
IBM Cúram Social Program Management

Cúram Web Services Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Audience .. 1
1.3 Prerequisites ... 1

Chapter 2 Using Web Services .. 2
2.1 Overview of Web Services .. 2
2.2 Web Service Platforms .. 3
2.3 Types of Web Services .. 4
2.4 Web Services Security ... 7
2.5 Summary .. 7

Chapter 3 Outbound Web Service Connectors .. 10
3.1 Overview .. 10
3.2 Getting Started ... 10
3.3 Building an Outbound Web Service Connector ... 11

3.3.1 Including the WSDL File in Your Components File System 11
3.3.2 Adding the WSDL File Location to the Outbound Web Services File 12
3.3.3 Generating the Web Service Stubs ... 12

3.4 Creating a Client and Invoking the Web Service ... 13
3.5 Legacy Outbound Web Service Connectors .. 14

3.5.1 Introduction ... 14
3.5.2 Building an Outbound Web Service Connector .. 15
3.5.3 Creating a Client and Invoking the Web Service .. 16

Chapter 4 Inbound Web Services .. 21
4.1 Overview .. 21
4.2 Getting Started ... 21
4.3 Modeling and Implementing an Inbound Web Service ... 22

4.3.1 Creating Inbound Web Service Classes .. 23
4.3.2 Adding Operations to Inbound Web Service Classes 24
4.3.3 Adding Arguments and Return Types to Inbound Web Service Operations 24
4.3.4 Processing of Lists .. 25
4.3.5 Data Types .. 25

4.4 Building and Packaging Web Services .. 26
4.5 Providing Security Data for Web Services .. 28
4.6 Providing Web Service Customizations .. 28

iii

4.6.1 Inbound Web Service Properties File ... 29
4.6.2 Deployment Descriptor File .. 29
4.6.3 Customizing Receiver Runtime Functionality .. 30
4.6.4 Providing Schema Validation ... 32

4.7 Legacy Inbound Web Services .. 34
4.7.1 Introduction ... 34
4.7.2 Web Service Styles ... 34
4.7.3 SOAP Binding .. 34
4.7.4 Selecting Web Service Style ... 35
4.7.5 Creating Inbound Web Services ... 36
4.7.6 Build and Deployment .. 43
4.7.7 Data Types .. 44
4.7.8 Security Considerations .. 45
4.7.9 Customizations .. 46

Chapter 5 Secure Web Services ... 60
5.1 Overview .. 60
5.2 Axis2 Security and Rampart .. 60
5.3 Custom SOAP Headers .. 61
5.4 Encrypting Custom SOAP Headers ... 64
5.5 Using Rampart With Web Services ... 65

5.5.1 Defining the Axis2 Security Configuration .. 66
5.5.2 Providing the Security Data and Code .. 69
5.5.3 Coding the Client .. 69

5.6 Securing Web Service Network Traffic With HTTPS/SSL 73
5.7 Legacy Secure Web Services ... 75

5.7.1 Objective ... 75
5.7.2 Modeling Secure Web Services .. 75
5.7.3 Client Side Configuration ... 77
5.7.4 Keystore File Creation .. 80

Appendix A Glossary ... 82
A.1 Definitions ... 82

Appendix B Inbound Web Service Properties - ws_inbound.xml ... 84
B.1 Property Settings ... 84

Appendix C Deployment Descriptor File - services.xml ... 87
C.1 Descriptor File Contents .. 87

Appendix D Troubleshooting .. 90
D.1 Introduction ... 90
D.2 Initial Server Validation and Troubleshooting .. 90

D.2.1 Axis2 Environment Validation .. 91
D.2.2 Axis 1.4 Environment Validation .. 92
D.2.3 Using an External Client to Validate and Troubleshoot 92

D.3 Tools and Techniques for Troubleshooting Axis2 and Axis 1.4 Errors 93
D.4 Avoid Use of 'anyType' ... 95

Appendix E Including the Axis2 Admin Application in Your Web Services WAR File 96
E.1 Introduction ... 96

Cúram Web Services Guide

iv

E.2 Steps for Building .. 96

Appendix F Including the Axis2 SOAP Monitor in Your Web Services WAR File 98
F.1 Introduction .. 98
F.2 Steps for Building .. 98

Notices ... 100

Cúram Web Services Guide

v

Chapter 1

Introduction

1.1 Purpose

The purpose of this guide is to provide instructions on how to connect
IBM® Cúram Social Program Management to external applications that
have a web service interface, how to make business logic available as web
services and how to secure those web services.

1.2 Audience

This guide is intended for developers that are responsible for the interoper-
ability between enterprise applications using web services. It covers all as-
pects of IBM Cúram Social Program Management web service development
including modeling, building, securing, deploying, and troubleshooting.

1.3 Prerequisites

The reader should be familiar with web service concepts and their underly-
ing technologies (for instance see Appendix A, Glossary), modeling (as de-
scribed in the Cúram Modeling Reference Guide), and developing in an IBM
Cúram Social Program Management environment (as described in the
Cúram Server Developer's Guide).

IBM Cúram Social Program Management web services are based on
Apache Axis2. The following is a starting point if you require more informa-
tion: http://axis.apache.org/axis2/java/core/index.html. This site contains a
wealth of information including references to underlying technologies such
as SOAP and WSDL (see Appendix A, Glossary) as well as Axis2 docu-
mentation and links to outside articles, etc.

1

http://axis.apache.org/axis2/java/core/index.html

Chapter 2

Using Web Services

2.1 Overview of Web Services

The term web services describes a standardized way of integrating web-
based applications. They allow different applications from different sources
to communicate with each other and because all communication is in XML,
web services are not tied to any one operating system or programming lan-
guage. This application-to-application communication is performed using
XML to tag the data, using:

• SOAP (Simple Object Access Protocol: A lightweight XML-based mes-
saging protocol) to transfer the data;

• WSDL (Web Services Description Language) to describe the services
available;

• UDDI (Universal Description, Discovery and Integration) to list what
services are available.

Web services can be considered in terms of the direction of
flow—outbound/accessing and inbound/implementing—which are suppor-
ted by the IBM Cúram Social Program Management infrastructure for de-
velopment and deployment as described below:

Outbound Web Service Connector
An outbound web service connector allows the IBM Cúram Social Pro-
gram Management application to access external applications that have
exposed a web service interface. The WSDL file used to describe this
interface is used by the web service connector functionality in IBM
Cúram Social Program Management to generate the appropriate client
code (stubs) to connect to the web service. This means developers can
focus on the business logic to handle the data for the web service. See
Chapter 3, Outbound Web Service Connectors for details on developing
outbound web service connectors.

2

Inbound Web Service
Some functionality within the IBM Cúram Social Program Manage-
ment application can be exposed to other internal or external applica-
tions within the network. This can be achieved using an inbound web
service. The IBM Cúram Social Program Management infrastructure
will generate the necessary deployment artifacts and package them for
deployment. Once the application EAR file is deployed any application
that wishes to communicate with the IBM Cúram Social Program Man-
agement application will have to implement the appropriate functional-
ity based on the WSDL for the web service. The infrastructure relies on
the web service class to be modeled and it utilizes Axis2 tooling in the
generation step for inbound web services. See Chapter 4, Inbound Web
Services for details on developing IBM Cúram Social Program Man-
agement inbound web services.

2.2 Web Service Platforms

The platforms (a.k.a. stacks) supported for web services are Apache Axis2
and Apache Axis 1.4, for legacy IBM Cúram Social Program Management
web services.

Legacy web services represent an older generation of web services support
in IBM Cúram Social Program Management, that is no longer actively
maintained by Apache and is thus not viable as a technology base going for-
ward. This feature should only be used if you have a pre-existing IBM
Cúram Social Program Management web service that utilizes Axis 1.4.

Legacy web services are still supported in IBM Cúram Social Program
Management, but since Apache is not actively maintaining this older Axis
1.4 software it is strongly recommended that you begin using the new Axis2-
based infrastructure for your web services and begin converting any existing
legacy web services. Unfortunately, Apache does not provide any specific
migration path between their older and newer Axis2 web service platforms.

There are also a number of other web service platforms available besides
Axis2 (or Axis 1.4) that you could potentially adapt for use with IBM Cúram
Social Program Management ; however, some of the benefits of Axis2 web
services include:

• Complete redesign of Apache Axis 1.4 - Axis2 represents a complete re-
design of the Apache Axis 1.4 web service engine, which allows for sig-
nificant improvements in flexibility due to the new architecture and im-
proved performance. Performance improvements come, in part, from a
change in XML parser changes using the StAX API, which gives greater
speed than SAX event-based parsing that is used in the previous web
services implementation.

• New message types available - This third generation of web service sup-
port makes new message exchange patterns (MEPs) available. Rather
than just in-out processing, in-only (a.k.a. fire-and-forget) and other

Cúram Web Services Guide

3

MEPs are now available.

• Support for new and updated standards such as SOAP (1.2 & 1.1) and
WSDL (2.0 & 1.1) - you will see that the Axis2 distribution included
with IBM Cúram Social Program Management includes many new and
updated jar files.

2.3 Types of Web Services

Web services can be categorized in a number of ways, one of the main
groupings is the web service style and use, which determines the way web
service operation parameters are handled. The following table summarizes
the Axis2 (and Axis 1.4) offerings in this area.

The style option (as per the WSDL specification) determines the structure
of the SOAP message payload, which is the contents of the <soap:body>
element.

• Document (also referred to as document-oriented web services, or
DOWS): The contents of the web service payload are defined by the
schema in the <wsdl:type> and is sent as a self-contained document.
This style is very flexible and can process parameters and return data, or
via IBM® Rational® Software Architect modeling, can be a W3C Docu-
ment passed as an argument and return value. Document is assumed to
be the default style if not specified.

• RPC: The contents of the payload must conform to the rules specified in
the SOAP specification; i.e., <soap:body> and may only contain one ele-
ment, named after the operation, and all parameters must be represented
as sub-elements of this wrapper element. Typically this would be para-
meters and return values.

Regardless of the choice of style the contents of the SOAP message payload
could look the same for a SOAP message regardless of whether document
or RPC style is specified in the WSDL. This is because of the freedom
available in the case of the document style.

The use option determines the serialization rules used by the web service
client and server to interpret the payload of the SOAP message.

• Literal: The type definitions are self-defining, following an XML
schema definition in <wsdl:types> using either the element or type
attribute.

• Encoded: The rules to encode and interpret the payload application data
are in a list of URIs specified by the encodingStyle attribute, from
the most to least restrictive. The most common encoding is SOAP en-
coding, which specifies how objects, arrays, etc. should be serialized in-
to XML.

The style and use options for a web service are specified in the WSDL

Cúram Web Services Guide

4

<wsdl:binding> section (see http://www.w3.org/TR/wsdl and ht-
tp://www.w3.org/TR/wsdl20) as attributes and control the content and func-
tion of the resulting SOAP (see http://www.w3.org/TR/soap11 and ht-
tp://www.w3.org/TR/soap12) message.

The following WSDL fragment illustrates the context for these settings,
where the different values for the options are separated by the pipe (|) char-
acter:

<wsdl:binding name="myService" ... >
<soap:binding transport="..." style="document|rpc"/>
<wsdl:operation name="myOperation">

<soap:operation soapAction="urn:op2" style="document"/>
<wsdl:input>
<soap:body use="literal|encoded"

encodingStyle="uri-list" ... />
</wsdl:input>
<wsdl:output>
<soap:body use="literal|encoded"

encodingStyle="uri-list" ... />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

In general the encoded use option has been discouraged by the Web Ser-
vices Interoperability Organization (WS-I) and the Document/Literal is the
preferred choice for web service style and use.

Within the context of the Document/Literal style, use pairing is the concept
of "wrapped" and "unwrapped". This is not a specific style or use, but a pat-
tern that is characterized by: a single part definition, each part definition in
the WSDL references an element, not a type as in RPC (it's these referenced
elements that serve as the "wrappers"), the input wrapper element must be
defined as a complex type that is a sequence of elements, the input wrapper
name must have the same name as the operation, the output wrapper name
must have the same name as the operation with "Response" appended to it,
and, of course, the style must be "document" in the WSDL binding section.
Based on the capabilities of Apache Axis2 (and Axis 1.4) only the "wrapped"
pattern is supported1; however, it is not supported by WSDL 2.0. The fol-
lowing WSDL fragment illustrates this pattern using a simple web service
that multiplies two numbers and returns the results.

...
<wsdl:types>

...
<xs:element name="simpleMultiply">
<xs:complexType>

<xs:sequence>
<xs:element

minOccurs="0"
name="args0"
type="xs:float"/>

<xs:element
minOccurs="0"
name="args1"
type="xs:float"/>

</xs:sequence>
</xs:complexType>

Cúram Web Services Guide

5

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12

</xs:element>
<xs:element name="simpleMultiplyResponse">
<xs:complexType>

<xs:sequence>
<xs:element

minOccurs="0"
name="return" type="xs:float"/>

</xs:sequence>
</xs:complexType>

</xs:element>
...

</wsdl:types>
...
<wsdl:message name="simpleMultiplyRequest">

<wsdl:part name="parameters"
element="ns:simpleMultiply"/>

</wsdl:message>
<wsdl:message name="simpleMultiplyResponse">

<wsdl:part name="parameters"
element="ns:simpleMultiplyResponse"/>

</wsdl:message>
...
<wsdl:operation name="simpleMultiply">

<wsdl:input message="ns:simpleMultiplyRequest"
wsaw:Action="urn:simpleMultiply"/>

<wsdl:output message="ns:simpleMultiplyResponse"
wsaw:Action="urn:simpleMultiplyResponse"/>

</wsdl:operation>
...
<wsdl:operation name="simpleMultiply">

<soap:operation soapAction="urn:simpleMultiply"
style="document"/>
<wsdl:input>

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:operation>

...

The following table shows the various style and use combinations supported
with IBM Cúram Social Program Management.

Style/Use Cúram with Axis2 Cúram with Axis 1.4
RPC/Encoded Not supported (not sup-

ported by Axis2; not
WS-I compliant)

Supported

RPC/Literal Supported Not supported

Document/Encoded Not supported (not WS-
I compliant)

Not supported (not WS-
I compliant)

Document/Literal
(wrapped)

Supported Supported

Table 2.1 Summary of Web Service Style and Use Support

Of the supported style and use combinations there are a number of relative
strengths and weaknesses to be considered when defining your web ser-
vices. These are summarized in the following table.

Cúram Web Services Guide

6

Style/Use Strengths Weaknesses
Document/Literal
(wrapped) • WS-I compliant

• No type encoding
information

• Can validate in a
standard way

• Operation name in
SOAP message

• Very complex
WSDL

RPC/Literal (Axis2 only)
• WS-I compliant

• WSDL is straight-
forward

• Operation name is
included in the
WSDL

• No type encoding
information

• Hard to validate the
message

RPC/Encoded (legacy
only)

• WSDL is straight-
forward

• Operation name is
included in the
WSDL

• Not WS-I compliant

Table 2.2 Summary of Web Service Style and Use Strengths and
Weaknesses

2.4 Web Services Security

Web service security is an important consideration in your planning, imple-
mentation and runtime support of web services to ensure your valuable and
sensitive enterprise data remains safe. This security is implemented entirely
by the facilities integrated with Axis2 (or Axis 1.4), which includes WS-
Security, wss4j, etc. However, with the support of web services with Axis2
there is now the option (recommended and on by default) of requiring that
clients of inbound web services provide credentials via IBM Cúram Social
Program Management custom SOAP headers.

2.5 Summary

Cúram Web Services Guide

7

In this chapter some basics of Apache Axis2 (and Axis 1.4) web services
have been introduced and how IBM Cúram Social Program Management
web services correspond to this web service functionality. Remember that
while legacy web services are supported for customers who have already de-
ployed them any new development should be done using the new web ser-
vice functionality now available. As the basis for the latest generation of
web service standards, Axis2 brings improved architecture, performance,
and standards support to your web services.

The following chapters provide the details necessary to enable access to web
services externally deployed (outbound) and model, build, customize, se-
cure, and deploy business logic as a web service (inbound).

Cúram Web Services Guide

8

Notes
1 Since only the Document/Literal-wrapped pattern for Axis2 is supported,
turning this off via doclitBare set to true in the services.xml
descriptor file is not supported.

Cúram Web Services Guide

9

Chapter 3

Outbound Web Service Connectors

3.1 Overview

A IBM Cúram Social Program Management outbound web service connect-
or allows the application to access external applications that have exposed a
web service interface. The WSDL file used to describe this interface is used
by the web service connector functionality in IBM Cúram Social Program
Management to generate the appropriate client code (stubs) to connect to the
web service.

In this chapter you will learn how to create new and legacy IBM Cúram So-
cial Program Management web services:

• Include the WSDL file in your components file system;

• Add the WSDL file location to the outbound web services file;

• Generate the web service stubs;

• Create a client and invoke the web service.

3.2 Getting Started

The process for building outbound connectors is briefly:

1. Include the WSDL file(s) in your components file system
You must have a WSDL file in order to generate client stubs. Once you
have the necessary WSDL file(s) you need to store it within the file sys-
tem of your EJBServer/components/custom directory as shown
in Example 3.1, File System Usage For Outbound Web Services. These
WSDL files will be referenced in the following step.

2. Add the WSDL file location(s) to the component
ws_outbound.xml file

10

For each component you wish to have outbound web service connectors
built you must place a ws_outbound.xml file in the EJBServer/
components/custom/axis directory. The format of this file is de-
scribed in Section 3.3.2, Adding the WSDL File Location to the Out-
bound Web Services File.

3. Generate stubs
You are now ready to generate the web service stubs by invoking the
following build script: build wsconnector2

4. Create a client and invoke the web service
To invoke the web service you must create and build a client (e.g. a
Java® main program) that utilizes the generated stubs to prepare argu-
ments, call the web service, and process the return results.

Each of the above steps is explained in more detail in the sections that fol-
low. To better understand the process just outlined the following illustrates
the structure of directories and files used.

+ EJBServer
+ build

+ svr
+ wsc2
+ <service_name>

- <service_name>.wsdl - where modeled service
WSDL files are built to

+ jav
+ src
+ wsconnector - default location for

generated stub source;
override with property
axis2.java.outdir

+ wsconnector - default location for
compiled stub code;
override, with axis2.
extra.wsdl2java.args
property

+ components
+ custom

+ axis
- ws_outbound.xml - where you identify

your WSDL files as
below

+ <service_name>
+ <service_name>.wsdl - where you might copy a

WSDL file as pointed to
by ws_outbound.xml

Example 3.1 File System Usage For Outbound Web Services

3.3 Building an Outbound Web Service Connector

3.3.1 Including the WSDL File in Your Components File Sys-
tem

Once you have the WSDL file(s) representing the service you wish to access

Cúram Web Services Guide

11

place them in the file system (usually under source control). You should
place the WSDL file(s) in the custom folder under the location represented
by your SERVER_DIR environment variable (and that location is specified
in ws_outbound.xml, below). Placing your WSDL within this structure
will ensure your web services are isolated from IBM Cúram Social Program
Management-shipped web services. This is shown in Example 3.1, File Sys-
tem Usage For Outbound Web Services. The base name of the (root) WSDL
file must use the service name.

3.3.2 Adding the WSDL File Location to the Outbound Web
Services File

Once your WSDL file(s) is in your file system you need to create (if not
already in existence) a ws_outbound.xml file in your component axis
directory and update it. The recommended location for this file is: com-
ponents/custom/axis/ws_outbound.xml.

In that file you identify the location of the WSDL file(s); for example:

<?xml version="1.0" encoding="UTF-8"?>
<services>

<service name="SomeService"
location=
"components/custom/axis/SomeService/SomeService.wsdl"/>

</services>

Example 3.2 Sample ws_outbound.xml File

In the ws_outbound.xml file there is one service entity for each web
service, specifying the service name (matching the WSDL file base name)
and location (relative to the SERVER_DIR environment variable).

3.3.3 Generating the Web Service Stubs

The generation of the web service stubs is based on the contents of the
ws_outbound.xml files as specified by your component structure - the
setting of the COMPONENT_ORDER environment variable and any files in
your components/custom/axis directories. See the example file sys-
tem structure in Example 3.1, File System Usage For Outbound Web Ser-
vices.

When you invoke the IBM Cúram Social Program Management build
script:

build wsconnector2

each WSDL file identified by the ws_outbound.xml files is used to gen-
erate the stub source code, which is compiled to produce executable code.
The generated source is located in the EJBServer/
build/svr/wsc2/jav/src/wsconnector directory and any com-
piled Java code is located in the EJBServer/
build/svr/wsc2/jav/wsconnector directory.

Cúram Web Services Guide

12

3.4 Creating a Client and Invoking the Web Service

Invoking the web service and utilizing the generated code depends on your
development environment; but, for example, it might include the following
steps, assuming the web service has already been deployed and tested:

1. Copy or reference the generated source and class files; e.g. reference in
Eclipse;

2. Code your client; e.g. Java main program. Typically your steps here
will include:

• Instantiate the generated stub class;

• Optionally, increase the client timeout threshold (especially for a
client that might run first after the application server starts);

• Setup the credentials in the custom SOAP header (see Section 5.3,
Custom SOAP Headers for more details);

• Call the stub methods to instantiate objects and set their values for
passing to the service;

• Invoke the service operation;

• Check the response;

3. Build and test.

Typically the generated stub code provides a number of options to invoke
the web service. Following are some sample code fragments to help illus-
trate that.

The following fragment calls a service named simpleAdd in class Web-
ServiceTest for which the external tooling generates WebSer-
viceTestStub and related classes:

final WebServiceTestStub stub =
new WebServiceTestStub();

// Set client timeout for slow machines.
stub._getServiceClient().getOptions().setProperty(
HTTPConstants.SO_TIMEOUT, new Integer(180000));

stub._getServiceClient().getOptions().setProperty(
HTTPConstants.CONNECTION_TIMEOUT, new Integer(180000));

// test string and primitive data types
final WebServiceTestStub.SimpleAdd service =
new WebServiceTestStub.SimpleAdd();

final int i = 20;
final int j = 30;
service.setArgs0(i);
service.setArgs1(j);

final WebServiceTestStub.SimpleAddResponse
simpleAddResponse = stub.simpleAdd(service);

final long sum = simpleAddResponse.get_return();

Cúram Web Services Guide

13

Example 3.3 Sample Web Service Client

Sometimes, while the generated code is convenient, you need a little more
control over your client environment. The following example illustrates how
you might call an in-only service using a "hand-built" SOAP message,
which in this case takes a simple String argument as input:

final TestWSStub stub =
new TestWSStub();

// Get client from stub
ServiceClient client;
client = stub._getServiceClient();

/*
* Define SOAP using string
*/

final String xml = " <rem:testString "
+ "xmlns:rem=\"http://remote.testmodel.util.curam\"> "
+ " <rem:testString>"
+ My test string!
+ "</rem:testString>"
+ " </rem:testString>";

final ByteArrayInputStream xmlStream =
new ByteArrayInputStream(xml.getBytes());

final StAXBuilder builder = new StAXOMBuilder(xmlStream);
final OMElement oe = builder.getDocumentElement();

// Send the message
client.fireAndForget(oe); // API for In-Only processing
Thread.sleep(10000); // Required for fireAndForget()
client.cleanupTransport(); // Avoid exhausting connection pool
client.cleanup();

Example 3.4 Sample Web Service Client Using Generated Stub
and Custom Code

3.5 Legacy Outbound Web Service Connectors

3.5.1 Introduction

This section describes legacy outbound web service connectors, which are
defined in section Section 2.1, Overview of Web Services.

Warning

The use of legacy web services, while still supported, should only be
used for existing web services. This is because the underlying im-
plementation, Axis 1.4, is not actively maintained by Apache. Leg-
acy web service support will be removed at some point in the future

Cúram Web Services Guide

14

and you should convert any legacy web services as soon as possible.

3.5.2 Building an Outbound Web Service Connector

Downloading the WSDL Files

WSDL files are treated as source code which is required to build the applic-
ation. Consequently, the files should be stored locally (preferably version
controlled) with the rest of the source code.

The WSDL files must be manually downloaded (or otherwise obtained), as
the web service connector functionality does not support accessing the
WSDL definition via a remote access mechanism such as UDDI (Universal
Description Discovery and Integration) or HTTP. The downloaded files
must be placed in the appropriate build structure folder:

<SERVER_DIR>/components/<component_name>/wsdl/

Each IBM Cúram Social Program Management component may have its
own set of web service connectors, so in the above path
<component_name> should be the name of the component for which the
connector is being deployed. It is considered good practice (though not re-
quired) to separate different web services into sub directories within
<SERVER_DIR>/components/<component_name>/wsdl/.

For example:

<SERVER_DIR>/components/<component_name>/wsdl/accou
nt_service/

<SERVER_DIR>/components/<component_name>/wsdl/reven
ue_service/

A WSDL definition can be spread over several files that reference each oth-
er, possibly in some arbitrary directory structure. These references can be
resolved as long as the references are relative and the top level directory is
under the
<SERVER_DIR>/components/<component_name>/wsdl/ direct-
ory.

Registering a Web Service

Each web service for which outbound connectors should be generated must
be registered. Registration is a simple process of updating the following file:

<SERVER_DIR>/project/config/webservices_config.xml.

The sample webservices_config.xml shown in Example 3.5,
Sample webservices_config.xml below illustrates how to register a web ser-
vice:

<services>
<service
location=

"components/<component_name>/wsdl/some_service/TopLevel.wsdl"

Cúram Web Services Guide

15

/>
</services>

Example 3.5 Sample webservices_config.xml

The location attribute represents the location of the WSDL file relative to
the <SERVER_DIR> directory. Where the WSDL definition is spread over
several files in a hierarchical structure, the web service is registered by ref-
erencing the top level WSDL definition file in the webser-
vices_config.xml file.

This registration process also provides the ability to turn a particular web
service connector on and off (bearing in mind that business code that ac-
cesses the connector would obviously be affected by this), by simply adding
or removing the entry as required and rebuilding.

The empty webservices_config.xml file shown in Example 3.6, An
empty webservices_config.xml below is also valid:

<services>
</services>

Example 3.6 An empty webservices_config.xml

Note

If your project does not have a
<SERVER_DIR>/project/config/webservices_confi
g.xml file, you may create one by following the structure shown
above.

Building the Client Stubs

Once the web service has been registered the server build scripts take care
of the rest. The Axis 1.4 WSDL-to-Java tool generates client stubs based on
the registered WSDL files. These Java classes will be compiled as part of
the server code.

3.5.3 Creating a Client and Invoking the Web Service

Following web service registration and stub generation, developers can ac-
cess the web service by utilizing the classes produced by the WSDL-to-Java
tool. These include the following:

• For each service element in the WSDL file, an interface class
(suffixed with Service) and an implementing service locator class
(suffixed with ServiceLocator) are generated. The ServiceLoc-
ator class creates an instance of the stub class described next.

• For each portType element in the WSDL file, an interface class
(suffixed with _PortType) and an implementing web service stub
class (suffixed with SoapBindingStub) are generated. The Soap-

Cúram Web Services Guide

16

BindingStub (instantiated by the ServiceLocator) provides ac-
cess to the external web service via invocation of its appropriate meth-
ods.

• A Java class is also generated for each schema element type in the
WSDL file, that represents a parameter or a return type, for each web
service.

The following example describes how a very simple web service can be in-
voked from Java code.

The following listing is a WSDL extract of a web service which allows the
client to query the price of a shoe by providing its size.

<wsdl:types>
<schema targetNamespace="http://DefaultNamespace"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:impl="http://DefaultNamespace"
xmlns:intf="http://DefaultNamespace"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<element name="askShoePriceResponse">
<complexType>
<sequence/>

</complexType>
</element>

<element name="askShoePrice">
<complexType>
<sequence>
<element name="myShoeSize" type="xsd:int"/>
<element name="shoePrice" nillable="true"

type="impl:ShoePrice"/>
</sequence>

</complexType>
</element>

<complexType name="ShoePrice">
<sequence>
<element name="priceInCents" type="xsd:int"/>

</sequence>
</complexType>
</schema>

</wsdl:types>

<wsdl:message name="askShoePriceResponse">
<wsdl:part element="impl:askShoePriceResponse"

name="parameters"/>
</wsdl:message>

<wsdl:message name="askShoePriceRequest">
<wsdl:part element="impl:askShoePrice"

name="parameters"/>
</wsdl:message>

<wsdl:portType name="ShoeShop">
<wsdl:operation name="askShoePrice">

<wsdl:input message="impl:askShoePriceRequest"
name="askShoePriceRequest"/>

<wsdl:output message="impl:askShoePriceResponse"
name="askShoePriceResponse"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="yourhost9082SoapBinding"
type="impl:ShoeShop">

Cúram Web Services Guide

17

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="askShoePrice">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="askShoePriceRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="askShoePriceResponse">

<wsdlsoap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<wsdl:service name="ShoeShopService">
<wsdl:port binding="impl:yourhost9082SoapBinding"

name="yourhost9082">
<wsdlsoap:address location="http://yourhost:9082"/>

</wsdl:port>
</wsdl:service>

Example 3.7 WSDL for a sample web service

This WSDL will result in a number of Java classes being generated.

The following generated Java interface represents the client side of the web
service. This interface is implemented by the generated ShoeShopSoap-
BindingStub, which the developer will use to invoke the web service.

public interface ShoeShop_PortType extends java.rmi.Remote {
public ShoePrice askShoePrice(int myShoeSize)

throws java.rmi.RemoteException;
}

Example 3.8 Java client stub interface for the web service

Instances of the ShoeShopSoapBindingStub class are created by the
generated ShoeShopServiceLocator class.

The following code shows how this web service can be invoked from Java
code:

// The service locator gets instances of the web service.
final ShoeShopServiceLocator serviceLocator =
new ShoeShopServiceLocator();

// get an instance of client stub by casting from interface:
final ShoeShopSoapBindingStub shoeShop =
(ShoeShopSoapBindingStub) serviceLocator.getShoeshop();

// this is our in parameter:
int myShoeSize = 8;

// ShoePrice is a generated type wrapper:
final ShoePrice shoePrice = new ShoePrice();

// invoke the web service:
shoePrice =
shoeShop.askShoePrice(myShoeSize);

// examine the value we got back:
final int priceInCents = shoePrice.getPriceInCents();

Cúram Web Services Guide

18

Example 3.9 Invoking the web service from Java code

This is a very simple example to illustrate how web services can be accessed
by IBM Cúram Social Program Management applications. For working
with more complex web services the developer should consult the web ser-
vice WSDL, and refer to the documentation on the Apache Axis website
[http://ws.apache.org/axis].

Addressing anyType Serialization/Deserialization Errors

As per Section D.4, Avoid Use of 'anyType' you should avoid the use of any-
Type. This is due to inconsistencies with, or lack of support for, this feature
depending on the environment, which may make your web service non-
portable. The following information has been found to be effective for ad-
dressing one of the issues related to the use of anyType.

With some web services clients the use of the WSDL anyType type may
cause an org.xml.sax.SAXException: No deserializer for
anyType error. One way to resolve this error is to register a serializer and
deserializer for the anyType type. This is illustrated in the code fragment
in Example 3.11, Java client fragment for serialization/deserialization of
anyType where the underlying definition, shown in the WSDL fragment in
Example 3.10, WSDL fragment illustrating use of anyType is mapped to a
Java String type. In summary, the processing steps involve:

• Obtaining a reference to the Axis 1.4 client configuration engine;

• Passing this reference into the service locator constructor;

• Getting the type mappings registry from the configuration engine;

• Creating a type mapping implementation for anyType and adding it to
the mappings registry.

...
<xs:element name="SomeRequest" type="com:SomeResult"/>
<xs:complexType name="SomeResult">

<xs:sequence>
<xs:element minOccurs="0"

name="anId"
type="xs:anyType">

</xs:element>
</xs:sequence>

</xs:complexType>
...

Example 3.10 WSDL fragment illustrating use of anyType

...
// Get the client engine configuration from the locator
// to enable registration of mappings for this client.

Cúram Web Services Guide

19

http://ws.apache.org/axis

final AxisEngine engine = locator.getEngine();
final EngineConfiguration clientEngineConfig = engine.getConfig();

// Instantiate a simple serializer and deserializer to
// map between 'anyType' and String.
final QName qnAnyType =

new QName("http://www.w3.org/2001/XMLSchema", "anyType");
final SimpleSerializerFactory serFact =

new SimpleSerializerFactory(String.class, qnAnyType);
final SimpleDeserializerFactory deserFact =

new SimpleDeserializerFactory(String.class, qnAnyType);

// Now register these serializers in the client engine
// configuration. (Note that the engine config will not
// return a valid typeMapping registry until after the
// locator has created a service.)
final TypeMappingRegistry tmReg =

clientEngineConfig.getTypeMappingRegistry();
final TypeMapping typeMapping = tmReg.getOrMakeTypeMapping("");
typeMapping.register(String.class, qnAnyType,

serFact, deserFact);
tmReg.register("", typeMapping);
// The service is now able to handle the anyType data type.

// The remainder of the client method would simply
// invoke the service normally.
...

Example 3.11 Java client fragment for
serialization/deserialization of anyType

Cúram Web Services Guide

20

Chapter 4

Inbound Web Services

4.1 Overview

An inbound web service is IBM Cúram Social Program Management ap-
plication functionality that is exposed to other internal or external applica-
tions within the network. This chapter describes the infrastructure for sup-
porting these services and the steps necessary to exploit it.

In this chapter you will learn how to create new and legacy IBM Cúram So-
cial Program Management web services:

• Model and implement an inbound web service;

• Build and package web services;

• Provide security data for web services;

• Provide web service customizations.

4.2 Getting Started

The process for developing inbound web services is briefly:

1. Model your web service and provide implementation code
You need to define the classes (WS Inbound) and operations in Rational
Software Architect that you will be implementing to provide the func-
tionality you wish to expose as web services.

As with any IBM Cúram Social Program Management process class
you need to provide the implementation for the classes and operations
you model as per the Cúram Modeling Reference Guide.

2. Build your web services and the web services EAR file
The IBM Cúram Social Program Management build system will build
and package your web services. Use the server and EAR file build tar-

21

gets as described in the Cúram Server Developer's Guide and the de-
ployment guide appropriate to your platform.

3. Provide security data for your web services
By default your web services are not accessible until you: a) Provide se-
curity data (see Section 4.5, Providing Security Data for Web Services)
that defines the service class and operation and which security group(s)
can access them; and b) Your clients must then provide credentials ap-
propriate to those security definitions (see Section 5.3, Custom SOAP
Headers (unless you choose to disable this security functionality; see
Section 4.6.3.1, Custom Credential Processing).

Each of the above steps is explained in more detail in the sections that fol-
low. To better understand the process just outlined the following illustrates
the structure of directories and files used.

+ EJBServer
+ build

+ svr
+ gen

+ wsc2 - where the generator
places ws_inbound.xml
property files

- <service_name>.wsdl - where modeled service
WSDL files are generated

+ components
+ custom

+ axis
+ <service_name>
- ws_inbound.xml - where you might place a

custom ws_inbound.xml
property file

- services.xml - where you might place a
custom services.xml
descriptor file

+ source - where optional schema
validation code would go

+ schemas - where you might place
optional schema

+ webservice - where you must place
custom receiver code

Example 4.1 File System Usage For Inbound Web Services

4.3 Modeling and Implementing an Inbound Web Ser-
vice

See Working with the Cúram Model in Rational Software Architect for more
information on using the Rational Software Architect tool with the Cúram
model. Based on your design decisions you will need to model the necessary
classes and operations and set the appropriate properties in the Cúram mod-
el. As per the normal IBM Cúram Social Program Management develop-
ment process documented in the Cúram Server Developers Guide you must
also code your web service implementation classes.

When you model your web services consider:

Cúram Web Services Guide

22

• The web service binding style - Document (recommended, default) or
RPC;

• The web service binding use - Literal or Encoded;

Note

Not all combinations of binding style and use are supported; see
Section 2.3, Types of Web Services for more information.

• Whether the service is processing struct and domain types or a W3C
Document.

4.3.1 Creating Inbound Web Service Classes

In Rational Software Architect to add an Axis2 inbound web service class to
a package, select Add Class, WS Inbound from the right-click context
menu and name the class.

Note

In IBM Cúram Social Program Management web service names are
based on the class name specified in the Rational Software Architect
model and must be unique within the environment.

If you require passing and returning a W3C Document instead of IBM
Cúram Social Program Management domain types or structs you must:

1. In the Curam properties tab for the WS Inbound class, select the
WS_Is_XML_Document property (if passing W3C Documents
providing schema validation is an optional activity and is detailed in
Section 4.6.4, Providing Schema Validation);

2. Select True as the value from the drop down.

By default the web service style for the class is document, which is defined
in the WS_Binding_Style property as "0 - Unspecified". If you
require the RPC binding style:

1. In the Curam properties tab, select the WS_Binding_Style prop-
erty;

2. Select "2 - RPC" as the value from the drop down.

You can also set the value explicitly to "1 - Document", but the generat-
or defaults the "0 - Unspecified" value to be document.

The class properties above will apply uniformly to all operations of the web
service class; so, you need to plan your design to account for this. That is, a
class can contain W3C Document operations or operations that use native
data types or IBM Cúram Social Program Management structs, but not both.
Similarly the binding style (WS_Binding_Style) will be applied to all
operations of a class when passed as an argument to the Java2WSDL tool;
so, any requirement for operations with a different binding style in gener-

Cúram Web Services Guide

23

ated WSDL would need to be handled in a separate modeled class.

4.3.2 Adding Operations to Inbound Web Service Classes

In Rational Software Architect operations are added to Axis2 inbound web
service classes via the right-click context menu. To add an operation to an
inbound web service class:

1. Select Operation from the right-click context menu and choose Default.

2. In the Create 'default' Operation Wizard, name the operation and select
its return type.

The following are issues with Axis2 that are relevant to you when modeling
inbound web services:

• Certain method names on inbound web services will not operate as ex-
pected, due to the fact that when handling an inbound web service call
Java reflection is used to find and invoke methods in your application.
The Axis2 reflection code identifies methods by name only (i.e., not by
signature), which means that unexpected behavior can occur if your web
service interface contains a method with the same name as an inherited
method. Each inbound web service in your application causes a facade
bean—i.e., a stateless session bean—to be generated.

So, in addition to your application methods, this class also contains
methods inherited from javax.ejb.EjbObject, and possibly oth-
ers generated by your application server tooling; e.g.: remove, getE-
JBHome, getHandle, etc.

This limitation has been logged with Apache in JIRA AXIS2-4802 and
currently the only workaround is to ensure that your inbound web ser-
vice does not contain any methods whose names conflict with those in
javax.ejb.EjbObject.

• Axis2 web services may not use certain operation names that conflict
with method names in the java.lang.Object or
javax.ejb.EJBObject classes; e.g. 'remove', 'notifyAll', etc. Be-
cause of this behavior the Axis2 listServices web app page (e.g. ht-
tp://localhost:9082/CuramWS2/services/listServices) sometimes in-
cludes a process, setSessionContext, that is not part of the WSDL or im-
plementation. This operation name comes from
org.apache.axis2.context.MessageContext.setSessi
onContext(SessionContext).

4.3.3 Adding Arguments and Return Types to Inbound Web
Service Operations

Arguments and return types are added to inbound web service operations in
the same manner as they are added to process and facade classes. However,
they are only relevant for classes that don't specify support for W3C Docu-

Cúram Web Services Guide

24

http://localhost:9082/CuramWS2/services/listServices
http://localhost:9082/CuramWS2/services/listServices

ments (WS_Is_XML_Document property). For more information on how
to add arguments and return types to process classes refer to the relevant
sections of: Working with the Cúram Model in Rational Software Architect.

4.3.4 Processing of Lists

An operation is said to use IBM Cúram Social Program Management lists if
its return value or any of its parameters utilize a struct which aggregates an-
other struct using 'multiple' cardinality.

In the UML metamodel, it is possible to model a <<WS_Inbound>> opera-
tion that uses parameters containing lists (i.e., a struct that aggregates anoth-
er struct(s) as a list). All operations that are visible as a web service are nor-
mally also visible to the web client.

However the web client does not support the following:

• List parameters.

• Non-struct parameters (i.e. parameters which are domain definitions).

• Non-struct operation return types.

In these cases the web client ignores the operations that it does not support,
but these operations can be used for Axis2 inbound web services.

4.3.5 Data Types

The IBM Cúram Social Program Management data types except Blob
(SVR_BLOB) can be used in Axis2 inbound web service operations. The
mappings between IBM Cúram Social Program Management and WSDL
data types are shown in the following table:

Cúram data type WSDL data type
SVR_BOOLEAN xsd:boolean

SVR_CHAR xsd:string

SVR_INT8 xsd:byte

SVR_INT16 xsd:short

SVR_INT32 xsd:int

SVR_INT64 xsd:long

SVR_STRING xsd:string

SVR_DATE xsd:string

(Format: yyyymmdd)

SVR_DATETIME xsd:string

(Format: yyyymmddThhmmss)

SVR_FLOAT xsd:float

SVR_DOUBLE xsd:double

Cúram Web Services Guide

25

Cúram data type WSDL data type
SVR_MONEY xsd:float

Table 4.1 Cúram to WSDL data types for Axis2

In conjunction with the supported data types shown in Table 4.1, Cúram to
WSDL data types for Axis2, only the related XML schema types that map to
primitive Java types and java.lang.String are supported for inbound
web services. For example, "xsd:boolean" and "xsd:long" that map to the
boolean and long Java types, respectively, and "xsd:string" that maps to
java.lang.String are supported. All other XML schema types that do
not map to a Java primitive type or to java.lang.String are not sup-
ported. An example of such an unsupported XML schema type is
"xsd:anyURI", which maps to java.net.URI. This limitation applies to
inbound web services only and is due to the fact that inbound web services
are generated based on what can be represented in a Cúram model. Out-
bound web services are not affected by this issue. For more details on re-
lated modeling topics consult the documents: Working with the Cúram Mod-
el in Rational Software Architect and Cúram Server Modeling Guide.

Note

Passing or returning the "raw" IBM Cúram Social Program Man-
agement data types (i.e., "Date", "DateTime", "Money") as an attrib-
ute to an Axis2 web service is restricted. IBM Cúram Social Pro-
gram Management data types must be wrapped inside a struct be-
fore passing them as attributes to a web service.

4.4 Building and Packaging Web Services

This section discusses the targets (websphereWebServices and web-
logicWebServices) for building the web services EAR file.

The steps in this build process are:

1. Package global WAR file directories: lib, conf, modules;

2. Iterate over the web service directories in build/svr/gen/wsc2
(one directory per web service class) created by the generator:

• Process the properties in the following order: custom, generator,
defaults (see Section 4.6.1, Inbound Web Service Properties File
for more information);

• Generate the services.xml descriptor file, unless a custom
services.xml has been provided (see Section 4.6.2, Deploy-
ment Descriptor File for more information);

• Package the web service directory.

Cúram Web Services Guide

26

The following properties and customizations are available:

• Generation of the webservices2.war can be turned off by setting
property: disable.axis2.build;

• You can specify an alternate location for the build to read in additional
or custom Axis2 module files by setting the axis2.modules.dir
property that will contain all the .mar files and the mod-
ules.list file to be copied into the WEB-INF\modules directory;

• You can include additional, external content into the webser-
vices.war by either of the following properties:

• axis2.include.location - that points to a directory contain-
ing a structure mapping to the the Axis2 WAR file directory struc-
ture;

• axis2.include.zip - that points to a zip file containing a struc-
ture mapping to the Axis2 WAR file directory structure.

In conjunction with either of the two properties above, setting the ax-
is2.include.overwrite property will cause these contents to over-
ride the IBM Cúram Social Program Management-packaged content in the
WAR file. This capability is for including additional content into your WAR
file. An example of how you might use this would be to include the sample
Version service to enable Axis2 to successfully validate the environment
(see Section D.2.1, Axis2 Environment Validation).

For example, to include the sample Version web service for IBM® Web-
Sphere® Application Server you need to create a directory structure that
maps to the webservices2.war file and includes the structure of Ver-
sion.aar file as is shipped in the Axis2 binary distribution: ax-
is2-1.5.1-bin/repository/services/version.aar. That
structure would look like this:

+ WEB-INF
+ services

+ Version
+ META-INF

- ./services.xml
+ sample

+ axisversion
- ./Version.class

Then, if the location of the Version directory were in
C:\Axis2-includes, you would specify the following property value
at build time: -Dax-
is2.include.location=C:\Axis2-includes. Alternatively, you
could package the above file structure into a zip file and specify the -
Daxis2.include.zip property instead. In both cases the file structure
specified would be overlaid onto the file structure (depending on the value
of axis2.include.overwrite) and packaged into the webser-

Cúram Web Services Guide

27

vice2.war WAR file. (For Oracle® WebLogic Server the above would
be changed to replace the contents of the Version directory with a Ver-
sion.aar file, which is a compressed file.)

4.5 Providing Security Data for Web Services

In IBM Cúram Social Program Management web services are not automat-
ically associated with a security group. This is to ensure that web services
are not vulnerable to a security breach. You have to provide security data in
order to make your web service usable. As part of your development process
you need to ensure that the appropriate security database entries are created.
For instance:

INSERT INTO SecurityGroupSid (groupname, sidname)
values ('WEBSERVICESGROUP', 'ServiceName.anOperation');

The contents of the IBM Cúram Social Program Management security
tables are explained further in the security chapter of Cúram Server De-
veloper's Guide.

4.6 Providing Web Service Customizations

Providing customizations at build-time impacts the security and behavior of
your web service at runtime. With the default configuration the web services
EAR file build will:

• Assign the appropriate IBM Cúram Social Program Management mes-
sage receiver for struct and domain types, for argument and operation
return values, or for W3C Documents, based on how you set the
WS_Is_XML_Document property in Rational Software Architect for
the "WS Inbound" (stereotype: <<wsinbound>>) class.

• Expect the web service client to pass a custom SOAP header with au-
thentication credentials in order to invoke the web service.

To change the above default behaviors you will require a custom receiver
(see Section 4.6.3, Customizing Receiver Runtime Functionality for more in-
formation). Additionally, customizations may be necessary for:

• Implementing Web Services Security (Apache Rampart) (see Chapter 5,
Secure Web Services for more information);

• Providing external, non-IBM Cúram Social Program Management func-
tionality such as the Axis2 Admin application and Apache Axis2 Monitor
(see Appendix F, Including the Axis2 SOAP Monitor in Your Web Ser-
vices WAR File for more information);

• Providing other custom parameters for the deployment descriptor (ser-

Cúram Web Services Guide

28

vices.xml); e.g. doclitBare, mustUnderstand, etc. See the
Apache Axis2 documentation for more information (Apache Axis2 Con-
figuration Guide
[http://axis.apache.org/axis2/java/core/docs/axis2config.html]).

In order to be able to effectively customize your web services you should be
aware of how IBM Cúram Social Program Management processes web ser-
vices at build time, which is explained in the following sections.

4.6.1 Inbound Web Service Properties File

Based on the web service classes modeled with Rational Software Architect
the generator creates a folder in the build/svr/gen/wsc2 directory for
each web service class modeled. This is shown in Example 4.1, File System
Usage For Inbound Web Services. (This maps closely to how Axis2 expects
services to be packaged for deployment.) In that folder a properties file,
ws_inbound.xml, is generated.

To provide a custom ws_inbound.xml file we suggest you start with the
generated copy that you will find in the build/
svr/gen/wsc2/<service_name> directory after an initial build.
Place your custom ws_inbound.xml file in your components/cus-
tom/axis/<service_name> directory (usually under source control).
During the build the ws_inbound.xml files are processed to allow for a
custom file first, overriding generated and default values. See Appendix B,
Inbound Web Service Properties - ws_inbound.xml for details of the prop-
erty settings in this file.

4.6.2 Deployment Descriptor File

Each web service class requires its own deployment descriptor file (ser-
vices.xml). The build automatically generates a suitable deployment
descriptor for the defaults as per Appendix B, Inbound Web Service Proper-
ties - ws_inbound.xml. The format and contents of the services.xml are
defined by Axis2; see the Apache Axis2 Configuration Guide (ht-
tp://axis.apache.org/axis2/java/core/docs/axis2config.html) for more inform-
ation.

To provide a custom services.xml file we suggest you start with the
generated copy that you will find in the build/
svr/wsc2/<service_name> directory after an initial build of the web
services WAR/EAR file. This is illustrated in Example 4.1, File System Us-
age For Inbound Web Services. Place your custom services.xml file in
your components/custom/axis/<service_name> directory
(usually under source control). (See Appendix C, Deployment Descriptor
File - services.xml for details of the contents of this file.) During the build
the services.xml files are packaged into the web services WAR file
(webservices2.war) as per Axis2 requirements; that is, using this file
system structure: WEB-
INF/services/<service_name>/META-INF/services.xml

Cúram Web Services Guide

29

http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html

(see the Apache Axis2 User's Guide - Building Services ht-
tp://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html).

4.6.3 Customizing Receiver Runtime Functionality

The default receivers provided with IBM Cúram Social Program Manage-
ment should be sufficient for most cases; but, you can provide overrides for
the following functionality:

• Credentials processing;

• Application server-specific provider URL and context factory paramet-
ers;

• SOAP factory provider for W3C Document processing.

These are explained in more detail in the following sections.

Custom Credential Processing

You might need to customize credentials processing; for instance, if you
want to obtain or validate credentials externally before passing them to the
receiver for authentication.

By default, IBM Cúram Social Program Management web services are built
to expect the client to provide credentials via a custom SOAP header and
these credentials are then used in invoking the service class operation. The
default processing flow is:

• Unless curamWSClientMustAuthenticate is set to false in
the services.xml descriptor for the service, the SOAP message is
checked for a header and if present these credentials are used. If the
SOAP header is not present then the invocation of the service fails.

• If curamWSClientMustAuthenticate is set to false the ser-
vices.xml jndiUser and jndiPassword parameters are used.

• If there are no jndiUser and jndiPassword parameters specified
in the services.xml descriptor file, default credentials are used.

However, there is no security data generated for web services, so the de-
faults credentials on their own won't be adequate to enable access to the
service (see Section 4.5, Providing Security Data for Web Services for
information on providing this data).

If you require your own credential processing you must code your own
getAxis2Credentials(MessageContext) method, extending
curam.util.connectors.axis2.CuramMessageReceiver, to
provide these parameters. This method takes a MessageContext object
as an input parameter and returns a java.util.Properties object
containing the Axis2 parameter name and value. For example:

Cúram Web Services Guide

30

http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html
http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html

public Properties getAxis2Credentials(
final MessageContext messageContextIn) {

final Properties loginCredentials = new Properties();

String sUser = null;
String sPassword = null;

<Your processing here...>

if (sUser != null) {
loginCredentials.put(

org.apache.axis2.rpc.receivers.ejb.EJBUtil.EJB_JNDI_USERNAME,
sUser);

}

if (sPassword != null) {
loginCredentials.put(

org.apache.axis2.rpc.receivers.ejb.EJBUtil.EJB_JNDI_PASSWORD,
sPassword);

}

return loginCredentials;
}

Example 4.2 Sample getAxis2Credentials Method

See Section 4.6.3.4, Building Custom Receiver Code on how to specify and
build this custom class for this method.

Custom Application Server-Specific Parameters

The app_webservices2.xml script will generate correct application
server-specific provider URL and context factory parameters; however, you
may find it convenient if you are supporting multiple environments to derive
one or more of these values in your own custom code.

If so, you can provide your own getProviderURL() and/or getCon-
textFactoryName() method(s) by overriding class
curam.util.connectors.axis2.CuramMessageReceiver.
Both methods return a string representing the provider URL and context
factory name, respectively. See Section 4.6.3.4, Building Custom Receiver
Code on how to specify and build this custom class for these methods.

Custom SOAP Factory

Generally, the default SOAP factory,
org.apache.axiom.soap.SOAPFactory, should be adequate for
processing your web services that process W3C Documents. But, if neces-
sary you can override this behavior by providing your own getSOAP-
Factory(MessageContext) method. This method takes a Message-
Context object as an input parameter and returns an
org.apache.axiom.soap.SOAPFactory.

Building Custom Receiver Code

Cúram Web Services Guide

31

For any of the above cases of providing custom receiver code you must:

• Extend the appropriate class (e.g. public class MyReceiver
extends
)
curam.util.connectors.axis2.CuramMessageReceiver.
(See Section 4.6.2, Deployment Descriptor File for the list of receiver
classes and their usage.)

• Specify a package name of webservice in your custom Java program
(e.g.: package webservice;).

• Place your custom source code in your components source/
webservice directory (e.g. components/mycompon-
ents/source/webservice). The server build target will then
build and package this custom receiver code.

• Create a custom services.xml descriptor file for each service class
to be overridden by your custom behavior. See Section 4.6.2, Deploy-
ment Descriptor File and Example 4.3, Sample services.xml Descriptor
File Entry for a Custom Receiver below.

<messageReceivers>
<messageReceiver
mep="http://www.w3.org/2004/08/wsdl/in-out"
class="webservice.MyReceiver"/>

</messageReceivers>

Example 4.3 Sample services.xml Descriptor File Entry for a
Custom Receiver

The webservices build (implemented in app_webservices2.xml) will
package these custom artifacts into a WAR file.

4.6.4 Providing Schema Validation

When using web services that pass and return a W3C Document object you
may want to use schema validation to verify the integrity of the document
you are processing. Whether you choose to do this might depend on factors
such as:

• The CPU cost of performing such validation, which is dependent on the
volume of transactions your system will encounter;

• The source of the Documents being passed to your web service, whether
that is under your control or public.

The steps for validating an XML Document in an inbound web service are
as follows:

1. Include the schema document in the application ear by storing it some-

Cúram Web Services Guide

32

where within directory SERV-
ER_DIR/components/**/webservices/**/*.xsd.

2. Provide code within the implementation code of the BPO method that
loads the schema file, and passes it into the infrastructure validator
class along with the org.w3c.Document class to be validated.

The code example below (Example 4.4, Sample Illustrating Schema Valida-
tion) illustrates how this can be implemented.

import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import curam.util.webservices.DOWSValidator;
import java.io.InputStream;
import org.w3c.dom.Document;

. . .

/**
* A sample XML document web service.
*/
public org.w3c.dom.Document
myWebServiceOperation(final org.w3c.dom.Document docIn)
throws AppException, InformationalException {

// DOWSValidator is the SDEJ infrastructure class for
// validating org.w3c.Document classes in web services.
final curam.util.webservices.DOWSValidator validator =

new curam.util.webservices.DOWSValidator();

try {
// The following is used only for error reporting
// purposes by DOWSValidator. In your code you can
// provide a relevant value to help identify the schema
// in the event of an error.
final String schemaURL = "n/a";

// Load the schema file from the .ear file.
// For example, the source location of
// 'test1.xsd' was
// SERVER_DIR/components/custom/webservices.

final InputStream schemaStream =
getClass().getClassLoader().

getResourceAsStream("schemas/test1.xsd");

// if schema file is in
// SERVER_DIR/components/custom/webservices/test/test1.xsd

schemaStream =
getClass().getClassLoader().
getResourceAsStream("schemas/test/test1.xsd");

// Invoke the validator.
validator.validateDocument(docIn, schemaStream,

schemaURL);

} catch (Exception e) {
// Schema validation failed. Throw an exception.
AppException ae = new

AppException(SOME_MESSAGES.ERR_SCHEMA_VALIDATION_ERROR,
e);

}

// normal BPO logic goes here.
// ...

return result;

Cúram Web Services Guide

33

}

Example 4.4 Sample Illustrating Schema Validation

4.7 Legacy Inbound Web Services

4.7.1 Introduction

This section describes IBM Cúram Social Program Management legacy in-
bound web services, which are defined in section Section 2.1, Overview of
Web Services.

Warning

The use of legacy web services, while still supported, should only be
used for existing web services. This is because the underlying im-
plementation, Axis 1.4, is not actively maintained by Apache. Sup-
port for legacy web services will be removed at some point in the
future and you should convert any legacy web services as soon as
possible.

4.7.2 Web Service Styles

The IBM Cúram Social Program Management inbound web service func-
tionality supports the generation of RPC-style (Remote Procedure Call) web
services and document-oriented web services (DOWS). In both cases:

• The request and response XML messages are transported using SOAP
over HTTP.

• Every web service is described using a Web Services Description Lan-
guage (WSDL) file.

• The invocation scope for all IBM Cúram Social Program Management
web services is Request Scope, the default. For each request to the
web service, a new implementation instance is created to handle the re-
quest. The service instance will be removed after the request is com-
plete.

4.7.3 SOAP Binding

Web Services are based on an exchange of SOAP XML messages. A SOAP
XML message consists of an envelope that contains a header and a body:

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
<soap:Header>

<!-- header element(s) here -->

Cúram Web Services Guide

34

</soap:Header>
<soap:Body>

<!-- body element(s) here -->
</soap:Body>

</soap:Envelope>

The binding element of a WSDL file describes how the service is bound to
the SOAP messaging protocol. There are two possible SOAP binding styles:
RPC and Document.

A SOAP binding can also have an encoded use, or a literal use. The use at-
tribute is concerned with how types are represented in the XML messages. It
indicates whether the message parts are encoded using some encoding rules,
or whether the parts define the concrete schema of the message.

This means there are four potential style/use models. It is generally accepted
that it is best practice to avoid using RPC/Literal or Document/En-
coded. Therefore, the following are supported:

• RPC/Encoded

• Document/Literal

Each style has particular features that dictate how to create a WSDL file, and
how to translate a WSDL binding to a SOAP message. Essentially these res-
ult in different formatting of the SOAP messages.

It is worth noting that document-oriented web services (DOWS) are re-
garded as a crucial enabling technology for developing solutions incorporat-
ing a Service Oriented Architecture (SOA). Document/Literal web services
have emerged as the preferred style by bodies such as the Web Services In-
teroperability Organization (WS-I), an open industry group chartered to pro-
mote Web Services interoperability across platforms, applications, and pro-
gramming languages. DOWS are self-describing web services (conform to
XML Schemas) with no reliance on an external encoding (as with RPC).
These features promote interoperability between heterogeneous applica-
tions, which is a central component for SOA.

4.7.4 Selecting Web Service Style

The developer can decide whether each process class is exposed as a web
service using RPC or document style.

The decision of which web service style to employ should be made based on
the particular business requirements for the service under development.

From the developer's perspective they are shielded from being concerned
with the creation of WSDL files, the binding between XML and Java, or the
creation of SOAP request and response messages.

Regardless of the style chosen the same programming paradigm will be fol-
lowed. The underlying code which implements the business logic of the web
service will be a typical IBM Cúram Social Program Management process

Cúram Web Services Guide

35

class, with methods that accept struct arguments and return structs.

RPC

RPC is the default web service style in IBM Cúram Social Program Man-
agement. RPC services follow the SOAP RPC and encoding rules. Axis 1.4
is employed to deserialize XML requests messages into Java object(s)
which are passed to the process class as method arguments, and will serial-
ize the returned Java object(s) into XML.

Document (DOWS)

As described above in Section 4.7.3, SOAP Binding, the document style
does not use SOAP encoding; it's simply based on XML schema. In order to
aid effective web service development provision is made for two DOWS
types depending on how the operation should process input parameters and
return values:

1. "Method parameters" - Where Axis 1.4 is used to deserialize the SOAP
message for input parameters into Java object(s) and to serialize the re-
turned Java object(s) into XML.

2. "XML document" - Where the developer has direct access to the XML
message contained in the SOAP body, instead of turning it into Java
objects. In this case an XML document is the input type and return
type. An XML schema is exposed in the WSDL to describe the expec-
ted input message. Support is also provided for validating SOAP re-
quest messages against the specified schema. This is also referred to as
a message-style web service.

See Section 4.7.5.1, Modeling Legacy Web Service Classes in Rational Soft-
ware Architect for details on how to model these web service styles.

4.7.5 Creating Inbound Web Services

Legacy web services should only be used by existing IBM Cúram Social
Program Management customers who have not yet migrated these web ser-
vices to Axis2. Apache has stabilized Axis 1.4 and it is not actively main-
tained.

Modeling Legacy Web Service Classes in Rational Software Archi-
tect

A web service class can be created by creating a WebService class
(stereotype: <<webservice>>) via the Rational Software Architect user in-
terface. For more information on working with the model in Rational Soft-
ware Architect see the Working with the Cúram Model in Rational Software
Architect document.

A WebService class will:

Cúram Web Services Guide

36

• Generate DDL that causes the methods of the class to become callable
by user 'WEBSVCS'.

• Generate an Axis 1.4 configuration file that makes the class available as
a web service.

To add an inbound web service class to a package, select Add Class, Web-
Service from the right-click context menu and name the class.

A WebService class can support one of the two styles of web services sup-
ported by specifying the Document_Type property on the Curam prop-
erty tab for the class:

• RPC - specify the Document_Type property value as 2 - no (which
is the default when 0 - unspecified is the value)

• Document-oriented web service (DOWS) - specify the Docu-
ment_Type property value as 1 - yes

When creating a DOWS you control the processing of operation arguments
and return values by specifying the property XML_Document:

• "Method parameters" - specify the XML_Document property value as 2
- no (which is the default when 0 - unspecified is the value)

• "XML document" - specify the XML_Document property value as 1 -
yes

Since the above properties apply uniformly to all operations of that class
you will need to model different classes when you have web services with
different style requirements.

Adding Operations to Legacy Inbound Web Service Classes

Operations are added to inbound web service classes via the right-click con-
text menu. To add an operation to an inbound web service class:

1. Select Operation from the right-click context menu and choose Default.

2. In the Create 'default' Operation Wizard name the operation.

Adding Arguments and Return Types to Inbound Web Service Op-
erations

Add arguments and a return type to an inbound web service to utilize an
RPC-style web service; otherwise, for a document-style web service, which
passes and returns a W3C XML Document, specify no arguments or return
type. The interface with an XML Document argument and return type set is
automatically generated for each operation, as illustrated in Example 4.5,
Sample Generated DOWS XML Document Interface.

When adding arguments and return types to RPC-style inbound web service
operations this is done in the same manner as with process and facade

Cúram Web Services Guide

37

classes as documented in Working with the Cúram Model in Rational Soft-
ware Architect.

Note

Only operations which do not have operation arguments or a return
type set will be exposed as a DOWS XML Document service. The
interface with an XML Document argument and return type set is
automatically generated for each operation, as illustrated in the fol-
lowing Example 4.5, Sample Generated DOWS XML Document In-
terface:

public interface DOWSXMLDocTestBPO
{

public org.w3c.dom.Document processDocument
(org.w3c.dom.Document xmlMessage)
throws curam.util.exception.AppException,
curam.util.exception.InformationalException;

public org.w3c.dom.Document echoDocument
(org.w3c.dom.Document xmlMessage)
throws curam.util.exception.AppException,
curam.util.exception.InformationalException;

}

Example 4.5 Sample Generated DOWS XML Document Interface

To specify a schema in the Curam properties tab for the WebService class
(where you've set property XML_Document):

• Select the XML_Schema property and click the edit (...) button. In
the edit window specify the XML schema filename, relative to your
EJBServer directory. The schema identified by this filename will be in-
cluded in the web service WSDL generated at run time by Axis 1.4. This
feature provides a way to publish a description of the XML message ex-
pected by the service.

Schema files must be stored in the appropriate build structure folder:
<SERVER_DIR>/components/custom/webservices/. Each
component may have its own set of web services, so in the above path
custom should be the name of the component for which the web ser-
vice is being deployed. For example:

<SERVER_DIR>/components/testComponent/webservice
s/sampleSchema.xsd

• Set the Validate_Request property in the Curam properties tab for
the WebService class to 1 - yes. SOAP body request messages will
then be validated against the specified XML schema before forwarding
the request to the process class. If the message does not conform to the
schema the process class will not be invoked, and a fault message will
be returned to the client stating that the request does not conform to the
schema.

Note

Cúram Web Services Guide

38

If the declared elements are referenced in the XML schema then any
references to these elements should be qualified with the namespace
(in the example Example 4.6, XML schema the references are pre-
fixed with cns). This is required to avoid the name clashes as the
XML schema will be included in the web service WSDL.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ws.curam/FinancialUpdateWS"
xmlns:cns="http://ws.curam/FinancialUpdateWS"
elementFormDefault="qualified">
<xs:element name="root">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="1" maxOccurs="1"
ref="cns:msgT_financialUpdate"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="msgT_financialUpdate">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" ref="cns:row"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="row">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="1" maxOccurs="1"
ref="cns:EXTERNALILIID"/>
<xs:element minOccurs="1" maxOccurs="1"
ref="cns:DOCUMENTSTATUSCODE"/>
<xs:element minOccurs="1" maxOccurs="1"
ref="cns:OPENAMOUNT"/>
<xs:element minOccurs="0" maxOccurs="1"
ref="cns:EXTERNALINVOICEID"/>
<xs:element minOccurs="0" maxOccurs="1"
ref="cns:EXTERNALPAYMENTLIST"/>
<xs:element minOccurs="0" maxOccurs="1"
ref="cns:LOCKLIST"/>
<xs:element minOccurs="1" maxOccurs="1"
ref="cns:TIMESTAMP"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="EXTERNALILIID" type="xs:integer"/>
<xs:element name="DOCUMENTSTATUSCODE" type="xs:string"/>
<xs:element name="OPENAMOUNT" type="xs:double"/>
<xs:element name="EXTERNALINVOICEID" type="xs:integer"/>
<xs:element name="EXTERNALPAYMENTLIST">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded"
ref="cns:EXTERNALPAYMENTID"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="EXTERNALPAYMENTID" type="xs:integer"/>
<xs:element name="LOCKLIST">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded"
ref="cns:LOCKREASON"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="LOCKREASON" type="xs:string"/>
<xs:element name="TIMESTAMP" type="xs:integer"/>

</xs:schema>

Cúram Web Services Guide

39

Example 4.6 XML schema

An example of an XML document that conforms to the schema in
Example 4.7, XML document:

<msgT_financialUpdate
xmlns="http://ws.curam/FinancialUpdateWS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ws.curam/FinancialUpdateWS
FinancialUpdate.xsd">

<row>
<EXTERNALILIID>1</EXTERNALILIID>
<DOCUMENTSTATUSCODE>C04</DOCUMENTSTATUSCODE>
<OPENAMOUNT>0</OPENAMOUNT>
<EXTERNALINVOICEID>000000000000</EXTERNALINVOICEID>
<EXTERNALPAYMENTLIST>
<EXTERNALPAYMENTID>233</EXTERNALPAYMENTID>
</EXTERNALPAYMENTLIST>
<TIMESTAMP>20080229094755</TIMESTAMP>

</row>
<row>

<EXTERNALILIID>2</EXTERNALILIID>
<DOCUMENTSTATUSCODE>C05</DOCUMENTSTATUSCODE>
<OPENAMOUNT>0</OPENAMOUNT>
<EXTERNALINVOICEID>000000000000</EXTERNALINVOICEID>
<EXTERNALPAYMENTLIST>
<EXTERNALPAYMENTID>3455</EXTERNALPAYMENTID>

</EXTERNALPAYMENTLIST>
<TIMESTAMP>20080229094744</TIMESTAMP>

</row>
</msgT_financialUpdate>

Example 4.7 XML document

Note

A web service cannot be called if it has validation schema enabled
and the specified validation schema xsd file imports other xsd files.
This is illustrated by the following examples where validation
schema "Determination.xsd" imports "busi-
nesstypes.xsd".

<?xml version="1.0"?>

<!-- root element, namespace and form definitions -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:bt="businesstypesURI"
xmlns:dt="determinationURI"

elementFormDefault="qualified"
attributeFormDefault="unqualified"

targetNamespace="determinationURI">

<!-- import the businesstypes schema -->
<xs:import namespace="businesstypesURI"

schemaLocation="businesstypes.xsd" />

<...>

</xs:schema>

Cúram Web Services Guide

40

Example 4.8 Determination.xsd

The schema "businesstypes.xsd", which is imported in "De-
termination.xsd" above:

<?xml version="1.0" encoding="UTF-8"?>
<!-- The contents of this file are fixed, by the SDEJ.

It could easily be shipped with the SDEJ -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="curamtypesURI">

<xs:simpleType name="date">
<xs:annotation>
<xs:documentation>Cúram builtin type date.
</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:date"/>

</xs:simpleType>

<...>

</xs:schema>

Example 4.9 businesstypes.xsd

When calling a web service having a validation schema which im-
ports another schema as shown in the example above an error
"src-resolve: Cannot resolve the name <...> to
a type definition component" will be thrown.

There are two workarounds to solve this issue:

• Disable schema validation on a web service.

• If a web service's schema validation still needs to be specified
avoid using schema imports within the schema, and define the
contents of the imported schema instead. If we take the example
given above, the schema "Determination.xsd" shown be-
low no longer imports "businesstypes.xsd", but now has
its contents inline:

<?xml version="1.0"?>

<!-- root element, namespace and form definitions -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:dt="determinationURI"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
targetNamespace="determinationURI">

<!-- import the businesstypes schema -->
<!-- BEGIN businesstypes.xsd -->

<xs:simpleType name="date">
<xs:annotation>

<xs:documentation>
Curam builtin type date.

</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:date"/>

Cúram Web Services Guide

41

</xs:simpleType>

<...>

<!-- END businesstypes.xsd -->

<...>

</xs:schema>

Example 4.10 Determination.xsd

Example 4.11, Sample DOWS XML Document Implementation Class illus-
trates a skeleton implementation. This simple example shows an implement-
ation of class DOWSXMLDocTestBPO that consists of two operations,
echoDocument and processDocument, which are exposed as two
web services that echo and process the request SOAP body XML message
respectively.

package webservice.impl;

import curam.util.exception.AppException;
import curam.util.exception.InformationalException;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

public class DOWSXMLDocTestBPO extends
webservice.base.DOWSXMLDocTestBPO {

/**
* Sample method for echoing an XML message.
*
* @param xmlMessage The request message
* @return the response message.
*
* @throws AppException
* @throws InformationalException
*/
public Document echoDocument

(final Document xmlMessage)
throws AppException, InformationalException {

Document responseMessage = null;
try {
responseMessage = xmlMessage;

} catch (Exception ex) {
.....

}
return responseMessage;

}

/**
* Sample method for processing an XML message.
*
* @param xmlMessage The request message
* @return the response message.
*
* @throws AppException
* @throws InformationalException
*/
public Document processDocument

(final Document xmlMessage)

Cúram Web Services Guide

42

throws AppException, InformationalException {

Document responseMessage = null;
try {
responseMessage =

doXMLDocumentProcessing(xmlMessage);
} catch (Exception ex) {
....

}
return responseMessage;

}

/**
* Do processing of XML and return an XML message.
* @param bodyXML The message to be processed.
* @return The processed message.
*/
private Document doXMLDocumentProcessing

(final Document bodyXML) {

final Document doc = bodyXML;

/** business logic implemented here... **/

return doc;
}

}

Example 4.11 Sample DOWS XML Document Implementation Class

4.7.6 Build and Deployment

The EAR file containing the web service wrapper is built by target web-
sphereEAR (for WebSphere) or weblogicEAR (for WebLogic Server). The
resulting EAR file is deployed in the same way as the normal application
EAR file.

Note

The web services EAR file may be deployed into a different server
to the application server. This server does not require any database
or JMS resources.

In order for a third party to use an IBM Cúram Social Program Management
web service, they need the WSDL which describes the web service. A
WSDL document is produced for each webservice process class. The WSDL
is generated at run time, and is therefore available only once the web service
EAR has been deployed onto an application server. The WSDL is obtained
via HTTP from the server. The URL of the WSDL is determined by the fol-
lowing factors:

• The HTTP port of the server onto which the EAR file has been de-
ployed;

• The application name;

• The process class name.

For example, if the application is named Curam and a class named My-

Cúram Web Services Guide

43

WebServiceBPO has been deployed as a web service, and the web service
server is listening on port 9082 on server testserver then the WSDL for
this web service can be obtained from ht-
tp://testserver:9082/CuramWS/services/MyWebServiceBPO?wsdl. In addi-
tion, a list of all web services available on this server can be seen by going
to http://testserver:9082/CuramWS/services.

Note

The WSDL for a web service is not available at development time.
It is generated at run time by Axis 1.4 once the web service has been
deployed.

4.7.7 Data Types

All the IBM Cúram Social Program Management data types except Blob
(SVR_BLOB) can be used in RPC and DOWS Method Parameters web ser-
vices. The mappings between IBM Cúram Social Program Management and
WSDL data types are shown in the following table:

Cúram data type WSDL data type
SVR_BOOLEAN xsd:boolean

SVR_CHAR xsd:string

SVR_INT8 xsd:byte

SVR_INT16 xsd:short

SVR_INT32 xsd:int

SVR_INT64 xsd:long

SVR_STRING xsd:string

SVR_DATE xsd:string

(Format: yyyymmdd)

SVR_DATETIME xsd:string

(Format: yyyymmddThhmmss)

SVR_FLOAT xsd:float

SVR_DOUBLE xsd:double

SVR_MONEY xsd:float

Table 4.2 Cúram to WSDL Data Types (Legacy)

In conjunction with the supported data types shown in Table 4.2, Cúram to
WSDL Data Types (Legacy), only the related XML schema types that map
to primitive Java types and java.lang.String are supported for in-
bound web services. For example, "xsd:boolean" and "xsd:long" that map to
the boolean and long Java types, respectively, and "xsd:string" that maps to
java.lang.String are supported. All other XML schema types that do
not map to a Java primitive type or to java.lang.String are not sup-
ported. An example of such an unsupported XML schema type is

Cúram Web Services Guide

44

http://testserver:9082/CuramWS/services/MyWebServiceBPO?wsdl
http://testserver:9082/CuramWS/services/MyWebServiceBPO?wsdl
http://testserver:9082/CuramWS/services

"xsd:anyURI", which maps to java.net.URI. This limitation applies to
inbound web services only and is due to the fact that inbound web services
are generated based on what can be represented in an application model.
Outbound web services are not affected by this issue. For more details on
related modeling topics consult the documents: Working with the Cúram
Model in Rational Software Architect and Cúram Server Modeling Guide.

Note

Passing or returning the "raw" IBM Cúram Social Program Man-
agement data types (i.e., "Date", "DateTime", "Money") as an attrib-
ute to a web service is restricted. IBM Cúram Social Program Man-
agement data types must be wrapped inside a struct before passing
them as attributes to a web service.

Processing of Lists

An operation is said to use IBM Cúram Social Program Management lists if
its return value or any of its parameters utilize a struct which aggregates an-
other struct using 'multiple' cardinality.

In the UML metamodel, it is possible to model an operation which uses
parameters containing lists. All operations which are visible as a web ser-
vice are normally also visible to the web client.

However the web client does not support the following:

• List parameters;

• Non-struct parameters (i.e. parameters which are domain definitions);

• Non-struct operation return types.

In these cases, the web client ignores the operations which it does not sup-
port, but these operations can be used as normal as an inbound web service.

When using lists with a document-oriented inbound web service SOAP
messages corresponding to the list structs do not match the WSDL corres-
ponding to these types. This will manifest itself as a runtime error when
SOAP messages are being serialized or de-serialized. The recommended
workaround is to either:

• Use RPC instead of DOWS web services; or,

• Ensure that your DOWS methods do not use list structs as their paramet-
er or return types.

4.7.8 Security Considerations

Once a BPO has been assigned to a webservice server it is callable by
anybody as a web service without any authentication. All web service calls
are automatically logged in and invoked using default credentials. The de-
fault user, WEBSVCS, automatically gets permission to invoke all methods

Cúram Web Services Guide

45

of a class which is assigned to a webservice server.

Therefore caution is advised when making a class visible as a web service.

4.7.9 Customizations

The Axis 1.4 toolkit used operates by listening for SOAP messages on HT-
TP, and using them - in conjunction with generated parameter structs - to
make EJB invocations to the server. To facilitate customization of this beha-
vior, it is possible for the developer to implement a hook which gets called
during the process and which has access to the SOAP message. This gives
the developer flexibility to do things like perform additional processing of
the SOAP message, authenticate with different credentials, specify a locale
etc.

By default RPC and DOWS Method Parameters web services use the class
curam.util.connectors.webservice.CuramEJBMethodProv
ider, and DOWS XML document web services use the class
curam.util.connectors.webservice.CuramMsgStyleEJBMe
thodProvider. These classes perform some of the processing on the
SOAP message and connect to the application using default credentials.
When you specify a custom provider for your RPC or DOWS Method Para-
meters web service class, you must provide an implementation class which
extends one of the above classes.

The following rules apply:

• The name of the custom provider class is specified using the Pro-
vider_Name property in Rational Software Architect.

• If a value for this property is specified, you must provide a Java imple-
mentation of the class. For example, if you set this property to 'MyPro-
vider' then you must implement a class named MyProvider which
extends the class
curam.util.connectors.webservice.CuramEJBMethodP
rovider or
curam.util.connectors.webservice.CuramMsgStyleEJ
BMethodProvider.

• By overriding methods of this class the developer can gain access to the
SOAP message and perform additional processing on it. In most cases
the developer should also call the super version of the overridden
method to ensure that the underlying Axis 1.4 web service framework
continues to work as normal.

• Your provider class implementation must be in a package named web-
service.

• If you specify a custom provider class for a web service class, the web
service no longer automatically connects using the default credentials.
Therefore your provider must provide the credentials. Typically these
will be obtained from the SOAP message.

Cúram Web Services Guide

46

• Since the custom provider implementation resides in a different EAR
file to the application, its Java source must reside in a separate location
to the other Java source files, e.g. EJBServer/compon-
ents/core/source/webservice/MyProvider.java

• Since the Ear file for web services can be deployed into a dedicated web
services server it may not have access to the same services as the main
application, such as a database, JMS, etc. However it does have access
to the same infrastructure classes such as
curam.util.type.DateTime, etc.

• The locale for the web service call can be set by setting the locale
property in the MessageContext object for the call. If this property
is not set, the locale defaults to that of the user under whose credentials
the call is made.

Sample RPC-Style Customizations

In the following code sample, a SOAP message is parsed to extract the user-
name and password credentials, these values are applied to the Message-
Context class for the invocation (and in the case of WebSphere, a login is
performed), and control is returned to the superclass. Also a locale is spe-
cified for the call by setting property locale in the MessageContext
object. The code sample is followed by an example of a SOAP message
which would be processed by the code.

package webservice;

import curam.util.connectors.webservice.CuramEJBMethodProvider;
import curam.util.resources.Configuration;
import curam.util.resources.EnvironmentConstants;
import java.lang.reflect.Constructor;
import java.lang.reflect.Method;
import java.security.PrivilegedAction;
import java.util.Iterator;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginContext;
import javax.xml.soap.Name;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPHeader;
import org.apache.axis.AxisFault;
import org.apache.axis.Message;
import org.apache.axis.MessageContext;
import org.apache.axis.message.SOAPEnvelope;
import org.apache.axis.providers.java.EJBProvider;

/**
* A web services hook which extends the Axis EJB provider to
* enable the developer to access the SOAP message. In this case
* it takes the username and password from the SOAP header and
* sets them in the method call.
*
*/
public class TestmodelProvider extends CuramEJBMethodProvider {

/** The name of an XML attribute in a multi ref element. */

Cúram Web Services Guide

47

private static final String kNameOfIdAttribute = "id";

/** The name of an XML element in the SOAP body. */
private static final String kMultiRefElementName = "multiRef";

/**
* The name of the attribute containing a `href` to another
* element.
*/
private static final String kHrefAttributeName = "href";

/**
* The name of the header element as defined in the WSDL file.
*/
private static final String kNameOfHeaderElement = "inHeader";

/** The name of the element containing the user name field. */
private static final String kUsernameFieldName = "userName";

/** The name of the element containing the password field. */
private static final String kPasswordFieldName = "password";

/** Cached Do As Method instance. */
private static Method stSubjectDoAsMethod;

/**
* Hook which gets the credentials from the header of the soap
* message and sets them in the message context for the call
* before delegating back to the superclass method.
*
* @param msgContext The message context for the call.
*
* @throws AxisFault Generic Axis exception.
*/
public void invoke(final MessageContext msgContext)
throws AxisFault {

final Message requestMessage = msgContext.getRequestMessage();
final SOAPEnvelope envelope =
requestMessage.getSOAPEnvelope();

final SOAPElement element =
getSoapElement(envelope, kNameOfHeaderElement);

String userName = null;
String password = null;
try {
// Get parameters from the SOAP header and set them in the
// message context for the call.
userName = getSubElementValue(element, envelope.createName(

kUsernameFieldName));
password = getSubElementValue(element, envelope.createName(

kPasswordFieldName));

// Check the soundness of our SOAP header processing before
// we attempt to use the data for real. Otherwise bad or
// missing data in these variables will simply manifest
// itself misleadingly as a security configuration problem.
if ((userName == null) || (userName.length() == 0)

|| (password == null) || (password.length() == 0)) {

final AxisFault e = new AxisFault(
"Bad username/password in SOAP" + " header '" + userName
+ "'/'" + password + "'");

throw e;
}

msgContext.setUsername(userName);
msgContext.setPassword(password);

// Specify an absolute locale for the invocation:
final String localeFrenchCanada = "fr_CA";
msgContext.setProperty("locale", localeFrenchCanada);

Cúram Web Services Guide

48

} catch (SOAPException e) {
throw new AxisFault(e.getMessage(), e);

}

if (isRunningInWebSphere()) {
// A WebSphere limitation means that it will not
// automatically see the credentials we have just set, we
// must also perform our login here.
try {

final Method doAsMethod = getDoAsMethod();
final LoginContext loginContext =

getLoginContext(userName, password);
loginContext.login();
final Subject subject = loginContext.getSubject();

// Create a privileged action class which includes all the
// information about this call.
final PrivilegedAction action =

new ProviderPrivilegedAction(this, msgContext);
final Object[] parameterValues = {subject, action};

// invoke the rest of the call under the new credentials.
final Object axisFault =

doAsMethod.invoke(null, parameterValues);

// Exceptions cannot be thrown from the above invocation,
// they are returned instead. If one was returned then
// throw it now.
if (axisFault != null) {

throw new AxisFault("" + axisFault,
(Exception) axisFault);

}

} catch (Exception e) {
throw new AxisFault(e.getMessage(), e);

}
} else {
// Not in WebSphere. Simply delegate straight through.
super.invoke(msgContext);

}

}

/**
* An accessor for the invoke method in the superclass. Required
* because it must be invoked by another class - the inner class
* within this one.
*
* @param msgContext The message context object for this call.
*
* @throws AxisFault Generic Axis fault handler.
*/
private void superInvoke(final MessageContext msgContext)
throws AxisFault {

super.invoke(msgContext);
}

/**
* Indicates whether we are running within WebSphere in which
* case we must delegate the rest of the call as a privileged
* action.
*
* @return True if running under WebSphere, false otherwise.
*/
private boolean isRunningInWebSphere() {

final String vendorName = System.getProperty("java.vendor");
return vendorName.startsWith("IBM");

}

/**
* Gets a named element from the SOAP message, searching both

Cúram Web Services Guide

49

* the body and header.
*
* @param envelope The SOAP envelope.
* @param elementNameString The name of the element to get.
*
* @return The required element or null if it was not found.
*/
private SOAPElement getSoapElement(final SOAPEnvelope envelope,

final String elementNameString) {

SOAPElement result = null;
try {
final Name elementName =

envelope.createName(elementNameString);
final Name hrefAttributeName =

envelope.createName(kHrefAttributeName);
final SOAPHeader sh = envelope.getHeader();
final SOAPBody sb = envelope.getBody();

// first search the header.
SOAPElement candidateElement = null;
final Iterator headerIterator =

sh.getChildElements(elementName);
if (headerIterator.hasNext()) {

candidateElement = (SOAPElement) headerIterator.next();
}

// search the body, if necessary.
if (candidateElement == null) {

final Iterator bodyIterator =
sb.getChildElements();

if (bodyIterator.hasNext()) {
candidateElement = (SOAPElement) bodyIterator.next();

}
}

// Now we need to check if this is literal or encoded
// element. A literal one is embedded directly, an encoded
// one means that this element is simply a pointer to an
// element elsewhere in the message.
if (candidateElement != null) {

final String hrefValue =
candidateElement.getAttributeValue(hrefAttributeName);

if ((hrefValue != null) && (hrefValue.length() > 0)) {
// it points to a multi ref, so get this instead.
result = getMultiRefElement(envelope, hrefValue);

} else {
// It's literal so return it directly.
result = candidateElement;

}
}

} catch (SOAPException e) {
e.printStackTrace();

}
return result;

}

/**
* Gets a multi ref element from a SOAP message.
*
* @param envelope The SOAP envelope.
* @param idStringWithPrefix The identifier of the multi ref
* element.
*
* @return The matching element, or null if it was not found.
*
* @throws SOAPException If any SOAP error occurs.
*/
private SOAPElement getMultiRefElement(

final SOAPEnvelope envelope, final String idStringWithPrefix)
throws SOAPException {

SOAPElement result = null;

Cúram Web Services Guide

50

// Remove the hash character:
final String idString = idStringWithPrefix.substring(1);
final Name idName = envelope.createName(kNameOfIdAttribute);

final SOAPBody body = envelope.getBody();
final Iterator multiRefIterator = body.getChildElements(
envelope.createName(kMultiRefElementName));

while (multiRefIterator.hasNext()) {
final Object o = multiRefIterator.next();

final SOAPElement currentElement = (SOAPElement) o;
final String currentId =

currentElement.getAttributeValue(idName);
if (currentId.equals(idString)) {

result = currentElement;
break;

}
}
return result;

}

/**
* Gets the value of a specified element within the given
* element. If multiple occurrences are present, the first one
* is returned.
*
* @param element The element containing the required one.
* @param elementName The name of the required element.
*
* @return The string value of the element, or null if the
* specified sub element does not exist.
*/
private String getSubElementValue(final SOAPElement element,

final Name elementName) {

String result = null;

final Iterator elementIterator =
element.getChildElements(elementName);

if (elementIterator.hasNext()) {
final SOAPElement subElement =

(SOAPElement) elementIterator.next();
result = subElement.getValue();

}
return result;

}

/**
* Gets the hidden implementation class for the Login Context.
*
* @param userName The user name to login with.
* @param password The password to login with.
*
* @return class for implementation
*
* @throws Exception if an error occurs getting an instance of
* the LoginContext class
*/
private LoginContext getLoginContext(

final String userName, final String password)
throws Exception {

final LoginContext resultLoginContext;

// Initialize WebSphere specific callback handler. Use
// reflection to avoid a build time dependency on an IBM
// class.
final Class wsCallbackHandlerClass = Class.forName(
EnvironmentConstants.kWSCallbackHandlerImplClassName);

final Class[] parameters = { String.class, String.class };
final Constructor constructor =
wsCallbackHandlerClass.getConstructor(parameters);

final Object[] parameterValues = {userName, password};

Cúram Web Services Guide

51

// The WebSphere login
resultLoginContext =
new LoginContext(

EnvironmentConstants.kWSLogin,
(CallbackHandler) constructor.newInstance(

parameterValues));

return resultLoginContext;
}

/**
* Gets the cached Do As method, initializing it if necessary.
*
* @return The Do As method for this server.
*
* @throws Exception If the method could not be obtained for
* any reason.
*/
private Method getDoAsMethod() throws Exception {

if (stSubjectDoAsMethod != null) {
return stSubjectDoAsMethod;

}

final Class wsSubjectClass =
Class.forName(EnvironmentConstants.kWSSubjectClassName);

final Class[] moreParameters =
{ Subject.class, PrivilegedAction.class };

stSubjectDoAsMethod =
wsSubjectClass.getDeclaredMethod(

EnvironmentConstants.kDoAsMethodName,
moreParameters);

return stSubjectDoAsMethod;
}

/**
*
*
*/
private class ProviderPrivilegedAction
implements PrivilegedAction {

/** The message context for the call. */
private final MessageContext msgContext;

/** The class whose method we must invoke. */
private final TestmodelProvider ownerObject;

/**
* Constructor which initializes the fields.
*
* @param newOwnerObject The class whose method we will
* invoke.
* @param newMsgContext The message context for the call.
*/
public ProviderPrivilegedAction(
final TestmodelProvider newOwnerObject,
final MessageContext newMsgContext) {

ownerObject = newOwnerObject;
msgContext = newMsgContext;

}

/**
* Runs the privileged action using the fields of this class.
*
* @return The exception resulting from the call, or null if
* none was thrown.
*/
public Object run() {
Object resultFault = null;
try {

Cúram Web Services Guide

52

ownerObject.superInvoke(msgContext);
} catch (Exception e) {

resultFault = e;
}
return resultFault;

}

}

}

The text below shows an actual SOAP message (with some formatting for
readability) which is processed by the Java code above. Note that the SOAP
header refers to a parameter named `inCred` which contains the username
and password credentials. The actual data is not stored literally in the header
but in a `multiRef` element in the message body.

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>
<inCred href="#id0" xmlns=""/>

</soapenv:Header>

<soapenv:Body soapenc:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">

<opDemo xmlns="http://remote.feature">
<in1 href="#id1" xmlns=""/>

</opDemo>

<multiRef id="id1" soapenc:root="0" soapenv:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns-905576305:PersonDetailsWrapper"
xmlns:ns-905576305="http://feature/struct/" xmlns="">

<firstName xsi:type="xsd:string">Jimmy</firstName>
<idNumber xsi:type="xsd:string">0000361i</idNumber>
<surname xsi:type="xsd:string">Client</surname>

</multiRef>

<multiRef id="id0" soapenc:root="0" soapenv:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns-905576305:CredentialsWrapper"
xmlns:ns-905576305="http://feature/struct/" xmlns="">

<password xsi:type="xsd:string">password</password>
<userName xsi:type="xsd:string">superuser</userName>

</multiRef>
</soapenv:Body>

</soapenv:Envelope>

Sample Document-Style Customizations

In the following code sample a document-oriented web service passing an
XML document (message-style) web service is processed by a custom pro-
vider to allow for default credentials to be set based on the operation name.

package webservice;

Cúram Web Services Guide

53

import
curam.util.connectors.webservice.CuramMsgStyleEJBMethodProvider;

import java.util.Vector;
import javax.xml.namespace.QName;
import org.apache.axis.AxisFault;
import org.apache.axis.Handler;
import org.apache.axis.MessageContext;
import org.apache.axis.description.OperationDesc;
import org.apache.axis.description.ServiceDesc;
import org.apache.axis.handlers.soap.SOAPService;
import org.apache.axis.i18n.Messages;
import org.apache.axis.message.MessageElement;
import org.apache.axis.message.SOAPEnvelope;

/**
* A web services hook which extends the Curam message style
* provider to enable the developer to do custom processing for
* properties and then pass control to the Curam handler.
*/
public class CustomMsgStyleMethodProvider

extends CuramMsgStyleEJBMethodProvider {

/**
* Process the message: Ensure the interface method matches
* the supported Curam message style signature:
* [public Document doSomething (Document xmlMessage)].
*
* Parse the SOAP body XML message into a Document object,
* strip the root wrapper element, do the actual invocation
* and restore the root wrapper element before responding.
*
* @param msgContext the active MessageContext
* @param reqEnv the request SOAPEnvelope
* @param resEnv the response SOAPEnvelope
* @param obj the service target object
* @throws Exception exception
*/
@Override
public void processMessage(final MessageContext msgContext,

final SOAPEnvelope reqEnv, final SOAPEnvelope resEnv,
final Object obj)
throws Exception {

try {

OperationDesc operation = msgContext.getOperation();
final SOAPService serviceHandler = msgContext.getService();
final ServiceDesc serviceDesc =

serviceHandler.getServiceDescription();
QName opQName = null;

// If operation not in the context extract from the
// SOAP envelope.
if (operation == null) {

final Vector bodyElements = reqEnv.getBodyElements();
if (bodyElements.size() > 0) {

final MessageElement element =
(MessageElement) bodyElements.get(0);

if (element != null) {
opQName = new QName(

element.getNamespaceURI(), element.getLocalName());
operation =

serviceDesc.getOperationByElementQName(opQName);
}

}
}

// Cannot proceed without an operation name.
if (operation == null) {

throw new
AxisFault(Messages.getMessage("noOperationForQName",

Cúram Web Services Guide

54

opQName == null ? "null" : opQName.toString()));
}

// If this is a "public" operation we ensure
// default credentials are supplied.
if ("public_operation".equals(opQName.toString())) {

final String jndiUserName = "jndiUser";
String jndiUser = (serviceHandler != null)

? (String) serviceHandler.getOption(jndiUserName)
: (String) getOption(jndiUserName);

if (jndiUser == null || jndiUser.length() == 0) {
serviceHandler.setOption(jndiUserName, "default");

final String jndiPasswordName = "jndiPassword";
serviceHandler.setOption(jndiPasswordName, "password");

}
}

msgContext.setService(serviceHandler);

// Process the message
super.processMessage(msgContext, reqEnv, resEnv, obj);

} catch (Exception e) {
e.printStackTrace();
throw e;

}
}

}

Example 4.12 Example Message Style Provider Override

A custom message-style handler could also be used to intercept the (W3C)
Document in the SOAP message to inspect and modify as the following il-
lustrates:

package webservice;

import curam.util.exception.AppException;
import curam.util.message.INFRASTRUCTURE;
import curam.util.webservices.MessageProcessor;
import java.lang.reflect.Method;
import java.util.Vector;
import javax.xml.namespace.QName;
import org.apache.axis.AxisFault;
import org.apache.axis.MessageContext;
import org.apache.axis.description.OperationDesc;
import org.apache.axis.description.ServiceDesc;
import org.apache.axis.handlers.soap.SOAPService;
import org.apache.axis.i18n.Messages;
import org.apache.axis.message.MessageElement;
import org.apache.axis.message.SOAPBodyElement;
import org.apache.axis.message.SOAPEnvelope;
import org.w3c.dom.Document;
import org.w3c.dom.Node;

/**
*
*/
public class CustomMsgStyleMethodProvider
extends CuramMsgStyleEJBMethodProvider {

/**
* Process the message: Ensure the interface method matches
* the supported Curam message style:
* [public Document doSomething (Document xmlMessage)].
*
* Parse the SOAP body XML message in to a Document object,
* strip the root wrapper element, do the actual invocation

Cúram Web Services Guide

55

* and restore the root wrapper element before responding.
*
* @param msgContext the active MessageContext
* @param reqEnv the request SOAPEnvelope
* @param resEnv the response SOAPEnvelope
* @param obj the service target object
* @throws Exception exception
*/
@Override
public void processMessage(final MessageContext msgContext,

final SOAPEnvelope reqEnv, final SOAPEnvelope resEnv,
final Object obj)
throws Exception {

OperationDesc operation = msgContext.getOperation();
final SOAPService service = msgContext.getService();
final ServiceDesc serviceDesc =
service.getServiceDescription();

QName opQName = null;

// If operation not in the context extract from the
// SOAP envelope.
if (operation == null) {
final Vector bodyElements = reqEnv.getBodyElements();
if (bodyElements.size() > 0) {

final MessageElement element =
(MessageElement) bodyElements.get(0);

if (element != null) {
opQName = new QName(

element.getNamespaceURI(), element.getLocalName());
operation =

serviceDesc.getOperationByElementQName(opQName);
}

}
}

// Cannot proceed without an operation name.
if (operation == null) {
throw new

AxisFault(Messages.getMessage("noOperationForQName",
opQName == null ? "null" : opQName.toString()));

}

final Method method = operation.getMethod();
final int methodType = operation.getMessageOperationStyle();

if (methodType == OperationDesc.MSG_METHOD_DOCUMENT) {
// Dig out the body XML and invoke method.
final Vector bodies = reqEnv.getBodyElements();

Document doc =
((SOAPBodyElement) bodies.get(0)).getAsDocument();

// Preserve wrapper root element, and then remove it.
final Node root = doc.getDocumentElement();
doc = MessageProcessor.removeWrapperElement(doc);

// ********************************
// Custom Document processing here.
// ********************************
// ...

// Add XML to arg for invocation.
final Object[] argObjects = new Object[1];
argObjects[0] = doc;

// Do the actual invocation of EJB method.
// TODO: instantiate your own provider instead
// of CuramEJBMethodProvider.

Cúram Web Services Guide

56

final CuramEJBMethodProvider ejbMP =
new CuramEJBMethodProvider();

Document resultDoc =
(Document) ejbMP.
invokeMethod(msgContext, method, obj, argObjects);

// Add return XML to SOAP response
if (resultDoc != null) {

// Restore the wrapper root element that
// was removed above.
resultDoc =

MessageProcessor.
restoreWrapperElement(root, resultDoc);

resEnv.addBodyElement(
new SOAPBodyElement(resultDoc.getDocumentElement()));

}
return;

}
}

}

Sample Facade Bean Invocation

Here is an example of invoking a facade bean that is created by the Cúram
modeling and build environments. This could be utilized in a context where
you are implementing an alternative web services implementation. In this
particular example the code is specific to a WebLogic Server application
server, but could easily be modified for WebSphere as shown in the com-
mented section.

package webservice;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class FacadeUsageDemo {

/**
* Illustrates how a Curam facade can be invoked from a client.
*/
private void invokeFacade() throws NamingException,

ClassNotFoundException, SecurityException,
NoSuchMethodException, IllegalArgumentException,
IllegalAccessException, InvocationTargetException {

final String sUser = "tester";
final String sPassword = "password";

// TODO: Change for non-WebLogic application server.
final String initialCtxFactory =
"weblogic.jndi.WLInitialContextFactory";

final String providerUrl = "t3://localhost:7001";

// Authenticate and get an initial context.
final Properties properties = new Properties();
properties.setProperty(Context.SECURITY_PRINCIPAL, sUser);
properties.setProperty(Context.SECURITY_CREDENTIALS,

Cúram Web Services Guide

57

sPassword);
properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
initialCtxFactory);

properties.setProperty(Context.PROVIDER_URL, providerUrl);
final Context initialContext =
new InitialContext(properties);

// Lookup the facade bean.
final Object o =
initialContext.
lookup("java:comp/env/curamejb/MyFacadeBeanClass");

// Load the home interface class so that we can narrow to it.
final Class<?> cls = getContextClassLoader().loadClass(
"my.custom.remote.MyFacadeHome");

final Object ehome =
javax.rmi.PortableRemoteObject.narrow(o, cls);

// Get and invoke the 'create' method of the home interface
// to give us a reference to the facade bean.
final Method createMethod =
cls.getMethod("create", new Class[0]);

final Object facadeObj =
createMethod.invoke(ehome, new Object[0]);

// Use reflection to get and invoke the method
// 'myMethod' of our interface.
final Class<?> facadeObjClass = facadeObj.getClass();
final Method myMethod =
facadeObjClass.getMethod("myMethod", new Class[0]);

// Pass arguments to invoke based on the method signature:
myMethod.invoke(facadeObj, new Object[0]);
initialContext.close();

// Note: once the initialContext object has been obtained,
// the remainder of this method could be written like this.
// However due to problems experienced with loading classes
// in WebLogic, the above workaround is necessary so that a
// classloader could be explicitly specified.
//try {
// final custom.webservice.remote.MyFacadeBeanClassHome
// ehome =
// (custom.webservice.remote.MyFacadeBeanClassHome)
// javax.rmi.PortableRemoteObject.narrow(
// o,
// custom.webservice.remote.MyFacadeBeanClassHome.class);
// custom.webservice.remote.MyFacadeBeanClass facadeObj =
// ehome.create();
// // Assumes a void method here; otherwise, arguments
// // would be needed:
// facadeObj.myMethod();
// initialContext.close();
//} catch (Throwable t) {
// t.printStackTrace();
//}

}

/**
* Gets the class loader for the context.
*
* @return ClassLoader for the context.
*/
private ClassLoader getContextClassLoader() {

return AccessController.doPrivileged(
new PrivilegedAction<ClassLoader>() {

/**
* PrvilegedAction subclass.
*
* @return ClassLoader for the context.
*/

Cúram Web Services Guide

58

public ClassLoader run() {
return Thread.currentThread().getContextClassLoader();

}
}

);
}

}

Cúram Web Services Guide

59

Chapter 5

Secure Web Services

5.1 Overview

Web service security is an important, but optional, part of your web services
implementation. Existing and legacy web service security is described in
this chapter. For Rampart and Axis2 web services security you will learn
about:

• Using custom SOAP headers with Axis2 and encrypting them;

• Using and setting up Rampart;

• Using HTTPS/SSL to secure web service network traffic.

For legacy web services you will learn about the following, some of which
can be utilized with Rampart:

• IBM Cúram Social Program Management modeling requirements for
using secure web services;

• Coding password callback handlers (also applicable to Axis2 if your
policy specifies a password callback handler);

• Setting up the client environment;

• Creating keystore files (also applicable to Axis2 if your environment re-
quires these steps for supporting HTTPS/SSL).

5.2 Axis2 Security and Rampart

Rampart is the security module of Axis2. With the Rampart module you can
secure web services for authentication (but see below), integrity (signature),
confidentiality (encryption/decryption) and non-repudiation (timestamp).
Rampart secures SOAP messages according to specifications in WS-

60

Security, using the WS-Security Policy language.

The only specific restriction placed on the use of web service security for
IBM Cúram Social Program Management applications is that Rampart Au-
thentication cannot be used. This is due to the requirements of IBM Cúram
Social Program Management receivers (this authentication is typically
coded in the service code itself, which would be moot by that point as these
receivers would have already performed authentication). However, custom
SOAP headers provide similar functionality (see Section 5.3, Custom SOAP
Headers for more details).

WS-Security can be configured using the Rampart WS-Security Policy lan-
guage. The WS-Security Policy language is built on top of the WS-Policy
framework and defines a set of policy assertions that can be used in defining
individual security requirements or constraints. Those individual policy as-
sertions can be combined using policy operators defined in the WS-Policy
framework to create security policies that can be used to secure messages
exchanged between a web service and a client.

WS-security can be configured without any IBM Cúram Social Program
Management infrastructure changes using Rampart and WS-Security Policy
definitions. A WS-Security Policy document can be embedded in a custom
services.xml descriptor (see Section 4.6.2, Deployment Descriptor
File). WS-Policy and WS-SecurityPolicy can also be directly associated
with the service definition by being embedded within a WSDL document.

Encryption generally incurs costs (e.g. CPU overhead) and this is a concern
when using WS-Security. However, there are ways to help minimize these
costs and one of these is to set the WS-SecurityPolicy appropriate for each
individual operation, message, or even parts of the message for a service,
rather than applying a single WS-SecurityPolicy to the entire service (for
example, see Section 5.4, Encrypting Custom SOAP Headers). To apply
such a strategy you need to have a clear grasp of your requirements and ex-
posures. Questions you might consider as you plan your overall security
strategy and implementation: Can some services bypass encryption if they
are merely providing data that is already available elsewhere publically?
Are multiple levels of encryption necessary; for instance, do you really need
both Rampart encryption and HTTP/SSL encryption?

5.3 Custom SOAP Headers

Credential checking is enforced in IBM Cúram Social Program Manage-
ment for web service invocations based on the default expectation that a cli-
ent invoking a web service will provide a custom SOAP header. This topic
was introduced in Section 4.6, Providing Web Service Customizations inso-
far as you need to plan specific customizations if you choose to bypass this
security checking. By default, the provided receivers for Axis2 expect the
client invocation of each web service to provide a custom SOAP header that
contains credentials for authenticating IBM Cúram Social Program Man-
agement access to the web service. This section explains how your clients
can provide these SOAP headers.

Cúram Web Services Guide

61

The following is an example of the IBM Cúram Social Program Manage-
ment custom SOAP header in the context of the SOAP message:

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope

xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Header>

<curam:Credentials
xmlns:curam="http://www.curamsoftware.com">
<Username>testerID</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<!-- SOAP message body data here. -->
</soapenv:Body>

</soapenv:Envelope>

Example 5.1 Example Custom SOAP Header

The following is a sample client method for creating custom SOAP headers:

import org.apache.axis2.client.ServiceClient;
import javax.xml.namespace.QName;
import org.apache.axiom.om.OMAbstractFactory;
import org.apache.axiom.om.OMElement;
import org.apache.axiom.om.OMFactory;
import org.apache.axiom.om.OMNode;
import org.apache.axiom.om.OMNamespace;
import org.apache.axiom.soap.SOAPFactory;
import org.apache.axiom.soap.SOAPHeaderBlock;

...

/**
* Create custom SOAP header for web service credentials.
*
* @param serviceClient Web service client
* @param userName User name
* @param password Password
*/
void setCuramCredentials(final ServiceClient serviceClient,

final String userName, final String password)

// Setup and create the header
final SOAPFactory factory =
OMAbstractFactory.getSOAP12Factory();

final OMNamespace ns =
factory.createOMNamespace("http://www.curamsoftware.com",
"curam");

final SOAPHeaderBlock header =
factory.createSOAPHeaderBlock("Credentials", ns);

final OMFactory omFactory = OMAbstractFactory.getOMFactory();

// Set the username.
final OMNode userNameNode =
omFactory.createOMElement(new QName("Username"));

((OMElement) userNameNode).setText(userName);
header.addChild(userNameNode);

// Set the password.
final OMNode passwordNode =
omFactory.createOMElement(new QName("Password"));

((OMElement) passwordNode).setText(password);
header.addChild(passwordNode);

Cúram Web Services Guide

62

serviceClient.addHeader(header);
}

Example 5.2 Sample Method to Create Custom SOAP Headers

Then a call to the above method would appear as:

// Set the credentials for the web service:
MyWebServiceStub stub =
new MyWebServiceStub();

setCuramCredentials(stub._getServiceClient(),
"system", "password");

By default, the client failing to provide this custom header will cause the
service to not be invoked. And, of course, incorrect or invalid credentials
will cause an authentication error. The following is an example of failing to
provide the necessary custom SOAP header:

<soapenv:Envelope xmlns:
soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Body>

<soapenv:Fault>
<soapenv:Code>

<soapenv:Value
>soapenv:Receiver</soapenv:Value>

</soapenv:Code>
<soapenv:Reason>

<soapenv:Text xml:lang="en-US">
No authentication data.

</soapenv:Text>
</soapenv:Reason>

<soapenv:Detail/>
</soapenv:Fault>

</soapenv:Body>
</soapenv:Envelope>

Potential Security Vulnerability

Be aware that by default custom SOAP headers containing creden-
tials for authentication pass on the wire in plain-text! This is an un-
secure situation and you must encrypt this traffic to prevent your
credentials from being vulnerable and your security from being
breached. See Section 5.4, Encrypting Custom SOAP Headers and/
or Section 5.6, Securing Web Service Network Traffic With HTTPS/
SSL on how you might rectify this.

For example, this is what the custom SOAP header looks like in the
SOAP message with the credentials visible:

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope

xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Header>

<curam:Credentials
xmlns:curam="http://www.curamsoftware.com">

Cúram Web Services Guide

63

<Username>tester</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

...
</soapenv:Body>

</soapenv:Envelope>

Example 5.3 Sample Custom SOAP Header

5.4 Encrypting Custom SOAP Headers

Since SOAP data (e.g. the headers above in Section 5.3, Custom SOAP
Headers) travels across the wire, by default, as plain text, using Rampart to
encrypt your IBM Cúram Social Program Management custom SOAP head-
ers is one way to help ensure the security of these credentials. Of course,
you should plan a security strategy and implementation for all of your web
services and related data based on your overall, enterprise-wide require-
ments, environment, platforms, etc. The information in this section is just
one small part of your overall security picture.

There is additional information on coding your web service clients for Ram-
part security in Section 5.5, Using Rampart With Web Services that will
help provide context for the following.

The steps to encrypt these headers are:

1. Add the following to your client descriptor file:

<encryptionParts>
{Element}{http://www.curamsoftware.com}Credentials

</encryptionParts>

(See Section 5.5.1, Defining the Axis2 Security Configuration for more
information on the contents of this file.)

Or, add the following to your Rampart policy file:

<sp:EncryptedElements
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sp=

"http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<sp:XPath xmlns:curam="http://www.curamsoftware.com" >

/soapenv:Envelope/soapenv:Header/curam:Credentials/Password
</sp:XPath>

</sp:EncryptedElements>

(See Section 5.5.1, Defining the Axis2 Security Configuration for more
information on the contents of this file.)

2. Engage and invoke Rampart in your client code as per Section 5.5, Us-
ing Rampart With Web Services.

Cúram Web Services Guide

64

With WS-Security applied as per above the credentials portion of the
wsse:Security header will be encrypted in the SOAP message as shown in
this example below, which you can contrast with Example 5.3, Sample Cus-
tom SOAP Header:

In the following example encryptedParts was used to encrypt the IBM
Cúram Social Program Management credentials.

...

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

<soapenv:Header>
<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/

2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
soapenv:mustUnderstand="1">

<xenc:EncryptedKey
Id="EncKeyId-A5ACA637487ECDA81713059750729855">

<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
<ds:KeyInfo

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>

............
</wsse:Security>

<!-- Credential data is then encoded in sections
that follow as illustrated -->

<xenc:EncryptedData Id="EncDataId-3"
Type="http://www.w3.org/2001/04/xmlenc#Element">

<xenc:EncryptionMethod
Algorithm="http://www.w3.org/

2001/04/xmlenc#aes128-cbc" />
<ds:KeyInfo
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<wsse:SecurityTokenReference
xmlns:wsse="http://..oasis-
200401-wss-wssecurity-secext-1.0.xsd">
<wsse:Reference

URI="#EncKeyId-A5ACA637444e87ECDA81713059750729855"/>
</wsse:SecurityTokenReference>

</ds:KeyInfo>
<xenc:CipherData>

<xenc:CipherValue>
eZFRrk6VSncaDanYCjyVD=</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

<wsa:Action>urn:simpleXML</wsa:Action>
</soapenv:Header>

Example 5.4 Example Encrypted Custom SOAP Header

5.5 Using Rampart With Web Services

There are a number of parts to Rampart security, as indicated in Section 5.1,
Overview, and covering these in detail is outside the scope of this document;

Cúram Web Services Guide

65

but, the following is provided to give you a high-level view on utilizing
Rampart with your IBM Cúram Social Program Management Axis2 web
services.

Broadly, there are the steps for using web services security with Axis2:

1. Define configuration data and parameters for your client and server en-
vironments;

2. Provide the necessary data and code specified in your configuration;

3. Code a client to identify and process the configuration.

There is a lot of flexibility in how you fulfill the above steps and the follow-
ing sections will show some possible ways of doing this.

5.5.1 Defining the Axis2 Security Configuration

While the necessary configuration will depend on what security features you
choose to use the overall set of activities will be similar regardless. On the
client side you can define the security configuration via a client Axis2
descriptor file (axis2.xml), Rampart policy file, or programmatically
(deprecated). On the server side you can define the security configuration
via the service descriptor file (services.xml) or via a Rampart policy
embedded in the service WSDL.

The following examples show the client and server configurations in the
context of a client Axis2 descriptor and Rampart policy files and the server
configuration via the context of the service descriptor file.

Client configuration:

<axisconfig name="AxisJava2.0">
<module ref="rampart" />

<parameter name="InflowSecurity">
<action>

<items>Signature Encrypt</items>
<signaturePropFile>

client-crypto.properties
</signaturePropFile>
<passwordCallbackClass>

webservice.ClientPWCallback
</passwordCallbackClass>
<signatureKeyIdentifier>

DirectReference
</signatureKeyIdentifier>

</action>
</parameter>

<parameter name="OutflowSecurity">
<action>

<items>Signature Encrypt</items>

<encryptionUser>admin</encryptionUser>
<user>tester</user>

<passwordCallbackClass>
webservice.ClientPWCallback

</passwordCallbackClass>

Cúram Web Services Guide

66

<signaturePropFile>
client-crypto.properties
</signaturePropFile>
<signatureKeyIdentifier>

DirectReference
</signatureKeyIdentifier>

<encryptionParts>
{Element}{http://www.curamsoftware.com}Credentials

</encryptionParts>

</action>
</parameter>

...

Example 5.5 Sample Client Descriptor Settings (Fragment)

Server configuration:

<serviceGroup>
<service name="SignedAndEncrypted">

...

<module ref="rampart" />

<parameter name="InflowSecurity">
<action>

<items>Signature Encrypt</items>
<passwordCallbackClass>

webservice.ServerPWCallback
</passwordCallbackClass>
<encryptionUser>admin</encryptionUser>
<user>tester</user>
<signaturePropFile>

server-crypto.properties
</signaturePropFile>
<signatureKeyIdentifier>

DirectReference
</signatureKeyIdentifier>

</action>
</parameter>

<parameter name="OutflowSecurity">
<action>

<items>Signature Encrypt</items>
<encryptionUser>admin</encryptionUser>
<user>tester</user>
<passwordCallbackClass>

webservice.ServerPWCallback
</passwordCallbackClass>
<signaturePropFile>

server-crypto.properties
</signaturePropFile>
<signatureKeyIdentifier>

DirectReference
</signatureKeyIdentifier>

</action>
</parameter>

...

</service>
</serviceGroup>

Example 5.6 Sample Server Security Settings (services.xml
Fragment)

Cúram Web Services Guide

67

All Rampart clients must specify a configuration context that at a minimum
identifies the location of the Rampart and other modules. The following ex-
ample illustrates this and includes a client Axis2 descriptor file. Later code
examples will utilize this same structure assuming it is located in the
C:\Axis2\client directory.

modules/
addressing-1.3.mar
rahas-1.5.mar
rampart-1.5.mar

conf/
client-axis2.xml

Example 5.7 Axis2 Client File System Structure

The equivalent specification to the parameters in Example 5.5, Sample Cli-
ent Descriptor Settings (Fragment) and Example 5.6, Sample Server Secur-
ity Settings (services.xml Fragment) via a Rampart policy file would be as
follows:

...
<ramp:RampartConfig

xmlns:ramp="http://ws.apache.org/rampart/policy">
<ramp:user>beantester</ramp:user>
<ramp:encryptionUser>curam</ramp:encryptionUser>
<ramp:passwordCallbackClass>

webservice.ClientPWCallback
</ramp:passwordCallbackClass>

<ramp:signatureCrypto>
<ramp:crypto
provider="org.apache.ws.security.components.crypto.Merlin">
<ramp:property

name="org.apache.ws.security.crypto.merlin.keystore.type">
JKS

</ramp:property>
<ramp:property

name="org.apache.ws.security.crypto.merlin.file">
client.keystore

</ramp:property>
<ramp:property

name=
"org.apache.ws.security.crypto.merlin.keystore.password">
password

</ramp:property>
</ramp:crypto>

</ramp:signatureCrypto>
<ramp:encryptionCypto>

<ramp:crypto
provider="org.apache.ws.security.components.crypto.Merlin">
<ramp:property

name="org.apache.ws.security.crypto.merlin.keystore.type">
JKS

</ramp:property>
<ramp:property

name="org.apache.ws.security.crypto.merlin.file">
client.keystore

</ramp:property>
<ramp:property

name=
"org.apache.ws.security.crypto.merlin.keystore.password">
password

</ramp:property>
</ramp:crypto>

Cúram Web Services Guide

68

</ramp:encryptionCypto>
</ramp:RampartConfig>
...

Example 5.8 Sample Rampart Policy (policy.xml Fragment)

5.5.2 Providing the Security Data and Code

The example configurations in Section 5.5.1, Defining the Axis2 Security
Configuration specify an encryption property file and password call back
routine, which would be used in the process of encrypting your web service
data.

The value of signaturePropFile specifies the name of the signature
crypto property file to use. This file contains the properties used for signing
and encrypting the SOAP message. An example server crypto property file
is shown below in Example 5.9, Example Rampart server-crypto.properties
File. When using a Rampart policy file, as shown in Example 5.8, Sample
Rampart Policy (policy.xml Fragment), these property files are not used as
the policy itself contains the equivalent settings.

org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=server.keystore

Example 5.9 Example Rampart server-crypto.properties File

The client-crypto.properties file would have similar properties
as above, but with client-specific values:

org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=client.keystore

The creation of the keystore file and the related properties are discussed in
Section 5.7.4, Keystore File Creation.

When configuring a secure web service the server signature property file
and keystore file (server-crypto.properties and serv-
er.keystore) must be placed in the
%SERVER_DIR%/project/config/wss/ directory so that the build
will package them and they will be available on the classpath at execution
time.

The password callback handlers specified in the passwordCallback-
Class parameter entities are illustrated in Example 5.17, ServerPWCall-
back.java and Example 5.20, ClientPWCallback.java.

5.5.3 Coding the Client

Cúram Web Services Guide

69

The following code snippets illustrate what's needed to add to the basic cli-
ent examples in Example 3.4, Sample Web Service Client Using Generated
Stub and Custom Code to utilize the preceding security illustrations.

To utilize a client axis2.xml descriptor file you would need to make the
following API call where C:/Axis2/client also contains the Axis2
modules directory as indicated in Example 5.7, Axis2 Client File System
Structure:

final ConfigurationContext ctx =
ConfigurationContextFactory.

createConfigurationContextFromFileSystem(
// Looks for modules, etc. here:
"C:/Axis2/client",
// Axis2 client descriptor:
"C:/Axis2/client/conf/client-axis2.xml");

Example 5.10 Identifying Axis2 Client Rampart Configuration

To utilize a Rampart policy file you would need to create a context as
above, but the client Axis2 descriptor is not necessary in this example, just
the Axis2 modules directory:

final ConfigurationContext ctx =
ConfigurationContextFactory.

createConfigurationContextFromFileSystem(
// Looks for modules, etc. here:
"C:/Axis2/client",
null);

When not utilizing an Axis2 configuration that specifies the necessary mod-
ules (as shown in Example 5.7, Axis2 Client File System Structure) you will
need to explicitly engage the necessary module(s) prior to invoking the ser-
vice. The specific modules required will depend on the security features and
configuration you are using; for example:

client.engageModule("rampart");

Failing to do this will result in a server-side error; e.g.:

org.apache.rampart.RampartException:
Missing wsse:Security header in request

To utilize a Rampart policy you would need to create a policy object and set
it in the service options properties:

final org.apache.axiom.om.impl.builder.StAXOMBuilder builder =
new StAXOMBuilder("C:/Axis2/client/policy.xml");

final org.apache.neethi.Policy policy =
org.apache.neethi.PolicyEngine.

getPolicy(builder.getDocumentElement());
options.setProperty(

org.apache.rampart.RampartMessageData.KEY_RAMPART_POLICY,
loadPolicy(policy);

Cúram Web Services Guide

70

Note

Any number of client coding errors, policy specification errors, con-
figuration errors, etc. can manifest in the client and/or the server.
Often an error in the client cannot be debugged without access to the
log4j trace from the server. For instance, the error when the proper
module(s) has not been engaged (discussed earlier) may appear in
the client as:

OMException in getSOAPBuilder
org.apache.axiom.om.OMException:
com.ctc.wstx.exc.WstxUnexpectedCharException:
Unexpected character 'E' (code 69) in prolog; expected '<'
at [row,col {unknown-source}]: [1,1]

Here is an example that combines the fragments above, illustrating provid-
ing a IBM Cúram Social Program Management custom SOAP header and
using Rampart to encrypt it:

import wsconnector.MyServiceStub;
import java.io.File;
import java.net.URL;
import org.apache.axiom.om.impl.builder.StAXOMBuilder;
import org.apache.axiom.om.OMAbstractFactory;
import org.apache.axiom.om.OMElement;
import org.apache.axiom.om.OMFactory;
import org.apache.axiom.om.OMNamespace;
import org.apache.axis2.addressing.EndpointReference;
import org.apache.axis2.client.Options;
import org.apache.axis2.client.ServiceClient;
import org.apache.axis2.context.ConfigurationContext;
import org.apache.axis2.context.ConfigurationContextFactory;
import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.neethi.Policy;
import org.apache.neethi.PolicyEngine;
import org.apache.rampart.RampartMessageData;

...

/**
* Invoke a web service with encrypted credentials.
*
*/
public void webserviceClient() {

final String serviceName = "myService";
final String operationName = "myOperation";

// Instantiate the stub.
final MyServiceStub stub =
new MyServiceStub();

// Get the end point of the service and convert it to a URL
final Options options = stub._getServiceClient().getOptions();
final EndpointReference eprTo = options.getTo();
final URL urlOriginal = new URL(eprTo.getAddress());

// Use that URL,
// plus our service name to construct a new end point.
final URL urlNew = new URL(
urlOriginal.getProtocol(),
urlOriginal.getHost(),
urlOriginal.getPort(),
"/CuramWS2/services/" + serviceName);

Cúram Web Services Guide

71

final EndpointReference endpoint =
new EndpointReference(urlNew.toString());

// Load configuration.
final ConfigurationContext ctx = ConfigurationContextFactory.
createConfigurationContextFromFileSystem(
"C:/Axis2/client", // Looks for modules, etc. here.
null); // Configuration provided via API engaging rampart.

final ServiceClient client = new ServiceClient(ctx, null);

// Set the credentials - illustrated as an example earlier
setCuramCredentials(client, "tester", "password");

// Set the operation in the endpoint.
options.setAction("urn:" + operationName);
options.setTo(endpoint);

// Set client timeout to 30 seconds for slow machines.
options.setProperty(
HTTPConstants.SO_TIMEOUT, new Integer(30000));

options.setProperty(
HTTPConstants.CONNECTION_TIMEOUT, new Integer(30000));

// Load the Rampart policy file.
final StAXOMBuilder builder =
new StAXOMBuilder("C:/Axis2/client" + File.separator

+ "policy.xml");
final Policy policy =
PolicyEngine.getPolicy(builder.getDocumentElement());

options.setProperty(RampartMessageData.KEY_RAMPART_POLICY,
policy);

client.setOptions(options);

// Because we are not using an axis2.xml client
// configuration file we MUST explicitly load
// Rampart.
client.engageModule("rampart");

// Setup the SOAP message.
// For this example three integers are to be summed.
final OMFactory factory = OMAbstractFactory.getOMFactory();
final OMNamespace ns = factory.
createOMNamespace("http://remote.custom.util.curam", "ns1");

final OMElement element = factory.
createOMElement("myOperation", ns);

final OMElement childElem1 = factory.
createOMElement("args0", null);

childElem1.setText("One");
element.addChild(childElem1);

final OMElement childElem2 = factory.
createOMElement("args1", null);

childElem2.setText("Two");
element.addChild(childElem2);

final OMElement childElem3 = factory.
createOMElement("args2", null);

childElem3.setText("Three");
element.addChild(childElem3);

// Invoke the service.
final OMElement response =
client.sendReceive(element);

// Process the return data.
final String sData = response.getFirstElement().getText();

Cúram Web Services Guide

72

System.out.println("Service returned: " + sData);
}

Example 5.11 Sample Client Code to Encrypt a Custom SOAP
Header

The following shows an equivalent technique for setting the security para-
meters programmatically, although it is deprecated, it would replace the
block of code commented "Load the Rampart policy file" in Example 5.11,
Sample Client Code to Encrypt a Custom SOAP Header, above as well as
the related policy file:

final OutflowConfiguration outConfig =
new OutflowConfiguration();

outConfig.setActionItems("Signature Encrypt");
outConfig.setUser("tester");
outConfig.
setPasswordCallbackClass("my.test.ClientPWCallback");

outConfig.
setSignaturePropFile("client-crypto.properties");

outConfig.setSignatureKeyIdentifier(
WSSHandlerConstants.BST_DIRECT_REFERENCE);

outConfig.setEncryptionKeyIdentifier(
WSSHandlerConstants.ISSUER_SERIAL);

outConfig.setEncryptionUser("admin");

final InflowConfiguration inConfig =
new InflowConfiguration();

inConfig.setActionItems("Signature Encrypt");
inConfig.
setPasswordCallbackClass("my.test.ClientPWCallback");

inConfig.setSignaturePropFile("client-crypto.properties");

//Set the rampart parameters
options.setProperty(WSSHandlerConstants.OUTFLOW_SECURITY,
outConfig);

options.setProperty(WSSHandlerConstants.INFLOW_SECURITY,
inConfig);

Example 5.12 Sample Client Code (Deprecated) for Setting the
Client Security Configuration

5.6 Securing Web Service Network Traffic With HT-
TPS/SSL

The use of HTTPS/SSL may be a part of your web services security strategy
and details about setting this up are beyond the scope of this document; but,
be aware that the use of HTTPS/SSL can be established in either of the fol-
lowing ways:

• Application server environment - Setting this up is very specific to your
particular application server, but essentially inolves exporting the appro-
priate server certificates and making them available to your client envir-

Cúram Web Services Guide

73

onment.

• Rampart WS-Security policy - There are a number of articles, etc. avail-
able on the Internet that cover this in more detail.

For client access the end point needs to reflect the protocol and port change,
which can be done dynamically at runtime. For instance, client code like
this can change the endpoint:

// stub is a previously obtained service stub.
// nHttpsPort is an integer identifying the HTTPS port of
// your application server.
// serviceName is a String identifying the service name.

ServiceClient client = stub._getServiceClient();

// Get the end point of the service and convert it to a URL
final Options options = stub._getServiceClient().getOptions();
final EndpointReference eprTo = options.getTo();
final URL urlOriginal = new URL(eprTo.getAddress());

// Use that URL, plus our service name to construct
// a new end point.
final URL urlNew = new URL("https", urlOriginal.getHost(),

nHttpsPort,
"/CuramWS2/services/" + serviceName);

client.setTargetEPR(new EndpointReference(urlNew.toString()));

Example 5.13 Example of Dynamically Changing the Web Service
End Point

Your client will need to identify the keystore and password that contains the
necessary certificates; e.g.:

System.setProperty("javax.net.ssl.trustStore",
"C:/keys/server.jks");

System.setProperty("javax.net.ssl.trustStorePassword",
"password");

Otherwise, client coding for HTTPS is similar to that of HTTP.

Note

In a WebSphere environment the SSL socket classes are not avail-
able by default and you may experience this error:

org.apache.axis2.AxisFault: java.lang.ClassNotFoundException:
Cannot find the specified class
com.ibm.websphere.ssl.protocol.SSLSocketFactory

And you should be able to resolve this error with code like this:

Security.setProperty("ssl.SocketFactory.provider",
"com.ibm.jsse2.SSLSocketFactoryImpl");

Security.setProperty("ssl.ServerSocketFactory.provider",
"com.ibm.jsse2.SSLServerSocketFactoryImpl");

Cúram Web Services Guide

74

5.7 Legacy Secure Web Services

5.7.1 Objective

In this chapter you will learn how to apply security to web services using
WS-Security (Web Services Security).

The WS-Security specification defines a set of SOAP header extensions for
end-to-end SOAP messaging security. It supports message integrity and
confidentiality by allowing communicating partners to exchange signed and
encrypted messages in a web services environment.

5.7.2 Modeling Secure Web Services

To enable security for an Inbound Web Service you need to add a request
and a response handler for each web service.

The request security handler processes the incoming SOAP messages and is
specified using the IBM Cúram Social Program Management Re-
quest_Handlers property in Rational Software Architect. An example
of this property's value is shown in Example 5.14, Request Handler for a
web service).

<handler type=
\"java:org.apache.ws.axis.security.WSDoAllReceiver\">
<parameter name=\"passwordCallbackClass\"

value=\"webservice.ServerPWCallback\"/>
<parameter name=\"action\"

value=\"UsernameToken Signature Encrypt\"/>
<parameter name=\"passwordType\"

value=\"PasswordText\" />
<parameter name=\"signaturePropFile\"

value=\"server-crypto.properties\" />
<parameter name=\"signatureParts\"

value=\"{Element}{http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd}UsernameToken;
{Content}{}Body\" />

<parameter name=\"encryptionParts\"
value=\"{Element}{http://docs.oasis-open.org/wss/

2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd}UsernameToken;
{Content}{}Body\" />
</handler>

Example 5.14 Request Handler for a web service

The response security handler processes the outgoing SOAP messages and
is specified using the IBM Cúram Social Program Management Re-
sponse_Handlers property in Rational Software Architect. An example
of this option's value is shown in Example 5.15, Response Handler for a
web service.

<handler type=
\"java:org.apache.ws.axis.security.WSDoAllSender\">

<parameter name=\"passwordCallbackClass\"
value=\"webservice.ServerPWCallback\"/>

<parameter name=\"action\"

Cúram Web Services Guide

75

value=\"Signature Encrypt\"/>
<parameter name=\"signaturePropFile\"

value=\"server-crypto.properties\" />
<parameter name=\"user\" value=\"curam-sv\"/>
<parameter name=\"encryptionUser\" value=\"curam\"/>

</handler>

Example 5.15 Response Handler for a web service

The use of these options results in the addition of the security handler in-
formation to the request flow and response flow of handlers in the serv-
er-config.wsdd deployment descriptor file for the web service.

In the examples above the action value UsernameToken directs the hand-
ler to insert a UsernameToken token, containing the username and pass-
word, into the SOAP request. The values Signature and Encrypt define that
the SOAP message should be signed and encrypted. This results in the hand-
ler first signing and then encrypting the data. The value of encryption-
Parts and signatureParts specifies to sign and encrypt the SOAP
message's security header and body elements.

The value of signaturePropFile specifies the name of the signature
crypto property file to use. This file contains the properties used for signing
and encrypting the SOAP message. The example of crypto property file is
shown in Example 5.16, Example server-crypto.properties File:

org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=server.keystore

Example 5.16 Example server-crypto.properties File

When configuring a web service the signature property file and keystore file
(server-crypto.properties and server.keystore) must be
placed in the %SERVER_DIR%/project/config/wss/ directory. Sec-
tion 5.7.4, Keystore File Creation describes how to create file serv-
er.keystore.

The security handler (passwordCallbackClass), webser-
vice.ServerPWCallback in Example 5.14, Request Handler for a
web service and Example 5.15, Response Handler for a web service above,
provides a password callback mechanism and should be implemented by the
developer. The example of an implementation for webser-
vice.ServerPWCallback is shown in Example 5.17, ServerPWCall-
back.java:

package webservice;
import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

/**
* Implementation of password callback class.

Cúram Web Services Guide

76

*/
public class ServerPWCallback implements CallbackHandler {

/**
* Retrieve or display the information requested in the
* provided Callbacks.
*
* @param callbacks an array of Callback objects provided by
* an underlying security service which contains the
* information requested to be retrieved or displayed.
*
* @throws IOException if an input or output error occurs.
* @throws UnsupportedCallbackException if the implementation
* of this method does not support one or more of the Callbacks
* specified in the callbacks parameter.
*/
public void handle(final Callback[] callbacks)

throws IOException, UnsupportedCallbackException {

for (int i = 0; i < callbacks.length; i++) {
if (callbacks[i] instanceof WSPasswordCallback) {

final WSPasswordCallback pc =
(WSPasswordCallback) callbacks[i];

/*
* Here call a method to lookup the password for
* the given identifier (e.g. a user name or key
* store alias), e.g. pc.setPassword(
* passStore.getPassword(pc.getIdentfifier))
* for testing we supply a fixed name/fixed key here.
*/

if ("beantester".equals(pc.getIdentifer())) {
pc.setPassword("password");

} else if ("curam-sv".equals(pc.getIdentifer())) {
pc.setPassword("password");

} else if ("curam".equals(pc.getIdentifer())) {
pc.setPassword("password");

}

} else {
throw new UnsupportedCallbackException(callbacks[i],

"Unrecognized Callback");
}

}
}

Example 5.17 ServerPWCallback.java

5.7.3 Client Side Configuration

To provide security the web service client can be configured either program-
matically or using a deployment descriptor file. The web services java client
example (see Example 5.21, WebServiceTest.java) details how to create a
deployment descriptor programmatically by adding UsernameToken token
and configuring the client to sign and encrypt the incoming soap request.

The example of deployment descriptor file is shown in Example 5.18, cli-
ent_config.wsdd:

<?xml version="1.0"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<transport name="http"pivot=
"java:org.apache.axis.transport.http.HTTPSender"/>

<globalConfiguration>
<requestFlow>

Cúram Web Services Guide

77

<handler type=
"java:org.apache.ws.axis.security.WSDoAllSender"/>

</requestFlow>

<responseFlow>
<handler type=

"java:org.apache.ws.axis.security.WSDoAllReceiver">
<parameter name="passwordCallbackClass"

value="test.ClientPWCallback"/>
<parameter name="action"

value="Signature Encrypt"/>
<parameter name="signaturePropFile"

value="client-crypto.properties" />
</handler>
</responseFlow>

</globalConfiguration>
</deployment>

Example 5.18 client_config.wsdd

The deployment descriptor file (Example 5.18, client_config.wsdd) contains
the request flow and response flow specified for incoming and outgoing
SOAP messages.

As on the server side, the request flow will contain action UsernameT-
oken Signature Encrypt.

Note that request flow does not specify any actions or security configuration
in the deployment descriptor. In Example 5.21, WebServiceTest.java below
you will see that it can be added programmatically instead of specifying in
deployment descriptor file.

The action UsernameToken is not specified in the response flow. This
means that the UsernameToken will not be included into SOAP message.

The value of signaturePropFile specifies the name of the signature
crypto property file to use. This file contains the properties used for signing
and encrypting the SOAP message. A sample crypto property file is shown
in Example 5.19, client-crypto.properties.

org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=client.keystore

Example 5.19 client-crypto.properties

The value of org.apache.ws.security.crypto.merlin.file
in Example 5.19, client-crypto.properties specifies the client's keystore file.
Section 5.7.4, Keystore File Creation how to create file cli-
ent.keystore.

The security handler also requires a callback class,
test.ClientPWCallback, to be implemented. The example of an im-
plementation for test.ClientPWCallback is shown in Example 5.20,
ClientPWCallback.java:

Cúram Web Services Guide

78

package test;

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

/**
* Implementation of password callback class.
*/
public class ClientPWCallback implements CallbackHandler {

/**
* Retrieve or display the information requested in the
* provided Callbacks.
*
* @param callbacks an array of Callback objects provided
* by an underlying security service which contains the
* information requested to be retrieved or displayed.
*
* @throws IOException if an input or output error occurs.
* @throws UnsupportedCallbackException if the implementation
* of this method does not support one or more of the Callbacks
* specified in the callbacks parameter.
*/
public void handle(final Callback[] callbacks

throws IOException, UnsupportedCallbackException {

for (int i = 0; i < callbacks.length; i++) {
if (callbacks[i] instanceof WSPasswordCallback) {

final WSPasswordCallback pc =
(WSPasswordCallback) callbacks[i];

if ("beantester".equals(pc.getIdentifer())) {
pc.setPassword("password");

} else if ("curam-sv".equals(pc.getIdentifer())) {
pc.setPassword("password");

}
} else {

throw new UnsupportedCallbackException(callbacks[i],
"Unrecognized Callback");

}
}

}
}

Example 5.20 ClientPWCallback.java

The request flow may be configured programmatically before invoking a
web service. Example 5.21, WebServiceTest.java shows how to configure
the request flow for the SecureWebService programmatically, and then
invoke the web service.

package test;

import org.apache.axis.EngineConfiguration;
import org.apache.axis.configuration.FileProvider;
import org.apache.ws.security.handler.WSHandlerConstants;
import wsconnector.SecureWebServiceInput;
import wsconnector.SecureWebServiceServiceLocator;
import wsconnector.SecureWebServiceSoapBindingStub;

public class WebServiceTest {

/**
* Configures web service's request flow and call
* secure web service.

Cúram Web Services Guide

79

*/
public void callSecureWebservice() {

final EngineConfiguration config = new FileProvider(
ClassLoader.getSystemResourceAsStream(

"client_config.wsdd"));

final SecureWebServiceServiceLocator locator =
new SecureWebServiceServiceLocator(config);

final SecureWebServiceSoapBindingStub call =
(SecureWebServiceSoapBindingStub)

locator.getSecureWebService();

call._setProperty(WSHandlerConstants.ACTION,
WSHandlerConstants.USERNAME_TOKEN + " "
+ WSHandlerConstants.SIGNATURE + " "
+ WSHandlerConstants.ENCRYPT + " ");

call._setProperty(WSHandlerConstants.PASSWORD_TYPE,
"PasswordText");

call._setProperty(WSHandlerConstants.SIGNATURE_PARTS,
"{Element}{http://docs.oasis-open.org/"
+ "wss/2004/01/oasis-200401-wss-"
+ "wssecurity-secext-1.0.xsd}UsernameToken; "
+ "{Content}{}Body");

call._setProperty(WSHandlerConstants.ENCRYPTION_PARTS,
"{Element}{http://docs.oasis-open.org/"
+ "wss/2004/01/oasis-200401-wss-"
+ "wssecurity-secext-1.0.xsd}UsernameToken; "
+ "{Content}{}Body");

call._setProperty(WSHandlerConstants.USER,
"beantester");

call._setProperty(WSHandlerConstants.PW_CALLBACK_CLASS,
"test.ClientPWCallback");

call._setProperty(WSHandlerConstants.SIG_PROP_FILE,
"client-crypto.properties");

call._setProperty(WSHandlerConstants.ENC_KEY_ID,
"X509KeyIdentifier");

call._setProperty(WSHandlerConstants.ENCRYPTION_USER,
"curam");

final SecureWebServiceInput details =
new SecureWebServiceInput();

details.setIntValue(47277);

call.oper(details);

}
}

Example 5.21 WebServiceTest.java

5.7.4 Keystore File Creation

This section describes how to create the server.keystore and cli-
ent.keystore keystore files for secure web service configuration, as
used in examples Example 5.16, Example server-crypto.properties File and
Example 5.19, client-crypto.properties:

• Generate the server keystore in file server.keystore:

%JAVA_HOME%/bin/keytool -genkey -alias curam-sv -dname
"CN=localhost, OU=Dev, O=Curam, L=Dublin, ST=Ireland,
C=IRL" -keyalg RSA -keypass password -storepass password -
keystore server.keystore

Cúram Web Services Guide

80

• Export the certificate from the keystore to an external file serv-
er.cer:

%JAVA_HOME%/bin/keytool -export -alias curam-sv -storepass
password -file server.cer -keystore server.keystore

• Generate the client keystore in file client.keystore:

%JAVA_HOME%/bin/keytool -genkey -alias beantester -dname
"CN=Client, OU=Dev, O=Curam, L=Dublin, ST=Ireland, C=IRL" -
keyalg RSA -keypass password -storepass password -keystore cli-
ent.keystore

• Export the certificate from the client keystore to external file cli-
ent.cer:

%JAVA_HOME%/bin/keytool -export -alias beantester -storepass
password -file client.cer -keystore client.keystore

• Import server's certificate into the client's keystore:

%JAVA_HOME%/bin/keytool -import -v -trustcacerts -alias curam
-file server.cer -keystore client.keystore -keypass password -
storepass password

• Import client's certificate into the server's keystore:

%JAVA_HOME%/bin/keytool -import -v -trustcacerts -alias curam
-file client.cer -keystore server.keystore -keypass password -
storepass password

Cúram Web Services Guide

81

Appendix A

Glossary

A.1 Definitions

document-oriented web services (DOWS)
There is no formal, industry-accepted definition for DOWS, it is gener-
ally accepted that these are defined by the use of
style="document" attribute in the WSDL binding section. In the
context of Cúram the concept of DOWS also includes the option to
model Cúram operations (web services) to process XML documents dir-
ectly.

inbound web services
Inbound web services refers to web services that you implement and are
accessed by external clients.

outbound web services
Outbound web services refers to web services that you would access,
hosted externally.

SOA
Service-Oriented Architecture

As defined by IBM® (http://www-01.ibm.com/software/solutions/soa/):
"Service Oriented Architecture (SOA) is a business-centric IT architec-
tural approach that supports integrating your business as linked, repeat-
able business tasks, or services." Typically, web services take a signific-
ant role in a SOA implementation.

SOAP
Simple Object Access Protocol

SOAP is an XML-based protocol for processing web services over HT-
TP. For a more comprehensive definition see: ht-
tp://www.w3.org/TR/soap/.

82

http://www-01.ibm.com/software/solutions/soa/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/

stub
A stub refers to the Java code that's generated at build time by the
Cúram scripts by invoking Axis2 (or Axis 1.4) tooling; they are stubs in
that the code does not stand alone: you must code a Java main program,
or provide some other context, where you instantiate its various objects
and call their methods to invoke (outbound) the web service, process
results, etc.

WSDL
Web Services Description Language

WSDL is an XML-based format for describing web services. For a
more comprehensive definition see: http://www.w3.org/TR/wsdl.

WS-I (Web Services Interoperability Organization)
The WS-I is part of OASIS (Organization for the Advancement of
Structured Information Standards) standards organization and as their
website (http://www.oasis-ws-i.org/) their mission is to ad-
vance: "... Best Practices for Web services standards across platforms,
operating systems, and programming languages."

Cúram Web Services Guide

83

http://www.w3.org/TR/wsdl

Appendix B

Inbound Web Service Properties - ws_inbound.xml

B.1 Property Settings

The following details the name/value pairs in the ws_inbound.xml prop-
erty file, which are used to build services.xml descriptor files for a web
service. These files are generated by default, but can also be customized as
described in Section 4.6, Providing Web Service Customizations.

These are the default properties produced by the IBM Cúram Social Pro-
gram Management generator:

classname
The fully qualified name of the web service class, from the Rational
Software Architect model. This property should never be overridden and
should always be provided by the generator.

ws_binding_style
The web service binding style, based on the Rational Software Architect
class property WS_Binding_Style. Values: document (default) or
rpc.

ws_is_xml_document
Indicator of a service class whose operations process W3C Documents,
based on the Rational Software Architect class property
WS_Is_XML_Document property. This property should always be
determined by the generator. Values: true or false (default).

An example ws_inbound.xml property file that the generator would cre-
ate is shown in Example B.1, Sample Generated ws_inbound.xml Properties
File.

<curam_ws_inbound>
<classname>my.util.component_name.remote.WSClass</classname>
<ws_binding_style>document</ws_binding_style>
<ws_is_xml_document>false</ws_is_xml_document>

</curam_ws_inbound>

84

Example B.1 Sample Generated ws_inbound.xml Properties File

The following are the properties that can be provided and/or customized via
a custom ws_inbound.xml property file:

ws_binding_style
The web service binding style. This property has no direct dependency
on the Rational Software Architect model. It is used for passing the cor-
responding argument to the Apache Axis2 Java2WSDL tool. See also
the description of the ws_binding_use property below.

Values: document (default) or rpc.

ws_binding_use
The web service binding use. It is used for passing the corresponding
argument to the Axis2 Java2WSDL tool.

Values: literal (default) or encoded.

ws_service_username
A username (see ws_service_password below) to be used for au-
thentication by the IBM Cúram Social Program Management receiver.
Not set by default as the default is to utilize a custom SOAP header for
specifying authentication credentials. If specified, results in the corres-
ponding descriptor parameter in services.xml being set.

Values: A valid Cúram user.

ws_service_password
A password (see ws_service_username above) to be used for au-
thentication by the Cúram receiver. Not set by default as the default is
to utilize a custom SOAP header for specifying authentication creden-
tials. If specified, results in the corresponding Axis2 descriptor paramet-
er in services.xml being set.

Values: A valid password for the corresponding Cúram user.

ws_client_must_authenticate
An indicator as to whether custom SOAP headers are to be used for
IBM Cúram Social Program Management web service client authentic-
ation. Should not be specified with ws_service_username and
ws_service_password (above), but if specified this setting over-
rides, causing the credentials in those properties to be ignored. If spe-
cified, results in the corresponding Axis2 descriptor parameter in ser-
vices.xml being set.

Values: true (default) or false.

ws_disable
An indicator as to whether this web service should be processed by the
build system for generating and packing the service into the WAR file.
Typically you would use this to temporarily disable a service from be-

Cúram Web Services Guide

85

ing built and thus exposed.

Values: true or false (default).

An example, custom ws_inbound.xml property file is shown in Ex-
ample B.2, Sample Custom ws_inbound.xml Properties File.

<curam_ws_inbound>
<ws_binding_style>document</ws_binding_style>
<ws_client_must_authenticate>false</ws_client_must_authenticate>
<ws_service_username>beantester</ws_service_username>
<ws_service_password>password</ws_service_password>

</curam_ws_inbound>

Example B.2 Sample Custom ws_inbound.xml Properties File

When providing a custom ws_inbound.xml properties file place the file
in your components/custom/axis/<service_name> directory
(the <service_name> and class name must match). During the build the
properties files are combined based on the following precedence order:

• Your custom ws_inbound.xml properties file;

• The generated ws_inbound.xml properties file;

• The default values for the properties.

Cúram Web Services Guide

86

Appendix C

Deployment Descriptor File - services.xml

C.1 Descriptor File Contents

Each web service class requires its own Axis2 deployment descriptor file
(services.xml). The Cúram build automatically generates a suitable de-
ployment descriptor for the default settings described in Section 4.6.1, In-
bound Web Service Properties File and Appendix B, Inbound Web Service
Properties - ws_inbound.xml. The format and contents of the ser-
vices.xml are defined by Axis2; see the Apache Axis2 Configuration
Guide (http://axis.apache.org/axis2/java/core/docs/axis2config.html) for
more information.

Based on the settings from the ws_inbound.xml property file(s) the
app_webservices2.xml script generates a services.xml file for
each web service class. This descriptor file contains a number of parameters
that are used at runtime to define and identify the web service and its beha-
vior.

An example services.xml descriptor file that would be generated is
shown in Example C.1, Sample Generated services.xml Descriptor File.

<serviceGroup>
<service name="ServiceName">

<!-- Generated by app_webservices2.xml -->
<description>

Axis2 web service descriptor
</description>

<messageReceivers>
<messageReceiver
mep="http://www.w3.org/2004/08/wsdl/in-out"
class=
"curam.util.connectors.axis2.CuramXmlDocMessageReceiver"/>
<messageReceiver
mep="http://www.w3.org/2004/08/wsdl/in-only"
class=
"curam.util.connectors.axis2.CuramInOnlyMessageReceiver"/>
</messageReceivers>

87

http://axis.apache.org/axis2/java/core/docs/axis2config.html

<parameter
name="remoteInterfaceName">

my.package.remote.ServiceName</parameter>
<parameter
name="ServiceClass" locked="false">

my.package.remote.ServiceNameBean</parameter>
<parameter
name="homeInterfaceName">

my.package.remote.ServiceNameHome</parameter>
<parameter
name="beanJndiName">

curamejb/ServiceNameHome</parameter>

<parameter
name="curamWSClientMustAuthenticate">

true</parameter>

<parameter
name="providerUrl">

iiop://localhost:2809</parameter>
<parameter
name="jndiContextClass">

com.ibm.websphere.naming.WsnInitialContextFactory
</parameter>

<parameter
name="useOriginalwsdl">

false</parameter>
<parameter
name="modifyUserWSDLPortAddress">

false</parameter>

<!--
NOTE: For any In-Only services (i.e. returning void) you must

explicitly code those operation names here as per:
http://issues.apache.org/jira/browse/AXIS2-4408
For example:

<operation name="insert">
<messageReceiver
class="curam.util.connectors.axis2.
CuramInOnlyMessageReceiver"/>

</operation>
-->

</service>
</serviceGroup>

Example C.1 Sample Generated services.xml Descriptor File

The following lists the mapping of the services.xml parameters to the
settings in your build environment:

messageReceiver
Specifies the appropriate receiver class for the MEPs of the service. For
Cúram there are three available settings/classes:

• curam.util.connectors.axis2.CuramXmlDocMessag
eReceiver - For service classes that process W3C Documents as
arguments and return values.

• curam.util.connectors.axis2.CuramMessageRecei
ver - For service classes that process Cúram classes and use the in-
out MEP.

Cúram Web Services Guide

88

• curam.util.connectors.axis2.CuramInOnlyMessag
eReceiver - For service classes that process Cúram classes and
use the in-only MEP.

This value is set by the app_webservices2.xml script as per the
description above. (Required)

remoteInterfaceName, ServiceClass, homeInterfaceName, beanJndiN-
ame

Specify the class names and JNDI name required by the receiver code
for invoking the service via the facade bean.

These values are set by the app_webservices2.xml script based
on the generated classname value in the ws_inbound.xml properties
file. (Required)

curamWSClientMustAuthenticate, jndiUser, jndiPassword
Specify credential processing and credentials for accessing the opera-
tions of the web service class.

These are set by the app_webservices2.xml script based on the
corresponding properties in ws_inbound.xml (see Section 4.6.1, In-
bound Web Service Properties File). Default for curamWSClient-
MustAuthenticate is true, but can be overridden at runtime by
custom receiver code. (Optional)

providerUrl, jndiContextClass
Specify the application server-specific connection parameters.

These values are set by the app_webservices2.xml script based
on your AppServer.properties settings for your as.vendor,
curam.server.port, and curam.server.host properties. Can
be set at runtime by custom receiver code. (Optional)

useOriginalwsdl, modifyUserWSDLPortAddress
Specify the processing and handling of WSDL at runtime.

These are explicitly set to false by the app_webservices2.xml
script due to symptoms reported in, for instance, Apache Axis2 JIRA:
AXIS2-4541. (Required for proper WSDL handling.)

Cúram Web Services Guide

89

Appendix D

Troubleshooting

D.1 Introduction

This appendix discusses some techniques for troubleshooting Axis2 and Axis
1.4 web services. It covers:

• Initial server validation and troubleshooting;

• Tools and techniques for troubleshooting Axis2 or Axis 1.4 errors;

• Avoid use of 'anyType'.

Having modelled your web service(s), developed your server code, built and
deployed your application and web service EAR files, you are now ready to
begin testing and finally delivering your web service.

Axis2 and Axis 1.4 represent a complex set of software and third-party
products, especially when viewed from the perspective of running in an ap-
plication server environment. While the IBM Cúram Social Program Man-
agement environment simplifies many aspects of web service development
the final steps of testing and debugging your services can prove daunting.
The various tips and techniques discussed here are neither new nor compre-
hensive, but are here to help you consider options and ways of increasing
your effectiveness.

D.2 Initial Server Validation and Troubleshooting

Because web services process through many layers one effective technique
for more quickly identifying and resolving problems is to keep the server
and client side of your service testing separate. So, once deployed you want
to first focus your testing on the server side to ensure everything there is
working properly and then introduce your client development and testing so
that you will better know where to focus for resolving errors.

90

First, since this is your first deployment of a web service: did the application
server and deployed application EAR/WAR files start without errors? If not,
investigate these and resolve as necessary.

If your application has started successfully the next step is to ensure your
service is available. This is done differently for Axis2 and Axis 1.4. But, in
general, it involves entering the web service URL with the ?wsdl argument
to verify that your service can be accessed. Details for validating the Axis2
and Axis 1.4 environments are in the sections following.

D.2.1 Axis2 Environment Validation

Axis2 provides an initial validation step that is provided by its built-in valid-
ation check. You invoke this by entering the URL for your Axis2 web ser-
vice application as defined by your web services application root context
and application server port configuration. For instance, this might look like:
http://localhost:9099/CuramWS2/axis2-web/index.jsp.
This page brings up the "Welcome!" page with an option to validate your
environment, which you should select. Out of the box, the only error you
should see on the resultant page is in the "Examining Version Service" sec-
tion where it warns you about not having the sample Apache Axis2 version
web service. You can rectify this error (which is not really an error, but a
nice sanity check) by including that service as external content when you
build your Axis2 web services WAR/EAR file; see Section 4.4, Building and
Packaging Web Services for more information on doing this.

Having successfully validated your Axis2 environment you should click the
"Back Home" link on that page and select the Services link on the "Wel-
come!" page. The resulting "Available services" page will list all available
services (classes) and their operations. If there is any invalid service (e.g.
due to a missing implementation class) it will be flagged here in more detail
and you need to use the diagnostics provided to resolve any errors. For all
valid services selecting a service name link from the "Available services"
page will generate and display the WSDL for that service. This verifies your
deployed service(s) and it should now be available for invocation.

To Be Aware Of

• On the "Available services" page you may see the operation "setSession-
Context", which you did not model and code. This behavior is an aspect
of the issue described in Section 4.3, Modeling and Implementing an In-
bound Web Service and in the Cúram Release Notes. It has no impact
and can be ignored.

• The WSDL generated from the "Available services" link(s) is not equi-
valent to the WSDL generated by the Axis2 Java2WSDL tool and the
latter should be used for development of outbound web services and can
be found in the build/svr/wsc directory of your development envir-
onment following a web services EAR file build.

Cúram Web Services Guide

91

• There are a number of issues with dynamic WSDL generation (e.g. AX-
IS2-4541) at this level of Apache Axis2 (1.5.1); see ht-
tp://issues.apache.org/jira/browse/AXIS2 for more information.

• Axis2 has additional capabilities for checking, investigating, etc. your
environment via its external administration web application (the "Admin-
istration" link on the "Welcome!" page). See Appendix E, Including the
Axis2 Admin Application in Your Web Services WAR File for details on
including this application in your environment. If you don't explicitly
build/include this application the functionality won't be available.

D.2.2 Axis 1.4 Environment Validation

The equivalent validation and service check for Axis 1.4 is performed by in-
voking the "services" page via your web services application root context
and application server port configuration. For instance, this URL might look
like: http://localhost:9099/CuramWS/services. This page
generates a page entitled "And now... Some Services" that lists your services
and their operations. For each service there is a link to generate and view its
WSDL. This verifies your deployed service(s) and it should now be avail-
able for invocation.

D.2.3 Using an External Client to Validate and Troubleshoot

You should begin validating the service on the server side first by using an
external client because unless the web service class exists, deployment is
setup properly, etc. a client failure may not be clearly distinguishable. To
keep the path length and areas you may have to investigate for possible er-
rors as small as possible you should use a known, working client to invoke
your service. Common areas of failure that a known, working external client
can help validate include: service packaging, receiver processing, security
configuration, and implementation processing. An example of an external
client you might use is the freely available soapUI client (www.soapui.org),
which is relatively easy and fast to setup and begin using. While a detailed
treatment of soapUI is beyond the scope of this document the following is
an outline of the steps you would use, which are similar for Axis2 and Axis
1.4:

• Download, install, and start soapUI.

• When validating your service(s) (above) save the generated WSDL.

• In soapUI select the File menu -> New soapUI Project and in this dialog
specify the location of your saved WSDL and click OK. This will create
and open a new soapUI project from where you can invoke your web
services.

• From the soapUI tree control expand your newly created project and ex-
pand the "Soap12Binding" or "Soap11Binding". Under this tree branch
you will see your service operations and under each operation a "Re-

Cúram Web Services Guide

92

http://issues.apache.org/jira/browse/AXIS2
http://issues.apache.org/jira/browse/AXIS2

quest 1" (default name) request. Double-clicking the request will open a
request editor. In the left pane you must code your SOAP message (e.g.
parameters, etc.) and a template is provided for doing this. In the right
pane is where the result is displayed. Once you've coded your SOAP
message click the right green arrow/triangle in the tool bar to execute
the service. If you've coded the SOAP message correctly the service out-
put will be displayed in the right pane. However, if an error occurs there
will be error information in this pane. In the event of an error verify your
SOAP message syntax and content; also see Section D.3, Tools and
Techniques for Troubleshooting Axis2 and Axis 1.4 Errors for some fur-
ther techniques for resolving and addressing these.

Note

For Axis2 you must keep in mind the default security behavior and
that you must include the custom SOAP header credentials in your
request. This would look something like this:

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:rem="http://remote.my.package">
<soap:Header>

<curam:Credentials
xmlns:curam="http://www.curamsoftware.com">
<Username>beantester</Username>
<Password>password</Password>

</curam:Credentials>
</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

Note

For Axis2 the first access of a web service may timeout due to the
large number of jar files and processing done at first initialization.
This can easily be mitigated in a Java client (e.g. see Section 3.4,
Creating a Client and Invoking the Web Service), but for soapUI
you can just re-invoke the service and the subsequent request will
likely not timeout; otherwise, see Section D.3, Tools and Tech-
niques for Troubleshooting Axis2 and Axis 1.4 Errors for further
techniques for resolving and addressing general web services errors.

D.3 Tools and Techniques for Troubleshooting Axis2
and Axis 1.4 Errors

The following highlight possible tools and techniques you might use in
troubleshooting errors with Axis2 or Axis 1.4 web services, but is not an ex-
haustive list. Also, the tools available to you may vary by platform and ap-
plication server environment.

Cúram Web Services Guide

93

When trying to understand why a service has failed the following should be
considered:

• Use a monitoring tool (e.g. Apache TCPMon or SOAP Monitor) to view
the SOAP message traffic. It's easier to setup TCPMon (download from
http://ws.apache.org/commons/tcpmon, unzip, & run; also available
within soapUI), but it requires changing your client end points or your
server port. Once setup, SOAP Monitor doesn't require any client or
server changes, but does require special build steps for your WAR/EAR
files. Apache ships SOAP Monitor as an Axis2 module and see Ap-
pendix F, Including the Axis2 SOAP Monitor in Your Web Services WAR
File on how to include this in your built Axis2 environment.

• Look at the failure stack trace and investigate any messages there. Try to
understand where in the processing the error occurred. Here is an ex-
ample Apache log4j properties file that would log verbosely in a
C:\Temp\axis2.log file, you can adjust these settings to suit your
requirements.

Set root category
log4j.rootCategory=DEBUG, CONSOLE, LOGFILE

Set the enterprise logger priority to FATAL
log4j.logger.org.apache.axis2.enterprise=FATAL
log4j.logger.de.hunsicker.jalopy.io=FATAL
log4j.logger.httpclient.wire.header=FATAL
log4j.logger.org.apache.commons.httpclient=FATAL

CONSOLE is set to be a ConsoleAppender using a PatternLayout.
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=[%p] %m%n

LOGFILE is set to be a File appender using a PatternLayout.
log4j.appender.LOGFILE=org.apache.log4j.FileAppender
log4j.appender.LOGFILE.File=c:/temp/axis2.log
log4j.appender.LOGFILE.Append=true
log4j.appender.LOGFILE.layout=org.apache.log4j.PatternLayout
log4j.appender.LOGFILE.layout.ConversionPattern=

%d [%t] %-5p %c %x - %m%n

You need to place the log4j.properties somewhere in the
classpath of the Axis2 or Axis 1.4 WAR file.

• Check the application server logs for more information.

• Turn on log4j tracing for Axis2 or Axis 1.4 as this will most likely give
you the most detailed picture of the web service processing or error at
the time of the failure. This can be quite voluminous so use it with care.

• Turn on the IBM Cúram Social Program Management application log4j
trace as this will also help to give you further context for the failure.

• Consider remote debugging the service running on the application server
using Eclipse. Consult your application server-specific documentation
for setting up this kind of an environment. Remember that if you are set-
ting breakpoints in this kind of environment that timeouts in the client

Cúram Web Services Guide

94

and/or server are a high probability and appropriate steps should be
taken; for the client see Section 3.4, Creating a Client and Invoking the
Web Service and for the server consult your application server-specific
documentation for setting timer values.

Note

Application verbose tracing (trace_verbose) is the highest
level of logging available for tracing with web services. This is be-
cause the SDEJ employs a proxy wrapper object for ultra verbose
(trace_ultra_verbose) tracing in order to provide detailed
logging. Due to the fact that the SDEJ uses reflection for forwarding
a web service request to the underlying process class, the use of a
proxy wrapper object is not compatible with the web services infra-
structure.

D.4 Avoid Use of 'anyType'

In general, it is best to avoid using anyType within your WSDL as it
makes interoperability difficult at best, since both the service platform(s)
and any client platforms must be able to map, or serialize/deserialize the un-
derlying object.

WSDL will typically get generated with anyType when the underlying data
type (e.g. object) cannot be resolved.

You may find with Axis2 or Axis 1.4 that your WSDL will work with any-
Type because some vendors/platforms map it to, for instance,
java.lang.Object, which allows it, if it's XML-compliant, to be processed in-
to a SOAP message, and allows processing from XML to a Java object.

You should begin generating your WSDL as early as possible, checking it
for the use of anyType. In your development focus on implementing the
overall web service structure first and implement the actual service func-
tionality last. For instance, code your web service operations as stubs that
merely echo back with minimal processing the input parameters to ensure
they can be processed successfully from end to end.

Cúram Web Services Guide

95

Appendix E

Including the Axis2 Admin Application in Your Web
Services WAR File

E.1 Introduction

This appendix shows you how to setup your Axis2 web services build to in-
clude the Axis2 Admin web application, which provides useful functionality
for working with your Axis2 environment.

Warning

The dynamic functionality of Axis2 (e.g. hot deployment) isn't inten-
ded for production application server environments such as Web-
Sphere Application Server and WebLogic Server and this functional-
ity should not be attempted in these environments.

E.2 Steps for Building

While it is not recommended to use this application to dynamically modify a
production environment the Axis2 admin application can be useful for valid-
ating settings, viewing services, modules, etc. To build your EAR file to in-
clude this application:

• Download the Axis2 binary distribution (ht-
tp://axis.apache.org/axis2/java/core/download.cg
i) corresponding to the supported Apache Axis2 version (1.5.1) and un-
load it to your hard disk (e.g. C:\Downloads\Axis2).

• Create a location on your disk to contain the necessary Axis2 artifacts;
e.g.:

cd C:\
mkdir Axis2-includes

96

• Put the class files, AdminAgent.class & AxisAdminSer-
vlet.class, in the
C:\Downloads\Axis2\webapp\WEB-INF\classes\org\ap
ache\axis2\webapp\ (based on the sample location above) direct-
ory from your Axis2 binary download location into a jar file that you
will place into the WEB-INF\lib directory in your newly created
C:\Axis2-includes location (as above); e.g.:

mkdir C:\Axis2-includes\WEB-INF\lib
cd C:\Downloads\Axis2\webapp\WEB-INF\classes
jar -uvf C:\Axis2-includes\WEB-INF\lib\WebAdmin.jar

org/apache/axis2/webapp/

• Additionally, you may want to add a custom axis2.xml descriptor
file to a WEB-INF\conf folder to change the default credentials. You
can copy the existing shipped axis2.xml file to this location; e.g.:

mkdir C:\Axis2-includes\WEB-INF\conf
copy %CURAMSDEJ%\ear\webservices2\Axis2\conf\axis2.xml

C:\Axis2-includes\WEB-INF\conf

• And then change the existing userName and password paramet-
ers, for example:

<parameter name="userName">restricted</parameter>
<parameter name="password">special</parameter>

• Of course, for this to be secure the axis2.xml file would have to
be secured in your development and deployed environments without
access in the runtime environment to the Axis2 configuration.

• Then, use the following properties when you invoke your web services
ear target (see Section 4.4, Building and Packaging Web Services):

-Daxis2.include.overwrite=true
-Daxis2.include.location=C:\Axis2-includes

• Upon deployment you should then be able to access the Administration
link via the Axis2 "Welcome!" page menu (e.g. ht-
)
tp://localhost:9082/CuramWS2/axis2-web/index.jsp.

Cúram Web Services Guide

97

Appendix F

Including the Axis2 SOAP Monitor in Your Web
Services WAR File

F.1 Introduction

This appendix shows you how to setup your Axis2 web services build to in-
clude the Axis2 SOAP Monitor module in your Axis2 web services WAR
file. The SOAP Monitor provides the ability to view SOAP message re-
quests and responses, which can be useful in debugging.

F.2 Steps for Building

The SOAP Monitor module is included with the binary distribution of Axis2
and its module (soapmodule.mar) is included in the packaging of the
webservices2.war lib directory during the build. The web.xml file
shipped with the webservices2.war has the necessary entries to sup-
port the SOAP Monitor. Beyond this the following additional steps are
needed to enable this functionality:

1. Create a location on your disk to contain the necessary Axis2 artifacts;
e.g.

cd C:\
mkdir Axis2-includes

2. As per the Axis2 documentation, you must place the SOAPMonitor ap-
plet classes at the root of the WAR file; for example:

cd C:\Axis2-includes
jar -xvf

%CURAMSDEJ%\ear\webservices2\Axis2\modules\soapmonitor-1.5.1.mar
org/apache/axis2/soapmonitor/applet/

98

3. Then, use the following properties when you invoke your web services
ear target (websphereWebServices or weblogicWebSer-
vices):

-Daxis2.include.overwrite=true
-Daxis2.include.location=C:\Axis2-includes

4. The shipped axis2.xml file defines the necessary SOAP Monitor
phase elements, but to be functional the following entry needs to be ad-
ded (similarly to other module entries):

<module ref="soapmonitor"/>

This change can be made to the EAR file prior to deployment or for
WebSphere in the deployed filesystem.

5. Then to access the SOAPMonitor you would use a URL like this: ht-
tp://localhost:9082/CuramWS2/SOAPMonitor.

6. Unfortunately the applet doesn't give much information when there is
an issue. If you see the error: "The SOAP Monitor is unable
to communicate with the server.":

• Ensure there is not a port conflict; the default as set in web.xml is
5001—if so, change that port.

• This error may occur if you use Microsoft® Internet Explorer 6; if
so, use a more current browser version.

Cúram Web Services Guide

99

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

100

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Web Services Guide

101

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Web Services Guide

102

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Microsoft, Windows 7, Windows XP, Windows NT, Windows Serv-
er 2003, Windows Server 2008, Windows Explorer, Internet Ex-
plorer, Word, Excel, and the Windows logo are trademarks of Mi-
crosoft Corporation in the United States, other countries, or both.

Oracle, WebLogic Server, Java and all Java-based trademarks and
logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Web Services Guide

103

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Web Services Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Prerequisites

	Chapter 2 Using Web Services
	2.1 Overview of Web Services
	2.2 Web Service Platforms
	2.3 Types of Web Services
	2.4 Web Services Security
	2.5 Summary

	Chapter 3 Outbound Web Service Connectors
	3.1 Overview
	3.2 Getting Started
	3.3 Building an Outbound Web Service Connector
	3.3.1 Including the WSDL File in Your Components File System
	3.3.2 Adding the WSDL File Location to the Outbound Web Services File
	3.3.3 Generating the Web Service Stubs

	3.4 Creating a Client and Invoking the Web Service
	3.5 Legacy Outbound Web Service Connectors
	3.5.1 Introduction
	3.5.2 Building an Outbound Web Service Connector
	Downloading the WSDL Files
	Registering a Web Service
	Building the Client Stubs

	3.5.3 Creating a Client and Invoking the Web Service
	Addressing anyType Serialization/Deserialization Errors

	Chapter 4 Inbound Web Services
	4.1 Overview
	4.2 Getting Started
	4.3 Modeling and Implementing an Inbound Web Service
	4.3.1 Creating Inbound Web Service Classes
	4.3.2 Adding Operations to Inbound Web Service Classes
	4.3.3 Adding Arguments and Return Types to Inbound Web Service Operations
	4.3.4 Processing of Lists
	4.3.5 Data Types

	4.4 Building and Packaging Web Services
	4.5 Providing Security Data for Web Services
	4.6 Providing Web Service Customizations
	4.6.1 Inbound Web Service Properties File
	4.6.2 Deployment Descriptor File
	4.6.3 Customizing Receiver Runtime Functionality
	Custom Credential Processing
	Custom Application Server-Specific Parameters
	Custom SOAP Factory
	Building Custom Receiver Code

	4.6.4 Providing Schema Validation

	4.7 Legacy Inbound Web Services
	4.7.1 Introduction
	4.7.2 Web Service Styles
	4.7.3 SOAP Binding
	4.7.4 Selecting Web Service Style
	RPC
	Document (DOWS)

	4.7.5 Creating Inbound Web Services
	Modeling Legacy Web Service Classes in Rational Software Architect
	Adding Operations to Legacy Inbound Web Service Classes
	Adding Arguments and Return Types to Inbound Web Service Operations

	4.7.6 Build and Deployment
	4.7.7 Data Types
	Processing of Lists

	4.7.8 Security Considerations
	4.7.9 Customizations
	Sample RPC-Style Customizations
	Sample Document-Style Customizations
	Sample Facade Bean Invocation

	Chapter 5 Secure Web Services
	5.1 Overview
	5.2 Axis2 Security and Rampart
	5.3 Custom SOAP Headers
	5.4 Encrypting Custom SOAP Headers
	5.5 Using Rampart With Web Services
	5.5.1 Defining the Axis2 Security Configuration
	5.5.2 Providing the Security Data and Code
	5.5.3 Coding the Client

	5.6 Securing Web Service Network Traffic With HTTPS/SSL
	5.7 Legacy Secure Web Services
	5.7.1 Objective
	5.7.2 Modeling Secure Web Services
	5.7.3 Client Side Configuration
	5.7.4 Keystore File Creation

	Appendix A Glossary
	A.1 Definitions

	Appendix B Inbound Web Service Properties - ws_inbound.xml
	B.1 Property Settings

	Appendix C Deployment Descriptor File - services.xml
	C.1 Descriptor File Contents

	Appendix D Troubleshooting
	D.1 Introduction
	D.2 Initial Server Validation and Troubleshooting
	D.2.1 Axis2 Environment Validation
	To Be Aware Of

	D.2.2 Axis 1.4 Environment Validation
	D.2.3 Using an External Client to Validate and Troubleshoot

	D.3 Tools and Techniques for Troubleshooting Axis2 and Axis 1.4 Errors
	D.4 Avoid Use of 'anyType'

	Appendix E Including the Axis2 Admin Application in Your Web Services WAR File
	E.1 Introduction
	E.2 Steps for Building

	Appendix F Including the Axis2 SOAP Monitor in Your Web Services WAR File
	F.1 Introduction
	F.2 Steps for Building

	Notices
	Trademarks

