object Converter populates the rule object with
these values:

Rule Attribute
Name

Value for Rule
Object 1

Value for Rule
Object 2

Value for Rule
Object 3

ActiveEviden-
ceRow.descriptio
n

"Income, correc-
tionSetID 476"

"Income, correc-
tionSetID 477"

"Income, correc-
tionSetID 478"

ActiveEviden-
ceRow.caseID

453 453 453

ActiveEviden-
ceRow.correction
SetID

476 477 478

ActiveEviden-
ceRow.evidenceD

978 979 981

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

164

Rule Attribute
Name

Value for Rule
Object 1

Value for Rule
Object 2

Value for Rule
Object 3

escriptorID

ActiveEviden-
ceRow.effectiveD
ate

(blank) 1st January 2001 1st May 2002

Income.startDate 1st January 2000 1st January 2000 1st January 2000

Income.endDate (blank) (blank) 30th June 2002

Income.employer Acme Ind. Acme Ind. Acme Ind.

Income.amount $10,000 $12,000 $12,000

In-
come.employmen
tStatus

Temporary Temporary Permanent

Table 7.23 Active Evidence Row Rule Objects after Evidence
Ended

At some time later, a review of the case finds that the entire history of the
income has been recorded against the wrong person. All the evidence re-
cords for the Income are canceled by the case worker, and the evidence re-
recorded against the correct person (in a new correction sets). When the case
is reassessed, the Active Evidence Row Rule Object Converter does not
populate rule objects for the evidence because now none of its evidence re-
cords are "active".

Some new legislation is introduced which affects how eligibility and entitle-
ment must be calculated, and in order to comply with this legislation, the
agency must now capture more details about periods of employment, spe-
cifically to capture details of the varying responsibilities that a person had
during each employment. An employee may have several responsibilities at
the same time during an employment, and each responsibility may begin
and end independently of others.

An evidence designer models a new type of temporal evidence named Re-
sponsibility , which is a child evidence type of the Income evidence
type:

• income. The parent Income evidence of which the Responsibil-
ity evidence is a child;

• type. Code for the type of responsibility (e.g. management, clerical
tasks, financial control, etc.);

• startDate. The date that the responsibility started; and

• endDate. The date that the responsibility ended, if any.

A rules designer creates a new Responsibility rule class, and identi-
fies that rules centered around the Responsibility will need to navig-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

165

ate to parent Income rule objects:

• parentIncomeVersions , of type List<Income> , annotated to
mark it to be populated from parent related evidence;

• type ;

• startDate ; and

• endDate .

The rules designer also identifies that rules centered around the Income
will need to navigate to child Responsibility rule objects, and so adds
a new rule attribute to the existing Income rule class:

• childResponsibilityVersions , of type
List<Responsibility> , annotated to mark it to be populated
from child related evidence;

The evidence design changes, rules changes and new data configuration for
the Responsibility rule class are published.

A case worker records details for an employment where there is a pay rise
on 1st January 2005. From the start of the employment, the employee is re-
sponsible for clerical tasks, but from 1st July onwards, the employee is also
responsible for financial tasks (in addition to still be responsible for clerical
tasks).

When the case is assessed, the Active Evidence Row Rule Object Converter
populates these rule objects:

• A parent Income rule object effective from the start of the case, with an
amount of $15,000 and with its childResonsibilityVersions
value set to be a list containing the two Responsibility rule objects
below;

• Another parent Income rule object effective from 1st January 2005,
with an amount of $16,000 and with its childResonsibil-
ityVersions value also set to be a list containing the two Re-
sponsibility rule objects below;

• A child Responsibility rule object for the clerical tasks, with its
parentIncomeVersions value set to be a list containing the two
Income rule object above; and

• Another child Responsibility rule object for the financial tasks,
with its parentIncomeVersions value also set to be a list contain-
ing the two Income rule object above.

Note that there are two Responsibility rule objects, because there are
two distinct real-world responsibilities, each stored as different succession
sets. There are two Income rule objects, one for each version of the evid-
ence as it changed over time.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

166

7.5 Data Configuration Problems

For converters and propagators which are configurable, there may be prob-
lems detected in the data configurations.

The behavior of converters and propagators which encounter configuration
problems is governed by the value of the
curam.ruleobjectpropagation.configuration.errorleve
l environment variable:

Value of
curam.ruleobjectpropagati

on.configuration.errorlev

el

Behavior of configurable con-
verters and propagators

warn (default value) The converter or propagator writes a
warning to the application logs, and
ignores the problematic configura-
tion.

ignore The converter or propagator ignores
the problematic configuration.

error The converter or propagator raises an
exception with the details of the con-
figuration problem, and does not al-
low processing (typically, applica-
tion startup) to continue.

Table 7.24 Behavior when configuration problems are found

Configuration problems may be detected:

• when the configurations are initially loaded, shortly after application
start-up (as soon as database writes for non-excluded tables are detec-
ted); and/or

• whenever changes to configurations are published (see Section 10.3.1.3,
Rule Object Data Configurations).

7.6 Data Access Points

This section gives an overview of the various points at which the rule object
converters and propagators interact with data from the application database.

7.6.1 Normal Conversion

During normal processing, rule object converters are invoked by CER
whenever CER is instructed to perform a search against rule objects.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

167

CER looks up the appropriate rule object converter based on the rule class
being searched, and invokes the rule object converter to gather the appropri-
ate data from the application database and populate CER rule objects in
memory, which can then be used in further CER calculations.

In particular, during normal processing, these converters access the active
evidence records on the application database:

• Section 7.4.4, Active Succession Set Rule Objects ; and

• Section 7.4.5, Active Evidence Row Rule Objects .

The retrieval of active evidence records is used when the Engine requests
CER to calculate one of the following types of determination:

• an assessment determination (see Section 3.4, Assessment Determina-
tions);

• a snapshot determination (see Section 3.3, Snapshot Determinations);

• a manual check determination where the user has chosen the option to
include active evidence only (see Section 3.2, Manual Check Determina-
tions);

In contrast, the evidence converters also support a special data access mode
to provide a calculation based off in-edit evidence data (see Section 7.6.2,
Temporary Access to In-Edit Evidence Changes).

7.6.2 Temporary Access to In-Edit Evidence Changes

The converters for these CER rule objects read data from temporal evid-
ence:

• Section 7.4.4, Active Succession Set Rule Objects ; and

• Section 7.4.5, Active Evidence Row Rule Objects .

These converters support a special mode to allow the population of rule ob-
ject data from in-edit evidence changes whenever a case worker requests a
manual determination based on in-edit pending changes to one or more
evidence items (see Section 3.2, Manual Check Determinations). This is in
contrast to normal processing (see Section 7.6.1, Normal Conversion)
whereby these converters have access to active evidence data only.

When the case worker requests a manual determination based on in-edit
pending changes to evidence, then the Engine:

• starts a new CER session;

• instructs these converters to temporarily use in-edit evidence changes to
populate rule objects during the session, i.e. to:

• take into account any pending addition of new evidence;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

168

• take into account any pending modification to existing evidence; and

• disregard evidence data for any pending removal of existing evid-
ence; and

• requests the determinationResult value from CER. The calcula-
tion will invoke the rule object converters to access rule objects for evid-
ence, which will take into account the in-edit evidence changes when
populating those rule objects.

7.6.3 Incremental Propagation

During normal running of the application, the system detects changes to
data which may have been used to populate CER rule objects, by listening
for these internal events:

• changes to evidence, such as the activation of in-edit evidence changes;
and

• changes to entity rows, for entities which are mapped in data configura-
tions for the Entity Rule Object Converter.

The processing of these internal events as they occur is known as "increment-
al propagation". Incremental propagation is used to inform the Dependency
Manager of changes to precedent data, so that the Dependency Manager can
take care of identifying dependents to recalculation.

There are situations where incremental propagation cannot automatically
detect changes to precedent data, namely:

• a non-propagatable data write operation is executed (see Sec-
tion 7.4.3.5.1, Support for Entity Operation Stereotypes); and/or

• data is written to the database outside the control of standard modeled
entity operations, e.g. via an SQL script or another system connected to
the application's database.

If either of these occur you must take manaul steps to identify and reassess
cases which may be potentially affected.

7.6.4 Bulk Maintenance of Rate Rule Objects

The Engine uses CER to store rule objects for rate table data on CER's data-
base tables. These stored rule objects act as a "mirror" copy of the rate table
data in a form that can be accessed during CER calculations.

The CER rule objects may not accurately reflect the latest rate table data for
a number of reasons:

• An administrator has changed rates in the application but not yet applied
the rate changes to CER.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

169

The administration application contains an "Apply Changes" action,
which will request a deferred process to execute which will increment-
ally make changes to the affected CER rule objects.

• The system has been initially deployed into production and no CER rule
objects have yet been created for rate table data.

A system operator must arrange to run the RateCreateInitial-
RuleObjects process (see the Propagating Non Cúram Data
For Cúram Express Rules guide).

• A database for a development system has been built and no CER rule
objects have yet been created for rate table data.

The developer can run the build prepare.application.data target prior
to starting the application, or else the creation of rule objects will be per-
formed automatically at application start-up 6 .

• Changes to rate table data have been made outside of the application's
APIs.

Depending on the number of changes to rate table data, a system operat-
or must arrange to either:

• choose the "Apply Changes" action (for small numbers of changes);
or

• run the FullPropagationToRuleObjects batch process (for
larger numbers of changes - see the Cúram Operations Guide
).

7.7 Logging

Configuration problems encountered by rule object propagators are auto-
matically written to the application logs. You should monitor the logs and
correct any warnings reported.

On occasion, it can be useful to log the detailed actions taken by the rule ob-
ject converters and propagators.

The logging behavior of the rule object propagators is governed by these
Cúram environment variables:

• curam.trace.ruleobjectpropagation (specific to rule object
propagation); and

• curam.trace (general Cúram trace level).

The amount of logging performed by rule object converters and propagators
can be controlled by setting either of these variables to one of the following
(if both are setting, the more verbose setting takes precedence):

• trace_off;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

170

• trace_on;

• trace_verbose; or

• trace_ultra_verbose.

Types of actions logged include:

• the details of a database write operation that has occurred;

• the details of a database write operation that is/is not of interest to a par-
ticular propagator;

• the details of a search for existing rule objects that match a database row
which has changed or has been removed;

• details of each rule object created, modified or removed; and

• the value that a converter sets on a CER rule attribute.

7.8 Supported Domain Types

The conversion of business data into CER rule objects supports the use of
the majority of the application's fundamental domain types.

The table below shows the correct CER data type to use for a CER rule at-
tribute, which at rule object conversion time will be populated from a data-
base or evidence field based on a domain. The table also describes any logic
which is applied at data conversion time and the default value that the rule
object converters will use for any values which are not sourced directly
from data sources (e.g. when populating before-start or after-end values in a
timeline):

Cúram Domain
Type

CER Rule At-
tribute Type

Data conver-
sion logic

Default value

Numerical types:

• SVR_DOUBL
E ;

• SVR_FLOAT
;

• SVR_INT8 ;

• SVR_INT16
;

• SVR_INT32
;

• SVR_INT64
; and

Java class - Num-
ber

Converted to
CER's own nu-
merical format.

0

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

171

Cúram Domain
Type

CER Rule At-
tribute Type

Data conver-
sion logic

Default value

• SVR_MONEY
.

Character types:

• SVR_STRIN
G ; and

• SVR_CHAR .

• Java class -
String, for
text data other
than a code
table code; or

• Code table
entry
(specifying
the appropri-
ate code table)
for text data
which is a
code table
code

An empty String
("").

SVR_BLOB Not supported.

SVR_BOOLEAN Java class -
Boolean

false

SVR_DATE Java class -
curam.util.v
alue.Date

The "zero date"
(blank) is conver-
ted to a null
value.

null

SVR_DATETIME Java class -
curam.util.v
alue.DateTim
e

The "zero date
time" (blank) is
converted to a
null value.

null

Table 7.25 Mapping from Cúram Domain Types to CER Rule
Attribute Types

Tip

If there is a mismatch between the database column domain type
and the CER rule attribute type, then at conversion time CER will
report an error that the value set on the rule attribute does not match
its expected type. This error points to the incorrect attribute data
type having been modeled on the target rule class.

Important

Each CER rule attribute automatically has a description rule at-
tribute (of type curam.creole.value.Message), inherited

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

172

from the RootRuleClass .

Rule attributes of this curam.creole.value.Message data
type do not map to a domain type, and so cannot be populated by the
rule object converter. Any data named "description" in the source
data will be ignored.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

173

Notes
1This precedent change caters for an edge case whereby previously a CER
expression had sought a row matching a primary key value, but none was
found; but now a new row matching that primary key value is being inser-
ted.
2There is one edge-case which is not supported, which is where a batch-
modify operation contains a number of modify operations, each of which
change the primary key value of an entity, and which form a chain of
changes to the same underlying row, e.g. the batchmodify contains two op-
erations:

• a modify which changes a row's key from keyValue1 to keyValue2; and

• another modify which changes the same row's key from keyValue2 to
keyValue3.

The net effect of these chained modify operations is to change the database
row's key from keyValue1 to keyValue3. Such a change cannot be reliably
propagated by the Entity Rule Object Propagator and should be avoided. (It
is good practice to avoid creating modify operations that change a row's key
anyway.)
3As for all timelines, any contiguous values which are identical are com-
bined into a single interval.

This can occur when two neighboring versions of evidence have the same
value for an evidence field - the second version of the evidence has been re-
corded because a different evidence field has changed value.

See the example where two neighboring evidence rows have the same value
for amount , because only the employmentStatus has changed.
4In practice these two conditions amount to the same thing - that Active
Succession Set Rule Objects for the case's evidence were accessed in some
way. Generally, a search will be executed to retrieve rule objects in order
that one or more attribute values can be accessed on those rule objects any-
way.
5In practice these two conditions amount to the same thing - that Active
Evidence Row Rule Objects for the case's evidence were accessed in some
way. Generally, a search will be executed to retrieve rule objects in order
that one or more attribute values can be accessed on those rule objects any-
way.
6 Shortly after start-up, the system checks the RuleObjectPropagatorControl
table and runs initial propagation if it has not already been run. In a develop-
ment environment, there is typically no discernible effect; however, in a
production environment, the higher data volumes can mean that any initial
propagation run after start-up (typically during user login) will cause the
database transaction to timeout, depending on application server timeout
settings.

To avoid this problem, be sure to run build prepare.application.data prior
to starting the application.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

174

Initial propagation is controlled by a single control row on the RuleObject-
PropagatorControl table, which is populated by the DMX file included by
the application. This control row ensures that initial propagation is only run
once in an environment where many JVM instances attach to the database
(e.g. during repeated runs of JUnit tests in a development environment, or
when many application servers are used in a production environment).

The EJBServer/compon-
ents/
core/data/initial/RULEOBJECTPROPAGATORCONTROL.dmx
file included by the application is required for the correct behavior of initial
propagation, and so this file must not be customized or removed by custom-
ers. The control row populated by this DMX file must be reflected in any
production database.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

175

Chapter 8

How Determinations Are Stored

8.1 Introduction

After the Engine has calculated a determination result, the Engine must
choose whether to store the determination result, and if so, how to store it.

The choice of whether to store a determination result hinges on a number of
factors, described later. Typically each new determination result will end up
being stored.

The Engine stores the determination result by writing a row to the
CREOLECaseDetermination database table (and also some other data writ-
ten to child database tables). The data stored includes the full details of the
determination result and optionally also a "snapshot" of all the CER rule ob-
jects used in the calculation of the determination result.

The Engine also stores rows of eligibility and entitlement data CaseDecision
and its child tables, so that this data can be used later by Cúram Financials
to generate financial components for the case. The Engine links the Case-
Decision rows to the CREOLECaseDetermination row by storing rows on
CREOLECaseDecision.

Note

In general, you should not need to access the data on any of these
tables; this chapter merely provides a reference to the data stored.

This chapter is structured as follows:

• The Database Tables. A description of the tables that the Engine uses
to store determination data;

• Decision Periods. How the Engine splits a determination into periods of
constant eligibility/entitlement; and

• Determination Comparison Strategies. How the Engine decides
whether a new determination is "different" from an existing determina-

176

tion.

8.2 The Database Tables

The database tables below are used by the Engine to store determination
data:

• CREOLECaseDetermination ;

• CREOLECaseDeterminationData ;

• CaseDecision ;

• CaseDecisionObjective ;

• CaseDecisionObjectiveTag ; and

• CREOLECaseDecision .

8.2.1 CREOLECaseDetermination

This is the main table which owns the record of each determination.

The Engine stores a single row on this table for each determination result
which ends up getting stored.

The details stored vary slightly depending on the type of determination be-
ing stored (Manual Check /Snapshot/Case Assessment). For data which is
common to all types of determination, see the core Entity Relationship Dia-
gram. The tables below show:

• the CREOLECaseDetermination data which is populated regardless of
the type of determination; and

• the CREOLECaseDetermination data which varies according to the type
of determination.

Attribute Name Value
creoleCaseDeterminationID Unique ID assigned by the system.

caseID Identifier of the case which has its
eligibility and entitlement determ-
ined.

determinationDateTime The date and time that the determina-
tion was made.

type The type of this determination.

The value of this attribute governs
the varying data stored, as shown in
the following table.

createdByUser The user who created this determina-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

177

Attribute Name Value
tion.

determinationResultDataID The ID of the record which stores the
XML document for the overall de-
termination result.

Table 8.1 Population of common CREOLECaseDetermination data

attribute
name/
determination
type

Manual Check Snapshot Case Assess-
ment

assessmen-
tReason

blank blank Value from the
CaseAssess-
mentDetReas-
on code table in-
dicating the reas-
on why the case
assessment de-
termination was
requested.

You are permitted
to add new values
to this code table
to contribute your
own assessment
reasons if re-
quired.

assessment-
Status

blank blank Value from the
CaseDeter-
mination-
Status code ta-
ble indicating
whether this de-
termination is:

• Current (and
thus is being
used for deliv-
eries such as
financials); or

• Superseded
(and thus has
been replaced
by a different

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

178

attribute
name/
determination
type

Manual Check Snapshot Case Assess-
ment

Current re-
cord).

Extensions to this
code table are not
supported.

snapsho-
tReason

blank Value from the
CaseSnap-
shotDetReas-
on code table in-
dicating the reas-
on that the snap-
shot was reques-
ted.

You are permitted
to add new values
to this code table
to contribute your
own snapshot
reasons if re-
quired.

blank

evidenceUsed Value from the
CaseDetEvid-
enceUsed code
table indicating
whether the
manual check was
based off:

• in-edit
changes to
evidence; or

• active evid-
ence only.

Extensions to this
code table are not
supported.

blank blank

ruleObject-
Snapshot-
DataID

blank , unless
the application
has been con-
figured to record

The ID of the re-
cord which stores
the XML docu-
ment of the snap-

The ID of the re-
cord which stores
the XML docu-
ment of the snap-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

179

attribute
name/
determination
type

Manual Check Snapshot Case Assess-
ment

snapshots for
manual check de-
terminations
(using the
curam.creole
.manualeligi
bilitycheck-
determina-
tion.store.r
uleobject-
snapshot en-
vironment vari-
able), in which
case this attribute
stores the ID of
the record which
stores the XML
document of the
snapshot of the
rule object data
used in the de-
termination.

shot of the rule
object data used
in the determina-
tion.

shot of the rule
object data used
in the determina-
tion.

Table 8.2 Population of CREOLECaseDetermination data,
according to the type of determination

See also the core data dictionary.

8.2.2 CREOLECaseDeterminationData

This table stores XML data for determinations.

The Engine can store two different types of XML data for each determina-
tion (and so for each row on CREOLECaseDetermination there are typically
two related rows on CREOLECaseDeterminationData):

• Determination result. An XML representation of a determination res-
ult, including the full eligibility/entitlement, key decision factor and de-
cision details over the lifetime of the case, and also details of any errors
encountered during calculation of the determination. This XML will be
used when data from the determination result is subsequently displayed
to a case worker; and

• Snapshot of Rule Objects. An XML snapshot of the CER rule objects

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

180

used in the calculation of the determination result. This snapshot
provides a point-in-time view of the CER rule objects and is stored to
provide a full technical audit of how the determination result was calcu-
lated. The CER rule objects include those for input data (such as evid-
ence, personal details and rates) and also all intermediate calculation
steps. The snapshot points to the versions of the rule sets that were in
place when the time that the snapshot was taken, so that the subsequent
publication of changes to those rule sets do not affect the ability to read
the snapshot data. The snapshot can be read using CER's Snapshot-
DataStorage feature. A snapshot is stored for assessment and snap-
shot determinations, but is only stored for manual check determinations
if the application has been configured to do so (using the
curam.creole.manualeligibilitycheckdetermination
.store.ruleobjectsnapshot environment variable).

In the unlikely event that the XML data is too long to fit onto a single
CREOLECaseDeterminationData , the data will be truncated to fit and the
extra data stored on an "overflow" CREOLECaseDeterminationData row (or
chain of overflow rows).

Caution

The XML format of determination results and CER rule object snap-
shots is internal to the application and direct access to this XML is
not supported.

The data contained in the XML may be accessed via the applica-
tion's published APIs only.

8.2.3 CaseDecision

A determination result typically contains eligibility and entitlement data that
varies over the lifetime of the case. For assessment determinations, the En-
gine stores details of the case's varying eligibility and entitlement on the
CaseDecision table (and its child tables, CaseDecisionObjective and Case-
DecisionObjectiveTag , see below), so that financial processing can use this
data to deliver the case's attained objectives.

When the Engine stores a new assessment determination, the Engine first
supersedes the existing stored determination (if any) and supersedes any
CaseDecision rows linked to that determination. For other types of determ-
ination no superseding takes place.

Then, for the new determination, the Engine inspects the varying eligibility
and entitlement data to determine the dates on which the eligibility and/or
entitlement changes (see Section 8.3, Decision Periods). For each of these
eligibility/entitlement change dates, the Engine stores a row on Case-
Decision (and rows on its child tables) to detail the eligibility and entitle-
ment results that apply from that date until the next change.

Sometimes it is possible for a determination result to contain key decision
factors and/or decision details which change on a particular date where there

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

181

is no accompanying change in eligibility and entitlement, for example where
the case continues to be eligible but for a different business reason than pre-
viously. In these circumstances, the Engine will not store a CaseDecision re-
cord effective from the change date, because there has not been a change in
eligibility and entitlement.

The CaseDecision table is used to store eligibility/entitlement data for CER-
based cases as described above. However, it continues to be used to store
eligibility/entitlement data for cases assessed using Cúram Rules (as op-
posed to CER). Some of the attributes on CaseDecision are reserved for use
by Cúram Rules 1 .

The Engine stores the following values in CaseDecision attributes for CER-
based cases:

Attribute on CaseDecision Value stored by the Engine
caseDecisionID Primary key

caseID ID of case for which has been de-
termined.

decisionDate Set to the decisionToDate .

resultCode
• "Eligible" if the eligibility result

for the period is true; or

• "Not eligible" otherwise (if the
result is false or cannot be calcu-
lated).

methodCode blank (reserved for use by Cúram
Rules cases)

initReasonCode Value stored depends on the type of
determination:

• For manual check determina-
tions, "Pre-release".

• For snapshot determinations, "Re-
lease".

• For assessment determinations,
"Release".

typeCode Always "Product Delivery Eligibil-
ity".

statusCode Value stored depends on the type of
determination:

• For manual check determina-
tions, "Superseded".

• For snapshot determinations, "Su-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

182

Attribute on CaseDecision Value stored by the Engine

perseded".

• For assessment determinations,
"Current" if the CREOLECase-
Determination is Current, other-
wise "Superseded".

decisionFromDate Start of period from which the de-
cision applies.

decisionToDate End of period to which the decision
applies - blank if the decision peri-
od is open-ended, i.e. is the last de-
cision period in an open-ended case

runMode blank (reserved for use by Cúram
Rules cases)

decisionFlow blank (reserved for use by Cúram
Rules cases)

decisionResult blank (reserved for use by Cúram
Rules cases)

tagValue blank (reserved for use by Cúram
Rules cases)

evidenceUsed blank (reserved for use by Cúram
Rules cases)

decisionFlowOverflowInd Always false (reserved for use by
Cúram Rules cases).

decisionResultOverflowInd Always false (reserved for use by
Cúram Rules cases).

evidenceUsedOverflowInd Always false (reserved for use by
Cúram Rules cases).

creationDate System date at the time the record is
created.

Table 8.3 Population of CaseDecision rows

8.2.4 CaseDecisionObjective

This describes an objective attained (i.e. entitled) for a parent CaseDecision
. Objectives which are not entitled are not stored.

The Engine will create a set of CaseDecisionObjective rows for each change
in a case's entitlement during its lifetime, as present in a determination res-
ult. Each CaseDecisionObjective row describes a single objective attained
for the period of the CaseDecision (a CaseDecision may have zero, one or
many attained objectives).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

183

The Engine stores the following values in CaseDecisionObjective attributes
for CER-based cases, centered around the determination data drawn from an
AbstractObjectiveTimeline rule object:

Attribute on CaseDecisionOb-
jective

Value stored by the Engine

caseDecisionObjectiveID Primary key

objectiveID The identifier of the type of objective
attained. Set to the CER attribute
value AbstractObjective-
Type.objectiveTypeID from
the objective type returned by Ab-
stractObjective-
Timeline.objectiveType .

caseDecisionID ID of the parent CaseDecision which
owns this CaseDecisionObjective re-
cord.

concernRoleID The target of the attained objective.
Set to the value during the decision
period for the CER attribute value
AbstractObjective-
Timeline.targetIDTimeline
.

value blank (reserved for use by Cúram
Rules cases)

relatedReference The related reference of the attained
objective. Set to the value during the
decision period for the CER attribute
value AbstractObjective-
Timeline.relatedReference
Timeline .

overflowInd Always false (reserved for use by
Cúram Rules cases).

Table 8.4 Population of CaseDecisionObjective rows

8.2.5 CaseDecisionObjectiveTag

This describes the frequency at which an attained objective can be de-
livered.

The Engine will create a set of CaseDecisionObjectiveTag rows for each
row on CaseDecisionObjective . These tags are used to calculate the
amounts on the financial schedules. For more information see Sec-
tion 9.2.2.6, Calculating Financial Component Amounts

The Engine stores the following values in CaseDecisionObjective attributes

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

184

for CER-based cases, centered around the determination data drawn from an
AbstractTagTimeline rule object:

Attribute on CaseDecisionOb-
jectiveTag

Value stored by the Engine

caseDecisionObjectiveTa-
gID

Primary key

caseDecisionID ID of the parent CaseDecision which
owns this CaseDecisionObjectiveTag
record.

objectiveTagID The identifier of the type of tag
which can be delivered. Set to the
CER attribute value Abstract-
TagType.tagTypeID from a tag
type returned by AbstractTag-
Timeline.tagType .

value The value of the objective if de-
livered at the frequency of this tag.
Set to the value during the decision
period for the CER attribute value
AbstractTag-
Timeline.valueTimelin e,
with appropriate numeric-to-String
conversions if required.

description blank (reserved for use by Cúram
Rules cases)

type The type of data held in the value at-
tribute. Set to the CER attribute
value AbstractTag-
Type.valueType from the tag
type returned by AbstractTag-
Timeline.tagType .

pattern The frequency at which this tag is
delivered. Set to the CER attribute
value AbstractTag-
Type.pattern from the tag type
returned by AbstractTag-
Timeline.tagType .

objectiveID The type of objective for the parent
objective which owns this tag.

caseDecisionObjectiveID The ID of the parent objective which
owns this tag.

relatedReference blank (reserved for use by Cúram
Rules cases)

Table 8.5 Population of CaseDecisionObjectiveTag rows

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

185

8.2.6 CREOLECaseDecision

This is the link between a CREOLECaseDetermination and a CaseDecision
which records a period of constant eligibility and entitlement within the de-
termination.

The Engine stores a row on CREOLECaseDecision for every CaseDecision
row which forms part of the determination written to CREOLECaseDeter-
mination .

8.3 Decision Periods

The Engine stores details on CaseDecision and its child tables whenever
there is a "change" in eligibility and/or entitlement over the lifetime of a
case. In other words, the Engine splits a determination into "decision peri-
ods" of constant eligibility/entitlement, and stores each of those period as a
row on CaseDecision (and links those rows back to the CREOLECaseDeter-
mination).

The CER rule objects for eligibility and entitled objectives/tags contain a
mixture of fixed data and data which changes over time. For the sake of
clarity, this section describes each of the types of data changes which the
Engine considers a "change" in eligibility and/or entitlement:

• Each date on which the eligibility result changes;

• Each date on which the set of attained objectives changes; or

• Each date on which any of these values change for an attained objective:

• The target for the objective;

• The related reference for the objective; and/or

• The value of any type of tag for the objective.

Each change to any of the above will result in a CaseDecision record (plus
child records) for that period during a determination.

8.4 Determination Comparison Strategies

When the Engine calculates a determination result, then the Engine will
store that determination result if the new result is "different" from the previ-
ous result stored. Each CER-based Product can be configured to set just how
"different" a new determination result needs to be in order to be stored (and
thus to supersede the existing determination).

When the Engine stores a new determination snapshot (i.e. stores a new row
on CREOLECaseDetermination), it will either:

• if the new determination result is "different" from the previously stored

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

186

determination result, store a new row for the determination's XML docu-
ments on CREOLECaseDeterminationData , and link the new
CREOLECaseDetermination to the new rows for the XML documents;
or

• if the new determination result is not "different" from the previously
stored determination result, link the new CREOLECaseDetermination to
the existing rows for the XML documents stored against the previous
determination.

For example, if a case worker repeatedly requests manual eligibility checks
on the same data, each request will result in a (small) row being written to
CREOLECaseDetermination , but only one pair of (large) rows being writ-
ten to CREOLECaseDeterminationData .

Each CER-based Product must specify a strategy that the Engine will use
when comparing determinations. You must either:

• in development, change your CREOLEProduct.dmx file to populate
your product's determinationCompStrategyType column with
the code (from the DeterminationCompStrategy code table) for
your chosen strategy implementation; or

• in a running system, start the admin application and navigate to Product
Delivery Cases, select your product, choose Rule Sets and choose Eli-
gibility Determination, change "Determination Comparison Strategy" to
be your chosen strategy implementation.

The interface for the strategy is
curam.core.sl.infrastructure.assessment.impl.Determ
inationComparisonStrategy . You must choose an existing com-
parison strategy or implement one of your own.

Tip

In the early stages of developing your product, it may be useful to
initially use the "Compare all user-facing data" strategy included
with the Engine, and then later in your development revisit whether
this strategy meets your requirements.

Depending on the strategy in place for a product, it is possible for a new de-
termination to be stored even though its eligibility and entitlement are
identical to the that for the previous determination (i.e. the new Case-
Decision and child records contain effectively the same data as the old re-
cords.).

This situation can arise when two determinations differ in explanation only .
For example, a case may be determined to be ineligible forever because the
claimant is not a citizen. If the claimant acquires citizenship, the case will be
reassessed but the case may still be ineligible forever because the claimant
fails a means test. In this way, the underlying eligibility and entitlement is
unchanged (namely, "ineligible forever"), yet the explanation for the in-
eligibility has changed, and may cause a new determination to be stored

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

187

(depending on the determination comparison strategy in place for the
product).

8.4.1 Strategy Implementations Included with the Engine

The Engine includes these implementations which are suitable for most
products:

Display/code
Compare all user-facing data

Compare eligibility/entitlement data only

Table 8.6 Determination Comparison Strategy Implementations
Included with the Engine

8.4.2 Developing your own Strategy Implementation

If you have custom requirements not met by the implementations included
with the Engine, you may develop your own strategy implementation(s) for
use in your products as follows:

• Add a new entry to DeterminationCompStrategy code table
(using custom .ctx files);

• Create an implementation class which implements the Determina-
tionComparisonStrategy interface; implement the required
method to return whether the two determinations passed in are con-
sidered to have equal data;

• Bind the code table entry to your implementation, in your custom Guice
Module:

{
// Register your custom determination comparison strategies
final MapBinder<DETERMINATIONCOMPARISONSTRATEGYEntry,

DeterminationComparisonStrategy>
determinationComparisonStrategies
= MapBinder.newMapBinder(binder(),

DETERMINATIONCOMPARISONSTRATEGYEntry.class,
DeterminationComparisonStrategy.class);

determinationComparisonStrategies.addBinding(
DETERMINATIONCOMPARISONSTRATEGYEntry.YOUR_STRATEGY.to(
YourDeterminationComparisonStrategy.class));

}

(replacing YOUR_STRATEGY with the constant for your new code table
code and YourDeterminationComparisonStrategy with your
strategy implementation class as appropriate)

• Build your application;

• Configure your product to use your new strategy (see instructions
above).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

188

Notes
1 See Inside Cúram Eligibility and Entitlement Using
Cúram Rules .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

189

Chapter 9

Scheduling Financials

9.1 Introduction

The financial scheduler is responsible for scheduling financial transactions
based on eligibility and entitlement results and case deductions. These fin-
ancial schedules, known as financial components, are used by the Financial
Manager to create financial instruction line items. The financial scheduler
sits between the Eligibility and Entitlement Engine and the Financial Man-
ager, translating eligibility and entitlement results as well as case deductions
into financial schedules that can be processed into actual payments or bills.

This chapter covers the scheduling of financials for eligible case decisions,
case deduction items, and payment corrections. The approach used to de-
scribe each of these financial schedules is the same followed throughout this
guide. For each financial schedule here is a description of how it looks, how
it works, and how to use it.

Financial components are schedules of transactions to be realized into actual
financial transactions. A financial component encompasses all of the ele-
ments that constitute a financial schedule, e.g. amount, cover period, fre-
quency, validity period, effective date and so on.

9.2 Scheduling Financials for Eligible Case Decisions

The case determination information produced by the Engine is used to cre-
ate the financial schedules for the case. Only eligible case decisions are con-
sidered and each eligible decision will have one or more associated case de-
cision objectives. Each of these case decision objectives represents a com-
ponent for which financials must be scheduled. One or more financial com-
ponents are created for each case decision objective, and these financial
components are used to create one or more instruction line items that repres-
ent the actual financial transactions.

190

9.2.1 How It Looks

This section describes how financial information is displayed to a case
worker. A financial instruction representing a benefit payment to a nominee
is generated and displayed. From this, the case worker can view the total
amount due, the instruction line items which make up the total payment , the
nominee and the delivery details.

For example, a financial instruction has been generated and is displayed for
the period 22nd June to 10th July, for the amount of $407.15. This financial
instruction is comprised of three payment instruction line items. The nomin-
ee was determined eligible to receive an Income Assistance component and
entitled to a weekly amount of $150. The financial scheduler uses the one
case decision objective produced by the Engine to create two financial com-
ponents.

The first financial component serves as a ramp-up financial component to
cover a partial payment period. Because the nominee is assigned a delivery
pattern of 'Weekly by Check in Advance on a Monday' and becomes eligible
starting on Wednesday 22nd of June 2011, the financial scheduler creates a
one-time ramp-up financial component that is processed by the Financial
Manager into one instruction line item for a partial week payment of
$107.15 that covers the period from Wednesday 22nd of June 2011 through
Sunday 26th of June 2011.

The second financial component serves as a recurring financial component
that is processed by the Financial Manager into two instruction line items,
one for a full weekly payment of $150 for the week starting Monday 27th of
June 2011 and the second for the week starting Monday 4th of July 2011.

9.2.2 How It Works

There are a number of factors taken into consideration when deciding how
to represent a specific case decision as a financial schedule. These include
the case decision objectives, the nominee component assignments, the nom-
inee delivery patterns, the period to which the decision applies and the case
decision objective tags which have been specified. The following sections
provide more information on each of these factors.

Considering Case Decision Objectives

An eligible case decision is first turned into a set of virtual components, one
virtual component for each of associated case decision objectives. The start
and end dates of these virtual components will match the start and end dates
of the decision. If the decision is open-ended the virtual components will
also be open-ended.

For example, a case decision which indicates eligibility for the Income As-
sistance component from 13th June 2011 until 29th July 2011 would gener-
ate a virtual component starting on 13th June 2011 and ending on 29th July

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

191

2011.

Considering Nominee Component Assignments

Once an initial virtual component has been created the next step is to exam-
ine the nominee component assignments. Any changes to the component as-
signment during the cover period of the virtual component are identified and
are used to split the initial virtual component into multiple, nominee specific
parts.

For example, the Income Assistance component is assigned to nominee
James from 13th June 2011 to 5th July 2011 and is then assigned to nomin-
ee Linda from 6th July 2011 onwards. Using this information the initial vir-
tual component is split up, giving one virtual component for nominee James,
which covers the period 13th June 2011 to 5th July 2011 and one virtual
component for nominee Linda, which covers the period 6th July 2011 to
29th July 2011.

Considering Nominee Delivery Patterns

Once the nominee specific virtual components have been created, the next
step is to examine the nominee delivery patterns. Any changes to the nomin-
ee's delivery pattern during the cover period of their virtual component are
identified and are used to split it again into multiple, delivery pattern specif-
ic parts.

For example, nominee James is paid using the pattern 'Weekly by EFT in
Advance on a Monday' from 13th June 2011 to 3rd July 2011 and then paid
'Daily by EFT' from 4th July 2011 onwards. Nominee Linda is paid using
the pattern 'Weekly by Check in Advance on a Monday' from 6th July 2011
onwards. In this situation the virtual component for nominee James will be
split into two parts. One virtual component for the period of the 'Weekly by
EFT in Advance on a Monday' delivery pattern and once virtual component
for the period of the 'Daily by EFT' delivery pattern.

At the end of this processing we will have three virtual components that
must be realized into appropriate financial schedules as follows:

• Monday 13th of June 2011 until Sunday 3rd July 2011 for James,
Weekly by EFT in Advance on a Monday

• Monday 4th of July 2011 until Tuesday 5th July 2011 for James, Daily
by EFT

• Wednesday 6th of July 2011 until Friday 29th of July 2011 for Linda,
Weekly by Check in Advance on a Monday

Calculating Financial Component Cover Periods

Each of the virtual components that we have at this stage is then further split
up based on how its cover period matches with the frequency of the nomin-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

192

ee delivery pattern. For each virtual component up to three financial com-
ponents may be created. Each financial component will apply for a specific
interval during the period to which the virtual component applies.

If the virtual component does not begin on a day that can initiate a complete
delivery period, a financial component is created to cover the period
between the virtual component start date and the beginning of the first com-
plete delivery period. This is known as a ramp-up financial component.

A second financial component may be generated to cover all complete
cycles of the delivery frequency that can be achieved within the virtual com-
ponent cover period. This is known as a recurring financial component.

A final financial component may be created to cover the period between the
end of the last complete delivery period and the virtual component end date.
This is known as a ramp-down financial component.

For example, the virtual component for nominee Linda covers the period
from Wednesday 6th of July 2011 to Friday 29th of July 2011 and uses the
delivery frequency Weekly by Check on Monday. Using the frequency of
this nominee delivery pattern to split up the virtual component means that a
separate financial component is generated to cover each of the periods listed
below:

1. From Wednesday 6th July 2011 to Sunday 10th July 2011. This finan-
cial component covers the interval from the start of the virtual compon-
ent to the start of the first complete delivery cycle, i.e. Monday 11th
July.

2. From Monday 11th July 2011 to Sunday 24th July 2011. This financial
component covers the period of the virtual component that contains all
of the complete delivery frequency cycles.

3. From Monday 25th July 2011 to Friday 29th July 2011. This financial
component covers the period between the end of the last complete de-
livery cycle and the virtual component end date.

Calculating Open Ended Financial Component Cover Periods

If a product supports open ended cases, it means that the last decision on a
case may be open ended. When the last decision is eligible, then it results in
the creation of a recurring, open-ended financial component. This means
that a ramp-down financial component is not required.

For example, an eligible, open ended decision has been created starting on
Wednesday 6th of July 2011 which applies until further notice. For a case
with one nominee component assignment and one nominee delivery pattern
which has the delivery frequency Weekly by Check on Monday, one open
ended virtual component will be created. Using the frequency of the nomin-
ee delivery pattern to split up the open ended virtual component means that
a separate financial component is generated to cover each of the periods lis-
ted below:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

193

1. From Wednesday 6th July 2011 to Sunday 10th July 2011. This finan-
cial component covers the interval from the start of virtual component
to the start of the first complete delivery cycle, i.e. Monday 11th July.

2. From Monday 11th July 2011 until further notice. This financial com-
ponent covers the period of the virtual component that contains com-
plete delivery frequency cycles.

At some point in the future, an end date will be added to the case. This
might be because of a change of circumstance or because the case is being
closed. When this occurs, the case will be reassessed and the previous open
ended decision will be replaced by one which has an end date. At that point
the open ended financial component will be replaced by a bounded financial
component which applies until the case end date.

Calculating Financial Component Amounts

After the required financial components have been identified, the amount
and effective date must be determined for each one. The amount is determ-
ined by examining the period for which the financial component applies.
For a ramp-up or ramp-down financial component, this will be the cover
period of the financial component. For a recurring or open-ended financial
component, this will be cover period of the first complete delivery cycle.

For example, if we take the three financial components identified above for
nominee Linda, the periods specified would be:

1. From Wednesday 6th July 2011 to Sunday 10th July 2011.

2. From Monday 11th July 2011 to Sunday 24th July 2011.

3. From Monday 25th July 2011 to Friday 29th July 2011.

The amount used for each individual financial component depends on the
case decision objective tags which have been specified in the rule set for the
product. Each tag has an associated frequency. The available frequencies are
daily, weekly, bi-monthly, monthly and yearly.

When calculating the amount for a recurring financial component typically
the frequency will match one of the available tags. When calculating the
amount for a ramp-up or ramp-down financial component the available tags
are applied largest first.

For example, if the rule set for the product specified a 'daily' case decision
objective tags with an amount of $10 (indicating that for a single day the
amount of 10 should be paid) and a 'weekly' case decision objective tag with
an amount of $65 (indicating that for a full week the amount of 65 should be
paid), the amounts calculated for the three financial components would be
as follows:

1. From Wednesday 6th July 2011 to Sunday 10th July 2011 the amount
would be $50 (five days at $10 per day).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

194

2. From Monday 11th July 2011 to Sunday 24th July 2011 the amount
would be $65 (one full week at $65 per week).

3. From Monday 25th July 2011 to Friday 29th July 2011 the amount
would be $50 (five days at $10 per day).

Consider this second example which explains how the tags are applied
largest first. If the delivery frequency is monthly and a ramp-up financial
component is required for the period from 8th June 2011 until 30th June
2011 (23 days in total), and the following case decision objective tags are
specified:

1. A monthly tag at $250 per month

2. A weekly tag at $65 per week.

3. A daily tag at $10 per day.

Using these Tags to calculate the amount for the ramp-up financial compon-
ent would give a total of $215 (three weekly tags plus two daily tags).

However, if no weekly tag had been specified then the amount calculated
for the ramp-up financial component would be $230 (twenty three daily
tags).

Calculating Financial Component Effective Dates

The effective date for the financial component is determined using a com-
bination of the cover period type and the delivery pattern. For each of the
supported cover period types, the effective date is calculated as follows:

• Issue in Advance

The effective date is the start date of the first delivery period covered by
the financial component. Therefore, for the three financial components
defined above for nominee Linda, the effective dates would be Monday
4th July, Monday 11th July and Monday 25th July respectively. It is
worth noting that the effective date for the first financial component is
not within the cover period for that component.

• Issue in Arrears

The effective date is the start date of the delivery period following the
first delivery period covered by the financial component. Therefore, for
the three financial components defined above for nominee Linda, the ef-
fective dates would be Monday 11th July, Monday 18th July and
Monday 1st August respectively.

• Issue for Full Month

The effective date is the start date of the financial component. Therefore,
for the three financial components defined above for nominee Linda, the
effective dates would be Wednesday 6th July, Monday 11th July and
Monday 25th July respectively.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

195

• Once-off Issue

The effective date is the start date of the financial component. Therefore,
for the three financial components defined above for nominee Linda, the
effective dates would be Wednesday 6th July, Monday 11th July and
Monday 25th July respectively.

• Issue in Advance - N Days Prior to Issue Date

The effective date is N days prior to the start date of the first delivery
period covered by the financial component. For example, if N equals 2,
then for the three financial components defined above for nominee
Linda, the effective dates would be Saturday 2nd July, Saturday 9th July
and Saturday 23rd July respectively.

• Issue in Arrears - N Days Prior to Issue Date

The effective date is N days prior to the start date of the delivery period
following the first delivery period covered by the financial component.
For example, if N equals 2, then for the three financial components
defined above for nominee Linda, the effective dates would be Saturday
9th July, Saturday 16th July and Saturday 30th July respectively.

• Issue in Advance - on the Nth Day of Month Prior

The effective date is the Nth day of the month prior to the start date of
the financial component cover period. For example, if N equals 2, then
for each of the three financial components defined above for nominee
Linda the effective date would be Friday 3rd June.

9.2.3 How to Use It

This section describes the information that must be provided to allow finan-
cial schedules to be generated for an eligible case decision. It is divided into
two sections, mandatory information and optional information.

Mandatory Information

Case Decision Objectives

These are defined in the rule set assigned to the product on which this case
is based. An Objective is anything that can be awarded as part of a determ-
ination result calculated by CER rules. An eligibility rule set can have mul-
tiple objectives.

For more information see Section 4.4.1.3, Objectives .

Case Decision Objective Tags

These are also defined in the rule set assigned to the product on which this
case is based. An Objective Tag represents how a particular objective is
awarded for a specific period of time (from days to years). An objective

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

196

may have several objective tags. For example, a Loan Parent benefit product
may have two objective tags, one applying 'per day' and one 'per week'. An
objective tag can be an amount of money or a formula that evaluates an
amount of money for a specific objective.

For more information see Section 4.4.1.4, Objective Tags .

Financial Code Tables

There are five code tables which must be customized to enable the financial
schedules and subsequent financial transactions to be generated correctly
from the eligible case decisions. They are:

1. RulesComponentType ;

2. FinComponentType ;

3. ProductComponentFCConv ;

4. ILIType ; and

5. TranslateILIType .

For more information see the 'Financial Code Tables' section of the In-
side the Cúram Financial Manager Guide.

Optional Information

Nominee Component Assignments

Every component available on a case must be assigned to a nominee. When
a case is first created all the components are initially assigned to the default
nominee. However, if an additional nominee has been added to the case they
can be assigned a component from a certain date or for a specific period of
time.

Assigning a component to multiple nominees during the lifetime of an eli-
gible case decision will result in the creation of separate financial compon-
ents for each of those nominees. Nominee Component Assignments can be
configured via the Transactions page of the case.

For more information see the Cúram Nominees Guide.

Nominee Delivery Patterns

Every nominee must have a delivery pattern which indicates how they wish
to receive payments and at what frequency. A nominee's delivery pattern
can change over time, but no gaps are allowed. The delivery pattern can be
specified when the nominee is being added to the case. If one is not expli-
citly selected, then the nominee is given the delivery pattern currently in use
by the default nominee.

Having multiple delivery patterns for a nominee during the lifetime of an

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

197

eligible case decision will result in the creation of separate financial com-
ponents for each of the delivery patterns used. Nominee Delivery Patterns
can be configured via the Transactions page of the case.

The nominee delivery pattern is also where the delivery frequency and the
cover period type are specified, as well as any offsets.

For more information see the Cúram Nominees Guide.

Allow Open Ended Cases Indicator

This indicator can be found on the Eligibility Determination tab of the Rule
Sets page for a Product. It is set to 'Yes' by default, meaning that cases
based on this product may be open ended. Only open ended cases can gener-
ate open ended decisions and subsequently open ended financial schedules.
Setting this indicator to 'No' ensures that an end date or expected end date
must always be set for cases based on this product and ensures that any fin-
ancial schedules created for such a case will always have an explicit end
date.

For more information see the Cúram Integrated Case Manage-
ment Configuration Guide.

9.3 Scheduling Financials for Case Deductions

The case deduction item information on a case is used to create the deduc-
tion financial schedules. Only active case deduction items are considered.
Deductions can either be for a fixed amount or for a percentage of the pay-
ment amount, with the specific amount being calculated during payment
generation.

For a fixed deduction, the value of the deduction financial component is
taken directly from the case deduction item. A fixed deduction is applied to
the total payment amount of all the deductible components that the specified
nominee has received.

For a variable deduction, a rate is used instead. The rate indicates the per-
centage of the payment amount that should be deducted. A variable deduc-
tion is applied to the total payment amount of a specific component if one is
selected, otherwise it is applied to the total payment amount of all the de-
ductible components on the case. Since a variable deduction represents a
percentage of the total payment, the same percentage is deducted from each
nominee receiving one of the applicable components.

Each active case deduction item defined for a case will result in the genera-
tion of one or more financial components depending upon the number of
nominees affected. One or more deduction instruction line items will then
be generated for each financial component.

For more information on configuring deductions, see the Cúram Deduc-
tions Guide.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

198

9.3.1 How It Looks

This section describes how financial information is displayed to a case
worker when a deduction is taken from a payment. A financial instruction
representing a benefit payment to a nominee is generated and displayed.
From this, the case worker can view the total amount due, the instruction
line items and the deduction items which make up the total payment , the
nominee and the delivery details.

For example, a financial instruction has been generated and is displayed for
the period 22nd June to 10th July, for the amount of $397.15. This financial
instruction is comprised of three payment instruction line items and one de-
duction instruction line item. The nominee was determined eligible to re-
ceive an Income Assistance component and entitled to a weekly amount of
$150. A fixed deduction of $10 has also been created for the nominee in or-
der to assist the nominee in making payments for a utility bill. The financial
scheduler uses the one case decision objective produced by the Engine to
create two financial components to represent the payment, and uses the case
deduction item information to create one financial component to represent
the deduction.

The first payment related financial component serves as a ramp-up financial
component to cover a partial payment period. Because the nominee was as-
signed a delivery pattern of 'Weekly by Check in Advance on a Monday'
and became eligible starting on Wednesday 22nd of June 2011, the financial
scheduler creates a one-time ramp-up financial component that is processed
by the Financial Manager into one instruction line item for a partial week
payment of $107.15 to covers the period from Wednesday 22nd of June
2011 through Sunday 26th of June 2011.

The second payment related financial component serves as a recurring fin-
ancial component that is processed by the Financial Manager into two in-
struction line items, one for a full weekly payment for $150 for the week
starting Monday 27th of June 2011 and the second for the week starting
Monday 4th of July 2011.

The deduction financial component is processed by the Financial Manager
into one instruction line item for the amount of $10 that is deducted from
the payment financial instruction created for the nominee.

9.3.2 How It Works

There are a number of factors taken into consideration when deciding how
to represent a specific case deduction item as a financial schedule. These in-
clude whether the deduction is fixed or variable, the nominee component as-
signments, the nominee delivery patterns, the period to which the deduction
applies and the latest payment date associated with the case itself. The fol-
lowing sections provide more information on each of these factors.

Considering Case Deduction Items

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

199

First the active case deduction items are retrieved. Only a case deduction
item with an end date after the last paid to date of the case will be con-
sidered. If an active deduction has already ended, it will not be used gener-
ate financial schedules.

For example, a case which starts on 13th of June 2011 and has an expected
end date of 10th July 2011 delivers two components, Income Assistance and
Medical Assistance. The case has two nominees Lisa and Paul, but no pay-
ments have been issued yet.

Lisa is the default nominee and so is assigned both components from the
case start date. Lisa's nominee delivery pattern is 'Weekly by EFT in Ad-
vance on a Monday' and applies from the case start date. Paul's nominee de-
livery pattern is 'Weekly by Check in Advance on a Monday' and also ap-
plies from the case start date. Paul is assigned the Income Assistance com-
ponent from 27th June 2011 (the start of the third week).

The case also has two case deductions specified as follows:

1. A fixed deduction for the amount $12, assigned to nominee Lisa. The
deduction starts on 13th of June 2011 and has no end date specified,
meaning that it applies until further notice.

2. A variable deduction for 20% against the Income Assistance compon-
ent. It starts on 20th of June 2011 and has an end date of 5th July 2011.

In this example, both case deduction items will be retrieved and used to gen-
erate financial components.

Considering Deduction Types

Once the case deduction items have been identified, the next step is to check
the deduction type to determine how many nominees are affected. A fixed
deduction will affect a single nominee while a variable deduction may affect
multiple nominees depending on the components it is targeted at and the
nominee component assignments. Any changes to the component assign-
ments during the cover period of the deduction are identified and are used to
split the initial deduction component into multiple, nominee specific parts.
This is done for each component affected by the deduction.

In our example, the fixed deduction is assigned to Lisa, so it can be repres-
ented by a single deduction financial component. The variable deduction is
against the Income Assistance component which is assigned to Lisa for the
first two weeks and then to Paul for the remainder of the case, so the deduc-
tion financial component representing this must be split in two.

At the end of this processing we will have three deduction financial com-
ponents as follows:

1. From Monday 13th of June 2011 until Sunday 10th July 2011 for nom-
inee Lisa, deducting $12 per week from her total payment.

2. From Monday 13th of June 2011 until Sunday 26th June 2011 for nom-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

200

inee Lisa, deducting 20% per week from her total payment.

3. Monday 27th of June 2011 until Sunday 10th July 2011 for nominee
Paul, deducting 20% per week from his total payment.

Calculating Deduction Cover Periods

The cover period of the deduction financial component starts on the case de-
duction item start date, unless that date is before the last date paid out on the
case. In that situation, the financial component cover period starts the day
after the last date paid.

The cover period of the deduction financial component ends on the case de-
duction item end date, if specified. If no end date has been specified the ex-
pected end date of the case is used instead.

For example, if the case deduction item has a start date of 13th June 2011
and no end date is specified and the case to which it belongs has an expected
end date of Sunday 10th July 2011 and has been paid up to Sunday 19th
June 2011. The cover period of the deduction financial component would be
from Monday 20th June 2011 to Sunday 10th July 2011.

9.3.3 How to Use It

This section describes the information that must be provided to allow finan-
cial schedules to be generated for a case deduction item. It is divided into
two sections, mandatory information and optional information.

Mandatory Information

Case Deduction Items

The relevant case deduction item must be added to the case. It must have
been Activated, and its end date, if specified, must be later than the last date
paid out on the case.

For more information see the Cúram Deductions Guide.

Optional Information

Nominee Component Assignments

Every component available on a case must be assigned to a nominee. When
a case is first created all the components are initially assigned to the default
nominee. However, if an additional nominee has been added to the case they
can be assigned a component from a certain date or for a specific period of
time.

Assigning a component to multiple nominees during the lifetime of a vari-
able case deduction item targeted at that component will result in the cre-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

201

ation of separate deduction financial components for each of those nomin-
ees. Nominee Component Assignments can be configured via the Transac-
tions page of the case.

For more information see the Cúram Nominees Guide.

9.4 Scheduling Financials for Payment Corrections

The reassessment information produced by the Engine is used to create the
payment correction financial schedules.

When a change of circumstance results in a reassessment over a period
which has already been paid, that reassessment may determine that the enti-
tlement amount originally calculated and subsequently issued to the nomin-
ee for that period was incorrect. When this occurs the original entitlement
must be corrected and a balancing payment or bill must be issued. A pay-
ment correction is the mechanism used to do this.

If the original payment was larger that it should have been, an overpayment
correction will be created. If the original payment was smaller that it should
have been, an underpayment correction will be created. If the original pay-
ment was comprised of multiple components and the total amount for the
overpaid components was found to be the same as the total amount for the
underpaid components, a net zero payment correction will be created.

Reassessment information is stored for each nominee affected by the pay-
ment correction in the NomineeOverUnderPayment table. This information
is then broken down by component for each nominee and stored in the
OverUnderPaymentBreakdown table and is used to create evidence for pay-
ment correction. The type and number of evidence records created depends
upon the type of product used to deliver the payment correction. Each evid-
ence record results in the creation of one corresponding financial component
which in turn is used to create one instruction line item.

9.4.1 How It Looks

This section describes how financial information is displayed to a case
worker when an overpayment or underpayment occurs and is processed
within a Payment Correction case.

For example, a nominee was initially determined eligible to receive both an
Income Assistance and Medical Assistance component and is entitled to a
weekly amount of $150 for the Income Assistance component and a weekly
amount of $35 for the Medical Assistance component. The financial sched-
uler uses the two case decision objectives produced by the Engine to create
two financial components that are processed by the Financial Manager into
a payment.

Due to a change in circumstance for the nominee, reassessment of the nom-
inee's eligibility and entitlement occurs resulting in an overpayment for both
components and the creation of a Payment Correction case. The financial

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

202

scheduler uses the reassessment information produced Engine to create two
financial components.

The first financial component is created for the Income Assistance compon-
ent and is processed by the Financial Manager into one liability instruction
line item for $6.41 that covers the period of the original payment, from
Wednesday 22nd of June 2011 through Thursday 7th of July 2011.

The second financial component is created for the Medical Assistance com-
ponent and is processed by the Financial Manager into one liability instruc-
tion line item for $10.71 that covers the period of the original payment, from
Wednesday 22nd of June 2011 through Thursday 7th of July 2011.

A financial instruction representing a liability for an overpayment to a nom-
inee is displayed within a Payment Correction case for the amount of
$17.12. This financial instruction is comprised of the two liability instruc-
tion line items created by the Financial Manager.

In the originating Product Delivery case, the Engine has determined that the
entitlement amount originally calculated and subsequently issued was larger
than it should have been, resulting in the creation of an overpayment.

The overpayment of $17.12 that resulted in the creation of the Payment Cor-
rection case is displayed. The overpayment is broken down into an overpay-
ment of $10.71 for the Medical Assistance component and an overpayment
of $6.41 for the Income Assistance component.

9.4.2 How It Works

For a payment correction, the generation of the financial schedules is nor-
mally a two step process. First a product delivery case is created and the re-
assessment information is used to create the evidence for the case. When
that case is subsequently activated the evidence is used as the basis for the
financial schedules.

An alternative process is possible for an underpayment correction. With this
approach it is possible to deliver the underpayment on the original benefit
case, rather than using a separate underpayment case. In this situation the re-
assessment information is still used to create the evidence, but the necessary
financial component(s) are created immediately afterwards.

There are a number of factors taken into consideration when deciding how
to represent a payment correction as a financial schedule. These include the
payment correction type determined by the reassessment, the product used
to deliver the payment correction, the number of components included in the
reassessment, and various administration and product settings. The follow-
ing sections provide more information on each of these factors.

Considering Payment Correction Types

An overpayment correction is created when the original payment was larger
that it should have been. If the original payment was comprised of multiple

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

203

components then it is possible that some of those component could have
been overpaid while others have been underpaid, but when the totals are
combined the balance is an overpayment.

An underpayment correction is created when the original payment was
smaller that it should have been. If the original payment was comprised of
multiple components then it is possible that some of those component could
have been overpaid while others have been underpaid, but when the totals
are combined the balance is an underpayment.

A net zero payment correction is created when the original payment was
comprised of multiple components and the total amount for the overpaid
components was found to be the same as the total amount for the underpaid
components. When the totals are combined the balance is zero.

In the example, the Engine has determined that an overpayment correction
is required. The reassessment information shows that the total overpayment
amount is $17.12 and this total was calculated by adding the overpayment of
$10.71 for the Medical Assistance component and the overpayment of $6.41
for the Income Assistance component.

Considering Correction Products

There are three products which can be used when creating financial sched-
ules for a payment correction. They are:

• The Payment Correction product which has the ability to produce indi-
vidual financial schedules for each component which was over or under
paid on the original benefit case. This product supports all the payment
correction types (overpayment, underpayment and net-zero).

• The Overpayment product which has the ability to produce a single liab-
ility financial schedule for the total amount overpaid on the original be-
nefit case. This product supports only the overpayment correction type.

• The Underpayment product which has the ability to produce a single be-
nefit financial schedule for the total amount underpaid on the original
benefit case. This product supports only the underpayment correction
type.

The payment correction product will be used by default, however an applic-
ation property is provided that allows the overpayment and underpayment
products to be used instead.

In the example, the product associated with the case is configured to use the
Payment Correction product, and since this is an overpayment correction a
Payment Correction case will be created.

Once the Payment Correction case has been created the appropriate evid-
ence is added to it. In this example, two evidence records will be created:

1. An overpayment record for the amount of $10.71 to correct the original
payment for the Medical Assistance component.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

204

2. An overpayment record for the amount of $6.41 to correct the original
payment for the Medical Assistance component.

Important

Cases that have been migrated from earlier versions of the applica-
tion may have existing reassessment information. For case such as
this, the granular reassessment information will not be available.
Therefore the payment correction product cannot be used. So these
cases will continue to use the overpayment and underpayment
products as before.

Considering Nominees

For an overpayment correction, the nominee on the Payment Correction
case will be the primary client of the original benefit case and the nominee
delivery pattern will be 'Once-off by Invoice'.

For an underpayment correction the nominee on the Payment Correction
case will be same as the nominee underpaid on the original benefit case. If
this is different to the primary client, a second nominee will be added to the
Payment Correction case to support this. The nominee delivery pattern will
be 'Once-off by X' (where X is the delivery method of that nominee on the
original benefit case).

For a net zero payment correction, the nominee on the Payment Correction
case will be the primary client of the original benefit case and the nominee
delivery pattern will be 'Once-off by X' (where X is the delivery method of
that nominee on the original benefit case).

In the example, the Engine has determined that an overpayment correction
is required. The nominee on the financial component will be the primary cli-
ent of the original benefit case and the nominee delivery pattern will be
'Once-off by Invoice'.

9.4.3 How to Use It

This section describes the configuration settings which control how finan-
cial schedules are generated for payment corrections. All the configuration
options described here have default values which can be changed if re-
quired.

The 'Use Rolled Up Reassessment Products' setting is a configuration option
which controls the product that will be used to deliver a correction. When
this is set to 'NO', it indicates that the Payment Correction product should be
used. When it is set to 'YES', it indicates that the legacy, Overpayment and
Underpayment products should be used. The default value for this setting is
'NO'.

For more information see the Cúram Integrated Case Manage-
ment Configuration Guide.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

205

When will an Overpayment Correction case be created?

Depending on the value of the 'Use Rolled Up Reassessment Products' set-
ting, either a payment correction case or an overpayment case may be cre-
ated to deliver the overpayment correction. The following configuration set-
tings also affect the behaviour:

• Automatic Overpayment Case Processing

This setting works in conjunction with the 'Use Rolled Up Reassessment
Products' setting mentioned above and can be configured in one of three
ways. The first option allows an administrator to specify that a separate
case should be automatically created when an overpayment correction is
detected. This will be either an overpayment case or a payment correc-
tion case depending on the value that is specified for the 'Use Rolled Up
Reassessment Products' setting. Once the case is created, a user must
manually approve, activate, and generate the liability financials required
to recoup the overpayment.

The second option allows an administrator to specify that a separate case
should be automatically created and approved, activated, and liability
financials generated without the intervention of a user. Note that this op-
tion is only available for benefit products for which the value of the 'Use
Rolled Up Reassessment Products' setting is 'NO'.

The third option instructs the system not to automatically create a separ-
ate case to correct the overpayment. Instead, a task is generated to alert
the user of the overpayment. The user can then manually create and
manage a liability case to recoup the overpayment.

When will an Underpayment Correction case be created?

Depending on the value of the 'Use Rolled Up Reassessment Products' set-
ting, either a payment correction case or an underpayment case may be cre-
ated to deliver the underpayment correction. Alternatively, in some situ-
ations it is possible for the underpayment correction to be delivered on the
original benefit case. The following configuration settings also affect the be-
haviour:

• Automatic Underpayment Case Creation

This setting works in conjunction with the 'Use Rolled Up Reassessment
Products' setting mentioned above and can be configured in two ways.
The first option allows an administrator to specify that a separate case
should be automatically created when an underpayment correction is de-
tected. This will be either an underpayment case or a payment correction
case depending on the value that is specified for the 'Use Rolled Up Re-
assessment Products' setting. Once the case is created, a user must
manually approve, activate, and generate the benefit financials required
to issue the underpayment.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

206

The second option instructs the system not to automatically create a sep-
arate case to correct the underpayment. Instead, an underpayment finan-
cial component should be created on the original benefit case to deliver
the underpayment.

• curam.miscapp.checkforliveliabilities

This application property determines whether a check is performed by
the system to establish the existence of outstanding liabilities for a client
when an underpayment correction has been detected. The default value
of this property is 'YES', meaning that a separate case will always be
created to deliver the underpayment when an outstanding liability exists
for this client.

• curam.miscapp.underpmtcase.createfornomineediff

This application property determines whether a check is performed by
the system to establish whether the nominee on the original benefit case,
currently assigned the underpaid component, is the same as the under-
paid nominee. The default value of this property is 'YES', meaning that a
separate case will always be created to deliver the underpayment when
the nominee currently assigned the component is not the nominee under-
paid.

• Invalidate Payments

This is not a configuration option, rather it is a check that is carried out
internally by the financial scheduler. If the underpayment correction is
for a period that has been paid, but the payment was cancelled and inval-
idated, then a separate case will always be created to deliver the under-
payment.

When will a Net Zero Correction case be created?

Net zero payment corrections are created when the overpaid components
and underpaid components included in a reassessment cancel each other out.
Since the creation of a net zero payment correction case is only possible
when the Payment Correction product is used, the value of the 'Use Rolled
Up Reassessment Products' setting must be 'NO'.

Net zero payment correction cases will not be of great interest to a case
worker, but they facilitate fund management and accurate account manage-
ment.

With this in mind, net zero payment correction cases are automatically cre-
ated, approved, activated, and the financials generated without the interven-
tion of a user.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

207

Chapter 10

Reassessment - Handling Changes in Circumstance

10.1 Introduction

When a case worker first activates a product delivery case, the Engine cre-
ates a determination for the initial assessment for that case, and uses that de-
termination as input into financial processing.

This initial assessment takes into account:

• Case-specific circumstances known at the time of the initial assessment,
including:

• personal data, such as dates of birth;

• case data, such as case start and end dates; and

• evidence, such as income levels for household members; and

• Product-wide configuration, including:

• product periods;

• the product rules for eligibility/entitlement, key decision factors and
decision details; and

• rate data.

Any of all of these types of data can change as time goes on; families move,
they have more children, their income fluctuates, they encounter unforeseen
problems which lead to greater need; product legislation and/or policy
changes, rates change in line with costs of living.

Depending on the nature of the change, some changes may affect future
periods on cases which have not yet been paid. However, other types of
change may affect periods on cases which have already been paid, resulting
in under- or over-payments (see Section 9.4, Scheduling Financials for Pay-

208

ment Corrections).

This chapter describes how reassessment works for:

• case-level reassessment; and

• bulk reassessment.

10.2 Case-level Reassessment

10.2.1 Overview

Most data changes recorded in the application affect a very small number of
cases:

• when evidence recorded directly against a product delivery case is activ-
ated, typically only that product delivery case is affected;

• when evidence recorded against an integrated case is activated, typically
only the product delivery cases belong to that integrated case are af-
fected;

• when personal data is changed, typically only cases which involve those
persons are affected (such cases may reference the person data directly,
or may use Evidence Broker to control the use of the personal data in
cases);

• when product delivery case data such as case start/end dates are
changed, typically only that product delivery case is affected.

Note

The above observations are based off typical behavior for cases; the
Engine does not enforce any restrictions about sharing evidence or
other data across cases.

Product delivery cases are automatically reassessed when the type of data
described above changes. When changes to data occur they are written to a
precedent change set and processed by the Dependency Manager. The De-
pendency Manager processes the precedent change set by finding the unique
set of dependents affected by any of the items in the precedent set and in-
structing each affected dependent to recalculate itself. Each type of depend-
ent in the system has a registered 'dependent handler' which, when invoked
by the Dependency Manager, is responsible for taking the appropriate steps
to recalculate a dependent. If any of the dependents affected are a case as-
sessment determination then the appropriate step is to request that the En-
gine reassesses the case, by invoking CER to recalculate the value of the
determinationResult attribute value for the case.

The processing of precedent change set items that are likely to affect a small
amount of cases occurs in deferred processing.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

209

Note

Because the Engine uses the Dependency Manager in such a way as
to use deferred processing, then a case affected by a change in data
can be either:

• reassessed within the deferred process; or

• prior to the execution of the deferred process, if reassessment is
initiated within the case itself as a result of manual reassessment,
a change in evidence, or the generation of financial payments.

10.3 Bulk Reassessment

Certain types of system-wide change can affect many or all of the product
delivery cases on the system.

This section describes these types of system-wide change and the facilities
available to you to handle the effects of system-wide changes, by identify-
ing and reassessing the affected product delivery cases.

10.3.1 Types of Change that Cause Bulk Reassessment

This section describes the types of change that the Engine treats as causing
bulk reassessment, i.e. where the expected effect of the changes is not lim-
ited to a low number of cases (unlike case-level reassessment - see Sec-
tion 10.2, Case-level Reassessment).

The effects of any of these types of change are handled in batch processing,
and so require the execution of batch jobs to be scheduled, either on a regu-
lar schedule provided by your third-party scheduling software, or on an ad
hoc basic by being manually run by system operator staff.

The Engine treats any change to the following system-wide data as "bulk
change" potentially affecting a large number of cases, and thus requiring
bulk reassessment processing:

• Product configuration;

• CER Rules used by the Product;

• Rule Object Data Configurations; and

• Rate Tables.

The following sections describe these types of change in more detail, and
explain the lifecycle of each type of change. In general terms, each type of
change can be worked on by an administrator without causing any effects on
the system, followed by a "publish" action where the completed changes
start to take effect and are available for case processing.

Tip

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

210

When changes to any of these types of data are published, an in-
formational message (advising that a system-wide change has oc-
curred and that bulk reassessment processing is required) is shown
on the publication screen and also written to the application logs.

It may be useful to monitor the application logs for this information-
al message if you choose to run bulk reassessment processing on an
ad hoc basis (i.e. only when a bulk change has occurred).

Product Configuration

Any change to the configuration of a Product has the potential to affect as-
sessment determinations for the product's cases.

In particular, changes to the product periods for your product may affect the
product's cases. Product period changes include:

• adding a new product period (e.g. to implement a change in legislation,
using the multiple product periods approach, see Section 11.4.2, Mul-
tiple Product Periods for Your Product);

• removing an existing product period;

• changing the start and/or end date of an existing product period;

• changing the name 1 of the eligibility/entitlement rule class for an exist-
ing product period;

• adding, changing or removing the name of the key decision factor rule
class for an existing product period; and/or

• adding, changing or removing the name of the decision details rule class
for any display category on an existing product period.

The administration application contains a "sandbox" area where an adminis-
trator can accumulate changes to a product (including its product periods)
before choosing to "publish" those changes, at which point the changes to
the product will start to affect product delivery cases. Unpublished product
changes have no effect on case processing.

There is additional processing required if a change is made to the Product's
reassessment strategy. See Section 11.5.4, Reassessment Strategy .

CER Rules used by your Product

Any change to any part of these CER rule sets, for any product period on the
product, has the potential to affect assessment determinations for the
product's cases:

• the rule set containing the eligibility/entitlement rule class;

• the rule set containing the key decision factors rule class (if configured);

• the rule set (s)containing any of the decision details rule classes(if con-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

211

figured); and/or

• any other rule set containing any rule attribute that was encountered dur-
ing the calculation of a case's determination, e.g. those on "calculator"
rule classes and "data" rule classes for custom entity and evidence types,
which may be stored in "common" rule sets separate from the rule sets
containing the rule classes named by your product period(s).

Note

Other processing in the application (outside the Engine) may also
rely on CER rule sets, and so it is possible that CER rule sets are be-
ing changed for reasons unrelated to case assessments.

The Dependency Manager does not know which CER rule sets do or
do not affect cases, and so for any change in CER rule sets, the De-
pendency Manager will treat the change as one that might affect
cases, but will simply identify that no product delivery cases are af-
fected.

The administration application contains a "sandbox" area where an adminis-
trator can accumulate changes to CER rules before choosing to "publish"
those changes, at which point the changes to CER rules will start to affect
product delivery cases. Unpublished rule set changes have no effect on case
processing.

Rule Object Data Configurations

Any change to any configuration for any of the configurable rule object data
configurations has the potential to affect product delivery cases, because the
entities and evidence to be used by CER during the execution of rules may
have changed.

Note

Other processing in the application (outside the Engine) may also
rely on rule objects created by configurable rule object data config-
urations, and so it is possible that configurations are being changed
for reasons unrelated to case assessments.

The Dependency Manager does not know which configuration
changes do or do not affect cases, and so for any change in data con-
figurations, the Dependency Manager will treat the change as one
that might affect cases. If the data configuration changes are unre-
lated to case assessments, then the Dependency Manager will
simply identify that no product delivery cases are affected.

The administration application contains a "sandbox" area where an adminis-
trator can accumulate changes to rule object data configurations before
choosing to "publish" those changes, at which point the changes to the data
configurations will start to affect product delivery cases. Unpublished data
configurations changes have no effect on case processing.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

212

Rate Tables

Any change to a rate table (which is configured to populate RateCell rule
objects) has the potential to affect product delivery cases, typically when the
value of an existing version of a rate is changed or a new effective period of
a rate table comes into effect (see "Implementing Rate Tables" in the
CÃºram Integrated Case Management Configuration
Guide).

Note

Other processing in the application (outside the Engine) may also
rely on the values stored in rate tables, and so it is possible that rate
tables are being changed for reasons unrelated to case assessments.

The Dependency Manager does not know which rate tables do or do
not affect cases, and so for any change in rate table data, the De-
pendency Manager will treat the change as one that might affect
cases. If rate table changes are unrelated to case assessments, then
the Dependency Manager will simply identify that no product deliv-
ery cases are affected.

In contrast to the other types of data changes described above, there is no
system-wide "publication" step for rate table changes.

However, the Engine contains a special "Apply Changes" option which al-
lows an administrator to choose when the changes made to rate tables will
start to affect product delivery cases. Until an administrator chooses this op-
tion, rate table changes have no effect on case processing (for CER-based
cases). Other processing outside the Engine will see the rate table changes
immediately, though.

10.3.2 Approaches to Identifying and Reassessing All Affected
Cases

Requirements for Bulk Reassessment

When identifying and reassessing cases in response to a system-wide
change, typically the requirements for processing fall into one of these cat-
egories:

• Consistency. All cases affected by the change must be identified and re-
assessed (i.e. all reassessments which are sufficient to make those cases
consistent with the change). It is not acceptable for any case affected by
the change to be "missed" during batch processing.

• Efficiency. Only cases affected by the change should be identified and
reassessed (i.e. only those reassessments which are necessary should oc-
cur). It can be wasteful to spend system time either reassessing cases
which are not affected and/or reassessing any particular case more than

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

213

once.

• Concurrency. It must be possible to reassess cases in parallel batch
streams (to promote scalability). It must be possible to reassess cases in
batch while the online application is being used (to avoid the necessity
for system downtime for online users).

• Business-specific control and processing. You may have your own
business-specific requirements to control reassessment of cases and/or
perform additional processing, e.g.:

• to reassess cases in a particular order, e.g. by surname of the
claimant;

• to reassess only a particular subset of cases, e.g. those for claimaints
who have social security numbers in a particular range; or

• to perform additional business processing for each case, e.g. to send
out special correpondence with each reassessed case which is pertin-
ent only to bulk reassessment on this occasion, e.g. an explanatory
leaflet sent to each claimant who has a case affected by a particular
piece of legislation change.

In practice, there are trade-offs to be made to meet these requirements. Sec-
tion 10.3.2.3, Driving the Identification of Affected Cases describes the vari-
ous approaches available for handling a bulk change, i.e. for identifying the
cases identified so that they can each be reassessed.

Multiple Reassessments during a Case's Lifetime

At this point it's worth pausing to recall what happens each time a case is re-
assessed:

• the Engine invokes CER to calculate a new determination result for the
case;

• the Engine retrieves the existing determination result for the case from
the database;

• the Engine compares the new determination against the existing determ-
ination, and only if the new determination is "different" :

• the Engine supersedes the existing determination result and stores
the new determination result on the database;

• the Engine updates the case's financial schedule;

• the Engine identifies whether there have been any over- or under-
payments and if so takes corrective action.

Bulk case reassessment is no different from online case lifecycle processing
in this regard - i.e. processing can reassess a case any number of times, but
it is only when the new assessment determination result differs from the ex-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

214

isting assessment determination result that a new determination result is
stored and potentially financial impacts are stored (such as changes to the
financial schedule, and possibly the identification of over- or under-pay-
ments and corrective actions).

As such, a "needless" reassessment which results in no change to the exist-
ing assessment determination is not as expensive (in system terms) as a "ne-
cessary" reassessment which results in a change to the determination; but on
the other hand performing a "needless" reassessment is more expensive than
avoiding it. Needless reassessments have no business impact on the case,
though. You should consider your performance requirements to determine
to what extent needless reassessments are tolerable in your system and bear
that in mind when choosing your approach to bulk reassessments.

There are a number of common processing points in the application which
will cause a case to be reassessed:

• case lifecycle events - e.g. if the case is closed, and then reopened, and
then reactivated, the case will be reassesed at reactivation time;

• when a case worker chooses to manually reassess the case;

• when case-level reassessment occurs, e.g. in response to changes in
evidence or personal details;

• if the financials batch programs are configured to force a reassessment
of each case prior to generating financials for the case; and

• bulk case reassessment (the subject of this section).

Once system-wide changes to data have been made, then for any particular
product delivery case, the first processing point to reassess the case (e.g. one
of the events listed above) will calculate a new determination result which
takes into account all the system-wide changes to data, and any subsequent
processing point will calculate an identical determination result and take no
further action (assuming that there have been no other data changes which
affect the case in the meantime).

Important

Because the first processing point to reassess the case takes into ac-
count all system-wide changes to data, you must consider carefully:

• when to publish the system-wide changes;

• how long after publication the batch processing will run to
identify and reassess affected cases;

• whether case workers should be allowed to view and maintain 2

cases during the lag between publication of the system-wide
changes and completion of the batch processing; and

• how your business processes will cope with any case that would
have had a new determination stored by the batch processing,

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

215

except that some online processing (e.g. a manual reassessment
by a case worker) caused a new determination (taking into ac-
count the published system-wide changes) to be stored already.

This last point is especially important if you require to run addition-
al business processing during your batch identification and reassess-
ment of cases (e.g. to send out a particular type of correspondence),
as online processes such as a manual reassessment by a case worker
will not automatically include that additional processing. In such
circumstances it may be important to schedule the publication of the
system-wide changes and the full batch processing (to completion)
during downtime when caseworkers do not have access to the sys-
tem, and/or make your batch business processing tolerant to the situ-
ation that a case may have already been reassessed by an online ac-
tion.

Assuming that you have no additional business processing that relies on be-
ing the first processing point to reassess a case after system-wide changes
have been published, then in general it is safe to run bulk reassessment
batch processing concurrently with the online system. You should note
though that:

• online users may experience a performance degradation while batch pro-
cessing is ongoing; and

• if an online user performs an action which leads to a case being reas-
sessed, at the same time that the bulk reassessment batch processing is
attempting to reassess the same case, then it is possible for either the on-
line and/or batch transaction to fail:

• the online user's transaction may fail and the user advised to try
again;

• a deferred transaction to reassess the case triggered from the online
user's action may fail and will be retried a set number of times; and/
or

• the batch "chunk" may fail and will be automatically retried.

Driving the Identification of Affected Cases

After system-wide changes to data have been made, you must run batch pro-
cessing to identify the cases affected, and reassess each case.

The algorithm(s) that you choose to identify cases will depend on your busi-
ness requirements. In general there are these types of case-identification al-
gorithm to choose from (or possibly combine):

• Bottom-up. Identify cases that are known by the system to be affected
by the change, i.e. use the dependency records stored in the Dependency
Manager; and/or

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

216

• Top-down. Identify cases by some facet of the case, e.g. all active cases
for a particular product, or all cases for claimants in a particular range of
social security numbers.

The application includes an implementation of the bottom-up algorithm in
the form of the batch suite provided by the Dependency Manager (see the
CÃºram Express Rules Reference Manual). The batch suite
uses the dependency records to identify cases potentially affected by sys-
tem-wide changes in data and reassesses them.

Caution

The Dependency Manager batch suite has the capability to reassess
cases, but it also has the capability to recalculate other types of de-
pendents, such as Advice.

If you choose not to use the Dependency Manager batch suite to re-
assess cases, you must still use the batch suite to recalculate other
types of dependents.

The application also includes a sample implementation of a top-down al-
gorithm in the form of the CREOLEBulkCaseChunkReassessment-
ByProduct batch process (see the CÃºram Operations Guide),
and instructions for writing your own batch process to implement your own
top-down algorithm are included below (see Section 10.3.3, Writing your
own Bulk Reassessment Batch Process).

When scheduling batch processing to reassess cases affected by your pub-
lished system-wide changes, you can choose 3 to schedule one or both of:

• an implementation of a top-down algorithm, either that included with the
application or your own custom batch process; and/or

• the bottom-up algorithm included in the Dependency Manager batch
suite.

The benefits and limitations in the choices of approach are outlined in the
table below:

Approach Benefits Limitations
Use the De-
pendency
Manager
batch suite
only

• The implementation is in-
cluded with the applica-
tion - no custom pro-
cessing needs to be im-
plemented.

• The Dependency Man-
ager batch suite provides
robust identification of all
cases potentially affected
by system-wide changes
made through the applic-

• You cannot control the
order in which the De-
pendency Manager reas-
sesses cases.

• You cannot perform any
additional business pro-
cessing at the point at
which the Dependency
Manager batch suite reas-
sesses the case.

If you have requirements

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

217

Approach Benefits Limitations

ation's APIs 4 .

• The Dependency Man-
ager batch suite must be
run anyway to recalculate
other dependents such as
Advice.

to perform specific busi-
ness processing for all the
cases that were identified
and reassesed by the De-
pendency Manager and/or
those for which new de-
terminations were recor-
ded, you must satisfy
yourself that you can
identify these cases in
some way after the De-
pendency Manager batch
suite has completed and
implement your own cus-
tom batch program to
perform the required
post-reassessment busi-
ness processing.

Use an imple-
mentation of a
top-down case
identification/
reassessment
algorithm,
followed by a
run of the De-
pendency
Manager
batch suite

• You get to "prioritise" the
processing of certain
cases (those identified by
your top-down algorithm)
ahead of any other cases
and any other dependent
types (such as Advice).

• You control the order in
which cases are reas-
sessed.

• For cases reassessed by
your top-down case reas-
sessment implementation,
you can perform addi-
tional business processing
at the point of reassess-
ment.

• Any case that your top-
down algorithm fails to
identify 5 , but which is
affected by the system-
wide change, will still be
identified and reassessed
by the Dependency Man-
ager batch suite, so by the

• You will have additional
development activity to
implement and test your
custom case identification
algorithm and/or post-
reassessment business
processing (unless you
are using the CREOLE-
BulkCaseChunkRe-
assessment-
ByProduct batch pro-
cess included with the ap-
plication).

• Some cases identified by
the Dependency Manager
batch suite will have
already been identified
and reassessed by your
top-down case identifica-
tion/reassessment al-
gorithm, so some of the
reassessments performed
by the Dependency Man-
ager may turn out to be
needless.

• If a case is missed by

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

218

Approach Benefits Limitations

end of the batch run all
affected cases will have
been identified and reas-
sessed;

• You can schedule this
"clean-up" run of the De-
pendency Manager batch
suite quite some time
after the run of the top-
down batch processing
which identified and reas-
sessed your "priority"
cases. For example, you
might wish to schedule
the "priority" (top-down)
case processing to run
overnight starting on the
evening when the system-
wide changes were pub-
lished, but defer the
"clean-up" (bottom-up)
case processing until the
next weekend.

• The Dependency Man-
ager batch suite must be
run anyway to recalculate
other dependents such as
Advice.

your top-down algorithm
and is instead identified
and reassesed by the De-
pendency Manager batch
suite, then the Depend-
ency Manager batch suite
cannot perform any addi-
tional processing that
your top-down algorithm
might have done at the
point where it would have
reassessed the case.

If you have requirements
to perform specific busi-
ness processing for the
cases that were cleaned-
up by the run of the De-
pendency Manager batch
suite, then you must satis-
fy yourself that you can
identify these cases in
some way after the De-
pendency Manager batch
suite has completed and
implement your own cus-
tom batch program to
perform the required
post-reassessment busi-
ness rocessing.

Use an imple-
mentation of a
top-down case
identification/
reassessment
algorithm
only

• You get to "prioritise" the
processing of certain
cases (those identified by
your top-down algorithm)
ahead of any other cases
and any other dependent
types (such as Advice).

• You control the order in
which cases are reas-
sessed.

• For cases reassessed by
your top-down case reas-
sessment implementation,
you can perform addi-
tional business processing

• You will have additional
development activity to
implement and test your
custom case identification
algorithm and/or post-
reassessment business
processing (unless you
are using the CREOLE-
BulkCaseChunkRe-
assessment-
ByProduct batch pro-
cess included with the ap-
plication).

• You take sole responsib-
ility for the accurate and

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

219

Approach Benefits Limitations

at the point of reassess-
ment.

complete identification of
cases affected by the sys-
tem-wide data change.
Any case that your
algoithm fails to identify
will not be reassessed by
the batch processing run,
and its stored determina-
tion will not be consistent
with the system-wide
data change until such
time as the case is reas-
sessed for some other
reason.

• The Dependency Man-
ager batch suite must be
run anyway to recalculate
other dependents such as
Advice. Your system op-
erators must be instructed
explicitly not to run the
Dependency Manager
batch suite for depend-
ents of type "case assess-
ment determination".

Table 10.1 Benefits and Limitations to Bulk Reassessment
Approaches

Note that it is always possible for the Dependency Manager to identify a
case for reassessment, but having reassessed that case the Engine finds out
that the reassessment turned out to be needless, due to the granularity at
which dependency records are stored for case determination dependents.
Examples where such a needless reassessment might occur are:

• a change to column value on an entity row, where other unchanged
columns for that entity row have been used as the input to determination
calculations;

• a change to a common CER rule set which is used to calculate determin-
ations, and also for some other purpose such as Advice, but the changed
rules are not accessed during determination calculations;

• a change to a rate (such as for income thresholds) which does not affect
the overall determination result for a case.

Note

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

220

There are only two options regarding a reassessment which turns out
to be needless:

• either the system performs the reassessment, and only once a
new determination is calculated can the system discover that the
reassessment turned out to be needless, at the risk of using up
processing time; or

• a human outside the system uses his or her business knowledge
to implement processing to identify cases in such as way as to
eliminate or minimize needless reassessments, at the risk of hu-
man error (i.e. that needless reassessments still occur for some
cases, or, more seriously, that some necessary reassessments
were not identified.

You should weigh up these unavoidable risks as part of your de-
cision as to which approach to use for bulk reassessment processing.

Reassessment Processing

Once bulk processing (whether bottom-up or top-down) has identified cases
to reassess, each case can be reassessed by streamed batch processing.

Caution

Be careful when implementing extra business processing that occurs
at reassessment time, either using:

• hook points provided by the Engine; and/or

• custom business processing in your implementation of a top-
down algorithm.

Any extra business processing that causes database writes may
cause new precedent change items to be recorded in the batch pre-
cedent change set. A run of the Dependency Manager batch suite
will be required to process these new precedent change items.

10.3.3 Writing your own Bulk Reassessment Batch Process

If you decide that you require to implement your own algorithm for identi-
fying cases to reassess, and/or require custom business processing to occur
at the time that each case is reassessed, then you must implement your own
batch process for bulk reassessment. This section describes how to imple-
ment such a custom batch process.

If on the other hand you decide to use the bulk reassessment batch processes
included with the application, you can skip this section.

The CREOLEBulkCaseChunkReassessmentByProduct Batch
Process

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

221

This process, included with the application, identifies and reassesses all act-
ive cases for a given product.

The
curam.core.sl.infrastructure.assessment.impl.CREOLE
BulkCaseChunkReassessmentByProduct class is a "Chunker"
batch job which takes a productID as a standard batch parameter and
identifies all product delivery cases for that product, with a status of "Act-
ive".

The
curam.core.sl.infrastructure.assessment.impl.CREOLE
BulkCaseChunkReassessmentStream class is the corresponding
"Stream" job.

The behavior of the batch process can be configured using the following en-
vironment variables:

Environment vari-
able name

Description Default value

curam.batch.creo
lebulkcase-
chunkreassess-
ment.chunksize

The number of cases in
each chunk that will be
processed by the
CREOLE Bulk Case
Chunk Reassessment
batch program.

500

curam.batch.creo
lebulkcase-
chunkreassess-
ment.dontrunstre
am

Should CREOLE Bulk
Case Chunk Reassess-
ment batch program
sleep while waiting for
the processing to be
completed (rather than
run a stream in its con-
text).

NO

curam.batch.creo
lebulkcase-
chunkreassess-
ment.chunkkeywai
tinterval

The interval (in milli-
seconds) for which the
CREOLE Bulk Case
Chunk Reassessment
batch program will wait
before retrying when
reading the chunk key
table.

1000

curam.batch.creo
lebulkcase-
chunkreassess-
ment.unprocessed
chunkwaitinter-
val

The interval (in milli-
seconds) for which the
CREOLE Bulk Case
Chunk Reassessment
batch program will wait
before retrying when
reading the chunk table.

1000

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

222

Environment vari-
able name

Description Default value

curam.batch.creo
lebulkcase-
chunkreassess-
ment.processunpr
ocessedchunk

Should CREOLE Bulk
Case Chunk Reassess-
ment batch program
process any unprocessed
chunks found after all
the streams have com-
pleted.

NO

Table 10.2 Environment Variables for the
CREOLEBulkCaseChunkReassessmentStream Batch Process

Steps to Implement your own Bulk Reassessment Batch Process

Batch processing must be written using the chunked batch processing archi-
tecture (see the Curam Batch Performance Mechanisms docu-
ment).

Write these batch programs:

• a "Chunker" batch job which identifies 6 the list of cases and passes
them, along with appropriate control parameters to the
BatchChunker to divide them into smaller lots. This process of
identifying the cases can be controlled by whatever parameters are re-
quired, such as Product ID, case status, etc.

• a "Stream" job which takes one of these chunks of work and performs
full reassessment of each case contained in it.

You must decide on appropriate metrics to capture during the stream pro-
cessing, such as the number of cases processed, and/or the number of cases
reassessed which did/did not result in a changed determination result. Your
chunker and streamer must share data structures so that the stream pro-
cessing can capture metrics and the chunker can accumulate them into its re-
port.

The "Stream" job must perform a full reassessment of each CER-based case
as follows 7 :

// class member
@Inject
protected DeterminationCalculatorFactory

determinationCalculatorFactory;

public void yourBatchMethod(...yourparameters...)
throws AppException, InformationalException {

// process an identified case
final long caseID = ...;

final DeterminationCalculator determinationCalculator =
determinationCalculatorFactory

.newInstanceForCaseID(caseID);

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

223

final DetermineEligibilityKey determineEligibiltyKey =
new DetermineEligibilityKey();

determineEligibiltyKey.caseID = caseID;

/*
* reassess the case and determine whether the decision has
* changed
*/
final boolean decisionChanged =
determinationCalculator
.hasDecisionChanged(

determineEligibiltyKey,
CASEASSESSMENTDETERMINATIONREASONEntry.SOMEREASON);

}

Example 10.1 Code example to reassess a CER-based case

10.3.4 Bulk Reassessment for Multiple Simultaneous Changes

It is possible for one business change to require technical changes to a num-
ber of system-wide data artefacts. For example, a change in legislation may
involve all of:

• changes to existing CER rule sets associated with your product;

• division of the lifetime of the product into several product periods, to-
gether with new CER rule sets for the new product periods;

• the capture of new types of evidence which map to new rule classes (i.e.
new data configurations for rule object converters); and

• changes in benefit rates.

There are separate publication mechanisms for products, CER rule sets, data
configurations and rates, and so changes to different types of system-wide
data cannot be published in a single action. However, when bulk reassess-
ment is run, each case affected will be identified only once and the reassess-
ment of each case will take into account all the system-wide changes that
have occurred since the case was last assessed.

As such, when you prepare to publish a number of system-wide data
changes (whether those changes are inter-related or not), you should con-
sider carefully when bulk reassessment should be run. Depending on your
business needs, you might want to run bulk reassessment after each publica-
tion or instead hold off until a number of publications have occurred.

Note

When a case is reassessed by the Dependency Manager batch suite,
the system chooses a "reassessment reason" for any new determina-
tions that are stored. Each determination can only show a single re-
assessment reason, so in the situation where there are multiple sys-
tem-wide changes published which each affect a case, only one re-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

224

lated reason will show on that case.

If the case is reassessed using your own top-down algorithm, then
that algorithm is responsible for specifying an appropriate reason to
store on any new determinations.

10.3.5 Scheduling

Once you have decided your approach for identifying and reassessing cases
in batch processing, you must arrange for that batch processing to execute.

Broadly, you can run batch processing either:

• regularly, on a pre-determined schedule, either manually or through the
use of third-party scheduling software; or

• on an ad hoc basis, in response to the publication of system-wide data
changes.

The Dependency Manager batch suite is amenable to being executed on a
pre-determined schedule, because if there have been no system-wide
changes to data (written to the batch prededent change set) then the batch
suite will quickly identify that there are no cases to reassess. If you use such
a pre-determined schedule, then you can ignore the on-screen and applica-
tion log messages that advise that bulk reassessment processing is required.

It is not recommended to execute top-down case identification algorithms
on a pre-determined schedule because those algorithms will identify cases to
reasses regardless of whether there have been any system-wide data changes
published.

If you are executing batch processing that uses the chunked batch pro-
cessing architecture (such as the Dependency Manager batch suite, the
CREOLEBulkCaseChunkReassessmentStream batch process, or the
recommended way to implement your own top-down case identification/re-
assessment batch process), then you have some flexibility when manually
executing chunker and streamer processes:

• during the reassessment phase you can start up more instances of the
streamer batch processes in order to spread the reassessment work
across more physical machines;

• if you find that you need some physical machines for other purposes
(e.g. to run the online application in parallel with batch processing), you
can manually terminate one or more streamer processes and any uncom-
pleted work for those terminated streamer processes will be automatic-
ally picked up by one of the remaining streamer processes; and/or

• if you find that you need to pause the entire batch processing (e.g. you
need all your physical machines to be dedicated to the online applica-
tion) then you can manually terminate the chunker process and all the
streamer processes; when you subsequently re-run the chunker process it
will continue running from the point where it left off.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

225

Tip

If you have configured your chunker process to automatically per-
form streamer processing once the case identification phase is over
and the case reassessment phase has begun, and you wish to run
multiple parallel streamer processes to spread the reassessment load
across your physical machines, then you should start your streamer
processes before starting your chunker process. The streamer pro-
cesses will simply wait until the chunker process has completed its
case identification phase and the case reassessment phase has begun.

If you start your streamer processes after the chunker processing,
then in a situation where the chunker process identifies only a few
cases, it is possible for some of the streamers (including the chunker
process itself) to complete reassessment processing on all the cases
identified, and the overall batch processing would complete. If this
happens, then the other streamer processes will have no work to do
but will wait until the chunker process is next run, which could be
quite some time later; from an operational perspective, these other
streamer processes are just hanging and would need to be manually
terminated, which is not ideal under normal operational procedures.

If you are executing the Dependency Manager batch suite, then you must
run the PerformBatchRecalculationsFromPrecedentChange-
Set streamed batch process once per dependent type. You can choose the
order of these runs - for example, you may decide that it is more urgent to
have your cases reassessed in response to a system-wide data change than it
is to have advice recalculated.

If your batch run includes both a top-down case identification/reassessment
algorithm and a run of the Dependency Manager batch suite (see Sec-
tion 10.3.2.3, Driving the Identification of Affected Cases), then typically
you should run the top-down case identification/reassessment algorithm first
so that your priority cases are identified and reassessed.

If your batch run includes the execution of the ApplyProductReas-
sessmentStrategy batch process (see Section 11.5.4, Reassessment
Strategy) then typically there are no ordering constraints - but note that
cases which were previously not reassessible will only become reassessible
(and identifiable by the Dependency Manager batch suite) once the Ap-
plyProductReassessmentStrategy batch process has completed.

If you are planning to publish multiple changes to system-wide data (see
Section 10.3.4, Bulk Reassessment for Multiple Simultaneous Changes),
then you may choose to hold off on manually running your preferred ap-
proach to case identification/reassessment (or suspend your regular batch
schedule, if you have one) until all those system-wide data changes are pub-
lished. In this way, each case will only be identified and reassessed once in
response to the combined system-wide data changes.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

226

Notes
1This change refers to changing which rule class the product period "points
at" for eligilibility/entitlement calculations; i.e. changing the product period
from pointing to one rule class to instead point to another; similarly for key
decision factors and decision details rule classes.

Changes to the CER rules themselves are described below.
2For example, you might have to carefully communicate to your case work-
ers that a system-wide change has occurred, and to let them know that it will
be some time until all affected cases have been reassessed, but that urgent
cases can be manually reassessed in the meantime.

Depending on your business needs, this situation may be perfectly accept-
able, or on the other hand be needlessly confusing for case workers.
3You can choose the most appopriate approach each time you publish one or
more system-wide changes, or you can choose to use the same approach
each time.

Any custom batch processing you require to support bulk case reassessment
will need to be implemented and deployed to your production environment,
of course.
4If system-wide changes to data are made outside of the application's APIs,
e.g. by an SQL script, then the Dependency Manager cannot automatically
identify affected cases.
5There may be edge cases not obvious during the design of your case identi-
fication algorithm.

For example, a rate table may be primarily used in the determination calcu-
lations for a particular product, and thus it would be possible to drive the
identification of cases to reassess by finding all active cases for that product.

If, unbeknownst to the administrator, a rules designer has reused that rate ta-
ble in way that it is used by a handful of unusual cases for another product,
then these cases will not be identified by the naive "all active cases for a
product" algorithm run against the main product which uses the rates.
6You should ensure that each case is identified at most once.

For simple database queries this is unlikely to be challenging; however for
non-trivial queries you might consider using SQL's DISTINCT keyword,
e.g. SELECT DISTINCT(caseID) FROM... .
7You must also include:

• processing to capture the metrics for your batch program; and

• appropriate error handling to communicate with the chunked batch pro-
cessing architecture's support for skipping cases.

This extra code is beyond the scope of this guide.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

227

Chapter 11

Incremental Design and Evolution

11.1 Introduction

Products can be complex. Their requirements may come from complex le-
gislation and/or policy documents. The explanations available to case work-
ers may need to be very detailed.

Over time, products can become even more complex, as legislation and/or
policy is changed.

The Engine supports a rich set of features that allow the implementation of
even the most complex of products; however, when starting off the imple-
mentation of your product, the complexity of your product combined with
the richness of the Engine's features can together be quite daunting.

This chapter offers some advice on how to get started with your product's
initial implementation, and describes the options available when your imple-
mented product is required to evolve in the future.

11.2 Starting with Rule Sets Included with the Applic-
ation

A default eligibility and entitlement rule set is automatically created for a
benefit product that is created via the dynamic product wizard. You are also
free to create your product's rules "from scratch" by starting with empty rule
sets. However, if you have purchased a solution, you may wish to use rule
sets from these solutions as a starting point for your product.

This section describes the process whereby you can clone certain existing
rule sets to come up with rule sets that you are free to customize.

11.2.1 How Rule Sets Inter-relate

228

The CER rules structure is made up of CER rules artifacts and the relation-
ships between them. Understanding the structure of CER rules is key to the
cloning process.

CER Rules Artifacts - Technical Dependencies

CER rules are composed of rule sets which contain rule classes which, in
turn, contain rule attributes. CER rules are exposed at the level of rule sets.
Each rule set is an independently delivered unit, however there may be in-
terdependencies between the rule classes and rule attributes both within a
rule set and across rule sets.

So while a rule set does not have any direct dependencies outside of itself, it
can have such dependencies based on the rule classes and rule attributes it
contains.

Dependency Types

CER supports both build time dependencies which are based on defined re-
lationships, these are covered in more detail in the following sections, and
runtime dependencies which are free form, and hence need to examined in
detail when used rather than following well defined patterns.

Rule Class Dependencies

A rule class can extend another rule class; this is a form of implementation
inheritance for rule classes. Each rule class can only extend at most one oth-
er rule class (single inheritance). The extended rule class can be from the
same rule set or from a different rule set from the extending rule class.

Rule Attribute Dependencies

A rule attribute can define its type to be a rule class, or a collection (such as
a list or Timeline) of a rule class, or its type can be a built in Java type. The
rule class used for an attribute type can be from the same rule set or from a
different rule set from the rule attribute.

A rule attribute can be derived:

• as a fixed (externally <specified>) value; or

• using rules in the following ways (which can be combined into an arbit-
rarily complex expression)

• a direct reference to a rule attribute (using the <reference ex-
pression), with the rule attribute possibly on a rule class in a differ-
ent rule set;

• using the <readall> expression to retrieve instances of a rule
class, with that rule class possibly in a different rule set;

• using the <create> expression to create an instance of a rule class,

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

229

with that rule class possibly in a different rule set; and/or

• using a list of rule class instances, with that rule class possibly in a
different rule set.

CER Rules Artifacts - Logical Categorizations

Logically, appropriately structured CER rules can be thought of as being
made up of rules classes for two distinct logical functions:

• Data. Data rule classes are those which are an exact mirror for the data
held by the application. For example Income Evidence would be a data
rules class.

• Derived Data/Business Logic. All other rule classes can be considered
as Derived Data/Business Logic rule classes. For example Monthly In-
come would be such a rule class.

Additionally each rule class, provided out of the box, can be thought of as
containing either:

• Infrastructure. Fixed processing which is relied upon by other pro-
cessing in the application, and which cannot be altered; or

• Application. Processing which can be cloned and used as the starting
point for your rule set work.

11.2.2 Cloning CER Rule Sets

This section describes the process you must follow to clone rule sets in-
cluded with the application so that you can customize the cloned rule sets to
meet your product's needs.

If you need to customize any rules element in a rule set included with the
application, or if you rely on the current functionality of the version of a rule
set included with the applicaton, then you must clone the rule set and all of
its dependencies, in terms of application derived data/business logic rules
classes (but not infrastructure rule classes).

Caution

The application does not support the modification of any applica-
tion-included rule sets "in place".

See the compliancy statement in Section A.5, CER Rule Sets In-
cluded with the Application .

The documentation includes a dependency map of all the rule sets included
with the application. Please refer to the CER Rule Set Interde-
pendencies.svg in the README directory of your installation. The map
shows application (clone-able) rule sets in white and infrastructure (not
clone-able) rule sets in gray . This map may serve as a useful artifact in

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

230

identifying exactly which rule sets you will need to clone and update.

Follow these steps to clone rule sets:

• Identify the rule set(s) that is your entry point into the rules (typically
from a rule class).

• For each of these rule sets, follow the arrows on the dependency dia-
gram, to find any other Application rule sets on which those to custom-
ize depend. Repeat this step recursively until there are no more arrows
or to Application rule sets.

• For each of the Application rule sets found in the above steps, follow the
arrows backwards to pick up any additional Application rule sets that
depend on the rule sets found so far. Repeat this step recursively until
there are no more arrows to follow backwards.

• Each of the Application rule sets found during the above steps must now
be cloned and any references to other cloned rule sets updated. Follow
the steps below.

• For each rule set to be cloned, create a new name for the rule set
(e.g. the original name of the rule set, suffixed with "Custom", or the
name of your project - we recommend you use a consistent renaming
pattern).

• For each rule set to be cloned, copy its rule set source XML file from
EJBServer/components/ component name /
CREOLE_Rule_Sets/ someruleset .xml to EJBServ-
er/components/custom/CREOLE_Rule_Sets/ somer-
uleset Custom.xml . Open each rule set file in a text or XML
editor and change the name of the rule set to your custom name.
XPath for the node to change is: /RuleSet/@name.

• For each cloned rule set, open it and find all references to other rule
sets, and for each reference found, see if the rule set is one of those
that you have cloned; if so, change the name of the rule set reference
to be the name of the rule set now in your custom folder. Use the fol-
lowing XPath expressions to find rule class references:

• A class that extends a class from another rule set:

/RuleSet/Class/@extendsRuleSet

• Attribute types that are rule classes in another rule set (or a col-
lection thereof):

/Rule-
Set/
Class//Attribute/type//ruleclass/@ruleset

• Expressions that include rule class type specifiers, such as
<fixedlist> / <listof> , <create> or <readall> :

/RuleSet/Class/@extendsRuleSet

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

231

• For each cloned rule set, create an entry in EJBServer/com-
ponents/custom/data/initial/CREOLERuleSet.dmx
(which you must create if it does not already exist).

Assign IDs in your custom ID range - do not reuse the original IDs
for the rule sets. See the Cúram Express Rules Reference
Manual for suitable initial values of attributes in CREOLERule-
Set.dmx .

Additional steps may be required to update propagator configuration and
rule class links. Once you have completed cloning your rule sets, you must
follow these steps:

• Some of the rule sets you have cloned may have had rule object in-
stances created automatically by the configurable rule object propagat-
ors. If so, you must identify the propagator configurations and create a
custom configuration to also populate rule object instances for your
cloned rule sets. Follow the steps below:

• Inspect the propagator configurations included with the application
(i.e. those referenced from EJBServer/components/ com-
ponent name /data/ directory /
RuleObjectProapgatorConfig.dmx) to see if any propag-
ator configurations target the rule sets that you have cloned.

• Search the propagator configuration XML files (in the blob/clob dir-
ectories within the component data directories) using the XPath /
/ruleset/@name to find the targeted rule sets.

• If any targeted rule set is one that you have cloned, then you need to
write your own propagator configuration to target the cloned version
of the rule class (i.e. the rule class in your cloned rule set). Create a
propagator configuration in your custom component to do so.

• Some of the rule sets you have cloned may have been referenced in rule
class links from CER-based Products. If so, you must identify the rule
class links and update them to point to your cloned rule sets.

• Find the original database IDs of the rule sets you have cloned.

• Inspect all the EJBServer/components/ component name
/data/ directory /CREOLERuleClassLink.dmx files
to find any rows where creoleRuleSetID = the original data-
base ID of any of the rule sets you have cloned.

• For any entries found, create an entry in your EJBServer/com-
ponents/cus-
tom/data/initial/CREOLERuleClassLink.dmx file to
override entry included with the application; change the creoleR-
uleSetID to be the new ID for your cloned version of the rule set.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

232

11.3 Incremental Design

When you are grappling with the complexity of your product, it can be use-
ful to take certain shortcuts so that you can start to see your product "up and
running" before it is fully implemented. This section suggests some useful
approaches which may help you incrementally design and/or implement
your product.

Caution

There is more to getting a product up and running than is described
in this guide. This guide covers only the configuration options spe-
cific to CER-based products; for other configuration options and ini-
tial set-up tasks, see the How to Build a Product guide.

Any short-cuts that you take during the initial development of your
product must be recognised for what they are - each short-cut builds
up a certain amount of "debt" which must be later repaid. Keep track
of which short-cuts you take and plan to place each short-cut with a
robust implementation later in your development cycle.

The initial goal of incremental design is to get something up and running for
your product, even though it is far from fully implemented. This initial ver-
sion of your product should be able to have cases created against it and de-
terminations made, but those determinations may show fixed eligibility/en-
titlement information (which does not take into account the case's circum-
stances) and no key decision factors or decision details.

These chapters earlier in this document describe how to configure your
product. The chapters linked below give details for the full implementation
of their respective areas:

• Eligibility and Entitlement Calculations. See Section 4.4, How to Use
It in Chapter 4, Calculating and Displaying Eligibility and Entitlement .

• Key Decision Factors. See Section 5.4, How to Use It in Chapter 5,
Calculating and Displaying Key Decision Factors .

• Decision Details. See Section 6.4, How to Use It in Chapter 6, Calcu-
lating and Displaying Decision Details .

11.3.1 Choose Default Configuration Options for Your Product

When you initially set up your product, you must choose certain configura-
tion options. You can use these default options and revisit them later in your
development cycle to replace them with more appropriate options:

• Open-ended cases. Allow your product to support open-ended cases.

• Summarizer Strategy. Choose "Total weekly monetary entitlement"
(see Section 4.4.3.4, Choose or Create a Summarizer Strategy).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

233

• Determination Comparison Strategy. Choose "Compare all user-fa-
cing data" (see Section 8.4, Determination Comparison Strategies).

• Reassessment Strategy. Choose "Do not reassess closed cases" (see
Section 7.4.1, Product Delivery Rule Objects).

11.3.2 Implement a Single Product Period First

In the unlikely event that your initial version of product requires multiple
product periods (i.e. already has changes of legislation and/or policy to deal
with), first work with a single product period only, starting at the start of
your overall product, and with no end date. Further product periods can be
implemented when this initial product period is up-and-running. A default
product period and associated eligibility and entitlement rule set is automat-
ically created and published for a benefit product that is created via the dy-
namic product wizard. This eligibility and entitlement rule set is intended to
be edited in line with your product requirements prior to product use.

When you have implementations for your single product period up-
and-running, then you can split your product into multiple product periods,
cloning your rule sets from the first period you implemented, as a starting
point.

11.3.3 Focus on Eligibility/Entitlement Rules

The core rules to get your product up-and-running are those for eligibility
and entitlement calculations. Do not initially implement any rules for key
decision factors or decision details.

For a benefit product that has been created via the product wizard, an initial
version of the eligibility/entitlement rules will automatically have been cre-
ated for your product. If you are creating a new eligibility and entitlement
rule set, the initial version of your eligibility/entitlement rules can hard-code
the following (to be replaced by real implementations later):

• A fixed eligibility result, such as "always eligible", or "eligible for Janu-
ary 2010 to December 2011 only"; and

• Fixed entitlement, i.e. fixed values for all objectives, a fixed number of
occurrences for any multiple objectives, and fixed entitlement for each
objective (such as "always entitled").

Typically it is easier to work on single objectives before moving on to mul-
tiple objectives (see Section 4.4.2.4, Identify the rules that govern the ob-
jectives for each case).

11.3.4 Spin-off a Task to Write Rule Classes for Custom Entities
and/or Evidence Types

While one rule developer creates the initial eligibility/entitlement rules, an-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

234

other developer can (in parallel) write rule sets for "data" rule classes for
your:

• custom entities (which are required for rules calculations); and/or

• custom evidence types that you have created for your product.

Important

To maximise re-use of these "data" rule classes, it is recommended
that you place them in their own rule set - i.e. not the same rule set
as the eligibility/entitlement rule classes.

Unless you have special requirements for handling versions of active evid-
ence, typically you will find the Engine's support for succession sets the
easiest option when later working with evidence in your eligibility/entitle-
ment rules (see Section 7.4.4, Active Succession Set Rule Objects .

The initial implementation of the "data" rule classes should concentrate on
creating the rule attributes with the correct data types.

Later, you can add:

• a description rule attribute to each data rule class (to aid debug-
ging); and

• rule attributes (suitably annotated) to allow navigation to related parent
or child evidence (see Section 7.4.4.3.3, Population of relationships to
rule objects for other succession sets).

Important

To maximise re-use of these "data" rule classes, there should not be
any calculated rule attributes on any rule class other than the de-
scription rule attribute.

Product-specific calculations should be placed on product-specific
"calculator" rule classes later.

Once the "data" rule classes have been written and their rule sets published,
the developer can write and publish rule object propagator configurations so
that rule objects are automatically created by the Engine. These configura-
tions will need to be in place before the overall product can be tested online,
but are not required while the eligibility/entitlement rules are hard-coded,
and are not required in order to unit-test parts of implemented eligibility/
entitlement rules.

Later you can revisit your data rule classes and check for commonality
across your products. You can refactor your rule classes so that any which
are common across products are normalized into a common rule set, and
thus are propagated to only once (to improve performance and lower data-
base storage requirements).

11.3.5 Top-down Implementations

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

235

Once your hard-coded eligibility and entitlement rule implementations are
in place, you can use a top-down approach to replace these hard-coded im-
plementations with real logic appropriate to your product. As you drill
down, you may create new hard-coded lower-level implementations, which
(depending on your factoring of rule sets) might be handed-off to multiple
developers for further implementation.

For example, the "Lone Parent" Benefit outlined in Section 2.2.1, Example
might initially be implemented as "always eligible".

The next step in implementing the eligibility calculation for "Lone Parent"
Benefit would be to replace the "always eligible" calculation with (in
pseudo-code, and assuming relevant timeline operations):

• childInEligibleAgeRange AND

• childResidingWithParent AND

• parentIsLone AND

• familyPassesMeansTest .

These new attributes would each initially be hard-coded to be "true forever".
The top-down process can then undergo another iteration and the imple-
mentations of these new attributes each changed from the hard-coded "true
forever" into real implementations, possibly with further new attributes
which are initially hard-coded; e.g. the childInEligibleAgeRange
could apply date logic to the child's date of birth, but that date of birth could
initially be hard-coded instead of coming from a propagated rule class for an
entity or evidence type.

11.3.6 Bottom-up Implementations

If you know that there are complex calculations around a propagated rule
class, then you can implement and test "calculator" rule classes even though
these are not yet used by eligibility/entitlement rules.

Later you can integrate these bottom-up implementations with your top-
down implementations and re-test.

11.3.7 Hard-code Rates at First

In the initial implementation of your eligibility/entitlement rules, you may
require data which is best implemented as rate tables.

Initially, though, you may find it easier to hard-code the rate information
directly in your rule implementations; later you can refactor your rules to
move the data to Cúram rate tables, and replace your implementation with
the rate expression, and create propagator configuration entries to allow
your new rate tables to be propagated Section 7.4.2, Rate Rule Objects .

Caution

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

236

If your implemented product goes live with rates hard-coded in the
rule sets, then any subsequent rate changes will involve rule set
changes (with the associated re-testing effort), rather than a rate-
only change external to your rule sets.

11.3.8 Keep an Eye on Rule Class Dependencies

It is recommended that you keep these rule classes in separate rule sets:

• Data rule classes. Keep the data rule classes for your custom entities
and evidence types in a separate rule set to maximise their re-use across
different products.

• Eligibility/entitlement rule classes. Keep the rule classes for your eli-
gibility/entitlement calculations in a separate rule set so that display-
only changes to rules do not require re-testing of core eligibility/enti-
tlement implementations.

• Key decision factor rule classes. Keep the rule classes for your key de-
cision factors in a separate rule set so that they can be maintained inde-
pendently of your eligibility/entitlement rule classes.

• Decision details rule classes. Keep the rule classes for your decision
details in a separate rule set so that they can be maintained independ-
ently of your eligibility/entitlement rule classes.

• Common calculator rule classes. As you identify calculator rule
classes which are common between your eligibility/entitlement, key de-
cision factor and/or decision detail rule classes, you can consider placing
such rule classes in "common" rule sets.

While it is important to adhere to the recommended structure above by the
time your product's implementation is complete, you do not have to strictly
adhere to it in the early days of your product's development cycle.

You can refactor your rule sets later to match this structure, although such a
refactoring task will become more complex the longer it is put off. In any
case, to refactor freely you will need to have built up a good bank of unit
tests for the behavior of your rule classes.

11.3.9 Try Key Decision Factors before Decision Details

Writing rules for key decision factors is easier than writing rules for de-
cision details, because:

• The data structure for key decision factors is fixed, whereas the data
structure for decision details is free-form and requires design work

• The Engine provides screens to display key decision factors, whereas
you have to implement your own dynamic UIM screens for decision de-
tails.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

237

When starting to implement visualizations for the explanation of a case's de-
termination result, consider implementing key decision factors before em-
barking on the more onerous task of implementing decision details. Key de-
cision factors may be sufficient to demonstrate that the eligibility/entitle-
ment results for your product's cases are not only "correct", but are "correct
for the right reasons".

11.3.10 Re-use the Basic Decision Details before Writing Your
Own

The Engine includes support for basic eligibility/entitlement decision details
(see Section 4.2.2, Basic Eligibility/entitlement Decision Details).

Consider re-using this basic display category before implementing your own
(more suitable) display categories. This re-use will help you understand how
decision details are implemented and will enable your testers to see more
details about your cases (albeit only very basic details).

You can remove the Basic display category later when you implement more
appropriate display categories.

To re-use the basic decision details, follow these steps (as part of the general
steps involved in implementation decision details - see Section 6.4.3, Imple-
mentation):

• When you create your case rule class (see Section 6.4.3.1, Write the
Case rule class), make your rule class extend AbstractBasicPro-
ductDecisionDetailsRuleSet.AbstractBasicCase . You
must implement the inherited abstract abstractCase rule attribute,
to create an instance of the underlying rule class for your eligibility/en-
titlement (i.e. the one you created in Section 4.4.3.2.1, Write the Case
rule class), specifying the value for productDeliveryCase ; and

• When you create you create your dynamic UIM and properties files,
clone those for the following pages to your custom component:

• CREOLEDisplayRules_basicCaseDisplay ; and

• CREOLEDisplayR-
ules_basicCaseDisplay_objectiveTagSubscreen .

You must provide new unique names for your cloned dynamic UIM and
.properties files, and update their contents to point to your new
names.

11.3.11 Start Slowly with Decision Details

The implementation of decision details (rules and screens) can be a complex
area.

Start off with simple screens that do not require subscreens or comparison

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

238

data. Avoid conditional display in your dynamic UIM until you have all dis-
playable data reliably flowing from rules to determination results to screens.

Later you can start to implement conditional display, and more complex
screens that have subscreens or comparison data.

When implementing a dynamic UIM screen, if you require data that is not
already available in rules, then initially you can create a new rule class/rule
attribute with a hard-coded dummy implementation only; once you have the
data flowing to the screen you can revisit the rule attribute to implement real
logic (possibly giving the task to another developer to work on in parallel to
screen development).

11.3.12 Throughout Your Product's Development

The sections above describe various short-cuts that can be taken during ini-
tial development.

However, there are some approaches which are important no matter which
part of the development cycle you're in:

• Understand Timelines. CER's concept of Timelines, and its expres-
sions for manipulating them, are widespread in rule sets used by
products. Ensure that you are comfortable with how timelines work and
when they are used, before you implement any rule sets for your
product. See also Section 4.4.3.2.6, A note on manipulating Timelines in
CER .

• Comment as you go. Write comments for your rule classes and rule at-
tributes as you implement them, while they are fresh in your mind.

• Test as you go. Once you have simple processing up-and-running, write
unit tests for blocks of rules as you implement them. Write integration
tests for your product once there are enough end-to-end processing steps
implemented for your product.

• Draw on rule sets included with Cúram Solutions. Look at the rule
sets included with Cúram Solutions for ideas on how to structure and
implement different styles of rules.

• Refactor. Don't be afraid to refactor rules as you discover commonality
and better structures. A good bank of unit tests will allow you to refactor
with confidence. Draw pictures of complex structures (because any sys-
tem of a certain complexity cannot be entirely self-documenting).

• Monitor application logs. The Engine tries hard to continue processing
even when configuration is not quite correct. Keep an eye on non-fatal
warnings and/or errors written to the application logs and console out-
put. Use the Engine's environment variables to increase the logging
verbosity to help track down problems (see Appendix D, Environment
Variables).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

239

11.4 Handling Legislation Change

When a product is first implemented, typically there is an initial version of
legislation which takes effect until further notice.

However, over time, for political, policy or budgetary reasons, the legisla-
tion underpinning the functional requirements for your product may change.
One style of change prevalent amongst social security legislation is whereby
the eligibility and entitlement rules for cases change over the lifetime of the
case. Typically (but not always):

• the change in rules "takes effect" on a particular date; the case's eligibil-
ity and entitlement is calculated according the "old" rules before that
date, and according to the "new" rules after that date;

• the date that the rules changes takes effect is the same for all cases for
that product, i.e. there is no data on any case which affects the date from
which the new rules apply;

• cases that came to a natural end before the change in legislation are un-
affected;

• cases that start after the new rules have taken effect use the new rules
only; and

• after the new rules have taken effect, any new claims which are re-
gistered to retrospectively start before that date will use a mixture of old
and new rules, just as for claims which were registered on time before
that date.

The Engine uses the term "legislation era" to refer to a period of constant le-
gislation; in other words, a change in legislation (no matter how big or
small) ushers in a new legislation era for a product.

The following example illustrates how a product set-up might need to
change from supporting just the "old" rules, to supporting a mixture of "old"
and "new" rules, to be applied to different legislative eras.

A client has been receiving an Income Assistance benefit but the case has
subsequently ended. Another client has been receiving the same benefit and
continues to do so. Both of these cases are using the eligibility and entitle-
ment rules that were implemented to meet the requirements of the single
(initial) version of the legislation.

New legislation is enacted resulting in the need for the social services
agency to modify the eligibility and entitlement rules. Changes are made to
the rule set and made effective from the date on which the legislation went
into effect.

For the case that has already ended, eligibility and entitlement continues to
be determined using the initial version of the rules because the case ended
before the effective date of the legislation changes. For the case that remains

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

240

open, eligibility and entitlement continues to be determined using the initial
version of the rules up to the effective date of the legislation change, but
uses the new version of the rules from the effective date onwards.

For any cases that are created after the date on which the new version of the
rule set took effect, eligibility and entitlement will be determined using the
new version of the rule set. For any cases that are retrospectively created
and begin before the effective date of the legislation changes, eligibility and
entitlement will be determined using the initial version of the rule set up to
the effective date and the new version of the rule set from that date onwards.

The Engine supports two different mechanisms for implementing legislation
change:

• Branching logic in your CER rule sets. You can create a new version
of your existing rule sets used by your product, and this new version of
the rule set can contain branches which apply different logic to the peri-
ods on your cases, before and after the date that the legislation changes.

• Multiple product periods for your product. You can change your
product's set-up so that the lifetime of the product is carved up into dis-
tinct "product periods", and you can assign different eligibility/entitle-
ment CER rule sets to each of the product periods.

Each of these approaches has its own benefits and limitations. The re-
mainder of this chapter describes these two supported mechanisms in great-
er detail, followed by some important points to consider when choosing
which approach to follow when implementing a particular change in legisla-
tions.

Important

You should familiarize yourself with the details of these approaches
prior to deciding how best to implement changes in legislation
which affect your product's requirements.

11.4.1 Branching Logic in Your CER Rule Sets

If you choose to implement branching logic in your rule sets, then you will
first need to identify which rule attribute implementations will need to have
branching logic. (Indeed, if this identification shows that a very large num-
ber of attributes require branching logic, you may be better off switching to
the multiple product periods approach instead.)

For each rule attribute that requires branching logic, use CER's legisla-
tionChange expression to implement different logic for different "eras"
of time. See Section C.2.2, legislationChange for a full description of this
expression.

Update your rule set tests to test for the behavioral changes introduced by
your legislation change.

Once your changes to your existing rule sets are complete, publish the

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

241

changes, which will result in existing cases being bulk-reassessed, typically
leading to new determinations being stored for some existing cases.

11.4.2 Multiple Product Periods for Your Product

If you choose to use multiple product periods for your product, then typic-
ally it will be helpful to clone the rule sets for your existing product period
(assuming that the structure of the rules is still suitable, and that some signi-
ficant number of existing rules implementations do not require updating to
implement the legislation change).

Clone the rule sets using the process described above in Section 11.2.2,
Cloning CER Rule Sets . You need only clone the rule sets down as far as
those rules which are affected by the legislation change. It may be helpful to
rename your rule sets in line with your eras of legislation. You may also
identify useful refactorings to make common any rule classes which are un-
affected by the legislation change.

Update your cloned rule sets to implement the change in legislation.

You must create tests for your rule set changes; because you have cloned
rule sets, you may need to clone your bank of rule set tests, and update the
cloned tests to use your cloned rule sets. This cloning of tests will help en-
sure that existing functionality unaffected by the legislation change contin-
ues to work as expected. Update your cloned rule set tests to test for the be-
havioral changes introduced by your legislation change.

Once your changes to the newly-created cloned rule sets change are com-
plete, publish the changes.

Set an end date on the existing product period. Create a new product period
(see Section 4.4.3.3, Write the Product Periods) and configure the new
product period to use your cloned rule sets.

Publish your changes to the product periods, which will result in existing
cases being bulk-reassessed, typically leading to new determinations being
stored for some existing cases.

11.4.3 Choosing the Right Approach

When you come to implement a change in legislation, there are many
factors which you should bear in mind when choosing which approach is
better for your change. Sometimes the competing factors will mean that
there is no overall clear-cut answer, and you will need to make an informed
decision based on the details of the change that you need to make.

Over time, a product may undergo several legislation changes, and each le-
gislation change must be taken on its merits when deciding which approach
to take; in other words, a long-lived product may have had several historical
legislation changes implemented using branching logic, and also other his-
torical legislation changes implemented using multiple product periods. In-
deed, it is possible (but rare) that a single legislation change may be imple-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

242

mented using a combination of the "branching logic" and "multiple product
periods" approaches.

This table describes some important consequences to keep in mind when
making your choice.

Factor Consequences under
the "branching logic"
approach

Consequences under
the "multiple
product periods" ap-
proach

Testing For existing unit test
that test attributes which
now contain branching
logic, the tests need to
be updated to test the
output of rule attributes
taking into account eras
of old legislation and
new legislation; these
tests will need to deal
with both versions of
the legislation.

The full bank of unit
tests for a cloned rule
set must also be cloned
and maintained in line
with the cloned rule set;
in particular, tests for
cloned attributes which
are updated in line with
the legislation change
must be updated to test
the behavior of the
changed attribute. Each
test only needs to deal
with one version of the
legislation, however.

Refactoring Typically (depending on
the complexity of the le-
gislation change) no re-
factoring will be re-
quired to make logic
common, as existing
common logic should
already have been
factored to normalize
common logic.

The cloning of rule sets
may present an oppor-
tunity to refactor rule
sets so that common lo-
gic unaffected by the le-
gislation change can be
refactored to exist only
once - but this refactor-
ing will take implement-
ation and retesting ef-
fort.

Maintenance The number of rule
classes and rule attrib-
utes will typically be
unchanged; however,
the implementation of
some rule attributes will
become more complex,
as those attributes have
to deal with legislation
change. Future bug fixes
to the rule set (which
span legislation eras)

The number of rule
classes and rule attrib-
utes will increase due to
cloning; however, the
implementation of rule
attributes should remain
at the existing level of
complexity. Future bug
fixes to the rule set
(which span legislation
eras) may require imple-
mentation in more than

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

243

Factor Consequences under
the "branching logic"
approach

Consequences under
the "multiple
product periods" ap-
proach

will typically require
implementation in one
rule set only.

one rule set, depending
on whether logic com-
mon across rule sets has
been refactored.

Complexity This approach is suited
to legislation changes
which affect a small
number of rule attrib-
utes, where the human-
readability of the overall
rule set is not overly-
compromised by the
limited introduction of
branching logic.

This approach is suited
to legislation changes
which affect a large
number of rule attrib-
utes, where the human-
readability of the overall
rule set would be
overly-compromised by
the wide-ranging intro-
duction of branching lo-
gic.

Guarantees regarding
stability of decisions un-
der older legislation

You must test that your
implementation of
branching logic has cor-
rect dates for eras, and
does not accidentally af-
fect past periods already
determined for cases.

Existing periods of de-
terminations for the old
product period (now
with an end date) are
guaranteed not to be af-
fected by the legislation
change introduced by
the new product period.

Existing display cat-
egories

You must test that the
existing dynamic UIM
screens for display cat-
egories should continue
to work with your up-
dated rule sets.

You must test that the
existing dynamic UIM
screens for display cat-
egories work with the
different rule sets con-
figured for your differ-
ent product periods.
Either update the exist-
ing dynamic UIM
screens (if necessary),
or if the display output
for an existing rule set
category is sufficiently
different after the legis-
lation change, you may
need to clone the dis-
play category so that
there are different tabs
(and thus different dy-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

244

Factor Consequences under
the "branching logic"
approach

Consequences under
the "multiple
product periods" ap-
proach
namic UIM screens) for
before/after the legisla-
tion change. If you
clone a display cat-
egory, then case work-
ers will need to click on
one of two display cat-
egories, depending on
which one is implemen-
ted for the coverage
period displayed.

New display categories If a new display cat-
egory is introduced for
the legislation change,
then your existing rules
must create appropriate
"no output" values for
older eras of legislation.

Your cloned rule sets
and new product period
can introduce support
for a new display cat-
egory which is not sup-
ported by older product
periods.

Whether the legislation
change affects all cases
on the same date

Each attribute which is
updated to contain legis-
lation change logic can
have an implementation
which uses different era
dates from other attrib-
utes (and can even use
dates which vary ac-
cording to circum-
stances of the case).

The cloned version of
the rule sets affects all
cases on the same date -
namely the date of the
new product period. The
date cannot vary across
cases.

Whether the legislation
change date is important
enough to flag to case
workers on each de-
termination

If the date of legislation
change is important in
its own right, consider
implementing a key de-
cision factor which
shows the date that le-
gislation changed.

If the date of legislation
change is important in
its own right, consider
implementing a key de-
cision factor which
shows the date that le-
gislation changed. Note
that if the format of the
decision details data is
different between your
old product period and
your new product peri-
od, then when a case
worker views a determ-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

245

Factor Consequences under
the "branching logic"
approach

Consequences under
the "multiple
product periods" ap-
proach
ination which spans
these periods, then the
Engine will split the de-
termination into differ-
ent coverage periods
anyway (due to the
change in decision de-
tails across the product
periods).

Table 11.1 Factors involved when choosing the right approach
for legislation change

Typically, the choice of approach does not significantly affect performance
and/or data storage. The multiple product period approach will lead to more
rule objects being created in memory during the calculation of a determina-
tion result; but these rule objects are not stored on the database. They are in-
cluded in rule object snapshots, however, but if common logic has been nor-
malized, then when CER is requested to create a rule object with common
logic, CER will re-use a similarly-created rule object that has the same ini-
tialization/specified values, and thus the common rule object will appear
only once in the rule object snapshot, regardless of which approach is used.

Some types of legislation change require that newly-registered cases are
treated differently from cases which already existed at the time that the le-
gislation change came into effect, even if those newly-registered cases are
recorded to retrospectively start before the legislation change (i.e. if the case
was registered "late" and its start date is back-dated). Under these circum-
stances, regardless of which approach is chosen, the case's registration date
will become an important piece of evidence in its own right, as it will gov-
ern how the case is treated. If you are considering the "multiple product
period" approach, then you might implement and test the changes to branch
logic based on the case registration date before cloning your rule sets, as the
branching logic may be common to the determination results for both eras
of legislation.

Some types of legislation change introduce "transitional" periods whereby
claims are treated different. You may need to include branching logic for
several dates, or create more than one new product period, to cater for how
cases are treated before/during/after any transitional periods.

If a start date of a case is incorrectly recorded, then when it is corrected,
there may be a change to the product periods which contribute to that case,
and thus the case may now be affected by a legislation change whereas pre-
viously it was not, or vice versa. This kind of retrospective correction to

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

246

case start dates behaves as you would expect and is automatically handled
by the Engine.

Legislation changes can be future-only or contain an element of retrospect-
ive change, depending on whether the effective date of the legislation
change is in the future or the past; indeed, sometimes a legislation change
targeted at a future date might, due to lags introduced by legal/policy depart-
ments, end up being in the past by the time it is implemented. The imple-
mentation of legislation changes will typically affect a large number of
cases, which will undergo changes in their determination results. For future-
dated changes, the periods of the determinations affected will be in the fu-
ture, typically for periods not yet processed by financial processing, and
thus there will be no corrective under- or over-payments issued on foot of
the change. For retrospective legislation changes though, it is possible to af-
fect determinations for periods already delivered, typically leading to cor-
rective under- or over-payment processing on a number of cases, as is to be
expected.

11.5 Changing Product Configuration Settings

There are a number of configuration settings at the product level which can
be changed at any time, including for a product which has already had
product delivery cases created for it:

• decision summary display strategy;

• determination comparison strategy;

• allow open-ended cases; and

• reassessment strategy.

The sections below describe these configuration settings in more detail.

11.5.1 Decision Summary Display Strategy

The strategy in place for the product governs how each coverage period is
summarized when shown to the a case worker (see Section 4.2.1, Viewing a
Determination's Coverage Periods , Section 5.2.1, Viewing Key Decision
Factors Graphically and Section 5.2.2, Viewing Key Decision Factors in a
List).

If you change this setting for your product, then it will affect how all de-
terminations for the product are displayed, including historical determina-
tions already created and stored as well as any new determinations created
in the future.

11.5.2 Determination Comparison Strategy

The strategy in place for the product governs how "different" a new assess-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

247

ment determination must be to be worthy of storage (see Section 8.4, De-
termination Comparison Strategies).

If you change this setting for your product, then it will only affect the pro-
cessing of new determinations created in the future; all existing determina-
tions which have already been created and stored are entirely unaffected.

11.5.3 Allow Open-Ended Cases

This setting governs whether the Engine allows a new case to be created
without an expected or actual end date.

If you change this setting for your product, then it will only affect the pro-
cessing of new cases created in the future; all existing cases which have
already been created and stored are entirely unaffected. Thus it is possible
for a product not to allow the creation of open-ended cases, yet have cases
registered against which are open-ended (because those cases were re-
gistered at a time in the past when the product did support open-ended
cases).

11.5.4 Reassessment Strategy

This setting governs the types of cases that the Engine can reasses.

The supported settings are:

• Automatically reassess all cases. The Engine will allow reassessment
of all cases and will maintain dependency records for each case's assess-
ment for as long as the case is recorded on the system. Over time, de-
pending on the number of cases on your system, the ever-growing num-
ber of dependency records may have an effect on the performance of
your system.

• Do not reassess closed cases. The Engine will allow reassessment of all
cases except for those with a status of "Closed". The Engine will main-
tain dependency records for each non-closed case. If a case's circum-
stances change when it is closed, the Engine will not reassess the case
(but if the case is re-opened, the Engine will then reassess the case).

This setting is the default for new products you add to your system.

If you change this setting for your product, then all existing cases will be
checked to see if dependency records should be created or deleted as appro-
priate.

Important

The checking of existing cases is performed by the ApplyPro-
ductReassessmentStrategy batch job.

When a user publishes changes to a product which include a change
to the product's reassessment strategy, then at the point where the
user is asked to confirm the publication, the system will warn the

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

248

user that a batch job request will be queued up, and that the batch
job must be executed before the new reassessment strategy takes ef-
fect for existing cases.

For each product delivery case for the product:

• if the case was not reassessable under the old strategy but be-
comes reassessable under the new strategy, then an assessment
is performed on the case to build up the dependency records for
the case's determination result;

• if the case was reassessable under the old strategy but is no
longer reassessable under the new strategy, then the dependency
records for the determination result are removed;

• otherwise no action is performed on the case.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

249

Appendix A

Compliancy

This appendix explains how to develop using the Eligibility and Entitlement
Infrastructure in a compliant manner.

A.1 The Public API

The Eligibility and Entitlement Infrastructure has a public API which cus-
tomers may invoke in application code. Nothing will be changed or re-
moved in this public API without following the standards for handling cus-
tomer impact.

A.1.1 Identifying the Public API

The JavaDoc for the code packages listed in Section A.2, Code Package Re-
strictions is the sole means of identifying which public classes, interfaces
and methods form the Eligibility and Entitlement Infrastructure public API.

A.2 Code Package Restrictions

The following code packages are restricted:

• curam.core.facade.infrastructure.assessment.impl
;

• curam.core.facade.infrastructure.creole.ruleseta
dmin.impl ;

• curam.core.facade.infrastructure.paymentcorrecti
on.impl ;

• curam.core.facade.infrastructure.product.creole.
impl ;

• curam.core.facade.infrastructure.propagator.impl

250

;

• curam.core.sl.infrastructure.assessment.event.im
pl ;

• curam.core.sl.infrastructure.assessment.impl ;

• curam.core.sl.infrastructure.creole.extension.im
pl ;

• curam.core.sl.infrastructure.creole.impl ;

• curam.core.sl.infrastructure.paymentcorrection.i
mpl ;

• curam.core.sl.infrastructure.product.creole.impl
;

• curam.core.sl.infrastructure.propagator.impl ; and

• curam.core.sl.infrastructure.rate.impl .

These packages contain interfaces and classes internal to the Eligibility and
Entitlement Infrastructure. Unless explicitly permitted in the JavaDoc, cus-
tomers must not provide their own implementation of any Java interface nor
subclass any implementation Java class contained in these packages. Cus-
tomers must not place any custom classes or interfaces in these packages.

For convenience the available customization points are described in Ap-
pendix B, The Eligibility and Entitlement Engine API and Customizability .

A.3 Code Table Restrictions

A.3.1 CaseAssessmentDetReason

The CaseAssessmentDetReason code table contains codes which in-
dicate why a particular assessment occurred (for example 'Case Activation'
or 'Change of Evidence'). It can be found in the
curam.core.sl.infrastructure.assessment.codetable
package.

In contrast to the other code tables in the same package, customers are free
to add custom codes to the CaseAssessmentDetReason code table us-
ing the recommended approach.

A.3.2 CaseSnapshotDetReason

The CaseSnapshotDetReason code table contains codes which indic-
ate why a particular snapshot was taken occurred (for example 'Case Ap-
proval' or 'Case Rejection'). It can be found in the
curam.core.sl.infrastructure.assessment.codetable
package.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

251

In contrast to the other code tables in the same package, customers are free
to add custom codes to the CaseSnapshotDetReason code table using
the recommended approach.

A.3.3 Restricted Code Table Packages

The following code table code packages are restricted:

• curam.core.sl.infrastructure.assessment.codetabl
e ;

• curam.core.sl.infrastructure.codetable ;

• curam.core.sl.infrastructure.propagator.codetabl
e ; and

• curam.core.facade.infrastructure.creole.ruleseta
dmin.codetable .

With the exception of CaseAssessmentDetReason and CaseSnap-
shotDetReason , all code tables contained in these packages are re-
served for use by the Eligibility and Entitlement Infrastructure. Customers
must not modify these code tables in any way. In particular, the creation of
custom versions of these code tables to contain additional codes is not sup-
ported.

A.3.4 Restricted Code Tables

The following code tables in the curam.codetable package are also re-
stricted:

• AssessmentDateListType ;

• CaseDecisionMethodCode ;

• CaseDecinitReasonCode ;

• ReassessmentAmount ;

• ReassessmentProcMode ; and

• ReassessmentResult .

These code tables are reserved for use by the Eligibility and Entitlement In-
frastructure. Customers must not modify these code tables in any way. In
particular, the creation of custom versions of these code tables to introduce
custom codes is not supported.

A.4 Database Restrictions

The Eligibility and Entitlement Infrastructure includes a number of database
tables. In general, these tables are internal to the Eligibility and Entitlement

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

252

Infrastructure and the data on them may only be read or written via the pub-
lic API.

For more details on the read/write restrictions for these database tables, see
the following subsections.

Note

There are database tables prefixed with CREOLE which are part of
other application components (in particular the CER Infrastructure),
and which are subject to their own compliancy statements. Only the
compliancy statements for the Eligibility and Entitlement Infrastruc-
ture database tables are described below.

A.4.1 RuleObjectPropagatorControl

RuleObjectPropagatorControl is a single-row control table which is used to
control the execution of the initial propagation of application data to
CREOLE rule objects.

This table contains a single row which indicates whether initial propagation
has been run. This control row ensures that initial rule object propagation is
run by exactly one application server instance during Guice initialization.

The data on this table is internal to the Eligibility and Entitlement Infra-
structure and may not be read or written by any other component.

The single row on this table is populated via a DMX file provided with the
application. Customers must not alter this DMX file nor create any other
DMX files which target the RuleObjectPropagatorControl table.

A.4.2 Restricted Database Tables

The remaining database tables which are included with the Eligibility and
Entitlement Infrastructure are:

• BreakdownInfo

• BulkCaseReassessment

• BulkReassessRecalcGroup

• CaseDecision

• CaseDecisionObjective

• CaseDecisionObjectiveTag

• CaseNomineeProdDelPattern

• ConfigurationChangeItem

• ConfigurationPublication

• CREOLECaseDecision

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

253

• CREOLECaseDetermination

• CREOLECaseDeterminationData

• CREOLECaseReassessment

• CREOLEProduct

• CREOLEProductDecisionDispCat

• CREOLEProductPeriod

• CREOLEProductPeriodDispCat

• CREOLEProductPublicationItem

• CREOLEProductSandbox

• CREOLEProductSnapshot

• CREOLERecalcRequestGroup

• CREOLERecalculationRequest

• CREOLERuleClassLink

• CREOLERuleSetCategory

• CREOLERuleSetCategoryLink

• CREOLERuleSetPublicationItem

• NomineeOverUnderPayment

• OverPaymentEvidence

• OverUnderPaymentBreakdown

• OverUnderPaymentHeader

• PaymentCorrectionEvidence

• PaymentCorrectionFCLink

• PropConfigPublicationItem

• ReassessmentAmountInfo

• ReassessmentBalanceInfo

• ReassessmentInfo

• RuleObjPropConfigSandbox

• RuleObjPropConfigSnapshot

• UnderPaymentEvidence

These Eligibility and Entitlement Infrastructure database tables must not be
customized through extension of the model. The data on these database

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

254

tables must not be read or written other than through the public API. In par-
ticular, initial population of these database tables via DMX files is not sup-
ported.

A.5 CER Rule Sets Included with the Application

The source of CER rule sets included by the application must not be
changed "in place".

If you wish to use CER rule sets included with the application as the basis
for your own rule sets, then you must clone those rule sets (and, transitively,
their dependent and precedent rule sets) to your custom component. See
Section 11.2.2, Cloning CER Rule Sets for the steps to follow.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

255

Appendix B

The Eligibility and Entitlement Engine API and
Customizability

B.1 Eligibility and Entitlement Engine API

The Eligibility and Entitlement Engine API was developed as a means of
clearly identifying the entry points into the eligibility and entitlement en-
gine, which is used in determining a client's eligibility and entitlement. The
classes comprising the Eligibility and Entitlement Engine API are as fol-
lows:

• AssessmentEngine

• AssessmentEngineImpl

• AssessmentEngineEntity

• AssessmentEngineEntityImpl

These classes are located inside the following package:

..\EJBServer\components\core\source\curam\core\sl\i
nfrastructure\assessment\impl

Important

You must not provide your own implementation of any of the Java
interfaces above nor subclass any implementation Java class.

Nothing will be changed or reomoved in this public API without following
the standards for handling customer impact.

B.2 Customizability

A number of customization points are provided throughout the Eligibility

256

and Entitlement Engine, either through events being raised or through a
series of hooks.

B.2.1 Eligibility and Entitlement Engine Events

The Eligibility and Entitlement Engine raises several business events which
allow customers add logic at various points in the application. For details on
how to add event listeners, please refer to the Persistence Cookbook
. The following table lists the event class(es) available in the Eligibility and
Entitlement Engine. For additional information, please refer to the JavaDoc
of the associated class.

Event Class Description
curam.core.sl.infrastruct
ure.assessment.event.impl
.AssessmentEngineEvent

This class contains events which are
raised inside the Eligibility and Enti-
tlement Engine.

Table B.1 Eligibility and Entitlement Engine Events

B.2.2 Eligibility and Entitlement Engine Hooks

The Eligibility and Entitlement Engine contains a number of hooks which
can be availed of by customers needing to provide custom input to the Eli-
gibility and Entitlement Engine. The following table lists the hook class(es)
available in the Eligibility and Entitlement Engine. For additional informa-
tion, please refer to the JavaDoc of the associated class.

Hook Class Description
curam.core.sl.infrastruct
ure.assessment.impl.Asses
smentEngineHooks

This class contains a number of Eli-
gibility and Entitlement Engine cus-
tomization/hook points.

Table B.2 Eligibility and Entitlement Engine Hooks

There is an out-of-the-box implementation of some of these hooks inside
AssessmentEngineHooksImpl . Customers can provide their own im-
plementation of the Eligibility and Entitlement Engine Hooks and make
these available in the application through the use of Guice bindings, binding
AssessmentEngineHooks.class to the custom implementation. The detail of
how to do this is covered in the Persistence Cookbook .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

257

Appendix C

Extensions to Cúram Express Rules

C.1 Introduction

The Engine contributes some expressions and annotations to CER. For more
information about CER, see the Cúram Express Rules Reference
Manual .

Caution

These expressions and annotations are for use in case eligibility and
entitlement processing only, and are not supported for use by any
other purpose.

C.2 Expressions

The Engine contributes these expressions to CER:

• combineSuccessionSets ;

• legislationChange ; and

• rate .

C.2.1 combineSuccessionSets

Overview

The Active Succession Set Rule Object Converter (see Section 7.4.4, Active
Succession Set Rule Objects) supports the creation of one rule object per
succession set of evidence records.

In some circumstances, a real-world entity (such as a person) can have peri-
ods of time with certain characteristics (such as a period of absence from the

258

household). These periods of time may each be recorded as their own suc-
cession sets, and in some circumstances it can be beneficial to combine each
of these succession sets into a single history of those periods.

The combineSuccessionSets expression allows you to "splice togeth-
er" succession sets which each represent a non-overlapping period, with de-
fault values used for the "gaps" between those periods.

Example

Let's say that details of a person's absence from their household are captured
as temporal evidence.

Each period of absence has a start date and (optionally) an end date. Each
period of absence also has a reason for the person's absence, but notably the
reason can change during the absence (i.e. the person can be initially absent
for one reason, then from a given date continues to be absent but for a dif-
ferent reason).

For a given person, no two periods of absence can overlap (a person cannot
be absent in more than one way at any given time). In particular, the person
can have at most one open-ended period of absence.

Each separate period of absence is captured as its own succession set of ab-
sence; in other words, if the person is absent from the household, and then
returns, and then later leaves the household again, the second period of ab-
sence is a different succession set of evidence from the first.

Some eligibility/entitlement rules for the person require to derive informa-
tion from the person's history of absences. Legislation states that a person is
eligible for benefit if present in the household, or is absent for the reason of
"Education" only.

To simplify these eligibility/entitlement rules, it is desirable to compute a
single history of absence details from the person's absence periods (of which
there may be zero, one or many). The combineSuccessionSets ex-
pression is used to compute this single history of absence details for the per-
son.

Now let's create a history of absences for a Person and work through it as
an example.

The person John Smith is absent from his household on these occasions:

• John leaves the household on 1st January 2000 to pursue his college
education. Unfortunately, on 28th January 2000, John falls seriously ill
and is hospitalized. His absence from the household continues but its
reason changes from Education to Medical Treatment. John recuperates
and returns home on 8th March 2000.

• John's curtailed college education and subsequent illness leave him with
personal problems, and after committing a spate of petty crimes he is
jailed on 2nd June 2000. A new absence is recorded for John, with a
reason of Incarceration throughout (this particular absence does not vary

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

259

in reason). He is released from prison on 30th June 2000.

• Determined to make a fresh start, John enlists in the army and is then ab-
sent from the household from 10th August 2000 until further notice,
with an absence reason of Military.

Three Absence rule objects are populated for John's three periods of ab-
sence by the Active Succession Set Rule Object Converter. Each Absence
rule object is populated by the succession set of evidence records captured
for the related period of absence, e.g. the first Absence rule object is popu-
lated with a start date of 1st January 2000 and an end date of 8th March
2000. Each Absence rule object also has a reason attribute with values
that vary over time.

A single CombinedAbsence rule object is then created by the com-
bineSuccessionSets expression. The single CombinedAbsence
rule object for John has a reason attribute with these values that vary over
time:

• prior to 1st January 2000, the absence reason is blank (the default
value), as John is not absent at this time;

• from 1st January 2000, the absence reason is Education, John's initial
reason for his first absence;

• from 28th January 2000, the absence reason changes to Medical Treat-
ment, in line with the change in reason part-way through John's his first
absence;

• from 9th March 2000 (the day after John's last day in hospital), the ab-
sence reason changes back to blank, because John is no longer absent;

• from 2nd June 2000, John begins his second period of absence, with a
reason of Incarceration;

• from 1st July 2000, the absence reason changes back to blank, because
John is no longer absent; and

• from 10th August 2000 until further notice, John begins his third period
of absence, with a reason of Military.

The single CombinedAbsence rule object for John also has an exists
attribute which simply combines the periods for which the contributing ab-
sences each exist.

Detailed Behavior

Each instance of combineSuccessionSets must:

• take a single argument which must be a list of rule objects, each of
which must ultimately inherit from the PropagatorRule-
Set.ActiveSuccessionSet rule class;

• nominate a rule class to use as the type of the new rule object created

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

260

and returned when the expression is evaluated.

When an instance of combineSuccessionSets is evaluated, a rule ob-
ject of the nominated return rule class is created. The attribute values on this
return rule object will be set by matching their names to those on the input
succession set rule objects being combined.

For periods of time not covered by the input succession set rule objects (i.e.
for the "gaps" between periods, or the values used if the input list is empty),
then default values will be used as shown in the following table:

Data type for succession set at-
tribute used as an input
timeline

Default value, used for "gaps"
between input succession sets

Timeline<Number> 0

Timeline<Boolean> false

Timeline<Code table entry> null (not-specified) entry from the
code table

(any other data type) null

Table C.1 Mapping from Cúram Domain Types to CER Rule
Attribute Types

If the input list of succession set of rule objects is empty (e.g. a person who
has never been absent from their household), then the default values shown
above will be used throughout the entire timelines.

The combineSuccessionSets expression applies validations when the
rule set is validated, and also when the expression is evaluated, as described
in the following sections.

Validation checks made when the rule set is validated

Each instance of combineSuccessionSets will be checked to ensure
that it meets the following constraints:

• the single argument to the expression must return a list of rule objects,
and the rule class for these rule objects must be annotated with the Suc-
cessionSetPopulation annotation; ;

• for the rule class nominated as the return type of the combineSuc-
cessionSets expression:

• the rule class must not be abstract and must not contain any initial-
ized attributes; and

• each rule attribute on the rule class that has a specified deriva-
tion must have an identically-named attribute on the rule class for
the input list of rule objects.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

261

If the above conditions are not met, then the rule set will not pass validation
checks.

Validation checks made when combineSuccessionSets is eval-
uated

When an instance of combineSuccessionSets is evaluated at run
time, each rule object for a contributing succession set being combined
must:

• have a non-blank start date - i.e. the value of the attribute named in the
SuccessionSetPopulation annotation must not be null; and

• not overlap with any other contributing succession set rule objects - i.e.
the lifetimes of each contributing succession set (calculated with refer-
ence to the start/end date attributes named in the SuccessionSet-
Population annotation) must each cover distinct periods. In particu-
lar, at most one contributing succession set is allowed to be open-ended.

If the above conditions are not met, then combineSuccessionSets
throws an appropriate exception.

CER Editor reference

The CombineSuccessionSet element provides a graphical representa-
tion of the combineSuccessionSet expression. It is accessed from the
Technical Logic pallet.

The steps below describe how to implement the logic described in Sec-
tion C.2.1.2, Example . For brevity, some steps (such as the best practice of
creating description rule attributes) are omitted.

Create an Absence rule class for evidence

Create a rule class named Absence to represent a Person 's succession
set of Absence evidence, and add the following attributes:

• caseParticipantRoleID (Number);

• startDate (Date);

• endDate (Date); and

• absenceReason (Code table entry, from the AbsenceReason code
table, then made into a Timeline).

On this Absence rule class, select the "Succession Set" check box, set the
"Start Date Attribute" to startDate and the "End Date Attribute" to en-
dDate . Edit the "Extends" to select the "ActiveSuccessionSet" rule class
from the PropagatorRuleSet..

See the Cúram Express Rules Reference Manual for more de-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

262

tails on general properties for all rule elements.

Write the CombinedAbsence return class

The CombineSuccessionSet expression will combine the details from
the Absence rule objects, and you need a new rule class to hold the com-
bined details.

Create a CombinedAbsence rule class with the following attributes:

• absenceReason (Code table entry, from the AbsenceReason code
table, then made into a Timeline); and

• exists (Boolean, then made into a Timeline).

Write the Person rule class

Each absence pertains to a person, and thus you must create a Person rule
class to contain the list of absence details (which will be combined in a
single rule object showing the combined absence details for the person).

Add a caseParticipantRoleID (Number) attribute.

Add a Rule Attribute for the Person 's Absence Succession Sets

On the Person rule class, add an absences attribute which retrieves the
Absence succession set rule objects for the Person .

Add a Rule Attribute to combine the Person 's Absence Succes-
sion Sets

On the Person rule class, add an combinedAbsences attribute which
combines the Absence succession set rule objects for the Person (using
the CombineSuccessionSets expression).

Add a Rule Attribute to calculate eligibility based on absence
reason

On the Person rule class, add an isEligibleTimeline attribute
(Boolean, made into a Timeline) which tests the absence reason for the com-
bined absence history for the person.

XML Reference

This section provides a reference to the underlying XML representation of
combineSuccessionSets .

Each combineSuccessionSets instance contains:

• a ruleclass attribute naming the rule class to be used as the return
type;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

263

• optionally, a ruleset attribute naming the rule set containing the rule
class to be used as the return type (required only if that rule class is in a
different rule set); and

• a single child expression, which must return a list of succession set rule
objects.

The following XML implements the logic described in Section C.2.1.2, Ex-
ample .

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_combineSuccessionSets"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Rule class for a person on a case. -->
<Class name="Person">

<Attribute name="caseParticipantRoleID">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Retrieves the absence succession sets (if any) for this
person on the case. -->

<Attribute name="absences">
<type>

<javaclass name="List">
<ruleclass name="Absence"/>

</javaclass>
</type>
<derivation>

<readall ruleclass="Absence">
<match retrievedattribute="caseParticipantRoleID">

<reference attribute="caseParticipantRoleID"/>
</match>

</readall>
</derivation>

</Attribute>

<Attribute name="combinedAbsences">
<type>

<ruleclass name="CombinedAbsence"/>
</type>
<derivation>

<combineSuccessionSets ruleclass="CombinedAbsence">
<reference attribute="absences"/>

</combineSuccessionSets>
</derivation>

</Attribute>

<!-- Eligible if present in the household (i.e. no absence,
which means the absence reason is blank), or absent
for the reason of education. -->

<Attribute name="isEligibleTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<timelineoperation>
<choose>

<type>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

264

<javaclass name="Boolean"/>
</type>
<test>

<reference attribute="absenceReason">
<intervalvalue>

<reference attribute="combinedAbsences"/>
</intervalvalue>

</reference>
</test>
<when>

<condition>
<Code table="AbsenceReason">

<!-- Not absent - eligible -->
<null/>

</Code>
</condition>
<value>
<true/>

</value>
</when>
<when>

<condition>
<Code table="AbsenceReason">

<!-- Absent for education - eligible-->
<String value="AR001"/>

</Code>
</condition>
<value>
<true/>

</value>
</when>

<otherwise>
<!-- Not eligible -->
<value>
<false/>

</value>
</otherwise>

</choose>

</timelineoperation>
</derivation>

</Attribute>

</Class>

<!-- A rule class for holding a combined history of absences (if
any) for a person. -->

<Class name="CombinedAbsence">

<!-- Will be populated from the (varying) absence reason on
each contributing absence succession set; will be blank
for periods between absences. -->

<Attribute name="absenceReason">
<type>

<javaclass name="curam.creole.value.Timeline">
<codetableentry table="AbsenceReason"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Will be populated from the existence period from each
contributing absence succession set; will be false for
periods between absences. -->

<Attribute name="exists">
<type>

<javaclass name="curam.creole.value.Timeline">

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

265

<javaclass name="Boolean"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- A rule class for holding a succession set of evidence for a
single period of absence (perhaps with a changing reason
for absence).

The data on this rule class will be used by the example
combineSuccessionSet expression to populate the
data on the CombinedAbsence rule object returned.

Note that this rule class inherits an "exists" rule
attribute from the ActiveSuccessionSet rule class, which
will also be used.-->

<Class extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet" name="Absence">

<Annotations>
<SuccessionSetPopulation endDateAttribute="endDate"

startDateAttribute="startDate"/>
</Annotations>

<Attribute name="caseParticipantRoleID">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="startDate">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="endDate">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="absenceReason">
<type>

<javaclass name="curam.creole.type.Timeline">
<codetableentry table="AbsenceReason"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>
</RuleSet>

C.2.2 legislationChange

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

266

Overview

A choice of approaches for implementing changes in legislation is supported
(see Section 11.4, Handling Legislation Change).

One approach is to use the legislationChange expression to provide
"branching" logic in your rule set, by applying different logic contributed by
different "legislation eras" to come up with a timeline of values based on the
changes in legislation.

Example

Let's say that a person's eligibility for a product is based on whether that
person is "low-waged".

Initially, legislation is enacted which lays down that a person is considered
to be "low-waged" if that person's total pre-tax income is less than $20,000
per annum.

However, after some successful lobbying, the legislation is revisited and it is
agreed that from 2001 onwards, a person will instead be deemed to be "low-
waged" based on whether that person's post-tax income is less than $15,000
per annum.

After a change in administration, the legislation comes under scrutiny again,
and from 2002 revised legislation takes effect which broadens the low-
income net to cover persons with pre-tax income less than $22,000 per an-
num and/or post-tax income less than $16,000.

The initial eligibility calculation (for a person) is based directly off the pre-
tax income (for that person). When the agency implements the changes in
legislation, then a rule set designer changes the initial implementation to in-
stead use the legislationChange expression to combine contributions
from the different legislation "eras". (The implementation of the initial era is
just that for the initial implementation; there are new implementations for
the subsequent eras.)

John Smith makes a claim for benefit. John's income levels are as follows:

• from 1st January 2000, pre-tax income of $19,500 and post-tax income
of $15,500;

• from 1st June 2001, pre-tax income of $18,000 and post-tax income of
$14,700;

• from 1st July 2002, pre-tax income of $26,000 and post-tax income of
$22,300.

John's eligibility varies not only according to the variations in his income
levels, but also according to the changes in legislation that are enacted:

Detailed Behavior

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

267

Each instance of legislationChange must:

• specify the data type of the intervals in the timeline returned; and

• specify one or more eras of legislation, including an "initial" era (valid
from the start of time, i.e. a null date). Each era must return a timeline of
the same value type as that returned by the overall legislation-
Change expression

When an instance of legislationChange is evaluated, each era is eval-
uated and the resultant timelines are "spliced together" according to their era
dates. An overall return timeline is assembled from these era-contributions,
and this return timeline obeys the usual semantics of Timelines in general
(in particular, identical contiguous values in the timeline will be amalgam-
ated into a single value).

As such, if a particular change in legislation does not affect a calculation,
then the resultant timeline will not change value on the legislation change
date.

CER Editor reference

The Legislation Change element provides a graphical representation of the
legislation Change expression. It is accessed from the Business Logic pallet.

The steps below describe how to implement the logic described in Sec-
tion C.2.2.2, Example . For brevity, some steps (such as the best practice of
creating description rule attributes) are omitted.

Note

For brevity and clarity, the cut-off rates are "hard-coded" into this
example.

A production-quality rule set would instead externalise these rates
using Cúram's rate tables. See rate for further details.

Create a Person rule class

Create a rule class named Person , and add the following attributes:

• caseParticipantRoleID (Number);

• preTaxIncomeTimeline (Number, made into a Timeline);

• postTaxIncomeTimeline (Number, made into a Timeline); and

• isEligibleTimeline (Boolean, made into a Timeline).

Note

No derivations will be given for the preTaxIncomeTimeline
and postTaxIncomeTimeline attributes in this example. These
attributes are assumed to be populated from an outside source (such

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

268

as temporal evidence).

Implement legislation change logic

Implement the derivation of isEligibleTimeline to take into account
the three eras of legislation:

XML Reference

This section provides a reference to the underlying XML representation of
legislationChange .

Each legislationChange instance contains:

• an intervaltype element naming the data type for the intervals in
the resultant timeline returned; and

• one or more era elements, each containing:

• a from element, which must contain an expression returning a Date
(which governs from which date the legislation era takes effect); and

• a value element, which must contain an expression returning a
timeline of the same type as that returned by the overall legisla-
tionChange expression (which provides the values to be used in
the resultant timeline, for the portion of that timeline contributed by
this era).

The following XML implements the logic described in Section C.2.2.2, Ex-
ample .

Note

For brevity and clarity, the cut-off rates are "hard-coded" into this
example.

A production-quality rule set would instead externalise these rates
using Cúram's rate tables. See rate for further details.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_legislationChange"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Rule class for a person on a case. -->
<Class name="Person">

<!-- The pre-tax income for this person. -->
<Attribute name="preTaxIncomeTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

269

<!-- The pre-tax income for this person. -->
<Attribute name="postTaxIncomeTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Eligible if "low-waged", where the definition of
"low-waged" varies as changes in legislation are
enacted. -->

<Attribute name="isEligibleTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<legislationChange>
<!-- The type of the timeline returned is a timeline of

Boolean values. -->
<intervaltype>

<javaclass name="Boolean"/>
</intervaltype>

<!-- Initial legislation era. -->
<era>

<from>
<null/>

</from>
<value>

<timelineoperation>
<!-- Low-waged if pre-tax income is below

20,000. -->
<compare comparison="<">

<intervalvalue>
<reference attribute="preTaxIncomeTimeline"/>

</intervalvalue>
<Number value="20000"/>

</compare>
</timelineoperation>

</value>
</era>

<!-- A change in legislation, effective from 1st January
2001, -->

<era>
<from>

<Date value="2001-01-01"/>
</from>
<value>

<timelineoperation>
<!-- Low-waged if post-tax income is below

15,000. -->
<compare comparison="<">

<intervalvalue>
<reference attribute="postTaxIncomeTimeline"/>

</intervalvalue>
<Number value="15000"/>

</compare>
</timelineoperation>

</value>
</era>

<!-- Another change in legislation, effective from 1st
January 2002. -->

<era>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

270

<from>
<Date value="2002-01-01"/>

</from>
<value>

<timelineoperation>
<!-- Low-waged if pre-tax income is below 22,000 OR

post-tax income is below 16,000. -->
<any>

<fixedlist>
<listof>
<javaclass name="Boolean"/>

</listof>
<members>
<compare comparison="<">

<intervalvalue>
<reference

attribute="preTaxIncomeTimeline"/>
</intervalvalue>
<Number value="22000"/>

</compare>
<compare comparison="<">

<intervalvalue>
<reference

attribute="postTaxIncomeTimeline"/>
</intervalvalue>
<Number value="16000"/>

</compare>
</members>

</fixedlist>
</any>

</timelineoperation>
</value>

</era>

</legislationChange>

</derivation>
</Attribute>

</Class>
</RuleSet>

C.2.3 rate

Overview

The Rate Rule Object Propagator (see Section 7.4.2, Rate Rule Objects)
automatically creates rule objects which mirror the data from cells specified
rate tables. The rate expression provides a convenience mechanism for
searching for the rule object corresponding to a particular cell in a particular
rate table.

Example

Let's say that a person's eligibility for a product is based on whether that
person's total income is below a certain limit. This limit is revised periodic-
ally in line with costs of living and inflation.

The rules for eligibility do not vary as such; however the income limit does
vary over time, and so a rules designer models the income limit as a rate ta-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

271

ble, rather than "hard-coding" the income limit directly in the rule set. This
approach allows the income limit to vary independently of rules; changes to
the income limit can be effected by publishing changes to the rate table,
rather than by changing the rule set. In particular, the rule set itself does not
need to be retested when the income limit changes (but of course any users
changing rate tables should satisfy themselves that the change being made
will have the desired effect, possibly by first trialing the change in a test en-
vironment).

The eligibility rules will use the rate expression to retrieve the value of the
required rate, and use this value to determine whether a person's total in-
come is within the bounds for eligibility.

John Smith makes a claim for benefit. John's total income varies as follows:

• from 1st January 2000, total income of $21,000;

• from 1st June 2001, total income of $23,500; and

• from 1st July 2002, total income of $26,200.

In parallel, the agency varies the income limit applied to eligibility calcula-
tions as follows:

• from 1st January 2000, income limit of $20,000;

• from 1st January 2001, total income of $22,000; and

• from 1st January 2002, total income of $24,000.

John's eligibility varies not only according to the variations in his total in-
come level, but also according to the varying income limit rate:

Detailed Behavior

Each instance of rate must specify the "co-ordinates" of required cell in
from a rate table. The co-ordinates which uniquely identify a cell are:

• the code for the name of the rate table (i.e. the code for the entry from
the RateTableType code table);

• the code for the name of the row in the rate table (i.e. the code for the
entry from the RateRowType code table); and

• the code for the name of the column in the rate table (i.e. the code for
the entry from the RateColumnType code table).

Recall that each rate table can have multiple "version" with values effective
from a specified date; whereas the rule object created by the Rate Rule Ob-
ject Propagator has a timeline of numbers representing a varying rate value.
Thus the value returned by the rate is the value of the rate cell as it varies
over different versions of its rate table.

Note

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

272

If two neighbouring versions of rate table contain the same value for
a particular rate cell, then the timeline value for that rate cell will
not change value on the rate table change data. As per Timeline se-
mantics, contiguous identical values are amalgamated into single
unchanging value.

This situation can arise where a new version of a rate table is recor-
ded to change values in some of its rate cells only; values in other
rate cells may remain unchanged.

When an instance of rate is evaluated, a rate rule object matching the re-
quired rate cells co-ordinates is sought. Ordinarily the required rate rule ob-
ject will be found, and its varying rate cell value returned as a timeline of
numbers.

However, if the required rate rule object has not been found (e.g. if rate
propagation has not been run, for example in a unit test that creates a rate
but does not publish changes), then the rate expression will create an in-
ternal rule object to hold the varying value from the rate table (subject to the
same constraints that apply to the Rate Rule Object Converter - i.e. cells in
sub-rows and sub-columns are not supported). If such internal rule object
are created, then if a rate table change is subsequently published, then the
rate expression will safely recalculate to pick up the external rule object
created by the propagator. This feature means that it is possible to write unit
tests that interact with rates without having to worry about rate propagation.

Caution

All uses of the rate expression require a database transaction to be
in effect.

For normal application processing, a database transaction will be in
effect just as for other server logic.

However, for speed of testing, CER promotes the use of in-memory
testing of rule sets which do not access the database. If you write
any unit tests which cause a rate expression to be evaluated, then
that test must run in the context of database transaction (which is in
sharp contrast to the majority of unit tests for CER rule sets, which
do not require a database transaction).

You must either:

• wrap your test in a database transaction (such as that provided
by inheriting from CuramServerTest); or

• prevent the evaluation of rate expressions by using CER's "spe-
cify" mechanism to override the values of any attribute values
whose definition includes one or more rate expressions.

CER Editor reference

The Rate Table element provides a graphical representation of the rate ex-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

273

pression. It is accessed from the Data Types pallet.

The steps below describe how to implement the logic described in Sec-
tion C.2.3.2, Example . For brevity, some steps (such as the best practice of
creating description rule attributes) are omitted.

Create a Person rule class

Create a rule class named Person , and add the following attributes:

• totalIncomeTimeline (Number, made into a Timeline); and

• isEligibleTimeline (Boolean, made into a Timeline).

Note

No derivations will be given for the totalIncomeTimeline in
this example. This attribute is assumed to be populated from an out-
side source (such as temporal evidence).

Implement rate retrieval logic

Implement the derivation of isEligibleTimeline to retrieve the re-
quired rate data and compare it to the person's total income.

XML Reference

This section provides a reference to the underlying XML representation of
rate .

Each rate instance contains:

• a table attribute naming the code from the RateTableType code table;

• a row attribute naming the code from the RateRowType code table;

• a column attribute naming the code from the RateColumnType code ta-
ble;

The following XML implements the logic described in Section C.2.3.2, Ex-
ample .

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_rate"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Rule class for a person on a case. -->
<Class name="Person">

<!-- The total income for this person. -->
<Attribute name="totalIncomeTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

274

<derivation>
<specified/>

</derivation>
</Attribute>

<!-- Eligible if total income is below an income limit (from a
rate table). -->

<Attribute name="isEligibleTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<compare comparison="<">
<intervalvalue>

<reference attribute="totalIncomeTimeline"/>
</intervalvalue>
<intervalvalue>

<!-- code table constants for the rate table/rate
row/rate column -->

<rate table="RTT_LIMITS" row="RR_INCOME"
column="RC_AMOUNT"/>

</intervalvalue>
</compare>

</derivation>
</Attribute>

</Class>
</RuleSet>

C.3 Annotations

The Engine contributes these annotations to CER:

• Display ;

• DisplaySubscreen ;

• Legislation ;

• SuccessionSetPopulation ;

• relatedEvidence ; and

• relatedSuccessionSet .

C.3.1 Display

This marks an attribute for inclusion when the Engine walks rule objects to
gather decision details to include in a determination (see Chapter 6, Calcu-
lating and Displaying Decision Details).

This annotation may be placed on a rule attribute only.

XML Reference

Here is an example rule set with Display and non-Display rule attributes:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

275

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Display"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember">

<!-- This attribute will be made available for display in
decision details -->

<Attribute name="dateOfBirth">
<Annotations>

<Display/>
</Annotations>
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- This attribute will be made available for display in
decision details -->

<Attribute name="fullName">
<Annotations>

<Display/>
</Annotations>
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<XmlMessage>
<replace>

<reference attribute="firstName"/>
</replace>
<replace>

<String value=" "/>
</replace>
<replace>

<reference attribute="surname"/>
</replace>

</XmlMessage>
</derivation>

</Attribute>

<!-- This attribute is used as an input into the calculated
fullName, but is not directly required for display -->

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- This attribute is used as an input into the calculated
fullName, but is not directly required for display -->

<Attribute name="surname">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>
</RuleSet>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

276

C.3.2 DisplaySubscreen

This marks an attribute as returning data for a subscreen of decision details,
which can be displayed by the Engine when a user expands a row on a de-
cision details screen (see Section 6.4.3.4.2, Sub-Screens).

This annotation may be placed on a rule attribute only, on a rule class which
ultimately extends from ProductDecisionDetailsRule-
Set.AbstractCase .

XML Reference

Here is an example rule set with DisplaySubscreen rule attributes:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_DisplaySubscreen"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="MyProductSummary" extends="DefaultCase"
extendsRuleSet="DefaultProductDecisionDetailsRuleSet">

<!-- Allow the screen to display a list of members for the
case. -->

<Attribute name="householdMembers">
<Annotations>

<Display/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="HouseholdMember"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Allow the screen to drill down into more details for each
household member -->

<Attribute name="householdMemberSubscreens">
<Annotations>

<DisplaySubscreen/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="HouseholdMemberSubscreen"/>

</javaclass>
</type>
<derivation>

<dynamiclist>
<list>

<reference attribute="householdMembers"/>
</list>
<!-- Create a wrapper HouseholdMemberSubscreen for each

HouseholdMember -->
<listitemexpression>

<create ruleclass="HouseholdMemberSubscreen">
<specify attribute="householdMember">
<current/>

</specify>
</create>

</listitemexpression>
</dynamiclist>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

277

</derivation>
</Attribute>

</Class>

<Class name="HouseholdMember">
<Attribute name="concernRoleID">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="earnedIncome">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="unearnedIncome">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="HouseholdMemberSubscreen"
extends="AbstractCaseSubscreenDisplay"

extendsRuleSet="DefaultProductDecisionDetailsRuleSet">

<!-- The wrapped household member -->
<Attribute name="householdMember">
<type>

<ruleclass name="HouseholdMember"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- identifier of the business object -->
<Attribute name="businessObjectID">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<reference attribute="concernRoleID">
<reference attribute="householdMember"/>

</reference>
</derivation>

</Attribute>

<!-- Data to display on the subscreen -->

<Attribute name="totalIncome">
<Annotations>

<Display/>
</Annotations>
<type>

<javaclass name="Number"/>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

278

</type>
<derivation>

<arithmetic operation="+">
<reference attribute="earnedIncome">

<reference attribute="householdMember"/>
</reference>
<reference attribute="unearnedIncome">

<reference attribute="householdMember"/>
</reference>

</arithmetic>
</derivation>

</Attribute>

</Class>
</RuleSet>

C.3.3 Legislation

This allows a rule element to be linked to an arbitrary HTML document
which describe the legislation underpinning that rule element.

This annotation may be placed on:

• a rule set;

• a rule class;

• a rule attribute; or

• an expression.

The CER Editor can open legislation links in your web browser as follows:

• a legislation link value that starts with http:// or https:// will
open the absolute page for that link; or

• any other legislation link value will be used as a path relative to your ap-
plication.

XML Reference

Here is an example rule set with various legislation link values:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Legislation"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Annotations>
<!-- Rule set - an absolute link. -->
<Legislation

link="http://www.somelegislationsite.com/somepage1"/>
</Annotations>
<Class name="Citizen">

<Annotations>
<!-- Rule class - another absolute link. -->
<Legislation

link="http://www.somelegislationsite.com/somepage2"/>
</Annotations>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

279

<Attribute name="dateOfBirth">
<Annotations>

<!-- Rule attribute - a relative link. -->
<Legislation link="somedirectory/onmywebserver/page.html"/>

</Annotations>
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified>
<Annotations>

<!-- Expression - another relative link. -->
<Legislation

link="anotherdirectory/onmywebserver/page.html"/>
</Annotations>

</specified>
</derivation>

</Attribute>
</Class>

</RuleSet>

C.3.4 SuccessionSetPopulation

This annotation indicates to the Active Succession Set Rule Object Convert-
er (see Section 7.4.4, Active Succession Set Rule Objects) which attributes
on a rule class hold the start and end dates which mark the "lifetime" of the
succession set of evidence.

This annotation may be placed on a rule class only. The annotated rule class
must ultimately extend the PropagatorRule-
Set.ActiveSuccessionSet rule class included with the application.

The names of the start date attribute and the end date attribute are each op-
tional in this annotation. However, if present, each named attribute must ex-
ist on the rule class (i.e. must be declared by or inherited by the rule class),
and must return a Date value.

If the start date attribute is not named by the annotation, or is named but at
evaluation time is found to have a null value, then the data in the initial ver-
sion of the succession set is assumed to apply from the beginning of time.

Similarly, if the end date attribute is not named by the annotation, or is
named but at evaluation time is found to have a null value, then the data in
the final version of the succession set is assumed to apply until the begin-
ning of time.

XML Reference

Here is the XML for an example rule set, with a rule class extending
PropagatorRuleSet.ActiveSuccessionSet , with its succession
set start date and end date attributes set:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_SuccessionSetPopulation">

<Class name="Employment" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">

<Annotations>
<SuccessionSetPopulation startDateAttribute="startDate"

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

280

endDateAttribute="terminationDate"/>
</Annotations>
<Attribute>
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
<Attribute>
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

</RuleSet>

C.3.5 relatedEvidence

When Active Evidence Row Rule Objects are populated (see Section 7.4.5,
Active Evidence Row Rule Objects), indicates that the value of the annot-
ated attribute should be automatically populated with rule object(s) for re-
lated evidence. See Section 7.4.5.3, Conversion Processing for full details
on the processing the rule object converter performs, taking into account
this annotation.

This annotation may be placed on a rule attribute only. Furthermore, the fol-
lowing restrictions apply:

• the annotated attribute must be on a rule class that ultimately extends the
PropagatorRuleSet.ActiveEvidenceRow rule class; and

• the return type of the annotated attribute must be either:

• a rule class that ultimately extends the PropagatorRule-
Set.ActiveEvidenceRow rule class; or

• a List of such a rule class.

XML Reference

Here is an example rule set with rule attributes for related parent and child
evidence rows annotated to be automatically populated using the Active
Evidence Row Rule Object Propagator:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_relatedEvidence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember" extends="ActiveEvidenceRow"
extendsRuleSet="PropagatorRuleSet">

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

281

<Attribute name="incomes">
<Annotations>

<!-- The Active Evidence Row Rule Object Propagator will
automatically populate this attribute with a list of
related Income rule objects.-->

<relatedEvidence relationship="child"/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Income" extends="ActiveEvidenceRow"
extendsRuleSet="PropagatorRuleSet">

<Attribute name="householdMembers">
<Annotations>

<!-- The Active Evidence Row Rule Object Converter will
automatically populate this attribute with a list of
related HouseholdMember rule objects.

Note that a list is still used because there may be
multiple versions of the parent household member
evidence.-->

<relatedEvidence relationship="parent"/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="HouseholdMember"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>
</RuleSet>

C.3.6 relatedSuccessionSet

When Active Succession Set Rule Objects are populated (see Section 7.4.4,
Active Succession Set Rule Objects), indicates that the value of the annot-
ated attribute should be automatically populated with rule object(s) for re-
lated evidence. See Section 7.4.4.3, Conversion Processing for full details
on the processing the rule object converter performs, taking into account
this annotation.

This annotation may be placed on a rule attribute only. Furthermore, the fol-
lowing restrictions apply:

• the annotated attribute must be on a rule class that ultimately extends the
PropagatorRuleSet.ActiveSuccessionSet rule class; and

• the return type of the annotated attribute must be either:

• a rule class that ultimately extends the PropagatorRule-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

282

Set.ActiveSuccessionSet rule class; or

• a List of such a rule class.

XML Reference

Here is an example rule set with rule attributes for related parent and child
succession sets annotated to be automatically populated using the Active
Succession Set Rule Object Propagator:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_relatedSuccessionSet"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="HouseholdMember" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">
<Attribute name="incomes">
<Annotations>

<!-- The Active Succession Set Rule Object Converter will
automatically populate this attribute with a list of
related Income rule objects.-->

<relatedSuccessionSet relationship="child"/>
</Annotations>
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Income" extends="ActiveSuccessionSet"
extendsRuleSet="PropagatorRuleSet">

<Attribute name="householdMembers">
<Annotations>

<!-- The Active Succession Set Rule Object Converter will
automatically populate this attribute with the
related HouseholdMember rule object. -->

<relatedSuccessionSet relationship="parent"/>
</Annotations>
<type>

<ruleclass name="HouseholdMember"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>
</RuleSet>

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

283

Appendix D

Environment Variables

D.1 Cúram Environment Variables Governing Behavi-
or of Engine

This appendix lists the Cúram Environment Variables that you can set to
change the Engine's behavior.

Environment vari-
able name

Description More Information

curam.trace General trace setting for
the overall application.

Section 7.7, Logging
and the Cúram Serv-
er Developer's
Guide .

curam.trace.rule
objectpropaga-
tion

The logging level for
rule object propagation
log messages.

Valid values are:

• trace_off;

• trace_on;

• trace_verbose; and

• trace_ultra_verbose.

Section 7.7, Logging .

curam.ruleobject
propaga-
tion.configurati
on.errorlevel

Whether a problem in
the configuration for a
rule object propagator is
reported as:

• an application error
(error);

Section 7.5, Data Con-
figuration Problems .

284

Environment vari-
able name

Description More Information

• a logged warning
(warn); or

• ignored (ignore).

curam.ruleobject
propaga-
tion.nonpropagat
ableopera-
tion.errorlevel

Whether a database op-
eration which cannot be
propagated to rule ob-
jects is reported as:

• an application error
(error);

• a logged warning
(warn); or

• ignored (ignore).

Section 7.4.3.5,
Propagation Processing
.

curam.creole.log
.case.determinat
ion.problems

Whether details of prob-
lems encountered during
a case determination
should be listed as
warnings in the applica-
tion log.

Section 4.4.4, Testing ,
Section 5.4.4, Testing
and Section 6.4.4, Test-
ing .

curam.batch.creo
lebulkcase-
chunkreassess-
ment.chunksize

The number of cases in
each chunk that will be
processed by the
CREOLE Bulk Case
Chunk Reassessment
batch program.

Section 10.3.3.1, The
CREOLEBulkCase-
ChunkReassessment-
ByProduct Batch Pro-
cess .

curam.batch.creo
lebulkcase-
chunkreassess-
ment.dontrunstre
am

Should CREOLE Bulk
Case Chunk Reassess-
ment batch program
sleep while waiting for
the processing to be
completed (rather than
run a stream in its con-
text).

Section 10.3.3.1, The
CREOLEBulkCase-
ChunkReassessment-
ByProduct Batch Pro-
cess .

curam.batch.creo
lebulkcase-
chunkreassess-
ment.chunkkeywai
tinterval

The interval (in milli-
seconds) for which the
CREOLE Bulk Case
Chunk Reassessment
batch program will wait
before retrying when
reading the chunk key
table.

Section 10.3.3.1, The
CREOLEBulkCase-
ChunkReassessment-
ByProduct Batch Pro-
cess .

curam.batch.creo The interval (in milli- Section 10.3.3.1, The

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

285

Environment vari-
able name

Description More Information

lebulkcase-
chunkreassess-
ment.unprocessed
chunkwaitinter-
val

seconds) for which the
CREOLE Bulk Case
Chunk Reassessment
batch program will wait
before retrying when
reading the chunk table.

CREOLEBulkCase-
ChunkReassessment-
ByProduct Batch Pro-
cess .

curam.batch.creo
lebulkcase-
chunkreassess-
ment.processunpr
ocessedchunk

Should CREOLE Bulk
Case Chunk Reassess-
ment batch program
process any unprocessed
chunks found after all
the streams have com-
pleted.

Section 10.3.3.1, The
CREOLEBulkCase-
ChunkReassessment-
ByProduct Batch Pro-
cess .

curam.workflow.g
endetermineeli-
gibityfail-
ureticket

"YES"/"NO" flag which
determines whether a
workflow ticket is auto-
matically generated
whenever a determine
product eligibility for a
case fails.

curam.workflow.g
eneligibilityre-
assesssucces-
sticket

"YES"/"NO" flag which
determines whether a
workflow ticket is auto-
matically generated
whenever a case has
been reassessed and the
case decision is now "eli-
gible".

curam.trace.prod
uctconfigura-
tion.publication

The logging level for
product configuration
publication log mes-
sages.

Valid values are:

• trace_off;

• trace_on;

• trace_verbose; and

• trace_ultra_verbose.

curam.trace.case
assessment

The logging level for
case assessment log
messages.

Valid values are:

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

286

Environment vari-
able name

Description More Information

• trace_off;

• trace_on;

• trace_verbose; and

• trace_ultra_verbose.

curam.creole.man
ualeligibili-
tycheckdetermin-
ation.store.rule
objectsnapshot

Whether the system will
store a snapshot of rule
objects used in the cal-
culation of a manual eli-
gibility check determin-
ation.

Section 8.2, The Data-
base Tables

Table D.1 Cúram environment variables governing the behavior
of the Engine

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

287

Appendix E

Glossary

E.1 Terms Used throughout this Guide

This appendix provides a glossary of terms used with the Engine.

Activation
Activation refers to:

• Cases. A case is activated so that a product can be delivered
(typically, so that financials can be generated). Only approved cases
can be activated.

See the Cúram Integrated Case Management Guide .

• Evidence. Evidence is activated so that it can be used during the
calculation of assessment determinations for cases.

See the Cúram Temporal Evidence Guide .

Active Determination
A determination which was triggered by an explicit action from a user,
for example when a case is activated.

See Section 2.4.2.1, Active Determination Calculation Requests .

Administrator
A user who administers the application and has rights to change its con-
figuration.

Assessment
The initial determination of eligibility and entitlement that occurs upon
case activation.

Assessment Determination
A determination made when a case is initially assessed during case ac-
tivation or subsequently reassessed due to a change in circumstance.

288

The result of an assessment determination is typically used in the gener-
ation of financials on a case).

See Section 3.4, Assessment Determinations .

Attained Objective
An objective to which a case is entitled.

See Entitlement.

Attribute Value
The value of an attribute on a CER rule object.

For example, if there is a CER rule object for James Smith, and that rule
object has an attribute named firstName , then the attribute value on
that rule object will be "James".

See the Cúram Express Rules Reference Manual .

Basic eligibility/entitlement details
A simple technical description of a case's eligibility, objectives and
tags.

See Section 4.2.2, Basic Eligibility/entitlement Decision Details .

Bulk Case Reassessment
The reassessment of a large number of cases following a system-wide
change in data or configuration.

See Section 10.3, Bulk Reassessment .

Case Decision
A record of eligibility/entitlement for a period of time on a case.

See Section 8.2.3, CaseDecision .

Case Lifetime
The length of time that a case lasted or is expected to last, with refer-
ence to the case's start and end dates.

See Section 2.4.1, What a Determination Result Contains .

Case Worker
A user responsible for the ongoing management of cases.

CER Data Configurations
The on-screen term for configurations for rule object converters and
propagators.

See Chapter 7, Understanding Rule Object Converters and Propagators
.

CER
Acronym for Cúram Express Rules.

See the Cúram Express Rules Reference Manual .

Configuration
The ability to change a system's behavior by changing settings in the

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

289

running application rather than using traditional systems development
and redeployment techniques.

Converter
See Rule Object Converter.

Correction Set
A set of related temporal evidence records which reflects the history of
the system's record of evidence.

Older items in the correction set were (at one time) thought to be true
but are now known to have been recorded incorrectly.

Coverage period
A period within a determination of constant eligibility, entitlement and
explanation.

See Section 4.3.2.1, Dividing the Determination into Coverage Periods
.

Current Assessment Determination
The most up-to-date assessment determination, which is currently being
used to deliver the product (typically, used to calculate the amounts
payable under the case).

Custom Entity
A database table added to the application by the customer - not included
with the application.

See the Cúram Modeling Reference Guide .

Custom Evidence Type
A type of Dynamic or Non-Dynamic Evidence added to the application
by the customer - not included with the application.

See Temporal Evidence.

Decision Details
Free-form calculated output which helps explain to a case worker how
the eligibility/entitlement results were arrived at.

See Chapter 6, Calculating and Displaying Decision Details .

Decision Period
A period within a determination of constant eligibility and entitlement.
Stored as a Case Decision.

Deferred Processing
Background processing which occurs outside of main online processing.
Requests for deferred processing can be added to a queue.

Dependency Manager
Software included with the application which stores and manages how
one value (a Dependent) depends on other values (Precedents). Used to
identify Dependents which may be affected by changes to one or more
Precedents.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

290

See the Cúram Express Rules Reference Manual .

Dependent
See Dependency Manager.

Determination
The act of calculating a Determination Result.

Determination Result
A record of a case's eligibility, entitlement and explanation, as they vary
over the lifetime of the case.

See Section 2.4.1, What a Determination Result Contains .

Display Category
A tab on a determination screens which allows the case worker to
choose a category of explanation.

Examples include:

• Summary;

• Household Members;

• Income; and

• Resources.

See Section 6.4.2.1, Identify the Display Categories .

Dynamic Evidence
Types of Temporal Evidence which are created by configuring a run-
ning application.

See the Dynamic Evidence Configuration Guide .

Dynamic UIM
Refer to the UIM Reference chapter of the Cúram Web Client Reference
Manual for more details.

Eligibility
Whether a product can be delivered.

Typically, whether a case will result in the generation of financial pay-
ments or liabilities.

See Section 4.4.1.2, Eligibility .

Engine
The application's Eligibility and Entitlement Engine.

See Chapter 1, Introduction .

Entitlement
The objectives attained on a case. Typically, objectives are financial and
are used in the generation of payments or liabilities on a case.

Only eligible periods have entitlement; ineligible periods have no enti-

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

291

tlement.

See Section 4.4.1.3, Objectives .

Explanation
Additional calculated data which helps a case worker understand how a
case's eligibility and entitlement were arrived at.

See Section 2.4.1, What a Determination Result Contains .

Expression
A function available in CER for calculating an output value based on in-
put values.

See the Cúram Express Rules Reference Manual .

Financial Schedule
A schedule of payments or liabilities for a nominee.

See Chapter 9, Scheduling Financials .

Frequency Pattern
A recurring time interval over which to deliver a product, e.g.:

• Daily;

• Weekly; or

• Monthly.

See Section 4.4.1.4, Objective Tags .

In-edit evidence
Changes to temporal evidence which have not yet been activated.

See Section 7.6.2, Temporary Access to In-Edit Evidence Changes .

Integrated Case
A type of case used to manage the delivery of products and services to a
household or related group of individuals.

An Integrated Case can contain a number of child product delivery
cases. Evidence can be captured at either the integrated case level (and
thus applies to all product deliveries under the integrated case) and/or
the product delivery level (and thus applies to that product delivery
only).

See the Cúram Integrated Case Management Guide .

Interface Rule Class
A CER rule class which enforces a data interface between the Engine
and custom business rules.

See the following sections:

• Section 4.3.1.3, C) ProductEligibilityEntitlementRule-
Set.AbstractCase rule class ;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

292

Section 5.3.1.2, B) ProductKeyDataRuleSet.AbstractCase rule class
; and

Section 6.3.1.2, B) ProductDecisionDetailsRuleSet.AbstractCase
rule class ;

Key Decision Factor
A named item which has simple events or data changes which can help
explain a determination to a case worker.

Examples:

• Person events, such as "Claimant born", "Claimant married",
"Claimant died"; and/or

• Data change events such as "Total Annual Income: $10,000", "Total
Annual Income: $12,000"

See Chapter 5, Calculating and Displaying Key Decision Factors .

Legislation
The legal documents underpinning the requirements for eligibility/en-
titlement calculations (and other behavior for a product).

See Section 11.4, Handling Legislation Change .

Manual Eligibility Check Determination
An active determination manually requested by a case worker to
provide an interim determination on a case. The determination may be
based on in-edit evidence or active evidence only.

See Section 3.2, Manual Check Determinations .

Nominee
A recipient of an attained objective on a case. Typically the nominee is
the primary client of the product delivery case but can be any person.

Non-Dynamic Evidence
Types of Temporal Evidence which are developed using standard devel-
opment techniques (and requiring redeployment of the application).

Objective
An item to be delivered on a case, to a particular target. Typically, a
type of payment on a case, e.g. an income assistance benefit or a medic-
al allowance benefit.

See Section 4.4.1.3, Objectives .

Objective Tag
A frequency at which an objective may be delivered, e.g. income assist-
ance benefit weekly, or income assistance benefit daily.

Larger frequencies are typically used for recurring delivery periods;
smaller periods are typically used for ramp-up and ramp-down delivery
periods.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

293

See Section 4.4.1.4, Objective Tags .

Open-ended
Open-ended applies to:

• A Case. An open-ended case has no end date.

• A Determination. An open-ended determination has no end date
and thus its final coverage period applies until further notice.

• A Case Decision. An open-ended case decision has no end date and
its eligibility/entitlement applies until further notice

• A Financial Component. An open-ended financial component has
no end date and will continue to be used to generate instruction line
items until further notice.

In practice, each of these items will close at some point in the future, as
circumstances change (e.g. when the claimant dies, or a child leaves
home, or the claimant finds employment, etc.).

Policy
Procedures and rules specified by an expert department, based on legis-
lation for a product.

Precedent
See Dependency Manager.

Product
A benefit or liability delivered by the organization.

Typically a benefit product will result in payments to clients.

Product Configuration
Configuration affecting a product's behavior, including:

• the splitting of the product's lifetime into product periods;

• the association of business rules for calculating the product's eligib-
ility, entitlement and explanation; and

• the categories of explanation available and the dynamic UIM
screens for displaying those explanations.

Product Delivery Case
A type of case used to deliver a product.

Product Period
A period within a product's lifetime that has a single set of business
rules for the calculation of eligibility, entitlement and explanation.

See Section 11.4, Handling Legislation Change .

Product Structure
A description of the types of objectives available for the product and the
frequencies at which they can be delivered.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

294

See Section 4.4.3.1, Write the Product Structure Rule Classes .

Propagator
See Rule Object Propagator.

Publication
The act of taking pending changes from a sandbox and making those
changes part of the running system's configuration.

Applies to:

• CER Rule Sets - see Section 10.3.1.2, CER Rules used by your
Product ;

• CER Data Configurations - see Section 10.3.1.3, Rule Object Data
Configurations ; and/or

• Products - see Section 4.4.3.3, Write the Product Periods .

Ramp-up, Recurring, Ramp-down
The initial, ongoing and final part of a periodic delivery respectively.
Typically applies to benefit payments.

See Chapter 9, Scheduling Financials .

Rate Table
A table of numerical system-wide data that may change over time.

See "Implementing Rate Tables" in the Cúram Integrated Case
Management Configuration Guide .

Reactive Determination
A determination automatically made by the Engine in response to data
changes.

See Section 2.4.2.2, Reactive Determination Calculations .

Reassessment
A determination of eligibility and entitlement that occurs after a case is
activated, due to a change in circumstances within the case and/or a
change to product configuration which may affect its calculations.

Rule Attribute
A named piece of data on a CER Rule Class.

e.g. a Person rule class might have a firstName rule attribute.

See the Cúram Express Rules Reference Manual .

Rule Category
A categorization of a CER rule set to allow for filtering when a user is
searching for a rule set.

Rule Class
A defined type of data manipulated by CER rules.

e.g. a rule set might contain a Person rule class.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

295

See the Cúram Express Rules Reference Manual .

Rule Object
An instance of a rule class.

e.g. A Person rule class might have rule object instances for James
Smith and Linda Smith.

See the Cúram Express Rules Reference Manual .

Rule Object Converter
Software which makes data available to CER as rule objects. Some
types of rule object converters can be configured.

See Chapter 7, Understanding Rule Object Converters and Propagators
.

Rule Object Propagator
Software which automatically maintains rule objects when application
data changes in the application. Some types of rule object propagators
can be configured.

See Chapter 7, Understanding Rule Object Converters and Propagators
.

Rule Set
A collection of rule classes, which may be maintained and published.

Typically all the rule classes in a rule set are geared towards the same
purpose.

See the Cúram Express Rules Reference Manual .

RuleDoc
A development tool for creating an HTML document to explain the
structure of rule sets.

See the Cúram Express Rules Reference Manual .

Rules
Declarations of business and/or technical logic for performing calcula-
tions.

Sandbox
An area where pending changes to the system can be accumulated prior
to publication. Sandbox data does not affect calculations which are
based off published data.

Examples include:

• Sandbox for CER Rule Sets;

• Sandbox for product configurations;

• Sandbox for CER Data Configurations; and

• Sandbox for in-edit evidence on a case (the Evidence Workspace).

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

296

SessionDoc
A development tool for viewing the rule objects manipulated in a CER
Session.

See the Cúram Express Rules Reference Manual .

Snapshot Determination
A point-in-time record of a case's eligibility, entitlement and explana-
tion.

See Section 3.3, Snapshot Determinations .

Sub-screen
A dynamic UIM screen shown when a case worker expands a row of
data on the screen, to "drill down" into further details.

See Section 6.2.3, Sub-screens .

Succession Set
A set of related temporal evidence records which reflects the history of
real-world changes in circumstance. Older items in the succession set
apply to circumstances which used to be true in the real world but
which are no longer true now.

Superseded Assessment Determination
An assessment determination which used to form the basis of the deliv-
ery of a product, but has since been replaced by a more up-to-date de-
termination which has taken into account changes in evidence or
product-wide configuration.

See Section 3.4.2, Historical Assessment Determinations .

Tag
See Objective Tag.

Target
The participant who has caused an objective to be attained (typically the
person in respect of which benefit is paid).

For example, there may be a child benefit objective on a case for each
child in the household; each objective will be targeted at a different
child (even if, overall, the total amount payable is received by the
primary client).

Temporal Evidence
Evidence of real-world circumstances which varies over time due to
corrections and/or successions.

See the following guides:

• Cúram Temporal Evidence Guide ;

• Cúram Evidence Generator Business Guide ;

• Cúram Evidence Generator Specification ;

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

297

• Cúram Evidence Generator Modeling Guide ;

• Designing Cúram Temporal Evidence Solutions ;

• Cúram Temporal Evidence Developers Guide ;

• Cúram Evidence Generator Cookbook ; and

• Dynamic Evidence Configuration Guide .

Timeline
A CER data item which varies over time.

See the Cúram Express Rules Reference Manual .

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

298

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

299

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

300

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

301

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules

302

http://www.ibm.com/legal/us/en/copytrade.shtml

	Inside Cúram Eligibility and Entitlement Using Cúram Express Rules
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Related Reading
	1.4 Chapters in this Guide

	Chapter 2 Eligibility and Entitlement Processing at a Glance
	2.1 Introduction
	2.2 Product Configuration
	2.2.1 Example

	2.3 Recording of Input Data
	2.3.1 Example

	2.4 Rules Calculations and Determination Results
	2.4.1 What a Determination Result Contains
	The Three Es: Eligibility, Entitlement, and Explanation
	The Determination Result Covers the Lifetime of a Case

	2.4.2 What Triggers the Calculation of a Determination Result
	Active Determination Calculation Requests
	Reactive Determination Calculations

	2.4.3 How a Determination Result Is Calculated
	2.4.4 Example

	2.5 Determination Storage
	2.5.1 Example

	2.6 Scheduling Financials
	2.6.1 Example

	2.7 Determination Retrieval
	2.7.1 Example

	Chapter 3 Navigating Determinations
	3.1 Introduction
	3.2 Manual Check Determinations
	3.3 Snapshot Determinations
	3.4 Assessment Determinations
	3.4.1 Current Assessment Determination
	3.4.2 Historical Assessment Determinations
	3.4.3 Manual Reassessments

	Chapter 4 Calculating and Displaying Eligibility and Entitlement
	4.1 Introduction
	4.2 How It Looks
	4.2.1 Viewing a Determination's Coverage Periods
	4.2.2 Basic Eligibility/entitlement Decision Details

	4.3 How It Works
	4.3.1 Calculation of Eligibility and Entitlement
	A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
	B) ProductEligibilityEntitlementRuleSet.ProductPeriod rule objects
	C) ProductEligibilityEntitlementRuleSet.AbstractCase rule class
	D) Custom rule classes for eligibility/entitlement
	E) Custom rule classes for calculations
	F) RateRuleSet.RateCell rule objects and propagation configuration
	G) Custom Entity rule objects
	H) Custom Evidence rule objects
	I) DeterminationResult

	4.3.2 Display of Eligibility and Entitlement
	Dividing the Determination into Coverage Periods
	Displaying a Summary of Entitlement for a Coverage Period

	4.4 How to Use It
	4.4.1 Understanding Eligibility and Entitlement Concepts
	Case Lifetime
	Eligibility
	Objectives
	Objective Tags

	4.4.2 Analysis
	Identify the product periods for your product
	Identify what types of objective are delivered by your product, and at what frequencies
	Identify the rules that govern when a case is eligible
	Identify the rules that govern the objectives for each case
	Identify the rules that determine when an objective has been attained and its target
	Identify the rules that determine the values at which an objective can be delivered

	4.4.3 Implementation
	Write the Product Structure Rule Classes
	Write the Product rule class
	Write the Objective Type rule classes
	Write the Objective Tag Type rule classes
	Relate each Objective Type to its supported Objective Tag Types
	Relate the Product to its supported Objective Types

	Write the Case Eligibility/Entitlement Calculation Rule Classes
	Write the Case rule class
	Write the Objective Instance rule classes
	Write the Objective Tag Instance rule classes
	Create tag instances from your objective rule classes
	Create objective instances from your case rule class
	A note on manipulating Timelines in CER

	Write the Product Periods
	Working in a Development Environment
	Working in a Running System

	Choose or Create a Summarizer Strategy
	Strategy Implementations Included with the Engine
	Developing your own Strategy Implementation

	4.4.4 Testing

	Chapter 5 Calculating and Displaying Key Decision Factors
	5.1 Introduction
	5.2 How It Looks
	5.2.1 Viewing Key Decision Factors Graphically
	5.2.2 Viewing Key Decision Factors in a List

	5.3 How It Works
	5.3.1 Calculation of Key Decision Factors
	A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
	B) ProductKeyDataRuleSet.AbstractCase rule class
	C) Custom rule classes for key decision factors
	D) Custom rule classes for calculations
	E) DeterminationResult

	5.3.2 Display of Key Decision Factors
	Adding Case Lifetime Events
	Adding Case Decision Events

	5.4 How to Use It
	5.4.1 Understanding Key Decision Factor Concepts
	Fixed Data Structure for Key Decision Factors
	Explicitly Named Key Events

	5.4.2 Analysis
	Identify which decision factors are "key"
	Identify the cardinality and descriptions for your key decision factors
	Identify the data type for each key decision factor

	5.4.3 Implementation
	Write the Case rule class
	Write the Key Decision Factor rule classes
	Write the Key Event rule classes
	Relate each Key Decision Factor to its supported Key Events
	Relate the Case to its supported Key Decision Factors
	Update the Product Periods
	Working in a Development Environment
	Working in a Running System

	5.4.4 Testing

	Chapter 6 Calculating and Displaying Decision Details
	6.1 Introduction
	6.2 How It Looks
	6.2.1 Summary Display Category
	6.2.2 Decision Comparison
	6.2.3 Sub-screens
	6.2.4 Basic Eligibility/entitlement Information

	6.3 How It Works
	6.3.1 Calculation of Decision Details
	A) ProductEligibilityEntitlementRuleSet.ProductDeliveryCase rule object
	B) ProductDecisionDetailsRuleSet.AbstractCase rule class
	C) Custom rule classes for decision details
	D) ProductDecisionDetailsRuleSet.AbstractCaseSubscreenDisplay rule class
	E) Custom rule classes for sub-screen details
	F) Custom rule classes for calculations
	G) DeterminationResult
	Basic Eligibility/Entitlement example XML output

	6.3.2 Display of Decision Details
	Basic Eligibility/Entitlement UIM examples
	Use of data in a condition
	Displaying a list of data
	Connecting a top-level screen to a sub-screen

	6.4 How to Use It
	6.4.1 Understanding Decision Details Concepts
	6.4.2 Analysis
	Identify the Display Categories
	Sketch out the Screens
	Map displayed data to eligibility/entitlement data
	Identify keys for sub-screens
	Identify comparison data

	6.4.3 Implementation
	Write the Case rule class
	Implement attributes to return top-level screen data
	Implement attributes and rule classes for sub-screen data
	Write the Dynamic UIM screens
	Top-level screens
	Sub-Screens
	Storing your screens

	Configure the Product
	Working in a Development Environment
	Working in a Running System

	6.4.4 Testing

	Chapter 7 Understanding Rule Object Converters and Propagators
	7.1 Introduction
	7.2 An Initial Assessment Example
	7.2.1 A System Administrator Creates and Publishes Rule Set Information for a Product
	7.2.2 A System Administrator Creates and Publishes a New Rate Table
	7.2.3 A Case Worker Registers a Person
	7.2.4 A Case Worker Creates a New Case for that Person
	7.2.5 A Case Worker Adds an Additional Member to the Case
	7.2.6 A Case Worker Captures and Activates Some Income Evidence
	7.2.7 A Case Worker Activates the Case

	7.3 The Framework for Converters and Propagators
	7.4 Rule Objects for Use with Eligibility and Entitlement Processing
	7.4.1 Product Delivery Rule Objects
	Overview
	Configuration
	Conversion Processing
	Precedents Identified
	Propagation Processing
	Example

	7.4.2 Rate Rule Objects
	Overview
	Configuration
	Conversion Processing
	Precedents Identified
	Propagation Processing
	Example

	7.4.3 Entity Rule Objects
	Overview
	Configuration
	Conversion Processing
	Restrictions on Access

	Precedents Identified
	Propagation Processing
	Support for Entity Operation Stereotypes
	The "Exclude" List for Entity Propagation

	Example

	7.4.4 Active Succession Set Rule Objects
	Overview
	Configuration
	Conversion Processing
	Timeline-based data types
	Non-timeline data types
	Population of relationships to rule objects for other succession sets
	Rule attributes inherited from ActiveSuccessionSet
	Handling of in-edit evidence changes
	Restrictions on Access

	Precedents Identified
	Propagation Processing
	Example

	7.4.5 Active Evidence Row Rule Objects
	Overview
	Configuration
	Conversion Processing
	Population of relationships to rule objects for other evidence rows
	Rule attributes inherited from ActiveEvidenceRow
	Handling of in-edit evidence changes
	Restrictions on Access

	Precedents Identified
	Propagation Processing
	Example

	7.5 Data Configuration Problems
	7.6 Data Access Points
	7.6.1 Normal Conversion
	7.6.2 Temporary Access to In-Edit Evidence Changes
	7.6.3 Incremental Propagation
	7.6.4 Bulk Maintenance of Rate Rule Objects

	7.7 Logging
	7.8 Supported Domain Types

	Chapter 8 How Determinations Are Stored
	8.1 Introduction
	8.2 The Database Tables
	8.2.1 CREOLECaseDetermination
	8.2.2 CREOLECaseDeterminationData
	8.2.3 CaseDecision
	8.2.4 CaseDecisionObjective
	8.2.5 CaseDecisionObjectiveTag
	8.2.6 CREOLECaseDecision

	8.3 Decision Periods
	8.4 Determination Comparison Strategies
	8.4.1 Strategy Implementations Included with the Engine
	8.4.2 Developing your own Strategy Implementation

	Chapter 9 Scheduling Financials
	9.1 Introduction
	9.2 Scheduling Financials for Eligible Case Decisions
	9.2.1 How It Looks
	9.2.2 How It Works
	Considering Case Decision Objectives
	Considering Nominee Component Assignments
	Considering Nominee Delivery Patterns
	Calculating Financial Component Cover Periods
	Calculating Open Ended Financial Component Cover Periods
	Calculating Financial Component Amounts
	Calculating Financial Component Effective Dates

	9.2.3 How to Use It
	Mandatory Information
	Case Decision Objectives
	Case Decision Objective Tags
	Financial Code Tables

	Optional Information
	Nominee Component Assignments
	Nominee Delivery Patterns
	Allow Open Ended Cases Indicator

	9.3 Scheduling Financials for Case Deductions
	9.3.1 How It Looks
	9.3.2 How It Works
	Considering Case Deduction Items
	Considering Deduction Types
	Calculating Deduction Cover Periods

	9.3.3 How to Use It
	Mandatory Information
	Case Deduction Items

	Optional Information
	Nominee Component Assignments

	9.4 Scheduling Financials for Payment Corrections
	9.4.1 How It Looks
	9.4.2 How It Works
	Considering Payment Correction Types
	Considering Correction Products
	Considering Nominees

	9.4.3 How to Use It
	When will an Overpayment Correction case be created?
	When will an Underpayment Correction case be created?
	When will a Net Zero Correction case be created?

	Chapter 10 Reassessment - Handling Changes in Circumstance
	10.1 Introduction
	10.2 Case-level Reassessment
	10.2.1 Overview

	10.3 Bulk Reassessment
	10.3.1 Types of Change that Cause Bulk Reassessment
	Product Configuration
	CER Rules used by your Product
	Rule Object Data Configurations
	Rate Tables

	10.3.2 Approaches to Identifying and Reassessing All Affected Cases
	Requirements for Bulk Reassessment
	Multiple Reassessments during a Case's Lifetime
	Driving the Identification of Affected Cases
	Reassessment Processing

	10.3.3 Writing your own Bulk Reassessment Batch Process
	The CREOLEBulkCaseChunkReassessmentByProduct Batch Process
	Steps to Implement your own Bulk Reassessment Batch Process

	10.3.4 Bulk Reassessment for Multiple Simultaneous Changes
	10.3.5 Scheduling

	Chapter 11 Incremental Design and Evolution
	11.1 Introduction
	11.2 Starting with Rule Sets Included with the Application
	11.2.1 How Rule Sets Inter-relate
	CER Rules Artifacts - Technical Dependencies
	Dependency Types
	Rule Class Dependencies
	Rule Attribute Dependencies

	CER Rules Artifacts - Logical Categorizations

	11.2.2 Cloning CER Rule Sets

	11.3 Incremental Design
	11.3.1 Choose Default Configuration Options for Your Product
	11.3.2 Implement a Single Product Period First
	11.3.3 Focus on Eligibility/Entitlement Rules
	11.3.4 Spin-off a Task to Write Rule Classes for Custom Entities and/or Evidence Types
	11.3.5 Top-down Implementations
	11.3.6 Bottom-up Implementations
	11.3.7 Hard-code Rates at First
	11.3.8 Keep an Eye on Rule Class Dependencies
	11.3.9 Try Key Decision Factors before Decision Details
	11.3.10 Re-use the Basic Decision Details before Writing Your Own
	11.3.11 Start Slowly with Decision Details
	11.3.12 Throughout Your Product's Development

	11.4 Handling Legislation Change
	11.4.1 Branching Logic in Your CER Rule Sets
	11.4.2 Multiple Product Periods for Your Product
	11.4.3 Choosing the Right Approach

	11.5 Changing Product Configuration Settings
	11.5.1 Decision Summary Display Strategy
	11.5.2 Determination Comparison Strategy
	11.5.3 Allow Open-Ended Cases
	11.5.4 Reassessment Strategy

	Appendix A Compliancy
	A.1 The Public API
	A.1.1 Identifying the Public API

	A.2 Code Package Restrictions
	A.3 Code Table Restrictions
	A.3.1 CaseAssessmentDetReason
	A.3.2 CaseSnapshotDetReason
	A.3.3 Restricted Code Table Packages
	A.3.4 Restricted Code Tables

	A.4 Database Restrictions
	A.4.1 RuleObjectPropagatorControl
	A.4.2 Restricted Database Tables

	A.5 CER Rule Sets Included with the Application

	Appendix B The Eligibility and Entitlement Engine API and Customizability
	B.1 Eligibility and Entitlement Engine API
	B.2 Customizability
	B.2.1 Eligibility and Entitlement Engine Events
	B.2.2 Eligibility and Entitlement Engine Hooks

	Appendix C Extensions to Cúram Express Rules
	C.1 Introduction
	C.2 Expressions
	C.2.1 combineSuccessionSets
	Overview
	Example
	Detailed Behavior
	Validation checks made when the rule set is validated
	Validation checks made when combineSuccessionSets is evaluated

	CER Editor reference
	Create an Absence rule class for evidence
	Write the CombinedAbsence return class
	Write the Person rule class
	Add a Rule Attribute for the Person 's Absence Succession Sets
	Add a Rule Attribute to combine the Person 's Absence Succession Sets
	Add a Rule Attribute to calculate eligibility based on absence reason

	XML Reference

	C.2.2 legislationChange
	Overview
	Example
	Detailed Behavior
	CER Editor reference
	Create a Person rule class
	Implement legislation change logic

	XML Reference

	C.2.3 rate
	Overview
	Example
	Detailed Behavior
	CER Editor reference
	Create a Person rule class
	Implement rate retrieval logic

	XML Reference

	C.3 Annotations
	C.3.1 Display
	XML Reference

	C.3.2 DisplaySubscreen
	XML Reference

	C.3.3 Legislation
	XML Reference

	C.3.4 SuccessionSetPopulation
	XML Reference

	C.3.5 relatedEvidence
	XML Reference

	C.3.6 relatedSuccessionSet
	XML Reference

	Appendix D Environment Variables
	D.1 Cúram Environment Variables Governing Behavior of Engine

	Appendix E Glossary
	E.1 Terms Used throughout this Guide

	Notices
	Trademarks

