IBM Curam Social Program Management

Curam Web Services Guide

Version 6.0.4

||||||||
]
I
1T
..lli
1L
@

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Curam Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
LT PUIMPOSE ...ttt ettt e e ab e se e e e ne e e e be e e sne e e e ne e e sane e e nanes 1

B2 N o 1= 0o USRS 1

R 1 (=01 S (=S PR RS 1
Chapter 2 USING WED SEIVICESocviiieiecie ettt ste et e et e esreenesneenneeneas 2
2.10VErVIEW Of WED SEIVICESoiiieiiiiriieieiesie sttt sbe e 2

2.2 Weh Service PlatfOrmsS ..ot 3

2.3 TYPES Of WED SEIVICES ...evieeeiece ettt sttt ne e e nne s 4

2.4 WED SEIVICES SECUMLY ..ocuviieieitieieeiieseeitestese e e eeesreestessaesse e seeseesreensesneesseeseeneesreenes 7

2.5 SUMIMEIY .eveeitiieeiiee et sttt et e et e st e e s st e e sat e e e bt e e s st e e e bt e e ebeeesabeeennbeeennbeeennnenans 7
Chapter 3 Outbound Web Service CONNECLONSccceveerieieereeie e sieesee e eee e enee e 10
T O Y= V1= S 10

3.2 GEEING SEAMEA ..o bbb 10

3.3 Building an Outbound Web Service CONNECLONccooeieererierienineneeee e 11
3.3.1 Including the WSDL Filein Y our Components File Systemcc.cccceeee 11

3.3.2 Adding the WSDL File Location to the Outbound Web ServicesFile.......... 12

3.3.3 Generating the Web Service SIUDS ..o 12

3.4 Creating a Client and Invoking the Web ServiCecccooereiineninenicereenee 13

3.5 Legacy Outbound Web Service CONNECLONScoereeeerierienie e 14
GRS 00 111 0o LU o1 o o S 14

3.5.2 Building an Outbound Web Service CONNECLONcccevererierieeieerierienieneens 15

3.5.3 Creating a Client and Invoking the Web Service ... 16

Chapter 4 INDOUND WED SEIVICESoieiiieiieeiesteee ettt s s ee e 21
A1 OVEIVIBW ..ttt ettt e s bt e st e sbe et e e st e be e eeeaeesbe e e e ase e beenbenaeenbeeneenneanbeeneas 21

4.2 GEEING SO ..ottt sr et saeesae e 21

4.3 Modeling and Implementing an Inbound Web Servicecccoevinivenienceneenn, 22
4.3.1 Creating Inbound Web Service ClaSssesoooveeieeiineenieeniesee e 23

4.3.2 Adding Operations to Inbound Web Service Classescccvvereeicrenrienne 24

4.3.3 Adding Arguments and Return Types to Inbound Web Service Operations 24

A.3.4 ProCeSSING Of LISES ..coiueiiiiiieiiieiiesie ettt 25

A.3.5 DAATYPES ...ttt nne e 25

4.4 Building and Packaging WeD SEIVICEScccveiiirienieneeiesiesee e 26

4.5 Providing Security Datafor Web SErVICESccocceeiiiiirieieneeneee e 28

4.6 Providing Web Service CUSLOMIZALIONSccoveeriieiieeeesieeie et 28

Curam Web Services Guide

4.6.1 Inbound Web Service PropertieSFile ... 29

4.6.2 Deployment DeSCriptor FIleooeoiieiiiieeesere e e 29

4.6.3 Customizing Receiver Runtime FUNCtionalityccccocceveeieninneescneeseene 30

4.6.4 Providing SchemaValidalionccooeieiinienieneee e 32

4.7 Legacy INDoUNd WED SEIVICESoceoiiiiiieeieceesee et 34
T 1 1o L8 o 1o o TSR 34
A.7.2\WED SEIVICE SEYIES ..o e 34

A.7.3 SOAP BINGING eutiiiiiieiieiiesiee ettt st nre s 34

A.7.4 Selecting Web ServiCe SLYIE ..o e 35

4.7.5 Creating INbound WEeD SEIVICEScooiiiiieiieieneee e 36

4.7.6 Build and DePIOYMENTcoiuiiiieiieieie et 43

A7 .7 DB TYPES ettt ettt ettt s sse e e sne e sne e e sne e s sne e e snneeens 44

4.7.8 Security CONSIAEIELIONScceiereeriieieeie e see et sre s 45

AN © UL (o]0 1174 1 o LSRR 46

Chapter 5 Secure WED SEIVICESccviieiece ettt ne e 60
5.1 OVEIVIBIW .ottt bbbt bttt et et et sb e s bt bt s e ne et et e e e nne e 60

5.2 AXis2 Security and RAMPAItcccoeieiieieiie et 60

5.3 CUSIOM SOAP HEAOENS ..ottt 61

5.4 Encrypting Custom SOAP HEAUEY'Sc.ecouiiieieee et 64

5.5 Using Rampart With WeD SErVICESccccviieiiciece e 65
5.5.1 Defining the Axis2 Security Configurationcccceceeveeeecieeseeseseeseene, 66

5.5.2 Providing the Security Dataand Codecccocceeveevieiieneee e 69
5.5.3CodiNGg the CHENLcoeeeeceeece e 69

5.6 Securing Web Service Network Traffic With HTTPS/SSLcccoceveevvececeeee, 73

5.7 Legacy SECUre WED SEIVICESc.cccvieeciecie et este e e e see s ste e st ee e saeeneas 75
N @ o= 1 Y= OSSP 75

5.7.2 Modeling Secure Wb SEIVICEScccvceeieee e 75

5.7.3 Client Side Configurationccccceeveeeeseeieseeseesee e e 77

5.7 4 Keystore File Crealionccccceceeieeieiieseeieseeseesie e se e s ee e sse s 80
APPENTIX A GIOSSAY ...vvevieiiitiesieeieseesteeeeseesteseesteessesseesseessesseesseessesseesseessesseesseesesseessennees 82
LN B T 1 o] S 82
Appendix B Inbound Web Service Properties - ws_inbound.Xmlccccceevvreenenienennennn. 84
B.1 PrOPerty SEINGSooeerieeieiiesieeie ettt be e s ae e be e e s neenbesneesreenes 84
Appendix C Deployment Descriptor File - SErviCeSXMIcocveeieniieninineeeeee e 87
C.1 DesCriptor File CONLENESccoeririiieierie st 87

PN S o= aTo (DIQ DI I {018 o] = o o) 1] oo [N 90
D 00 1 11 0o 1 Tox 1 o o IS 90

D.2 Initial Server Validation and TroubleShootingcccoeeverineninenieeeeesee e 90
D.2.1 AXis2 Environment Validationcccceeceeeereeinsieeseesieseeseese e seeneesneens 91

D.2.2 Axis 1.4 Environment Validationcccccoeerieinnienenieseese e seeseeseeseens 92

D.2.3 Using an External Client to Validate and Troubleshootccccceeevienee 92

D.3 Tools and Techniques for Troubleshooting Axis2 and AXiS 1.4 EITors 93

D.4 AVOId USE Of "BNYTYPE ..ottt sttt sne e nne s 95
Appendix E Including the Axis2 Admin Application in Y our Web Services WAR File....... 96
R 1 01 0o [0 i o] o IR 96

Curam Web Services Guide

2 = oS3 o] gl =101 o [o SRR 96
Appendix F Including the Axis2 SOAP Monitor in Your Web Services WAR File 98
N 1 011 [F o1 oo USROS RSRPPPRN 98
VS (= 0/ o g =0 1 Lo [1 g 98
NN 0] 1SS 100

1.1

1.2

1.3

Chapter 1

Introduction

Purpose

The purpose of this guide is to provide instructions on how to connect
IBM® Cdram Social Program Management to external applications that
have a web service interface, how to make business logic available as web
services and how to secure those web services.

Audience

This guide is intended for developers that are responsible for the interoper-
ability between enterprise applications using web services. It covers all as-
pects of IBM Curam Social Program Management web service devel opment
including modeling, building, securing, deploying, and troubleshooting.

Prerequisites

The reader should be familiar with web service concepts and their underly-
ing technologies (for instance see Appendix A, Glossary), modeling (as de-
scribed in the Caram Modeling Reference Guide), and developing in an 1BM
Curam Social Program Management environment (as described in the
Curam Server Developer's Guide).

IBM Curam Social Program Management web services are based on
Apache Axis2. The following is a starting point if you require more informa-
tion: http://axis.apache.org/axis2/java/core/index.html. This site contains a
wealth of information including references to underlying technologies such
as SOAP and WSDL (see Appendix A, Glossary) as well as Axis2 docu-
mentation and links to outside articles, etc.

http://axis.apache.org/axis2/java/core/index.html

Chapter 2

Using Web Services

2.1 Overview of Web Services

The term web services describes a standardized way of integrating web-
based applications. They allow different applications from different sources
to communicate with each other and because all communication isin XML,
web services are not tied to any one operating system or programming lan-
guage. This application-to-application communication is performed using
XML to tag the data, using:

o SOAP (Simple Object Access Protocol: A lightweight XML -based mes-
saging protocol) to transfer the data;

« WSDL (Web Services Description Language) to describe the services
available;

« UDDI (Universal Description, Discovery and Integration) to list what
services are available.

Web services can be considered in terms of the direction of
flow—outbound/accessing and inbound/implementing—which are suppor-
ted by the IBM Cdram Social Program Management infrastructure for de-
velopment and deployment as described below:

Outbound Web Service Connector

An outbound web service connector alows the IBM Curam Social Pro-
gram Management application to access external applications that have
exposed a web service interface. The WSDL file used to describe this
interface is used by the web service connector functionality in 1BM
Curam Social Program Management to generate the appropriate client
code (stubs) to connect to the web service. This means developers can
focus on the business logic to handle the data for the web service. See
Chapter 3, Outbound Web Service Connectors for details on developing
outbound web service connectors.

Curam Web Services Guide

Inbound Web Service

Some functionality within the IBM Cdram Social Program Manage-
ment application can be exposed to other internal or external applica
tions within the network. This can be achieved using an inbound web
service. The IBM Curam Social Program Management infrastructure
will generate the necessary deployment artifacts and package them for
deployment. Once the application EAR file is deployed any application
that wishes to communicate with the IBM Cdram Social Program Man-
agement application will have to implement the appropriate functional-
ity based on the WSDL for the web service. The infrastructure relies on
the web service class to be modeled and it utilizes Axis2 tooling in the
generation step for inbound web services. See Chapter 4, Inbound Web
Services for details on developing IBM Cdram Social Program Man-
agement inbound web services.

2.2 Web Service Platforms

The platforms (ak.a. stacks) supported for web services are Apache Axis2
and Apache Axis 1.4, for legacy IBM Curam Social Program Management
web services.

Legacy web services represent an older generation of web services support
in IBM Cdram Social Program Management, that is no longer actively
maintained by Apache and is thus not viable as a technology base going for-
ward. This feature should only be used if you have a pre-existing 1BM
Curam Social Program Management web service that utilizes Axis 1.4.

Legacy web services are still supported in IBM Cdram Social Program
Management, but since Apache is not actively maintaining this older Axis
1.4 software it is strongly recommended that you begin using the new Axis2-
based infrastructure for your web services and begin converting any existing
legacy web services. Unfortunately, Apache does not provide any specific
migration path between their older and newer Axis2 web service platforms.

There are also a number of other web service platforms available besides
Axis2 (or Axis 1.4) that you could potentially adapt for use with IBM Curam
Social Program Management ; however, some of the benefits of Axis2 web
services include:

» Complete redesign of Apache Axis 1.4 - Axis2 represents a complete re-
design of the Apache Axis 1.4 web service engine, which allows for sig-
nificant improvements in flexibility due to the new architecture and im-
proved performance. Performance improvements come, in part, from a
change in XML parser changes using the StAX API, which gives greater
speed than SAX event-based parsing that is used in the previous web
services implementation.

* New message types available - This third generation of web service sup-
port makes new message exchange patterns (MEPS) available. Rather
than just in-out processing, in-only (ak.a. fire-and-forget) and other

Curam Web Services Guide

M EPs are now available.

» Support for new and updated standards such as SOAP (1.2 & 1.1) and
WSDL (2.0 & 1.1) - you will see that the Axis2 distribution included
with IBM Curam Social Program Management includes many new and
updated jar files.

2.3 Types of Web Services

Web services can be categorized in a number of ways, one of the main
groupings is the web service style and use, which determines the way web
service operation parameters are handled. The following table summarizes
the Axis2 (and Axis 1.4) offeringsin this area.

The st yl e option (as per the WSDL specification) determines the structure
of the SOAP message payload, which is the contents of the <soap:body>
element.

* Document (also referred to as document-oriented web services, or
DOWS): The contents of the web service payload are defined by the
schema in the <wsdl:type> and is sent as a self-contained document.
This styleis very flexible and can process parameters and return data, or
via|BM® Rational® Software Architect modeling, can be a W3C Docu-
ment passed as an argument and return value. Document is assumed to
be the default style if not specified.

* RPC: The contents of the payload must conform to the rules specified in
the SOAP specification; i.e., <soap:body> and may only contain one ele-
ment, named after the operation, and all parameters must be represented
as sub-elements of this wrapper element. Typically this would be para-
meters and return values.

Regardless of the choice of style the contents of the SOAP message payload
could look the same for a SOAP message regardiess of whether document
or RPC style is specified in the WSDL. This is because of the freedom
available in the case of the document style.

The use option determines the serialization rules used by the web service
client and server to interpret the payload of the SOAP message.

» Literal: The type definitions are self-defining, following an XML
schema definition in <wsdl:types> using either the el enent or t ype
attribute.

» Encoded: The rules to encode and interpret the payload application data
arein alist of URIs specified by the encodi ngSt yl e attribute, from
the most to least restrictive. The most common encoding is SOAP en-
coding, which specifies how objects, arrays, etc. should be serialized in-
to XML.

The style and use options for a web service are specified in the WSDL

Curam Web Services Guide

<wsdl:binding> section (see http://www.w3.org/TR/wsdl and ht-
tp:/lwww.w3.org/TR/wsdl 20) as attributes and control the content and func-
tion of the resulting SOAP (see http://www.w3.0org/TR/soapll and ht-
tp:/lwww.w3.0rg/ TR/soapl2) message.

The following WSDL fragment illustrates the context for these settings,
where the different values for the options are separated by the pipe (|) char-
acter:

<wsdl : bi ndi ng nane="nyService" ... >
<soap: bi nding transport="..." style="docunent|rpc"/>
<wsdl : operati on name="myQOperation">
<soap: operati on soapAction="urn: op2" styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal | encoded"
encodi ngStyl e="uri-list" ... />
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal | encoded"
encodi ngStyl e="uri-list" ... />
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>

In general the encoded use option has been discouraged by the Web Ser-
vices Interoperability Organization (WS-1) and the Document/Literal is the
preferred choice for web service style and use.

Within the context of the Document/Literal style, use pairing is the concept
of "wrapped" and "unwrapped". Thisis not a specific style or use, but a pat-
tern that is characterized by: a single part definition, each part definition in
the WSDL references an element, not atype asin RPC (it's these referenced
elements that serve as the "wrappers'), the input wrapper element must be
defined as a complex type that is a sequence of elements, the input wrapper
name must have the same name as the operation, the output wrapper name
must have the same name as the operation with "Response" appended to it,
and, of course, the style must be "document” in the WSDL binding section.
Based on the capabilities of Apache Axis2 (and Axis 1.4) only the "wrapped"
pattern is supportedl; however, it is not supported by WSDL 2.0. The fol-
lowing WSDL fragment illustrates this pattern using a ssmple web service
that multiplies two numbers and returns the results.

-.émsdl:types>

<xs: el enrent nanme="si npl eMul ti ply">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement
m nCccur s="0"
name="ar gs0"
type="xs:float"/>
<xs: el ement
m nCccur s="0"
name="ar gs1"
type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12

Curam Web Services Guide

</ xs: el ement >
<xs: el enrent nanme="si npl eMul ti pl yResponse" >
<xs: conpl exType>
<XSs: sequence>
<xs: el ement
m nCccur s="0"
nane="return" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<lﬁédl:types>

<wsdl : message nane="si npl eMul ti pl yRequest " >
<wsdl : part nanme="paraneters"
el enent ="ns: si npl eMul tiply"/>
</ wsdl : mressage>
<wsdl : message nane="si nmpl eMul ti pl yResponse" >
<wsdl : part nanme="paraneters"
el ement ="ns: si npl eMul ti pl yResponse"/ >
</ wsdl : mressage>
<wsdl : operation nane="si npl eMul ti ply">
<wsdl : i nput nessage="ns: si npl eMul ti pl yRequest "
wsaw: Acti on="urn:sinpleMultiply"/>
<wsdl : out put message="ns: sinpl eMul ti
wsaw: Acti on="urn:sinpl eMul ti S
</ wsdl : operati on>

p! yResponse"
p! yResponse"/ >

<wsdl : operati on nane="si npl eMul ti ply">
<soap: operati on soapActi on="urn:sinpleMltiply"
styl e="docunent "/ >
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : operati on>
</ wsdl : operati on>

The following table shows the various style and use combinations supported
with IBM Caram Social Program Management.

Style/Use Caram with Axis2 Curam with Axis 1.4
RPC/Encoded Not supported (not sup- Supported
ported by Axis2; not
WS-I compliant)
RPC/Literal Supported Not supported
Document/Encoded Not supported (not WS- Not supported (not WS-
| compliant) | compliant)
Document/Literal Supported Supported
(wrapped)

Table 2.1 Summary of Web Service Style and Use Support

Of the supported style and use combinations there are a number of relative
strengths and weaknesses to be considered when defining your web ser-
vices. These are summarized in the following table.

2.4

2.5

Curam Web Services Guide

Style/Use Strengths Weaknesses

Document/Litera)
(wrapped) * WS compliant * Very complex

* No type encoding WSDL

information

e Canvdidateina
standard way

* Operation namein
SOAP message
WS-I compliant * Hardto validate the

WSDL is straight- message
forward

RPC/Literal (Axis2 only)

* Operation nameis
included in the
WSDL

* No type encoding
information

» WSDL isstraight- < Not WS-I compliant
RPC/Encoded (legacy forward

only)
e Operation nameis

included in the
WSDL

Table 2.2 Summary of Web Service Style and Use Strengths and
Weaknesses

Web Services Security

Web service security is an important consideration in your planning, imple-
mentation and runtime support of web services to ensure your valuable and
sensitive enterprise data remains safe. This security is implemented entirely
by the facilities integrated with Axis2 (or Axis 1.4), which includes WS-
Security, wss4j, etc. However, with the support of web services with Axis2
there is now the option (recommended and on by default) of requiring that
clients of inbound web services provide credentias via IBM Caram Social
Program Management custom SOAP headers.

Summary

Curam Web Services Guide

In this chapter some basics of Apache Axis2 (and Axis 1.4) web services
have been introduced and how IBM Cadram Social Program Management
web services correspond to this web service functionality. Remember that
while legacy web services are supported for customers who have already de-
ployed them any new development should be done using the new web ser-
vice functionality now available. As the basis for the latest generation of
web service standards, Axis2 brings improved architecture, performance,
and standards support to your web services.

The following chapters provide the details necessary to enable access to web
services externaly deployed (outbound) and model, build, customize, se-
cure, and deploy business logic as aweb service (inbound).

Curam Web Services Guide

Notes

! Since only the Document/Literal-wrapped pattern for Axis2 is supported,
turning this off via docl i tBare set to true in the servi ces. xm

descriptor fileis not supported.

3.1

3.2

Chapter 3

Outbound Web Service Connectors

Overview

A IBM Curam Social Program Management outbound web service connect-
or allows the application to access external applications that have exposed a
web service interface. The WSDL file used to describe this interface is used
by the web service connector functionality in IBM Curam Social Program
Management to generate the appropriate client code (stubs) to connect to the
web service.

In this chapter you will learn how to create new and legacy I1BM Cdram So-
cial Program Management web services:

* Include the WSDL filein your components file system;
 Addthe WSDL filelocation to the outbound web servicesfile;
» Generate the web service stubs;

* Create aclient and invoke the web service.

Getting Started

The process for building outbound connectorsis briefly:

1. Includethe WSDL file(s) in your componentsfile system

You must have aWSDL filein order to generate client stubs. Once you
have the necessary WSDL file(s) you need to store it within the file sys-
tem of your EJBSer ver / conponent s/ cust omdirectory as shown
in Example 3.1, File System Usage For Outbound Web Services. These
WSDL fileswill be referenced in the following step.

2. Add the WSDL file location(s) to the component
ws_out bound. xm file

10

Curam Web Services Guide

For each component you wish to have outbound web service connectors
built you must place aws_out bound. xm file in the EJBSer ver/

conponent s/ cust onf axi s directory. The format of thisfileis de-
scribed in Section 3.3.2, Adding the WSDL File Location to the Out-
bound Web ServicesFile.

3. Generate stubs

You are now ready to generate the web service stubs by invoking the
following build script: bui | d wsconnect or 2

4. Create a client and invoke the web service

To invoke the web service you must create and build a client (e.g. a
Java® main program) that utilizes the generated stubs to prepare argu-
ments, call the web service, and process the return results.

Each of the above steps is explained in more detail in the sections that fol-
low. To better understand the process just outlined the following illustrates
the structure of directories and files used.

+ EJBServer
+ build
+ svr
+ wsc2
+ <servi ce_nane>
- <servi ce_nane>. wsdl - where nodel ed service
WBDL files are built to
+ jav
+ src
+ wsconnect or - default |ocation for
gener at ed stub source;
override with property
axi s2.java.outdir
+ wsconnect or - default |ocation for
conpi | ed stub code;
override, with axis2.
extra.wsdl 2j ava. ar gs

property
+ conponents
+ custom
+ axis
- ws_out bound. xm - where you identify
your WBDL files as
bel ow

+ <servi ce_nane>
+ <servi ce_nane>. wsdl - where you m ght copy a
WEDL file as pointed to
by ws_out bound. xmi

Example 3.1 File System Usage For Outbound Web Services

3.3 Building an Outbound Web Service Connector

3.3.1 Including the WSDL File in Your Components File Sys-
tem

Once you have the WSDL file(s) representing the service you wish to access

11

3.3.2

3.3.3

Curam Web Services Guide

place them in the file system (usually under source control). You should
place the WSDL file(s) in the custom folder under the location represented
by your SERVER_DI R environment variable (and that location is specified
inws_out bound. xm , below). Placing your WSDL within this structure
will ensure your web services are isolated from IBM Cdram Social Program
Management-shipped web services. Thisis shown in Example 3.1, File Sys-
tem Usage For Outbound Web Services. The base name of the (root) WSDL
file must use the service name.

Adding the WSDL File Location to the Outbound Web
Services File

Once your WSDL file(s) is in your file system you need to create (if not
already in existence) aws_out bound. xm file in your component axi s
directory and update it. The recommended location for this file is. com
ponent s/ cust oni axi s/ ws_out bound. xm .

In that file you identify the location of the WSDL file(s); for example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<services>
<servi ce name="SomeService"
| ocati on=
"conponent s/ cust om axi s/ SoneSer vi ce/ SonmeSer vi ce. wsdl "/ >
</ servi ces>

Example 3.2 Sample ws_outbound.xml File

In the ws_out bound. xni file there is one service entity for each web
service, specifying the service name (matching the WSDL file base name)
and location (relative to the SERVER DI R environment variable).

Generating the Web Service Stubs

The generation of the web service stubs is based on the contents of the
ws_out bound. xm files as specified by your component structure - the
setting of the COMPONENT _ ORDER environment variable and any files in
your conponent s/ cust oni axi s directories. See the example file sys-
tem structure in Example 3.1, File System Usage For Outbound Web Ser-
vices.

When you invoke the IBM Curam Social Program Management build
script:

bui | d wsconnect or 2

each WSDL fileidentified by thews_out bound. xm filesis used to gen-
erate the stub source code, which is compiled to produce executable code.
The generated source is located in the EJBServer/
bui | d/ svr/wsc2/jav/src/wsconnect or directory and any com-
piled Java code is located in the EJBSer ver/
bui | d/ svr/wsc2/jav/wsconnect or directory.

12

Curam Web Services Guide

3.4 Creating a Client and Invoking the Web Service

Invoking the web service and utilizing the generated code depends on your
development environment; but, for example, it might include the following
steps, assuming the web service has already been deployed and tested:

1

3.

Copy or reference the generated source and class files; e.g. referencein
Eclipse;

Code your client; e.g. Java main program. Typically your steps here
will include:

* Instantiate the generated stub class,

» Optionaly, increase the client timeout threshold (especially for a
client that might run first after the application server starts);

» Setup the credentials in the custom SOAP header (see Section 5.3,
Custom SOAP Headers for more details);

» Cdl the stub methods to instantiate objects and set their values for
passing to the service;

* Invoke the service operation;

» Check the response;

Build and test.

Typicaly the generated stub code provides a number of options to invoke
the web service. Following are some sample code fragments to help illus-
trate that.

The following fragment calls a service named si npl eAdd in class Web-
Servi ceTest for which the externa tooling generates WWebSer -
vi ceTest St ub and related classes:

final WebServiceTest Stub stub =
new WebSer vi ceTest St ub() ;

/] Set client tineout for slow nachines.

stub. _getServiceCdient().getOptions().setProperty(
HTTPConst ant s. SO_TI MEQUT, new | nt eger (180000)) ;

stub. _getServicedient().getOptions().setProperty(
HTTPConst ant s. CONNECTI ON_TI MEQUT, new | nt eger (180000)) ;

/] test string and primtive data types

final WebServiceTest St ub. Si npl eAdd service =
new WebSer vi ceTest St ub. Si npl eAdd() ;

final int i = 20;

final int j = 30;

service. set Args0(i);

service. set Argsi(j);

final WebServi ceTest St ub. Si npl eAddResponse

si npl eAddResponse = st ub. si npl eAdd(servi ce);
final |Iong sum = sinpl eAddResponse. get _return();

13

3.5

3.5.1

Curam Web Services Guide

Example 3.3 Sample Web Service Client

Sometimes, while the generated code is convenient, you need a little more
control over your client environment. The following example illustrates how
you might call an in-only service using a "hand-built” SOAP message,
which in this case takes a ssmple String argument as input:

final Test WSStub stub =
new Test WSSt ub() ;

/Il Get client from stub
Servicedient client;
client = stub. _getServiceCient();

/*

* Define SOAP using string
*

/

final String xm =" <remtestString "
"xmns:renF\"http://renote.testnodel .util.curam"> "
' <remtestString>"
My test string!
"</remtestString>"

</remtestString>";

+

+
+
+
+

f

nal ByteArrayl nput Stream xm Stream =

new Byt eArrayl nput Stream xm . get Bytes());

final StAXBuil der builder = new St AXOMBui | der (xm Strean);
final OVEl ement oe = buil der. get Docunent El emrent () ;

/1 Send the nessage

client.fireAndForget(oe); [// APl for In-Only processing

Thr ead. sl eep(10000) ; /1 Required for fireAndForget()
client.cleanupTransport(); // Avoid exhausting connection pool
client.cleanup();

Example 3.4 Sample Web Service Client Using Generated Stub
and Custom Code

Legacy Outbound Web Service Connectors

Introduction

This section describes legacy outbound web service connectors, which are
defined in section Section 2.1, Overview of Web Services.

| Wwarning

@

The use of legacy web services, while still supported, should only be
used for existing web services. This is because the underlying im-
plementation, Axis 1.4, is not actively maintained by Apache. Leg-
acy web service support will be removed at some point in the future

14

Curam Web Services Guide

and you should convert any legacy web services as soon as possible.

3.5.2 Building an Outbound Web Service Connector

Downloading the WSDL Files

WSDL files are treated as source code which is required to build the applic-
ation. Consequently, the files should be stored locally (preferably version
controlled) with the rest of the source code.

The WSDL files must be manually downloaded (or otherwise obtained), as
the web service connector functionality does not support accessing the
WSDL definition via a remote access mechanism such as UDDI (Universa
Description Discovery and Integration) or HTTP. The downloaded files
must be placed in the appropriate build structure folder:

<SERVER DI R>/ conponent s/ <conponent _name>/ wsdl /

Each IBM Curam Social Program Management component may have its
own set of web service connectors, so in the above path
<conponent _nane> should be the name of the component for which the
connector is being deployed. It is considered good practice (though not re-
quired) to separate different web services into sub directories within
<SERVER DI R>/ conponent s/ <conponent name>/ wsdl /.

For example:

<SERVER_DI R>/ conponent s/ <conponent _nane>/ wsdl / accou
nt _service/

<SERVER_DI R>/ conponent s/ <conponent nane>/wsdl /reven
ue_service/

A WSDL definition can be spread over severd files that reference each oth-
er, possibly in some arbitrary directory structure. These references can be
resolved as long as the references are relative and the top level directory is

under the
<SERVER_DI R>/ conponent s/ <conponent _nane>/ wsdl / direct-
ory.

Registering a Web Service

Each web service for which outbound connectors should be generated must
be registered. Registration is a simple process of updating the following file:

<SERVER DI R>/ pr oj ect/ confi g/ webservi ces_confi g. xm .

The sample webservi ces_config.xm shown in Example 3.5,
Sample webservices _config.xml below illustrates how to register a web ser-
vice:

<services>
<service
| ocati on=
"conponent s/ <conponent _nanme>/ wsdl / sonme_servi ce/ TopLevel . wsdl "

15

3.5.3

Curam Web Services Guide

/>
</ servi ces>

Example 3.5 Sample webservices_config.xml

The location attribute represents the location of the WSDL file relative to
the <SERVER DI R> directory. Where the WSDL definition is spread over
severa filesin a hierarchical structure, the web service is registered by ref-
erencing the top level WSDL definition file in the webser-
vi ces_config. xm file

This registration process also provides the ability to turn a particular web
service connector on and off (bearing in mind that business code that ac-
cesses the connector would obviously be affected by this), by smply adding
or removing the entry as required and rebuilding.

The empty webser vi ces_confi g. xm file shown in Example 3.6, An
empty webservices config.xml below isaso valid:

<servi ces>
</ servi ces>

Example 3.6 An empty webservices_config.xml

i Note

If your project does not have a
<SERVER DI R>/ pr oj ect/ confi g/ webservi ces_confi
g. xm file, you may create one by following the structure shown
above.

Building the Client Stubs

Once the web service has been registered the server build scripts take care
of the rest. The Axis 1.4 WSDL-to-Java tool generates client stubs based on
the registered WSDL files. These Java classes will be compiled as part of
the server code.

Creating a Client and Invoking the Web Service

Following web service registration and stub generation, developers can ac-
cess the web service by utilizing the classes produced by the WSDL -to-Java
tool. These include the following:

» For each service eement in the WSDL file, an interface class
(suffixed with Ser vi ce) and an implementing service locator class
(suffixed with Ser vi ceLocat or) are generated. The Ser vi ceLoc-
at or class creates an instance of the stub class described next.

 For each port Type element in the WSDL file, an interface class
(suffixed with _Port Type) and an implementing web service stub
class (suffixed with SoapBi ndi ngSt ub) are generated. The Soap-

16

Curam Web Services Guide

Bi ndi ngSt ub (instantiated by the Ser vi ceLocat or) provides ac-
cess to the external web service via invocation of its appropriate meth-
ods.

A Java class is also generated for each schema element t ype in the
WSDL file, that represents a parameter or a return type, for each web
service.

The following example describes how a very simple web service can be in-
voked from Java code.

The following listing is a WSDL extract of a web service which allows the
client to query the price of a shoe by providing its size.

<wsdl : types>
<schenma t ar get Nanespace="htt p: // Def aul t Nanespace"
xm ns="http://ww.w3. or g/ 2001/ XM_Schena"

xm ns:inpl ="http://Defaul t N\amespace"
xm ns:intf="http://Defaul t Namespace"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl / "
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >

<el ement name="askShoePri ceResponse" >
<conpl exType>
<sequence/ >
</ conpl exType>
</ el enent >

<el ement name="askShoePrice">
<conpl exType>
<sequence>
<el ement nanme="nyShoeSi ze" type="xsd:int"/>
<el enent nane="shoePrice" nillable="true"
type="i npl : ShoePrice"/>
</ sequence>
</ conpl exType>
</ el ement >

<conpl exType nane="ShoePri ce" >
<sequence>
<el enment nane="pricel nCents" type="xsd:int"/>
</ sequence>
</ conpl exType>
</ schema>
</ wsdl : types>

<wsdl : nessage nanme="askShoePri ceResponse" >
<wsdl : part el enment ="i npl : askShoePri ceResponse"
nane="par aneters"/ >
</ wsdl : mressage>

<wsdl : nessage nanme="askShoePri ceRequest ">
<wsdl : part el ement="i npl : askShoePri ce"
nane="par aneters"/ >
</ wsdl : mressage>

<wsdl : port Type name="ShoeShop" >
<wsdl : operati on nane="askShoePrice">
<wsdl : i nput message="i npl : askShoePri ceRequest "
name="askShoePri ceRequest "/ >
<wsdl : out put nessage="i npl : askShoePri ceResponse"
name="askShoePri ceResponse"/ >
</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nane="your host 9082SoapBi ndi ng"
t ype="i npl : ShoeShop" >

17

Curam Web Services Guide

<wsdl soap: bi ndi ng styl e="docunent"
transport="http://schemas. xn soap. or g/ soap/ http"/>
<wsdl : operati on nane="askShoePrice">
<wsd| soap: oper ati on soapAction=""/>
<wsdl : i nput name="askShoePri ceRequest" >
<wsdl soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put name="askShoePri ceResponse" >
<wsdl soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>

<wsdl| : servi ce nane="ShoeShopServi ce" >
<wsdl : port bi ndi ng="i npl : your host 9082SoapBi ndi ng"
nanme="your host 9082" >
<wsd| soap: address | ocati on="http://yourhost:9082"/ >
</ wsdl : port>
</ wsdl : servi ce>

Example 3.7 WSDL for a sample web service

ThisWSDL will result in a number of Java classes being generated.

The following generated Java interface represents the client side of the web
service. This interface is implemented by the generated Shoe ShopSoap-
Bi ndi ngSt ub, which the developer will use to invoke the web service.

public interface ShoeShop Port Type extends java.rm .Renmpte {
publ i c ShoePrice askShoePrice(int myShoeSize)
throws java.rni . Renot eException

Example 3.8 Java client stub interface for the web service

Instances of the ShoeShopSoapBi ndi ngSt ub class are created by the
generated ShoeShopSer vi celLocat or class.

The following code shows how this web service can be invoked from Java
code:

/1l The service |locator gets instances of the web service
final ShoeShopServicelLocator servicelLocator =
new ShoeShopServi ceLocat or () ;

/1 get an instance of client stub by casting frominterface:
final ShoeShopSoapBi ndi ngSt ub shoeShop =
(ShoeShopSoapBi ndi ngSt ub) servi ceLocat or. get Shoeshop() ;

[/ this is our in paraneter:
i nt myShoeSi ze = 8§;

/] ShoePrice is a generated type wr apper
final ShoePrice shoePrice = new ShoePrice();

/1 invoke the web service
shoePrice =
shoeShop. askShoePri ce(nmyShoeSi ze);

/| exam ne the value we got back:
final int pricelnCents = shoePrice.getPricelnCents();

18

Curam Web Services Guide

Example 3.9 Invoking the web service from Java code

Thisisavery smple example to illustrate how web services can be accessed
by IBM Curam Social Program Management applications. For working
with more complex web services the developer should consult the web ser-
vice WSDL, and refer to the documentation on the Apache Axis website
[http://ws.apache.org/axis].

Addressing anyType Serialization/Deserialization Errors

As per Section D.4, Avoid Use of "anyType' you should avoid the use of any-
Type. Thisis due to inconsistencies with, or lack of support for, this feature
depending on the environment, which may make your web service non-
portable. The following information has been found to be effective for ad-
dressing one of the issues related to the use of anyType.

With some web services clients the use of the WSDL anyType type may
causeanor g. xm . sax. SAXException: No deserializer for

anyType error. One way to resolve this error is to register a serializer and
deserializer for the any Type type. Thisis illustrated in the code fragment
in Example 3.11, Java client fragment for serialization/deserialization of
anyType where the underlying definition, shown in the WSDL fragment in
Example 3.10, WSDL fragment illustrating use of anyType is mapped to a
Java String type. In summary, the processing steps involve:

» Obtaining areference to the Axis 1.4 client configuration engine;
» Passing thisreference into the service locator constructor;
» Getting the type mappings registry from the configuration engine;

» Creating a type mapping implementation for any Type and adding it to
the mappings registry.

<xs: el emrent name="SoneRequest” type="com SonmeResult"/>
<xs: conpl exType name="SonmeResul t">
<Xs:sequence>
<xs: el ement m nCccurs="0"
name="anl d"
type="xs: anyType">
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>

Example 3.10 WSDL fragment illustrating use of anyType

/1 Get the client engi ne configuration fromthe | ocator
/1 to enable registration of mappings for this client.

19

http://ws.apache.org/axis

Curam Web Services Guide

final AxisEngine engine = | ocator.get Engine();
final Engi neConfiguration clientEngi neConfig = engine. get Config();

/'l Instantiate a sinple serializer and deserializer to
/1l map between 'anyType' and String.
final QName gnAnyType =

new QName(" http://ww. w3. or g/ 2001/ XM_Schena", "anyType");
final SinpleSerializerFactory serFact =

new Si npl eSeri alizerFactory(String.class, qnAnyType);
final SinpleDeserializerFactory deserFact =

new Si npl eDeseri al i zer Factory(String. cl ass, gnAnyType);

[/ Now register these serializers in the client engine
[/ configuration. (Note that the engine config will not
/1 return a valid typeMapping registry until after the
/] locator has created a service.)
final TypeMappi ngRegistry tnReg =

cl 1 ent Engi neConfi g. get Typel\/appi ngRegi stry();
final TypeMapping typeMapping = tnReg. get Or MakeTypeMappi ng("");
typeMappi ng. regi ster (String. cl ass, gnAnyType,

ser Fact , deser Fact);

tnReg. register("", typeMappi ng)
/| The service is now able to handl e the anyType data type.

/1 The remai nder of the client nmethod woul d sinply
/1 invoke the service nornally.

Example 3.11 Java client fragment for
serialization/deserialization of anyType

20

Chapter 4

Inbound Web Services

4.1 Overview

4.2

An inbound web service is IBM Curam Social Program Management ap-
plication functionality that is exposed to other internal or external applica-
tions within the network. This chapter describes the infrastructure for sup-
porting these services and the steps necessary to exploit it.

In this chapter you will learn how to create new and legacy I1BM Cdram So-
cial Program Management web services:

Model and implement an inbound web service,
Build and package web services,
Provide security datafor web services;

Provide web service customizations.

Getting Started

The process for devel oping inbound web servicesis briefly:

1. Modd your web service and provide implementation code

Y ou need to define the classes (WS Inbound) and operations in Rational
Software Architect that you will be implementing to provide the func-
tionality you wish to expose as web services.

As with any IBM Curam Social Program Management process class
you need to provide the implementation for the classes and operations
you model as per the Ciram Modeling Reference Guide.

2. Build your web services and the web services EAR file

The IBM Curam Social Program Management build system will build
and package your web services. Use the server and EAR file build tar-

21

4.3

Curam Web Services Guide

gets as described in the Ciram Server Developer's Guide and the de-
ployment guide appropriate to your platform.

3. Provide security data for your web services

By default your web services are not accessible until you: a) Provide se-
curity data (see Section 4.5, Providing Security Data for Web Services)
that defines the service class and operation and which security group(s)
can access them; and b) Your clients must then provide credentials ap-
propriate to those security definitions (see Section 5.3, Custom SOAP
Headers (unless you choose to disable this security functionality; see
Section 4.6.3.1, Custom Credential Processing).

Each of the above steps is explained in more detail in the sections that fol-
low. To better understand the process just outlined the following illustrates
the structure of directories and files used.

+ EJBServer
+ build
+ svr
+ gen
+ wsc2 - where the generator
pl aces ws_i nbound. xmi
property files
- <servi ce_nane>. wsdl - where nodel ed service
WSDL files are generated
+ conponent s

+ cust om
+ axis
+ <servi ce_nane>
- wWs_i nbound. xm - where you might place a

cust om ws_i nbound. xm
property file

- services. xm - where you might place a
cust om servi ces. xm
descriptor file

+ source - where optional schema
val i dati on code woul d go
+ schemas - where you mght place
opti onal schema
+ webservi ce - where you nust place

custom recei ver code

Example 4.1 File System Usage For Inbound Web Services

Modeling and Implementing an Inbound Web Ser-
vice

See Working with the Cliram Model in Rational Software Architect for more
information on using the Rational Software Architect tool with the Cliram
model. Based on your design decisions you will need to model the necessary
classes and operations and set the appropriate properties in the Ciram mod-
el. As per the normal IBM Clram Social Program Management devel op-
ment process documented in the Clram Server Developers Guide you must
also code your web service implementation classes.

When you model your web services consider:

22

Curam Web Services Guide

* The web service binding style - Document (recommended, default) or
RPC;

» Theweb service binding use - Litera or Encoded;

2

n Note

Not al combinations of binding style and use are supported; see
Section 2.3, Types of Web Services for more information.

* Whether the service is processing struct and domain types or a W3C
Document.

4.3.1 Creating Inbound Web Service Classes

In Rational Software Architect to add an Axis2 inbound web service class to
a package, select Add Class, W5 | nbound from the right-click context
menu and name the class.

]

n Note

In IBM Cdram Social Program Management web service names are
based on the class name specified in the Rational Software Architect
model and must be unigque within the environment.

If you require passing and returning a W3C Document instead of 1BM
Curam Social Program Management domain types or structs you must:

1. In the Curam properties tab for the WS Inbound class, select the
W5 |'s XM._Docunent property (if passing W3C Documents
providing schema validation is an optional activity and is detailed in
Section 4.6.4, Providing Schema Validation);

2. Select Tr ue asthe value from the drop down.

By default the web service style for the class is document, which is defined
in the W5_Bi ndi ng_St yl e property as"0 - Unspeci fi ed". If you
require the RPC binding style:

1. In the Curam properties tab, select the W5_Bi ndi ng_St yl e prop-
erty;

2. Select"2 - RPC' asthevalue from the drop down.

You can aso set the value explicitly to"1 - Docunent ", but the generat-
or defaultsthe”0 - Unspeci fi ed" value to be document.

The class properties above will apply uniformly to all operations of the web
service class; so, you need to plan your design to account for this. That is, a
class can contain W3C Document operations or operations that use native
data types or IBM Curam Social Program Management structs, but not both.
Similarly the binding style (W6_Bi ndi ng_St yl e) will be applied to all
operations of a class when passed as an argument to the Java2WSDL tool;
so, any requirement for operations with a different binding style in gener-

23

4.3.2

4.3.3

Curam Web Services Guide

ated WSDL would need to be handled in a separate modeled class.

Adding Operations to Inbound Web Service Classes

In Rational Software Architect operations are added to Axis2 inbound web
service classes via the right-click context menu. To add an operation to an
inbound web service class:

1. Select Operation from the right-click context menu and choose Default.

2. Inthe Create 'default’ Operation Wizard, name the operation and select
its return type.

The following are issues with Axis2 that are relevant to you when modeling
inbound web services:

» Certain method names on inbound web services will not operate as ex-
pected, due to the fact that when handling an inbound web service call
Java reflection is used to find and invoke methods in your application.
The Axis2 reflection code identifies methods by name only (i.e., not by
signature), which means that unexpected behavior can occur if your web
service interface contains a method with the same name as an inherited
method. Each inbound web service in your application causes a facade
bean—i.e., a statel ess session bean—to be generated.

So, in addition to your application methods, this class also contains
methods inherited from j avax. ej b. Ej bObj ect, and possibly oth-
ers generated by your application server tooling; e.g.: r enove, get E-
JBHone, get Handl e, etc.

This limitation has been logged with Apache in JIRA AXIS2-4802 and
currently the only workaround is to ensure that your inbound web ser-
vice does not contain any methods whose names conflict with those in
j avax. ej b. Ej bQbj ect .

o AXis2 web services may not use certain operation names that conflict
with method names in the java.lang. Qbject or
j avax. ej b. EJBObj ect classes; e.g. 'remove, 'notifyAll’, etc. Be-
cause of this behavior the Axis2 listServices web app page (e.g. ht-
tp://localhost:9082/CuramW S2/serviced/listServices) sometimes in-
cludes a process, setSessionContext, that is not part of the WSDL or im-
plementation. This operation name comes from
or g. apache. axi s2. cont ext . MessageCont ext . set Sessi
onCont ext (Sessi onCont ext) .

Adding Arguments and Return Types to Inbound Web
Service Operations
Arguments and return types are added to inbound web service operations in

the same manner as they are added to process and facade classes. However,
they are only relevant for classes that don't specify support for W3C Docu-

24

http://localhost:9082/CuramWS2/services/listServices
http://localhost:9082/CuramWS2/services/listServices

4.3.4

4.3.5

Curam Web Services Guide

ments (W5_| s XML_Docunent property). For more information on how
to add arguments and return types to process classes refer to the relevant
sections of: Working with the Ciram Model in Rational Software Architect.

Processing of Lists

An operation is said to use IBM Cdram Social Program Management lists if
its return value or any of its parameters utilize a struct which aggregates an-
other struct using 'multiple’ cardinality.

In the UML metamodel, it is possible to model a <<WS_Inbound>> opera-
tion that uses parameters containing lists (i.e., a struct that aggregates anoth-
er struct(s) as alist). All operations that are visible as a web service are nor-
mally aso visible to the web client.

However the web client does not support the following:
e List parameters.
* Non-struct parameters (i.e. parameters which are domain definitions).

» Non-struct operation return types.

In these cases the web client ignores the operations that it does not support,
but these operations can be used for Axis2 inbound web services.

Data Types

The IBM Caram Social Program Management data types except Blob
(SVR_BLOB) can be used in Axis2 inbound web service operations. The
mappings between IBM Curam Social Program Management and WSDL
data types are shown in the following table:

Claram data type WSDL data type

SVR_BOCLEAN xsd: bool ean

SVR_CHAR xsd: string

SVR_| NT8 xsd: byte

SVR_| NT16 xsd: short

SVR | NT32 xsd: i nt

SVR | NT64 xsd: | ong

SVR_STRI NG xsd: string

SVR_DATE xsd: string
(Format: yyyymud)

SVR_DATETI ME xsd: string
(Format: yyyymmddThhmss)

SVR_FLOAT xsd: f | oat

SVR_DOUBLE xsd: doubl e

25

4.4

Curam Web Services Guide

Cuaram data type WSDL data type

SVR_MONEY xsd: f | oat
Table 4.1 Cdram to WSDL data types for Axis2

In conjunction with the supported data types shown in Table 4.1, Cdram to
WSDL data types for Axis2, only the related XML schema types that map to
primitive Java types and j ava. | ang. St ri ng are supported for inbound
web services. For example, "xsd:boolean™ and "xsd:long" that map to the
boolean and long Java types, respectively, and "xsd:string” that maps to
java. | ang. St ri ng are supported. All other XML schema types that do
not map to a Java primitive type or to j ava. | ang. St ri ng are not sup-
ported. An example of such an unsupported XML schema type is
"xsd:anyURI", which maps to j ava. net . URI . This limitation applies to
inbound web services only and is due to the fact that inbound web services
are generated based on what can be represented in a Cdram model. Out-
bound web services are not affected by this issue. For more details on re-
lated modeling topics consult the documents: Working with the Cdram Mod-
el in Rational Software Architect and Clram Server Modeling Guide.

]

H Note

Passing or returning the "raw" IBM Cdram Social Program Man-
agement datatypes (i.e., "Date", "DateTime", "Money") as an attrib-
ute to an Axis2 web service is restricted. IBM Curam Social Pro-
gram Management data types must be wrapped inside a struct be-
fore passing them as attributes to aweb service.

Building and Packaging Web Services

This section discusses the targets (webspher eWebSer vi ces and web-
| ogi cWebSer vi ces) for building the web services EAR file.

The steps in this build process are:
1. Package global WAR filedirectories: lib, conf, modules,

2. lterate over the web service directories in bui | d/ svr/ gen/ wsc2
(one directory per web service class) created by the generator:

* Process the properties in the following order: custom, generator,
defaults (see Section 4.6.1, Inbound Web Service Properties File
for more information);

* Generate the servi ces. xm descriptor file, unless a custom
servi ces. xm has been provided (see Section 4.6.2, Deploy-
ment Descriptor File for more information);

» Package the web service directory.

26

Curam Web Services Guide

The following properties and customizations are available:

» Generation of the webser vi ces2. war can be turned off by setting
property: di sabl e. axi s2. bui | d;

* You can specify an aternate location for the build to read in additional
or custom Axis2 module files by setting the axi s2. nodul es. di r
property that will contain all the .mar files and the nod-
ul es. | i st fileto be copied into the WEB- | NF\ nodul es directory;

e You can include additional, external content into the webser -
Vi ces. war by either of the following properties:

« axis2.include.location - that points to a directory contain-
ing a structure mapping to the the Axis2 WAR file directory struc-
ture;

e axi s2.include. zi p - that pointsto a zip file containing a struc-
ture mapping to the Axis2 WAR file directory structure.

In conjunction with either of the two properties above, setting the ax-
i s2.include. overwite property will cause these contents to over-
ride the IBM Cudram Social Program Management-packaged content in the
WAR file. This capability is for including additional content into your WAR
file. An example of how you might use this would be to include the sample
Version service to enable Axis2 to successfully validate the environment
(see Section D.2.1, Axis2 Environment Validation).

For example, to include the sample Version web service for IBM® Web-
Sohere® Application Server you need to create a directory structure that
maps to the webser vi ces2. war file and includes the structure of Ver -
sion. aar file as is shipped in the Axis2 binary distribution: ax-
is2-1.5.1-bin/repository/services/version.aar. That
structure would look like this:

+ WEB- | NF
+ services
+ \er si on

+ META-| NF
- ./services. xm

+ sanpl e
+ axi sversion

- ./ Version.cl ass

Then, if the location of the Version directory were in
C. \ Axi s2-i ncl udes, you would specify the following property value
at build time: - Dax-
i s2.include.location=C:\Axis2-incl udes. Alternatively, you
could package the above file structure into a zip file and specify the -
Daxi s2. i ncl ude. zi p property instead. In both cases the file structure
specified would be overlaid onto the file structure (depending on the value
of axi s2.include.overwite) and packaged into the webser -

27

4.5

4.6

Curam Web Services Guide

vi ce2. war WAR file. (For Oracle® WebLogic Server the above would
be changed to replace the contents of the Version directory with a Ver -
si on. aar file, whichisacompressed file.)

Providing Security Data for Web Services

In IBM Curam Social Program Management web services are not automat-
ically associated with a security group. This is to ensure that web services
are not vulnerable to a security breach. You have to provide security datain
order to make your web service usable. As part of your development process
you need to ensure that the appropriate security database entries are created.
For instance:

I NSERT | NTO SecurityG oupSi d (groupnane, sidnane)
val ues (' WEBSERVI CESGROUP' , ' Servi ceNane. anOperation');

The contents of the IBM Cdram Social Program Management security
tables are explained further in the security chapter of Cdram Server De-
veloper's Guide.

Providing Web Service Customizations

Providing customizations at build-time impacts the security and behavior of
your web service at runtime. With the default configuration the web services
EAR file build will:

» Assign the appropriate IBM Curam Social Program Management mes-
sage receiver for struct and domain types, for argument and operation
return values, or for W3C Documents, based on how you set the
W5 |'s_XM._Docunent property in Rational Software Architect for
the "WS Inbound" (stereotype: <<wsinbound>>) class.

» Expect the web service client to pass a custom SOAP header with au-
thentication credentials in order to invoke the web service.

To change the above default behaviors you will require a custom receiver
(see Section 4.6.3, Customizing Receiver Runtime Functionality for more in-
formation). Additionally, customizations may be necessary for:

* Implementing Web Services Security (Apache Rampart) (see Chapter 5,
Secure Web Services for more information);

* Providing external, non-IBM Curam Social Program Management func-
tionality such as the Axis2 Admin application and Apache Axis2 Monitor
(see Appendix F, Including the Axis2 SOAP Monitor in Your Web Ser-
vices WAR File for more information);

* Providing other custom parameters for the deployment descriptor (ser -

28

4.6.1

4.6.2

Curam Web Services Guide

vi ces. xm); eg. docl i t Bare, must Under st and, etc. See the
Apache Axis2 documentation for more information (Apache Axis2 Con-
figuration Guide
[http://axis.apache.org/axis2/javalcore/docs/axis2config.html]).

In order to be able to effectively customize your web services you should be
aware of how IBM Curam Social Program Management processes web ser-
vices at build time, which is explained in the following sections.

Inbound Web Service Properties File

Based on the web service classes modeled with Rational Software Architect
the generator creates afolder in the bui | d/ svr/ gen/ wsc?2 directory for
each web service class modeled. Thisis shown in Example 4.1, File System
Usage For Inbound Web Services. (This maps closely to how Axis2 expects
services to be packaged for deployment.) In that folder a properties file,
Ws_i nbound. xm , is generated.

To provide acustomws_i nbound. xni file we suggest you start with the
generated copy that you will find in the build/

svr/ gen/ wsc2/ <servi ce_nane> directory after an initial build.
Place your custom ws_i nbound. xm file in your conponent s/ cus-

t om axi s/ <servi ce_nane> directory (usually under source control).
During the build the ws_i nbound. xni files are processed to alow for a
custom file first, overriding generated and default values. See Appendix B,
Inbound Web Service Properties - ws_inbound.xml for details of the prop-
erty settingsin thisfile.

Deployment Descriptor File

Each web service class requires its own deployment descriptor file (ser -

vi ces. xm). The build automatically generates a suitable deployment
descriptor for the defaults as per Appendix B, Inbound Web Service Proper-
ties - ws_inbound.xml. The format and contents of the ser vi ces. xm are
defined by Axis2; see the Apache Axis2 Configuration Guide (ht-
tp://axis.apache.org/axis2/javalcore/docs/axis2config.html) for more inform-
ation.

To provide a custom ser vi ces. xm file we suggest you start with the
generated copy that you will find in the build/
svr/wsc2/ <servi ce_name> directory after an initial build of the web
services WAR/EAR file. Thisisillustrated in Example 4.1, File System Us-
age For Inbound Web Services. Place your custom ser vi ces. xnl filein
your conponent s/ cust onif axi s/ <servi ce_nane> directory
(usually under source control). (See Appendix C, Deployment Descriptor
File - servicesxml for details of the contents of this file.) During the build
the servi ces. xnl files are packaged into the web services WAR file
(Webser vi ces2. war) as per Axis2 requirements; that is, using this file
system structure: V\EB-
| NF/ servi ces/ <servi ce_nane>/ META- | NF/ servi ces. xm

29

http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html

4.6.3

Curam Web Services Guide

(see the Apache Axis2 User's Guide - Building Services ht-
tp://axis.apache.org/axis2/javalcore/docs/userguide-buildingservices.html).

Customizing Receiver Runtime Functionality

The default receivers provided with IBM Caram Social Program Manage-
ment should be sufficient for most cases; but, you can provide overrides for
the following functionality:

» Credentials processing;

» Application server-specific provider URL and context factory paramet-
ers,

» SOAP factory provider for W3C Document processing.

These are explained in more detail in the following sections.

Custom Credential Processing

You might need to customize credentials processing; for instance, if you
want to obtain or validate credentials externally before passing them to the
receiver for authentication.

By default, IBM Caram Social Program Management web services are built
to expect the client to provide credentials via a custom SOAP header and
these credentials are then used in invoking the service class operation. The
default processing flow is:

e Unless cur am\SCl i ent Must Aut henti cate is set to fal se in
the servi ces. xm descriptor for the service, the SOAP message is
checked for a header and if present these credentials are used. If the
SOAP header is not present then the invocation of the service fails.

e If curamABC i ent Must Aut henti cateissettof al se theser -
vi ces. xm j ndi User andj ndi Passwor d parameters are used.

o |If there are no j ndi User and j ndi Passwor d parameters specified
intheser vi ces. xm descriptor file, default credentials are used.

However, there is no security data generated for web services, so the de-
faults credentials on their own won't be adequate to enable access to the
service (see Section 4.5, Providing Security Data for Web Services for
information on providing this data).

If you require your own credential processing you must code your own
get Axi s2Cr edenti al s(MessageCont ext) method, extending
curamutil.connectors. axi s2. Cur amvessageRecei ver, to
provide these parameters. This method takes a MessageCont ext object
as an input parameter and returns a j ava. util. Properti es object
containing the Axis2 parameter name and value. For example:

30

http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html
http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html

Curam Web Services Guide

public Properties getAxi s2Credenti al s(
final MessageCont ext nmessageContextln) {

final Properties |oginCredentials = new Properties();

String sUser = null;
String sPassword = nul | ;

<Your processing here...>

if (sUser !'=null) {
| ogi nCredenti al s. put (
or g. apache. axi s2.rpc. recel vers. ej b. EJBUti | . EJB_JNDI _USERNAME,
sUser);

if (sPassword != null) {
| ogi nCredenti al s. put (
org. apache. axi s2.rpc.recel vers.ejb. EJBUti | . EJB_JNDI _ PASSWORD,
sPasswor d) ;

return | ogi nCredenti al s;

Example 4.2 Sample getAxis2Credentials Method

See Section 4.6.3.4, Building Custom Receiver Code on how to specify and
build this custom class for this method.

Custom Application Server-Specific Parameters

The app_webservi ces2. xm script will generate correct application
server-specific provider URL and context factory parameters; however, you
may find it convenient if you are supporting multiple environments to derive
one or more of these valuesin your own custom code.

If so, you can provide your own get Pr ovi der URL() and/or get Con-
t ext Fact or yNane() method(s) by overriding class
curamutil.connectors. axi s2. CuramvessageRecei ver.
Both methods return a string representing the provider URL and context
factory name, respectively. See Section 4.6.3.4, Building Custom Receiver
Code on how to specify and build this custom class for these methods.

Custom SOAP Factory

Generaly, the default SOAP factory,
or g. apache. axi om soap. SOAPFact ory, should be adequate for
processing your web services that process W3C Documents. But, if neces-
sary you can override this behavior by providing your own get SOAP-
Fact or y(MessageCont ext) method. This method takes a Message-
Context object as an input parameter and returns an
or g. apache. axi om soap. SOAPFact ory.

Building Custom Receiver Code

31

4.6.4

Curam Web Services Guide

For any of the above cases of providing custom receiver code you must:

» Extend the appropriate class (e.g. public class MReceiver
ext ends
)
curamutil.connectors. axi s2. CuramvessageRecei ver.
(See Section 4.6.2, Deployment Descriptor File for the list of receiver
classes and their usage.)

» Specify a package name of webservice in your custom Java program
(e.g.: package webservice;).

 Place your custom source code in your components sour ce/
webservi ce directory (e0. conmponent s/ myconpon-
ent s/ sour ce/ webservi ce). The server build target will then
build and package this custom receiver code.

» Create acustom ser vi ces. xm descriptor file for each service class
to be overridden by your custom behavior. See Section 4.6.2, Deploy-
ment Descriptor File and Example 4.3, Sample services.xml Descriptor
File Entry for a Custom Receiver below.

<nessageRecei ver s>
<nessageRecei ver
mep="htt p: //ww. W3. or g/ 2004/ 08/ wsdl /i n- out "
cl ass="webservi ce. MyRecei ver"/>
</ messageRecei ver s>

Example 4.3 Sample services.xml Descriptor File Entry for a
Custom Receiver

The webservices build (implemented in app_webser vi ces2. xni) will
package these custom artifacts into a WAR file.

Providing Schema Validation

When using web services that pass and return a W3C Document object you
may want to use schema validation to verify the integrity of the document
you are processing. Whether you choose to do this might depend on factors
such as:

» The CPU cost of performing such validation, which is dependent on the
volume of transactions your system will encounter;

» The source of the Documents being passed to your web service, whether
that is under your control or public.

The steps for validating an XML Document in an inbound web service are
asfollows:

1. Include the schema document in the application ear by storing it some-

32

Curam Web Services Guide

where within directory SERV-
ER DI R/ conponent s/ **/ webservi ces/ **/ *, xsd.

2. Provide code within the implementation code of the BPO method that
loads the schema file, and passes it into the infrastructure validator
class along with the org.w3c.Document class to be validated.

The code example below (Example 4.4, Sample lllustrating Schema Valida-
tion) illustrates how this can be implemented.

i mport curamutil.exception. AppExcepti on;

i mport curamutil.exception.|nformational Excepti on;
i mport curamutil.webservices. DOABVal i dat or;

i mport java.io.lnputStream

i mport org.w3c.dom Docunent ;

/**
* A sanmple XML docunent web service.
*/
public org.w3c.dom Document
myWebSer vi ceOper ati on(final org.w3c. dom Docunment docl n)
throws AppException, |nformational Exception {

/1 DOWBVal idator is the SDEJ infrastructure class for

/] validating org.w3c. Docunent classes in web services.

final curamutil.webservices. DOASVal i dator validator =
new curam util.webservi ces. DOABVal i dat or () ;

try
/1 The following is used only for error reporting
/'l purposes by DOASVal idator. |n your code you can
/1 provide a relevant value to help identify the schema
/] in the event of an error.
final String schemaURL = "n/a";

/] Load the schenm file fromthe .ear file.
/'l For exanple, the source |ocation of
/1 'testl.xsd was

/1 SERVER DI R/ conponent s/ cust onl webser vi ces.

final |nputStream schenaStream =
get Cl ass(). get C assLoader ().
get Resour ceAsStreanm("schenmas/test 1. xsd");

/[l if schema file is in
/1 SERVER DI R/ conponent s/ cust omf webservi ces/test/test1. xsd
schemaStream =
get Cl ass() . get G assLoader ().
get Resour ceAsSt rean("schemas/test/test 1. xsd");

/!l Invoke the validator.
val i dat or . val i dat eDocunent (docl n, schemaSt r eam
schemaURL) ;

} catch (Exception e)
/1 Schema validation failed. Throw an excepti on.
AppExcepti on ae = new

AppExcept i on(SOVE_MESSAGES. ERR_SCHEMA VAL DATI ON_ERRCR,
e);

}
/1 normal BPO | ogi c goes here.
...

return result;

33

4.7

4.7.1

4.7.2

4.7.3

Curam Web Services Guide

}

Example 4.4 Sample Illustrating Schema Validation

Legacy Inbound Web Services

Introduction

This section describes IBM Curam Social Program Management legacy in-
bound web services, which are defined in section Section 2.1, Overview of
Web Services.

| Wwarning

The use of legacy web services, while still supported, should only be
used for existing web services. This is because the underlying im-
plementation, Axis 1.4, is not actively maintained by Apache. Sup-
port for legacy web services will be removed at some point in the
future and you should convert any legacy web services as soon as
possible.

Web Service Styles

The IBM Caram Social Program Management inbound web service func-
tionality supports the generation of RPC-style (Remote Procedure Call) web
services and document-oriented web services (DOWS). In both cases:

* The request and response XML messages are transported using SOAP
over HTTP.

» Every web service is described using a Web Services Description Lan-
guage (WSDL) file.

» The invocation scope for all IBM Curam Social Program Management
web services is Request Scope, the default. For each request to the
web service, a new implementation instance is created to handle the re-
quest. The service instance will be removed after the request is com-
plete.

SOAP Binding

Web Services are based on an exchange of SOAP XML messages. A SOAP
XML message consists of an envelope that contains aheader and abody:

<soap: Envel ope
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/" >
<soap: Header >
<I-- header elenent(s) here -->

34

4.7.4

Curam Web Services Guide

</ soap: Header >
<soap: Body>
<l-- body el enent(s) here -->
</ soap: Body>
</ soap: Envel ope>

The bi ndi ng element of a WSDL file describes how the service is bound to
the SOAP messaging protocol. There are two possible SOAP binding styles:
RPC and Document.

A SOAP binding can also have an encoded use, or alitera use. The use at-
tribute is concerned with how types are represented in the XML messages. It
indicates whether the message parts are encoded using some encoding rules,
or whether the parts define the concrete schema of the message.

This means there are four potential style/use models. It is generally accepted
that it is best practice to avoid using RPC/ Li t er al or Docunent / En-
coded. Therefore, the following are supported:

* RPC/ Encoded

e Docunent/Literal

Each style has particular features that dictate how to create a WEDL file, and
how to trandlate a WSDL binding to a SOAP message. Essentially these res-
ult in different formatting of the SOAP messages.

It is worth noting that document-oriented web services (DOWS) are re-
garded as a crucia enabling technology for devel oping solutions incorporat-
ing a Service Oriented Architecture (SOA). Document/Literal web services
have emerged as the preferred style by bodies such as the Web Services In-
teroperability Organization (WS-1), an open industry group chartered to pro-
mote Web Services interoperability across platforms, applications, and pro-
gramming languages. DOWS are self-describing web services (conform to
XML Schemas) with no reliance on an externa encoding (as with RPC).
These features promote interoperability between heterogeneous applica-
tions, which isacentra component for SOA.

Selecting Web Service Style

The developer can decide whether each process class is exposed as a web
service using RPC or document style.

The decision of which web service style to employ should be made based on
the particular business requirements for the service under development.

From the developer's perspective they are shielded from being concerned
with the creation of WSDL files, the binding between XML and Java, or the
creation of SOAP request and response messages.

Regardless of the style chosen the same programming paradigm will be fol-
lowed. The underlying code which implements the business logic of the web
service will be a typical IBM Caram Social Program Management process

35

4.7.5

Curam Web Services Guide

class, with methods that accept struct arguments and return structs.

RPC

RPC is the default web service style in IBM Caram Social Program Man-
agement. RPC services follow the SOAP RPC and encoding rules. Axis 1.4
is employed to deserialize XML requests messages into Java object(s)
which are passed to the process class as method arguments, and will serial-
ize the returned Java object(s) into XML.

Document (DOWS)

As described above in Section 4.7.3, SOAP Binding, the document style
does not use SOAP encoding; it's simply based on XML schema. In order to
aid effective web service development provision is made for two DOWS
types depending on how the operation should process input parameters and
return values:

1. "Method parameters' - Where Axis 1.4 is used to deserialize the SOAP
message for input parameters into Java object(s) and to serialize the re-
turned Java object(s) into XML.

2. "XML document” - Where the developer has direct access to the XML
message contained in the SOAP body, instead of turning it into Java
objects. In this case an XML document is the input type and return
type. An XML schema s exposed in the WSDL to describe the expec-
ted input message. Support is also provided for validating SOAP re-
guest messages against the specified schema. Thisis also referred to as
amessage-style web service.

See Section 4.7.5.1, Modeling Legacy Web Service Classes in Rational Soft-
ware Architect for details on how to model these web service styles.

Creating Inbound Web Services

Legacy web services should only be used by existing IBM Caram Social
Program Management customers who have not yet migrated these web ser-
vices to Axis2. Apache has stabilized Axis 1.4 and it is not actively main-
tained.

Modeling Legacy Web Service Classes in Rational Software Archi-
tect

A web service class can be created by creating a WebService class
(stereotype: <<webservice>>) via the Rational Software Architect user in-
terface. For more information on working with the model in Rational Soft-
ware Architect see the Working with the Caram Model in Rational Software
Architect document.

A WebService class will:

36

Curam Web Services Guide

* Generate DDL that causes the methods of the class to become callable
by user 'V\EBSVCS'.

» Generate an Axis 1.4 configuration file that makes the class available as
aweb service.

To add an inbound web service class to a package, select Add Class, Web-
Service from the right-click context menu and name the class.

A WebService class can support one of the two styles of web services sup-
ported by specifying the Document _Type property on the Curam prop-
erty tab for the class:

* RPC - specify the Docunent _Type property vaueas2 - no (which
isthedefault when 0 - unspeci fi ed isthe vaue)

* Document-oriented web service (DOWS) - specify the Docu-
ment _Type property valueas1l - yes

When creating a DOWS you control the processing of operation arguments
and return values by specifying the property XM._Docunent :

» "Method parameters' - specify the XML_Docunent property value as 2
- no (whichisthedefault when0 - unspeci fi ed isthevalue)

o "XML document” - specify the XML_Docunent property valueas1 -
yes

Since the above properties apply uniformly to all operations of that class
you will need to model different classes when you have web services with
different style requirements.

Adding Operations to Legacy Inbound Web Service Classes

Operations are added to inbound web service classes via the right-click con-
text menu. To add an operation to an inbound web service class:

1. Select Operation from the right-click context menu and choose Default.

2. Inthe Create 'default’ Operation Wizard name the operation.

Adding Arguments and Return Types to Inbound Web Service Op-
erations

Add arguments and a return type to an inbound web service to utilize an
RPC-style web service; otherwise, for a document-style web service, which
passes and returns a W3C XML Document, specify no arguments or return
type. The interface with an XML Document argument and return type set is
automatically generated for each operation, as illustrated in Example 4.5,
Sample Generated DOWS XML Document Interface.

When adding arguments and return types to RPC-style inbound web service
operations this is done in the same manner as with process and facade

37

Curam Web Services Guide

classes as documented in Working with the Ciram Model in Rational Soft-
ware Architect.

i Note
Only operations which do not have operation arguments or a return
type set will be exposed as a DOWS XML Document service. The
interface with an XML Document argument and return type set is
automatically generated for each operation, as illustrated in the fol-
lowing Example 4.5, Sample Generated DOWS XML Document In-
terface:

public interface DOAMSXM.DocTest BPO

public org.w3c. dom Docunent processDocunment
(org. w3c. dom Docunent xml Message)
throws curamutil.exception. AppExcepti on,
curam util.exception.|nfornmati onal Excepti on;

publ i c org.w3c. dom Docunent echoDocunent
(org. w3c. dom Docunent xm Message)
throws curamutil.exception. AppExcepti on,
curam util.exception.|nfornmati onal Excepti on;

Example 4.5 Sample Generated DOWS XML Document Interface

To specify a schema in the Curam properties tab for the WebService class
(where you've set property XM__Docunent):

o Select the XML_Schema property and click the edit (. . .) button. In
the edit window specify the XML schema filename, relative to your
EJBServer directory. The schema identified by this filename will be in-
cluded in the web service WSDL generated at run time by Axis 1.4. This
feature provides a way to publish a description of the XML message ex-
pected by the service.

Schema files must be stored in the appropriate build structure folder:
<SERVER DI R>/ conponent s/ cust onf webservi ces/. Each
component may have its own set of web services, so in the above path
cust omshould be the name of the component for which the web ser-
vice is being deployed. For example:

<SERVER DI R>/ conmponent s/t est Conponent / webser vi ce
s/ sanpl eSchena. xsd

 SettheVal i dat e_Request property in the Curam properties tab for
the WebService classto 1 - yes. SOAP body request messages will
then be validated against the specified XML schema before forwarding
the request to the process class. If the message does not conform to the
schema the process class will not be invoked, and a fault message will
be returned to the client stating that the request does not conform to the
schema.

o]

n Note

38

Curam Web Services Guide

If the declared elements are referenced in the XML schema then any
references to these elements should be qualified with the namespace
(in the example Example 4.6, XML schema the references are pre-
fixed with cns). This is required to avoid the name clashes as the
XML schemawill be included in the web service WSDL.

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
t ar get Namespace="htt p://ws. curam Fi nanci al Updat eWs"
xm ns: cns="http://ws. curani Fi nanci al Updat eWs"
el enment For nDef aul t =" qual i fi ed">
<xs: el ement nanme="root">
<xs: conpl exType>
<Xs:sequence>
<xs:el ement m nCccurs="1" maxCccurs="1"
ref ="cns: nsgT_fi nanci al Updat e"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement name="nsgT_fi nanci al Updat e" >
<xs: conpl exType>
<Xs:sequence>
<xs: el ement maxCccur s="unbounded" ref="cns:row'/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="r ow'>
<xs: conpl exType>
<Xs:sequence>
<xs:element m nCccurs="1" maxCccurs="1"
ref ="cns: EXTERNALI LI | D"/ >
<xs: el ement m nCccurs="1" maxCccurs="1"
r ef =" cns: DOCUVENTSTATUSCCDE" / >

r ef =" cns: EXTERNALPAYVENTLI ST"/ >
<xs: el ement m nCccurs="0" maxCccurs="1"
ref ="cns: LOCKLI ST"/ >
<xs: el ement m nCccurs="1" maxCccurs="1"
ref ="cns: TI MESTAMP" [>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="EXTERNALI LI | D' type="xs:integer"/>
<xs: el ement name=" DOCUMENTSTATUSCODE" type="xs:string"/>
<xs: el ement nanme=" OPENAMOUNT" type="xs: doubl e"/>
<xs: el ement name="EXTERNALI NVO CElI D' type="xs:integer"/>
<xs: el ement name="EXTERNALPAYMENTLI ST" >
<xs: conpl exType>
<XS:sequence>
<xs: el ement m nCccurs="0" maxCccurs="unbounded"
r ef =" cns: EXTERNALPAYMENTI D'/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement nanme="EXTERNALPAYMENTI D' type="xs:integer"/>
<xs: el ement name="LOCKLI ST" >
<xs: conpl exType>
<XS:sequence>
<xs:el ement m nCccurs="0" maxCccurs="unbounded"
ref =" cns: LOCKREASON'/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name="LOCKREASON' type="xs:string"/>
<xs: el ement name="TI MESTAMP" type="xs:integer"/>
</ xs: schema>

39

=

Curam Web Services Guide

Example 4.6 XML schema

An example of an XML document that conforms to the schema in
Example 4.7, XML document:

<msgT_fi nanci al Updat e
xm ns="http://ws. curan Fi nanci al Updat eWs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p://ws. curani Fi nanci al Updat eWs
Fi nanci al Updat e. xsd" >

<r ow>
<EXTERNALI LI | D>1</ EXTERNALI LI | D>
<DOCUNMENT STATUSCODE>C04</ DOCUVENT STATUSCODE>
<OPENAMOUNT>0</ OPENAMOUNT>
<EXTERNAL| NVO CEI D>000000000000</ EXTERNALI NVO CEI D>
<EXTERNALPAYMENTLI| ST>
<EXTERNAL PAYMENT| D>233</ EXTERNALPAYMENTI D>
</ EXTERNALPAYMENTLI| ST>
<TI MESTAMP>20080229094755</ TI MESTAVP>

</ row>

<r ow>
<EXTERNALI LI | D>2</ EXTERNALI LI | D>
<DOCUMENT STATUSCODE>C05</ DOCUMENT STATUSCCDE>
<OPENAMOUNT>0</ OPENAMOUNT>
<EXTERNALI NVO CElI D>000000000000</ EXTERNALI NvVO CEI D>
<EXTERNALPAYMENTL| ST>

<EXTERNALPAYMENT| D>3455</ EXTERNAL PAYMENTI D>

</ EXTERNALPAYMENTLI ST>
<TI MESTAMP>20080229094744</ T| MESTAMP>

</ row>

</ megT_fi nanci al Updat e>

Example 4.7 XML document

Note

A web service cannot be called if it has validation schema enabled
and the specified validation schema xsd file imports other xsd files.
This is illustrated by the following examples where validation
schema "Det erm nati on. xsd" imports "busi -
nesstypes. xsd".

<?xm version="1.0"?>

<I-- root elenent, nanespace and form definitions -->
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: bt =" busi nesst ypesURI "
xm ns: dt ="det er mi nati onURI "
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t =" unqual i fi ed"
t ar get Nanespace="det erni nati onURl " >

<I-- inport the businesstypes schema -->
<xs:inport nanespace="busi nesstypesURl "
schemalLocat i on="busi nesst ypes. xsd" />

<...>

</ xs: schema>

40

Curam Web Services Guide

Example 4.8 Determination.xsd

The schema"busi nesst ypes. xsd", which isimported in "De-
term nati on. xsd" above:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I-- The contents of this file are fixed, by the SDEJ.
It could easily be shipped with the SDEJ -->
<xs:schema xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema"
t ar get Namespace="cur ant ypesURI " >

<xs: si npl eType nane="dat e">
<xs:annot at i on>
<xs: docunment ati on>Ciram builtin type date.
</ xs: docunent ati on>
</ xs: annot at i on>
<xs:restriction base="xs:date"/>
</ xs: si npl eType>

<...>

</ xs: schema>

Example 4.9 businesstypes.xsd

When calling a web service having a validation schema which im-
ports another schema as shown in the example above an error
"src-resolve: Cannot resolve the nane <...> to
a type definition conponent" will bethrown.

There are two workarounds to solve this issue:

* Disable schema validation on aweb service.

* If aweb service's schema validation still needs to be specified
avoid using schema imports within the schema, and define the
contents of the imported schema instead. If we take the example
given above, the schema "Det er mi nat i on. xsd" shown be-
low no longer imports "busi nesst ypes. xsd", but now has
its contents inline:

<?xm version="1.0"?>

<I-- root elenent, nanmespace and formdefinitions -->
<xs: schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: dt ="det erm nati onURI "
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t =" unqual i fi ed"
t ar get Nanespace="det erm nati onURl " >

<I-- inport the businesstypes schema -->
<I-- BEG N busi nesstypes. xsd -->

<xs: si npl eType nane="date" >
<XS:annot ati on>
<xs: docunent ati on>
Curam builtin type date.
</ xs: docunent ati on>
</ xs: annot at i on>
<xs:restriction base="xs:date"/>

41

Curam Web Services Guide

</ xs: si nmpl eType>

<...>
<!-- END busi nesstypes. xsd -->
<...>

</ xs: schema>
Example 4.10 Determination.xsd

Example 4.11, Sample DOWS XML Document Implementation Class illus-
trates a skeleton implementation. This simple example shows an implement-
ation of class DONSXM.DocTest BPO that consists of two operations,
echoDocunent and processDocunent, which are exposed as two
web services that echo and process the request SOAP body XML message
respectively.

package webservice.inpl;

i mport curamutil.exception. AppExcepti on;

i mport curamutil.exception.|nformational Excepti on;
i nport org.w3c.dom Docunent ;

i mport org.w3c.dom El enent ;

i mport org.w3c. dom Node;

public cl ass DOASXM_DocTest BPO ext ends
webser vi ce. base. DOAMSXM.DocTest BPO {

*

Sanpl e method for echoing an XM. nessage.

@ar am xnml Message The request nessage
@eturn the response nessage.

@ hrows AppException
@hrows | nformati onal Excepti on
/
publ i ¢ Docunent echoDocunent
(final Document xm Message)
t hrows AppException, |nformational Exception {

E I R I I S

Docunent responseMessage = nul | ;

try {
responseMessage = xml Message;

} catch (Exception ex) {

return responseMessage;
}
/**

* Sanpl e met hod for processing an XM. nmessage.
*

@ar am xm Message The request nessage
@eturn the response nessage.

*
*
*
* @hrows AppException
* @hrows | nformational Exception
*

i ¢ Docunment processDocunent

/
publ i
(final Document xm Message)

42

4.7.6

Curam Web Services Guide

t hrows AppException, |nformational Exception {

Docunent responseMessage = nul | ;

try {
responseMessage =

doXM_Docunent Pr ocessi ng(xm Message) ;
} catch (Exception ex) {

return responseMessage;

}
/**

* Do processing of XML and return an XM. nessage.
* @aram bodyXML The nmessage to be processed.
* @eturn The processed message.
*/
private Docunment doXM.Document Processi ng
(final Docunent bodyXM.) {

final Docunent doc = bodyXM;
/** business logic inplenmented here... **/

return doc;

}

Example 4.11 Sample DOWS XML Document Implementation Class

Build and Deployment

The EAR file containing the web service wrapper is built by target web-
sphereEAR (for WebSphere) or weblogicEAR (for WebLogic Server). The
resulting EAR file is deployed in the same way as the normal application
EAR file.

]

H Note

The web services EAR file may be deployed into a different server
to the application server. This server does not require any database
or IM S resources.

In order for athird party to use an IBM Curam Social Program Management
web service, they need the WSDL which describes the web service. A
WSDL document is produced for each webservice process class. The W5DL
is generated at run time, and is therefore available only once the web service
EAR has been deployed onto an application server. The WSDL is obtained
via HTTP from the server. The URL of the WSDL is determined by the fol-
lowing factors:

« The HTTP port of the server onto which the EAR file has been de-
ployed;

» The application name;

* The process class name.

For example, if the application is named Cur amand a class named M-

43

4.7.7

Curam Web Services Guide

WebSer vi ceBPO has been deployed as a web service, and the web service
server islistening on port 9082 on server t est ser ver then the WSDL for
this web service can be obtained from ht-
tp://testserver:9082/CuramW S/services MyWebServiceBPO2wsdl. In addi-
tion, alist of all web services available on this server can be seen by going
to http://testserver:9082/CuramW S/services.

ﬁ Note

The WSDL for a web service is not available at development time.
It is generated at run time by Axis 1.4 once the web service has been
deployed.

Data Types

All the IBM Curam Social Program Management data types except Blob
(SVR_BLOB) can be used in RPC and DOWS Method Parameters web ser-
vices. The mappings between IBM Curam Social Program Management and
WSDL datatypes are shown in the following table:

Cuaram data type WSDL data type

SVR_BOCOLEAN xsd: bool ean

SVR_CHAR xsd: string

SVR_| NT8 xsd: byt e

SVR I NT16 xsd: short

SVR_| NT32 xsd: i nt

SVR_| NT64 xsd: | ong

SVR_STRI NG xsd: string

SVR_DATE xsd: string
(Format: yyyymud)

SVR_DATETI ME xsd: string
(Format: yyyymmddThhmss)

SVR_FLOAT xsd: f | oat

SVR_DOUBLE xsd: doubl e

SVR_MONEY xsd: f | oat

Table 4.2 Caram to WSDL Data Types (Legacy)

In conjunction with the supported data types shown in Table 4.2, Cdram to
WSDL Data Types (Legacy), only the related XML schema types that map
to primitive Java types and j ava. | ang. Stri ng are supported for in-
bound web services. For example, "xsd:boolean” and "xsd:long" that map to
the boolean and long Java types, respectively, and "xsd:string" that maps to
java. l ang. Stri ng are supported. All other XML schematypes that do
not map to a Java primitive type or to j ava. | ang. Stri ng are not sup-
ported. An example of such an unsupported XML schema type is

44

http://testserver:9082/CuramWS/services/MyWebServiceBPO?wsdl
http://testserver:9082/CuramWS/services/MyWebServiceBPO?wsdl
http://testserver:9082/CuramWS/services

4.7.8

Curam Web Services Guide

"xsd:anyURI", which maps to j ava. net . URI . This limitation applies to
inbound web services only and is due to the fact that inbound web services
are generated based on what can be represented in an application model.
Outbound web services are not affected by this issue. For more details on
related modeling topics consult the documents. Working with the Cdram
Model in Rational Software Architect and Caram Server Modeling Guide.

2

n Note

Passing or returning the "raw" IBM Cdram Social Program Man-
agement data types (i.e., "Date", "DateTime", "Money") as an attrib-
ute to aweb service is restricted. IBM Curam Social Program Man-
agement data types must be wrapped inside a struct before passing
them as attributes to aweb service.

Processing of Lists

An operation is said to use IBM Curam Social Program Management lists if
its return value or any of its parameters utilize a struct which aggregates an-
other struct using 'multiple’ cardinality.

In the UML metamodel, it is possible to model an operation which uses
parameters containing lists. All operations which are visible as a web ser-
vice are normally also visible to the web client.

However the web client does not support the following:
o List parameters,
* Non-struct parameters (i.e. parameters which are domain definitions);

« Non-struct operation return types.

In these cases, the web client ignores the operations which it does not sup-
port, but these operations can be used as normal as an inbound web service.

When using lists with a document-oriented inbound web service SOAP
messages corresponding to the list structs do not match the WSDL corres-
ponding to these types. This will manifest itself as a runtime error when
SOAP messages are being serialized or de-serialized. The recommended
workaround isto either:

 UseRPC instead of DOWS web services; or,

* Ensure that your DOWS methods do not use list structs as their paramet-
er or return types.

Security Considerations

Once a BPO has been assigned to a webser vi ce server it is calable by
anybody as a web service without any authentication. All web service calls
are automatically logged in and invoked using default credentials. The de-
fault user, WEBSVCS, automatically gets permission to invoke all methods

45

4.7.9

Curam Web Services Guide

of aclasswhichisassigned to awebser vi ce server.
Therefore caution is advised when making a class visible as aweb service.

Customizations

The Axis 1.4 toolkit used operates by listening for SOAP messages on HT-
TP, and using them - in conjunction with generated parameter structs - to
make EJB invocations to the server. To facilitate customization of this beha-
vior, it is possible for the developer to implement a hook which gets called
during the process and which has access to the SOAP message. This gives
the developer flexibility to do things like perform additional processing of
the SOAP message, authenticate with different credentials, specify a locale
etc.

By default RPC and DOWS Method Parameters web services use the class
curamutil.connectors. webservi ce. Cur anEJBMet hodPr ov
ider, and DOWS XML document web services use the class
curamutil.connectors. webservice. CuramvsgSt yl eEJBMe
t hodPr ovi der . These classes perform some of the processing on the
SOAP message and connect to the application using default credentials.
When you specify a custom provider for your RPC or DOWS Method Para-
meters web service class, you must provide an implementation class which
extends one of the above classes.

The following rules apply:

* The name of the custom provider class is specified using the Pr o-
vi der _Nane property in Rational Software Architect.

« |If avalue for this property is specified, you must provide a Java imple-
mentation of the class. For example, if you set this property to 'MyPr o-
vi der ' then you must implement a class named MyPr ovi der which

extends the class
curam util.connectors. webservi ce. Cur anEJBMet hodP
rovi der or

curamutil.connectors. webservice. CuramvsgSt yl eEJ
BMet hodPr ovi der .

* By overriding methods of this class the developer can gain access to the
SOAP message and perform additional processing on it. In most cases
the developer should also call the super version of the overridden
method to ensure that the underlying Axis 1.4 web service framework
continues to work as normal.

* Your provider class implementation must be in a package named web-
servi ce.

» If you specify a custom provider class for a web service class, the web
service no longer automatically connects using the default credentials.
Therefore your provider must provide the credentials. Typically these
will be obtained from the SOAP message.

46

Curam Web Services Guide

Since the custom provider implementation resides in a different EAR
file to the application, its Java source must reside in a separate location
to the other Java source files, eg. EJBServer/conpon-
ent s/ cor e/ sour ce/ webservi ce/ MyProvi der. java

Since the Ear file for web services can be deployed into a dedicated web
services server it may not have access to the same services as the main
application, such as a database, JMS, etc. However it does have access
to the same infrastructure classes such as
curamutil.type. Dat eTi ne, etc.

The locale for the web service call can be set by setting the | ocal e
property in the MessageCont ext object for the cal. If this property
is not set, the locale defaults to that of the user under whose credentials
the call is made.

Sample RPC-Style Customizations

In the following code sample, a SOAP message is parsed to extract the user-
name and password credentials, these values are applied to the Message-
Cont ext classfor the invocation (and in the case of WebSphere, alogin is
performed), and control is returned to the superclass. Also alocale is spe-
cified for the cal by setting property | ocal e in the MessageCont ext
object. The code sample is followed by an example of a SOAP message
which would be processed by the code.

package webservi ce;

i mport curamutil.connectors.webservice. CuranEJBMet hodPr ovi der ;
i mport curamutil.resources. Configuration

i mport curamutil.resources. Envi ronnent Const ants;

i mport java.lang.reflect. Constructor;

i mport java.lang.reflect.Method

i mport java.security.PrivilegedAction

import java.util.lterator

i mport javax.security.auth. Subject;

i mport javax.security. auth. call back. Cal | backHandl er
i mport javax.security.auth. | ogin.Logi nCont ext;

i mport javax. xm .soap. Nane;

i mport javax. xm .soap. SOCAPBody;

i mport javax.xm .soap. SOAPE!l enment ;

i mport javax. xml .soap. SOAPExcept i on

i mport javax. xm . soap. SOAPHeader

i mport org.apache. axi s. Axi sFaul t;

i mport org.apache. axi s. Message;

i mport org.apache. axi s. MessageCont ext ;

i nport org.apache. axi s. message. SOAPEnvel ope;

i nport org.apache. axi s. provi ders. java. EJBProvi der

* % ok kX

*

*/

A web services hook which extends the Axis EJB provider to
enabl e the devel oper to access the SOAP nessage. In this case
it takes the username and password fromthe SOAP header and
sets themin the nmethod call.

public class Testnodel Provi der extends CuranEJBMet hodProvi der {

/** The nanme of an XML attribute in a nmulti ref elenent. */

47

Curam Web Services Guide

private static final String kNameOf | dAttribute = "id";

[** The nane of an XM. el ement in the SOAP body. */
private static final String kMilti Ref El ement Name = "nmul ti Ref";

/**

* The nanme of the attribute containing a "href® to another

* el ement.

*/

private static final String kHrefAttri buteName = "href";

/**

* The name of the header elenent as defined in the WSDL file.
*/

private static final String kNaneOf Header El ement = "i nHeader";

[** The name of the el ement containing the user nane field. */
private static final String kUsernaneFi el dName = "user Nane";

/** The nane of the el enent containing the password field. */
private static final String kPasswordFi el dNane = "password";

/** Cached Do As Met hod instance. */
private static Method st Subj ect DoAsMet hod;

/**

* Hook which gets the credentials fromthe header of the soap
nessage and sets themin the message context for the call
bef ore del egati ng back to the superclass nethod.

@ar am nsgCont ext The message context for the call.

@hrows AxisFault Generic Axis exception.
/
public void invoke(final MessageContext msgContext)
throws AxisFault {

* % Ok ok X F

final Message request Message = nsgCont ext. get Request Message() ;
final SOAPEnvel ope envel ope =

request Message. get SOAPEnvel ope() ;
final SOAPEl enent el ement =

get SoapEl enment (envel ope, kNameCOf Header El enent) ;

nul | ;
nul | ;

String user Name
String password
try {
/] CGet paraneters fromthe SCAP header and set themin the
/1l message context for the call.
user Nane = get SubEl enent Val ue(el ement, envel ope. cr eat eNane(
kUser nameFi el dNane)) ;
password = get SubEl enent Val ue(el ement, envel ope. cr eat eNane(
kPasswor dFi el dNane)) ;

Check the soundness of our SOAP header processing before
we attenpt to use the data for real. O herw se bad or

m ssing data in these variables will sinply manifest
itself misleadingly as a security configuration problem
((userName == null) || (userNane.length() ==

|| (password == null) || (password.length() == 0)) {

—_——— — —
—_— e~~~

final AxisFault e = new Axi sFaul t(
"Bad usernane/ password in SOAP" + " header '" + user Nane
+ " /I n + passv\ord + na II) ;

throw e;

nsgCont ext . set User nane(user Nane) ;
nsgCont ext . set Passwor d(passwor d) ;

/1 Specify an absolute |ocale for the invocation:
final String | ocal eFrenchCanada = "fr_CA";
nsgCont ext . set Property ("l ocal ", | ocal eFrenchCanada);

48

Curam Web Services Guide

} catch (SQAPException e)
t hr ow new Axi sFaul t (e. get Message(), e);

}

i f (isRunningl nWebSphere()) {

/1 A WebSphere limtation neans that it will not

/] automatically see the credentials we have just set, we
/1

tr

nmust al so perform our |ogin here.

<

{
final Method doAsMet hod = get DoAsMet hod();
final Logi nContext |oginContext =
get Logi nCont ext (user Nanme, password);
| ogi nCont ext . | ogi n() ;
final Subject subject = | ogi nContext.getSubject();

[/l Create a privileged action class which includes all the

[/ information about this call.
final PrivilegedAction action =

new Provi derPrivil egedAction(this, nsgContext);
final Qbject[] paraneterValues = {subject, action};

/1 invoke the rest of the call under the new credenti al s.

final Object axisFault =

doAsMet hod. i nvoke(nul |, paraneter Val ues);
/'l Exceptions cannot be thrown fromthe above invocation,
/1 they are returned instead. If one was returned then
/] throw it now.
if (axisFault !'= null)

t hrow new Axi sFaul t ("" + axisFault,

(Exception) axisFault);
} catch (Exception e)
t hr ow new Axi sFaul t (e. get Message(), e);
} else {

/1 Not in WebSphere. Sinply del egate straight through.
super . i nvoke(nmsgCont ext) ;

}

/**

* An accessor for the invoke nethod in the superclass. Required

within this one.

*
*
*
* @aram nmsgCont ext The nessage context object for this call.
*
*

@hrows AxisFault Generic Axis fault handl er.
=

private void superlnvoke(final MessageContext nsgContext)
throws AxisFault {

super . i nvoke(nmsgCont ext) ;

/*
* | ndi cates whether we are running w thin WebSphere in which
* case we nust delegate the rest of the call as a privil eged
* action.

*

* @eturn True if running under WebSphere, false otherw se.
*/
private bool ean i sRunni ngl nWebSphere() {
final String vendor Nane = System get Property("java.vendor");
return vendor Nane. startsWth("IBM');

/**

* Cets a naned el enent fromthe SOAP nmessage, searching both

because it must be invoked by another class - the inner class

49

*
*
*
*
*
*

pr

/*
*
*
*
*
*
*
*
*
*

*

pr

Curam Web Services Guide

t he body and header.

@ar am envel ope The SOAP envel ope.

@ar am el enent NameStri ng The nane of the elenent to get.

@eturn The required elenent or null if it was not found.

i vat e SOAPEI enent get SoapEl enent (fi nal SOAPEnvel ope envel ope,

final String el ement NaneString) ({

SOAPElI enent result = nul |;
try {
final Nane el ement Name =
envel ope. cr eat eNanme(el enent NaneStri ng) ;
final Name href AttributeNanme =
envel ope. cr eat eName(kHr ef Att ri but eNane) ;
final SOAPHeader sh = envel ope. get Header () ;
final SOAPBody sb = envel ope. get Body();

/] first search the header.
SOAPEl enent candi dat eEl enent = nul | ;
final lIterator headerlterator =
sh. get Chi | dEI enent s(el enent Nang) ;
i f (headerlterator. hasNext())

candi dat eEl enent = (SOAPEl enent) headerlterator. next();

/| search the body, if necessary.
i f (candi dateEl ement == null) {
final lterator bodylterator =
sb. get Chi | dEl enent s() ;
i f (bodylterator.hasNext())

{
candi dat eEl enent = (SOAPEl enent) bodylterator. next();

}

el ement el sewhere in the nmessage.
(candi dateEl enent !'= null) {
final String hrefValue =

—_—————
—_— e~ e~

Now we need to check if this is literal or encoded
element. Aliteral one is enbedded directly, an encoded
one neans that this elenment is sinply a pointer to an

candi dat eEl enent . get Attri but eVal ue(href Attri but eNane) ;
if ((hrefvalue !'= null) && (hrefValue.length() > 0)) {

/] it points to a multi ref, so get this instead.
result = getMilti Ref El ement (envel ope, href Val ue);

} else {
/[l It"s literal so return it directly.
result = candi dat eEl enent ;

} catch (SCAPException e) {
e. print StackTrace();

return result;

Gets a multi ref elenent froma SOAP nessage.

@ar am envel ope The SOAP envel ope.

@aram i dStringWthPrefix The identifier of the nmulti ref
el ement .

@eturn The matching elenent, or null if it was not found.

@ hrows SQAPException |If any SOAP error occurs.
/
i vat e SOAPEI enent get Mul ti Ref El enent (

final SOAPEnvel ope envel ope, final String idStringWthPrefix)

t hrows SOAPException {
SOAPEl ement result = null;

50

Curam Web Services Guide

// Rermove the hash character:
final String idString = idStringWthPrefix.substring(l);
final Nane i dNane = envel ope. cr eat eName(kNaneOf | dAttri but e);
final SOAPBody body = envel ope. get Body();
final lIterator nulti Reflterator = body. get Chil dEl ement s(
envel ope. cr eat eName(kMul ti Ref El ement Nane)) ;
while (nultiReflterator. hasNext()) {
final Cbject o = nmulti Reflterator.next();

final SOAPEl ement currentEl ement = (SOAPEl ement) o;
final String currentld =

current El ement . get Attri but eVal ue(i dNane) ;
if (currentld.equal s(idString)) {

result = current El enent;

br eak;

return result;

/*

* Gets the value of a specified elenment within the given
* elenent. If nmultiple occurrences are present, the first one
* is returned.

*

* @aram el enent The el enent containing the required one.
* @ar am el enent Nane The name of the required el enent.

*

* @eturn The string value of the element, or null if the
* specified sub el enent does not exist.

*/

private String get SubEl ement Val ue(fi nal SOAPElI enent el enent,
final Nane el enent Nane) {

String result = null;

final lIterator elenentlterator =
el enent . get Chi | dEl enent s(el enment Nan®) ;
if (elementlterator.hasNext()) {
final SOAPEl enment subEl ement =
(SOAPEl ement) el ementlterator.next();
result = subEl ement. get Val ue();

return result;

/**

*

Gets the hidden inplenmentation class for the Logi n Context.

@ar am user Name The user name to login wth.
@ar am password The password to login wth.

@eturn class for inplenmentation

@hrows Exception if an error occurs getting an instance of
t he Logi nCont ext cl ass

* % ok kX X X F

*/

private Logi nCont ext getLogi nCont ext (
final String userNanme, final String password)
t hrows Exception {

final Logi nContext resultLogi nContext;

/1 Initialize WbhSphere specific callback handl er. Use

/1 reflection to avoid a build tine dependency on an | BM
/] class.

final C ass wsCall backHandl erd ass = C ass. f or Name(

Envi r onnent Const ant s. kWBCal | backHandl er | npl d assNan®) ;
final Cass[] paraneters = { String.class, String.class };
final Constructor constructor =

wsCal | backHandl er O ass. get Const ruct or (par anet ers) ;
final Object[] paraneterValues = {userNane, password};

51

Curam Web Services Guide

[/ The WebSphere | ogin
resul t Logi nCont ext =
new Logi nCont ext (
Envi r onnent Const ant s. kWSLogi n,
(Cal | backHandl er) constructor. new nst ance(
par amet er Val ues)) ;

return resultLogi nCont ext;

}

/**

* Gets the cached Do As nethod, initializing it if necessary.
*

* @eturn The Do As nethod for this server.

*

* @hrows Exception If the nmethod could not be obtained for
* any reason.

=

private Method get DoAsMet hod() throws Exception {

i f (stSubjectDoAsMethod != null) {
return st Subj ect DoAsMet hod;

final C ass wsSubjectd ass =
Cl ass. f or Name(Envi r onnent Const ant s. kWBSubj ect O assNan®) ;
final C ass[] noreParaneters =
{ Subject.class, PrivilegedAction.class };
st Subj ect DoAsMet hod =
wsSubj ect Cl ass. get Decl ar edMet hod(
Envi r onnent Const ant s. kDoAsMet hodNane,
nor ePar anet er s) ;
return st Subj ect DoAsMet hod;

/**

*

*

*/
private class ProviderPrivil egedAction
i mpl enents Privil egedAction {

[** The nessage context for the call. */
private final MessageContext nsgContext;

[** The cl ass whose nmet hod we must invoke. */

private final Testnodel Provi der owner Qbj ect ;

/**

* Constructor which initializes the fields.

@ar am newOaner Obj ect The cl ass whose met hod we wil |

i nvoke.
@ar am newisgCont ext The nessage context for the call.

* % ok F F
~

publ i c ProviderPrivil egedActi on(
final Testnodel Provi der newOamer Qbj ect ,
final MessageContext newisgContext) {

owner Gbj ect = newOwner Obj ect ;
msgCont ext = newisgCont ext ;

}
/**

* Runs the privileged action using the fields of this class.

*

* @eturn The exception resulting fromthe call, or null if
* none was thrown.
*/

public Object run() {
bject resultFault = null;

try {

52

Curam Web Services Guide

owner bj ect . super | nvoke(nmsgCont ext) ;
} catch (Exception e) {
resultFault = e;

return resul t Faul t;

}

The text below shows an actual SOAP message (with some formatting for
readability) which is processed by the Java code above. Note that the SOAP
header refers to a parameter named 'i nCr ed” which contains the username
and password credentials. The actual data is not stored literally in the header
butina 'nmul ti Ref * element in the message body.

<soapenv: Envel ope xnl ns: soapenv=
"http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >

<soapenv: Header >
<inCred href="#id0" xm ns=""/>
</ soapenv: Header >

<soapenv: Body soapenc: encodi ngStyl e=
"http://schemas. xm soap. or g/ soap/ encodi ng/ " >
<opDenp xm ns="http://renote.feature">
<inl href="#id1" xm ns=""/>
</ opDenp>

<nul ti Ref id="idl" soapenc:root="0" soapenv: encodi ngStyl e=
"http://schemas. xm soap. or g/ soap/ encodi ng/ "
Xsi :type="ns-905576305: Per sonDet ai | sW apper "
xm ns: ns-905576305="http://feature/struct/" xm ns="">

<firstName xsi:type="xsd:string">Ji my</firstName>
<i dNunber xsi :type="xsd: string">0000361i </ i dNunber >
<sur name xsi:type="xsd:string">d i ent</surnanme>

</ mul ti Ref >

<nmul ti Ref id="id0" soapenc:root="0" soapenv: encodi ngStyl e=
"http://schemas. xnm soap. or g/ soap/ encodi ng/ "
XSi : type="ns-905576305: Cr edent | al sW apper "
xm ns: ns-905576305="http://feature/struct/" xm ns="">

<passwor d xsi:type="xsd: string">password</passwor d>
<user Nane xsi:type="xsd: string">superuser </ user Name>
</mul ti Ref >
</ soapenv: Body>

</ soapenv: Envel ope>

Sample Document-Style Customizations

In the following code sample a document-oriented web service passing an
XML document (message-style) web service is processed by a custom pro-
vider to allow for default credentials to be set based on the operation name.

package webservi ce;

53

Curam Web Services Guide

i mport

curamutil.connectors. webservi ce. Cur amvsgSt yl eEJBMet hodPr ovi der ;
i mport java.util.Vector;
i mport javax.xm . nanespace. QNane;

i mport org.apache. axi
i mport org.apache. axi
i mport org.apache. axi
i mport org.apache. axi
i mport org.apache. axi
i mport org.apache. axi
i mport org. apache. axi
i mport org.apache. axi
i mport org. apache. axi

/**
*
*
*
*/

. Axi sFaul t;

. Handl er;

. MessageCont ext ;

.descri ption. Qperati onDesc;
.descri ption. Servi ceDesc;

. handl er s. soap. SOAPSer vi ce;
.1 18n. Messages;

. message. MessageEl enent ;

. message. SOAPEnvel ope;

nNnuunnnunonon

A web services hook which extends the Curam nessage style
provi der to enable the devel oper to do custom processing for
properties and then pass control to the Curam handl er.

public class CustomvgStyl eMet hodProvi der
ext ends Cur amVsgSt yl eEJBMet hodPr ovi der {

/

*

Process the nessage: Ensure the interface nethod mat ches
t he supported Curam nmessage style signature:
[public Docunment doSonet hing (Docunment xm Message)] .

Parse the SOAP body XML nessage into a Docunent object,
strip the root w apper elenent, do the actual invocation
and restore the root w apper el ement before respondi ng.

@ar am nsgCont ext the active MessageCont ext
@ar am regEnv the request SOAPEnvel ope
@ar am reskEnv the response SOAPEnvel ope
@ar am obj the service target object

@ hrows Exception exception

* % ok ok k% 3k ok kX X X X

*

*/

@verride
public void processMessage(final MessageContext nsgContext,

final SOAPEnvel ope reqEnv, final SOAPEnvel ope resEnv,
final Object obj)
throws Exception {

try {

Oper at i onDesc operation = nsgCont ext. get Operation();
final SOAPService serviceHandl er = nsgCont ext. get Servi ce();
final ServiceDesc serviceDesc =

servi ceHandl er . get Servi ceDescri ption();

QNanme opQNanme = nul | ;

/1 |f operation not in the context extract fromthe
/| SOAP envel ope.
if (operation == null) {
final Vector bodyEl ements = reqEnv. get BodyEl enent s();
i f (bodyEl ements. size() > 0)
final MessageEl enent el enent =
(MessageEl ement) bodyEl enent s. get (0) ;
if (element !'= null) {
op@ane = new QNane(
el ement . get NamespaceURI (), el enent. getLocal Name());
operation =
servi ceDesc. get Oper at i onByEl ement QName(opQNane) ;

}
}
}
/1 Cannot proceed wi thout an operation nane.
if (operation == null) {

t hr ow new
Axi sFaul t (Messages. get Message(" noOper ati onFor QNane"”,

54

}
}
}

Curam Web Services Guide

opNane == null ? "null" : opQNane.toString()));

}
[/ 1f this is a "public" operation we ensure
/] default credentials are suppli ed.
if ("public_operation".equal s(op@ane.toString())) {
final String jndi UserNane = "j ndi User";
String jndi User = (serviceHandl er != null)
? (String) serviceHandl er. get Opti on(j ndi User Nane)
(String) getOption(jndi User Nane) ;
if (jndiUser == null || jndiUser.length() == 0) {
servi ceHandl er. set Opti on(j ndi User Name, "default");

final String jndi PasswordNanme = "jndi Password";
servi ceHandl er . set Opti on(j ndi Passwor dNane, "password");

}
}
nmsgCont ext . set Servi ce(servi ceHandl er) ;

/'l Process the nessage

super . processMessage(nsgCont ext, regEnv, resEnv, obj);
catch (Exception e) {

e. print StackTrace();

t hrow e;

Example 4.12 Example Message Style Provider Override

A custom message-style handler could also be used to intercept the (W3C)
Document in the SOAP message to inspect and modify as the following il-
lustrates:

package webservi ce;

i mport curamutil.exception. AppExcepti on;

i mport curamutil.message. | NFRASTRUCTURE;

i mport curamutil.webservices. MessageProcessor;
i mport java.lang.reflect. Met hod;

i mport java.util.Vector;

i mport javax. xm . namespace. QNane;

i mport org.apache. axi
i mport org.apache. axi
i mport org.apache. axi
i mport org.apache. axi
i nport org.apache. axi
i nport org.apache. axi
i nport org.apache. axi
i mport org. apache. axi
i mport org. apache. axi

. Axi sFaul t;

. MessageCont ext ;

.descri ption. Operati onDesc;
.descri ption. Servi ceDesc;

. handl er s. soap. SOAPSer vi ce;
.1 18n. Messages;

. message. MessageEl enment ;

. message. SOAPBodyEl enent ;

. message. SOAPEnvel ope;

nNnmuuLununnunnn

i mport org.w3c.dom Docunent ;
i nport org.w3c. dom Node;

/**
*/
publ i

c class CustonvsgSt yl eMet hodPr ovi der

ext ends Cur amvsgSt yl eEJBMet hodPr ovi der {

/**
*

* % Ok ok X

Process the nessage: Ensure the interface nethod natches

t he supported Curam nmessage styl e:

[publ i c Docunent doSonet hing (Docunment xm Message)].
Parse the SOAP body XM. nessage in to a Docunent object,

strip the root wapper elenent, do the actual invocation

55

Curam Web Services Guide

and restore the root wapper el enment before respondi ng.

@ar am nsgCont ext the active MessageCont ext

@ar am regEnv the request SOAPEnvel ope

@ar am resEnv t he response SOAPEnvel ope

@ar am obj the service target object

*/@hr ows Exception exception

*

@verride

public void processMessage(final MessageContext nsgContext,
final SOAPEnvel ope reqEnv, final SOAPEnvel ope resEnv,
final Object obj)

throws Exception {

* 0% X ok X

Oper at i onDesc operation = nsgCont ext. get Operation();
final SOAPService service = nmsgContext. get Service();
final ServiceDesc serviceDesc =

servi ce. get Servi ceDescription();

QNanme opQNanme = nul | ;

/1 |f operation not in the context extract fromthe
/1 SOAP envel ope.
if (operation == null) {
final Vector bodyEl ements = reqEnv. get BodyEl ement s();
i f (bodyEl ements.size() > 0)
final MessageEl enment el ement =
(MessageEl ement) bodyEl enent s. get (0);
if (element !'= null) {
op@Nane = new QNane(
el ement . get NamespaceURI (), el enent. getLocal Name());
operation =
servi ceDesc. get Oper at i onByEl ement QNanme(opQNane) ;

}
}
}
/1 Cannot proceed wi thout an operation nane.
if (operation == null) {
t hr ow new
Axi sFaul t (Messages. get Message(" noOper ati onFor QNanme"
opNane == null ? "null" : opQNane.toString()));

}
final Method nethod = operation. get Met hod();
final int methodType = operation.get MessageOperationStyl e();

i f (methodType == OperationDesc. MSG_METHOD_DOCUMENT) {
// Dig out the body XML and i nvoke net hod.
final Vector bodies = regEnv. get BodyEl ement s();

Docunment doc =
((SOAPBodyEl enent) bodi es. get (0)). get AsDocunent () ;

/|l Preserve wrapper root elenent, and then renove it.
final Node root = doc.get Docunent El enent () ;
doc = MessageProcessor.renoveW apper El enent (doc) ;

R I O O S O S

/1

/1 Custom Document processing here.
// EE R S I R T
/1

/]l Add XML to arg for invocation.
final Object[] argObjects = new Object[1];
argoj ects[0] = doc;

Do the actual invocation of EJB nethod.

/1
/1 TODO instantiate your own provider instead
Il of Cur anEJBMet hodPr ovi der .

56

Curam Web Services Guide

final CuranEJBMet hodProvi der ej bMP =
new Cur anEJBMet hodPr ovi der () ;
Docunent resul t Doc =
(Docunent) ej bivP.
i nvokeMet hod(nsgCont ext, nethod, obj, argQbjects);

/] Add return XML to SCAP response
if (resultbDoc != null) {
/'l Restore the wapper root el enent that
/'l was renoved above.
resul t Doc =
MessagePr ocessor .
rest oreW apper El enent (root, resultDoc);

r esEnv. addBodyEl enent (
new SCAPBodyE!l enent (resul t Doc. get Docunent El ement ())) ;

return;

Sample Facade Bean Invocation

Here is an example of invoking a facade bean that is created by the Clram
modeling and build environments. This could be utilized in a context where
you are implementing an alternative web services implementation. In this
particular example the code is specific to a WebLogic Server application
server, but could easily be modified for WebSphere as shown in the com-
mented section.

package webservi ce;

i mport java.lang.reflect.|nvocationTarget Excepti on;
i mport java.lang.reflect. Met hod;

i mport java.security.AccessController;

i mport java.security.PrivilegedAction;

i mport java.util.Properties;

i nport | avax. nam ng. Cont ext ;

i mport javax. nam ng. | nitial Cont ext;

i mport j avax. nam ng. Nam ngExcepti on;

public class FacadeUsageDeno {

/**

* |llustrates how a Curam facade can be invoked froma client.
*/

private void i nvokeFacade() throws Nam ngExcepti on,

Cl assNot FoundExcepti on, SecurityException,

NoSuchMet hodExcepti on, |1l egal Argunent Excepti on,

11 egal AccessException, |nvocationTarget Exception {

final String sUser = "tester";
final String sPassword = "password";

/1 TODO Change for non-WbLogi c application server.
final String initial CtxFactory =

"webl ogi c.j ndi . W.I ni tial Cont ext Factory";
final String providerUl = "t3://]ocal host: 7001";

/1 Authenticate and get an initial context.

final Properties properties = new Properties();
properties. set Property(Context.SECURI TY_PRI NClI PAL, sUser);
properties. set Property(Cont ext. SECURI TY_CREDENTI ALS,

57

}
/

Curam Web Services Guide

sPasswor d) ;
properties. set Property(Context.|N Tl AL_CONTEXT_FACTORY,
initial CtxFactory);
properties. set Property(Context. PROVIDER URL, providerUrl);
final Context initial Context =
new | nitial Cont ext (properties);

/1 Lookup the facade bean.
final Qpbject o =
i nitial Context.
| ookup("j ava: conp/ env/ cur anej b/ MyFacadeBeanCl ass") ;

/1 Load the honme interface class so that we can narrow to it.
final C ass<?> cls = get Cont ext Cl assLoader () .| oadCd ass(

"ny. cust om renot e. MyFacadeHone") ;
final Object ehone =

javax.rm . Port abl eRenot eObj ect . narrow(o, cls);

/] Get and invoke the 'create' nethod of the honme interface
/]l to give us a reference to the facade bean.
final Method createMethod =
cl s. get Met hod("create", new Cl ass[0]);
final Object facadeObj =
creat eMet hod. i nvoke(ehone, new Object[0]);

/1 Use reflection to get and invoke the nethod
/1 'nyMethod' of our interface.
final C ass<?> facadeCbj Cl ass = facadeObj.getC ass();
final Method nmyMet hod =
f acadeObj Cl ass. get Met hod(" nyMet hod", new Cl ass[O0]);
/1 Pass argunments to i nvoke based on the method signature:
nmyMet hod. i nvoke(facadeCbj, new Object[0]);
initial Context.close();

Note: once the initial Context object has been obtained,
the remai nder of this nmethod could be witten like this.
However due to probl ens experienced with | oadi ng cl asses
in Weblogic, the above workaround is necessary so that a
cl a{ssl oader could be explicitly specified.
tr
fi nﬁl cust om webser vi ce. renot e. MyFacadeBeanCl assHonme
ehonme =
(cust om webser vi ce. rennt e. M/FacadeBeanC assHone)
javax.rm . Port abl eRenot eObj ect . nar r ow(
o,
cust om webservi ce. renot e. My/FacadeBeand assHone. cl ass) ;
cust om webservi ce. renot e. My/FacadeBeand ass facadeCoj =
ehone. create();
/1 Assunes a void nethod here; otherw se, argunents
/1 woul d be needed:
facadeQbj . nyMet hod() ;
initial Context.close();
catch (Throwable t) {

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1}

5) t.printStackTrace();

e e e e

* *

* Gets the class | oader for the context.
*

* @eturn Cl assLoader for the context.
2

private Cl assLoader get Context Cl assLoader () {

return AccessController.doPrivil eged(
new Privil egedActi on<C assLoader>() {
/**

* Prvil egedAction subcl ass.
*

* @eturn Cl assLoader for the context.
2

58

Curam Web Services Guide

public C assLoader run() {
return Thread. current Thread() . get Cont ext Cl assLoader () ;

59

5.1

5.2

Chapter 5

Secure Web Services

Overview

Web service security is an important, but optional, part of your web services
implementation. Existing and legacy web service security is described in
this chapter. For Rampart and Axis2 web services security you will learn
about:

¢ Using custom SOAP headers with Axis2 and encrypting them;
» Using and setting up Rampart;
o Using HTTPS/SSL to secure web service network traffic.

For legacy web services you will learn about the following, some of which
can be utilized with Rampart:

e |IBM Cdram Social Program Management modeling requirements for
using secure web services;

» Coding password callback handlers (also applicable to Axis2 if your
policy specifies a password callback handler);

e Setting up the client environment;

» Creating keystore files (also applicable to Axis2 if your environment re-
quires these steps for supporting HTTPS/SSL).

Axis2 Security and Rampart
Rampart is the security module of Axis2. With the Rampart module you can
secure web services for authentication (but see below), integrity (signature),

confidentiality (encryption/decryption) and non-repudiation (timestamp).
Rampart secures SOAP messages according to specifications in WS-

60

5.3

Curam Web Services Guide

Security, using the WS-Security Policy language.

The only specific restriction placed on the use of web service security for
IBM Curam Social Program Management applications is that Rampart Au-
thentication cannot be used. This is due to the requirements of IBM Curam
Social Program Management receivers (this authentication is typicaly
coded in the service code itself, which would be moot by that point as these
receivers would have already performed authentication). However, custom
SOAP headers provide similar functionality (see Section 5.3, Custom SOAP
Headers for more details).

WS-Security can be configured using the Rampart WS-Security Policy lan-
guage. The WS-Security Policy language is built on top of the WS-Policy
framework and defines a set of policy assertions that can be used in defining
individual security requirements or constraints. Those individua policy as-
sertions can be combined using policy operators defined in the WS-Policy
framework to create security policies that can be used to secure messages
exchanged between aweb service and a client.

WS-security can be configured without any IBM Curam Social Program
Management infrastructure changes using Rampart and WS-Security Policy
definitions. A WS-Security Policy document can be embedded in a custom
servi ces. xm descriptor (see Section 4.6.2, Deployment Descriptor
File). WS-Policy and WS-SecurityPolicy can aso be directly associated
with the service definition by being embedded within aWSDL document.

Encryption generally incurs costs (e.g. CPU overhead) and thisis a concern
when using WS-Security. However, there are ways to help minimize these
costs and one of these is to set the WS-SecurityPolicy appropriate for each
individual operation, message, or even parts of the message for a service,
rather than applying a single WS-SecurityPolicy to the entire service (for
example, see Section 5.4, Encrypting Custom SOAP Headers). To apply
such a strategy you need to have a clear grasp of your requirements and ex-
posures. Questions you might consider as you plan your overall security
strategy and implementation: Can some services bypass encryption if they
are merely providing data that is already available elsewhere publicaly?
Are multiple levels of encryption necessary; for instance, do you really need
both Rampart encryption and HTTP/SSL encryption?

Custom SOAP Headers

Credential checking is enforced in IBM Cdram Social Program Manage-
ment for web service invocations based on the default expectation that a cli-
ent invoking a web service will provide a custom SOAP header. This topic
was introduced in Section 4.6, Providing Web Service Customizations inso-
far as you need to plan specific customizations if you choose to bypass this
security checking. By default, the provided receivers for Axis2 expect the
client invocation of each web service to provide a custom SOAP header that
contains credentials for authenticating IBM Curam Social Program Man-
agement access to the web service. This section explains how your clients
can provide these SOAP headers.

61

Curam Web Services Guide

The following is an example of the IBM Curam Social Program Manage-
ment custom SOAP header in the context of the SOAP message:

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<soapenv: Envel ope
xm ns: soapenv="htt p://ww. w3. or g/ 2003/ 05/ soap- envel ope" >
<soapenv: Header >
<curam Credential s
xm ns: curanme"http://ww. cur ansof t war e. cont' >
<User nane>t est er | D</ User nane>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<I-- SOAP nessage body data here. -->
</ soapenv: Body>
</ soapenv: Envel ope>

Example 5.1 Example Custom SOAP Header

Thefollowing is a sample client method for creating custom SOAP headers:

i mport org. apache. axi s2.client. Servicedient;
i mport javax.xm . nanespace. QNane;

i mport org. apache. axi om om OVAbst r act Fact ory;
i mport org. apache. axi om om OVEl enent ;

i mport org.apache. axi om om OVFact ory;

i mport org.apache. axi om om OVWNode;

i mport org. apache. axi om om OVNanespace;

i mport org. apache. axi om soap. SOAPFact ory;

i mport org. apache. axi om soap. SOAPHeader Bl ock;

/**

*
*
*
*
*
*/

Create custom SOAP header for web service credentials.

@ar am serviced ient Wb service client
@ar am user Nane User nane
@ar am password Password

voi d set CuranCredential s(final ServiceCient serviceCient,

final String userNane, final String password)

/1 Setup and create the header
final SOAPFactory factory =
OVAbst r act Fact ory. get SOAP12Fact ory() ;
final OWanmespace ns =
factory. creat eOVNanespace("http://wwv. cur ansof t war e. cont',
"curant);
final SOAPHeader Bl ock header =
factory. creat eSOAPHeader Bl ock(" Credenti al s", ns);
final Owactory onfFactory = OVAbstract Factory. get OWactory();

/] Set the usernane.
final OWNode user NaneNode =

onfFact ory. creat eOVEl enent (new QNane(" User nane")) ;
((QVEl ement) user NanmeNode) . set Text (user Nang) ;
header . addChi | d(user NaneNode) ;

/1 Set the password.
final OWode passwordNode =

onfFact ory. creat eOVEl enent (new QNane(" Password"));
((QOVEl ement) passwor dNode) . set Text (password) ;
header . addChi | d(passwor dNode) ;

62

Curam Web Services Guide

servi ced i ent. addHeader (header) ;

Example 5.2 Sample Method to Create Custom SOAP Headers

Then acall to the above method would appear as:

/1l Set the credentials for the web service
M/WebSer vi ceStub stub =
new MyWebSer vi ceSt ub() ;
set Cur anCr edenti al s(stub. _get ServiceCient(),
"systenl', "password");

By default, the client failing to provide this custom header will cause the
service to not be invoked. And, of course, incorrect or invalid credentials
will cause an authentication error. The following is an example of failing to
provide the necessary custom SOAP header:

<soapenv: Envel ope xn ns:
soapenv="htt p://ww. w3. or g/ 2003/ 05/ soap- envel ope" >
<soapenv: Body>
<soapenv: Faul t >
<soapenv: Code>
<soapenv: Val ue
>soapenv: Recei ver </ soapenv: Val ue>
</ soapenv: Code>
<soapenv: Reason>
<soapenv: Text xmnl :|ang="en-US">
No aut hentication data.
</ soapenv: Text >
</ soapenv: Reason>
<soapenv: Detail />
</ soapenv: Faul t >
</ soapenv: Body>
</ soapenv: Envel ope>

Potential Security Vulnerability

Be aware that by default custom SOAP headers containing creden-
tials for authentication pass on the wire in plain-text! Thisis an un-
secure situation and you must encrypt this traffic to prevent your
credentials from being vulnerable and your security from being
breached. See Section 5.4, Encrypting Custom SOAP Headers and/
or Section 5.6, Securing Web Service Network Traffic With HTTPY
SSL on how you might rectify this.

For example, thisis what the custom SOAP header looks like in the
SOAP message with the credentias visible:

<?xm version='"1.0" encodi ng=' UTF- 8" ?>
<soapenv: Envel ope
xm ns: soapenv="ht t p: / / www. w3. or g/ 2003/ 05/ soap- envel ope" >
<soapenv: Header >
<curam Credenti al s
xm ns: curanme"ht t p: // ww. cur ansof t war e. cont' >

63

Curam Web Services Guide

<User name>t est er </ User nane>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>

</ébépenv:Body>
</ soapenv: Envel ope>

Example 5.3 Sample Custom SOAP Header

5.4 Encrypting Custom SOAP Headers

Since SOAP data (e.g. the headers above in Section 5.3, Custom SOAP
Headers) travels across the wire, by default, as plain text, using Rampart to
encrypt your IBM Curam Social Program Management custom SOAP head-
ers is one way to help ensure the security of these credentials. Of course,
you should plan a security strategy and implementation for all of your web
services and related data based on your overall, enterprise-wide require-
ments, environment, platforms, etc. The information in this section is just
one small part of your overall security picture.

There is additional information on coding your web service clients for Ram-
part security in Section 5.5, Using Rampart With Web Services that will
help provide context for the following.

The steps to encrypt these headers are:

1. Addthefollowing to your client descriptor file:

<encrypti onPart s>
{El ement }{http://ww. curansof t ware. con} Credenti al s
</encryptionParts>

(See Section 5.5.1, Defining the Axis2 Security Configuration for more
information on the contents of thisfile.)

Or, add the following to your Rampart policy file:

<sp: Encr ypt edEl enent s
xm ns: soapenv="http://schemas. xn soap. or g/ soap/ envel ope/"
xm ns: sp=
"http://schemas. xm soap. or g/ ws/ 2005/ 07/ securi typol i cy">
<sp: XPat h xm ns: curam="htt p://ww. cur ansof t war e. cont’ >
/ soapenv: Envel ope/ soapenv: Header/ curam Cr edenti al s/ Password
</ sp: XPat h>
</ sp: Encr ypt edEl ement s>

(See Section 5.5.1, Defining the Axis2 Security Configuration for more
information on the contents of thisfile.)

2. Engage and invoke Rampart in your client code as per Section 5.5, Us-
ing Rampart With Web Services.

64

5.5

Curam Web Services Guide

With WS-Security applied as per above the credentials portion of the
wsse: Security header will be encrypted in the SOAP message as shown in
this example below, which you can contrast with Example 5.3, Sample Cus-
tom SOAP Header:

In the following example encryptedParts was used to encrypt the 1BM
Curam Social Program Management credentials.

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<soapenv: Envel ope
xm ns: soapenv="http://schemas. xn soap. or g/ soap/ envel ope/"
xm ns: wsa="http://ww. w3. or g/ 2005/ 08/ addr essi ng"
xm ns: xenc="http://ww. w3. or g/ 2001/ 04/ xm enc#" >
<soapenv: Header >
<wsse: Security
xm ns: wsse="http://docs. oasi s- open. or g/ wss/
2004/ 01/ oasi s- 200401- wss-wssecuri ty-secext-1. 0. xsd"
soapenv: nmust Under st and="1">
<xenc: Encr ypt edKey
| d="EncKeyl d- ASACA637487ECDA81713059750729855" >
<xenc: Encrypti onMet hod
Al gorithn¥"http://ww. w3. or g/ 2001/ 04/ xm enc#rsa-1_5" />
<ds: Keyl nf o
xm ns: ds="http://ww. W3. or g/ 2000/ 09/ xm dsi g#" >
<wsse: SecurityTokenRef erence>

</ wsse: Security>

<I-- Credential data is then encoded in sections
that follow as illustrated -->
<xenc: Encrypt edDat a | d="EncDat al d- 3"
Type="htt p: //ww. w3. or g/ 2001/ 04/ xm enc#El ement " >
<xenc: Encrypti onMet hod
Al gorithm="http://ww.w3. or g/
2001/ 04/ xm enc#aes128- cbc" />
<ds: Keyl nf o
xm ns: ds="http://ww. W3. or g/ 2000/ 09/ xml dsi g#" >
<wsse: Securit yTokenRef er ence
xm ns: wsse="http://..oasis-
200401- wss-wssecurity-secext-1.0. xsd">
<wsse: Ref erence
URI =" #EncKey| d- ASACA637444e87ECDA81713059750729855" / >
</ wsse: Securit yTokenRef er ence>

</ ds: Keyl nf 0>

<xenc: C pher Dat a>
<xenc: G pher Val ue>
eZFRr k6VSncabDanYCj yVD=</ xenc: C pher Val ue>

</ xenc: C pher Dat a>

</ xenc: Encr ypt edDat a>
<wsa: Acti on>ur n: si npl eXM_</ wsa: Act i on>
</ soapenv: Header >

Example 5.4 Example Encrypted Custom SOAP Header

Using Rampart With Web Services

There are a number of parts to Rampart security, asindicated in Section 5.1,
Overview, and covering these in detail is outside the scope of this document;

65

5.5.1

Curam Web Services Guide

but, the following is provided to give you a high-level view on utilizing
Rampart with your IBM Curam Social Program Management Axis2 web
Sservices.

Broadly, there are the steps for using web services security with Axis2:

1. Define configuration data and parameters for your client and server en-
vironments;

2. Provide the necessary data and code specified in your configuration;

3. Codeaclient to identify and process the configuration.

Thereisalot of flexibility in how you fulfill the above steps and the follow-
ing sections will show some possible ways of doing this.

Defining the Axis2 Security Configuration

While the necessary configuration will depend on what security features you
choose to use the overall set of activities will be similar regardiess. On the
client side you can define the security configuration via a client Axis2
descriptor file (axi s2. xm), Rampart policy file, or programmatically
(deprecated). On the server side you can define the security configuration
via the service descriptor file (ser vi ces. xm) or via a Rampart policy
embedded in the service WSDL.

The following examples show the client and server configurations in the
context of a client Axis2 descriptor and Rampart policy files and the server
configuration viathe context of the service descriptor file.

Client configuration:

<axi sconfi g nanme="Axi sJava2. 0" >
<nodul e ref="ranpart" />

<par anet er nane="Infl owSecurity">
<action>
<itens>Si gnature Encrypt</itens>
<si gnat ur ePr opFi | e>
client-crypto. properties
</ si gnat ur ePr opFi | e>
<passwor dCal | backC ass>
webservi ce. i ent P\Cal | back
</ passwor dCal | backCl ass>
<si gnat ur eKeyl denti fi er>
Di rect Ref erence
</ si gnat ur eKeyl denti fi er>
</ action>
</ par anet er >

<par aneter nane="Cutfl owSecurity">
<action>
<itens>Si gnature Encrypt</itens>

<encrypti onUser >adni n</ encrypti onUser >
<user >t est er </ user >

<passwor dCal | backCl ass>

webservi ce. d i ent PWCal | back
</ passwor dCal | backCl ass>

66

Curam Web Services Guide

<si gnat ur ePr opFi | e>

client-crypto. properties

</ si gnat ur ePr opFi | e>

<si gnat ur eKeyl denti fi er>
Di rect Ref erence

</ si gnat ur eKeyl denti fi er>

<encrypti onPart s>
{El ement}{http://ww. curansof tware. com Credential s
</ encryptionParts>

</ action>
</ par anet er >

Example 5.5 Sample Client Descriptor Settings (Fragment)

Server configuration:

<servi ceG oup>
<servi ce nanme="Si gnedAndEncrypted">

<nodul e ref="ranpart" />

<par anet er nane="I|nfl owSecurity">
<action>
<items>Si gnature Encrypt</itens>
<passwor dCal | backCl ass>
webservi ce. Server P\Cal | back
</ passwor dCal | backCl ass>
<encrypti onUser >adni n</ encrypti onUser >
<user >t est er </ user >
<si gnat ur ePr opFi | e>
server-crypto. properties
</ si gnat ur ePr opFi | e>
<si gnat ur eKeyl dent i fi er>
Di rect Ref erence
</ si gnat ur eKeyl denti fi er>
</ action>
</ par anet er >

<par anet er name="Qutfl owSecurity">
<acti on>
<i tens>Si gnature Encrypt</itemnms>
<encrypti onUser >adm n</ encrypti onUser >
<user >t est er </ user >
<passwor dCal | backCl ass>
webservi ce. Server PWCal | back
</ passwor dCal | backd ass>
<sl gnat ur ePr opFi | e>
server-crypto. properties
</ si gnat ur ePr opFi | e>
<si gnat ur eKeyl denti fi er>
Di rect Ref erence
</ si gnat ur eKeyl denti fi er>
</ action>
</ par anet er >

</service>
</ servi ceG oup>

Example 5.6 Sample Server Security Settings (services.xml
Fragment)

67

Curam Web Services Guide

All Rampart clients must specify a configuration context that at a minimum
identifies the location of the Rampart and other modules. The following ex-
ample illustrates this and includes a client Axis2 descriptor file. Later code
examples will utilize this same structure assuming it is located in the
C. \ Axi s2\ cl i ent directory.

nodul es/
addr essi ng- 1. 3. nar
rahas-1.5. mar
ranpart-1.5. mar
conf/
client-axis2. xn

Example 5.7 Axis2 Client File System Structure

The equivalent specification to the parameters in Example 5.5, Sample Cli-
ent Descriptor Settings (Fragment) and Example 5.6, Sample Server Secur-
ity Settings (services.xml Fragment) via a Rampart policy file would be as
follows:

<r anp: Ranpart Confi g
xm ns: ranp="http://ws. apache. or g/ ranpart/policy">
<r anp: user >beant est er </ r anp: user >
<r anp: encrypti onUser >cur anx/ r anp: encr ypti onUser >
<r anp: passwor dCal | backC ass>
webservi ce. C i ent PWCal | back
</ranp: passwor dCal | backd ass>

<r anp: si gnat ur eCr ypt o>
<ranp: crypto
provi der ="or g. apache. ws. security. conponents. crypto. Merlin">
<ranp: property
nane="or g. apache. ws. security.crypto. merlin. keystore.type">
JKS
</ranp: property>
<ranp: property
name="or g. apache. ws. security.crypto.nerlin.file">
client.keystore
</ranp: property>
<ranp: property
nane=
"org. apache. ws. security.crypto.nerlin.keystore. password">
passwor d
</ranp: property>
</ranp: crypt o>
</ranp: si gnat ur eCr ypt 0>
<ranp: encrypti onCypt 0>
<ranp: crypto
provi der =" or g. apache. ws. security. conponents. crypto. Merlin">
<r anp: property
nane="or g. apache. ws. security.crypto. merlin. keystore.type">
JKS
</ranp: property>
<r anp: property
nane="or g. apache. ws. security.crypto.merlin.file">
client.keystore
</ ranp: property>
<ranp: property
nanme=
"org. apache. ws. security.crypto.nerlin. keystore. password">
password
</ranp: property>
</ranp: crypt o>

68

5.5.2

5.5.3

Curam Web Services Guide

</ ranp: encrypti onCypt 0>
</ ranp: Ranmpart Confi g>

Example 5.8 Sample Rampart Policy (policy.xml Fragment)

Providing the Security Data and Code

The example configurations in Section 5.5.1, Defining the Axis2 Security
Configuration specify an encryption property file and password call back
routine, which would be used in the process of encrypting your web service
data.

The value of si gnat ur ePr opFi | e specifies the name of the signature
crypto property file to use. This file contains the properties used for signing
and encrypting the SOAP message. An example server crypto property file
is shown below in Example 5.9, Example Rampart server-crypto.properties
File. When using a Rampart policy file, as shown in Example 5.8, Sample
Rampart Policy (policy.xml Fragment), these property files are not used as
the policy itself contains the equivalent settings.

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

.security.crypto. provider=
.security.conmponents.crypto. Merlin
.security.crypto.nerlin.keystore.type=jks
.security.crypto.nerlin.keystore. password=password
.security.crypto.nerlin.fil e=server. keystore

555505

Example 5.9 Example Rampart server-crypto.properties File

Theclient-crypto. properties file would have similar properties
as above, but with client-specific values:

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

.security.crypto. provider=
.security.conmponents.crypto. Merlin
.security.crypto.nerlin.keystore.type=jks
.security.crypto.nerlin.keystore. password=password
.security.crypto.nerlin.file=client.keystore

555505

The creation of the keystore file and the related properties are discussed in
Section 5.7.4, Keystore File Creation.

When configuring a secure web service the server signature property file
and keystore file (server-crypto.properties and serv-
er. keystore) must be placed in the
%SERVER DI R¥ pr oj ect/ confi g/ wss/ directory so that the build
will package them and they will be available on the classpath at execution
time.

The password callback handlers specified in the passwor dCal | back-
Cl ass parameter entities are illustrated in Example 5.17, ServerPWCall-
back.java and Example 5.20, ClientPWCallback.java.

Coding the Client

69

Curam Web Services Guide

The following code snippets illustrate what's needed to add to the basic cli-
ent examples in Example 3.4, Sample Web Service Client Using Generated
Sub and Custom Code to utilize the preceding security illustrations.

To utilize aclient axi s2. xm descriptor file you would need to make the
following API call where C./ Axi s2/client aso contains the Axis2
modules directory as indicated in Example 5.7, Axis2 Client File System
Sructure:

final ConfigurationContext ctx =
Confi gur ati onCont ext Fact ory.
creat eConfi gurati onCont ext FronFi | eSyst en(
/'l Looks for nodules, etc. here:
"C./ Axi s2/client",
/] Axis2 client descriptor:
"C./ Axi s2/client/conf/client-axis2.xm");

Example 5.10 Identifying Axis2 Client Rampart Configuration

To utilize a Rampart policy file you would need to create a context as
above, but the client Axis2 descriptor is not necessary in this example, just
the Axis2 modules directory:

final ConfigurationContext ctx =
Confi gur ati onCont ext Fact ory.

creat eConfi gur ati onCont ext FronFi | eSyst en(
/] Looks for nodules, etc. here:
"C./Axis2/client",
nul 1) ;

When not utilizing an Axis2 configuration that specifies the necessary mod-
ules (as shown in Example 5.7, Axis2 Client File System Structure) you will
need to explicitly engage the necessary module(s) prior to invoking the ser-
vice. The specific modules required will depend on the security features and
configuration you are using; for example:

client.engageMdul e("ranpart");

Failing to do thiswill result in a server-side error; e.q.:

or g. apache. ranpart . Ranpart Excepti on:
M ssi ng wsse: Security header in request

To utilize a Rampart policy you would need to create a policy object and set
it in the service options properties:

final org.apache.axi om om i npl . buil der. St AXOVBui | der buil der =
new St AXOVBui | der (" C:/ Axi s2/client/policy.xm");
final org.apache.neethi.Policy policy =
or g. apache. neet hi . Pol i cyEngi ne.
get Pol i cy(bui |l der. get Docunent El ement ()) ;
opti ons. set Property(
or g. apache. ranpart . Ranpart MessageDat a. KEY_RAMPART _POLI CY,
| oadPol i cy(policy);

70

=

Curam Web Services Guide

Note

Any number of client coding errors, policy specification errors, con-
figuration errors, etc. can manifest in the client and/or the server.
Often an error in the client cannot be debugged without access to the
log4j trace from the server. For instance, the error when the proper
module(s) has not been engaged (discussed earlier) may appear in
the client as:

OVException in get SOAPBuI | der
or g. apache. axi om om OVExcepti on:
com ct c. wst x. exc. Wst xUnexpect edChar Excepti on:
Unexpected character 'E (code 69) in prol og; expected '<'
at [row, col {unknown-source}]: [1,1]

Here is an example that combines the fragments above, illustrating provid-
ing a IBM Caram Social Program Management custom SOAP header and
using Rampart to encrypt it:

i mport
i nmport
i nmport
i nmport
i nmport
i nmport
i nmport
i nmport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

/**

wsconnect or . MySer vi ceSt ub;

java.io. File;

J ava. net . URL;

or g. apache. axi om om i npl . bui | der . St AXOVBui | der ;
or g. apache. axi om om OMAbst r act Fact ory;

or g. apache. axi om om OVEl enent ;

or g. apache. axi om om OVFact ory;

or g. apache. axi om om OVMNanespace;

or g. apache. axi s2. addr essi ng. Endpoi nt Ref er ence;
or g. apache. axi s2.client. Options;

or g. apache. axi s2. client. ServiceC ient;

or g. apache. axi s2. cont ext . Confi gur at i onCont ext ;
or g. apache. axi s2. cont ext . Confi gur at i onCont ext Fact ory;
or g. apache. axi s2. transport. htt p. HTTPConst ant s;
or g. apache. neet hi . Pol i cy;

or g. apache. neet hi . Pol i cyEngi ne;

or g. apache. ranpart. Ranpart MessageDat a;

* | nvoke a web service with encrypted credenti al s.
*

*/

public void webserviceCient() {

final String serviceNane = "myService";
final String operationName = "myQperation";

Il

Instantiate the stub.

final MyServiceStub stub =

I/

new MyServi ceStub();

Get the end point of the service and convert it to a URL

final Options options = stub._getServicedient().getOptions();
final Endpoi nt Reference eprTo = options. getTo();
final URL url Oiginal = new URL(eprTo. get Address());

Il
Il

Use that URL,
pl us our service nane to construct a new end point.

final URL url New = new URL(

url Origi nal . get Protocol (),

url Origi nal . get Host (),

url Original.getPort(),

"/ Curam\B2/ servi ces/" + servi ceNane);

71

Curam Web Services Guide

final Endpoi nt Ref erence endpoint =
new Endpoi nt Ref erence(url New.toString());

/] Load configuration.
final ConfigurationContext ctx = ConfigurationContextFactory.
creat eConfi gurati onCont ext FronFi | eSyst em(

"C:./Axis2/client", // Looks for nodules, etc. here.

null); // Configuration provided via APl engagi ng ranpart.

final ServiceCient client = new ServiceCient(ctx, null);

/1 Set the credentials - illustrated as an exanple earlier
set CuranCredential s(client, "tester", "password");

/] Set the operation in the endpoint.
options. setAction("urn:" + operationNane);
opti ons. set To(endpoi nt) ;

/] Set client tineout to 30 seconds for slow nachines.
opti ons. set Property(

HTTPConst ant s. SO_TI MEQUT, new | nt eger (30000));
opti ons. set Property(

HTTPConst ant s. CONNECTI ON_TI MEQUT, new | nt eger (30000)) ;

/] Load the Ranmpart policy file.
final St AXOVBuil der buil der =
new St AXOMBui | der ("C:/ Axi s2/client” + File.separator
+ "policy.xm");
final Policy policy =
Pol i cyEngi ne. get Pol i cy(bui | der. get Docurent El ement ()) ;
opti Iolns.)set Pr opert y(Ranpart MessageDat a. KEY_ RAMPART _PCLI CY,
policy);
client.setOptions(options);

/1l Because we are not using an axis2.xm client
/1 configuration file we MJUST explicitly | oad
/'l Ranpart.

client.engageMdul e("ranpart");

/1 Setup the SOAP nessage.
/1 For this exanple three integers are to be summed.
final OwWactory factory = OMAbstract Factory. get OMFactory();
final OWNanmespace ns = factory.

creat eOWNanespace("http://renmpte. customutil.curanm, "nsl");
final OMEl enent el enent = factory.

creat eOVEl enrent (" myQOperati on", ns);

final OMEl ement chil dEl enl = factory.
creat eOVEl enent ("args0", null);

chi | dEl eml. set Text (" One");

el enent . addChi | d(chi | dEl entl) ;

final OMEl ement chil dEl enR2 = factory.
creat eOVEl enent ("argsl”, null);

chi | dEl en®2. set Text (" Two") ;

el ement . addChi | d(chi | dEl enR) ;

final OVEl enent chil dEl en8 = factory.
creat eOVEl ement ("args2", null);

chi | dEl enB. set Text (" Three");

el ement . addChi | d(chi | dEl enB);

/] 1nvoke the service.
final OMEl enent response =
client.sendRecei ve(el ement);

/] Process the return data.
final String sData = response. getFirstEl ement (). getText();

72

5.6

Curam Web Services Guide

Systemout.println("Service returned: " + sData);

Example 5.11 Sample Client Code to Encrypt a Custom SOAP
Header

The following shows an equivaent technique for setting the security para
meters programmatically, although it is deprecated, it would replace the
block of code commented "Load the Rampart policy file" in Example 5.11,
Sample Client Code to Encrypt a Custom SOAP Header, above as well as
the related policy file:

final QutflowConfiguration outConfig =
new CQut f | owConfi guration();
out Confi g.set Actionltens("Signature Encrypt");
out Config.setUser("tester");
out Confi g.
set Passwor dCal | backC ass("ny.test. d i ent PANCal | back");
out Confi g.
set Si gnat ur ePropFil e("client-crypto. properties");
out Confi g. set Si gnat ur eKeyl denti fi er (
WSSHandl er Const ant s. BST_DI RECT_REFERENCE) ;
out Confi g. set Encrypti onKeyl dentifier(
WSSHandl er Const ant s. | SSUER_SERI AL) ;
out Confi g. set Encrypti onUser ("adm n");

final InflowConfiguration inConfig =
new | nfl owConfi guration();
i nConfig.setActionltens("Signature Encrypt");
i nConfi g.
set Passwor dCal | backC ass("ny.test. d i ent PACal | back");
i nConfi g. set SignaturePropFile("client-crypto.properties");

/1 Set the ranpart paraneters

opti ons. set Property(WSSHandl er Const ant s. OUTFLOW SECURI TY,
out Confi g);

opti ons. set Property(WSSHandl er Const ant s. | NFLOWN_SECURI TY,
i nConfig);

Example 5.12 Sample Client Code (Deprecated) for Setting the
Client Security Configuration

Securing Web Service Network Traffic With HT-
TPS/SSL

The use of HTTPS/SSL may be a part of your web services security strategy
and details about setting this up are beyond the scope of this document; but,
be aware that the use of HTTPS/SSL can be established in either of the fol-
lowing ways:

» Application server environment - Setting this up is very specific to your
particular application server, but essentially inolves exporting the appro-
priate server certificates and making them available to your client envir-

73

Curam Web Services Guide

onment.

* Rampart WS-Security policy - There are a number of articles, etc. avail-
able on the Internet that cover thisin more detail.

For client access the end point needs to reflect the protocol and port change,
which can be done dynamically at runtime. For instance, client code like
this can change the endpoint:

/] stub is a previously obtained service stub.

/] nHttpsPort is an integer identifying the HTTPS port of
Il your application server.

/] serviceName is a String identifying the service nane.

ServiceCient client = stub. _getServiceCient();

/] Get the end point of the service and convert it to a URL
final Options options = stub. _getServiceCdient().getOptions();
final Endpoi nt Ref erence eprTo = options. getTo();

final URL url Oiginal = new URL(eprTo. get Address());

/1 Use that URL, plus our service nane to construct
/1 a new end point.
final URL url New = new URL("https", url Original.getHost(),
nHt t psPort,
"/ Curam\B2/ servi ces/" + servi ceNane);
client. set Tar get EPR(new Endpoi nt Ref erence(url New.toString()));

Example 5.13 Example of Dynamically Changing the Web Service
End Point

Your client will need to identify the keystore and password that contains the
necessary certificates, e.g.:

System set Property("javax. net.ssl.trust Store",
"C:./keys/server.jks");

System set Property("javax. net.ssl.trust St orePassword",
"password");

Otherwise, client coding for HTTPS issimilar to that of HTTP.

o]

H Note

In a WebSphere environment the SSL socket classes are not avail-
able by default and you may experience this error:

or g. apache. axi s2. Axi sFaul t: java.l ang. d assNot FoundExcepti on:
Cannot find the specified class
com i bm websphere. ssl . prot ocol . SSLSocket Fact ory

And you should be able to resolve this error with code like this:

Security. set Property("ssl. Socket Factory. provi der",
"comibm jsse2. SSLSocket Fact oryl npl ") ;

Security. setProperty("ssl. Server Socket Factory. provi der",
"com i bm jsse2. SSLServer Socket Fact oryl npl ") ;

74

5.7

5.7.1

5.7.2

Curam Web Services Guide

Legacy Secure Web Services

Objective

In this chapter you will learn how to apply security to web services using
WS-Security (Web Services Security).

The WS-Security specification defines a set of SOAP header extensions for
end-to-end SOAP messaging security. It supports message integrity and
confidentiality by allowing communicating partners to exchange signed and
encrypted messages in aweb services environment.

Modeling Secure Web Services

To enable security for an Inbound Web Service you need to add a request
and aresponse handler for each web service.

The request security handler processes the incoming SOAP messages and is
specified using the IBM Curam Social Program Management Re-
quest Handl er s property in Rational Software Architect. An example
of this property's value is shown in Example 5.14, Request Handler for a
web service).

<handl er type=
\"java: org. apache. ws. axi s. security. WSDoAl | Recei ver\">
<par anet er name=\"passwor dCal | backCl ass\"
val ue=\"webservi ce. Ser ver P\Cal | back\ "/ >
<par anet er nane=\"action\"
val ue=\"User naneToken Si gnature Encrypt\"/>
<par anet er nanme=\"passwor dType\"
val ue=\"Passwor dText\" />
<par anet er nane=\"si gnat urePropFile\"
val ue=\"server-crypto. properties\" />
<par anet er nane=\"si gnatureParts\"”
val ue=\"{El ement }{http://docs. oasi s- open. or g/ wss/
2004/ 01/ oasi s- 200401- wss-wssecuri ty-secext-1. 0. xsd} User naneToken;
{Content}{}Body\" />
<par anet er name=\"encrypti onParts\"
val ue=\"{El ement }{http://docs. oasi s- open. or g/ wss/
2004/ 01/ oasi s- 200401- wss-wssecuri ty-secext-1. 0. xsd} User naneToken;
{Content}{}Body\" />
</ handl er >

Example 5.14 Request Handler for a web service

The response security handler processes the outgoing SOAP messages and
is specified using the IBM Curam Social Program Management Re-
sponse_Handl er s property in Rational Software Architect. An example
of this option's value is shown in Example 5.15, Response Handler for a
web service.

<handl er type=
\"java: org. apache. ws. axi s. securi ty. WBDoAl | Sender\" >
<par anet er nane=\"passwor dCal | backd ass\"
val ue=\"webservi ce. Ser ver PWCal | back\ "/ >
<par anet er nane=\"action\"

75

Curam Web Services Guide

val ue=\"Si gnature Encrypt\"/>
<par anet er nane=\"si gnat urePropFile\"
val ue=\"server-crypto. properties\" />
<par anet er nanme=\"user\" val ue=\"curamsv\"/>
<par anet er nane=\"encrypti onUser\" val ue=\"curam"/>
</ handl er >

Example 5.15 Response Handler for a web service

The use of these options results in the addition of the security handler in-
formation to the request flow and response flow of handlers in the ser v-
er - confi g. wsdd deployment descriptor file for the web service.

In the examples above the act i on value UsernameToken directs the hand-
ler to insert a UsernameToken token, containing the username and pass-
word, into the SOAP request. The values Sgnature and Encrypt define that
the SOAP message should be signed and encrypted. This results in the hand-
ler first signing and then encrypting the data. The value of encr ypti on-
Parts and si gnat ur ePart s specifies to sign and encrypt the SOAP
message's security header and body elements.

The value of si gnat ur ePr opFi | e specifies the name of the signature
crypto property file to use. This file contains the properties used for signing
and encrypting the SOAP message. The example of crypto property file is
shown in Example 5.16, Example server-crypto.properties File:

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

.security.crypto. provider=
.security.conponents.crypto.Merlin
.security.crypto.nerlin. keystore.type=j ks
.security.crypto.nerlin. keystore. passwor d=password
.security.crypto.nerlin.file=server. keystore

555505

Example 5.16 Example server-crypto.properties File

When configuring a web service the signature property file and keystore file
(server-crypto. properties and server. keystore) must be
placed in the “SERVER DI R% pr oj ect / confi g/ wss/ directory. Sec-
tion 5.7.4, Keystore File Creation describes how to create file serv-
er. keystore.

The security handler (passwordCal | backCl ass), webser-
vi ce. Server PWCal | back in Example 5.14, Request Handler for a
web service and Example 5.15, Response Handler for a web service above,
provides a password callback mechanism and should be implemented by the
developer. The example of an implementation for webser -
vi ce. Server PWCal | back is shown in Example 5.17, ServerPWCall-
back.java:

package webservice

I mport java.io.| OCException;

i mport javax.security. auth. call back. Cal | back;

i mport javax.security.auth. call back. Cal | backHandl er ;

i nport javax.security.auth. cal | back. UnsupportedCal | backExcepti on;
i nport org.apache. ws. security. WsPasswor dCal | back;

/**

* | npl ementati on of password cal | back cl ass.

76

5.7.3

Curam Web Services Guide

*/
public class ServerPWal | back inpl enents Cal |l backHandl er {

/**
* Retrieve or display the information requested in the
* provi ded Cal | backs.

@ar am cal | backs an array of Call back objects provided by
an under|ying security service which contains the
informati on requested to be retrieved or displayed.

@hrows | CException if an input or output error occurs.

@ hr ows UnsupportedCal | backException if the inplenentation
of this method does not support one or nmore of the Call backs
specified in the call backs paraneter.

* Ok ok X X Ok F X F

*/
public void handl e(final Callback[] callbacks)
throws | OException, UnsupportedCall backException {

for (int i = 0; i < callbacks.length; i++)
if (callbacks[i] instanceof WSPasswordCal | back) {
final WSPasswordCal | back pc =
(WsPasswor dCal | back) cal | backs[i];
/*
* Here call a nmethod to | ookup the password for
* the given identifier (e.g. a user name or key
* store alias), e.g. pc.setPassword(
* passStore. get Password(pc. getldentfifier))
* for testing we supply a fixed name/fixed key here.
*
/
if ("beantester".equal s(pc.getldentifer())) {
pc. set Passwor d(" password") ;
} else if ("curamsv".equal s(pc.getldentifer())) {
pc. set Passwor d(" password") ;
} else if ("curant.equal s(pc.getldentifer())) {
pc. set Passwor d(" password") ;

} else {
t hr ow new Unsupport edCal | backExcepti on(cal | backs[i],
"Unr ecogni zed Cal | back");
}

}
}

Example 5.17 ServerPWCallback.java

Client Side Configuration

To provide security the web service client can be configured either program-
matically or using a deployment descriptor file. The web services java client
example (see Example 5.21, WebServiceTest.java) details how to create a
deployment descriptor programmatically by adding UsernameToken token
and configuring the client to sign and encrypt the incoming soap request.

The example of deployment descriptor file is shown in Example 5.18, cli-
ent_config.wsdd:

<?xm version="1.0"?>
<depl oynent xm ns="http://xm . apache. or g/ axi s/ wsdd/ "
xm ns:java="http://xm . apache. or g/ axi s/ wsdd/ pr ovi ders/j ava">

<transport name="http"pivot=

"java: org. apache. axi s.transport. http. HTTPSender "/ >

<gl obal Confi gurati on>
<r equest Fl ow>

77

Curam Web Services Guide

<handl er type=
"java: org. apache. ws. axi s. security. WSDoAl | Sender "/ >
</ request Fl ow>

<r esponseFl ow>
<handl er type=
"java: org. apache. ws. axi s. security. WsDoAl | Recei ver" >
<par anet er nanme="passwordCal | backC ass"
val ue="test. i ent PACal | back"/ >
<par anet er name="acti on"
val ue="Si gnature Encrypt"/>
<par anet er name="si gnat ur ePr opFi | e"
val ue="client-crypto. properties" />
</ handl er >
</ responseFl ow>

</ gl obal Confi gurati on>
</ depl oynment >

Example 5.18 client_config.wsdd

The deployment descriptor file (Example 5.18, client_config.wsdd) contains
the request flow and response flow specified for incoming and outgoing
SOAP messages.

As on the server side, the request flow will contain acti on UsernameT-
oken Sgnature Encrypt.

Note that request flow does not specify any actions or security configuration
in the deployment descriptor. In Example 5.21, WebServiceTest.java below
you will see that it can be added programmatically instead of specifying in
deployment descriptor file.

The act i on UsernameToken is not specified in the response flow. This
means that the UsernameToken will not be included into SOAP message.

The value of si gnat ur ePr opFi | e specifies the name of the signature
crypto property file to use. This file contains the properties used for signing
and encrypting the SOAP message. A sample crypto property file is shown
in Example 5.19, client-crypto.properties.

or g. apache. ws. security. crypto. provi der=

org. apache. ws. security. conponents. crypto. Merlin

ws y.
ws y.
org. apache. ws. security.crypto.nerlin. keystore.type=j ks
ws y.

y.

org. apache. ws. security.crypto. nerlin. keystore. passwor d=password
org. apache. ws. security.crypto.nerlin.file=client.keystore

Example 5.19 client-crypto.properties

The value of org. apache. ws. security.crypto.nerlin.file
in Example 5.19, client-crypto.properties specifies the client's keystore file.
Section 5.7.4, Keystore File Creation how to create file cli -
ent . keystore.

The security handler aso requires a calback class,
test. d i ent PWCal | back, to be implemented. The example of an im-
plementation for t est . Cl i ent PWCal | back is shown in Example 5.20,
ClientPWCallback.java:

78

Curam Web Services Guide

package test;

i mport java.io.| OException;

i mport javax.security. auth. call back. Cal | back;

i mport javax.security.auth. call back. Cal | backHandl er

i mport javax.security.auth. call back. UnsupportedCal | backExcepti on;
i mport org.apache. ws. security. WsPasswor dCal | back;

/**
* | npl ementati on of password cal | back cl ass.

*/

public class dientPWall back inplenents Call backHandl er {
/

*

Retrieve or display the information requested in the
provi ded Cal | backs.

@ar am cal | backs an array of Call back objects provided
by an underlying security service which contains the
informati on requested to be retrieved or displayed.

@hrows | CException if an input or output error occurs.

@ hrows UnsupportedCal | backException if the inplenmentation
of this method does not support one or nmore of the Call backs
specified in the call backs paraneter.

* 5% ok kX O 3k X X X X X

*/
public void handl e(final Callback[] call backs
throws | OException, UnsupportedCall backException {

for (int i = 0; i < callbacks.length; i++) {
if (callbacks[i] instanceof WSPasswordCal | back) {

final WSPasswordCal | back pc =
(WBPasswor dCal | back) cal | backs[i];

if ("beantester".equal s(pc.getldentifer())) {
pc. set Passwor d(" password") ;

} else if ("curamsv".equal s(pc.getldentifer())) {
pc. set Passwor d(" password") ;

} else {
t hr ow new Unsupport edCal | backExcepti on(cal | backs[i],
"Unr ecogni zed Cal | back");
}

}
}
}

Example 5.20 ClientPWCallback.java

The request flow may be configured programmatically before invoking a
web service. Example 5.21, WebServiceTest.java shows how to configure
the request flow for the Secur eW\ebSer vi ce programmatically, and then
invoke the web service.

package test;

i nport org.apache. axi s. Engi neConfi gur ati on;

i nport org.apache. axi s. configuration. Fil eProvi der

i nport org.apache. ws. security. handl er. WsHand| er Const ant s;
i nport wsconnect or. Secur eWebSer vi cel nput ;

i nport wsconnect or. Secur eWebSer vi ceSer vi celLocat or;

i nport wsconnect or. Secur eWebSer vi ceSoapBi ndi ngSt ub;

public class WbServiceTest {

/**

* Configures web service's request flow and cal
* secure web service

79

5.7.4

Curam Web Services Guide

*/

public void call SecureWbservice() {

}
}

final EngineConfiguration config = new Fil eProvider(
Cl assLoader . get Syst enResour ceAsSt r ean(
"client_config.wsdd"));

final SecureWbServiceServicelLocator |ocator =
new Secur eWebSer vi ceServi ceLocat or (confi g);

final SecureWhbServi ceSoapBi ndi ngStub call =
(Secur eWebSer vi ceSoapBi ndi ngSt ub)
| ocat or. get Secur e\ebSer vi ce() ;

cal | . _set Property(WsHandl er Const ant s. ACTI ON,
WHandl er Const ant s. USERNAME_TCOKEN + " "
+ WBHandl er Const ant s. S| GNATURE + " "
+ WBHandl er Const ant s. ENCRYPT + " ");

cal |l . _set Property(WsHandl er Const ant s. PASSWORD_TYPE,
"Passwor dText ") ;

call._set Property(WsHandl er Const ant s. SI GNATURE_PARTS,
"{El enent}{http://docs. oasi s- open. org/"
+ "wss/ 2004/ 01/ oasi s- 200401- wss-"
+ "wssecurity-secext-1.0.xsd}User nameToken;
+ "{Content}{}Body");

call._set Property(WsHandl er Const ant s. ENCRYPTI ON_PARTS,
"{El enent}{http://docs. oasi s- open. org/"
+ "wss/ 2004/ 01/ oasi s- 200401- wss-"
+ "wssecurity-secext-1.0.xsd}User nameToken;
+ "{Content}{}Body");

cal | . _set Property(WsHandl er Const ant s. USER,
"beantester");

cal | . _set Property(WsHandl er Const ant s. PW CALLBACK_CLASS,
"test.dient PM\Cal | back");

cal | . _set Property(WsHandl er Const ant s. SI G PROP_FI LE,
"client-crypto.properties");

call. _setProperty(WsHandl er Const ants. ENC KEY_I D,
" X509Keyl dentifier");

call. _set ;Droperty(V\SHandI er Const ant s. ENCRYPTI ON_USER,
“curant);

final SecureWebServicel nput details =
new Secur eWebSer vi cel nput () ;
detail s. setlntVal ue(47277);

call . oper(details);

Example 5.21 WebServiceTest.java

Keystore File Creation

This section describes how to create the server. keystore and cl i -
ent . keyst or e keystore files for secure web service configuration, as
used in examples Example 5.16, Example server-crypto.properties File and
Example 5.19, client-crypto.properties:

Generate the server keystoreinfileser ver . keyst or e:

% JAVA HOME%/bin/keytool -genkey -alias curam-sv -dname
"CN=localhost, OU=Dev, O=Curam, L=Dublin, ST=Ireland,
C=IRL" -keyalg RSA -keypass password -storepass password -
keystore server.keystore

80

Curam Web Services Guide

Export the certificate from the keystore to an externa file serv-
er.cer:

% JAVA_HOME%/bin/keytool -export -alias curam-sv -storepass
password -file server.cer -keystore server .keystore

Generate the client keystoreinfilecl i ent . keyst or e:

% JAVA_HOME%/bin/keytool -genkey -alias beantester -dname
" CN=Client, OU=Dev, O=Curam, L=Dublin, ST=Ireland, C=IRL" -
keyalg RSA -keypass password -storepass password -keystore cli-
ent.keystore

Export the certificate from the client keystore to externa file cl i -
ent. cer:

% JAVA_HOME%/bin/keytool -export -alias beantester -storepass
password -file client.cer -keystore client.keystore

Import server's certificate into the client's keystore:

% JAVA_HOME%/bin/keytool -import -v -trustcacerts -alias curam
-file server.cer -keystore client.keystore -keypass password -
stor epass password

Import client's certificate into the server's keystore:

% JAVA_HOME%/bin/keytool -import -v -trustcacerts -alias curam
-file client.cer -keystore server.keystore -keypass password -
storepass password

81

Appendix A

Glossary

A.1 Definitions

document-oriented web services (DOWYS)

There is no formal, industry-accepted definition for DOWS, it is gener-
aly accepted that these ae defined by the use of
styl e="docunent " attribute in the WSDL binding section. In the
context of Curam the concept of DOWS also includes the option to
model Curam operations (web services) to process XML documents dir-
ectly.

inbound web services

Inbound web services refers to web services that you implement and are
accessed by external clients.

outbound web services

Outbound web services refers to web services that you would access,
hosted externally.

SOA
Service-Oriented Architecture
As defined by IBM® (http://www-01.ibm.com/software/sol utions/soa/):
"Service Oriented Architecture (SOA) is a business-centric IT architec-
tural approach that supports integrating your business as linked, repeat-

able business tasks, or services." Typicaly, web services take a signific-
ant rolein a SOA implementation.

SOAP
Simple Object Access Protocol

SOAP is an XML-based protocol for processing web services over HT-
TP. For a more comprehensive definition see: ht-
tp:/lwww.w3.0rg/ TR/soap/.

82

http://www-01.ibm.com/software/solutions/soa/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/

Curam Web Services Guide

stub

A stub refers to the Java code that's generated at build time by the
Curam scripts by invoking Axis2 (or Axis 1.4) tooling; they are stubsin
that the code does not stand alone: you must code a Java main program,
or provide some other context, where you instantiate its various objects
and call their methods to invoke (outbound) the web service, process
results, etc.

WSDL
Web Services Description Language
WSDL is an XML-based format for describing web services. For a
more comprehensive definition see: http://www.w3.org/TR/wsdl.

WS-| (Web Services I nter operability Organization)

The WS- is part of OASIS (Organization for the Advancement of
Structured Information Standards) standards organization and as their
website (ht t p: / / www. oasi s-ws-i . or g/) their mission is to ad-
vance: "... Best Practices for Web services standards across platforms,
operating systems, and programming languages.”

83

http://www.w3.org/TR/wsdl

Appendix B

Inbound Web Service Properties - ws_inbound.xml

B.1 Property Settings

The following details the name/value pairsin thews _i nbound. xm prop-
erty file, which are used to build ser vi ces. xm descriptor files for aweb
service. These files are generated by default, but can also be customized as
described in Section 4.6, Providing Web Service Customizations.

These are the default properties produced by the IBM Caram Social Pro-
gram Management generator:

classname

The fully qualified name of the web service class, from the Rational
Software Architect model. This property should never be overridden and
should always be provided by the generator.

ws_binding_style
The web service binding style, based on the Rational Software Architect
class property W5_Bi ndi ng_St yl e. Vaues. docunent (default) or
rpc.

ws_is xml_document

Indicator of a service class whose operations process W3C Documents,
based on the Rational Software Architect class property
W5 |'s XM._Docunent property. This property should aways be
determined by the generator. Values: t r ue or f al se (default).

An examplews_i nbound. xm property file that the generator would cre-
ate is shown in Example B.1, Sample Generated ws_inbound.xml Properties
File.

<curam ws_i nbound>
<cl assnanme>ny. util . conponent _nane. r enot e. W5Cl ass</ cl assnanme>
<ws_bi ndi ng_styl e>docunent </ ws_bi ndi ng_styl e>
<ws_i s_xm _docunent >f al se</ws_i s_xm _docunent >

</ curam ws_i nbound>

84

Curam Web Services Guide

Example B.1 Sample Generated ws_inbound.xml Properties File

The following are the properties that can be provided and/or customized via
acustomws_i nbound. xm property file:

ws_binding_style

The web service binding style. This property has no direct dependency
on the Rational Software Architect model. It is used for passing the cor-
responding argument to the Apache Axis2 Java2WSDL tool. See aso
the description of thews _bi ndi ng_use property below.

Vaues. docunent (default) orr pc.
ws_binding_use

The web service binding use. It is used for passing the corresponding
argument to the Axis2 Java2WSDL tool.

Values: | i t eral (default) or encoded.
WS_service _username

A username (seews_ser vi ce_passwor d below) to be used for au-
thentication by the IBM Cudram Social Program Management receiver.
Not set by default as the default is to utilize a custom SOAP header for
specifying authentication credentials. If specified, results in the corres-
ponding descriptor parameter inser vi ces. xm being set.

Vaues: A valid Caram user.
ws_service password

A password (seews_ser vi ce_user namne above) to be used for au-
thentication by the Curam receiver. Not set by default as the default is
to utilize a custom SOAP header for specifying authentication creden-
tias. If specified, results in the corresponding Axis2 descriptor paramet-
erinservi ces. xm being set.

Values. A valid password for the corresponding Cdram user.
ws_client_must_authenticate

An indicator as to whether custom SOAP headers are to be used for
IBM Curam Social Program Management web service client authentic-
ation. Should not be specified with ws_ser vi ce_user nane and
Ws_servi ce_passwor d (above), but if specified this setting over-
rides, causing the credentials in those properties to be ignored. If spe-
cified, results in the corresponding Axis2 descriptor parameter in ser -
Vi ces. xm being set.

Values: t r ue (default) or f al se.
ws_disable

An indicator as to whether this web service should be processed by the
build system for generating and packing the service into the WAR file.
Typicaly you would use this to temporarily disable a service from be-

85

Curam Web Services Guide

ing built and thus exposed.
Vaues: true orf al se (default).

An example, custom ws_i nbound. xm property file is shown in Ex-
ample B.2, Sample Customws_inbound.xml Properties File.

<curam ws_i nbound>
<ws_bi ndi ng_st yl e>docunent </ ws_bi ndi ng_st yl e>
<ws_cl i ent _nust_aut henti cate>fal se</ws_client_nust_aut henti cate>
<Ws_servi ce_user nanme>beant est er </ ws_ser vi ce_user nane>
<Ws_servi ce_passwor d>passwor d</ ws_ser vi ce_passwor d>
</ curam ws_i nbound>

Example B.2 Sample Custom ws_inbound.xml Properties File

When providing a custom ws_i nbound. xmi properties file place the file
in your conponent s/ custonf axi s/ <servi ce_nane> directory
(the <ser vi ce_nane> and class name must match). During the build the
properties files are combined based on the following precedence order:

e Your customws_i nbound. xm propertiesfile;
* Thegenerated ws_i nbound. xm propertiesfile;

* Thedefault values for the properties.

86

Appendix C

Deployment Descriptor File - services.xml

C.1 Descriptor File Contents

Each web service class requires its own Axis2 deployment descriptor file
(servi ces. xm). The Cdram build automatically generates a suitable de-
ployment descriptor for the default settings described in Section 4.6.1, In-
bound Web Service Properties File and Appendix B, Inbound Web Service
Properties - ws_inbound.xml. The format and contents of the ser -
vi ces. xm are defined by Axis2; see the Apache Axis2 Configuration
Guide (http://axis.apache.org/axis2/javalcore/docs/axis2config.html) for
more information.

Based on the settings from the ws_i nbound. xm property file(s) the
app_webservi ces2. xnm script generates a servi ces. xm file for
each web service class. This descriptor file contains a number of parameters
that are used at runtime to define and identify the web service and its beha-
vior.

An example servi ces. xm descriptor file that would be generated is
shown in Example C.1, Sample Generated services.xml Descriptor File.

<servi ceG oup> .
<servi ce nanme="Servi ceName" >

<l-- GCenerated by app_webservices2.xm -->
<descri pti on>

Axi s2 web service descri ptor
</ descri pti on>

<nessageRecei ver s>
<nessageRecei ver
mep="htt p: // ww. W3. or g/ 2004/ 08/ wsdl /i n- out "
cl ass=
"curam util.connectors. axi s2. Cur anXm DocMessageRecei ver"/ >
<nessageRecei ver
mep="htt p://ww. wW3. or g/ 2004/ 08/ wsdl /i n-onl y"
cl ass=
"curamutil.connectors. axi s2. Curam nOnl yMessageRecei ver"/ >
</ messageRecei ver s>

87

http://axis.apache.org/axis2/java/core/docs/axis2config.html

Curam Web Services Guide

<par anet er
name="r enot el nt er f aceNane" >
nmy. package. r enot e. Ser vi ceNane</ par anet er >
<par anet er
name="Servi ced ass" | ocked="fal se">
ny. package. r enot e. Ser vi ceNaneBean</ par anet er >
<par anet er
name="homel nt er f aceNane" >
ny. package. r enot e. Ser vi ceNaneHome</ par anet er >
<par anet er
name="beanJndi Nanme" >
cur arej b/ Ser vi ceNanmeHone</ par anet er >

<par anet er))
nanme="cur amABCl i ent Must Aut henti cat e" >
true</ par anet er >

<par anet er
nane="provi der Ur| ">
iiop://local host:2809</ par anet er >
<par anet er
nane="] ndi Cont ext Cl ass" >
com i bm webspher e. nam ng. W&nl ni ti al Cont ext Fact ory
</ par anet er >

<par anet er
nane="useCr i gi nal wsdl ">
f al se</ par anet er >
<par anet er
nanme="nodi f yUser WSDL Por t Addr ess" >
f al se</ par anet er >

<l--

NOTE: For any In-Only services (i.e. returning void) you nust
explicitly code those operation nanes here as per:
http://issues. apache.org/jiral browse/ AXl S2- 4408
For exanpl e:

<operati on name="insert">
<nessageRecei ver
class="curamutil.connectors. axi s2.
Cur am nOnl yMessageRecei ver"/ >
</ oper ati on>
== >

</service>
</ servi ceG oup>

Example C.1 Sample Generated services.xml Descriptor File

The following lists the mapping of the ser vi ces. xnl parameters to the
settings in your build environment:

messageReceiver

Specifies the appropriate receiver class for the MEPs of the service. For
Curam there are three availabl e settings/classes:

e curamutil.connectors. axi s2. Cur anXm DocMessag
eRecei ver - For service classes that process W3C Documents as
arguments and return values.

e curamutil.connectors. axi s2. Cur anivessageRecei
ver - For service classes that process Curam classes and use the in-
out MEP.

88

Curam Web Services Guide

e curamutil.connectors. axi s2. Curanl nOnl yMessag
eRecei ver - For service classes that process Curam classes and
use the in-only MEP.

This value is set by the app_webser vi ces2. xnml script as per the
description above. (Required)

remotel nterfaceName, ServiceClass, homel nterfaceName, beanJndiN-
ame

Specify the class names and JNDI name required by the receiver code
for invoking the service via the facade bean.

These values are set by the app_webser vi ces2. xm script based
on the generated classname value in thews i nbound. xni properties
file. (Required)

curamW SClientM ustAuthenticate, jndiUser, jndiPassword

Specify credential processing and credentials for accessing the opera-
tions of the web service class.

These are set by the app_webser vi ces2. xm script based on the
corresponding propertiesin ws_i nbound. xm (see Section 4.6.1, In-
bound Web Service Properties File). Default for cur am\WSC i ent -
Must Aut hent i cat e istrue, but can be overridden at runtime by
custom receiver code. (Optional)

provider Url, jndiContextClass

Specify the application server-specific connection parameters.

These values are set by the app_webser vi ces2. xm script based
on your AppSer ver . properti es settings for your as. vendor,
curam server. port,andcuram server. host properties. Can
be set at runtime by custom receiver code. (Optional)

useOriginalwsdl, modifyUser WSDL PortAddress

Specify the processing and handling of WSDL at runtime.

These are explicitly set to f al se by theapp_webser vi ces2. xm
script due to symptoms reported in, for instance, Apache Axis2 JIRA:
AXI2-4541. (Required for proper WSDL handling.)

89

D.1

D.2

Appendix D

Troubleshooting

Introduction

This appendix discusses some techniques for troubleshooting Axis2 and Axis
1.4 web services. It covers:

 Initial server validation and troubleshooting;
» Tools and techniques for troubleshooting Axis2 or Axis 1.4 errors;
* Avoid useof 'anyType'.

Having modelled your web service(s), developed your server code, built and
deployed your application and web service EAR files, you are now ready to
begin testing and finally delivering your web service.

Axis2 and Axis 1.4 represent a complex set of software and third-party
products, especially when viewed from the perspective of running in an ap-
plication server environment. While the IBM Curam Social Program Man-
agement environment simplifies many aspects of web service development
the final steps of testing and debugging your services can prove daunting.
The various tips and techniques discussed here are neither new nor compre-
hensive, but are here to help you consider options and ways of increasing
your effectiveness.

Initial Server Validation and Troubleshooting

Because web services process through many layers one effective technique
for more quickly identifying and resolving problems is to keep the server
and client side of your service testing separate. So, once deployed you want
to first focus your testing on the server side to ensure everything there is
working properly and then introduce your client development and testing so
that you will better know where to focus for resolving errors.

90

D.2.1

Curam Web Services Guide

First, since thisisyour first deployment of aweb service: did the application
server and deployed application EAR/WAR files start without errors? If not,
investigate these and resolve as necessary.

If your application has started successfully the next step is to ensure your
service is available. This is done differently for Axis2 and Axis 1.4. But, in
generd, it involves entering the web service URL with the ?wsdl argument
to verify that your service can be accessed. Details for validating the Axis2
and Axis 1.4 environments are in the sections following.

Axis2 Environment Validation

Axis2 provides an initial validation step that is provided by its built-in valid-
ation check. You invoke this by entering the URL for your Axis2 web ser-
vice application as defined by your web services application root context
and application server port configuration. For instance, this might look like:
http://1 ocal host: 9099/ Cur am\\52/ axi s2- web/ i ndex. | sp.
This page brings up the "Welcome!" page with an option to validate your
environment, which you should select. Out of the box, the only error you
should see on the resultant page isin the "Examining Version Service" sec-
tion where it warns you about not having the sample Apache Axis2 version
web service. You can rectify this error (which is not really an error, but a
nice sanity check) by including that service as externa content when you
build your Axis2 web services WAR/EAR file; see Section 4.4, Building and
Packaging Web Services for more information on doing this.

Having successfully validated your Axis2 environment you should click the
"Back Home" link on that page and select the Services link on the "Wel-
come!" page. The resulting "Available services' page will list all available
services (classes) and their operations. If there is any invalid service (e.g.
due to a missing implementation class) it will be flagged here in more detail
and you need to use the diagnostics provided to resolve any errors. For all
valid services selecting a service name link from the "Available services'
page will generate and display the WSDL for that service. This verifies your
deployed service(s) and it should now be available for invocation.

To Be Aware Of

* Onthe"Available services' page you may see the operation "setSession-
Context", which you did not model and code. This behavior is an aspect
of the issue described in Section 4.3, Modeling and Implementing an In-
bound Web Service and in the Cdram Release Notes. It has no impact
and can be ignored.

 The WSDL generated from the "Available services' link(s) is not equi-
valent to the WSDL generated by the Axis2 Java2WSDL tool and the
latter should be used for development of outbound web services and can
befound inthebui | d/ svr/ wsc directory of your development envir-
onment following aweb services EAR file build.

91

D.2.2

D.2.3

Curam Web Services Guide

* There are a number of issues with dynamic WSDL generation (e.g. AX-
IS2-4541) a this level of Apache Axis2 (1.5.1); see ht-
tp://issues.apache.org/jiralbrowse/ AX1S2 for more information.

* Axis2 has additional capabilities for checking, investigating, etc. your
environment via ts external administration web application (the "Admin-
istration” link on the "Welcome!" page). See Appendix E, Including the
Axis2 Admin Application in Your Web Services WAR File for details on
including this application in your environment. If you don't explicitly
build/include this application the functionality won't be available.

Axis 1.4 Environment Validation

The equivalent validation and service check for Axis 1.4 is performed by in-
voking the "services' page via your web services application root context
and application server port configuration. For instance, this URL might look
like: http://1ocal host: 9099/ CuramA&/ servi ces. This page
generates a page entitled "And now... Some Services' that lists your services
and their operations. For each service there is alink to generate and view its
WSDL. This verifies your deployed service(s) and it should now be avail-
able for invocation.

Using an External Client to Validate and Troubleshoot

Y ou should begin validating the service on the server side first by using an
external client because unless the web service class exists, deployment is
setup properly, etc. a client failure may not be clearly distinguishable. To
keep the path length and areas you may have to investigate for possible er-
rors as small as possible you should use a known, working client to invoke
your service. Common areas of failure that a known, working external client
can help validate include: service packaging, receiver processing, security
configuration, and implementation processing. An example of an external
client you might use is the freely available soapUI client (www.soapui.org),
which is relatively easy and fast to setup and begin using. While a detailed
treatment of soapUl is beyond the scope of this document the following is
an outline of the steps you would use, which are similar for Axis2 and Axis
14:

* Download, install, and start soapUI.
» When validating your service(s) (above) save the generated WSDL.

* In soapUl select the File menu -> New soapUI Project and in this dialog
specify the location of your saved WSDL and click OK. This will create
and open a new soapUl project from where you can invoke your web
Sservices.

» From the soapUI tree control expand your newly created project and ex-
pand the "Soapl2Binding” or "SoapllBinding". Under this tree branch
you will see your service operations and under each operation a "Re-

92

http://issues.apache.org/jira/browse/AXIS2
http://issues.apache.org/jira/browse/AXIS2

Curam Web Services Guide

quest 1" (default name) request. Double-clicking the request will open a
request editor. In the left pane you must code your SOAP message (e.g.
parameters, etc.) and a template is provided for doing this. In the right
pane is where the result is displayed. Once you've coded your SOAP
message click the right green arrow/triangle in the tool bar to execute
the service. If you've coded the SOAP message correctly the service out-
put will be displayed in the right pane. However, if an error occurs there
will be error information in this pane. In the event of an error verify your
SOAP message syntax and content; also see Section D.3, Tools and
Techniques for Troubleshooting Axis2 and Axis 1.4 Errors for some fur-
ther techniques for resolving and addressing these.

Note

For Axis2 you must keep in mind the default security behavior and
that you must include the custom SOAP header credentials in your
reguest. Thiswould look something like this:

=o

<soap: Envel ope
xm ns: soap="http://ww. w3. or g/ 2003/ 05/ soap- envel ope"
xm ns:ren¥"http://renote. nmy. package" >
<soap: Header >
<curam Credenti al s
xm ns: curan¥"http://ww. cur ansof t war e. cont' >
<User nane>beant est er </ User nanme>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soap: Header >
<soap: Body>

"'</soap:Body>
</ soap: Envel ope>

Note

For Axis2 the first access of a web service may timeout due to the
large number of jar files and processing done at first initialization.
This can easily be mitigated in a Java client (e.g. see Section 3.4,
Creating a Client and Invoking the Web Service), but for soapUl
you can just re-invoke the service and the subsequent request will
likely not timeout; otherwise, see Section D.3, Tools and Tech-
niques for Troubleshooting Axis2 and Axis 1.4 Errors for further
techniques for resolving and addressing general web services errors.

=o

D.3 Tools and Techniques for Troubleshooting Axis2
and Axis 1.4 Errors

The following highlight possible tools and techniques you might use in
troubleshooting errors with Axis2 or Axis 1.4 web services, but is not an ex-
haustive list. Also, the tools available to you may vary by platform and ap-
plication server environment.

93

Curam Web Services Guide

When trying to understand why a service has failed the following should be
considered:

Use a monitoring tool (e.g. Apache TCPMon or SOAP Monitor) to view
the SOAP message traffic. It's easier to setup TCPMon (download from
http://ws.apache.org/commons/tcpmon, unzip, & run; also available
within soapUl), but it requires changing your client end points or your
server port. Once setup, SOAP Monitor doesn't require any client or
server changes, but does require special build steps for your WAR/EAR
files. Apache ships SOAP Monitor as an Axis2 module and see Ap-
pendix F, Including the Axis2 SOAP Monitor in Your Web Services WAR
File on how to include thisin your built Axis2 environment.

Look at the failure stack trace and investigate any messages there. Try to
understand where in the processing the error occurred. Here is an ex-
ample Apache log4j properties file that would log verbosely in a
C.\ Tenp\ axi s2. | og file, you can adjust these settings to suit your
requirements.

Set root category
| og4j . r oot Cat egor y=DEBUG, CONSCLE, LOGFILE

Set the enterprise |logger priority to FATAL

| og4j . | ogger. or g. apache. axi s2. ent er pri se=FATAL

| 0g4j . | ogger. de. hunsi cker . j al opy. i 0=FATAL

| og4j .| ogger. httpclient.wre. header =FATAL

| 0g4j . | ogger. or g. apache. cormons. ht t pcl i ent =FATAL

CONSOLE is set to be a Consol eAppender using a PatternLayout.
| og4j . appender . CONSOLE=or g. apache. | og4j . Consol eAppender

| og4j . appender . CONSCLE. | ayout =or g. apache. | og4j . Patt er nLayout

| 0g4j . appender . CONSCLE. | ayout . Conver si onPat t er n=[%p] %Pn

LOGFILE is set to be a File appender using a PatternLayout.
| 0g4j . appender . LOGFI LE=or g. apache. | og4j . Fi | eAppender
| og4j . appender . LOGFI LE. Fi | e=c: /tenp/ axi s2. | og
| og4j . appender . LOGFI LE. Append=t r ue
| og4j . appender . LOGFI LE. | ayout =or g. apache. | og4j . Patt er nLayout
| og4j . appender . LOGFI LE. | ayout . Conver si onPat t er n=

% [%] %5p %€ % - %M

You need to place the | og4j . properties somewhere in the
classpath of the Axis2 or Axis 1.4 WAR file.

Check the application server logs for more information.

Turn on log4j tracing for Axis2 or Axis 1.4 as this will most likely give
you the most detailed picture of the web service processing or error at
the time of the failure. This can be quite voluminous so use it with care.

Turn on the IBM Curam Social Program Management application log4j
trace as thiswill also help to give you further context for the failure.

Consider remote debugging the service running on the application server
using Eclipse. Consult your application server-specific documentation
for setting up this kind of an environment. Remember that if you are set-
ting breakpoints in this kind of environment that timeouts in the client

94

Curam Web Services Guide

and/or server are a high probability and appropriate steps should be
taken; for the client see Section 3.4, Creating a Client and Invoking the
Web Service and for the server consult your application server-specific
documentation for setting timer values.

Note

Application verbose tracing (trace_verbose) is the highest
level of logging available for tracing with web services. Thisis be-
cause the SDEJ employs a proxy wrapper object for ultra verbose
(trace_ultra_verbose) tracing in order to provide detailed
logging. Due to the fact that the SDEJ uses reflection for forwarding
a web service request to the underlying process class, the use of a
proxy wrapper object is not compatible with the web services infra-
structure.

=o

D.4 Avoid Use of 'anyType'

In genera, it is best to avoid using anyType within your WSDL as it
makes interoperability difficult at best, since both the service platform(s)
and any client platforms must be able to map, or serialize/deserialize the un-
derlying object.

WSDL will typically get generated with anyType when the underlying data
type (e.g. object) cannot be resolved.

You may find with Axis2 or Axis 1.4 that your WSDL will work with any-
Type because some vendorgplatforms map it to, for instance,
java.lang.Object, which alowsiit, if it's XML-compliant, to be processed in-
to a SOAP message, and allows processing from XML to a Java object.

Y ou should begin generating your WSDL as early as possible, checking it
for the use of anyType. In your development focus on implementing the
overall web service structure first and implement the actual service func-
tionality last. For instance, code your web service operations as stubs that
merely echo back with minimal processing the input parameters to ensure
they can be processed successfully from end to end.

95

Appendix E

Including the Axis2 Admin Application in Your Web

E.1

E.2

Services WAR File

Introduction

This appendix shows you how to setup your Axis2 web services build to in-
clude the Axis2 Admin web application, which provides useful functionality
for working with your Axis2 environment.

| Wwarning

@
The dynamic functionality of Axis2 (e.g. hot deployment) isn't inten-
ded for production application server environments such as Web-
Sohere Application Server and WebLogic Server and this functional-
ity should not be attempted in these environments.

Steps for Building

Whileit is not recommended to use this application to dynamically modify a
production environment the Axis2 admin application can be useful for valid-
ating settings, viewing services, modules, etc. To build your EAR file to in-
clude this application:

* Download the Axis2 binary distribution (ht -
tp://axis. apache. org/ axi s2/javal cor e/ downl oad. cg
i) corresponding to the supported Apache Axis2 version (1.5.1) and un-
load it to your hard disk (e.g. C. \ Downl oads\ Axi s2).

» Create a location on your disk to contain the necessary Axis2 artifacts,
eg.:

cd C\
nkdi r Axi s2-i ncl udes

96

Curam Web Services Guide

Put the class files, Adm nAgent.class & Axi sAdm nSer -

vl et. cl ass, in the
C:. \ Downl oads\ Axi s2\ webapp\ VEB- | NF\ cl asses\ or g\ ap

ache\ axi s2\ webapp\ (based on the sample location above) direct-
ory from your Axis2 binary download location into a jar file that you
will place into the WEB- | NF\ | i b directory in your newly created
C. \ Axi s2-i ncl udes location (as above); e.g.:

nkdir C:\ Axi s2-incl udes\VEB-INF\|ib

cd C:\ Downl oads\ Axi s2\ webapp\ VEEB- | NF\ cl asses

jar -uvf C\Axis2-includes\WEB-INF\Iib\WbAdm n.jar
or g/ apache/ axi s2/ webapp/

Additionally, you may want to add a custom axi s2. xm descriptor
fileto aVEB- | NF\ conf folder to change the default credentials. You
can copy the existing shipped axi s2. xm fileto thislocation; e.g.:

nkdi r C:\ Axi s2-i ncl udes\ ViEB- | NF\ conf
copy “CURANMSDEJ% ear \ webser vi ces2\ Axi s2\ conf\ axi s2. xni
C: \ Axi s2-i ncl udes\ VEB- | NF\ conf

» And then change the existing user Nane and passwor d paramet-
ers, for example:

<paramet er name="user Name" >restricted</paraneter>
<par anet er nane="passwor d" >speci al </ par anet er >

» Of course, for this to be secure the axi s2. xm file would have to
be secured in your development and deployed environments without
access in the runtime environment to the Axis2 configuration.

Then, use the following properties when you invoke your web services
ear target (see Section 4.4, Building and Packaging Web Services):

- Daxi s2. i ncl ude. overwite=true
- Daxi s2. i nclude. | ocati on=C:\ Axi s2-i ncl udes

Upon deployment you should then be able to access the Administration
link via the Axis2 "Welcome!" page menu (eqg. ht-

)
tp://1 ocal host: 9082/ Cur amA52/ axi s2- web/ i ndex. j sp.

97

Appendix F

Including the Axis2 SOAP Monitor in Your Web
Services WAR File

F.1 Introduction

This appendix shows you how to setup your Axis2 web services build to in-
clude the Axis2 SOAP Monitor module in your Axis2 web services WAR
file. The SOAP Monitor provides the ability to view SOAP message re-
quests and responses, which can be useful in debugging.

F.2 Steps for Building

The SOAP Monitor module is included with the binary distribution of Axis2
and its module (soapnodul e. mar) is included in the packaging of the
webser vi ces2. war | i b directory during the build. The web. xm file
shipped with the webser vi ces2. war has the necessary entries to sup-
port the SOAP Monitor. Beyond this the following additional steps are
needed to enable this functionality:

1. Create alocation on your disk to contain the necessary Axis2 artifacts;
eg.

cd C\
nkdi r Axi s2-i ncl udes

2. Asper the Axis2 documentation, you must place the SOAPMonitor ap-
plet classes at the root of the WAR file; for example:

cd C \ Axi s2-incl udes

jar -xvf
YCURAMSDEJ % ear \ webser vi ces2\ Axi s2\ nodul es\ soapnoni tor-1.5. 1. nar
or g/ apache/ axi s2/ soapnoni t or/ appl et/

98

Curam Web Services Guide

Then, use the following properties when you invoke your web services
ear target (websphereWebServi ces or webl ogi cWwebSer -
Vi ces):

- Daxi s2.incl ude. overwite=true
- Daxi s2. i nclude. | ocati on=C: \ Axi s2-i ncl udes

The shipped axi s2. xml file defines the necessary SOAP Monitor
phase elements, but to be functional the following entry needs to be ad-
ded (similarly to other nodul e entries):

<nodul e ref="soapnonitor"/>

This change can be made to the EAR file prior to deployment or for
WebSphere in the deployed filesystem.

Then to access the SOAPMonitor you would use a URL like this: ht -
tp://1ocal host: 9082/ Cur am\52/ SOAPNbni t or .

Unfortunately the applet doesn't give much information when there is
an issue. If you see the error: " The SOAP Monitor is unable
to communicate with the server.":

» Ensure thereis not a port conflict; the default as set inweb. xm is
5001—if so, change that port.

e Thiserror may occur if you use Microsoft® Internet Explorer 6; if
SO, use amore current browser version.

99

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

100

Curam Web Services Guide

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

101

Curam Web Services Guide

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

102

Trademarks

Curam Web Services Guide

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apacheis atrademark of Apache Software Foundation.

Microsoft, Windows 7, Windows XP, Windows NT, Windows Serv-
er 2003, Windows Server 2008, Windows Explorer, Internet Ex-
plorer, Word, Excel, and the Windows logo are trademarks of Mi-
crosoft Corporation in the United States, other countries, or both.

Oracle, WebL ogic Server, Java and all Java-based trademarks and
logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

103

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Web Services Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Prerequisites

	Chapter 2 Using Web Services
	2.1 Overview of Web Services
	2.2 Web Service Platforms
	2.3 Types of Web Services
	2.4 Web Services Security
	2.5 Summary

	Chapter 3 Outbound Web Service Connectors
	3.1 Overview
	3.2 Getting Started
	3.3 Building an Outbound Web Service Connector
	3.3.1 Including the WSDL File in Your Components File System
	3.3.2 Adding the WSDL File Location to the Outbound Web Services File
	3.3.3 Generating the Web Service Stubs

	3.4 Creating a Client and Invoking the Web Service
	3.5 Legacy Outbound Web Service Connectors
	3.5.1 Introduction
	3.5.2 Building an Outbound Web Service Connector
	Downloading the WSDL Files
	Registering a Web Service
	Building the Client Stubs

	3.5.3 Creating a Client and Invoking the Web Service
	Addressing anyType Serialization/Deserialization Errors

	Chapter 4 Inbound Web Services
	4.1 Overview
	4.2 Getting Started
	4.3 Modeling and Implementing an Inbound Web Service
	4.3.1 Creating Inbound Web Service Classes
	4.3.2 Adding Operations to Inbound Web Service Classes
	4.3.3 Adding Arguments and Return Types to Inbound Web Service Operations
	4.3.4 Processing of Lists
	4.3.5 Data Types

	4.4 Building and Packaging Web Services
	4.5 Providing Security Data for Web Services
	4.6 Providing Web Service Customizations
	4.6.1 Inbound Web Service Properties File
	4.6.2 Deployment Descriptor File
	4.6.3 Customizing Receiver Runtime Functionality
	Custom Credential Processing
	Custom Application Server-Specific Parameters
	Custom SOAP Factory
	Building Custom Receiver Code

	4.6.4 Providing Schema Validation

	4.7 Legacy Inbound Web Services
	4.7.1 Introduction
	4.7.2 Web Service Styles
	4.7.3 SOAP Binding
	4.7.4 Selecting Web Service Style
	RPC
	Document (DOWS)

	4.7.5 Creating Inbound Web Services
	Modeling Legacy Web Service Classes in Rational Software Architect
	Adding Operations to Legacy Inbound Web Service Classes
	Adding Arguments and Return Types to Inbound Web Service Operations

	4.7.6 Build and Deployment
	4.7.7 Data Types
	Processing of Lists

	4.7.8 Security Considerations
	4.7.9 Customizations
	Sample RPC-Style Customizations
	Sample Document-Style Customizations
	Sample Facade Bean Invocation

	Chapter 5 Secure Web Services
	5.1 Overview
	5.2 Axis2 Security and Rampart
	5.3 Custom SOAP Headers
	5.4 Encrypting Custom SOAP Headers
	5.5 Using Rampart With Web Services
	5.5.1 Defining the Axis2 Security Configuration
	5.5.2 Providing the Security Data and Code
	5.5.3 Coding the Client

	5.6 Securing Web Service Network Traffic With HTTPS/SSL
	5.7 Legacy Secure Web Services
	5.7.1 Objective
	5.7.2 Modeling Secure Web Services
	5.7.3 Client Side Configuration
	5.7.4 Keystore File Creation

	Appendix A Glossary
	A.1 Definitions

	Appendix B Inbound Web Service Properties - ws_inbound.xml
	B.1 Property Settings

	Appendix C Deployment Descriptor File - services.xml
	C.1 Descriptor File Contents

	Appendix D Troubleshooting
	D.1 Introduction
	D.2 Initial Server Validation and Troubleshooting
	D.2.1 Axis2 Environment Validation
	To Be Aware Of

	D.2.2 Axis 1.4 Environment Validation
	D.2.3 Using an External Client to Validate and Troubleshoot

	D.3 Tools and Techniques for Troubleshooting Axis2 and Axis 1.4 Errors
	D.4 Avoid Use of 'anyType'

	Appendix E Including the Axis2 Admin Application in Your Web Services WAR File
	E.1 Introduction
	E.2 Steps for Building

	Appendix F Including the Axis2 SOAP Monitor in Your Web Services WAR File
	F.1 Introduction
	F.2 Steps for Building

	Notices
	Trademarks

