..lli

IBM Curam Social Program Management

Curam Workflow Reference Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Curam Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
R @Y= VT PR RS 1
B (=01 S (=S PRS 1
1.3 HOW t0 USE thiSAOCUMENTooiiiiiiieie ettt s 1
1.4 Structure Of thiS DOCUMENLc.eiiiiieiiiie et 2

1.4 T WOTKFIOW PrOCESSESeeoieiiieiiieie ettt 2
L B T = o [1Y SRR 2
LA ACHVITIES ittt et b e bt e nre s 3
LAAFIOW CONIOL <.t sr s 4
1.4.5 Development and RUNEIMEocoiiiiieiiiie et 5
1.4.6 Inbox Configuration and CUSLOMIZALIONcccereereenieniee e 5

Chapter 2 Creating @ WOrKflOW PrOCESSccveiiiiiiiccece st 7

2.1 Process definition 1@ CYCIEoouv e e 7
2. 1.1 PrOCESS CrEALIONveiviiuieiienieiesiesieste it sie st ee et s bt be s sse e e e e saesae st e 7
2.1.2 ProCeSS VISUBIIZATONc.coveiiiiiriesiisiesiee ettt 7
2. 1.3 REIEASING APIOCESSccuveiveevieieeitieiteeeesseestesseesteessesseesseessesseessessesseessesseesseenes 8
2.1.4 Process versions (Process diting)cccoceeveeeereeiesieeseesisseesieeeeseesse e e 9
2.1.5 Process import, eXport and COPYcceeeereeriereerieeieseeseesie e sseeeesseesseeseesreenes 9
216 LOCAIZBIION ...ttt sttt sne e 10

P 00X (= o U 11 o USSP 11
2.2.1 BasiC engiNe DENAVIONccveiuiiieiice e 12
2.2.2 EXecuting MUItIPIE VEISIONScceeiieeieciesieeie et 12
2.2.3 Process Instance AAMINISITatioNcoceeereeiierienieneseseseseseeee e 12

2.3 Method ReferenCe Library ... iieiecie ettt 13
2.3.1 Referencing Caram MEthOASccvevieieeieeie e 13
PG \Y 1 g0 o I 1Y/ o= SR 13

YV B L@ I (= 011 (-SSR 14
P /1< =T = |- WSS 14
2.4.21mMpPOort @and SYNCINGeccveieeriecie e ae e sseere e e sreennas 15
ARG A V- T = 1o SRS 16

Chapter 3 Process Definition Metadalalccocveveeeeiierie e 17
T O Y= V1= S 17
I /1= = = - S 17
RGN = [F= 1 o g1 S 20
3.4 Description Of CONEXt WDIOScoeriiriiriiriesiesiesieeeeee et 21

Curam Workflow Reference Guide

Chapter 4 WOrkflow Data ODJECLSoieeiieiiesicie et e et nne e 22
T Y V1=V 22

T (Y, = = = = PR 22
TGV Lo = 11 0] RN 27

A4 LiSt Of CONEXE WDIOSoveiiiiieeiie ettt e ettt ee e s ettt e e s s sbeeessssaseeesssbssesssssbeeesssssneeessanes 28

A5 RUNGME INFOMMBLION .ottt e e ettt e st e s s s bt e e e s ssbaeessssnbeeaesssneeessanns 30
Chapter 5 ProCess ENACHMENLooiuiiiiiiiee ettt eeeas 32
ST O Y= AV 1=V AR 32

5.2 Code enactment (enactment SErVICE API)oooiiiirieieeee e 32
Iz Y [= = o = - NN 33
B52.2VATUBLIONS ..ot e ettt e e e e e e e e e e e et eeeeeeaeereeeeeeeeeenaaaes 34

I 1 ©o o | NSRS 34

ORI Y= 01 = 7= 0 1< | T 35
5.3.1 CoNfIQUIAioN AaEAceoveeereiriiriini e nee s 36

BB 2VATUBLIONS ..ot e et e e e e e e e e e e e et e eeeeesaernneeeeeeeeeaaanes 37

Chapter 6 BaSe ACHVITY ...oieeieiieseee ettt st e et ae e sreeeesneens 39
ST @ Y= AV 1= TR 39

LI Y, 1= =T = = LTS 39
I I o o= T =o [1= ST 40

LSRG Z= 1T =1 11 0] 01T 41

6.4 BASIC ACHVITY TYPES ..veeieeiesiiesieeie sttt sttt st be e sre et neesneenae e 41
5.4. 1 ROULE ACHIVITY oueiieieiieeie ettt sttt s nne e 41

6.4.2 Start/ENd ProCeSS ACLIVITYcccueieirieeiisiesee e 41

Chapter 7 AULOMEALICeiueeiieeieciesie et sttt e et e e e s te et e eseesteeeesseesneensesseesseeseaneens 43
B = (= o 0TS 1 (=SS 43

O /= VL= 43

7.3 CUram BUSINESS MELNOASoveviieiiiiei ettt e e s e e s s sra e e s e srreee s s erees 43
LR Y L= = o = = R 43

IV Z: 1T = (o R 44

QARG TC T O o [TR 44

B g o 1LY, ="o o1 oS 45
A Y L= = o = - R 45

A £- 1T = (o R 50

7.4.3 RUNEIME INFOIMAEION ..vvveeeieeiee ettt ee et e e e et e e s s ear e e e s seabe e e e s snareeasssannees 51

7.5 OULPUL MBPPDINGS .veeveeeieeieeieseesieeiesieesteessesseesseessesseesseessesseesseessesseesseessesssessesssennees 51
S Y L= = o = = R 52

RS V£ 1T = (o o R 55

7.5.3 RUNtIME INFOIMBEION ©.vvveeeieeeiee et ee et e e et ee s s sar e e e s sere e e e s enareeesssanees 55

7.6 Description of CONEXt WDIOScc.ccueeiieeieiiesieeie e siesee e eee et sae e esne e 56
Chapter S EVENTE WAIT ...ttt st e b s e e b e e saeeeseesaeeenneesnneenneas 58
O 1= 1= 0 01 (-SSP 58

I @ Y= AV 1=V 58

8.3 LISt Of BVENES ..ot e e et e s 58
eI Y [= = o - - N 59
B.3.2VATUBLIONS ..ot e ettt e e e e e e e e e e e e e eeeeeaaeneeereeeeeeeaanes 60

Curam Workflow Reference Guide

TG ©a o | TP 61
8.3. 4 RUNLIME INFOIMBLION ..cooeiiiiieciieeeee ettt e e e e e e e et e e e e s e s sessssaseeeeeesessaannes 62

T B T="= o | L1 1= TP 62
R o (= 1= o (U1] (=R R 62
A |V, < r=o = - N 62
BA.BVATUBLIONS ..coeeiieeeieeeet ettt ettt e e e e s et e eeesesesss e e eeessssasassaseeeeesssssaasnes 64

e T O To | TR 65
8.4.5 RUNLIME INFOIMBLION ..cooeiiiiieciieeeie et ettt e e e e e e e et e e e e e e e s sesssrsareeeeeesessaannes 65
8.4.6 Description of CoNteXt WDIOSceverierieeirniesieeie e 66

R O 10 (1o 0L \V =" o] o RS 66
RSN |V, < r=o = - 67
eI £ 1Ko = (o) - RO 67
8.5.3 RUNLIME INFOIMBLION ..cooeiiiiieciieeeee ettt e e e e e et e e e e e e s eesesrserereeeesessaannes 68
8.5.4 Description of ConteXt WDOSceviieerieeiiniesieeie e 68

Rl (=0 111810 (< £ PR 68
ST |V, 1= = o = x-S 68
0.2 VATUBLIONS ..coeeiieeeieeeet ettt ettt e e e s e e et e e e e s e seess e eeeeeeessasssseseeeeesssssaanes 69
TS O o [T TP 70
8.6.4 RUNLIME INFOIMBLION ..coeeiiiiieeieeeee ettt ettt e e e s e e e et e e e e s e s sesessaareeeeeesessaannes 70
Chapter 9 IMaNUALoceeieee ettt e e esreeteeaeesseeneeeseesreesenneens 71
O = 1= o 0TS] (-SSR 71
O © /= VL= 71
R 1= = Qo (< = 1 = 71
I Y 1= = o = = R 71
R V- 1T = (o R 76

O TG J O a0 [TR 78
9.3.4 RUNtIME INFOIMBEION ...vveee ettt e et e e et e e s e sr e e e s sere e e e s enabeeasssareees 78
9.3.5 Description of ConteXt WDOScccvveeieeieceeseeree e sieesee e sse e ssee e eeas 79

R AN [0 o= 1o TR 1 2| =0 |V 79
O (= 1= o U1K] (-SSR 79
SN Y 1< = o = - R 79
G- 1T = (o R 83
O oo [TR 84
9.4.5 RUNEIME INFOIMBEION ..vvveee ittt ee st e e s e e e e s sar e e e s sesre e e e s snnreeasssarees 85
9.4.6 Description of ConteXt WDOSccceieerieeieieeseesieseeseeee e sse e ssee e 86

9.5 BUSINESS ObJECt ASSOCIALIONSoecviieieiieiecee e estesee e e sie s e re e sse e e e saeeneas 86
T Y/ 1= = o = = R 86
V£ 1T = (o R 87

O TG H O o [TR 88
9.5.4 RUNtIME INFOIMBEION ..vvveee ittt e et e e e e ee s e sbr e e e s sere e e e s ennbeeesssareees 88

T VL= 1A= S 88
O (= 1= o U1K] (-SSR 88
9.6.2 Description of ConteXt WDOScccvieeieeieiieseeseeseesie e sse e ssee e eeas 88
Chapter 10 DECISION ..uviiuieiieeieeeesieeeeeeeseeeseesseesseesaesseesseeseaseesseesesseesseessessesssenssesseessennsessenns 89
LO. L PrEFEQUISITES ..ottt sttt sb e bbbt e e et b e nas 89
MO @ Y= VT =Y PR 89
RO = = T B 1< = 1 TR 89
RO 1= =T = = 90

Curam Workflow Reference Guide

LRIz 2= 1o b= (o] =TSR 92
10.3.3 RUNIME INFOIMBLION ...ttt ettt e e e e e e e s e e e e e e e e s eeeerreeeeas 9
10.4 QUESHION DELAIISooeeeieiee ettt et reesneeens 94
O I (V. 7= 7= = O 94
O - 1o b= (o] TR 97
10.4.3 RUNGME INFOIMBLION ...ttt e e e e e e e s e e e e e e e e e seeenareeeeas 98
10.4.4 Description of CONtEXt WDOScceieerieriiiienieeie e seee e 98
Chapter 11 SUDFIOWvieee ettt ettt e e st eesse e s seeaeenaesreenenneens 99
I (= = o 0TS] (-SSR 99
A @ V< V1= Y 99
GRS T o [0 VLV e 0 0= 99
G T 1Y/ = 7= = 100
IV - Lo = 1T o) 100

B g o WL 1V =T o] e S 100
B I (V.1 7= 7= = 100
Y - Lo = 110 102

RN @ U o 11| 1Y/ F=o o o 102
S T 1Y/ =T 7= = 102
LRSIV - Lo = 1T o) 103
Chapter 12 Loop Begin and LOOP ENAccoooviiieiiee et 105
B o (= 1= o [0S (-SSR 105
T2.2 OVEIVIEW oot e e e e e e e ettt e e e e e e e e e et e e eeeeea e e e eeeeeeeeaeannnneeeeeeens 105
I B W0 o o I I8/ o TR P PSPPSRI 106

HZRCH Y [= = o = - NN 106
12.3.1L00P BEGIN ACHVILY .ooeeieieiieeeeeseseee et 106
12.3.2 L00P ENGA ACHVILY ..eooveeieiieieeieeste st 107
12.4 RUNEIME INFOIMIBEION ...t e e e et e e e e e e e e e e e e e e e e neeeeeaeeens 107
12.5 Description Of CONtEXt WDIOSooiiirieriinierieeeeesee et 107
Chapter I3 Palall@l ...t enr e e reeenes 109
G o = o (U1K] =SS PSS 109
2 /< VT = Y PP 109
LSRG V1= = o = - SRR 109
13.3.1 Generic Metadatafor aParallel ACHVILYocooveeiiiiinieeeeee 110
13.3.2 Metadata for a Parallel Manual ACHVILYccccoveeiirinnieeeeeee e 110
13.3.3 Metadata for aParallel DeciSion ACHVILYcccoceeierinneeneee e 111
SRR - 1o = 1o =TT 113
13.3.5 RUNIIME INFOIMELION ..ottt ettt e e e e e s e e s e e e e e e e e e saaanes 113
13.3.6 Description of CONtEXt WDOScceieeieenierienieenie e 113
Chapter 14 Activity NOUTFICAHONScceiierieeieceese e 115
I @ Y= V1= Y T 115
NS Lo () K Tor= (1o gl B = 1 KSR 115
I (Y, = 7= = 115
Y - Lo = 110 R 118
R o o [119
14.2.4 RUNEIME INFOIMEBLTON ...ttt ee s e e e s e re e e e e s enbr e e s s sraes 120
14.3 Notification AllOCatioN SIrAteQYc.ccvverreeieeiiesieeieseeseestesee e rre e eee e 120

Vi

Curam Workflow Reference Guide

G I o (= = o (U] = TR 120

B ©o o (= OSSOSO 120

Chapter 15 TraNSITIONSoceecieiiecieie e e e e e e e s seeteeseesreeseeneesreeseeneesneenes 124
R O Y a1 RS 124

RS2 Y 1= 7o = - LS 124

MR AY =T r= 1] S 126

15.4 RUNtIME INFOrMEBLION ..ottt 126
Chapter 16 CONAITIONSoiverieiiisiese e eee e e e e et seeeseesseeeesreesreensesneesseeseeneesseenes 128
ST @Y= Y1 = SRS 128

LGN V= = I - SRS 128

RO RCA [o r= (] RSP 131
(O s S o) 11 /N o o ST 133
B 1 01 70 o U o o o SRS 133

17.2 ChoiCe XOR SPHT ..ottt sr e 133
I V= = = - LSS 133

17.3 Parallel AND SPHIT ...oveieeiiciecieeeieee et sne e 134
RGN |V 1= = I - LSS 135

Chapter 18 WOrKFIOW SETUCLUFEovecee ettt 136
RS O Y= a1 = S 136

18.2 Graph SITUCKUIE ...ttt sttt e e e e neeneenre e 136

RS RC T =] [oex g1 U Tox (1 [137
18.3.1 AnAnalogy fOr BIOCKScoveiiiieiece e 137

18.3.2 Block Types Supported by WOrKflOWcccoeveeiveieiieiecce e 138

18.4 SIUCIUrAl RUIES ...ttt ettt e sre s 138
18.4.1 Graph StrUCIUrE€ RUIEScoviiieceiee et 139

18.4.2 BIOCK SIrUCIUrE€ RUIES ...ttt 139

RS = T = 1] S 140
18.5.1 Simple Syntactic CheCKScccvveeiice e 140

18.5.2 Graph ChECKScociieiicie e 141

18.5.3 BIOCK ChECKS ..ot 141

Chapter 19 WOrKflow WED SEIVICESoccveeieieciecee ettt sttt s 143
RS I @Y= Y1 = RSP 143

19.2 EXposing a WOrKFlOW WED SEIVICEociiiiiiiiieiieieeeee e 143
19.2.1 Process ENaCIMENTceeiie et 144

19.2.2 Process completion callback ... 144

19.3 Invocation from BPEL PrOCESSESccceiiriirierieieieneesie sttt seens 145
Chapter 20 FIIE LOCALIONScccvveiiieiieesiee sttt ettt sttt se e ssaeenaeesneeeteesnnaeneeanes 147
20.1 OVEIVIBIW ..ottt ee e esteste st st se e s e e aessessesbesseeseeseeseeseenaenseneessensensens 147
20.2 Workflow Process Definition FIlESccoovviiieiie i 147
20.2.1 Customizing Workflow Process Definition Filesccoooveiiiiiinicnenns 148

20.3 Event DEfiNItION FIlESccvee e e 148

(O3 TC 0= 2 @0 01 1o U= o] o IS 150
DA V= oV = S 150
AN oo 1o o gl o]0 1= =TS 150

vii

Curam Workflow Reference Guide

(O e N |V S I (= 153
P2 | 11 £ L8 1 o o PSSRSO 153

22.2 What IMSLITE DOBScuviviieeeiirieicesie et 153
22.3WRY IMSLITE? ..ot 153

224 USING IMSLITE .ottt 154
22.5 Debugging WOIKFIOWScoiuieieiiecece et 154
Chapter 23 Inbox and Task Managementcccooeverirenerieerere e 156
DG T V= V= SR 156
23.21NDOX CONFIGUILTON ...ttt nne e 156
23.2.1 Inbox List Sizes Configuration SEttingscccccvverererererieereenese e 156

23.2.2 Get Next Task Configuration SEttiNgSccoceeererererereeieeneeseese e 157

23.2.3 Task Redirection and Allocation Blocking Settingscccceevvencneniene 159
23.31NDOX CUSLOMUZALIONeveiieeeiesiesie ettt e e e b e 159
23.3.1 How to customize the INDOXccceveririeieee e 162

N o= 165

viii

1.1

1.2

1.3

Chapter 1

Introduction

Overview

This is the Workflow Reference Guide and it is intended to provided de-
tailed explanations of the concepts of the Curam Workflow Management
System (WMS). It aims to describe how to define a process to achieve cer-
tain goals by giving in-depth descriptions of the workflow metadata as well
as the effects of that metadata at runtime. This document not intended as a
tutorial document but rather a concise description of all the features avail-
ablein Cdram workflow.

Prerequisites

This document assumes some familiarity with workflow concepts and how
they are realized in the Ciram WMS. In particular it assumes that you have
at least read the Business Analyst Guides. Cdaram Workflow Overview
Guide.

How to use this document

As this document is a reference manual the chapters are as independent of
others as possible. The intent is that a reader is aware of a concept that they
wish to get further details on, finds the relevant chapter in this document
and need only read that chapter. While it is not expected that this document
be read from cover to cover it has been structured in such a way as to make
such areading possible and productive.

Some parts of the Caram WMS itself draw heavily on each other and as
such the documentation reflects this. These external references come in two
flavors: prerequisites which are pointers to information that is indispensable
in understanding the section at hand and general links which highlight re-
lated but not required information.

1.4

1.4.1

1.4.2

Curam Workflow Reference Guide

Structure of this Document

This document may be aso viewed in a number of distinct sections each of
which reflects an area of the Ciram WMS and how these interact with each
other. The following sections include a summary of what these logical sec-
tions are, what chapters are included in those logical sections and what areas
of the Cdram WMS are covered within those related chapters.

Workflow Processes

The Workflow Processes section of the document describes the metadata as-
sociated with a workflow process definition. The lifecycle of a process
definition is also described.

Chapter 2, Creating a Workflow Process describes how to create and visual-
ize a workflow process using the Cdram workflow system. Releasing a pro-
cess is also described while the effect that this has on the versioning associ-
ated with process definitions is also detailed. Importing and exporting pro-
cess definitions is discussed while the localization of the text contained
within a process is outlined. Executing a workflow process using the Clram
workflow engine is described in detail. A description of the method library
and the workflow data object (see Chapter 4, Workflow Data Objects) tem-
plate library is aso provided.

Chapter 3, Process Definition Metadata describes the metadata associated
with a workflow process definition. Each metadata field is outlined while
the validations and context workflow data objects associated with the work-
flow process as awhole are detailed.

Data Flow

The Data Flow section of the document describes how data is stored and
manipulated in a process instance. In particular issues of how data is con-
veyed from the outside world (at process enactment) and between activities
and transitions within the process is described.

Chapter 4, Workflow Data Objects describes the objects used to maintain
and pass data around in the workflow engine. The metadata that constitutes
workflow data objects and their attributes is outlined in detail. Validations
that pertain to the creation and modification of workflow data objects are
discussed. Finally, the context workflow data objects that are made avail-
able by the Process Definition Tool and workflow engine are aso described
in this chapter.

Chapter 5, Process Enactment describes the starting of a process instance
(i.e. the performing of the work defined in the process definition). The en-
actment service API is described while the enactment mappings metadata
associated with the enactment of a process is discussed. Associated valida-
tions and code examples are also provided. It is also possible to start a pro-

1.4.3

Curam Workflow Reference Guide

cess in response to an event being raised and this is also described in this
chapter. The configuration data to perform this action is outlined in detail.
Any validations that are executed when creating the mappings between
events and workflow processes are described.

Activities

Activities are central in a workflow process as they are the steps at which
the business processing for the workflow takes place. There are various
activity types supported by the Caram WMS and these are all described in
the Activities section of the document. As notifications are also pertinent to
each activity type, they are also described in this section of the document.

Chapter 6, Base Activity describes the metadata details common to all of the
supported activity types in the Cdram workflow system. The validations that
are executed when creating or modifying an activity are also outlined. Fi-
nally, some of the more simple activity types are described including the
route activity and the start and end process activities.

Chapter 7, Automatic describes the metadata details associated with an auto-
matic activity. Both the input and output mappings specified for the method
associated with the automatic activity are discussed in detail. The valida-
tions executed when creating or modifying the metadata for an automatic
activity are outlined. Finaly, the Context_Result and Con-
t ext _Err or workflow data objects that are available for usein transitions
from automatic activities are also described in this chapter.

Chapter 8, Event Wait describes the metadata details associated with an
event wait activity. This includes the list of events, the deadline details
(including any deadline reminders) associated with an event wait and also
any output mappings that may be specified. The validations executed when
creating or modifying event wait metadata are also described. The runtime
information that is associated with the execution of event wait activities by
the workflow engine is aso outlined in detail. Finally, the Con-
t ext _Event and Cont ext _Deadl i ne workflow data objects that are
available for use in transitions from event wait activities are also detailed in
this chapter.

Chapter 9, Manual describes the metadata details associated with a manual
activity. This includes the manual task details, the allocation strategy, the
business object associations and the event wait associated with the manual
activity. The validations executed when creating or modifying manual activ-
ity metadata are also described. The runtime information that is associated
with the execution of manual activities by the workflow engine is also out-
lined in detail. Finally, a description of the Cont ext _Task workflow data
object that is available for use in the various mappings associated with a
manual activity is also provided in this chapter.

Chapter 10, Decision describes the metadata details associated with a de-
cision activity. This metadata includes the decision task details (which is
similar to the manual activity task details) and the question details for mul-
tiple choice and free text questions. The various validations that are ex-

1.4.4

Curam Workflow Reference Guide

ecuted when creating or modifying the task or question details associated
with a decision activity are outlined. This chapter also includes a description
of the runtime information that is present when the workflow engine ex-
ecuted a decision activity. A description of the Cont ext _Deci si on
workflow data object is aso provided in this chapter.

Chapter 11, Subflow describes the metadata details associated with a sub-
flow activity. This includes details of the subflow process associated with
the subflow activity and any input mappings required to enact that subflow
process. There are various validations that are executed when creating or
modifying this metadata and a description of these is aso provided in this
chapter.

Chapter 12, Loop Begin and Loop End describes the metadata detail s associ-
ated with aloop begin and loop end activity. The loop type, loop condition
and end loop activity reference of a loop begin activity are described. This
chapter also includes a description of the runtime information that is present
when the workflow engine executes aloop in aworkflow process definition.
A description of the Cont ext Loop workflow data object is also
provided in this chapter.

Chapter 13, Parallel describes the metadata detail s associated with a parallel
activity. Parallel activities wrap existing activity types including Chapter 9,
Manual activities and Chapter 10, Decision activities. Since the metadata
associated with these activity types remains the same, it will not be de-
scribed again in this chapter. The validations executed when creating or
modifying parallel activity metadata are also described. The runtime inform-
ation that is associated with the execution of parallel activities by the work-
flow engine is also outlined in detail. Finaly, a description of the Con-

text _Paral | el workflow data object that is available for use in the
various mappings associated with a parallel activity is also provided in this
chapter.

Chapter 14, Activity Notifications describes the metadata details associated
with an activity notification. These details include the delivery mechanism,
the subject, the body, the allocation strategy and actions associated with the
notification. There are a number of validations that are executed when creat-
ing or modifying notification metadata and these are also outlined in this
chapter. A description of the runtime information when the workflow engine
creates a notification is also provided. Finaly, there are a number of imple-
mentation details that are required in the Clram application to alow notific-
ationsto be delivered correctly. These are also discussed in this chapter.

Flow Control

A workflow process models the flow of information through an organiza-
tion, passing through steps carried out by human agent or computer software
to achieve a business goal. The Flow Control section of the document de-
tails how such information flow (between activities) is specified in and man-
aged by the Ciram WMS.

Chapter 15, Transitions describes the links between activities. The metadata

1.4.5

1.4.6

Curam Workflow Reference Guide

associated with transitions is described in detail. Validations that pertain to
the creation and modification of transitions are also discussed. The runtime
information that is associated with the processing of transitions by the work-
flow engineis also described.

Chapter 16, Conditions describes the process definition metadata construct
that represents a condition. Validations that pertain to the creation and
modification of conditions are also discussed.

Chapter 17, Split/Join describes the metadata associated with activity splits
and joins, when they should be used and the various types available.

Chapter 18, Workflow Structure describes the structure of a workflow pro-
cess as determined by the activities in the process and the transitions
between them. The constraints present when constructing a process defini-
tion to ensure that it is a valid block structure are outlined while validations
that are executed as part of these constraints are discussed.

Development and Runtime

The Development and Runtime section of the document describes the specif-
ics of the development and runtime environment for Caram workflows. Spe-
cifically, it details how to run, configure and debug workflows.

Chapter 19, Workflow Web Services describes the steps necessary to allow
process enactment via web services by exposing Curam workflow process
asaweb services.

Chapter 20, File Locations details where the various outputs of such utilities
as the Process Definition Tool and other administration user interfaces are
exported to and version controlled. These outputs include process definition
metadata files and also the source files associated with events.

Chapter 21, Configuration describes the workflow related application prop-
erties, their names, their default settings and what they are used for in the
Cuaram workflow system.

Chapter 22, IMSLite details the Cdram lightweight IMS server that can run
alongside the RMI testing environment in a supported IDE. The steps re-
quired to start the IMSLite server are outlined while a detailed description
of how to debug workflows using IMSL.ite is also discussed.

Inbox Configuration and Customization

The Inbox Configuration and Customization section of the document de-
scribes the configuration and customization options that are available in the
Inbox and Task Management section of the Ciram WMS. Specificaly, it
details how to configure the number of tasks that are displayed on the vari-
ous lists displayed in the Inbox and aso how to customize the various Inbox
and Task Management actions that are available in the system.

Chapter 23, Inbox and Task Management describes the configuration op-
tions available to be used in the Inbox. It also details how to customize the

Curam Workflow Reference Guide

available Inbox and Task Management functions through the use of the
Google Guice framework.

2.1

2.1.1

2.1.2

Chapter 2

Creating a Workflow Process

Process definition life cycle

The process definition is the central concept in any workflow system so nat-
urally how it is created and used is of critical importance. This chapter de-
scribes the facilities provided by the Curam workflow system to create and
administer process definitions.

Process creation

The Caram workflow system provides a Process Definition Tool (PDT) for
creating and maintaining process definitions which can then be interpreted
by the workflow engine. Creating a process definition involves using the
Process Definition Tool to describe the desired process behavior in terms of
activities and transitions.

A number of utilities are provided as part of the Process Definition Tool that
can aid in process creation. The PDT allows a process definition to be visu-
alized during design. Processes can also be copied, imported, and exported
using the PDT.

Process visualization

A read-only graphical utility is provided as part of the Process Definition
Tool which enables process administrators to visualize processes as they are
being created or modified. Thistool alows administrators view al activities
and transitions in a process definition and provides a high level view of al
the possible paths through the workflow process during execution. An ex-
ample of a graphical representation of a workflow process definition is
shown below.

2.1.3

Curam Workflow Reference Guide

Close Gase - 1

0
g®
Notify: Case not ...
OverUnderPmt. OverUnderPMT == true
i,
= . u
Route
= = =i =
k Case Re... se Check Case Ref nt Communi, mimi

Figure 2.1 Visualization of Close Case Workflow Process
Definition

The visualized process comprises a number of nodes on a graph represent-
ing the activities in the process. The nodes are linked by graph edges and
these reflect the transitions defined in the process definition. Clicking on an
activity in the graph displays the details of the activity in the PDT. Simil-
arly, clicking on atransition between activities on the graph displays the de-
tails of the transition in the PDT.

The graphical tool displays the following information for each process visu-
alized:

» Thetype and name of each activity. Each activity type is identified by a
specific icon.

» The notifications defined for each activity (See Chapter 14, Activity No-
tifications). If an activity has an associated notification, it will be repres-
ented as an envelope which is click-able through to the associated activ-
ity notification page.

» The split/join type (See Chapter 17, Split/Join) for each activity. A split
or join type of "choice" on an activity is represented as a circle, while a
split or join type of "parallel” is represented as a square.

» The transitions between activities. Where a transition between activities
has an associated transition condition (See Chapter 16, Conditions), this
is represented as an asterisk. The details of the condition are displayed
when the mouse is placed over that asterisk.

» The ordering of each choice split (See Chapter 17, Split/Join) from an
activity. As the ordering of a choice split from an activity is important
(thefirst eligible transition in the list will be followed), the order of each
transition from the activity is displayed as a number on that transition.

Releasing a process

Once a process definition has been created and is ready for use, it must be
released before it can be executed by the workflow engine (See Section 2.2,

2.1.4

2.1.5

Curam Workflow Reference Guide

Process execution). As a process is being released using the PDT , it is ex-
amined to ensure al the information the engine needs to execute the process
is present and internally consistent. The validations required to release a
process are described in the various metadata sections of this document.

Only processes that have passed all of the required validations can be re-
leased and made available to the workflow engine. Once a process defini-
tion has been released it becomes read-only and can no longer be edited by
the Process Definition Tool without creating a new version.

Process versions (process editing)

Changes may be required to a released process over time, but as a released
process is read-only, a new version is required before any modifications can
be applied. Attempting to edit a released process in the PDT will automatic-
ally create anew unreleased version of that process.

There can only be one unreleased version of a process at any time. If the ad-
ministrator wishes to edit a released process, any existing unreleased ver-
sions must first be released or deleted.

Process import, export and copy

The import and export functionality allows developers move process defini-
tions as required. For example. a process definition might be developed on a
development system and only moved to a production system after testing
has been compl eted.

Exporting a process will export the process metadata to the file system. This
metadata can then be imported using the import process option in the PDT.
A process imported in this way will be assigned the highest version number
available, and will be unreleased regardless of its released state when impor-
ted. This is to ensure that imported process definitions are subject to the
same release validations as other definitions developed locally. An over-
write option is available when importing that ensures any existing unre-
leased version of the process will be overwritten with the imported version.

There may be situations where a process definition differs only slightly from
another in the workflow system. A copy process option is available which
allows an existing process to be copied to a new process when required. The
new process will always be unreleased when copied with aversion set to 1,
regardless of the status of the original process.

Validations

* A process definition cannot be imported if an unreleased version of a
process aready exists with the same name, and the overwrite option has
not been selected.

» A process definition cannot be imported if a name for that process has
not been specified

2.1.6

Curam Workflow Reference Guide

» A process definition cannot be imported if a process already exists with
the same name and different process identifier. This validation ensures
that an imported definition cannot inadvertently overwrite an existing
process definition unless the process identifiers match.

* When copying an existing process, the name of the new process must be
unique within the workflow system.

* The length of the name of the workflow process definition being impor-
ted must not exceed the maximum length alowed for such a name. This
length is 254 characters.

» The length of the names of any of the workflow data objects contained
in the workflow process definition being imported must not exceed the
maximum length allowed for such a name. Thislength is 75 characters.

* The length of the names of any of the workflow data object attributes
contained in the workflow process definition being imported must not
exceed the maximum length allowed for such a name. Thislength is 75
characters.

* Any code table values that are contained in the workflow process defini-
tion being imported must be valid (i.e. the code table must exist and the
specified code must exist in that codetable).

o Text for the default locale must be present for al the specified localiz-
able text strings in the process definition being imported.

* The identifiers for activities, transitions, transition condition expres-
sions, loop condition expressions, events and reminders must be unique
in the workflow process definition being imported.

Localization

Workflow process definitions contain metadata text that needs to be viewed
in different languages by different users. For example, when a manual activ-
ity is executed, it creates a task which has an associated subject. The Process
Definition Tool enables the process developer to localize this subject string
for each of the locales supported by the application.

Localizable strings can be identified in a process definition by the metadata
specified in Section 6.2.1, Localized Text. Any localizable text strings that
have been specified in a process definition must have an entry for the de-
fault server locale. The default server locale is specified in the Clram ap-
plication by the property: curam envi ronnent . def aul t. | ocal e.
By default, the PDT uses this locale when adding localized strings to a pro-
cess definition. Any other locales required must be added using the localize
option provided.

The following is alist of the localizable text strings that may be specified in
aprocess definition.

* Process description

10

2.2

Curam Workflow Reference Guide

Workflow Data Object display name
Workflow Data Object description

Workflow Data Object attribute display name
Activity name

Activity description

Manual Activity Task message

Manual Activity Task Action message

Parallel Manual Activity Task message
Parallel Manual Activity Task Action message
Decision Activity Action message

Decision Activity Question message

Decision Activity Secondary Action message
Decision Activity Answer display value
Parallel Decision Activity Action message
Parallel Decision Activity Question message
Parallel Decision Activity Secondary Action message
Parallel Decision Activity Answer display value
Activity Notification Subject message
Activity Notification Body message

Activity Notification Action message
Reminder Notification Subject message
Reminder Notification Body message
Reminder Notification Action message

The Local i zabl eStri ngResol ver APl provides routines that re-
solve and return the various localizable strings for tasks and notifications
that exist in a workflow process definition for the locale of the current user.
Where a text string has not been localized for the current user locale, the
text for the default server localeis returned instead.

Process execution

A workflow process definition describes the tasks and flow of a business
process in terms understood by the Caram Workflow Management System.
To perform the work described in the specified process definition, an in-

11

2.2.1

2.2.2

2.2.3

Curam Workflow Reference Guide

stance of it must be created and executed by the workflow engine. The
mechanism by which this is done is described in this section. A process in-
stance may be considered as the runtime data for an enacted workflow pro-
cess definition.

Basic engine behavior

The Cdram Workflow Management System includes a workflow engine
which provides the runtime execution environment for a process instance.
There are various mechanisms available to enact a workflow process and
these are discussed in Chapter 5, Process Enactment. When a process is en-
acted, the workflow engine examines the relevant database table and uses
the latest released version of the specified process definition to create the
process instance to run.

As each activity is executed, an associated activity instance record is created
and managed by the workflow engine. This record contains the runtime data
for an activity instance in the enacted workflow. As the workflow pro-
gresses, the engine evaluates the transitions (see Chapter 15, Transitions)
for the various activities to decide which path through the process to take.
This involves determining the types of splits and joins (see Chapter 17,
Solit/Join) that the activity possesses and also executing any conditions (see
Chapter 16, Conditions) that the various transitions in the process may have.
Transition instance records (which contain the runtime data for a workflow
transition) for each transition followed in the workflow process are aso cre-
ated and managed by the engine.

Executing multiple versions

Modifying and releasing a new version of a process will not affect any cur-
rently executing instances of that process. A process will run to completion
in the workflow engine with the version that it was started with, regardless
of any subsequent versions that may have been released.

Process Instance Administration

A workflow administrator has the ability to influence the execution of arun-
ning process instance through the Caram Workflow Administration inter-
face. The following functions are available for this purpose:

Suspend a Process | nstance

Any currently executing process instance may be suspended. When this
occurs, the workflow engine will allow al activity instances that are in
progress within that process instance to complete. However, the next set
of activities that are required to be executed for that process instance are
started by the workflow engine and immediately suspended. Any syn-
chronous subflow processes (see Chapter 11, Subflow) associated with
the process instance being suspended will also be suspended by the
workflow engine.

12

2.3

2.3.1

2.3.2

Curam Workflow Reference Guide

Resume a Process I nstance

Any workflow process instance that has been suspended may be re-
sumed. When this occurs, the activity instances that were previously
suspended for that process instance are restarted by the workflow en-
gine. Any suspended synchronous subflow processes (see Chapter 11,
Subflow) associated with that process instance will also be resumed by
the workflow engine.

Aborting a Process I nstance

Any currently executing or suspended process instance may be aborted.
All activities that are in progress in the aborted process instance are
completed. If the process contains any manual or decision activities that
are in progress, the associated tasks will be closed by the workflow en-
gine when the process instance is aborted. No new activities associated
with an aborted process instance will be started by the workflow engine.
Any synchronous subflow processes (see Chapter 11, Subflow) associ-
ated with the process instance will also be aborted. An aborted process
instance cannot be resumed.

Method Reference Library

Several situations exist in the Caram Workflow Management System where
it is necessary to interact with the Clram application by calling some busi-
ness process or entity methods (see Section 7.3, Clram Business Methods
for one example of such an interaction). Any business process object (BPO)
or entity method in the application can be called by the workflow engine.
However there are far too many such methods to present to a process de-
signer for use in their process definitions in an acceptable way. The purpose
of this library is to alow an administrator to assign methods that are likely
to be of use in process definitions to a more manageable list for use in pro-
cess design. Of course it is not necessary to pre-populate the library with all
methods that could be used in the future. New methods can be added to the
library as required.

Referencing Curam methods

Business process object (BPO) or entity methods must be added to the
Method Reference Library before they can be referenced in a process defini-
tion. The method type defined when adding to the library will dictate where
that method will be available for use within a process definition.

Note that removing a method reference from the Method Reference Library
will not remove it from any process definitions that reference it. Aslong as
the method is still avalid Cdram application method any process definitions
that reference it will remain valid.

Method types

A Curam business process object (BPO) or entity method must be added to

13

Curam Workflow Reference Guide

the Method Reference Library with one of the three defined method types.
A method can be associated with more than one method type, but the meth-
od will have to be added repeatedly with the different method type each
time. Detailed below are different method types in the Method Reference
Library, along with the restrictions on their use.

General

Methods with a type of General are only available as application meth-
ods to be invoked from automatic activities (see Section 7.3, Clram
Business Methods). The Process Definition Tool restricts access to only
these methods when selecting a method to be invoked from an automat-
ic activity.

Allocation

Methods in the library with an Allocation type are only available for use
as dlocation strategy functions associated with manual activities, de-
cision activities, parallel activities and activity notifications. (See Sec-
tion 9.4, Allocation strategy). All methods specified with an allocation
method type must have a return type of
curamutil.workflow struct. Al l ocati onTargetLi st.

Deadline

Methods of type Deadline in the method library can only be referenced
as deadline handler methods associated with event-wait, manual, de-
cision and parallel activities. (See Section 8.4, Deadline).

2.4 WDO templates

Data is maintained and passed around in the workflow engine as workflow
data objects (see: Chapter 4, Workflow Data Objects) The workflow data
objects that a process can use are defined within the process definition itself.
However it is conceivable that some workflow data objects will be useful in
many process definitions. Therefore, it would be convenient if they could be
imported from some pool instead of having to be recreated in each individu-
al process. Thisisthe purpose of thislibrary.

2.4.1 Metadata

<wdo is-list-wdo="false" initialize-attributes="fal se">
<wdo- nanme>TaskCr eat eDet ai | s</ wdo- nane>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">TaskCr eat eDet ai | sNane</ | ocal e>
</l ocal i zed-t ext >
</ di spl ay- nane>
<descri pti on>
<l ocal i zed-t ext >
<l ocal e | anguage="en">The Task Create Details WDO
Tenpl at e</ | ocal e>
</l ocal i zed-t ext >
</ descri pti on>

14

2.4.2

Curam Workflow Reference Guide

<attributes>
<attribute>
<attri but e- name>subj ect </ attri but e- nane>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Task Subject</I| ocal e>
</l ocalized-text>
</ di spl ay- nane>
<t ype>STRI NG/ t ype>
<r equi r ed- at - enact nent >f al se</ r equi r ed- at - enact nent >
<process- out put >f al se</ pr ocess- out put >
<const ant - val ue/ >
</attribute>
<attribute>
<attri bute-name>dueDat e</ attri but e- name>
<di spl ay- name>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Task Due Date</| ocal e>
</l ocalized-text>
</ di spl ay- nane>
<t ype>DATE</ t ype>
<r equi r ed- at - enact nent >f al se</ r equi r ed- at - enact nent >
<pr ocess- out put >f al se</ process- out put >
<const ant - val ue/ >
</attribute>
</attributes>
</ wdo>

The metadata defined for workflow data object templates is exactly the
same as that defined for workflow data objects. For a full description of this
metadata, see Chapter 4, Workflow Data Objects. The workflow data object
template library is stored on the WDOTemplateL ibrary database table.

Note that the i niti alize-attri butes element of a workflow data
object and ther equi r ed- at - enact nment , pr ocess- out put and the
const ant - val ue elements of a workflow data object attribute are not
available for editing in workflow data object templates and are automatic-
ally initialized to their default values in the associated metadata.

Import and syncing

The templates defined in the workflow data object template library are
available for use when creating process definitions. Importing a workflow
data object template from the library will add the workflow data object and
all its attributes to the current process definition.

Once a workflow data object template has been imported into a process
definition, it can be synchronized with its corresponding entry in the work-
flow data object template library at any time. Synchronizing the template for
a process definition will force the name and display name of the workflow
data object to be updated from the template library. Along with this, any
new attribute entries that exist in the template library entry will automatic-
ally be added to the workflow data object in the process definition. The user
can optionally decide to override existing attributes in the workflow data ob-
ject with those from the template library when synchronizing. It should be
noted that overriding existing attributes might invalidate the process defini-
tion and require updates where the old attribute values have been used.

15

Curam Workflow Reference Guide

2.4.3 Validations

A workflow data object cannot be imported from a template if one
already exists in the associated workflow process definition with the
same name.

16

Chapter 3

Process Definition Metadata

3.1 Overview

The process is the top level concept in a process definition. Primarily, it
contains information to identify and describe the process definition. Thisin-
formation includes the identifier and the version of the process definition,
it's name and a brief description. It also includes a description of the failure
allocation strategy that may be specified for a process. The following sec-
tions describe this top-level information.

3.2 Metadata

<wor kf | ow process i d="100" process-version="2"
| anguage- ver si on="1. 0"
rel eased="f al se" cat egory="PC5"
creat edBy="t est user"
creati onDat e="20050812T135800" >
<nanme>Appr ovePl annedl t enx/ nane>
<descri pti on>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Thi s workfl ow process may be
enacted to approve a planned item </l ocal e>
</l ocal i zed-t ext >
</ descri pti on>
<docunent ati on>Refer to the approve pl anned
i tem document at i on.
</ docunent ati on>
<web- servi ce expose="true">
<cal | back- servi ce>wsconnect or . Appr ovePl annedl t em
</ cal | back- servi ce>
</ web- servi ce>
<failure-allocation-strategy>
<al l ocation-strategy type="target"
i denti fi er="FAl LUREALLOCATI ONSTRATEGY" />
</failure-allocation-strategy>

</ wor kf | ow process>

17

Curam Workflow Reference Guide

wor kflow-process

Thisisthe parent tag of all process definition metadata.

id
Thisis a 64-bit identifier supplied by the Cdram key server when a
process is created in the process definition tool. The process identi-
fier is required to be unique in the Caram workflow system. The
reason for this is that the process identifier in conjunction with the
process version number is how the workflow engine distinguishes

one process definition record from another for the purpose of data-
base reads.

process-version

This number represents the version of a workflow process defini-
tion. A workflow process definition record is uniquely identified by
it's identifier and version number. A process definition may have
many released versions and one version that isin edit. Once a pro-
cess definition has been released, anew version is created and it can
no longer be updated. Any subsequent updates will require a new
version to be created and this version will not be active until itisre-
leased. When a process is enacted the highest released version num-
ber is used. Process instances that begin with a given version num-
ber remain bound to that version until completion.

language-version

The process definition metadata is the Curam workflow language.
As new features and enhancements are added, this language may
change. This version number will allow either the workflow engine
to run old language versions different to newer ones or more likely
upgrade tools to convert old process definitions to new language
versions.

released

This represents a boolean flag indicating whether or not the process
definition has been released. Only process definitions that have
been released can be enacted or selected as sub-processes in a sub-
flow activity (see: Chapter 11, Subflow).

category

A process definition must be placed into a category. The category
must be selected in the Process Definition Tool and is taken from
the ProcessCat egory code-table. This attribute is intended to
be used for process definition search functionality and has no func-
tional effect on the processin the workflow engine.

createdBy
This represents the name of the user that created the workflow pro-

18

Curam Workflow Reference Guide

cess definition. This attribute is intended to be used for process
definition search functionality and has no functional effect on the
process in the workflow engine.

creationDate

This represents the date and time that the workflow process defini-
tion was created. This attribute is intended to be used for process
definition search functionality and has no functional effect on the
process in the workflow engine.

name

The name of the process definition is the means by which the processis
identified for the purpose of enactment. The enactment service (the API
used to enact a process in code) identifies the process to enact by it's
name. As such this name is required to be unigue within the workflow
system and cannot be changed once the process is created. Since the
process name is effectively a constant it is not localizable like an activ-
ity name.
description

A process can also have an optional description that briefly specifies
what the process does for the benefit of those editing the process defini-
tion in the future. Thisis localizable text field in the same format as all
localizable fields in a process definition (see: Section 6.2.1, Localized
Text).

documentation

A process can aso have alink to some documentation that may explain
the process in a more descriptive fashion. This is a free-form text field
where the developer can enter the name of a document pertinent to the
workflow process or indeed alink to such a document.

web-service

This optional element describes the web service details of a workflow
process. A process can be marked as a Web Service by setting this
metadata value which indicates that the process should be exposed as a
Web Service. This allows the process to be able to participate in a
BPEL (Business Process Execution Language) orchestrated process and
means that the process can be called from a BPEL process. Further de-
tails on this functionality may be seen in Chapter 19, Workflow Web
Services.

expose

This attribute represents a boolean flag indicating whether or not
the process definition should be exposed as a Web Service. A work-
flow process definition is not exposed as a Web Service by default.

callback-service

This is an optional element because not all invocations from a
BPEL process require a callback. The value is a the fully qualified
name of a class extending the
or g. apache. axi s. cl i ent. Servi ce class (which is part of

19

3.3

Curam Workflow Reference Guide

the Service (Axis API) of the Apache Axis project). The
or g. apache. axi s. client. Servi ce class is generated by
the Caram web services connector functionality for outbound web
Sservices.

failure-allocation-strategy

A process can also have an optional failure allocation strategy specified
for it. When allocating a task (associated with a Chapter 9, Manual or
Chapter 10, Decision activity), the workflow engine invokes the associ-
ated allocation strategy to retrieve the list of allocation targets. If no al-
location targets are returned from this invocation, the workflow engine
will then check for the presence of afailure alocation strategy and will
use this strategy to attempt to alocate the task. Since the allocation
strategy of type TARGET specifies an allocation target directly there is
never aneed to fall back to the failure allocation strategy. The failure a-
location strategy is a process-wide strategy and if specified will be used
for all the manual and decision activities in the process when required.

allocation-strategy

This describes the failure allocation strategy being used for the pro-
cess. The failure allocation strategy must be of type TARGET. If the
work resolver cannot assign the task to a user, an organizational ob-
ject (e.g. organization unit, position or job) or a work queue using
the specified allocation target the task will be assigned to the de-
fault work queue. The identifier attribute represents the identifier of
the allocation target being used as the failure allocation strategy.

Validations

* A workflow process must have a unique process name. This means that
a process cannot be created if the process name is empty or if a process
with the same name already exists.

» A workflow processis required to specify a category.

* A released version of workflow process cannot be deleted once it has
been enacted. Thisisrequired as even if anewer version of a process ex-
ists, process instances that are in progress when the new version be-
comes available run to completion with the version that they started
with. Process definitions are also a necessary historical record that is
drawn upon to create auditing information.

» A released version of workflow process cannot be deleted if it is refer-
enced by a subflow activity in a released version of another process,
where that released version isthe latest released version.

» If afailure alocation strategy has been specified for the workflow pro-
cess, then it's type must be TARGET.

» The callback service class name cannot be specified if the workflow pro-
cess has not been exposed as a webservice.

20

Curam Workflow Reference Guide

» The callback service class name must represent a class that can be found
on the application classpath.

» The calback service class name must represent a class that extends the
org. apache. axi s. client. Servi ce class.

3.4 Description of Context WDOs

Certain generic system runtime information about the workflow engine is
required to be made available to the activities and the transitions during the
lifetime of a process instance. Details of the Con-
t ext _Runti nmel nf or mat i on workflow data object that provides this
information can see be seen in the following location: Section 4.4, List of
Context WDOs.

21

Chapter 4

Workflow Data Objects

4.1 Overview

Data is maintained and passed around in the workflow engine as workflow
data objects and list workflow data objects. These are logical objects
defined in the process definition that have a name and a list of attributes of
various types to which data can be assigned. They are conceptually similar
to objects in programming languages although their manifestation in the
workflow system is of course quite different. Workflow data object values
may be written at process enactment or from the output of various activity

types.

Workflow data object instances and list workflow data object instances exist
as soon as the process is enacted and exist until the process completes. As
such they are available to be used in the activities and the transitions
throughout the lifetime of that process instance. It is therefore the responsib-
ility of the process designer to ensure that attributes of workflow data ob-
jects are populated before they are used. Attempts to use workflow data ob-
ject attributes before they are populated will result in failures at runtime.

4.2 Metadata

<wor kf | ow process id="32456" >
<nane>Cr eat eManual Task</ nane>
</ descri pti on>
<enact ment - nappi ngs>
</ enact nent - mappi ngs>
<wdos>
<wdo is-list-wdo="false" initialize-attributes="true">
<wdo- nane>TaskCr eat eDet ai | s</ wdo- name>
<di spl ay- nanme>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Task Create Detail s</| ocal e>
</l ocal i zed-text>

22

Curam Workflow Reference Guide

</ di spl ay- nane>
<descri pti on>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Thi s wor kfl ow data obj ect
contains the attributes required for the
manual creation of a task.</I|ocal e>
</l ocal i zed-t ext >
</ descri ption>
<attributes>
<attribute>
<attri but e- name>subj ect </ attri but e- nane>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Task subj ect</| ocal e>
</l ocal i zed-t ext >
</ di spl ay- nane>
<t ype>STRI NG/ t ype>
<r equi r ed- at - enact nent >t r ue</ r equi r ed- at - enact nent >
<pr ocess- out put >t r ue</ pr ocess- out put >
</attribute>
<attribute>
<attribute-nanme>partici pant Rol el D</ attri but e- name>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Partici pant Role |D</I|ocal e>
</l ocal i zed-text>
</ di spl ay- nane>
<t ype>| NT64</t ype>
<r equi r ed- at - enact nent >t r ue</ r equi r ed- at - enact nent >
<pr ocess- out put >t r ue</ pr ocess- out put >
</attribute>
<attribute>
<attri but e- name>deadl i neDat eTi me</ attri but e- nane>
<di spl ay- name>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Deadl i ne date</|ocal e>
</l ocal i zed-t ext >
</ di spl ay- nane>
<t ype>DATETI ME</ t ype>
<r equi r ed- at - enact nent >t r ue</ r equi r ed- at - enact nent >
<process- out put >f al se</ pr ocess- out put >
</attribute>
<attribute>
<attri bute-name>deadl i neDurati on</attri bute-nane>
<di spl ay- nanme>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Deadl i ne Duration</| ocal e>
</l ocal i zed-t ext >
</ di spl ay- nane>
<t ype>l NT32</t ype>
<r equi r ed- at - enact nent >f al se</ r equi r ed- at - enact nent >
<process- out put >f al se</ pr ocess- out put >
<initial-value>300</initial-val ue>
</attribute>
<attribute>
<attribute-name>priority</attribute-name>
<di spl ay- name>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Task priority</Ilocal e>
</l ocal i zed-text>
</ di spl ay- nane>
<t ype>l NT32</t ype>
<r equi r ed- at - enact nent >f al se</requi r ed- at - enact nent >
<pr ocess- out put >f al se</ process- out put >
<const ant - val ue>TP1</ const ant - val ue>
</attribute>
</attributes>
</ wdo>
<wdo is-list-wdo="true" initialize-attributes="fal se">
<wdo- nanme>Chi | dDet ai | s</ wdo- nane>
<di spl ay- nane>
<l ocal i zed-t ext >

23

Curam Workflow Reference Guide

<l ocal e | anguage="en">Chil d Detail s</| ocal e>
</l ocal i zed-text>
</ di spl ay- name>
<descri pti on>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Thi s wor kfl ow dat a obj ect
contains the details of all the children
associ ated with the clai mant. </l ocal e>
</l ocalized-text>
</ descri pti on>
<attributes>
<attribute>
<attribute-nane>identifier</attribute-nanme>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">l dentifier</|ocal e>
</l ocalized-text>
</ di spl ay- name>
<type>| NT64</t ype>
<requi r ed- at - enact nent >t r ue</ r equi r ed- at - enact ment >
<pr ocess- out put >t r ue</ pr ocess- out put >
</attribute>
<attribute>
<attri bute-nanme>ful | Name</ attri but e- nane>
<di spl ay- nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en">The full nane of the
child. </| ocal e>
</l ocal i zed-t ext >
</ di spl ay- nane>
<t ype>STRI NG/ t ype>
<r equi r ed- at - enact nent >t r ue</ r equi r ed- at - enact ment >
<pr ocess- out put >f al se</ process- out put >
</attribute>
<attribute>
</attributes>
</ wdo>
</ wdos>
<activities>

</activities>

</ wor kf | ow process>

wdos

Thisis optional (as aworkflow process definition does not have to con-
tain any workflow data objects) and contains the details of al the work-
flow data objects defined for the workflow process definition.

wdo

This contains the details of one the workflow data objects defined for
the workflow process definition. This includes the generic details of the
workflow data object itself and also details of each of it's attributes. The
metadata that describe a workflow data object and it's attributes are de-
scribed below:

is-list-wdo

This contains a BOOLEAN value which indicates whether the specified
workflow data object is a list workflow data object or not. When set to
t r ue, the specified workflow data object will act as alist and thus can
be used to make lists of data available throughout the workflow.

24

Curam Workflow Reference Guide

initialize-attributes

This contains a BOOLEAN value which indicates whether the attributes
associated with the workflow data object should be initialized when the
workflow data object is first used. The default values used are the same
aswould be set in a Cdram struct.

wdo-name
This contains the name of the workflow data object.

display-name
This contains the display name of the workflow data object. This name
represents a short description of the workflow data object and is dis-
played throughout the Process Definition Tool. It is alocalizable string
that does not contain any parameters. For more details on the localized
text and associated metadata, see Section 6.2.1, Localized Text.

description

This contains a more detailed description of the workflow data object. It
is aso alocalizable string with no parameters. For more details on the
localized text and associated metadata, see Section 6.2.1, Localized
Text.

attributes

This contains the details of all of the attributes associated with the
workflow data object.

attribute

This contains the details of one of the attributes associated with the
workflow data object. The following metadata described below make up
aworkflow data object attribute:

attribute-name
This contains the name of the workflow data object attribute.
display-name
This represents the display name of the workflow data object attrib-
ute. This name represents a short description of the workflow data
object attribute. It is a localizable string that does not contain any

parameters. For more details of the localized text and associated
metadata, see Section 6.2.1, Localized Text.

type
Each workflow data object attribute defined must specify a type
which must be a valid Ciram base domain. When creating a work-
flow data object attribute in the Process Definition Tool thistypeis
selected from the Domai nType codetable. This codetable should
be consulted to obtain the full list of types available for workflow
data object attributes. The type of a workflow data object attribute
is utilized to ensure that the data mappings contained within a

25

Curam Workflow Reference Guide

workflow process are compatible and will not cause failures at
runtime. An example of this would be that if a business process ob-
ject method parameter field was of type STRI NG, then the work-
flow data object attribute used to map the data into that field must
also be of type STRI NG,

requir ed-at-enactment

Enactment mappings represent the minimum amount of data that
the workflow requires in order to be enacted. They must contain an
entry for each workflow data object attribute that hasit's required at
enactment flag set to t r ue. Conversely, setting thisflagto f al se
(the default) means that this workflow data object attribute is not re-
quired for the enactment of the associated process. The Process
Definition Tool is used to create these enactment mappings and it
does so by examining each workflow data object attribute that has
been defined and creating a mapping for those that have the re-
quired at enactment flag set to t r ue. When a released workflow
process definition has been selected as a subflow process in a sub-
flow activity (see Chapter 11, Subflow), all of the workflow data
objects that have been marked as required for enactment in the sub-
flow process must be mapped before that parent process definition
can be released.

process-output

A workflow process can be marked as a Web Service by setting a
metadata value which indicates that the process should be exposed
as a Web Service. This allows the process to be able to participate
in a BPEL (Business Process Execution Language) orchestrated
process and means that the process can be called from a BPEL pro-
cess either synchronously or asynchronously. It may also be neces-
sary to map data out from a workflow process back into the BPEL
process that called it. When set to t r ue, this optional element in-
dicates that the data from this workflow data object attribute should
be passed back to the calling BPEL process when the Clram work-
flow process completes. The default for thiselement isf al se.

constant-value

This optional element indicates if the workflow data object attribute
represents a constant value. In numerous places throughout a work-
flow process definition, workflow data object attributes are used in
input mappings (i.e. alocation function mappings, deadline func-
tion mappings etc.). In some of these cases, it is required to be al-
lowed to use constants in some of these mappings. By providing a
constant value, workflow data object attributes of this type may be
used for this purpose. A workflow data object attribute cannot have
it's required for enactment flag set to t r ue and also contain a con-
stant value. Data that is passed in as enactment data is deemed to be
dynamic and subject to change. The data specified in a constant
workflow data object attribute is not suitable for this purpose as it's
value is already known.

26

4.3

Curam Workflow Reference Guide

initial-value

This element indicates if the workflow data object attribute has an
initial value. This feature can be useful in the situations where a
workflow data object attribute is used in the workflow before it has
been populated by an automatic activity or otherwise (i.e. to prevent
having to use an automatic activity to populate workflow data ob-
ject attributes just to ensure that these attributes are not null when
they are used as part of transition conditions later in the workflow).
When this element has been populated, the workflow data object at-
tribute is initialized to the specified value the first time it is used.
The initial value of a workflow data object attribute can be over-
written later by the various output mappings that exist in a work-
flow process. A workflow data object attribute cannot have both a
constant value and an initial value specified for it.

Validations

A workflow process must contain one and only one Con-
t ext _Runti mel nf or mat i on workflow data object.

A workflow data object name must be unique in the context of the con-
taining workflow process definition.

The name of aworkflow data object must be avalid Java® identifier.

A user-defined workflow data object name cannot contain the prefix
Cont ext _ asthisisareserved prefix in the Cdram workflow system.

Each workflow data object specified in the workflow process definition
must contain at least one associated attribute.

The workflow data object attribute name must be avalid Java identifier.

A workflow data object attribute cannot be created with the name
"val ue". Thisisareserved attribute name in the Cdram workflow sys-
tem.

The type of aworkflow data object attribute must be a valid Ciram base
domain and must be contained in the Domai nType codetable.

A workflow data object attribute cannot be both marked as required for
enactment and also marked as a constant value.

A workflow data object attribute cannot have both a constant value and
aninitial value specified for it.

If aworkflow data object attribute has been marked as a constant, then a
constant value must be supplied. Conversely, if the attribute has not
been marked as a constant, then no such value should be specified.

If the workflow data object attribute has been marked as a constant, then
a blank value can only be specified for that attribute if the type of the at-

27

4.4

Curam Workflow Reference Guide

tributeisa STRI NG

» |If the workflow data object attribute has been specified with an initial
value, then a blank initial value can only be specified for that attribute if
the type of the attributeisa STRI NG,

» |If the workflow data object attribute has been marked as a constant, then
the value specified as that constant must be compatible with the type of
the associated attribute.

« |If the workflow data object attribute has been specified with an initial
value, then the value specified as that initial value must be compatible
with the type of the associated attribute.

» The process output flag can only be set to true for a specified workflow
data object attribute if the associated workflow process has been ex-
posed as awebservice.

List of Context WDOs

Context workflow data objects are those that are not explicitly defined in the
workflow process definition metadata but are made available by the Process
Definition Tool and workflow engine at various places during the execution
of a process. The following is a brief description of these context workflow
data objects and links are provided to where further information may be
found about them.

Context_Runtimel nformation Wor kflow Data Object

The Context_Runtimelnformation workflow data object is a workflow
data object that is made available and maintained by the workflow en-
gine. It contains information that is pertinent throughout the life-cycle
of a workflow process instance and the attributes available reflect this.
These attributes are as follows:

 processlnstancel D. The system generated identifier of the
process instance (taken from the Caram key server using the work-
flow key set).

* enacti ngUser: The username of the user whose actions in the
application resulted in the workflow process being enacted.

* enact ment Ti nme: The date and time at which the process was en-
acted.

Context_Result Workflow Data Object

A transition from an automatic activity should be able to use the return
value of the invoked method in it's condition directly without the need
for mappings to workflow data object attributes. However due to the
transactional model of the workflow engine this data has to persist out-
side the transaction of the business process object method invocation. In

28

Curam Workflow Reference Guide

order to achieve this, a workflow data object definition is created at
runtime if the return value is used in outbound transition conditions.
These return value definitions never need to be persisted as they are in-
ferred wherever needed in the workflow engine The actual workflow
data object data is persisted until after the transitions from the activity
instances in gquestion have been evaluated, at which point they are de-
leted. For more details on the Context_Result workflow data object, see
Section 7.6, Description of Context WDOs

Context_Event Workflow Data Object

The Context_Event workflow data object is available for use in a data
item or function conditions (see Chapter 16, Conditions) for a transition
from an activity containing an event wait. It makes available certain in-
formation (e.g. the event class and event type of the event raised, the
time the event was raised etc.) contained in the event raised to complete
that activity instance. This information can then be used to model the
path from that specified activity. For more details on the Context_Event
workflow data object, see Section 8.5.4, Description of Context WDOs.

Context_Decision Workflow Data Object

The Context_Decision workflow data object is available for use in a
data item or function condition (see Chapter 16, Conditions) for a trans-
ition from a decision activity. The attributes available will depend on
the answer format defined for the decision activity. For more details on
the Context_Decision workflow data object, see Section 10.4.4, De-
scription of Context WDOs

Context_Task Workflow Data Object

The Context_Task workflow data object is available for use in various
mappings associated with a manual activity task (e.g. Allocation Func-
tion Input mappings, Deadline Function Input mappings, Manual Activ-
ity Action Link parameters). This context workflow data object makes
available the identifier of the task created as a result of the execution of
the containing activity. For more details on the Context_Task workflow
data object, see Section 9.3.5, Description of Context WDOs.

Context_L oop Workflow Data Object

The Context_L oop workflow data object is available for use when cre-
ating the loop condition associated with a loop-begin activity. It is also
available for creating outgoing transition conditions for any activity
within aloop, and for when specifying input mappings, text parameters
and action link parameters for some activities and functions contained
within a loop. This context workflow data object makes the number of
times that a loop has been iterated over available for such mappings.
For more details on the Context_L oop workflow data object, see Sec-
tion 12.5, Description of Context WDOs.

Context_Deadline Workflow Data Object
The Context_Deadline workflow data object is available for use when

29

4.5

Curam Workflow Reference Guide

creating a data item or function condition (see Chapter 16, Conditions)
for a transition from an activity that has an event wait with a deadline
specified for it. It is available to allow a developer to model different
paths of execution from an activity containing a deadline depending on
whether that deadline has expired. For more details on the Con-
text_Deadline workflow data object, see Section 8.4.6, Description of
Context WDOs.

Context_Parallel Workflow Data Object

The Context_Parallel workflow data object is available for use in the
various mappings associated with a parallel manua activity (e.g. task
subject and task action text parameters, allocation strategy mappings
etc.) and a parallel decision activity (e.g. decision action text paramet-
ers, secondary action text parameters, question text parameters etc.). It
makes available the index of the item from the Parallel Activity List
Workflow Data Object that is used to create the specified instance of the
wrapped activity. For more details on the Context_Parallel workflow
data object, see Section 13.3.6, Description of Context WDOs.

Context_Error Workflow Data Object

The Context_Error workflow data object is available for use in a data
item or function condition (see Chapter 16, Conditions) for a transition
from an automatic activity. It allows a process developer to model an
exception path out of an automatic activity i.e. a transition that is fol-
lowed if the automatic activity fails due to an un-handled exception. For
more details on the Context Error workflow data object, see Sec-
tion 7.6, Description of Context WDOs

Runtime Information

Instances of workflow data objects and list workflow data objects exist as
soon as aworkflow process is enacted and exist until the process completes.
These workflow data object instances are thus available to be used in the
activities (e.g. pass data to a BPO method) and the transitions (e.g. make
data available in the evaluation of transition conditions) throughout the life-
time of that process instance.

The enact i ngUser attribute of the Con-

text _Runti el nf or mat i on Workflow Data Object is set to the user-
name of the user whose actions in the application resulted in the workflow
process being enacted. This does not result in the same value being assigned
to the transaction when a BPO method is subsequently invoked in the work-
flow process instance. This is due to the transaction demarcation in the
workflow engine when automatic activities (i.e. BPO methods) are invoked
in the application server. Due to the asynchronous nature of this invocation
and the requirement to ensure that the call to the application code is in it's
own transaction, the BPO method is invoked by the workflow engine
(SYSTEM user) rather than the user who enacted the workflow process in
the first place. Indeed in areal business sense, the person who enacted the

30

Curam Workflow Reference Guide

workflow may not even know they have invoked that BPO method.

In asimilar fashion, it should be noted that the enacting user of a workflow
process instance is not passed into any of the subflow process instances that
may be invoked from the parent process. If the enacting user of the parent
process instance is required in any of the subflow process instances, it
should be passed explicitly using a workflow data object attribute in the in-
put mappings for that subflow process.

Care should also be taken when updating workflow data object attribute in-
stance data when executing parallel automatic activities in a workflow pro-
cess instance. If such automatic activities invoke the same BPO method and
that method attempts to update the data for the exact same workflow data
object attribute, then a database record deadlock situation may occur. The
workflow process designer should aleviate such situations occurring by
designing the workflow process definition to ensure automatic activities ex-
ecuted in parallel do not update the same workflow data object attribute.

31

Chapter 5

Process Enactment

5.1 Overview

5.2

A process definition defines the structure of a business process and to start
performing the work defined in that process definition an instance of the
process must be created. The starting of a process instance is referred to as
process enactment. Most process definitions require a minimum set of initial
data which is used primarily to identify the specific business objects the pro-
cess instance will operate on. All enactment mechanisms must have a way
to accept the input data for starting a given process. This input data is
known as the enactment data for a process.

Currently there are four enactment mechanisms supported by Curam work-
flow:

* Enactment from code
* Enactment from an event
* Enactment as a subflow

* Enactment viaaweb service

The first two mechanisms are described in this chapter. The sub-flow enact-
ment mechanism is described in Chapter 11, Subflow. The web service en-
actment mechanism is described in Chapter 19, Workflow Web Services.

Code enactment (enactment service API)

The most direct way of enacting a processis by identifying alocation in the
application from which a process instance must be started. Code must then
be inserted at that point to call the enactment service API. This API alows
the developer to specify the name of the process to start and to supply the
enactment data required by the process.

32

5.2.1

Curam Workflow Reference Guide

While enacting a process in thisway is simple and intuitive, it does have the
draw back of being hard coded in the application logic. This being the case,
aterations such as removing the enactment, changing the process to start or
indeed even minor changes to the required enactment data will require code
changes and redeployment of the application.

Metadata

<enact ment - mappi ngs>
<mappi ng>
<source-attribute
st ruct - nane="curam core. sl .struct. TaskCr eat eDet ai | s"
nane="subj ect" />
<target-attribute
wdo- nane="TaskCr eat eDet ai | s"
nane="subj ect" />
</ mappi ng>
<mappl ng>
<source-attribute
struct - nane="cur am cor e. sl . struct. G oupMenber Det ai | s"
nanme="dt | s. nenber Nane" />
<target-attribute
wdo- nanme=" Menber Cr eat eDet ai | s"
nanme="nmenber Nane" />
</ mappi ng>
<mappi ng>
<source-attribute
st ruct - nanme="curam core. sl .struct. Chil dDetail sLi st"
name="dtls.identifier" />
<target-attribute
wdo- nanme=" Chi | dDet ai | s"
name="identifier" />
</ mappi ng>

</ enact ment - mappi ngs>

enactment-mappings
Contains a list of mappings that can be used as initial data in enacting
the associated process instance. A process definition is not required to
have enactment mappings defined in order for it to be enacted.

mapping
A mappi ng represents a data item supplied from a Curam struct attrib-
ute to be used in enacting the associated process instance.

sour ce-attribute

This represents a Clram struct attribute to be used in populating the en-
actment data for the process and is mandatory in an enactment mapping.

struct-name

The name of a Clram struct that contains an attribute required to
enact the workflow process. Aggregated and list structs may also be
used to pass enactment data into a workflow process, as illustrated
in the metadata snippet above.

33

Curam Workflow Reference Guide

name

The name of the attribute of a Clram struct required to enact the as-
sociated workflow process. Where afield from an aggregated struct
or list struct is being used, this name represents the fully qualified
name of that field. In such a case, the name consists of the role
name from the association between the parent and child struct in ad-
dition to the actual field name. This is illustrated in the metadata
snippet above.

target-attribute
This represents a workflow data object attribute which is to be popu-
lated with enactment data for the process and is mandatory in an enact-
ment mapping.
wdo-name

The name of a Caram workflow data object containing the target at-
tribute to be mapped. (See Chapter 4, Workflow Data Objects).

name

The name of a Curam workflow data object attribute that is marked
as being required for enactment. The value of the corresponding
Curam struct source attribute will be mapped to this attribute when
the process is enacted.

5.2.2 Validations

¢ The Clram struct attribute used as a source attribute in an enactment
mapping must be valid and be of the correct type for the associated tar-
get workflow data object attribute.

» The target workflow data object attribute in an enactment mapping must
be valid and must be marked as being required for enactment.

» If the target attribute of the enactment mapping is from a list workflow
data object, then the source attribute must be afield from alist struct.

5.2.3 Code

/|l Create the list we will pass to the enactnent service.
final List enactmentStructs = new ArraylList();

final TaskCreateDetails taskCreateDetails =
new TaskCreateDetail s();

taskCreateDetail s. subject = "The subj ect of a Task";
taskCreateDetai |l s. reservedBy = "soneUser";

enact nent Struct s. add(t askCreat eDetai | sStruct);
/1 An aggregated struct.

G oupMenber Det ai | s gr oupMenber Det ai | s
= new G oupMenberDetai |l s();

34

Curam Workflow Reference Guide

groupMenber Det ai | s. dt | s. menber Nane = "Test User";
enact nent St ruct s. add(gr oupMenber Det ai | s) ;

/1 Alist struct.
Chi | dDet ai | sLi st chil dDet ai | sLi st
= new Chil dDetail sList();

Chi |l dDetail s recordOne = new Chil dDetai l s();
recordOne.identifier = 1;
chi |l dDet ai | sLi st.dtl| s. add(recordOne);

Chi |l dDetail s recordTwo = new Chi |l dDet ai |l s();
recordTwo. identifier = 2;
chi |l dDet ai | sLi st. dtl s. add(recordTwo) ;

enact nent Structs. add(chi | dDet ai | sLi st);

Enact ment Ser vi ce. st art Process(
" TASKCREATEWORKFLOW , enact nent Struct s) ;

« TheEnact nent Servi ce API isprovided to allow for the enacting of
workflow processes from application code. The list of Cdram structs
provided to the st art Process() method must be sufficient to fully
populate the enactment mappings of the associated process. Note that
enacting a process in this way is asynchronous and the process will get
kicked off once the current application transaction completes.

e The startProcesslnV3ConpatibilityMde method is
provided for the use of the core application Task API only. Direct use of
this method in custom code is not supported and may hamper future up-
grades.

5.3 Event enactment

It is possible to start a process in response to an event being raised. Thisre-
quires the setup of some configuration data (either through an administra-
tion interface or as pre-configured database entries). The configuration spe-
cifies the process/processes to start in response to a specific event being
raised. Mappings of event data to the enactment data required by the process
can also be configured in this way.

Process enactment event configuration is stored on the database and a user
interface is supplied to allow the manipulation of this data. As such process
enactment created in this way can be enabled, disabled, changed and even
removed at runtime. The main drawback of this approach is that since
events have a finite amount of information, only process definitions that re-
quire such a small amount of enactment data can be enacted in this way.

A Process Enactment Event Handler is supplied with Cdram and is automat-
icaly registered to listen for events raised in the application. Where a pro-
cess has been configured to be enacted from an event, the data from the
event is mapped into the enactment data of the process, and the process is

35

5.3.1

Curam Workflow Reference Guide

Started.

Configuration data

Enabling an event to enact a process requires an event-process association to
be configured. Every event raised in the application checks to seeif any pro-
cesses have been associated and are required to be enacted. The latest re-
leased version of a process will always be enacted for an associated event.

The registration of an event to trigger a process is stored as a record on the
ProcEnactmentEvt table. The process enactment event handler searches a
cached representation of this table for matching entries when an event is
raised in the application and enacts any matching processes. The following
table describes the data required to populate the ProcEnactmentEvt table.

Entity Field Name Description of Field

procStartEventI D The unique identifier of the
event-process associ ation.
eventClass The event class of the event

that has been specified to enact
the workflow process.

eventType The event type of the event that
has been specified to enact the
workflow process.

processToStart If an event containing the spe-
cified event class and type de-
scribe above israised, the latest
released version of the work-
flow process specified by this
name will be enacted.

enabled This boolean flag indicates if
the event-process association is
enabled. This allows the enact-
ment of aworkflow process by
a specified event to be enabled/
disabled at runtime.

Table 5.1 Description of the ProcEnactmentEvt Table

The ProcEnactEvtData table stores the data to be mapped from a business
event to a the workflow being enacted when that specified event is raised.
The following table describes the data required to populate the ProcEn-
actEvtDatatable.

Entity Field Name Description of Field

procEventMappingl D The unique identifier of the
process enactment event data

mapping.

36

Curam Workflow Reference Guide

Entity Field Name Description of Field

procStartEventI D The unique identifier of the
event-process association. This
field is the unigue key on the
associated ProcEnactmentEvt
table and is used to associate al
of the data required to enact the
workflow process when a spe-
cified event israised.

eventField This indicates which of the
three fields of an event will be
used to populate the workflow
data object attribute. The values
for thisfield are taken from the
Event Fi el d codetable and
are described in more detail be-
low.

wdoAttribute The fully qualified name of a
workflow data object attribute
to populate with data from the
given event field when a pro-
cessis enacted. This table will
include an entry for each work-
flow data object attribute that
has been marked as required for
enactment in the process being
enacted by the raised event.

Table 5.2 Description of the ProcEnactEvtData Table

There are three fields of an event may be used as enactment mappings.
These are enumerated in the Event Fi el d codetable and are described be-
low.

primary event data

A unique identifier related to the event class from which the event is
raised. For example, where the business object type specified for an
event is equal to 'Case, the event data could be case identifier.

secondary event data

This can be any numeric value and is intended for events that must rep-
resent an association between two entities.

raised by user
The Clram username of the user who raised the event.

5.3.2 Validations

37

Curam Workflow Reference Guide

The data available from an event must be sufficient to fully populate the
enactment data for the associated process definition.

Where a process has aready been configured for event-based enactment,
subsequent modifications to the processes enactment data must satisfy
the existing event data mappings.

Where a process has been configured to be enacted from an event, it
cannot have its latest released version deleted if the next latest released
version is unable to have its enactment data fully populated from the
event.

38

Chapter 6

Base Activity

6.1 Overview

All the activity types supported by Cdram workflow have some base details
in common. This information allows them to be uniquely identified by the
workflow engine and displayed both textually and graphically in the Process
Definition Tool. Every activity has a name and an optional description, both
of which are localizable. This allows various administration user interfaces
to display the information in the appropriate locale.

This base level uniformity allows activities to be identified and executed by
the workflow engine without the knowing the specific type of the activity.
Each activity type knows it's own metadata and how to behave when ex-
ecuted. This arrangement will allow the addition of new activity types, if re-
quired, without affecting the core behavior of the workflow engine.

6.2 Metadata

<automatic-activity id="1" category="ACl">
<nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en" >Appr oveCase</ | ocal e>
</l ocal i zed-t ext >
</ nane>
<descri pti on>
<l ocal i zed-t ext >
<l ocal e | anguage="en">This automatic activity
will be executed to approve a case. </l ocal e>
</l ocal i zed-t ext >
</ descri pti on>

</automatic-activity>

39

6.2.1

Curam Workflow Reference Guide

Thisis a 64-bit identifier supplied by the Ciram key server when activ-
ities are created in the process definition tool. The activity identifier is
required to be unique within a process definition but global uniqueness
within all of the process definitions on the system is not required.

category

An activity can optionally be placed into a category. The category must
be selected in the Process Definition Tool and is taken from the
Acti vi t yCat egory code-table. This attribute is intended to be used
for searching functionality based on activities and has no functional ef-
fect on the activity.

name

The name of the activity is the means by which the activity is identified
for the purpose of display. This is in contrast to the activity identifier
which is used to identify the activity for the purpose of execution by the
workflow engine.

description

An activity can also have an optional description that briefly specifies
what the activity does for the benefit of those editing the process defini-
tion in the future.

Localized Text

Asshown in the XML fragment above, the activity name and description are
not just text fields, but are defined in terms of al ocal i zed-t ext ele
ment. This is general purpose element used throughout the process defini-
tion metadata where ever text is required to be localizable.

A vaid| ocal i zed-t ext element must have at least onel ocal e child
element. This ensures that there is always some text for display for a partic-
ular field. In the process definition tool any localizable text that is entered in
most user interface screens other than the localization screen is saved under
the default sever locale as specified by the application property:
curam envi ronnent . defaul t. | ocal e.

<l ocal i zed-t ext >

<l ocal e | anguage="en" >Appr oveCase</| ocal e>

<l ocal e | anguage="en" country="US">ApproveCase</| ocal e>

<l ocal e | anguage="fr">Approuver Af f ai re</| ocal e>

<l ocal e | anguage="fr" country="CA">Approuver Af f ai re</| ocal e>
</l ocal i zed-t ext >

locale

This contains the text for the locale specified by the | anguage and
count ry attributes. Note: A locale is uniquely identified by both the
language and the country meaning that en, en_US and en_GB all rep-

40

6.3

6.4

6.4.1

6.4.2

Curam Workflow Reference Guide

resent different locales.
language

Thisis mandatory and is the two letter | SO language code.
country

Thisis optional and is the two letter SO country code.

Validations

* The activity name is mandatory and must be unique within a specified
workflow process definition. However, the activity name is also a local-
izable string. This validation also ensures that a specified activity name
isaso unique for each locale specified.

* An activity must be one of the permitted activity types. In practice this
rule is self-satisfying as there is no way to create activities without se-
lecting an appropriate type in the process definition tool. Even when
constructing process definitions manually in a text editor, the activity
type names correspond to the metadata element names making it im-
possible to create valid markup that represents a nonexistent activity

type.

Basic Activity Types

Some activity types namely route, start-process and end-process activities
have no additional metadata other than that common to all activity types.
Their behavior is aso sufficiently intuitive to be described here. All of the
other activity types have dedicated chapters.

Route Activity

A route activity is an activity that performs no business functionality. It can
be considered a null activity as its execution does not affect the application
data nor the business process in any way.

The primary purpose of the route activity isto assist in flow control. Route
activities are often used as branch (split) and synchronization (join) points.
They are also useful when the activities required by a business process do
not naturally form avalid block structure that the workflow engine can ex-
ecute.

Since al activity types can have notifications associated with them (see:
Chapter 14, Activity Notifications), route activities can be used to provide
the effect of a pure notification that is not connected to any other functional-

ity.

Start/End Process Activity

41

Curam Workflow Reference Guide

The start-process and end-process activities provide markers for the begin-
ning and end of a process. They are anchor points to which other activities
can be attached using transitions thus creating a series of steps from the start
to the end of the process. In a valid process definition traversing all the
transitions between activities starting from the start-process activity should
lead to end-process activity (note that in a running process instance not all
paths will necessarily be traversed, for example if a split (see Chapter 17,
Solit/Join) is encountered only some of the paths may actually be followed
depending on the evaluation of transition conditions). As such the simplest
(and incidentally the most useless) process definition is one that contains
only these two activities and a transition from the start-process to the end-
process activity.

Every process definition must have exactly one start-process and exactly
one end-process activity. When defining a process using the Process Defini-
tion Tool these two activities are created automatically on process creation
and are not required to be (in fact cannot be) explicitly created by the user.

The start-process and end-process activities form the outermost block of a
validly block structured process definition as required by Cdram workflow.

42

Chapter 7

Automatic

7.1 Prerequisites

* The base details common to al the activity types supported by Cldram
workflow are described in Chapter 6, Base Activity and are applicable to
the automatic activity described here.

7.2 Qverview

An automatic activity is a step in a workflow process that is wholly auto-
mated and under normal circumstances no human intervention is required
for the completion of such a step. An automatic activity step invokes a
method in the application to perform some processing required as part of the
overall business process. Typical uses for automatic activities include: per-
forming calculations, updating entities in the application and pulling datain-
to the workflow engine.

7.3 Curam Business Methods

Much of the processing for an automatic activity is performed in the applic-
ation code that is invoked. Automatic activities do their work by invoking
Curam business methods (both BPO (business process object) and entity
methods are supported). Technically these are public methods on Curam
business process objects and entities. A critical part of the automatic activity
definition is the method to invoke and the parameters to pass to it. The fol-
lowing sections describe these.

7.3.1 Metadata

43

Curam Workflow Reference Guide

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
I nt erface-nane="curam sanpl e. facade. i ntf. Sanpl eBenefit"
nmet hod- name="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl| t en >
<f or mal - par anet er s>

</ formal - par anet er s>
</ bpo- mappi ng>
</automatic-activity>

bpo-mapping

This contains the details of the Curam business method that will be in-
voked when the associated automatic activity is executed. These details
include the name of the interface and associated method and also any
input and return mappings associated with the method being invoked.
The input and output mappings are described in the following sections.
The mandatory attributes of a business process object (BPO) mapping
are described below.

interface-name

This represents the fully qualified name of the Cdram interface con-
taining the method associated with the automatic activity.

method-name

This represents the method on the specified Caram interface that
will be invoked when the automatic activity is executed.

7.3.2 Validations

* Both the interface and method names must be specified for the automat-
ic activity business process object method mapping.

* The interface name specified must be a valid class and this class must
exist on the Curam application classpath.

e The method name must be a valid method name and must exist on the
specified interface.

7.3.3 Code

As stated previously, any valid public Caram business method (BPO or en-
tity) may be associated with an automatic activity in aworkflow process and
hence be invoked when that activity is executed. In general, afailure of such
a method when an automatic activity is executed will cause the Workflow
Error Handling strategy to be invoked. This may cause, for example, the
activity associated with the failed method to be retried a number of times.
Based on this fact, the methods associated with automatic activities should
in general not throw exceptions. If the modeled exceptions feature is being

44

7.4

7.4.1

Curam Workflow Reference Guide

used, then when a BPO method throws an exception and has been retried the
required number of times, al of the transitions from the automatic activity
that contain the Cont ext _Er r or workflow data object are evaluated. If
any of these transitions evaluate to true, their paths are followed and in this
way, remedia processing may take place after the automatic activity BPO
method failed.

Input Mappings

There must be away to supply the parameters required by a method in order
to invoke it in the workflow engine. The workflow engine has a pool of data
at its disposal in the form of workflow data objects (see Chapter 4, Work-
flow Data Objects). Input mappings are used to declare which workflow
data object attributes will be used to populate the values of the specific
method parameters when the method is invoked. Input mappings are option-
al where struct fields have been specified as method parameters. However,
primitive base type parameters must be mapped.

Metadata

The following metadata is common to all three types of parameter input
mappings (base type, struct and aggregated structs) and hence will not be
described again.

formal-parameters

This contains the list of formal parameters as defined in the automatic
activity business method signature.

formal-parameter

This contains the details of one formal parameter input mapping as
defined in the associated business method signature. In this instance, a
formal parameter mapping entry will exist for each parameter defined in
the associated business method.

index
This represents the position of the formal parameter in the list of

formal parameters defined for the specified method. It is a zero-
based index.

Input mappings for base type parameters

Base type parameters provide the simplest type of input mapping. In thisin-
stance, input mappings are created for each base type formal parameter con-
tained in the business method associated with the automatic activity. A base
type parameter in a Clram business method represents a domain definition
(see the Cdram Modeling Reference Guide for details on domain defini-
tions).

45

Curam Workflow Reference Guide

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
I nterface-name="curam sanpl e. facade. i ntf. Sanpl eBenefit"
nmet hod- nane="cr eat eDel i very" >
<f or mal - par anet er s>
<f or mal - par anet er i ndex="0">
<base-type type="STRI NG'>
<wdo-attri bute wdo-name="SPProduct Del i veryPl "
name="descri ption"/>
</ base-type>
</ formal - par anet er >
<f or mal - paranet er index="1">
<base-type type="INT64">
<wdo- attri bute wdo- name="SPPr oduct Del i veryPI "
name="pl annedl tem D'/ >
</ base-type>
</ formal - par anet er >
</ formal - par anet er s>
</ bpo- mappi ng>
</automatic-activity>

base-type
This contains the details of one base type input mapping. A base type
mapping indicates that the field being mapped to is primitive (unlike the
struct and nested struct mappings described below). A base type input
mapping contains the following mandatory attribute:

type
This describes the type of the primitive field being mapped to. For a
base type input mapping, this is the type of the domain definition
specified as the formal parameter in the method.

wdo-attribute

This contains the details of the workflow data object (see Chapter 4,
Workflow Data Objects) attribute containing the data that will be used
to populate the associated base type parameter when the automatic
activity business method is invoked. The mandatory attributes are de-
scribed below:

wdo-name
This describes the name of the workflow data object used in the in-
put mapping.

name

This describes the name of the attribute on the specified workflow
data object used in the input mapping.

Input mappings for struct parameters

Structs may be specified as parameters to business process object methods.
This section describes the metadata of the input mappings associated with
such parameters.

46

Curam Workflow Reference Guide

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
I nterface-name="curam sanpl e. facade. i ntf. Sanpl eBenefit"
nmet hod- name="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl| t en >
<f or mal - par anet er s>
<f or mal - par anet er i ndex="0">
<struct
type="curam struct. Sanpl eBenefitPl anlt enDet ai | s" >
<field name="description">
<base-type type="STRI NG'>
<wdo- attri bute wdo-name="SPProduct Del i veryPl "
name="descri ption"/>
</ base-type>
</field>
<field name="pl annedl t enl DKey" >
<base-type type="I|NT64">
<wdo- attri but e wdo- name=" SPPr oduct Del i veryPI "
name="pl annedl t em D'/ >
</ base-type>
</field>
<field nane="pl annedl t enNanme" >
<base-type type="STRI NG' />
</field>
</struct >
</ for mal - par anet er >
</ formal - par anet er s>
</ bpo- mappi ng>
</automatic-activity>

Struct

This contains the details of one struct input mapping, including the type
of the struct and mappings for each field defined in that struct. A struct
input mapping contains the following mandatory attribute:

type
This describes the type of the struct that has been specified as the
formal parameter in the method. This is represented as the fully
qualified name of the struct specified as the formal parameter.

field
This contains the details of the input mapping for one of the fields
defined in the struct parameter. A field contains the details of the input

mapping for the primitive base type associated with that field as well as
the following mandatory attribute:

name

This describes the name of the field as defined in the struct spe-
cified asthe formal parameter.

base-type

This contains the details of one base type input mapping for the spe-
cified field. A base type input mapping contains the following mandat-
ory attribute:

type
This describes the type of the primitive field being mapped to.

47

Curam Workflow Reference Guide

wdo-attribute

This contains the details of the workflow data object (see Chapter 4,
Workflow Data Objects) attribute containing the data that will be used
to populate the associated base type field when the method is invoked.
This will not be present if the user has not specified an input mapping
for this method parameter. This element, when specified, contains the
following mandatory attributes:

wdo-name
This describes the name of the workflow data object used in the in-
put mapping.

name

This describes the name of the attribute on the specified workflow
data object used in the input mapping.

Input mappings for aggregated struct parameters

Aggregated structs (see the Caram Modeling Reference Guide for details on
struct aggregation) may be specified as parameters to business methods. In
this instance, the metadata is similar to that described above for struct form-
al parameters (see Section 7.4.1.2, Input mappings for struct parameters).
The subtle difference is, however, that afield in the struct parameter defined
may resolve down to another struct and not to a primitive type as seen in the
struct mappings example. In this scenario, the field name is not the name of
the field being mapped associated with the struct parameter but is the name
of the role contained in the association between the specified struct and the
struct it aggregates. The following metadata snippet provides an example of
such input mappings. The metadata elements have been previously de-
scribed above in the struct input mappings section.

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
I nterface-nanme="curam sanpl e. facade. i ntf. Sanpl eBenefit"
nmet hod- nane="cr eat eBenefit">
<f or mal - par anet er s>
<f ormal - par anet er i ndex="0">
<struct type="curam struct.Pl annedltenDetails">
<field name="description">
<base-type type="STRI NG'>
<wdo-attribute wdo-name="SPProduct Del i veryPl "
name="descri ption"/>
</ base-type>
</field>
<field name="pl annedl tem D"'>
<base-type type="I|NT64">
<wdo- attri but e wdo- name=" SPPr oduct Del i veryPI "
name="pl annedl t em D'/ >
</ base-type>
</field>
<field nanme="dtl s">
<struct type="curam struct. Pl annedltenkKey">
<field nane="subject">
<base-type type="STRI NG' >

48

Curam Workflow Reference Guide

<wdo- attri but e wdo- nane=" SPPr oduct Del i ver yPI "
nanme="subj ect"/ >
</ base-type>
</field>
<fi el d nane="concernRol el D'>
<base-type type="INT64">
<wdo-attribute wdo-name="SPProduct Del i veryPl "
name="concer nRol el D'/ >
</ base-type>
</field>
</struct>
</field>
</ struct>
</ fornal - par anet er >
</ formal - par anet er s>
</ bpo- mappi ng>
</ automatic-activity>

Input mappings for list struct parameters

Input mappings for list structure parameters may now also be specified. In
this instance, the metadata is similar to that described above for aggregate
forma parameters (see Section 7.4.1.3, Input mappings for aggregated
struct parameters). The type of the struct specified in the metadata for a list
struct parameter is the name of the list structure. The name of the first field
specifies the name of the role contained in the association between the spe-
cified list struct and the child struct it aggregates. Typicaly, this field then
resolves down to another struct (the child struct contained within the list
struct). The workflow data object specified in such a mapping is alist work-
flow data object. The following metadata snippet provides an example of
such input mappings. The metadata elements have been previousy de-
scribed above in the struct input mappings section.

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
I nterface-name="curam sanpl e. facade. i ntf. Sanpl eBenefit"
met hod- nanme="pr ocessd ai mant Dependent s" >
<f or mal - par anet er s>
<f or mal - paranet er i ndex="0">
<struct type="curam sanpl e.struct.
Cl ai mant Dependent Det ai | sLi st ">
<field nane="dtl s">
<struct type="curam sanpl e.struct.
Cl ai mant Dependent Det ai | s" >
<field nane="identifier">
<base-type type="I|NT64">
<wdo- attri bute wdo- name="C ai mant Dependent "
nane="identifier"/>
</ base-type>
</field>
<field nane="first Nane">
<base-type type="STRI NG'>
<wdo-attri bute wdo- name="d ai mant Dependent "
name="first Nane"/ >
</ base-type>
</field>
<field name="surname">
<base-type type="STRI NG'>
<wdo- attri bute wdo- nanme="d ai mant Dependent "
name="sur nane"/ >

49

Curam Workflow Reference Guide

</ base-type>
</field>
</struct >
</field>
</struct >
</ f or mal - par anet er >
</ formal - par anet er s>
</ bpo- mappi ng>
</automatic-activity>

Input mappings and indexed items from list workflow data ob-
jects

For activities contained within loops, an item from a list workflow data ob-
ject can be used in an input mapping to populate a formal parameter field.
When this type of input mapping is used, each time the loop containing the
activity is iterated over, the formal parameter field will be populated with
the next value from that list workflow data object. This is highlighted here
as the metadata syntax for such amapping is subtly different than that of the
other input mapping types. The metadata snippet provides an example of
such input mappings. The name of the list workflow data object used to
populate the formal parameter field is qudified with the
[Cont ext Loop. | oopCount] syntax. This is used by the workflow
engine at runtime to determine which iteration of the loop is being executed
and hence which item from the list workflow data object to retrieve the data
to popul ate the formal parameter field with.

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
I nterface-name="curam sanpl e. facade. i ntf. Sanpl eBenefit"
met hod- nane="retri eved ai mant Dependent Det ai | s" >
<f or mal - par anet er s>
<f ormal - par anet er i ndex="0">
<struct type="curam sanpl e. struct
Cl ai mant Dependent Det ai | s" >
<field nane="identifier">
<base-type type="1NT64">
<wdo-attribute name="identifier"
wdo- nanme=
" ai mant Dependent [Cont ext _Loop. | oopCount] "/ >
</ base-type>
</field>
<field nane="ful | Nane" >
<base-type type="STRI NG' >
<wdo- attri bute name="ful | Nane"
wdo- nhame=
" ai mant Dependent [Cont ext _Loop. | oopCount] "/ >
</ base-type>
</field>
</struct >
</ formal - par anet er >
</ for mal - par anet er s>
</ bpo- mappi ng>
</automatic-activity>

7.4.2 Validations

50

7.4.3

7.5

Curam Workflow Reference Guide

« The workflow data object attributes specified in the input mappings
must be valid. The criteria that defines a valid workflow data object at-
tribute may be seen in Section 4.3, Validations

» The type of the formal parameter being mapped to and the type of the
workflow data object attribute being used in that input mapping must be
compatible. For example, if the input mapping being created is a struct
field that has atype of STRI NG, then the workflow data object attribute
being used for that mapping must also be of type STRI NG,

 The Cont ext _Task workflow data object cannot be used in an input
mapping if the associated activity is not amanual or decision activity.

 The Cont ext _Loop workflow data object cannot be used in an input
mapping if the asociated activity isnot contained within aloop.

» A vadidation warning will be displayed if al struct parameters defined in
the business process object method do not contain an associated input

mapping.

* All primitive base type formal parameters defined in the business pro-
cess object method which must contain an associated input mapping.

o |If the forma parameter field being mapped is a base type parameter,
then an attribute from alist workflow data object cannot be used.

* If the formal parameter field being mapped is from alist structure, then
it must be mapped to an attribute from alist workflow data object.

* If the indexed item from a list workflow data object (i.e. C ai mant -
Dependent [Cont ext _Loop. | oopCount])isbeingusedinanin-
put mapping, then the associated workflow data object must be a list
workflow data object and the activity containing the input mappings
must be contained within aloop.

Runtime Information

The values of the workflow data object attributes defined in the input para-
meter mappings are provided as input data to the specified method before it
isinvoked when the associated automatic activity is executed.

Output Mappings

Workflow data objects (see Chapter 4, Workflow Data Objects) are the
workflow engines data store. Some of the attributes on the specified work-
flow data objects are populated when the process is enacted. It is useful,
however, to update or set the values of workflow data object attributes as
the workflow process is executed. To support this, some activity types can
map data back into the workflow engine. Thisis particularly useful for auto-
matic activities as the business methods they invoke could conceivably ac-
cess data stored on any entity in the application and return it for use in sub-

51

7.5.1

Curam Workflow Reference Guide

sequent activities in the workflow process. These return mappings from a
business process object method associated with an automatic activity are op-

tional.

Metadata

In a similar fashion to input mappings (see Section 7.4, Input Mappings),
output mappings are supported for primitive return types, struct return types,
nested (aggregated) struct return types and list struct return types. If the re-

turn type is a primitive type, one return mapping entry may be specified.

If

the return type is a struct, an aggregated struct or a list struct, return map-
pings for one or more of the fields in the specified struct may be created.

The following metadata snippets provide examples of such mappings:

Primitive return type

<automatic-activity id="1" category="ACl">

<bpo- nappi ng
I nterface-name="curam sanpl e. facade. i ntf. Sanpl eBenefit"
nmet hod- name="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl| t en >
<f or mal - par anet er s>
<f or mal - par anet er i ndex="0">

</ formal - par anet er >

</ formal - par anet er s>

<return>
<base-type>

<wdo- attri bute wdo- name="SPProduct Del i veryPI "
name="pl annedl tem D'/ >

</ base-type>

</return>

</ bpo- mappi ng>
</automatic-activity>

Struct return type

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
I nterface-name="curam sanpl e. facade. i ntf. Sanpl eBenefit"
met hod- nane="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl t eni' >
<f or mal - par anet er s>
<f or mal - paranet er i ndex="0">

</ f ormal - par anet er >
</ formal - par anet er s>
<return>
<struct>
<field nane="description">
<base-type>
<wdo-attri bute wdo- name="SPPr oduct Del i ver yPIl "
name="descri ption"/>
</ base-type>
</field>
<field nane="subj ect">
<base-type>

52

Curam Workflow Reference Guide

<wdo- attri but e wdo- nane=" SPPr oduct Del i ver yPI "
name="subj ect"/ >

</ base-type>
</field>
</ struct>

</return>

</ bpo- mappi ng>

</automatic-activity>

Aggregated struct return type

<automatic-activity id="1" category="ACl">

ébbo-napping
I nterface-nanme="curam sanpl e. facade. i ntf. Sanpl eBenefit"

met hod- nane="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl t ent' >

<f or mal - par anet er s>
<f or mal - par anet er i ndex="0">

</ formal - par anet er >
</ formal - par anet er s>
<return>
<struct>
<field name="description">
<base-type>
<wdo- attri bute wdo- name="SPPr oduct Del i veryPI "
name="descri ption"/>
</ base-type>
</field>
<field nane="subject">
<base-type>
<wdo- attri bute wdo- name=" SPPr oduct Del i veryPI "
name="subj ect"/ >
</ base-type>
</field>
<field nane="dtl s">
<struct>
<field nane="concernRol el D'>
<base-type>

<wdo- attri bute wdo- name=" SPPr oduct Del i veryPI "

name="concer nRol el D"/ >
</ base-type>
</field>
<field nane="partici pant|D'>
<base-type>

<wdo- attri bute wdo- nane=" SPPr oduct Del i ver yPI "

nanme="partici pantl D'/ >
</ base-type>
</field>
</struct >
</field>
</struct>
</return>

</ bpo- mappi ng>

</automatic-activity>

List struct return type

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
I nterface-name="curam sanpl e. facade. i ntf. Sanpl eBenefit"
met hod- nane="r eadd ai nant Dependent Det ai | s" >
<f or mal - par anet er s>

53

Curam Workflow Reference Guide

<f ormal - par anet er i ndex="0">

</ formal - par anet er >
</ for mal - par anet er s>
<return>
<struct >
<field name="dtl|s">
<struct >
<field nane="identifier">
<base-type>
<wdo- attri bute wdo- nanme="d ai mant Dependent "
nane="identifier"/>
</ base-type>
</field>
<field nane="firstNane">
<base-type>
<wdo-attribute wdo-name="C ai mant Dependent "
name="fi rst Nane"/ >
</ base-type>
</field>
<field nane="surnanme" >
<base-type>
<wdo- attri bute wdo- name="C ai mant Dependent "
nane="sur nanme"/ >
</ base-type>
</field>
</struct>
</field>
</struct>
</return>
</ bpo- mappi ng>

</automatic-activity>

return

This contains the details of the output mappings specified for the busi-
ness method associated with the automatic activity. For a primitive re-
turn type, one entry of the base type metadata will be present as shown
in the example above (see Section 7.5.1.1, Primitive return type). For a
struct, aggregated struct and list struct return types, the struct metadata
tag is specified and contains fields whose base types are mapped using
workflow data object attributes.

struct

This contains the details of the struct output mapping. A struct output
mapping contains the following mandatory attribute.

field

This contains the details of the output mapping for one of the fields
defined in the struct return type. A field contains the details of the out-
put mapping for the primitive base type associated with that field as
well as the following mandatory attribute:

name

This represents the name of the field as defined in the struct spe-
cified as the return type. For non-aggregated struct return types, this
simply represents the name of the field on the specified return struct
that is being mapped. For aggregated struct and list struct return
types, the field name represents the name of the role contained in
the association between the specified struct and the struct it aggreg-

54

7.5.2

7.5.3

Curam Workflow Reference Guide

ates.

base-type

This contains the details of one base type output mapping for the spe-
cified field or a primitive return type.

wdo-attribute

This contains the details of the workflow data object (see Chapter 4,
Workflow Data Objects) attribute that the data present in the associated
return type field will be mapped into and persisted. The mandatory at-
tributes are described below:

wdo-name
This represents the name of the workflow data object used in the
output mapping.

name

This represents the name of the workflow data object attribute used
in the output mapping.

Validations

No duplicate output parameter mappings are allowed. In other words, a
workflow data object attribute can only be specified once in any list of
output return mappings.

All of the workflow data object attributes specified in the output map-
pings must be valid workflow data object attributes in the context of the
containing workflow process definition.

The type of the return field being mapped from and the type of the
workflow data object attribute being mapped to must be compatible.

Output mappings cannot be created for workflow data object attributes
that have been marked as constant workflow data object attributes. Con-
stant workflow data object attributes represent data that should remain
constant for the lifetime of the process instance (see Section 4.2,
Metadata). If these attributes were allowed to be utilized in output map-
pings, this data would be overwritten with that specified in the output

mappings.

If the return struct is a list return struct, then the workflow data object
used in the return mapping must be alist workflow data object.

Runtime Information

The values of the return type fields defined in the output parameter map-
pings are persisted using the specified workflow data object attributes after
the associated automatic activity has been executed.

55

Curam Workflow Reference Guide

7.6 Description of Context WDOs

There are two context workflow data objects that are available when creat-
ing data item and function conditions for transitions from an automatic
activity. These are described below.

Context_Result Workflow Data Object

The Context_Result workflow data object is available for use in a data
item or function conditions (see Chapter 16, Conditions) for a transition
from an automatic activity. This alows the use the of the return value of
the invoked method in the said conditions. The conventions for the at-
tributes available for the Context Result workflow data object are as
follows:

» If the return type is a base type, the attribute available is called
val ue (i.e. Cont ext _Resul t. val ue).

» If the return value is a struct then the Context_Result attribute val-
ues available are all the fields present on the struct return class (i.e.
Cont ext _Resul t. descri pti on etc.).

e If the return value is a nested (aggregated struct) then the Con-
text_Result attribute values available will be the fields available in
the containing struct (i.e. Cont ext Result. description
etc.) and aso the fully qualified names of those fields in the nested
structs (i.e. Context _Result. dtl s:concernRol el D etc.).
Regardless of the depth of the nesting of the return value struct,
there is only one Context Result workflow data object available
with the names of the nested structs forming part of the attribute
names. The separator between a nested struct and it's fields is a
colon as seen in the example above.

» If thereturn typeis alist struct, the Cont ext _Resul t workflow
data object is not available.

Context_Error Workflow Data Object

A BPO method being called by an automatic activity can sometimes fall
(i.e. throw an exception that causes the activity transaction to roll-back).
When this happens, it can be useful to be able to model follow-on ac-
tions after the failure. The Cont ext _Er r or workflow data object en-
ables this type of "error path" modeling. It is available for use in a data
item or function conditions (see Chapter 16, Conditions) for a transition
from an automatic activity.. The Cont ext _Er r or workflow data ob-
ject has one attribute except i onOccur r ed which is described be-
low:

« Theexcepti onCccurr ed attribute is a boolean value indicating
if the BPO method associated with an automatic activity failed. It
defaults to false and is set to true if the associated BPO method fails.

56

Curam Workflow Reference Guide

At runtime, if the BPO method being called in an automatic activity
fails (and is re-tried the prerequisite number of times and still fails), the
workflow engine will set the excepti onQccurred attribute of
Context _Error to true. Any transitions using the Con-
t ext _Error workflow data object are then evaluated and followed if
they resolve to true. This enables a workflow process instance to pro-
ceed aong the defined error path even though the automatic activity
failed.

If the BPO method being called fails and there are no transitions using
the Cont ext _Er r or workflow data object, then the activity is halted
and an entry is created in the Failed Messages Admin console.

2

n Note

The Cont ext _Err or workflow data object takes no account
of the cause of the failure, only whether or not there was one.

57

8.1

8.2

8.3

Chapter 8

Event Wait

Prerequisites

* The base details common to al the activity types supported by Cldram
workflow are described in Chapter 6, Base Activity and are applicable to
the event wait activity described here.

Overview

The Cuaram application has the ability to raise events at various points in-
forming any registered listeners of what has happened. A number of differ-
ent event listeners may be registered to listen for a specified event. These
event listeners are application functions that implement the
curamutil.events.inpl.Event Handl er interface. When a spe-
cified event is raised, the workflow engine invokes the associated event
handler function (see the Cdram Server Developers Guide for more details
on events and event handlers).

Workflow uses this facility in a dightly different way through event wait
activities. An event wait activity pauses the execution of a particular branch
of aprocessinstance until a particular event has occurred.

List of events

It is not completely accurate to say that an event wait activity pauses a
workflow process until a particular event israised. An event wait can in fact
specify any number of eventsto wait for. If it has been specified not to wait
for all of these events to be raised to complete the activity, the first event
that matches one of the specified event waits will complete the activity and
progress the workflow. In this scenario, whether or not the rest of the events
ever get raised has no effect on the process. It is also possible to specify that

58

8.3.1

Curam Workflow Reference Guide

al of the event waits must be matched by associated raised events before
completing the activity and continuing the workflow process.

Metadata

<event-wait-activity id="1" category="ACl">

<event-wait wait-on-all-events="true">
<event s>
<event event-cl ass="Task" event-type="C ose"
identifier="1">
<event-match-attri bute nanme="t askl D'
wdo- name=" Cont ext _Task"/ >
</ event >
<event event-class="Parent" event-type="Approve"
identifier="1">
<event-match-attri bute nanme="identifier"
wdo- name=" Par ent Li st [Cont ext _Loop. | oopCount]"/>
</ event >
<event event-class="Child" event-type="Approve"
identifier="2">
<event-match-attri bute name="identifier"
wdo- name="Chi | dDet ai | s"/ >
<mul ti pl e-occurring-event >
<l i st-wdo- name>Chi | dDet ai | s</ | i st - wdo- nane>
</mul ti pl e-occurri ng-event >
</ event >
</ event s>
</ event - wai t >

</event-wait-activity>

event-wait

This contains the details of the event wait associated with the specified
activity. Thisincludes the details of al the events for the event wait.

wait-on-all-events

The value of this flag indicates to the workflow engine if it should
wait for events to be raised for all of the specified event waits be-
fore completing the associated activity. If set to false, the first event
that matches one of the specified event waits will result in the com-
pletion of associated activity and the workflow progressing. When
set to true, an event must be raised for each of the event waits spe-
cified for the activity before the activity is completed and the work-
flow progressed.

events

This contains the details of all of the events that the specified activity is
waiting on.
event

59

Curam Workflow Reference Guide

This contains the details of one specific event that this activity is wait-
ing on. The event details contain the following mandatory attributes:

event-class

This represents the class of business event that this process is wait-
ing on.

event-type
This represents the type of business event that this process is wait-
ing on. The combination of event-class and event-type will denote
the business event required.

identifier
This represents the unique identifier of this event. The identifier is
required to be unique only within the list of events for this activity.

event-match-attribute

This represents the workflow data object attribute (see Chapter 4, Work-
flow Data Objects) that is used to match the required instance of the
specific event. For example, in the first event specified in the metadata
above, the workflow data object attribute would refer to the task identi-
fier associated with the closing of a specific task. When this event is
raised, the workflow engine will use the data in the event match attrib-
ute to uniquely identify the task to close.

multiple-occurring-event

This signifies that this event will represent a multiple occurring event.
This means that if this metadata is specified for an event, the workflow
engine will create one event wait record for each item in the list work-
flow data object specified as the multiple occurring event when that
activity is executed. This allows the workflow engine to wait on mul-
tiple occurrences of the same event.

It should be noted that when the multiple occurring event is specified
for an event, then an attribute from the associated list workflow data ob-
ject must be used as the event match data for the event. This will ensure
that each event generated by the workflow engine for the multiple oc-
curring event will be unique.

list-wdo-name

This represents the name of the list workflow data object to be used
as the multiple occurring event.

8.3.2 Validations

* A |east one event must be defined for the event wait information associ-
ated with an event wait activity.

* The event class and type specified for each business event must be valid
entries on the relevant event database tables.

* An event and associated event match attribute can only be defined once

60

8.3.3

Curam Workflow Reference Guide

in an event wait activity. That is, the same event class, event type and
event match attribute can only be used once as a specific event being
waited on for an event wait activity.

» The workflow data object attribute mapped to the event match attribute
for an event must be valid, and as it is used as a unique identifier in the
event matching mechanism, it must be of type LONG to reflect the 64-bit
identifiers used in Curam.

» The Context_Task workflow data object can only be used as the event
match data workflow data object attribute if the activity is either a
manual or parallel manual activity and the event is not a multiple occur-
ring event.

o |If an indexed item from a list workflow data object (i.e. ParentL-
ist[Context_L oop.loopCount]) is used as the event match data, then the
workflow data object must be a list workflow data object and the activ-
ity containing the event mapping must be contained within aloop.

e If anindexed item from the Parallel List Workflow Data Object is used
as the event match data, then the activity containing the mapping must
be a Parallel Activity (I.e Parallel-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

» If the multiple occurring event list workflow data object has not been
specified for the event and the activity containing the event mapping is
not a parallel activity, then an attribute from a list workflow data object
cannot be used as the event match data for that event.

« |If the multiple occurring event list workflow data object has been spe-
cified for the event, then an attribute from this list workflow data object
must be used as the event match data for that event.

» The workflow data object attribute mapped as the multiple occurring
event must be valid. It must also be alist workflow data object.

Code

A Workflow Event Handler is supplied with Clram and is automatically re-
gistered to listen for events raised in the application. Multiple event waits
may be registered for a particular activity instance in a workflow process. If
thewai t OnAl | Event s flag is set to f al se for the specified event wait
data, only one of these event waits is required to be matched to complete
that activity instance. The Workflow Event Handler will process that event
by completing the specified activity instance and driving the process for-
ward by starting the next set of activities in the process. All of the other
event wait records that were registered for the completed activity instance
are then removed. If output mappings (see Section 8.5, Output Mappings)
have been specified for the event wait, they will be persisted by the work-

61

8.3.4

8.4

8.4.1

8.4.2

Curam Workflow Reference Guide

flow engine and may be used in subsequent activities and transitions in the
Process.

When thewai t OnAl | Event s isset tot rue, al of the event waits spe-
cified for the activity instance must be matched by raised events to complete
the activity and progress the workflow. For each raised event that matches
an associated event wait for the activity instance, the Workflow Event
Handler will process the event by deleting the associated event wait record
and persisting any output mappings (see Section 8.5, Output Mappings) that
have been specified for the event wait. This processing continues until all of
the associated event waits have been matched by raised events. It is only
then that the Workflow Event Handler will complete the specified activity
instance and drive the process forward by starting the next set of activitiesin
the process.

Runtime Information

An event raised in the application can only cause a process instance to con-
tinue if the event matches that being waited on and the event match attribute
specified for the event wait matches the primary event data of the event.

Deadline

An event wait pauses a workflow processin lieu of some event being raised.
However, in many casesit is not desirable for a process to wait indefinitely.
It is possible for achain of eventsto occur that mean the event the processis
waiting on may never be raised. For example, by chance the event could be
raised before the process reaches the event wait activity. To mitigate against
this risk it is possible to optionally specify a deadline for an event to be
raised after which adeadline handler will be invoked.

Prerequisites

» Deadline handler methods specified for an event wait deadline are
Curam business process object methods. The input mappings for the
formal parameters of these methods and their associated metadata are
described in Chapter 7, Automatic. This chapter should therefore be ref-
erenced for a description of these mappings.

Metadata

<event-wait-activity id="1" category="ACl">

<deadl i ne conpl ete-activity="true">
<dur ati on>
<mapped- dur at i on>
<wdo- attri bute wdo- name="TaskCr eat eDet ai | s"

62

Curam Workflow Reference Guide

nanme="deadl| i neDur ati on" />
</ mapped- dur at i on>
</ durati on>
<deadl i ne- handl er interface-nanme=
"curam core. sl.intf.Wrkfl owDeadl i neFuncti on"
nmet hod- name="def aul t Deadl i neHand!| er ">
<f or mal - par anet er s>
<f or mal - paranet er i ndex="0">
<struct type="curam core.struct. TaskKey" >
<field name="t askl D'>
<base-type type="INT64">
<wdo- attri but e wdo- name=" Cont ext _Task"
name="t askl D' />
</ base-type>
</field>
</ struct >
</ formal - par anet er >
<f ormal - par anet er i ndex="1">
<struct type="curam core. struct. Chil dKey">
<field nane="identifier">
<base-type type="I|NT64">
<wdo- attri bute wdo- name=
" C ai mant Dependent s[Cont ext _Loop. | oopCount] "
nane="identifier" />
</ base-type>
</field>
</struct >
</ formal - par anet er >
</ f or mal - par anet er s>
</ deadl i ne- handl| er >
<deadl i ne- out put - mappi ngs>
<dur at i on- expi red wdo- name="TaskDead!| i neDet ai | s"
nanme="bool eanVal ue" />
<deadl i ne- expi ry-ti ne wdo- name="TaskDeadl i neDet ai | s"
nanme="dat eTi neVal ue" />
</ deadl i ne- out put - mappi ngs>
</ deadl i ne>

</event-wait-activity>

complete-activity

This represents a boolean flag which indicates whether the activity
should complete if the deadline duration expires. The default for this
flag isfalse.

duration

This represents the duration of time that can elapse before the deadline
handler method will be invoked. The duration can be represented in
either of the formats below which will subsequently be used to calculate
the deadline date time for the event wait:

seconds

The number of seconds that can elapse before the deadline handler
will be invoked

mapped-duration

The attribute of a workflow data object that can be mapped as rep-
resenting the number of seconds that can elapse before the deadline

63

8.4.3

Curam Workflow Reference Guide

handler will be invoked.
deadline-handler

This represents the method that is to be invoked once the deadline dura-
tion has expired. The following metadata must be specified for a dead-
line handler:

interface-name

This represents the fully qualified name of the deadline handler in-
terface class name.

method-name

This represents the required method in the deadline handler inter-
face required to be invoked when the deadline expires.

formal-parameters

This contains a list of the deadline handler method parameters and
associated workflow data object attributes that are mapped to those
parameters when the deadline handler is invoked. For details on
method parameter mappings see Section 7.4, Input Mappings.

deadline-output-mappings
This contains the deadline output data which can be optionally mapped
to workflow data object attributes. This data indicates whether or not

the deadline duration expired and the date and time the deadline dura-
tion expired.

Validations

» |If adeadline handler is specified it must reference a valid Caram busi-
ness method that exists on the application's classpath.

» The workflow data object attributes specified in the input mappings
must be valid. The criteria that defines a valid workflow data object at-
tribute may be seen in Section 4.3, Validations

* The type of the formal parameter being mapped to and the type of the
workflow data object attribute being used in that input mapping must be
compatible. For example, if the input mapping being created is a struct
field that has atype of STRI NG, then the workflow data object attribute
being used for that mapping must also be of type STRI NG,

« |If the indexed item from a list workflow data object (i.e. Cl ai mant -
Dependent [Cont ext _Loop. | oopCount])isbeingusedinanin-
put mapping, then the associated workflow data object must be a list
workflow data object and the activity containing the input mappings
must be contained within aloop.

* |If the Cont ext Paral | el workflow data object is being used in an
input mapping, then the activity containing the input mappings must be
aParal | el activity.

64

8.4.4

8.4.5

Curam Workflow Reference Guide

If an indexed item from the Parallel List Workflow Data Object is being
used in an input mapping, then the activity containing the mapping must
be a Parallel Activity (i.e. Parallel-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

The deadline duration may be specified by using a deadline duration in
seconds or aworkflow data object attribute mapping, but not both.

If the deadline duration has been specified using a workflow data object
attribute, the attribute must be valid and be of type | NTEGER.

If a deadline has been specified for an activity, then a deadline handler
function must be specified and/or the complete activity flag must be set
to true. If thisis not the case the workflow would not do anything when
the deadline is reached.

If the duration expired value of the deadline output mappings has been
mapped to a workflow data object attribute, then the attribute must be
valid and of type BOOLEAN.

If the deadline expiry time value of the deadline output mappings has
been mapped to a workflow data object attribute, then the attribute must
be valid and of type DATETI ME.

The complete activity flag cannot be set to t r ue if the activity contain-
ing the deadline is a parallel activity. Thisis due to the fact that parallel
activities do not support modeled deadlines.

Code

Any return parameters associated with the deadline handler method are
not used in the workflow engine and are therefore irrelevant.

The Workflow Deadline Scanner API function
Deadl i neScanner .scanDeadl i nes() is provided to allow the
scanning of event wait deadlines that have exceeded their specified dur-
ation. Any such event waits will be processed and their associated hand-
ler function invoked or the associated activity completed.

Runtime Information

When the workflow engine executes an activity that contains deadline
metadata, it creates the deadline date time as follows:

If the duration has been specified in seconds, then the calculation is the
current date time + seconds defined in metadata = deadline date time.

If the duration has been specified as a workflow data object attribute
then the calculation is the current date time + the value as defined in

65

8.4.6

8.5

Curam Workflow Reference Guide

workflow data object attribute = deadline date time

Deadlines that have expired are processed by invoking the ScanTask-
Deadl i nes batch job. This batch job in turn invokes the Workflow Dead-
line Scanner API described above which retrieves a list of all of the dead-
lines that have expired and processes them. If a deadline handler method has
been specified for the deadline, the values of the workflow data object at-
tributes defined in the parameter mappings are provided as input parameters
to the deadline handler method and it is invoked. If the complete activity
flag has been set to true, then the associated activity is completed. Any
deadline output mappings (duration expired and deadline expiry time) that
may have been specified are persisted here. The attributes of the Con-
t ext _Deadl i ne workflow data object are also persisted during this pro-
cessing to alow them to be used in transitions emanating from the activity
containing the deadline.

Description of Context WDOs

The Context_Deadline workflow data object is available for use in a data
item or function condition (see Chapter 16, Conditions) for atransition from
an activity with an event wait that has a deadline. The Context _Deadline
workflow data object attributes available are:

Context_Deadline.durationExpired

Represents a boolean indicating if the deadline duration associated with
the activity has expired.

Context_Deadline.expiryTime

An attribute containing the date and time at which the deadline duration
expires.

Output Mappings

The event raised has some information in it that may be worth mapping
back into the workflow engine. The event has both primary and secondary
event data. The primary event data is what was used to match the event in
the first place so there is little point in mapping this back into the process.
The secondary event data however may be unknown to the workflow engine
and so can be mapped in. Also since an event wait activity can wait on any
number of events, the actual event that was raise may be of interest and so
can also be mapped into the workflow engine. Finaly, the Cdram user rais-
ing the event might be of interest and so this can also be mapped into the
workflow engine.

It should be noted that if an activity instance should wait for all of it's asso-
ciated event waits to be matched, any event output mappings that exist for
the activity instance will be processed each time an event is raised that
matches one of the event walits.

66

8.5.1

8.5.2

Curam Workflow Reference Guide

Metadata

<event-wait-activity id="1" category="ACl">

<event - out put - mappi ngs>
<event -t ype wdo- nane="CaseEvent Resul t"
nane="event Type" />
<out put - dat a wdo- nane="TaskCr eat eDet ai | s"
nane="concer nRol el D' />
<rai sed- by wdo- name="CaseEvent Resul t"
nane="event Rai sedBy" />
<ti me-rai sed wdo- nane="CaseEvent Resul t"
nane="ti meRai sed" />
</ event - out put - mappi ngs>

</event-wait-activity>

event-output-mappings
This contains the data that can be optionally mapped to the workflow
engine from the event that was raised.

event-type

This contains the business event that was raised which the activity in-
stance was waiting on.

output-data

This contains the secondary event data that is to be mapped into the
workflow engine.

raised-by
This contains the username of the Cdram user that caused the event to
be raised.

time-raised
This contains the date and time that the event was raised.

Validations
* The event type event output mapping, if specified, must be avalid work-
flow data object attribute and must be of type STRI NG,

* Theraised by user name event output mapping, if specified, must be a
valid workflow data object attribute and must be of type STRI NG

* The output data event output mapping, if specified, must be a valid
workflow data object attribute and must be of type LONG.

» The time raised output mapping, if specified, must be a valid workflow

67

8.5.3

8.5.4

8.6

8.6.1

Curam Workflow Reference Guide

data object attribute and must be of type DATETI ME.

Runtime Information

When an event israised in the application that an activity instance is waiting
on, any workflow data object attributes contained in event output mappings
that have been defined for the event wait are populated and persisted with
the relevant data from the event.

Description of Context WDOs

The Context_Event workflow data object is available for use in a data item
or function condition (see Chapter 16, Conditions) for a transition from an
activity with an event wait. The Context_Event workflow data object attrib-
utes available are:

Context_Event.raisedByUser Name

The username of the Cdram user who raised the event.
Context_Event.timeRaised

The time at which the event was raised.
Context_Event.fullyQualifiedEventType

The fully qualified (both event class and event type) name of the busi-
ness event that was raised.

Context_Event.outputData
The secondary event data associated with the raised event.

Reminders

A reminder can be set on any deadline associated with a manual, decision,
event wait, parallel manual or parallel decision activity. An arbitrary amount
of reminders can be specified. Reminders utilize the notification metadata
described in the activity notification (see Chapter 14, Activity Notifications)
chapter. This means that the typical notification subject, body, allocation
strategy and actions can be specified for areminder.

Metadata

<r em nder s>
<rem nder id="1" delivery-offset="DOLl">
<del i very-time>
<seconds>93660</ seconds>
</ delivery-tinme>
or...

<del i very-tine>

68

8.6.2

Curam Workflow Reference Guide

<mapped- del i very-ti ne>
<wdo-attri bute wdlo-nane="CaseWDO'
nane="casel D'/ >

</ mapped- del i very-ti ne>
</delivery-tinme>
<notification delivery-nechani sm="DWVL" >

...standard notification netadata
</notification>
</ rem nder >

</ rem nder s>

reminders
Thisis optional and encapsulates all reminder tags for the deadline.
reminder

This contains all reminder metadata for the deadline including the asso-
ciated notification metadata.

delivery-offset

This refers to a value from the codetable Rem nder Del i veryOf f -
set indicating what the seconds or mapped-delivery-time will be offset
from. In the case of a deadline, it is offset from the deadline expiry
time. Thisisthe currently the only offset supported.

delivery-time

This contains either the seconds or mapped-delivery-time tag depending
on which has been specified.

seconds

This tag represents the seconds prior to the deadline expiry time that the
reminder will be sent.

mapped-delivery-time

This tag represents a workflow data object containing the seconds prior
to the deadline expiry time that the reminder will be sent.

Validations

* A reminder cannot be created if a deadline has not been associated with
the relevant activity. In addition, if a deadline does exist, but the dead-
line handler has not been set, or the complete activity indicator has been
set to false, areminder cannot be created.

* Each reminder has an identifier. This must be unique to the deadline
upon which it is associated.

» Either a mapped-delivery-time or seconds must be specified for a re-
minder.

» |If asecondsis specified, it must be prior to the deadline expiry time.

69

8.6.3

8.6.4

Curam Workflow Reference Guide

» The workflow data object attribute referenced by the mapped-deliv-
ery-time must be of type | NTEGER.

» All existing validations for activity notifications (see Chapter 14, Activ-
ity Notifications) are applicable to the notification metadata associated
with reminders.

Code

The Workflow Deadline Scanner API function
Deadl i neScanner .scanDeadl i nes() includes a call to the function
del i ver Rem nder s() which processes and delivers any reminders that
have reached their delivery time.

Runtime Information

When an activity containing reminders has been executed, the reminders are
persisted onto the Rem nder s entity. The time that a reminder is due to be
sent on is calculated as follows:

* The delivery duration for the reminder is retrieved in seconds. This may
be specified directly in seconds or in aworkflow data object attribute.

» Theduration for the deadline associated with the reminder isretrieved in
seconds. This may be specified directly in seconds or in aworkflow data
object attribute.

» If the delivery duration for the reminder is a positive number and this
number is less than the deadline duration (reminder deliveries cannot be
specified for times that are greater than the deadline date time for obvi-
ous reasons), then the time to deliver the reminder notification is calcu-
lated as the deadline duration - the reminder delivery duration. This dur-
ation in seconds is then converted into a date time and added to the date
time the reminder is being created on. Thisis then stored on the remind-
er record as the date time that the reminder notification is due to be sent
on.

Reminders that have been configured for deadlines are processed and sent
by invoking the ScanTaskDeadl i nes batch job. This batch job invokes
the Deadl i neScanner .scanDeadl i nes() function which scans for
reminders that are due and sends the associated reminder notifications
(using the reminder notification allocation strategy to determine the users to
send the notifications to). The reminders that have been sent are removed
from the Rem nder s entity to ensure that they are not sent again. When
the activity completes any reminders that were configured for that activity
but which were not sent are removed.

70

Chapter 9

Manual

9.1 Prerequisites

* The base details common to al the activity types supported by Cldram
workflow are described in Chapter 6, Base Activity and are applicable to
the manual activity described here.

9.2 Overview

In any automated business process there is a need to interact with human
agents to make decisions, supply additional data or to perform tasks in the
real world such as telephoning a client. In Caram workflow, such stepsin a
process are modeled using manual activities. A manua activity specifies
where in the business process human intervention is required. It also spe-
cifies the information the user will get when notified that they must perform
a task and also the selection of the agents to which the work will be as-
signed.

9.3 Task details

To notify a user that they are required to do some work as part of some
automated business process, atask is assigned to them. A task is a message
that appears in the users inbox. Thisinbox specifies the work the user is ex-
pected to do. The task can also have alist of actions associated with it. Ac-
tions are links to Curam application pages where the work required to per-
form the task may be performed.

9.3.1 Metadata

71

Curam Workflow Reference Guide

<manual -activity id="1">
<t ask>
<nessage>
<message-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">The fol | owi ng
case %n for 9%s nust be approved</| ocal e>
</l ocal i zed-text>
</ nessage-t ext >
<nessage- par anet er s>
<wdo- attri bute wdo- nane="TaskCr eat eDet ai | s"
nanme="casel D'/ >
<wdo- attri bute wdo- name=
"C ai mant [Cont ext _Loop. | oopCount] "
name="casel D'/ >
</ message- par anet er s>
</ message>

<actions>
<action page-i d="Case_vi ewHonme" pri ncipal -action="fal se"
open- nodal ="f al se" >
<nmessage>

<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Case Honme Page for case: %n</| ocal e>
</l ocalized-text>
</ nessage-t ext >
<nessage- par anet er s>
<wdo- attri bute wdo- name="TaskCr eat eDet ai | s"
name="casel D'/ >
</ nmessage- par anet er s>
</ message>
<l i nk- paranet er name="chil dl D'>
<wdo-attri bute wdo- name="Chi | dDependent s"
name="identifier"/>
</l i nk- par anet er >
<l i nk- paranmet er nanme="ful | Name" >
<wdo- attri but e wdo- nane=" Chi | dDependent s"
name="f ul | Name"/ >
</li nk- par anet er >
<nmul ti pl e-occurring-action>
<l i st -wdo- nane>Chi | dDependent Li st </l i st - wdo- nane>
</ mul ti pl e-occurring-action>
</ action>
<action page-i d="Person_confirnPersonDetail s"
princi pal -action="true"
open- nodal ="true">
<nessage>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Confirm Person Details for
person: %s</| ocal e>
</l ocal i zed-t ext >
</ message-t ext >
<nmessage- par anet er s>
<wdo-attribute wdo-name=
"PersonDet ai | sLi st[Cont ext _Loop. | oopCount] "
name="f ul | Nanme"/ >
</ message- par anet er s>
</ message>
<l i nk- paraneter nane="identifier">
<wdo- attri bute wdo- name="
Per sonDet ai | sLi st [Cont ext _Loop. | oopCount]"
name="identifier"/>
</I|i nk- par anet er >
</ acti on>
</ actions>
<task-priority>
<priority>TPl</priority>
</task-priority>

72

Curam Workflow Reference Guide

<al | ow deadl i ne-overri de>f al se
</ al | ow deadl i ne-overri de>
<al | owt ask- f orwar di ng>t r ue
</ al | owt ask- f or war di ng>
<adm ni st rati on-si d>Mai nt ai nCase. cl oseCase
</ adm ni stration-si d>
<initial-coment>
<wdo- attri bute wdo- nane="TaskCr eat eDet ai | s"
name="subj ect"/ >
</initial-coment>
</t ask>

</ manual - acti vi ty>

task

This contains all of the details of a task including the message and de-
tails of the associated actions. The various metadata associated with a
task are described below

message
This contains the details of the parameterized message. When a manual

activity is executed, a task is created. When a user views their tasks in
the inbox, this message represents the subject of that task.

message-text

This contains the details of the message text. The text of the subject can
contain replaceable strings (%0k), which will be replaced with the asso-
ciated text parameters. A text parameter is a mapping to a workflow
data object attribute. Parameter k in the list will replace %k in the text
string, where k is the order of the parameter in the list. %k can be re-
peated within the string and thus each workflow data object attribute
must only be mapped once. A format for the replaceable strings can op-
tionally be specified by placing another letter after the replaceable
string, e.g. %1d, where d will format the value as a date.

Formatting Letter Format As

S string

n numeric
d date

Z date/time
t time

Table 9.1 Subject Text Data Conversion

|ocalized-text

This contains details of the localizable task message text. For more de-
tails of the localized text and associated metadata, see Section 6.2.1,
Localized Text.

message-parameters

73

Curam Workflow Reference Guide

A task message may have parameters associated with it. This contains
the details of the workflow data object attribute parameters used to re-
place the placeholders in the associated text. For details on workflow
data objects and workflow data object attributes see Chapter 4, Work-
flow Data Objects.

actions

This contains the details of all of the actions associated with the manual
activity task. These actions are links to Cdram application pages where
the work required to perform the task may be performed.

action

This contains the definition of a hyperlink to a Ciram page on which a
task can be performed. The following fields associated with the task ac-
tion are described below:

page-id

This represents the identifier of the target Clram page on which a
user can begin to perform the required action.

principal-action
Actions may be defined as primary or secondary actions. Principal
actions usually contain the links to the Caram pages on which a
user can begin to perform the actual required work. Secondary ac-
tions usually contain links to supporting information that the user
assigned to do the work can refer to while carrying out the assigned
task.

open-modal

The pages linked from a task action may be specified to open in a
modal dialog. If thisindicator is set to true, then the page specified
by the action link will be opened in a modal dialog. If set to false
(the default) then the client infrastructure will decide how to open
the link in the same fashion as it does with any other link in the ap-
plication (i.e. if the page is part of a tab configuration, then it will
open the appropriate tab - if not then it will just replace the action
link home page in the content area of the current tab).

message
This contains the details of the parameterized message that is associated

with the action to be performed, including the message text and the op-
tional parameters that may be associated with the text.

link-parameter

The links to the Caram pages where the actual work for the task will be
performed must contain a page identifier (described above) and optional
page parameters. These page parameters are described by this metadata
and they represent a name/value pair where the name attribute is the
name of a link parameter (the page parameter name in the associated
Curam client page) and the value is provided by a workflow data object
attribute. The following field associated with the link parameter is de-

74

Curam Workflow Reference Guide

scribed below:

name
The name of the link parameter.
multiple-occurring-action

This signifies that this action will represent a multiple occurring action.
This means that if this metadata is specified for an action, the workflow
engine will create one action record for each item in the list workflow
data object specified as the multiple occurring action, when that activity
is executed.

It should be noted that when the multiple occurring action is specified
for an action, then an attribute from the associated list workflow data
object must be used as alink parameter for the action.

list-wdo-name

The name of the list workflow data object for use with the multiple oc-
curring action.

wdo-attribute

The value used in the action link parameter is provided by the workflow
data object attribute mapping specified in this piece of metadata.

task-priority

A task can optionally contain a priority and this metadata contains those
details. The priority of atask be represented in either of the formats be-
low:

priority
In this instance, the priority is selected in the Process Definition
Tool and istaken from the TaskPri ori t y code-table.

mapped-priority

The priority of amanual task can be mapped using a workflow data
object attribute. The following metadata snippet provides an ex-
ample of how this can be achieved:

<manual -activity id="1">
<t ask>

<message>

</ message>

<actions>
<action page-id="Case_vi ewHone" princi pal -action="true">
</ action>

</ actions>

<task-priority>
<mapped- priority>

<wdo-attribute wdo-name="Wr kf | owTest WDO'
name="t askPriority"/>

</ mapped-priority>

</task-priority>

</t ask>

75

9.3.2

Curam Workflow Reference Guide

</ manual - acti vi ty>

allow-deadline-override

This represents is a boolean flag used to indicate if the deadline (see
Section 8.4, Deadline) associated with the manual activity task may be
overridden. Setting the value of this flag to true (the default is
f al se) indicates that the deadline time can be changed after the task
has been created by the workflow engine.

allow-task-forwarding

Thisis a boolean flag used to indicate if the task generated due the exe-
cution of the associated manual activity can be forwarded to another
user. When atask is generated, it is allocated to an agent to carry out the
work. Setting thisflag to t r ue (the default ist r ue) alows that agent
to forward that task to another agent to carry out the specified work.

administration-sid
Thisfield allows an administration security identifier to be specified for
a manual task. This allows a user in a group associated with the spe-

cified security identifier to modify the task details, although the task
may be reserved by another user in the application.

initial-comment
This alows an initial comment mapping to be specified for the manual
task. The value of the workflow data object attribute used in this map-

ping is used to place arecord in the TaskHi st or y table when the as-
sociated manual activity is executed.

Validations

* A subject must be defined for the manual activity task. Thisis alocaliz-
able string in the process definition but an entry must exists for the serv-
er default locale.

» All of the workflow data objects used as subject text parameters in the
manual activity task subject message must be valid workflow data object
attributes in the context of the containing workflow process definition.

o If an indexed item from a list workflow data object (i.e. PersonDe-
tailsList[Context_Loop.loopCount]) is used as a subject text parameter,
then the workflow data object must be a list workflow data object and
the activity containing the mapping must be contained within aloop.

« |If the Cont ext Par al | el workflow data object is used as a subject
text parameter, then the activity containing the mapping must be a Par -
al | el manual activity.

e If anindexed item from the Parallel List Workflow Data Object is used
as a subject text parameter, then the activity containing the mapping
must be a Parallel Activity (l.e. Parallel-

76

Curam Workflow Reference Guide

ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

If actions have been specified for the manual activity task, any workflow
data object attributes used as mappings for action text parameters must
be valid in the context of the containing workflow process definition.

If actions have been specified for the manual activity task, any workflow
data object attributes used in the action link parameter mappings of a
manual activity action must be valid in the context of the containing
workflow process definition.

If an indexed item from a list workflow data object (i.e. PersonDe-
tailsList[Context_Loop.loopCount]) is used in the action text or action
link parameter mappings, then the workflow data object must be a list
workflow data object and the activity containing the mapping must be
contained within aloop.

If the Cont ext _Par al | el workflow data object is used in the action
text or action link parameter mappings, then the activity containing the
mapping must beaPar al | el manua activity.

If an indexed item from the Parallel List Workflow Data Object is used
in the action text or action link parameter mappings, then the activity
containing the mapping must be a Parallel Activity (i.e. Paralel-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

The number of placeholders used in the subject text and action text of
the manual activity task must equal the number of mapped workflow
data object attributes for all the locales defined.

The priority of a manua task may be specified by using a codetable
code value or aworkflow data object attribute mapping, but not both.

If a mapped priority has been specified for the manual activity task, the
workflow data object attribute specified for it must be valid in the con-
text of the containing workflow process definition. It must also be of
type STRI NG

If aninitial comment mapping has been specified for the manual activity
task, the workflow data object attribute specified for it must be valid in
the context of the containing workflow process definition. It must also
be of type STRI NG. .

The workflow data object specified for use in the multiple occurring ac-
tion must be a valid workflow data object in the context of the contain-
ing workflow process definition. It must also be a list workflow data ob-
ject.

At least one attribute from the multiple occurring action list workflow

77

Curam Workflow Reference Guide

data object must be utilized in the link parameters specified for a mul-
tiple occurring action.

9.3.3 Code

9.3.4

Action Pages and Action Page Parameters

The actions specified for the manual activity task are links to Curam ap-
plication pages where the work required to perform the task may be per-
formed. The pages specified in the task actions must be valid Curam
pages and must be available in the Cdram application. The parameters
in these pages must match the parameters specified as action link para-
meters in the associated task actions.

L ocalizableStringResolver TaskStringResolver API

The task subject and associated task action messages are displayed in
the user'sinbox to inform them of the work required to be completed for
the associated task. The Localizabl eStringResol v-

er. TaskStri ngResol ver API contains the functions to resolve
both the task subjects and action messages for the correct user locale.
The replacement of the placeholders with the associated workflow data
object attribute values specified in the associated mappings is also car-
ried out as part of these functions.

Task Admin API

A number of functions have been provided on the Task Adm n classto
allow the manipulation of tasks. For further details of the functions
available, see the associated Javadoc specification for the TaskAdmi n
class.

Task History Admin API

Various life cycle events for a task (i.e. when a task is created; when a
task is allocated; when a task is closed) are written to the TaskHi s-

t or y table during the lifetime of atask. A number of search functions
have been provided on this API class to alow these entries to be ex-
amined. For further details of the functions available, see the associated
Javadoc specification for the TaskHi st or yAdm n entity.

Workflow Deadline Admin API

A number of functions have been provided on the Wor kf | owDead-
| i neAdm n class to allow the manipulation of workflow deadlines.
For further details of the functions available, see the associated Javadoc
specification for the Wor kf | owDeadl i neAdmi n class.

Runtime Information

When a manual activity is executed by the workflow engine, atask is cre-
ated and is allocated to an agent to perform that work (see Section 9.4, Al-

78

9.3.5

9.4

9.4.1

9.4.2

Curam Workflow Reference Guide

location strategy).

Description of Context WDOs

The Context_Task workflow data object allows the unique identifier of the
task created as part of the execution of the associated manual activity to be
available for use in the various metadata mappings associated with a manual
activity. Examples of some of these mappings include event match data
mappings (see Section 8.3, List of events) and deadline function input map-
pings (see Section 8.4, Deadline). The one attribute available on this work-
flow data object is:

Context_Task.tasklD

The t askl D attribute represents the unique identifier of the task cre-
ated when the associated manual activity is executed.

Allocation strategy

An organization will typicaly have many human agents at various levels of
responsibility that can perform work for a given process definition. To se-
lect a specific agent or group of agents that can do the work for a specific
manual activity, an allocation strategy is assigned to the activity. There are
three types of allocation strategies currently supported by Cdram workflow:
function, rule and target. When an allocation strategy of type target is selec-
ted, the agent or group of agents to assign the work to are named directly.
Selecting a function allocation strategy results in the invocation of the spe-
cified alocation function when the associated activity is executed by the
workflow engine. Finally, if a rule allocation strategy is selected, the spe-
cified ruleset is executed when the associated activity is executed.

Prerequisites

« |If the alocation strategy associated with a manual activity is of type
Funct i on, these dlocation functions are Curam business methods
with a specific signature. The input mappings for the formal parameters
of these methods and their associated metadata are described in
Chapter 7, Automatic. This chapter should therefore be referenced for a
description of these mappings.

Metadata

As described previoudly, there are three types of alocation strategies. The
required metadata for each of these types is described in the following sec-
tions.

This metadata element is common to al three types of allocation strategies
and hence will not be described again.

79

Curam Workflow Reference Guide

allocation-strategy

This contains the details of the alocation strategy defined for the manu-
al task. The following fields associated with an alocation strategy are
described below:

type
This contains the type of the allocation strategy. The three types of
allocation strategies currently supported by Caram workflow are
function, rule and target.

identifier
This represents the identifier of the allocation strategy. For an alloc-
ation strategy of type function, this identifier represents the fully
qualified name of the allocation function being used. For an alloca-
tion strategy of type rule, this identifier represents the identifier of
the ruleset being used. Finaly, when an allocation strategy of type

target is selected, thisidentifier represents the identifier of the alloc-
ation target being used.

Function Allocation Strategy

<manual -activity id="1" category="ACl">
<t ask>
</ task>
<al | ocati on-strat egy
identifier="curamcore.sl.intf.
Wor kf | owAl | ocat i onFuncti on. manual Al | ocati onStr at egy"
type="function">
<functi on- mappi ngs>
<f or mal - par anet er s>
<f or mal - par anet er i ndex="0">
<base-type type="I|NT32">
<wdo- attri bute wdo- name=" Cont ext _Task"
name="t askl D"/ >
</ base-type>
</ formal - par anet er >
<f or mal - paranet er i ndex="1">
<base-type type="I|NT64">
<wdo-attribute
wdo- name="Cont ext Runt i nel nf or mati on"
nanme="processl nst ancel D'/ >
</ base-type>
</ f or mal - par anet er >
<f or mal - par anet er i ndex="2">
<struct type="curam struct.TaskDetail s">
<field nane="t askl D'>
<base-type type="I|NT64">
<wdo- attri but e wdo- nanme="Cont ext Task"
name="t askl D'/ >
</ base-type>
</field>
<fi el d name="cat egory" >
<base-type type="STRI NG'>
<wdo-attribute wdo- name="TaskCr eat eDet ai | s"
nanme="cat egory"/ >
</ base-type>
</field>
</struct>

80

Curam Workflow Reference Guide

</ for mal - par anet er >
<f ormal - par anet er i ndex="3">
<struct type="curam struct. PersonDetail s">
<field nane="identifier">
<base-type type="INT64">
<wdo-attri bute wdo-name=
"PersonDet ai | sLi st[Cont ext _Loop. | oopCount]"
name="identifier"/>
</ base-type>
</field>
<field nane="ful | Nange" >
<base-type type="STRI NG'>
<wdo-attribute wdo-name=
"PersonDet ai | sLi st[Cont ext _Loop. | oopCount]"
name="f ul | Nanme"/ >
</ base-type>
</field>
</ struct >
</ formal - par anet er >
</ formal - par anet er s>
</ functi on- nappi ngs>
</ al | ocati on-strat egy>
<event -wai t >

</ event - wai t >
</ manual - acti vity>

The following is a description of the metadata for an allocation strategy of
type function.

function-mappings

This contains the details of the input mappings for the formal paramet-
ers of the specified allocation function. Allocation functions are Clram
business methods (similar to those that are specified for automatic activ-
ities) that have a distinct return signature (allocation functions must
have a return type of
curamutil.workflow struct. Al l ocati onTar get Li st).
Therefore, the metadata used for these mappings are the same as those
used for the input mappings for the business process object methods
that are associated with automatic activities. The reader should refer to
the Section 7.4, Input Mappings section of the automatic activity
chapter for further details of this metadata and it's meaning.

Rule Allocation Strategy

<manual -activity id="1" category="ACl">
<t ask>
</task>
<al |l ocation-strategy type="rule"
i dentifier="PRODUCT_1">
<r ul eset - mappi ngs>
<r do- mappl hg>
<source-attribute wdo- name="TaskCr eat eDet ai | s"
nane="casel D' />
<target-attribute rdo-name="TaskDetail s"
nane="casel D' />
</ r do- mappi ng>
<r do- mappl ng>
<source-attribute wdo- nane="TaskCr eat eDet ai | s"

81

Curam Workflow Reference Guide

nane="concernRol el D' />
<target-attribute rdo-name="TaskDetail s"
nane="concer nRol el D' />
</ r do- mappi ng>
</ rul eset - mappi ngs>

</ al |l ocati on-strategy>

<event - wai t >

</ event -wai t >

</ manual - acti vi ty>

ruleset-mappings
This contains the details of all the mappings for the ruleset specified in
the allocation identifier. It is not required to map all of the rules data ob-

ject attributes specified in the ruleset (mappings for a subset of them
may be created).

rdo-mapping
This contains the details of one mapping between a rules data object at-

tribute specified in the alocation ruleset and it's associated workflow
data object attribute. The following metadata constitute a valid map-

ping:
sour ce-attribute

This contains the details of the source attribute in the mapping (i.e.
where the data will be provided from at runtime). A source attribute
consists of aworkflow data object name and it's associated attribute
name (see Chapter 4, Workflow Data Objects).

target-attribute

This contains the details of the target attribute in the mapping (i.e.
where the data will be mapped into at runtime). A target attribute
consists of a rules data object name and it's associated attribute
name.

Target Allocation Strategy

<manual -activity id="1" category="ACl">
<t ask>
</t ask>
<al |l ocation-strategy type="target"
i denti fi er ="HEARI NGSCHEDULER"/ >
<event - wai t >
</ event - wai t >
</ manual - acti vi ty>
No further metadata is required to describe an allocation strategy of type

target. As stated previously, the identifier in this case is the identifier of the
allocation target containing the agent or group of agents that the task will be

82

9.4.3

Curam Workflow Reference Guide

assigned to.
Validations

* Anadlocation strategy must be defined for a manual task.

» |If the allocation strategy is of type function, the function specified must
be avalid and must exist on the Cdram application classpath.

» |If the allocation strategy is of type function, the return type of the func-
tion must be
curamutil.workflow struct. Al l ocati onTargetLi st.

« |f the alocation strategy is of type function, any of the input parameters
of the specified function that are mapped must be to valid workflow data
object attributes and the type of the workflow data object attribute must
match the type of the input parameter field.

« |If the alocation strategy is of type function and an indexed item from a
list workflow data object is used in an input mapping, then the workflow
data object must be a list workflow data object and the activity contain-
ing the mapping must be contained within aloop.

« |If the alocation strategy is of type rule, the specified ruleset must be
valid.

« |f the allocation strategy is of type rule, all of the source attributes spe-
cified in the mappings must be valid workflow data object attributes in
the context of the containing workflow process definition. All of the tar-
get attributes must be valid rules data object attributes in the context of
the specified ruleset. The type of the workflow data object attribute spe-
cified as the source attribute must match the type of the rules data object
attribute specified as the target attribute in the mapping.

* No duplicate target attribute mappings are allowed. In other words, a
rules data object attribute can only be specified oncein any list of ruleset

mappings.

o If an indexed item from a list workflow data object (i.e. PersonDe-
tailsList[Context_Loop.loopCount]) is used in the function or rule alloc-
ation strategy mappings, then the workflow data object must be a list
workflow data object and the activity containing the mapping must be
contained within aloop.

« |f the Cont ext Par al | el workflow data object is used in the func-
tion or rule allocation strategy mappings, then the activity containing the
mapping must beaPar al | el activity.

* |If anindexed item from the Parallel List Workflow Data Object is used
in the function or rule allocation strategy mappings, then the activity
containing the mapping must be a Paralel Activity (i.e. Parallel-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must

83

Curam Workflow Reference Guide

be the Parallel Activity List Workflow Data Object.

9.4.4 Code

As stated previously, any business process object method specified as an al-
location function must return a structure of type
curamutil.workflow struct. Al l ocati onTargetLi st.

Asis the case with business methods associated with automatic activities, a
failure of the allocation function when a manual activity is executed will
cause the Workflow Error Handling strategy to be invoked. This may cause,
for example, the activity associated with the failed method to be retried a
number of times. Based on this fact the allocation functions associated with
the allocation strategies of manual or decision activities should in general
not throw exceptions unless an unrecoverable situation occurs.

The application must implement the
curamutil.workflow. i npl.WrkResol ver calback interface to
determine how tasks will be allocated in the application. The application
property cur am cust om wor kf | ow. wor kr esol ver must refer to
the curam uti | . wor kfl ow. i npl . Wor KkResol ver implementation
class in the application as the workflow engine will use this property to de-
termine the correct function to allocate the task.

The curam util.workfl ow. i npl.WrkResol ver class has an
overloaded method r esol veWor k because the various allocation strategy
types return the allocation targets in different formats. However this is an
implementation detail that developers of custom work resolver classes
should not have to deal with especially since the business processing for all
versions of the method should be the same.

package curam util . workfl ow. i npl;

public interface WrkResol ver {

voi d resol veWbr k(
final TaskDetails taskDetails,
final Cbject allocationTargets,
final bool ean previousl yAl | ocat ed);

voi d resol veWor k(
final TaskDetails taskDetails,
final Map all ocationTargets,
final bool ean previousl yAl | ocated);

voi d resol veWor k(
final TaskDetails taskDetails,

final String allocationTargetl| D,
final bool ean previousl yAl | ocated);

To mitigate this issue the

84

9.4.5

Curam Workflow Reference Guide

curam core. sl.inpl.Defaul t WrkResol ver Adapt er provides
a more convenient mechanism for implementing a work resolver. This class
implements the different methods and converts their input parameters into
alocation target lists allowing developers of custom work resolution logic
to extend this class and implement one method that is called regardiess of
the source of the allocation targets.

package curamcore. sl .inpl;

public abstract class Defaul t Wr kResol ver Adapt er
i mpl enents curam util . workfl ow. i npl.WrkResol ver {

public abstract void resol veWr k(
final TaskDetails taskDetails
final AllocationTargetList allocationTargets,
final bool ean previousl yAll ocated);

In addition to this adapter class, the application ships with a work resolver
implementation that is used out-of-the-box. This class is caled
curam core. sl.inpl.Defaul t WrkResol ver and it aso serves
as an example of how to extend the adapter.

Runtime Information

When a manual activity is executed, the workflow engine processes the al-
location strategy defined in the metadata to retrieve the list of alocation tar-
gets for that task. If the allocation strategy is of type function, the workflow
engine processes the input mappings defined for the associated allocation
function and invokes it to retrieve the list of alocation targets. If the alloca-
tion strategy is of type rule, the workflow engine processes the mappings for
the specified ruleset and calls the rules engine to run the ruleset to retrieve
the list of allocation targets. If the allocation strategy is of type target, the al-
location target is simply the one specified in the metadata and no further
processing is required.

As described in the metadata for a workflow process (see Chapter 3, Pro-
cess Definition Metadata), a failure allocation strategy may be specified for
a process. This strategy will be processed and used if the invocation of the
allocation strategy associated with the task results in no alocation targets
being returned.

The workflow engine then uses the
curam cust om wor kf I ow. wor kr esol ver property to determine
the implementation of the function used to allocate tasks in the application.
This function is then called by the workflow engine passing to it the list of
allocation targets as determined by the allocation strategy and also details of
the task to be allocated.

After the work resolver has been called for the task, the workflow engine

85

9.4.6

9.5

9.5.1

Curam Workflow Reference Guide

makes a cal to the method checkTaskAssi gnment in the
curam core. sl .inpl. TaskAssi gnnent Checker class. This
function will check the assignment status of the task (i.e. to ensure that it
has been assigned to at least one user or organisational object (organisation
unit, position or job) or to awork queue). If the task has not been assigned,
the application property cur am wor kf | ow. def aul t wor kqueue is
examined to see what has been specified as the default work queue for
workflow. Thetask is then assigned to that work queue.

If the task has been assigned to one user and only one user after the work
has been resolved, the system checks the value of the application property
curam wor kf | ow. aut omat i cal | yaddt askt ousertasks. This
flag controls whether the system will automatically add the specified task
being processed to the list of that user's tasks to alow them to work on it.
The default value for the property is NO but if it has been specified as YES,
then the system will automatically add that task to the user's My Tasks list
in their Inbox to allow them to work onit.

Description of Context WDOs

The Context_Task workflow data object is available for both allocation
function and allocation ruleset mappings. This context workflow data object
and it's attribute have already been described above: (see Section 9.3.5, De-
scription of Context WDOs).

Business Object Associations

Manual activities, and indeed workflow in general, perform operations on
entities that exist in the application. For this reason, it may be useful to asso-
ciate a task with the entities that are related to it for that process. Business
object associations essentially provide links between a task and any applica-
tion entities of interest for that process The quintessential examples in
Curam include the Case and Concern entities.

Metadata

<manual -activity id="1" category="ACl">
<t ask>
</ t ask>
<al | ocati on-strategy type="target"

identifier="1"/>
<event - wai t >

</ event - wai t >
<bi z- obj ect - associ ati ons>
<bi z- obj ect - associ ati on bi z-obj ect-type="BOT1" >
<wdo-attri bute wdo-name="TaskCr eat eDet ai | s"
name="casel D'/ >
</ bi z- obj ect - associ ati on>
<bi z- obj ect - associ ati on bi z- obj ect -t ype="BOr2" >

86

9.5.2

Curam Workflow Reference Guide

<wdo-attribute wdo-name=
"PersonDet ai | sLi st[Cont ext _Loop. | oopCount]"
name="identifier"/>
</ bi z- obj ect - associ ati on>
</ bi z- obj ect - associ ati ons>
</ manual - acti vity>

biz-obj ect-associations
This contains the details of al the business object associations that have
been specified for the manual activity.

biz-object-association
This contains the details of one business object association that has been
specified for that manual activity. This includes the business object type
and the workflow data object attribute mapping associated with that
type. This workflow data object attribute mapping represents the unique
identifier of the business object in the association (i.e. for a business ob-
ject association of type Case, this would represent the unique identifier
of the case being linked to the task).

biz-obj ect-type
This details the actual business object type for the business object
association for the manual activity. The business object type must
be selected in the Process Definition Tool and is taken from the
Busi nessbj ect Type code-table.

Validations

* The business object type specified must be a valid codetable code con-
tained within the Busi nessQbj ect Type codetable.

» Theworkflow data object attribute mapped to the business object type of
a manual activity business object association must be valid. This attrib-
ute type must be assignable to a type LONG as this represents a mapping
to auniqueidentifier (e.g. acase identifier or participant identifier).

e |If an indexed item from a list workflow data object (i.e. PersonDe-
tailsList[Context_Loop.loopCount]) is used in a business object associ-
ation mapping, then the workflow data object must be a list workflow
data object and the activity containing the mapping must be contained
within aloop.

« |IftheCont ext _Par al | el workflow data object isused in a business
object association mapping, then the activity containing the mapping
must beaPar al | el manual activity.

o If anindexed item from the Parallel List Workflow Data Object is used
in a business object association mapping, then the activity containing the
mapping must be a Padle Activity (i.e Pardld-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-

87

9.5.3

9.5.4

9.6

9.6.1

9.6.2

Curam Workflow Reference Guide

ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

Code

Business Object Association Admin API

A number of functions have been provided on the Busi nessQbj ec-
t Associ ati onAdmi n class to allow the manipulation of business
object associations. For further details of the functions available, see the
associated Javadoc specification for the Busi nessQbj ect Associ -
ati onAdm n class.

Runtime Information

Business object associations have no functional impact on the execution of a
manual activity. The workflow engine simply examines the metadata and
places arecord on the Bi zCbj Associ at i on entity for each business ob-
ject association specified. The business object type, the value of the work-
flow data object attribute mapping and the identifier of the newly created
task associated with the manual activity are all used in the creation of this
record.

Event Wait

Since a manual activity requires some action to be taken by a user before it
can be completed and the process can continue, there must be some way to
notify the workflow engine when the work required has been performed.
Since this semantic is similar to that of the event wait activity the event wait
mechanism is re-used for manual activities.

Prerequisites

» Thedetalls of an event wait and it's associated metadata (which are also
applicable to amanual activity) may be found in Chapter 8, Event Wait.

Description of Context WDOs

The Context_Task workflow data object is available for use in the input
mappings for deadline functions associated with the event wait of a manual
activity. It is available for the input mappings associated with allocation
function or rule input mappings. It is also available to use as a mapping for
the event match data of a specified event wait associated with a manual
activity. This context workflow data object and it's attribute have already
been described above (see Section 9.3.5, Description of Context WDOs).

88

Chapter 10

Decision

10.1 Prerequisites

* The base details common to al the activity types supported by Cldram
workflow are described in Chapter 6, Base Activity and are applicable to
the decision activity described here.

* There are aso workflow metadata constructs that are common between
manual activities and decision activities (i.e. allocation strategy, task
subject, task deadline etc). The details of these may be found in
Chapter 9, Manual.

10.2 Overview

A typical requirement in business processes is to have a human agent make
decisions that have simple answers. An example of such a decision isto ap-
prove or reject a case or to supply some simple information such as the age
of the claimant. Using manual activities to solicit such information would
require that adifferent user interface screen for each question be available in
the application. This is cumbersome and since process definitions can
change over time, such user interface screens would be some what tempor-
ary.

The Decision activity is a specialization of a Manual activity that drives a
metadata driven user interface for asking simple questions. The questions
and possible answers are in the activity metadata thus allowing a single user
interface to be used for a wide range of questions. Two types of questions
are currently supported. These are multiple choice type questions and ques-
tions requiring an answer that can be supplied in one field on the user inter-
face.

10.3 Task Details

89

Curam Workflow Reference Guide

Similar to a manual activity, decision activities will notify users that they
are required to do some work, and assign a task to them based on the alloca-
tion strategy defined. The task will automatically link to a user interface
page in the application that assembles the decision question from the de-
cision activity gquestion metadata and moves the workflow forward once the
decision answer has been provided. A decision activity, therefore, can have
only one associated task action and requires no action page to be defined for
that action.

In addition to the task action, a decision activity can have zero or more sec-
ondary actions associated with it. Secondary actions contain alink to a page
which may provide supplementary information to help the user answer the
decision question.

10.3.1 Metadata

<deci sion-activity id="1">

<al l ocation-strategy type="target" identifier="1" />
<nessage>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en" >
Deci de the age of the user %s for Case %n.</|ocal e>
</l ocal i zed-text>
</ nessage-t ext >
<nmessage- par anet er s>
<wdo- attri bute wdo- nanme="TaskCr eat eDet ai | s"
name="user Nang" />
<wdo-attribute wdo-name=
"Caseli st [Cont ext _Loop. | oopCount]"
nane="identifier" />
</ message- par anet er s>
</ message>
<deci si on-acti on>
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Partici pant Hone Page %n for Case %@n.
</l ocal e>
</l ocal i zed-text>
</ message-t ext >
<nessage- par anet er s>
<wdo- attri bute wdo- nane="TaskCr eat eDet ai | s"
nanme="concer nRol el D' />
<wdo-attri bute wdo- nane=
" CaselLi st [Cont ext _Loop. | oopCount] "
name="identifier" />
</ message- par anet er s>
</ message>
</ deci si on-acti on>
<secondary- acti ons>
<secondary-acti on page-i d="Case_vi ewDetail s">
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Vi ew case details.</I|ocal e>
</l ocal i zed-t ext >
</ nessage-t ext >
</ nessage>
</ secondary-acti on>

90

Curam Workflow Reference Guide

<secondary-acti on page-i d="Case_vi ewmJserDet ai |l s">
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Vi ew details for user %s
</l ocal e>
</l ocal i zed-t ext >
</ nessage-t ext >
<nmessage- par anet er s>
<wdo-attribute wdo-name=
" Chi | dDependent s[Cont ext _Loop. | oopCount]"
name="user Nang" />
</ message- par anet er s>
</ message>
<l i nk- par amet er nane="user Nane" >
<wdo- attri but e wdo- nanme=" Chi | dDependent s"
name="chi | dNane" />
</li nk- par anet er >
<mul ti pl e-occurring-action>
<l i st - wdo- nane>Chi | dDependent s</ | i st - wdo- nanme>
</mul ti pl e-occurring-acti on>
</ secondary-acti on>
</ secondary-acti ons>
<deadl i ne>

</ deadl i ne>
</ deci si on-activity>
allocation-strategy

This describes the allocation strategy used to determine the user as-
signed to the associated task. For details on allocation strategies, see
Section 9.4, Allocation strategy.
message
This represents the parameterized subject message of the task created.
For full details on parameterized messages, see Chapter 9, Manual.
decision-action
This represents the parameterized action text message associated with

the task. The user will click on this action text to bring up the auto-
generated user interface decision screen with the relevant question.

deadline

This describes the deadline details for the decision activity. If an answer
has not been provided for the decision activity within the deadline dura-
tion specified, the associated deadline handler method is invoked. For
more details on deadlines, see Section 8.4, Deadline

secondary-actions

This describes any optional secondary actions which may be included
with the decision activity.

secondary-action

A secondary action contains a parameterized message and a para-
meterized link to supporting information to help the user answer the
decision question. For details of parameterized messages and para-
meterized links within actions, see Section 9.3.1, Metadata

91

10.3.2

Curam Workflow Reference Guide

page-id
This represents the identifier of the target Cdram page which

contains the supplementary information being linked to by the
secondary action.

multiple-occurring-action

This signifies that this secondary action will represent a mul-
tiple occurring action. This means that if this metadata is spe-
cified for a secondary action, the workflow engine will create
one secondary action record for each item in the list workflow
data object specified as the multiple occurring action, when that
activity is executed.

It should be noted that when the multiple occurring action is
specified for a secondary action, then an attribute from the as-
sociated list workflow data object must be used as a link para-
meter for the secondary action.

list-wdo-name

The name of the list workflow data object for use with the mul-
tiple occurring action.

Validations

* Anactivity subject must be defined.

» Every workflow data object attribute mapped to the decision activity
subject must be a valid workflow data object attribute.

o If an indexed item from a list workflow data object (i.e. Casel-
ist[Context_L oop.loopCount]) is used as a decision subject text paramet-
er, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within aloop.

» |IftheCont ext Paral | el workflow data object isused as adecision
subject text parameter, then the activity containing the mapping must be
aPar al | el decision activity.

o |If anindexed item from the Parallel List Workflow Data Object is used
as a decision subject text parameter, then the activity containing the
mapping must be a Padle Activity (i.e Pardld-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

» The number of placeholders used in the subject text and action text must
equal the number of mapped workflow data object attributes (for al loc-
ales).

 If an indexed item from a list workflow data object (i.e. Casel-
istfContext_L oop.loopCount]) is used as adecision task action text para-

92

Curam Workflow Reference Guide

meter, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within aloop.

If the Cont ext _Par al | el workflow data object is used as a decision
action text parameter, then the activity containing the mapping must be a
Par al | el decision activity.

If an indexed item from the Parallel List Workflow Data Object is used
as adecision action text parameter, then the activity containing the map-
ping must be a Padld Activity (ie Padld-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

An alocation strategy must be defined.

The alocation target, function or rule set specified as an alocation
strategy must be valid. If the allocation type is function, it must be a val-
id Caram business method and must exist on the application classpath. If
the allocation typeisrule, it must be avalid alocation ruleset.

The optional deadline handler, if specified, must be a valid Cdram busi-
ness method.

All deadline handler input mappings must be valid. This means that all
the input parameter fields required by the specified method are mapped
to valid workflow data object attributes of the correct type.

Each secondary action must have a page link specified, which cannot
contain white spaces.

Each secondary action must have a message specified.

Secondary action message text must contain a number of placeholders
equal to the number of message parameters specified.

Secondary action message parameters must be mapped to valid work-
flow data object attributes of the correct type.

Secondary action page link parameters must be mapped to valid work-
flow data object attributes.

If an indexed item from a list workflow data object (i.e. ChildDepend-
entg Context_Loop.loopCount]) is used in the secondary action text or
secondary action link parameter mappings, then the workflow data ob-
ject must be a list workflow data object and the activity containing the
mapping must be contained within aloop.

If the Cont ext _Par al | el workflow data object is used in the sec-
ondary action text or secondary action link parameter mappings, then the
activity containing the mapping must be aPar al | el decision activity.

If an indexed item from the Parallel List Workflow Data Object in the
secondary action text or secondary action link parameter mappings, then

93

10.3.3

10.4

10.4.1

Curam Workflow Reference Guide

the activity containing the mappings must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow
data object being indexed by the Context_Parallel Workflow Data Ob-
ject must be the Parallel Activity List Workflow Data Object.

» The workflow data object specified for use in the multiple occurring ac-
tion must be a valid workflow data object in the context of the contain-
ing workflow process definition. It must also be of typeLi st .

» At least one attribute from the multiple occurring action list workflow
data object must be utilized in the link parameters specified for a mul-
tiple occurring action.

Runtime Information

When a decision activity is executed, the workflow engine creates the asso-
ciated task. A snapshot of the workflow data object data required for the de-
cision activity subject and action text parameters, and any secondary action
message text and link parameters, is taken and stored. The allocation
strategy associated with the decision activity is invoked to determine the
user(s) who will be assigned the decision task. The workflow engine also
creates an event wait for the DECI SI ON. MADE event with the associated
task identifier as the event match data. The workflow is then paused at this
point, awaiting the raising of this event which will indicate the result of the
decision made.

Question Details

The decision activity currently supports both multiple choice and free text
questions as question formats. The auto-generated decision page examines
the question format required and generates the relevant question from the
question metadata once the user clicks on the action associated with the
task.

Metadata

Multiple Choice
<deci sion-activity id="1">

<questi on>
<nessage>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en" >
Is the claimnt, %s, for Case %n, over 18?
</l ocal e>
</l ocal i zed-t ext >
</ nessage-t ext >

94

Curam Workflow Reference Guide

<nessage- par anet er s>
<wdo- attri bute wdo-nanme="Partici pant"
nane="user Nane" />
<wdo- attri bute wdo- nane=
"CaselLi st [Cont ext _Loop. | oopCount]"
name="identifier" />
</ nessage- par anet er s>
</ message>
<answers nultipl e-sel ection="fal se">
<answer nanme="yesAnswer">
<answer -t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Yes</| ocal e>
</l ocal i zed-text>
</ answer -t ext >
<choi ce- out put - mappi ng>
<wdo- attri but e wdo- nanme="Deci si onResul t"
name="ageBr acket" />
<sel ect ed- val ue>18- 65/ sel ect ed- val ue>
<not - sel ect ed- val ue>0- 17</ not - sel ect ed- val ue>
</ choi ce- out put - mappi ng>
</ answer >
<answer name="noAnswer" >
<answer -t ext >
<l ocal i zed- t ext >
<l ocal e | anguage="en">No</| ocal e>
</localized-text>
</ answer -t ext >
<choi ce- out put - mappi ng>
<wdo-attri bute wdo- nane="Deci si onResul t"
name="ageBr acket" />
<sel ect ed- val ue>0- 17</ sel ect ed- val ue>
<not - sel ect ed- val ue>18- 65</ not - sel ect ed- val ue>
</ choi ce- out put - mappi ng>
</ answer >
</ answer s>
</ questi on>

</ deci si on-activity>

guestion

This represents the question associated with the decision activity, which
for a multiple choice question contains the metadata outlined below.

message

This represents the parameterized text of the question to be asked for all
locales.

answers

This represents a list of answers the user can choose from for the mul-
tiple choice question.

multiple-selection

This represents a flag that indicates if the user can select multiple
answers from those supplied, or whether only one can be selected.

answer

This represents an answer that the user can select. There must be at least
one answer supplied for a multiple choice question.

name

95

Curam Workflow Reference Guide

This represents the name of the answer. Once the user selects an answer
or answers, the names of the selected answers are passed to the work-
flow engine and the process is progressed. As the engine treats these an-
swers similar to workflow data object attributes, answer names must be

valid Java identifiers.
answer -text

This represents the answer text that the user can select for al locales.
choice-output-mapping

This tag encloses the metadata that describes how the output from a

multiple choice answer will be persisted.

wdo-attribute

The name of the workflow data object attribute used to store the

value of the multiple choice answer.
selected-value

If specified, the value in this element will be persisted to the work-
flow data object attribute if that answer has been selected by the
user. If the workflow data object attribute is a boolean type this

value need not be specified, it will get adefault valueof t r ue.
not-selected-value

If specified, the value in this element will be persisted to the work-
flow data object attribute if that answer has not been selected by the
user. If the workflow data object attribute is a boolean type this

value need not be specified, it will get adefault value of f al se.

Free Text

<deci sion-activity id="1">

<questi on>
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >;
<l ocal e | anguage="en">
What is the age of the claimnt, %s?
</l ocal e>
</l ocal i zed-text>
</ message-t ext >
<nmessage- par anet er s>
<wdo- attri bute wdo- name="Partici pant"
nane="user Name" />
</ message- par anet er s>
</ message>
<free-text type="INT32">
<wdo- attri bute wdo- name="Deci si onResul t"
nane="ageO Cl ai mant" />
</free-text>
</ questi on>

</ deci si on-activity>

96

10.4.2

Curam Workflow Reference Guide

question

This represents the question associated with this decision activity,
which for afree text question contains the metadata outlined below.

message

This represents the parameterized text of the question to be asked for all
locales.

free-text

This contains the details of the free text answer that the user must sup-
ply.

type
This represents the required data type of the free text answer that must
be supplied.

wdo-attribute

This represents the workflow data object attribute that maps the free
text answer back into the workflow engine.

Validations

* The answer format and question text must be specified for a decision
activity.

* The number of placeholders used in question text must equal the number
of mapped workflow data object attributes (for al locales).

o If an indexed item from a list workflow data object (i.e. Casel-
ist[Context_L oop.loopCount]) is used as a question text parameter, then
the workflow data object must be a list workflow data object and the
activity containing the mapping must be contained within aloop.

o |IftheCont ext Par al | el workflow data object is used as a question
text parameter, then the activity containing the mapping must be a Par -
al | el decision activity.

* If anindexed item from the Parallel List Workflow Data Object is used
as a question text parameter, then the activity containing the mapping
must be a Parallel Activity (l.e. Parallel-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

* For a question with a Free Form Text answer format, the answer data
type must be specified and the workflow data object attribute mapped
must be valid and match the answer data type. The workflow data object
attribute mapped cannot be a constant workflow data object attribute.

» For aguestion with aList answer format at |east one answer option must
be listed. All answer names must be valid Java attribute names.

97

10.4.3

10.4.4

Curam Workflow Reference Guide

Runtime Information

When an answer for a decision activity question has been supplied, the DE-
Cl SI ON. MADE event is raised with the task identifier of the decision activ-
ity task used as the event match data. The workflow event handler will pro-
cess this event and thiswill cause the workflow process to be progressed.

If the answer supplied is afree text answer it will be mapped to the specified
workflow data object attribute for use later in the process where required.

Description of Context WDOs

The Context_Decision workflow data object is available for use in a data
item or function condition (see Chapter 16, Conditions) for atransition from
a decision activity. The attributes available will depend on the answer
format defined for the activity.

Free Text Answer
If the answer format is afree text answer the attribute available s

Context_Decision.value

The value of the free text answer supplied. This can be used in
transition conditions and can be mapped to a specified workflow
data object attribute.

Multiple Choice Answer

In this instance, the Context_Decision workflow data object will be
populated with attributes for each of the answers available, each being
of type bool ean. Thisindicates whether that answer had been selected
or not. In the multiple choice answer metadata snippet above, (Sec-
tion 10.4.1.1, Multiple Choice, if the user selected the first answer
(Yes), this would be reflected with the following Context_Decision
workflow data object attribute being settot r ue:

Context_Decision.yesAnswer

This represents a boolean indicating whether the yes answer for the
guestion had been selected. This can only be used in transition con-
ditions from the decision activity.

Alternatively, if the user selected the second answer (No), this would be
reflected with the following Context_Decision workflow data object at-
tribute being settot r ue:

Context_Decision.noAnswer

This represents a boolean indicating whether the no answer for the
question had been selected. This also can only be used in transition
conditions from the decision activity.

98

11.1

11.2

11.3

Chapter 11

Subflow

Prerequisites

* The base details common to al the activity types supported by Cldram
workflow are described in Chapter 6, Base Activity and are applicable to
the subflow activity described here.

Overview

When designing a complex business process it may become too large to
manage as one monolithic process definition. A sub-flow activity allows an-
other process definition to enacted as part of another process.

It may be a prudent decision to design process definitions as a set of sub-
flows regardiess of whether there are concerns over size. This would allow
sections of the business process to change without affecting others. Also the
subflow processes could act as reusable components that customers can re-
use in building their own higher order process definitions.

Subflow Process

To enact a process as a subflow, the subflow activity must identify the pro-
cess that will be enacted by name. As with the other process enactment
mechanisms, the latest released version of the process is the one that will be
enacted.

Subflows can be enacted synchronously. This means that the branch of the
parent workflow containing the subflow activity that started the subflow
process waits for that subflow process to finish before continuing.

Alternatively, a subflow may be enacted asynchronously. This means that
once the subflow activity starts the subflow process, the branch containing

99

Curam Workflow Reference Guide

that subflow activity continues immediately with the outcome of the sub-
flow process having no effect on the parent process.

11.3.1 Metadata

<subflowactivity id="1">
<subf | ow wor kf | ow process="ApproveCase" synchronous="true"/>

</éhbflom#activity>

subflow

wor kflow-process

The name of the workflow process to start when the activity is ex-
ecuted. Process names are case sensitive and the process name spe-
cified here must exactly match that of the process to start as a sub-
flow.

synchronous

A flag to indicate whether the sub-flow should be executed syn-
chronously or not (see: Section 11.3, Subflow Process) relative to
its parent process.

11.3.2 Validations

» A workflow process for the subflow activity must be specified.

» The workflow process specified as the subflow must have at least one
released version.
11.4 Input Mappings
Data is supplied to the subflow when it is enacted from the parent process

workflow data objects. The subflow activity defines the mapping between
the parent process's workflow data objects and the subflows enactment data.

11.4.1 Metadata

<subflow activity id="1">

<i nput - mappi ngs>
<mappi ng>
<source-attribute wdo- nane="Mni nt ai nCase"

100

Curam Workflow Reference Guide

nanme="casel D' />
<target-attribute wdo- name=" Appr oveCase"
name="casel D' />
</ mappi ng>
<mappi ng>
<source-attribute wdo- nanme="Mai nt ai nCase"
nane="concer nRol el D' />
<target-attribute wdo- name=" Appr oveCase"
nane="concer nRol el D' />
</ mappi ng>
<mappi ng>
<source-attribute wdo- nane=
"PersonDet ai | sLi st[Cont ext _Loop. | oopCount]"
nane="identifier" />
<target-attribute wdo- name="Per sonDet ai | s"
nane="identifier" />
</ mappi ng>
<mappi ng>
<source-attri bute wdo- nane="Chi | dDet ai | sLi st"
name="identifier" />
<target-attribute wdo- name="C ai mant Dependent Li st "
name="identifier" />
</ mappi ng>
</i nput - mappi ngs>
</ subfl ow activity>

input-mappings
This specifies how data is mapped from the currently executing process
to a sub-process as enactment data when the sub-process is started. The
process specified as a subflow may not have any workflow data object
attributes marked as required at enactment in which case no input map-
pings are required.

mapping
A mappi ng represents the data that will be pushed from a workflow
data object attribute to an attribute in the process being enacted as a
subflow. If alist of datais required to enact the subflow process, attrib-
utes from list workflow data objects can be used for this purpose. The
number of mappings specified is governed by how many attributes are
marked as required at enactment in the subflow process, since all such
attributes must be populated when the process starts.

sour ce-attribute

This represents a workflow data object attribute from the parent process
to use to populate the associated attribute in the subflow when it is en-
acted.

target-attribute

This represents a workflow data object attribute from the subflow to be
populated with data from the associated attribute in the parent process at
enactment time.

sour celtar get-attribute

wdo-name
This represents the name of a Caram workflow data object as de-

101

Curam Workflow Reference Guide

scribed in Chapter 4, Workflow Data Objects).
name

This represents the name of a Curam workflow data object attribute
as described in Chapter 4, Workflow Data Objects).

11.4.2 Validations

Every workflow data object attribute marked as required for enactment
in the subflow must be specified in the input mappings. If no workflow
data object attributes have been marked as required for enactment in the
subflow process, then no input mappings should be specified.

The data type of the workflow data object attribute specified by the
target-attribut e tag must match or be assignable from the attrib-
ute specified by thesour ce-at t ri but e tag.

If an indexed item from a list workflow data object (i.e. PersonDe-
taillsList[Context_Loop.loopCount]) is specified in the source-

at tri but e tag of the subflow input mapping, then that workflow data
object must be a list workflow data object and the subflow activity con-
taining the input mapping must be contained within a loop. The data
type of the workflow data object attribute specified by the t ar get -

attri but e tag must match or be assignable from the attribute spe-
cified by thesour ce-at tri but e tag.

If the specified subflow input mapping uses a list workflow data object
then the workflow data object attributes for both the parent sour ce-
attri but e and subflow processt ar get - attri but e must be list
workflow data objects.

11.5 Output Mappings

Output Mappings are only applicable to synchronous subflow activities as
asynchronous subflows can continue without completing the activity. Data
is supplied to the parent process from the subflow activity after it com-
pleted. The subflow activity defines the mapping between a subflow work-
flow data object attribute and the parent process's workflow data object at-
tribute.

11.5.1 Metadata

<subflowactivity id="1">

<out put - mappi ngs>
<nmappi ng>
<source-attri bute wdo- nanme=" Subf | owCaseWDO'
nane="partici pant Name" />
<target-attribute wdo- name=" CaseWDO'

102

Curam Workflow Reference Guide

nane="parti ci pant Nane" />
</ mappi ng>
<mappl ng>
<source-attri bute wdo- name=" Subf| owChi | dDet ai | sLi st"
name="identifier" />
<target-attribute wdo- name="Chil dDet ai | sLi st"
name="identifier" />
</ mappi ng>
</ out put - mappi ngs>

Qiéubflowﬁactivity>

output-mappings
This specifies how data is mapped from the invoked sub-process to the
parent process when the sub-process has completed. The process spe-
cified as a subflow may not have any output mappings defined, in
which case the subflow completes as normal.

mapping
This represents the data that will be pushed from a subflow workflow
data object attribute to an attribute in the parent process. If alist of data
is being pushed from the subflow process to the parent process, attrib-
utes from list workflow data objects can be used for this purpose. The
number of mappings specified is governed by the number of output
mappings specified.

sour ce-attribute

This represents a workflow data object attribute from the subflow pro-
cess which is used to populate the associated attribute in the parent pro-
cess upon completion.

target-attribute

This represents a workflow data object attribute from the parent to be
populated with data from the associated attribute in the subflow process
when completed.

sour ceftar get-attribute

wdo-name

This represents the name of a Clram workflow data object (as de-
scribed in Chapter 4, Workflow Data Objects).

name

This represents the name of a Ciram workflow data object attribute
(as described in Chapter 4, Workflow Data Objects).

11.5.2 Validations

* Theparentt arget-attri but e andsubflow source-attribute
workflow data object attributes used in the subflow output mapping
must be valid within the context of the containing process definition.

103

Curam Workflow Reference Guide

The data type of the workflow data object attribute specified by the par-
enttarget-attri but e tagmust match or be assignable from the at-
tribute specified by the subflow sour ce- at t ri but e tag.

If the specified subflow output mapping uses a list workflow data object
then the mapped workflow data object attributes for both the parent
target-attribute and subflow process source-attribute
must be of typelist.

104

Chapter 12

Loop Begin and Loop End

12.1 Prerequisites

* The base details common to al the activity types supported by Cldram
workflow are described in Chapter 6, Base Activity and are applicable to
the loop begin/loop end activities described here.

12.2 Overview

Many business processes are required to repeat until some condition is met.
In Curam, this is implemented using the loop-begin and loop-end activities.
All activities that are between a loop-begin and its associated |oop-end
activity are repeated until the loop completes.

In a process definition, loop begin and loop end activities come in pairs, and
the metadata allows each loop-begin to know its associated loop-end and
vice versa. To add a sequence of activities to a loop, a transition is created
from the loop-begin activity to the first activity to be repeated. Subsequent
activities in the sequence are linked using transitions as would normally be
done outside a loop; however, the last activity in the sequence has a trans-
ition to the loop-end activity. A common impulse is to also add a transition
from the loop-end activity to the start to create the cycle; however, thisisin-
correct and resultsin an invalid process definition.

A loop must also specify the criteria the loop will use to determine whether
or not to terminate. To support this, aloop in Caram workflow has a loop-
exit condition.

L oops can contain other loops as long as they are fully nested and do not in-
terleave each other. This ensures that the loops and therefore the process
definition remains a valid block structure as required by the Cdram work-
flow engine (see Chapter 18, Workflow Structure).

105

Curam Workflow Reference Guide

12.2.1 Loop Type

In addition to the loop-exit condition, aloop also specifies whether the con-
dition should be tested before the loop executes (a while loop) or at the end
of aloop execution (a do-while loop). A while loop may never execute the
activities in the loop and jump to the activity following the loop if the exit
condition is met at the start of the loop, where as a do-while loop will ex-
ecute the activities in the loop at least once.

12.3 Metadata

12.3.1 Loop Begin Activity

<l oop- begi n-activity id="1">

<l oop-type name="do-while"/>

<condi ti on>
<expression id="1" data-item| hs="Context_ Loop.| oopCount"
operation="& t;" data-itemrhs="User Account WDQO. si ze()"/>
</ condi tion>

<bl ock- endpoi nt-ref activity-id="5"/>

</l oop- begi n-activity>

loop-type
Thel oop-t ype specifies how the loop will be executed as detailed in
Section 12.2.1, Loop Type. The only two valid values for the nane at-
tribute arewhi | e and do- whi | e.

condition
The condi ti on tag specifies the condition that will be evaluated
based on Workflow Data Object values (see: Chapter 4, Workflow Data
Objects). When list workflow data objects are present in the workflow,
two attributes that are not part of that workflow data object metadata are
made available when creating a loop condition expression using a list
workflow data object. These are as follows:

o size(): Thiswill evaluate to a number (of type | NTEGER) to in-
dicate the number of itemsin thelist.

 isEnpty(): Thiswill evaluate to a BOOLEAN flag to indicate if
the list contains any elements or not.

The actual condition metadata is used in other places in the process

106

12.3.2

12.4

12.5

Curam Workflow Reference Guide

definition metadata and is thus described in the dedicated chapter,
Chapter 16, Conditions.

block-endpoint-r ef

The bl ock- endpoi nt - ref in this context alows the | oop- be-
gi n-acti vi ty torecognize its associated | oop- end-activity.
This information is useful to the workflow engine when executing the
loop. For example, when a while loop's exit condition evaluates to
t r ue before the loop executes, the bl ock- endpoi nt - r ef tellsthe
workflow engine which activity to jump to and continue the execution
of the process.

Loop End Activity

<l oop-end-activity id="3">

<bl ock- endpoi nt-ref activity-id="1"/>

</l oop-end-activity>

block-endpoint-r ef

The bl ock-endpoi nt-ref in this context allows the | oop-
end-activity to recognize its associated | oop-be-
gi n-activity. This information is useful to the workflow engine
when executing the loop. For example, if after the execution of a loop
the exit condition evaluates to false, the bl ock- endpoi nt - r ef tells
the workflow engine which activity to jump to in order to begin another
iteration of the loop.

Runtime Information

It is expected that any activity within a loop will be executed more than
once during the execution of a process instance. To prevent the process in-
stance data for the activity becoming corrupted by subsequent iterations,
each activity instance is associated with a specific iteration and so is
uniquely identifiable by the workflow engine regardless of the number of
times the loop is executed.

Description of Context WDOs

The Context_L oop workflow data object is available on the following occa
sions:

» When creating the loop condition associated with a loop-begin activity.

107

Curam Workflow Reference Guide

When creating the outgoing transition conditions from a loop-begin
activity, or from any activity contained within a loop (see Chapter 16,
Conditions).

When creating the input mappings for any automatic activity or subflow
activity within aloop.

When creating the input mappings for any allocation strategy function or
deadline handler function present in an activity within aloop.

When specifying a subject text parameter for a Manual or Decision
Activity that is contained within aloop, or for a notification attached to
an activity that is contained within aloop.

When specifying action text parameters and action link parameters for a
Manual or Decision Activity that is contained within aloop, or for a no-
tification attached to an activity that is contained within aloop.

When specifying the identifier for a business object association for a
Manual Activity that is contained within aloop.

When specifying a question text parameter for both a free-form or mul-
tiple choice gquestion for a Decision Activity that is contained within a
loop.

When specifying a body text parameter for a notification attached to an
activity that is contained within aloop.

The Context_L oop workflow data object attributes available are:

Context_L oop.loopCount

The number of times that aloop has been iterated over.

108

13.1

13.2

13.3

Chapter 13

Parallel

Prerequisites

* The base details common to al the activity types supported by Cldram
workflow are described in Chapter 6, Base Activity and are applicable to
the parallel activity described here.

» As parallel activities wrap existing activities in a workflow process
definition, the metadata described in Chapter 9, Manual and Chapter 10,
Decision is also relevant to the parallel activity described here.

Overview

In business processes, it may be required to send multiple tasks to different
human agents at the same time to expedite the progress of the overal pro-
cess. When the number of parallel paths are known at development time this
can easily be achieve using a split. However in some cases the number of
paths will not be know until runtime. Such situations can be modeled using
parallel activities.

A parallel activity acts as a wrapper around existing activities. The effect of
using one of these new activities at runtime is that multiple instances of the
wrapped activity are executed in parallel. To date, the only supported types
of wrapped activity are Manua (Chapter 9, Manual) and Decision
(Chapter 10, Decision) activities. Therefore, executing a paralel activity
currently equates to the creation and allocation of multiple tasksin parallel.

Metadata

A parallel activity must specify the type of activity it wraps. A list workflow
data object must also be associated with the parallel activity. The number of
items in this list workflow data object will then determine the number of in-

109

Curam Workflow Reference Guide

stances of that wrapped activity that will be created by the workflow engine
at runtime.

13.3.1 Generic Metadata for a Parallel Activity

13.3.2

<paral l el -activity id="1" category="ACl">
<l i st - wdo- nanme>Enpl oyer Det ai | sLi st WDO</ | i st - wdo- nane>
<manual -activity>
<nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en" >
CheckEnpl oyer Det ai | sTasks</| ocal e>
</l ocal i zed-t ext >
</ nane>

</ manual - activi ty>
</parallel-activity>

<parallel-activity id="1" category="ACl">
<l i st -wdo- nane>Chi | dDet ai | sLi st WDO</ | i st - wdo- nane>
<deci si on-activity>
<name>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Val i dat eChi | dDet ai | s</ | ocal e>
</l ocal i zed-t ext >
</ name>
</ deci si on-activity>
</parallel-activity>

manual-activity/decision-activity
This reflects the type of activity wrapped by the parallel activity. Cur-
rently, two types of wrapped activities are supported, Chapter 9, Manu-
al and Chapter 10, Decision activities. The types of activity that may be
wrapped by a parallel activity can be seen in the Par al | el Acti v-
i tyType codetable.

list-wdo-name

Each parallel activity must have a list workflow data object associated
with it. The number of instances of the wrapped activity that are created
at runtime is determined by the number of items in this list workflow
data object.

Metadata for a Parallel Manual Activity

The example below illustrates the metadata associated with the wrapped
activity of type Manual . This metadata is exactly the same that as that seen
for a manual activity described in Chapter 9, Manual and hence will not be
described here again. Any validations pertaining to the paralel manual
activity mappings are also described in Chapter 9, Manual. The Con-
text Paral | el Workflow Data Object and an indexed item from the
Parallel Activity List WDO can be used in al the available mappings for a

110

Curam Workflow Reference Guide

Parallel Manual Activity. Examples of such usage can be seen below:

<parallel-activity id="1" category="ACl">
<l i st - wdo- nane>Enpl oyer Det ai | sLi st WDO</ | i st - wdo- nane>
<manual - activity>
<t ask>
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en" >Check enpl oyer
details for %s. This is enployer nunmber: %in.
</l ocal e>
</l ocal i zed-text>
</ message-t ext >
<nessage- par anet er s>
<wdo-attribute
wdo- nanme=
" Enpl oyer Det ai | sLi st Wb Cont ext _Paral | el . occurrenceCount]"
name="ful | Name" />
<wdo-attribute
wdo- nanme=
"Context _Parallel" name="occurrenceCount" />
</ nmessage- par anet er s>
</ message>
</task>
<event-wait wait-on-all-events="fal se">
<event s>
<event identifier="1" event-cl ass="EWPLOYER"
event -t ype="DETAI LSCHECKED" >
<event-match-attri bute wdo- nane=
"Enpl oyer Det ai | sLi st Wb Cont ext _Paral | el . occurrenceCount]"
name="identifier" />
</ event >
</ event s>
</ event - wai t >
<bi z- obj ect - associ ati ons>
<bi z- obj ect - associ ati on bi z-obj ect -t ype="BOr2" >
<wdo-attribute
wdo- nanme=
"Enpl oyer Det ai | sLi st Wb Cont ext _Paral | el . occurrenceCount]"
name="i dentifier" />
</ bi z- obj ect - associ ati on>
</ bi z- obj ect - associ ati ons>
</ manual - acti vi ty>
</parallel-activity>

13.3.3 Metadata for a Parallel Decision Activity

The example below illustrates the metadata associated with the wrapped
activity of type Deci si on. This metadata is exactly the same that as that
seen for a decision activity described in Chapter 10, Decision and hence will
not be described here again. Any validations pertaining to the parallel de-
cision activity mappings are also described in Chapter 10, Decision. The
Cont ext _Par al | el Workflow Data Object and an indexed item from
the Parallel Activity List WDO can be used in all the available mappings for
aParallel Decision Activity. Examples of such usage can be seen below:

<parallel-activity id="1" category="ACl">
<l i st -wdo- name>Chi | dDet ai | sLi st WDO</ | i st - wdo- nanme>

111

Curam Workflow Reference Guide

<deci si on-activity>

<nessage>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">In this task the details
for child %s nust be validated. This is child
nunber: %in.
</l ocal e>
</l ocal i zed-text>
</ nessage-t ext >
<nessage- par anet er s>
<wdo-attribute
wdo- nane=
" Chi | dDet ai | sLi st Wb(J Cont ext _Par al | el . occurrenceCount]"
name="ful | Name" />
<wdo-attribute
wdo- nanme=
"Context _Parall el" name="occurrenceCount" />
</ message- par anet er s>
</ message>
<deci si on-acti on>
<nessage>
<nessage-t ext >
<l ocal i zed- t ext >
<l ocal e | anguage="en">Val idate the child details
for %s associated with this case %2n. </l ocal e>
</l ocalized-text>
</ nmessage-t ext >
<nmessage- par anet er s>
<wdo-attri bute
wdo- nanme=
" Chi | dDet ai | sLi st Wb(J Cont ext _Paral | el . occurrenceCount]"
nanme="ful | Name" />
<wdo- attri bute wdo- nane="CaseDet ai | s"
nane="identifier" />
</ nessage- par anet er s>
</ message>
</ deci si on-acti on>

<questi on>
<nessage>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Are the details for this
child whose first nanme is %ds and second nane
%2s correct?</| ocal e>
</l ocal i zed-t ext >
</ nessage-t ext >
<nessage- par anet er s>
<wdo-attribute
wdo- nane=
" Chi | dDet ai | sLi st WbJ Cont ext _Par al | el . occurrenceCount]"
name="first Name" />
<wdo-attribute
wdo- nane=
" Chi | dDet ai | sLi st Wb(J Cont ext _Par al | el . occurrenceCount]"
nanme="sur nane" />
</ message- par anet er s>
</ message>
<answers nultipl e-sel ection="fal se">
<answer nane="answer Yes" >
<answer -t ext >
<l ocal i zed- t ext >
<l ocal e | anguage="en">Yes</| ocal e>
</l ocalized-text>
</ answer -t ext >
</ answer >
<answer name="answer No" >
<answer -t ext >
<l ocal i zed- t ext >
<l ocal e | anguage="en">No</| ocal e>

112

Curam Workflow Reference Guide

</l ocalized-text>
</ answer -t ext >
</ answer >
</ answer s>
</ questi on>

</dééision-activity>
</parallel-activity>

13.3.4 Validations

» A workflow data object must be specified for a parallel activity. This
must be a list workflow data object and it must be valid in the context of
the containing workflow process definition.

» All of the other validations pertaining to parallel activities are described
in the chapters that describe the activities that a parallel activity can
wrap (i.e. Chapter 9, Manual and Chapter 10, Decision).

13.3.5 Runtime Information

13.3.6

The workflow engine loads the instance data for the list workflow data ob-
ject associated with the parallel activity. For each item in the list workflow
data object, a new instance of the wrapped activity is created and executed.
The details of what occurs when these instances of the wrapped activity are
executed may be found in the relevant chapters describing the activities that
aparalle activity can wrap (Chapter 9, Manual and Chapter 10, Decision).

At runtime, the Workflow Engine treats a Parallel Activity asif it were mul-
tiple activities, contained within a Parallel (AND) Split/Join block. One
Activity Instance is created per item in the Parallel Activity List WDO (e.g.
if that list contains three items, then three Activity Instances will be cre-
ated). This ensuresthat all of the activity instances associated with the paral-
lel activity must be completed before the actual parallel activity is deemed
to be complete and the workflow can progress.

In order to resolve the mappings associated with a Parallel Activity, each in-
stance of the wrapped activity is associated with one item from the Parallel
Activity List WDO. The item is indexed using the Context_Parallel Work-
flow Data Object (eq. ChildDe-
tailsListWDO[Context_Parallel.occurrenceCount]).

Description of Context WDOs

Each Parallel Activity Instance is associated with one item from the Parallel
Activity List WDO. This item is accessed by using the Context_Parallel
Workflow Data Object to index the Parallel Activity List WDO (e.g. Child-
DetailsListWDO[Context_Parallel.occurrenceCount]). Indexed items can
then be used to map data in the usual way. Examples of such mappings may
be seen in the metadata examples shown above (see Section 13.3.2,

113

Curam Workflow Reference Guide

Metadata for a Parallel Manual Activity and Section 13.3.3, Metadata for a
Parallel Decision Activity. The one attribute available on this workflow data
object is:

Context_Parallel.occurrenceCount

Each Parallel Activity Instance is associated with one item from the
Parallel Activity List WDO. The occur r enceCount attribute is the
index of that item within the Parallel Activity List WDO. It is of type
| NTEGER and is a zero-based index.

114

Chapter 14

Activity Notifications

14.1 Overview

The workflow engine is able to notify interested users about the progress of
a workflow process instance. Essentially the workflow engine can raise a
notification when an activity executes if the notification has been specified
in the associated process definition metadata. A notification is specified for
an activity as additional metadata that can be attached to any activity type.

When the workflow engine executes an activity it checks whether a notifica-
tion has been configured for that activity. If one exists, a notification is cre-
ated by the workflow engine detailing that a particular step in the workflow
process has been preformed. The delivery of these notifications to the user is
determined by the notification delivery mechanism configured in the Ciram
application. Notifications may be delivered using emails, as alerts sent to a
user's inbox, or using both emails and alerts.

14.2 Notification Details

A notification is simply information that is sent to a human agent when a
step in the process executes. Notifications manifest themselves as dertsin a
user's inbox or as emails. The agents to which the notification must be sent
are determined by the allocation strategy (see Section 14.3, Notification Al-
location Strategy) specified for the notification. The details that are dis-
played to the user in the alert or email are specified as part of the notifica-
tion metadata.

14.2.1 Metadata

<manual -activity id="1" category="ACl">

115

Curam Workflow Reference Guide

<notification delivery-nechani sm="DVL" >
<subj ect >
<message>
<message-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en" >
The case nunber %n for C ai mant %2s has
been cl osed.
</l ocal e>
</l ocal i zed-t ext >
</ nessage-t ext >
<nessage- par anet er s>
<wdo- attribute wdo- name=
" CaselLi st [Cont ext _Loop. | oopCount]"
nane="identifier" />
<wdo- attri bute wdo- nanme="Per sonDet ai | s"
nanme="user Nanme" />
</ message- par anet er s>
</ message>
</ subj ect >
<body>
<nessage>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Thi s case concerned %n and cl ai mant %2s.
</l ocal e>
</l ocal i zed-text>
</ message-t ext >
<nmessage- par anet er s>
<wdo- attri bute wdo- name=
" CaselLi st [Cont ext _Loop. | oopCount]"
nanme="identifier" />
<wdo- attri bute wdo- nane="Per sonDet ai | s"
name="ful | Nane" />
</ message- par anet er s>
</ message>
</ body>
<al l ocation-strategy type="target" identifier="1" />
<acti ons>
<action page-id="vi ewTaskHone" princi pal -acti on="fal se">
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en" >
View the task associated with the %n case
</l ocal e>
</l ocal i zed-text>
</ nessage-t ext >
<nessage- par anet er s>
<wdo- attri bute wdo- nanme="TaskCr eat eDet ai | s"
nane="casel D' />
</ message- par anet er s>
</ message>
<l i nk- paramet er nane="chil dl D'>
<wdo- attri but e wdo- name=" Chi | dDependent s"
name="chil dl D' />
</l i nk- par amet er >
<mul ti pl e-occurring-action>
<l i st - wdo- nanme>Chi | dDependent s</ | i st - wdo- nanme>
</mul ti pl e-occurring-action>
</ action>
<action page-id="vi ewCaseHone" principal -acti on="fal se">
<nessage>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Vi ew t he case details for %n
</l ocal e>
</l ocalized-text>

116

Curam Workflow Reference Guide

</ nessage-t ext >
<nmessage- par anet er s>
<wdo-attribute wdo-name=
"CaselLi st [Cont ext _Loop. | oopCount]"
nane="identifier" />
</ message- par anet er s>
</ message>
<l i nk- par anet er nane="casel D'>
<wdo- attri bute wdo- name=
"Caseli st [Cont ext _Loop. | oopCount]"
nane="identifier" />
</li nk- par anet er >
</ action>
</ actions>
</notification>

</hﬁhual-activity>

delivery-mechanism

This describes the mechanism used to deliver the notification. The de-
livery mechanisms available are specified in the application codetable
Del i ver yMechani sm Both the Clram application and customers
can extend this codetable and add further delivery mechanisms if re-
quired. The delivery mechanism specified plays no functional role in
the workflow engine as it simply calls the delivery mechanism con-
figured in the application to deliver the newly created notification.

subject
This represents a parameterized text message detailing the subject of the
notification for all locales. This subject will be displayed in the user's

inbox for the notification alert. For details on parameterized messages,
see Chapter 9, Manual.

body

This represents a parameterized text message representing the body of
the text associated with this notification for al locales. When the user
clicks on the notification subject in the inbox, this body text will be dis-
played as the full text of the notification.

allocation-strategy

This represents the allocation strategy used to determine the agents to
which this notification will be sent to (see Section 14.3, Notification Al-
location Strategy).

actions

In the same way a manual activity can have actions associated with it's
task, a notification can have associated actions the notified user can
take. This piece of metadata represents the details of these notification
actions and the metadata details for actions is detailed in Section 9.3,
Task details.

multiple-occurring-action
This signifies that this notification action will represent a multiple oc-

117

14.2.2

Curam Workflow Reference Guide

curring action. This means that if this metadata is specified for a notific-
ation action, the workflow engine will create one action record for each
item in the list workflow data object specified as the multiple occurring
action, when that activity is executed.

It should be noted that when the multiple occurring action is specified
for a notification action, then an attribute from the associated list work-
flow data object must be used as alink parameter for the notification ac-
tion.

list-wdo-name

The name of the list workflow data object for use with the multiple oc-
curring action.

Validations

» A subject must be defined for the notification.

» Every workflow data object attribute mapped to a notification subject
must exist in the containing process definition and be a valid workflow
data object.

 If an indexed item from a list workflow data object (i.e. Casel-
istContext_L oop.loopCount]) is used as a notification subject text para-
meter, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within aloop.

» IftheCont ext _Par al | el workflow data object is used as a notifica-
tion subject text parameter, then the activity containing the notification
must beaPar al | el activity.

o If anindexed item from the Parallel List Workflow Data Object is used
as a notification subject text parameter, then the activity containing the
mapping must be a Parale Activity (i.e Padld-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

* A notification body must be defined.

» Every workflow data object attribute mapped to an notification body
must exist in the containing process definition and be a valid workflow
data object.

o If an indexed item from a list workflow data object (i.e. Casel-
ist[Context_L oop.loopCount]) is used as a notification body text para-
meter, then the workflow data object must be a list workflow data object
and the activity containing the mapping must be contained within aloop.

* IftheCont ext Paral | el workflow data object is used as anotifica-
tion body text parameter, then the activity containing the notification
must beaPar al | el activity.

118

14.2.3

Curam Workflow Reference Guide

If an indexed item from the Parallel List Workflow Data Object is used
as as a notification body text parameter, then the activity containing the
mapping must be a Parale Activity (i.e Padld-
ListWDO[Context_Parallel.occurrenceCount]). The workflow data ob-
ject being indexed by the Context_Parallel Workflow Data Object must
be the Parallel Activity List Workflow Data Object.

An allocation strategy must be defined for an activity notification.

If afunction is specified as the notification allocation strategy, it must be
avalid Curam business method that returnsan Al | ocat i onTar get -
Li st object.

Any rule set specified as the notification allocation strategy must be a
valid allocation rule set.

A delivery mechanism must be defined for an activity notification.

The workflow data object attributes mapped to the notification action
text and notification action link parameters for a notification action must
exist in the containing process definition.

If an indexed item from a list workflow data object (i.e. PersonDe-
tailsList[Context_Loop.loopCount]) is used as a notification action text
or notification action link parameter mapping, then the workflow data
object must be alist workflow data object and the activity containing the
mapping must be contained within aloop.

If the Cont ext _Par al | el workflow data object is used as a notifica-
tion action text or notification action link parameter mapping, then the
activity containing the notification must beaPar al | el activity.

If an indexed item from the Parallel List Workflow Data Object is used
as as a notification action text or notification action link parameter map-
ping, then the activity containing the mapping must be a Parallel Activ-
ity (i.e. PardlelLissWDOJ[Context Parallel.occurrenceCount]). The
workflow data object being indexed by the Context_Parallel Workflow
Data Object must be the Parallel Activity List Workflow Data Object.

The number of placeholders used in the notification subject text, notific-
ation action text and notification body text must equal the number of
mapped workflow data object attributes (for all locales).

The workflow data object specified for use in the multiple occurring ac-
tion must be a valid workflow data object in the context of the contain-
ing workflow process definition. It must also be of typeLi st

At least one attribute from the multiple occurring action list workflow
data object must be utilized in the link parameters specified for a mul-
tiple occurring action.

Code

119

14.2.4

14.3

14.3.1

14.3.2

Curam Workflow Reference Guide

For each action defined, the action page must refer to avalid Clram page in
the application whose page parameters are fully populated by the action link
parameters contained in the notification metadata.

A Local i zabl eStri ngResol ver API is provided to the application
which alows for parameterized message strings to be resolved. The meth-
odsin this API will resolve and return the specified message for the required
locale. Along with this, any workflow data objects to be used in the message
placeholders will be resolved and included as part of the string returned.

As part of the Local i zabl eStri ngResol ver API, a Notifi ca-
tionStringResol ver interface is provided for resolving the paramet-
erized messages associated with notifications. The notification subject,
body, and action text can be resolved for use in the application using the
methods contained in this API. The application should use these methods to
process the notification once the workflow engine invokes the associated
notification delivery method in the application.

Runtime Information

After the workflow engine has completed executing an activity, it checks
whether an associated notification has been defined for that activity. If one
has been defined, the engine determines the users to be notified from the al-
location strategy employed and calls the notification delivery method in the
application with the notification details.

Notification Allocation Strategy

Prerequisites

The notification alocation strategy determines the user or users to be noti-
fied once the associated activity has occurred. Defining the notification al-
location strategy to be used is exactly the same as that used for manual
activity tasks (see Section 9.4, Allocation strategy).

Code

The application must implement the Not i fi cati onDel i very callback
interface to determine how notifications are handled in the application.

The workflow engine will call the del i ver Noti fi cati on method in
the curamutil.workflow. inpl.NotificationDelivery im-
plementation class in order to process the notification. The engine will pass
both the list of allocation targets determined by the allocation strategy and
the details of the required notification to this application method.

The application property
curam custom notifications.notificationdelivery
defines what implementation of the Not i fi cati onDel i very interface

120

Curam Workflow Reference Guide

will be used by the workflow engine to process the notification.

The del i verNoti ficati on method in this default implementation
classis overloaded. This is because the various allocation strategy types re-
turn the allocation targets in different formats. However this is an imple-
mentation detail that developers of custom notification delivery classes
should not have to deal with especially since the business processing for all
versions of the method should be the same.

package curamutil.workfl ow. i npl ;

public interface NotificationDelivery {

bool ean deliverNotification(
final NotificationDetails notificationDetails,
final Object allocationTargets);

bool ean deliverNotification(
final NotificationDetails notificationDetails,
final Map all ocationTargets);

bool ean deliverNotification(
final NotificationDetails notificationDetails,
final String allocationTargetlD);

To mitigate against this issue the
curam core.sl.inpl.Defaul tNotificationDeliveryAdapt
er provides a more convenient mechanism for implementing a work resolv-
er. This class implements the different methods and converts their input
parameters into allocation target lists allowing devel opers of custom notific-
ation delivery logic to extend this class and implement one method that is
called regardless of the source of the allocation targets.

package curam core. sl .inpl;

public abstract class DefaultNotificationDeliveryAdapter
i mpl enents curam util.workflow inpl.NotificationDelivery {

publ i c abstract bool ean deliverNotification(
final NotificationDetails notificationDetails,
final AllocationTargetList allocationTargets);

In addition to this adapter class the application ships with a notification de-
livery implementation that is used out-of-the-box. This class is called
curam core. sl .inpl.Defaul tNotificationDelivery and it
also serves as an example of how to extend the adapter.

The natification delivery strategies are listed in the DELI VERYMECHAN-

121

Curam Workflow Reference Guide

| SMcode table. Adding a new strategy is ssmply a matter of extending this
code table with a new strategy (for example SMS) and implementing a de-
livery strategy that recognizes this code and performs the appropriate logic.
However since the notification delivery class is set using a single applica-
tion property, replacing the
curamcore.sl.inpl.Defaul tNotificationDelivery class
would disable out-of-the-box delivery mechanisms. If the godl is to extend
rather replacing the out-of-the-box delivery mechanisms, custom classes
should extend the
curamcore.sl.inpl.Defaul tNotificationDelivery in a
way that preserves the original functionality. The
curamcore.sl.inpl.Defaul tNotificationDelivery class
has been implemented with this in mind.

package curam core.sl.inpl;

public class Defaul tNotificationDelivery
ext ends Defaul t NotificationDeliveryAdapter {

public bool ean deliverNotification(
NotificationDetails notificationDetails,
Al |l ocationTargetList allocationTargetList) {
return sel ectDeliveryMechani sn{
notificationDetails, allocationTargetlList);

prot ect ed bool ean sel ect Del i ver yMechani sm(
NotificationDetails notificationDetails,
Al | ocati onTar get Li st al | ocati onTargetList) {

bool ean notificationDelivered = fal se;
if (notificationDetails.deliveryMechani sm equal s(
curam codet abl e. DELI VERYMECHANI SM STANDARD)) {
notificationDelivered = standardDeliverNotification(
notificationDetails, allocationTargetList);
} else if (

.r'eiurn notificationDelivered;

}

The curamcore.sl.inpl.DefaultNotificationDelivery
class implements the del i ver Not i f i cat i on method from the abstract
adapter but immediately delegates the identification of the mechanism to
use to a protected method. The protected sel ect Del i ver yMechani sm
method can be overridden by subclasses to identify any custom delivery
mechanisms and perform the appropriate operations as shown in the ex-
ample below:

public class CustomNotificationDeliveryStrategy
extends Defaul tNotificationDelivery {

prot ect ed bool ean sel ect Del i ver yMechani sm(

NotificationDetails notificationDetails,
Al l ocationTargetList allocationTargetList) {

122

Curam Workflow Reference Guide

bool ean notificati onDelivered = fal se;

bool ean superNoti ficationDelivered = fal se;

super Noti ficationDel i vered = super. sel ect Del i ver yMechani sn(
notificationDetails, allocationTargetlList);

if (notificationDetails.deliveryMechani sm equal s(
cur am codet abl e. DELI VERYMECHANI SM CUSTOM)) {
notificationDelivered = custonDeliverNotification(

notificationDetails, allocationTargetlList);

}
return (superNotificationDelivered || notificationDelivered);

Notice that the sel ect Del i ver yMechani sm method in the custom
class first delegates to its super class before executing any of its own logic.
Extending the functionality in this was allows custom classes to invoke the
out-of-the-box delivery mechanism without having to know the specific
codes the parent class recognizes. This approach is aso upgrade friendly as
if a future version of Cdram supports more delivery mechanisms out-
of-the-box a custom class implemented as shown here will not need to
change to avail of the new functionality.

The boolean flag returned from the notification delivery function above is
used to indicate to the Workflow Engine if the notification was delivered to
at least one user on the system. If it was not, then the engine writes a work-
flow audit record detailing this fact.

123

Chapter 15

Transitions

15.1 Overview

Transitions provide the links between activities. They are the primary flow
control construct and dictate the order in which activities will be executed.
Transitions are unidirectional and an activity can have multiple outgoing
and incoming transitions forming branch and synchronization points re-
spectively. Since every process definition must have one start and one end
activity (see Chapter 6, Base Activity), a process definition can be thought of
informally as a directed graph in which activities are the vertices, transitions
are the arcs and every path from the start activity eventually leads to the end
activity.

15.2 Metadata

<wor kf | ow process id="32456" >
<nanme>Wor kf | owTest Pr ocess</ nane>
<wdos>
</ wdos>

<activities>
<start-process-activity id="512">

</éiért-process-activity>
<route-activity id="513" category="ACl">

</}6Ute-activity>
<route-activity id="514" category="ACl">

</f6hte-activity>
<end- process-activity id="515">

</éhd-process-activity>

</activities>
<transitions>

124

Curam Workflow Reference Guide

<transition id="1" fromactivity-idref="512"
to-activity-idref="513" />
<transition id="2" fromactivity-idref="513"
to-activity-idref="514">
<condi ti on>
<expression id="5"
data-item| hs="TaskCreat eDetail s. reservedByl nd"
operation="==" data-itemrhs="true"
openi ng- br acket s="2"/>
<expression id="6"
data-item | hs="TaskCreat eDet ai | s. subj ect"
oper ati on="&anp; gt ;"
dat a-i t em r hs="&anp; quot ; MANUAL&anp; quot ; "
conj uncti on="and" cl osi ng- brackets="1"/>
<expression id="7"
data-item| hs="TaskCreat eDetai | s. st at us"
operation="1="
dat a-i t em r hs="&anp; quot ; OPEN&anp; quot ; "
conj unction="or"/>
<expression id="8"
data-item| hs="TaskCreat eDetail s. st at us"
oper ati on="&anp; | t; ="
dat a-i t em r hs="&anp; quot ; | NPROGRESS&anp; quot ; "
conj unction="or" cl osi ng-brackets="1"/>
</ condi ti on>
</transition>
<transition id="3" fromactivity-idref="514"
to-activity-idref="515">
</transitions>
</ wor kf | ow pr ocess>

transitions

A workflow process definition must contain at least one transition. This
contains the details of all of the transitions between the activities in the
specified workflow process definition.

transition

This contains the details of one transition between two activities in the
specified workflow process definition. The following mandatory fields
that constitute a transition are described below:

id
Thisisa64- bi t identifier supplied by the Clram key server when
transitions are created in the Process Definition Tool (PDT). The
transition identifier is required to be unique within a process defini-

tion but global uniqueness within all of the process definitions on
the system is not required.

from-activity-idr ef
This is the 64- bi t identifier of the source activity of the trans-
ition.

to-activity-idref
Thisisthe 64- bi t identifier of the target activity of the transition.

condition
Transitions can optionally have a condition to decide whether or not the

125

15.3

15.4

Curam Workflow Reference Guide

given transition will be followed. A condition is a list of expressions
that perform logical operations on workflow data objects attributes.
Conditions are described in more detail in Chapter 16, Conditions

Validations

» The source activity defined for the transition must be a valid activity
within the containing workflow process definition.

» The target activity defined for the transition must be a valid activity
within the containing workflow process definition.

* The source and target activities defined for a transition cannot be the
same activity.

* The start process activity in aworkflow process definition must not con-
tain any incoming transitions.

* The end process activity in a workflow process definition must not con-
tain any outgoing transitions.

« All activities defined in the workflow process definition, except for the
end process activity, must contain at |east one inbound transition.

« All activities defined in the workflow process definition, except for the
start process activity, must contain at least one outbound transition.

Runtime Information

Activities that perform some application related work (as opposed to work-
flow engine only work such as route and end process activities) require a
clear transactional boundary between the engine and application code. It is
also useful to have asynchronous invocations between the workflow engine
and the application (e.g. a user should not have to wait while workflow
transitions to the next activity before control is returned to them in the user
interface).

To this end, there are three distinct functions present in a workflow activity,
start(), execute() and conpl et e(). After the completion of an
activity in the workflow process instance, the workflow engine calls the
function to continue the process. This function evaluates the outgoing trans-
itions from that activity to determine which one(s) will be followed.

For each activity to be followed, the corresponding st art () function is
called. The appropriate activity instance data is then set up for that activity.
If the activity is to be executed directly with no IMS (Java Message Service
(JIMS) APl is a part of Java EE) messaging required (i.e. a route activity is
always executed directly as there is no application related work involved),
the execut e() method is called here. Otherwise, a IMS message is sent
to execute the specified activity (i.e. an automatic activity). The workflow
message handler resolves the process and activity specified in the message

126

Curam Workflow Reference Guide

and callstheexecut e() function on the activity.

After calling the application code to carry out the work specified by the
activity, another message is sent to complete the activity. Again, the work-
flow message handler resolves the process and activity specified in the mes-
sage and calls the conpl et e function for the activity. After marking the
activity as complete, the function to continue the process is called again to
resolve the set of transitions to be followed from the completed activity and
the process begins again.

127

Chapter 16

Conditions

16.1 Overview

The flow control constructs described in Transitions and Loop Begin and
Loop End Activities require or support the evaluation of conditions to de-
termine how the workflow should proceed. The Loop Begin activities must
have some metadata that specifies the loop exit conditions, while transitions
can optionally have a condition to decide whether or not the given transition
will be followed.

This chapter describes the process definition metadata construct that repres-
ents a condition. A condition isalist of expressions that perform logical op-
erations on workflow data objects attributes. The condition itself is a com-
pound whose value is conjunction or disunction of its constituent expres-
sions. The parent constructs (loops and transitions) are responsible for tak-
ing appropriate actions as a result of the evaluation of conditions.

16.2 Metadata

<wor kf | ow process id="32456" >
<activities>

</activities>
<transitions>
<transition id="1" fromactivity-idref="512"
to-activity-idref="513">
<condi ti on>
<expression id="5"
data-item| hs="TaskCreateDetail s. reserveToMel nd"
operation="==" data-itemrhs="true"
openi ng- br acket s="2"/ >
<expression id="6"
data-item| hs="TaskCreat eDetail s. casel D'
oper ati on="&anp; anp; gt ; "

128

Curam Workflow Reference Guide

data-itemrhs="2" conjuncti on="and"
cl osi ng- bracket s="1"/>
<expression id="7"
data-item| hs="TaskCreat eDetail s. st at us"
oper ati on="1!="
dat a-i t em r hs="" ; Conpl et ed" ;"
conj uncti on="or"/>
<expression id="8"
data-item| hs="TaskCreat eDetail s. st at us"
oper ati on="&anp; anp; | t; ="
dat a-i t em r hs="" ; Cl osed" ;"
conj uncti on="or" cl osi ng- brackets="1"/>
</ condi ti on>
</transition>
<transition id="2" fromactivity-idref="512"
to-activity-idref="513">
<condi ti on>
<expression id="9" function="i sNot hi ng"
data-itemrhs="TaskCreateDetail s. subject"/>
</ condi ti on>
</transition>
<transition id="3" fromactivity-idref="513"
to-activity-idref="514">
<condi ti on>
<expression id="10"
data-itemrhs="TaskCreat eDetail s. reserveToMl nd"
conj uncti on="and" function="not" />
</ condi ti on>
</transition>
<transition id="4" fromactivity-idref="514"
to-activity-idref="515">
<condi ti on>
<expressi on id="6"
data-item| hs
=" d ai mant Dependent s[Cont ext _Loop. | oopCount]"
oper ati on="&anp; anp; gt ; "
data-itemrhs="20"
conj uncti on="and"
cl osi ng- bracket s="1"/>
</ condi tion>
</transition>
</transitions>
</ wor kf | ow process>

condition

This metadata is mandatory for a loop begin activity (as a loop must
have an exit condition specified for it) but optiona for a transition (a
transition may not have a condition specified for it). It contains the de-
tails of all the expressions defined for the condition.

expression

This contains the details of one expression contained in a condition.
There may be one or many expressions specified for an associated con-
dition. Two types of expression may be defined in a condition. These
are function expressions (using one of two predefined functions, not ()
and i sNot hi ng()) and data item expressions (where the condition
expression created applies the chosen operator to either two workflow
data object attributes, or a workflow data object attribute and a con-
stant). A transition expression consists of the following attributes:

id

129

Curam Workflow Reference Guide

This represents a 64- bi t identifier supplied by the Clram key
server when transition expressions are created in the PDT. The ex-
pression identifier is required to be unique within a process defini-
tion but globa uniqueness within all of the process definitions on
the system is not required.

data-item-rhs

This represents the name of the data item to use on the right hand
side of the condition expression. In the case of a dataitem condition
expression, it may represent a workflow data object attribute (see
Workflow Data Objects) or a constant value that the chosen operat-
or will be applied to. For function condition expressions, this rep-
resents a workflow data object attribute that either of the two pre-
defined functions will be used against to evaluate the condition.

data-item-lhs

This metadata tag is optional asit is not required for a function con-
dition expression. In the case of a dataitem condition expression, it
represents the name of the data item to use on the left-hand side of
the condition (i.e. aworkflow data object attribute).

operation

This metadata tag is optional asit is not required for a function con-
dition expression. In the case of a dataitem condition expression, it
represents an identifier for the logical operation that will be applied
to either two workflow data object attributes or a workflow data ob-
ject attribute and a constant value. The following is the list of valid
operators that may be used in a dataitem condition expression:

Operator Explanation

equal to

not equal to

less than or equal to
greater than or equal to
less than

greater than

Table 16.1 Condition Expression Operators

conjunction

This represents an identifier for a logical conjunction that may be
used in either a function or data item condition expression. There
are two possible values for this attribute, and (the default) and or .
When a condition consists of multiple expressions, the logical con-
junction is used in the evaluation of the complete condition.

function

Thisisoptional asit is only used when specifying a function condi-
tion expression. As stated previously, there are two predefined

130

16.3

Curam Workflow Reference Guide

functions, Not () and i sNot hi ng(). The Not () function acts
as alogical inversion operator. In normal cases, thisis applied to a
boolean value. Thei sNot hi ng() function may be applied to any
workflow data object attribute type other than a boolean value. It
may be used to test the scenarios where required data does not exist
or has not been provided. The function returns a boolean value of
Tr ue if the workflow data object attribute being examined does not
contain any data.

opening-brackets

This is optional (the default is 0) as it may not be specified for
either type of condition expression. It represents the number of
opening bracketsto insert at the start of the expression.

closing-brackets

This is optional (the default is 0) as it may not be specified for
either type of condition expression. It represents the number of
closing brackets to insert at the end of the expression.

The number of opening and closing brackets specified for an indi-
vidual expression do not have to match (unless of course there is
only one expression in the condition). The overall number of open-
ing and closing brackets in the condition as a whole (with all of the
expressions included) must be the same. Care should therefore be
taken when specifying the number and position of opening and
closing brackets within an individual expression, and the condition
as awhole, as these brackets help determine how the condition and
the individual expressions within that condition are evaluated. The
same care should be taken when specifying the conjunction of an
expression as failure to do so can lead to unexpected results.

Validations

» The workflow data object attribute specified as the right hand side data
item of the condition expression must be a valid workflow data object
attribute in the context of the containing workflow process definition.

» The workflow data object attribute specified as the left hand side data
item of the condition expression must be a valid workflow data object
attribute in the context of the containing workflow process definition.

» The operator specified in adataitem condition expression must be aval-
id and supported operator.

» The function specified in afunction condition expression must be avalid
and supported function.

* The conjunction specified in a condition expression must be valid and
supported conjunction.

» The number of opening brackets and the number of closing brackets
must be equal in the context of the overall condition.

131

Curam Workflow Reference Guide

If the function Not () is specified for a function condition expression,
then the type of the workflow data object attribute specified as the right
hand side data item of the expression must be of type BOOLEAN.

If the function i sNot hi ng() is specified for a function condition ex-
pression, then the type of the workflow data object attribute specified as
the right hand side data item of the expression must not be of type
BOCLEAN.

If the right hand side data item of a data item condition expression is a
workflow data object attribute, the type of this attribute must be compat-
ible with the corresponding left hand side data item workflow data ob-
ject attribute. Likewise, if the right hand side data item has been spe-
cified as a constant value, it must be compatible with the type of the cor-
responding left hand side data item workflow data object attribute.

If either the right hand side or |eft hand side of a transition condition ex-
pression contains an indexed item from a list workflow data object (i.e.
ChildDependents[Context_L oop.loopCount].age), then the associated
workflow data object must be a list workflow data object and the activit-
iesinvolved in the transition must be contained within aloop.

For aloop condition expression, if either the right hand side or left hand
side of the expression specifies the si ze() attribute for a workflow
data object, then that workflow data object must be a list workflow data
object.

For aloop condition expression, if either the right hand side or left hand
side of the expression specifies the si ze() attribute for a workflow
data object, then the item on the other side of the expression must be as-
signable to the type | NTEGER.

For aloop condition expression, if either the right hand side or left hand
side of the expression specifies the i sEnpt y() attribute for a work-
flow data object, then that workflow data object must be a list workflow
data object.

For aloop condition expression, if either the right hand side or left hand
side of the expression specifies the i sEnpt y() attribute for a work-
flow data object, then the item on the other side of the expression must
be assignable to the type BOOLEAN.

132

Chapter 17

Split/Join

17.1 Introduction

Transitions link activities in a process definition. In the most basic configur-
ation of activities and transitions, each activity has only one incoming and
one outgoing transition. However it is often useful to follow more than one
path out of an activity resulting in a split (i.e. multiple transitions emanating
from an activity). To support a valid block structure in a process definition
(see Chapter 18, Workflow Structure), each split must be matched by ajoin
(i.e. multiple transitions meeting at one activity). In general a split alows
multiple threads of work to be done at the same time while ajoin is the re-
ciprocal synchronization point for those threads.

There are two reasons for an activity to have a split (and by extension some
other activity down the line to have a join). The first is to alow work that
does not have dependencies to be done in parallel while the second is to al-
low a choice to be made between a number of different paths in the work-
flow.

At the metadata level, each activity has a split and a join type. When the
activity has only one outgoing or incoming transition a type of none is as-
signed to the split or join respectively. The other two split and join types,
choi ce (also known as XOR) and par al | el (also known as AND), are
self explanatory and are the primary subject of this chapter.

17.2 Choice XOR Split

17.2.1 Metadata

<manual -activity id="1" category="ACl">

133

Curam Workflow Reference Guide

<join type="and"/>
<split type="xor">

<transition-id idref="1"/>
<transition-id idref="2"/>
<transition-id idref="3"/>
<transition-id idref="4"/>

</split>

<t ask>

</t ask>

<al |l ocation-strategy type="target"
i denti fi er =" HEARI NGSCHEDULE" / >
<event - wai t >
</ event - wai t >
</ manual - acti vity>

split
This is present for each activity and it contains the details of the split
from the activity. This includes a list of the transitions from the spe-
cified activity that will be resolved by the workflow engine when the as-
sociated activity is completed to examine if they can be followed or not.

The order of the transitions in this list is important for a split type of
XOR asit isthefirst transition that is eligible in the ordered list of trans-
itions that will be followed by the workflow engine. In the metadata ex-
ample above, if the transition conditions for transition identifiers 2, 3
and 4 are satisfied, it is the transition with the identifier of 2 that will be
followed as thisisthe first eligible transition in the list of ordered trans-
itions.

type

This represents the type of the split. As described above, there are
three possible split types. A split type of none indicates that there
is only one outgoing transition from the specified activity. A split
type of xor indicates a choice and this means that the first eligible
transition from the list of ordered transitions will be followed. A
split type of and indicates a parallel path of execution which en-
sures that al of the eligible transitions listed in the ordered list of
transitions will be followed in parallel.

transition-id
This contains a reference to the specified transition. There will be mul-
tiple entries of this metadata tag when the split typeisxor or and.
idref
This contains a reference to a transition in the workflow process
definition.

17.3 Parallel AND split

134

Curam Workflow Reference Guide

17.3.1 Metadata

<manual -activity id="1" category="ACl">

<jbih type="none"/>
<split type="and">

<transition-id idref="1"/>
<transition-id idref="2"/>
<transition-id idref="3"/>
<transition-id idref="4"/>

</split>

<t ask>

</t ask>

<al |l ocation-strategy type="target"
i denti fi er =" HEARI NGSCHEDULE" / >
<event - wai t >
</ event - wai t >
</ manual - acti vity>

The metadata for the split type of and is similar to the split type of xor
(see Section 17.2, Choice XOR Split). The difference is that the type of split
is specified as and. This ensures that when the workflow engine is determ-
ining the list of transitions to follow from a specified activity, the order of
thetransitionsin thislist is not important as all eligible transitionsin an and
split will be followed. The ordered list of transitionsis maintained in thisin-
stance for this split type to facilitate the changing of the split type from and
to an xor, in which case the order of the transitions becomes important

again.

135

18.1

18.2

Chapter 18

Workflow Structure

Overview

The structure of a workflow process is determined by the activities in the
process and the transitions between them. Hence a workflow forms a Graph
in which the activities are vertices and the transitions are arcs (the graph
formed by a workflow can be viewed using the Visualize Wor kflow Process
feature in the Process Definition Tool).

In order for the workflow engine to successfully interpret and execute a pro-
cess, the graph formed by that process must meet certain criteria. This
chapter presents those criteria under two main headings. Graph Structure
and Block Structure.

Graph Structure

Since athe set of activities and transitions in a process form a Graph, Graph
Theory can be applied to catch several well-known structural problems be-
fore aprocessis ever executed.

]

H Graph Theory

Graph Theory is a branch of mathematics. Fortunately, those parts
of graph theory that are relevant to workflow are very smple.
Hence, this chapter does not require any prior knowledge of graph
theory (a degree in mathematics is definitely not required!). Thereis
a wedlth of information about graph theory on the Internet, where
further discussion on many of the topics discussed in this chapter
can be easily found.

For example: consider a process in which an activity has a transition to an-
other activity, which in turn has a transition back to the first activity. This
forms a cyclein the process graph.

136

18.3

18.3.1

Curam Workflow Reference Guide

If there were no conditions on the transitions, the process would be guaran-
teed to end up in an infinite loop. These loops are known as informal loops
(or "ad-hoc' loops) and their presence renders several useful structural valid-
ations impossible. For this reason (among others), Curam workflow
provides formal constructs for delimiting iterative sections of a process (the
loop-begin and loop-end activities). This allows it to detect the presence of
ad-hoc loops in processes and prevents such processes from being released.

i Code Analogies
Many developers will be familiar with the programming-language
GOTO statement and the curly braces commonly used to delimit the
start ({) and end (}) of aformal loop.

GOTO isanaogous to ad-hoc loops in aworkflow. The curly braces
are analogous to the formal loop-begin and loop-end activities in a
workflow.

Block Structure

There are several workflow elements which can affect the choice of flow
path (or paths) through aworkflow at runtime. These include:

¢ Choice (XOR) Splits and Joins
« Parallel (AND) Splits and Joins
* Loop Begin and Loop End Activities

These elements aways come in pairs. This is because they demarcate areas
where the process should exhibit a specific behavior (one related to the flow
of control). These areas are normally referred to as 'blocks, because they
have a specific start-point that must have a corresponding end-point.

Consider a process with a structure where al paths emerging from a Choice
Split (guaranteed to only follow one outbound path) all converge at a Paral-
lel Join (which will wait until al inbound paths complete before executing
the next activity). In this case, the process is guaranteed to stall at the Paral-
lel Join. Thisisan example of a problem with the block-structure that can be
caught by validations before a processis even executed.

An Analogy for Blocks

A common analogy for how "blocks" work in a workflow is the way that
brackets (like this!) work in a sentence. Brackets have an explicit start point
'(", which is aways matched by a specific end-point *)'. They demarcate an
area of the sentence that has a specific meaning.

The way that brackets work in a mathematical expression is a closer ana-
logy. In addition to matching opening and closing brackets, a mathematical

expression can use severa types of brackets. The bracketed expressions can
be nested inside one another, but cannot be interleaved. Thisis very smilar

137

18.3.2

18.4

Curam Workflow Reference Guide

to how blocks work in aworkflow.

Block Types Supported by Workflow

The following sections describe the different types of blocks in Clram
workflow, how they begin/end and what their purpose is.

'‘Choice' (XOR) Block

A Choice Block is started at a Choice (XOR) Split and ended at a Choice
(XOR) Join (the 'brackets). It indicates that, of the possible paths within the
block, no more than one can be followed.

The split has severa transitions outbound from it, indicating the possible
paths that a process instance could follow. Since thisis a Choice block, the
paths are mutually exclusive - only one will be followed by a given process
instance.

The Choice Split must be matched by a corresponding Choice Join. Thisin-
dicates the point at which the process ceases to be distinct for each path, so
the paths are merged back together (i.e. the remaining process is common).

'‘Parallel’ (AND) Block

A Parallel Block is started at a Parallel (AND) Split and ended at a Parallel
(AND) Join (the 'brackets). It indicates that, of the possible paths within the
block, many or all can be followed.

The split has several transitions outbound from it, indicating the possible
paths that a process instance could follow. Since thisis a Parallel block, any
number of the paths can be followed in parallel (assuming their transition
conditions are met).

The Paralel Split must be matched by a corresponding Parallel Join. This
indicates the point at which all the parallel paths must be synchronized be-
fore the workflow can continue.

'‘Loop’ Block

A Loop Block is started at a loop-begin activity and ended at a loop-end
activity (the 'brackets). It indicates that the section of the workflow delim-
ited by the loop-begin and loop-end activities should be repeated as long as
the loop condition is met.

The loop-begin activity marks the point to which execution should return if
the loop condition is met (i.e. the place to return to if the engine determines
that the loop should iterate). The loop-end activity marks the point to which
execution should jump if the loop condition is not met.

Structural Rules

138

18.4.1

18.4.2

Curam Workflow Reference Guide

There are certain structural rules that workflow designers should be aware
of when constructing process definitions. When a Ciram workflow process
is validated, the validations assess whether the structure of the process con-
forms to these rules. Like al validations, the am is to ensure that the pro-
cess can be executed by the workflow engine.

Graph Structure Rules

A Cdram process must form a graph that has the following properties: direc-
ted, connected and acyclic. This may sound complicated, but these are just
the technical terms for some very simple graph properties.

« A "directed" graph is one in which each edge only goes one way (it is
usually referred to as a digraph). In workflow terms, this means that a
transition from activity A to activity B cannot be used to get from B
back to A. Thisis agiven in Caram workflow. It is mentioned here only
because the 'acyclic' property (see below) is defined differently for
graphs and digraphs.

* A "connected" graph is one in which every vertex can be reached. In
workflow terms, this means that every Activity in the process must be
reachable on at least one path from the start activity to the end activity.

This prevents workflows from having a structure such that one or more
activities could never be executed.

* Finaly, an "acyclic* digraph is one in which there are no directed

cycles. In workflow terms, this means there can be no ad-hoc loops (i.e.
loops constructed using transitions instead of loop-begin and loop-end
activities).
Ad-hoc loops may seem convenient, but (like GOTO statements in pro-
gramming languages) they can make a process very difficult to read and
understand. Using explicit loop constructs leads to clearer, more under-
standabl e process definitions.

In addition, it allows the engine to know where looping can occur, o it
can keep track of how many times aloop has iterated at runtime.

Block Structure Rules

As mentioned earlier, the way that brackets work in a mathematical expres-
sion is a close analogy for how "blocks' work in a workflow. Recall - there
are severa types of blocks: Choice, Parallel and Loop. In Cairam workflow:

* Any block-starting constructs (Choice Split, Parallel Split or Loop- Be-
gin Activity) must be terminated by a corresponding block-ending con-
struct (Choice Join, Paralel Join or Loop- End Activity respectively).

In the case of Splitsand Joins - all paths outbound from a split must con-
verge at the corresponding Join.

139

Curam Workflow Reference Guide

Rationale

=

Requiring Splits and Joins (for example) to be matched im-
proves readability. In a section containing multiple paths, it
makes it clear whether a single path (or many) can be followed.
This in turn makes it clear whether or not synchronization is re-
quired at the point where the paths merge.

If they were not required to match, it would be possible (easy!)
to model processes that would be guaranteed to stall, or ones in
which the end of the process could be reached before some
activities had finished executing.

Blocks can be nested within each other (e.g. a Choice Split inside a
Loop), but they cannot be interleaved (e.g. None of the transitions from
the choice split can go to an activity outside the loop).

This helps avoid situations that are difficult for the engine to process and
are very unintuitive for workflow devel opers.

Consider a Loop that contains a Join, where the Join has two inbound
transitions. one from an activity inside the loop, the other from an activ-
ity outside the loop.

It is very difficult in this situation to decide how the join synchroniza-
tion should work. One inbound transition can only fire once, the other
can fire multiple times. Any rules for handling such a situation in the
would be arbitrary and hence unintuitive.

Workflows defined using Choice, Parallel and Loop blocks have a clear,
simple structure whose meaning can be understood at a glance.

18.5 Validations

18.5.1

A valid Cdram workflow must form a directed, connected, acyclic graph
that is block-structured. For the most part these properties (directed, connec-
ted, acyclic) are discrete and so they can be checked independently by the
Process Definition Tool (PDT) before releasing a process. The structural
validations performed on a process definition are done in a distinct order
and these are outlined below.

Simple Syntactic Checks

The first set of structural validations carried out are simple syntactic checks.
These ensure that the activity joins and splits (see Chapter 17, Split/Join) in
the process definition are set up correctly. These validations include:

All activities except the start and end activities must have at least one
inbound and one outbound transition.

Any activity with more than one inbound transition must have a join
type specified (i.e. ajoin type not equal to NONE).

140

18.5.2

18.5.3

Curam Workflow Reference Guide

* Any activity with more than one outbound transition must have a split
type (i.e. asplit type not equal to NONE).

* Any activity with exactly one inbound transition must have a join type
of NONE.

* Any activity with exactly one outbound transition must have a split type
NONE.

 Thegplittypefor aPar al | el activity must be NONE.
 Thejointypefor aPar al | el activity must be NONE.

« AParall el activity must have exactly one inbound transition.
« A Parall el activity must have exactly one outbound transition.

» The split type of the activity on the far side of the incoming transition to
aPar al | el activity must be NONE.

» The join type of the activity on the far side of the outgoing transition
fromaPar al | el activity must be NONE.

Graph Checks

The second set of structural validations carried out are graph checks. These
ensure the flow graph is a directed, connected acyclic graph. These valida-
tionsinclude:

» The workflow must form a 'connected’ graph. This means that each
activity must appear on at least one path from the start activity to the
end activity.

* The workflow must form an acyclic digraph. This means that there can
be no path through the workflow that hits the same activity twice. This
validation checks for cycles created by transitions only - cycles created
with loop-begin and loop-end activities are perfectly valid.

» Every instance subgraph within the workflow graph must correctly ter-
minate. This means that starting at the start activity, every possible path
through the workflow must end up at the end activity.

Block Checks
The third set of structural validations carried out are block checks. These en-
sure ensuring that the flow graph is correctly block-structured.

The block-start constructs are: Start Process Activity, Loop Begin Activity,
Paralel (AND) Split and Choice (XOR) Split. Their corresponding block-
end constructs are: End Process Activity, Loop End Activity, Parallel
(AND) Join and Choice (XOR) Join.

Based on these, the following block-structure validations are executed:

141

Curam Workflow Reference Guide

» For every block start, there must be a corresponding block end (i.e. if
there is a Loop Begin activity in the workflow, then there must be a cor-
responding Loop End activity).

* The block start/end types must match (i.e. if there is a Parallel (AND)
Split present in the workflow graph, then this must be matched by a cor-
responding Parallel (AND) Join).

* Blocks can be nested but not interleaved.

142

19.1

19.2

Chapter 19

Workflow Web Services

Overview

Caram workflows can inter-operate with other workflow systems through
support for specific aspects of the Oasis group's Business Process Execution
Language (BPEL) standard. BPEL processes can enact Curam workflow
processes and be notified when the process compl etes.

The Caram workflow engine is not intended to be a fully fledged BPEL or-
chestration engine. Instead the Cdram workflows should be able to particip-
ate in BPEL orchestrated processes. Thisis done by providing functionality
to expose Curam workflow processes as web services that can be invoked
from BPEL process partner links.

Exposing a workflow web service

Workflow web services build on top of the existing Caram web services
support. In particular the workflow engine requires a Business Process Ob-
ject (BPO) modeled as a Document Oriented Web Service (see the Cliram
Inbound Web Services chapter of the Cliram Modeling Reference Guide for
details).

The web service BPO is just a front end to the workflow enactment API
(curamutil.workfl ow. i npl.Enact ment Servi ce). This being
the case only one such BPO is required per application. An appropriate BPO
is adready provided in the Cdram application: Logi cal

Vi ew. : Met aMbdel : : Curam : Facades: : Wr kf | ow:. : WebSer vi

ce: : Wor kf | owPr ocessEnact nent .

To wuse workflow web services the BPO named Logi cal

Vi ew. : Met aModel : : Curam : Facades: : Wr kf | ow. : \ebSer vi

ce: : Wor kfl owPr ocessEnact nent must be assigned a server com-
ponent of stereotypewebser vi ce.

143

19.2.1

19.2.2

Curam Workflow Reference Guide

Curam web services can be customized in other ways for example making
them secure using WS-Security as described in the Secure Web Services
chapter of the Cliram Modelling Reference Guide. All customizations for
workflow web services must be made to this BPO.

i Note
Since all workflow web services are handled by the same BPO any
customizations will affect all process definitions that are exposed as
web services.

Process Enactment

Exposing a Cdram workflow process definition as a web service simply re-
quires marking it as such in the Process Definition Tool (PDT) or directly in
the metadata as described in Chapter 3, Process Definition Metadata. Once
the process definitions have been marked as web services the server, the
server EAR and the web services EAR file must be rebuilt.

Like other Caram web services the WSDL for the service can only be ac-
cessed once the web services EAR has been deployed. The name of work-
flow web service is the same as the process name. Thus the WSDL can be
accessed a a URL smilaa to the following: ht-
tp://testserver:9082/CuramW S/services/<ProcessName>2wsdl

The content of the WSDL is determined in part by the input to the process
(the WDO attributes marked as required for enactment) and the process out-
put (the WDO attributes marked as process output) (see Section 4.2,
Metadata). The WSDL port type is the process name and the operation to
enact aprocessisawaysst art Pr ocess.

<wsdl : port Type name=" SoneCur ambr kf | ow' >
<wsdl| : operati on nane="startProcess">
<wsdl : i nput nessage="intf:startProcessRequest"
nane="st art ProcessRequest "/ >
<wsdl : out put nmessage="intf:startProcessResponse"
name="st art ProcessResponse"/ >
<wsdl : fault nessage="intf:|nformational Excepti on"
nane="I| nf or mat i onal Excepti on"/ >
<wsdl : faul t nessage="intf: AppExcepti on"
nane="AppExcepti on"/>
</ wsdl : oper ati on>
</ wsdl : port Type>

Example 19.1 Process Enactment Port Type

Process completion callback
An external system (probably but not necessarily a BPEL process) that en-

acts a Caram workflow via web services will often require notification that
the process completed and possibly some output data from the process

144

19.3

Curam Workflow Reference Guide

definition. Doing this requires a web service that will be invoked when the
process completes to be specified for each process definition.

The callback web service is specified in the process definition metadata us-
ing the PDT or directly in the metadata as described in Chapter 3, Process
Definition Metadata.

i Note
Before use in a workflow process definition the callback web ser-
vice must be registered as a Ciram outbound web service connector
as described in the Curam Outbound Web Service Connectors
chapter of the Caram Modeling Reference Guide.

The callback web service must be implemented by an external system but
conform to a port type definition specified by the Cdram workflow web ser-
vice, Section 19.3, Invocation from BPEL processes has further details.

Invocation from BPEL processes

The creation of BPEL processes that enact Curam workflow processes is out
of the scope of this document. However the WSDL for each workflow pro-
cess web service contains information that can be used by BPEL processes.

Callback Port Type

Thereis aport typein WSDL for a Cdram workflow web service that is
not implemented by the service itself. The name of this port type is the
name of the process with the word "Complete® appended to it
(<Pr ocessNane>Conpl et e).

The purpose of this unimplemented port type is to define the web ser-
vice interface that a Cram workflow web service expects to be imple-
mented by the BPEL process that enacted it. This port type that must be
implemented by the callback web service configured in the process
definition (see Section 19.2.2, Process completion callback).

<I--Inpl enented by the BPEL process-->
<wsdl : port Type name="SoneCur am\br kf | owConpl et e" >
<wsdl : operati on name="processConpl et ed" >
<wsdl : i nput nessage="intf: processConpl et edRequest "
nane="pr ocessConpl et edRequest "/ >
</ wsdl : oper ati on>
</ wsdl : port Type>

Example 19.2 Callback Port Type

Partner Link Type

Technically the only thing necessary to allow a Caram workflow pro-
cess to participate in a BPEL orchestrated process is to expose the pro-
cess as a web service. However it is possible to add some metadata to

145

Curam Workflow Reference Guide

assist the BPEL process developer by defining the port types involved
in the partner link and the roles they play.

The BPEL specification alows partner link types to be defined in the
WSDL for the service to be invoked in the partner link using the WSDL
extension mechanism. The WSDL generated for a Caram workflow
web service defines the partner link type it expects to participate in and
specifies the port types that play each role.

<I--Partner link type-->
<part ner Li nkType nane="Cur am\\ér kf | owPar t ner Li nk"
xm ns="http://schemas. xm soap. or g/ ws/ 2003/ 05/ part ner-1i nk/">
<rol e nane="cur anfServi ce" >
<port Type nane="tnsl: SoneCur amor kf | ow'/ >
</rol e>
<rol e name="part ner Servi ce">
<port Type nane="tnsl: SoneCur amor kf | owConpl et e"/ >
</rol e>
</ partnerLi nkType>

Example 19.3 WSDL extensions for BPEL

146

20.1

20.2

Chapter 20

File Locations

Overview

While there are utilities like the Process Definition Tool PDT and other ad-
ministration user interfaces, the outputs of such tools often need to be expor-
ted and version controlled. Of course these externalized files need to be put
back into the runtime system when building or installing Caram. The pattern
in Cdram is to place such files into a predefined source folder from which
they are loaded onto the database (perhaps after some pre-processing). This
chapter describes the location of workflow related source files.

Workflow Process Definition Files

Workflow process definitions (both released and unreleased) can be impor-
ted onto the relevant database table using the standard build database tar-
get.

These workflow process definitions must be stored in XML files in a
wor kf I ow subdirectory under the relevant Caram server component dir-
ectory (e.g. ...\ EJBServer\ conponent s\ cor e\ wor kf | owfor the
core component or
...\ EJBSer ver\ conponent s\ Appeal \ wor kf | ow for the Ap-
peal component etc.).

Each component in the Caram application can have a workflow directory
containing the process definition XML files relevant to it. Any process
definition files stored in these workflow directories will automatically be
imported when the build database target is executed. If the process defini-
tion files are not valid or if the name and version of the definitions do not
match those used in the filenames, the import will fail.

The workflow process definition XML files on the file system must follow a
strict naming convention. Thisis asfollows: Process Nane_vProcess
Ver si on. xm where:

147

20.2.1

20.3

Curam Workflow Reference Guide

* Process Nane isthe name of the workflow process.

* Process Versi on istheversion of the workflow process.

The same version of a process definition can exist in multiple components
in the Caram application. The version imported will always be taken from
the component with the highest component order precedence. Component
order precedence is configured using the COVPON-

ENT_ORDER PRECEDENCE environment variable.

Each process definition when imported will be assigned a new process
definition identifier that is unique for the database it is imported onto. Dif-
ferent versions of the same process definition will be assigned the same
unique identifier and only one unreleased version of a process definition can
be imported. To handle invalid workflow process definitions loaded during
the build database target, strict validations are in place in the workflow en-
gine. These ensure that a workflow process definition cannot be loaded into
the process definition cache and executed unless it passes all of the process
validations first. These validations are described in the earlier chapters of
this document.

Customizing Workflow Process Definition Files

Creating New Workflow Process Definition Files

All new workflow process definition files must be created in the workflow
subdirectory of the. . .\ EJBSer ver\ conponent s\ cust omdirectory.
To create a new process definition file, the PDT may be used to create the
required definition and enter all the details. The definition may then be ex-
ported to afile by the tool and placed in the location specified above.

Changing An Existing Workflow Process Definition File

Using the PDT, view the latest version of the process definition that requires
modification. Create a new version of that process definition using the tool.
Make the changes, validate it and release the workflow.

Export the newly released workflow process definition using the PDT and
place it into the workflow subdirectory of the
...\ EJBSer ver\ conponent s\ cust omdirectory.

Event Definition Files

Events provide a mechanism for loosely-coupled parts of the Caram applic-
ation to communicate information about state changes in the system. When
one module in the application raises an event, one or more other modules re-
ceive notification of that event having occurred provided they are registered
as listeners for that event. To make use of this functionality, some events
have to be defined, some application code must raise these events, and some

148

Curam Workflow Reference Guide

event handlers have to be defined and registered as listeners to such events.

Events are defined in Caram in XML files, that specify both the event
classes and the event types. These files are created with a. evx extension
and are placed in the events of a Curam component (e.g.
... EJBSer ver\ conponent s\ cor e\ event s) from where they are
picked up and processed by the build scripts.

There are two types of output generated by the evgen command; . j ava
files (for code constants that make the use of events less error prone) and
. dnx files (Cdram database scripts for loading event definitions onto the
database). The Java artifacts produced from a merged event files are placed
in the /build/svr/events/gen/[package] directory, where
[package] is the package attribute specified in the event definition file.
The database scripts produced from a merged event files are placed in the /
bui | d/ svr/ event s/ gen/ dnx directory.

Chapter 10 of the Curam Server Developer's Guide provides a comprehens-
ive description of events and how they may be used in the Caram applica-
tion.

149

21.1

21.2

Overview

Chapter 21

Configuration

For the most part, configuration options are not global across all workflow
process definitions. Rather they are specific to each definition and hence are
held within the actual process definition itself. That said, there are a small
number of application properties that affect the Cdram Workflow Manage-
ment System as awhole. This chapter describes those properties.

Application Properties

The following application properties can be set in the Application.prx file:

Property Name

Description

curam.custom.workflow.workr Purpose: The fully-qualified name of the

esolver

application class that implements the

Wor kResol ver calback interface. See
Section 9.4, Allocation strategy for further
information.

Type: String

Default Value:
curam.core.sl.impl.DefaultWorkResol ver

curam.workflow.automaticallya Purpose: After the resolution of the alloc-

ddtasktousertasks

ation targets for atask, if that task is as-
signed to one user and one user only and
the value of this property is set to yes/true,
the system will automatically add this task
to auser's My Tasks list in their Inbox to
allow them to work onit.

Type: String

150

Curam Workflow Reference Guide

Property Name Description

Default Value:NO
curam.custom.notifications.noti Purpose: The fully-qualified name of the
ficationdelivery application class that implements the No-

tificationDelivery calback inter-
face. See Section 14.3, Notification Alloc-
ation Strategy for further information.

Type: String

Default Value:
curam.core.sl.impl.NotificationDeliverySt
rategy

curam.workflow.disable.audit. Purpose: The process instance WDO data

wdovalueshis- auditing table, 'WDOV auesHistory' is

tory.before.activity populated by the workflow engine at three
distinct points during the execution of a
workflow process instance (before the ex-
ecution of an activity, after the execution
of an activity and before the evaluation of
the transitions from an activity). When
specified to true, this property will ensure
that no data is written to the WDO data
auditing table before an activity is ex-
ecuted.

Type:BOOLEAN

Default Value: FALSE

curam.workflow.disable.audit. Purpose: The process instance WDO data

wdovalueshistory.after.activity auditing table, 'WDOVauesHistory' is
populated by the workflow engine at three
distinct points during the execution of a
workflow process instance (before the ex-
ecution of an activity, after the execution
of an activity and before the evaluation of
the transitions from an activity). When
specified to true, this property will ensure
that no data is written to the WDO data
auditing table after an activity has been

executed.

Type:BOOLEAN

Default Value:FALSE
curam.workflow.disable.audit. Purpose: The process instance WDO data
wdovalueshis- auditing table, 'WDOV aluesHistory' is
tory.transition.evaluation populated by the workflow engine at three

distinct points during the execution of a
workflow process instance (before the ex-

151

Curam Workflow Reference Guide

Property Name Description

ecution of an activity, after the execution
of an activity and before the evaluation of
the transitions from an activity). When
specified to true, this property will ensure
that no data is written to the WDO data
auditing table before the transitions from
an activity are evaluated..

Type:BOOLEAN

Default Value:FALSE
curam.custom.workflow.proces Purpose: The workflow engine caches re-
scachesize leased versions of process definitionsin

memory (to minimize overheads when
looking up metadata). This property con-
trols the maximum number of process ver-
sions stored in the cache. When this num-
ber has been reached, the engine will be-
gin gecting process versions from the
cache, using aleast-recently-used gjection
policy. Runtime modifications to the value
of this property will take affect the next
time the workflow engine attempts to in-
sert aprocess version in the cache.

Type: Integer
Default Value: 250

curam.batchlauncher.dbtojms.n See Curam Batch Processing Guide, Sec-
otification.batchlaunchermode tion 5.3 for further information.

curam.batchlauncher.dbtojms.n See Cudram Batch Processing Guide, Sec-

otification.encoding tion 5.3 for further information.
curam.batchlauncher.dbtojms.n See Curam Batch Processing Guide, Sec-
otification.host tion 5.3 for further information.
curam.batchlauncher.dbtojms. See Cudram Batch Processing Guide, Sec-
messagespertransaction tion 5.3 for further information.
curam.batchlauncher.dbtojms.n See Curam Batch Processing Guide, Sec-
otification.port tion 5.3 for further information.

152

22.1

22.2

22.3

Chapter 22

JMSLite

Introduction

JMSLite is a Curam-developed lightweight Java Message Service (IMS)
server that runs alongside the RMI-based test environment. Hence it can run
inside supported Integrated Development Environments (IDES).

This allows process definitions to be tested inside an IDE, i.e. without re-
quiring the application to be deployed to an EJB server. When used in con-
junction with the Process Definition Tool, JMSLite allows developers to
define, deploy and enact workflows - al within their IDE.

What JMSLite Does

JMSLite is a IMS server that implements only those sections of the IMS
specification necessary to support IDE-based testing of Cdram workflows:
namely transactional, point-to-point messaging. This means that JMSLite
supports ACID transactions involving the application database and the in-
frastructure-defined workflow queue destinations. It does not support cus-
tom (application-defined) queues or the publish-subscribe domain (i.e. top-
ics).

Consequently, JMSL ite allows the workflow enactment service and work-
flow engine to send JM S messages asynchronously. This means that applic-
ation calls to workflow-related infrastructure APIs (such as the enactment
service and event service) are non-blocking. The APIs pass messages to the
workflow engine, which drives process instances asynchronously (e.g. ex-
ecutes automatic activities, creates and allocates Tasks, etc).

Why JMSLite?

The purpose of IMSL.ite is to make the workflow engine behave in an IDE

153

22.4

22.5

Curam Workflow Reference Guide

in the the closest possible way to how it behaves when deployed on an ap-
plication server. This increases the likelihood of catching problems early
(while testing in the IDE) rather than late (when testing on an application
server), thereby reducing both risk and cost.

For example, consider the following situation: Suppose the WMS (running
in an IDE) were to enact workflows synchronously.

i Reminder

In production, workflows are enacted asynchronously because they
are assumed to be long-lived (on the order of hours, days or weeks)
relative to normal user operations (order of seconds or milli-
seconds).
Suppose aso that a developer were to write a method that enacted an auto-
mated case-approval workflow and then (immediately after the cal to the
enactment service) tried to do something with the result (e.g. check if the
case was automatically approved). Since the test environment operates in a
different manner (synchronously) from the production environment - the
code would work fine in test, but would fail in production (this is an ex-
ample of a'temporal coupling' bug).

However, since JMSLite executes asynchronously - this problem would
show up in the IDE in the same way as it would on an application server,
thereby allowing the developer to catch it early.

Using JMSL.ite

The JMSLite server polls queues and unpacks any messages it finds on
them. These messages result in calls from the IMSLite server to the RMI
server that is required for IDE-based testing of Curam methods (commonly
referred to as St ar t Ser ver). The IMSLite server is launched as a thread
when invoking the (St ar t Ser ver) process. Since the IMSLite server dis-
patches messages to the workflow engine running on the RMI server, it is
necessary to start the StartServer in debug mode when debugging workflow
methods.

Debugging workflows

Normally, Cdram infrastructure methods are invoked by the application.
However, in workflow the call is often made the other way around - i.e. the
workflow engine (infrastructure) calls an application method (e.g.g a Work
Allocation method). In these cases, it is not possible for an application de-
veloper to step from the call to the
curamutil.workflow inpl. Enactnent Service. startProc
ess() method into their application (Work Allocation) method. In this
case, the developer must set breakpoints within the method they wish to de-
bug and then execute the method that enacts the workflow. The workflow
engine will then (asynchronously) invoke the application method, thereby

154

Curam Workflow Reference Guide

causing the breakpoint to be reached. The debugger will then suspend exe-
cution at the specified breakpoint, thereby allowing normal debugging.

Application methods that fall into the above category are:
* Automatic Activity methods

» Work Allocation Functions

» Theapplication Notification Delivery Method

» The application Work Resolver Method

155

23.1

23.2

23.2.1

Chapter 23

Inbox and Task Management

Overview

Tasks are used to assign and track the work of system users and are gener-
ated when Chapter 9, Manual, Chapter 10, Decision or Chapter 13, Parallel
activities are executed by the Workflow Engine. The Inbox and the associ-
ated task management functions are used by the users of the Cdaram applica-
tion to manage these tasks. The following sections describe the configura-
tion and customization options that are available for the Inbox and Task
Management areas of the Ciram WMS.

Inbox Configuration

Inbox List Sizes Configuration Settings

There are a number of task list views available in the Inbox. These include
the following:

* My Open Tasks: A list of tasks that the user is currently working on.

» My Deferred Tasks: A list of tasks that the user is working on but has
deferred to alater date.

* Available Tasks: A list of tasks that are available to the user to work on.

e Task Query Search Results: A list of tasks that are the result of running a
task query.

* Work Queue Tasks: A list of tasks that are assigned to awork queue.

Thereis also alist in the Inbox that displays the notifications that have been
delivered to auser.

* My Notifications: A list of notifications that have been delivered to the

156

Curam Workflow Reference Guide

user.

The Inbox list views can be configured to limit the number of records re-
turned to the user. The following application properties can be set in the Ap-
plication.prx file to effect this change.

Property Name Description

curam.inbox.max.task.list.size Purpose: The value of the property con-
trols the number of tasks displayed in the
various Inbox task list views. The Inbox
task lists pages affected by the value of
this property include the following: My
Open Tasks, My Deferred Tasks; Avail-
able Tasks; Task Query Search; Work
Queue Tasks. If the number of tasksto be
displayed exceeds the specified value then
amessage is displayed informing the user
that not all the records that match the
search criteria of the page are being dis-
played. This message displays both the
number of tasks being displayed and also
the total number of tasks that match the
search criteria.

Type: Integer
Default Value: 100

curam.notification.max.list.size Purpose: The value of the property con-
trols the number of notifications displayed
in the Inbox My Notifications list view. If
the number of notifications to be displayed
exceeds the specified value then ames-
sage is displayed informing the user that
not all the records that match the search
criteria of the page are being displayed.
This message displays both the number of
notifications being displayed and also the
total number of notifications that match
the search criteria.

Type: Integer
Default Value: 100

Table 23.1 Inbox List Sizes Configuration Settings

23.2.2 Get Next Task Configuration Settings

There are a number of shortcut functions available in the Inbox to retrieve
the next task to work on. These functions include the following:

157

Curam Workflow Reference Guide

» Get Next Task - retrieves the next task from the tasks available to the
user.

* Get Next Task From Preferred Org Unit - retrieves the next task as-
signed to the user's preferred organization unit.

o Get Next Task From Preferred Queue- retrieves the next task assigned to
the user's preferred work queue.

o Get Next Task From Queue- retrieves the next task assigned to a work
gueue that the user selects.

The algorithm used by these shortcut functions to retrieve the next task may
be configured by using the following application properties in the Applica-
tion.prx file:

Property Name Description

curam.workflow.reservenexttas Purpose: The value of the property con-

kwithpriorityfilter trols whether the get next task algorithm
uses the priority of atask to determine the
next task to retrieve. If set to YES the de-
fault, the priority of the task is used for
this purpose (the priorities as specified in
the
curam wor kf | ow. t askpriorityo
r der) property. Otherwise, the task to be
retrieved is based on tasks that have been
assigned to the user for the longest period
of time.

Type: String
Default Value: Yes

curam.workflow.taskpriorityor Purpose: There are three task priorities

der specified in the Workflow Management
System, namely High, Medium and Low
(which correspond to the codetabl e codes
TP1, TP2 and TP3inthe TaskPri or -
i ty codetable). In some cases, customers
may have arequirement to add a new task
priority (e.g. Critical with a codetable
code value of TP4). Retrieving tasks using
the task priority containing this value
would therefore ensure that critical tasks
would appear after those that have alow
priority (when the intention would be that
tasks with this priority should be retrieved
first). This property alows the task priorit-
ies to be specified in whatever order isre-
quired to satisfy the customer's require-
ments.

158

23.2.3

23.3

Curam Workflow Reference Guide

Property Name Description

Type: String
Default Value: TP1,TP2,TP3

Table 23.2 Get Next Task Configuration Settings

Task Redirection and Allocation Blocking Settings

Task redirection enables the user to redirect tasks to another user, organiza-
tional object (organization unit, position or job) or work queue for a spe-
cified period of time. Task alocation blocking enables the user to ensure
that no tasks are assigned to them for a specified period of time. This func-
tionality is available to the user in the Task Preferences area of the Inbox.
However, all users on the system may not require access to set up task redir-
ection or task allocation blocking periods for themselves. To facilitate this
requirement, these areas of functionality in the Inbox may be disabled for
specific users through the use of security identifiers. The following table de-
tails the security identifiers that a user must have in order to avail of this
functionality.

Security Identifier Name Action Allowed

UserTaskRedirec- Allows a user to view all of the task redir-
tion.listTaskRedirectionHistory ection periods specified for them.
ForUser

UserTaskRedirec- Allows a user to create atask redirection
tion.redirectTasksForUser period for themselves.

UserTaskRedirec- Allows a user to clear one of their task re-
tion.clearTaskRedirectionForU direction periods.

ser

UserTaskAllocationBlock- Allows a user to view all of the task alloc-

ing.listTaskAllocationBlocking ation blocking periods specified for them.
HistoryForUser

UserTaskAllocationBlock- Allows a user to create atask allocation
ing.blockTaskAllocationForUs blocking period for themselves.
er

UserTaskAllocationBlock- Allows a user to clear one of their task al-
ing.clearTaskAllocationBlockF location blocking periods.
orUser

Table 23.3 Security Identifiers and Associated Actions

Inbox Customization

The default behavior of the Inbox Actions, Task Actions and Task Search

159

Curam Workflow Reference Guide

functionalities can be changed by using Guice to call custom code which
overrides the default behavior.

2

1

Note

Guice is aframework developed by Google and is beyond the scope
of this document. For more information on Guice please refer to the
Guice user's guide.

The Curam Workflow Management System contains the following custom-
ization points and their corresponding default implementations:

Customization Point

Interface Class

Default Implementa-
tion Class

Inbox Actions

Task Actions

Task Search and Avail-
able Task Search

Task Query

Task Search SQL gen-
eration

curam cor e. hook.

cur am cor e. hook.

task. i npl. 1 nboxA task.inpl.InboxA

ctions

curam cor e. hook.
task. i npl . TaskAc
tions

curam cor e. hook.
task. i npl. Sear ch
Task

curam cor e. hook.
task. i npl. TaskQu
ery

curam cor e. hook.
task. i npl . Sear ch
TaskSQL

Table 23.4 Customization Points

The following Inbox Actions may be customized:

* Get Next Task

ctionsl npl

cur am cor e. hook.
t ask. i npl . TaskAc
tionsl npl

cur am cor e. hook.

task. i npl . Search
Taskl npl

cur am cor e. hook.
task. i npl. TaskQu
eryl npl

cur am cor e. hook.

task. i npl . Search
TaskSQLI npl

* Get Next Task From Preferred Organization Unit
e Get Next Task From Preferred Queue
* Get Next Task From Work Queue

e Subscribe User To Work Queue

e Unsubscribe User From Work Queue

The following Task Actions may be customized:

¢ Add Comment

¢ Close

160

Curam Workflow Reference Guide

* Create

* Defer

* Restart

* Forward

* Modify Time Worked
* Modify Priority

e Modify Deadline

* Reallocate

* AddTo My Tasks

The following Task Search and Available Task Search methods may be cus-
tomized:

e count Avai | abl eTasks
* count Tasks

* searchAvai |l abl eTasks
 searchTask

 validateSearchTask
The following Task Query methods may be customized:

 createTaskQuery
 nodi fyTaskQuery

e runTaskQuery
 validateTaskQuery

The following Task Search SQL generation methods may be customized.
These methods are used to generate the SQL for al of the above task search
functionalities.

e get Busi nessCbj ect TypeSQL
 get Cat egorySQ

» get Count SQLSt at enent

o« getCreationbDat eSQL

 get Deadl i neSQL

o get FronC ause

¢« get O der BySQL

161

23.3.1

Curam Workflow Reference Guide

o« get Orgbj ect SQL

e getPrioritySQ
 get ReservedBySQL
« getRestartDat eSQL
e get Sel ect Cl ause

* get SQLSt at enent
 get Stat usSQL

» get Taskl DSQL

+ getWered ause

How to customize the Inbox

The following is a description of how to customize the Inbox action
curam cor e. hook. t ask. i npl . I nboxActi onsl npl . get Next T
ask. The same process may be followed to customize any of the other cus-
tomization points.

A custom hook point class must be created. This class must extend the de-
fault implementation class. The diagram below shows the relationships
between the classes:

162

Curam Workflow Reference Guide

ginterfaces
@Taskﬁmiuns

{f.?;-. gethlextTazk (uzertlame : String) : long

{f.?;-. gethlextTazkFromworkQueue (userMame : String, workCGueuelD : Long) : long

{f.?;-. gethlextTazkFromPreferredWorkCueue {userMame : String) : long

{f.?;-. gethlextTazkFromPreferredOrglnit { uzertame : String) : lang

'ﬁ"‘& zubzcribelserToworkQueue (userMame ; String, workQueuwelD : Long) : long

{f.?;-. unzubszcribellzerFromworkQueue (userfMame : String, workCueuelD : Long) : long

QTaskActiunslmpl

{f.?;-. gethlextTazk (uzertlame : String) : long

{f.?;-. gethlextTazkFromworkQueue (userMame : String, workCGueuelD : Long) : long

{f.?;-. gethlextTazkFromPreferredWorkCueue {userMame : String) : long

{f.?;-. gethlextTazkFromPreferredOrglnit { uzertame : String) : lang

{f.?;-. zubscribelserToWwWorkQueue { uzerbame : String, workQueuelD : Long) : lang

{f.?;-. unzubszcribelzerFromworkQueue (userfMame : String, workCueuelD : Long) : long

Q CustomTaskActionslmpl

{f.?;-. gethlextTazk (uzertame : String) : long

Figure 23.1 Customization Class Diagram

i Note

The custom class must never directly implement the interface class,
as this could lead to compile time exceptions during an upgrade if
new methods were added to the interface. In this case the custom
class would not implement the new methods and hence the contract
between the interface class and the implementation class would be
broken leading to compile time exceptions.

Customizing the default implementation

The signature of the getNextTask function on the
curam core. hook. t ask. i npl . I nboxAct i ons interface is as fol-

lows:
package curam core. hook. t ask. i nmpl ;

@ npl ement edBy(| nboxAct i onsl npl . cl ass)
public interface |nboxActions {

public | ong get Next Task(String user Nane) ;

163

Curam Workflow Reference Guide

}

The default implementation for the function is specified in the
curam core. hook. task. i npl . | nboxActi onsl npl class

package curam core. hook. task. i npl ;
public class | nboxActionslnpl inplenents |nboxActions {

public | ong get Next Task(String userNanme) {
/1 Default inplenmentation code is here...

}

-
To customize get Next Task, the method must be implemented in the new
custom class created earlier which extends the default

curam core. hook. t ask. i npl . I nboxAct i onsl npl implementa-
tion class.

package custom hook. t ask. i npl
public class Custom nboxActionsl npl extends |nboxActionslnpl {

public | ong get Next Task(final String userName) {
/1 Custom inpl enentati on code goes here

}
}
To ensure that the application executes the new custom class rather than the
default implementation a new class cus-
t om hook. task. i npl . Modul e. j ava which extends

com googl e. i nj ect. Abstract Modul e must be written with the
conf i gur e method implemented as the following example shows:

package custom hook. task. i npl ;

public class Mdul e extends com googl e. i nj ect. Abstract Modul e {
protected void configure() {
bi nd(
curam cor e. hook. t ask. i npl . | nboxActi ons. cl ass) .t o(
) cust om hook. t ask. i npl . Cust om nboxActi onsl npl . cl ass);

}

Finally the cust om hook. t ask. i npl . Modul e class name must be
inserted into the ModuleClassName column of the ModuleClassName data-
base table. This can be inserted by adding an extra row to the Mbdul e-
G assName. DMX file or directly into the database table if required.

Using this approach, when the application is redeployed, the system will
now invoke the customized version of the get Next Task function rather
than the default implementation.

164

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

165

Curam Workflow Reference Guide

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

166

Curam Workflow Reference Guide

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

167

Trademarks

Curam Workflow Reference Guide

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apacheis atrademark of Apache Software Foundation.

Java and all Java-based trademarks and logos are registered trade-
marks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

168

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Workflow Reference Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Overview
	1.2 Prerequisites
	1.3 How to use this document
	1.4 Structure of this Document
	1.4.1 Workflow Processes
	1.4.2 Data Flow
	1.4.3 Activities
	1.4.4 Flow Control
	1.4.5 Development and Runtime
	1.4.6 Inbox Configuration and Customization

	Chapter 2 Creating a Workflow Process
	2.1 Process definition life cycle
	2.1.1 Process creation
	2.1.2 Process visualization
	2.1.3 Releasing a process
	2.1.4 Process versions (process editing)
	2.1.5 Process import, export and copy
	Validations

	2.1.6 Localization

	2.2 Process execution
	2.2.1 Basic engine behavior
	2.2.2 Executing multiple versions
	2.2.3 Process Instance Administration

	2.3 Method Reference Library
	2.3.1 Referencing Cúram methods
	2.3.2 Method types

	2.4 WDO templates
	2.4.1 Metadata
	2.4.2 Import and syncing
	2.4.3 Validations

	Chapter 3 Process Definition Metadata
	3.1 Overview
	3.2 Metadata
	3.3 Validations
	3.4 Description of Context WDOs

	Chapter 4 Workflow Data Objects
	4.1 Overview
	4.2 Metadata
	4.3 Validations
	4.4 List of Context WDOs
	4.5 Runtime Information

	Chapter 5 Process Enactment
	5.1 Overview
	5.2 Code enactment (enactment service API)
	5.2.1 Metadata
	5.2.2 Validations
	5.2.3 Code

	5.3 Event enactment
	5.3.1 Configuration data
	5.3.2 Validations

	Chapter 6 Base Activity
	6.1 Overview
	6.2 Metadata
	6.2.1 Localized Text

	6.3 Validations
	6.4 Basic Activity Types
	6.4.1 Route Activity
	6.4.2 Start/End Process Activity

	Chapter 7 Automatic
	7.1 Prerequisites
	7.2 Overview
	7.3 Cúram Business Methods
	7.3.1 Metadata
	7.3.2 Validations
	7.3.3 Code

	7.4 Input Mappings
	7.4.1 Metadata
	Input mappings for base type parameters
	Input mappings for struct parameters
	Input mappings for aggregated struct parameters
	Input mappings for list struct parameters
	Input mappings and indexed items from list workflow data objects

	7.4.2 Validations
	7.4.3 Runtime Information

	7.5 Output Mappings
	7.5.1 Metadata
	Primitive return type
	Struct return type
	Aggregated struct return type
	List struct return type

	7.5.2 Validations
	7.5.3 Runtime Information

	7.6 Description of Context WDOs

	Chapter 8 Event Wait
	8.1 Prerequisites
	8.2 Overview
	8.3 List of events
	8.3.1 Metadata
	8.3.2 Validations
	8.3.3 Code
	8.3.4 Runtime Information

	8.4 Deadline
	8.4.1 Prerequisites
	8.4.2 Metadata
	8.4.3 Validations
	8.4.4 Code
	8.4.5 Runtime Information
	8.4.6 Description of Context WDOs

	8.5 Output Mappings
	8.5.1 Metadata
	8.5.2 Validations
	8.5.3 Runtime Information
	8.5.4 Description of Context WDOs

	8.6 Reminders
	8.6.1 Metadata
	8.6.2 Validations
	8.6.3 Code
	8.6.4 Runtime Information

	Chapter 9 Manual
	9.1 Prerequisites
	9.2 Overview
	9.3 Task details
	9.3.1 Metadata
	9.3.2 Validations
	9.3.3 Code
	9.3.4 Runtime Information
	9.3.5 Description of Context WDOs

	9.4 Allocation strategy
	9.4.1 Prerequisites
	9.4.2 Metadata
	Function Allocation Strategy
	Rule Allocation Strategy
	Target Allocation Strategy

	9.4.3 Validations
	9.4.4 Code
	9.4.5 Runtime Information
	9.4.6 Description of Context WDOs

	9.5 Business Object Associations
	9.5.1 Metadata
	9.5.2 Validations
	9.5.3 Code
	9.5.4 Runtime Information

	9.6 Event Wait
	9.6.1 Prerequisites
	9.6.2 Description of Context WDOs

	Chapter 10 Decision
	10.1 Prerequisites
	10.2 Overview
	10.3 Task Details
	10.3.1 Metadata
	10.3.2 Validations
	10.3.3 Runtime Information

	10.4 Question Details
	10.4.1 Metadata
	Multiple Choice
	Free Text

	10.4.2 Validations
	10.4.3 Runtime Information
	10.4.4 Description of Context WDOs

	Chapter 11 Subflow
	11.1 Prerequisites
	11.2 Overview
	11.3 Subflow Process
	11.3.1 Metadata
	11.3.2 Validations

	11.4 Input Mappings
	11.4.1 Metadata
	11.4.2 Validations

	11.5 Output Mappings
	11.5.1 Metadata
	11.5.2 Validations

	Chapter 12 Loop Begin and Loop End
	12.1 Prerequisites
	12.2 Overview
	12.2.1 Loop Type

	12.3 Metadata
	12.3.1 Loop Begin Activity
	12.3.2 Loop End Activity

	12.4 Runtime Information
	12.5 Description of Context WDOs

	Chapter 13 Parallel
	13.1 Prerequisites
	13.2 Overview
	13.3 Metadata
	13.3.1 Generic Metadata for a Parallel Activity
	13.3.2 Metadata for a Parallel Manual Activity
	13.3.3 Metadata for a Parallel Decision Activity
	13.3.4 Validations
	13.3.5 Runtime Information
	13.3.6 Description of Context WDOs

	Chapter 14 Activity Notifications
	14.1 Overview
	14.2 Notification Details
	14.2.1 Metadata
	14.2.2 Validations
	14.2.3 Code
	14.2.4 Runtime Information

	14.3 Notification Allocation Strategy
	14.3.1 Prerequisites
	14.3.2 Code

	Chapter 15 Transitions
	15.1 Overview
	15.2 Metadata
	15.3 Validations
	15.4 Runtime Information

	Chapter 16 Conditions
	16.1 Overview
	16.2 Metadata
	16.3 Validations

	Chapter 17 Split/Join
	17.1 Introduction
	17.2 Choice XOR Split
	17.2.1 Metadata

	17.3 Parallel AND split
	17.3.1 Metadata

	Chapter 18 Workflow Structure
	18.1 Overview
	18.2 Graph Structure
	18.3 Block Structure
	18.3.1 An Analogy for Blocks
	18.3.2 Block Types Supported by Workflow
	'Choice' (XOR) Block
	'Parallel' (AND) Block
	'Loop' Block

	18.4 Structural Rules
	18.4.1 Graph Structure Rules
	18.4.2 Block Structure Rules

	18.5 Validations
	18.5.1 Simple Syntactic Checks
	18.5.2 Graph Checks
	18.5.3 Block Checks

	Chapter 19 Workflow Web Services
	19.1 Overview
	19.2 Exposing a workflow web service
	19.2.1 Process Enactment
	19.2.2 Process completion callback

	19.3 Invocation from BPEL processes

	Chapter 20 File Locations
	20.1 Overview
	20.2 Workflow Process Definition Files
	20.2.1 Customizing Workflow Process Definition Files
	Creating New Workflow Process Definition Files
	Changing An Existing Workflow Process Definition File

	20.3 Event Definition Files

	Chapter 21 Configuration
	21.1 Overview
	21.2 Application Properties

	Chapter 22 JMSLite
	22.1 Introduction
	22.2 What JMSLite Does
	22.3 Why JMSLite?
	22.4 Using JMSLite
	22.5 Debugging workflows

	Chapter 23 Inbox and Task Management
	23.1 Overview
	23.2 Inbox Configuration
	23.2.1 Inbox List Sizes Configuration Settings
	23.2.2 Get Next Task Configuration Settings
	23.2.3 Task Redirection and Allocation Blocking Settings

	23.3 Inbox Customization
	23.3.1 How to customize the Inbox
	Customizing the default implementation

	Notices
	Trademarks

