..lli

IBM Curam Social Program Management

Curam XML Infrastructure Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008-2011 Curam Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
R @ o] 1= ot Y PR RS 1
B (=01 S (=S PRS 1
BRI 1 011 £0To 8ot i o] o PSR RS 1
LA TRIrd-Party LIDIANESccoeceiieieiieeiesieeie ettt sttt st sae s 2

Chapter 2 XML CONCEPLSveeiieeiieeiiesieesiee st e e steestesssseesseesseessesssseesseessseesseesseesseesnsesssenans 4
P O o 1= o 1 Y S 4
B = 1= o 0TS 1 (=SS 4
PZRC I 1 110 o [FTox 1 o o PP SRSRPTRN 4
A XML e r et r s 4
2.5 Document TYPE DEfINITIONccuvieeiicecie e 6
2.6 XML DOCUMENLSveeiiieeieesiieeieesiee e e e s e e s e sseesn e sneesneesnnesneesneesneennes 6
2.7 SUMIMEIY .eveeettieeeiieeesitesssieesstea e s bee e ssse e e satee s aab e e e asteeebteeeseeeeaseeesbeeesabeeennbeeesnneeenareeans 7
e U 1= == (1 o 7

Chapter 3 Developing fOr XML ..ot 9
S L OBJECLIVE ...ttt bbbttt n et b nre s 9
B2 PIEMEQUISITESeoviiiiiieiieie ettt ettt sttt bbbt se e e e e et nbe e 9
TGN 1 911 0o ¥ Tox 1 o o 9
34 XML DOCUMENES ...cooiiieiiiieeitieeiee ettt et e e st e s e e s sneeesneeesseeesnneeesnneeesnneeenas 9

3.4 1 DOCUMENLS ...eeeiiiieiieieeieeesieeesiee e st e s e e e ssse e s ssseessseeesneeesseeesseeesnneeesnneeenanes 10
3.4.2The XMLDOCUMENT ClESSccveveerieeieeiesieeie et eee et eee et see e sne e 10
A3 ENCOUING uvitiiteitieiieieeiiee ettt bbbt bttt e e st nnenne s 11
3.4.4 Creating an XMLDOCUMENToooiiiririeieieieesie e 12
3.4.5 Opening an XMLDocUMENt ODJECLccevveierieriirieneriesieseseeee e 13
3.4.6 Adding Datato an XMLDocument ODJECLcccovererererinieieieeseesienens 14
3.4.7 Closing an XMLDocument ODJECEcccueierierierierieneseseseeeeee e 14
3.4.8 Saving an XMLDocument ODJECEccceieeieiiiiriereseseseeee e 14
3.4.9 Loading an XMLDocument ODJECEcccvvieiiiireniresereseeee e 15
3.5 The XML Print SIFEAIMocceeeeceece et 15
R O Y o 1 S 15
3.5.2The XMLPrINtSIream ClaSsccccvvereieereeie e esee e eee e ste e sse e 15
3.5.3 Default Configuration for XMLPrNtSIreamcoocovvvevinininieiesesesieiens 16
3.5.4 Creating an XMLPrintStream ODJeCtccoceiiiiiinineneneeeeeee e 17
3.5.5 Configuring an XMLPrintStream ODJECtcccoovverireninineeeeeseesieniens 17
3.5.6 Opening an XMLPrintStream OBJeCtccoeviiireninenereeeeeeeee e 19

Curam XML Infrastructure Guide

3.5.7 Closing an XMLPrintStream ODJECtcccooviviireriineeeee e 20
S5 8 PHNEPrEVIEWING ..oeeeiieiieie ettt sne s 20

3.6 SAMPIEUSAGEeoiieie ettt sttt ettt sb et e s e e neeaeeneas 21
301 OVEIVIBIW .ttt a ettt ae et et esae et e et e sneenbeeneas 21
3.6.2 Saving XML Datato @File ..o 21
3.6.3Printing an XML DOCUMENTccooiiriiiiinieeie et 22
3.6.4 Saving and Loading XML DOCUMENLSccccureerierrienienienie e siesee e 22
3.6.5 Previewing an XML Print JODcccooiiiiiiniineseee e 24
3.6.6 Building aDocument from @ LiStccoooeeieriininneneeeeee e 25

3.7 Load Balancing and Fail-OVer ...t 26
3.8 SUMIMEAIY .ttt ettt ettt ettt e et e e be e s e e e be e eaneebeeemneebeesaneeneesnneebeesnneans 27
Chapter 4 TRE XML SEIVEN ..ottt sttt te e s re et s esne e aesseesreenenneens 28
T © o = 1 Y= SRS 28
T (= = 0 (U1] (-SSR 28
TG 1 011 [F o1 o o HO RSSO 28
AATRE XML SEIVED ..ottt bbbttt b e b 28
4.5 Configuring the XIML SEIVEDcoiieece ettt 29
T @Y= V= USRS 29
4.5.2 NetWOork ConfigUIalionccceeceeieeresiesieesesee et 32
4.5.3 Default Value Configurationccccceeeerieesesieeseesie et see e 33
4.5.4 Server Command Configurationccccevveveeeeseere e 33
4.5.5 Template Cache Configurationcccccevieeieeieeseese e 35
4.5.6 DebUg CoNfIQUIALIONceeiueeiieieesiesie e esie e see e esae e sree s 36
TN oo 72 oo o1 o S 36
4.5.8 RenderX ConfigUurationccceceeeeeiesiesieeseseeseesie e e see e see s e 36
4.5.9 Custom ConfigUIaioncceeieeieeseeie e 37
ARSI O o 0| A @0 01110 U= { Lo o 38
4.5.11 Sample Configuration FIlESccccveiiiiecicie e 39

4.6 RUNNING the XIML SEIVEY ..ottt st 45
4.6.1 Running the XML Server as a Windows Service or UNIX Daemon 45

4.7 Overriding the Default POITocvei i 46
4.8 Overriding the Default Configurationcoceeeeieeieseece e 46
4.9 Switching Off Configuration File SchemaValidationcccccevvvevicieveeienen. 46
4.10 Shutting DOWN the XML SEIVENccce e 47
S = 1 1 oxS TSSO 47
Z.12 SUMIMBIY .vteeeiieeeeieeesteeestesessseessssessssseessssesssseesbeeesaseeeaabeeesabeeesaseessabeeesabeeenaseesnnnes 48
Chapter 5 Cdram XML and XSL TEMPIAESccooovreeereieerereee e 50
ST @ o= 1Y 50
5.2 PrEFEQUISITESeiviieieiieieie ettt sttt bbb e e et e ne e 50
CIRC T 1 911 0o U Tox 1 o o S 50
IR O 0 15 1Y, S 50
5.5 EXAMPIES ..ottt ettt bbbt e ne e 51
5.6 Job Types and TeMPIEE TYPESccererierieie ettt 52
5.6.1 OVEIVIBW ..ot eeie st eeesee e ete e teetesseesaeesaesseesseenaesseenseensesneesseensesseensesnes 52
5.6.2 Templates for PDF DOCUMENESccueriririeieiesie e sie s 53
5.6.3 Templates for RTF DOCUMENESccueriririeieiesiesiesie e 53
5.6.4 Templates for HTML DOCUMENLScc.eeerieieiinieriesie e 54
5.6.5 Templates for Plain Text DOCUMENLSccooueriiriirienerieneneseeee e 54

Curam XML Infrastructure Guide

5.7 XSL Template EXAMPIE ..ot 54
5.8 Generating Templates from RTF DOCUMENESc.coeeiieiieniiiiereeee e 55
5.9 Globalization CONSIAEIAliONSccceeeeriiriierie e 56
500 SUMIMBIY ..eeieeieiiee ettt ettt e e be e saee e s be e saeeebe e eaneesbeessseeseeeaneeneesnneeseesnneans 56
5.11 FUrther REAAINGcoieiiiiieeeeee ettt et 57
N[0 o= SRR 58

1.1

1.2

1.3

Chapter 1

Introduction

Objective

In this guide you will learn how to develop applications that use the XML*
features of the IBM® Cudram Social Program Management Server Devel op-
ment Environment (SDEJ).

Prerequisites

Before reading this guide you should be familiar with application server de-
velopment and the Server Development Environment (SDEJ). These topics
are covered in the following guides in the IBM Caram Social Program
Management documentation:

e Curam Modeling Reference Guide;

e Curam Server Developer's Guide.

This document makes a number of references to struct classes which are
fully defined in the Cdram Server Modeling Guide.

Introduction

This guide presents all aspects of the IBM Curam Social Program Manage-
ment XML functionality provided with the Server Development Environ-
ment (SDEJ), from modeling to devel opment to runtime management.

Chapter 2, XML Concepts provides a brief introduction to XML. Chapter 3,
Developing for XML presents the application server development infrastruc-
ture elements that allow you to create XML documents and send them to the
XML Server. Chapter 4, The XML Server describes the IBM Curam Social
Program Management XML Server and how it can be used to convert XML
data into formatted PDF2, RTF3, HTML* or plain text documents and then

1.4

Curam XML Infrastructure Guide

manipulate these documents for printing, e-mailing, etc. Chapter 5, Ciram
XML and XSL Templates describes the XML format used by IBM Cdram
Social Program Management and provides instructions on how it can be
used to create X SL° templates.

This breakdown should be considered when reading the document as terms
may be introduced in an early chapter and detailed in the succeeding
chapters, without a specific cross reference being provided.

Third-Party Libraries

This product includes software developed by the Apache Software Founda-
tion (http://www.apache.org/). The IBM Cdram Social Program Manage-
ment XML infrastructure is based on the Apache XML Project's suite of
Java® XML libraries. These libraries are the de facto standard implementa-
tion of XML. Apache Xercesisthe XML parser used; Apache Xalan is used
for XSL processing; and Apache FOP (Formatting Objects Processor) for
the PDF rendering

Bertrand Delacrétaz's JFOR library (now part of the Apache FOP) is used
for rendering documentsin RTF format (http://www.jfor.org/).

http://www.apache.org/
http://www.jfor.org/

Curam XML Infrastructure Guide

Notes

XML means Extensible Markup Language.
2PDF is the Adobe Portable Document Format. For more information about
PDF, or to download free software to read PDF files on most platforms, go
to the Adobe PDF web site: ht-
gp://www.adobe.com/products/acrobat/adobepdf.htmI

RTF is the Rich Text Format, a format developed by Microsoft® and that
can be read by most common work processing applications.
“HTML means Hypertext Markup Language and is a document format used
on the World-Wide Web.
X SL means Extensible Stylesheet Language and is a W3C standard defin-
ing stylesheets for (and in) XML.

http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/products/acrobat/adobepdf.html

2.1

2.2

2.3

2.4

Chapter 2

XML Concepts

Objective

In this chapter, you will be introduced to the Extensible Markup Language
(XML), what it isand how it is used to represent data.

Prerequisites

There are no prerequisites for this chapter.

Introduction

This chapter presents a brief overview of the Extensible Markup Language
(XML). XML is a data representation standard that is growing enormously
in popularity as the growth of the Internet requires that more and more data
be readable on a multitude of different systems.

IBM Curam Social Program Management can generate XML data from
struct classes at runtime, a typical use of which is to print documents based
on XSL templates and the contents of these classes. It is useful to know
what XML is prior to seeing how it fits into IBM Curam Social Program
Management and the next section presents a brief overview of the standard.
Chapter 5, Caram XML and XS Templates provides an introduction to X SL
templates.

XML

XML is a metamarkup language that defines how to write your own
markup languages. Unlike HTML, XML markup languages are case-
sensitive and all documents must be well-formed (more about this below).
Well-formed XML -based markup can be parsed by generic parsers and pro-

Curam XML Infrastructure Guide

cessors regardless of the tags and attributes chosen for the application.

A tag is an entity in XML that defines an element. Tags are identifiers that
are enclosed in angle brackets (‘<* and ‘>’). For every opening tag there
must be a closing tag. Closing tags are similar to opening tags except that
thereisadash (‘/) before the tag name. In between the tags is the value of
the element defined by the tag. For example, here is a <NAVE> element
defined using NAME tags:

<NAME>Joe Bl oggs</ NAVE>

XML elements can be nested to define structure and white-space can be
used to make the structure easier to identify:

<PERSON>
<FI RST_NAME>Joe</ FI RST_NAME>
<SURNAME>BI 0ggs</ SURNANME>
<E_MAI L>j bl oggs@cne. conx/ E_MAI L>
</ PERSON>

XML is deemed to be well-formed :
a. If every element has an opening and closing tag.

b. Elements do not overlap (i.e. the elements delimited by opening and clos-
ing tags nest properly within each other).

c. Thereisaroot element.

d. Case-sensitivity is respected and

e ‘<, > ‘&, ’,and'"’ characters are escaped.

The following is not-well-formed XML because the elements overlap:

<BCOLD>The qui ck brown <I TALI CS>f ox
j unmps</ BOLD> over the |azy dog.</| TALI CS>

Characters with meaning in XML are escaped using ‘&’ for a ‘&,
‘&It fora'<’, ‘&qt;’ fora‘'>’, ‘' fora‘'’ ’, and ‘"’ fora‘"".
These are called character entities.

The requirement for aroot element makes this XML invalid:

<NAME>Joe Bl oggs</ NAVE>
<NAME>Jane Doe</ NAME>

as no single element forms the root. The following is valid, however, as
NAME_LIST formsthe root element:

<NAME LI ST>
<NAME>Joe Bl oggs</ NAVE>
<NAME>Jane Doe</ NAME>
</ NAME_LI| ST>

XML elements can have attributes. Attributes are specified as part of the tag
and can be used to hold meta-data about the elements (this is what they are
usually used for but there is no prescription for their use).

2.5

2.6

Curam XML Infrastructure Guide

<NAME LI ST ELEMENTS="4" RANGE="A-D'>
<NANVE SEX="MALE">Hop Al ong</ NAME>
<NAME SEX="MALE">Joe Bl oggs</ NAME>
<NAME SEX="MALE">P Cutt er </ NAME>
<NAME SEX="FEMALE">Jane Doe</ NAME>
</ NAVE_LI ST>

XML supports empty tags. These are tags where the start tag and end tag are
combined into one and there is no element data. These tags start with a‘<*
and end with a ‘/>’. Typically attributes are used to store the data in these
tags. For example, here is an empty PERSON tag with NAME and SEX at-
tributes:

<PERSON NAMVE="Joe Bl oggs" SEX="MALE"/>

Comments can be entered in an XML document using an opening ‘<! - -’
tagand aclosing ‘- - >’ tag. For example:

<I--This is an enpty PERSON tag-->
<PERSON NAMVE="Joe Bl oggs" SEX="MALE"/>

That was XML in anutshell.

Document Type Definition

As described in the previous section an XML document is an entity that
contains XML data of a particular type. The primary requirement is that a
document have aroot element, and XML defines some simple rules for data
representation. To make sense of data represented in XML, it is necessary to
know what the chosen element tags, etc. mean. This meaning is provided by
a Document Type Definition (DTD) that defines what tags can be used and
where they can be used. A unit of XML data that conforms to the rules
defined inaDTD isan XML document

XML Documents

A particular set of XML tags has been defined to alow any data in 1BM
Curam Social Program Management to be represented as XMLL All XML
is from struct classes defined in the application model. The IBM Caram So-
cial Program Management XML definition uses tags to genericaly identify
the parts of these model entities. So, these XML includes tags for structs,
fields, values, types, lists, etc. These tags are described in an IBM Cldram
Social Program Management-specific Document Type Definition (DTD)
which is shown in Example 5.1, Caram XML Document Type Definition
(DTD).

ThisDTD is shown for the sake of completeness. The only area of the XML
infrastructure where the developer requires knowledge of the exact format
of the XML isin XSL template development although they may wish to ma-
nipulate the XML directly for some unforeseen reason.

2.7

2.8

Curam XML Infrastructure Guide

Summary

¢ XML standsfor Extensible Markup Language.

XML alows datato be defined in plain text and structured using nested
elements defined using tags that appear within angle-brackets ‘< >’. Ele-
ments can be defined with attributes.

* XML is case-sensitive and requires that documents be well-formed: they
must have aroot element and el ements cannot overlap.

e XML uses severa character entities to avoid confusing data with the
XML markup.

e InIBM Cadram Social Program Management a specific set of tags has
been chosen to generically represent data that is generated from an ap-
plication’s struct classes at runtime. These tags are contained in a sup-
plied Document Type Definition.

Further Reading
The World-Wide-Web Consortium (http://www.w3c.org/) is responsible for

the development of the XML and related standards. There is much more de-
tailed information on their web-site about XML that is worth reading.

http://www.w3c.org/

Curam XML Infrastructure Guide

Notes

An input field that contains a period (".") on a line by itself (i.e., "." sur-
rounded by "\n" or "\r") will cause the XML Server, when the data is pro-
cessed, to throw an error. This is because, as documented in Section 4.5.6,
Debug Configuration, the XML Server uses this particular character se-
guence to mark the end of client transmission; but, in the particular context
of data entered from aweb client thisis undesirable behavior.

3.1

3.2

3.3

3.4

Chapter 3

Developing for XML

Objective

In this chapter, you will learn how to incorporate XML support into your
application servers and produce XML documents

Prerequisites

Before reading this chapter, you should be familiar with the IBM Cdram So-
cial Program Management application server development with UML Mod-
eling and the Server Development Environment (SDEJ). These topics are
covered in the following guides in IBM Curam Social Program Manage-
ment documentation:

e Curam Modeling Reference Guide;
e Curam Server Developer's Guide.

Y ou should also have read the previous chapter which provided a brief in-
troduction to XML.

Introduction

This chapter describes the two most important classes you need when
adding XML functionality to your applications:
curamutil.xm .inpl.XM.Docunent and
curamutil.xm .inpl.XMPrintStream The classes are presen-
ted in depth before samples of their use are presented to demonstrate how
they can be used together to generate XML and print documents.

XML Documents

3.4.1

3.4.2

Curam XML Infrastructure Guide

Documents

CA number of operations can be performed on XML documents.

e A document can be created and stored in memory. This document can
then be stored in the database, or written to a stream, or both.

e A document can be created and written to a stream directly to reduce
storage requirements. This is particularly useful for very large docu-
ments that do not require an archived copy.

* A previoudy archived document can be retrieved from the database and
written to a stream.

As streams are flexible, there are many things you can do with them.

* Youcan use astream to save the XML datato afile.

* You can use the XMLPr i nt St r eamclass to request that a document
should be printed.

* You can use astream to transfer information over a network via a socket
connection.

e Youcanuseaj ava. i o. Buf f er edQut put St r eamto buffer all the
XML data.

* You can create your own stream classes (or use any of the standard
stream classes) to do just about anything you want with the XML datal

The XMLDocument Class

IBM Curam Social Program Management XML data is generated according
to the rules of asimple DTD. The XM_.Docunent classis used to hold the
generated XML and wraps the datain the necessary root element. This class
is central to all XML operations that you can perform in IBM Curam Social
Program Management. Its interfface can be found in the
curamutil.xm . i npl package within the supplied SDEJ JavaDoc. In
the rest of this section, you will learn how to use this interface to create
XML documents from your application data.

The use of the XMLDocunent class follows the following broad pattern:
1. Create anew instance of the XM_Docunent class.

2. Open the XML document to create the root element and provide a con-
text for the XML data that you want to create.

3. Add astruct class (or struct classes) to the open XML document to cre-
ate the XML data.

4. Closethe XML document to complete the root element.

10

3.4.3

Curam XML Infrastructure Guide

These steps will be covered in the following sub-sections. First, however,
you must be aware of the importance of XML data encoding.

Encoding

All XML data are represented in plain-text. A small number of characters
have a particular meaning to XML (“<”, “>", “" “”” *&”) and if these oc-
cur in your data they are automatically converted to their corresponding
XML character entities to avoid problems. However, if you use characters
outside the normal US-ASCII range (characters 0-127), even plain-text be-
comes ambiguous. For example, in Western Europe, you might typically
store your data using the 1SO-8859-1 character set also known as “Latin 1”.
In this character set, the character “& (e-umlaut) is character number 235.
However if you sent this XML datato a person in Greece who would typic-
ally use the | SO-8859-7 (Greek) character set, the same character 235 would
appear as the lower-case Greek |etter lambda.

To avoid this problem, XML allows the character encoding used for a docu-
ment to be stated in the XML processing instruction found at the top of all
XML documents. Now, when you create your document you can explicitly
state that you want to use 1SO-8859-1 for your data because that is the form
inwhich it is stored in your database. When you send the file to Greece, the
person there knows not to use the 1SO-8859-7 character set to interpret the
data but 1SO-8859-1 instead. In general, this will be handled by their XML
parsing software which will read the encoding information from the docu-
ment.

By default, XML uses an encoding scheme known as UTF-8. This modified
Unicode scheme creates a document that uses two bytes to represent charac-
ters greater than 127. However, you will need to set the encoding explicitly
if the data stored in your database uses a different encoding scheme.

IBM Curam Social Program Management XML provides a range of con-
stants for the common encoding schemes. The available schemes are shown
in Table 3.1, XML Character Encoding Constants below.

Constant Alternative Constant Encoding Scheme

kEncodeUTF8 UTF-8

kEncode- |SO-10646-UCS-2
| SO10646UCS2

kEncode- |SO-10646-UCS-4
| SO10646UCS4

kEncodel SC88591 kEncodel SOLATI N1 1SO-8859-1
kEncodel SC88592 kEncodel SOLATI N2 1SO-8859-2
kEncodel SCB88593 kEncodel SOLATI N3 1SO-8859-3
kEncodel S088594 kEncodel SOLATI N4 1SO-8859-4

kEncodel SC88595 kEncodel SOCYRI L- 1S0O-8859-5
LI C

11

3.4.4

Curam XML Infrastructure Guide

Constant Alternative Constant Encoding Scheme

kEncodel S088596 kEncodel SOARABI C 1SO-8859-6
kEncodel SC88597 kEncodel SOGREEK |1S0O-8859-7
kEncodel SCB8598 kEncodel SOHEBREW S0O-8859-8
kEncodel S088599 kEncodel SOLATI N5 1S0O-8859-9
kEncodel SO885910 kEncodel SOLATI N6 1SO-8859-10
kEncodel S0885913 kEncodel SOLATI N7 1SO-8859-13
kEncodel SC885914 kEncodel SOLATI N8 1S0O-8859-14
kEncodel SC885915 kEncodel SOLATI N9 1SO-8859-15

kEncodel SO2022JP 1SO-2022-JP
kEncodeSHI FTJI S Shift_JIS
kEncodeEUCIP EUC-JP

Table 3.1 XML Character Encoding Constants

The relevant constant should be specified when constructing a new XM.-

Documnent in order to set the encoding scheme as appropriate for the XML
document. This encoding will be used for the XML document declaration as
well as for the XML document itself. If loading an XML document from the
database, the encoding of that document should match the encoding used to
construct the XM_LDocunent class. If you supply no value, no encoding
scheme will be specified in the XML and XML parsers will thus assume
UTF-8 according to the XML standard. If the encoding scheme you wish to
use is not among those listed, you may supply a string containing the encod-
ing value you wish to use.

All of the encoding constants are within the XM_LEncodi ngConst ant s
interface. To use, for example, the Latin 1 set, you would use XM_LEncod-
I ngConstants. kEncodel SOLATINL or XM.Encodi ngCon-
stants. kEncodel SC88591.

Creating an XMLDocument

As XML data is created it is written to a stream. By default, an instance of
the XM_LDocunent class maintains an internal stream that will hold the
XML data. By alowing the document to store the data in this stream, you
may later save the document to the database or write it to another stream. If
you have no wish to save the document, you can specify an alternative
stream where the XML data should be written as it is created. This can help
to reduce memory overhead if the data stream is very large. For example,
data for a large report may not need to be stored in the database. This data
can be generated and processed on-the-fly without any intermediate storage.

XM_Docunent (Stri ng encodi ng);
XM_Docunent (Qut put Stream stream String encodi ng);

Example 3.1 XMLDocument Constructor

12

3.4.5

Curam XML Infrastructure Guide

Both constructors take a parameter to set the character encoding. You can
set the encoding value using one of the encoding constants or an encoding
string of your own choosing.

The first constructor is used when you want the XML document to use its
internal string buffer to store the XML data. This allows you to save the
document to the database later or to write to another stream once it is com-
plete. If you intend to load an XML document from the database, you
should also use this constructor. In that event, the encoding string is irrelev-
ant.

The second constructor allows you to specify an output stream that the doc-
ument should be written to as it is created. This precludes the possibility of
storing the document in the database once it is complete. However, for large
documents that do not need to be stored but rather printed, saved to afile, or
transferred over a network, thisis a more efficient method that the first. For
streams such as file and print streams that are required to be explicitly
opened, it is important that the stream passed to this constructor is already
open as the document will expect to be able to write to it immediately.

Opening an XMLDocument Object

open(String generatedBy, String generatedDate, String version,
String coment);
openFor Li st (String generatedBy, String generatedDate,
String version, String conment);

Example 3.2 Opening an XMLDocument

Once you have instantiated an XM_Docunent object, you need to open it
in one of two ways. If you want to write the details of a single struct class to
the XML document, you must open the document with the open() meth-
od. If you want to write the details of several different struct classes of the
same type to the document, you must open the document with the open-
For Li st () method. This latter method allows you to create a document
that contains a list of struct classes where each one is added in turn. All the
struct classes must be of the same type. The former method allows you to
add only a single struct class to the document before closing it. This single
struct class can, however, contain fields that are lists of struct classes.

Both of the open methods take several parameters that can be used to set
meta-data for the document. You can include the name of the entity that
generated the document, the date and time on which it was generated, the
version of the document, and any other comments you wish to associate
with the document. Each parameter is a string and you can use any length of
data formatted in any way you wish. You must, however, respect the re-
quirement of XML that certain characters be converted to character entities.
If your strings contain any of the following characters: “™, “””, “<”, “>" or
“&”, you must convert them to their character entity values. This can be
done by calling the XM_Docunent .escape() method. The method takes
a string parameter and returns a new string with the character entity conver-

13

3.4.6

3.4.7

3.4.8

Curam XML Infrastructure Guide

sions done for you.
Once opened, you can begin adding struct classes to your XML document.

Adding Data to an XMLDocument Object

add(Obj ect val ue);
addFromXM_(String xm Fragnent) ;

Example 3.3 Adding to an XMLDocument

The add() method of the XM_Docunent class can be used to produce
XML datafrom an instance of a struct class.

For documents opened with the open() method, you may only issue a
single call to add() before closing your document. For documents opened
with openFor Li st (), you may use severa calls to add() but should
ensure that you only add instances of the same struct class type.

addFr omXM_() is a convenience method allowing an XML fragment to
be directly added to the document, rather than using the struct class. It isthe
responsibility of the caller to ensure this fragment respectsthe DTD.

Closing an XMLDocument Object

cl ose();

Example 3.4 Closing an XMLDocument

Once you have finished adding data to an XML document, you need to
closeit. The cl ose method of the XM_Docunent class takes no paramet-
ers. Calling the cl ose method will not close the output stream you spe-
cified as a parameter to the XML document. You must close this stream

separately.
Once closed, a document will write all remaining XML information to the
stream to complete a well formed XML document. If the document object is

using an internal string stream buffer, you may save the document to the
database or write it to another stream.

Saving an XMLDocument Object

save(String nane, XSLTenpl at el nst anceKey t enpl at eKey) ;

Example 3.5 Saving an XMLDocument

Once closed, any XML document you created to write to the default internal
string stream buffer can be saved to the database. This is useful if you want
to print information yet keep a record of what was printed. As information
in the database may change, it will not always be possible to ssmply print
out the same form, letter, etc., and expect it to contain the same data as be-
fore. Using the XML document archive, however, you are guaranteed that

14

3.4.9

3.5

3.5.1

3.5.2

Curam XML Infrastructure Guide

the datawill be identical as it represents a snapshot of the values at a partic-
ular point in time.

Each document can be saved along with the details of an associated tem-
plate. This allows any print job, for example, to be rerun in the future with
the same data and the same version of the template. The save method takes
two input parameters and has one return value. The input parameters allow
you to specify a name for this saved document. This can be any string-type
information that you want. The maximum length is 100 characters. The
second parameter is the template instance (version of a template) that you
want to associate with this document.

The return value is the key value of the new archived document record that
will be created to hold the XML data. This key value can be stored else-
where to keep track of what documents are available. For example, if you
print a letter to send to a client, you could associate this key with a diary
entry recording the sending of the letter. The letter could then be reprinted at
any timein the future by accessing the key stored with the diary entry.

Loading an XMLDocument Object

| oad(XMLAr chi veDocunent | D key) ;

Example 3.6 Loading an XMLDocument

To load an XML document from the document archive, you should first cre-
ate adefault XM_Documnent object. Thel oad method takes one parameter
which is the key to the archive document. The details returned include the
template information that you saved with the document such as its version
and locale, and the XML representation of the data in the document.

Once loaded, the XML document object can be treated like any other docu-
ment object that was created, opened, had data added and was closed.

The XML Print Stream

Overview

The SDEJ includes the XML Server (see Chapter 4, The XML Server). For
developers, the interface to this server is viathe XMLPr i nt St r eamclass.
This class alows you to send print job requests (and more besides) to the
IBM Cuaram Social Program Management XML Server.

This section describes the use of the print stream and how XML documents
can be printed using its facilities.

The XMLPrintStream Class

The public interface to the XMLPr i nt St r eam class can be found in the

15

3.5.3

Curam XML Infrastructure Guide

curamutil.xm .inpl packagewithin the SDEJ JavaDoc.
In use the following basic pattern will be followed:

1. Create anew instance of the XMLPr i nt St r eamclass.
2. Set the various printing options.

3. Open the connection to the XML Server.

4

Write to the print stream object. (Thiswill usually be done by an XM_-
Docunent object).

5. Closethe print stream object to initiate the print job.

The following subsections will look at these steps in detail, but first there
are steps you can take to configure default values for your print streams.

Default Configuration for XMLPrintStream

The XMLPr i nt St r eamclass lets you set a number of options when you
want to submit a print job. These are the printer name, the paper tray name,
the server host name, and the server port number. Each of these options can
be set in your project's properties as described in the Cdram Server De-
veloper's Guide. The values required are shown in the Table 3.2, The applic-
ation.prx settings for XMLPrintSream. All are entered as strings and are not
converted to any other data-type. Y ou must make sure to convert any special
characters with ameaning in XML to character entities.

Variable Name Description
curam xnl server Thename of the default printer to use for jobs sub-
.printer mitted by this application. On Microsoft® Win-

dows, this might be, for example,
\\\\'nyhost\\printerl,orl pt1l:.

curam xm server Thename of the paper tray to use for jobs submit-

.tray ted by this application.

curam xm server Thehost on which the XML Print Server resides.

. host The property may also be specified asa'/' separ-
ated list of host names in order to use multiple
XML Servers.

curam xnl server Theport on which the XML Print Server islisten-

. port ing. The property may also be specified asa'/' sep-
arated list of portsin order to use multiple XML
Servers.

curam xm server Thedefault encoding used for the encoding of files

.fileencoding provided to the XML Server. Thisvaue can be
overriden for individual instances of XMLPr i nt -
St r eamusing the set Encodi ng method. The
default value for this property is UTF- 8.

curam.xmlserver.seriali BOOLEAN

16

3.5.4

3.5.5

Curam XML Infrastructure Guide

Variable Name Description

zelocaleneutral
Table 3.2 The application.prx settings for XMLPrintStream

When your application submits a print job, these values will be used as the
defaults for the job. You can use the individual setter methods to override
these defaults.

Creating an XMLPrintStream Object

XMLPrintStrean(String host, int port)
XMLPrint Strean(final XM.Server EndPoi nt[] endpoi nts)
XMLPrint Strean()

Example 3.7 XMLPrintStream Constructor

An XMLPr i nt St r eamobject can be instantiated by providing the name of
the host on which the XML Server resides and the port on which the XML
Server is listening. However, as documented in the Java documentation,
these properties are not used and it is recommended to use the empty con-
structor.

Configuring an XMLPrintStream Object

set PrinterNane(String nanme);
set Paper Tray(String tray);

set User Nane(String user);

set Emai | Address(String email);
set Encodi ng(String encodi ng);
set JobType(String job);

Example 3.8 Configuring an XMLPrintStream

Once instantiated, an XMLPr i nt St r eamobject can be configured. In Sec-
tion 3.5.3, Default Configuration for XMLPrintStream the default configura-
tion was covered. You can override the printer name and paper tray values
using the set Pri nt er Nanme and set Paper Tr ay methods respectively.
In addition, you can also set a user name and an e-mail address for the print
job. The user name might be that of the user who initiated the print job, or
any other user name you prefer to use. The e-mail address, similarly, can be
any e-mail address you want to associate with the job.

The encoding can also be set here. This encoding is used within the
XM.Ser ver for such purposes as printing documents in the specific encod-
ing. If the encoding is not explicitly set through the set Encodi ng meth-
od, then the value will be taken from the
curam xm server. fil eencodi ng configuration property. If this
property is not set, then the default encoding of UTF- 8 will be used.

17

Curam XML Infrastructure Guide

Note

It is important to set the encoding correctly when using XM_Docu-

ment and XMLPri nt St r eam classes together. For example, if
you create an XM_.Docunent classwith an encoding of UTF- 8 and
you create the XMLPr i nt St r eamclass setting the encoding to be
US- ASCI |, there may be some issues with the document being
printed. As US- ASCl | contains a smaller character code set than
UTF- 8, some characters may not be supported and therefore when
printing the document, the resulting document may contain unrecog-
nizable characters. Therefore, if you wish to have the UTF- 8 docu-
ment printed correctly, you should set the encoding of the XM.-

Pri nt St r eaminstance to use UTF- 8 encoding. Please see Sec-
tion 3.4.3, Encoding for further information on encoding.

=

All the parameters are strings and you must respect the requirement of XML
that certain characters must be replaced with character entities. Y ou can use
the XM_LDocunent .escape(Stri ng val ue) method for this conver-
sion.

Overriding the default values allows you, for example, to print a document
to aprinter nearest the current user, rather than to a default printer.

By default, the XML Server will combine your XML datawith an XSL tem-
plate and attempt to render the resulting document as a PDF document. The
XML istransformed based on the template locale and for Right-to-L eft lan-
guages. These are the supported languages, which are specified by locale
code:

Language Locale Code

Arabic ar
Fars fa
Hebrew he
Hebrew iw
Yiddish ji

Yiddish yi

Pashto/Pushto ps
Urdu ur

Table 3.3 Right-to-Left Supported Languages and Locale Codes

Due to the limitations of FOP, you must have a supporting Right-to-L eft
implementation in the XML Server configuration (e.g., see Section 4.5.8,
Render X Configuration). For this rendering step to work, the combination of
the XML data and XSL template should produce a document marked up us-
ing XSL Formatting Objects. As an aternative to PDF output, you can spe-
cify RTF, HTML or plain text output using the set JobType() method.
This method can be used to specify any of the supported output formats us-
ing the appropriate constant as shown in Table 3.4, XMLPrintStream Job

18

3.5.6

Curam XML Infrastructure Guide

Types. All the constants are within the XMLPr i nt St r eanConst ant s
class and should be prefixed with XMLPr i nt St r eanConst ant s in your
code unless you have implemented this class as an interface.

Job Type Description

kJobTypePDF Thisisthe default job type. The XML data will
be combined with the XSL template and the
resulting document will be rendered as a PDF
document. The template should be developed
to produce a document marked up with XSL
Formatting Objects. Temporary fileswill be
given the extension “.pdf”.

kJobTypeRTF The XML datawill be combined with the XSL
template and the resulting document will be
rendered as an RTF document. The template
should be developed to produce a document
marked up with XSL Formatting Objects.
Temporary fileswill be given the extension
“rtf”.

kJobTypeHt m The XML datawill be combined with the XSL
template and the resulting document is as-
sumed to be HTML. Appropriate indentation
will be applied automatically. The <xm > de-
claration at the top of the file will be omitted.
The template should be developed to produce a
document marked up with HTML. Temporary
fileswill be given the extension “.html”.

kJobTypeText The XML datawill be combined with the X SL
template and the resulting document is as-
sumed to be plain text. The <xnl > declaration
at the top of the file will be omitted. Tempor-
ary fileswill be given the extension “ .txt”.

Table 3.4 XMLPrintStream Job Types

In addition to the predefined job types it is possible to define a custom job
type. If acustom job typeisto be used the set JobType() method should
be passed a string matching the new job type, where the job type is defined
inthe XML Server configuration file. For more information on defining and
implementing custom job types consult Section 4.5.9, Custom
Configuration.

Opening an XMLPrintStream Object

open(XSLTenpl at el nst anceKey key);
open(String xsl Tenpl ate);
open(XSLTenpl at el nst anceKey key,
String host,
int port);

19

3.5.7

3.5.8

Curam XML Infrastructure Guide

open(String xsl Tenpl at e,
String host,
int port);
open(XSLTenpl at el nst anceKey key,
XM_.Ser ver EndPoi nt[] endpoi nts)
open(String xsl Tenpl at e,
XM_Ser ver EndPoi nt[] endpoi nt s)

Example 3.9 Opening an XMLPrintStream

Opening an XMLPr i nt St r eam object, establishes a connection with the
chosen XML Server, sends the job configuration information, and the XSL
template. Once open, the XML data can be written to the connection. In
general, you will let an XM_Docunent object write the data to the stream.
All XML documents must be accompanied with an XSL template to allow
the data to be formatted.

There are a number of open() methods. The main difference between
these is that you can specify a key to an XSL template in the database or
provide the XSL template document directly in a string. Also, you can
provide the connection information for the XML Server (host and port) or
aternatively leave these vaues to be picked up from the
curam xnl server. host andcuram xnl server. port properties.

Once opened, you should immediately begin writing data to the connection.
A long delay will cause atime-out to occur and the connection will be lost.

Closing an XMLPrintStream Object

cl ose();

Example 3.10 Closing an XMLPrintStream

Closing an XMLPr i nt St r eam object causes the print job to be started.
Before closing the object, a well-formed XML document must have been
written to it. The cl ose method takes no parameters.

Print Previewing

set Previ ewSt r ean{ Qut put St r eam pr evi ew) ;

Example 3.11 Configuring an XMLPrintStream for Previewing

The XML Server takes an XML document and an XSL template and pro-
cesses the two to produce another document which could be in PDF, RTF,
HTML, or plain text format. Normally, the XML Server will run a further
command to print, or otherwise process, the document. However, you can
instead direct the XML Server to return the document to your application
server rather than process it further. This alows you to preview the docu-
ment before printing it or just store the document in the database for later re-
trieval.

20

3.6

3.6.1

3.6.2

Curam XML Infrastructure Guide

To preview a document, you must specify a preview stream when configur-
ing the print stream object. After the XML Server has generated the PDF it
will return it to the print stream object which will in turn write it to the
stream specified as a parameter to the set Pr evi ewSt r eammethod. This
stream could be a simple string stream buffer or a file stream, whatever is
required. If no stream is specified, the XML Server will assume that a pre-
view isnot required.

Once the print stream object is closed, the preview stream will contain the
document and the application server can manipulate it in any way required.
For example, it could be returned to the client application and displayed in
an appropriate viewer of some kind.

2

n Note

If a preview stream has been specified, the XML Server will not
print anything, nor will it create a temporary file containing the doc-
ument.

Sample Usage

Overview

This section presents some samples of the way the XM_Docunent and
XML_Pr i nt St r eam objects can be used together. The samples included
cover the following scenarios:

e Saving XML datato afile.

* Printing asimple XML document.

» Saving and loading XML documents using the archive.
* Previewing an XML print job's output.

» Building adocument from alist.

Along with the code samples are suggestions of how they be further de-
veloped and used.

All the methods are developed as methods of <<pr ocess>> stereotyped
classesin the application model.

Saving XML Data to a File

This sample demonstrates how XML data can be created and written to a
stream, in this case afile stream. The function assumes that a file name and
an instance of a struct class are passed as parameters.

This method demonstratestheuse of aFi | eW i t er.

i mport curamutil.xm .inpl.XM.Docunent;

21

3.6.3

3.6.4

Curam XML Infrastructure Guide

i mport curamutil.xm .inpl.XMEncodi ngConst ant s;
import java.io.FileWiter;

public class XM.Sanpl e {

voi d saveToFil el(String fname, MyStruct nyStruct) {

}
}

FileWiter nyFile = new Fil eWiter(fnane);

XM_Docunent nyDoc =
new XM.Docunent (XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;

nyDoc. open(“A User”, “31-Dec-2002", “1.0", “Sanple 1");
myDoc. add(nyStruct);
myDoc. cl ose();

nyFile. wite(nmyDoc.toString());
nyFil e. cl ose();

Example 3.12 Saving XML Data to a File: Method 1

Printing an XML Document

This sample shows how the struct class used in the previous sample could
be written to an XMLPr i nt St r eamabject to print the data. It is assumed
that a template instance key is supplied to the function and that the default
configuration values will be used.

i mport curamu

m . i npl . XM_LDocunent ;

til.x
i mport curamutil.xm .inpl.XM.Encodi ngConst ant s;
til.x

i mport curamu

m . inpl. XM_Print Stream

i mport
curamutil.adm nistration.struct. XSLTenpl at el nst anceKey;

public class XM.Sanpl e {

voi d printDocl(XSLTenpl at el nst anceKey t enpKey,

}
}

MyStruct nmyStruct) {

XMLPrint Stream nmyPrint Stream = new XM_Print Stream();
myPri nt Stream open(tenpKey, “MPC’, 1234);
myPrint St ream set Encodi ng(
XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;
XM_Docunent nyDoc =
new XM.Documnent (myPri nt St ream get Strean(),
XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;

myDoc. open("A User", "31-Dec-1999", "1.0", "Sanple 1");
myDoc. add(nyStruct);
myDoc. cl ose();

myPrint Stream cl ose();

Example 3.13 Printing an XML Document: Method 1

Saving and Loading XML Documents

In this sample, two functions are presented. The first, based on the previous
sample, saves a document to the archive. The second retrieves the document

22

Curam XML Infrastructure Guide

and printsit again. The direct streaming method cannot be used to create the
document if it isto be saved.

i nport curamu
i nport curamu

i mport curamu

admi ni stration. struct. XSLTenpl at el nst anceKey;
xm . i npl . XM_Docunent ;

xm . inpl. XM.PrintStream
xm . struct. XM_Ar chi veDocunent | D;

til.
til.
i mport curamutil.xm .inpl.XM.Encodi ngConst ant s;
til.
til.
til.

i mport curamu
i nport curamu

xm . struct. XM_Ar chi veDocDet ai | s;

public class XM.Sanpl e {

}

/*

* Creates an XM.Docunent and saves it to the database.
*/

XMLAr chi veDocunent | D saveDoc(

XSLTenpl at el nst anceKey tenpKey, M/Struct nyStruct) {

XM_Document nyDoc = new XM.Docunent (
XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;

myDoc. open("A User", "31-Dec-1999", "1.0", "Sanple 1");
myDoc. add(nyStruct);
myDoc. cl ose();

/| Save the document to the database.
final XM.Archi veDocunment| D docKey =

myDoc. save(" Sanpl e Saved Document 1", tenpKey);
return docKey;

/*

* Loads an XM.Docunent from the database and prints it.
*/

voi d | oadDoc(XMLAr chi veDocunent | D docKey) {

/1 First |load the archived data for the docunent and get
/1 its tenplate details and data content.
final XM.Docunent docForLoadi ng = new XM.Docunent (
XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;
final XM.Archi veDocDet ai |l s docDetails =
docFor Loadi ng. | oad(docKey) ;

final XSLTenpl at el nst anceKey tenpKey =
new XSLTenpl at el nst anceKey() ;
tenpKey. tenpl atel D docDet ai | s. tenpl at el D;
t enpKey. t enpl at eVer si on docDet ai | s. t enpl at eVer si on;
tenpKey. | ocal e docDet ai |l s. | ocal e;

final String xm Content docDet ai | s. docunent ;

docFor Loadi ng. cl ose();

/1 Now use this information to reconstruct a new
[/ XM.Docunent and print it.
final XM.PrintStream nmyPrintStream =
new XML.Print Strean();
myPri nt Stream open(tenpKey, “MPC’, 1234);
nyPri nt St r eam set Encodi ng(
XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;
XM.Docurnent docFor Printing = new XM_Docunent (
myPrint Stream get St rean(),
XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;
docFor Printing. addFr omXM_(xm Cont ent) ;
myPrint Stream cl ose();

Example 3.14 Saving and Loading an XML Document

23

3.6.5

Curam XML Infrastructure Guide

Previewing an XML Print Job

This sample demonstrates how you can process an XML print job and re-
ceive a preview of the data that would have been printed for that XML doc-
ument and XSL template.

i nport curamu
i nport curamu

til.adm nistration.struct. XSLTenpl at el nst anceKey;
til.exception. AppExcepti on;

i mport curamutil.exception. Dat abaseExcepti on;

i mport curamutil.exception.|nfornati onal Excepti on;

i mport curamutil.internal.xm .inpl.XMPrintStreantConstants;
i mport curamutil.type. Bl ob;

i mport curamutil.xm .inpl.XM.Docunent;

i mport curamutil.xm .inpl.XM.Encodi ngConst ant s;

i mport curamutil.xm .inpl.XMPrintStream

i mport java.io.ByteArrayQut put Stream

i mport java.io. FileCutputStream

i mport java.io.| OException;

public class XM.ServerTest {

M/Resul t previ ewdob(
final XSLTenpl at el nst anceKey t enpKey,
final MyStruct nyStruct)
t hrows Dat abaseExcepti on, AppExcepti on,
I nf or mat i onal Excepti on, | OException {

final XM.PrintStream nyPrintStream =
new XM.Print Strean();

final ByteArrayQutputStream previ ewBuffer =
new Byt eArrayCQut put Stream() ;

myPrint St ream set Pr evi ewSt r ean(pr evi ewBuf f er) ;

/1l Explicitly specify that a PDF docunent be creat ed:
myPrint Stream set JobType(
XMLPri nt St r eanConst ant s. kJobTypePDF) ;

nmyPrint Stream open(tenpKey, “MPC’, 1234);
final XM.Docunment nyDoc =
new XM.Document (

nmyPri nt St ream get St ream(),

XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;
nyDoc. open("A User", "31-Dec-1999", "1.0", "Sanple 1");
nmyDoc. add(myStruct);
nmyDoc. cl ose() ;
myPrint Stream cl ose();

/! Now that we have created the PDF docunent the
/1 followi ng code illustrates three things that
/!l can be done with it.

/1l (1) Save the docunment to disk.

final FileQutputStreampreviewrile =
new Fi | eQut put Stream("/ previ ew. pdf");

previ ewBuf fer.witeTo(previewrile);

previ ewFil e. cl ose();

/] This class contains both a String and
/] a Blob for denpnstration purposes.
final M/Result result = new MyResult();

/] (2) Store the PDF previewin a String:
resul t.previewbDocString = previewBuffer.toString();

/1 (3) Store the PDF docunent in a Bl ob:
resul t. previ ewDocBl ob =
new curamutil.type. Bl ob(previ ewBuf fer.toByteArray());

return result;

24

3.6.6

Curam XML Infrastructure Guide

}
Example 3.15 Previewing an XML Print Job

Having received the PDF preview of the data, this sample illustrates three
ways in which the preview can be used:

1. Saveittodisk.
2. StoreitinaString variable.

3. StoreitinaBlob. Thisisrecommended if the document is to be stored
on the database.

This example used an j ava. i 0. Byt eArr ayQut put St r eamas a buf-
fer to hold the generated PDF document because this class was most suited
to the three examples above. However any sub-class of
j ava.i o. Qut put St r eam can be used, depending on your needs. For
example, aj ava. i 0. Fi | eQut put St r eamcould be used if you wish to
write the datato afile.

Building a Document from a List

In these final samples, the use of list documents is demonstrated. Once an
XML document built from a list has been closed, it may be manipulated in
the same manner as any other XML document.

The first sample shows how a vector of struct classes can be added to an
XML document.

i mport curamutil.xm .inmpl.XMEncodi ngConst ant s;
i mport curamutil.xm .inpl.XM.Docunent;

public class XM.Sampl e {
void |istDocl(MyStructList myStructlList) {
XM_Docunent nyDoc =
new XM.Document (XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;

nmyDoc. openFor Li st ("A User",
"31- Dec- 1999",
“1.0",
"Sample 1");

myDoc. add(nyStruct Li st);
nmyDoc. cl ose();

/1 The docunent may now be nmni pul ated as before.
}
}

Example 3.16 Adding a List to a Document
In the second sample below, the list of struct classes is iterated over and
only those elements whose val ue field is greater than 100 are added to the

document. You can, of course, apply any condition you like to this basic
pattern. In IBM Cdram Social Program Management, the list of a type

25

3.7

Curam XML Infrastructure Guide

called MySt ruct iscalled MySt ruct Li st , andthedt | s field of thelist
isajava. util.Vector of the basic struct class type, this is assumed
below.

i mport curamutil.xm .inpl.XM.Encodi ngConst ant s;
i mport curamutil.xm .inpl.XM.Docunent;

public class XM.Sanpl e {
void |istDoc2(M/StructList myStructlList) {

XM.Docunent nyDoc = new XM.Docunent (
XMLEncodi ngConst ant s. kEncodel SOLATI N1) ;

myDoc. openFor Li st ("A User",
"31- Dec- 1999",
1.0,
"Sample 1");
for (int i =0; i < nyStructList.dtls.size(); i++) {

if (nmyStructList.dtls.iten(i).value > 100) ({
nyDoc. add(nyStructList.dtls.item(i));

EryDoc. cl ose();

/1 The docunent may now be mani pul ated as before.

Example 3.17 Adding Elements of a List to a Document

Load Balancing and Fail-over

The XML PrintStream supports load balancing and fail-over. Load balancing
increases the capacity of the XML Server by sharing the load among a num-
ber of replicated XML Servers and making them appear as one large virtual
server. Fail-over provides the capability to switch over automatically to are-
dundant XML Server upon the failure or abnormal termination of the previ-
ously active XML Server.

Load balancing and fail-over are implemented in the XMLPr i nt St r eam
and XM_Ser ver EndPoi nt classes. An instance of the XM_Ser ver -
EndPoi nt class contains the endpoint details such as server name, port
number and a weight between 0 and 1 which dictates the percentage of re-
guests that are directed to this server. The open() method of the XM.-
Print Stream class can optionally take a list of XM_Ser ver End-
Poi nt s as parameter. The connection will be performed to one of these en-
dpoints based on the weight attached to it aswell asits availability.

Load balancing and fall-over can aso be configured using the
curam xnml server. host and curam xm server. port properties.
The curam xm server. host property specifies the machine names
hosting the XML Server asa'l' separated list of host names. For example:

curam xm server. host ="server 1/ server 2/ server 3"

The curam xml server. port property specifies the ports the XML
Server isrunning on as a'/* separated list of entries in the following format:
port[#weight], where the part in square brackets is optional and weight is a

26

3.8

Curam XML Infrastructure Guide

number between 0 and 1. The weight dictates the percentage of requests that
are directed to the particular server and port. For example:

curam xmi server. port="1801#0. 6/ 1802#0. 2/ 1803#0. 3"
There is a one to one mapping between the servers and ports specified. For

example, serverl is running the XML Server on port 1801 and server3 is
running the XML Server on port 1803.

Summary

The XMLDocunent class alows well-formed XML documents to be
generated using struct classes or lists of struct classes.

Care must be taken to ensure that the character encoding scheme used
for your datais specified for the XML document.

Instances of XM_Docunment can be created, saved, loaded, and written
to arbitrary output streams.

The XMLPri nt St ream class is a type of output stream that allows
jobs to be submitted to the XML Server for processing. Used in combin-
ation with the XM_Docunent class and XSL templates, it allows XML
data to be formatted and printed

The XMLPr i nt St r eamcan be configured on a per-server or per-job
basis for maximum flexibility.

The XMLPr i nt St r eam class includes features for previewing docu-
ments generated by the server.

27

4.1

4.2

4.3

4.4

Chapter 4

The XML Server

Objective

In this chapter, you will learn about the IBM Curam Social Program Man-
agement XML Server, the component that processes and renders XML docu-
ments.

Prerequisites

There are no prerequisites for this chapter.

Introduction

The XML Server is a Java application that processes XML documents gen-
erated by aIBM Curam Social Program Management server application, ap-
plying XSL templates (which are described in more detail in Chapter 5,
Curam XML and XSL Templates) and rendering to PDF, RTF, HTML, or
plain text. The IBM Curam Social Program Management server application
and the XML Server do not have to be co-located; they may be hosted on
different machines. There can aso be any number of XML Servers, each re-
sponsible for a specific task. The XML Server was primarily designed to
support printing of XML documents, however, it can be configured in a
myriad of ways to perform many different tasks.

This chapter describes how the XML Server fits into the IBM Curam Social
Program Management application architecture and how the server can be
configured, and al so suggests many ways in which it can be used.

The XML Server

Figure 4.1, XML Processing Architecture below shows how the XML Server

28

4.5

4.5.1

Curam XML Infrastructure Guide

fits into the architecture of a IBM Curam Social Program Management ap-
plication. An application can read application data from a database and us-
ing curamutil.xm .inpl.XM.Docunent and
curamutil.xm .inpl.XMPrintStreamcan transmit XML data
to the XML Server. The XML Server processes the data and renders a docu-
ment in any of a number of formats. This document is then submitted to the
system allowing arbitrary commands to be executed on the document so that
it can be printed, e-mailed, transferred, stored, etc. in any system-specific

way.

Configuration Options

Cdram
server XMLPrint XML

application | Stream

Figure 4.1 XML Processing Architecture

The connection from XMLPri nt St r eam to the XML Server is over a
TCP/IP socket allowing the XML Server to be located remotely. The XML
Server is configured, at startup, to run a command on its host to process the
document.

The XML Server is fully threaded, alowing it to process multiple jobs sm-
ultaneously.

Configuring the XML Server

Overview

The XML Server has a number of configuration options used to specify how
it should work. All the options are set in a configuration file written using
XML notation. Thisfile is picked up when the XML Server is started and as
such the configuration cannot be changed without stopping and starting the
server. There are anumber of areas of the operation of the server that can be
configured:

* Network;
o Default Values;

29

* Server Command,;

* Template Cache;

» Debugging;

» Apachelog4j Logging;
* RenderX Configuration;

e Custom.

Curam XML Infrastructure Guide

These categories are covered in the following sub-sections. The final sub-
section presents some samples to help you develop your own configuration
files. All the configuration options are enclosed in an XML root element
<XM__SERVER_CONFI G>. Aswith all XML documents, you must ensure
that the characters *’’, "7, *<*, *>", and ‘&’ used in the values of your op-
tions in the configuration file are replaced with their respective character en-
tities: ‘'’, ‘"’, ‘<’, ‘>’, and ‘&’.

Option Category Description

<SERVER_ PORT> Network
<SO_TI MEQUT> Network
<DEFAULT_ PRI NTER> Default
Values
<DEFAULT_TRAY> Default
Values
<DEFAULT_ USERNAME Default
> Vaues
<DEFAULT_EMNAI L> Default
Values
<SERVER COMVAND> Server
Command

The TCP/IP port number that the
XML Server will useto listen for
client connections.

A positive integer value specifying
the timeout (in milliseconds) on
socket operations. If zero valueis
specified then it will be interpreted
as an infinite timeout. If this op-
tion is not specified a default value
of 60000 milliseconds will be
used.

The name of the default printer.
The format used should be that re-
quired by the server command.

The name of the default printer

tray. The format used should be
that required by the server com-
mand.

The name of the default user. The
format used should be that re-
quired by the server command.

The default e-mail address. The
format used should be that re-
quired by the server command.

The command string to use to pro-
cess the document. If the com-
mand string is empty, no pro-
cessing will be attempted.

30

Curam XML Infrastructure Guide

Option Category Description

<USE_PI PE> Server
Command

<USE_TMP_FI LE> Server
Command

<USE_STDOUT_SI NK> Server
Command

<USE_STDERR_SI NK> Server

Command
<TMP_DI RECTORY> Server

Command
<TMP_FI LE_ROOT> Server

Command

<FOP_CONFI G _FI LE> Server
Command

<RENDERX_CONFI G_F RenderX
| LE> Configura-
tion

Indicate that the output document
from the XML Server should be
piped to the standard input of the
server command when it is ex-
ecuted. One of USE_PI PE or
USE TMP_FI LE isrequired to be
true.

Indicate that the output document
from the XML Server should be
written to atemporary file before
the server command is executed.
One of USE_PI PE or
USE_TMP_FI LE isrequired to be
true.

Start athread to read and discard
any data written to standard output
by the server command.

Start athread to read and discard
any data written to standard error
by the server command.

Specifies the directory into which
temporary files containing the doc-
ument data should be written. Re-
quired only if USE_TMP_FI LE
wast rue.

Specifies the root part of thefile
name to use to create the tempor-
ary file. A sequence number and
the appropriate extension will be
appended to create the full file
name. Required only if
USE_TMP_FI LEwast r ue.

The name and location of a FOP
configuration file. This can be
used to add additional fonts for use
when processing PDF files. Con-
sult the Apache FOP documenta-
tion for more information.

The name and location of a
Render X configuration file. Thisis
required to initiate the Render X
rendering engine. Render X can be
used as an alternative to Apache
FOP. Consult the Render X docu-
mentation for more information.

31

4.5.2

Curam XML Infrastructure Guide

Option Category Description

<RENDERX_LOGE NG> RenderX

Configura-

tion
<USE_TEMPLATE_CAC Template

HE> Cache

<TEMPLATE_CACHE D Template
| R> Cache

<CLEAR TEMPLATE C Template
ACHE> Cache

<TRACE_TRAFFI C> Debug

<STATI STI CS_FOLDE Debug
R>

<THREAD POOL_SI ZE Sizing

>

<THREAD POOL_QUEU Sizing
E Sl ZE>

Custom

<JOBS>

<JOB> Custom

Table 4.1 Configuration Options

Network Configuration

Specifies how RenderX's internal
logging should be configured.
Consult the Render X documenta-
tion for more information.

Indicates that the template cache
should be used to avoid having to
read templates eachtimeajobis
submitted.

The name of the directory in
which to store the cached template
files. Required only if
USE_TEMPLATE_CACHE was
true.

When the server is started, this op-
tion will force al filesin the tem-
plate cache directory to be deleted.

A debug option to echo al datare-
ceived by the server to the server’s
standard output.

This option will output statistics
for the XML Server in the folder
specified by the option.

The amount of threads in the pool.

This can be tuned if needed so that
requests are held inside the

XML Server rather than out in the
TCP backlog queue.

The parent element of <J OB>
children elements which specify a
job type for the XML Server.

Specifies ajob type for the XML
Server. Multiple <JOB> elements
can be defined, each detailing a
new job type and the implement-
ing class.

There are two network settings that can be set to all XML Servers.
The TCP/IP port number on which to listen for connections. Clients of the

32

4.5.3

4.5.4

Curam XML Infrastructure Guide

XML Server connect to the host on which the server is running and must
specify which port should be wused for communications. The
<SERVER_PORT> element is used to specify the port number. The number
should be that of an available port on the system. Generaly, this means a
port number between about 1000 and 32767. If the server is started with a
port that is already in use, thiswill be reported and you can select a different
port.

A timeout value can be specified for network socket operations to ensure
that the job threads are not blocked indefinitely, while reading template files
across the network and in the event of any network problems. The
<SO_TI MEQUT> element is used to specify the timeout value (in milli-
seconds). This option allows a network socket operation to block for the
time specified. If the timeout expires, a java.net.SocketTimeoutException is
raised, although the socket is still valid. A timeout value of zero is inter-
preted as an infinite timeout. If this option is not specified, a default value of
60000 (i.e. one minute) is used.

Default Value Configuration

There are a number of default values that can be specified for the server.
These are the default printer name, the default paper tray, the default e-mail
address, and the default user name. They are specified using the elements
<DEFAULT_ PRI NTER>, <DEFAULT_TRAY>, <DEFAULT_EMNAI L>,
<DEFAULT_USERNAME> respectively. The values can be anything you
wish.

If ajob submitted to the XML Server via an instance of the XMLPr i nt -
St r eamclass includes these values, the defaults will be overridden for that
job.

Server Command Configuration

Once a job has been processed by the XML Server (providing the client did
not request a preview), the server will run its server command.

i Note
The server command cannot be set per invocation, if multiple com-
mands are required multiple XML Servers must be used
The server command is a command that is sent to the system to manipulate
the output document. Usually this will involve printing or e-mailing the doc-
ument, but there are no restrictions on what the command can do other than
those imposed by your system. No built in server commands are provided.
The command is freeform and is gpecified using the
<SERVER COVMAND> element.

The server command uses token substitution to pass parameters to the sys-
tem. The tokens consist of a ‘%’ character followed by a letter (it is case-
insensitive). Tokens that appear in the server command string are substituted
with the relevant value of the token just before the server command is ex-

33

Curam XML Infrastructure Guide

ecuted for each job. The tokens are listed in Table 4.2, XML Server Com-
mand Tokens below.

Token Meaning

%p The name of the printer is being set to either the default
printer ID attribute on the Userstable (i.e. the user trying to
print the document) or the default printer name as specified
inthe XML server configuration.

% The name of the paper tray as specified in the job configura-
tion received from the client, or the default paper tray as spe-
cified in the server configuration.

% The name of the connecting user, or the default username
specified in the server configuration. This could be the ap-
plication username that the user logged in as.

%e The e-mail address of the connecting user, or the default e-
mail address specified in the server configuration. This can
be used if you want to e-mail the result of the XML job back
to the user. For example, you could configure a server to e-
mail PDF to a user as well as print the PostScript output.

Y ou could even use this to configure two servers where one
supplies e-mailed copies and the other generates hard-copies.

% The name of the file where the document was saved. This
will be a generated temporary file name and will not include
that path to the file. The file extension will depend on the
specified job type and will default to *.pdf’.

%l The directory where the temporary file islocated. Y ou may
use atrailing directory separator character and then specify
%1% ’ or you can leave out the character and use, for ex-
ample, ‘%a/ % . The XML Server will not insert one for
you. Care should be taken to use the correct separator char-
acter for your system.

%80 If you want to use a‘% character in acommand but not as a
token, use ‘9846 instead. Thefirst ‘% will be removed before
invoking the command.

Table 4.2 XML Server Command Tokens

For example, if the server command is specified as:
mail -s"Your Print Job' %e

the % token will be replaced with the e-mail address specified for the job
(or the default e-mail address if none was supplied).

For more complex server commands it may be necessary to wrap the actual
commands in a batch/script files. This batch file is then executed via a serv-
er command such as:

<Somel ocation>/MyBatch.bat 'Your Print Job' %e

34

4.5.5

Curam XML Infrastructure Guide

The server command tokens are not available in the batch file but are only
replaced in the server command specified in the server configuration file
and must be passed into the batch program as normal parameters.

The main consideration when writing a server command is to identify
whether you want the output document of the XML Server piped to your
command or stored in a temporary file for your command to process. This
can be chosen by setting one of the mutually exclusive <USE_TMP_FI LE>
or <USE_PI PE> elementsin your configuration.

If you opt to use a temporary file. The document data will be written to the
temporary file and then the server command will be executed. The XML
Server will not delete the temporary file for you. You should have your
server command do that if that is what you wish. The temporary file will be
named using the value of the TMP_FI LE_ROOT element with a sequence
number and the appropriate extension appended according to the job type.
For example, if the value was ‘temp’, and the job type was XMLPr i nt -
St r eantConst ant s.kJobTypePDF the first file generated by the XML
Server would bet enpO. pdf , thenext filet enpl. pdf, etc. Thisis useful
if you start several XML Serversthat all share the same temporary directory
to avoid servers over-writing each other’s temporary files. The file will be
created in the directory specified by the <TMP_DI RECTORY> element in
the configuration. This element should contain an absolute path or a path re-
lative to the directory in which the XML Server was started. The directory
name and the generated file name are made available to your command us-
ing the %@ and % tokens respectively.

If you opt to use a pipe, your command will be executed and the XML Serv-
er will begin to write document data to the standard input of the command.
No temporary file will be created. There is, however, an issue that must be
resolved when using pipes: if the command write buffered data to standard
error or standard output that is not read by any process, once the buffer is
full, the command may block. As no process will ever read from the
streams, the command will remain blocked indefinitely—in other words, it
hangs. There are two methods that can be employed to avoid this. The first
is to ensure that all unused output from your command is redirected to a
device that will read all the output and ensure the process does not block.
The second is to have the XML Server do this for you using the
<USE_STDOUT_SI NK> and <USE_STDERR_SI NK> elements. While the
former method is recommended where possible, the use of the XML Server
sinks can help in situations or on systems where it is not possible. Both ele-
ments cause threads to be created in the XML Server to read and discard
data output by the server command.

More details on how to write server commands are provided in the section
including samples below.

Template Cache Configuration

Each job submitted to the XML Server requires an XSL template to be ap-
plied to an XML document. Both the template and the document must be

35

4.5.6

4.5.7

4.5.8

Curam XML Infrastructure Guide

supplied by the client. Asit islikely that a template may be used more than
once, the server can be instructed to store copies of the templates in local
files rather than request that the client send a new copy of a template each
timeit is used.

The cache is enabled using the element <USE_TEMPLATE_CACHE>. The
templates are then stored in the directory specified using the TEM

PLATE_CACHE_DI R element. Only templates that are supplied to the X\

LPri nt St r eamwith a template ID and template version number will be
cached.

The files in the template cache are not deleted when the XML Server is shut
down. They will be reused the next time the server is started. If this behavi-
or is not desired, the <CLEAR_TEMPLATE_CACHE> element will ensure
that all filesin the template cache directory are deleted on server start up.

Debug Configuration

If the server complains that your XSL template or XML document contain
errors, you can take a look at what the server sees by tracing all network
traffic received by the server. Use the element <TRACE_TRAFFI C> to en-
able this debugging feature. The output will be written to the server’s stand-
ard output. For server communications, lines in the template that start with a
period or full-stop character ‘. have an extra period character inserted. The
end of the client transmission is marked by a line containing only a single
period. Y ou should just ignore these extra periods.

Log4j Logging

Logging with log4j is used to improve the performance of logging. This can
be configured viathel og4j . properti es filein the XML Server direct-
ory. Further information on how to configure log4j can be found on the
Apache website, http://logging.apache.org/logd;.

RenderX Configuration

The XML Server provides support for RenderX as an aternative to the
Apache FOP document rendering engine. It must be installed on the ma-
chine on which XML Server is running before it can be used within the
XML Server. Further information on RenderX as a rendering tool can be
found on the Render X website, http://www.renderx.com.

<RENDERX_CONFI G_FI LE> is used to locate the configuration file re-
quired by RenderX engine to start up.

<RENDERX_LOGE NG> isused to configure Render X's internal logging.

« default - RenderX's DEFAULT_LOGGER will be used to log in-
formation.

* null -RenderX'sNULL_LOGGER will be used to log information.

36

http://logging.apache.org/log4j
http://www.renderx.com

4.5.9

Curam XML Infrastructure Guide

* File Path - RenderX's DEFAULT _LOGGER will be used, but the
logging stream will be redirected to the file specified.

The default value for this property isdef aul t, if it's not specified. Further
information on DEFAULT_LOGGER and NULL_LOGGER can be found
on Render X's Java API.

Custom Configuration

The XML Server provides support for defining custom rendering imple-
mentations, which allows the use of third party rendering tools. A custom
rendering implementation can be added in the form of a new job type; al-
ternatively the default implementation can be replaced.

By default, the XML Server provides four <JOB> definitions catering for
processing four types of documents: HTM., RTF, TEXT, PDF. Thede
fault rendering implementations are listed below:

e HITM_L-curamutil.xnl server. HTM_LDocunent Gener at or
e RTF-curamutil.xnl server. RTFDocunent Gener at or
e TEXT-curamutil.xnm server. TEXTDocunent Gener at or

e PDF-curamutil.xmnm server. PDFDocunent Gener at or

The default document formatting solution uses Apache Formatting Objects
Processor (FOP) to define processing for the document types HTML, PDF,
RTF, TEXT. This default implementation can be replaced with a custom im-
plementation by implementing the
curamutil.xm server. Docunent Gener at or interface.

Due to FOP's limited capabilities on processing Right-To-Left (RTL) docu-
ments, a second pdf rendering tool can be used to specifically handle RTL
documents. This can be done using the di r ect i on attribute when defin-
ing a <JOB>. This attribute is optional, and only applicable for pdf job
type. The possible values it may contain are: rt1 and | tr. The default
vaueisl tr.

Custom Job Type

A new job type is specified using a <JOB> element which must be created
with the <JOBS> element. The new job type should be specified using the
t ype attribute. This attribute is case insensitive, and may not contain
spaces. Attribute cl ass should be used to specify the fully qualified name
of the class implementing the
curamutil.xm server. Docunent Gener at or interface.

For example:
<JOB type="CUSTOM JOB _TYPE" cl ass="custom Jobl nmpl " />

The configuration file supports the definition of any number of <JOB> ele-
ments.

37

4.5.10

Curam XML Infrastructure Guide

The curamutil . xnml server. Docunment Gener at or interface re-
quires the following two methods to be implemented.
/**

* This method shoul d be inplenmented to generate the docunent
for the customjob type. The nmethod is provided with the
xm tenplate and xm data to be nerged to create the
docunment. The docunent result should be sent to the

out put stream provi ded.

@ar am xsl| Tenpl ate The XSL tenpl ate transforner.

@ar am xm Dat aSt r eam The i nput stream from which to read
the XML dat a.

@ar am docQut put The out put stream for the generated
docunent .

@ hrows XM.JobException Generic exception to be thrown on
error. Exception handi ng shoul d be handled within the
i mpl ement ed net hod.

* 5% ok 2k k3 3k kX X 3k X X X F

/
voi d gener at eDocunent (fi nal Transforner xsl Tenpl at e,

final |nputStreanReader xm DataStream

final Qutput Stream docQut put)
t hrows XM_JobExcepti on;

/ *
Thi s nethod should return a String containing the file
extension for the file to be generated. For exanple if
generating a HTM. file the nethod should return the
String ".htm".

@eturn The extension of the file to be generated.

E I I
~

String getFil eExtension();

Font Configuration

By Default the XML Server uses FOP (Formatting Objects Processor) for
rendering documents in various formats. FOP supports a default set of fonts,
including Helvetica, Times and Courier, and it is possible using a FOP con-
figuration file to include support for additional fonts, for example a ssimpli-
fied Chinese font. The <FOP_CONFI G_FI LE> configuration option allows
you to specify the name and location of a FOP configuration file. The path
specified for the configuration file can be absolute
(c:/directory/fop-config-file.xnl) or relative
(./fop-config-file.xm) tothexmlserver directory. Any references
to files within the FOP configuration file can also be absolute or relative to
the xmlserver directory.

<f op>
<r ender er s>
<renderer m ne="application/pdf">

<f ont s>
<font netrics-url=".\chinese\pmngliu.xm" kerning="yes"
enbed-url =".\chinese\mngliu.ttc">

<font-triplet name="PM ngLi u" styl e="nornal"
wei ght =" nor mal "/ >

</ fonts>
</ renderer >
</ renderers>
</ fop>

Example 4.1 Sample FOP Configuration File

38

4.5.11

Curam XML Infrastructure Guide

The example FOP configuration file above references a font metrics file
(pm ngl i u. xm) and an embed file (m ngl i u. tt c). The embed fileis
the true type collection font file. True type collection font files can be found
on a Windows machine in the installed fonts directory, for example
c:/ W ndows/ Font s. Apache provides utilities to generate the necessary
font metrics file from a true type collection font file and also from other
formats. The Apache FOP documentation should be consulted for more in-
formation on font configuration.

Sample Configuration Files

Overview

In this section a number of samples are presented to illustrate ways the XML
Server can be configured. These configurations are dependent on the plat-
form or operating system used and include:

* Printing adocument (Windows);
» Displaying a document for testing purposes (Windows);
» Printing adocument (UNIX and IBM® zZ/OS®).

Where path names are specified (e.g. to commands) your customizations
may need to be changed if you base your configurations on any of these
samples.

The server command (and all other options) should be entered on a single
line in the configuration file. In this document they may display with line
wrapping for formatting purposes (e.g. Example 4.3, Configuration for
Printing a Document (Windows); but, in your implementation they will need
to be specified on asingle line to be valid.

Printing a Document (Windows)

On Windows the server command (specified in the <SERVER COMVAND>
element) is not executed in a command shell unless explicitly invoked via
the Windows command interpreter (cmd.exe) and this is necessary in order
to use such facilities as pipes and redirection. The configuration described
here is representative for Windows platforms.

Depending on the file type, your printing requirements, and the target print-
er there are a number of possible options and configurations for printing on
Windows. For instance, your particular version of Adobe® Reader may al-
low for direct printing or your printer may support direct PDF printing.

A convenient way to implement print functionality isto write a batch file for
the Windows command interpreter to invoke and perform any necessary op-
erations and to get the server to execute this batch file. A sample batch file
is shown in Example 4.2, Batch File for Printing a Document (Windows)
below. Let us assume that the baich file is saved as

39

Curam XML Infrastructure Guide

c:\xm srv\ xm serverprint.bat 1 The server command can pass
parameters to the batch file through the command line and the batch file ac-
cesses these as %4 for the first parameter, %2 for the second, etc. These
parameters are provided to the batch file via the server command tokens
specified in the batch file invocation in the server configuration file and re-
placed when it is invoked. (See Table 4.2, XML Server Command Tokens
and Example 4.3, Configuration for Printing a Document (Windows) for
more information on command tokens.)

While Windows applications sometimes allow the use of either forward-
slash (*/’) or back-dlash (‘\") characters interchangeably as a path separator,
the Windows command interpreter only allows the *\' character. Care must
be taken to ensure that all paths that may be visible to the command inter-
preter use back-slash characters (*\') as separators. As path information will
not be available in the context of your batch file, commands must have fully
specified paths. The interpreter’ s built-in commands do not require a path.

The following example illustrates the use of the sample Si npl ePri nt -
Ser vi ce class, which is implemented using the Java Print Service API.
You could utilize this API for your own custom solution; for instance, to
utilize specific printer features in your environment. To print a PDF file us-
ing this sample class would require the printer to have direct PDF print sup-
port.

@CHO OFF
€ChO ------imiiii - A

>> XM.Server. | og
REM | og out put

echo File: o%d R
>> XM.Server. | og
echo Print Server: 9% R

>> XM.Server. | og
REM Cal | the system print comand

echo Starting Print N
>> XM.Server. | og
echo %AVA HOVE% bi n\j ava N

-cp xm server.jar;xm serverconmon. j ar N
curamutil.xm server. Si npl ePrint Service "
%R "9%" >> XM.Server.log 2>&1

%JAVA_HOVE% bi n\ j ava A
-cp xm server.jar; xm servercomon. j ar N
curamutil.xm server. Si npl ePrint Service »
%R "9%" >> XM.Server.log 2>&1

echo Printing Conpleted N
>> XM.Server. | og
echo ---------i i N

>> XM.Server. | og

Example 4.2 Batch File for Printing a Document (Windows)

Instead of the sample Java program above any appropriate processing could
be specified or additional processing prior to printing or cleanup after print-
ing could also be implemented as needed. If you use any command that may
send output to the console, make sure that you add null redirection. This
output needs to be redirected to the null device or it will cause the command
to block and the batch file will hang. Therefore, redirection must be added
to the command pointing to the null device; e.g.: > nul:, which avoids the

40

Curam XML Infrastructure Guide

problem of blocking the XML Server. Setting the <USE_STDOUT _SI NK>
and <USE_STDERR_SI NK> elements in the configuration will not work
on Windows.

A sample configuration file used to launch this batch file is shown in Ex-
ample 4.3, Configuration for Printing a Document (Windows) below. Note
how the printer name and the details of the temporary file are passed to the
batch file using the command tokens.

<XM__SERVER_CONFI G
<SERVER _PORT>6789</ SERVER _PORT>
<SERVER_COMVAND>
c: \ Wndows\ Syst enB2\ CVD. EXE
[/ C c:\xm srv\xm serverprint.bat %\ % %
</ SERVER_COWVAND>
<USE_TMP_FI LE>t r ue</ USE_TMP_FI LE>
<TMP_FI LE_ROOT>t enp</ TMP_FI LE_ROOT>
<TMP_DI RECTORY>c: \ xm srv\'t np</ TMP_DI RECTORY>
<DEFAULT_PRI NTER>\ \ MyPC\ ps1</ DEFAULT_PRI NTER>

</ XM__SERVER_CONFI G>

Example 4.3 Configuration for Printing a Document (Windows)

The command interpreter (cmd.exe) uses the / C option to specify a batch
file to execute. The batch file is passed two parameters. The first parameter
is the name of the temporary PDF file created by concatenating the expan-
ded % token for the temporary directory name, a back-slash separator, and
the expanded % token for the name of the temporary PDF file. The second
parameter is the expanded %p token for the name of the printer. The config-
uration file also includes a default printer name. But this may be overridden
by the client. See Table 4.2, XML Server Command Tokens for a more de-
tailed description of these tokens.

Displaying a Document for Testing (Windows)

When testing a new XSL template against XML data, it is useful to see the
PDF output without printing it each time. If the code you are writing does
not use the preview facilities of the XMLPr i nt St r eam class, you will
need to look at the PDF output of the XML Server manually.

A simple solution is to run an XML Server on your development machine
and configure it to open Adobe Reader to display the PDF data each time
you submit a job. This will save you from running to a printer or manually
opening PDF files. The configuration is shown in Example 4.4, Displaying
a Document for Testing (Windows).

<XM__SERVER CONFI G

<SERVER PORT>6789</ SERVER_PORT>

<SERVER_COMVAND>c: / PROGRA~1/ Adobe/ Acr obat Reader / Acr oRd32. exe
%/ 9% </ SERVER COVIVAND>

<USE_TMP_FI LE>t rue</ USE TMP_FI LE>

<TI\/P Fl LE ROOT>t enp</ TI\/P FI CE_ROOT>

<TMP_DI RECTORY>c: / xm sr v/t np</ TMP_DI RECTORY>

</ XM__SERVER_CONFI G>

Example 4.4 Displaying a Document for Testing (Windows)

41

Curam XML Infrastructure Guide

You cannot include space characters in the path to the server command as
Java will interpret these as the end of the command file name and there is
no way of escaping them. To avoid the problem, the above configuration
file shows how the DOS short name of the directory containing the space
character is used: ‘PROGRA~1" instead of ‘Program Files'. As the com-
mand was not passed to a command interpreter, the choice of */' or ‘\' asa
path separator character is arbitrary.

Installing RenderX for Right-To-Left (RTL) PDF Document Pro-
cessing (Windows)

Due to the lack of support for RTL writing languages in Apache FOP the
XML Server dso provides the functionality to use aternative rendering
tools.

Render X is one of a number of third party document rendering engines that
supports RTL writing languages. If RenderX isinstalled, and the XML Serv-
er is configured to use RenderX, the XML Server will automatically use
RenderX to generate al RTL PDF documents. In order to use the default
Render X implementation in IBM Caram Social Program Management the
following steps should be compl eted:

» Instal RenderX according to Render X's installation guide.

e Set a system environment variable RENDERX HOVE to point to
Render X's installation directory.

» Customize xmlserver_config.xml to use
curamutil.xm server. Render XDocunent Generator to
process Right To Left PDF documents. See example below for details.

<XM__SERVER CONFI G>

<RENDERX_CONFI G_FI LE>C: / RENDERX/ xep. xni </ RENDERX_CONFI G_FI LE>
<RENDERX_LOGG NG>of f </ RENDERX_LOGG NG>

<JOBS>
<JOB type="pdf" direction="RTL"
class="curamutil.xm server. Render XDocunent Gener at or"/ >

</ JOBS>
</ XML_SERVER_CONFI G>

The customizations in this example assume RenderX is instaled to
c:/ Render Xdirectory

Example 4.5 Setting up RenderX as the rendering tool for Right
To Left Document processing

i Note

In order to use arelative path with a default installation of RenderX,
the images should be stored relative to the Render X location. For ex-

42

Curam XML Infrastructure Guide

ample, if the RENDERX_HOME is C: \ pr oj ect s\ Render X\,
and the images are stored in C: \ pr oj ect s\ Render X\ i mages,
then the relative path to an image would be
". /i mages/ curanm curam j pg" which is the equivalent of
C.\ proj ect s\ Render X\'i mages\ curam curam j pg.

Printing a Document (UNIX and z/0S)

Printing a document on UNIX and z/OS can be done similarly to Windows in
that an invoked shell script can execute commands or other necessary pro-
cessing. That is, you write a shell script that is invoked by the XML Server
as per your configuration and the shell script performs the processing specif-
ic to the platform. For example, see Example 4.6, Sample Shell Script for
Printing a Document (UNIX and Z/OS) below. Let us assume that the shell
script issaved as/ usr/ | ocal / xm srv/ xm server. sh 2. The server
command can pass arguments to the shell script, which are accessed in a
typical way: $1 for the first parameter, $2 for the second, etc. These argu-
ments are provided to the shell script via the server command tokens spe-
cified in the script invocation in the server configuration file and replaced
when the script is invoked. (See Table 4.2, XML Server Command Tokens
and Example 4.7, Configuration for Printing a Document (UNIX and zZOS)
for more information on command tokens.)

In general, printing capabilities vary widely by OS distribution, version, in-
stalled software, physical printer capabilities, etc. Review your local envir-
onment for requirements and how to best implement printing support For
instance, a ZOSimplementation might use the IBM® InfoPrint® Server®.

The following example illustrates how printing might be done on various
UNIX platforms. For instance, as on zZ/OS if the software and printer hard-
ware supports it direct printing via the the system print command (Ip or Ipr)
may be possible. On IBM® AIX® you would require third-party software to
convert the input PDF to PostScript for printing. For ease of monitoring the
script contains echo commands to provide progress during its execution and
appends the output to afile named XM_Ser ver . | og.

L=

H Note

On the Z/OS platform you will have to covert the encoding of the
xm serverprint.sh script from ASCII to EBCDIC. For ex-
ample:

tr -d '\15\32" < xm serverprint.sh > xm serverprint.sh-ASCl
iconv -t | BM 1047 -f 1S08859-1 xm serverprint.sh-ASCI| \

> xm serverprint.sh

chnod a+rx xml serverprint.sh

#!/ bi n/ sh
Sanple UNI X script for XM.Server printing.
€ChO ------imiiii - \

>> XM.Server. | og
| og out put

43

Curam XML Infrastructure Guide

echo File: $1 >> XM.Server. | og

echo Print Server: $2 >> XM.Server. | og

Pl at f or n="/ bi n/ unane’

echo Platform $Platform >> XM.Server. | og

The following illustrates some possible print solutions

for various platforns:

case $Platformin

z/ CS:
0s/ 390)
On OS/390 (z/0S) use of the | op comand as
illustrated woul d be dependent on the InfoPrint

Server installation and configuration, related
software, and a printer with direct PDF support
and sufficient nenory.

echo Starting print... >> XM.Server. | og
Ip -d $2 $1
echo Printing Conpleted >> XM.Server. | og
Al X)
Al X has no native print support for PDF files,
so you would need to inplenment functionality such as
pdf 2ps to convert the generated PDF file to
PostScript for printing with lpr; e.g.:
see the | BM Redbook S&24-6018-00
pdf2ps $1 $1.ps
lpr -P $2 $1.ps
echo $Platformprinting i nplementation is TBD. \

>> XM.Server. | og
Ot her platforns:
*
Your local print functionality to be inplenented here ...
echo $Platform printing inplenentation is TBD. \
>> XM.Server. | og
esac

€ChO -----mimim i \
>> XM.Server. | og

Example 4.6 Sample Shell Script for Printing a Document (UNIX
and z/0S)

The configuration file used to launch this shell script is shown in Ex-
ample 4.7, Configuration for Printing a Document (UNIX and ZOS) below.
Note how the printer name (%) and the details of the temporary file (%d
and %) are passed to the shell script using the command tokens. These are
interpreted by the shell as two arguments inside the script: 1) The temporary
directory and file name are concatenated with a forward-slash separator; and
2) name of the printer, which may be overridden by the client. See Ta-
ble 4.2, XML Server Command Tokens for a more detailed description of
these tokens.

<XM._SERVER CONFI G>

<SERVER_COMVAND>

.Ixm serverprint.sh %/ % %
</ SERVER_COMVAND>
<USE_TMP_FI LE>t rue</ USE_TMP_FI LE>
<TMP_DI RECTORY>. / t np</ TMP_DI RECTORY>
<TMP_FI LE_ROOT>doc</ TMP_FT LE_ROOT>

44

4.6

4.6.1

Curam XML Infrastructure Guide

<DEFAULT_PRI NTER>pr i nt er 1</ DEFAULT_PRI NTER>
</ XML_SERVER_CONFI G>

Example 4.7 Configuration for Printing a Document (UNIX and
z/0S)

Running the XML Server

The XML Server application is delivered as a separate component in 1BM
Curam Social Program Management. The XML Server is started from the
XML Server installation directory using Apache Ant. For example:

ant -file xmlserver .xml

A default xm server _confi g. xm is provided on instal which con-
tains the default configuration file for the server. You can apply changes to
thisfile asrequired.

When the server starts, it displays the configuration information it has read
from the configuration file and displays the status of each job it receives.

]

H Note

In addition to running as a command line application, the XML
server can aso be run in the background as a Windows service as
discussed in Section 4.6.1, Running the XML Server as a Windows
Service or UNIX Daemon.

Running the XML Server as a Windows Service or UNIX
Daemon

For a production environment it can be more effective, for purposes of en-
suring availability at restart, avoiding accidental shutdowns via an open
shell prompt, etc., to run the XML Server as a Windows service or UNIX
daemon.

To run a program as a Windows service requires specific Windows infra-
structure; that is, batch files and programs cannot be run this way out-
of-the-box. However, there are third-party tools available to enable this
functionality. One example of such atool is the Java Service Wrapper from
Tanuki Software (http://wrapper.tanukisoftware.com).

With Tanuki Java Service Wrapper we recommend, after installation, integ-
rating the XML Server using the W apper St art St opApp class (setting
W ap-

per.java. mai ncl ass=or g. t anuki sof t war e. wr apper . W app
er St art St opApp) and you would need to:

» Set the classpath to include the necessary Ant libraries;

e Passthe Ant home into the environment;

45

http://wrapper.tanukisoftware.com

4.7

4.8

4.9

Curam XML Infrastructure Guide

» Ensure adequate memory (e.g. 768MB);

» Passinthe necessary parameters to invoke the XML Server Ant script.
Specificaly, for the Java Service Wrapper the properties would look like:

wr apper. j ava. cl asspat h. <n>=<ANT_HOME>/ | i b/ ant . j ar

wr apper . j ava. cl asspat h. <n>=<ANT_HOME>/ | i b/ ant - | auncher . j ar
wr apper. j ava. addi t 1 onal . <n>=- Dant . hone=<ANT _HOVE>

W apper. j ava. maxnmenory=768

wWr apper . app. par anet er. 1=or g. apache. t ool s. ant . | aunch. Launcher
Wr apper . app. par anet er. 2=2

wr apper . app. par anet er. 3=-f

wr apper . app. par anet er . 4=<CURAMSDEJ>/ xml ser ver/ xm server . xm
wr apper . app. par anet er. 5=or g. apache. t ool s. ant . | aunch. Launcher
wWr apper . app. par anet er. 6=t r ue

wWr apper . app. par aneter. 7=3

wr apper . app. par anet er . 8=-f

wr apper . app. par anet er . 9=<CURAMSDEJ>/ xnl ser ver/ xm server . xm
wWr apper . app. par anet er. 10=st op

The values in angle brackets above would need to be substituted with the
appropriate values for your local installation. See the Java Service Wrapper
documentation for more details on installation, configuration and running.

Running the XML Server as a UNIX daemon is something that can typically
be done with shell scripting and system facilities (e.g. cron); but, UNIX-
compatible versions of Java Service Wrapper are available.

Overriding the Default Port

The Caram XML Server application runs on port 1800 by default. To over-
ride the default port the -Dxmlserver.port option can be specified, overrid-
ing the Ant script. For example:

ant -file xmlserver xml -Dxmlserver.port=1805

Overriding the Default Configuration
The Curam XML Server application comes and runs with a default configur-
ation file which it generates each time the application is started.

To override this default version, take a copy of the xm ser ver con-
fig.xm 4 and place in a custom location. To start the server using this
custom configuration use the following Ant command:

ant -f xmlserver.xml -Dxmlserv-
er .config.file=C:\Custom\xmlser ver config.xml

Switching Off Configuration File Schema Valida-
tion

The Curam XML Server application validates the XML Server configuration
file at start up by default.

46

4.10

4.11

Curam XML Infrastructure Guide

To switch off validation the novalidation option can be specified as an addi-
tional argument to the Ant script invocation. For example:

ant -file xmlserver.xml -Dadditional.ar gs=-novalidation

Shutting Down the XML Server

In an environment where few jobs are printed or you can be sure the
XML Server isidle, you can safely shut down the XML Server with asimple
Control-C key combination without causing any problems. However, the re-
commended and safer method is to use the XML Server Shutdown com-
mand. Thiswill shut down any XML Server in an orderly fashion: the serv-
er will refuse any new jobs and allow all outstanding jobs to complete be-
fore exiting. Thisis done through the following Ant command:

ant -file xmlserver . xml stop

The server will be switched into shut down mode and all outstanding jobs
will be completed before the server exits and the XML Server Shutdown
command informs you that the server has been shut down. Depending on the
number of jobs being processed, this may take some time to complete.

Statistics

Once you shutdown the XML Server various statistics data for the XML
Server are collected in the statistics folder, specified in xmlservercon-
fig.xml.

The statistics log includes the below columns:-
» Success - Whether or not the job was successful (true, false).
» Job preview type - Thejob preview type (PDF,HTML, TEXT,RTF).

» Elapsed connection - the time elapsed (in milliseconds) since processing
of a connection started until the connection was closed.

» Elapsedjob - The time (in milliseconds) it takes to run the job.

» Elapsed job preview send - The time (in milliseconds) it takes to send
the preview datato the client.

» Job preview data length - The length of the preview data (in bytes) sent
to the client.

* Timestamp - The timestamp (Java time stamp value) when the connec-
tion entered the system.

» Template D - TheID for the template being processed.
« Template version - The version number of the template being processed.

» Templatelocale - The locale of the template being processed.

47

4.12

Curam XML Infrastructure Guide

Summary

The Cdram XML Server processes jobs submitted by a client to produce
aformatted document.

Each job requires an XML document and an XSL template.

Multiple servers can be run on the same host by specifying different port
numbers for each server. Each server can perform a different operation,
but can only perform one operation.

Default values for a printer name, printer tray, e-mail address, and user
name can be specified in the configuration.

The server can be configured to perform any required operation on the
output document such as printing, e-mailing, display, etc. by specifying
acommand that should be run against the document data.

The configuration can specify whether the document should be piped to
the server command or first written to atemporary file.

The template cache can be used to improve performance where tem-
plates are reused regularly.

Debugging options are available to help solve problems with templates
or XML data.

Custom implementations can be defined to overwrite the default job
types, or to define new job types.

The server is a Java application started from the command line and dis-
playsits configuration and status when run.

The server can be shut down safely using the shutdown command.

48

Curam XML Infrastructure Guide

Notes

! Note that you should choose a target destination for setting up your XML
Server and its customizations to avoid being overwritten by subsequent ser-
vice pack updates.

2 Note that you should choose a target destination for setting up your XML
Server and its customizations to avoid being overwritten by subsequent ser-
vice pack updates.

% The installation and configuration of the InfoPrint Server is beyond the
scope of this document.

“The xmliserverconfig.xml is created from the xmiserverconfig.xml.template
file the first time the XML Server is run. This file contains all the configura-
tion elements for the XML Server.

49

5.1

5.2

5.3

5.4

Chapter 5

Cuaram XML and XSL Templates

Objective

In this chapter, you will learn about the IBM Caram Social Program Man-
agement XML format used for all XML documents generated by your ap-
plication server. You will need to know this format if you wish to write XSL
templates for formatting and printing the XML documents.

Prerequisites

Before reading this chapter you should be familiar with the basic concepts
behind XML and Document Type Definitions (DTD).

Introduction

Every XML document generated by the XML infrastructure uses a fixed
format regardliess of the struct classes being converted. This makes the de-
velopment of XSL templates easier, as the format of the XML does not
change. The following sections present that format and show what IBM
Curam Social Program Management XML documents look like. This will
help you when you are developing XSL templates.

Cdram XML

Example 5.1, Caram XML Document Type Definition (DTD) below presents
the DTD for Caram XML. The DTD can aso be found inthe/ | i b direct-
ory of the SDEJ. The structure is relatively simple and, with the comments,
this needs no further explanation.

<l --A DOCUMENT el emrent has an optional META el ement
foll owed by a mandat ory DATA el enent. -->

50

9.5

Curam XML Infrastructure Guide

<! ELEMENT DOCUMENT (META?, DATA)>

<I--A META el enent has a nunber of optional elenents that
it can contain in no particular order.-->
<! ELEMENT META (GENERATED DATE | GENERATED BY |
VERSI ON | COMVENT) * >

<l --A DATA el enent contains a single nandatory STRUCT_ LI ST
or STRUCT el enent.-->
<! ELEMENT DATA ((STRUCT LI ST | STRUCT))>

<I--A STRUCT_LI ST el emrent has one or nore STRUCT
el enents. -->
<I ELEMENT STRUCT_LI ST (STRUCT+) >

<I--A STRUCT el enent has an optional SNAME el ement and one
or nore FIELD el ements. -->
<! ELEMENT STRUCT (SNAME?, FI ELD+) >

<I--A FIELD el enent has an FNAME and either a TYPE
el ement and a VALUE el enent, or a STRUCT_LI ST el enment,
or a STRUCT el enment (in that order).-->
<! ELEMENT FI ELD (FNAME, ((TYPE, VALUE) | STRUCT_LIST | STRUCT))>

<I--All these elements contain parsed character data only
and do not contain sub-el enents. Use | SO 8601 when
formatti ng date val ues. -->

<! ELEMENT GENERATED DATE (#PCDATA) >

<! ELEMENT CENERATED BY (#PCDATA) >

<! ELEMENT VERSI ON (#PCDATA) >
<! ELEMENT COMVENT (#PCDATA) >
<! ELEMENT SNANE (#PCDATA) >
<! ELEMENT FNANE (#PCDATA) >
<! ELEMENT VALUE (#PCDATA) >
<! ELEMENT TYPE (#PCDATA) >

<I--A TYPE el ement can have a SIZE attribute. If not
supplied, the attribute will not be set by default
and will have a null value. This is normally used
for SVR STRI NG types.-->

<! ATTLI ST TYPE S| ZE CDATA #| MPLI ED>

Example 5.1 Caram XML Document Type Definition (DTD)

Examples

Example 5.2, An Example XML Document below shows a simple XML doc-
ument generated for a struct that contains two fields. Note that the field
types will always be the basic types and not the domain definitions derived
from those basic types.

<DOCUMENT>
<META>
<GENERATED BY>My Ser ver </ GENERATED_ BY>
</ NETA>
<DATA>
<STRUCT>
<SNAME>DPTi cket Dt | s</ SNAMVE>
<FI ELD>
<FNAME>t i cket | D</ FNAVE>
<TYPE>SVR_| NT64</ TYPE>

<VALUE>12796</ VALUE>
</ Fl ELD>
<FI ELD>

<FNAME>subj ect </ FNAMVE>
<TYPE Sl ZE="100">SVR_STRI NG/ TYPE>

51

5.6

5.6.1

Curam XML Infrastructure Guide

<VALUE>Thi s is the subject.</VALUE>
</ Fl ELD>
</ STRUCT>
</ DATA>
</ DOCUMENT>

Example 5.2 An Example XML Document

In the next example, the format of an XML document describing a list of
structs is presented. Note that the <STRUCT> elements are the same as pre-
vioudy, but multiple <STRUCT> elements are contained within a
<STRUCT LI ST> element.

<DOCUMENT>
<META>
<GENERATED_BY>My Ser ver </ GENERATED BY>
</ META>
<DATA>
<STRUCT_LI ST>
<STRUCT>
<SNAME>DPTi cket Dt | s</ SNAME>
<FI ELD>
<FNAME>t i cket | D</ FNAVE>
<TYPE>SVR_| NT64</ TYPE>
<VALUE>12796</ VALUE>
</ Fl ELD>
<Fl ELD>
<FNAME>subj ect </ FNAME>
<TYPE Sl ZE=" 100" >SVR_STRI NG</ TYPE>
<VALUE>Thi s is the subject.</VALUE>
</ FI ELD>
</ STRUCT>
<STRUCT>
<SNAME>DPTi cket Dt | s</ SNAMVE>
<FI ELD>
<FNAME>t i cket | D</ FNAVE>
<TYPE>SVR_| NT64</ TYPE>
<VALUE>35667</ VALUE>
</ FI ELD>
<FI ELD>
<FNAME>subj ect </ FNAVE>
<TYPE S| ZE="100">SVR _STRI NG</ TYPE>
<VALUE>Thi s i s anot her subject. </ VALUE>
</ FI ELD>
</ STRUCT>
</ STRUCT_LI ST>
</ DATA>
</ DOCUNMENT>

Example 5.3 An Example XML Document with a List
If a field of a struct is itself a struct, then instead of a <TYPE> and
<VALUE> element, the <FI ELD> element will contain awhole <STRUCT>

element. Fields can also contain <STRUCT _LI ST> elements in the same
manner.

Job Types and Template Types

Overview

You saw in Chapter 3, Developing for XML how different job types can be

52

5.6.2

5.6.3

Curam XML Infrastructure Guide

specified when using the XMLPr i nt St r eam class to communicate with
the XML Server. These job types require different types of templates in or-
der to be successful. While all the templates use XSL for formatting, there
are two parts of that standard that are used in specific situations.

o XSL Transformations (XSLT). XSLT is a standard that defines a lan-
guage for transforming XML documents in other XML documents. Ele-
ments of the XSLT language allow data from one XML document to be
combined with static elements of atemplate (or stylesheet).

« XSL Formatting Objects (XSL-FO). XSL-FO defines a set of ele-
ments for describing the physical layout of a document: paper size,
fonts, spacing, image locations, etc. The layout model used is based on
that used for PDF documents. A formatting objects processor can con-
vert data marked up with formatting objects into other representations
such as PDF or RTF.

The following subsections outline how these standards can be used to devel-
op templates for each of the supported job types.

XSL and XSL-FO are extensive standards and it is beyond the scope of this
document to describe them in more than cursory detail. Reference to books
and useful Internet sites on these topics are included at the end of this
chapter. You are advised to obtain such materials to learn how to use these
technologies.

Templates for PDF Documents

Generating PDF documents is a two stage process. It is perhaps easiest to
describe the processin reverse order.

PDF documents are generated from documents marked up with XSL-FO in
a process called rendering. The document contains the data that should ap-
pear in the document (text, figures, etc.) and the X SL-FO mark-up needed to
define how this data should be laid out (margins, paper-size, fonts, line-
spacing, location of paragraphs, etc.) This rendering stage is handled by the
Apache FOP library.

To prepare an XSL-FO document for rendering, the raw data is supplied in
an XML document and atemplate uses XSLT to combine this raw data with
the XSL-FO mark-up and the other static elements of the document. In es-
sence, the XSLT inserts the raw data into the template creating the XSL-FO
document. This transformation stage is handled by the Apache Xalan lib-
rary.

Thus, templates for rendering documents as PDF are largely XSL-FO docu-
ments with elements of XSLT used to insert values from the XML docu-
ment at the appropriate point. An example of such atemplate is given in the
next section.

Templates for RTF Documents

53

5.6.4

5.6.5

o.7

Curam XML Infrastructure Guide

RTF templates are identical to PDF templates. The same template can be
used to produce output in either format. Again, the template is mostly XSL-
FO with XSLT used to insert values from the XML document in the appro-
priate locations.

The JFOR library is used to render RTF documents from XSL-FO docu-
ments, however, not all XSL-FO elements are supported. Unless you need
to edit the documents in a word processor after they have been generated,
you should use the better supported PDF generator.

Templates for HTML Documents

Templates for HTML documents are smpler than those for PDF or RTF.
XSL-FO mark-up is not used as the HTML mark-up is used to define the
formatting. As such, there is no rendering step when generating HTML doc-
uments. The templates consists of HTML mark-up and XSLT elements that
insert values from the XML document in the appropriate locations to create
aHTML document.

As XSLT can only convert one XML document into another, the output will
include some XML elements. These elements are automatically removed for
this job type so that the output is a pure HTML document. The HTML will
be automatically indented during the processing.

Templates for Plain Text Documents

Aswith templates for HTML documents, templates for plain text documents
contain no XSL-FO mark-up and there is no rendering step. The templates
comprise plain text with embedded XSLT elements to insert values from the
XML document in the appropriate locations.

Again, XML elements in the output document are stripped. As XML and
XSL generaly do not preserve white-space, use of the <t ext > element
around white-space that is to be preserved is advised (for example, line
breaks, indentation, etc.).

XSL Template Example

Presented here is a simple example to get your started. It shows the basic
method of identifying and extracting data from an XML document contain-
ing asingle struct.

<?xm version="1.0" standal one="yes" ?>

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns: fo="http://ww. w3. org/ 1999/ XSL/ For mat "
version="1.0">

<xsl :tenpl at e mat ch="DOCUMENT" >
<xsl : appl y-tenpl at es sel ect =" DATA"/ >
</ xsl : tenpl at e>

<xsl:tenpl ate mat ch="DATA">

54

5.8

Curam XML Infrastructure Guide

<xsl : appl y-tenpl at es sel ect =" STRUCT[SNAME=' DPTi cketDtls']"/>
</ xsl : tenpl at e>

<xsl:tenpl ate nmat ch="STRUCT" >
<fo:root xmns:fo="http://ww.w3.org/ 1999/ XSL/ For mat " >
<f o: | ayout - mast er - set >
<f o: si npl e- page- nast er page- mast er - nane="onl y"
page- hei ght ="297mi' page-w dt h="210m{
mar gi n-t op="30nm" mar gi n- bot t om=" 30mM'
mar gi n- | ef t =" 30mm" mar gi n-ri ght ="30mi' >
<f o: regi on- body/ >
</ fo: si npl e- page- nast er >
</fo: | ayout - mast er - set >

<f 0: page- sequence>
<f 0: sequence- speci fi cati on>
<f 0: sequence-speci fier-single
page- mast er - ref erence="onl y"/ >
</ fo: sequence- speci fi cati on>

<fo: fl ow>
<fo: bl ock font-size="12pt" font-fam ly="serif"
| i ne- hei ght =" 20mi' >
Ti cket ID: <xsl:apply-tenpl ates
sel ect ="FI ELD[FNAME=' ti cket I D 1"/ >
</ fo: bl ock>

<fo: bl ock font-size="12pt" font-fam |ly="serif"
| i ne- hei ght =" 20mmi' >
Subj ect: <xsl:apply-tenpl ates
sel ect =" FI ELD[FNAVE=" subj ect']"/>
</ fo: bl ock>
</fo:flow
</ f o: page- sequence>
</fo:root>
</ xsl : tenpl at e>

<xsl:tenpl ate mat ch="Fl ELD"'>
<xsl : val ue- of sel ect ="VALUE"/ >
</ xsl : tenpl at e>

</ xsl : styl esheet >

Example 5.4 An Example XSL Template

The output is formatted for A4 paper (210x297mm) with 30mm margins
and should appear like this, if the earlier sample XML document is used:

Ti cket ID: 12796
Subject: This is the subject.

Example 5.5 Example output

Generating Templates from RTF Documents

While templates cannot be generated directly from RTF documents, soft-
ware is available to convert an RTF document created by a word processor
into the corresponding X SL-FO document. Once the X SL-FO document has
been generated, you can insert the appropriate XSLT mark-up to convert it
into a usable template.

55

Curam XML Infrastructure Guide

5.9 Globalization Considerations

As described above structs are transmitted to the XML Server for printing
by caling method
curamutil.xm .inpl.XM.Docunent. add(your-struct)
This data can be sensitive to locale differences.

Structs are serialized into an XML representation which is then transformed
into a human-readable document using XSLT. By default the following data
types are serialized by calling theirt oSt ri ng() method:

e curamutil.type.Date
e curamutil.type. DateTi ne

e curamutil.type. Money

Thet oString() method of Dat e and Dat eTi me returns a string de-
pendent on the value of property
‘curam envi ronnment . defaul t. dateformat’ and the to-
String() method of Money returns a value dependent on the value of
property ‘cur am envi ronnent . def aul t. | ocal e'.

For example, if ‘cur am envi ronnent . defaul t. | ocal e' was set to
'en_(GB', a Money amount would be serialized in the form '12, 345. 67°
whereas for 'es_ES' it would be formatted like '12.345,67' (i.e., commas
and dots reversed). This prevents the XSLT from de-serializing the datain a
locale neutral way. So if the server locale was set to English, then the XSL
template for a Spanish letter would have to parse an English formatted nu-
meric string instead of a numeric value.

Locale related problems like this can be avoided in two ways:

o Use string fields to transfer all datato the XML Server, and ensure that
these string fields are correctly formatted for the appropriate locale on
the server beforehand.

» Transfer fields to the XML Server in a locale-neutral way by setting
property ‘'curam xml server.serializel ocal eneutral' to
true. For Date and Dat eTi ne the formats are 'yyyyMwdd' and
'YyyyMVIdTHHMSS' respectively. For Money it is the same as for
floating point decimals.

5.10 Summary

e Curam XML usesafixed format for all generated XML.
» Theformat is defined in a document type definition (DTD).

e XML documents can be formatted using XSL transformations and
marked-up using X SL-FO ready for rendering as PDF or RTF.

56

Curam XML Infrastructure Guide

¢ XML documents can be formatted using XSL transformations only to
produce HTML and plain text documents.

5.11 Further Reading

Some books that cover XML, XSL, and XSL-FO are:

» Harold, Elliotte Rusty, The XML Bible, Hungry Minds Inc.

» Bradly, Neil, The XSL Companion, Addison-Wesley.

» Pawson, Dave, X9.-FO, O’ Reilly.

Useful web-sites for information on XSL, XSLT, and XSL-FO are:

* http://www.ibiblio.org/xml/books/bible/updatess has al the XML
chapters from The XML Bible book.

o http://www.w3c.org/ is the home of the World Wide Web Consortium.
This organization controls and maintains the X SL specifications.

e http://www.dpawson.co.uk/ is a site with some nice tutorials and fre-
quently asked question (FAQ) lists about XSL and XSL-FO.

The third-party libraries used are available from these |ocations:

» http://xml.apache.org/ is the home of the Xerces, Xalan, and FOP librar-
ies used by the XML Server.

o http://www.jfor.org/ is the home of JFOR, the XSL-FO to RTF convert-
er.

57

http://www.ibiblio.org/xml/books/bible/updates/
http://www.w3c.org/
http://www.dpawson.co.uk/
http://xml.apache.org/
http://www.jfor.org/

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

58

Curam XML Infrastructure Guide

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

59

Curam XML Infrastructure Guide

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

60

Trademarks

Curam XML Infrastructure Guide

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Adobe, Adobe Reader, and Portable Document Format (PDF), are
either registered trademarks or trademarks of Adobe Systems Incor-
porated in the United States, other countries, or both.

Apacheis atrademark of Apache Software Foundation.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United
States and other countries.

Java and all Java-based trademarks and logos are registered trade-
marks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

61

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram XML Infrastructure Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Objective
	1.2 Prerequisites
	1.3 Introduction
	1.4 Third-Party Libraries

	Chapter 2 XML Concepts
	2.1 Objective
	2.2 Prerequisites
	2.3 Introduction
	2.4 XML
	2.5 Document Type Definition
	2.6 XML Documents
	2.7 Summary
	2.8 Further Reading

	Chapter 3 Developing for XML
	3.1 Objective
	3.2 Prerequisites
	3.3 Introduction
	3.4 XML Documents
	3.4.1 Documents
	3.4.2 The XMLDocument Class
	3.4.3 Encoding
	3.4.4 Creating an XMLDocument
	3.4.5 Opening an XMLDocument Object
	3.4.6 Adding Data to an XMLDocument Object
	3.4.7 Closing an XMLDocument Object
	3.4.8 Saving an XMLDocument Object
	3.4.9 Loading an XMLDocument Object

	3.5 The XML Print Stream
	3.5.1 Overview
	3.5.2 The XMLPrintStream Class
	3.5.3 Default Configuration for XMLPrintStream
	3.5.4 Creating an XMLPrintStream Object
	3.5.5 Configuring an XMLPrintStream Object
	3.5.6 Opening an XMLPrintStream Object
	3.5.7 Closing an XMLPrintStream Object
	3.5.8 Print Previewing

	3.6 Sample Usage
	3.6.1 Overview
	3.6.2 Saving XML Data to a File
	3.6.3 Printing an XML Document
	3.6.4 Saving and Loading XML Documents
	3.6.5 Previewing an XML Print Job
	3.6.6 Building a Document from a List

	3.7 Load Balancing and Fail-over
	3.8 Summary

	Chapter 4 The XML Server
	4.1 Objective
	4.2 Prerequisites
	4.3 Introduction
	4.4 The XML Server
	4.5 Configuring the XML Server
	4.5.1 Overview
	4.5.2 Network Configuration
	4.5.3 Default Value Configuration
	4.5.4 Server Command Configuration
	4.5.5 Template Cache Configuration
	4.5.6 Debug Configuration
	4.5.7 Log4j Logging
	4.5.8 RenderX Configuration
	4.5.9 Custom Configuration
	Custom Job Type

	4.5.10 Font Configuration
	4.5.11 Sample Configuration Files
	Overview
	Printing a Document (Windows)
	Displaying a Document for Testing (Windows)
	Installing RenderX for Right-To-Left (RTL) PDF Document Processing (Windows)
	Printing a Document (UNIX and z/OS)

	4.6 Running the XML Server
	4.6.1 Running the XML Server as a Windows Service or UNIX Daemon

	4.7 Overriding the Default Port
	4.8 Overriding the Default Configuration
	4.9 Switching Off Configuration File Schema Validation
	4.10 Shutting Down the XML Server
	4.11 Statistics
	4.12 Summary

	Chapter 5 Cúram XML and XSL Templates
	5.1 Objective
	5.2 Prerequisites
	5.3 Introduction
	5.4 Cúram XML
	5.5 Examples
	5.6 Job Types and Template Types
	5.6.1 Overview
	5.6.2 Templates for PDF Documents
	5.6.3 Templates for RTF Documents
	5.6.4 Templates for HTML Documents
	5.6.5 Templates for Plain Text Documents

	5.7 XSL Template Example
	5.8 Generating Templates from RTF Documents
	5.9 Globalization Considerations
	5.10 Summary
	5.11 Further Reading

	Notices
	Trademarks

