..lli

IBM Curam Social Program Management

Curam Web Client Reference Manual

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008-2012 IBM Corporation

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
IR 1 01 0o 1 i o] o USRS 1
B (=01 S (=S PRS 1
1.3 COMPANTON GUITES ..ottt sttt esbe et e sseesbe e e e sseeneeeneas 1
LZL SETUCTUIE ..ttt ettt ettt et b e e e e e be e e st e e be e e mneebeesaneenneeanneenneas 2
1.5 SUMMIBIY ittt ettt b e be e e e e s e e e e e e be e eae e e neesmneenbeesnneenneesnneenneas 2

(001 2 O] 01 o PSRRI 3
B O o 1= o 1 Y S 3
B = 1= o 0TS 1 (=S 3
PZRC I 1 110 o [FTox 1 o] o PRSPPI 3
2.4 Application User INterface OVEINVIEWcocveiieeie it 4
2.5User INterfaCe MEadatacooiuirierieeeiee et 5

2.5.1 Page Content Metardatacccceevieeeenieie et 5
AL AN o oL o= (o] S 8
2.7 P CONEXE ...veiiviii ittt sttt sttt ettt st be e e b e e e sbe e e sabe e e nabe e e naree s 11
2.8 Page LOOK-aN0-FEElccooiiieeee et 11
2.9 Application Controller Java SErver Pageccccvveeeveeiesee s eee e 12
2Ol B T (= oi =T (1LY o S 12
B S U1 011 0= YRS 12

Chapter 3 DEVEIOPMENLcciiiiirerie ettt bbb se e e e e seesbennea 14
TR @ o= 1Y S 14
S 2 PIEMEQUISITES ...ttt sttt e e bbbt b et e e e nne e 14
SCTRC T 1 911 0o U Tox 1 o o S 14
3.4 Outline of the DevelopmENt PrOCESScccoiiiiriririee e 14
GRS 1 1= 1 = 1 o o S 15
3.6 Project FOIAEr SITUCLUEocuiiiiiiiieieee et 16
3.7 Application COMPONENLScoereririeieriesiesresie sttt st sse e eneeseeseeseesne e 19

3.7.1.CompPONeNt FOIAES ..o 19
3.7.2.COMPONENT OFAEN ..ottt nne s 20
3.8 ComMPONENE ATTITACESoveiiiiriesieeeeie e 21
3.9 APPHCAION LOCAIES ...ttt 22
3.10 Building @an APPLICALIONcceiiiiiiiieese e 23
3107 BUIA TAIGELS ..ottt 23
3.10.2 Related BUild TargetScccccceveiiiececeeeeeesie et nnea 25
3.10.3 Full and Incremental BUildSccceoviierieie e 25

Curam Web Client Reference Manual

3.10.4 Dependency ChECKINGcccoiiiierieriesie e 26
GOl =111 [o o SRR 26
3.10.6 Error REPOMINGcooviiiiieeiieieeie sttt ee st sae e sne e 26
3.10.7 Server Interface REFErENCEeccooeeviiieiiee e 27
3.10.8 Pag@ PrEVIBISooiiiiieieeieee ettt 28
3.10.9 UIM Generator TOOIcooeeiiiieiinieseesieeie e 28
3.10.10 External Client APPlICALIONSccoereereeiiiniesee e 29
G B = 1[0/ 0 1T= o | AP 30
N @< V1= T SRR 30
3.11.2 Configuring the APPliCatioN ..o 30
3.11.3 Customizing the Web Application DeSCIPLOrcccoceeveeiiereerierieeneeneeenes 34

I DZ @V (o]0 1174 1 Lo o KSR 36
I @1 = V1= T ST 36
3.12.2 Adding NeW ATtITACES ..oc.eeieieiieieeee e 36
3.12.3 Overriding or Merging Artifactscoccoveeienenenieseeee e 37
3124 EXErNaliZEd SINGSeoieeieeieee et 37
N | 11726 [ST TST PP 38
Gz Gl 1 0="o =1 1Y/ = o o 1 o SRR 39
3.12.7 CUramMLIiNKS.PrOPEITIES ...cocveeeerieesieeie ettt 40
3.12.8 XML Runtime Configuration FIleScccccuveirerienieniee e 40
Gz o 1 gl "o = SRR 40
3.12.70 JAVASCHIPL FIlES ..ot 41
3.12.11 Cascading StYIESNEELSocoiiieriieieeeeree e 42
3.12.12 Application Configuration FIlEScooeiiiiiiiieieeeee e 44
3.12.13 General ConfigUIatioNcccoceeveeiienieneeie e 45
3.12. 74 CUSLOM RESOUITEScuveeiueeeiieeieesieeeeeesieesseesseesseasseesssesssessseessnesnsessnnsans 52
Chapter 4 LOCAHIZBHIONcceeiueiieiieeie et et see s este e s e e te e s et e eseesreesesseesneensesseesseesenneens 55
T © o 1= 1 Y= SRS 55
(= = 0 (U1] (-SSR 55
TG 1 011 [F o1 o o HO RSSO 55
1101 o= RSSO 55
T o T 1= = oo o [o SRS 55
A5 T XML FILES ..ottt bbb e 56
4.5.2 Java PropertieSfileS ... 56
A5 3NON-XML FIlES ..ot e 57

T o o= = RSSO 57
4.6.1 Non JavaScript property fil€S ..o 58
4.6.2 JavaSCript Property fil€S ... 58

4.7 UIM EXIErN@liZed SEHNQS ..ocveeveceeieeie e este e e s as s e steenesneesneeneas 59
4.8 JavaScript EXternalized StHNGSccveiveeeiece e 59
4.8.1 Accessing properties in JAVASCIIPLccvcveveerereeseerie e 60

TSl L pqT= o L= o 0] o 1= o 1= S S 60
4.10 Infrastructure Widget PropertieS Filesccoveieeie i 61
4.10.1 Frequency Pattern Selector Localizationcccccevveeeveeviesieeseese e 62
4.11 CDEJRESOUICES.PIOPEITIESuveceeeiveeieeiesieetesieesteeieeeesteesessee s e eaesseesseeeesneesseeneas 64
4.12 ApplicationConfiguration.proPertiescccveceereeresieereeresee e 64
4.13 ApplicatioN-WIide MENUcocuiiieieee et 64
4.14 Tabbed Configuration ArtifaCtSccceveevi e 65

Curam Web Client Reference Manual

.15 RUNEIME MESSAJES ...cuviiueeiieeieeitesieeiesieesteete st e st ee s e steetesseesbeeeesaeesbeensesneessenneas 65
Chapter 5 UIM REFEIENCE ...ocuviieieeee ettt ae e s reeneeneens 67
T O o 1= ox 1 Y S 67
I 1= 1= 0 [0S] (-SSR 67
IR 10110 [FTox 1 o o PSSP 67
5.4 Creating UIM DOCUMENESccoiieiieiiesieesiecie e et see st saesee e sseeee e sseseesneesneeneas 67
5.5 UIM DOCUMENTE TYPES vveeiiieie et siee e sies s sies st et ssse s sseesssae s snneessaseesnanee s 67
I 1Y =0 SRS 68
5.7 UIM VIBWS ..ttt sttt bbbt e et st nne e 68
SR = 1= = o I] o S 69
5.9 UIM Reference for Pages and VIEWScceceeieeie et 69
OISR 111 oo [FTox 1 o] o PSSRSO 69
5.9.2 CONNECLION TYPES ..oeveeiieieeiteeieeseesieeeeseesteeaesseesseesesseesseessesseesseensesseesseenes 69
5.9 3 ACTION_CONTROL ...uoeiiiiiirieniisieseses et see e 71
5.9 4 ACTION_SET ittt sttt 76
5,95 CLUSTER .ottt st bbbttt st 78
5.9.6 CONDITION ..ottt sttt st sttt sae st snenne s 81
5.9.7 CONNERC T ..ottt sttt bbbttt b et nne e 82
5.9.8 CONTAINER ..ottt 82
5.9.9 DETAILS ROW ..ottt st sttt nne s 84
5.9.10 DESCRIPTION L...oiuiiiiieiiniesiesiesie st sss s st st ee s s seesneseens 85
B5OTTFIELD oottt bbbt 86
5.9.12 FOOTER _ROW ..ottt st sttt e nne s 91

5.9 LBTIMAGE ..o ettt nre s 93

5.9 TATNCLUDE ..ottt sttt nre s 93

ST R 1 N I I OSSPSR 9
5.9.16 INFORMATIONAL .ottt sttt sne e 9

5.9 17 INLINE_PAGE ...ttt sttt 95
B.9LB IS FALSE .ottt bbbttt 97
5.9T91S TRUE ..ottt 98
5.9.20 JSP_SCRIPTLET ettt sttt 98

5.9 2T LABEL ottt e 101
IR I |\ QTSSO 102
IR 1 LSS 108
5924 MENU ..ottt 111
5925 PAGE ..ot 118
5.9.26 PAGE_PARAMETER ..ot st 121
5927 PAGE_TITLE oot e 122
IR 2 B O = {] = USSR 123
5.9.29 SERVER _INTERFACE ...ttt 124
5.9.30 SOURGCEocuiiiiiiiiiieieieie ettt bbb e 126
5931 TAB_NAME ..ottt 127
5932 TARGET ..ottt bbbttt 128
IR 1 I I I I SR 128
B5L9.B3AVIEW ettt bttt 129

5.10 UIM Reference for WIQELSccciveieieeiece ettt 130
ST L0 1 11 0o (1 1 o o SR 130
5.10.2WIDGET .ttt nt e 130

Curam Web Client Reference Manual

5.10.3 WIDGET_PARAMETER ...ttt 132
5.10.4 The EVIDENCE_COMPARE Widgetccceevveiiieiieiiecee e, 133
5105 The FILE _EDIT WIAQELcccveeiieeiee ettt 133
5.10.6 The FILE_UPLOAD WIQELooeiiiiiiieieciecee et 136
5.10.7 The FILE_DOWNLOAD WIdQELccvveiieiieiiee e 139
5.10.8 The MULTISELECT WIQELocoeeiiiiciiecieccee et 140
5.10.9 The SINGLESELECT WIAQELcceeiiieiieciecee et 144
5.10.10 The RULES SIMULATION_EDITOR Widgetccccovvvvevireiieiieennen, 144
51011 The lEG_PLAYER WIAQELcooiiiiiiieieecie et 146

5.11 DynamiC UIM CroSS REFEIENCEcocuiiueeiiirieseeriee et 146
5.12 Dynamic UIM System INitialiZationccccoeeeereninnienine e 147
Chapter 6 Application CONfIQUIELIONccveiieiieriee et 149
T @ o 1= o 1 Y S 149
I o 1= =0 (01 1 (=SS 149
(OIRCTN 1 911 0o ¥ Tox 1 oo USRS 149
6.4 CoNfIQUIAtioN FIIEScvecieieece ettt 150
ORI ool o= 1] o] S 151
LTS T0 g1 0To 11 Tox 1 o o USSR 151
6.5.2 DEFINITION ...eeeeeiece ettt e e reeneeneens 152
6.5.30ptioNal HEBAESc.eoiiieieeeee et 158
B.5.4 EXAMPIE ..ottt sttt ettt e e nreeneeneen 158
6.5.5 Associate an Application With USErccccevveiivieiicce e 160

OGRS = o] S 161
(OG0 g 1100 11 o1 o o PSSR 161
O = 11 o) 1 oo PSS 162
B.6.3 EXAMPIE ..ottt e et reeneen 164

6.7 Section ShOrtCUL Pan€lccooieiieie e 164
LIS 11 0o [UTox 1 o o USSR 164
L2 = 1 o)« oo USSR 165
Gl T 1 o] = SRS 167

5.8 TADS ..ttt bbbt n et a e e e re e 167
(ORS00 11 0o 11 Tox 1 o o USSR 168
6.8.2 DEFINITION ..ottt st et esreeneeneens 169
6.8.3 Context Panel UIMoooiiiee ettt 175
B.8.4 EXAMPIE ..ottt sttt et e e nreeneaneen 176
ORI o I AN (0] 15 1Y/ = £ T S 176
(ORS00 o [FTox 1 o o PSS 176
6.9.2 DEFINITION ...eeeeeiece ettt e e sreeneeneens 177
6.9.3 DYNAMIC SUPPOIT ...eoveeiieeecieeitecte e st see s ste st e ae e e sseeeesseesreenseaneens 181
6.9.4 File Download Menu [teMcccceeiiiieieere et 182
5.9.5 EXAMPIE ..ottt ettt e e nr e nenneen 183
OO = o I\ = (YT (o] o IS 183
LTI 1 T (1 o o USSR 183
6.10.2 DEFINITION .ottt ettt e e e sreeneeneens 184
6.10.3 DYNAMIC SUPPOIT ...c.veeieeieeeieeieeieseesteeeesseesteeeesseesseesesneesseesesseesseensessenns 188
6.10.4 EXAMPIE ..ottt ettt et nreeneeneen 189
6.11 Opening TabS and SECLIONSccceeieeiieiiese e se e e ee e 190
G001 T (1 o o USSR 190

Vi

Curam Web Client Reference Manual

5. 112 LINKS ottt b et n b b 190
6.11.3 Pageto Tal ASSOCIALIONSc.cccerueerieriesiesieeee e see s see e seeeneesneens 191
6.11.4 Tab to SeCtion ASSOCIALIONSccvirreriieieeeeierie et 192
6.11.5 Page Parameters ... 192
Chapter 7 Session ManN@QEMENLc.cccueiierieeeieeseeesee e eseeseesseesseseesreessesseesseessesneesseenes 195
R O o 1= o 1 Y S 195
B = = 0 (0TS 1 (=SS 195
ARSI 111 oo [FTox 1 o] o NSRS 195
7.4 SESSION BASICSviviviiiieiieiieie ettt bbbttt st nenre s 195
7.5 TaD RESIOIBLION ...c.viveiiiiieiieieie ettt bbbt nb e e b e 196
AL o g1 o U = 1 o o S 197
B 11 1] = 1o ST TTPPRRN 198
7.8 Browser Specific Session Managementccceceeveeieeieenieeieesee e eee e sse e sreenns 198
Chapter 8 Domain SPECITIC CONLIOIScoviieiiiirie e 200
ST O o 1= o 1Y ST 200
B.2 PIErEQUISITESeovieiitiiieeieeieee ettt b e bbbttt e e bbb e 200
RS 1011 oo [FTox1 o] o EOU TP RS PPN 200
SR B T (=-= S TSR RS 200
B.5 DAE-TIIMES ..eveeteeieeteesieeeeeeeste e e ste e este e eesseesseeneesseenseeseesaeeseeneesseenseenensseenes 201
8.5.1 Representing time-0nly VAlUEScooeriririinere e 201
8.5.2 Customizing the TIME FOIMELcccovieirieierere e 202

8.6 Frequency Pattern SEIECIOr ... 202
8.7 SEIECHION LISESvieiitiieieiieieeee ettt bbbttt benne s 203
8.7.1 Populated from a Code-Tablecccoeviiirieiee e 203
8.7.2 Populated from Server Interface Propertiescccvvveveveeeiesese e 204
8.7.3 Drop-down, Scrollable and Checkboxed List typesccccevevevenerienine 205
8.7.4 Adding an Empty Entry to aList for Non-Mandatory Fields 205
8.7.5 Enabling Multiple SElECtioNcccooiriiiiiiee e 205
S.7.6 Transfer LISEWIOGELcooviieirieiieeeeee e 206

8.8 User PreferenCeS EQITOrcocioiiiiiiesesieeeeee ettt 206
O (U =S (== S 207
B9 L INIFOTUCTION ...ttt 207
8.9.2 DEfaUlt RUIEBS VIBW ...t 208
8.9.3 SUMMArY RUIESVIBW ...t e 209
8.9 4 Faled RUIES VIBW ..ot 209
8.9.5 DYNaMIC RUIES VIBW ...ttt e 209
8.9.6 Dynamic Full Tree RUIES VIBWcceiiriiiiieeseee e 213
SIS R (0 1 =53 = [(o USSR 213

S. L0 MEELING VIBW ..ttt bbbttt e et nbe e 215
B.10. L OVEIVIBIW ...eeeeeeeee st ete st e e eae e te e s enteeneesseesseentesneesseeneesneenseensennenns 216
8.10.2 Single SAleCtioN MOGEccccoveiiiireceeee e e 216
8.10.3 Multiple SEeCtion MOTE ..o e 216
B.10.4 XML FOIMELSooiiiieiiiee ettt et sne e s snneeen 216

S0 O 7 1 £ SR 218
ST © 1< V= 1 PSSR 218
8.11.2 Chart QDPEAIAINCEc.coiveeereerieriesiestesie et e sttt sbe s e e se e e sne e 218
8.11.3 Chart CONfIQUIELIONc..oovirieiiriesienieseeiee et 221
8.11.4 Chart Data FOrMELScccereriirieiinieneeee e e 225

vii

Curam Web Client Reference Manual

8.12 Heatmap WIAGELooveeeeieeiee ettt st 226
S © = o V1= T SRRSO 226

LS ZZ @70 01 110 18 = 1 o] o NSRS 227

S IC I V1Y Lo o SRR 228
G A @< o V1= 1SRRI 228
8.13.2 WOrKFIOW DELAIIScooveeiieiieieeie et 228
8.13.3 WOrKflow XML FOIMALScceiieiiieiiieiesiesieeie et 229

B. 1A BEVIAENCE VIBW ..ttt sttt et st ae e e 233
8.14.1 Evidence Display MOUEccoooeiieiiienieneee et 233
8.14.2 Evidence CompariSon MOGEccooereenieneniinnie s 234
8.14.3 CONFIGUIBLION ..ottt b et e e seeenesneens 234
.14 4 DA FOIMELooiiiiiiiiie e sne e 235

SN O = 0o - SRR 236
8.16 Payment SEAteMENt VIBWccueiiiiieiieeie ettt 240
8.17 BACh FUNCHION VIBW ...ttt st 242
RGN o (0] (=SS SRR 242
8.19 SCHEAUIE VIBW ...ttt et sre s 244
SIZAON 2= Tl =10 1110 g W €10l U] o RSP 245
B.21 POP-UP PAJES ...ttt 245
8.21.1 Configure the POP-UP PagEccccceiiriiiieieeee et 245
8.21.2 Create the POP-UP PaJEcoiiiieieieee ettt 248
8.21.3UsINg the POP-UP PagEecooiiiiiieieeeseeeee et 251
8.21.4 Using Multiple Pop-up Search Pagesfor aSingle Field ... 252
8.21.5 Configure the Multiple POP-UP Pageccooeeiireirierieeeeeeeeesiee e 252
8.21.6 Using the Multiple POP-UP Pagecoovieeiirineesieee e 253

8.22 AQENUAPIAYEN ... et 254
8.22.1 Agenda Player SCreen StrUCLUIEcoceieereeiienee e 254
8.22.2 NaVIgatioN MOUESc.eeeiriieiieie ittt sttt sreenesneens 255
8.22.3 NaVIQaLOr-1ESS VIBW ..ot 256
8.22.4 Agenda Player Configurationccocereeneniineeniesie e 256
8.22.5 Agenda Player CUStOMIZALIONcoceeeereeriieii et 257
RGN & = V= e - - NSRS 258
8.23 LOCALIZED_MESSAGE DOMAINccvitieiieieeieniesiesiesiesiesiesseeseseesaeseessessessessens 262
8.24 Decision Assist: Decision MatrixXx WIdgeLcocoverienieninie e 263
S © = V1= 1 SR PR USSR 263
Chapter 9 Custom Data Conversion and SOMiNGccoeeererieienenese s 264
9. L OBJECLIVE ...ttt ettt bbbt s et et e bbb nre s 264
O.2 PrErEQUISITESviveeiiteeieeiieeete ettt sttt ettt et bbb bt s et e et eaesbenbenre s 264
LSRG 111 0o [FTox 1 o] o USSP 264
9.4 Data Conversion and Sorting Operationscccevvereseeseeieeseesesee e seeesee e 265
9.5 Data Conversion Life CYClcuv et 267
9.6 The Domain Hierarchy and Domain PlUQ-INSccceevvieeiicce e 268
9.7 Overview of DOmMaiN PIUG-INScociieecieece et 270
9.7.1 Common Features Of PIUG-INScoveiiieiecece et 270
9.7.2 CONVEITEr PIUGFINS ...ttt st nesnnens 270
9.7.3 ComMPArator PIUG-INS ...cvecveiieeiecie et ee et ee et nae e e ennesneens 272
9.7.4 Default VAU PIUG-INS ..ottt 272

9.8 Domain Plug-in ConfiguIationccccceeeeieeiiesieriecieesee e eee e e 273

viii

Curam Web Client Reference Manual

9.9 Out-of -the-Box DOmain PIUG-INScoiiiiiiiie e 275
9.9.1 Extending EXiSting PIUG-INSccoiiiiiiiieiiesieee e 275
9.9.2 CoNVENTEr PIUG-INS ...ttt 277
9.9.3 ComMPArator PIUG-INSooiiiiieieeie ittt st see e 283
9.9.4 Default Value PIUG-INS ..ot 285

SOl g o] g (= o0 1o SRR 286
9.10.1 EXCEPLION ClIBSSEScoiveiuieiiieieeie et eie sttt ee e sreseesneeseeesesneens 286
9.10.2 Custom EXCEPLION ClESSESccceieeiierieiierieeee et 287
9.10.3 Reusing CUram Error MESSAgESccvereeierierieniesiesiessesseeseseeseessesseseessees 290

9.11 Java Object REPIreSENtatioNScccceriuereerieriiesieesieeee e e sre e sae s e s 290

9.12 CustomizatioN GUIENINEScccoieeiiiriiriesiee e 291
9. 12. L WRENETO SLAIT ...oeeeieeeieeie ettt ne e 291
9.12.2 CUSLOM FOrMELtING ...oveeieiieieeie et 292
9.12.3 CUSLOM ParSINGcoivieiieieiiieiie ettt sbe et sreesseeneesneens 294
9.12.4 CUSLOM ValIAALION ...covieiiiiieieeie et 295
9.12.5 CUSLOM SOMING ..eveiveeeerierieesieeie et see e sae s sreesresseesseesreeeesseeseesnsesneans 297
9.12.6 CUStOM Error REPOIINGcoivviieiieiieeiesiesie et nee e 301
9.12.7 Custom Default ValUESccceiieiieieeeseeeee et 302

RGN (V7 00/ o I o o] LoxS TR 304
9.13.1 Type Checking and Null Checkingcccoeeiirernerieneeneee e 304
9.13.2 Plug-in Instance Managementcoceieereninneesiessee e 304
9.13.3 NamiNg CONVENLIONSccoueeiiirierieeiteeie e sieseesiee st s ssesee e seeeneesneens 305
9.13.4 GeneriC Parse OPEratioNSccccureerieriiesiesieeee e siesseeseessesseesseeseesneesseens 306
9.13.5COUE-TADIES ..ottt e 306

Appendix A Unsupported Dynamic UIM fEaLUIEScccoceieeieiiesicie e 308

LR g1 oo [0 Tox i o] o ISR 308

ALZPAGE .o bbbttt b e b 308

A BPAGE TITLE oot 309

AL CLUSTER ottt bbbttt st b e 309

L I S 1 USRS 309

ALBFIELD oot bbbt bbbt e b nr e e 310

AT CONTAINER ...t bbbttt nr b 310

A LB ACTION_SET oottt bbbttt na e st nne e 310

ALGWIDGET ettt bbbttt b bbbt e et e it st nbe e 311

ALLO ACTION_CONTROL oottt sttt se e st sne e 311

AL LINK ettt bbbttt n e nr b e 312

ALLZINLINE_PAGE ...ttt 312

ALLSMENU et a e 313

A14A SERVER_INTERFACE ..ottt 313

ALLS INFORMATIONAL oottt sttt e 313

Appendix B Maintaining DynamiC UIM PagESc.ccoieiriiiiienese e 315

B.1 Working in a Development ENVIroNMENtccccooeierinenineneneeeeeesee e 315

B.2Working in aRUNNING SYSIEMooiiiiieeee e 317
B.2.1 Search for Dynamic UIM Pages by Calegoryccovvrererierieeieneneneenens 317
B.2.2 Uploading a Dynamic UIM page to the Resource Storeccccoeevereenee. 317
B.2.3 Editing a Dynamic UIM page in the resource Storeccoceeeverveneereenee. 318
B.2.4 Deleting a Dynamic UIM File from the Resource Storeccccoveveneenee. 318
B.2.5 Validating adynamic UIM filein the resource Storecccceoevevercreenne. 319

Curam Web Client Reference Manual

[N (o= 320

1.1

1.2

1.3

Chapter 1

Introduction

Introduction

This guide is the definitive reference guide for all aspects of the develop-
ment of Clram web client applications using the Caram Client Develop-
ment Environment for Java® (Curam CDEJ).

The Caram web client application produces aHTML user interface which is
generated by a middle-tier web application. This conforms to the Java EE
architecture, in which the Ciram web client application isa HTML user in-
terface driven by JavaServer Pages (JSP) and Servlet technology based on
the Apache Struts framework. This HTML user interface makes use of
standard browser and Web 2.0 technologies, including JavaScript and Cas-
cading Style Sheets (CSS).

The Caram CDEJ provides a means of easily developing aHTML client ap-
plication by reducing the complexity of development associated with web
based applications, and insulating the developer from the underlying techno-
logies.

Prerequisites

A basic understanding of Java EE development environments, XML and
Web technologies such as Hypertext Transfer Protocol (HTTP), JavaServer
Pages (JSP), Cascading Style Sheets (CSS) and JavaScript is helpful, but not
required, before reading this document.

Companion Guides

Working with the Clram User Interface acts as a companion guide to this
reference manual. It illustrates the application of features outlined in this
guide using an example led approach.

1.4

1.5

Curam Web Client Reference Manual

In addition a separate reference guide, the Cdram Web Client Error Mes-
sage Guide, lists all messages that can be reported by the Ciram CDEJ de-
velopment tools at development time and by the web application at runtime,
including what they mean, and how they can be resolved.

Structure

This document is divided into the following chapters:

Chapter 2, Concepts introduces Claram's meta-data driven development
paradigm for client applications.

Chapter 3, Development describes how, after installing the Ciram Applica
tion (IBM Curam Social Program Management), the web client application
project is structured, where each type of file should be created, and how to
override and extend the default application.

Chapter 4, Localization outlines the process of localizing an application into
several languages.

Chapter 5, UIM Reference is a complete reference for the User Interface
Meta-data (UIM) of the Caram Application.

Chapter 6, Application Configuration is a complete reference for the User
Interface configuration files of the Cdram Application.

Chapter 7, Session Management details how browser sessions are handled
by the Curam application.

Chapter 8, Domain Specific Controls details controls that are used to handle
specific domain types such as dates, schedules, and calendars.

Chapter 9, Custom Data Conversion and Sorting describes a feature that
supports the association of custom validation and sorting routines with do-
main definitions.

Summary

» This guide is the definitive reference for all Caram web client devel op-
ment. It should be read with the companion guide, Working with the
Curam User Interface.

¢ The Curam Client Development Environment (CDEJ) alows the devel-
opment of lightweight, standards-based (Java EE), portable client ap-
plications that can be accessed from aweb browser.

e The Cdram CDEJ simplifies the devel opment associated with web based
applications by insulating the developers from the underlying technolo-
gies.

2.1

2.2

2.3

Chapter 2

Concepts

Objective

In this chapter you will be introduced to the concepts and terminology used
to describe the Curam Client Development Environment (CDEJ).

Prerequisites

A basic understanding of Java EE development environments, XML and
Web technologies such as Hypertext Transfer Protocol (HTTP), JavaServer
Pages (JSP), Cascading Style Sheets (CSS) and JavaScript is helpful, but not
required, before reading this chapter.

Introduction

The goal within the Caram application is to reduce the complexity of devel-
oping web applications by providing mechanisms to generate client screens
which define content, layout and navigation. When working with the Ciram
CDEJ, a user interface developer can concentrate on the data required on a
screen rather than the graphical layout. The CDEJ will generate a standard-
ized user interface from a simple meta data description.

The Cdram user interface comprises of a number of user interface elements
that can be combined together. The main element of the interface is a User
Interface Meta-data (UIM) page. A UIM page defines the data to be dis-
played in a page. UIM pages are combined together to provide a view of
Curam known as an application.

In this chapter Section 2.5, User Interface Meta-data provides an overview
of the User Interface Meta-data used to define a UIM page and Section 2.6,
Applications provides an overview of the elements that can be combined in
an application.

2.4

Curam Web Client Reference Manual

By the end of this chapter you will understand the main concepts that power
the Caram CDEJ to generate a HTML user interface. The concepts defined
in this chapter are expanded on throughout the guide.

Application User Interface Overview

The figure below illustrates an overview of the User Interface meta datain a
sample Curam application page. This sample application page will be re-
used elsewhere in the guide, in order to describe how each of the User Inter-
face elements can be configured in an application.

I5M CORAM SOCIAL PROGRAN MARJHENT Casewcrian

T T > Lndssevn- 26885 —
ol b Lssme-2ue A
mathes

Figure 2.1 Application User Interface Overview

This table describes the mapping between the numbers and User Interface
elements referenced in the figure above.

Number User Interface Element Name

Application Banner
Application Name
Welcome Message
Application Menu
Application Search
Application Sections
Application tab

Tab Title Bar

Tab Actions Menu

Tab Context Panel
Section Shortcut Panel

1 Section Shortcut Category
1.1 Section Shortcut Menu Item

A W DN PR

2.5

2.5.1

Curam Web Client Reference Manual

Number User Interface Element Name

8 Content Area Navigation Bar
9 Page Title

10 Page Action Control

11 Refresh Button

12 Print Button

13 Help Button

14 In page Navigation Tabs
15 Page Content Area

16 Page Group Navigation Bar
17 Fields

18 Clusters

19 Action Controls

20 Smart Panel

21 List

Table 2.1 User Interface Elements

User Interface Meta-data

User Interface Meta-data (UIM) isan XML language that describes the con-
tents and layout of one of the main elements in the Cdram user interface, a
UIM page.

By limiting the variety of interface layout options available to developers,
and by defaulting user interface characteristics based on the known formats
of server interfaces, the UIM is kept ssmple and the user interface layout has
an enforced consistency across the whol e application.

The developer creates the UIM page definitions in files with a. ui mexten-
sion, with each file corresponding to a single page.

Individual pages are made up from different elements such as page titles, la-
bels, buttons and links as well as the most important element, the data con-
tent. UIM focuses on defining elements rather than how they are graphically
laid out. The CDEJ provides the tools to generate client screens from UIM
definitions.

Page Content Meta-data

The main content area of an application allows server data to be displayed
and entered. The basic unit of dataisafield. Each field is either an output or
input parameter of a server interface.

* Fields. Fields are visualy organized into clusters and lists on a UIM

Curam Web Client Reference Manual

page. There may be zero or more of each on a page. Clusters and lists
can have a title which describes the type of data displayed. There may
also be atitle for the whole UIM page. Refer to User Interface element 9
in Figure 2.1, Application User Interface Overview for an example of a

page title.

Clusters. A cluster is arectangular areas that displays fields in a tabular
format. A cluster can have one or more columns of fields, and fields can
be displayed with or without an associated label. Fields can be read-
only, or they may be editable. If editable, they appear as a control such
as atext area, drop-down menu, or check-box.

Refer to User Interface Element 18 in Figure 2.1, Application User In-
terface Overview which shows an example of two configured clustersin
the page content area - each with a configured title.

Lists. A list is used to display rows of repeating (or indexed) fields. As
in clusters, fields can have associated labels which are displayed as
column headingsin the list.

Refer to User Interface Element 21 in Figure 2.1, Application User In-
terface Overview which shows an example of a list in the page content
area. Thelist'stitleis configured.

Action Controls. Action Controls, displayed as buttons, are used to sub-
mit form data, to link to related pages, or to open amodal dialog. Action
controls can be organized into Action Sets which are associated with
clusters, lists, or the UIM page. Individual Action Controls can also be
associated with asingle field in a cluster or a column in alist. When an
action control is used to link to another page it can also send parameters
to the target page which are normally used as keys to retrieve server data
that populates the target page.

Refer to User Interface Element 19 in Figure 2.1, Application User In-
terface Overview which shows an example of two action controls. These
action controls are configured to only appear at the bottom of a cluster
but by default Action Controls appear at the top and bottom of the wid-
get they are associated with.

Server Interfaces. A server interface is a method that has been imple-
mented using the Clram Server Development Environment (SDEJ). See
Curam Server Developers Guide and the Cdram Server Modelling
Guide for more information on devel oping server interface methods.

The server interface is a non-visual element of a UIM page and each
UIM page can be associated with one or more server interface methods.
Each method is associated with either the initialization phase or the pro-
cess phase. When the UIM page is first opened, the initialization phase
methods are executed. Typicaly an initidlization phase method uses
Page Parameters as input parameters, and the resulting server data is
mapped to output fields on the screen.

The Process Phase is initiated when an Action Control of type Submit is

Curam Web Client Reference Manual

selected by the user. Data from input fields on the screen are mapped to
input parameters of process phase server methods and the methods are
invoked. After execution of process phase methods, the flow of control
is determined by the Submit Action, which can specify alink to a new
target page, or by the default action which returns to the same page.

Various XML elements correspond to the user interface elements described
above—PAGE, FI ELD, CLUSTER, LI ST, ACTI ON CONTROL, AC

TI ON_SET and so on. Other elements such as PAGE_PARAMETER and
SERVER | NTERFACE do not have visual representations, but are import-
ant to the functionality of the page. The CONNECT element is an important
construct that allows fields to be associated with parameters to Server Inter-
faces. Aswell as mapping fields, connections can also map page parameters
and static text. The latter is not stored directly in the UIM, but is external-
ized in a property file which facilitates easier language localization of user
interfaces.

Example 2.1, Page UIM Example contains an extract of UIM used to create
the content area. This extract displays how the mgor elements that make up
a screen of content area, such as clusters and lists, are represented in UIM.
Chapter 5, UIM Reference is a full UIM reference. Refer to User Interface
Element 15 in Figure 2.1, Application User Interface Overview to see an
example of aconfigured page content area.

<PAGE PAGE | D="Person_search">

<PAGE_TI TLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitl e. Stati cText 1"/ >
</ CONNECT>
</ PAGE_TI TLE>

<SERVER | NTERFACE NAME="ACTI ON'
CLASS="Per son_f o"
OPERATI ON="sear ch"
PHASE=" ACTI ON' />

<CLUSTER NUM COLS="2"
TITLE="C uster. Title. SearchCriteria">

<FI ELD LABEL="Fi el d. Label . Ref er enceNunber " >
<CONNECT>
<TARGET NAME="ACTI ON' PROPERTY="r ef er enceNunber"/ >
</ CONNECT>
</ Fl ELD>

<Fl ELD CONTROL="SKI P"/>
</ CLUSTER>

<CLUSTER NUM COLS="2"
TITLE="Cluster. Titl e. Addi ti onal SearchCriteria">

<FI ELD LABEL="Fi el d. Label . Fi r st Nane" >
<CONNECT>
<TARGET NAME="ACTI ON' PROPERTY="f or enane"/>
</ CONNECT>
</ FlI ELD>

. nmore <FIELD> el enents. ..

Curam Web Client Reference Manual

<ACTI ON_SET AL| GNVENT="CENTER' TOP="f al se">

<ACTI ON_CONTROL LABEL="Acti onControl.Label. Search"
| MAGE=" Sear chBut t on"
TYPE=" SUBM T" >
<LI NK PAGE | D="THI S"/ >
</ ACTI ON_CONTROL>

<ACT| ON_CONTROL LABEL="ActionControl . Label . Reset"
| MAGE=" Reset But t on" >
<LI NK PAGE_| D="Person_search"/>
</ ACTI ON_CONTROL>

</ ACTI ON_SET>
</ CLUSTER>

<LI ST TI TLE="List.Title. SearchResul ts">

<FI ELD LABEL="Field. Titl e. Nane" W DTH="44">

<CONNECT>

<SOURCE NAME="ACTI ON'
PROPERTY=" per sonNane" / >

</ CONNECT>
</ FlI ELD>
... more <FlI ELD> el enents. ..

</ LI ST>
</ PAGE>

Example 2.1 Page UIM Example

2.6 Applications

When a user logs into the Cdram application they are presented with a view
that is specific to their role. This view is known as an application. An ap-
plication in the Clram user interface is a collection of user interface ele-
ments, predominantly based on UIM pages, combined to create specific
content for a particular user or role.

Date of Birth

Figure 2.2 Application User Interface Overview

« Application Banner. An application is defined to present a specific
view of the data for a user or user role. The application banner provides

Curam Web Client Reference Manual

the user with the context of the application they are currently accessing.
Refer to User Interface Element 1 of Figure 2.2, Application User Inter-
face Overview for more details of a configured application banner in an
application. The banner also include a number of application links, i.e.
Help, Logout and Preferences and an application search facility.

» Application Sections. An application contains a number of sections ,
which alow quick and easy access to some of the more common tasks
and activities performed by a user. Refer to User Interface Element 2 of
Figure 2.2, Application User Interface Overview for more details of con-
figured sectionsin an application.

» Section Shortcut Panel. Each section can optionally have a section
shortcut panel, which is collapsed by default. When expanded the short-
cut panel provides quick links to open content, in the form of UIM
pages, and perform actions within the section. The content in the section
shortcut panel is organized into categories of menu items. Refer to User
Interface Element 7 of Figure 2.2, Application User Interface Overview
for more details of a configured section shortcut panel in an application.

e Tabs. Content in a section is displayed in a tab, and each section can
open multiple tabs, where each tab represents a business object or logic-
al grouping of information. A tab can also be described as a logical
grouping of UIM pages. Refer to User Interface Element 3 of Fig-
ure 2.2, Application User Interface Overview for more details of a con-
figured tab in an application.

« Tab Context Panel. A tab contains a context panel , which contains
context information associated with the data displayed in the tab. This
context information is always available when working with the data on
the tab. See Refer to User Interface Element 6 of Figure 2.2, Application
User Interface Overview for more details of a configured context panel
in an application.

« Tab Navigation. A tab comprises of one or more pages of information,
represented by UIM pages. These pages can be navigated using a havig-
ation bar, which contains navigation tabs linking to single pages or sets
of pages. Where a navigation tab links to a set of pages, a page group
navigation bar is displayed. Refer to User Interface Element 8 of Fig-
ure 2.2, Application User Interface Overview for more details of a con-
figured navigation bar in an application.

 Content Area. The content area displays the currently selected UIM
page. Refer to User Interface Element 15 of Figure 2.2, Application
User Interface Overview for more details of a configured page content
areain an application.

In addition to defining the layout of the screen, an application controls the
flow between pages available in the application. Within an application, links
to other pages are available from a section shortcut panel, the tab navigation
bar and page group navigation bar, in addition to links on the page displayed
in the content area.

Curam Web Client Reference Manual

Activating any of these links will result in accessing a new page in the con-
tent area, or opening a new page in a modal dialog. For new pages in the
content area, the application definition is used to determine what tab the
page belongs to and what section the relevant tab belongs to. The page is
then opened in the context of the relevant section and tab.

Applications are defined in an XML format using a number of different
files. For example, an application is defined using an XML file with the ex-
tension . app. Each section referenced in the application is defined using an
XML file with the extension . sec and any tabs referenced by the section
are defined using an XML file with the extension . t ab.

Example 2.2, Sample Application (.app) File details an example of an ap-
plication configuration file (. app). The example creates an application con-
taining two sections, in addition to an application banner with a quick search
facility.

<?xm versi on="1.0" encodi ng="1S0O 8859-1"?>
<ac: application

i d="Si npl eApp"

title="SinpleApp.title"

subtitl e="Si npl eApp. subtitle"

user - nessage="Si npl eApp. User Message" >

<ac: appl i cati on- menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ ac: appl i cati on- mrenu>

<ac: appl i cati on- search>
<ac: sear ch- pages>
<ac: sear ch- page type="SAS01"
descri pti on="Sear ch. Person. Last Nane. Descri pti on"
page-i d="Per son_sear chResol ver"
initial-text="Search.Person. LastNane.|nitial Text"
defaul t="true"/>
<ac: sear ch- page type="SAS02"
descri pti on="Sear ch. Per son. Gender . Descri pti on"
page-i d="Person_| i st ByGender"
initial-text="Search.Person. Gender.Initial Text" />
</ ac: sear ch- pages>
<ac: further-options-Iink
descri pti on="Sear ch. Further. Opti ons. Li nk. Descri pti on"
page-i d="Person_search" />
</ ac: appl i cati on-search>

<ac:section-ref id="Si npl eHomeSection"/>
<ac:section-ref id="Si npl eWor kspaceSection"/>

</ ac: appl i cati on>

Example 2.2 Sample Application (.app) File

This separation of configuration into multiple files allows for reuse of dif-
ferent elements across multiple applications. For example, a common Inbox
section can be defined and referenced by multiple applications. For more in-
formation on application configuration consult Chapter 6, Application Con-
figuration.

10

2.7

2.8

Curam Web Client Reference Manual

Page Context

UIM pages are displayed in different contexts within an application. The
context the UIM page is displayed in may result in different behavior for
some of the elements. The main contexts are outlined below.

« Content Area. The content area is where the main content for an ap-
plication is displayed. When a UIM page is displayed in the content area
it will automatically contain a refresh, help and print button * within its
title bar. Refer to User Interface Element 15 of Figure 2.2, Application
User Interface Overview to see an example of a configured content area.

» Context Panel. A context panel displays a specific kind of UIM page
that displays common information for the tab that is always viewable.
Refer to User Interface Element 6 of Figure 2.2, Application User Inter-
face Overview to see a configured example of context panel.

e List Dropdown Panel. A list dropdown panel displays a UIM page
when alist row is expanded in alist. Expanded rows are a supported fea
ture of lists. Refer to User Interface Element 21 of Figure 2.2, Applica-
tion User Interface Overview to see unexpanded list items (toggle but-
tons) in alist. Refer to Section 5.9.23, LIST for more information.

« Modal Dialog. A modal dialog displays a UIM page in a dialog win-
dow, displayed above the main content. While the dialog is open, the
parent content cannot be accessed. See Section 5.9.22.3.1, Using Modal
Dialogs for more information.

 Smart Panel. A smart panel, is an optional panel that can be added to
the right of the content area in a tab and displays a UIM page. For more
information see Section 6.8.2.5, smart-panel. Refer to see User Interface
Element 20 of Figure 2.2, Application User Interface Overview to see
an example of a configured smart panel in an application.

Page ““Look-and-Feel”

Just as important to the simplicity of the Curam client development ap-
proach is what you do not specify in application and page meta-data. There
isvery little positioning information for user interface elements:

» the application banner, sections and tabs are in fixed positions;
e clustersand lists flow from top to bottom on a page;

» fields are automatically positioned within them.

Some control is alowed through attributes of the various elements, but sens-
ible defaults are provided for all these attributes to minimize the situations
where they have to be used. Refer to User Interface Element 19 of Fig-
ure 2.2, Application User Interface Overview to see how action controls are

11

2.9

2.10

2.11

Curam Web Client Reference Manual

aligned to the center of a cluster. This was achieved with the ALI GNIVENT
attribute of the ACTI ON_SET element in Example 2.1, Page UIM Example.

Application Controller Java Server Page

A single Java Server Page, AppControl | er. do, is responsible for ren-
dering the Curam client on the browser. This application controller JSP is
why the URL in the browser is always AppController.do and does not
change as the user navigates between separate pages within the Cdram ap-
plication. As aresult of this, the back button of the browser is not supported.

It is still possible to request the URL of a specific page in the browser. In
this scenario, on receipt of the request, the browser will be automatically re-
directed to AppControl | er. do which loads the requested page. See
Section 2.10, Direct Browsing for details.

Direct Browsing

A page can be directly accessed by typing its full URL into the browser's
navigation bar, eg. ht -

tp://host: port/ Curanf en_US/ SonmePage. do. In this scenario
the session and its associated tabs will first be restored, then a request will
be sent for the specified page. The page will then be loaded in it's associated
section and tab. However, if this page is not associated with a tab, it will be
loaded in the currently selected tab. In the case of a new session, thiswill be
the “Home” tab.

Tabs changed in this manner can be returned to their default state by closing
and reopening the tab where possible. For the “Home” tab; logging out and
back into the application will restore the “Home” tab to the user's default
home page. See Section 7.5, Tab Restoration for more information on tab
restoration and session management.

Summary

» Curam web application development is simplified by describing pages
and applications in terms of their content and flow rather than the graph-
ical “look-and-feel” and layout of that content.

o User Interface Meta-data (UIM) consists of definitions in XML format
that describe the contents, and to a certain extent the layout, of one of
the main elements in the Caram user interface, a UIM page.

* An application is a collection of user interface elements, predominantly
based on UIM pages, combined to create specific content for a particular
user or role.

» Graphical layout options available to a developer are restricted to en-
force a consistent user interface across the whole application.

12

Curam Web Client Reference Manual

Notes

The Ctiram application does not support the web browser File->Print func-
tionality. A print button is provided for printing the contents of the Content

Areaonly.

13

3.1

3.2

3.3

3.4

Chapter 3

Development

Objective

This chapter will describe the structure of the Clram web client application
project, including related files in the Ciram server project, and how to de-
velop, build and deploy the application.

Prerequisites

You should be familiar with the basic concepts of Caram CDEJ develop-
ment (see Chapter 2, Concepts) and should have some knowledge of the ba-
sic format of XML documents. Finally, you should know how to set and edit
system environment variables.

Introduction

The Cdram CDEJ trandlates files specified in UIM (User Interface Meta
data) format into the JavaServer Pages (JSP) that will be deployed on your
web application server. These UIM files are supported by various properties
files, configuration files, and others. Collectively, these files are caled the
application's artifacts.

Y our Curam web client application project can be divided into various func-
tional components for ease of development. With this system, application
changes and updates can be introduced by dropping in a new component
that will automatically override the artifacts of another component, where
appropriate. The location and purpose of these artifacts and components will
be described in detail in this chapter.

Outline of the Development Process

14

3.5

Curam Web Client Reference Manual

Much of the client development process is driven by executing specific
build scripts. The following is an outline of the typical stepsin the process:

1. Install the Caram Application and the Caram CDEJ. Directions to the
installation guide are provided in Section 3.5, Installation.

2. The installer creates both an server application and client application
project on your file system containing all the source files. These files
will include the application configuration files, the XML-based User
Interface Metadata (UIM) for all your pages, any images and other re-
sources that the application requires.

3. Create and edit your source files (UIM and application configuration
files) or customize existing files.

4. Deploy your application to an application server. During devel opment,
this might be a server embedded in your integrated development envir-
onment.

5. Once deployed, you can test your application using a web browser, for
example using the following URL :

http://localhost:9080/'server_name'/AppController.do

Installation

To install the Cdram CDEJ, follow the instructions contained in the Cdram
Installation Guide. The installer will install the Ciram CDEJ and the Cdram
Application project ready for further development and customization. The
Curam Application is divided into two major parts. the server application
that defines the business entities and business logic of the application, and
the web client application that defines how this information is presented to
the user.

In this manual, the folders into which parts of the application and the infra-
structure are installed will be referred to using placeholders, as the actual
locations will vary depending on where they are installed and whether or not
you are developing the Curam Application, additional applications or
samples.

Folder Placeholders

<app-dir>

The top-level application folder containing both the server application
and the client application.

<client-dir>

The folder containing the web client application. Typicaly this is a
folder called webcl i ent within the <app- di r > folder.

<server-dir>
The folder containing the server application. Typicaly this is a folder

15

3.6

Curam Web Client Reference Manual

called EJBSer ver within the <app- di r > folder.
<cdej -dir>
The folder containing the Clram CDEJ, the tools and infrastructure re-

quired to build and run web client applications. Typically thisis afolder
called Cur anCDEJ.

<sdej -dir>

The folder containing the Ciram SDEJ, the tools and infrastructure re-
quired to build and run server applications. Typically this is a folder
caled Cur anSDEJ. More information on this folder can be found in
the Cdram Server Developers Guide

For example, if you have installed the Caram Application into the folder
C. / Cur am then the <app- di r > placeholder refers to this folder, the
<client-dir> placeholder refers to the C./ Curanf webcl i ent
folder, the <ser ver - di r > refersto the C. / Cur ani EJBSer ver folder,
and the<cdej - di r > refersto the C. / Cur am Cur antCDEJ folder.

Project Folder Structure

A Curam web client application project is organized into a folder structure
that is recognized by the Cliram CDEJ when the application is built. Ex-
ample 3.1, Web Client Folder Sructure, shows an outline of this folder
structure for the project and the list that follows describes each folder within
this structure in more detail. The base folder of this structure is the
<cl i ent - di r > folder.

<client-dir>
+ build
+ bean- doc
+ bui | dl ogs
+ conponent s
+ core
+ <cust onp
+ | mages
+ j avasource
+ WebCont ent
JavaSour ce
pr oj ect
WebCont ent
+ <| ocal e>
+ Previ ews
+ VEB- | NF

+ + +

Example 3.1 Web Client Folder Structure

Web Client Folders

build

Temporary generated artifacts. The only contents of interest are the gen-
erated reference documentation for the fagade server interfaces.

bui | d/ bean-doc

Generated reference documentation for the facade server interfaces in
HTML format. These are regenerated each time the application model

16

Curam Web Client Reference Manual

changes. See Section 3.10.7, Server Interface Reference for more de-
tails.
bui | dl ogs

Log files generated from each build. See Section 3.10.5, Build Logs for
more details.

conmponent s

The top-level folder for the application components. Each sub-folder of
this folder contains a separate application component. See Section 3.7,
Application Components for more information on application compon-
ents.

conponent s/ core

The pre-defined core Caram application component artifacts that
provide the core functionality. These artifacts should not be modified
directly. To change them, you should create new artifacts in another
component which will then override the core artifacts.

conmponent s/ <cust onp

One or more extra application components containing artifacts that add
additional application functionality or customize existing functionality.

conponent s/ <cust on®/ | mages

Arbitrary custom resources that you want to deploy with your applica-
tion. Files and folders within this folder will be copied to the top-level
WebCont ent folder during the build process.

conmponent s/ <cust on®/ j avasour ce

Javasource code and properties files used to add extra functionality to
an application or to define externalized strings used across many applic-
ation pages. There are a number of different customizations that can be
applied to files within this directory. These include updates to control
one or more of the data conversion or sorting operations. Please refer to
Chapter 9, Custom Data Conversion and Sorting for more details on
these customizations. This j avasour ce directory is optional,
however if thisdirectory is added, thewebcl i ent/ . cl asspat h file
must be updated to reference this new source directory. This ensures
that the changes in this directory are recompiled when a client build is
run within the specified development environment. The following is an
entry in thewebcl i ent /. cl asspat h file, (where <cust on® rep-
resents the name of a custom directory):

<cl asspat hentry ki nd="src" pat h="conponent s/ <cust on®/j avasource"/

conmponent s/ <cust o/ WebCont ent

Arbitrary custom resources that you want to deploy with your applica-
tion. Files and folders within this folder will be copied to the top-level
WebCont ent folder during the build process.

JavaSour ce
Contains the CDEJResour ces. properti es file that defines prop-

17

Curam Web Client Reference Manual

erties used across many application pages. This file is described in fur-
ther detail throughout this document. Also contains the | ni -
tial _ApplicationConfiguration. properties file that is
described in Section 3.11.2, Configuring the Application.

pr oj ect
Configuration files used when customizing the application deployment

descriptors. See Section 3.11.3, Customizing the Web Application
Descriptor for more details.

WebCont ent

The generated web application files. This contains the generated JSP
files and other application artifacts that can be used to start and test an
application in the development environment. When an application is to
be deployed outside of the development environment, many of the files
in this folder are packaged in the application EAR file. See Sec-
tion 3.11, Deployment for more details.

WebCont ent / <l ocal e>

The generated JSP files for each locale supported by the application are
placed in folders named after the locales. For example, for American
English pages there will be a folder named en_US. These JSP files are
generated as necessary when the application is built, so they will be re-
placed automatically if deleted or out of date with respect to the corres-
ponding UIM file. The JSP files are placed in sub-folders of the locale
folder using the first two letters of the page ID as the sub-folder name.
This reduces the likelihood that an option provided by some application
server software to pre-compile the JSP files will fail when trying to pre-
compile too many JSP files at the same time.

WebCont ent/ Previ ews

Generated HTML files providing a rough preview of what each corres-
ponding JSP will look like when the application is running. These pre-
views can be viewed directly in a web browser without running the ap-
plication. See Section 3.10.8, Page Previews for more information.

WebCont ent / VIEB- | NF

The standard folder which must exist in every Java EE web application.
No files in this folder will be served by the web container, the files are
only used internally by the web client application. It contains a
cl asses folder that contains all the compiled Java class files and
properties files required by the application. In a Cdram web application
project, this includes the classes and properties files from the compon-
ent specific j avasour ce folders and the properties file from the
<client-dir>/JavaSource directory. It aso contains a lib
folder that contains all required library classes packaged in JAR files.
The CDEJ supplies al the JAR files required for this folder and they are
copied during the build process. Y ou should not modify any filesin this
folder.

In addition to the web client folders, there are a number of folders in the
<server -di r> project that are relevant to web client application devel-

18

3.7

3.7.1

Curam Web Client Reference Manual

opment. The <ser ver - di r > project maintains a similar structure to the
web client, specificaly in relation to the conponent folder.

Server Folders

conmponent s/ <conponent - nanme>/ cl i ent apps

Application configuration artifacts. These are the XML configuration
files for defining applications, sections, tabs, etc. For more information
see Chapter 6, Application Configuration.

conmponent s/ <conponent - nane>/t ab

Application configuration artifacts pre-defined in the Caram applica-
tion. XML configuration files shipped with the cor e and other out-
of-the-box components will exist in this folder. These should not be
modified. To change these you should create new artifactsinthecl i -
ent apps folder in another component, which will then override these
artifacts.

Application Components

Component Folders

Curam web client applications are organized into collections of artifacts
called components. Each component has its own folder below the
<client-dir>/conponents folder. The cor e component is always
present. This contains al of the artifacts needed for the core functionality of
the Curam reference application. The name of the component folder is used
as the name of the component.

A component does not necessarily define a discrete part of an application;
rather it defines an additional customization layer of an application. By
adding new components, it is possible to selectively replace pages in the
core application, add new pages, change the appearance of the application
and alter various settings. It should never be necessary to edit files within
the core application, thereby ensuring that when the core application is up-
graded, the core changes do not overwrite your custom changes.

Within a component, you can use an arbitrary folder structure to allow you
to organize your artifacts as you see fit. Artifacts in a component must have
unique file names and the folder structure does not affect this. For example,
you cannot place two UIM files with the same name within the same com-
ponent, even though they would be in different folders. Likewise, aUIM file
in one component is considered equivalent to a UIM file in another compon-
ent, even if the folders within the components containing these UIM files
have different names. Technically, a component represents a single
namespace for artifacts and the folder structures within the components are
mostly ignored.

The only exception to the requirement to use unique file names for artifacts
is within the optional WebCont ent folder within a component. Within this

19

3.7.2

Curam Web Client Reference Manual

folder, you can place arbitrary files in an arbitrary folder structure that you
want to deploy with your application. The files will be copied to the main
<cl i ent-dir>/ WbCont ent folder during the build process and the
folder structure will be preserved, so files in different folders may share the
same name.

Component Order

There can be any number of application components, but they are processed
in a strict component order. This order determines the priority that will be
given to artifacts that share the same name but appear in different compon-
ents. Thisis fundamental to the manner in which Cdram web client applica-
tions are customized.

The component order is defined by the CLI ENT_COMPONENT _ORDER en-
vironment variable. This is a comma-separated list of component names.
Use only commas; do not use spaces. You must place the component with
the highest-priority first in the list and continue in descending order of prior-
ity. The cor e component always has the lowest priority and is implicitly
assumed to be at the end of thelist; you do not need to add it explicitly.

For example, Setting the component order to
“MyComponentOne,MyComponentTwo” will give the highest priority to
artifacts in the My Conponent One folder within
<cl i ent-dir>/conponents, alower priority to artifacts in the My-

Conmponent Two folder, and the lowest priority to artifacts in the cor e
folder. Any component folder not listed in the component order will not be
included in the build and a warning will be displayed to indicate that these
components have been ignored. If you do not set the component order at all,
the default component order will include all components in alphabetical or-
der.

]

n Note

The SERVER COVPONENT_ORDER order, used for the
<server -di r > project, will alwaysinclude all component folders
existing in the conponent s folder. If they are omitted from the
SERVER _COMPONENT_ORDER environment variable, they will
automatically be added to the end of the component order in apha-
betical order. For more information consult the Clram Server De-
velopers Guide.

Localized Components

Localized components contains translated artifacts for the base components
and are of the format “<component name>_<locale>". It is not necessary for
these to be added to the CLI ENT_COMPONENT _ ORDER environment vari-
able as the tooling that processes this environment variable will prepend any
available components that match entriesin the LOCALE LI ST environment
variable. Localized components are matched both on complete locale entry
and on the two-character, lower-case language code. Localized components

20

Curam Web Client Reference Manual

are prepended before the base component in the complete component order.

3.8 Component Artifacts

Components contain a number of artifacts that are used to build an applica-
tion. All the artifacts in a single component have the same priority in the
component order. The artifacts in one component may be used to customize
the artifacts in alower-priority component, or they may be entirely new arti-
facts that extend the application. The main type of artifacts are asfollows:

UIM Pages

UIM pages are the principal artifacts of a web client application. Each
UIM page describes a web page that users will see when accessing the
web client application with their web browsers. The files for these arti-
facts use the . ui mextension.

UIM Views

UIM views define portions of a page that may be re-used by many UIM
pages. Thefilesfor these artifacts use the . vi mextension.

Properties Files

Properties files store the natural language text for a page separately
from the pages, views and page groups. When applications are localized
into different languages, there will be a separate properties file for each
language (or locale, see Section 3.9, Application Locales). Thisallows a
single UIM page, view or page group to be defined for al of the suppor-
ted languages.

i Note
UIM properties files do not support any form of visual layout or
formatting capabilities such as using carriage returns or insert-
ing HTML elements.

Application Configuration Files

Application configuration files define the layout of the user interface
and how UIM pages are grouped into sections and tabs. The files for
these artifacts are defined using the extensions . app, . sec, .t ab,
.nav, .mu, and .ssp. Note, these files are located in the
<server - di r > project. See Chapter 6, Application Configuration for
details.

Image Files

Images file referenced from your UIM pages or views can be added to
your component's | mages sub-folder. See Section 3.12.5, Images for
details.

Configuration Files

Configuration files are used to alter the behavior or appearance of the
application or of elements of the application. There are a variety of dif-
ferent configuration files that can be used for different purposes.

21

3.9

Curam Web Client Reference Manual

Custom Resour ces

Custom resources are arbitrary files that you want to deploy with your
application. For example, you may want to customize the appearance of
a page to reference you own image file for a logo; this image file is a
custom resource.

Application Locales

A locale describes a user's language, country and determines what the user
will see in the pages they access via their web browser. While the data will
largely remain the same (other than in the details of the formatting of num-
bers and dates) the labels for the data will appear in the appropriate lan-
guage. Locales are specified using a simple identifier that contains a two-
character, lower-case language code optionally followed by an underscore
character and a two-character, upper-case country code. For example, “en”
indicates the English language, and “en_US’ indicates the regional variation
of the English language appropriate for the United States of America. This
regional variation may help to identify differences in the dialect or usage of
the language, American English in this example, but it may also affect the
way dates and numbers are formatted.

The language and country codes have been standardized and support for any
specific locale is determined by the Java Runtime Environment (JRE) that
you are using for you application and whether you have localized your ap-
plication appropriately for that locale. Consult the documentation provided
by the vendor of your JRE for details on the support locales and see
Chapter 4, Localization for full information on the procedure for localizing
a Caram web client application.

Before building a Caram application that may have been localized for a
number of locales, you need to specify what locales you want to include. To
do this, you set the LOCALE LI ST environment variable to a comma-
separated list of the locale codes. Use only commas, do not use spaces. For
example, “en_US,es” specifies the American English locale and the Spanish
locale (with no regional variation). Thefirst localein thelist istreated as the
default locale. Certain operations, such as the generation of page previews
(see Section 3.10.8, Page Previews), are only performed for the default loc-
ae.

@ Improving Build Performance

The Caram CDEJ performs most of the trandation work for the ap-
plication's locales during the build process; from asingle UIM file it
will produce one JSP file for each locale in the locale list. If your
application supports many locales, you may find it convenient when
developing the application to omit some of the locale codes from the
locale list, as this will improve the build performance. You can re-
place the locales when you want to view or test all of the localized

22

Curam Web Client Reference Manual

3.10 Building an Application

3.10.1 Build Targets

The client application is built using Apache® Ant build scripts. These build
scripts define ordered sequences of processing steps called targets. To in-
voke a target, you open a command prompt window and change to the
<cl i ent - di r > folder and then pass the name of the target to the com-
mand you use to start Apache Ant. Typically this command is called build
or appbuild. The name depends on the script provided for your application,
but it will be referred to as build in this manual. For example, to build the
web client application, the command is build client. You can run
more than one target at a time by passing the target names separated by
space characters. For example, bui | d cl ean cl i ent will first clean all
the generated output that may be present before building the full web client
application again.

The following build targets are available for Curam client projects:

client

Builds the client application. See Section 3.10.3, Full and Incremental
Builds for further details.

cl ean

Deletes all of output generated by the other build targets. See Sec-
tion 3.10.3, Full and Incremental Builds for further details.

beandoc

Generates reference documentation for the facade server interfaces. See
Section 3.10.7, Server Interface Reference for further details.

client-wth-previews
Builds the client application and also generates previews of the pagesin

HTML format in the <cli ent-dir>/ WebCont ent/ Previ ews
folder. See Section 3.10.8, Page Previews for further details.

ui ngen
Generates skeleton UIM pages from the fagade server interface defini-
tions. See Section 3.10.9, UIM Generator Tool for further details.

A number of environment variables affect the build process for a web client
application. Some have been introduced already and others are explained
elsewhere, but al are shown below. When you install the Cdram Applica-
tion, the build command will set most of these for you, as they mostly refer
to files and folders that will be in fixed locations relative to where you in-
stalled the application. However, for a new application, or if you are modi-
fying the build command, you may need to confirm that these are set cor-
rectly.

23

Name

CURAMCDEJ

CLI ENT_DIR

CLI ENT_PROJECT NAME

LOCALE_LI ST

CLI -
ENT_COVPONENT _ORDER

ENCODI NG

MUL -

TI PLE_VALI DATI ON_ERRO

Curam Web Client Reference Manual

Re-
quired
Yes

Yes

Yes

Yes

No

No

No

Description

The location of the installed
Cdram CDEJinfrastructure.
Thisis the same as the value of
the <cdej - di r > placeholder
used in this manual. See Sec-
tion 3.5, Installation for details.

The location of your web client
application. Thisisthe same as
the value of the

<cl i ent - di r > placeholder
used in this manual. See Sec-
tion 3.5, Installation for details.

Defines the name of the applic-
ation being built. Thisnameis
used as a base name for many
generated artifacts, for ex-
ample, for Java package names.
The name is defined in the
UML model. For the installed
Caram Application, the value
should be “Curam”.

Defines the locales that will be
supported by the application.
See Section 3.9, Application
Localesfor details.

Defines the prioritized order of
the application's components.
See Section 3.7.2, Component
Order for details. Thisis not re-
quired, but it is highly recom-
mended that you set it expli-
citly. By default, all compon-
entswill be processed in alpha-
betical order.

Defines the character encoding
that will be used to interpret
filesthat do not explicitly
define an encoding. By default,
the system's default character
encoding will be used. See Sec-
tion 4.5, File Encoding for de-
tails.

Controls the number of errors
that are reported during the

24

3.10.2

3.10.3

Curam Web Client Reference Manual

Name Re- Description
quired

RS build process before the build
terminates. See Section 3.10.6,
Error Reporting for details.

Table 3.1 Environment Variables

Related Build Targets

The server application is built using Apache Ant build scripts, in the same
way as the client application is built. The application configuration files are
located in the <ser ver - di r > project and as a result, the targets for pro-
cessing these are part of the server project. The following targets are used to
process the client application configuration files:

i nserttabconfiguration

Combines and imports the client application configuration files onto the
database. See Section 6.4, Configuration Files for more details.

dat abase

The last step of the database target is to call the inserttabconfigura-
tion target. For more information the database target see the Cdram
Server Developers Guide.

Full and Incremental Builds

Thecl i ent build target will generate a complete web client application. If
no previous build output is present, running this target will build the entire
application. Thisis called a full build. Subsequently, on running this target,
the build scripts will compare your source files to the previously generated
output files to detect what you have changed and will update the minimum
number of output files possible. Thisis called an incremental build. An in-
cremental build is performed automatically as long as the output of a previ-
ous build is present and is much faster than a full build. To perform a full
build again, you must first run the cl ean target to remove all of the outputs
from the previous build.

[Building after Upgrading

If you upgrade your Caram application or Caram CDEJ, you must
perform afull build by first running the cl ean target. Failure to do
this could result in unpredictable behavior during the build process
or when then application is running.

Platform Specific Setting

=o

When executing the cl i ent build target from a text-only interface
(e.g., using a terminal emulator to access a UNIX® machine), -

25

3.10.4

3.10.5

3.10.6

Curam Web Client Reference Manual

Dy ava. awt . headl ess=t r ue must be added to the ANT _OPTS
environment setting.

Dependency Checking

For most changes that you make, you need only run the incremental build,
as the changes will be detected automatically and only the dependent output
files will be updated. However, some changes are not detected and you may
need to run a full build for your changes to take effect. In particular, if you
change a setting inthe cur am conf i g. xm configuration file that affects
the build process (typically by affecting the appearance of the pages in a
way that is applied at build-time), then you will need to perform afull build
manually, as the changes will not be detected automatically.

Dependency checking will identify changes to server interfaces used by
UIM pages. Server interfaces are defined in the application's UML model
and more information can be found in Section 3.10.7, Server Interface Ref-
erence. Only changes to interface properties, not their underlying domain
types, are recognized in an incremental build. For example, changing a
code-table name will not be detected by dependency checking and a clean
build will be required.

Build Logs

Every time you run the cl i ent target to build the application, all of the
messages produced by the build scripts are written to a file in the
<client-dir>/buil dl ogs folder. The files created are named for the
date and time on which the build was started. If errors occur during a build,
you may find it easier to review them by reading the log file instead of
scrolling through messages at the command prompt.

Error Reporting

One of the main steps performed by the client target is the generation of the
JSP files from the UIM files. This process will check the validity of your
UIM files as they are processed. The validity of the UIM filesis determined
in anumber of steps:

1. They must contain well-formed XML and must not attempt to include
VIM filesthat do not exist.

2. They must conform to the XML schemafor UIM and to some addition-
al context-sensitive rules that cannot be defined in the XML schema.

3. They must refer only to externalized strings that exist in their associ-
ated propertiesfiles.

4. They must meet a number of other requirements related to the connec-
tions made to the properties of server interfaces. For example, the prop-
erty names must be unambiguous, or an address field must be the only
field in acluster.

26

3.10.7

Curam Web Client Reference Manual

Normally, the processing will stop when the first error occurs and the indic-
ated problem must be fixed before the build can be executed again.
However, for the errors detected in the second step—the schema and
schema-related validation errors—there is an option to continue processing
as far as possible after an error occurs to allow you to locate and fix more
than one error at a time. Errors reported during the other steps will always
stop the build immediately.

To alow multiple validation errors to be reported during a build, set the
MULTI PLE_VALI DATI ON_ERRORS environment variable to true. If
not set, the default valueisf al se and the build will terminate after the first
validation error occurs.

The number of errors reported is limited by the number of UIM files being
validated at one time. The validation is typically performed on files in
groups of one hundred, so this option will cause al of the validations errors
in the current group to be reported before the build is terminated. No further
groups will be processed after a group containing files with validation errors
has been encountered.

Server Interface Reference

When developing UIM pages, you will need to know details about the
facade server interfaces and their properties so that you can select the in-
formation that you want to display on each page. This information is all
defined in the application's UML model, but, for your convenience, you can
generate simple reference documentation in HTML format to make the in-
formation more easily accessible.

The beandoc target generates this reference documentation for all of the
available fagade server interfaces (“classes’), creating many HTML filesin
the<cl i ent - di r>/ bui | d/ bean- doc folder. To view the documenta-
tion, open the i ndex. ht m file created in that folder in a web browser.
This document provides links to alphabetical lists of al classes, all opera
tions on those classes, all domain definitions used by properties of those op-
erations, and all code-tables referenced by any of those domain definitions.
Each of these lists provides further links for cross-references or providing
more details. Viewing a class will display alist of its operations and select-
ing an operation will show alist of its properties.

In UIM, you do not have to use the full property name; you can use only
part of the ending of the name as long as it is unambiguous. In the reference
documentation for each operation, both the full property name and the
shortest, unique ending of the property name are given. Thiswill help you to
choose a name that is short and readable, but that will not cause any build
errors later.

Beside many of the class, operation, and property names, you will see a
Copy button. Clicking this button will copy the name to the clipboard, al-
lowing you to paste it into your UIM file. For property names, the shortest
unique name is copied. Copying to the clipboard using the Copy button only

27

3.10.8

3.10.9

Curam Web Client Reference Manual

works in Microsoft®Internet Explorer. In other browsers, you will have to
select the text and use the normal copying commands.

Page Previews

Page previews are produced by running the cl i ent-wi t h- previ ews
build target. Thiswill generate static HTML pages for the default locale that
can be opened in a browser to give you an impression of what the page will
look like when the application is running. The HTML pages are located in
the<cl i ent - di r >/ WebCont ent / Pr evi ews folder. You do not need
to start a server to view the pages. The pages display a default value for
each field but do not support any user-interaction (buttons, links, pop-ups,
etc. do not function). The preview page represents only the main content
area of the page (the part specified in UIM) and not the sidebar or page
header or footer.

The default values for the fields are defined by associating a default value
with the domain definition of the field. These default values are used only
for the preview pages and are defined in the domai n- def aul t s. xm
filein<cl i ent - di r>/ conponent s/ cor e. Overriding thisfile in oth-
er componentsis not currently supported so it must be modified in place.

The file uses assimple XML format, a sample of which is shown below. The
root element is DOMAI N DEFAULTS. This element contains one DOVAI N
element for each domain definition for which a default value is to be
defined. The DOVAI N element requires a NAME attribute specifying the do-
main name, and a DEFAULT attribute specifying the default value for that
domain.

<DOVAI N_DEFAULTS>
<DOVAI N NAME="MY_DOVAI N' DEFAULT="M/ val ue"/>
<DOVAI N NAME=" YOUR_DOVAI N' DEFAULT="Your val ue"/>
</ DOVAI N_DEFAULTS>

Example 3.2 Default Preview Values for Domain Definitions

When generating preview pages, if there is no default value defined for a
domain, a warning message will be displayed. These warnings will not pre-
vent the preview page from being generated and a fall-back value will be
used in the generated page (for example, “[field-value]”). Note that fields
that have a complex domain value are not parsed or processed in the normal
manner. Most of these are simply replaced by an image of the typical output
and no default value is required. Complex fields like this are described in
Chapter 8, Domain Specific Controls.

UIM Generator Tool

The UIM Generator tool provides a user interface for automatically generat-
ing aUIM page for a particular server interface.

To start the UIM Generator tool:

28

3.10.10

Curam Web Client Reference Manual

1. Open acommand prompt and change to the <cl i ent - di r > folder.
2. Runbuild uingen.

3. Thefirst time you run the UIM Generator you will be asked to locate a
Server AccessBeans. xml file. Thisfileis generated by thecl i -
ent target and can befoundinthe<cl i ent - di r >/ bui | d folder.

Once the UIM Generator has started, you should see a screen containing the
following:

* A File menu containing options to view your current configuration set-
tings and to exit the application.

» A treeon theleft hand side which lists all the server interfaces in the ap-
plication.

» Two options, Display Phase and Action Phase, which determine when
the selected server interface is called in the generated page.

» A Make Page button which generates the UIM for the current settings.
To generate a page perform the following:

1. Select the interface you wish to test from the tree (e.g. Register-Per-
son.read).

2. Select the phase in which the interface should be called, for example,
Action. Action phase pages call the interface when the page is submit-
ted. Data can be entered for each input field and a button is generated
to submit the page.

3. Click the Make Page button and you will be asked to specify alocation
for the generated UIM. You can change the default name if you wish.
The location should be in the appropriate component folder of your ap-
plication.

A UIM file and a properties file are generated. The labels for each field are
given defaults based on the name of the server interface property associated
with the field.

External Client Applications

Due to the webclient directory containing a mix of components that are tar-
geted for different EAR packaging, it can be difficult to use the single de-
velopment environment and component order to develop and test these.

To allow for thisabuild target ext er nal - cl i ent will allow for creation
of an environment and building of the components specified for an EAR
entry inthedepl oynent _packagi ng. xm .

The target requires a parameter - Dapp which should refer to the name of an
EAR entry withinthedepl oynent _packagi ng. xm .

29

3.11

3.11.1

3.11.2

Curam Web Client Reference Manual

bui |l d external -client -Dapp=Sanpl ePublicAccess

Example 3.3 external-client invocation

The build target will copy the components specified for this EAR entry to a
webcl i ent\ bui | d\ apps\ <app nane> directory and here will both
build the project and create the relevant Eclipse project configuration files to
allow for the project directory to be imported into Eclipse and devel opment-
type testing to be performed on these external client applications.

Deployment

Overview

A detailed description of the deployment procedure is provided in the
Curam Deployment Guide appropriate for your application server and oper-
ating system. However, there are a number of configuration settings avail-
able in your web client application project prior to deployment. These set-
tings are described below.

Configuring the Application

The ApplicationConfiguration. properties file defines the
most important application configuration settings. The file should be located
inthe cur am omega3 sub-folder of the<cl i ent - di r >/ JavaSour ce
folder. When you create a new application, this folder will contain a sample
filenamed I nitial _ApplicationConfiguration. properties.
You should copy this file and rename it to Appl i cati onConfi gur a-
tion. properti es and change the settings to match your requirements.
For the installed Caram Application, this will be already be done for you,
but you may still want to make some changes.

The properties that may be set in thisfile are as follows:

dat ef or mat
Example: dat ef ormat =M d yyyy

The application-wide date format used when displaying dates or when
parsing dates entered by a user. This specific format (per user) is not
supported within the Ctram application.

The value of dat ef or mat can be set to any one of a number of pre-
defined formats. Formats in day-month-year order: “d M yyyy” (the de-
fault), “d MMM yyyy”, “d MMMM yyyy”, “dd MM yyyy”, “dd MMM
yyyy”, “dd MMMM yyyy”. Formats in month-day-year order: “M d
yyyy”, “MMM dyyyy”, “MMMM d yyyy”, “MM dd yyyy”, “MMM dd
yyyy”, “MMMM dd yyyy”. Formats in year-month-day order: “yyyy M
d’, “yyyy MMM d*, “yyyy MMMM d", “yyyy MM dd", “yyyy MMM
dd”, “yyyy MMMM dd”.

30

Curam Web Client Reference Manual

In these predefined formats, “d” represents the day number, “dd” rep-
resents the two-digit day number padded with a leading zero if neces-
sary, “M” represents the month number, “MM” represents the two-digit
month number padded with aleading zero if necessary, “MMM” repres-
ents the abbreviated month name, “MMMM” represents the full month
name, and “yyyy” represents the four-digit year. An upper-case letter
“M” is used for the month, as the lower-case letter “m” is used in Java
applications to represent the minute value when formatting times. The
formats are specified using a space character as a separator. The actua
separator character that you wish to use is specified separately.

dat esepar at or
Example: dat esepar at or =/

Thevalue of dat esepar at or canbesettooneof “.”,“,”, /", or “-".
The date separator character that will be applied to the specified date
format. The value can be set to any one of a number of predefined sep-
arator characters: “/” (the default), “.”, *,”, or “-".

ti mef or mat
Example: ti mef or mat =HH nm

Thevalueof t i mef or mat canbesettooneof “hmsa’, “hma’, “H
m”, “hh mm &', “HH mm”, “hhmm a’ or “HHmMmM". Where not spe-
cified, “HH mm” is used as the default.

ti mesepar at or
Example: ti mesepar at or =:
The value of t i mesepar at or can be set to one of “:” or “.”. Where
not specified, “:” is used as the default.
server Connecti onType
Example: ser ver Connecti onType=si ngl e

Do not change this value.
addr essFor mat Type
Example: addr essFor mat Type=US

Default address format for addresses in the application.
addr essDef aul t Count r yCode
Example: addr essDef aul t Count r yCode=US

Default, application-wide country code for addresses. This must match
an entry on the server application's Count r y code table.

upl oadMaxi munti ze
Example: upl oadMaxi nunSi ze=-1
Maximum file upload size in bytes. Files that exceed this size will be re-
jected. This should be set to match the allocated storage in the database

for fields containing uploaded files. This cannot be tailored to suit dif-
ferent database fields. The value - 1 indicates no maximum limit.

31

Curam Web Client Reference Manual

upl oadThr eshol dSi ze
Example: upl oadThr eshol dSi ze=1024

The maximum size in bytes of an uploaded file before a temporary file
will be created on the server to reduce the memory overhead of storing
the data as it is being processed. By default, uploaded files are written
to temporary disk storage if they exceed 1024 bytes.

upl oadReposi t oryPat h
Example: upl oadReposi t oryPat h=c: /tenp

Temporary files created during file upload will be written to this loca-
tion if they exceed the upload threshold size. By default files will be
written to the Java system temporary folder (as defined by the Java sys-
tem property property j ava. i o. t npdi r).

use. synchroni zer. t oken
Example: use. synchr oni zer. t oken=t rue

Whether to use a synchronizer token to prevent accidental re-
submission of forms due to use of the browser's Back button. Can be set
tot rue (default) or f al se.

synchroni zer . t oken. ti neout
Example: synchroni zer. t oken. ti meout =1800

A synchronizer token will expire if its associated form is never submit-
ted. Values are specified in seconds. The default value for this property
is 1,800 seconds.

errorpage. st acktrace. out put
Example: er r or page. st ackt race. out put =f al se

The value for this property istrue or f al se, withtr ue as the de-
fault.

Stacktrace output is used in the development environment for debug-
ging purposes. When the value for this property ist r ue, the Java ex-
ception errors are output into the HTML error pages.

The property must be set to to f al se in a production environment, e.g.
error page. st acktrace. out put =f al se, otherwise it will in-
troduce security vulnerabilities into the application. The HTML error
pages, which contain the Java exception stack trace, are not subject to
the Caram's application malicious code and filtering checks and will po-
tentially leave the application open to injection attacks, e.g. Cross-site
scripting and link injection.

dbt oj ms. credenti al s. getter

Example: dbt o-
jms.credential s.getter=curam sanpl e. Credenti al sG
etter

Specifies the name of the class used to obtain credentials to be used for
triggering a DBtoJMS transfer. If not specified, a default set of creden-

32

Curam Web Client Reference Manual

tials will be used for this operation. For more information about DBto-
JMS and using this property please see section entitled 'Security Con-
siderations of the Cdram Batch Processing Guide.

nodal . di al ogs. m ni mrum hei ght

Example: nodal . di al ogs. m ni nrum hei ght =200

Specifies the minimum required height for a modal dialog in pixels and
will be used when the calculated height of the modal dialog is less than
the minimum required height or the specified height is less than the
minimum required height. The default value of 100 pixels appliesif this
IS not set.

t abSessi onUpdat eCount Thr eshol d
Example: t abSessi onUpdat eCount Thr eshol d=10

Specifies the number of tab session data updates that must be received
before the data is persisted from the web tier to the database. Once the
threshold is reached, the recent updates are written and counting starts
again from zero until the threshold is reached. A value of one causes
writes on every update. A value of zero (or a negative or invalid value)
disables writing based on update counts.

The default is every 10 updates.

For more information consult Chapter 7, Session Management.
t abSessi onUpdat ePeri odThr eshol d
Example: t abSessi onUpdat ePer i odThr eshol d=120

Specifies the number of seconds that must have elapsed since the last
time session data was persisted from the web tier to the database before
a new update will trigger another write. A value of zero (or a negative
or invalid value) disables writing based on update periods.

The default value is 120 seconds, or 2 minutes.

For more information consult Chapter 7, Session Management.
r esour ceCacheMaxi munti ze
Example: r esour ceCacheMaxi muntSi ze=16000000

Specifies the size of the application resource store cache. By default, the
cache is limited to 16MB (approx.) in size. When that limit is reached,
the least recently used resources will be gjected from the cache to make
room for newly requested resources that are not already in the cache.
The size of the cache is specified in bytes.

Note: If a single resource exceeds the size limit for the cache, it will not
be cached.

dynam cU M ni t Model OnSt art
Example: dynam cUl M ni t Model OnSt art =f al se

Indicates if the Dynamic UIM system should initialize the required in-
formation on the application model during startup or when it is first re-

33

3.11.3

Curam Web Client Reference Manual

quired for a Dynamic UIM page. The default value is t rue and it
should be set to f al se to cause the model to be initialized when it is
first required by a Dynamic UIM page.

See Section 5.12, Dynamic UIM System Initialization for more detailed
information.

sanitize.link. paraneter
Example: sani ti ze. | i nk. par anmet er =t r ue

Enables protection from link injection attacks. The default value is
fal se.

When the value of this property ist r ue, any parameters in the request
URL containing links to content with the Caram application are valid-
ated using aregular expression. The validation ensures that a third party
hasn't replaced the link value with amalicious link to an external site.

Tracing

As described in Chapter 4, Localization , the file webcli -
ent \ JavaSour ce\ cur am onega3\ i 18n\ CDEJResour ces. prop
erti es defines properties for localizing certain features of the application.
It also contains the setting to enable tracing of server function calls on the
web-tier. Add the following property to enable this tracing:

TraceOn=true

When enabled, the inputs to and outputs from all server function calls will
be written to “ Standard Out” .

Customizing the Web Application Descriptor

The web application descriptor—defined in a file named web. xm —is a
standard Java EE web application file. A Ciram web application contains
various settings that a developer may wish to change, for example, server
connection settings and the session time-out. The default settings can be
seen in the following files based on the environment you are running the ap-
plication from:

Development Environment

<cdej -di r>/1ib/curam web/ VEB- | NF/ web. xni
IBM ® WebSphere ® Application Server

<cdej - di r>/ ear/ WAS/ war / V\EB- | NF/ web. xm
WebL ogic® Application Server

<cdej - di r>/ ear/ W.S/ war / V\EEB- | NF/ web. xni

Customizing the web. xm file is done differently depending on whether
you are changing the version of the file to be included in the Ciram EAR
file or the version to be used at devel opment time (e.g. in Apache Tomcat).

Customizing theweb. xm for development time can be done by creating a

34

Curam Web Client Reference Manual

custom version of the web. xm file in the WebCont ent / VEEB- | NF dir-
ectory of a particular component, e.g. cust om Where multiple versions of
web. xn exist in different components, the version in the highest preced-
ence component, based on CLI ENT_ COMPONENT _ ORDER, will be used.

The web. xm used within a Cdram EAR file can be customized using the
depl oynent packagi ng. xm file located in the Curam Server
proj ect/ confi g directory. It is possible to specify a custom web. xni
using the cust om web- xm property. For more information on customiz-
ing web. xm at runtime please consult the Caram Deployment Guide for
the relevant Application Server.

When customizing web. xm , the existing security, filter and serviet set-
tings should not be modified.

The server and port settings in Applicati onConfi gura-
tion. properti es are now obsolete and no longer need to be specified.
They are now automatically configured as cont ext - par amelements in
web. xm when the Ciram EAR file is created. The server and port values
are set according to the values specified in the AppSer ver . properti es
files (see the Car am Server Depl oynent Cui des for more inform-
ation), with the exception of the web. xm used at development time. The
development web. xni located in
<cdej -di r>/11i b/ curanf web/ VEB- | NF/ web. xm , has the server
and port set to localhost and 900 respectively.

To change or add a locale, locate the i ni t - par am elements of the Ac-
ti onServl et and duplicate them, changing the value of the par am
name element as appropriate so it is in the form confi g/
<l ocal e- code>. See the example below.

<init-paran>

<par am nane>conf i g/ en</ par am nane>

<par am val ue>/ WEB- | NF/ st rut s- confi g. xm </ par am val ue>
</init-paranr

Example 3.4 Configuring an Application Locale

By default the web.xml for both WebSphere and WebL ogic application serv-
ersis configured to enforce secure http (https), i.e. a secure SSL connection
between the web client and the server. This can be modified by changing the
transport - guar ant ee from CONFI DENTI AL to NONE. Note, this
does not disable access to the Caram web client over https, but enables addi-
tional access via http. Please refer to the Curam Security Handbook for fur-
ther details.

Customizing the 404 or Page Not Found error response.

The 404 or Not Found error message is a HT TP standard response code in-
dicating that the client was able to communicate with the server, but the
server could not find what was requested. The default web.xml files for
WebSphere, and WebL ogic specify a default error page for the Clram ap-
plication when an HTTP 404 error is thrown by the application server. The

35

3.12

3.12.1

3.12.2

Curam Web Client Reference Manual

following is the error message displayed on that default page:

* The page you have requested is not available. One possible cause for
thisisthat you are not licensed for the necessary Curam module - if that
is the case, you can use the User Interface administration screens to re-
move these links.

This message may be customized by adding a HIT-
TP404Error. properties file into the webcl i -
ent\ JavaSour ce\ cur am onega3\i 18n folder of the application
and overriding theer r or . nessage property specified in that file.

Customization

Overview

A Curam web client application can be customized without modifying the
original components or their artifacts. This makes it easier to upgrade a base
application while preserving your custom changes to that application. In this
section you will see how the customization process works and how you can
modify or extend a base application.

Customizations are applied according to the component order. The changes
that you make to customize an application should be made in a separate
component from the application's original components. The Curam Applica-
tion will be installed with a number of components (the core component and
a number of other add-on components). To make customizations, create a
new component folder—a new sub-folder in the folder called conpon-

ent s—and add that component's name—the folder name—to the compon-
ent order (see Section 3.7.2, Component Order). You will aways want to
add your component name to the beginning of the component order to give
it the highest priority when artifacts are being selected at build-time. You
can add more that one custom component, but you must decide what their
relative position in the component order should be.

To begin with, your custom component will be an empty folder. Y ou make
your customizations by adding artifacts (e.g., UIM pages, configuration,
files, etc.) to this component folder. You can create arbitrary sub-folders to
help you organize these artifacts. You can customize an application by
adding new artifacts, overriding existing artifacts, or merging new content
with existing artifacts.

Adding New Artifacts

You can add new artifacts to extend a base application. To add a new arti-
fact, you ssimply create the new file in your component folder. The file name
of the artifact should not be the same as the file name of an artifact in anoth-
er component. If it is, the artifact will override another artifact or be merged
with one. All types of artifacts can be added to an application in this man-

36

3.12.3

3.12.4

Curam Web Client Reference Manual

ner, note artifacts added to the WebContent sub-folder will always override
other delivered artifacts, as described in Section Section 3.12.14, Custom
Resources .

Overriding or Merging Artifacts

Some types of artifacts can be overridden (effectively replaced) by adding
an artifact with the same file name as an artifact in another component to
your custom component. When building the application, the artifact in the
highest priority component will be selected and the others ignored. Not all
types of artifacts are overridden so completely. Other types of artifacts are
merged with the same named artifacts in the lower priority components. The
content of all of the artifacts is combined and, where the content is related,
the content from the highest priority component is selected. The customized
artifacts only need to share the same file name, they do not have to share the
same relative folder location, though you may find it advantageous to organ-
ize them in asimilar manner.

For example, for UIM files that share the same name, the file in the highest
priority component will be selected and the others ignored; but for proper-
ties files that share the same name, all of the properties are merged together
and, where the files contain properties with the same key name, the value of
the property from the file in the highest priority component will be used.
When building an application, the artifacts in the components are not modi-
fied. The selection and merging of artifacts is performed in temporary loca-
tions, leaving the original artifacts intact.

The different ways in which artifacts are merged or overridden is covered in
the sections below.

Externalized Strings

All string values in UIM documents and JavaScript must be externalized.
This aids maintenance and allows the application to be localized. JavaScript,
UIM pages and UIM views can reference externalized strings.

The syntax of a properties file is simple. Each line contains a name=value
pair, where the name is an arbitrary name for the string (it should not con-
tain the “=" character), and the value is the localized string value. Blank
lines and lines beginning with a “#” character are ignored. Example 3.5, A
Sample Properties File contains an example. The syntax is defined by the
java. util.Properti es classprovided with your Java Runtime Envir-
onment; you can consult the API documentation for that class for more de-
tails.

It is worth noting that the property value will be reproduced in the final ap-
plication page exactly as you have typed it in the properties file. The value
can contain any character from any language and it does not matter if that
character is reserved in XML, HTML or anywhere else—it will be safely
processed and displayed as you intended in the application.

37

3.12.5

Curam Web Client Reference Manual

If you find that you need to enter a character in a property value that you
cannot generate from the keyboard, the only one way to do it is to use the
Unicode value of that character in a Unicode escape sequence—a backslash
and a “u” followed by the four-digit hexadecimal character code. For ex-
ample, if you want to enter a non-breaking space, the corresponding Uni-
code escaped sequence is “\u00a0”. An example of this is included in the
sample properties file below.

Main Titles
MyPage. Ti tl e=My First Page
Cluster.User.Titl e=User Details

Field | abel s
Fi el d. Fi r st Nane. Label =Fi r st Nane
Fi el d. Sur nane. Label =Sur nane

O her
Separ at or =\ u00a0

Example 3.5 A Sample Properties File

Asyou can see, using “.” charactersis a useful way to add some structure to
the propertiesin the file, though it is not a requirement.

When customizing an application, you can customize properties independ-
ently of pages and views by adding the appropriately named properties file
to your custom component and defining the externalized string properties.
You do not need to add the corresponding page or view file to your com-
ponent and you do not need to redefine any of the properties that you do not
want to change.

Images

All references to icons or other graphics within a UIM document are extern-
alized in a manner similar to normal strings. The | mage. properties
file (you can include one in each component, if you wish) uses the same
format as the string properties files to associate image references with image
file names. The image files should be stored in the component's | mages
sub-folder and can be organized into a folder structure below this folder if
desired. Most web browsers will support images in the portable network
graphics (PNG) format, the graphics interchange format (GIF), and the joint
photographic experts group (JPEG) format.

The | mage. properti es file ssimply associates a key with a path to the
corresponding image file specified relative to the component folder. A
sample of this file is shown below. To use these images, the key is used as
the value of the | MAGE attribute on the ACTI ON_CONTROL element in the
UIM page.

But t on. Ok=I mages/ ok. gi f
But t on. Cancel =I mages/ cancel . gi f
MyPage. Titl e. | con=I mages/ bl uedot . gi f

Example 3.6 A Sample | mage. properti es File

38

3.12.6

Curam Web Client Reference Manual

The entriesin thel mage. pr operti es filein the core component can be
overridden individually or in total by creating an | mage. properties
file in your custom component and overriding the properties as required.
You can override the image files themselves by creating files in your cus-
tom component with the same names as the files in the core component.

If you need to localize your images for different languages, you can add
severa | mage. properti es filesusing a different locale code as the file
name suffix. See Section 4.6, Locales for details on locale code suffixes.
Each properties file should define the same keys, but the image files can be
different for each locale. If only some of the images need to be localized,
the common images can be defined in the default | nage. properti es
file (the one without the locale code suffix) and only properties for the local-
ized images in the other propertiesfiles.

Image Mapping

Images can also be used within the Caram application to represent different
values of displayed fields instead of presenting the value as text. For ex-
ample, a typical boolean value of t r ue or f al se could be represented by
two images of, say, agreen check mark and ared X.

The mapping between values and images is stored in the | mageMapCon-
fig.xm file. Thereis no need to specify thisin any way in UIM. If you
use a property with a domain listed in the | mageMapConfi g. xm file, it
will automatically be displayed as an image.

<|Tap>
<donmi n nane="MY_BOOLEAN" >
<l ocal e nane="en">
<mappi ng val ue="true"
i mage="1nmages/ Val uesTol mages/true. gi f"
alt="True"/>
<mappi ng val ue="f al se"
i mage="1nmages/ Val uesTol nages/ f al se. gi f"
al t="Fal se"/ >
</l ocal e>
<l ocal e name="fr">
<mappi ng val ue="true"
i mage="1nmages/ Val uesTol mages/true. gi f"
alt="Vrai"/>
<mappi ng val ue="fal se"
i mage="1mages/ Val uesTol mages/ f al se. gi f"
alt="Pas Vrai"/>
</l ocal e>
</ domei n>
</ map>

Example 3.7 A Sample | mageMapConfi g. xm file

In the example, a field with domain type MY_BOOLEAN has been assigned
an image mapping. Note that you should specify an image mapping for each
available locale even if the images used are identical. Thisis because the al-
ternative text (“alt text”) attached to the image will be different for different
locales. This text is important for accessibility reasons (users who have
visual difficulties might use an audio browser, for example, which will read
out the “alt text”).

39

3.12.7

3.12.8

3.12.9

Curam Web Client Reference Manual

| mageMapConfi g. xm filesin different components are merged with al
unique image mappings preserved. If the same value in the same locale is
mapped in two | mageMapConfi g. xm files in two different compon-
ents, the mapping from the higher priority component prevails.

CuramLinks.properties

The UIM LI NK element allows links to other client pages to be specified in-
directly. The PAGE_|I D REF attribute is a key into the Curam
Li nks. properti es filethat returns the actual 1D of the linked page.

Many links can point to the same page reference. The advantage of using a
page reference is that all the links can be updated by changing a single entry
inthisfile.

Each component can have its own Cur anlLi nks. properti es file. Dur-
ing generation, these individual fileswill be merged. Asusual, if a particular
key is present in more than one Cur anLi nks. properti es file the
component priority order is used to decide which value is retained.

XML Runtime Configuration Files

There are afew miscellaneous XML files that are used by the running client
application. To change any of these files, copy the origina file into the
cust omcomponent sub-directory and modify the copied file. The default
files can be found in <cdej - di r>/11i b. . The client generators will use
the xml file from the highest priority as specified by the CLI -
ENT_COVPONENT _ ORDER environment variable. The following isalist of
thesefiles:

e Cal endar Confi g. xm

« Dynam cMenuConfi g. xm

| CDynam cMenuConfi g. xni
 MeetingVi ewConfig.xm

+ RatesTabl eConfig. xm

* Rul esDeci si onConfi g. xni
* Rul esEditorConfig.xm

Further details on the customization of these configuration files are given in
Chapter 8, Domain Specific Controls.

Login Pages
A default login page is supplied, called | ogon. j sp and located in the

| i b/ curam web/j sp directory of the Cdram Client Development En-
vironment. This can be overridden by placing a copy, with the required

40

3.12.10

Curam Web Client Reference Manual

changes, in a webclient/conponents/<custom conpon-
ent >/ WebCont ent folder. However, there are some guidelines that
should be followed.

Firstly, the following JavaScript should be included in the head section of
the page:

<j sp:include page="no-dial og.jsp"/>
<script type="text/javascript"
src="${ pageScope. pat h1}/ CDEJ/j scri pt/curam util/Logon.js">
//script content</script>
<script type="text/javascript">
curamuti | . Logon. ensur eFul | PageLogon() ;
functi on wi ndow_onl oad() {
docurent . | ogi nform j _user nane. f ocus();
return true;

</script>
This prevents the login page from being loaded in a dialog window.

Secondly, if it is desired to use thej security_ check login mechan-
ism, the form submitted from the page should have an act i on attribute of
j _security check, a user name input with the nane attribute
j _username and a password input with the name attribute
j _password.

The Curam Server Developers Guide contains details of some common cus-
tomizations to the | ogon. j sp file to support an external user client ap-
plication and automatic login.

The styling of | ogon. j sp can be customized in the usual way. Simply
add relevant CSSto any . css fileinthe cust omcomponent.

JavaScript Files

The UIM SCRI PT element alows events on the page to trigger JavaScript
functions. You can simply provide a path to the JavaScript file that is relat-
ive to your component folder. For example, if you have a JavaScript filein a
sub-folder of your component folder: MyConponent /
scripts/nyScript.js,youcanjust refer to thisin the SCRI PT tag as
follows:

<SCRI PT SCRI PT_FI LE="scri pts/myScript.js" ...>

The paths you have specified will be fully preserved during application gen-
eration.

JavaScript allows HTML and CSS to be queried and manipulated. The un-
derlying HTML and CSS source code used to style the Caram application is
not documented. No guarantees are made about its stability across Curam
releases. Therefore, custom JavaScript may have to be updated in line with
changesto HTML structure.

A number of JavaScript APIs for use in the custom JavaScript code are
provided within the Curam application. They are documented in the follow-
ing location in your CDEJ installation:Cur am
CDEJ\ doc\ Javascri pt\index. ht M. Use of any other Cdram

41

3.12.11

Curam Web Client Reference Manual

JavaScript APIs, discovered through web developer tools for example, is not
supported. The same is true of the JavaScript APIs and functions of third
party frameworks used within the Cdram application. While there is nothing
prevent a developer using these, using them means the code will be im-
pacted by changes to the Clram application in future rel eases.

Using the techniques described above to add new JavaScript files to the cus-
tom component, new third party APIs could be added to Caram pages. This
is a the customers discretion, as no guarantees can be made on third-party
APIsthat have not been used and verified within the Clram application.

Cascading Stylesheets

Stylesheets (*. css) define the appearance (colors, fonts, etc.) of the client
pages when viewed in a web browser. Default stylesheets are provided for
the Cdram client application. It should never be necessary to edit these files,
you can view them in the WebCont ent / \EB- | NF/ css folder. Instead,
you can override particular styles or add new styles by creating new CSS
files in one of your application components. Any CSS file located in the
conmponent / <some- conponent > folder (or sub-folder) will be auto-
matically concatenated into the cust om css file. The cust om css file
isincluded on all pagesin the Caram client application.

The underlying HTML and associated CSS used to style the Clram user in-
terface can easily be viewed in a variety of ways, such as using developer
tools like the Internet Explorer Developer Toolbar. An example of custom-
ization would be to view the CSS used to apply a color to afield'slabel. The
same CSS style can then be added to your custom CSS file and a different
color specified. For example, assuming the HTML and CSS has been ana-
lyzed and the CSSrule . fi el d .| abel appliesthe label color, the fol-
lowing CSS could be used to override the default:

.field .label {
color: red;

This will take precedence over the Cldram style because custom CSS is in-
cluded on the page after Clram's default CSS. Another customization tech-
nigue would be to create a new rule that is an extension of a Cdram rule.
Continuing the above example, a developer analyzes the HTML and sees
that within the Curam application a span element is generated as a child of
the . | abel element. It is possible to create a new rule that is specific to
this span, even if Clram has not done so. The complete customization will
now look like this:

.field .label {
col or:red;

}
.field .l abel span{
col or: bl ue;

}

The underlying HTML and CSS source code used to style the Clram user

42

Curam Web Client Reference Manual

interface is not documented (hence the use of developer toolsto view it). No
guarantee is made about its stability across Curam releases. Therefore, cus-
tomizations as described above or any customization based on analysis of
the Caram application's underlying HTML and CSS may be lost as new re-
leases are taken on. The customizations may have to be re-applied by ana-
lyzing the HTML and CSS again.

2

n Note

Some UIM elements support the STYLE tag which allows specific
styling to be added to any instance of that element. This styling will
aways override that included in . CSS files. For more information,
see Chapter 5, UIM Reference.

Application Specific CSS

CSS can be specific to the application being viewed. Thei d of the applica-
tion (. app file) currently being viewed is added as a class on the BODY ele-
ment of each HTML page, allowing application specific styling to be added
to that page.

For example, a System Administrator views the SYSADMAPP application.
Thefollowing is an example of CSS specific to that application:

. SYSADVAPP . field .label {
col or:red;
}

Media Specific CSS

CSS can be specific to the type of media being used to view the web page.
So, for example, it is possible to have some styles that only apply when a
page is printed and others that only apply on-screen. It is possible to include
CSS specific to amedia using the following pattern:

<STYLE type="text/css">
@redi a print {
BODY {font-size: 10pt; background: white;}

}
@redi a screen {
BODY {font-size: nedium}

}
</ STYLE>

Browser Specific CSS

CSS can be specific to the browser used to view the web page. Internet Ex-
plorer specific CSS files can be created in any folder in a component. A
naming convention is used to distinguish between versions of Internet Ex-
plorer. Specifically the following suffixes are to be used:

e ie.css Thisfilewill beincluded in all versions of Internet Explorer.

43

3.12.12

Curam Web Client Reference Manual

¢ _ie6.css Thisfilewill beincluded in Internet Explorer 6.
 _ie7.css Thisfilewill beincluded in Internet Explorer 7.
i e8.css Thisfilewill beincluded in Internet Explorer 8.

Please note that devel opers should continue to strive for using the same CSS
on all browsers. Internet Explorer specific styling should only be used as a
last resort.

Application Configuration Files

The application configuration files for defining application, section and tabs
can be added to the
<server-dir>\conponent s\ <conponent - nane>\ cl i ent apps
directory, where <conponent - nanme> is a custom component. Sub-
folders are supported within the cl i ent apps folder. Any artifacts added
to this directory will overide files of the same name in the
<server-dir>\conponent s\ <conponent - nane>\t ab directory.
Thet ab directory contains files that are shipped with existing components
within the Curam application and these files should not be modified.

]

n Note

The OOTB Cdram application uses fragments of configuration arti-
facts that are merged into single files at build time, this is not sup-
ported for custom application configuration artifacts. (i.e) you
should not have a tab folder in EJBServ-
er\ conponent s\ cust om

When customizing application configuration files that ship with the Caram
application, the XML configuration file and .properties file should always
be customized as a unit. For example, a change to the SimpleApp.properties
file, associated with the SimpleApp.app file, should result in adding both
SimpleApp.app and SimpleApp.properties to the clientapps folder. These
files should be based on the merged version of the files. The inserttabcon-
figuration target can be used to get a development copy of the merged file.
See the Clram Server Developer Guide for more information.

There are afew general rules and best practices when working with the ap-
plication configuration files:

« The i d attribute on the root element of each configuration file must
match the name of the file. E.g. Si npl eApp. app must haveani d of
SimpleApp.

« Thei d attributes should not contain the period (.) or underscore ()
characters.

* Locaizable text should be added to a . properti es file which
matches the name of the configuration file. E.g. Si npl eApp. app will
have a corresponding Si npl eApp. properti es.

44

Curam Web Client Reference Manual

* Properties files can be re-used across configuration files. E.g. Per -
son.nav and Person.tab can shae the same Per-
son. properti es file

» Ensure when developing the XML files to add the proper namespace in-
formation. Thiswill alow for validation. For example:

<ac: application

Q)éc:application>

3.12.13 General Configuration

Overview

The curam confi g. xm file contains a number of genera-purpose con-
figuration options that affect the appearance or behavior of the web client
application. Each of the following sections describe in detail the main ele-
ments of this configuration file.

POPUP_PAGES
See Section 8.21, Pop-up Pages.

MULTIPLE_POPUP_DOMAINS
See Section 8.21, Pop-up Pages.

ERROR_PAGE

If an error occurs at run-time, the user will be redirected to a page defined
here. Depending on the error cause, two types of error page could be
provided for reporting system or application failure (or a default page for re-
porting both kind of errors could be configured instead).

<ERROR_PACE TYPE="SYSTEM' PAGE | D="Cur anBystenError"/>
<ERROR_PACE TYPE="APPL| CATI ON' PAGE_| D="Cur ankrror"/>

Example 3.8 Error_Page Section Example

<ERROR_PAGE PAGE_ | D="Curankrror"/>

Example 3.9 Error_Page Section Example with one default page

Please note: when overriding the ERROR _PAGE setting it is not possible for
a custom configuration to define an ERROR_PACGE element without a TYPE
attribute if a low priority component defines an ERROR_PAGE element
with a TYPE attribute. In that case, the custom component needs to use a
TYPE attribute and must override both supported types of error page to get

45

Curam Web Client Reference Manual

the desired effect

MULTIPLE_SELECT

Domains which should display as multiple select list boxesin forms are spe-
cified here. The MULTI PLE attribute, if true, allows multiple selection in
the list.

<MJLTI PLE_SELECT>
<DOVAI N NAMVE="PRI MARY_| D' MJULTI PLE="true"/>
<DOVAI N NAME="OTHER | D' MJULTI PLE="true"/ >
</ MULTI PLE_SELECT>

Example 3.10 Multiple Select Section Example

FILE_DOWNLOAD_CONFIG
See Section 5.9.3.1, File Downloads.

ENABLE_COLLAPSIBLE_CLUSTERS

Set to f al se to disable collapsible clusters. By default this value is set to
true.

<ENABLE COLLAPS| BLE CLUSTERS>f al se</ ENABLE COLLAPS| BLE CLUSTERS>

Example 3.11 Disable Collapsible Clusters Example

APPEND_COLON

Settot r ue to automatically append colonsto FI ELD and CONTAI NER la-
bels within CLUSTER elements.

<APPEND_COLON>t r ue</ APPEND_COLON>

Example 3.12 Append Colon Section Example

ADDRESS_CONFIG
See Chapter 8, Domain Specific Controls.

ADMIN

The ADM N element can contain any number of CODETABLE_ UPDATE,
TAB_CONFI G_UPDATE and RESOURCE _UPDATE elements. The
PAGE_| D attribute of these elements specifies the page that will clear the
relevant caches whenever its submit action is called.

<ADM N>
<CODETABLE_UPDATE PAGE_| D="CodeTabl eAdni n" />
</ ADM N>
<TAB_CONFI G_UPDATE PAGE_I| D="Appl i cati onConfi gAdmi n"/>

46

Curam Web Client Reference Manual

<RESOURCE_UPDATE PAGE_| D="publ i shResour ceChanges"/ >

Example 3.13 Admin Section Example

Please note: The caches are only cleared for the current instance of the web
application. Other instances will have to be restarted to receive the code ta-
ble updates. This feature applies at development time only.

STATIC_CONTENT_SERVER

This option specifies a base URL for all static content such as images, CSS
files and JavaScript files.

<STATI C_CONTENT _SERVER>
<URL>htt p: // www. myserver. com stati cresources/ </ URL>
</ STATI C_CONTENT _SERVER>

Example 3.14 Static Content Base URL Example

The forward slash at the end of the URL is optional. A full build is required
to pick up this setting. This option alows the relocation of all static content
to a separate server. If this option is used, the following folders and files
need to be duplicated on the static content server:

« WebContent/*.*

« WebContent/CDEJ/ **/* *

« \WebCont ent/ genl mages/ **/* *
« WebContent/ | mages/**/*. *

FIELD_ERROR_INDICATOR

This option indicates if field level error indicators are to be displayed when
an error occurs. The error message is the alt text of the image and is avail-
able as a tool-tip when the mouse is hovered over the image. The feature
only appliesto text input and date-time fields. Also, this feature only applies
to web-tier generated messages (data-type validation, mandatory fields etc.),
it does not apply to messages generated from server side code since there is
no way to associate a server exception with a client side field.

<FI ELD_ERRCR | NDI CATOR>t r ue</ FI ELD_ERRCR | NDI CATOR>

Example 3.15 Field Error Indicators Example

Please note if the FI ELD_ERROR | NDI CATOR element is not specified, it
defaultsto FALSE.

SECURITY_CHECK_ON_PAGE_LOAD

All server functions used on a Clram screen are checked for authorization

47

Curam Web Client Reference Manual

when the page isinitially loaded. If a user fails authorization for any of the
server functions, an authorization error message will be displayed and the
user will be prevented from viewing the page.

The SECURITY_CHECK_ON_PAGE_LOAD setting in curam-config.xml
allows this functionality to be disabled and defers the authorization check to
the server. For example, on an edit page that has both DISPLAY and AC-
TION server interfaces, the user must have authorization rights for the DIS-
PLAY server interfaces at a minimum. If they do not have authorization
rights for the ACTION server interfaces, the page will display, but they will
get an authorization error message when they submit the page. To disable
authorization on page load add the following to the cur am conf i g. xni :

<SECURI TY_CHECK_ON_PAGE_LOAD>f al se</ SECURI TY_CHECK_ON_PAGE_LOAD>

Example 3.16 Security Check on Page Load Example

Please note if the SECURI TY CHECK ON PAGE LOAD eement is not
specified, it defaults to TRUE.

ENABLE_SELECT_ALL_CHECKBOX

The multi-select check-box W DGET described here displays a column of
check-boxes used to select items in a LI ST. The following configuration
setting causes a check-box to be displayed in the column header that can be
used to select or de-select all of the check-boxes at once.

<ENABLE_SELECT_ALL_CHECKBOX>t r ue</ ENABLE_SELECT_ALL_CHECKBOX>

Example 3.17 Enable Select All Check-box Example

Please note if the ENABLE_SELECT _ALL_CHECKBOX element is not spe-
cified, it defaultsto FALSE.

TRANSFER_LISTS_MODE

When set to t r ue al multiple selection controls in an application are dis-
played as Transfer List widgets.

<TRANSFER LI STS_MODE>t r ue</ TRANSFER LI STS_ MODE>

Example 3.18 Transfer Lists Mode Example

Please note if the TRANSFER LI STS MODE element is not specified, it
defaultsto FALSE.

HIDE_CONDITIONAL_LINKS

When set to t r ue all conditiona links that evaluate to false are not dis-
played. When set to f al se all conditional links that evaluate to false are
displayed as disabled links.

48

Curam Web Client Reference Manual

<HI DE_CONDI TI ONAL_LI NKS>t r ue</ HI DE_CONDI TI ONAL_LI NKS>

Example 3.19 Hide Conditional Links

Please note if the HI DE_CONDI TI ONAL_LI NKS element is not specified,
it defaultsto TRUE.

DISABLE_AUTO_COMPLETE

When set tot r ue auto complete on all input fields is disabled. When set to
f al se auto complete on al input fields is enabled.

<Dl SABLE_AUTO_COVPLETE>t r ue</ DI SABLE_AUTO COMVPLETE>

Example 3.20 Disable Auto Complete

Please note if the DI SABLE_AUTO_COVPLETE element is not specified, it
defaultsto FALSE.

SCROLLBAR_CONFIG

The SCROLLBAR_CONFI Gelement allows a vertical scrollbar to appear on
a Ll ST or CLUSTER element after a maximum height is reached. It can
contain two or less ENABLE SCROLLBARS elements. The EN-
ABLE_SCROLLBARS element has the following attributes:

* TYPE : Specifies the element in which vertical scrollbars are to be en-
abled. Canonly besetto LI ST or CLUSTER.

o MAX_HEI GHT : Specifies the maximum height a CLUSTER or LI ST
can reach before a vertical scrollbar is displayed.

<SCROLLBAR_CONFI G
<ENABLE SCROLLBARS TYPE="LI| ST" MAX_ HEl GHT="150" />
<ENABLE SCROLLBARS TYPE="CLUSTER' MAX HEl GHT="100" />
</ SCROLLBAR_CONFI G

Example 3.21 Scrollbar Configuration

Please note if the SCROLLBAR_CONFI G element is not specified no LI ST
or CLUSTER element will display avertical scrollbar.

PAGINATION

This element configures the LIST pagination options for the whole applica-
tion. Individual lists can override the global settings.

<PAG NATI ON ENABLED="t r ue" >
<DEFAULT_PAGE_SI ZE>15</ DEFAULT_PAGE_SI ZE>
<PAG NATT ON_THRESHOLD>15</ PAG NATI ON_THRESHOLD>
</ PAG NATI ON>

Example 3.22 Sample Pagination Configuration

49

Curam Web Client Reference Manual

Option Name Required Default Description

ENABLED No true Enables the ability to page through
lists displayed in Clram pages.
Any LIST longer than the con-
figured minimum size will display
only thefirst "page" of dataand
the pagination controls will be dis-
played below the list.

DE- No 15 Specifies the page size the list will

FAULT _PAGE_S get by default. The page size can

| ZE be then changed at runtime by the
USeEr.

PAG NA- No Based Specifiesthe minimum list size at

TI ON_THRESHO onthe which pagination will be enabled.

LD DE- For shorter lists there will be no

FAULT pagination, even if otherwise pa-
PAGE gination is switched on.

SIZE

value.

Table 3.2 Pagination configuration options

Customizing Configuration Settings

The core component contains a copy of thecur am confi g. xni file, but
you are free to augment and override the settings by including your own
curam confi g. xm fileinyour custom component. All of the individu-
al curam confi g. xm fileswill be merged into one at generation. The
effect of this merging depends on each particular setting.

Some entries are global settings for the application and so must only appear
once in the final output. These entries are as follows:

« HELP
ERROR_PAGE

« APPEND_COLON

« ADM N

« POPUP_PAGES/ CLEAR TEXT | MAGE

« MULTI PLE_POPUP_DOMAI NS/ CLEAR TEXT_| MAGE
. STATI C_CONTENT_SERVER

If you define one of these in a custom component, it will completely over-
ride that of the core component.

The other entries will be merged. This applies to the following elements:

50

Curam Web Client Reference Manual

« MULTI PLE_POPUP_DOMAI NS
« POPUP_PAGES

« MULTI PLE_SELECT

. FI LE_DOANLOAD CONFI G

« PAG NATI ON

. ADDRESS_CONFI G

Note, however, that particular address formats can be overridden. So, for ex-
ample, if the core component had the following address format definition:

<ADDRESS FORVMAT NAME="US' COUNTRY_CODE="US">
<ADDRESS ELEMENT NAME=" ADD1"
LABEL="Cor e. Label . Addr ess. 1"
MANDATORY="t r ue"/ >
<ADDRESS ELEMENT NAME=" ADD2"
LABEL="Cor e. Label . Addr ess. 2" />
<ADDRESS ELEMENT NAME="CI TY"
LABEL="Cor e. Label . City" />
<ADDRESS_El EMENT NAME=" STATE"
LABEL="Cor e. Label . St at e"
CODETABLE=" Addr essSt at e"
MANDATORY="t r ue"/ >
<ADDRESS_ELEMENT NAME="ZI P"
LABEL="Cor e. Label . Zi p" />
</ ADDRESS FORVAT>

Example 3.23 Extract from cur am confi g. xm File (1)
and if your custom component had the following address format definition:

<ADDRESS FORMAT NAME="US' COUNTRY_CODE="US">
<ADDRESS ELEMENT NAME="ADD1"
LABEL="Cust om Label . Addr ess. 1"
MANDATORY="t r ue"/ >
<ADDRESS ELEMENT NAME=" ADD2"
LABEL="Cust om Label . Addr ess. 2" />
<ADDRESS ELEMENT NAME="CI TY"
LABEL="Cust om Label . City" />
<ADDRESS_El EMENT NAME=" STATE"
LABEL="Cust om Label . St at e"
CODETABLE=" Addr essSt at e"
MANDATORY="t r ue"/ >
<ADDRESS_ELEMENT NAME="ZI P"
LABEL="Cust om Label . Zi p" />
</ ADDRESS FORVAT>

Example 3.24 Extract from cur am confi g. xm File (2)

then it is the second one (i.e., the custom definition) that will appear in the
final merged curam confi g. xm file. This is because both address
formats have the same name (“US’).

Dividing the Configuration File

The curam confi g. xm file can be divided into manageable chunks. If
you like, you can take one part of the configuration and save it in afile with
adifferent name. Taking the previous address format configuration as an ex-

51

3.12.14

Curam Web Client Reference Manual

ample, you can create afile with the following contents:

<APP_CONFI G>
<ADDRESS_CONFI G>

<LOCALE_MAPPI NG LOCALE="en_US"

ADDRESS_FORMAT NAME=" US" >

<ADDRESS FORVAT NAME="US" COUNTRY_CODE="US">

<ADDRESS ELEMENT NAME=" ADD1"
LABEL="Cust om Label . Addr ess. 1"
MANDATORY="t r ue"/ >
<ADDRESS ELEMENT NAME=" ADD2"
LABEL="Cust om Label . Addr ess. 2" />
<ADDRESS ELEMENT NAME="CI TY"
LABEL="Cust om Label . City" />
<ADDRESS ELEMENT NAME=" STATE"
LABEL="Cust om Label . St at e"
CODETABLE=" Addr essSt at e"
MANDATORY="t r ue"/ >
<ADDRESS ELEMENT NAME="ZI P"
LABEL="Cust om Label . Zi p" />

</ ADDRESS_FORNAT>

</ ADDRESS_CONFI G>
</ APP_CONFI &

Example 3.25 Sample addr ess-confi g. xm File

Y ou would then save this with a file name that ends with - conf i g. xm

anywhere within your component, say, addr ess-confi g. xm . Note
that the file must have the same APP_CONFI G root element as the full
curam confi g. xm file. Aslong as you follow these conventions, all of
your configuration files will be merged into a single addr ess- con-

fig.xm fileat buildtime.

¥

Configuration File Names

Two naming patterns are used for most configuration files. Some
use the pattern XConf i g. xml and others X- conf i g. xnl , where
“X” is some prefix. For example, | mageMapConfi g. xm and
addr ess-confi g. xm . The former pattern indicates a stan-
dalone configuration file that is not related to other configuration
files. The latter pattern indicates that the file isreally just part of the
curam config. xm file

Custom Resources

Arbitrary files can be included in the web application by doing the follow-

ing:
1

At the root of a component, created a folder called WebCont ent , for
example
<cl i ent-dir>/conmponent s/ MyConponent / WebCont ent .

Place filesin thisfolder using any folder structure you wish.

When you run the client build target these files will be copied directly
to the <cl i ent - di r >/ WebCont ent which represents the root of
the web application. The folder structure will be maintained during the

copy.

52

Curam Web Client Reference Manual

Files included in the application in this way take precedence over the mer-
ging and overriding process as described in previous sections for other re-
sources. For example, if you include a CSS file in this way, the contents of
the file will not be included in the CSS overriding process described in Sec-
tion 3.12.11, Cascading Stylesheets. The copying of custom resources oc-
curs after other source artifacts are built and merged, so it is possible to re-
place existing resources. Care should be taken in this case. For example, it
would be possible to have a component with a file in WebCont ent /

VEEB- | NF/ struts-config.xm that would completely replace the
Struts configuration file generated by the client build and therefore break the
application. Finally, when multiple components have a WebCont ent

folder they are copied based on component priority, but the copy is time-
stamp based. The copy command always uses verbose output for these files
so the developer can see exactly what files are being copied.

53

Curam Web Client Reference Manual

Notes

Due to classloader issues with Log4j, the web-tier does not currently
provide a configurable logging system in the same way as the server-tier.

54

4.1

4.2

4.3

4.4

4.5

Chapter 4

Localization

Objective

This chapter will introduce you to the various files that need to be updated
when trandlating a Caram application to a new language.

Prerequisites

You should be familiar with the basic concepts of Caram CDEJ develop-
ment (see Chapter 2, Concepts).

Introduction

Curam is designed to support an application running simultaneously in as
many languages as required. To smplify the translation process, the lan-
guage-specific parts of the application are separated out from the application
code.

Numbers

Numbers are language-specific and so a Caram application treats numbers
in alocale-specific manner depending on the preferred language of the user.
For example, a decima number can be represented as 7, 99 or 7. 99 de-
pending on whether the user's locale is French or English.

File Encoding
OOTB Cuaram supports the development of applications localized into many

languages. The Curam CDEJ generators support files encoded in the various
character encodings appropriate for those languages. There are a number of

55

4.5.1

4.5.2

Curam Web Client Reference Manual

ways to define the encoding for afile, this is dependent on the type of file.
The following sections describe how the encoding is set for the different
types of files.

XML Files

The encoding for XML-format files is declared explicitly within the XML
fileitself, where the first line, the XML declaration, may look like this:

<?xm version="1.0" encodi ng="1S0O 8859-1"?>

This tells the XML parser that the file uses the 1SO-8859-1 encoding, atyp-
ical encoding for Western European languages. If the XML declaration is
omitted, the parser will assume UTF-8 encoding, which covers most modern
languages and many others, besides being based on the Unicode standard. It
is very important that the XML declaration matches the actual file encoding.
The declaration does not determine the encoding, it only identifies it; chan-
ging the declaration does not automatically change the file encoding. If you
use a speciaized XML editor application, then it will probably recognize
the declaration and change the file encoding for you. Most plain-text editors
will not do this, so you must ensure that you select the correct encoding in
your editor before saving thefile.

Java properties files

For Java properties files (used in the application, for example, to define the
text strings that appear on client screens), there is no equivalent of the expli-
cit XML declaration. The client generator must assume an encoding for the
client properties files. The assumption the generator makes is that Java
properties files are encoded in the default system encoding of the machine
that the build is running on. This is a reasonable assumption given that the
files themselves were likely created on the same machine or a machine of
similar type in the same country. On a Microsoft® Windows® machine in
Western Europe, for example, the system encoding is probably Cpl1252, the
Windows variant of 1SO-8859-1. This encoding will handle the accented
characters of Western European languages but does not cover, say, Cyrillic
or Chinese characters.

If, for some reason, you are building on a machine that does not share its
system encoding with the files that are being processed, you must indicate
this by setting the ENCODI NG environment variable. For example, to build
a Chinese language web client application on an English language Microsoft
Windows machine, you might choose to save your properties files in the
UTF-8 encoding, so you would set the ENCODI NG environment variable to
UTF-8. During the build, you can see that the generator overrides its normal
default setting:

System encodi ng i s Cpl252.
Usi ng encoding UTF-8 to read properties files.

56

4.5.3

4.6

Curam Web Client Reference Manual

The Java Runtime Environment will always assume that properties files use
the 1SO-8859-1 encoding. This is not very helpful if you want to create
properties files using the UTF-8 encoding for localization to, say, Chinese.
To overcome this limitation, the Ciram CDEJ will automatically translate
properties files from your preferred encoding (either the system default en-
coding, or the encoding specified via the ENCODI NG environment variable)
into the encoding required by Java. This is performed automatically during
the build process and your original properties fileswill not be affected.

2

1 Troubleshooting

Where a properties file has been saved in UTF-8 encoding, and this
does not match the system encoding, build failures can occur. The
build failure will report a PageGener at i onExcepti on, where
the build could not find a property even though the property exists
in the relevant file. This happens where the properties file has been
saved by a UTF-8 editor which adds the Byte Order Mark (BOM) at
the beginning of the file. The property reported in the error will be
the first property in the file. To resolve the issue the file should be
saved in the correct encoding, ensuring the BOM character has been
removed.

Non-XML Files

The non-XML files in the Ciram Reference Application are encoded in the
ASCII encoding. ASCII has the useful property of being a subset of most
other common file encodings. This means you do not generally need to con-
vert the English language files that ship with the OOTB Cuaram application
in a new encoding in order to build them in a different language environ-
ment.

Locales

A Javalocaleidentifier has three parts:

L anguage

A lower-case, two-letter, |SO-639 code.

See http://www.unicode.org/onlinedat/languages.html.
Country

An upper-case, two-letter, | SO-3166 code.

See http://www.unicode.org/onlinedat/countries.html.
Variant

A vendor-specific or browser-specific code.

The language code is required, but the other parts are optional. The indi-
vidual parts are separated by an underscore character. Some examples of
valid locales are: “en” (English language), “en_US’ (English language for

57

http://www.unicode.org/onlinedat/languages.html
http://www.unicode.org/onlinedat/countries.html

4.6.1

4.6.2

Curam Web Client Reference Manual

the United States), zh HK (Chinese language for Hong Kong). This system
is used within the Caram application to identify locales. Most locale-spe-
cific information in the application are contained in propertiesfiles.

Non JavaScript property files

When localizing an application (see Section 4.6.2, JavaScript property files
for details on localizing JavaScript), you will need to create new properties
files for each locale. The files for the default locale are named simply as
SoneFi | e. properties. The files for other locales are identified by
appending the locale identifier to the end of the file name after a separating
“ " (underscore) character (i.e., between the name of the page and the
. properties extension). For example, SoneFi | e_es. properties
would be the name of the Spanish language version of Sone-
Fil e. properties.

It isuseful to note that if a particular property is not found by the application
inSomeFi | e_es. properti es, the propertiesfile for the default locale,
i.e. SonmeFi | e. properties, will be searched. This is particularly
handy in the case of | mage. properti es, described below, where only
some of your images contain text and thus need to be localized. Properties
for the other images can be defined once in the default locale properties file
and they will be picked up in all locales.

Once done adding localized . properties files, update the LOC-

ALE_LI ST environment variable as appropriate (this variable defines the
list of locales the client will be built for), for example, set it to “en,es” for a
default English language application and a Spanish language application.
See Section 3.9, Application Locales for more details on this setting.

The merging of localized properties files from different components hap-
pens in exactly the same way as it does for default locale properties files.
See Section 3.12.4, Externalized Strings for more details on the merging of
propertiesfiles.

JavasScript property files

When localizing JavaScript files in the application, you will need to create
new JavaScript property files for each locale. The files for the default locale
arenamed simply as*. j s. properties. Thefilesfor other locales are
identified by appending the locale identifier - after a separating “_”
(underscore) character - between the .js extenson and the
. properties extension. For example, SomeJS-
File.js_es.properties would be the name of the Spanish language
version of SomeJSFi |l e.js. properti es file. This file will be auto-
matically processed by a client build. Similar to the non JavaScript property
files, if a particular property is not found by the application in SormeJS-
File.js_es.properti es file then the property from the default prop-
ertiesfile (SomeJSFi | e. j s. properti es) will be used.

58

4.7

4.8

Curam Web Client Reference Manual

UIM Externalized Strings

As described in Section 3.12.4, Externalized Strings, all string values in
UIM filesare externalized to . pr operti es files.

If MyPage. ui misthe UIM file, then MyPage. properti es isthecor-
responding properties file. To add localized properties files, please see Sec-
tion 4.6, Locales.

The strings are stored in a properties file in the same folder as the page or
view file. This file must have the same name as the page or view file but
with the extension . pr operti es. For example, if the page is stored in a
file caled MyPage.ui m the strings will be stored in the file
MyPage. properti es in the same folder. Similarly, views will see the
. Vi mextension changed to . pr operti es.

While UIM documents in the highest priority component override those in
all other components, properties files in different components are merged
together. Individual properties override those with the same property name
defined in lower priority components. Also, when a UIM page includes a
UIM view (a. vi mfile), all of the properties defined for both the page and
the view are merged and the properties for the page override those defined
for the view where they share the same property name. These two merging
steps happen separately with the component order applied first for each
properties file and the page-view order applied on the resulting properties. A
property defined for a page will override a property of the same name
defined for aview, even if the property for the view was defined in a higher
priority component.

JavaScript Externalized Strings

As described in Section 3.12.4, Externalized Strings, all string values in
JavaScript files should be externalized to JavaScript property files
(.]s.properti es files).

By convention the name of the resource file for your JavaScript must be de-
rived from name of the .js file itself. For example if your JavaScript file is
called SomeJSFile,js then related localizable resources should be placed in
SomeJSFilejs.properties file. A *.js.properties file can be placed anywhere
in the component directory, but by convention it should be in the same dir-
ectory astherelated * jsfile.

The exception to thisis that a*.js file within a WebContent directory cannot
have its associated * .js.properties file within the same directory. The associ-
ated *.js.properties file must be placed within a directory outside of the
WebContent directory. To add localized JavaScript properties files, please
See Section 4.6, Locales.

JavaScript Properties files with the same name across all components will
be merged together during processing. Any property with the same name

59

4.8.1

4.9

Curam Web Client Reference Manual

will be overwritten by the highest component in the component order.

The use of placeholders within a property value is supported. The place-
holders must be in the format %ms or ' %s' where n represents an integer
from 1...n, and n must be within a defined range. The range is defined by the
number of of placeholders used within a property value. For example, if
there are three placeholders within a property value then the placeholders
must be numbered from 1 to 3 (e.g. %1s, %2s, %3s) and anything outside of
this range is not supported.

Accessing properties in JavaScript

There are three requirements for accessing a JavaScript property.

/1 1.
doj o. requireLocal i zati on("curam application", "SonmeJSFile");

/1l 2.
dojo.require("curamutil . ResourceBundl e");
var bundl e = new curam util. ResourceBundl e(" SomeJSFi |l e");

/1 3.
var |ocalizedMessage = bundl e. get Property("nyPropertyKey");
var | ocalizedMessageWt hSubstitutions

= bundl e. get Property("my. sub. key", ["a", "b"]);

curam appl i cati on is the default package into which all localizable
resources are placed by the Curam infrastructure. SoneJSFi | e is derived
from the name of the related JavaScript propertiesfile.

Example 4.1 Accessing a property

1. Load theresources using dojo.requirel ocalization(). Refer to com-
ment 1 in Example 4.1, Accessing a property for an example of this.

2. Create an instance of the curam.util.ResourceBundle object. This
Is required in order to be able to access the localized resources. Refer
to comment 2 in Example 4.1, Accessing a property for an example of
this.

3. Accessaproperty. Theget Property() method can be used to ac-
cess a property on the instantiated Resour ceBundl e. Refer to com-
ment 3 in Example 4.1, Accessing a property for an example of how to
get a property and a substituted (2 substitutions) property respectively.

Image.properties
The | mage. properti es file (see Section 3.12.5, Images) can be local-
ized as per other properties files, please see Section 4.6, Locales for more

information on localizing properties files. Once the localized properties file
is created, place this beside the | mage. properti es file.

60

4.10

Curam Web Client Reference Manual

It is useful to note that if the application does not find a particular property
in alocalized properties file, it will check the default locale properties file.
Thisisgeneraly truefor all propertiesfilesbut it is particularly useful in the
case of | mage. properties. You might find that some of your images
can be used no matter what language is displayed, whereas other images
contain text and thus must be altered. It is only these latter images that need
to be mentioned in the localized propertiesfile.

Infrastructure Widget Properties Files

The following is alist of . properti es files associated with Infrastruc-
ture widgets, e.g. the AgendaPl ayer . properti es file is associated
with the AgendaConf i g. xm file, which defines the Agenda Player wid-
get.

 AgendaPl ayer. properties

« BarChart.properties

 Cal endar. properties

e Conpar edEvi dence. properties

 DateTi neSel ector. properties

 Deci sionMatri xAddMessage. properties
 Displ ayEvi dence. properties
 EvidenceConpari son. properties

« EvidenceRevi ew. properties

« EvidenceTabCont ai ner. properties
 FrequencyPatternSel ector. properties
e @GnttChart.properties

« | EGPl ayer. properties

 Logon. properties

« MeetingView properties

 Paynent St at enent . properties

* RatesTabl e. properties

* Rul es.properties

e« Typical PictureEditor. properties
« Workfl ow properties
 WordFil eEdit. properties

61

4.10.1

Curam Web Client Reference Manual

Note

The names of the properties files associated with infrastructure wid-
gets are reserved names and must not be used for the name of any
other client properties file. No warning is printed to the console in
this scenario, therefore care must be taken when naming other prop-
ertiesfiles.

=

To customize a widget properties file, create a new version under the web-

client/conponent s/ cust om component folder, where the default
content for the file can be found in the corresponding sample widget proper-
ties file located in the <cdej -dir>/doc/ defaul t properties/

folder. For each entry in Caram'’s version of the file you wish to change, add
a corresponding entry to your custom file. These properties files can be loc-
alized as per Section 4.6, Locales.

Frequency Pattern Selector Localization

The Frequency Pattern Selector infrastructure widget is used to construct
frequency patterns such as:

the first day of every 1 nonth(s)

This sentence is made up of fixed text from its associated Fr e-
quencyPatt ernSel ect or. properti es file aswell as values selec-
ted by a user from an input field and two drop-downs in the widget, refer to
this example frequency pattern in Figure 8.1, Frequency Pattern Selector
Pop-up.

Because of the grammar differences between different languages, the con-
struction of this example frequency pattern sentence can be dramatically
changed in other languages, like the values selected by a user can be re-
ordered in it. Therefore, the placeholders are introduced to represent these
user selected values so that we can localize every frequency pattern as
"whol€" into every single property in the propertiesfile.

Here is the property entry from the FrequencyPatt er nSel ect -
or. properti es for thisexample frequency pattern:

Text.nmonthly. freq.type.two= The %or di nal % %dayf WeekExt ended%
of every %ont hl nt er val % nont h(s)

The strings %or di nal % YgdayOf WeekExt ended% and
%ont hl nt er val %in this property entry are the placeholders that map to
the values that will be selected from two drop-downs and one input field in
the widget. The detailed explanation of these three placeholders will be
covered later in atable.

In order to use these placeholders properly, you need to stick to the follow-
ing two rules:

* The placeholders control the layout of the widget. Any change of the
location of a placeholder in alocalized text for a certain frequency pat-

62

Curam Web Client Reference Manual

tern would cause the change of the layout of this frequency pattern to be
displayed on the Frequency Pattern Selector widget.

» The placeholders that can be used for every frequency pattern are
fixed . You could not change, add or reduce placeholders used for a cer-
tain frequency pattern. It will cause this widget failing to work.

A description of al these placeholders used in the properties file of thiswid-
get islisted asfollows:

Placeholder Name Description

%ayl nt er val % A day interval. It mapsto an input field
where you can enter a number for aday in-
terval for afrequency pattern.

%eekl nt er val % A week interval. It mapsto an input field
where you can enter a number for aweek in-
terval for afrequency pattern.

Yday Of Week% A set of daysin aweek. It mapsto a collec-
tion of check boxes where you can multi se-
lect the daysin aweek for afrequency pat-
tern.

Yday Of Week Ext ended% It isan extension of the values represented
by Yday OF Week % which also includes the
weekday, weekend day and day value.
It maps to a drop-down where you can select
one of those day values for afrequency pat-
tern.

%ont hl nt er val % A month interval. It mapsto an input field
where you can enter a number for a month
interval for afrequency pattern.

%or di nal % an ordinal, e.g. first, second. It mapsto a
drop-down where you can select an ordinal
for afrequency pattern.

Ydayl nt er val One% Two day intervalsin afrequency pattern.

%ayl nt er val Two% They should be used together and map to
two input field where you can enter a num-
ber for aday interval respectively for afre-

quency pattern.
Yor di nal One% Two ordinalsin afrequency pattern. They
Y%or di nal Two% should be used together and map to two

drop-downs where you can select an ordinal
respectively for afrequency pattern.

%ont hOF Year % A month in a calendar year. It mapsto a
drop-down where you can select a month for
afrequency pattern.

Table 4.1 Placeholders used in Frequency Pattern Selector

63

4.11

4.12

4.13

Curam Web Client Reference Manual

As stated in the second rule above, the placeholders used for every fre-
guency pattern are fixed. So you need to take care that you have used them
properly when localizing the properties in this widget properties file. As
long as you keep this in mind, the customization of this widget properties
fileis aso no difference from other infrastructure widgets. The following ta-
ble lists al the properties and the placeholders they contain for every fre-
guency pattern sentence displayed on the Frequency Pattern Selector.

Property Name Placeholders it contains

Text.daily.freq.type. one %layl nterval %
Text.daily.freq.type.two None

Text.weekly.freq.type %eekl nt erval %
Y%day OF Week %

Text. mont hly. freq. type. on %dayl nt er val %

e %ont hl nt er val %

Text.monthly. freqg. type.tw%ordi nal %

o] Y%day OF Week Ext ended%

%ont hl nt er val %
Text.bimonthly. freq.type. %ayl nterval One%

one %dayl nt er val Two%
Text . bimonthly. freqg. type. %or di nal One%
t wo %or di nal Two% %day Of Week%

Text.yearly.freq.type. one %ront hO Year %
%ayl nt er val %

Text.yearly.freq.type. two %or di nal %
Y%day OF Week Ext ended%
%ont hOF Year %

Table 4.2 Properties used for the Frequency Pattern Selector

CDEJResources.properties

This properties file can be localized as per Section 4.6, Locales. Images
defined in thisfile can also be customized per locale.

ApplicationConfiguration.properties
This properties file does not, in itself, need to be localized but there are a
couple of settings within this file which are related to the localization of date

and address formatting. See Section 3.11.2, Configuring the Application for
details.

Application-wide Menu

64

4.14

4.15

Curam Web Client Reference Manual

The contents of the application-wide menu (that normally appears in the
top-right of the screen) are defined in cur am confi g. xm . It is possible
to put the text that will appear on screen directly into thisfile, in the LABEL
attribute of the L1 NK element. That approach, however, is not suitable if the
application should be viewable in multiple languages, so the application will
first check if the LABEL attribute is actually a key into the CDEJRe-

sour ces. properties file If it finds the key, it will use the corres-
ponding value in the menu. To localize the menu, therefore, ssmply include
the same key in the locaized verson of CDEJRe-

sour ces. properties. Thispropertiesfile can belocalized as per Sec-
tion 4.6, Locales.

Tabbed Configuration Artifacts

Each tabbed configuration artifact will have a corresponding properties file
for any text that may be localizable. To localize this text for a specific lan-
guage, you must add the locale-specific properties file beside its associated
tabbed configuration artifact in your <custom> component. These properties
file can be localized as per Section 4.6, Locales.

Runtime Messages

The Cdram CDEJ runtime messages can be localized or customized by cre-
ating a Runti neMessages. properties file within the curanf
onegad/ i 18n folder below the web application project's JavaSour ce
folder, i.e. the<cl i ent - di r >/ JavaSour ce folder. The default content
for this file can be found in the
<cdej -di r>/ doc/ def aul t properties/ folder. Any messages
present in this file will override the corresponding messages from the
Runt i neMessages. properti es shipped with the Ciram CDEJ. The
standard file naming convention for Java properties files can be used to add
locale-specific messages. For example, to create a Spanish version, a file
Runt i mreMessages_es. properti es would be created.

It is not necessary to copy all of the messages into the custom message cata-
log when customizing only some of them. Only the messages that are cus-
tomized need to be defined in the custom message catalog; the other mes-
sages will be loaded from the default message catal og.

When resolving error messages, the custom message catalog is checked first
and all the locale fall-backs are applied. If a message is not found, then the
default message catalog (from the Ciram CDEJ) is checked. Therefore, a
message in a custom message catalog will take precedence over onein a de-
fault catalog even if the locale of the default catal og is more specific.

When customizing a message, the message argument placeholders cannot be
changed. The message argument placeholders have the form %ns wherenis
the argument number. The message arguments can be moved around and
their order changed, but no new arguments may be added and none may be

65

Curam Web Client Reference Manual

removed. The meaning of each message argument for every error message
isprovidedintheCaram Wb Client Error Message Cui de.

66

5.1

5.2

5.3

5.4

9.5

Chapter 5

UIM Reference

Objective

This chapter provides you with all the information about UIM required to
develop Caram web application pages.

Prerequisites

You should be familiar with the basic concepts of Caram CDEJ develop-
ment (see Chapter 2, Concepts) and web application development. You
should also have some knowledge of the basic format of XML documents.
Introduction

UIM is the Curam User Interface Meta-data format used to specify the con-
tents of the Ciram web application client pages. UIM isan XML dialect and
al UIM files are well-formed XML. The Ciram CDEJ will translate UIM
filesinto JSP files that can be deployed to your web application server.
Creating UIM Documents

Y ou can use any text editor to write UIM documents, but it is usually easier
if a specialized XML editor is used. The CDEJ includes an XML Schema
file defining the syntax of a UIM document and when this is combined with

a schema-aware XML editor, you will have access to many time-saving fa-
cilities such as auto-completion, syntax checking, etc.

UIM Document Types

When creating UIM documents, there are four root elements that are valid:

67

5.6

5.7

Curam Web Client Reference Manual

PAGE, VI EW PAGE_GROUP and APPLI CATI ONS. These root elements
are used to create the two types of UIM document:

PAGE

This defines a UIM page that will be trandated into a JSP page. The file
name must be the same as the value of the PAGE | D attribute of the
root element. The file extension to use is. ui m UIM pages can be or-
ganized arbitrarily into sub-folders within a component folder for con-
venience in managing a large number of files. Ultimately, all UIM
pages are generated into JSP pages in a single folder, so the PAGE_| D
attribute of the PAGE element and consequently the file names of all the
. ui mfiles must be unique within a component.

VI EW

This defines a portion of a page that can be included into a PAGE ele-
ment in another UIM document. This allows common sequences of ele-
ments to be reused. The file name is not restricted. The file extension to
useis. vi m Like UIM pages, views can be organized into an arbitrary
folder structure within a component folder, but the file names must be
unique within that component.

UIM Pages

Chapter 2, Concepts covered the basic concepts behind UIM pages and what
clusters, lists, action sets, action controls, containers, and fields are, so this
information will not be repeated here.

The elements in a page must follow a strict order imposed by the XML
Schema definition of UIM. However, this order is only imposed when edit-
ing using a schema-aware XML editor. The JSP generator does not check
the ordering at present. The order in which elements are presented in the
child element tables in this reference is the order in which the elements
should be used in the UIM documents unless otherwise indicated. There is
no specific ordering for attribute values.

UIM Views

A PAGE element can contain an | NCLUDE element anywhere at the top
level that allows commonly used fragments of UIM to be inserted at that
point during translation. The included elements are defined in a UIM docu-
ment called a view. The view document uses VI EWas the root element. Ele-
ments included from a view must be valid in the context in which they have
been included. For example, a PAGE element that aready contains a
PAGE_TI TLE element, cannot include a view that also defines a
PAGE_TI TLE element. Similarly, the schema rules governing the order of
elements in a page must be observed when elements are included from a
view.

Views are similar to pages in what they can contain, the only differences are

68

5.8

5.9

5.9.1

5.9.2

Curam Web Client Reference Manual

asfollows:

* A view cannot contain an | NCLUDE el ement to include another view.

* A view does not have any PAGE_| D attribute, thisis defined in the page
that includes the view.

All other elements that are valid in a PAGE element at the top level, are also
vaidinaVl EW

When including views, the name of the view file must be specified. Regard-
less of where in the component the file including the view is, only the name
of the view fileisrequired, not its path.

Externalized Strings

All string values and image references in UIM documents must be external-
ized, i.e., the actual values are stored in files separated from the UIM. This
aids maintenance and allows the application to be localized.

See Section 3.12.4, Externalized Strings for details on externalizing strings.
UIM Reference for Pages and Views

Introduction

This section describes the PAGE and VI EWelements and all of the child ele-
ments that they can contain with the exception of W DGET elements. These
are treated in the next section.

Most elements have a list of attributes that can be used in any order. Some
attributes are optional and have default values when omitted. Others can
have one of a range of values. Boolean attributes can only have the values
true andf al se (case-sensitive).

Many elements can have child elements and these are listed in the order in
which they must be added and include details on their cardinality. Cardinal-
ities use “0” to indicate that the element is optional, “1” to indicate that it
can appear only once, and “n” to indicate that it can be appear any number
of times. The “..” indicates the range of the cardinality. For example, “0..1”
indicates that the element can appear zero or one times in this location, i.e.,
it is optional, while “1..n" indicates that an element must appear at least
once, but can appear any number of times thereafter.

Connection Types

UIM pages use connections for associating components on a page with actu-
al data. The connection type is reflected in the connection tag name and is
roughly equivalent to data direction. The three types of connection available
are SOURCE, TARGET and | NI TI AL (see Section 5.9.30, SOURCE, Sec-

69

Curam Web Client Reference Manual

tion 5.9.32, TARGET, and Section 5.9.15, INITIAL, respectively).

Connection endpoints are further distinguished by the setting of the NAVE
attribute. The value of this attribute may be the name of the server interface
used, TEXT, CONSTANT or PAGE. These values designate objects which
supply or consume data. TEXT or CONSTANT can only be used when TAR-
GET has aserver interface defined in the ACTI ON phase.

<PAGE PAGE_| D=" APage" >
<PAGE_TI TLE>
<CONNECT>
<SOURCE NAME=" TEXT" PROPERTY="Page. Title. Static"/>
</ CONNECT>
</ PAGE_TI TLE>

<SERVER | NTERFACE NAME="DI SPLAY_SI "
CLASS="sour ceCl ass"
OPERATI ON="r ead"
PHASE=" DI SPLAY"/ >

<SERVER | NTERFACE NAME="ACTI ON_SI "
CLASS="t ar get Cl ass"
OPERATI ON=" nodi f y"
PHASE=" ACTI OV >

<PAGE_PARAMETER NAME="P_PARAM'/ >

<CONNECT>
<SOURCE NAME=" CONSTANT"
PROPERTY="Fr om Const ant s. Props"/>
<TARGET NAME="ACTI ON_SI "
PROPERTY="aPr operty"/>
</ CONNECT>

<ACTI ON_SET BOTTOME"true" TOP="fal se">
<ACTI ON_CONTROL TYPE="SUBM T" LABEL="Button. Submt">
<Ll NK PAGE_| D=" APage" >
<CONNECT>
<SOURCE NAME="DI SPLAY_SI" PROPERTY="PARAM />
<TARGET NAME="PAGE" PROPERTY="P_PARAM'/>
</ CONNECT>
</ LI NK>
</ ACTI ON_CONTROL>
</ ACTI ON_SET>

<CLUSTER NUM COLS="1" SHOW LABELS="fal se">
<Fl ELD LABEL="Label . Text">
<CONNECT>
<SOURCE NAME="DI SPLAY_SI" PROPERTY="sourceFi el d"/>
</ CONNECT>
<CONNECT>
<TARCGET NAME="ACTI ON_SI" PROPERTY="t argetFi el d"/>
</ CONNECT>
</ FI ELD>
</ CLUSTER>
</ PAGE>

Example 5.1 Connection Types Example

Most frequent is a connection to a server interface. Here, the NAME attribute
corresponds to an existing (i.e. declared on the page) SERV-
ER_| NTERFACE NAME attribute value (DI SPLAY_SI and ACTI ON_SI
in the example above).

A value of TEXT means data is sourced from a properties file. The PROP-
ERTY attribute in this case contains the name of an externalized string in a
page-specific property file. In the example, the file APage. ui mhas a page

70

5.9.3

Curam Web Client Reference Manual

title which references the Page. Ti tl e. St ati ¢ property in the associ-
ated APage. properti es file.

A vaue of CONSTANT provides similar functionality to TEXT but the ex-
ternalized string is component-specific rather than page-specific and is
sourced from a file called Const ants. properti es. In the example,
thereisapage level connectionto aFr om Const ant s. Pr ops property.

A connection might also source its data from a page parameter (i.e., a vari-
able declared on a page, P_PARAMIn the example). In this case PACE is
used as the value of the NAVE attribute.

There are limitations and restrictions on the use of the various connection
types in various contexts. The UIM element descriptions below detail these
l[imitations where they arise.

ACTION_CONTROL

The ACTI ON_CONTRCL element defines a link (text based), button or file
download link that the user can activate on a page.

File Downloads

An ACTI ON_CONTROL with the TYPE set to FI LE_ DOANLOAD resultsin
the generation of a hyperlink on the page. Clicking on the hyperlink invokes
aspecia Fi | eDownl oad servlet included in the Caram CDEJ that returns
the contents of a file from the database. The Fi | eDownl oad servlet is
configured with the server interface to call to get the file contents and the
parameters to pass to identify that file. The configuration is performed in the
curam config. xm file. A single server interface can be configured for
each page of the application that includes file download action controls. An
example configuration is shown in Example 5.2, Example Configuration for
File Download, below:

A W DGET with the TYPE set to FI LE_DOANLOAD can also be used to
generate a hyperlink to download a file. You should use the AC-
TI ON_CONTROL element when the hyperlink text is the fixed LABEL
value. The FI LE_ DOANLOAD W DGET alows the hyperlink text to be a
dynamic value retrieved from a server interface property.

<APP_CONFI G>
<FI'LE_DOWNLOAD CONFI G>
<FI LE_DOMLQAD PAGE_I D="Fi | eDownl oad"

CLASS="curam i nterfaces. Fil ePkg. Fil e_read_TH'>
<I NPUT PAGE_PARAME"fi | el D' PROPERTY="key$filel D'/ >
<FI LE_NAME PROPERTY="dt| s$fil eNanme"/>
<FI LE_DATA PROPERTY="dt| s$fil eData"/>

</ FI LE_DOWNLQOAD>
</ FI LE_DOMLQOAD_CONFI G
</ APP_CONFI G

Example 5.2 Example Configuration for File Download

Each configuration for downloading files is contaned in a
FI LE_DOWLQAD element within the FI LE_DOANLQOAD_CONFI G ele-

71

Curam Web Client Reference Manual

ment in the configuration file. There should be one FI LE_ DOANLOAD ele-
ment for each page that contains file download action controls.

The FI LE_DOMLCQAD element takes two attributes: PAGE | D for the
identifier of the page containing the action controls to which this configura-
tion will be applied, and CLASS containing the name of the server interface
that will be called by the Fi | eDownl oad servlet when the generated hy-
perlink isinvoked.

The FI LE_DOWNLOAD element can contain zero or more | NPUT elements
specifying the key values to set before the server interface is called. These
I NPUT elements associate page parameters with properties of the server in-
terface. The PAGE_PARAM attribute specifies the name of the page para-
meter whose value will be used as akey value, and the PROPERTY attribute
specifies the key property of the server interface that must be set to identify
the file. The page parameters are set by the LI NK element within the AC-

TI ON_CONTROL, asyou will see below.

The other three elements, FI LE_NAVE and FI LE_DATA, and CON-
TENT_TYPE al have PROPERTY attributes that indicate the properties of
the server interface that will contain; the name of the file, the contents of the
file, and the content type of the file respectively, after the server interface is
called. This data is returned to the client in response to the activation of the
hyperlink and the user's browser will present them with the download dialog
box prompting them to save or open thefile.

Where property names are specified, the names must be written in full and
cannot be abbreviated like they can in UIM documents.

Attributes

The ACTI ON_CONTRCL element has the following attributes. The LABEL
attribute must be present.

Attribute Required Default Description

Name

LABEL See A reference to an externalized
above. string containing the label text for

this action control. If the TYPE is
ACTI ON, thiswill be the text of
the hyperlink. If the TYPE is
SUBM T, thiswill be caption of
the submit button.

LA- No A reference to an externalized
BEL_ABBREVI string containing the label abbrevi-
ATl ON ation text for this action control.

This label abbreviation is placed
only on table headersinall ST.

TYPE No ACTI ON Thetype of action control to cre-
ate. There are six types. ACTI ON

72

Curam Web Client Reference Manual

Attribute Required Default Description
Name

(the default) defines alink to an-
other page, SUBM T forwards the
page's form data to the action
phase for processing, DI SM SS
closes a pop-up page, SUB-

M T_AND DI SM SS combines a
submit with closing a pop-up page
(see Section 8.21, Pop-up Pages
for details on working with pop-up
pages), FI LE_DOWNL QAD defines
alink that triggers the download of
afile from the server, and CLI P-
BOARD places a predefined value
to the system clipboard.

STYLE No The class name of the CSS style to
use when formatting the action
control. Supported by action con-
trolsin action sets only.

CONFI RM No Use the CONFI RMattribute of
ACTI ON_CONTROL to forcea
confirmation dialog when the ac-
tion control is activated.

The value of the CONFI RMattrib-
ute is areference to the confirma-
tion message in the page properties
file.

DEFAULT No false If there is more than one submit
action on a page, it is useful to
specify which one is executed
when the user hits the Enter key.
Thisis especialy recommended
when the submitting action con-
trols are contained within the dif-
ferent action sets asin this case the
default action could be different
than the first submit action de-
clared on the page. The default ac-
tion can be specified by setting
thisattributeto t r ue. Note that
only one submit action on a page
can have a DEFAULT value of
true.

ACTION. ID No A custom identifier for action con-
trols of TYPE=SUBM T. It is used

73

Curam Web Client Reference Manual

Attribute Required Default Description
Name

in conjunction with AC-

TI ON_| D_PROPERTY attribute
of SERVER | NTERFACE element
to inform the server side code
which action control was used to
make the server call.

This attribute is only valid on ac-
tion controls of TYPE= SUBM T.

The value of this attribute among
the action controls within the page
must be unique.

The value of this attribute must be
in the format suitable for the do-
main associated with the property
specified in the AC-

TI ON_| D_PROPERTY attribute
of SERVER | NTERFACE.

This attribute must be either spe-
cified on al action controls within
the page or not specified on any of
them.

If this attribute is specified then
the ACTI ON_| D_PROPERTY at-
tribute of SERVER_| NTERFACE
must also be specified.

I MAGE No The value of this attribute refersto
an externalized string which maps
to aspecific icon or graphic in the
application. An action control with
this attribute can only be used
within a CONTAI NER element.

ALI GNMENT No RIGHT When contained in a page level
ACTI ON_SET of aModa Dialog,
the ALI GNIVENT attribute is sup-
ported. Thiswill define the indi-
vidual horizontal alignment of the
action control. It can be set to
LEFT or Rl GHT. The default isto
right aligned.

Table 5.1 Attributes of the ACTION_CONTROL Element

Child Elements

74

Curam Web Client Reference Manual

The ACTI ON_CONTROL element can contain the following child elements:

Element Name Cardinality / Description

L1 NK 0..1. An action control with a TYPE of AC-
TI ONthat hasno LI NK element will create a
link to the previous page in the history that
had SAVE LI NKsettotr ue onthelink
that led to this page (thisistypically used for
Cancel buttons). However this type of AC-
TI ON_CONTRQOL should not be present on a
page that is directly referenced by any tabbed
configuration artifact. Also, if thistype of
ACTI ON_CONTRQL is preceded by another
ACTI ON_CONTROL of the sametypein the
page history, there is the potential of acircu-
lar reference between these pages.

An action control with a TYPE of SUBM T
that has no L1 NK element will submit the
field values to the action phase and then re-
turn to the previous page in the history that
had SAVE LI NKsettot r ue onthelink
that led to this page.

An action control with a TYPE of

FI LE_DOWNLOAD only requires alink if it
must provide the page parameter values spe-
cified inthe | NPUT elements of its configur-
ation. Each CONNECT element in the link can
contain a SOURCE element to specify the
value and a TARGET element specifying the
page parameter to which to map the value.
The PROPERTY attribute value of the page
parameter must match the PAGE_ PARAMat-
tribute value of the | NPUT element in the
configuration.

CONNECT 0..1. A CONNECT element specifying asingle
SOURCE end-point. Asadirect childitis
used only for an action control with a TYPE
of CLI PBOARD. Such an action control
places predefined textual datainto the system
clipboard when clicked.

Text to be copied to clipboard can be sourced
from the server, the request or a properties
file.

The CONNECT element used can only contain
a SOURCE element with a NAVE property of
PAGE, TEXT or the name of a server inter-
face defined within the page.

75

5.9.4

Curam Web Client Reference Manual

Element Name Cardinality / Description

SCRI PT 0..n. A script element associated with an ac-
tion control. For a detailed description of this
element see Section 5.9.28, SCRIPT.

SCRI PT elements are not supported on AC-
TI ON_CONTROL elements with atype of
CLI PBOARD.

CONDI TI ON 0..1. Affects whether or not the AC-
TI ON_CONTROL isdisplayed.

Table 5.2 Child Elements of the ACTION_CONTROL Element

When linking to another page, the link must specify all page parameters de-
clared on the target page.

ACTION_SET

The ACTI ON_SET element groups a number of ACTI ON_CONTROL ele-
ments together. Depending on the context in which the action set is defined,
the action controls will be displayed in differing ways.

At the page level, action controls are displayed at the left side of the page
title bar, see the Page Level Action Control in User Interface Element 10 of
Figure 2.1, Application User Interface Overview. If the action set contains
two or less action controls, then each link is displayed side by side with a
new item icon to the left of it. The SEPARATOR child element has no affect.

If three or more action controls exist at the page level, then a drop down
menu will display each action control as a menu item. In this case, the SEP-
ARATOR element inserts a gray separator into the drop down menu at the
position indicated in the UIM file.

At the list level, all action controls will be displayed in a menu drop down.
The SEPARATOR element inserts a gray separator into the drop down menu.

For action sets defined at the cluster or list level, the action controls can be
displayed above and/or below the element with which the action set is asso-
ciated and are aligned horizontally.

In all scenarios, conditional links that evaluate to false will not display if
HI DE_CONDI Tl ONAL LI NKS attribute is set to true, otherwise the condi-
tional link displays but is disabled.

Attributes

The ACTI ON_SET element has the following attributes:

Attribute Name Required Default Description

TOP No true Defines whether the action
controls will be displayed

76

Curam Web Client Reference Manual

Attribute Name Required Default Description

above the associated element.
Canbesettot r ue (thede-
fault) or f al se.

BOTTOM No true Defines whether the action
controls will be displayed be-
low the associated element.
Canbesettot r ue (the de-
fault) or f al se.

ALI GNMENT No DEFAULT Definesthe horizontal aign-
ment of the set of action con-
trols with respect to the associ-
ated element. Can be set to
LEFT, RI GHT, CENTER, or
DEFAULT The value DE-
FAULT corresponds to the
CSSclassac_default in
curam common. css. The
default isto be left aligned. In
addition, for apage level AC-
TI ON_SET inaModal Dia-
log, LEFT, Rl GHT and DE-
FAULT values are supported.

TYPE No DEFAULT Definesthelocation of the ac-
tion set. This can be set to
LI ST_ROW MENU or DE-
FAULT.

LI ST_ROW MENUis applic-
able where the ACTI ON_SET
iscontained withinalLl ST. It
indicates that the action set
should be displayed as alist
actions menu within each list
row entry.

Table 5.3 Attributes of the ACTION_SET Element

ﬁ Note

An ACTI ON_SET of type LI ST_ROW MENU should not be used to
open a Pop-up search dialog.

Child Elements

The ACTI ON_SET element can contain the following child element:

77

5.9.5

Curam Web Client Reference Manual

Element Name Cardinality / Description

ACTI ON_CONTRCL 1..n. See the description of ACTI ON_SET's
parent element to see what AC-
TI ON_CONTROL elements are valid in each

context.
CONDI TI ON 0..1. Affects whether or not the AC-
TI ON_SET isdisplayed.
SEPARATOR 0..n. allows the for ability to add avisual sep-

arator between action controls that display in
the page action drop down menu.

Table 5.4 Child Elements of the ACTION_SET Element

CLUSTER

The CLUSTER element defines a group of input and/or output fields con-
taining data from any data source (server interface property values, external-
ized string values, or page parameter values) and supplying data to other
data targets (server interface properties, or page parameters). Clusters gener-
aly show the fields with labels to the left and these label/field pairs in a
number of columns. Clusters can aso include other clusters and lists in
place of fields to allow more complex layouts.

Attributes

The CLUSTER element has the following attributes:

Attribute Name Required Default Description

TI TLE No A referenceto an externalized
string containing the title string
for this cluster.

NUM _COLS No 1 The number of columns to display
in the cluster (a cluster column in-
cludes both the label and field).

TAB_ ORDER No COLUMWN Indicates the order to layout ele-
ments in a multi-column cluster.
The elements can be ordered by
ROWor COLUMWN (default). Please
note, if a CLUSTER has
NUM_COLS set to 2 or above and
isgoing to containamix of LI ST
and FI ELD elements, the
TAB_ORDER must be set to ROV

SHOW LABELS No true Canbesettotr ue (the default)
to show labels beside the field
valuesor f al se to show no la-

78

Curam Web Client Reference Manual

Attribute Name Required Default Description

bels at all.

LAYQUT_ORDER No LABEL Labelscan be displayed to the left
or to theright of their associated
fields. Set the attribute value to
LABEL to show labelsto the left
(thisisthe default behavior). Set
the attribute value to FI ELD to
show labelsto the right.

W DTH No 100 The percentage of the width of the
containing area that the cluster
should occupy.

STYLE No The class name of the CSS style
to associate with this cluster for
formatting.

DESCRI PTION No A reference to an externalized
string that provides more details
about the cluster than theftitle
alone. Thiswill be displayed be-
low the title on the page.

LABEL_W DTH No The percentage of the width of a
cluster column that the label
should occupy. By default, the
web browser will determine the
widths as appropriate.

This attribute has an effect even if
SHOW LABELS issettof al se.
It ispossible, say, to use action
controlsin place of text labels.

Y ou might want to control the
width of these action control
columns and you can do that by
setting the LABEL_W DTH attrib-
ute. The specified width will be
applied to every other column.
Whether this starts with the first
or second column depends on the
LAYQUT _ORDER attribute.

The LABEL_W DTH attribute
will not apply to codetable hier-
archy fields when

SHOW LABELS issettof al se
or the FI ELD attribute CONFI G
has a value of

CT_DI SPLAY_LABELS. Seethe
CONFI Gattribute in Sec-

79

Curam Web Client Reference Manual

Attribute Name Required Default Description

BEHAVI OCR No

SUMVARY No

SCROLL_HEI GH No
T

EXPAN-
DED

tion 5.9.11, FIELD for morein-
formation on code table hierarch-
ies.

Collapsible clusters can be ini-
tially displayed expanded or col-
lapsed on a page. Set the attribute
value to EXPANDED to display a
collapsible cluster fully expanded.
Set the attribute to COLLAPSED
to display a collapsible cluster
collapsed. To remove the col-
lapsible functionality from a
cluster set the attribute to NONE.
Note that this attribute is only ap-
plicable when the property EN-
ABLE_COLLAPSI BLE_CLUST
ERSisnotsetorissettotruein
curam confi g. xm . For de-
tails see Section 3.12.13, General
Configuration. Thisfeatureis cur-
rently not supported on clusters
containing Charts, Evidence Re-
view Widgets, Evidence Compar-
ison Widgets, or Evidence Tab
Containers.

A reference to an externalized
string containing the summary of
this cluster. The SUMVARY attrib-
ute describes the purpose and/or
structure of acluster.

Specifiesin pixels the desired
maximum height of a scrollable
cluster.

Table 5.5 Attributes of the CLUSTER Element

Child Elements

The CLUSTER element must contain one of the following elements; AC-
TI ON_SET, FI ELD, W DGET, CONTAI NER, CLUSTER or LI ST.

Element Name Cardinality / Description

CONDI Tl ON 0..1. Affects whether or not the cluster is displayed.
TI TLE 0..1. The Tl TLE element will be displayed above the
CLUSTER

80

5.9.6

Curam Web Client Reference Manual

Element Name Cardinality / Description

DESCRI PTI ON 0..1 The DESCRI PTI ON element has the same beha-
vior asthe DESCRI PTI ON attribute but alows the de-
scription to be built up from a number of sources. If
both are specified, this element takes precedence over
the corresponding attribute.

ACTI ON_SET 0..1. The action set can contain ACTI ON_CONTRCL
elements of any type. The action controls will be dis-
played above or below the entire cluster.

FI ELD 0..n. The FI ELD, CONTAI NER, W DGET, CLUSTER,
and LI ST elements can be freely intermingled.
W DGET 0..n. The FI ELD, CONTAI NER, W DGET, CLUSTER,

and L1 ST elements can be freely intermingled.

CONTAI NER 0..n. The FI ELD, CONTAI NER, W DGET, CLUSTER,
and LI ST elements can be freely intermingled.

CLUSTER 0..n. The FI ELD, CONTAI NER, W DGET, CLUSTER,
and LI ST elements can be freely intermingled.
LI ST 0..n. The FI ELD, CONTAI NER, W DGET, CLUSTER,

and L1 ST elements can be freely intermingled.

Table 5.6 Child Elements of the CLUSTER Element

CONDITION

The CONDI TI ON element represents the condition under which an AC-
TI ON_SET, ACTI ON_CONTRQOL, LI ST, or a CLUSTER is displayed. If a
condition evaluates to true, then the parent element will be displayed; if the
condition evaluates to false, then the parent element is not displayed with
the following exception: An ACTI ON_SET or ACTI ON_CONTROL element
will display disabled links if the condition evaluates to false and the
HI DE_CONDI TI ONAL_LI NKS attribute on the PAGE element or in
thecur am confi g. xm file has been set to f al se. Conditional AC-
TI ON_SETS and ACTI ON_CONTROLS are mutually exclusive from one
another and therefore the CONDI TI ON element should be set for either one
(depending on the requirements) but not both.

Finally, if the condition equates to false for those conditional action sets or
action controls which appear as drop down menu items, then a single dis-
abled menu item titled, 'No Contents' is displayed (upon selecting the drop
down menu icon).

Attributes
The CONDI T1 ON element has no attributes.

Child Elements

81

5.9.7

5.9.8

Curam Web Client Reference Manual

The CONDI Tl ON element must contain either an | S_TRUE element or an
I S_FALSE element. It must not be empty and it must not contain more than
one element.

Element Name Cardinality / Description

I S TRUE 0..1 If the property referenced by the
I S_TRUE element returns true then the con-
ditionistrue.

I S FALSE 0..1 If the property referenced by the

I S_FALSE element returns false then the
condition istrue.

Table 5.7 Child Elements of the CONDITION Element.

For Agenda Player specific use, see Section 8.22, Agenda Player

CONNECT

The CONNECT element defines a data connection between two connection
end points such as server interface bean properties, page parameters, screen
controls, localized string values, etc.

Attributes

The CONNECT element has no attributes.

Child Elements

The CONNECT element must contain at least one of the child elements from
the table below, but the details of how these elements are used depends on
the context in which the CONNECT element is defined. See the specific par-
ent or child element's description for more details.

Element Name Cardinality / Description

I NI TI AL 0..1. Thiselement isonly valid in CONNECT
elements contained within FI ELD elements.
SOURCE 0..1. Within aFl ELD element, the SOURCE

is the source of the value displayed in the
field control (unless| NI Tl AL is used).

TARGET 0..1. Within aFI ELD element, the TARGET
is the property to which the valuein the field
control will be assigned.

Table 5.8 Child Elements of the CONNECT Element

CONTAINER

82

Curam Web Client Reference Manual

The CONTAI NER element groups FI ELD, ACTI ON_CONTRCL and | MAGE
elements so that they can be used in a single cell of a CLUSTER or LI ST
element.

Attributes

The CONTAI NER element has the following attributes:

Attribute Required Default Description

Name

LABEL No A reference to an externalized
string that should be used as the
associated label for this contain-

er.
LA- No A reference to an externaized
BEL ABBREVI string containing the associated
ATl ON |abel abbreviation text for this

container. This label abbreviation
is placed only on table headersin
alLl ST.

W DTH No 100 The percentage of the width of
the field value cell in the cluster
or list that the container should
occupy.

ALI GNMENT No DEFAULT Definesthe horizontal alignment
of the elements within the con-
tainer. Can be set to LEFT,

Rl GHT, CENTER, or DEFAULT.
The value DEFAULT corres-
ponds to the CSS class de-
fault in

curam conmon. css. Cur-
rently the default isto be left
aligned.

SEPARATOR No A reference to an externalized
string to use as the separator
between the elements within the
container.

STYLE No A CSS classto be applied to this
container.

Table 5.9 Attributes of the CONTAINER Element

Child Elements

The CONTAI NER element can contain the following child elements. It must

83

5.9.9

Curam Web Client Reference Manual

contain at least one element.

Element Name Cardinality / Description

FI ELD 0..n. The Fl ELD, ACTI ON_CONTROL, | M
AGE and W DGET elements can be freely in-
termingled.

I MAGE 0..n. The Fl ELD, ACTI ON_CONTROL, | M
AGE and W DGET elements can be freely in-
termingled.

ACTI ON_CONTRCOL 0..n. The FI ELD, ACTI ON_CONTRCL, | M
AGE and W DGET elements can be freely in-
termingled.

W DGET 0..n. The FI ELD, ACTI ON_CONTROL, | M
AGE and W DGET elements can be freely in-
termingled.

Table 5.10 Child Elements of the CONTAINER Element

DETAILS_ROW

The DETAI LS _ROWelement is used within a LI ST element to enable each
row to be expanded to show more details about the row. Child elements of
DETAI LS ROWdefine the content that is displayed when the row is expan-
ded. Currently only thel NLI NE_PAGE element is supported as a child.

When a page a page containing a list with expanded rows is submitted to
self or refreshed after adialog submit, the rows will be re-expanded after the
page loads again. This functionality is based on page parameters to the cor-
responding | NLI NE_PAGE and the following limitations apply:

 Thel NLI NE_PAGE must take page parameters and they must uniquely
identify each row within thelist.

» The functionality is supported for pages submitted to self or refreshed
after adialog submit. In al other cases all rows after refresh are reset to
default - collapsed.

» If the list contains duplicate items, only the first of them will retain the
expanded state after refresh.

» |If an edit operation in a dialog changes values that are used in the | N-
L1 NE_PAGE parameters, thisrow will be collapsed after refresh.

» |If an expanded row is expandable conditionally and it is no longer ex-
pandable after the page is refreshed, its state will be always set to col-
lapsed.

Note that DETAI LS ROW element is not allowed in a list using the
SCRCOLL_HEI GHT attribute.

84

Curam Web Client Reference Manual

Attributes

The DETAI LS _ROWelement has the following attribute.

Attribute Required Default Description

Name

M NI M No 30px Specifies minimum height in
UM_EXPANDED pixels of an expanded row for this
_HEI GHT list. To be used for in-line pages

that are expected to contain nested
lists with long actions menus
which would not fit to the default
expanded row height.

Table 5.11 Attributes of the DETAILS_ROW Element

Child Elements
The DETAI LS_ROWe ement contains the following child elements.

Element Name Cardinality / Description

I NLI NE_PAGE 1..1 This defines the page to be shown when
the list row is expanded. Currently thisisthe
only supported element, henceit's 1..1 car-
dinality.

CONDI TI ON 0..1. Affects whether or not the detailsrow is
displayed.

Table 5.12 Child Elements of the INFORMATIONAL Element

5.9.10 DESCRIPTION

The DESCRI PTI ON element defines the description associated with a
PAGE_TI TLE, CLUSTER or LI ST element. A DESCRI PTI ON is con-
structed by concatenating a number of connection sources together.

Attributes

The DESCRI PTI ON element has the following attributes:

Attribute Required Description

Name

SEPARATOR No A reference to an externalized string to use as
the separator between the elements within the
container.

85

Curam Web Client Reference Manual

Table 5.13 Attributes of the DESCRIPTION Element

Child Elements

The DESCRI PTI ON e ement can contain child elements as follows:

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing
SOURCE elements can be included (one
SOURCE per CONNECT). Sources can be
server interface properties or, with the NAVE
attribute set to TEXT, references to stringsin
apropertiesfile.

Table 5.14 Child Elements of the DESCRIPTION Element

5.9.11 FIELD

The FI ELD element specifies a data value to be displayed in a CLUSTER, a
value to be retrieved from the user via an input control in a CLUSTER, or a
list of data values to be displayed in a LI ST column. FI ELD elements can
also be aggregated within CONTAI NER elements so that they fill a single
cell of aCLUSTER or LI ST element.

Attributes

The FI ELD element has the following attributes:

Attribute Name Required Default Description

LABEL No A reference to an externalized
string that should be used as the
associated label for thisfield.
The LABEL attribute is mandat-

ory when a CONNECT element

exists, that contains a TARGET.
LA- No A reference to an externalized
BEL ABBREVI A string containing the associated
TI ON |abel abbreviation text for this

field. Thislabel abbreviationis
placed only on table headersin

alLl ST.

DESCRI PTI ON No A reference to an externalized
string that is displayed below
the label text.

ALT_TEXT No A reference to an externalized

string that is used as the altern-

86

Curam Web Client Reference Manual

Attribute Name Required Default Description

ate text for the field. Thisis
only applicable when the field
has atarget connection, i.e. itis
an input field. If this attribute is
not specified the LABEL is
used. Browsers supported by
the Cdram application display
alternate text when the mouseis
hovered over the input control.

W DTH No Specifies the width of the field
value within its cluster or list
cell.

WDTH UNI TS No PERCENT The unitsin which the width is

interpreted. This can be PER-
CENT to indicate the percent-
age of the space available to the
field, or CHARS to indicate the
number of visible characters
wide the field will be.

HEl GHT No 1 For input fields that resolve to a
text input control, this specifies
the number of visible lines of
text that the control will dis-
play. For input fields that re-
solve to aselection ligt, this
specifies the number of entries
that areinitially displayed. i.e. a
scrollable selection listisdis-
played instead of a drop-down
selection list.

AL GNVENT No DEFAULT Definesthe horizonta align-
ment of the field value. Can be
set to LEFT, RI GHT, CENTER,
or DEFAULT. The value DE-
FAULT corresponds to the CSS
classdef aul t in
cur am common. css. Cur-
rently the default isto be left
aligned. InaCLUSTER, only
input fields are aligned. In a
LI ST, al fields are aligned.

USE_DEFAULT No true If settot r ue (the default) and
the field has no SOURCE con-
nection, then if asensible de-
fault value for the field can be
determined automatically, it

87

Curam Web Client Reference Manual

Attribute Name Required Default Description

USE_BLANK

CONTROL

No

No

fal se

DEFAULT

will be displayed.

For example, numeric fields
will display a zero, string fields
will be empty, date fields will
default to the current date, etc.

If the field source is a code-ta-
ble based property, or aserver
interface list property, it will be
displayedinalist. If this attrib-
uteissettot r ue, an extra
blank value will be added to the
top of thelist.

The CONTRQOL attribute can
take one of a number of values:

DEFAULT: thefield behavesin
the standard fashion.

SUVIVARY, DYNAM C, DY-
NAM C_FULL_TREE and

FAI LURE: these settings only
apply to rulesfields. See Sec-
tion 8.9, Rules Trees for further
details.

SKI P: indicates that thefield is
only present to occupy spacein
a CLUSTER to balance the lay-
out. No label or value will be
displayed. The label back-
ground will still be presented,
however.

TRANSFER LI ST: Enablesa
list on a page to be displayed as
atransfer list widget. This
mode is only applicable and
supported for list controls with
multiple selection capability.

CT_HI ERARCHY_HORI ZONT
AL displaysalist as ahorizont-
al code table hierarchy.

CT_H ERARCHY_VERTI CAL
displaysalist asavertical code
table hierarchy. Consult the
Curam Server Developers
Guide for more information on

88

Curam Web Client Reference Manual

Attribute Name Required Default Description

code table hierarchies.

CONFI G No |dentifies configuration details
for thisFl ELD instance. This
attribute can only be used in
conjunction with aFlI ELD
whose CONTROL attributeis
for awidget that supports con-
figuration. For example, if the
CONTROL attribute is DYNAM
| Cfor aFl ELD of the RES-
ULT_TEXT domain then the
CONFI Gattribute should match
anl Donaconfi g elementin
the Rul esDeci si onCon-
fig.xm file. See Sec-
tion 8.9.5, Dynamic Rules View
for further details on configura-
tion.

CT_DI SPLAY_LABELS: Dis-
plays labels for each code table
in a code table hierarchy. See
the CONTRCL attribute in Sec-
tion 5.9.11, FIELD for further
information regarding code ta-
ble hierarchies.

I NI - No fal se A FI ELD element whose | NI -

Tl AL_FOCUS Tl AL_FOCUS attribute is set
tot r ue will get focus when
the page is displayed. In other
words, the cursor will be placed
in that field ready for data
entry. If no FI ELD requests the
initial focus, the cursor will be
placed in the first input field on
the page. It is not allowed to
have more than one FI ELD
withthel NI TI AL_FOCUS at-
tribute set to t r ue specified on
apage.

PROVPT No fal se The setting of this attribute will
allow for prompt to appear in
thetext field if the text field is
blank. On focus, the prompt
will disappear to allow for data
entry.

89

Curam Web Client Reference Manual

Table 5.15 Attributes of the FIELD Element

Child Elements

The FI ELD element can contain the following child elements:

Element Cardinality / Description

Name

CONNECT 0..3. A field can contain up to three CONNECT elements.
The SOURCE connection defines the initial value for the
field (thiswill be the static value shown if thereis no tar-
get end-point, or the initial value of an input control if
there isatarget end-point). The TARGET end-point
defines the property that will be set from the field value
during the action phase. If a TARGET end-point is spe-
cified the SOURCE end-point can only be from a server
interface property. Thisis because domain information is
required to correctly format the value for display in the
input control.

If an| NI TI AL end-point is used and the property is not
alist value, it specifies the visible value of thefield
(which will be read-only). The SOURCE value will be
hidden, and the pair of values can only be changed viaa
pop-up search page. The TARGET end-point will be sup-
plied with the hidden value.

If an| NI TI AL end-point is used and the property isalist
value, it specifies the visible valuesin a drop-down list.
Thel NI TI AL element's H DDEN_PROPERTY specifies
the corresponding list of hidden values that will be sup-
plied to the TARGET end-point. In thisinstance, the
SOURCE end-point specifies one of the hidden valuesin
the list that should be used astheinitial list selection (the
corresponding visible value is displayed).

LI NK 0..1. Only valid for output fields (those with no TARGET
connection end-point). The value of the output field will
be used as the text for the hyperlink specified by this
L1 NK element.

If thefield is based on a domain which requires a pop-up
window then the L1 NK element can be used to supply
parameters to the pop-up page. In thiscasethe LI NK ele-
ment must not have a PAGE_| D attribute specified. See
Section 8.21.3, Using the Pop-up Page for further details.

LABEL 0..1. Allows thelabel for aFI ELD to constructed from a
number of sources. If both a LABEL attribute and LABEL
child element are specified, the element takes precedence.
See Section 5.9.21, LABEL for more details.

90

Curam Web Client Reference Manual

Element Cardinality / Description
Name
SCRI PT 0..n. A script file associated with this FI ELD that con-

tains JavaScript code to be activated in response to the
specified event on the field control. See Section 5.9.28,
SCRIPT for more details and limitations on this element

usage.
Table 5.16 Child Elements of the FIELD Element

5.9.12 FOOTER_ROW

The FOOTER_ROWelement is used to define a single footer row at the end
of alist. A list can have multiple footer rows.

A FOOTER _ROWelement may only contain FI ELD elements. The number
of FI ELD elements must match the number of columnsin the parent list.

There are two CSS classes associated with footer row fields. A FI ELD with
a TEXT SOURCE connection is output with the f oot er header CSS
class. All other SOURCE connections are output with the f oot er val ue
CSS class. Both of these classes are defined in cur am_conmon. css and
can thus be customized.

Spanning column widths are supported through the use of skip fields. For
instance, if one normal field and two skip fields are used in aFOOTER_ROW
element, this normal field will span three columns. Example code is shown
below.

<LI ST TITLE="List.Title. One" DESCRI PTI ON="Li st. Descri ption. One">
<FI ELD LABEL="Fi el d. Titl e. Bankl d' W DTH="40">
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="dt!| s$entitl enent"/>
</ CONNECT>
</ FI ELD>
<FI ELD LABEL="Field. Titl e. Nane" W DTH="35">
<CONNECT>
<SOURCE NANME="DI SPLAY" PROPERTY="dt| s$date"/ >
</ CONNECT>
</ Fl ELD>
<FI ELD LABEL="Fi el d. Titl e. Versi onNo" W DTH="25">
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="dt| s$total "/>
</ CONNECT>
</ FI ELD>

<FOOTER_ROWS
<FI ELD CONTROL="SKI P"/ >
<FI ELD W DTH="40" LABEL="Field.Title. Footer" >
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Footer.Text.Entitlenent"/>
</ CONNECT>
</ FI ELD>
<FI ELD>
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="dt| s$entitlenent"/>
</ CONNECT>
</ FI ELD>
</ FOOTER_ROW>

91

Curam Web Client Reference Manual

</ LI ST>

<LI ST>
<FlI ELD W DTH="40">
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="dt| s$deduction"/>
</ CONNECT>
</ Fl ELD>
<FI ELD W DTH="35" >
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="dt| s$date"/>
</ CONNECT>
</ FI ELD>
<FI ELD W DTH="25" >
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="dt| s$total "/>
</ CONNECT>
</ FlI ELD>

<FOOTER_ROW>
<FI ELD CONTROL="SKI P"/ >
<FI ELD W DTH="40" LABEL="Field.Title. Footer" >
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Foot er. Text. Deducti ons"/>
</ CONNECT>
</ Fl ELD>
<FI ELD>
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="dt| s$subTotal "/>
</ CONNECT>
</ Fl ELD>
</ FOOTER_ROW

<FOOTER_ROW
<Fl ELD CONTROL="SKI P"/ >
<FI| ELD>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Footer. Text.Paynent"/>
</ CONNECT>
</ Fl ELD>
<Fl| ELD>
<CONNECT>
<SOURCE NAME="D| SPLAY" PROPERTY="dt| s$paynent"/>
</ CONNECT>
</ Fl ELD>
</ FOOTER_ROW>
</ LI ST>

Example 5.3 Example of a FOOTER_ROW in a List.

Attributes

The FOOTER _ROWelement has no attributes.

Child Elements
The FOOTER _ROWelement contains the following child elements.

Element Name Cardinality / Description

FI ELD 1..n Each FOOTER_ROWmust contain the
same number FI ELD elements as there are
columnsin the parent LI ST.

Table 5.17 Child Elements of the FOOTER_ROW Element

92

5.9.13

5.9.14

Curam Web Client Reference Manual

IMAGE

The | MAGE element inserts an image into a CONTAI NER.

Attributes

The | MAGE e ement has attributes as follows:

Attribute Required Default Description

Name

| MAGE Yes A referenceto an entry inthel m
age. properti es file

LABEL Yes The entry in the UIM's associated

properties file which is used as the
aternate (or “at”) text of theim-

age.
STYLE No A CSS style to associate with the
image.

Table 5.18 Attributes of the IMAGE Element

Child Elements
The | MAGE element has no child elements.

INCLUDE

The | NCLUDE element indicates that the elements within an externa UIM
view document should be included at this position in the page.

Attributes

The | NCLUDE element has attributes as follows:

Attribute Required Default Description

Name

FI LE_NAME Yes The file name of the UIM view
document to be included. No path
to the file should be specified. The
file name alone is sufficient to
identify the document.

Table 5.19 Attributes of the INCLUDE Element

Child Elements

93

5.9.15

5.9.16

Curam Web Client Reference Manual

The | NCLUDE element has no child elements.

INITIAL

This element is only valid within a CONNECT element contained in a
FI ELD element. Use of this connection type is described in further detail in
the following sections:

» For pop-up pages see Section 8.21, Pop-up Pages

* For selection lists populated from server interface properties see Sec-
tion 8.7, Selection Lists

Attributes

Thel NI Tl AL element has the following attributes:

Attribute Name Re- Default Description
quired
NAVE Yes The name of the SERV-

ER | NTERFACE instance to
use as the source of the prop-
erty value.

PROPERTY Yes The source of the datato be
displayed in the visible field.
This can be alist or anon-
list field type.

HI DDEN_PROPERTY No The source of the list data
that has a one-to-one map-
ping (based on thelist in-
dexes) to the list property
specified in the PROPERTY
attribute.

Table 5.20 Attributes of the INITIAL Element

Child Elements

Thel NI TI AL element contains no child elements.

INFORMATIONAL

The | NFORVATI ONAL element is used to display informational messages
returned from the server. These are different to error messages in that the
server call completes successfully. The messages are created in server side
code using the SDEJ Informational Manager API (see the Clram Server De-
velopers Guide for more details). This APl alows a developer to assign

94

5.9.17

Curam Web Client Reference Manual

messages to an output list field(s). This field must then be referenced using
child CONNECT elements. The message will be displayed at the top of the
page in the same area as error messages and this may not be on the page on
which the INFORMATIONAL element was defined. It could be on the fol-
lowing page or on the parent page in the case of modal dialogs. Finally,
messages will never be displayed within the context panel of the applica-
tion, but will instead will always be displayed within the main content area
of the page.

Attributes

The | NFORMATI ONAL element has no attributes.

Child Elements

The | NFORMATI ONAL element contains the following child elements.

Element Name Cardinality / Description

CONNECT 1..n Each CONNECT element specifiesa
single SOURCE end-point. Thisisafield of a
bean which contains informational messages.

Table 5.21 Child Elements of the INFORMATIONAL Element

INLINE_PAGE

The | NLI NE_PAGE element is used to display the contents of one UIM
page in-line in another. Currently this is only supported within the DE-

TAI LS_ROWelement of aLl ST to support displaying extra content when a
list row is expanded.

Attribute

The |l NLI NE_PAGE element has the following attributes:

Attribute Name Re- Default Description
quired
PAGE I D Yes The ID of the UIM page to

display. Circular dependen-
cies must not be introduced.
If apageisusedinling, itis
not allowed for it to be
mapped to atab at the same
time.

URI _SOURCE_NAME No The name of the SERV-
ER | NTERFACE instance to
use as the source of the URI.
This attribute is paired with

95

Curam Web Client Reference Manual

Attribute Name Re- Default Description
quired

URI _SOURCE_PROPERTY.
Note that a URI can only be
sourced from a server inter-
face. This attribute cannot be
used to specify page para-
meters or propertiesfilesasa
source for the URI. The serv-
er interface reference must
be called during the
“display-phase” and the par-
ent ACTI ON_CONTROL
must be of type ACTI ON
when this property is used.

URI _ SOURCE_PROPE No The name of the property to
RTY use as the source of the URI.

Table 5.22 Attributes of the INLINE_PAGE Element

Child Elements
The |l NLI NE_PAGE element contains the following child elements.

Element Name Cardinality / Description

CONNECT 0..n. Connections on this element define the
parameters to be exported to the page tar-
geted by the | NLI NE_PAGE elements
PAGE_| D attribute. The CONNECT should
contain both a SOURCE and a TARGET ele-
ment and the TARGET element should have
the NAIVE attribute set to PAGE and the
PROPERTY attribute set to the name of the
page parameter.

Table 5.23 Child Elements of the INLINE_PAGE Element

Restrictions on usage

The UIM page opened in an expanded row is intended for only viewing ad-
ditional information about the row. It should not be used for editing inform-
ation about that row. Instead a modal dialog should be launched from the
page when an edit is required.

As these pages are for viewing information only, the following rules/
restrictions should be noted for these "in-line" pages.

96

5.9.18

Curam Web Client Reference Manual

e The"in-line" pages displayed in an expanded row must not be used for
editing information.

e The "in-line" pages displayed in an expanded row should not display
very complex widgets that require a "full screen”. This includes the fol-
lowing domain specific controls and UIM elements:

=o

Decision Assist: The Decision Matrix Widget
Decision Assist: Typical Picture Editor Widget
Decision Assist: Evidence Review Widget
Agenda Player

Batch Function View

The Rules Simulation Editor

The Rates Table

The Meeting View Widget

The FILE_EDIT Widget

The Calendar

Rules Trees

Note

There are no validations in place for these restrictions and it is the
responsibility of the developer to ensure they don't use unsupported
widgets in an expandable list.

IS_FALSE

A Boolean test to evaluate if the parent CONDI T1 ON succeeds or fails. This
element evaluates to true when the referenced property valueis false.

Attributes

Thel S_FALSE element has the following attributes:

Attribute Name Re- Default Description
quired
NANVE Yes The name of the SERV-
ER_| NTERFACE instance to
use as the source of the prop-
erty value.
PROPERTY Yes The name of the property be-

ing accessed. It must be a
Boolean value.

97

5.9.19

5.9.20

Curam Web Client Reference Manual

Table 5.24 Attributes of the IS_FALSE Element

See Section 5.9.19.1, Attributes for more details on the use of this e ement
to access the values of action-phase server interface properties.

Child Elements

Thel S_FALSE element contains no child elements.

IS_TRUE

A Boolean test to evaluate if the parent CONDI T1 ON succeeds or fails. This
element evaluates to true when the referenced property valueistrue.

Attributes

Thel S_TRUE element has the following attributes:

Attribute Name Re- Default Description

quired
NANVE Yes The name of the SERV-
ER | NTERFACE instance to

use as the source of the prop-
erty value.

PROPERTY Yes The name of the property be-
ing accessed. It must be a
Boolean value.

Table 5.25 Attributes of the IS_TRUE Element

In the mgority of cases the NAME and PROPERTY combination will refer-
ence a display-phase server interface property. However when a page sub-
mits to itself using an ACTI ON_CONTROL with achild LI NK element that
hasthe PAGE | Dsetto THI S (e.g., asearch page), properties of the action-
phase server interface can be referenced. When the page is first displayed
the action-phase server interface will not be in scope and the property is
treated as if its value is false. When the page is submitted, the action-phase
server interface will be in scope and the referenced property will be evalu-
ated asnormal.

Child Elements

Thel S_TRUE element contains no child elements.

JSP_SCRIPTLET

The JSP_SCRI PTLET element defines JSP scriptlet code that should be
inserted into the page at that point relative to any other LI ST or CLUSTER

98

Curam Web Client Reference Manual

elements. Any TextHelper beans declared by a SERVER | NTERFACE ele-
ment to be in the DI SPLAY phase are available to the scriptlet by getting
the attribute of the page context with the same name as the NANME attribute
of the SERVER | NTERFACE element. An example is shown in Ex-
ample 5.4, Example JSP_SCRIPTLET Accessing a TextHelper below.

<SERVER | NTERFACE NAME="M/BeanNane" CLASS="M/C ass"
OPERATI ON="get MyDat a" />
<JSP_SCRI PTLET>
<! [CDATA[
cur am onega3. t ext hel per. Text Hel per th =
pageCont ext . fi ndAttri but e(" MyBeanNane") ;
String nmyVal ue = th. getFiel dval ue(" myPropertyNanme");
out.print("VALUE: " + nyVal ue);
>

</ JSP_SCRI PTLET>

Example 5.4 Example JSP_SCRIPTLET Accessing a TextHelper

As the code within the JSP_SCRI PTLET element may contain reserved
XML characters®, you can either replace these characters with the appropri-
ate XML character entity or enclose the contents of the element in the
CDATA (“character data’) block as shown above which will prevent the
XML parser from trying to interpret the contents of the block.

A common use of the JSP_SCRI PTLET element is to write code that will
redirect the current page to another page. Example 5.5, Example
JSP_SCRIPTLET Redirecting to a Page, below, shows an example of this.

<PAGE PACE | D="Activity_resol veAttendeeHone" >
<JSP_SCRI PTLET>
<! [CDATA[
curam onega3. r equest . Request Handl er rh
= curam onega3. request . Request Handl er Fact ory
. get Request Handl er (request) ;
String context = request.getContextPath() + "/";
context += curam onega3. user. User Pr ef erencesFact ory
. get User Pr ef er ences(pageCont ext . get Sessi on())
.getLocale() + "/";
String url = context + "User Cal endar Page. do?"
+ "start Dat e=&cal endar Vi ewType=CVT3";
url += "&" + rh. get Syst enParaneters();
response. sendRedi r ect (response. encodeRedi rect URL(url));

11>
</ JSP_SCRI PTLET>
</ PAGE>

Example 5.5 Example JSP_SCRIPTLET Redirecting to a Page

This demonstrates the APl used to access the system parameters that control
an application's ability to return to previous pages. The information about
the previous page is stored in the system parameters accessible via the Re-

quest Handl er .get Syst enPar anet er s() method. By adding the
system parameters, any Cancel button on the following page will return to
the expected page when clicked. The
Request Handl er Fact or y.get Request Handl er () method is
passed the JSP request object and will return the appropriate request hand-
ler. The system parameters should be appended to the redirect URL and just
require a separating “&” character as they are aready formatted in

99

Curam Web Client Reference Manual

val ue pairs.

When using a JSP_SCRI PTLET to redirect to another page, the
JSP_SCRI PTLET should be the only child element of the PAGE element.
When this is the case, no HTML content will be generated for the page: it
will not be displayed, so no HTML is required. If other elements are
present, then HTML content will be generated. This can include the page
header, navigation menus, footer, title, etc. If this HTML content exceeds
the size of the buffer on the web container serving the page, then the content
will be transmitted to the web browser. Once any content is transmitted in
this way, the redirect operation will have no effect. Therefore, ensuring that
the page contains a single JSP_SCRI PTLET element and no other ele-
ments will ensure that the redirect operation works as expected.

If you need to access a TextHelper instance from a JSP scriptlet that redir-
ects to another page, then you cannot use the SERVER | NTERFACE ele-
ment to declare the TextHelper as shown in Example 5.4, Example
JSP_SCRIPTLET Accessing a TextHelper, as this extra element would
cause HTML content to be generated. Instead, you must declare the
TextHelper instance within the scriptlet code as shown below.

It should be noted that, when using JSP_SCRI PTLET, there is limited er-
ror handling capability. Thus, code should not make calls to secured server
interface methods. Instead, the target page of any JSP_SCRI PTLET should
be secured appropriately.

<PAGE PAGE | D="Activity_resol veApplicati onHone" >
<JSP_SCRI PTLET>
<! [CDATA[
curam onega3. r equest . Request Handl er rh
= curam onega3. request . Request Handl er Fact ory
. get Request Handl er (request) ;
String context = request.getContextPath() + "/";
context += curam onega3. user. User Pref erencesFactory
. get User Pr ef er ences(pageCont ext . get Sessi on())
.getLocale() + "/";
String activitylD = request. get Parameter("1D");
String event Type = request. get Paraneter (" TYPE");
String url = context;

curaminterfaces. ActivityPkg. Activity_readDescription_TH
th = new curaminterfaces. Acti vityPkg
.Activity_readDescription_TH();
th. set Fi el dval ue(
th. key$acti vityDescri pti onKey$activityl D idx,
activitylD);
th.call Server();

String description = th.getFiel dval ue(
th.resul t $acti vityDescri pti onDet ai | s$descri ption_i dx);
i f (event Type. equal s("AT1")) {

url = "Activity_viewlUserRecurringActivityPage. do?";
} else {
url = "Activity_viewldser St andar dActi vi t yPage. do?";

}
url += "activitylD=" + activitylD;
url += "&descri ption="
+ curam onega3. request . Request Uti | s. escapeURL(
description);
url += "&" + rh.getSystenParaneters();
response. sendRedi r ect (r esponse. encodeRedi rect URL(url));

11>
</ JSP_SCRI PTLET>

100

5.9.21

Curam Web Client Reference Manual

</ PAGE>

Example 5.6 Example JSP_SCRIPTLET Redirecting and Accessing
a TextHelper

When adding parameters to the parameter list, care must be taken if the
parameter value may contain non-ASCI| characters. Values containing non-
ASCII characters must be escaped before they are added to the parameter
list to ensure that the characters are preserved correctly. The Reques-
tUtil s.escapeURL(String) method can be used to perform the es-
caping. An example of the Java code to perform this escaping is shown in
the example above. Code following that pattern should be included within
your JSP scriptlet.

Attributes

The JSP_SCRI PTLET element has no attributes.

Child Elements

The JSP_SCRI PTLET element contains no child elements. The body of
the element must only contain the JSP scriptlet code to be inserted into the

page.

LABEL

The LABEL element can be used as a child element of FI ELD to construct a
label by concatenating multiple values. An example of the field and label
datais shown in Example 5.7, Example of a Dynamic LABEL, below.

<CLUSTER TI TLE="Cl uster. Title">
<FI ELD>
<LABEL>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Label . Text" />
</ CONNECT>
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="personNane" />
</ CONNECT>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Label . Separator" />
</ CONNECT>
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="dateO'Birth" />
</ CONNECT>
</ LABEL>

<CONNECT>
<TARGET NAME="ACTI ON' PROPERTY="fi el dNane"/ >
</ CONNECT>

</ FI ELD>
</ CLUSTER>

Example 5.7 Example of a Dynamic LABEL

Attributes

101

5.9.22

Curam Web Client Reference Manual

The LABEL e ement has no attributes:

Child Elements

The LABEL element can contain the following child elements.

Element Name Cardinality / Description

CONNECT 1..n. A CONNECT element specifying asingle
SOURCE end-point. Action-phase server interfaces
cannot be used in the SOURCE end-point.

Table 5.26 Child Elements of the LABEL Element

LINK

The L1 NK element specifies the page to go to after an action phase. Altern-
atively, a L1 NK element can specify any external web page or certain re-
source. Links can contain CONNECT elements to map values to parameters
to be added to the link.

Attributes

The L1 NK element has the following attributes. Note that the PAGE_| D,
PAGE | D_REF, URL, URI, and URI _REF attributes are mutually exclus-
ive as well as the par of attributes URI _SOURCE _NAME and
URI _ SOURCE_PROPERTY.

Please note that attributes that have the ability to link to external web pages
or resources (i.e mailto: links) will have their link back functionality
stripped away. This link back functionality keeps a link to the previous
page. An example of where this is needed is with cancel buttons where if
they are used, the page will link back to the previous page. In order to keep
this, the link will have to be to an internal Curam page. In order to mark a
link as being alink to an internal Curam page, the keyword ‘curam:’ needs to
be added before the link text.

Attribute Name Required Default Description

PAGE I D No The unique identifier of the page
to be opened. Thisisthe value of
the PAGE_| D attribute of the
PAGE element in the required
UIM page document.

If this attribute is set to the
PACGE | D of the current page,
the page will be re-opened with
al theinput fields reset to their
default state.

If thelink is on an action control

102

Curam Web Client Reference Manual

Attribute Name Required Default Description

with a TYPE set to SUBM T and
this attribute is set to the value
THI S, the link will return to the
current page after the action
phase and the input fields will not
be reset to their default state. This
is useful for search pages where
the search criteria need to be pre-
served.

PAGE | D REF No A PAGE_| Dcan aternatively be
specified by reference to an entry
inthe Cur am
Li nks. properti es file. This
allows many linksto refer to the
same target page yet all can be
updated by changing the entry in
the Cur am
Li nks. properti es file.

URL No It is recommended to use the new
URI attribute which is described
below. The URL attributeis
maintained for backward compat-
ibility.

URI No Rather than link to another page
in the application, the URI attrib-
ute allows the creation of alink
to any URI whatsoever. This can
be used to link to pages or other
resources completely outside of
the application. Parameters must
be supplied by CONNECT ele-
ments withing the L1 NK to en-
sure correct encoding.

URI _REF No A URI (or URL) can alternatively
be specified by reference to an
entry inthe Cur am
Li nks. properti es file. This
allows many linksto refer to the
same target yet all can be updated
by changing the entry in the
Cur anLi nks. properties
file. Thefile can be placed in any
component in the application.

URI SOURCE N No The name of the SERV-
AME ER | NTERFACE instance to use

103

Curam Web Client Reference Manual

Attribute Name Required Default Description

URI _SOURCE P No
ROPERTY

OPEN_NEW No

SAVE_LI NK No

SET_HI ERARCH No
Y_RETURN_PAG
E

USE_H ERARCH No
Y _RETURN PAG
E

fal se

true

fal se

fal se

as the source of the URI. This at-
tribute is paired with

URI _SOURCE_PROPERTY.
Note that a URI can only be
sourced from a server interface.
This attribute cannot be used to
specify page parameters or prop-
ertiesfiles as a source for the
URI. The server interface refer-
ence must be called during the
“display-phase” and the parent
ACTI ON_CONTROL must be of
type ACTI ON when this property
is used.

The name of the property to use
as the source of the URI.

When settot r ue, thisflagin-
dicates that the linked page
should be opened in a new win-
dow. When settof al se (the de-
fault) the linked page will be
opened in the current window.
This setting is only supported for
links to external sites.

This attribute indicates that the
page containing the link should
be returned to if an action control
on the target pageis configured
to return to the previous page. An
action control without aLl NK
child element will return the user
to the previous page. If thereisa
sequence of pages and any one of
them needs to go back to a
“starting” page, then each pagein
the sequence should set this at-
tributeto f al se so that sub-
sequent pages do not return to
their immediate previous page in
the chain.

This attribute is no longer used

but has been retained in the UIM
schemato avoid upgrade impact.

This attribute is no longer used
but has been retained in the UIM
schemato avoid upgrade impact.

104

Curam Web Client Reference Manual

Attribute Name Required Default Description

HOVE_PAGE No

OPEN_ MODAL No

Dl S- No
M SS MODAL

W N- No
DOW OPTI ONS

"false"

lltruell

"width=
800, heig
ht=450"

If thisattributeissettot r ue, the
link will take a user directly to
their home page. During devel op-
ment the home page can be con-
figured by setting the
“application code” field of the
Curam “users’ table. Thisvalue
of thisfield corresponds to an
entry on the APPLI CA-

Tl ON_CODE code-table. At
runtime, the Ciram Administra-
tion application allows the home
page to be set when creating or
editing a user.

Note, that in the devel opment en-
vironment Java EE security is not
enabled. Therefore, since a user
nameis not available the home
page link cannot be displayed.

If thisattributeissettot r ue, the
link will open the referenced
page in a new window. The new
window is modal, meaning that
whileit is open the parent win-
dow cannot be accessed. When a
user navigates from the original
page in the modal dialog, either
by submitting aform or clicking
alink, the modal dialog is closed,
and the parent page that spawned
it is sent to the new location. This
behavior is only supported in In-
ternet Explorer, al other
browsers will ssmply open anor-
mal pop-up window.

If thisattributeissettof al se,
the link will open the referenced
page in the same pop-up window,
modal or normal depending on
what the browser supports.

The size of each modal dialog is
configurable using this paramet-
er. Thevalue of the attributeisa
comma separated list of name
value pairs. The currently suppor-
ted optionsarewi dt h and

105

Curam Web Client Reference Manual

Attribute Name Required Default Description

hei ght , both of which take an
integer value, which is trandated
directly to apixel value. Any oth-
er parameters will cause an ex-
ception to be thrown. This attrib-
ute should only be set when
OPEN_MODAL issettotr ue on
the same L1 NK tag.

Table 5.27 Attributes of the LINK Element

Child Elements

The LI NK element can contain the following child elements:

Element Name
CONNECT

CONDI Tl ON

Cardinality / Description

0..n. Connections on alink define the para-
meters to be exported to the page targeted by
the link. The CONNECT should contain both a
SOURCE and a TARGET element and the
TARGET element should have the NAMVE at-
tribute set to PAGE and the PROPERTY at-
tribute set to the name of the page parameter.
Any type of SOURCE element can be used
with the following exceptions. TEXT and
wherethe LI NKisinside an AC-

TI ON_CONTROL with TYPE=SUBM T. In
the last scenario, the SOURCE must have an
ACTI ON phase bean, a page parameter or a
CONSTANT. The reason being the URL is
generated in the action class and the DI S-
PLAY bean is not accessible at the stage.

0..1. Affects whether or not thelink isdis-
played.

Table 5.28 Child Elements of the LINK Element

Modal Dialogs

A Modal Dialog is similar to a Pop-up Page, in that it opens a dialog box to
display a page on top of the main application content. However, modal dia-
log is different in a number of ways.

* When a modal dialog is open, its parent page cannot be accessed. The
parent page is grayed-out and ignores any user action.

106

Curam Web Client Reference Manual

» Changing the page in the Modal Dialog, either by submitting a form or
by clicking a hyperlink, causes it to close, and the parent page to be
changed to the changed page, with the following exceptions

» |If the page linked to has the same id as the current modal page (e.g. a
'save & new' button/link), then the page will be refreshed within the
same modal window

» If the link clicked has the attribute DISMISS MODAL set to false,
the page linked to will opened within the same modal window

» |If the link clicked has the attribute OPEN_MODAL set to true, it
will open in a new modal window

* The usage of Modal Dialogs is different to that of Pop-up pages. It is
considerably less complex, consisting of using either one or two optional
attributes on the LI NK tag.

Using Modal Dialogs

A LI NK tag is made to open in a Modal Dialog, rather than the default ac-
tion of opening a new page in the same window, by setting the
OPEN_MCDAL attributetot r ue.

<LI NK PAGE_| D="Mil ti Sel ect W dget Resul t" OPEN_MODAL="true" />
Note in the example the use of the OPEN_MODAL attribute on the L1 NK tag.

Setting OPEN_MODAL on a LI NK that is inside an ACTI ON_CONTRCL of
type SUBM T has no effect. Setting OPEN_MODAL=true on a link implies
aso having DI SM SS_MODAL=false on that link, and setting DI S-
M SS_MODAL=true on it is ignored. Setting DI SM SS_MODAL=false im-
plies OPEN_MODAL =false, so thereis no need to set it.

Configuring Modal Dialogs

Modal Dialogs can be individually configured by setting the W N-
DOW OPTI ONS attribute on a LI NK tag which also has the OPEN_MODAL
attribute set to t r ue. Multiple options can set using this attribute, which is
formatted as a comma separated list of name value pairs. The currently sup-
ported parameters are

* Wi dt h - sets the width of the Modal Dialog, measured in pixels. This
parameter takes an integer value.

* hei ght - setsthe height of the Modal Dialog, measured in pixels. This
parameter takes an integer value.

<LI NK PAGE_I D="Mul ti Sel ect Wdget Resul t" OPEN_MODAL="tr ue"
W NDOW OPTI ONS="wi dt h=600, hei ght =500" />

Note in the example above the use of the W NDOW OPTI ONS attribute. The
values specified for wi dt h and hei ght are simple integers and do not
have any alphabetic characters appended. A default width of 600 pixels is

107

5.9.23

Curam Web Client Reference Manual

used if now dt h parameter is specified. If no height parameter is specified
the height will be automatically calculated to accommodate the page con-
tents. If an unsupported parameter is placed in the W NDOW OPTI ONS, a
build exception will be thrown.

If the W NDOW _OPTI ONS attribute is also specified on the PAGE element
of the page the L1 NK points to, it will take precedence over the value spe-
cified on the LI NK itself.

The minimum required height for modal dialogs can be configured using the
property nodal . di al ogs. m ni nrum hei ght that is located in the
Appl i cationConfi guration. properti es file.

Controlling Modal Dialogs from custom JavaScript

Moda Diaogs can be controlled from custom JavaScript by using the
provided curam util. U nDi al og API. For details see the full AP
documentation in HTML format, accessible by opening
<cdej - di r>\doc\ JavaScri pt\i ndex. ht m inaWeb browser.

Loading custom non-UIM pages in a Modal Dialog

Custom non-UIM pages must hook into a specific set of API functionsin or-
der to work correctly in a Modal Dialog. These functions are provided by
thecuram uti | . Di al og API. The details are available in the full API
documentation: <cdej - di r >\ doc\ JavaScri pt\i ndex. ht i .

LIST

The LI ST element defines the layout of a control used to display lists of
data. Each field or action control becomes a column and data values are then
tabulated.

Attributes

The Ll ST element has the following attributes:

Attribute Name Required Default Description

TI TLE No A reference to an externalized
string containing the title string for
thislist. See aso note below.

STYLE No The class name of the CSS style to
associate with this list for format-
ting.

DESCRI PTI ON No A reference to an externalized

string that provides more details
about the list than the title alone.
Thiswill be displayed below the
title on the page.

108

Curam Web Client Reference Manual

Attribute Name Required Default Description

SORTABLE No true Listscan besorted by clicking on
the appropriate headers. Thisis set
by default to be enabled without
the use of the attribute. This attrib-
ute allows this feature to be con-
trolled with f al se disabling the
featureandt r ue enabling it.

SUMVARY No A reference to an externalized
string containing the summary of
thislist. The SUMMARY attribute
describes the purpose and/or struc-

ture of alist.
SCROLL_HEI GH No Specifiesin pixels the desired
T fixed height of ascrollablelist. A

vertical scrollbar is provided once
the list exceeds the scroll height.
The scrollbar is only applied to the
list body and the list's column
headers remain fixed Scroll height
isindependent of the list contents
and therefore an empty list will
still be set to the height specified.

BEHAVI OR No Optional attribute which controls
the display and behavior of the
toggle button used to expand or
collapse thelist.

Three value options are available
for this attribute:

* NONE which prevents the
toggle button from being dis-
played in the list header.

« EXPANDED: the toggle button
isdisplayed and thelist isini-
tially expanded.

* COLLAPSED: the toggle but-
tonisdisplayed and thelist is
initially collapsed.

When the BEHAVI ORis not set
for aligt, its default value of EX-
PANDED isimplied.

Note that this attribute is only ap-
plicable when the property EN-
ABLE_COLLAPSI BLE _CLUSTE

109

Curam Web Client Reference Manual

Attribute Name Required Default Description

RSisnotsetorissettot ruein
curam confi g. xm . For de-
tails see Section 3.12.13, General
Configuration.

PAG NATED No true Enables the ability to page through

lists displayed in Cdram pages.
Any LIST longer than the con-
figured minimum size will display
only thefirst "page" of dataand
the pagination controls will be dis-
played below the list.

DE- No Based Specifiesthe page size the list will
FAULT_PAGE_S onthe get by default. The page size can
| ZE global bethen changed at runtime by the
con- user.
figured
value,
usually
15.
PAG NA- No Based Specifiesthe minimum list size at
Tl ON_THRESHO onthe which pagination will be enabled.
LD global For shorter lists there will be no
con- pagination, even if otherwise pa-
figured gination isswitched on.
value,
usually
same as
DE-
FAULT
PAGE
SIZE.

Table 5.29 Attributes of the LIST Element

i

Note

Lists on search pages now display the number of items found as a
result of the search. The number of items will be displayed beside
thelist title.

The text used to display the number of items can be customized by
setting the following property in the CDEJRe-
sour ces. properti es file for example:

record. nunber . message=I tens found:

110

Curam Web Client Reference Manual

The actual number of items will be displayed after the text.

This feature only applies to search pages and must be enabled by
adding the following to the curam-config.xml file:

<LI ST_ROW COUNT>t r ue</ LI ST_ROW COUNT>

Child Elements

The LI ST element can contain the following child elements. It must contain
a least one ACTI ON_CONTROL, FI ELD, or CONTAI NER element.
SOURCE connections can be made to list or non-list properties. Within a ta-
ble al list properties must belong to the same list structure defined in the
server interface model. This ensures that they are all the same length. The
number of rows in the list will be equal to the number of elementsin the list
properties. The value of anon-list property is simply repeated on each row.

Element Name Cardinality / Description

TI TLE 0..1. The Tl TLE element will be displayed above
theLl ST.
DESCRI PTI ON 0..1 The DESCRI PTI ON element has the same be-

havior asthe DESCRI PTI ON attribute but allows
the description to be built up from a number of
sources. If both are specified, this element takes
precedence over the corresponding attribute.

ACTI ON_SET 0..1. The action set can contain AC-
TI ON_CONTROL elements of any type. The action
controls will be displayed above and/or below the
entirelist.

FI ELD 0..n. The FI ELD, CONTAI NER, and AC-
Tl ON_CONTROL elements can be fredly inter-
mingled. Only output fields can be used (i.e., fields
with no target connection.)

CONTAI NER 0..n. The FI ELD, CONTAI NER, and AC-
T1 ON_CONTROL elements can be freely inter-
mingled. Within the container, only output fields
can be used (i.e., fields with no target connection.)

CONDI Tl ON 0..1. Affects whether or not the list is displayed.
FOOTER_ROW 0..n. This should be defined after all other child
elements.

Table 5.30 Child Elements of the LIST Element

5.9.24 MENU

111

Curam Web Client Reference Manual

The MENU element is used to define six types of menus in a Caram client
application. The menu types are:

e STATI C. The menu is made up of ACTI ON_CONTROL elements that
will appear on the page menu. The ACTI ON_CONTROL elements must
have the TYPE of ACTI ON.

¢ NAVI GATI ON: The menu is made up of ACTI ON_CONTRCOL elements
that will be appended to the “Navigation” menu. The AC
Tl ON_CONTROL elements must have the TYPE of ACTI ON.

 DYNAM C: The menu is driven by XML data constructed on the server
application.

e | NTEGRATED_ CASE: The menu is driven by XML data constructed on
the server application. This menu is specific to the Clram-style Integ-
rated Case user interface and is rendered as a set of of tabs.

e IN_PAGE_NAVI GATION: The menu is made up of AC
TI ON_CONTROL elements that will appear on the in-page-navigation
menu at the top of the main content area.

« W ZARD PROGRESS BAR: This is another specific type of menu
rendered as a button bar on the top of the content areain amodal dialog
for displaying a sequence of related pages in the wizard manner. The
menu is driven by aresource stored in the server application.

Attributes

The MENU element has the following attribute:

Attribute Required Default Description

Name

MODE No STATI C Thetype of menu to create. The
mode can be STATI C (the de-
fault), NAVI GATI ON, DYNAM C,
| NTEGRATED_CASE,
| N_PAGE_NAVI GATI ONor
W ZARD PROGRESS BAR

Static, navigation and in-
page-navigation menus contain
one or more ACTI ON_CONTROL
elements that represent links to
other pages. The static menu nor-
mally appears just above the main
content area of the page. Naviga-
tion menu items will be appended
to the navigation menu, normally
on the left of the page. In-
page-navigation menu items ap-

112

Curam Web Client Reference Manual

Attribute Required Default Description
Name

pear at the top of the main content
area and the wizard progress bar
appears at the top of the modal
dialog content area.

Dynamic menus of both types
(DYNAM Cand | NTEG
RATED_CASE) are created from
data retrieved from the server and
contain a single CONNECT ele-
ment specifying a SOURCE end-
point to a server interface prop-
erty.

Table 5.31 Attributes of the MENU Element

Child Elements

The MENU element can contain the following child elements. Note that the
ACTI ON_CONTROL and CONNECT elements are mutually exclusive.

Element Name Cardinality / Description

ACTI ON_CONTRCL 1..n. Only action controls with a TYPE of
ACTI ON can be used.

CONNECT 1. A CONNECT element specifying asingle

SOURCE end-point.
Table 5.32 Child Elements of the MENU Element

DYNAMIC and INTEGRATED_CASE type menus

The data for both DYNAM C and | NTEGRATED CASE menu's are driven
by the same XML format. An example of the menu data sent by the applica-
tion server is shown below.

<DYNAM C_MENU>
<LI NK PACE_| D=" CaseHone"
DESC="2:fi el d1: curam onega3. nyMessages: i nf o_nmenul: ()"
TYPE="case" >
<PARAVETER NAME="casel D' VALUE="1234" />
</ LI NK>
<LI NK PAGE_I D="Pr oduct Horre"
DESC="2:fi el d1: curam onega3. nyMessages: i nf o_nmenu2: ()"
TYPE="pr oduct" >
<PARAMETER NAME="product | D' VALUE="5678" />
<PARAMETER NAME="casel D' VALUE="1234" />
</ LI NK>
</ DYNAM C_MENU>

Example 5.8 Example of Dynamic MENU Data

113

Curam Web Client Reference Manual

All the menu links are contained within the DYNAM C_MENU root element.
Each entry on the menu is specified by aLl NK element. The LI NK element
has the following attributes:

* PAGE | D: Specifiesthe target page for the link.

» DESC:. Specifies the server message catalog entry to be looked up and
used as the text for the link. The Clram SDEJ provides an AP to create
the string representation of a message catalog entry shown in the ex-
ample above. Consult the Caram Server Developers Guide for details on
using message catal 0gs.

* TYPE: specifiesavalue that islooked up in appropriate menu configura-
tion file (described below) to identify the icon that should be associated
with the link.

Each LI NK element can contain a number of PARAVETER elements that
specify additional parameters that will be added to the link from the menu.
The PARAMETER element has the following attributes:

* NAME: The parameter name.
* VALUE: The parameter value.

The configuration files for the DYNAM C and | NTEGRATED CASE menu's
are Dynam cMenuConfi g. xm and | CDynam cMenuConfi g. xni
respectively. The following are examples each configuration file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<DYNAM C_MENU_CONFI &
<SEPARATOR | MAGE="| nages/ separator.gif"
TEXT="Dyn. Menu. Separ at or"/ >
<LI NK TYPE="case" | MAGE="I| nages/case.gif"
TEXT="Dyn. Vi ew. Case"/ >
<LI NK TYPE="product" | MAGE="| mages/ product -delivery.gif"
TEXT="Dyn. Vi ew. Pr oduct "/ >
</ DYNAM C_MENU_CONFI G

Example 5.9 Example of a DYNAM C Menu Configuration File

<?xm version="1.0" encodi ng="UTF- 8" ?>
<| NTEGRATED_CASE_MENU_CONFI G
<LI NK TYPE="case" | MAGE="I| nages/case.gif"
TEXT="Dyn. Vi ew. Case"/ >
<LI NK TYPE="product" | MAGE="| mages/ product -delivery.gif"
TEXT="Dyn. Vi ew. Product"/>
</ DYNAM C_MENU_CONFI G

Example 5.10 Example of an | NTEGRATED CASE Menu
Configuration File

The differences to note are the root elements, DYNAM C_MENU_CONFI G
and | NTEGRATED_CASE_MENU _CONFI G and the SEPARATOR ele-
ment which is not used in an | NTEGRATED CASE because of its very spe-
cific look and feel.

The SEPARATOR element describes an image or a piece of text used to sep-

114

Curam Web Client Reference Manual

arate the menu items and has the following attributes:

* | MAGE: Specifies an image to use as the separator.

» TEXT: Specifies an entry in the COEJResour ces. properti es file
This attribute is mandatory. If an image is specified this will be used as
the alternate text for the image, if not, then the text will be displayed.

The LI NK element has the following attributes.

* TYPE: This must match the TYPE attribute of the LI NK element re-
turned from the server application.

» | MAGE: Specifies an image to use in the link. This attribute is mandat-
ory.

» TEXT: Specifies an entry in the COEJResour ces. properti es file
This attribute is mandatory. It will be used as the alternate text for the
image.

The IN_PAGE_NAVIGATION type menu

The in-page navigation menu, see User Interface Element 9 of Figure 2.1,
Application User Interface Overview, allows for the addition of a set of
links which will be displayed as tabs embedded within a UIM page. Each
UIM page in the set must define the same MENU element. The currently se-
lected UiM page, aka tab, is identified by the
STYLE="i n- page-current-|ink" attribute. This will differ on each
of the UIM pages in the set and should be set on the ACTI ON_CONTROL
that matches the UIM page the MENU is contained in.

<PACGE PACE_| D="I| nPageNav" >
<PAGE_TI TLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Title. Text"/>
</ CONNECT>
</ PAGE_TI TLE>
<MENU MODE="1 N_PAGE_NAVI GATI ON' >
<ACTI ON_CONTROL LABEL="Label . pagel">
<LI NK PAGE_| D="Pagel" SAVE LI NK="fal se"/>
</ ACTI ON_CONTROL>
<ACTI ON_CONTROL
LABEL="Page2. Label "
STYLE="i n- page-current-1|ink" >
<Ll NK PAGE | D="Page2" SAVE LI NK="fal se" />
</ ACTI ON_CONTROL>
</ MENU>

</ PAGE>

Example 5.11 Example of the IN_PAGE_NAVIGATION menu in UIM

WIZARD_PROGRESS_BAR menu

The wizard progress menu bar is inserted on a page by including a MENU

115

Curam Web Client Reference Manual

element which has a MODE attribute set to W ZARD PROGRESS BAR. It
binds a number of pages, allowing for the sequential navigation through
them. For instance, in a moda dialog which contains a wizard progress
menu bar, pages can be navigated through by clicking the previous or next
button. At the same time, the wizard progress menu bar presented on the top
of it will indicate its progress.

The UIM wizard pages

There are some specifics regarding the UIM pages used with the W Z-
ARD_PROGRESS BAR menu:

» The wizard pages should open in the modal dialog. The wizard progress
bar functionality should not be used in standard non-modal UIM pages.

» Each page in the wizard flow is implemented as standard UIM with a
wizard progress bar widget placed at the top of each page.

» The pages should have action controls for advancing through the wizard
(back and forward buttons as required by the scenario). The LI NK ele-
ments of these action controls should have DI SM SS_MODAL attribute
settof al se (except for the controls supposed to close the wizard). Ad-
ditionally, the SAVE_LI NK attribute should also be settof al se.

<PAGE PACE_| D="Sanpl e_PageOne" >
<MENU MODE="W ZARD PROGRESS BAR" >
<CONNECT>
<SOURCE
NAME=" DI SPLAY" PROPERTY="resourcel D' />
</ CONNECT>
</ MENU>
<PAGE _TI TLE>
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTi tl e" />
</ CONNECT>
</ PAGE_TI TLE>
<SERVER | NTERFACE
CLASS="W zar dSanpl e"
NAVE=" DI SPLAY" OPERATI ON="get Resour cel D"
PHASE=" DI SPLAY" />
<ACTI ON_SET ALl GNMVENT="CENTER' TOP="f al se">
<ACTI ON_CONTROL
LABEL="Acti onControl . Label . Cancel "/ >
<ACTI ON_CONTROL
LABEL="Act i onControl . Label . Next ">
<LI NK PACE_| D="Sanpl e_PageTwo"
SAVE LI NK="fal se"
DI SM SS_MODAL="f al se"/>
</ ACT| ON_CONTROL>
</ ACTI ON_SET>

</ PAGE>

Example 5.12 An example of wizard-type menu UIM

In the example above the connection in the MENU provides the identifier of
the server-side resource describing this wizard (see below).

116

Curam Web Client Reference Manual

Wizard menu configuration

The text required by the wizard progress bar items come from a property re-
source whose identifier must be provided to the wizard progress bar menu.

Nurmber . W zar d. Pages=2

Sanpl e_pageOne. Wzard. | tem Text =Chi |l d

Sanpl e_pageOne. Wzard. Page. Titl e=Step 1: Child Details
Sanpl e_pageOne. W zar d. Page. Desc=Capt ure sone details

W zar d. Pagel D. 1=Sanpl e_pageOne

Sanpl e_pageTwo. W zard. | t em Text =Par ent

Sanpl e_pageTwo. W zard. Page. Titl e=Step 2: Parent Details
Sanpl e_pageTwo. W zar d. Page. Desc=Capture sone details 1
W zar d. Pagel D. 2=Sanpl e_pageTwo

Example 5.13 Example of the required properties in the resource
store property file

Property Name Description

Nunber . W zar d. Pages Thevalue of this property defines the number
of itemsto be rendered for the wizard pro-
gress bar. The value must be a numeric whole
number greater than zero.

<Pagel D>. W zar d. | t e Definesthe text to be displayed within the

m Text wizard progress bar item for each page of the
wizard. There must be one of these properties
defined for each page in the wizard. The
property is uniquely identified for each wiz-
ard page by the <Pagel D> prefix which rep-
resents the actual identifier of that UIM page
in the wizard flow.

<Pagel D>. W zar d. Pag Definesthetitleto be displayed within the

e.Title wizard progress bar for the current page of
the wizard. There must be one of these prop-
erties defined for each page in the wizard.
The property isuniquely identified for each
wizard page by the <Pagel D> prefix which
represents the actual identifier of that UIM
page in the wizard flow.

<Pagel D>. W zar d. Pag Defines the description to be displayed within

e. Desc the wizard progress bar for the current page
of the wizard. There must be one of these
properties defined for each page in the wiz-
ard. The property is uniquely identified for
each wizard page by the <Pagel D> prefix
which represents the actual identifier of that
UIM page in the wizard flow.

117

5.9.25

Curam Web Client Reference Manual

Property Name Description

W z- Defines the position of the page within the
ar d. Pagel D. <PageNum wizard flow. The widget uses thisinforma-
> tion to style the bar items correctly. There

must be one of these properties defined for
each page in the wizard. This property is
uniquely identified for each wizard page by
the <PageNum> suffix which represents the
position of each page within the list of wizard
menu pages.

Table 5.33 Properties in the wizard defining resource

The order of the properties declaration in the resource is important as the as-
sociated menu widget will draw the wizard items for the progress bar in that
order. The page title and description are added by the widget for the current
page of the wizard.

PAGE

The PACGE element is the root e ement of a UIM document that describes the
datato be included in a generated JSP page.

Attributes

The PAGE element has the following attributes:

Attribute Name Required Default Description

PAGE I D Yes An identifier for the page used
when referencing the page from
LI NK elements. Thisidentifier
must be unique within a project.
The file name of the document
must be the same as the value of
this attribute and have the exten-
sion. ui m

POPUP_PAGE No fal se Indicatesthat this pageisapop-
up that will be opened from a
parent page. Pop-up pages do not
include the side-bar, header and
footer of standard pages. The
valuecanbesettot rue or
f al se. The attribute must only
be used for pages configured ac-
cording to Section 8.21, Pop-up
Pages (i.e., search pop-up pages).

SCRIPT_FILE No The name of the script file con-

118

Curam Web Client Reference Manual

Attribute Name Required Default Description

taining the JavaScript functions
that are specified in the ACTI ON
attribute of any SCRI PT ele-
ments on the page. If no

SCRI PT_FI LE attribute is set
on aparticular SCRI PT element
within aFl ELD or AC-

TI ON_CONTRCL the PAGE
script fileis used by default. The
script file should be added in a
component. If another script file
has the same name in another
component, the version in the
highest priority component will
be used. Each SCRI PT can spe-
cify itsown script fileif required,
or share this common script file.

APPEND_COLON No Settot r ue to automatically ap-
pend colonsto FI ELD and CON-
TAI NER labels within CLUSTER
elements. This overrides the
value of the APPEND _COLON
element inthecur am con-
fig.xm filefor that individual
page (see Section 3.12.13.8, AP-
PEND_COLON).

W N No "width=The size of the page when dis-
DOW OPTI ONS 600,heig played in amodal dialog is con-
ht=auto- figurable using this parameter.
cacu- Thevalue of the attribute isa
lated" comma separated list of name
value pairs. The currently suppor-
ted optionsarewi dt h and
hei ght , both of which take an
integer value, which is tranglated
directly to apixel value. Only a
width needs to be specified
however as the height will be dy-
namically calculated. Any other
parameters will cause an excep-
tion to be thrown.

TYPE No DE- Used to define specific types of
FAULT UIM pages. Two types are sup-
ported, DETAI LS and
SPLI T_W NDOW

SPLI T_W NDOWenables the use

119

Curam Web Client Reference Manual

Attribute Name Required Default Description

of frames within the page. If the
attribute is not present or is set to
DEFAULT then frames are not
used. See Section 8.22, Agenda
Player for an example of use.

DETAI LS definesa UIM page
that will be used as a context pan-
€l page. For more information see
Section 6.8.3, Context Panel

UIM.
H DE_CONDI TI No TRUE Settotr ue to hide conditional
ONAL_LI NKS links that evaluate to false. Set to

f al se to show adisabled condi-
tiona link that evaluate to false.
This overrides the value of the

HI DE_CONDI TI ONAL_ LI NKS
element inthe cur am con-
fig.xm filefor that individua
page (see Section 3.12.13.8, AP-
PEND_COLON).

Table 5.34 Attributes of the PAGE Element

Child Elements

The PAGE element can contain child e ements as follows:

Element Name Cardinality / Description

I NCLUDE 0..1. Thiselement can be used before any
other child element of a PACGE element.

PAGE_TI TLE 0.1

DESCRI PTI ON 0.1

SHORTCUT_TI TLE 0.1

SERVER | NTERFACE 0..n. Multiple SERVER | NTERFACE ele-
ments are supported, however it is recom-
mended that only one SERV-

ER | NTERFACE with the PHASE attribute
set to ACTI ONis defined per PAGE element.
See Section 5.9.29, SERVER INTERFACE
for more information.

I NFORMATI ONAL 0.1

VENU 0..2. The page can contain one optional stat-
ic and one optional dynamic menu aswell as
append extra items to the navigation menu.

120

5.9.26

Curam Web Client Reference Manual

Element Name Cardinality / Description

ACTI ON_SET 0..1. In this context, the action set defines
the set of action controls that will appear
around the page's main content area.

PAGE_PARAMETER 0..n

CONNECT 0..n. In this context, the connections can
copy values directly from the properties of
source server interfaces to properties of the
target server interfaces. Each CONNECT ele-
ment should contain both a SOURCE and a
TARGET element.

JSP_SCRI PTLET 0..n. JSP_SCRI PTLET, CLUSTER and
LI ST can beintermingled freely and the or-
der in UIM will be preserved in the gener-
ated page.

CLUSTER 0..n. JSP_SCRI PTLET, CLUSTER and
LI ST can beintermingled freely and the or-
der in UIM will be preserved in the gener-
ated page.

LI ST 0..n.JSP_SCRI PTLET, CLUSTER and
LI ST can beintermingled freely and the or-
der in UIM will be preserved in the gener-
ated page.

SCRI PT 0..n. A script associated with the PAGE that
will be activated in response to the specified
event. See Section 5.9.28, SCRIPT for more
details.

Table 5.35 Child Elements of the PAGE Element

Where a page is configured to contain a large number of scrollable list and
cluster elements (approximately 15), it may cause JSP compile issues in
Weblogic. This is due to a Weblogic system limitation in how big a page
can be rendered at run time. To overcome this restriction, arrange the dis-
play of the required scrollable lists and clusters over a number of pages.

PAGE_PARAMETER
The PAGE_PARANMETER element declares a parameter to the current page.

Once a parameter is declared, it can be used as the source of a connection by
setting the connection source bean NAME attribute to PAGE.

Attributes

The PAGE_PARAMETER element has the following attributes:

121

5.9.27

Curam Web Client Reference Manual

Attribute Name Required Default Description

NANVE Yes The name of the parameter to use
in SOURCE connection end-points.

Table 5.36 Attributes of the PAGE_PARAMETER Element

Child Elements
The PAGE_PARANMETER element contains no child elements.

PAGE_TITLE

The PAGE_TI TLE element defines the title that appears at the top of a
page's main content area. A title is constructed by concatenating a number
of connection sources together. These can include localized strings and data
from server interfaces.

]

H Note

The PAGE_TI TLE element defines the text for the tab title bar
where the UIM page is used as a context panel page. See Sec-
tion 6.8.3, Context Panel UIM for more information.

Attributes

The PAGE_TI TLE element has the following attributes:

Attribute Name Required Default Description

DESCRI PTI ON No A reference to alocalized string
that provides a more detailed de-
scription of the page than the title
alone. Thiswill be displayed with
the title in the page's main content

area
STYLE No The name of the CSS class to use
when displaying the title on the
page.
| CON No A referenceto an entry inthe | m

age. properti es file specify-
ing the image file to use beside the
title in the main content area.

Table 5.37 Attributes of the PAGE_TITLE Element

Child Elements

The PAGE_TI TLE element can contain child elements as follows:

122

Curam Web Client Reference Manual

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT €elements containing
SOURCE elements can be included (one
SOURCE per CONNECT). Sources can be
server interface properties or, with the NAVE
attribute set to TEXT, references to strings
from a propertiesfile.

DESCRI PTI ON 0..1 The DESCRI PTI ON element has the
same behavior asthe DESCRI PTI ON attrib-
ute but allows the description to be built up
from anumber of sources. If both are spe-
cified, this element takes precedence over the
corresponding attribute.

Table 5.38 Child Elements of the PAGE_TITLE Element

5.9.28 SCRIPT

The SCRI PT element defines an exit point to allow the invocation of a
script (JavaScript) in response to an event. Scripts are supported for pages,
read-write fields and action controls. These elements are not applicable and
not supported for fields within aLIST or read-only fields.

Attributes

The SCRI PT element has the following attributes:

Attribute Name Required Default Description

EVENT Yes The JavaScript name of the event
as defined in the W3C HTML re-
commendations.

JavaScript events are valid within
the PAGE, FI ELD or AC-

TI ON_CONTROL elements, with
the exception of FI ELD elements
withinaLl ST or read-only

FI ELD elements.

Note that the ONCLI CK event will
be ignored for AC-

TI ON_CONTROL with a TYPE of
CLI PBQOARD (for further informa-
tion see Section 5.9.3, AC-
TION_CONTROL.).

In addition, please note that by de-
fault when alink is clicked in the
Curam application the link is pro-

123

Curam Web Client Reference Manual

Attribute Name Required Default Description

cessed by Curam specific code. If
you are adding some scripting to a
link and do not want this default
processing to occur, the event
should be stopped using the JavaS-
cript APIsavailable.

ACTI ON Yes The JavaScript to be invoked if the
event occurs. This must be afunc-
tion call including parameters, if
any. For example; sonmeFunc-
tion() orsonmeFunc-
ti on(sonmePar an) where
somePar ammay be a global
variable defined in script file.

SCRI PT_FILE No The name of the script file con-
taining the JavaScript functions
that are specified in the ACTI ON
attribute of the SCRI PT element.
If no SCRI PT_FI LE attributeis
set on aparticular SCRI PT ele-
ment within aFl ELD or AC-

TI ON_CONTROL the PAGE script
fileis used by default. The script
file should be added in a compon-
ent. If another script file has the
same name in another component,
the version in the highest priority
component will be used. If not
specified, the SCRI PT will expect
to find the functions in the page-
level script file specified with the
PAGE element's SCRI PT_FI LE
attribute.

Table 5.39 Attributes of the SCRIPT Element

Child Elements

The SCRI PT element contains no child elements.

5.9.29 SERVER_INTERFACE

The SERVER | NTERFACE element defines a server interface to which oth-
er elements of the page can connect.

124

Attributes

Curam Web Client Reference Manual

The SERVER | NTERFACE element has the following attributes:

Attribute Required Default

Name
NAME Yes
CLASS Yes

OPERATI ON Yes

PHASE No
AC- No
TION I D_PR
OPERTY

DI SPLAY

Description

A unigque name for thisinstance of
the server interface on this page.

The name of the server interface
class.

The name of the server interface
operation on the class.

The phase of the page in which the
server interfaceis called. Thiscan
be DI SPLAY (the default) or AC-
TI ON. Server interfaces set to the
DI SPLAY phase are called as the
pageis displayed (i.e., the execu-
tion of the JSP page).

Server interfaces set to the AC-

Tl ONphase are only caled inre-
sponse to the activation of an AC-
TI ON_CONTRCL with a TYPE of
SUBM T. It isrecommended that
only one SERVER | NTERFACE
is set to the ACTI ON phase per
PAGE.

Specifies aname of the server ac-
cess bean property that will be
populated with ACTI ON_I D of
the action control used to make the
server call. The value of of this at-
tribute must be avalid property
name of the corresponding server
access bean. The use of shorthand
notation is allowed (for example
specify t hePr oper ty instead of
the fully qualified

dt| s$t hePr operty).

This attribute is only valid on serv-
er interfaces with PHASE= AC-

TI ON and must be specified on all

server interfaces within the page or
not specified on any of them.

If multiple server interfaces spe-

125

5.9.30

Curam Web Client Reference Manual

Attribute Required Default Description

Name

cify ACTI ON_| D_PROPERTY
with different domains the value of
ACTI ON_| Don al action controls
within the page must be suitable
for all of the domains. Failing to
comply with this rule will lead to
error at runtime when the corres-
ponding action control is activated.

If this attribute is specified then
the ACTI ON_| D attribute of AC-
TI ON_CONTROL element must
also be specified.

Table 5.40 Attributes of the SERVER_INTERFACE Element

i

Note

It istechnically possible to specify multiple SERVER | NTERFACE
elements set to the ACTI ON phase. However, this is not recommen-
ded. Each SERVER | NTERFACE is essentially a separate transac-
tion and when an invocation fails, no further invocations of other
server interfaces are made and completed transactions are not rolled
back.

For example, three SERVER | NTERFACE elements are defined,
each set to the ACTI ON phase. When the page is executed, the first
server interface invocation succeeds and the second fails. In this
scenario, the third server interface is never invoked and the action of
the first will not be rolled back.

Child Elements

The SERVER | NTERFACE element contains no child elements.

SOURCE

The SOURCE element defines the source end-point of a data connection.
The source can be the value of a server interface property, the value of a
parameter to the page (which must be declared via the PAGE_PARAMETER
element), or the value of an externalized string.

Attributes

The SOURCE element has the following attributes:

126

Curam Web Client Reference Manual

Attribute Re- Default Description
Name quired
NAVE Yes The name of the SERV-

ER | NTERFACE instance to use as
the source of the property value, or
PAGE, if the source isthe value of a
page parameter, or TEXT (or CON-
STANT) if the source is the value of
an externalized text string. TEXT or
CONSTANT can only be used when
TARGET has a server interface
defined in the ACTI ON phase.

PROPERTY Yes The name of the server interface
property, the name of the input page
parameter, or the string reference to
the externalized string whose value
isrequired.

Table 5.41 Attributes of the SOURCE Element

Child Elements

The SOURCE element contains no child e ements.

5.9.31 TAB_NAME

The TAB_NAME element defines the text used for the tab in the tab bar,
where the UIM page is used as a context panel UIM page. The text is con-
structed by concatenating a number of connection sources together. These
can include localized strings and data from server interfaces.

This element only applies where the TYPE attribute of the PAGE element is
set to DETAI LS. See Section 6.8.3, Context Panel UIM for more informa-
tion.

Child Elements

The TAB_NAME element can contain child elements as follows:

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing
SOURCE elements can be included (one
SOURCE per CONNECT). Sources can be
server interface properties or, with the NAVE
attribute set to TEXT, references to strings
from a propertiesfile.

DESCRI PTI ON 0..1 The DESCRI PTI ON element has the

127

5.9.32

5.9.33

Curam Web Client Reference Manual

Element Name Cardinality / Description

same behavior as the DESCRI PTI ON attrib-
ute but allows the description to be built up
from a number of sources. If both are spe-
cified, this element takes precedence over the
corresponding attribute.

Table 5.42 Child Elements of the TAB_NAME Element

TARGET

The TARGET element defines the target end-point of a data connection. The
target can be the value of a server interface property or the value of a para-
meter to be exported from the page.

Attributes

The TARGET element has the following attributes:

Attribute Name Required Default Description

NAME Yes The name of the SERV-
ER | NTERFACE instance to use
asthetarget of the property value,
or PAGE, if thetarget isthe value
of apage parameter.

PROPERTY Yes The name of the server interface
property, or the name of the output
page parameter whose value is to
be set.

Table 5.43 Attributes of the TARGET Element

Child Elements

The TARGET element contains no child e ements.

TITLE

The Tl TLE element defines the title that appears at the top of a CLUSTER
or LI ST element. A Tl TLE is constructed by concatenating a number of
connection sources together. These can include localized strings and data
from server interfaces.

Attributes

The Tl TLE element has the following attributes:

128

5.9.34

Curam Web Client Reference Manual

Attribute Required Description

Name

SEPARATOR No A reference to an externalized string to use as
the separator between the elements within the
container.

Table 5.44 Attributes of the TITLE Element

Child Elements

The Tl TLE element can contain child e ements as follows:

Element Name Cardinality / Description

CONNECT 1..n. Only CONNECT elements containing
SOURCE elements can be included (one
SOURCE per CONNECT). Sources can be
server interface properties or, with the NAVE
attribute set to TEXT, references to stringsin
apropertiesfile.

Table 5.45 Child Elements of the TITLE Element

VIEW

The VI EWelement is the root element of a UIM document that defines ele-
ments to be included in a UIM page document. A view cannot include other
views using the | NCLUDE element.

Attributes

The VI EWelement has no attributes.

Child Elements

The VI EWelement can contain child e ements as follows:

Element Name Cardinality / Description
PAGE_TI TLE See the PAGE element.
SHORTCUT_TI TLE See the PAGE element.
SERVER | NTERFACE See the PAGE element.
VENU See the PAGE element.
ACTI ON_SET See the PAGE element.
PAGE_PARAMETER See the PAGE element.
CONNECT See the PAGE element.

129

5.10

5.10.1

5.10.2

Curam Web Client Reference Manual

Element Name Cardinality / Description

JSP_SCRI PTLET See the PAGE element.
CLUSTER See the PAGE element.
LI ST See the PAGE element.
SCRI PT See the PAGE element.

Table 5.46 Child Elements of the VIEW Element

UIM Reference for Widgets

Introduction

Widgets are used when the handling of data in the client application is too
complicated to do with the automatic domain definition recognition of the
FI ELD element. Widgets allow several different sources of data to be con-
nected to a control that can then supply datato several different targets.

There are a number of predefined types of W DGET element. Each type of
W DGET can contain one or more W DGET_PARAMETER elements. The
configuration of these W DGET _ PARAMETER elements depends on the type
of the widget. These are described in the sections below.

Most widget types can only be defined within CLUSTER elements
(exceptions to this are described below). There may also be restrictions on
how many widgets of a particular type can be included in asingle UIM doc-
ument.

WIDGET

The W DGET element is used to define the type of widget to include and it
holds the W DGET_PARAMETER elements that configure the widget.

Attributes

The W DGET element has the following attributes:

Attribute Name Required Default Description

TYPE Yes The type of W DGET. This can be
one of the following:

- EVI DENCE_COVPARE
« FILEEDIT
 FILE_UPLOAD

« MULTI SELECT

130

Curam Web Client Reference Manual

Attribute Name Required Default Description

* SI NGLESELECT

* RULES_SI MULATI ON_EDI
TOR

 FI LE_DONNLOAD
* | EG_PLAYER

LABEL No A reference to an externalized
string that should be used as the
associated label string for this

widget.

W DTH No The width of the control specified
in the appropriate units.

WDTH UNITS No PER- The unitsin which the width isin-

CENT terpreted. This can be PERCENT
to indicate the percentage of the
space available to the widget, or
CHARS to indicate the number of
visible characters wide the widget

will be.

HEl GHT No 1 A HEI GHT value that may be
used by the widget.

ALI GNVENT No DE- Defines the horizontal alignment

FAULT of thewidget. Can be set to LEFT,
Rl GHT, CENTER, or DEFAULT.
The value DEFAULT corresponds
tothe CSSclassdef aul t in
cur am_comon. css. Currently
the default isto be left aligned.

HAS CONFI RM_ No fal se Attribute to be used only on wid-
PAGE get of type of MULTI SELECT.
Used to specify that the widget se-

lection data is to be submitted to
the confirmation page. Can be
trueorfal se. See Sec-

tion 5.10.8.1, Confirmation Pages.

Table 5.47 Attributes of the WIDGET Element

Child Elements

The W DGET element can contain the following child element:

131

5.10.3

Curam Web Client Reference Manual

Element Name Cardinality / Description
W DGET_PARAMETER 1..n. The parameters depend on the type of
widget.

Table 5.48 Child Elements of the WIDGET Element

WIDGET_PARAMETER

The W DGET_PARAMETER element is used to define the properties of an
individual widget. In particular, the W DGET_ PARAMETER elements allow
connections to be made between named properties of the widget and various
source and target data end-points.

Attributes

The W DGET_PARAMETER element has the following attribute:

Attribute Name Required Default Description

NANVE Yes The name of the property on the
W DCET that this element config-
ures.

Table 5.49 Attributes of the WIDGET_PARAMETER Element

Child Elements

The W DGET_PARAMETER element can contain the following child ele-
ment:

Element Name Cardinality / Description

CONNECT A W DGET_PARAMETER can be connected
in one of two ways depending on the spe-
cification for the particular W DGET. The
first way issimilar to that of FI ELD ele-
ments:

1..n. The parameter can contain multiple
CONNECT elements. Usually (the

FI LE_DOWNLOAD W DGCET is an exception
to this) aW DGET_ PARAMETER contains up
to three CONNECT elements, SOURCE, TAR-
GET, and | NI TI AL connection end-points.
The valid types of source or target depend on
theindividual parameter.

The second way to connect a parameter is
similar to the CONNECT elementsinall NK
element.

132

5.10.4

5.10.5

Curam Web Client Reference Manual

Element Name Cardinality / Description

1..n. CONNECT elements that each connect a
SOURCE end-point to a TARGET end-point.

Table 5.50 Child Elements of the WIDGET_PARAMETER Element

The EVIDENCE_COMPARE Widget

The EVI DENCE_COMPARE widget displays the differences between two
sets of evidence. These differences are high-lighted using the following col-
ors. evidence items that have changed are shown in red; new items are
shown in green; deleted items are shown in gray.

This widget should be the sole element in a CLUSTER. Its TYPE should be
set to EVI DENCE_COVPARE and its W DGET_PARAMETER elements
should be set as follows:

Parameter Name Required Description and Connec-

tions

OLD_EVI DENCE Yes This parameter must include a
single CONNECT element that
must specify a SOURCE end-
point.

The SOURCE end-point
should specify a property of
the EVI DENCE_TEXT do-
main that contains the original
evidence.

NEW _EVI DENCE Yes This parameter must include a
single CONNECT element that
must specify a SOURCE end-
point.

The SOURCE end-point
should specify a property of
the EVI DENCE_TEXT do-
main that contains the new
evidence.

Table 5.51 Parameters to the EVIDENCE_COMPARE Widget

The FILE_EDIT Widget
The FI LE_EDI T widget alows a user to edit a Microsoft Word® docu-

ment on their local computer and then save it to the server. A document can
be created automatically from a template where the template details can be

133

Curam Web Client Reference Manual

set before the document is presented to the user for editing.

A UIM page containing the FI LE_EDI T widget will only operate in the
main content panel of the application. If such page is opened in a modal
window then the modal will close immediately and the page will be loaded
in the main content panel.

The widget uses a Java applet to manage the interaction between the user's
browser and Word. Only the source and target documents and the template
details are required. If key details, or other data, are required by the server
interfaces that handle the document, these should be provided by page para-
meters and page-level connections.

Each time the document is saved in Word, the submit button for the page is
activated automatically. This triggers the ACTI ON phase but returns to the
same page rather than opening the page linked to by the submit button. Only
when the Word document is closed will the next page be opened. This beha-
vior requires that the server interface for the ACTI ON phase alows multiple
invocations for the same editing session and that it saves the document to
the database on each invocation.

The first time the Word document is loaded successfully with the template
details, it isautomatically saved to the server before further editing.

When editing the document, the user has the option to save it. This triggers
the normal saving behavior and the page will not be changed when the AC-

TI1 ON phase completes. After the document has been closed, the ACTI ON
phase will be triggered again to open the next page, but this time the server
interface will not be invoked and the document (which has aready been
saved) will not be saved again. Because the server interface is not invoked,
it is not permitted to use any property of the ACTI ON phase server interface
in a SOURCE connection of the submit button's LI NK element. Typicaly,
the submit button will return to the previous page and will not need a LI NK
element, so this limitation should have little impact.

Using the FI LE_EDI T widget issimple. The W DGET element should have
the TYPE attribute set to FI LE_EDI T. Two W DGET_PARAMETER ele-
ments are required:

Parameter Name Required Description and Connec-

tions

DOCUNVENT Yes Defines the source document
(usualy atemplate) and the
target to which to write the
saved document. The para-
meter must contain a CON-
NECT element with a
SOURCE set fromaDl S-
PLAY phase sever interface
and a TARGET set from an
ACTI ON phase sever inter-
face. Both fields should be

134

Curam Web Client Reference Manual

Parameter Name Required Description and Connec-

tions
Word documents.

The data-type for both the
source and target document
must be SVR_BLOB.

DETAI LS Yes The template details that
should be set in the document
before presenting it to the user
for editing. The parameter
must contain a CONNECT €le-
ment with a SOURCE set from
aDl SPLAY phase sever inter-
face. The detailsarein XML
format, described below.

The data-type for the template
details must be SVR_BLOB.

Table 5.52 Parameters to the FILE_EDIT Widget

The template details must be provided in asimple XML format. An example
of the format is shown below:

<?xm version="1.0" encodi ng="UTF-8"?>
<FI ELDS>
<FI ELD NAME="per sonName" VALUE="John Smi th"/>
<FlI ELD NAME="AddressLi nel" VALUE="1 Main Street"/>
<FlI ELD NAME="Addr essLi ne2" VALUE="Newt own"/>
<FlI ELD NAME="Addr essLi ne3" VALUE="Er ehwon"/>
</ Fl ELDS>

Example 5.14 Sample Template Details

It is recommended that your XML uses UTF-8 encoding to handle multi-
byte characters. To preserve the correct encoding it is important that any
code that manipulates the XML honors the encoding of the document. If the
encoding is not honored, this can lead to characters being displayed incor-
rectly when opened in Microsoft® Word .

Each FI ELD eement identifies the name of a field in the document tem-
plate and the value to which it should be set.

While editing the document in Word, navigation within the originating
browser window is disabled. An alert message will be displayed if any at-
tempt is made to navigate from the page. If the originating browser window
is closed, the Word document will stay open, but the editing session will be
terminated. Any unsaved changes will not be persisted in database.

User Machine Configuration

135

5.10.6

Curam Web Client Reference Manual

On first use of a new version of the integration applet the user will be
presented with a popup dialog window to confirm if the code from publisher
"IBM Corporation” should be allowed to run. The checkbox "Always trust
the content from this publisher" should be selected and dialog confirmed,
which will ensure the widget executes successfully and the prompt is not
displayed again on subsequent uses. New versions of the widget will be
downloaded to the user's machine automatically when the Clram applica-
tion is upgraded to a new version.

When a user attempts to edit a Word document, execution of the integration
applet may be blocked depending on security settings of the Java browser
plugin on that particular machine. This causes the editing session to fail. If
you experience thiskind of issues issues, please check the following:

* Microsoft Word 2002 or higher should be installed on the user's ma-
chine.

* Word installation should be working as expected on the user's machine
when started manually.

» TheWeb browser Popup blocker feature on the user's machine should be
disabled.

» For supported browsers other than Internet Explorer if you are getting a
message about the missing Java plugin even though it is installed on the
machine, verify the following option is enabled:Control Panel -> Java ->
Advanced -> Default Javafor browsers-> Mozillafamily

* Generadly if you are getting message about the missing Java plugin even
though it is installed on the machine, check if a slide-down message is
displayed in the small popup window that opens when you attempt to
edit a Word document. If so, then confirm that you want to always run
code from this publisher and reload the application in the browser.

The FILE_UPLOAD Widget

The FI LE_UPLOAD widget is atype of widget used to alow a user to spe-
cify afile on their local computer to be uploaded to the server. It will appear
as atext field with a Browse... 2 button beside it. The user can click on the
button to open afile dialog box with which they can select their file.

The normal widget attributes W DTH and W DTH_UNI TS are not applic-
able for the FI LE_UPLQAD widget. Some browsers do not allow width of
the filename entry box to be set for security reasons (it could be set to zero
width and thus be hidden while remaining active).

] File Size Validation

@
There are settings to limit the maximum size of afile that is allowed

to be uploaded. The validations for these settings are carried out on
the server side after the file is fully uploaded to a temporary direct-
ory. Therefore, it should be kept in mind that large files could be up-

136

Curam Web Client Reference Manual

loaded consuming a large amount of disk space. We recommend
checking the file upload folder at intervals to ensure disk space us-
age meets requirements.

There are three application-level configuration settings for the
FI LE_UPLOAD widget. These control how the web-server handles the in-
coming files. Default settings are already present, but the default values can
be overridden by adding configuration settings to the Appl i cat i onCon-
figuration.properties file. The settings follow the same nane =
val ue format of all the other entries there. The settings are as follows:

upl oadMaxi muntsi ze

This is the maximum size of afile that can be uploaded to the server.
The number is specified in bytes. If the number is negative, there is no
limit to the file size. By default, the valueis- 1 (no limit).

upl oadThr eshol dSi ze

This is maximum number of bytes of the file's content that the web-
server will hold in memory while the file is being uploaded. Once the
number of bytes uploaded exceeds this limit, the web-server will begin
to store the file on disk to save memory. By default, the valueis 1024.

upl oadReposi t or yPat h

Thisis the path to the folder on the disk in which the files will be stored
as they are uploaded if they exceed the threshold size. By default, the
value is the VM defined temp folder, so this folder must be present on
your system. If it is not on your system, you can create it or explicitly
set theupl oadReposi t or yPat h to afolder of your choice.

The WDGET element should have the TYPE attribute set to
FILE UPLOAD. The widget supports the following W D
CGET_PARANETER elements:

Parameter Name Required Description and Connections

CONTENT Yes This parameter indicates the target
connection for the actual content of
the uploaded file.

A single CONNECT element with a
TARGET that connects to a property of
an ACTIl ON phase server interfaceis
required.

FI LE_NAVE No This parameter represents the name of
the file to be uploaded. The parameter
can be set to provide a default name
for the file to be uploaded, and can
also supply the name of the file chosen
by the user.

If present, the parameter can include
CONNECT elements for either or both

137

Curam Web Client Reference Manual

Parameter Name Required Description and Connections

end-points: a SOURCE end-point for
the initial name of the file, and a
TARGET end-point for the file that
was actually chosen. The SOURCE
end-point can specify a property of a
DI SPLAY phase server interface. The
TARGET end-point can specify a prop-
erty of an ACTI ON phase server inter-
face.

Note: Many browsers do not allow a
default value for the name of a fileto
be uploaded. In this case, setting a
SOURCE connection will have no ef-
fect.

CONTENT_TYPE No This parameter indicates the target
connection for the content type of the
uploaded file. The content type de-
scribes the format of the uploaded
data. For example, asimple text file
would have a content type of
“text/plain” and a Microsoft Word
document would have a content type
of “application/msword”.

A single CONNECT element with a
TARGET that connects to a property of
an ACTI ON phase server interfaceis

required.
ACCEPT- No A HTML page only allows certain
ABLE_CONTENT_TYP types of content to be uploaded by de-
ES fault (the actual default types are de-

pendent on the browser). This para-
meter can specify the types of content
that the page will accept. The value of
the parameter should be a comma-
separated list of content types. If there
ismore than one FI LE_UPLQAD wid-
get on a page, the acceptabl e content
types of all widgets are pooled togeth-
er and define what is acceptable for
that page (thisis alimitation of the
HTML specification.)

A single CONNECT element with a
SOURCE that connectsto a TEXT
property is allowed.

138

5.10.7

Curam Web Client Reference Manual

Table 5.53 Parameters to the FILE_UPLOAD Widget

The FILE_DOWNLOAD Widget

A W DGET with the TYPE set to FI LE_DOANLQAD results in the genera-
tion of a hyperlink on the page. Clicking on the hyperlink invokes a special
Fi | eDownl oad servlet included in the Cdram CDEJ that returns the con-
tents of afile from the database. The Fi | eDownl oad servlet is configured
with the server interface to call to get the file contents and the parameters to
pass to identify that file. The configuration is performed in the cur am
confi g. xm file. An example configuration is shown in Section 5.9.3.1,
File Downloads. A single server interface can be configured for each page
of the application that includes a file download widget. An example config-
uration is shown in Example 5.2, Example Configuration for File
Download.

An ACTI ON_CONTROL with the TYPE set to FI LE_ DOANLQAD can aso
be used to generate a hyperlink to download afile. You should use the AC-
TI ON_CONTROL element when the hyperlink text is afixed value retrieved
from the page's corresponding propertiesfile. The FI LE_DOWNLOAD W D-
GET dlows the hyperlink text to be a dynamic value retrieved from a server
interface property.

The FI LE_DOWNLOAD widget can also be utilized within the Actions menu
of the Context Panel. The menu item TYPE must be set to
FI LE_DOWLQAD. The menu item PAGE- | D must match the PAGE_|I D
attribute of the FI LE_DOWNLQAD widget configuration. The file identifier
must be available as a page parameter in the respective .tab file for the
menu. This page parameter must match the PAGE_PARAM attribute of the
FI LE_DOWNLQAD widget configuration.

The WDGET eement should have the TYPE attribute set to
FI LE_ DOANLOAD. The widget supports the following W D-
CET_PARANETER €elements:

Parameter Name Required Description and Connections

LI NK_TEXT Yes This parameter indicates the source
connection for sourcing content of the
link text which will appear on the
screen.

A single CONNECT element with a
SOURCE that connectsto a property of
aDl SPLAY phase server interfaceis
required. If you want to use afixed
text value, you should use an AC-

TI ON_CONTROL with the TYPE set
to FI LE_DOANLOAD instead of a

W DGET.

PARANVS No This optional parameter supplies the

139

5.10.8

Curam Web Client Reference Manual

Parameter Name Required Description and Connections

Fi | eDownl oad servlet with the ne-
cessary parameters.

The parameter can include CONNECT
elements with a SOURCE end-point for
the page parameter supplying avalue
for the Fi | eDownl oad servlet, and
a TARCGET end-point for specifying
the servlet parameter to supply the
value to. The SOURCE end-point
should refer to a parameter on the page
declared by a corresponding
PAGE_PARAMETER element. The
TARGET end-point can specify a para-
meter whose name corresponds to a
configured Fi | eDownl oad servlet
parameter name. Thus both end-points
should have a NAME attribute set to
PAGE.

Table 5.54 Parameters to the FILE_ DOWNLOAD Widget

The MULTISELECT Widget

The MULTI SELECT widget allows you to specify that the first columnin a
LI ST should contain a check-box on each row and to alow several rows to
be selected. A “Select All” feature can be enabled which displays a check-
box in the column header. See Section 3.12.13.14, EN-
ABLE SELECT ALL_CHECKBOX for further details.

Each check box can represents multiple entities in the row. For each check
box that is selected, the fields on that row will be compiled intoa*| ” delim-
ited string and each row will be tab delimited and passed as a page paramet-
er when a specific type of page link is activated.

The UIM document in Example 5.15, MULTISELECT Example is an ex-
ample of a page with multiple rows with check boxes. When the form is
submitted, a single string, containing multiple fields for each selected row,
is passed to the i n$t abbedSt ri ng field on the target page. Following
the UIM is a detailed description of each relevant part of the UIM that im-
plement this functionality.

<PAGE PAGE_|I D="Mil ti Sel ect W dget Test "
xsi : noNanespaceSchenmalLocat i on=" Cur amJl MSchenma"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance" >

<SERVER | NTERFACE NAME="DI SPLAY" CLASS="M/Bean"

OPERATI ON="Di spl ay" PHASE="DI SPLAY"/ >
<SERVER | NTERFACE NAME="ACTI ON' CLASS="MyBean"

OPERATI ON=" Submi t " PHASE="ACTI ON'/ >

140

Curam Web Client Reference Manual

<LIST TITLE="List.Title">
<ACTI ON_SET BOTTOMVE="f al se" >
<ACT|I ON_CONTROL TYPE="SUBM T" >
<LI NK PAGE_I D="Mul ti Sel ect W dget Resul t ">
<CONNECT>
<SOURCE NAME="ACTI ON'
PROPERTY="i n$t abbedStri ng"/ >
<TARGET NAME=" PAGE"
PROPERTY="r ef er enceNuniTabSt ri ng"/ >
</ CONNECT>
</ LI NK>
</ ACTI ON_CONTROL>
</ ACTI ON_SET>
<CONTAI NER LABEL="Li st. Ml ti sel ect.Header" W DTH="5"
ALl GNVENT=" CENTER" >
<W DGET TYPE="MJULTI SELECT"
HAS_CONFI RM PAGE="t rue" >
<W DGET_PARAVETER NAME="MULTI _SELECT SOURCE" >
<CONNECT>
<SOURCE PROPERTY="personl D' NAME="DI SPLAY"/ >
</ CONNECT>
<CONNECT>
<SOURCE PROPERTY="casel D' NAME="DI SPLAY"/ >
</ CONNECT>
</ W DGET_PARAVETER>
<W DGET_PARAVETER NAME="MULTI _SELECT TARGET" >
<CONNECT>
<TARGET PROPERTY="i n$t abbedSt ri ng" NAME="ACTI ON'/ >
</ CONNECT>
</ W DGET_PARAVETER>
<W DGET_PARAVETER NAME="MULTI _SELECT | NI TI AL" >
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="out $tabString"/>
</ CONNECT>
</ W DGET_PARAVETER>
</ W DGET>
</ CONTAI NER>
<FI ELD LABEL="Fi el d. Titl e. Ref erenceNunber" W DTH="35">
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="personl D'/ >
</ CONNECT>
</ FI ELD>
<FI ELD LABEL="Fi el d. Titl e. Forenane" W DTH="30">
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="fir st Nane"/>
</ CONNECT>
</ Fl ELD>
<FI ELD LABEL="Fi el d. Titl e. Surname" W DTH="30">
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="sur nane"/>
</ CONNECT>
</ FI ELD>
</ LI ST>
</ PAGE>

Example 5.15 MULTISELECT Example

The main pointsto note in the above UIM example are:

e The W DGET of TYPE equa to MULTI SELECT is a child node of a
CONTAI NER element. The container's label will be used as the column
header unless the select all check box is enabled in cur am con-
fig.xm. See Section 3.12.13.14, EN-
ABLE _SELECT ALL_CHECKBOX for further details.

 Up to three W DGET_PARAMETER elements are alowed within the
W DGET element. MULTI _SELECT _SOURCE and

141

Curam Web Client Reference Manual

MULTI _SELECT TARGET are mandatory and
MULTI _SELECT | NI TI AL isoptional.

e TheMULTI _SELECT _SOURCE can have multiple CONNECT elements,
each with one SOURCE element. Each SOURCE is added to the “| " de-
limited string. If only one SOURCE element is specified the string will
not contain any “| ” delimiters. Then each select row will be delimited
by atab character.

e The MULTI _SELECT TARCET element must contain only one CON-
NECT element with only one TARCGET element. This TARGET element
specifies the field on the action phase bean that the “| ” and tab-
delimited string will be assigned to when the page is submitted.

e TheMJLTI _SELECT I NI TI AL contains only one CONNECT element
with a single SOURCE element. This contains a “| ” and tab-delimited
string which specifies the rows that are selected when the page is |oaded.

* Inthe LI ST element the ACTI ON_SET has one ACTI ON_CONTRCL
element.

e Optional HAS_CONFI RM_PACE attribute is used to indicate that the
page with MULTISELECT widget submits to a confirmation page,
where user selection is re-displayed for confirmation. See Sec-
tion 5.10.8.1, Confirmation Pages

Below is an example of the delimited string passed as a parameter to the
specified page.

101| casel21 102| casel22 103| casel23

Parameter Name Required Description and Connec-

tions

MULTI _SELECT _SOURCE Yes This parameter can include
multiple CONNECT elements
that must specify a SOURCE
end-point.

The SOURCE end-point must
be alist property containing
the key data for the row.

MULTI _SELECT TARGET Yes This parameter must include
one CONNECT element that

must specify a TARCGET end-
point.

The TARGET end-point must
be a string property contain-
ing the key data for selected
rows.

MULTI _SELECT INITIAL No This parameter must include

142

Curam Web Client Reference Manual

Parameter Name Required Description and Connec-

tions

one CONNECT element that
must specify a SOURCE end-
point.

The SOURCE end-point must
be a string property contain-
ing the key data for the rows
that areinitially check when
page is|loaded.

Table 5.55 Parameters to the MULTISELECT Widget

Confirmation Pages

MULTISELECT widget has a specific mechanism allowing for confirming
user selection on a separate page. This confirmation page is supposed to re-
display values selected by an user on the MULTISELECT widget offering a
choice to review these values and confirm them or re-visit the previous page
to refine the selection.

Confirming user selection can become a problem where there is alot of se-
lected values from a big MULTISELECT widget to be passed to the con-
firmation page. There are request length limitations in place, so in order to
pass bigger amounts of data possible in this case different request mechan-
ism (request forwarding) hasto be used.

MULTISELECT widget with the selection to be confirmed is specified by
HAS CONFI RM_PAGE optional attribute on the W DGET element. The at-
tribute is to be set to true. It is only valid for a widget of TYPE of
MULTI SELECT.

Some things to keep in mind with confirmation pages:

e Asrequest forwarding is used to carry the data in this case, the URL for
the confirmation page will not be displayed with the forwarding page
URL shown instead.

» Even though the mentioned attribute is set on aMULTISELECT widget,
the setting applies to the whole page (as there is only one form per
page). So, in case where multiple submit buttons exist on a page with
MULTISELECT widget to be confirmed, a confirmation step should be
assumed for al of these buttons (i.e., there is no way to have a submit
with confirmation and another without confirmation on that page).

» The confirmation is to be the immediate step carried out on submitting
the form with user selection; no resolve page should be used in the
middle.

e Itisrecommended to have aread-only page for user selection confirma-

143

Curam Web Client Reference Manual

tion, allowing user to cancel and return to the previous page if the selec-
tionisto be refined.

5.10.9 The SINGLESELECT Widget

5.10.10

The SI NGLESELECT widget allows you to specify that the first column in
aLl ST should contain a radio button on each row. Thiswidget functionsin
same way as the MULTI SELECT widget, except you are limited to selecting
a single item via radio buttons instead of check boxes. See Section 5.10.8,
The MULTISELECT Widget for further details.

Parameter Name Required Description and Connec-

tions

SELECT _SOURCE Yes This parameter must include
multiple CONNECT elements
that must specify a SOURCE
end-point.
The SOURCE end-point must
be alist property containing
the key data for the rows to be
displayed.

SELECT_TARGET Yes This parameter must include
one CONNECT element that
must specify a TARGET end-
point.

The TARGET end-point must
be a string property contain-
ing the key data for selected
row.

SELECT I NI TI AL No This parameter must include
one CONNECT element that
must specify a SOURCE end-
point.

The SOURCE end-point must
be a string property contain-
ing the key data for the row
that isinitially checked when
page is|oaded.

Table 5.56 Parameters to the SINGLESELECT Widget

The RULES_SIMULATION_EDITOR Widget

The RULES_SI MULATI ON_EDI TOR widget is used to edit or create data
used when simulating the execution of a rule-set. The widget generates

144

Curam Web Client Reference Manual

clusters of fields that correspond to the fields of Rules Data Objects (RDO).
A normal cluster is used to display the fields of a basic RDO and a multi-
column cluster is used for alist RDO. A standard list is not used, as a list
RDO with many fields would result in a list that had too many columns to
be displayed on the screen.

The user can enter or modify values on the page corresponding to the RDO
fields and, for list RDOs displayed in a multi-column cluster, press a button
to create additional columns for field values.

The W DGET element should have the TYPE attribute set to
RULES_SI MULATI ON_EDI TOR. The parameters to the widget are as fol-
lows:

Parameter Name Required Description and Connec-

tions

VALUES Yes The simulation data values. A
previous set of values can be
displayed and edited or a new
set of values can be created.

The parameter should contain
a CONNECT element with a
SOURCE set to aDl SPLAY
phase bean field containing
the values and a TARGET set
to an ACTI ON phase bean
field that will receive the ed-
ited values. If the SOURCE
has no values set, the editor
will create them.

VETA DATA Yes The simulation meta-data.
The meta-data contains details
about the structure of the
RDOs necessary to generated
the input fields.

The parameter should contain
a CONNECT element with a
SOURCE set to aDl SPLAY
phase bean field containing
the meta-data.

ADD BUTTON_CAPTI ON Yes The caption to use on the but-
ton displayed at the bottom of
each multi-column cluster and
used to add a new column of
extradatato alist RDO. If an
image is also specified, this
caption is used as the “alt”
text of the image.

145

5.10.11

5.11

Curam Web Client Reference Manual

Parameter Name Required Description and Connec-

tions

The parameter should contain
a CONNECT element with a
SOURCE that gets alocalized
string from a TEXT source.

ADD BUTTON | MAGE No The path to the imagefile to
use if an image button isto be
used in place of a standard
button. The path is relative to
the WebCont ent folder.

The parameter should contain
a CONNECT element with a
SOURCE that gets alocalized
string from a TEXT source.

Table 5.57 Parameters to the RULES SIMULATION_EDITOR
Widget

The widget should be placed in a CLUSTER element. The clusters for the
RDOs will be rendered within that cluster. The SHOW LABELS attribute
should be set to f al se. The LABEL W DTH attribute of the CLUSTER
element will be inherited by the clusters that are generated by the widget, so
it can be used to control the layout. An ACTI ON_CONTROL element in the
cluster or on the page should be added to save and process the simulation
data created by the widget in the usual manner.

When a widget is not supplied with any simulation data values, it will dis-
play empty fields. For list RDOs, a single empty column of fields will be
displayed; values can be entered and more columns added as needed. If val-
ues are supplied, they will be displayed. In a multi-column cluster, pressing
the defined “add” button will add a single empty column to the right of any
existing columns. All other empty columns will be removed at this time, so
deleting the values in one or more columns has the effect of removing those
columns from the multi-column cluster.

The IEG_PLAYER Widget

Consult the Caram Intelligent Evidence Gathering (IEG) guide for details.

Dynamic UIM Cross Reference

Dynamic UIM as its name implies, is UIM that is cached in the resource
store - rather than static UIM (described in earlier sections) which resides on
the file system - so that the server and client do not have to be rebuilt in or-
der for a page to be displayed in an application. All string values in dynamic

146

5.12

Curam Web Client Reference Manual

UIM documents must be externalized in properties files, which must also be
cached in the resource store.

When creating a dynamic UIM document, only the PAGE element isavalid
root element. All the UIM features (elements and attributes) referenced in
Section 5.9, UIM Reference for Pages and Views are supported for dynamic
UIM, except for those which are listed in Appendix A, Unsupported Dy-
namic UIM features.

Refer to Appendix B, Maintaining Dynamic UIM Pages on details about
how to maintain dynamic UIM pages in the Resource Store.

Dynamic UIM System Initialization

There are two ways in which the Dynamic UIM system can be initialized;
when the application is started, or the first time that there is a request for a
Dynamic UIM page in the running application. By default the Dynamic
UIM system is initialized when the application is started. In order to over-
ride the default initialization of the Dynamic UIM system - so that it isini-
tialized when a Dynamic UIM page is first requested - a configuration set-
ting can be added to the ApplicationConfigura-

tion. properti es file This settings follows the same nane = val ue
format of all the other entries there. It should be set as follows:

dynam cU M ni t Model OnSt ar t

This value should be set to f al se in order to override the default set-
ting.
If a developer intends to access dynamic UIM pages in the application, then
the default initialization of the dynamic UIM system must be used. Other-
wise, if the developer is not using dynamic UIM pages and finds their Tom-
cat start-up time is too slow, the default initialization of the dynamic UIM
should be overridden, as described above.

147

Curam Web Client Reference Manual

Notes

The reserved characters in XML are ' ”, “"” “&", “<”, and “>". The re-
spective XML character entities are “' ”, “" ; ", “&anp; ”,
“&t;"and > ;.

’The actual appearance of the button depends on the browser being used and
may be different from this. The button is created by the browser and thereis
no control over its appearance.

148

6.1

6.2

6.3

Chapter 6

Application Configuration

Objective

This chapter provides you with all the information about application config-
uration files required to develop Curam web client applications.

Prerequisites

You should be familiar with the basic concepts of Caram CDEJ develop-
ment, as outlined in Chapter 2, Concepts, in addition to the Caram User Ex-
perience Guidelines. You should aso have some knowledge of the basic
format of XML documents.

In addition, the Working with the Clram User Interface guide is a compan-
ion guide to this document and illustrates the usage of the features outlined
in this chapter using concrete examples.

Introduction

An application in the Curam user interface is a collection of user interface
elements, predominantly based on UIM. * pages, combined to create specif-
ic content for a particular user or role. An application comprises of an ap-
plication banner and one or more application sections. Each section, con-
tains an optional section shortcut panel and one or more tabs. A tab repres-
ents a business object or logical grouping of information.

149

6.4

Curam Web Client Reference Manual

Figure 6.1 Application User Interface Overview

Figure 6.1, Application User Interface Overview illustrates a functional
overview of the User Interface Elements within a sample application page.

The following sections of this chapter outline how to develop an applica
tion, using the relevant XML configuration files.

Configuration Files

Applications, sections, tabs and their relevant elements are defined using
XML based configuration files. These files are located in the
<server-dir>\conmponent s\ <conponent - nanme>\ cl i ent apps
directory. Section 3.12.12, Application Configuration Files should be con-
sulted for more information on the cl i ent apps directory, and best prac-
tices for working with application configuration files.

Each configuration file has a specific extension and an associated schema
file detailing the supported attributes. A summary of the file extensions and
related schemafilesisavailable in Table 6.1, Configuration Files.

File Schema File Description
Ex-

ten-
sion

app application-view.xsd Configuration file to define an ap-
plication, including the application
banner, referenced sections and ap-
plication search.

.Sec section.xsd Configuration file to define the refer-
enced tabs and section shortcut panel
in a section.

.Ssp section-shortcut-panel.xsd ~ Configuration file to define the con-
tents of a section shortcut panel.

150

6.5

6.5.1

Curam Web Client Reference Manual

Schema File Description

tab tab.xsd Configuration file to define atab, in-
cluding the context panel and refer-
enced navigation and actions menu.

.nav navigation.xsd Configuration file to define the con-
tent of atab navigation bar.
.mnu menubar.xsd Configuration file to define the con-

tent of atab actions menu.
Table 6.1 Configuration Files

The schema files are all located in the <sdej -di r>\1i b directory and
can be used during development for validation in any XML editor.

The configuration files for applications, sections and tabs are processed as
part of the database target and stored on the database for use at runtime. A
standalone target, inserttabconfiguration, is also available for processing
the configuration files only. This command is useful during development
because it is more efficient than the full database target. For more informa-
tion on these targets please consult the Cliram Server Devel opers Guide.

The inserttabconfiguration validates al the configuration files, ensuring
that they conform to the XML schema, in addition to ensuring that all man-
datory elements and attributes are specified. All files are processed before
the build fails, listing all validation errors.

Applications

Introduction

An application is a particular view of the Curam client defined for a specific
user or role. The application definition file details the application banner
and areference to the sections that are part of the application.

An application banner provides the user with the context of the application
they are currently accessing. The banner contains the following elements:

e The name of the application. Refer to User Interface Element 1. 1 in
Figure 6.1, Application User Interface Overview to see an example of an
application name configured in the User Interface.

* Therole of the user that this application isintended for.

* A welcome message for the user. Refer to User Interface Element 1. 2
in Figure 6.1, Application User Interface Overview to see an example of

151

6.5.2

Curam Web Client Reference Manual

awelcome message configured in the User Interface.

* An application menu, which includes links to the User Preferences dia-
log, application help, the about box, and to logout of the application.
Refer to User Interface Element 1. 3 in Figure 6.1, Application User In-
terface Overview to see an example of an application menu configured
in the User Interface.

* A quick search facility for the application. Refer to User Interface Ele-
ment 1. 4 in Figure 6.1, Application User Interface Overview to see an
example of an application search configured in the User Interface.

The application search is an optional addition to the application banner
which provides a quick search facility. The application search supports:

» A text entry field where the user can enter their search criteria.

* An optional search type combo box, which lists the types of object
which can be searched on.

* A search button to trigger the actual search.

* Anoptional link to more search options.

Refer to User Interface Element 1. 4 in Figure 6.1, Application User Inter-
face Overview to see an example of afully configured application search in
the User Interface. This example has both the optional serach type combo
box, and optional link with more serach options enabled

Definition

An application is defined by creating an XML file with the extension . app
inthe cl i ent apps directory. The root XML element in the . app fileis
the appl i cati on element and the attributes allowed on this element are
defined in Table 6.2, Attributes of the application Element. The application
banner is configured using these attributes.

Attribute Description

id Mandatory.
The unique identifier for the application, which
must match the name of thefile. Thisid matchesto
an APPLICATION_CODE entry and is used to de-
termine the application to display for a particular
user.

See Section 6.5.5, Associate an Application with
User for more information.

title Optional.
Thetext for the title that will be displayed as part of
the application banner. The attribute must reference
an entry in the associated propertiesfile.

152

Curam Web Client Reference Manual

Attribute Description

sub-title Optional.
Thetext for the subtitle that will be displayed as part
of the application banner. The attribute must refer-
ence an entry in the associated propertiesfile.

user-message Optional.
The text for the welcome message that will be dis-
played as part of the application banner. The attrib-
ute must reference an entry in the associated proper-
tiesfile.

The text can contain a placeholder,

%user - ful | - name, which will be replaced with
the users full name. The full name is determined
based onthe Fi r st Nane and Sur nane fieldson
the User s database table.

hide-tab-container Optional.
When set to true, this indicates that there is only one
section in the application and the section tab should
not be displayed. The default isfalse.

header-type Optional.
Thisindicates that an additional header isto be used
and what type of content will be provided. The val-
ues supported are static and dynamic.

See Section 6.5.3, Optional Header for more in-
formation.

header-source Optional.
A reference to the source that will be used as an ad-
ditional header. The value of this depends on the
value of header -t ype. For static content, the at-
tribute should reference afilename of afilein the re-
source store. For dynamic content, the attribute
should reference a custom widget.

See Section 6.5.3, Optional Header for more in-
formation.
Table 6.2 Attributes of the application Element

The appl i cati on element supports the child elements detailed in Ta-
ble 6.3, Supported Child Elements of the application Element.

Element Description

section-ref 1..n.
Theappl i cati on must contain a minimum of
onesecti on-ref element. Eachsecti on-r ef
element references a section to be included in the

153

Curam Web Client Reference Manual

Element Description

application. See Section 6.5.2.3, section-ref for more
information.

application-menu Optional.
Allows for the optional addition of linksto the ap-
plication banner. The links supported include the
user preferences editor, application logout and help.
See Section 6.5.2.1, application-menu for more in-
formation.

application-search Optional.
Allows for the optional addition of a quick search
facility on the application banner. See Sec-
tion 6.5.2.2, application-search for more informa-
tion.

Table 6.3 Supported Child Elements of the application Element

application-menu

The application menu forms part of the application banner, and allows for
the optional addition of up to three links, specifically a link to the applica-
tion help, alink to logout of the application and a link to open the user pref-
erences dialog. Refer to User Interface Element 1. 3 in Figure 6.1, Applica-
tion User Interface Overview to see an example of an application menu con-
figured in the Application Banner.

Each link is defined as a child element of appl i cati on- menu element
and the supported elements are detailed in Table 6.4, Supported Child Ele-
ments of the application-menu Element.

Element Description

preferences Optional.
Defines alink to the user preferences dialog. This
dialog allows a user to configure customizations for
the application view.

Thetitle of the pr ef er ences link isdefined using
the supported t i t | e attribute. The value of the
titl e attribute should be areference to an entry in
the associated propertiesfile.

help Optional.
Defines alink to the general help for the Cdram ap-
plication.

Thetitle of the hel p link is defined using the sup-
portedt i t| e attribute. Thevalue of theti t| e at-
tribute should be a reference to an entry in the asso-
ciated propertiesfile.

154

Curam Web Client Reference Manual

Element Description

logout Optional.
Definesalink to alow a user to end their session
and logout of the application.

Thetitle of thel ogout link isdefined using the
supportedti t | e attribute. Thevalue of thetitl e
attribute should be areference to an entry in the as-
sociated propertiesfile.

Table 6.4 Supported Child Elements of the application-menu
Element

application-search

Refer to User Interface Element 1. 4 in Figure 6.1, Application User Inter-
face Overview to see an example of a fully configured application search in
the User Interface.

The application search, is defined using the appl i cati on- search ele-
ment. In its simplest form, the appl i cat i on- sear ch element requires
two attributes, which are used when there is only one type of search and no
combo box is to be displayed:

Attribute Description

default-search-page Optional.
A reference to the UIM page that will be displayed
when the search button is clicked.

When this attribute is used, it is assumed there is
only one type of search and no search type combo
box is displayed.

initial-text Optional.
The text to be displayed in the text entry field asa
prompt. This text should describe what type of in-
formation can be provided for the search, e.g. Enter
a participant reference number.

The attribute must reference an entry in the associ-
ated propertiesfile.

Table 6.5 Attributes of the application-search Element

The appl i cati on- search element supports two child elements, de-
tailed in Table 6.6, Supported Child Elements of the application-search Ele-
ment, which are used for more complex style searches.

Element Description

search-pages Optional.

155

Curam Web Client Reference Manual

Element Description

Defines multiple types of search. See Sec-
tion 6.5.2.2.1, search-pages for more information.

further-options-link Optional.
Defines alink to a more advanced search page. See
Section 6.5.2.2.2, further-options-link for more in-
formation.

Table 6.6 Supported Child Elements of the application-search
Element

search-pages

The sear ch- pages element is used when multiple search types are re-
quired, e.g. Person, Case, or types of search, e.g. Person Surname, Person
Reference Number. Each search type is listed in a combo box and a differ-
ent prompt is displayed in the text entry field depending on the selected
entry in the combo box.

The sear ch- pages element supports the child elements detailed in Ta
ble 6.7, Supported Child Elements of the search-pages Element.

Element Description

search-page 1.n
Defines a single search type. The attributes of the
sear ch- page element are defined in Table 6.8,
Attributes of the search-page Element.

Table 6.7 Supported Child Elements of the search-pages Element

ﬁ Note

Where the sear ch- pages element is used to define multiple
types of search, the initial-text and default-
sear ch- page must not be specified.

Attribute Description

type Mandatory.
The unique identifier for the type of search. It will
be passed as a parameter (sear chType) to the
UIM page invoked when the application search is
performed.

description Mandatory.
The text to be displayed for the search option in the
combo box. The attribute must reference an entry in
the associated propertiesfile.

page-id Mandatory.

156

Curam Web Client Reference Manual

Attribute Description

A reference to a UIM page that will be displayed
when the search button is clicked.

initial-text Mandatory.
The text to be displayed as a prompt in the text entry
field when that business object is selected in the
combo box. The attribute must reference an entry in
the associated propertiesfile.

default Optional.
A boolean indicating if this entry is the default entry
to be selected in the combo box. One, and only one,
entry should have the default specified as true.

Table 6.8 Attributes of the search-page Element

ﬁ Note

Blank values are not allowed in the search type combo box, so if the
user requires a generic search (i.e. across al business objects), they
must provide configuration data for this. For example, a business
object of "All" linked to a page that will carry out the search across
al the business objects that have been defined.

Search pages are linked using a reference to the UIM page to be opened
when the search button is clicked. The UIM pages defined for a search can
expect a number of parameters to be passed to them and used as part of the
search:

» searchText. The search text that has been entered in the text entry field.

e searchType. The selected search type. This is only applicable where
multiple search types have been defined.

For more information on creation of UIM pages see Chapter 5, UIM Refer-
ence

further-options-link

In addition to multiple search types, the application search also supports a
link to a more advanced search page. Thisis specified using thef ur t her -
opti ons- | i nk element, which requires the following attributes:

Attribute Description

description Mandatory.
The text of the link. The attribute must reference an
entry in the associated propertiesfile.

page-id Mandatory.
A reference to a UIM page that will be displayed
when thelink is clicked. This UIM page should re-

157

6.5.3

6.5.4

Curam Web Client Reference Manual

Attribute Description

quire no page parameters.

Table 6.9 Attributes of the further-options Element

section-ref

An application must reference a minimum of one, and up to a maximum of
five sections, using the sect i on-r ef element. See Section 6.6, Sections
for more information.

Attribute Description

id Mandatory.
Theid of a section configuration file (. sec).

Table 6.10 Attributes of the section-ref Element

Optional Header

A custom header can be specified in addition to, or instead of, the applica-
tion banner. The optional header is defined using the header -t ype and
header - sour ce attributes on the appl i cati on element and can be
defined as either a static HTML fragment or as a custom widget.

Where the header is required instead of the application banner, the optiona
attributes of the appl i cati ons element, aslisted in Table 6.2, Attributes
of the application Element, should be omitted.

The header - t ype attribute is restricted to the values static or dynamic.
Setting a static value indicates that a HTML fragment is to be placed within
the header. In this instance, the header - sour ce attribute should refer-
ence afilethat is stored in the resource store. This file must be stored with a
content type of text/xml.

If the header - t ype attribute is set to dynamic, the header - sour ce at-
tribute should reference the custom widget to be used to display the content.
This reference will be the same as that specified with the relevant st yl es-

confi g. xm . For more information on creating and referencing custom
widgets please consult the Caram Custom Widget Devel opment Guide.

Whether a custom widget or HTML fragment is used it must aways start
with a<di v> element.

Example

Example 6.1, Smple.app details an example application, which would be
storedinafilecaled Si npl eApp. app.

158

Curam Web Client Reference Manual

<?xm versi on="1.0" encodi ng="1S0O 8859-1"?>
<ac: application
i d="Si npl eApp"
| ogo="Si npl eApp. | ogo"
title="SinpleApp.title"
subtitl e="Si npl eApp. subtitle"
user - nessage="Si npl eApp. User Message" >

<ac: appl i cati on- menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ ac: appl i cati on- mrenu>

<ac: appl i cati on- search>
<ac: sear ch- pages>
<ac: sear ch- page type="SAS01"
descri pti on="Sear ch. Person. Last Nane. Descri pti on"
page-i d="Per son_sear chResol ver"
initial-text="Search.Person. LastNane.|nitial Text"
defaul t="true"/>
<ac: sear ch- page type="SAS02"
descri pti on="Sear ch. Per son. Gender . Descri pti on"
page-i d="Person_| i st ByGender"
initial-text="Search.Person.Gender.Initial Text" />
</ ac: sear ch- pages>
<ac: further-options-Iink
descri pti on="Sear ch. Further. Opti ons. Li nk. Descri pti on"
page-i d="Person_search" />
</ ac: appl i cati on-search>

<ac:section-ref id="Si npl eHomeSection"/>
<ac:section-ref id="Si npl eWor kspaceSection"/>

</ ac: appl i cati on>
Example 6.1 Simple.app

i Note

In the above example a namespace, ac has been declared and all
elements are prefixed with the namespace. This is recommended
practice. Consult Section 3.12.12, Application Configuration Files
for more information.

The Si npl eApp. app should have a corresponding Si npl e-
App. properties file, which details the localizable content. For ex-
ample:

Si npl eApp. | ogo=CDEJ/ t henes/ v6/ i mages/ appl i cati on-1 ogo. png
Si npl eApp. titl e=C\ uOOFAr am

Si npl eApp. subtitl e=Si npl e Application

Si npl eApp. User Message=Wel cone, %user-full - name

preferences.titl e=User Preference

hel p.titl e=Hel p

| ogout . titl e=Logout

Sear ch. Per son. Last Nane. Descri pti on=Sur nanme

Sear ch. Per son. Last Nane. | ni ti al Text =Enter surnanme to search for
Sear ch. Per son. Gender . Descri pti on=Gender

Sear ch. Per son. Gender. I ni ti al Text =Ent er gender to search for
Sear ch. Furt her. Opti ons. Li nk. Descri pti on=Advanced Search

159

6.5.5

Curam Web Client Reference Manual

In the above example, the Clram logo image is referencing the default logo
image shipped with the Cdram Client Development Environment (CDEJ). A
custom logo can be added to the | mages folder in the component and ref-
erenced directly as| mages/ ny- cust om | ogo. png.

i Note
In the properties file for the Si npl eApp. app example, the U in
Curam is added using the Unicode escape sequence. An alternative
approach is to add the G directly and ensure the file is saved in the
UTF-8 format. Both approaches are supported for the application
configuration files.

Associate an Application with User

A user must be mapped to the application and home page to display when
they first login. The home page is the initial page, displayed in its associated
tab. Thisis done using the following mapping:

» APPLI CATI ONCCODE field on the User s database table
maps to

e anentry inthe APPLI CATI ON_CODE codetable
maps to

» thei d attribute of anappl i cati on

When a user logs in, the value of the APPLI CATI ONCODE field in the
User s database table is used to determine both the application and home

page to display.
Theval ue field of the code table entry must match the name of the applic-
ation (.app) fileto use and the descri pti on field of the code table entry

indicates the name of the UIM page to be displayed as the home page. The
following example shows a subset of a code table definition:

<codet abl e java_identifier="APPLI CATI ON_CODE"
nanme="APPL| CATI ON_CODE" >
<code defaul t="fal se" java_identifier="SI MPLE_HOVE"
st at us="ENABLED" val ue="Si npl eApp" >
<l ocal e | anguage="en" sort_order="0">
<descri pti on>Si npl eHone</ descri pti on>
<annot at i on></ annot ati on>
</l ocal e>
</ code>
</ codet abl e>

Example 6.2 CT_APPLICATIONCODE.ctx

i Note
For more information on code tables see the Clram Server De-

160

6.6

6.6.1

Curam Web Client Reference Manual

velopers Guide.

In this example, a code table entry Si npl eApp has been defined, with a
description of Si npl eHomre. The code Si npl eApp, matches the id of the
Si npl eApp. app example. The description, Si npl eHone, indicates the
UIM page to be displayed as the home page. This page must be associated
with the relevant application. For more details on how to associate pages
with an application, see Section 6.11, Opening Tabs and Sections.

Sections

Introduction

Date of Birth

Figure 6.2 Application User Interface Overview

An application can contain one or more application sections, where a sec-
tion is a collection of tabs and an optional section shortcut panel. A section
shortcut panel supports quick links to open tabs and dialogs within a section.

It is recommended that a maximum of five sections be used, each represent-
ing a different set of activities that can be performed by a user. The five re-
commended types of sections are:

Refer to User Interface Element 2 in Figure 6.2, Application User Interface
Overview to see sections configured in the User Interface. The section that is
currently open is alighter shade of color than the other sections.

« Home. The Home section is intended to contain only one tab, with a
single page that acts as a home page for the user. The home page should
provide a summary of significant information and quick links to com-
mon activities.

 Workspace. The Workspace section is where the mgjority of tasks re-
lating to the user role will be performed.

* Inbox. The Inbox section represents the area of the application where

161

Curam Web Client Reference Manual

the user can access the work currently allocated to them.

 Calendar. The Caendar section contains a calendar of the users activit-
ies and schedules.

* Reports. The Reports section contains a number of reports relevant for
the particular user.

6.6.2 Definition

A section is defined by creating an XML file with the extension . sec inthe
cl i ent apps directory. The root XML element in the . sec file is the
sect i on element and the attributes allowed on this element are defined in
Table 6.11, Attributes of the section Element.

Attribute Description

id Mandatory.
The unique identifier for the section, which must
match the name of thefile. Thisis used when refer-
enced from an application (. app) configuration
file.

title Mandatory.
Thetext for the title that will be displayed on the
section tab. The attribute must reference an entry in
the associated propertiesfile.

hide-tab-container Optional.
When set to true, thisindicates that there is only one
tab in the section and the tab bar should not be dis-
played. The default isfalse.

default-page-id Optional.
A reference to a UIM page that should be opened by
default when the section is opened. The UIM page
referenced must be directly associated with a tab.
For more information on associating pages with
tabs, consult Section 6.8, Tabs.

This attribute ensures that an anchored default tab is
always open when the section is opened. An
anchored tab does not contain an option to close it.

Table 6.11 Attributes of the section Element

ﬁ Note

The defaul t - page-i d attribute must not be used on the
"Home" or first section of an application. The user's home page, and
its associated tab are opened automatically when a user logs into an
application. See Section 6.5.5, Associate an Application with User
for more information.

162

Curam Web Client Reference Manual

The sect i on element supports the child elements detailed in Table 6.12,
Supported Child Elements of the section Element.

Element Description

tab 1.n.
A reference to atab to be included in this section.
See Section 6.6.2.1, tab for more information.

shortcut-panel -ref Optional.
A reference to the section shortcut panel to bein-
cluded in this section. See Section 6.6.2.2, shortcut-
panel-ref for more information.

Table 6.12 Supported Child Elements of the section Element

tab

A section isacollection of tabs and to associate a tab with a section thet ab
element should be used. A sect i on must define at least onet ab element
and tabs must only ever be referenced by one section in any application.
This means that tabs can be reused in different sections, as long as the sec-
tion isincluded in a separate application.

The attributes of the t ab element are detailed in Table 6.13, Attributes of
the tab Element

Attribute Description

id Mandatory.
Theid of atab configuration file (. t ab). See Sec-
tion 6.6.2.1, tab for more information.

Table 6.13 Attributes of the tab Element

shortcut-panel-ref

The short cut - panel -ref element is used to define the section short-
cut panel to add to the section. Only one short cut - panel - r ef should
be specified per section. See Section 6.7, Section Shortcut Panel for more
information.

The attributes of the short cut - panel - r ef element are detailed in Ta
ble 6.14, Attributes of the shortcut-panel-ref Element

Attribute Description

id Mandatory.
Theid of a section shortcut panel (. sec). See Sec-
tion 6.7, Section Shortcut Panel for more informa-
tion.

163

6.6.3

6.7

6.7.1

Curam Web Client Reference Manual

Table 6.14 Attributes of the shortcut-panel-ref Element

Example

Example 6.3, SmpleWorkspaceSection.sec details an example section,
which would be stored in a file caled Si npl eWr kspaceSec-
tion.sec.

<?xm versi on="1.0" encodi ng="1S0O 8859-1"?>
<sc:section

i d="Si npl eWbr kspaceSecti on"

title="Si npl eWor kspaceSection.title">

<sc: shortcut-panel -ref id="Si npl eShort cut Panel "/>

<sc:tab id="Person" />
<sc:tab id="Enpl oyer" />
<sc:tab id="Case" />

</ sc:section>

Example 6.3 SimpleWorkspaceSection.sec

The Si npl eWbr kspaceSecti on. sec should have a corresponding
Si npl eWor kspaceSect i on. properti es file which details the loc-
alizable content. For example:

Si npl eWbr kspaceSection. titl e=Wor kspace

Section Shortcut Panel

Introduction

Each section can optionally contain a section shortcut panel which provides
quick links to open content and perform actions within the section. The
menu items in the shortcut panel can be divided into categories. Refer to
User Interface Element 7 of Figure 6.2, Application User Interface Over-
view to see an example of a configured section shortcut panel.

When a section isfirst opened, the section shortcut panel is collapsed by de-
fault. The double arrow beside the title of the shortcut panel can be used to
expanded, and subsequently collapse, the panel.

Menu items in a shortcut panel which open modal dialogs are identified by
an ellipses (...), which indicates that further actions are required. Refer to
User Interface Element 7. 1. 1 of Figure 6.2, Application User Interface
Overview to see an example of a configured menu item in an expanded cat-
egory of a shortcut panel.

164

Curam Web Client Reference Manual

6.7.2 Definition

A section shortcut panel is defined by creating an XML file with the exten-
sion . ssp in the cl i ent apps directory. The root XML element in the
. ssp fileisthesect i on- short cut - panel element and the attributes
allowed on this element are defined in Table 6.15, Attributes of the section-
shortcut-panel Element.

Attribute Description

id Mandatory.
The unique identifier for the section shortcut panel,
which must match the name of thefile. Thisis used
when referenced from a section (. sec) configura-
tion file.

title Mandatory.
Thetext for the title that will be displayed for the
sections shortcut panel, both when it is expanded
and when it is collapsed. The attribute must refer-
ence an entry in the associated propertiesfile.

Table 6.15 Attributes of the section-shortcut-panel Element

The secti on-short cut - panel element supports the child elements
detailed in Table 6.16, Supported Child Elements of the section-short-
cut-panel Element.

Element Description

nodes Mandatory.
Groups together multiple child node elements. See
Section 6.7.2.1, node for more information.

Table 6.16 Supported Child Elements of the
section-shortcut-panel Element

node

The node element is used to represent menu items and categories used
within the shortcut panel. There are three supported types of node element
and thet ype attribute is used to define this:

e group. A group node in a shortcut panel represents a category and is
used to categorize a number of menu items as described in Section 6.7,
Section Shortcut Panel. “Registration” are defined using node Each
category is defined using node elements of type group. This type of
node supports child node elements of type leaf and separator.

* leaf. A leaf in ashortcut panel is amenu item within a category, which

165

Curam Web Client Reference Manual

can open a page in an existing or new tab, or open a modal dialog 2 .
Where a menu item opens a modal dialog, an ellipsis is appended to the
text displayed to indicate more information is required.

e separator. A separator can be used to add extra space between menu
items within a node of type group (i.e. a category).

The attributes supported by the node element are detailed in Table 6.17, At-
tributes of the node Element.

Attribute Description

id Mandatory.
The identifier for the node. This must be unique
withinthe . ssp file.

type Mandatory.
The type of node, where three types are supported:

e group
o leaf
s separator
title Mandatory.

Thetext for the title of the node. The attribute must
reference an entry in the associated propertiesfile.

Note: Thisis not required where the type is spe-
cified as separator.

page-id Optional.
A reference to the UIM page to be displayed when
the menu item is selected. Thisis only applicable for
node elements with atype of leaf.

open-as Optional.
Where set, this attribute indicates the UIM page to
be displayed when the menu item is selected should
be opened as amodal dialog. The only value sup-
ported is modal.

Thisisonly applicable for node elementswith a
type of leaf.

append-éllipsis Optional.
A boolean attribute which indicates if the élipsis
automatically appended to the menu item which
opensin amodal dialog should be disabled. The de-
fault istrue. The attribute is applicable only where
thet ype attribute isleaf and the open- as attrib-
ute has been set.

Note: Setting this attribute to true where the open-
as attribute has not been set will not add the ellipsis

166

6.7.3

6.8

Curam Web Client Reference Manual

Attribute Description

to the menu item.

Table 6.17 Attributes of the node Element

Example

Example 6.4, SmpleShortcutPanel.ssp details an example section shortcut
panel, which would be stored in a file caled Si npl eShort cut Pan-
el . ssp.

<?xm version="1.0" encodi ng="1 SO 8859-1"?>
<sc: section-short cut - panel
i d="Si npl eShort cut Panel "
title="Si npl eShortcutPanel . Title">

<sc: nodes>
<sc: node i d="Sear ches" type="group"
title="Searches. Title">
<sc: node i d="PersonSearch" type="1|eaf"
page-i d="Person_search"
titl e="PersonSearch. Title" />

</ sc: node>
<sc: node i d="Qui ckLi nks" type="group"
title="QuickLinks. Title">

</ sc: node>
<sc: node i d="Regi stration" type="group"
title="Registration. Title">
<sc: node i d="Regi st er Enpl oyer" type="1|eaf"
page- i d="Enpl oyer _regi ster"
title="RegisterEnployer.Title"
open-as="nodal "/ >

<sc: node type="separator" id="separator"/>
</ sc: node>

</ sc: nodes>
</ secti on-short cut - panel >

Example 6.4 SimpleShortcutPanel.ssp

The Si npl eShort cut Panel . ssp should have a corresponding
Si mpl eShor t cut Panel . properti es file, which details the localiz-
able content. For example:

Si npl eShor t cut Panel . Ti t|1 e=Short cuts Panel
Sear ches. Ti t | e=Sear ches

Per sonSear ch. Ti t| e=Per son Search

Qui ckLi nks. Ti tl e=Qui ck Li nks

Regi stration. Titl e=Regi stration

Regi st er Enpl oyer. Ti t| e=Regi ster an Enpl oyer

Tabs

167

6.8.1

Curam Web Client Reference Manual

Person Address Date of Birth

Figure 6.3 Application User Interface Overview

Introduction

A tab typically represents a business object, e.g. a Case or a Participant,
though it can also be used to represent a logical grouping of information.
Refer to User Interface Element 3 of Figure 6.3, Application User Interface
Overview for an example of a configured tab in an application.

e Tab Title Bar. The title bar contains text to identify the current tab.
Refer to User Interface Element 4 of Figure 6.3, Application User Inter-
face Overview for an example of atab title bar configured in an applica
tion.

e Tab Actions Menu. The actions menu provides actions associated with
the business object represent by the tab. The actions can be a mix of
menu items and other menus, each of which links to a page that will be
displayed in the tab content area or a modal dialog. Refer to User Inter-
face Element 5 of Figure 6.3, Application User Interface Overview for
an example of atab actions menu configured in an application.

» Tab Context Panel. The context panel istypically used to present sum-
mary information about the business object. This summary information
is always available, no matter what page is displayed in the content area.
Refer to User Interface Element 6 of Figure 6.3, Application User Inter-
face Overview for an example of atab context panel configured in an ap-
plication.

The context panel can be collapsed and expanded to provide more space
for the tab content area.

« Tab Content Area. A tab comprises of one or more pages of informa-
tion. These pages are displayed in the content area and can be navigated
using the navigation bar.

* Navigation Bar. The navigation bar contains a number of naviga-

168

6.8.2

Curam Web Client Reference Manual

tion tabs, each of which link to a page or set of pages that are part of
the tab. The navigation bar can be used to separate the business ob-
ject information into logical groupings of pages. Refer to User Inter-
face Element 8 of Figure 6.3, Application User Interface Overview
for an example of a navigation bar configured in an application.

» Page Group Navigation Bar. Where a tab links to a set of pages,
the pages are displayed as a page group navigation bar, with the first
one selected by default. Refer to User Interface Element 16 of Fig-
ure 6.3, Application User Interface Overview for an example of a
page group navigation bar configured in an application.

» Page Content. Selecting a navigation tab or page group entry will
display the corresponding UIM page content within the content area.
Refer to User Interface Element 15 of Figure 6.3, Application User
Interface Overview for an example of a page content area configured
in an application.

In addition to the above elements a Tab also supports an optional smart pan-
el. A smart panel is an optional panel, displaying a UIM page, that is added
to the right of the content area in a tab. It can be collapsed and expanded,
and is collapsed by default. In addition, the size of the smart panel can bein-
creased and decreased when it is expanded. Refer to User Interface Element
20 of Figure 6.3, Application User Interface Overview for an example of a
smart panel configured in an application.

Finaly, a tab supports the ability to dynamically enable/disable and hide/
show entries in the tab actions menu, tab navigation bar and page group
navigation bar. This dynamic content is updated based on configured refresh
events.

A refresh event updates the specified part of the tab based on the submit of a
modal dialog page or when a specific UIM page is loaded in the content
area. For more information on configuring refresh events consult Sec-
tion 6.8.2.6, tab-refresh.

Definition

A tab is defined by creating an XML file with the extension . t ab in the
cl i ent apps directory. The root XML element in the . t ab file is the
t ab- conf i g element and the attributes required by this are defined in Ta-
ble 6.18, Attributes of the tab-config Element.

Attribute Description

id Mandatory.
Theidentifier for the tab, which must match the
name of thefile.

Thei d attribute is used to reference the tab config-
uration from section configuration files (. sec). See
Section 6.6.2.1, tab for more information.

169

Curam Web Client Reference Manual

Table 6.18 Attributes of the tab-config Element

The t ab- confi g element supports the child elements detailed in Ta
ble 6.19, Supported Child Elements of the tab-config Element.

Element Description

page-param 0..n.
Defines a parameter required when opening a tab.
See Section 6.8.2.1, page-param for more informa-
tion.

menu Optional.
A reference to the actions menu configuration. See
Section 6.8.2.2, menu for more information.

context Mandatory.
A reference to the UIM page to be used as the tab
context panel, or alternatively details of the tab
name and title. See Section 6.8.2.3, context for more
information.

navigation Mandatory.
A reference to the tab navigation configuration, or
alternatively the name of the UIM page that will be
opened in thistab. See Section 6.8.2.4, navigation
for more information.

smart-panel Optional.
A reference to the UIM page to be used for the
smart panel. See Section 6.8.2.5, smart-panel for
more information.

tab-refresh Optional.
Defines what part of atab should refresh under what
circumstances. See Section 6.8.2.6, tab-refresh for
more information.

Table 6.19 Supported Child Elements of the tab-config Element

page-param

The page- par am element allows for multiple page parameters to be
defined for atab. Each page parameter defined maps to the name of a name-
value pair that will be passed to all UIM pages that are opened from both the
tab actions menu and the navigation bar.

Page parameters are also used to identify unique instances of atab. For ex-
ample, atab is defined for a Person object. Two instances of this tab can be
opened, one for James Smith and one for Linda Smith. The instances are
uniquely identified by the page parameter, id, which has been defined for
the tab. This id parameter maps to the unique id for the person and will be
different for both James Smith and Linda Smith.

170

Curam Web Client Reference Manual

For more information on the behavior associated with opening tabs see Sec-
tion 6.11, Opening Tabs and Sections.

Attribute Description

name Mandatory.
A unique identifier for the page parameter.

Table 6.20 Attributes of the page-param Element

menu

The menu element contains a reference to the tab action menu configuration
which is maintained in a separate configuration file, (. mu). See Sec-
tion 6.9, Tab Actions Menu for more information.

Attribute Description

id Mandatory.
A reference to the id of atab action menu configura-
tion file (.mnu).

Table 6.21 Attributes of the menu Element

context

The cont ext element defines a context panel by referencing a UIM page
which forms the content of the context panel. The element is mandatory and
if no context panel is to be defined, then a tab name and tab title must be
specified.

The tab title bar and tab name can be populated with data using either the
context panel UIM page or using the tab-name and tab-title attributes in the
. t ab file. Where the context panel UIM page is used only to add content to
the tab name and tab title, the height attribute should be set to zero.

For more information on defining context panel UIM pages see Sec-
tion 6.8.3, Context Panel UIM

Attribute Description

page-id Optional.
A reference to the UIM page that will be used for
the content of the context panel. If thisis not spe-
cified, thet ab- name andt ab-ti t | e attributes
must be specified.

tab-name Optional.
The text that will be displayed in the tab bar. The at-
tribute must reference an entry in the associated
propertiesfile.

tab-title Optional.

171

Curam Web Client Reference Manual

Attribute Description

The text that will be displayed in the tab title bar.
The attribute must reference an entry in the associ-
ated propertiesfile.

height Optional.
The pixel height of the context panel. Thisisonly
relevant if apage- i d attribute has been specified
to define a context panel.

The default value if not specified is 150 pixels.

Table 6.22 Attributes of the context Element

navigation

The navi gat i on element defines what pages will be opened within the
tab. A single page can be defined using the page- i d attribute, or multiple
pages can be defined using a reference to the tab navigation configuration
file (. nav). For more information on tab navigation configuration see Sec-
tion 6.10, Tab Navigation.

ﬁ Note
The navi gat i on element is mandatory and one of either page-
i dori d must be specified.

Attribute Description

page-id Optional.
A reference to the UIM page that will be opened in
the tab. When alink to this UIM page is selected, it
will automatically trigger the page to be opened in a
new tab.

id Optional.
A reference to atab navigation configuration file

(. nav). See Section 6.10, Tab Navigation for more
information.

Table 6.23 Attributes of the navigation Element

smart-panel

The content of the smart panel is defined by a UIM page, referenced by the
page-i d attribute. Like the context panel, the UIM elements that can be
used are limited. See Section 6.8.3, Context Panel UIM for details of the
limitations of the smart panel UIM. Refer to User Interface Element 20 of
Figure 6.3, Application User Interface Overview for an example of a smart
panel configured in an application.

172

Curam Web Client Reference Manual

Attribute Description

page-id Mandatory.

A reference to the UIM page that will be displayed
in the smart panel of the tab.

title Mandatory.

Thetext for the title that will be displayed for the
smart panel, both when it is expanded and when it is
collapsed. The attribute must reference an entry in
the associated propertiesfile

width Optional.

The initial width of the smart panel when it is ex-
panded. The default value if this attribute is not set
IS 250 pixels.

collapsed Optional.

Boolean indicating if the smart panel should be ex-
panded or collapsed by default. The default value if
this attribute is not set is true.

Table 6.24 Attributes of the smart-panel Element

tab-refresh

By default, only the content area of atab is refreshed when a modal dialog
is submitted. When a modal dialog is closed/cancelled, i.e. no action is per-
formed, the content area is not refreshed.

The t ab-refresh element allows different aspects of a tab to be re-
freshed. The tab actions menu, tab navigation and context panel can all be
refreshed based on two events. The first is when a specific UIM page is
loaded in the content area and the second when a UIM page is submitted
from amodal or the content area.

Tab Actions Menu. Refreshing the tab actions menu results in updat-
ing the entries in the menu that can be dynamically disabled or hidden.
For more information on dynamic support in the tab actions menu see
Section 6.9.3, Dynamic Support.

Tab Navigation. Refreshing the tab navigation results in updating the
entries in the tab navigation bar and page group navigation bar that can
be dynamically disabled or hidden. For more information on dynamic
support in tab navigation see Section 6.10.3, Dynamic Support.

Context Panel. Refreshing the context panel smply reloads the UIM
page displayed in the context panel.

Content Area. Refreshing the content area reloads the UIM page dis-
played in the content area. This refresh option is available for use only
where amodal dialog has been opened from the list dropdown panel of a
nested expandable list.

173

Curam Web Client Reference Manual

By default only the parent of list dropdown panel is updated when the
modal dialog is submitted. Where the list dropdown panel exists in a
nested expandable list, this will result in the parent list reloading and not
the entire content area.

Under some circumstances, the entire content area may require updating
and this option can be used to achieve this for this specific scenario.

The two different type of refresh events can be configured using the child
elements detailed in Table 6.25, Supported Child Elements of the tab-re-
fresh Element.

Element Description

onload 1.n
Defines arefresh event, where when the specified
page isloaded in the content area, the defined parts
of the tab are updated.

onsubmit 1.n
Defines arefresh event, where when the specified
page is submitted from amodal or in the content
area, the defined parts of the tab are updated.

Table 6.25 Supported Child Elements of the tab-refresh Element

onsubmit/onload

The onsubm t and onl oad elements both require the same set of attrib-
utes, as described in Table 6.26, Attributes of the onload/onsubmit Elements.

Attribute Description

page-id Mandatory.
A reference to the UIM page to associate with the
refresh event.

context Optional.

Boolean indicating if the context panel should be
update when the specified page is loaded or submit-
ted.

menu-bar Optional.
Boolean indicating if the tab actions menu should be
updated when the specified page is loaded or sub-
mitted. See Section 6.9.3, Dynamic Support for
more information.

navigation Optional.
Boolean indicating if the tab navigation should be
updated when the specified page isloaded or sub-
mitted. See Section 6.10.3, Dynamic Support for
more information.

174

6.8.3

Curam Web Client Reference Manual

Attribute Description

main-content Optional.
Boolean indicating if the main content area should
be updated when the specified page is loaded or sub-
mitted.

This type of refresh event must only be used for
modal dialogs that are opened from alist dropdown
panel in a nested expandable list.

Table 6.26 Attributes of the onload/onsubmit Elements

Context Panel UIM

A context panel is a specific type of UIM page identified by the PAGE ele-
ment containing an attribute of TYPE=" DETAI LS" .

Thistype of UIM page can only use a subset of existing UIM elements. Spe-
cifically:

* SERVER | NTERFACE can only be used with aDl SPLAY phase
e ACTI ON_CONTROL can only be used with an ACTI ONtype

» Thefollowing elements are not supported:

- MENU

« SHORTCUT TI TLE
« JSP_SCRI PTLET
- DESCRI PTI ON

« | NFORMATI ONAL
« SCRIPT

- | NCLUDE

. VIEW

ﬁ Note

These same limitations apply to the smart panel UIM pages, but are
not enforced.

A mandatory TAB_NAME element is required for context panel UIM pages,
which allows for dynamic information to be added to the tab name. In addi-
tion the PAGE_TI TLE element is used to add information to the tab title
bar. For more information on these elements see Section 5.9.31,
TAB_NAME and Section 5.9.27, PAGE_TITLE.

175

Curam Web Client Reference Manual

6.8.4 Example

6.9

6.9.1

Example 6.5, SmpleTab.tab details an example tab configuration file, which
would be stored in afilecaled Si npl eTab. t ab.

<?xm versi on="1.0" encodi ng="1S0O 8859-1"?>
<tc:tab-config
i d="Si npl eTab" >

<t c: page- par am nanme="concernrol ei d"/ >
<tc:nmenu id="Si npl eMenu"/ >

<t c: cont ext page-i d="Si npl eDet ai | sPanel "
t ab- name="si npl e. t ab. name" />

<tc: navi gation id="Si npl eNavi gation"/>

<tc:snart-panel page-id="Si npl eSmart Panel "
title="snmart.panel .title"
col | apsed="true"
w dt h="300" />
<tc:tab-refresh>
<t c:onl oad page-i d="Si npl eHome" navi gati on="true"/>
<tc:onsubmit page-id="Modi fySonet hi ng"
cont ext ="true" menu-bar="true"/>
</tc:tab-refresh>

</tc:tab-config>

Example 6.5 SimpleTab.tab

The SinpleTab.tab should have a corresponding Sim
pl eTab. properti es file, which details the localizable content. For ex-
ample:

si mpl e. t ab. nanme=Si npl e Tab
smart.panel . titl e=Smart Panel

Tab Actions Menu

Introduction
The tab actions menu is a dropdown menu in the tab title bar. The menu
items listed in the menu allow actions specific to the tab to be performed.

The items support opening UIM pages in the content area of atab, or altern-
atively opening a modal dialog to perform some action - these are identified
by an ellipses (...). Additionally, it is possible to download a file directly
from amenu item.

The tab actions menu also supports the ability to dynamically hide/show and

176

6.9.2

Curam Web Client Reference Manual

enable/disable items in the menu. Refer to User Interface Element 5 of Fig-
ure 6.3, Application User Interface Overview for an example of atab actions
menu configured in an application. The menu items that are dynamically
hidden are disabled in the menu.

Definition

A tab actions menu is defined by creating an XML file with the extension
.mu intheclient apps directory. The root XML element in the . mu
fileisthe menu- bar element and the attributes allowed on this element are
defined in Table 6.27, Attributes of the menu-bar Element.

Attribute Description

id Mandatory.
The unique identifier for the menu, which must
match the name of thefile. The identifier is used
when amenu isincluded in atab configuration, us-
ing the menu element. See Section 6.8.2.2, menu for
more information.

Table 6.27 Attributes of the menu-bar Element

A menu definition can be reused and referenced by multiple tab configura-
tions. The menu itself comprises of menu items and submenus, which are
used to group menu items. The child elements outlined in Table 6.28, Sup-
ported Child Elements of the menu-bar Element are used to define the struc-
ture of the menu.

Element Description

menu-item 0..n.
Defines a single entry in the menu, which linksto a
UIM page that can be opened in amodal dialog or in
the content area of atab. See Section 6.9.2.1, menu-
itemfor more information.

submenu 0..n.
Defines a grouping of menu items, which form a sub
menu. See Section 6.9.2.2, submenu for more in-
formation.

menu-separator 0..n.
Defines a separator line between entriesin the
menu. See Section 6.9.2.3, menu-separator for more
information.

|oader-registry Optional.
Defines the server interfaces that can be called to
dynamically change the state of the menu- i t ens.
See Section 6.9.2.4, loader-registry for more in-
formation.

177

Curam Web Client Reference Manual

Table 6.28 Supported Child Elements of the menu-bar Element

menu-item

An action entry in the tab actions menu is defined by the nenu- i t emele-
ment. The attributes of this element are defined in Table 6.29, Attributes of
the menu-item Element.

A nenu- it emcan

» openaUIM page in the content area of atab;
* openaUIM pageinamodal dialog.

* download afile.

Menu items which open modal dialogs are identified by an ellipsis (...),
which indicates that further actions are required.

Attribute Description

id Mandatory.
The unique identifier for the menu- i t em which
must be unique within the configuration file.

page-id Mandatory.
A reference to the UIM page to open when the
menu- i t emis selected.

title Mandatory.
The text that will be displayed for thenenu-item
The attribute must reference an entry in the associ-
ated propertiesfile.

open-as Optional.
Where set, this attribute indicates that the UIM page
to be displayed should be opened as a modal dialog.
The only value supported is modal.

append-ellipsis Optional.
A boolean attribute which indicates if the ellipsis
automatically appended to menu- i t emswhich
open in amodal dialog should be displayed. The de-
fault istrue. The attribute is applicable only where
the open- as attribute has been set.

Note: Setting this attribute to true where the open-
as attribute has not been set will not add the ellipsis
tothenmenu-item

window-options Optional.
Defines the height and width of a modal dialog
opened from the menu- i t em Thisisonly applic-
able where the open- as attribute is set to nodal .

178

Curam Web Client Reference Manual

Attribute Description

The format for the attributeis:

wi dt h=<pi xel val ue>, hei ght =<pi xel val ue>
For example:

wi ndow opt i ons="w dt h=500, hei ght =300"

The hei ght portion of thewi ndow opt i ons is
optional and if not specified, the height of the dialog
will be automatically calcul ated.

dynamic Optional.
Boolean indicating that the menu- i t emcan be dy-
namically disabled or hidden. See Section 6.9.3, Dy-
namic Support for more information.

visible Optional.
Boolean indicating if the menu- i t emishidden or
visible. The default istrue.

type Optional.
Definesanenu- i t emthat downloads afile when
selected. The only value supported is
FI LE_DOWNLOAD.

For more information see Section 6.9.4, File Down-
load Menu Item for more information.

description Optional.
Defines text which forms a description for the
menu- it em Thisisused for administration pur-
poses only. The attribute must reference an entry in
the associated propertiesfile.

Table 6.29 Attributes of the menu-item Element

submenu

A submenu is agroup of menu items and is defined using the subnenu ele-
ment. The attributes of the subnmenu element are defined in Table 6.30, At-
tributes of the submenu Element.

Attribute Description

id Mandatory.
The unique identifier for the submenu, which must
be unique within the configuration file.

title Mandatory.
The text that will be displayed for the subnmenu.
The attribute must reference an entry in the associ-
ated propertiesfile.

description Optional.

179

Curam Web Client Reference Manual

Attribute Description

Defines text which forms a description for the sub-
nmenu. Thisisused for administration purposes
only. The attribute must reference an entry in the as-
sociated propertiesfile.

Table 6.30 Attributes of the submenu Element

The subnmenu element allows for further submenus to be defined, in addi-
tion to including menu items and menu separators. The supported child at-
tributes (Table 6.31, Supported Child Elements of the submenu Element) can
be used to achieve this.

Element Description

menu-item 0..n.
Defines a single entry in the submenu, which links
to aUIM page that can be opened in amodal dialog
or in the content area of atab. See Section 6.9.2.1,
menu-item for more information.

submenu 0..n.
Defines afurther sub grouping of menu items.
menu-separator 0..n.

Defines a separator between entries in the submenu.
See Section 6.9.2.3, menu-separator for more in-
formation.

Table 6.31 Supported Child Elements of the submenu Element

menu-separator

An actions menu, including submenus of this, can include aline separator to
divide the entries in the menu. This is defined using a menu- separ at or

element. The attributes of the menu- separ at or are outlined in Ta
ble 6.32, Attributes of the menu-separator Element.

Attribute Description

id Mandatory.
The unique identifier for the menu- separ at or .

Table 6.32 Attributes of the menu-separator Element

loader-registry

Thel oader - regi st ry element defines alist of loader implementations
that will be used to dynamically enabled/disable and hide/show the menu
items in the tab actions menu. For more information see Section 6.9.3, Dy-

180

6.9.3

Curam Web Client Reference Manual

namic Support.
Element Description
loader 1.n.

Defines one or more loader implementations that
will be used to dynamically set the visibility and en-
abled state of the menu items. See Section 6.9.2.5,
loader for more information.

Table 6.33 Supported Child Elements of the loader-registry
Element

loader

The | oader element defines a single loader implementation that will dy-
namically set the state of the menu itemsin atab actions menu. For more in-
formation see Section 6.9.3, Dynamic Support.

Attribute Description

class Mandatory.
The fully qualified class name of an implementation
of the
curamutil.tab.inpl.Dynam cMenuSt at
eLoader interface.

Table 6.34 Attributes of the loader Element

Dynamic Support

The tab actions menu supports the ability to dynamically enable/disable and
hide/show entries. This feature is supported using a combination of the dy-
nam c attribute of the menu-item element, the | oader-regi stry
element and a Java loader implementation.

The Java loader implementation registered in the navigation configuration
will be called when the tab is first loaded and based on the refresh options
configured for atab. The refresh options are configured in the tab configura-
tionfile (. t ab). See Section 6.8.2.6, tab-refresh for more information.

A menu item can be specified as dynamic in the menu configuration file
(. mu) by adding dynam c="t rue" to the relevant menu-itemele
ment.

Where the dynam c attribute is set, a | oader-regi stry is then re-
quired and should define the fully qualified classname which implements
thecuramutil . tab.inpl.Dynam cMenuSt at eLoader interface.

The Dynam cMenuSt at eLoader interface requires one method, | oad-
MenuSt at e, to be implemented. The | oadMenuSt at e method is passed
the following parameters:

181

6.9.4

Curam Web Client Reference Manual

e alist of menuitem identifiers

» aset of name-value page parameters pairs

The loader implementation must decide which menu items to disable or
hide. The method returns an object that represents the state of a given menu
bar. A state must be set for all identifiersin the list. For more information on
thisinterface, consult the Java Documentation.

o]

n Note

The list of menu item identifiers passed to the | oadMenuSt at e
method are only those that have been identified as dynamic by the
dynami c attribute on the menu- i t emelement.

File Download Menu Item

A menu-itemcan reference a FILE_ DOWNLOAD configuration using
thet ype="FI LE_DOAMLQAD" attribute. For example:

<nt: nenu-itemid="fil edownl ocadltenm title="sone.text.title"
type="FI LE_ DOMNMLOAD' page-i d="Fil eDownl oad"/>

The page- i d attribute must match the page- i d attribute specified for a
FI LE_DOANLQAD element configured in the cur am confi g. xnl file.
For more information on the FI LE DOANLOAD element in curam

confi g. xm see Section 5.9.3.1, File Downloads.

When configuring the FI LE DOWNLOAD element in cur am con-
fig.xm , only the parameters defined for the tab can be used as values for
the PAGE_PARAMattribute of the | NPUT element.

Example 6.6, FILE_ DOWNLOAD Configuration from curam-config.xml
shows a fragment of the FI LE DOWNLOAD configuration from the
curam config. xm file In this example, the fi | el D page parameter
must be specified as a page- par amelement in the tab configuration file
(. t ab).

Note also that the PAGE | D attribute value of FileDownload matches the
page- i d attribute in the example above.

<FI LE_DOMLQAD CLASS="sone. pkg.readFil e"
PAGE_| D="Fi | eDownl oad" >
<I NPUT PAGE_PARAMF"fi | el D'
PROPERTY="key$fil el D'/ >

<FI LE_NAME PROPERTY="r esul t $nanme"/ >

<FI LE_DATA PROPERTY="resul t $contents"/>

<CONTENT_TYPE PROPERTY="r esul t $cont ent Type"/ >
</ FI LE_DOWNLQOAD>

182

6.9.5

6.10

6.10.1

Curam Web Client Reference Manual

Example 6.6 FILE_ DOWNLOAD Configuration from
curam-config.xml

Example

Example 6.7, SmpleMenu.mnu details an example actions menu configura-
tion file, which would be stored in afile called Si npl eMenu. mmu.

<?xm versi on="1.0" encodi ng="1S0O 8859-1"?>
<nt: menu- bar
i d="Si npl eMenu"

<nt:| oader-regi stry>
<nt: | oader cl ass="son®e. pkg. Si npl eMenuSt at eLoader "/ >
</ nt: | oader-regi stry>
<nt: subnmenu i d="Person">
<nc: menu-item i d="dynam cLi nk"
title="dynam cLink.title"
page-i d=" SomeDynam cCont ent "
dynam c="true"/>
<nt: menu- separator id="separatorl"/>
<nc: menu-item i d="si npl eLi nk"
title="sinpleLink.title"
page-i d="Si npl ePage"/ >
</ nc: subnmenu>
<nt: menu-itemid="Cpenhbdal "
titl e="opennodal .title"
page-i d=" DoSonet hi ngl nModal "
open- as="nodal "
wi ndow opti ons="w dt h=600"/ >

</ nc: menu- bar >

Example 6.7 SimpleMenu.mnu
The Si npl eMenu. mmu should have a corresponding Si npl e-

Menu. properti es file, which details the localizable content. For ex-
ample:

dynam cLink.title=Sone Dynam c Link
sinmpl eLink.title=A Sinple Link
opennodal .titl e=Cpen a Mdal

Tab Navigation

Introduction

Tab navigation describes how the various UIM pages grouped as part of a

183

6.10.2

Curam Web Client Reference Manual

tab can be navigated to within atab. There are two elements to tab naviga-
tion; the Content Area Navigation Bar, and the Page Group Navigation Bar.

* Navigation Bar. The navigation bar contains a number of tabs, each of
which can map to asingle UIM page or alternatively a set of UIM pages.
The tabs in the navigation bar are referred to as navigation tabs. Refer to
User Interface Element 8 of Figure 6.3, Application User Interface
Overview for an example of a navigation bar configured in an applica-
tion.

» Page Group Navigation Bar. Where a navigation tab maps to a set of
UIM pages, these UIM pages are displayed as a page group navigation
bar. Each link in the page group navigation bar isreferred to as a naviga-
tion page. Refer to User Interface Element 16 of Figure 6.3, Application
User Interface Overview for an example of a page group navigation bar
configured in an application.

Selecting a navigation tab or navigation page will result in displaying the
relevant UIM page in the content area of the tab. For navigation tabs that
have a page group navigation bar, the first navigation page in the page
group navigation bar is selected when the navigation tab is selected.

If a user selects a subsequent navigation page and then changes to a differ-
ent navigation tab, the selected navigation page is remembered when the
user returns to the original navigation tab and the page is reloaded.

The tab navigation configuration is key to when new tabs are opened. It is
used to determine what UIM page is associated with what tab. For more in-
formation on this consult Section 6.11, Opening Tabs and Sections.

Definition

Tab navigation is defined by creating an XML file with the extension . nav
inthe cl i ent apps directory. The root XML element in the . nav fileis
the navi gat i on element and the attributes allowed on this element are
defined in Table 6.35, Attributes of the navigation Element.

Attribute Description

id Mandatory.
The unique identifier for the navigation configura-
tion, which must match the name of thefile. The
identifier is used when a navigation configuration is
included in atab configuration, using the navi ga-
t i on element. See Section 6.8.2.4, navigation for
more information.

Table 6.35 Attributes of the navigation Element

The child elements outlined in Table 6.36, Supported Child Elements of the
navigation Element are used to define the structure of the navigation.

184

Curam Web Client Reference Manual

Element Description

nodes Mandatory.
Groups navigation pages and navigation tabs togeth-
er. See Section 6.10.2.1, nodes for more informa-
tion.

loader-registry Optional.
Defines the server interfaces that can be called to
dynamically change the state of the navigation tabs
and navigation pages. See Section 6.10.2.4, |loader-
registry for more information.

Table 6.36 Supported Child Elements of the navigation Element

nodes

The nodes element groups together the elements that represent navigation
tabs and navigation pages. These elements are outlined in Table 6.37, Sup-
ported Child Elements of the nodes Element.

Element Description

navigation-page 1.n
Defines a navigation tab that has no page group nav-
igation bar. See Section 6.10.2.3, navigation-page
for more information.

navigation-group 1.n
Defines a navigation tab which contains a page
group navigation bar. This element groups together
navi gat i on- page elements that form the page
group navigation bar. See Section 6.10.2.2, naviga-
tion-group for more information.

Table 6.37 Supported Child Elements of the nodes Element

navigation-group

Thenavi gat i on- gr oup element defines a navigation tab that contains a
page group navigation bar. The attributes of this element are outlined in Ta-
ble 6.38, Attributes of the navigation-group Element.

Attribute Description

id Mandatory.
The unique identifier for the navi gat i on-
gr oup, which must be unique within the configura-
tionfile.

title Mandatory.
The text that will be displayed for the navigation tab

185

Curam Web Client Reference Manual

Attribute Description

in the navigation bar. The attribute must reference
an entry in the associated propertiesfile.

dynamic Optional.
Boolean indicating that the navigation tab can be
dynamically disabled or hidden. See Section 6.10.3,
Dynamic Support for more information.

visible Optional.
Boolean indicating if the navigation tab is hidden or
visible. The default istrue.

description Optional.
Defines text which forms a description for the nav-
igation tab. Thisis used for administration purposes
only. The attribute must reference an entry in the as-
sociated propertiesfile.

Table 6.38 Attributes of the navigation-group Element

The navi gat i on- gr oup element groups together navi gat i on- page
elements to form the page group navigation bar. The first navi gati on-

page element defined indicates the UIM page to display the first time a
navigation tab is selected.

Subsequent selections of the navigation tab, for a given instance of a tab,
will remember the previously selected navigation page.

Element Description

navigation-page 1.n.
Defines the set of navigation pages that are grouped
together to form the page group navigation bar. See
Section 6.10.2.3, navigation-page for more informa-
tion.

Table 6.39 Supported Child Elements of the navigation-group
Element

navigation-page

A navi gati on- page element can represent both a navigation tab and
navigation page:

* Where the navi gat i on- page element is defined a child element of
the nodes element, it represent a navigation tab which is part of the
navigation bar.

Where the navi gat i on- page element is defined a child element of
the navi gati on- group element, it represent a navigation page
which is part of the page group navigation bar.

186

Curam Web Client Reference Manual

The attributes of the navi gati on- page element are outlined in Ta
ble 6.40, Attributes of the navigation-page Element.

Attribute Description

id Mandatory.
The unique identifier for the navi gat i on- page,
which must be unique within the configuration file.

page-id Mandatory.
A reference to the UIM page to open when the nav-
igation tab or navigation page is selected.

title Mandatory.
Thetext that will be displayed for the navigation tab
or navigation page. The attribute must reference an
entry in the associated propertiesfile.

dynamic Optional.
Boolean indicating that the navigation tab or naviga-
tion page can be dynamically disabled or hidden.
See Section 6.10.3, Dynamic Support for morein-
formation.

visible Optional.
Boolean indicating if the navigation tab or naviga-
tion pageis hidden or visible. The default is true.

description Optional.
Defines text which forms a description for the nav-
igation tab or navigation page. Thisis used for ad-
ministration purposes only. The attribute must refer-
ence an entry in the associated propertiesfile.

Table 6.40 Attributes of the navigation-page Element

loader-registry

Thel oader - regi st ry element defines alist of loader implementations
that will be used to dynamically enabled/disable and hide/show both the
navigation pages and navigation tabs. For more information see Sec-
tion 6.10.3, Dynamic Support.

Element Description

loader 1.n
Defines one or more loader implementations that
will be used to dynamically set the visibility and en-
abled state of the navigation pages and navigation
tabs. See Section 6.10.2.5, loader for more informa-
tion.

Table 6.41 Supported Child Elements of the loader-registry
Element

187

6.10.3

Curam Web Client Reference Manual

loader

The | oader element defines a single loader implementation that will dy-
namically set the state of the navigation pages and navigation tabs. For more
information see Section 6.10.3, Dynamic Support.

Attribute Description

class Mandatory.
The fully qualified class name of an implementation
of the
curamutil.tab.inpl.Dynam cNavSt at e
Loader interface.

Table 6.42 Attributes of the loader Element

Dynamic Support

The tab navigation bar and page group navigation bar support the ability to
dynamically enable/disable and hide/show navigation tabs and navigation
pages. This feature is supported using a combination of the dynani c at-
tribute of the navi gat i on- page and navi gati on- gr oup elements,
thel oader - r egi st ry element and a Java loader implementation.

The Javaloader implementation registered in the menu configuration will be
called when the tab is first loaded and based on the refresh options con-
figured for atab. The refresh options are configured in the tab configuration
file(. t ab). See Section 6.8.2.6, tab-refresh for more information.

A navigation tab and navigation page can be specified as dynamic in the
navigation configuration file (. nav) by adding dynam c="tr ue" to the
relevant navi gat i on- page or navi gat i on- gr oup elements.

Where adynani c attribute is set, al oader - r egi st ry isthen required
and should define the fully qualified classname which implements the
curamutil.tab.inpl.Dynam cNavSt at eLoader interface.

The Dynami cNav St at eLoader interface requires one method, | oad-
Nav St at e, to be implemented. The | oadMenuSt at e method is passed
the following parameters:

» alistof navi gati on- gr oup and navi gat i on- page identifiers
* aset of name-value page parameters pairs

The loader implementation must decide which items to disable or hide. The
method returns an object that represents the state of the navigation tabs and
navigation pages. A state must be set for all identifiersin the list. For more
information on thisinterface, consult the Java Documentation.

]

ﬂ Note

188

Curam Web Client Reference Manual

The list of navigation identifiers passed to the | oadNav St at e
method are only those that have been identified as dynamic by the
dynam c attribute on the navi gati on- page or navi ga-
ti on-group elements.

In addition, a navi gati on- page and navi gati on- group
element cannot use the same identifier. The identifiers must be
unigue for al elements within thefile.

6.10.4 Example

Example 6.8, SmpleNavigation.nav details an example tab navigation con-
figuration file, which would be stored in a file called Si npl eNavi ga-
tion. nav.

<?xm versi on="1.0" encodi ng="1S0O 8859-1"?>
<nc: navi gati on
i d="Si npl eNavi gati on"

<nc: | oader-regi stry>
<nc: | oader cl ass="sone. pkg. Si npl eNavSt at eLoader "/ >
</ nc: | oader-regi stry>

<nc: nodes>
<nc: navi gati on- page i d="Hone"
page-i d="Hone"
title="Honme. Title"/>

<nc: navi gati on- group i d="Background"
title="Background. Title">
<nc: navi gati on- page i d="Addresses"
page-i d="Partici pant Addr essLi st"
title="Addresses.Title"/>
<nc: navi gati on- page i d="PhoneNunbers"
page-i d="Parti ci pant PhoneNunber s"
title="Phone. Title"/>
</ nc: navi gati on- gr oup>

<nc: navi gati on- page id="ldentity"
title="ldentity. Title"
page-i d="Partici pantldentity"
dynam c="true"/>
</ nc: nodes>

</ nc: navi gati on>

Example 6.8 SimpleNavigation.nav

The Si npl eNavi gati on. nav should have a corresponding Si m
pl eNavi gati on. properti es file, which details the localizable con-
tent. For example:

Hone. Ti t | e=Honme

Backgr ound. Ti t | e=Backgr ound
Addr esses. Ti t| e=Addr esses
Phone. Ti t| e=Phone Nunbers
Identity.Title=ldentity

189

6.11

6.11.1

6.11.2

Curam Web Client Reference Manual

Opening Tabs and Sections

Introduction

There are anumber of waysto trigger opening a new section or tab.

» A section can be opened directly by selecting the relevant section tab
control

» A tab can be opened directly by selecting the relevant tab control.
* Any link in the application has the potential to open anew tab.

* A section can be opened when a new tab is opened that is associated
with a section other than the current section.

Opening a section or tab by selecting the relevant tab control is straightfor-
ward. To open atab that is aready open, but not in focus, the tab control is
selected and focusis given to the tab.

Opening a section by selecting the relevant section tab control will give fo-
cus to that section. Any tabs already open in that section will then be access-
ible.

When a section is opened (directly) for the first time, it may contain no tabs
or may result in the automatic opening of a default tab. This depends on the
section configuration (see Section 6.6, Sections).

Opening a section or tab as a result of selecting a link is more complicated.
When alink is selected, before the relevant UIM page is opened, the Clram
client will automatically determineif it should be opened in a new tab and if
that tab should be opened in a new section. This is determined based a num-
ber of factorsthat will be detailed in the following sections.

Links

One of the actions that can trigger opening a new tab or new section is se-
lecting a link to a UIM page. There are many different ways in the Ciram
application to open a UIM page and many different contexts in which a
UIM can be displayed.

A UIM page can be displayed in the following areas of an application:
« A content area

* A tab context panel

e A tab smart panel

* A modal dialog

* A list dropdown panel

190

6.11.3

Curam Web Client Reference Manual

A UIM page in any of these contexts can define links to another UIM page.
There are different types of links:

» Page level actions menu (content area only)
* Modal button bar (modal dialog only)

e Buttons

o Hyperlinked text

e List actions menu

In addition to links on a UIM page, a UIM page can be opened via the fol-
lowing actions:

» Selecting an entry in the tab actions menu

» Selecting alink in the section shortcut panel
» Selecting anavigation bar tab

» Selecting a page group navigation bar entry

For more information on all the different types of action controls that can be
defined in a UIM page, consult Chapter 5, UIM Reference. For the purposes
of this section, selecting a link will apply to any action that can open a new
UIM page.

Page to Tab Associations

A page is associated with tab based on the navigation configuration for the
tab. The navigation for atab is configured using the navi gat i on element
in the tab configuration file (. t ab) and also, if defined, the navigation con-
figuration file (. nav). See Section 6.10, Tab Navigation and Sec-
tion 6.8.2.4, navigation for more information.

Where no tab navigation is defined for a tab, the navi gati on element
defines a single UIM page (via the page- i d attribute) that will result in
opening the tab. A link to this page will open it in the relevant tab.

Where tab navigation is defined, any UIM page listed using apage- i d at-
tribute in the navigation configuration file (. nav) is considered to be asso-
ciated with the tab. This means that a link to any of these referenced UIM
pages will result in opening the relevant tab.

The page to tab association must be unique. This means that a page can be
referenced only once by the navigation configuration for a tab. Asaresult, a
navigation configuration cannot be re-used across multiple tabs.

There are anumber of exceptions to thisrule, but they are limited:

 The same UIM page can be referenced by more than one navigation
configuration file (. nav), where the page is only ever linked-to from
within the context of the tab.

191

6.11.4

6.11.5

Curam Web Client Reference Manual

This means that any links to the UIM page are always within the same
tab. For example, a Notes UIM page is referenced by both the Person
and Employer tabs. The only link to the Notes UIM page is from the
page group navigation bar. The Notes UIM page is never referenced
from a shortcut panel or linked by a UIM page that is not displayed
within the context of the Employer or Person tabs.

 The same UIM page can be referenced by more than one navigation
configuration for a tab, where the tabs are included in different applica-
tion configurations (. app).

* A navigation configuration file (. nav) can be reused by two tabs,
where the tabs are included in two different application configurations

(- app).

Resolve Pages

=

It is recommended against using resolve pages 3ina navigation con-
figuration. The reason for this is based on how the Cdram client ap-
plication handles resolve pages and opening new tabs.

When a link to a resolve page is selected, the Cdram client recog-
nises it is a resolve page and executes the content of the
JSP_SCRI PTLET. The resulting UIM page that the
JSP_SCRI PTLET redirects to is then used to determine what tab
the page should be opened in.

Tab to Section Associations

A tab is associated with a section by listing it using the t ab element in the
section configuration file (. sec).

When anew tab is opened as a result of selecting alink, the tab is opened in
the associated section and focusis given to that section and tab.

Page Parameters

The client determines if a new tab is opened based on the page to tab to sec-
tion association. In addition, existing opens tabs and values of the paramet-
ers passed to atab are taken into consideration.

Two instances of the same tab can be opened, where each instance is identi-
fied by the page parameters that have been provided. For example, James
Smith and Linda Smith are uniquely identified by their concern role ID. The
concern role ID is defined as a page parameter for the Person tab.

When alink to James Smith is selected, a new tab is opened showing the de-
tails for James Smith. A subsequent link to Linda Smith is selected and a
new instance of the same tab configuration is opened, displaying Linda
Smiths details.

When alink is selected, the Curam client application automatically determ-

192

Curam Web Client Reference Manual

ines what tab, and section, it is associated with. It then compares this in-
formation, along with the page parameters to determine what action to take.

The rules for opening tabs are detailed in Table 6.43, Tab Opening Rules.

2

ﬂ Note

The parameters passed when a link is selected must match the
names of the page parameters defined in the tab configuration file.

Where not all required page parameters are provided, the behavior
of those tabs within the application is not guaranteed. Any extra
parameters provided will be ignored and not passed to the tab.

Page to Tab As- Page Parameter Action

sociation Values

Page mapsto cur- Match Page opensin current tab
rent tab

Page mapsto cur- Differ Page opensin new in-
rent tab stance of tab

Page maps to exist- Differ Page opensin anew in-
ing open tab stance of existing tab
Page maps to exist- Match Page opensin existing tab
ing open tab

Page mapsto new, N/A Page opensin new tab
unopened tab

Table 6.43 Tab Opening Rules

ﬁ Limitations

There are a number of limitations and notes to be aware of when
designing UIM pages to open in new tabs.

Linksin amodal dialog obey dialog rulesfirst and only obey the
rules for opening atab when the dialog is closing.

A link defined to open amodal dialog ignores the tab rules.

Linksin atab navigation bar and page group navigation bar will
always open within the context of the current tab.

A submit link within the content area cannot open a new tab,
even if the UIM page is configured to be associated with a dif-
ferent tab.

If aUIM page is configured to be associated with a tab then the
same page cannot be used as INLINE_PAGE in expandable
lists.

193

Curam Web Client Reference Manual

Notes

Consult Chapter 5, UIM Reference for more information on User Interface
Meta-data.

A modal dialog is a UIM page opened in a new window, where the parent
window cannot be accessed while it is open. Consult Section 5.9.22.3.1, Us-
ing Modal Dialogs for more information.

3 A resolve page is a specific type of UIM page that contains only a
JSP_SCRI PTLET element. See Section 5.9.20, JSP_SCRIPTLET for more
information.

194

7.1

7.2

7.3

7.4

Chapter 7

Session Management

Objective

This chapter provides detailed information on how browser sessions are
handled in the Curam application.

Prerequisites

You should be familiar with the basic concepts of Caram CDEJ develop-
ment (see Chapter 2, Concepts) and web application development.

Introduction

The current set of open tabs for a particular user is restored each time the
user logs out of the application and logs back in. In addition, if the browser
is refreshed (e.g. using the F5 button), the currently open tabs are also re-
stored.

The browser session plays an important role in the expected behavior when
restoring tabs, and this chapter will detail how browser sessions interact
with the restoration of tabs. In addition, a number of configuration options
for the tab restoration feature are detailed.

Session Basics

A browser session can be defined as a continuous period of user activity in
the web browser, where successive events are separated by no more than 30
minutes. The following listing shows the common examples of when a
Curam browser session is started or finished.

* A session starts when a user first logs into the application.

195

Curam Web Client Reference Manual

As long as the user is actively using the browser, the session remains
active.

If the browser is left inactive for a period of time, the session will
timeout. In this case, the user will be required to log back in and a new
session is started.

The default timeout is 30 minutes, but this can be configured using the
application server's configuration settings. See the Cdram Deployment
Guides for more information on application server configuration.

The user can explicitly logout, using the logout link in the application
banner. The session is terminated in this case and logging back in will
start a new one.

The browser is shutdown and a new browser instance is started. In this
case, anew session is started and the user will be required to log in.

7.5 Tab Restoration

The list of currently open tabs is stored temporarily in the web tier, associ-
ated with the browser session, and more permanently on the database so that
it can be restored after a user logs out of the application.

The data is persisted from the web tier to the database intermittently. As a
result, there are cases where the last few changes to the open tabs may not
be restored when the user logs in. This is most likely to happen where the
session times out or the browser is restarted.

The behavior of tab restoration is different depending on whether it was the
result of abrowser refresh (F5) or the start of anew session (i.e. the user has
logged in).

Br owser Refresh

If the browser is refreshed, tabs are restored to their current state from
the web tier session data. No tab changes will be lost.

* Thetab that was last selected in the selected section will remain the
selected tab.

» The sdlected tab in other sections will revert to the first tab in those
sections.

» The expanded or collapsed states of the shortcut panel, smart panel
and page contents are not restored.

New Sessi on

When a new session starts, usually requiring the user to login, the tabs
are restored to their current state using the session data stored on the
database.

« The“Home” tab isrestored as the selected tab.

196

Curam Web Client Reference Manual

* The sdlected tab in other sections will revert to the first tab in those
sections.

» The expanded or collapsed states of the shortcut panel, smart panel
and page contents are not restored.

* If no previous tab session data is available, only the “Home” tab is
opened.

Note

See Section 2.10, Direct Browsing for a special case of tab restora-
tion, where pages are directly accessed through the browser naviga-
tion bar.

=o

7.6 Configuration

Each time a new tab is opened, atab is closed or the content area of atab is
updated, the information is stored in the web tier. The tab session data is
persisted from the web tier to the database intermittently. How often the
data is persisted can be configured using the following options, which can
besetinthe Appl i cati onConfi gurati on. properti es file

» tabSessionUpdateCountThreshold. Specifies the number of tab ses-
sion data updates that must be received before the data is persisted from
the web tier to the database. Once the threshold is reached, the recent
updates are written and counting starts again from zero until the
threshold is reached. A value of one causes writes on every update. A
value of zero (or a negative or invalid value) disables writing based on
update counts. The default is every 10 updates.

» tabSessionUpdatePeriodThreshold. Specifies the number of seconds
that must have elapsed since the last time session data was persisted
from the web tier to the database before a new update will trigger anoth-
er write. A value of zero (or a negative or invalid value) disables writing
based on update periods. The default value is 120 seconds, or 2 minutes.

The properties work together based on which value is reached first. In other
words, if the update count threshold (t abSessi onUpdat eCount -
Thr eshol d) is not reached, but the update period threshold (t abSes-
si onUpdat ePer i odThr eshol d) has been reached, a write will occur,
and vice versa.

If the update count threshold is set to one, the update period threshold isig-
nored. The reason for this is that writes will happen on every update, so
there is no need to write based on atime period.

]

n Note

Tab session data is persisted to the database when the user logs out,
regardless of the value of the current update count and update peri-

197

7.7

7.8

Curam Web Client Reference Manual

od. The exception to this is if both the update count threshold and
the update period threshold are set to zero.

Each user account has one persistent tab session database record for an ap-
plication. The same user logging in to the application from different browser
sessions will cause some interference and unpredictability in what data is
persisted across sessions.

The interference and unpredictability of the persisted data, when multiple
users are using the same login ID, is most likely encountered in a testing en-
vironment. It is recommended that the t abSessi onUpdat ePer i od-

Threshol d and t abSessi onUpdat eCount Thr eshol d properties
are set to zero for testing environments to prevent this. Setting both proper-
ties to zero ensures that the tab session data is only persisted for the length
of abrowser session and not across sessions, i.e. login and logoui.

It is also recommended that these settings are used where an "externa” ap-
plication is deployed and the external users all share the same generic user
account.

Limitations

The tab session data records a limited number of tabs. The limit imposed
relates to the total size of the tab session data and is approximately 70-80
tabs. Once this limit has been exceeded, tab session data is maintained only
in the web tier and is no longer written to the database.

Restoration of the tab session when the browser is refreshed is not affected.
However, if a user logs out with more tabs open than can be recorded for a
session, only the state of the tabs at the time the limit was first exceeded will
be restored.

Closing tabs will reduce the size of the tab session data and writing to the
database will then resume as normal.

Browser Specific Session Management

The version of the browser used can have an effect on when new sessions
are started and when they are shared. Two browser instances that share the
same session will result in the same set of open tabs displayed in both in-
stances. This can cause similar interference and unpredictability of the per-
sisted data as with two users using the same login ID from different ma-
chines.

]

1 Example Session Issue

A user logs into the Clram application in one browser instance.
They then open a new browser tab, which is sharing the same ses-
sion. From here, they directly access the Caram login page and login
as adifferent user.

In this situation, they are still logged in as the original user and will

198

Curam Web Client Reference Manual

see the tabs that were open in the original browser tab.

Within the same browser session, a user must always logout to end
the session and be ableto login as a new user.

The most common browsers supported are Internet Explorer 7 and Internet
Explorer 8 and they share sessions across browser instances in different

ways:

Internet Explorer 7

If anew browser instance, or browser tab, is opened in Internet Explorer
7 using the File—New Tab or FileNew Window options, from an exist-
ing browser instance, the session is shared across the instances. This
means that if the user was already logged into the Curam application in
the original browser instance, they will also be logged into Cdram in the
new tab or window.

If a new browser instance is started using the Internet Explorer link in
the Start menu, the sessions are not shared and the user must login again
to Caram.

Internet Explorer 8

Sessions are always shared in Internet Explorer 8, no matter where the
browser instance or tab was started from. Thisis the default behavior.

To start a new instance of the browser that does not share the existing
session, the File—New Session option should be used.

For further information on browser specific behavior, please consult the rel-
evant online documentation.

199

8.1

8.2

8.3

8.4

Chapter 8

Domain Specific Controls

Objective

This chapter describes the domain specific controls that are provided by the
Curam CDEJ. These domain specific controls are employed to provide a
more sophisticated interface for user information than the standard set of
HTML controls.

Prerequisites

The reader should understand how to model their Clram application, choos-
ing appropriate domains for more complicated data. Knowledge of client de-
velopment within the Clram application is also necessary.

Introduction

Examples of domains requiring sophisticated controls include: dates, date-
times, the meeting view and the rules decision tree. Any UIM page contain-
ing a server access bean with fields of this nature will have a web page gen-
erated containing a custom control appropriate to the type. For example,
when a server bean contains the CALENDAR _XM._ STRI NG domain, a cal-
endar will be generated which expects server information in a particular
XML format. Each of the following sections details the custom controls
trandlated for particular domains.

Dates

Dates are mapped to the SVR_DATE domain. Any server access bean con-
taining fields of this type will display a date selector to the user for data in-
put. These selectors are HTML text fields with an adjacent pop-up icon
which causes a pop-up menu to be displayed allowing the user to select a

200

Curam Web Client Reference Manual

date or date time with ease. Note that this functionality is based on JavaS-
cript and it is important that the user have JavaScript enabled in their
browser for this selector to work. The appearance of the date selector pop-
up can be altered by overriding its dedicated cascading stylesheet. See Sec-
tion 3.12.11, Cascading Stylesheets for more details. The out-of-the-box
date date pop-up dialog has three input controls; a drop-down field for the
month, a text input field for the year, and the days of the month are dis-
played so that a day can be selected. When the day of the month is selected,
thiswill populate the date field.

The date format string associated with date format validations are customiz-
ablein the file CDEJResour ces. pr operti es and defined by the prop-
erty curam val i dati on. cal endar . dat eFor mat :

curam val i dati on. cal endar . dat eFor mat =M dd/ yyyy

Example 8.1 Customizing the Date Format

If this value is not set, the date format string will default to the date format
setting specified in the Appl i cati onConfi gurati on. properties
file.

8.5 Date-Times

Date-times are mapped to the SVR_DATETI ME domain. Any server access
bean containing fields of this type will display a date selector (see previous
section) next to atime entry field.

Similar to the date selector, the pop-up here requires JavaScript to function
correctly. It is important that the user have JavaScript enabled in their
browser for these selectors to work.

There is an additional control for entering time as hours and minutes. It is
displayed as two side-by-side drop down lists for selecting the hour and
minute values.

When the CURAM _TI ME domain (a descendant of the SVR_DATETI ME do-
main) is used, the date input field will not be displayed.

The date time format string associated with date time format validations are
customizable in the file CDOEJResour ces. properti es and defined by
the property cur am val i dati on. cal endar . dat eTi neFor mat :

curam val i dati on. cal endar . dat eTi neFor mat =HH; nm

Example 8.2 Customizing the Date Time Format

If this value is not set, the date time format string will default to HH nm
SS.

8.5.1 Representing time-only values

201

8.5.2

8.6

Curam Web Client Reference Manual

As has been described above Curam has a base type for "date-only" and
"date-time" values, however there is no specific base type for "time-only"
values.

A CURAM TI ME domain is provided in out-of-the-box Curam and this is
used by the client infrastructure to display a corresponding time only wid-
get, in addition to performing certain processing when parsing and format-
ting values based on this domain. However, the underlying data representa-
tion is the same as for SVR_DATETI ME and when working with time-only
domains the corresponding server-side code must completely ignore the date
part of the value.

Because time-only domains are based on the SVR_DATETI VE domain, it
should be noted that the default values will also be the same. The "zero date
time" of 0001-01-01 00:00:00 is the value sent to the server if the field is
left blank. If the field is set to 00:00, then 00:00 time value of today's date is
sent.

The time input field rendered for CURAM_TIME domain is an editable
combo box as the example below shows. The combo box contains selectable
time values for every 30 minutes. The exact time value can aso be entered
directly in thefield.

The values to be selected are in the application-wide format set in Ap-
plicationConfiguration. properties,including AM/PM for the
12 hour display. A manually typed value should follow the same format.

Customizing the Time Format

The application-wide time format setting can be changed by setting or modi-
fying theti mef or mat andti nesepar at or vauesinthe Appl i ca-
tionConfiguration.properties file as described in Sec-
tion 3.11.2, Configuring the Application.

Frequency Pattern Selector

Frequency patterns are mapped to the FREQUENCY_PATTERN domain.
Any server access bean containing fields of this type will display a fre-
guency pattern selector to the user for data input. These selectors are non
editable HTML text fields with an adjacent pop-up icon which causes a pop-
up menu to be displayed allowing the user to select a frequency pattern with
ease. Note that this functionality is based on JavaScript and it is important
that the user have JavaScript enabled in their browser for this selector to
work. The appearance of the frequency pattern selector pop-up can be
altered by overiding its dedicated cascading stylesheet. See Sec-
tion 3.12.11, Cascading Stylesheets for more details. The figure below
shows the frequency pattern selector.

202

8.7

8.7.1

Curam Web Client Reference Manual

) Every |1 day(s)
) Daily
) Every weekday
Recur every |20 week(s) on:
(= Weekly [] Monday [] Tuesday [] wednesday Thursday
[] Friday [] saturday Sunday
) day |1 of every |1 month(s)
() Monthly
() the |first | | day + | of every |1 month(s)
() day(s) |1 and |1 of every month
() Bi-monthly
() the | first | and | =econd % | | Monday + | of every month
() Every |January ¥ [1
) Yearly
() the | first ~ | | day | of every | January ¥

Figure 8.1 Frequency Pattern Selector Pop-up

It is worth noting that the frequency pattern text selected varies in length,
depending on the pattern selected. This makes the display of the selected
pattern prone to re-sizing and wrapping, depending on the layout of the UIM
page and the display space available.

Selection Lists

Within the Cdram application, the use of the standard HTML selection list
i.e. thesel ect element is supported. Selection lists will truncate long data
strings in order to preserve the correct page layout. To combat this, the
data's full value is available as atooltip for each item in the list. Thelist can
be populated with data in a number of ways as described in the following
sections.

Populated from a Code-Table

If a FI ELD has a target connection mapped to a property based on a code-
table domain, a drop-down selection list will be displayed containing all
code-table entries that are marked as “enabled”. The entries will be sorted
alphabetically according to their code descriptions. This can be overridden
by setting the “sort order” of each entry. Consult the Cdram Server De-
velopers Guide for full details on creating code-tables in a Curam applica-
tion.

When the selection list is displayed the initially selected item is evaluated as
follows:

1. The code value specified by the source connection of the field.
2. The default code of the codetable if the FI ELD element's

203

8.7.2

Curam Web Client Reference Manual

USE DEFAULT attributeisnot settof al se.

3. The first item in the selection list, if no default code is defined or the
default code is marked as “ disabled”.

4. Blank, if the FI ELD element's USE_DEFAULT attribute is set to
fal se.

A drop-down selection list can also be displayed as a scrollable selection list
where a number of entries are initially displayed instead of just one. To do
this simply set the HEI GHT attribute of the FI ELD element to a value great-
er than 1.

Populated from Server Interface Properties

Data retrieved through server interface properties can also be used to popu-
late aselection list. The Il NI TI AL connection end-point is used in this case.
The following are examples of a selection list on an insert and a modify

page.

<FI ELD LABEL="Fi el d. Label ">
<CONNECT>
<I NI TI AL NAME="DI SPLAY" PROPERTY="per sonNanme"
Hl DDEN_PROPERTY="per sonl D"/ >
</ CONNECT>
<CONNECT>
<TARGET NAME="ACTI ON' PROPERTY="personl D'/ >
</ CONNECT>
</ Fl ELD>

Example 8.3 Selection List on an Insert Page

In this example the field hasan | NI Tl AL connection end-point to populate
the selection list and a TARGET connection end-point to specify what field
the selected value should be mapped to. The PROPERTY attribute of the
I NI TI AL connection end-point isthe list of values you want the user to see
in the selection list. When the list is displayed, the first item in the list will
initially be selected. The H DDEN_PROPERTY attribute specifies a list of
corresponding values, when selected, will be mapped to the property spe-
cified in the TARGET connection end-point. The target property is a single
field, not alist. In this example alist of people's names will be displayed but
it is the selected person’'s unique ID that will be mapped to the target prop-
erty. In certain circumstances the set of values visible to the user may also
be what you want mapped to the target property. In this case do not use the
HI DDEN_PROPERTY attribute.

The following example shows the same selection list, but used on a modify
page. The only difference is a SOURCE connection end-point is used to spe-
cify what is selected in the list when the pageisfirst displayed.

<Fl ELD LABEL="Fi el d. Label ">
<CONNECT>
<I NI TI AL NAVE="DI SPLAY" PROPERTY="per sonNane"
HI DDEN_PROPERTY=" per sonl D"/ >
</ CONNECT>

204

8.7.3

8.7.4

8.7.5

Curam Web Client Reference Manual

<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="sourcePersonlD"' />
</ CONNECT>
<CONNECT>
<TARCET NAME="ACTI ON'* PROPERTY="personl D'/ >
</ CONNECT>
</ FI ELD>

Example 8.4 Selection List on a Modify Page

Drop-down, Scrollable and Checkboxed List types

Drop-down and Scrollable List

The selection list can be displayed as a drop-down list or as a scrollable se-
lection list with a number of entries visible. A drop-down selection list is
displayed by default. To change this to a scrollable selection list set the
HEI GHT attribute of the FI ELD element to a value greater than 1.The ap-
pearance of a selection list differs from a drop-down list in two noticeable
ways. For a drop-down list only the default value is displayed and all the
other selectable values are displayed only when the drop down arrow is se-
lected. Additionally the drop-down list is not scrollable. However, a scrol-
lable selection list does not have the drop-down arrow, a subset of the val-
ues are initially displayed - the size of the subset is dependant on the value
of the HEI GHT that is set. This list has a scrollbar which can be used to
scroll the list, and view and select the remainder of the selectable values.

Checkboxed List

Checkboxed selection list offers an aternative method of selecting individu-
a entries, in this case using the check box control. This variation will be
used if CONTRCL attribute is set to CHECKBOXED LI ST. It isjust an al-
ternative way of representation, so everything else applicable to Scrollable
List applies for Checkboxed List without change.

Adding an Empty Entry to a List for Non-Mandatory
Fields

Browsers will select the first item in a selection list by default if no item is
marked as selected. In certain cases you may not want to “suggest” a value
to the user. A blank entry would be more suitable. Set the USE_BLANK at-
tribute of the FI ELD element to t r ue to add a blank entry as the first item
on the selection list.

Enabling Multiple Selection
Browsers alow multiple items to be selected in a selection list. To enable

this first use a scrollable list as described above (you cannot select multiple
items from a drop-down list). Then add the following to the cur am

205

8.7.6

Curam Web Client Reference Manual

config.xm file.

<MJULTI PLE_SELECT>
<DOVAI N NAVE="MY_DOVAI N* MULTI PLE="t rue"/ >
</ MULTI PLE_SELECT>a

Example 8.5 Enabling multiple selection in curam-config.xml

For each domain which you want to enable multiple selection add a DO-

MAI N child element to the MULTI PLE_SELECT element. If aFI ELD hasa
target connection which is based on a domain listed in the MJL-

TI PLE_SELECT element, multiple selection will be enabled. When the
form containing the selection list is submitted, the selected values will be
packaged into a tab-delimited string. Therefore the target property must be
based on a string domain. The same way, the source property in this case is
also expected in the form of a tab-separated string of values to be selected
initially (the values should match some of those specified via HI D-

DEN_PROPERTY).

Transfer List Widget

Overview

The Transfer List widget is a control used to facilitate multiple selections
for a user (i.e. it is used as an alternative to an regular list which has mul-
tiple selection enabled). It consists of two HTML select controls placed side
by side. The left control contains the items from which selections can be
made (see See Section 8.7.3, Drop-down, Scrollable and Checkboxed List
types for more details on selection lists.), the one to the right displays
already selected items. Four buttons between the lists allow for selecting/
de-selecting individual or al items (transferring them from one list to anoth-
er and back as required).

Configuration

The Transfer List widget is displayed instead of a regular HTML multiple
selection control when configured in one of the two ways described below.
In order for al multiple selection controls in an application to be displayed
as Transfer List widgets, curam confi g. xm should contain the
TRANSFER LI STS MODE element with itsvalueissettot r ue. Alternat-
ively, individual multiple select controls might be configured to be dis-
played that way by setting the CONTROL attribute on the appropriate UIM
FI ELD to be TRANSFER LI ST. This setting is applicable just for fields
rendered as multiple selection controls on the resulting UIM page and will
be ignored in any other case.

The Transfer List widget requires the same data and the same configuration
for enabling multiple selection as aregular selection list.

8.8 User Preferences Editor

206

8.9

8.9.1

Curam Web Client Reference Manual

The User preferences editor allows a user to edit a user preference value for
use anywhere within the application. For details on the definition of user
preferences please consult the Cliram Server Developers Guide.

The editor may be accessed from the taskbar by clicking the preferences
button. On clicking this button a popup window should be displayed with a
list of al visible user preferences. Those preferences that are editable will
appear as either atext field, radio buttons or a drop-down menu, depending
on the type.

If the user wishes, they may edit the value of a preference and save the
value using the Subm t Changes link. When the user returns to the edit-
or the updated values will appear. Any changes to user preferences using the
editor will be applied immediately.

To return the values to those that were originaly defined, the user should
clickthe Reset to Defaul t link. Selecting either of these buttons will
close the popup window.

Rules Trees

Introduction

The RESULT_TEXT domain contains information about the success or fail-
ure of a particular claim against a set of rules. When the server supplies this
information it is translated into a tree view displaying all rules. Figure 8.2,
Default Rules Tree View below shows the default rules tree view.

207

Curam Web Client Reference Manual

g Assessment Succeeded
Fule Group Succeeded
B Household Members Rule List Group Succeeded [James Smith]
Ineligible Household Rule Group Succeeded
There are no striking members in the household
There are no househald members in receipt of Food Stamps
i Inwvalid Resource Transfers did not occur
Eligible Househald Rule Group Succeeded
Household Exceptions Rule Group Failed
Househald Exceptions Group Failed
Member i not Spouse of Head of Househald
Member does not meet the requirement for the rule 'Child

household member’
Mon Household Members Rule Group Failed
Hon Household Members Group Failed
Member does not meet the requirement for the rule 'An ir
who is living with others and unable to purchase and preg
dizability’
Member does not meet the requirements for the rule 'Live

and prepare their meals with the houshald'
Excluded Members Rule Group Failed

Excluded Members Group Failed
Members is not an ineligible alien
Member provided S5

Figure 8.2 Default Rules Tree View

The RULES_DEFI NI TI ON domain also produces a rules tree, in this case
displayed with the rules editor. For more details on the rules editor see Sec-
tion 8.9.7, Rules Editor.

It is possible to use the FI ELD element's CONTROL attribute to change the
format of the rules display. The following sections will describe the various
options for this attribute. Furthermore, the FI ELD element’'s CONFI G attrib-
ute can be used to configure these rules trees.

Behavior of Summary and Highlight-On-Failure Rules Flags

The summary-flag has no effect in thisview. All rules items are displayed.

The highlight-on-failure flag causes failed rules to be highlighted in a differ-
ent color to those that have succeeded.

8.9.2 Default Rules View

The default rules view of the rules tree (Figure 8.2, Default Rules Tree
View), specified by setting the CONTROL attribute of the FI ELD element to
DEFAULT, shows data in an expanded tree view using standard HTML.
This view should be visible in most standard web browsers. However, as the
rules result is often quite verbose, the resulting output can be confusing to
the viewer of your web page.

208

8.9.3

8.9.4

8.9.5

Curam Web Client Reference Manual

Summary Rules View

To display a summary rules view, set the CONTROL attribute of the FI ELD
element to SUMVARY. The view of this tree is very similar to the default
rules tree view which can be seen in Figure 8.2, Default Rules Tree View ex-
cept that the details about why a rule failed or succeeded are not displayed
inthetree.

Any rules, regardless of type, marked as summary items are displayed. The
following section, Section 8.9.4, Failed Rules View, describes asimilar view
that only displays rules items whose type is explicitly set to rul e. This
view can be configured in the same manner as the dynamic rules view men-
tioned below. See Section 8.9.5, Dynamic Rules View.

Failed Rules View

To display afailed rules view, set the CONTROL attribute of the FI ELD ele-
ment to FAI LURE. This view is similar in layout to the previously men-
tioned summary view. See Section 8.9.3, Summary Rules View

Any rules whose typeisr ul e (and not obj ecti ve orrul e group for
example) and are marked as summary items are displayed. This view can be
configured in the same manner as the dynamic rules view mentioned below.
See Section 8.9.5, Dynamic Rules View

Dynamic Rules View

When the CONTRCL attribute is set to DYNAM C, this causes an expanding/
contracting version of the decision to be displayed instead of a static tree. In
this view the entire tree is not displayed. The view is “compressed” into
multiple trees for each rules-item that has faled coupled with the
“summary” flag on the item. See Section 8.9.5.1, Behavior of Summary and
Highlight-On-Failure Indicator for more details on the summary flag. This
is accomplished using scalable vector graphics (SVG) content displayed in
the Adobe® SVG Viewer instead of HTML. Refer to the Caram v6 Suppor-
ted Prerequisites document to see the supported version of this Web
Browser Plugin.

Although the dynamic view requires an extra browser plug-in, it provides
the user with a much more comprehensive and interactive view of the rules
data. The rules tree is more comprehensively organized with a supplement-
ary conjunction text displayed next to the rules. The following image illus-
trates the dynamic rules view.

209

Curam Web Client Reference Manual

=88 SUAor LUA Group Failed
ﬁ Shelter Deduction Group Failed

El—ﬁﬁ Food Stamps Objective Group Succeaded
[Highest Priority Successful Objective Attained]

Eﬂ—ﬁ Eligible Members Objective List Group Succeeded
Eﬂ—ﬁ Eligible Members Objective List Group Failed
El—ﬁ Eligibility Objective Group Succeeded

Figure 8.3 Dynamic Rules View

There is no need to set a HEI GHT or W DTH as the rules window resizes it-
self automatically. The developer is limited to two dynamic rules windows

per page.

Localization of the text to display within the viewer is accomplished
through JavaScript property files as described in Section 4.8, JavaScript Ex-
ternalized Srings. The name of these JavaScript property files should be
SVGText . For example, SVGText . | s_es. properti es would be the
name of the Spanish language version of SVGIext.js. properties
file.

All style information related to the dynamic rules widgets is held in a separ-
ate file called cur am svg. css. For further details see Section 3.12.11,
Cascading Styleshesets.

The developer can configure the rules tree using an XML configuration file.
For al rules widgets based on the RESULT _TEXT domain this configura-
tion is read from Rul esDeci si onConfi g. xm . A version of this file
should be in your conponent s directory. This XML configuration file is
merged during the build process in a similar method to other XML configur-
ation files.

The CONFI G attribute of the FI ELD displaying rules is used to specify an
| D matching a CONFI G element in the Rul esDeci si onConfi g. xm
file. Thefollowing isasample of aRul esDeci si onConfi g. xm file:

<RULES- CONFI G DEFAULT="def aul t - confi g" >
<CONFI G | D="def aul t - confi g" HYPERLI NK- TEXT="f al se" >

<TYPE NAME=" PRODUCT"
SUCCESS- | CON="1 mages/ pr oduct - 16x16. gi f "
FAI LURE- | CON="1 mages/ product Fai |l . gi f"
EDI T- PAGE=" Rat esNewCol um"/ >

<TYPE NAME=" ASSESSMENT"
SUCCESS- | CON=" | mages/ def aul t - 16x16. gi f"
FAI LURE- | CON="1 mages/ defaul tFail .gi f"
EDI T- PAGE=" Rat esNewCol um" / >

<TYPE NAME=" SUBRULESET"
SUCCESS- | CON=" | nages/ def aul t - 16x16. gi f "
FAI LURE- | CON="1 mages/ defaul tFail .gi f"
EDI T- PAGE=" Rat esNewCol um" / >

<TYPE NAME="OBJECTI VE_GROUP"

210

Curam Web Client Reference Manual

SUCCESS- | CON="| mages/ def aul t - 16x16. gi f "
FAI LURE- | CON="1 mages/ defaul tFail .gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="OBJECTI VE_LI ST_GROUP"
SUCCESS- | CON="| nages/ def aul t - 16x16. gi f"
FAI LURE- | CON="| nages/ defaul t Fai |l . gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME=" OBJECTI VE"
SUCCESS- | CON="| mages/ def aul t - 16x16. gi f"
FAI LURE- | CON="| nages/ def aul t Fai | . gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="RULE_GROUP"
SUCCESS- | CON="1 mages/ def aul t - 16x16. gi f"
FAI LURE- | CON="| nages/ defaul t Fai |l . gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="RULE LI ST_GROUP"
SUCCESS- | CON=" | nages/ rul e- gr oup- 16x16. gi f "
FAI LURE- | CON="| nages/ r ul eG oupFai | . gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="RULE"
SUCCESS- | CON="| mages/ rul e- 16x16. gi f"
FAlI LURE- | CON="I1 mages/rul eFail .gi f"/>
</ CONFI G
<CONFI G | D="Rul es. Confi g. Cor e"
HYPERLI NK- TEXT="t r ue"
OPEN- NODE- PARAM=" openNode"
DECI SI ON- | D- SOURCE="sour ce- Deci si on-1 D"
DECI SI ON- | D- TARGET="deci si on-| D"'>
<TYPE NAME="PRODUCT" EDI T- PAGE="Rul esResult"/>
<TYPE NAME="ASSESSMENT" EDI T- PAGE=" Rul esResul t"/ >
<TYPE NAME="SUBRULESET" EDI T- PAGE="Rul esResul t"/>
<TYPE NAME="OBJECTI VE_GROUP" EDI T- PAGE="Rul esResult"/>
<TYPE NAME="OBJECTI VE LI ST _GROUP" EDI T- PAGE="Rul esResul t"/ >
<TYPE NAME="OBJECTI VE" EDI T- PAGE="Rul esResult"/>
<TYPE NAME="RULE GROUP" />
<TYPE NAME="RULE L| ST _GROUP" EDI T- PAGE="Rul esResult"/>
<TYPE NAME="RULE" EDI T- PAGE="Rul esResul t"/>
</ CONFI G
</ RULES- CONFI G

Example 8.6 Sample Rul esDeci si onConfi g. xm File

Note that the RULES- CONFI G root element only contains the DEFAULT
attribute. This attribute is mandatory and should match an | D attribute value
on a CONFI G element in this document. The default configuration contains
the icon information as well as the default nodes to link to if no configura-
tion is required for a widget. These are covered by the SUCCESS- | CON,
FAI LURE- | CON, and EDI T- PAGE attributes respectively.

Each CONFI G element has a HYPERLI NK- TEXT attribute which is used to
specify whether the text next to a rules node in the widget is aso to be used
as a hyperlink to the link page set by the EDI T- PAGE for the TYPE in
question.

Note that the CONFI Gwith the | D of value of Rul es. Confi g. Cor e has
the optional attribute OPEN- NODE- PARAM This attribute is the name of a
page parameter whose value is the | D of a node to open when the page is
loaded. This configuration file is also used for configuration of the dynamic
full tree rules view described in the next section.

The CONFI G attributes DECI SI ON- | D- SOURCE and DECI SI O\
| D- TARGET are used to identify a page parameter whose value will be the
source for a new parameter (named by the DECI SI ON- | D- TARCGET) ap-

211

Curam Web Client Reference Manual

pended to each link on the widget. The above example will ook for a page
parameter called source-Decision-1D and pass on its value as a parameter to
any links on the widget. This new value will be identified by a parameter
named decision-ID.

The decision ID parameter may also be sourced from a field on a server
bean instead of from a page parameter. This is achieved by adding DE-
Cl SI ON- | D- SOURCE- BEAN and DECI SI ON- | D- SOURCE- FI ELD at-
tributes to the CONFI G element instead of a DECI SI ON- | D- SOURCE at-
tribute. A validation error is thrown if al three are present. The DE-
Cl SI ON- | D- SOURCE attribute should be the name of a bean on the page
and the DECI SI ON- | D- SOURCE- FI ELD attribute should be the full
name of a field providing the decision ID value. The following is an ex-
ample of this configuration:

<CONFI G | D="Deci si on. | D. Bean. Sour ce"
HYPERLI NK- TEXT="t r ue"
OPEN- NODE- PARAME=" openNode"
DECI SI ON- | D- TARGET="deci si on-1 D"
DECI SI ON- | D- SOURCE- BEAN=" DI SPLAY"
DECI SI ON- | D- SOURCE- FI ELD="dt | s$deci si on-1D"'>
<TYPE NAME="PRODUCT" EDI T- PAGE="Rul esResult"/>
<TYPE NAME=" ASSESSMENT" EDI T- PAGE=" Rul esResul t"/>
<TYPE NAME="SUBRULESET" EDI T- PAGE="Rul esResult"/>
<TYPE NAME=" OBJECTI VE_GROUP" EDI T- PAGE="Rul esResul t"/ >
<TYPE NAME="OBJECTI VE_LI ST_GROUP" EDI T- PAGE="Rul esResul t"/ >
<TYPE NAME="OBJECTI VE" EDI T- PAGE="Rul esResult"/>
<TYPE NAME="RULE_GROUP" EDI T- PAGE="Rul esResult" />
<TYPE NAME="RULE LI ST_GROUP" EDI T- PAGE="Rul esResul t"/ >
<TYPE NAME="RULE" EDI T- PAGE="Rul esResul t"/ >
</ CONFI G

Example 8.7 Example of Decision ID Sourced from a Bean

Behavior of Summary and Highlight-On-Failure Indicator

The highlight-on-failure indicator on arulesitem does not have any effect in
this view.

If an item fails and is marked as a summary item, this item should only be
displayed as a separate tree if no item along its parent path (i.e. any group
that contains it) has failed and is marked as a summary item. Consider the
following tree of rule groups and rules and note ther esul t and sunmary
attributes on each item. Note that thisis purely for illustrative purposes and
does not represent the data-format created by the Rules Engine.

<deci si on>
<rul es-itemid="B" type="rul e-group"
resul t="success" sunmmary="true">
<rules-itemid="C' type="rule"
resul t="success" summary="fal se" />
<rules-itemid="D" type="rule"
result="fail" summary="true" />
</rules-itenpr
<rules-itemid="E" type="rul e-group"

result="fail" summary="true">
<rules-itemid="F" type="rule"
result="fail" summary="fal se" />

<rules-itemid="G' type="rule"
resul t="success" summary="fal se" />

212

8.9.6

8.9.7

Curam Web Client Reference Manual

</rules-itenr
<rules-itemid="H"' type="rul e-group"
resul t ="success" sunmmary="true">
<rules-itemid="1" type="rule"
resul t="success" summary="true" />
<rules-itemid="J" type="rule"
result="fail" summary="fal se" />
</rules-itenr
</ deci si on>

Example 8.8 Example of Rules Tree Items with Summary Flag

A rule that fails and is marked as "not a summary item" may still display as
long asit is contained within another node that fails and has summary set to
"true". A rule that fails and is marked as "not a summary item" will never
display as the root of a tree in the dynamic rules view. So, the data above
will result in separate “trees’ asfollows.

- D

- E
-- F

- G
From the first rule-group “B”, only the item “D” is displayed because it has
failed and is marked as a summary item. It appears as a single-node tree.

The rule-group “E” is marked as a summary item and it has failed, therefore
it and all it's child nodes are displayed no matter what the success\failure
status or summary flag on the child nodesis.

The entire rule-group “H” isfiltered out. “H” itself, and “1” have succeeded
and will not be displayed. Although “J’ hasfailed it is not marked as a sum-
mary item and therefore is not displayed.

Dynamic Full Tree Rules View

When the CONTROL attribute is set to DYNAM C FULL_ TREE a view,
similar in functionality to the dynamic rules view described in the previous
section, is displayed. The main difference is that the entire rule set is dis-
played, similar to the default rules view, although the tree is interactive thus
requiring the SVG viewer. There is no filtering of the display of rule groups
in this view, potentially making it difficult to understand for someone who
Is not familiar with the rules engine. Configuration of this view is through
the Rul esDeci si onConfi g. xm filedescribed in the previous section.

Rules Editor

The RULES_DEFI NI TI ON domain produces the rules editor. This control
has a default HTML-only view or, if the FI ELD's CONTROL attribute is set
to DYNAM C, an SVG view. See Section 8.9.2, Default Rules View and Sec-
tion 8.9.5, Dynamic Rules View for more information.

This widget uses the CONFI G attribute to specify an | D attribute value
matching the I D attribute value of a CONFI Gelement in the Rul esEdi t -
or Confi g. xm file. This XML configuration file is merged during the

213

Curam Web Client Reference Manual

build process in a similar method to other XML configuration files. The fol-

lowing isasample of Rul esEdi t or Confi g. xm :

<RULES- CONFI G DEFAULT="Def aul t Confi g" >
<CONFI G | D="Def aul t Confi g" HYPERLI NK- TEXT="true" >
<TYPE NAME="Product"
SUCCESS- | CON=" | mages/ pr oduct - 16x16. gi f "
FAI LURE- | CON="| nages/ pr oduct Fai | . gi f"
EDI T- PAGE=" Rat esNewCol umm"/ >
<TYPE NAME="Assessnent"
SUCCESS- | CON="| mages/ def aul t - 16x16. gi f"
FAI LURE- | CON="| nages/ defaul t Fai |l . gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="SubRul eSet "
SUCCESS- | CON="| mages/ def aul t - 16x16. gi f"
FAI LURE- | CON="| nages/ defaul t Fai |l . gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="(bj ecti veG oup"
SUCCESS- | CON="1 mages/ def aul t - 16x16. gi f"
FAI LURE- | CON="| nages/ defaul t Fai |l . gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="(bj ecti veli st G oup"
SUCCESS- | CON="| mages/ def aul t - 16x16. gi f "
FAlI LURE- | CON="1 mages/ defaul t Fail .gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="(bj ective"
SUCCESS- | CON="| mages/ def aul t - 16x16. gi f "
FAlI LURE- | CON="1 mages/ defaul t Fail .gi f"
EDI T- PAGE=" Rat esNewCol um"/ >
<TYPE NAME="SubRul eSet Li nk"
SUCCESS- | CON="1 mages/ def aul t - 16x16. gi f "
FAlI LURE- | CON="1 mages/ defaul tFail .gi f"
EDI T- PAGE=" Rat esNewCol um"/ >
<TYPE NAME="Rul eG oup"
SUCCESS- | CON="1 mages/ def aul t - 16x16. gi f "
FAI LURE- | CON="| nages/ def aul t Fai | . gi f"
EDI T- PAGE=" Rat esNewCol um" / >
<TYPE NAME="Rul eLi st G oup"
SUCCESS- | CON="1 nages/ r ul e- gr oup- 16x16. gi f"
FAI LURE- | CON=" I nages/ rul eG oupFai |l . gi f"
EDI T- PAGE=" Rat esNewCol um"/ >
<TYPE NAME="Rul e"
SUCCESS- | CON="| nages/ rul e- 16x16. gi f"
FAI LURE- | CON="1 mages/rul eFail .gi f"/>
<TYPE NAME="Dat al t emAssi gnnent "
SUCCESS- | CON=" | mages/ def aul t - 16x16. gi f "
FAI LURE- | CON="| nages/ defaul t Fai |l . gi f"
EDI T- PAGE=" Rat esNewCol umm"/ >
</ CONFI G
<CONFI G | D="Edi t or. Confi g"
HYPERLI NK- TEXT="t r ue"
OPEN- NODE- PARAME" openNode"
DEC!I SI ON- | D- SOURCE="sour ce- Deci si on- | D"
DECI SI ON- | D- TARGET="deci si on-| D" >
<TYPE NAME="Product" EDI T- PAGE="Rul esResult"/>

<TYPE NAME="Assessnent" EDI T- PAGE="Rul esResult"/>

<TYPE NAME="SubRul eSet" EDI T- PAGE="Rul esResult"/>

<TYPE NAME="(bj ecti veGroup" EDI T- PAGE="Rul esResul t"/ >
<TYPE NAME="Obj ecti velLi st G oup" EDI T- PAGE="Rul esResul t"/>

<TYPE NAME="Obj ective" ED T- PAGE="Rul esResult"/>

<TYPE NAME=" SubRul eSet Li nk" EDI T- PAGE="Rul esResul t"/>

<TYPE NAME="Rul eGoup" EDI T- PAGE="Rul esResul t"/>

<TYPE NAME="Rul eLi st G- oup" EDI T- PAGE="Rul esResul t"/>

<TYPE NAME="Rul e"/>

<TYPE NAME="Dat al t emAssi gnment" EDI T- PAGE="Rul esResul t"/>

</ CONFI G
</ RULES- CONFI G

Example 8.9 Sample RulesEditorConfig.xml File

Note that the RULES- CONFI G root element only contains the DEFAULT

214

Curam Web Client Reference Manual

attribute. This attribute is mandatory and should match an | D on a CONFI G
element in this document. The default configuration contains the icon in-
formation as well as the default nodes to link to if no configuration is
present for a widget. These are covered by the SUCCESS- | CON, FAI L-
URE- | CON, and EDI T- PAGE attributes respectively.

Each CONFI G element has a HYPERLI NK- TEXT attribute which is used to
specify whether the text next to a rules node in the widget is aso to be used
as a hyperlink to the link page set by the EDI T- PAGE for the TYPE in
guestion.

Note that the CONFI G with the | D of value of Edi t or. Conf i g has the
optional attribute OPEN- NOCDE- PARAM This attribute is the name of a page
parameter whose value is the ID of a node to open to when the page is
opened.

The CONFI G attributes DECI SI ON- 1 D- SOURCE and DECI SI ON-

| D- TARGET are used to identify a page parameter whose value will be the
source for a new parameter (named by the DECI SI ON- | D- TARGET) ap-
pended to each link on the widget. The above example will ook for a page
parameter called sour ce- Deci si on- 1 D and pass on its value as a para-
meter to any links on the widget. This new value will be identified by a
parameter named deci si on- | D.

The decision ID parameter may also be sourced from a field on a server
bean instead of from a page parameter. This is achieved by adding DE-
Cl SI ON- | D- SOURCE- BEAN and DECI SI ON- | D- SOURCE- FI ELD at-
tributes to the CONFI G element instead of a DECI SI ON- | D- SOURCE at-
tribute. A validation error is thrown if al three are present. The DE-
Cl SI ON- | D- SOURCE attribute should be the name of a bean on the page
and the DECI SI ON- | D- SOURCE- FI ELD attribute should be the full
name of a field providing the decision ID value. The following is an ex-
ample of this configuration:

<CONFI G | D="Deci si on. | D. Bean. Sour ce"
HYPERLI NK- TEXT="t r ue"
OPEN- NODE- PARAME" openNode"
DECI SI ON- | D- TARGET="deci si on-1 D"
DECI SI ON- | D- SOURCE- BEAN=" DI SPLAY"
DECI SI ON- | D- SOURCE- FI ELD="dt | s$deci si on-1D"'>
<TYPE NAME="PRODUCT" EDI T- PAGE="Rul esResult"/>
<TYPE NAME=" ASSESSMENT" EDI T- PAGE=" Rul esResul t"/>
<TYPE NAME="SUBRULESET" EDI T- PAGE="Rul esResult"/>
<TYPE NAME=" OBJECTI VE_GROUP" EDI T- PAGE="Rul esResul t"/ >
<TYPE NAME="OBJECTI VE_LI ST_GROUP" EDI T- PAGE="Rul esResul t"/ >
<TYPE NAME="OBJECTI VE" EDI T- PAGE="Rul esResult"/>
<TYPE NAME="RULE_GROUP" EDI T- PAGE="Rul esResult" />
<TYPE NAME="RULE LI ST _GROUP" EDI T- PAGE="Rul esResul t"/ >
<TYPE NAME="RULE" EDI T- PAGE="Rul esResul t"/ >
</ CONFI G

Example 8.10 Example of Decision ID Sourced from a Bean

8.10 Meeting View

215

8.10.1

8.10.2

8.10.3

8.10.4

Curam Web Client Reference Manual

Overview

The meeting view is a control that displays scheduling information in a
chart format. It is associated with the USER_DAI LY _SCHEDULE domain.
The data to display in the meeting view is in XML format. Configuration
settings for the meeting view must be in afile called Meet i ngVi ewCon-

fig.xm inacomponent. The format for the XML data and configuration
settings are described below. Finally, the control has two modes of opera
tion: single and multiple selection.

Single Selection Mode

Thefirst column gives alist of users. The second column indicates the dura-
tion of the event to be scheduled. The third column displays the times dur-
ing the day that the user is available or busy. The available times are hyper-
links that can be clicked to indicate the schedule the start time for the meet-
ing. Note that any parameters passed to a page containing the meeting view
will be included in any links within the view.Only start times that can ac-
commodate the relevant meeting duration will be hyperlinks. For example,
in Figure 8.4, Sngle Selection Mode Example below, John Smith is busy
from 10:30 until 12:30, so it would not be possible to select 10:00 as the
start time for a meeting with a duration of one hour and the 10:00 time slot
will not be a hyperlink.

User Duration Schedule

John Smith 100 12:00 13:00 14:00 15:00 16:00 17:00
Joe Davis 0:30 12:00 13:00 1400 15:00 16:00 17:00
12:00 13:00 14:00 15:00 16:00 17:00

o esRnEss 1:55 1200 1300 1400 1:00 1600 1700
Figure 8.4 Single Selection Mode Example

Note that any parameters passed to a page containing the meeting view will
be included in any links within the view.

Multiple Selection Mode

This view returns a tab-delimited list of the user IDs of selected rows. The
meeting view widget in this mode is the same as that described above for
the single selection mode except that it has an extra column which is inser-
ted as the first column in the list and has a selectable checkbox for each list
item. The users in this mode of widget are chosen by selecting their associ-
ated check boxes. Time slots are not hyperlinked and are for display only.

XML Formats

216

Curam Web Client Reference Manual

The meeting view control expects information in a specific XML format.
Below isan example of this:

<SCHEDULE MODE="Si ngl e| Mul ti pl e" TYPE="User"
READ_ONLY="Fal se" DATE="2003-30-10">
<USER NAME="John Snmith" | D="12345" DURATI ON="90" >
<BUSY START="2003-30-10 10: 30: 00" END="2003-30-10 12:30:00"/>
<BUSY START="2003-30-10 15:45: 00" END="2003-30-10 16:15:00"/>
</ USER>
<USER NAME="Janmes Sm th" | D="12346" DURATI ON="90">
<BUSY START="2003-30-10 12:30: 00" END="2003-30-10 13:30:00"/>
<BUSY START="2003-30-10 15:00: 00" END="2003-30-10 18:15:00"/>
</ USER>
</ SCHEDUL E>

Note that in the format above: the MODE attribute is either Si ngl e or
Mul ti pl e; the DURATI ON attribute is in minutes; START and END attrib-
utes are date-times in the format “yyyy-MM-dd HH:mm:ss’. The
READ_ONLY attribute, if set to f al se, indicates that no time slot will be
selectable as a hyperlink. The DATE attribute contains the date of the current
scheduling and must be supplied. It should be in the format “yyyy-MM-dd”.
Finally, the TYPE attribute associates the schedule information with config-
uration settings which are also specified in an XML format as below:

<SCHEDULE_CONFI G>
<CONFI G TYPE="User" | NTERVAL="15" START="08: 00" END="16: 00" >
<USER_HOVE PAGE=" Per sonHone"
| D_PARAME" User | D' NEW W NDOM" Tr ue" />
<NEW _EVENT PAGE="AddNewEvent" | D_PARAM=" User | D'
START_PARAME"start" END_PARAMF"end" />
<MULTI _SELECT PAGE="Sel ect edUser s"
TAB_STRI NG_PARAM=" sel ect edUser s"
DATE_PARAM:="event Dat e" />
</ CONFI G
</ SCHEDULE_CONFI G>

Where | NTERVAL is the duration in minutes of each segment of the time
line. This can be 15, 30, or 60. Only these values are acceptable. The
START and END attributes detail the beginning and end times of the time
line. They are in the form “HH:mm”. Each CONFI G element can have the
following sub-elements:

USER_HOME

The PAGE attribute details which page to link to when clicking on the
user's name. The | D_PARAM attribute is the name of the parameter to
supply with the user's ID as a value. NEW W NDOWattribute, t r ue by
default, specifiesif the link opensin a new window or not.

NEW EVENT

The PACE attribute details which page to link to when clicking on a
timedot. Thel D_PARAMattribute is the name of the parameter to sup-
ply with the user's ID as a value. The START _PARAM attribute is the
name of the parameter to supply with the start time of the new event.
Similarly, the END_PARAM describes the name of the end time para
meter. Both of these attributes will be in the current application's date-
time format.

217

8.11

8.11.1

8.11.2

Curam Web Client Reference Manual

MULTI _SELECT

The PAGE attribute details which page to link to when the submit but-
ton on the multi-select view is pressed. TAB_STRI NG_PARAM s the
name of the link parameter to supply containing the tab-delimited string
of selected users. DATE_PARAMis the name of another link parameter
containing the date of the event in question. The date value is taken
from the value of the DATE attribute on the SCHEDUL E element.

Charts

Overview

Charts are displayed when one of the domains of CHART XM,
LI NE_CHART_XM_, Pl E_CHART_XM. or BARCHART _XM. domains (or
any derivation of them) is used as the source of afield.

ﬁ Note
Charts are rendered in the browser using Adobe®Flex technology.
which requires Adobe®Flash Player. Refer to the Caram Third-
Party Tools Installation Guide for Windows document to see the
supported version of Adobe Flash Player.

Chart appearance

The figure below shows a bar chart. Each row represents a unit of informa-
tion comprised of a caption and a stack of differently colored bars of vari-
able length. Their length represents the quantity of the unit in question and
can be ascertained using the numbered marks on the horizontal axis, or a
data tip which is available when you hover over the unit, as described be-
low. The chart scale is chosen to fit the biggest stack of bars (this might be
overriden by a configuration setting). Each bar is a hyperlink to a page con-
taining further information. The vertical axis of this chart displays captions,
describing each bar stack category. Captions might be dates as in example
below, date ranges or textual values. Captions are optionally rendered as hy-
perlinks leading to pages with additional information. Both bar links and
caption links are configurable, as described in Section 8.11.3, Chart config-
uration.

Status

2/1/2005

17142005

12/18/2005

2/10/2005

=
"
"
@
-
@
o
o
@

Figure 8.5 Bar Chart Example

218

Curam Web Client Reference Manual

ﬁ Note

Colors are not customizable, they are automatically calculated by
Adobe Flex technology.

Captions might be dates as in example below, date ranges or textual values.
They are optionally rendered as hyperlinks leading to pages with additional
information, in which case captions are additionally visually indicated when
hovered over.

Textua captions, as shown above, might get longer than one line. In such a
case long captions are wrapped within the category segment. If a caption
text exceeds two lines, though, it is truncated at that point and an additional
tool tip with the full label text is displayed when such a label is hovered
over.

Both bar links and caption links are configurable, as described in Sec-
tion 8.11.3, Chart configuration.

A column chart example is shown below. This chart is similar to the bar
chart and configurable the same way, except that units of information are
displayed in column stacks rather than bars, and axes are interchanged ac-
cordingly. It is also possible to configure a column chart so that it has a le-
gend that describes what each of the possible shaded areas in a column rep-
resents. The user can hover over a shaded area in a column, which displays
what it represents when mapped to an entry in the legend.

11 6

211002008 12ME20 112008 2012005
Crate

=y

(sanoH) awn)
(NI

Figure 8.6 Column Chart Example

Another way of presenting chart information is to use a line chart. In this
chart, information is rendered as points in each category group, with points
of the same type joined by straight lines (e.g. to represent data changes over
time). Line charts differ from bar and column charts in that neither the
points nor lines are currently hyperlinks. The same applies to line chart cap-
tions.

219

Curam Web Client Reference Manual

Status

| CR1

e CR2
m CR3

4

= -____..—ﬂ-_

u]

2i1/z2005 3172005 4/1/2005 S5/172005 &f 1/ 2005

Figure 8.7 Line Chart Example

The last available chart type is a pie chart, an example of which is shown
below. Charts of this type are typically used to illustrate relative mag-
nitudes, frequencies or percentages. The arc length of each sector is propor-
tional to the quantity it represents. Together, the sectors create a full disk.
Pie charts use callout-like labels, which provide details of the item represen-
ted by a sector and its percentage in the pie. Sectors are rendered as hyper-
links, leading to pages with additional information; however, chart labels
are not currently available as hyperlinks.

Tovwota: 37.5% (6]

Peugeot: 12.5% (2]
Miszan: S0% (8)—/

Figure 8.8 Pie Chart Example

By default, charts are displayed without a legend so that al the available
space can be dedicated to the chart itself. However, charts can be configured
to include a legend which shows extra information on what is represented
by the elements of the chart. An example of a chart with a legend is shown
below.

The example also shows data tips, which are displayed on a chart when you
hover the mouse over a particular chart data element. Data tips are shown
regardless of whether alegend isincluded or not.

e The data tip for bar and column charts shows absolute and relative
quantitive information attributed to the element and the element stack,
the category (group) to which that element belongs and the type of the
element (corresponding to an entry in the legend, if present).

220

Curam Web Client Reference Manual

Asline charts are not stacked, relative quantity information is not shown
in their data tips; line chart data tips are aso displayed only when the
mouse is over a data point and not over aline.

For apie chart, adatatip displays absolute quantitive information for the
particular sector and the percentage of the sector within the disk.

i Note

Line charts always display a legend and thisis currently not config-
urable. A legend is currently not displayed for pie charts.

8.11.3 Chart configuration

Various aspects of charts can be configured. Thisis accomplished by setting
the CONFI G attribute on the UIM field in question. The appropriate XML
configuration file must contain a configuration section with a unique identi-
fier matching the text in the CONFI Gattribute.

All the necessary chart configuration files are to be in your component dir-
ectory.

Different types of charts are currently configured in separate configuration
files:

Bar charts and column charts both use Chart Confi g. xnml and are
also backward compatible with the previous configuration file version,
Bar Chart Confi g. xm (data is taken from whichever of those two
files contains a configuration with the required ID; if configurations
with the same ID exist in both files, the one found in Chart Con-
fig.xm takesprecedence).

Li neChart Confi g. xm configuration file is used to look for line
chart configuration data.

Pie chart configuration data is to be placed into file Pi eChar t Con-
fig. xm

The following is a sample of a chart configuration file:

<CHART- CONFI G

<CONFI G | D="Col um. Chart . Confi g" ORI ENTATI ON="VERTI CAL"
X_AXI'S_LABEL="Vert . Bar Chart . X- Axi s"
Y_AXI S LABEL="Vert . Bar Chart. Y- Axi s">
<LEGEND CCODETABLE="Attendance" >
<| TEM CODE="CR1"/ >
<| TEM CODE="CR2"/ >
<| TEM CODE="CR3"/ >
</ LEGEND>
<LI NK LOCATI ON=" Conmponent Redi r ect " >
<PARAMETER NAME="vert| D' VALUE="|D' USE PAGE PARAM-"f al se"/ >
<PARAMETER NAME="dueDat e" VALUE="START_DATE"
USE_PAGE_PARAME"f al se"/ >
<PARAMETER NAME="trans| D' VALUE="|D' USE_PAGE PARAM:"true"/>
</ LI NK>
<CAPTI ON_LI NK LOCATI ON=" Anot her Page" >
<PARAMETER NAME="vert| D' VALUE="|D' USE PAGE PARAM-"f al se"/ >
<PARAMETER NAME="dueDat e" VALUE="START_DATE"

221

Curam Web Client Reference Manual

USE_PAGE_PARAM:"f al se"/ >
<PARAMETER NAME="trans| D' VALUE="ID' USE_PACGE_PARAME"true"/>
</ LI NK>
</ CONFI G

<CONFI G | D="Bar Chart . Confi g" ORI ENTATI ON="HORI ZONTAL"
CAPTI ON=" St at us. Capti on"
CAPTI ON_TEXT_CODETABLE="Car s"
M N_HEI GHT="200" MAX_HEI GHT="500" >
<LEGEND VI SI BLE="t rue" CODETABLE="O dCars">
<| TEM CODE="CR1"/ >
</ LEGEND>
<LI NK LOCATI ON="Tr ansf er Page" >
<PARAVETER NAME="hor | D' VALUE="I|D' USE_PAGE PARAM-"f al se"/ >

</ LI NK>
</ CONFI &
<CONFI G | D="Bar Chart . Confi g" TYPE="Ii ne"
CAPTI ON="Li ne. Chart . Capti on">
<LEGEND>
<| TEM CODE="CR1"/ >
</ LEGEND>
<LI NK LOCATI ON=" Conponent Redi rect " >
<PARAMETER NAME="hor| D' VALUE="I|D' USE PAGE PARAM:="f al se"/ >

</ LI NK>
</ CONFI G
</ CHART- CONFI G

The CHART- CONFI G root element contains only CONFI G elements. The
CONFI G element contains al configuration for a particular field, identified
by the | D attribute. The following table describes all attributes of the CON-
FI Gelement. Bar Chart . properti es referred to in this table is a prop-
erties file in the client application's
<CLI ENT_DI R>\ conponent s\ cor e folder, used to look up values re-
quired.

Attribute Description

I D Unique identifier for this CONFI G element.

TYPE Can beeither I i ne or pi e, depending on required
type of chart. If not present, ORI ENTATI ON attrib-
ute will be used to define if bar or column chart isto
be displayed.

ORI ENTATI ON Can be either HORI ZONTAL or VERTI CAL, de-
pending on required type of chart, HORI ZONTAL
meaning bar chart and VERTI CAL - column chart.

CAP- Code table currently used for label captions

TI ON_TEXT_CODE throughout a chart. If not specified, literal values
TABLE from chart data will be used.

MAX_VALUE Maximum value for a numeric axis of column or bar

chart. Automatically calculated to fit the maximum
element, if not specified.

MAX_ | NCREMENT Maximum increment value for anumeric axis of a
chart. Numbered ticks are drawn on a chart at the

222

Curam Web Client Reference Manual

Attribute Description

specified intervals. If not specified, numbered ticks
are placed at uniform intervals along the numeric
axis, taking into account it's maximum value.

X _AXI S_LABEL Key to atext property in
Bar Chart . properti es. Thistextisused asthe
label for the x-axis in the column or line chart, or y-
axisin the bar chart. Not used on pie chart.

Y_AXI S_LABEL Key to atext property in
Bar Chart . properti es. Thistextisused asthe
label for the y-axisin the column or line chart, or x-
axisin the bar chart. Not used on pie chart.

M N_HEI GHT This setting is used to define minimum chart object
height and is to be specified in pixels. Where a chart
contains a small number of items and would be short
based on that content size, minimum height intro-
duced by this setting is used. The setting is optional,
so 250px default minimum height is used if
M N_HEI GHT is not specified.

MAX_HEI GHT This setting is used to define the maximum chart ob-
ject height on screen and should be specified in
pixels. Where a chart contains numerous items and
its contents exceedst he MAX_HEI GHT specified,
this setting is used for the chart object height and a
vertical scrollbar appearsto allow for accessto the
rest of the itemsin the chart. The setting is optional
and a default of 250px isused if the attribute is not
specified. A value of - 1 for MAX_HEI GHT means
that the chart takes whichever height its content
needs to be displayed in full. It isworth noting that
the minimum height setting, either default or expli-
cit, is still taken into account in this case. Asares-
ult, charts with little content will not be shorter than
minimum or default height implies. Finally, a chart
with MAX_HEI GHT set to - 1 will not display its
vertical scrollbar and the browser scrollbar will ap-
pear once the chart istoo big to fit into the screen
area available.

CAPTI ON Key to atext property in
Bar Chart . properti es. Thistextisused asthe
label for the whole chart.

Table 8.1 Attributes of the CONFIG element

i Note
The example lists sample Char t Conf i g. xnl contents. The older

223

Curam Web Client Reference Manual

format in Bar Char t Confi g. xml isamost the same except that
the root element is called BARCHART- CONFI G,

The older versions of Bar Chart Confi g. xm do not contain
configuration for label links. This element might be added, if re-
quired to this file directly; it is preferable, though, to create appro-
priate full configuration with the same ID in the Chart Con-
fig.xm whichwill override the older version.

M N_HEI GHT and MAX_HEI GHT settings currently do not apply to
line or pie charts and will be ignored for these types.

The CONFI G element has three child elements: LEGEND, LI NK and option-
a CAPTI ON_LI NK.

The LEGEND element defines the items available for usein the TYPE at-
tribute of a BLOCK element in chart data returned from the server. The
element has an optional CODETABLE attribute, specifying the code table
used for legend item trandation, and an optional VI Sl BLE attribute
which indicates if the legend should be seen on screen or not. This at-
tribute has a default value of f al se, so it must be explicitly set to
t r ue in order for the legend to be displayed.

The | TEMchild element of specifies each legend entry. Its CODE attrib-
ute is the text or code table code used to identify a legend item. The
code table containing the CODE value will be ascertained first from the
CAPTI ON_TEXT_CODETABLE value of the CONFI G element, then the
CODETABLE attribute on the LEGEND element value, or, in case neither
of these attributes are present or do not apply to a particular CODE, the
literal value will be used as a caption. The same caption is used for a
context data tip displayed when mouse pointer is over a corresponding
chart element.

The LI NK child element is used to configure hyperlinks on bar chart
bars and column chart columns or pie chart segments. Its LOCATI ON at-
tribute is the ID of the UIM page to link to. A LI NK element can have
any number of PARAVETER child elements. The NAMVE attribute of a
PARAMETER is the name to give the parameter when transferred as part
of hyperlink. The VALUE attribute is the name of the attribute on the
BLOCK element or the CAPTI ON element in the chart input data re-
turned from the server (see below) to use as a parameter value unless
USE_PAGE_PARAMis t r ue, in which case VALUE is the name of a
page parameter.

Finally, the CAPTI ON_LI NK element is used whenever chart captions
are intended to be rendered as links and contains separate settings for
such links. The CAPTI ON_LI NK element contents are similar to those
of the LI NK element. When this element is skipped, captions are dis-
played as static text. Also, captions as links are currently supported on
bar and column charts only.

Texts for chart caption and axes labels can be customized and localized by
creating a propertiesfile called Bar Char t . properti es intheclient ap-

224

8.11.4

Curam Web Client Reference Manual

plication's <CLI ENT_DI R>\ conponent s\ core folder and placing
there values under keys, corresponding to the ones specified among CON-
FI Gelement parameters as described above.

In addition, the text displayed for theword t ot al displayed in the bar tool-
tips is customizable using the key total .tooltip.text in the
Bar Chart . properti es file

i Note
Bar colors are not customizable in charts and are automatically cal-
culated by Adobe FLEX.

= Collapsible Cluster Support
H p pp

Collapsible clusters are not supported for any cluster containing this
widget.

Chart Data Formats

The data to be displayed in a chart comes from the server in XML format.
Below is example of the XML used to create a chart:

<CHART>
<UNI T>
<CAPTI ON TEXT="TR1" START_DATE="2004-12- 31"
END_DATE="2005- 03- 06"/ >
<BLOCK | D="1" TYPE="CR1" DUE_DATE="2005-01- 01" LENGTH="33"/>
<BLOCK | D="2" TYPE="CR3" DUE_DATE="2005- 02- 01" LENGTH="14"/>
</ UNI T>
<UNI T>
<CAPTI ON TEXT="TR2" START_DATE="2004-12-31" />
<BLOCK | D="3" TYPE="CR3" DUE_DATE="2005-01- 02" LENGTH="11"/>
</ UNI T>
<UNI T>
<CAPTI ON TEXT="TR3" END_DATE="2005-03-08" />
<BLOCK | D="4" TYPE="CR1" DUE_DATE="2005-01- 03" LENGTH="22"/>
<BLOCK | D="5" TYPE="CR2" DUE_DATE="2005-01- 09" LENGTH="15"/>
<BLOCK | D="6" TYPE="CR3" DUE_DATE="2005-01-01" LENGTH="8"/>
</ UNI T>
</ CHART>

Example 8.11 Sample Horizontal Bar Chart XML

The root element, CHART, can contain any number of UNI T elements.
These elements are used to group related information into groups (clusters)
and contain one CAPTI ON element and one or more BLOCK child elements.

The CAPTI ON element displays an appropriate caption depending on what
attributes are set:

o If either the START_DATE or bot h START_DATE and END_DATE
attributes are set, then the caption will be either a single start date or a
range of dates.

« |If the TEXT attribute is set, then the caption text is first looked for in the
code table specified in the CAPTI ON_TEXT_CODETABLE attribute of
the CONFI G element (see above), then looked for as a property in

225

8.12

8.12.1

Curam Web Client Reference Manual

Bar Chart . properties using the TEXT vaue as a key, or, if
neither attempt is a match, the literal TEXT value is rendered as a cap-
tion.

Each BLOCK element represents a block to be drawn on a chart as a bar,
column, line chart point or pie chart sector. This element must have an asso-
ciated TYPE attribute to match it with a particular item. The LENGTH attrib-
ute is necessary to define the measurement of the block. In the bar or
column chart thisis the length/height of a bar/column; in aline chart it's the
position of an edge point; in apie chart it's the relative sector arc length. The
I D attribute isaunique identifier for a block and can be used as a
parameter for any hyperlinks. The optional DUE_DATE attribute can also be
used as an ID parameter for hyperlinks on a particular block. It represents
the due date for a given block.

]

H Note

* There are no restrictions on the number or names of the attrib-
utes of BLOCK element. This facilitates passing an arbitrary set
of attributes in the links from a chart (provided the configuration
is updated appropriately). However, one should keep in mind,
that the names of the attributes provided in this section are re-
served and bound to the particular elements, i.e. even though
START_DATE attribute could be added to a BLOCK element, in
this case it will be interpreted as a literal value and not a date as
it would be in the context of CAPTI ON element.

* Dueto the nature of pie chart, no more than one BLOCK element
will be processed and displayed in thistype of chart.

Heatmap Widget

Overview

The Heatmap widget is a control which displays a grid of items of different
importance. Items in the widget are presented by color shades varying from
red to blue, indicating their importance level from highest to lowest.

The widget is inserted into the page when the XM__ HEATMVAP domain is as-
sociated with UIM source property of aFl ELD.

The Heatmap widget expects XML data from the server in the following
format:

<HEATMAP>
<REG ON REQ ON_| D="R1" LABEL="hi ghest i nportance"/>
<REG ON REG ON_|I D="R2" LABEL="m ddl e i nportance">
<I TEM | TEM | D="i d9" LABEL="0009" />
<I TEM | TEM | D="i d10" LABEL="0010"/>
<I TEM | TEM | D="i d21" LABEL="0021"/>
</ REG O\>

<REG ON REGQ ON_| D="R3" LABEL="| owest i nmportance">
<I TEM | TEM | D="i d22" LABEL="0022"/>

226

8.12.2

Curam Web Client Reference Manual

</ REG O\>

</ HEATMAP>

Here, the REA ON elements specify the importance level ("heat") of their
contained | TEMs. There should be at |east two regions in a heatmap widget.

The color will always start from red, so if no items of that importance are
there, empty REG ON elements should be inserted for the widget to render

properly.
The following image shows an example of the Heatmap widget.

Deadline
. alt region 1
O =t region 2
gozz o023 o024 o0zs o026 0oz27 0028 ooz9 ooso
- [attregion 3
gion 4

0031 o003z 0033 0034 o035 0036 0037 0038 0039 140 . alt region
Lil? 043 004 [il?

0047

Figure 8.9 Heatmap Example

Configuration

Different types of heatmap can be configured by creating entries in the
Heat mapConfi g. xm file in your conponent s directory, using the
following format:

<HEATMAP_CONFI G>
<CONFI G | B="Mapl" NUM COLS="10" NUM ROAB="4"
LEGEND_POSI Tl ON=" LEFT"
LECGEND_TI TLE=" DeadIl i ne"
LEGEND Tl TLE_PROPERTY="Local i sed. Legend. Titl e">
<I TEM LI NK PAGE_| D=" Sanpl e_page" >
<PARAM NAME="conf i gParaneter" VALUE="|ITEM I|ID"/>
</ | TEM LI NK>
</ CONFI &
<CONFI G | D="Map2" NUM COLS="6">

</ CONFI G>
</ HEATMAP_CONFI G>

The attributes of a CONFI G element are summarized in the following table:

Attribute Description

NUM CCLS This attribute allows you to set the number of items
displayed in each row of the Heatmap
NUM_ROWS This attribute alows you to specify the number of

visible rows in the Heatmap. If this attribute is set to
less rows than are required to display the data, a ver-
tical scrollbar will be provided. If this attribute is
not present, the widget will expand to display as
many rows as are required.

LE- By default, the Heatmap legend is drawn to the right

227

8.13

8.13.1

8.13.2

Curam Web Client Reference Manual

Attribute Description

GEND_POsSI TI ON of the widget. This attribute can be used to draw the
legend to the left instead, by setting it's value to
LEFT.

LEGEND TI TLE The default title for alegend isLegend. This attrib-
ute can be used to specify amore logical title to use.

LE- Optional attribute used to customize/localize the dis-
GEND_TI TLE_PRO playedtitle. The value hereisthekey in the
PERTY CDEJResour ces. properti es fileor itslocal-

ized version (see Chapter 4, Localization for more
details on localization).

Table 8.2 Attributes for CONFI G element

The | TEM LI NK element can be used to specify the page to which to link
when a user clicks on an item in the Heatmap, by setting it's PAGE | D at-
tribute. The PARAM child element can be used to specify what page para-
meters to pass (the NAME attribute) and what data items to use as their value
(the VAL UE attribute). Vaues which don't match any attributes in the | TEM
elements in the Heatmap XML are assumed to be literal values.

To specify which configuration to use for a given instance of the Heatmap
widget, the CONFI G attribute of the field containing the widget should be
set to the | D of the desired configuration.

Workflow

Overview

A workflow depicts a series of steps that routinely take place in order for a
unit of work to be completed. The WORKFLOW GRAPH_XM. domain, or
any derivation of it, causes a workflow to be displayed. The data to be dis-
played in a workflow comes from the server in XML format. Configuration
settings for the Workflow must be in a file caled
Wor kf | owConf i g. xm , of which there can be only one per component.
The format for the XML data and configuration settings are described be-
low. Any static text for this view can be customized and localized by crest-
ing aproperties file called Wor kf | ow. pr operti es in the client applica-
tion's<CLI ENT_DI R>\ conponent s\ cor e folder.

Workflow Details

Figure 8.10, Workflow shows a sample workflow view. A box, along with a
representative icon, represents a discrete unit of work and is called an activ-
ity. Any line connecting nodes is called a transition and is intended to illus-
trate the flow of work. For this reason, the start and end activities are repres-

228

8.13.3

Curam Web Client Reference Manual

ented by icons only. Workflow proceeds from the left and ends at the right-
most activity. An activity is ahyperlink to atab containing further details on
that activity. An activity can have a second, smaller icon indicating that
there is a notification on this activity. Clicking on the notification icon (a
small envelope in the image below) will open a separate tab with details of
the notification.

An activity has an entry point and an exit point for a transition, on the right
and the left respectively. When two or more transitions leave an exit point
thisis called a split. The transitions in a split can be given a number to in-
dicate their relative progression. When two or more transitions meet at an
activity's entry point thisis called ajoin. If either ajoin or asplit isan “and”
type, adso caled a “conjunction”, then it is represented as a small square.
This implies that a series of transitions have to take place together in order
for the workflow to proceed. If ajoin or asplitisan “xor” type, an either-or
situation, then a small circle is used. There are examples of both in the fig-
ure below. Finally, a transition can have an associated transition condition.
This means that certain criteria have to be met in order for a transition to
proceed. Thisis represented by an asterisk on the transition and the full con-
dition information is displayed in a pop-up if the user hovers the mouse over
the symbol.

i

Activity B
gﬁ %DE
=
Activity A Activity G
$ = £y =
S [
Activity E
x|
o .
&
Activity F Activity H

.I "'":'?.-:.’??

Activity C

Figure 8.10 Workflow

Workflow XML Formats

The workflow widgets require XML data that conforms to the workflow
schema defined in the workflow xsd file located in the
I'i b\ curam xni \ schena folder of your CDEJ installation folder. Be-
low is an example of workflow XML data:

<WORKFLOW | D="4791830003522207744" PROCESS- VERSI ON="1" >

229

Curam Web Client Reference Manual

<NODE | D="6953557824660045824" X="2.0" Y="1.0"
TEXT="Loop Activity [End]" H DDEN="fal se"
ACTI VI TY- TYPE- CODE=" AT9" HAS- NOTI FI CATI ON="t r ue"
| S- EXECUTED="f al se" SPLI T- TYPE="AND' JO N- TYPE=" AND"
TASK- | D="1"/ >

<NODE | D="-3566850904877432832" X="3.0" Y="1.0"
TEXT="EndPr ocessActivity" H DDEN="fal se"
ACTI VI TY- TYPE- CODE="AT7" | S- EXECUTED="f al se"
JO N- TYPE="AND' TASK-|D="2"/>

<NCDE | D="2702159776422297600" X="1.0" Y="2.0"
TEXT="Activity 1" H DDEN="fal se"
ACTI VI TY- TYPE- CODE=" AT5" | S- EXECUTED="f al se"
SPLI T- TYPE="AND' JO N- TYPE="AND' TASK-I|D="3"/>

<EDGE FROVE"6953557824660045824" TO="-3566850904877432832"
HI DDEN="f al se" TRANSI TI ON- | D="1621295865853378560"
| S- EXECUTED="f al se" REVERSE- ARROM"f al se"/ >

<EDGE FROVE"3566850904877432832" TO="2702159776422297600"
HI DDEN="f al se" TRANSI TI ON-1 D="0" | S- EXECUTED="f al se"
REVERSE- ARROM:"t r ue" / >

</ WORKFL OW>

The root element, WORKFL OW can have any number of NODE (activity) and
EDGE (transition) elements. The | D attribute on WORKFL OWidentifies this
particular workflow as does the PROCESS- VERSI ON attribute.

The NCDE element represents a single activity in the workflow. All attrib-
utes of anode are defined in the following table:

Attribute Description

I D Unique identifier for this element, supplied asa
parameter in the row header hyperlink.

X An x-coordinate for an element on the workflow
graph.

Y A y-coordinate for an element on the workflow
graph.

TEXT Thetext of an activity.

ACTI VI TY- Codefor an activity type. Used as a parameter in a

TYPE- CODE hyperlink.

HI DDEN Boolean property to indicate if an edge or node isto

be hidden. If t r ue the node will not be displayed.

| S- EXECUTED Boolean property to indicate if an activity has
already been executed for a particular processin-
stance. If settot r ue then the activity has been ex-

ecuted.
SPLI T- TYPE The split type associated with an activity.
JO N TYPE The join type associated with an activity.
ACTI VI TY-1 N The unique identifier of an activity instance for a
STANCE- | D particular process instance.
START- The start date time of an activity instance or trans-
DATE- TI ME ition instance for an executed or currently executing
process.

END- DATE- TI ME The end date time of an activity instance or trans-

230

Curam Web Client Reference Manual

Attribute Description

ition instance for an executed or currently executing

process.
STATUS The current status of an activity instance.

TASK- STATUS Code for the status of atask.

TASK- RE- The name of the user reserving the task.

SERVED- BY

TASK- The total time worked on atask in seconds.

TOTAL-

TI ME- WORKED

NUMBER- | T- The number of times the activity contained in anode
ERATI ONS has been executed.

TASK- |1 D The unique identifier for the task.

Table 8.3 Attributes of a Node

The EDGE element represents a single transition in the workflow. All attrib-
utes of an edge are defined in the following table:

Attribute Description

FROM The | D of the node this edge is from.
TO The | D of the node this edge isto.
TRANSI TI ON-1 D The unique identifier of atransition.

| S- FOLLOVWED Boolean property to indicate if a particular transition
has already been followed for a process instance.

TRANSI TI ON- I N The unique identifier of atransition instance for a
STANCE- |1 D particular process instance.

REVERSE- ARROW Boolean property to indicate if an arrow on an edge
should be reversed. In this case, the arrow will be
going into the FROMnode instead of the TO node.

| S- EXECUTED Boolean property to indicate if an activity has
already been executed for a particular processin-
stance. If settot r ue then the activity has been ex-
ecuted.

TRANSI Tl ON- CON- The condition associated with atransition in an
DI TI ON edge.

REAL _FROM | D of anode that this edgeis actually from as op-
posed to an intermediate hidden node identified by
the FROMattribute.

REAL_TO | D of anode that this edgeis actually to as opposed
to an intermediate hidden node identified by the TO
attribute.

ENABLED Boolean property to indicate if an edge isto be en-

231

Curam Web Client Reference Manual

Attribute Description
abled as a hyperlink. This attributeisf al se by de-
fault.

ORDER Indicates the order of an edge relative to other
edges.

Table 8.4 Attributes of an Edge

As mentioned above, workflow charts are configurable. This is accom-
plished by setting the CONFI G attribute on the UIM field in question. The
Wor kf | owConfi g. xm XML configuration file must contain a configur-
ation section with a unique identifier matching the text in the CONFI G at-
tribute. The XML schema format for thisfile is defined in the wor kf | ow-
confi g. xsd file located in the I i b\ curam xm \ schena folder of
your CDEJinstallation folder. The following isasample of thisfile:

<WORKFLOW _CONFI G
<| CON CODE="AT1" PATH="Images/ manual .gif"/>
<| CON CODE="AT2" PATH="Images/automatic.gif"/>
<| CON CODE="AT4" PATH="I mages/subflow. gif"/>
<| CON CODE="AT5" PATH="I|mages/route.gif"/>
<| CON CODE="AT6" PATH="I mages/eventwait.gif"/>
<| CON CODE="AT7" PATH="I| mages/ endprocess.gif"/>
<| CON CODE="AT8" PATH="I|mages/ | oopbegin.gif"/>
<| CON CODE="AT9" PATH="I|mages/| oopend. gi f"/>
<| CON CODE="AT10" PATH="Inmages/ deci sion.gif"/>
<| CON CODE="AT11" PATH="Inages/startprocess.gif"/>
<I CON NOTI FI CATI ON="t r ue"
PATH="CDEJ/ cdej - i mages/ notification.gif"/>
<CONFI G | D="Wor kFl ow. Confi g"
NOTI FI CATI ON_PAGE="vi ewAct i vityNoti ficati on"
DETAI LS_PAGE="conponent Redi r ect "
START_PROCESS_TYPE="AT11" END_PROCESS TYPE="AT7"/>
</ WORKFLOW_CONFI G

The WORKFLOW CONFI G root element contains CONFI G elements and
| CON elements. The CONFI G element contains all configuration for a par-
ticular field, identified by the | D attribute. The following table describes all
attributes of the CONFI G element:

Attribute Description

I D Unique identifier for this configuration.

DETAI LS PAGE ID of aUIM page to use as a destination for
a hyperlink on anode.

HElI GHT Height in pixels of aworkflow chart. If

height is not specified, a height will be
chosen that attempts to maximize the use of
available space.

ACTI VI TY_CODETABLE Codetable name for resolving ACTI VI TY-
TYPE- CODE attribute values.

TASKSTATUS _CODETABL Codetable name for resolving TASK-
E STATUS attribute values.

232

8.14

8.14.1

Curam Web Client Reference Manual

Attribute Description

PRO Codetable name for resolving the status of a
CESSSTATUS _CODETABL process instance (e.g. In Progress, Com-
E pleted, Suspended or Aborted).

SHOW | NSTANCE_DATA Determinesif the chart should display atext
area containing all instance data information.
Valid settingsaret rue and f al se.

START_PROCESS TYPE Code identifying the ACTI VI TY-
TYPE- CODE set as the start process type.
This activity will be drawn without a box.

END_PROCESS_TYPE Code identifying the ACTI VI TY-
TYPE- CODE set as the end process type.
This activity will be drawn without a box.

NOTI FI CATI ON_PAGE ID of aUIM page to use as a destination for
a hyperlink on a notification icon.

READONLY_VI EW Determinesif the links on aworkflow graph
should be disabled.

HI GH Represents the parameter used to determine

LI GHT_ACTI VI TY_PARA the current activity in aworkflow. The value

M of the parameter is matched with a corres-

ponding attribute in the XML data returned
from the server to indicate which node has to
be highlighted.

Table 8.5 Attributes of Workflow CONFIG element

The | CON child element of the WORKFLOW CONFI G root element defines
all icons for the workflow chart. Either the CODE attribute or the NOTI -
FI CATI ON attribute defines what kind of icon thisis. If CODE is set then
the ACTI VI TY- TYPE- CODE on a NCDE is used to match an icon to a par-
ticular activity type. If the NOTI FI CATI ON attribute is set to t r ue then
thisicon is used as a graphic depicting a notification present on an activity.
The PATH attribute on | CON is used to point to an image file, relative to
your project's WebCont ent directory.

Evidence View

This view has two modes for displaying and comparing evidence data.

Evidence Display Mode

The EVI DENCE_XM. domain results in a table displaying evidence items.
There are three columns in the table. The first displays the evidence item
name, the second shows the group to which evidence item belongs and the
value of the item is displayed in the third column. The value of the item will

233

8.14.2

8.14.3

Curam Web Client Reference Manual

be formatted based on it's domain.

Evidence Comparison Mode

The EVI DENCE_XM._ COMPARE domain results in three tables displaying
evidence comparison results. The comparison results consist of three tables
to display items which were modified, added or deleted. All three tables fol-
low the same format: the first column displays the evidence item name; the
second column displays the group which the evidence item belongs to and
corresponding values are displayed in the third (the modified evidence table
will have a fourth fourth column to show previous values against current
values) column.

Configuration

The evidence view is configurable by changing settings in appropriate prop-
erties files. For Evidence Display mode this is the Di spl ayEvi d-
ence. properti es file and for Evidence Comparison mode configura-
tion, Conpar edEvi dence. properti es file is used. These properties
files should be created in the <CLI ENT_DI R>\ conponent s\ core
folder.

Configuration files contain table headers and captions for all the columns as
well as visihility settings for each column. There is also a links section for
specifying links to pages for each evidence item and item group column if
needed. If alink is not required, leave the value empty rather than deleting
the property itself. Also there are properties containing textual substitution
for an empty value case and textual insert used in evidence item name.

]

H Note

The properties specifying visibility settings are not localizable
strings and should contain either “true” or “false” depending on de-
sired visibility of the corresponding column.

Below is an example of the configuration settings for display evidence
mode:

#Textual descriptions for conparison sections.
Tabl e. Summary. Si ngl e=Thi s tabl e contai ns evi dence itens.

Conpari son section |abels
Evi dence. Tabl e. Label =Evi dence Itens

#Col umm header s

Descri pti on. Col unm. Header =Rul e
G oup. Col um. Header =Gr oup

Val ue. Col uim. Header =Val ue

#Visibility

Descri ption. Col umm. Vi si bl e=true
G oup. Col um. Vi si bl e=true

Val ue. Col um. Vi si bl e=true

Local i zabl e nessages
Message. No. Val ue=This itemis not set
Message. I tem Joi nt=referenced by rule item

234

Curam Web Client Reference Manual

#Li nks (Val ues shoul d be U M PACE_I Ds)
Descri pti on. Col um. Li nk=Hone
G oup. Col um. Li nk=Gr oupHone

The following is an example of the configuration settings for the evidence
comparison mode:

#Textual descriptions for conparison sections.

Tabl e. Sunmary. MODI FI ED=Thi s tabl e contains nodifi ed evidence

Tabl e. Summary. NEWEThi s tabl e contai ns newl y added evi dence itens.
Tabl e. Sunmary. REMOVED=Thi s tabl e contains renoved evi dence.

Conparison section | abels

Evi dence. Label . MODI FI ED=NMbdi fi ed evi dence

Evi dence. Label . NEWENewl y added evi dence itens
Evi dence. Label . REMOVED=Renoved evi dence itens

#Col umm header s

Descri pti on. Col unm. Header =Rul e

G oup. Col umm. Header =Gr oup

d dval . Col umm. Header =Pr evi ous Val ue
Val ue. Col um. Header =New Val ue

#Visibility

Descri pti on. Col umm. Vi si bl e=true
G oup. Col um. Vi si bl e=true

A dval . Col um. Vi si bl e=true

Val ue. Col um. Vi si bl e=true

#Li nks (Val ues shoul d be U M PACE_| Ds)
Descri ption. Col um. Li nk=Hore
G oup. Col um. Li nk=Gr oupHore

8.14.4 Data Format

The Evidence view expects the following XML format. Below is an ex-
ample for Evidence Comparison mode:

<EVI DENCE_COVPARE>
<EVI DENCE TYPE="MODI FI ED" >
<GROUP | D="nod1l D"
DESCRI PTI ON="en| Evi denceG oupl" >
<EVI DENCE_I| TEM | D="nodI t eni| D'
DESCRI PTI ON=" en| Nunber of Chil dren”
OLDVAL="11" VALUE="13"
DOVAI N=" SVR_| NT32"/ >
</ GROUP>
<GROUP | D="nod2| D'
DESCRI PTI ON="en| Evi denceG oup2" >
<EVI DENCE_| TEM | D="nodI t en8l D'
DESCRI PTI ON="en| Are you narri ed"
OLDVAL="f al se" VALUE="true"
DOVAI N=" SVR_BOOLEAN"/ >
</ GROUP>
</ EVI DENCE>
<EVI DENCE TYPE="NEW >
<GROUP | D="newl| D'
DESCRI PTI ON=" en| Evi denceG oupl" >
<EVI DENCE_I| TEM | D="new t ent| D'
DESCRI PTI ON="en| Nunber of cars"
VALUE=" 6"
DOMAI N=" SVR_| NT32"/ >
</ GROUP>
</ EVI DENCE>
<EVI DENCE TYPE=" REMOVED' >

235

8.15

Curam Web Client Reference Manual

<GROUP | D="del 11 D"
DESCRI PTI ON="en| Del eti on" >
<EVI DENCE_I| TEM | D="del | t eni| D'

DESCRI PTI ON="en| Nunber of houses"
CLDVAL="1"
DOVAI N=" SVR_| NT32"/ >

</ GROUP>

</ EVI DENCE>
</ EVI DENCE_COVPARE>

The following is an example of the Evidence Display mode:

<evi dence>
<group id="groupl" displ ay-nanme="Evi denceG oupl">
<item name="itemll'
di spl ay- name="Nunber of Children"
initial-value="13" no-val ue="fal se"
type="SVR_ | NT32"/ >
<item nanme="iteml2'
di spl ay- name="itemwi th no val ue"
initial-value="" no-val ue="true"
type="SVR STRI NG'/ >
</ gr oup>
<group id="group2" display-nanme="Evi denceG oup2">
<item nane="iten2l'
di spl ay- nanme="Are you narried"
initial-value="true" no-val ue="fal se"
t ype="SVR_BOOLEAN'/ >
<i tem nane="iten22"
di spl ay- nanme="Sone i nportant dates"
initial-value="" no-val ue="fal se"
type=" SVR_DATE" >
<val ue position="10" description="Inportant date 1"
val ue="20050401T000000" >
<val ue position="18" description="Inportant date 2"
val ue="20050601T000000" >
<val ue position="5" description="Inportant date 3"
val ue="20051231T000000" >
</itenpr
</ gr oup>
</ evi dence>

The di spl ay- name attribute represents a description for every item or
group, the descri pti on does the same for the val ue element. Group
ids, evidence item names and value descriptions are supplied by the evid-
ence text returned from the rules engine. The t ype attribute is used to se-
lect particular representation for different data types from the server. The
nane attribute of i t emand the i d attribute of gr oup are used as link
parameters if alink is specified for the first or second column.

Calendar

The calendar is used by any UIM page which displays a field from a server
access bean containing a CALENDAR_XM._ STRI NGdomain. Thisview al-
lows for scheduling of events from different time-frames; monthly, weekly
and daily. The following image shows a section of the calendar week view
asit would be displayed in aweb page.

236

Curam Web Client Reference Manual

[[oototoday [Hday [EHweek [] month goto date
February 2§, 2011

Monday 25 February Thursday 3 March

Tuesday 1March Friday 4 March

Wednesday 2 March Saturday 5 March

Sunday 6 March

Figure 8.11 Calendar Week View

Programmatically, the calendar expects to be populated with information
about eventsin an XML format.

The following is an example of what the XML received from the server
might look like:

<CURAM CALENDAR_DATA TYPE="User Cal endar " >
<EVENT>
<I D>1</| D>
<DATE>2002- 10- 10</ DATE>
<STARTTI ME>10: 10: 10</ STARTTI ME>
<ENDTI ME>10: 10: 10</ ENDTI ME>
<DURATI ON>0</ DURATI ON>
<DESCRI PTI ON>Hel | o Wor | d! </ DESCRI PTI ON\>
<STATUS>ATS1</ STATUS>
<PRI ORI TY>AP1</ PRI ORI TY>
<LEVEL>AL1</ LEVEL>
<RECURRI NG>f al se</ RECURRI NG>
<READ_ONLY>f al se</ READ_ONLY>
<ALL_DAY>f al se</ ALL_DAY>
<ATTENDEE>t r ue</ ATTENDEE>
<ACCEPTANCE>t r ue</ ACCEPTANCE>
</ EVENT>
<SI NGLE_DAY_EVENT>
<I D>2</ | D>
<DATE>2003- 04- 01</ DATE>
<TYPE>ET1</ TYPE>
<DESCRI PTI ON>Apri | Fool's Day</ DESCRI PTI ON>
</ SI NGLE_DAY_EVENT>
</ CURAM _CALENDAR_DATA>

Example 8.12 Calendar XML Stream

Notice that there can be two kinds of event elements contained within the
CURAM_CALENDAR_DATA XML data: EVENT and
SI NGLE_DAY_EVENT. In the schema of the XML data expected the root
element, CURAM_CALENDAR_DATA, can hold any number (zero to many)
of EVENT and SI NGLE_DAY_EVENT elements;
CURAM_CALENDAR_DATA can optionally have a TYPE attribute which as-
sociates this sequence of events with a particular calendar configuration (see
example below).

The following tables describe the schema definitions for each of the attrib-

237

Curam Web Client Reference Manual

utes allowed on the EVENT and the SI NGLE_DAY_EVENT elements re-
spectively.

Attribute Description Required
Name

ID A string to uniquely identify this event.

DATE The date of the event in xs.date format: No

(CCYY-MM-DD) |.e. 21- Aug-2002 is
represented as 2002-08-21.

STARTTIME The start timein xs:time format:
(hh:mm:ss). |.E. 1:34 pm and 56 seconds
is represented as 13:34:56.

ENDTIME The start time in xs:time format: No
(hh:mm:ss).

DURATION The duration of the event in minutes. No
This should be an integer.

DESCRIPTION A Description of the event. No

STATUS The status of the event. Thisnodeislim- No
ited to values stored in the Activity-
TimeStatus code table in the reference
application.

PRIORITY The priority of the event. Thisnodeis No
limited to values stored in the ActivityP-
riority code table in the reference applic-
ation.

LEVEL Code that shows the level of the activity. No
Thisnodeis limited to the values stored
in the ActivityLevel codetablein the
reference application.

RECURRING Recurring indicator: trueif thisevent isa No
recurring event. Otherwise false.

READ_ONLY Read-only indicator: trueif thiseventis No
aread-only event. Otherwise false.

ALL_DAY All-day indicator: Trueif thisisanall- No
day event. Otherwise false.

ATTENDEE Attendeeindicator: trueif theuser isat- No
tending a meeting. Otherwise false.

ACCEPTANCE Acceptance indicator: Trueif the user
has accepted an invitation to a meeting.
Otherwise false.

POSITION For a spanning event, indicatesfirstor ~ No
last component of the event.

Table 8.6 EVENT attributes in schema

238

Curam Web Client Reference Manual

Attribute Description Required
Name

ID A string to uniquely identify thisevent. No
DATE The date of the event in xs.date format. No

TYPE Thetype of asingle day event. No
DESCRIPTION A Description of the event. No

Table 8.7 SINGLE_DAY_ EVENT attributes in schema

Once afield based on the CALENDAR_XM._ STRI NG domain returns XML
information formatted according to the aforementioned schema, it will be
displayed in the appropriate time position by the calendar. Any web page
containing a calendar can be set to open on different dates and views by spe-
cifying the st art Dat e and cal endar Vi ewType parameters in the
page's URL. The st ar t Dat e parameter should be formatted according to
the date format expected by the application and the cal endar Vi ewType
parameter should be one of the following codes.

Code Value

CVT1 Day view
CVT2 Week view
CVT3 Month view

Table 8.8 Calendar View Type Values

You can configure the display of calendar information using the Cal en-
dar Confi g. xm file. There should be at least one copy of this in the
components folder. This file should contain configuration information for
each type of caendar, the TYPE atribute of the
CURAM CALENDAR DATA element mentioned above associates a calendar
data stream with a particular type. The following is an example of the struc-
ture of the Cal endar Confi g. xni

<CONFI GURATI ON MONTH_CELL_HEI GHT="4"
SHOW REPEAT_EVENT_TEXT="tr ue" >
<CALENDAR TYPE="User Cal endar" >
<DESCRI PTI ON_LOCATI ON>Det ai | sPage. do</ DESCRI PTI ON_LOCATI ON\>
<DAY_VI EW TI ME_FORVAT>24</ DAY_VI EW Tl ME_FORVAT>
</ CALENDAR>
<EVENT_TYPES>
<TYPE NAME="ET1" | CON="I mages/ mandatory.gif"/>
<TYPE NAME="ET2" | CON="Inmages/case.gif"/>
<TYPE NAME="ET3" | CON="Images/concern.gif"/>
</ EVENT_TYPES>
</ CONFI GURATI ON>

Example 8.13 CalendarConfig.xml Example
The overall schema for this configuration file specifies the CONFI GURA-

TI ON element as the root element. The CONFI GURATI ON has an optional
MONTH_CELL_HEI GHT attribute which sets the maximum number of rows

239

8.16

Curam Web Client Reference Manual

to display in asingle cell in the month view. The default value is three. The
SHOW REPEAT _EVENT _TEXT optional attribute, if settot r ue, will dis-
play the event description in each month cell if an event spans multiple
days. Thisattributeisf al se by default.

The CONFI GURATI ON root element can hold any number of CALENDAR
elements and a single EVENT_TYPES element. The TYPE attribute of
CALENDAR associates this configuration information with an XML stream
returned from the server. The DESCRI PTI ON_LOCATI ON element of
CALENDAR is for constructing a link to a page containing more information
on any event in the calendar. The following table lists the parameters passed
with this hyperlink.

Parameter Name Description

ID the event ID

RE Recurrence indicator
AT Attendee indicator
RO Read-only indicator
LV Activity level

AC Acceptance indicator

Table 8.9 Parameters Passed to Event Description Pages

The CALENDAR element should aso contain an element called
DAY VI EW Tl ME_FORMAT. The valid values for this element are 12 and
24. They specify whether the time in the day view is displayed using a 12 or
24 hour format.

The EVENT_TYPES element is used for mapping images to display asicons
next to single day events. The NAME attribute of the TYPE element must
match a TYPE element on a SI NGLE_DAY_EVENT supplied by the server
for the image specified by the | CON attribute to be displayed.

The schema for the calendar configuration file (Cal endar Conf i gur a-
tion. xsd) and the schema for the CALENDAR _XM._STRI NG domain
(Cur antCal endar . xsd) are located in your project's WebCont ent /
VEB- | NF/ CDEJ/ schena folder.

Payment Statement View
The payment statement view is used for displaying under or over payment

within the Cdram application framework. This following image demon-
strates this view:

240

Curam Web Client Reference Manual

Al::tlun Description Reassesse Difference

01/01/2000 to Gross Payment 100,00 . 10.00
10/01,/2000 Another Payment 100.00 QD.DD 10.00

MNet Payment 100,00 ag.o0 10.00

Qh 10/01,/2000 to Gross Payment 100,00 90.00 10.00
20,/01,/2000 Another Payment 100.00 90.00 10.00

MNet Payment 100,00 90.00 10.00

% 20/01/2000 to Gross Payment 100.00 90.00 10.00
20/01,/2000 Another Payment 100,00 ag.o0 10.00

MNet Payment 100.00 90.00 10.00

35.00
7.50
7.00
0.00
89.30

Figure 8.12 Payment Statement View

The payment statement view supports the display of benefits as well as liab-
ilities. The domain BENEFI T_REASSESSMENT _RESULT_TEXT should
be used for a benefit payment statement view. The domain LI ABI L-

| TY _REASSESSMENT RESULT_TEXT should be used for aliability pay-
ment statement view. It is expected that al string data returned for this field
follows a specific tab-delimited format. Examples of using these domains
can be found in the Cdram reference application.

There is also a properties file associated with this view: Paynent St at e-
ment . properties in the <CLIENT_DI R>\ conponents\core
folder. The link to a page providing further details on a statement can be
defined using a set of four parameters:

Payment St at enent . RowLi nk. Benefi t . Pagel D

Payment St at enment . RowLi nk. Benef i t. Par anet er Nane

Payment St at enment . RowLi nk. Benefi t. Label

Payment St at enent . RowLi nk. Benefit. | mage

There is one set of parameters for Benefit pages and one for Liability pages.
Pagel Disthe name of the page to link to. Par anet er Nane is the name
of the parameter to be passed to this page to identify the id of the payment
in question. Label supplies the text of the link, if | mage is not used. Oth-
erwise it supplies the tool-tip for the image-based link.

The remaining properties are simply externalized strings for the widget.
Payment St at ement . RowLi nk. Benef i t . Pagel D=Fr onBenef i t
Payment St at ement . RowLi nk. Li abi | i ty. Pagel D=FroniLi ability

Payment St at ement . RowLi nk. Benef i t. Par anet er Nane=par ani
Payment St at ement . RowLi nk. Li abi | i ty. Par amet er Name=par an?

Paynent St at ement . RowLi nk. Benefi t. Label =Li nk Text 1
Paynent St at ement . RowLi nk. Li abi | i ty. Label =Li nk Text 2

#Paynent St at ement . RowLi nk. Benefit. | mage=I mages/i con. gi f
Payment St at enent . RowLi nk. Li abi l i ty. | mage=l mages/i con. gi f

Payment St at enent . Text . f roniToDat eSeparator=\ to

Payment St at enment . Text . Acti on=Acti on
Payment St at enent . Text . Peri od=Peri od

241

8.17

8.18

Curam Web Client Reference Manual

Paynent St at enent . Text . Desc=Descri pti on

Paynent St at enent . Text . Act ual =Act ual

Paynent St at ement . Text . Reassessed=Reassessed

Paynent St at ement . Text. Li abi | ity. Recei ved=Recei ved

Paynent St at ement . Text. Di ff=Di ff erence

Payment St at ement . Text . G ossTot al =Total G oss Over Paynent
Paynent St at enment . Text . TaxTot al =Tot al Tax Deducti on

Paynent St at ement . Text. UtilityTotal =Total Uility Deduction
Paynent St at ement . Text . Li abi | 1 tyTotal =Total Liability Deduction
Payment St at ement . Text . Net Tot al =Net Under or Over Paynent

Example 8.14 A Sample PaymentStatement.properties File

Batch Function View

The batch function view is generated from the PARAM TAB LI ST domain.
It allows you to enter parameters to submit a batch program for execution.
The labels of each field are provided to the view by a single tab-delimited
string.

Addresses

The ADDRESS DATA domain type maps to a tag for entering and display-
ing addresses. Although the user sees several fields, addresses are stored as
asingle string field.Each of the fields displayed as part of the out-of-the-box
address are text input fields except for the state field which is drop-down
field.

To parse the address and display it, the elements that make up the address
have to be defined in the curam confi g. xm file. Different address
configurations for different locales in the Clram application can be defined.
Example 8.15, Address Configuration in curam-config.xml demonstrates
how to set this configuration using the ADDRESS CONFI G element.

<ADDRESS_CONFI G>
<LOCALE_MAPPI NG LOCALE="en_US"
ADDRESS_FORMAT_NAME="US"/ >
<LOCALE_MAPPI NG LOCALE="en_GB"
ADDRESS _FORMAT _NAME="UK"/ >
<ADDRESS FORVAT NAME="US" COUNTRY_CODE="US">
<ADDRESS ELEMENT LABEL="Addr ess. Label . Apt Sui t e"
NAVE=" ADD1" / >
<ADDRESS ELEMENT LABEL="Address. Label . Street. 1"
NAVE=" ADD2" / >
<ADDRESS ELEMENT LABEL="Address. Label . Street. 2"
NAVE=" ADD3" / >
<ADDRESS ELEMENT LABEL="Address. Label . City"
NAMVE="CI TY"/ >
<ADDRESS ELEMENT CODETABLE="Addr essSt at e"
LABEL="Addr ess. Label . St at e"
NAMVE=" STATE" / >
<ADDRESS_ELEMENT LABEL="Address. Label . Zi p"
NAMVE=" ZI P"/ >
</ ADDRESS_FORNAT>

<ADDRESS FORVAT NAME="UK" COUNTRY_CODE="GBR'>
<ADDRESS ELEMENT LABEL="Address. Label . Address. 1"
MANDATORY="t r ue" NAME="ADD1"/ >
<ADDRESS ELEMENT LABEL="Address. Label . Addr ess. 2"

242

Curam Web Client Reference Manual

NAVE=" ADD2" / >

<ADDRESS _ELEMENT LABEL="Address. Label . Address. 3"
NAMVE=" ADD3" / >

<ADDRESS ELEMENT LABEL="Address. Label . Addr ess. 4"
NAME=" ADD4" | >

<ADDRESS_ELEMENT LABEL="Address. Label . County"
NANVE=" ADD5" / >

<ADDRESS ELEMENT LABEL="Address. Label .City"
NAMVE="CI TY"/ >

<ADDRESS_ELEMENT LABEL="Address. Label . Post Code"
NAME=" POSTCODE" / >

<ADDRESS ELEMENT CODETABLE=" Country"
LABEL="Addr ess. Label . Count ry"
NAME=" COUNTRY" / >

</ ADDRESS FORVAT>
</ ADDRESS _CONFI G

Example 8.15 Address Configuration in curam-config.xml

The ADDRESS CONFI G element is built using multiple, LOC-

ALE MAPPI NG elements and ADDRESS FORMAT elements. In a situation
where the Caram application is deployed with multiple locales a devel oper
may wish to use different ADDRESS FORMAT tags for different locales.
To do thiswe use the LOCALE_MAPPI NG element. This element contains a
LOCALE attribute which defines the locde and an AD

DRESS FORMAT _NAME attribute which defines the ADDRESS FORNMAT
element to map to. By default, the OOTB Cudram application has two AD-

DRESS FORMAT elements defined. A US format which is automatically
mapped to the en_US locae and a UK format which is automatically
mapped to the en_ @B locale. As these locales are automatically mapped we
are not required to define LOCALE _MAPPI NG elements for them, but they
are shown in the example above to illustrate how the LOCALE MAPPI NG
element is used.

The ADDRESS FORVAT has an optional COUNTRY _CODE attribute which
is used in the address header when an address is first created. If it is not set,
the COUNTRY _CODE defaults to GBR when the address format specified is
UK and to US for everything else. The COUNTRY_CCDE is not used by the
infrastructure. It is one of the fields in the address string used by the applica-
tion, but infrastructure provides an initia valuefor it.

The ADDRESS FORMAT elements contain ADDRESS ELEMENT elements
which defines the fields in the address tag. The ADDRESS ELENMENT ele-
ment has a LABEL attribute which refers to properties contained in the
CDEJResour ces. properties file. This file is located in your
<client-dir>/JavaSource/ curanf onega3/i 18n folder. The
address is then built using ADDRESS ELEMENT tags which must be given
aname and label. Note that a code table can also be specified for each AD-
DRESS ELEMENT. When a code table is specified, a drop-down list will
display the code table entries and the default code will be pre-selected.

The optiona MANDATORY attribute specifies if an address element is re-
quired to be filled in. The Mandatory indicator is an asterisk beside the field
label as shown in the example above. Please note, that in order for MAN-

DATORY settingsincur am confi g. xm to work, the field supplying the

243

8.19

Curam Web Client Reference Manual

address data should be marked mandatory in application model.

Schedule View

The schedule view is used for any domain of the type SCHEDULE_DATA.
This view displays a grid of time-line information for the hours between 8
am and 8 pm. Each row in this grid represents a person whose full name is
displayed in the row header. Each cell in the person's row represents a half
hour period containing an indicator for whether they are available or not. If
auser clicks on afree cell, they should be linked to a page alowing them to
enter further schedule events.

The information and setup of this particular view involves a particular setup
in a page's UIM file. Example 8.16, UIM Example of Schedule View is an
example of the UIM for a schedule field.

<FI ELD>
<CONNECT>
<SOURCE NAME="ACTI ON' PROPERTY="schedul e"/>
</ CONNECT>
<CONNECT>
<LI NK PACE_| D="I nconeScr eeni ng_conf i r mMppoi nt nent " >
<CONNECT>
<SOURCE NAME="ACTI ON' PROPERTY="appoi nt ment Dat e"/ >
<TARGET NAME="PAGE" PROPERTY="date"/>
</ CONNECT>
<CONNECT>
<SOURCE NAME="ACTI ON' PROPERTY="user Ful | Name"/ >
<TARGET NAME="PAGE' PROPERTY="ful | User Nane"/ >
</ CONNECT>
<CONNECT>
<SOURCE NAME="ACTI ON' PROPERTY="user Nane"/ >
<TARCET NAME="PAGE' PROPERTY="user Nanme"/>
</ CONNECT>
<CONNECT>
<SOURCE NAME="PAGE' PROPERTY="casel D'/ >
<TARGET NAME="PACE"' PROPERTY="casel D'/ >
</ CONNECT>
<CONNECT>
<SOURCE NAME="PAGE' PROPERTY="pageDescription"/>
<TARCET NAME="PAGE' PROPERTY="pageDescription"/>
</ CONNECT>
</ LI NK>
</ FI ELD>

Example 8.16 UIM Example of Schedule View

The Caram page generator expects any schedule FI ELD element to be fol-
lowed by a LI NK element which details the PAGE | D of the page to go to
when a free cell is clicked on. The following three CONNECT elements
should be fields which provide the following attributes to the link: the date
of the day in question (the time is appended to this date); the full name of
the user; and the user's unique identifier. The order of these CONNECT ele-
mentsisimportant or the schedule view will not contain the correct links.

The SCHEDULE DATA domain is expected to be a list of user names and
32 bit schedule fields separated by atab. An example of one such element of
thislist would be:

John Smith<tab>16777212

244

8.20

8.21

8.21.1

Curam Web Client Reference Manual

Please note that 16777212 is the integer value which trandates to the bit
field 00000000111111111111111111111100. A one represents a half hour
when Mr. Smith is busy and a zero stands for free time. The bit field is read
from the least significant bit first, i.e. from right to left, with 8 am represen-
ted by the right-most bit. As we are dealing with a twelve hour period and
each bit stands for a half hour, only the first 24 bits are important. The last
byteis disregarded.

The rendered widget is displayed as series of horizontal rectangular blocks
(per user), with each block representing half an hour. Half hour blocks of
free time are displayed differently than the other blocks (busy) in terms of
color and size.

Radio Button Group

An aternative way to present a set of code table values is as a radio button
group, each radio button representing a code table item. To display in the
form of radio buttons, a field representing a code table value should be
mapped to the SHORT_CODETABLE_CODE domain or to a domain directly
inheriting from SHORT_CODETABLE_CODE.

Pop-up Pages

This section describes how to set up a pop-up page. The Clram application
has a number of built-in pop-up pages such as the Date Selector pop-up de-
scribed earlier which are “helpers’ used to enter data. Developers are aso
allowed to specify their own pop-up pages. For example, when scheduling a
meeting for a person you don't want the user to have to know or fill in that
persons unique ID. Instead the user should be provided with a search facility
or apre-populated list of valid options they can select from. Thisis achieved
in Cdram with pop-up pages.

The out-of-the-box pop-up widget has a input field (grey in color) with a
search - in the form of a magnifying glass - and a clear icon beside it. When
the user clicks on the search icon this will activate a pop-up page. The user
can select an item from the pop-page which will populate the text input field
on the pop-up widget.

The following sections describe the steps involved in creating a pop-up.

Configure the Pop-up Page

The first step is to configure the pop-up page. This is performed by the
POPUP_PAGES element in cur am conf i g. xm .

<POPUP_PAGES DI SPLAY_| MAGES="true| f al se">
<CLEAR TEXT_I MAGE>I mages/ m nus. gi f <CLEAR _TEXT_| MAGE>
<POPUP_PAGE PACE | D="Per sonSear ch"
CREATE_PAGE | D="Regi st er Per son"
CONTROL_TYPE="t ext under | i ne| t exti nput "
CONTROL_EDI TABLE="t rue| f al se"

245

Curam Web Client Reference Manual

CONTROL_| NSERT_MODE="overwite|insert| append">
<DOVAI N>PERSON _| D</ DOVAI N>
<W DTH>800</ W DTH>
<HElI GHT>600</ HEl GHT>
<SCROLLBARS>t r ue</ SCROLLBARS>
<| MACE>Il mages/ sear ch. gi f </ | MAGE>
<LABEL>Sear ch</ LABEL>
<CREATE_| MACGE>| nmages/ new. gi f </ CREATE | MAGE>
<CREATE_LABEL>New</ CREATE_LABEL>
</ POPUP_PAGE>
</ POPUP_PAGES>

Example 8.17 Pop-up Configuration Example

On the root element the DI SPLAY_| MAGES attribute can be used to con-
figure whether images or text is used for the actions which open a pop-up or
clear the currently selected value.

The nested elements are;

CLEAR _TEXT_| MAGE : The location of the image to use as a “clear this
text” button. Note that thisis an application wide setting.

POPUP_PAGE : For each domain definition which requires a pop-up there
must be instance of this element. Up to two pop-ups can be associated with
a single domain; one to search for an existing item, another to create a new
item. The following attributes and child elements control various aspects of
how the pop-up is presented to the user.

Name Description

PAGE I D Specifies the UIM page id of the pop-up pageto
open to search for an existing item.

CREATE_PAGE | D Specifiesthe UIM pageid of the the pop-up pageto
open to create anew item.

CONTROL_TYPE Specifies the type of control where the value re-
turned from the pop-up will be written to. The de-
fault valueist ext under | i ne which displays
static text with an underline. To display atext input
field set thevaluetot ext i nput . When aatextin-
put control is configured, on the UIM FI ELD which
uses a pop-up, the HEI GHT attribute can be used to
change from a single line text input to a multi-line
text area.

CON- This attribute is only valid when CONTROL_ TYPE

TROL_EDI TABLE issettot exti nput . It controls whether the text
input field is editable or not. Settot r ue to create a
editablefield and f al se to create anon-editable
field. Note that Internet Explorer does not give any
visual indication that the text input field is not edit-
able.

CON- This attribute is only valid when CONTROL_ TYPE
TROL_I NSERT_MO issettot exti nput . It alowsyou to configure

246

Name

Curam Web Client Reference Manual

Description

how a value selected from a pop-up is inserted into
the associated input control. The default isover -

wr i t e which means the selected value will over-
write the previous contents. Setting the attribute to

i nsert means the selected value will be inserted at
the current cursor position. Setting the attribute to
append means the selected value will be appended
to the previous contents of the input control.

Table 8.10 Attributes of the POPUP_PACE element.

Name
DOVAI N

CT_CODE

W DTH

HEl GHT

I MAGE

Description

Domain used to identify this pop-up page. If a

FI ELD element with a TARGET connection is based
on this domain, a pop-up will be used instead of a
standard text entry box.

Thisis asecond way to identify a pop-up page. The
attribute contains a code table code value and is
used when associating multiple pop-up pages with a
singlefield and is described in further detail below.
Width in pixels of pop-up dialog. Thiselement is
optional. If not included, the default width of 600
pixelswill be used.

Height in pixels of pop-up dialog. Thiselement is
optional. If not included, the height will be automat-
ically calculated based on the page contents.

L ocation of image which when clicked launches the
pop-up defined by the POPUP_PAGE element's
PAGE_| D attribute.

| MAGE_PROPERTY Optional key in the CDEJRe-

sour ces. properti es fileunder which the loc-
ale-specific location of the pop-up launcher image
otherwise specified by | MAGE attribute is stored. If
the | MAGE is also specified for the same configura-
tion, it will take precedence over the | M
AGE_PROPERTY and this attribute will be ignored.

HI GH_CONTRAST_ Location of the high contrast image which when

I MAGE

clicked launches the pop-up defined by the
POPUP_PAGE element's PAGE_| D attribute.

HI GH_CONTRAST_ Optional key in the CDEJ Re-
| MAGE_PROPERTY sources. properti es fileunder which theloc-

ale-specific location of the pop-up launcher image
otherwise specified by H GH_CONTRAST _| MACGE
attribute is stored. If the

247

8.21.2

Curam Web Client Reference Manual

Name Description

HI GH_CONTRAST _| MAGE is aso specified for the
same configuration, it will take precedence over the
HI GH_CONTRAST_| MAGE_PROPERTY and this
attribute will be ignored.

LABEL Alternate text for the image defined by the | MAGE
element. If the POPUP_PAGE element's DI S-
PLAY_| MAGES attributeissettof al se, thistext
will be displayed instead of the image.

LABEL_PROPERTY Optiona key in the CDEJRe-
sour ces. properti es fileunder which the loc-
ale-specific value of the label attribute otherwise
specified by the LABEL attributeis stored. If LA-
BEL is also specified for the same configuration, it
will take precedence over the LABEL_PROPERTY
and this attribute will be ignored.

CREATE | MAGE Location of image which when clicked launches the
pop-up defined by the POPUP_ PAGE element's
CREATE_PAGE | D attribute.

CRE- Optional key in the CDEJRe-
ATE | MAGE_PROP sources. properti es fileunder which the loc-
ERTY ale-specific location of the pop-up launcher image

otherwise specified by CREATE | MAGE attribute is
stored. If the CREATE_| MAGE isalso specified for
the same configuration, it will take precedence over
the CREATE_| MAGE_PROPERTY and this attribute
will be ignored.

CREATE_LABEL Alternate text for the image defined by the CRE-
ATE_| MACE element. If the POPUP_PACE ele-
ment's DI SPLAY | MAGES attributeis set to
f al se, thistext will be displayed instead of the im-

age.
CRE- Optional key in the CDEJRe-
ATE _LABEL_PROP sources. properti es fileunder which the loc-
ERTY ale-specific value otherwise specified by the CRE-

ATE_LABEL attribute is stored. If the CRE-
ATE_LABEL isalso specified for the configuration,
it will take precedence over the CRE-

ATE_LABEL PROPERTY and this attribute will be
ignored.

Table 8.11 Child elements of t he POPUP_PAGE element.

Create the Pop-up Page

A Curam pop-up page is written in UIM. It can be written to display a set of

248

Curam Web Client Reference Manual

existing items for the user to select from or to register a completely new
item.

A pop-up which returns existing items

The following is an example of a pop-up page which accepts user input, dis-
plays a list of search results, one of which can be selected and its unique
identifier returned to the parent page.

<PAGE PAGE | D="Person_search" POPUP_PAGE="true">
<PAGE_TI TLE | CON="Per sonSear chPagel con" >
<CONNECT>
<SOURCE NAME="TEXT"
PROPERTY="PageTitl e. Stati cText1"/>
</ CONNECT>
</ PAGE_TI TLE>
<SERVER | NTERFACE NAME="ACTI ON'
CLASS=" Per son"
OPERATI ON="sear ch”
PHASE=" ACTI ON"
/>
<CLUSTER NUM COLS="2" TITLE="Cluster.Title.SearchCriteria">

<ACTI ON_SET ALI GNMENT="CENTER"' TOP="fal se">
<ACTI ON_CONTROL LABEL="Acti onControl.Label. Search"
TYPE="SUBM T" DEFAULT="true">
<LI NK PAGE | D="THI S"/ >
</ ACTI ON_CONTROL>
<ACTI ON_CONTROL LABEL="Acti onControl.Label. Cancel"
| MAGE=" Cancel Butt on" TYPE="DI SM SS"/ >
</ ACTI ON_SET>

<FI ELD LABEL="Fi el d. Label . Ref er enceNunber " >
<CONNECT>
<TARGET NAME="ACTI ON"
PROPERTY=" per sonSear chKey$r ef er enceNunber "/ >
</ CONNECT>
</ Fl ELD>
</ CLUSTER>

<LI ST TITLE="List.Title.SearchResults">
<CONTAI NER LABEL="Cont ai ner. Label . Acti on" >
<ACT|I ON_CONTROL LABEL="ActionControl . Label . Sel ect"
TYPE="DI SM SS" >
<Ll NK>
<CONNECT>
<SOURCE NAME="ACTI ON' PROPERTY="dt | s$personl D" />
<TARGET NAME="PAGE' PROPERTY="val ue" />
</ CONNECT>
<CONNECT>
<SOURCE NANME=" ACTI ON"
PROPERTY="dt | s$per sonFul | Nane" />
<TARGET NAME="PAGE"' PROPERTY="descri ption" />
</ CONNECT>
</ LI NK>
</ ACTI ON_CONTROL>
</ CONTAI NER>
<FI ELD LABEL="Fi el d. Titl e. Ref er enceNunber" >
<CONNECT>
<SOURCE NANME="ACTI ON' PROPERTY="dt | s$ref erenceNunber"/>
</ CONNECT>
</ Fl ELD>
<FI ELD LABEL="Fi el d. Title. FirstNane">
<CONNECT>
<SOURCE NAME="ACTI ON' PROPERTY="dt | s$per sonNanme"/ >
</ CONNECT>
</ Fl ELD>
</ LI ST>
</ PAGE>

249

Curam Web Client Reference Manual

The points to note about this example are:

e The PAGE | D attributes of the UIM PAGE element and the
POPUP_PAGE element incur am conf i g. xm must match.

* The POPUP_PAGE attribute of the UIM PAGE element must be set to
true.

* The submit action is linked to THI S. This means the page will be redis-
played after the submit button is pressed.

e To cancel the pop-up an action control of type DI SM SS is used. If the
action control does not have a child LI NK element, the pop-up will be
closed without returning any values to the parent page which opened it.

* The search results list in this example is made up of three columns. The
first contains a link which will close the pop-up and return the selected
values, the remaining columns display further information about the per-
son.

* To close the pop-up and return values, an action control of type DI S-
M SS is used. Thisis placed in a CONTAI NER so it is the first column
in the search results list. The user can click this link to select one of the
search results.

* To specify what values should be returned a child L1 NK element is ad-
ded to the action control. When used in an action control to close a pop-
up all standard attributes of the LI NK element (e.g. PAGE | D) have no
meaning and will be ignored.

» For Caram pop-up pages two values must always be returned. These are
specified using CONNECT elements. Both connections must use a target
of PAGE and have the PROPERTY set to val ue and descri pti on.
The val ue connection specifies the value required on the page that
opened the pop-up, in this example the persons unique record ID. The
descri pti on connection specifies descriptive text to be shown to the
user, in this example the person’'s name. So, on the page which opened
the pop-up, the person’'s name will be displayed to the user, but it is their
unique 1D which will be submitted to the server.

It is not necessary for pop-up pages to accept input. For example, the L1 ST
can be populated from a display phase server interface if necessary.

A pop-up which creates a new item

A pop-up may also create a new item and have the newly generated unique
identifier for that item returned to the parent page. To do this create a page
which a ACTI ON_CONTROL of type SUBM T_AND DI SM SS must be

used. For example;
<ACTI ON_CONTROL TYPE="SUBM T_AND DI SM SS" LABEL="Button. Submit">
<CONNECT>

<SOURCE NAME="ACTI ON' PROPERTY="dt| s$personl D' />
<TARGET NAME="PAGE' PROPERTY="val ue" />

250

8.21.3

Curam Web Client Reference Manual

</ CONNECT>
<CONNECT>
<SOURCE NAME=" ACTI ON'
PROPERTY="dt | s$per sonFul | Nane" />
<TARGET NAME="PAGE" PROPERTY="descri ption" />
</ CONNECT>
</ ACTI ON_CONTROL>
Once the type attribute is set to SUBM T_AND_DI SM SS the rules for the
child L1 NK and CONNECT element is the same as described in the previous
section for a DI SM SS action control. After the form is successfully sub-

mitted the pop-up will be dismissed and the new values returned to the par-
ent page.

Using the Pop-up Page

Pop-up pages are opened using standard UIM FI ELD elements. If the field
has a target connection which is based on a domain as configured in
curam config. xm alink to open the pop-up will be generated rather
than a standard text entry field. This is illustrated in the screen shot above
with the “Preferred Office” input field.

The following is the most basic example of a Fl ELD opening a pop-up. Itis
from an insert page so only a target connection is specified. Using the cur-
rent example, the person's unique ID will be assigned to the field specified
in the target connection and the person’'s name will only be used for visual
purpose to display to the user.

<FI ELD LABEL="Fi el d. Label . per son">
<CONNECT>
<TARCET NAME="ACTI ON'* PROPERTY="personl D'/ >
</ CONNECT>
</ Fl ELD>

Example 8.18 Opening a Pop-up from an Insert Page

The following example is from a modify page which means the field will
have a source value which must be displayed to the user. It is dlightly more
complex that standard fields on a modify page because there are actualy
two source values to handled. The person's unique ID and the person's
name. In this case the | NI TI AL connection is used to specify the person's
name. This will only be used to display to the user and note that is not sub-
mitted to the server. Following that the field is just like any other on a modi-
fy page. The source connection specifies the existing value of the field, the
target connection specifies where the value should be submitted to.

<FI ELD LABEL="Fi el d. Label . per son" >
<CONNECT>
<I NI TI AL NAME="DI SPLAY" PROPERTY="per sonNane"/ >
</ CONNECT>
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="personl D'/ >
</ CONNECT>
<CONNECT>
<TARGET NAME="ACTI ON' PROPERTY="personl D'/ >
</ CONNECT>
</ Fl ELD>

251

8.21.4

8.21.5

Curam Web Client Reference Manual

Example 8.19 Opening a Pop-up from a Modify Page

When invoking a pop-up it is also possible to supply page parameters to the
pop-up. Thisis a dight variation on the two examples above and involves
the use of the LI NK element. The following is an example of two paramet-
ers passed to a pop-up page, one sourced from an existing page parameter,
the other from a server interface property. When a Ll NK element is used in
this context no attributes such as PAGE | D should be specified. Also a
TEXT source connection cannot be used to supply a parameter to a pop-up

page.

<FI ELD LABEL="Fi el d. Label . per son">
<CONNECT>
<TARGET NAME="ACTI ON' PROPERTY="personl D'/ >
</ CONNECT>
<Ll NK>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personl D'/ >
<TARGET NAME="PAGE' PROPERTY="paraml"/>
</ CONNECT>
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="personNanme"/>
<TARGET NAME="PAGE' PROPERTY="parank"/>
</ CONNECT>
</ LI NK>
</ FI ELD>

Example 8.20 Supplying Parameters to a Pop-up Page

Using Multiple Pop-up Search Pages for a Single Field

In some cases we need to search for different types of Curam entities but
that search is associated with asingle field. For example you may have are-
quirement to search for a Caram client which has a generic domain of
CURAM _CLI ENT_I D. This could be a person, an employer, a product pro-
vider etc. Individual search pages may already exist for these types so you
should be able to reuse them. Assuming the pop-up search pages already ex-
Ist, this involves two extra steps which are described in the following sec-
tions and. The resulting pop-up widget is as described in Section 8.21, Pop-
up Pages except that there is an additional drop-down field rendered to the
left of the text input field. In order to activate the pop-up page for this wid-
get, the user first selects the type of search to be performed from the drop
down list and then clicks on the search icon.

Configure the Multiple Pop-up Page

This can be configured through the MULTI PLE_POPUP_DOMAI NS ele-
ment incur am conf i g. xm . Thefollowing is an example:

<MULTI PLE_POPUP_DONAI NS>
<CLEAR TEXT_| MAGE>| mages/ cl ear . gi f </ CLEAR TEXT | MAGE>
<MULTI PLE_POPUP_DONAI N>
<DOVAI N>CURAM CLI ENT _| D</ DOVAI N>
<LABEL>Sear ch</ LABEL>
<| MACE>l mages/ sear ch. gi f </ | MAGE>

252

8.21.6

Curam Web Client Reference Manual

</ MULTI PLE_POPUP_DOMAI N>
</ MULTI PLE_POPUP_DOMAI NS>

Example 8.21 Multiple Pop-up Domains

The nested elements are;

CLEAR_TEXT | MAGE : The location of the image to use asa*“ clear this
text” button. Thisis an application wide setting.

MULTI PLE_POPUP_DOMAI N : For each domain which you wish to asso-
ciate multiple pop-up windows create an instance of this element.

DOVAI N : The name of the domain which is associated with multiple pop-
up windows

I MACGE : Location of image to be used for pop-up icon.
LABEL : Alternate text to be used for pop-up icon.

As shown above, when using multiple pop-up pages a drop-down list is re-
quired to select the pop-up type. This drop-down list is populated as normal
from a code-table. The code-table codes are the link between the drop-down
list and pop-up that is opened. This requires the CT__CODE child element of
the POPUP_ PAGE element to be set to the code-table code value.

Using the Multiple Pop-up Page

Once the configuration is done the final step is the write the UIM necessary
to display the pop-up search.

<CONTAI NER LABEL="Label . person">
<Fl ELD LABEL="Fi el d. Label ">
<CONNECT>
<TARGET PROPERTY="popupType" NAME="ACTI ON'/>
</ CONNECT>
</ Fl ELD>
<Fl ELD LABEL="Fi el d. Label ">
<CONNECT>
<TARGET PROPERTY="clientl D' NAME="ACTI ON'/>
</ CONNECT>
</ Fl ELD>
</ CONTAI NER>

Example 8.22 UIM to Use Multiple Pop-up Windows

The main points to note are:

* A CONTAI NER and two FI ELD elements are required, one for the drop-
down list, the other for the value which will be returned from the pop-
up. The container must not include any other FI ELD elements.

» Thefirst field should be based on a code-table domain which contains a
list of codes which corresponds to the CT_CODE element described
earlier.

* The second field should have a target connection which is based on a
domain using the MULTI PLE_POPUP_DOVAI N element.

253

Curam Web Client Reference Manual

8.22 Agenda Player

8.22.1

The Agenda Player (or player for short) is a wizard-like control which
provides guided navigation through a specified set of screens. As the name
implies the screens in the Agenda Player are supposed to be part of a certain
agenda or scenario, most typically involving step-by-step collecting of in-

formation.

This wizard will guide you through the required application screens.

This is the default {unconfigured) title
1.Extended Characters 1
2.Extended Characters 2
3.Extended Characters 3

4.File upload and modals
5.Embedded chart

6.Evidence tab container

7. Meeting wiew

8.Multi Select Lisk

Surnmary Page

Cancel

Back to the Overview Page

Queskionnaire 1 Questionnaire 2

Questions
wehat is your gender?

Do you have trouble breathing when you walk?

Back to the Qverview Page

Figure 8.13 Agenda Player Example

i Note

i of & pages completed ﬂﬂﬂuﬂ uu

Answers
Question Mok Asked [View (Mockapp Override)]

yes

Back Hext

Agenda Player widget is not supported outside the modal dialog
context, an attempt to open it in the tab content panel or elsewhere
(e.g., astheinline page of an expandable list) will lead to an explicit
error message stating this.

Agenda Player screen structure

Depending on how the Agenda Player player is configured, the screen is di-
vided into either three or four parts:

« Along the top is the Agenda Player header. It contains a customizable
Agenda Player title on the left and, where appropriate, a progress bar on
the top right, which shows the user's progress through the agenda. The
steps completed in the progress bar will be shaded in color whereas the
steps that have yet to be completed will not. See Figure 8.13, Agenda
Player Example for more details.

* Ontheleft of an Agenda Player, a navigation panel (optional) shows the
list of pages in the current agenda. The user's progress through the se-
quence is continuously displayed there (in addition to progress bar) by
highlighting of the current page. The appearance and behavior of the

254

Curam Web Client Reference Manual

other pages in the agenda depends on the mode used (see below). The
pages in an agenda can be grouped into sections and the player provides
the ability to collapse and expand visited sections.

At the bottom of the navigation panel is the summary link, which allows
users to jump directly to the player summary page (they would also get
there by navigating through all the pages in the agenda). The summary
link is only displayed if there is an appropriate element specified in the
agenda XML. The navigation panel is not displayed in the navigator-less
(claimant) view of the Agenda Player.

Along the bottom, a set of buttons is displayed to allow the user to step
forward and back through the Agenda Player. There are also buttons to
jump to the summary page (displayed optionaly) and to quit the Play-
er.See Figure 8.13, Agenda Player Example for more details.

i Note

The text used for these buttons can be customized (see below).
However, for the remainder of this section they are further re-
ferred as the Back, Next, Finish and Cancel buttons, which are
their default captions.

The main area of the screen is the content area. This area displays nor-
mal client pages which might also be used outside of the Agenda Player.

8.22.2 Navigation modes

In addition to using the back and next buttons to navigate through an
agenda, the player can provide additiona options in the navigation pand,
depending on the mode used.

The Agenda Player can be configured to operate in one of three navigation
modes: basi c, i ncrenental orfull,withincrenmental mode be-
ing the default.

The basi ¢ mode is used for strictly sequential navigation through the
agenda pages. In this mode the navigation panel isjust used for addition-
al information, indicating which page the user is currently on. The only
navigation means are the standard player buttons.

The i ncr ement al mode expands on the basi ¢ mode by providing
links in the navigation panel to any pages which have already been vis-
ited. A user can use these links to skip back and forward between previ-
oudly visited pages, but will still need to use the next button to progress
any further.

Theful I modeis actually a non-sequential mode as all the navigation
panel elements are initially rendered as links. Sequential advancing is
possible here as well, as the player buttons are fully functional, but there
are no restrictions placed on the order in which you navigate through the
agenda. This, however, means that things related to the sequentia pro-

255

8.22.3

8.22.4

Curam Web Client Reference Manual

gress might be unavailable, or not work properly in this mode (for ex-
ample, the progress bar is not displayed for this mode at all; dynamic
parameters might not be available if a screen which expects these para-
meters is visited before the one where these parameters are initialized,
etc.). Because of thisthe f ul | navigation mode should be used where
specifically required and the agenda should be designed/configured
keeping in mind the possible consequences.

Agenda Player mode configuration is described in Section 8.22.4,
Agenda Player Configuration

Note

Within the Player screens there might be hyperlinks leading to other
pages, which open in the client area, yet do not belong to the spe-
cified Player screen set. In this case all the navigation means on the
Player, including buttons and links rendered for i ncr enent al or
ful I mode are disabled until the flow returns back to an Agenda
Player screen. This meansin particular that such a'side’ page should
provide means of returning to the AgendaPlayer page flow (by link-
ing to the appropriate page or closing the modal opened from the

Player).

=o

Navigator-less View

By default, an Agenda Player is displayed with all the screen parts present.
However, in some situations, you may like to simplify the view and behavi-
or of the player using the view without the navigation panel (also called
Claimant view after the expected usage - i.e. online claimants). In this view
Agenda Player is displayed without the navigation panel. Only the standard
player buttons can be used for navigation, so the mode setting is effectively
ignored.

The fourth player button, Finish, is automatically available om the button
bar at the bottom of the page (see Figure 8.13, Agenda Player Example for
more details) for the Claimant view. The button makes it possible to jump
directly to the summary page rather than having to advance to it through all
the pages. It is shown only when there is a summary page present in the
agenda XML returned from the server.

Player configuration to allow for Claimant view is described in the section
below.

Agenda Player Configuration

The Agenda Player can be configured by adding/modifying entries in
AgendaConfi g. xm . A version of this file should be in your conpon-
ent s directory.

The following is an example of the Agenda Player configuration file con-
tents:

256

8.22.5

Curam Web Client Reference Manual

<AGENDA>
<PLAYER | D="Def aul t Confi g" Tl TLE="Default. Title"
MODE="i ncrenent al " CONFI RM QUI T="f al se"/>

<PLAYER | D="d ai mant . Config" TITLE="Cl ai mant. Title"
NAVI GATOR- HI DDEN="t r ue" MODE="i ncr enent al "
CONFI RM QUI T="t rue"/ >
</ AGENDA>
The attributes that can be used for particular configuration (PLAYER €ele-

ment) are as follows.

Attribute Description

I D The ID of this particular configuration
(referred to by CONFI Gattribute of FI ELD
element in UIM which contains Agenda
Player).

TI TLE Title key for Agenda Player title, displayed
on its header. Thiskey isused to look up
customized/localized title from appropriate
propertiesfile as described in Section 8.22.5,
Agenda Player Customization.

MODE This attribute allows for specifying Agenda
Player navigation mode. It might have val-
uesof basi c,i ncrenental orfull,

i ncrenment al being the default one, used
if the attribute is skipped in an configuration.

NAVI GATOR- HI DDEN When this attribute is specified and set to
t r ue, Agenda Player will be displayed in
Claimant View (see above).

CONFI RM QUI' T This attribute can be used to display a con-
firmation dialog when a user clicks on the
Cancel button. When present and set to
t r ue, aconfirmation dialog will be dis-
played to confirm the user's intention to quit
the Agenda Player or to cancel and return to
the player.

Table 8.12 Attributes of the PLAYER element

Agenda Player Customization

The Agenda Player comes with support for customization/localization of
certain elements. The elements which can be customized are the player title,
Progress Bar text, the player button texts, the quit confirm dialog text and
descriptions for each of the framesin the player.

Player related properties are kept in the files
<client-dir>/JavaSour ce/ curam onega3/i 18n/ CDEJResou
rces. properties and

257

8.22.6

Curam Web Client Reference Manual

<cl i ent-dir>/conponent s/ <conponent nane>/ AgendaPl ay
er. properties. where <conponent _name> represents the name of
the component where the customizations are being applied.

Player title is customized by specifying custom value under the key used for
it in AgendaConfi g. xm (see above). The value under the key is to be
placed into AgendaPl ayer . properti es.

The Progress Bar text is customized within an Agenda Player header by
modifying the AgendaPl ayer . properti es file to include values for
the keys: Progress. Bar. Prefi x, Progress. Bar. M ddl e, Pro-
gress. Bar . Suf fi x. Please note that all three keys must be present with
blank values for unused ones in order to ensure clean rendering of the cus-
tomized Progress Bar text. If this is not the case then a situation may occur
where a non-blank default value is used instead of one undefined.

The text strings associated with Agenda Player control buttons are custom-
izable in the file CDEJResour ces. properti es and defined by proper-

ties wi zard. button. back.titl e, W zZ-
ard. button.forward.titl e,
wi zard. button.finish.title, and W zZ-

ard. button.quit.title.

The frame descriptions are useful for users of screen readers but don't ap-
pear visually on the screen. The entries for frame description customizations
in CDEJResour ces. properties are wi zard. franmeset.titl e,
w zard. header.frane.titl e, W Z-
ard. navigation.frane.title, W z-
ard.content.franme.title,w zard. button.frane.title.

2

n Note

The Agenda Player was formerly known as the Wizard widget, so
severa attribute and property names still refer to wizard.

In order to change the default question in the quit confirmation dialog, the
property Quit. D al og. Question should be added/changed in
AgendaPl ayer . properties.

Player data

There are some specific UIM pages related with Agenda Player:

» Navigation page: Each Player requires a navigation page that will be-
come the navigation panel of the Agenda Player. This page has two re-
quired characteristics. First, the root PAGE element has a TYPE of
SPLI T_W NDOW This indicates that the page will form part of aframe-
set. Second, the page contains a field with a single source connection
and domain type AGENDA XML.. This field supplies the Agenda Player
with the list of pages, parameters and other information that drives the
Agenda Player.

* Summary page: This page is optional and might just be a regular UIM

258

Curam Web Client Reference Manual

page. However, summary page, specifically displaying summary of vis-
ited and unvisited pages is also available. If thisinformation isto be dis-
played in a summary page, a W DGET element with TYPE attribute set
to W ZARD SUMVARY should be present among page elements.

» Exit page: Thisis aregular UIM page to which the user is forwarded
after quitting the player.

The following is an example of the UIM used to specify the navigation
page. It contains a single field which supplies the agenda XML data.

<PACE PACE_| D="W zardTest" TYPE="SPLI T_W NDOW >

<PAGE_TI TLE>
<CONNECT>
<SOURCE NAVE="TEXT" PROPERTY="page.title"/>
</ CONNECT>
</ PAGE_TI TLE>

<SERVER | NTERFACE NAME="DI SPLAY" CLASS="Agenda"
OPERATI ON=" get Agenda"/ >

<PAGE_PARAMETER NAME="agendaRef"/>

<CONNECT>
<SOURCE NAME="PAGE' PROPERTY="agendaRef"/>
<TARGET NAME="DI SPLAY" PROPERTY="key$agendaRef"/>
</ CONNECT>

<CLUSTER SHOW LABELS="f al se" >
<FI ELD>
<CONNECT>
<SOURCE NAME="DI SPLAY" PROPERTY="agendaXM."/>
</ CONNECT>
</ FI ELD>
</ CLUSTER>

</ PAGE>

Thefollowing is an example of a specific summary page:
<PAGE PACE_|I D="W zar dSumar y" >

<PAGE_TI TLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>
</ CONNECT>
</ PAGE_TI TLE>

<CLUSTER SHOW LABELS="fal se" TITLE="Cluster.Title">
<W DCGET TYPE="W ZARD SUMVARY"/ >
</ CLUSTER>

</ PAGE>
The agenda data that drives the Player looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<agenda>
<page-f | ow>
<section description="First section"
st at us="SCT1" >
<page i d="Person_honePage" descri pti on="Home"
status="SC1" initial="true"
submi t onnext ="t rue"/>
</ section>
<section description="Second section"
st at us="SCT2" >
<page i d="Person_|i st Address" status="SC2"
descri pti on="Addr esses"/ >

259

Curam Web Client Reference Manual

<page i d="Person_|istBankAccount" status="SC1"
descri pti on="Bank Accounts"
submi t onnext ="t rue"/>
<page i d="Person_|i st Conmuni cati on" status="SC3"
descri pti on="Comuni cati ons"/ >
<page i d="Person_|i st Task" status="SC2"
descri pti on="Tasks"/>
<page i d="Person_listCtizenship" status="SC2"
description="Citi zenshi ps"/>
<page i d="Person_|istFinancial" status="SC2"
descri pti on="Fi nanci al "/ >
<page i d="Person_|istNote" status="SC4"
descri pti on="Not es"/>
</ section>
<sunmary i d="W zar dSunmary"
descri pti on="Sunmary Page"
cl ose-on-subm t="true"
st at us="SCT3"/ >
</ page-f | ow>
<par anet er s>
<par anet er nanme="concernRol el D' val ue="101"/>
<par anet er nane="dynani cParanf val ue="0"/>
</ par amet er s>
<exit-page id="Person_honmePage" >
<par anet er s>
<par anet er nanme="concernRol el D' val ue="101"/>
</ par anet er s>
</ exi t - page>
</ agenda>

Thereis one page element per screen to be displayed in the Agenda Player.
The attributes that can be used in this element are as follows.

Attribute Description

id The page id for the page (as set in the
PACGE | D of the PAGE element in the page's
UIM definition).

description The description of the page that will be dis-
played in the Navigation Panel.

st at us A status code that is mapped to an image.

initial Settot r ue if thisisthe page that should be
displayed when the Agenda Player isfirst
opened.

di sabl eback Settot r ue if the Back button should be
disabled on this page.

di sabl ef or war d Settot r ue if the Forward button should be
disabled on this page.

subm t onnext Settot r ue if the Forward button should
submit the form on this page.

cl ose-on-subm t This attribute appliesto sumrar y element
only and alows for alternative way of quit-
ing the player, as described below.

Table 8.13 Attributes of the page element

The important features to note are:

260

Curam Web Client Reference Manual

The sequence of screens in the Agenda Player is exactly as listed in the
agenda data.

One of the pages in the Agenda Player can be marked as the start page
by setting thei ni ti al attribute tot r ue. When the Agenda Player is
first displayed, this page will be loaded but it will still be possible to
navigate back to previous pages. If the Player is configured to use i n-

crenment al mode, pages prior to the initial pages on the navigation
panel will be rendered as hyperlinks; for af ul | navigation mode all the
page items except current one will be hyperlinks.

In the XML sent back by the application server, the page elements
might be contained within secti on elements or there might be no
section element at al. The optional sunmar y element, however, is
to be always placed directly within page- f | ow.

All pagesin the Agenda Player take the same set of parameters or a sub-
set thereof. These parameters are specified in the agenda data.

Page parameters can aso be dynamic. These parameters initialy carry
specia value of 0 (note dynam cPar amin the Agenda Player sample
data above) and are intended to be initialized during user interaction
with Agenda Player (e.g., user ID is only available after a user registers
herself).

Theexi t - page denotes the page which the user will be taken to when
the Cancel button is clicked. This page will completely replace the
Agenda Player and can be any page in the application with any paramet-
ers (matching those specified by exit-page paraneter sub-
elementsin agenda XML from the server).

When submi t onnext isset for a page, the submit button on that page
(there should only be one) will be hidden when it is displayed within the
player. The player's Next button can be used to submit the form instead
and will proceed to the next page if no validation error occurs. If there
are validation errors, the page will return to itself displaying the valida-
tion errors on the top, as it would for any other application page.

To alow for pages where the record itself is optiona (i.e. you could
move on to the next screen without creating one), but some of the fields
are mandatory, if you do try to create arecord, the infrastructure will not
perform mandatory field validations if no value has been entered/chosen
for any field on the page. The appropriate server interface will still be
called, so it is up to the application logic to work out what was intended
(e.g. don't create a record, delete an existing record, etc.). This behavior
only applieswhen using the submi t onnext feature.

The summary page can provide an aternative way to quit the Player. In
order to do this, the summary page should contain a submit button, and
the summary element in the agenda XML from the server should have
cl ose-on-subm t specified and set to bet r ue. If the user clickson
the submit button on such a summary page and the submit succeeds, the

261

8.23

Curam Web Client Reference Manual

player closes down and the user is forwarded to whatever page is spe-
cified by the link associated with the submit button.

» Each page can be assigned a status code using the st at us. These status
codes can be anything at al as long as they are mapped in the | m
ageMapConfi g. xm file under the domain AGENDA XM.. When the
list of pages is displayed in the left column, each will have an icon at-
tached corresponding to its status code.

The following is an example of mapping status codes to images the | m

ageMapConfi g. xnl file.
<domai n nane="AGENDA XM." >
<l ocal e name="en">

<mappi ng val ue="SC1" image="1mages/ W zard/statusl.gif"
alt="English text..."/>

%ﬁépping val ue="SC4" image="|nmages/ W zard/ status4.gif"

alt="English text..."/>
</l ocal e>
<l ocal e nane="fr">
<mappi ng val ue="SC1" i mge="1mages/ W zard/statusl.gif"
alt="French text..."/>
</l ocal e>
</ dormi n>

The appearance of the Agenda Player control buttons, the summary screen
and the navigation is defined in CSS. For details, please see Section 3.12.11,
Cascading Styleshesets.

The UIM CONDI TI ON element allows for the conditiona display of action
controls, clusters or lists on a page that is displayed within an Agenda Play-
er (see See Section 5.9.6, CONDITION for more details on the condition
element). To hide/display elements based on whether the page is in an
Agenda Player or not, the NAME and PROPERTY attributes can only have
the values CONTEXT and i nW zar d respectively.

<ACTI ON_SET ...>
<CONDI Tl ON>
<I'S_TRUE NAME="CONTEXT" PROPERTY="inW zard"/>
</ CONDI TI ON>

</ ACTI ON_SET>

Example 8.23 Condition example:

This indicates that the action set should be displayed only when that Action
Set is on apage that is displaying within a Agenda Player.

LOCALI ZED MESSAGE Domain

The LOCALI ZED MESSACE domain allows entries in a server message
catalog to be displayed on a client screen. The domain is string based but
expects the string to be formatted in specific way. The Cdram Server Devel-
opment Environment (SDEJ) provides support for formatting a message
catalog entry in this way so it can be returned to the client. See the Clram

262

8.24

8.24.1

Curam Web Client Reference Manual

Server Developers Guide for full details on working with message catal ogs.

Once the message catalog entry has been formatted on the server side it
should be assigned to afield which is based on the LOCALI ZED _MESSAGE
domain and returned to the client. The message entry will be displayed ac-
cording to the current locale and values will be assigned to the message
placeholders.

Decision Assist: Decision Matrix Widget

Overview
The Decision Matrix widget is a control that is used to construct question-

naires. Refer to the Decision Assist Administration Class and Widget Over-
view chapter in the Inside Cdram Decision Assist Guide for more details.

263

9.1

9.2

9.3

Chapter 9

Custom Data Conversion and Sorting

Objective

This chapter describes how to customize the data formatting, parsing, valid-
ation and sorting behavior of a Cdram web application.

Prerequisites

Y ou should be familiar with the concept of domain definitions described in
the Domain Definitions chapter of the Ciram Modeling Reference Guide,
the development of client application pages, and basic Java programming.

Introduction

Custom data conversion and sorting allows most aspects of the management
of data in the presentation layer of Curam applications to be customized.
Customizations can control how data is formatted, parsed, validated and sor-
ted; error reporting can also be customized and controlled. Operations are
performed on data values according to a well-defined data life-cycle and, at
each stage, the operations can be customized. To understand how, when,
and where to customize the operations, you must first understand the opera-
tions available and how they fit into the life-cycle.

[Unsupported Customizations

This chapter describes the supported mechanisms for the customiza-
tion of data conversion and comparison operations. For complete-
ness, and to aid understanding, some operations are described, but
the corresponding customization mechanisms are not documented,
as customization of these operations is not supported (or not suppor-
ted using the programmatic mechanisms described here).

The descriptions of the Java interfaces and classes presented here

264

Curam Web Client Reference Manual

may be incomplete, as unsupported methods may be omitted from
their descriptions for clarity. However, the JavaDoc documentation
for these interfaces and classes may include more information and
describe more comprehensive customization mechanisms, but only
the mechanisms described here are supported.

9.4 Data Conversion and Sorting Operations

The are anumber of operations that are carried out on data values by the cli-
ent infrastructure. Some are controlled by the domain definition options that
were set in the UML model and are performed automatically, others are
controlled by domain-specific plug-ins that can be overridden and custom-
ized; these plug-ins will be described later. First, the operations that are per-
formed on the data values need to be understood:

format

When datais retrieved from the application server, it is represented by a
Java object appropriate to the root domain of the data. For example, a
vaue in the SVR INT64 doman is represented as a
j ava. | ang. Long object. The format operation is responsible for
converting these objects to their string representation, as it is the string
representation that must be embedded in the XHTML stream returned to
the web browser.

A format operation is only required to return a non-null string; there are
no other limitations. However, each domain-specific formatter will usu-
aly return a string representation of the Java object according to the
usual conventions. For example, a money value may have a currency
symbol added during formatting and be limited to two significant digits
after the decimal point. For most data values, the formatter should gen-
erate a string representation that can later be converted back into the ori-
ginal datavalue.

pre-parse

When a user enters values in aform on an application page and submits
the form to the client application, the web browser submits al of these
values in string format. These string values need to be parsed to create
the appropriate Java object representations, but first a pre-parse opera-
tion is performed to prepare the string for parsing.

The UML model supports severa domain definition options that are re-
cognized by the pre-parse operation (see the Ciram Modeling Refer-
ence Guide for more information on domain definition options). The
domain definition options may indicate that leading and trailing
whitespace characters should be trimmed from the string, that all se-
guences of whitespace characters should be compressed to single space
characters, and that the string should be converted to upper-case. The
pre-parse operation applies these options automatically to the string val-
ues and the modified string values are then ready to be parsed. The pre-
parse operation is controlled and customized by setting these domain

265

Curam Web Client Reference Manual

definition options in the UML model.
parse

After the pre-parse operation has completed, the parse operation must
convert the resulting string value into its Java object representation be-
fore it can be submitted to the application server. In general, the parse
operation is the reverse of the format operation. If the format operation
formatted a money value to a string and added a currency symbol and
grouping separator (e.g., thousands separator) characters, the parse op-
eration must be able to remove these additions and create a Java object
representation of the actual money value.

All that is required of the parse operation is to produce a Java object, it
does not validate that value. However, while not explicitly a validation
operation, the parse operation usually needs to perform some validation
to ensure that the value can be parsed correctly. For example, a date
may later be determined to be invalid if it is out of range, but the parse
operation must first determine what the date value is and may fail if the
string does not represent a date in any recognized format.

pre-validate

Like the pre-parse operation, the pre-validate operation is performed to
apply domain definition options defined in the UML model. However,
unlike the pre-parse operation, different domain definition options are
applied to data values depending on the domain. The data is not modi-
fied. String and BLOB values are tested to ensure that they do not ex-
ceed their maximum or minimum defined sizes (or lengths), while nu-
meric values are tested to ensure that they do not exceed their maximum
or minimum values. Any failures will be reported as errors. See Ta-
ble 9.5, Behavior of the Pre-Validate Operations for a detailed descrip-
tion of the actual validations performed.

validate

The pre-validate operation is convenient and is applied automatically,
but there are situations where it may not be able to validate data suffi-
ciently. The validate operation is a catch-all that allows any kind of val-
idation to be performed that is not possible using UML domain defini-
tion options alone. For example, ID values may be tested to see if their
check-digit is valid. Errors can be reported if any value does not meet
such specific conditions. Data is not modified by this operation.

compare

When alist of datais returned from the server, the sort order of the val-
ues in the list is determined using the compare operation. This sort or-
der is used to support the sorting of lists on application pages when
users click on the column headers. The compare operation is passed two
data values (in their Java object representations, not in their formatted
string representations) and must return a positive or negative number to
indicate which comes first in the sort order. Like the format operation,
the compare operation is not restricted in what calculations it performs,
but it will typically sort values alphabetically or numerically.

266

9.5

Curam Web Client Reference Manual

Each data conversion operation has access to information about the active
user's locale and to information about the domain being processed. It is also
possible for one operation to access and execute any of the operations
should that be necessary. For example, aformat operation might format val-
ues differently for each locale and a compare operation might invoke the
format operation before making a comparison.

Data Conversion Life Cycle

The CDEJ infrastructure is responsible for the retrieval of data from the ap-
plication server, the display of this data, the processing of user input, and
the submission of data back to the application server. This process has a
well-defined life cycle. Operations at each stage in the life cycle are per-
formed in a domain-specific manner.

Not all data goes through each stage in the life cycle. Some data is displayed
but not modified or resubmitted by the user (read-only); some data is cre-
ated by the user and submitted without any initial value being retrieved from
the application server (write-only); and some data is retrieved, modified by
the user, and then resubmitted to the application server (read-write).

In the context of the value of a single property, the life cycle for reading the
valueisasfollows:

Read-only Life Cycle

1. Thevalueisfetched from the application server by invoking a business
operation.

2. If thevaueisone of alist of values for the same property, the related
values are sorted using the compare operation and the resulting sort or-
der isrecorded.

3. The value is formatted to a string representation by the format opera-
tion and is stored for later display.

4. When the page is displayed, the value is retrieved and inserted into the
XHTML stream.

Thelife cycle for writing avalueis asfollows:
Write-only Life Cycle

1. A string representation of the value is entered on a form by the user
and the value submitted.

2. The domain definition options for whitespace compression and trim-
ming and for upper-case trandation are applied to the string value by
the pre-parse operation. The value remainsin string form.

3. If the business operation has declared the value to be mandatory, the
value is checked to ensure that it is not empty or nul | . An error will

267

9.6

Curam Web Client Reference Manual

be reported if this check fails.

4. Thevaueis parsed from its string representation by the parse operation
and the resulting native Java object replaces the string value.

5. The domain definition options for the size range, value range, and pat-
tern match are applied by the pre-validate operation is applicable. The
value is not modified by this operation. If a validation fails, an error
will be reported.

6. Thevalueis validated by the validate operation to apply any arbitrary
validation rules. Again, the value is not modified by this operation and
validation failures are reported.

7. The parsed and validated value is sent to the application server.

For avalue that is treated as read-write, the life cycle is ssmply the combina-
tion of the read-only life cycle followed by the write-only life cycle.

The Domain Hierarchy and Domain Plug-ins

At each step in data life-cycle, knowledge of avalue's domain is required to
ensure that the correct processing is performed. Embedding this domain in-
formation in the application is one of the tasks performed by the application
code generators. With this information available, the application can invoke
data conversion and comparison operations tailored for each domain.

Not only is information about each domain available at run-time, informa-
tion about the relationships between these domains is also available. A mod-
el of the domain hierarchy is maintained in memory using tree structures
and al the necessary information about how values in the domains should
be processed “hangs’ from these trees.

The domain hierarchy is composed of nodes implementing the
curam util.common. donai n. Domai n interface. The main methods
declared in this interface are listed below. For more information see the
Cuaram JavaDoc documentation for this interface.

* get Name() . Thismethod is used to get the name of this domain.

o get Parent (). This method is used to get the parent domain of this
domainif it exists.

» get Root Domai n() . This method is used to get the ultimate root do-
main of this domain.

o getChil dren().Thismethodisused to get thelist of children of this
domain.

o get Pl ugl n(). This method is used to get the named plug-in object
associated with this domain.

For the purposes of writing custom data conversion and comparison opera-

268

Curam Web Client Reference Manual

tions, this interface is rarely used directly, but it is instructive of the mech-
anism by which custom code is integrated into an application.

Each domain has a unique name: the name defined for it in the UML model.
As domains can be derived from other domains, parent-children relation-
ships exist, and these are also represented. Also, the root domain (the ulti-
mate ancestor of any domain) is readily accessible. A root domain is one
that does not have a parent domain. Severa root domains (for dates, strings,
integers, etc.) are supported in the Clram application, so the domain hier-
archy is represented by a “forest” of separate trees, rather than a single tree.
All information about a domain, other than its name and relationships to
other domains, is provided via domain plug-ins.

As described in the list above, the
curamutil.comon. domai n. Domai n interface aso describes a
method for the retrieval of plug-ins, get Pl ugl n, that takes the name of
the type of plug-in required. The method returns the plug-in configured for
the domain or the equivaent plug-in configured for the nearest ancestor do-
main if none has been configured directly; this is the simple inheritance
mechanism. Domain plug-ins are Java classes that implement the data con-
version and comparison operations and other features that are specific to
each domain. There are four supported plug-in types, each with a unique
plug-in name:

“converter”

Converter plug-ins are responsible for implementing the format, pre-
parse, parse, pre-validate, and validate operations for each domain.
Converter plug-ins can be customized to influence the appearance of
values on an application page, to support the parsing of new data
formats, and to prevent the submission of invalid data.

“comparator”

Comparator plug-ins are responsible for implementing the compare op-
eration for each domain. Comparator plug-ins can be customized to in-
fluence the sorting of data.

“default”

Default plug-ins are responsible for providing default values for each
domain when no value is available. While this type of plug-in can be
customized freely, there will rarely be any need to modify the imple-
mentations provided within the Cdram application.

“options’
Options plug-ins are responsible for providing access to the domain

definition options that were defined in the UML model. This type of
plug-in isbuilt into the client infrastructure and cannot be customized.

The mechanism used to configure the domain plug-ins exploits the domain
hierarchy to simplify the configuration dramatically: very few domains need
to be configured, as domains that are not configured will inherit the config-
uration from their ancestor domains. Each root domain needs to be con-
figured (so that every domain has an ancestor from which it can inherit its

269

9.7

9.7.1

9.7.2

Curam Web Client Reference Manual

configuration), and a small number of specialized sub-domains are also con-
figured further (the most notable being CODETABLE CODE, a derivative of
the root domain SVR_STRI NG). In all, less than 1% of domains are directly
configured, so the configuration information is very manageable. The
Curam application comes complete with plug-in implementations and con-
figuration information for all the domains used by the reference application;
modifications are only required to handle specialized custom extensions.

Overview of Domain Plug-ins

Common Features of Plug-ins

Domain plug-ins are just Java classes that conform to a well-defined inter-
faces. There is a base interface that describes common features of all do-
main plug-ins and more specialized interfaces for each type of plug-in. At
run-time, the infrastructure co-ordinates instantiation and invocation of all
plug-ins, so the process of writing plug-ins is straightforward: methods need
to be implemented that perform the data conversion and comparison opera-
tions and very little else needs to be considered.

All plug-in classes implement the
curamutil.common. domai n. Domai nPl ugl n interface. This
defines some common operations and provides access to basic information
that the plug-in may require. The main methods declared in this interface are
listed below. For more information see the Ciram JavaDoc documentation.

 get Nanme() . This method is used to get the name of this plug-in (one
of the four plug-in names described above).

« getlLocal e(). This method is used to get the locale associated with
this plug-in instance.

e get Domai n(). This method is used to get the domain applicable to
this plug-in instance.

e« getlnstance(). Thefina method is used to get an instance of a do-
main plug-in; it is not invoked in custom code. Instantiation issues are
described in more detail in Section 9.13.2, Plug-in Instance Manage-
ment. You should use the default implementations of these methods
provided by the Clram plug-in classes.

The methods of the Domai nPl ugl n interface do not really do anything in-
teresting. Derived interfaces define the specific operations that each type of
plug-in performs.

Converter Plug-ins

The Donmai nConvert er interface is the one most likely to be used for
customizations. It defines several simple methods that perform the main

270

Curam Web Client Reference Manual

data conversion operations. They are listed as follows. For more information
see the Curam JavaDoc documentation for this interface.

« format (). This method is used to format the given object to a string
representation.

 parse(). Thismethod is used to parse the given string representation
into an object.

» validate(). This method is used to validate an object according to
the domain-specific constraints. It may throw an exception if the object
isinvalid, but does not modify the object or return any value.

o get Domai nCl ass() . This method returns the class object that indic-
ates the required type of the object that is passed to the other converter
methods or returned by them.

e« getGenericlLocal e(). This method is used to get the locale to be
used when formatting or parsing generic values. This should be the
“en_US’ locale and you should not change this value; it does not matter
if thislocaleis not otherwise used in your application.

o format Generi c() . Thismethod is used to format the given object to
ageneric string representation.

o parseCeneric(). This method is used to parse the given generic
string representation into an object of the appropriate type for the associ-
ated domain.

As described above, the f or mat Gener i ¢ and par seGener i ¢ methods
are similar to the f or mat and par se methods, but they are used when
converting the values of the domain definition options entered in the UML
model by developers or of values embedded in XML-based data. Domain
definition option values—for example, maximum date values, minimum
size values, or regular expressions used for pattern matching—are extracted
from the UML model at build-time and are parsed to their Java object rep-
resentations at run-time, so that they can be used when validating data
entered by a user. A similar process is used when extracting values from
XML datareturned from the application server and when constructing XML
data before it is returned to the application server. The default implementa-
tions of the f or mat Generi ¢ and par seGeneri ¢ methods are suffi-
cient for all purposes (see Section 9.13.4, Generic Parse Operations for in-
formation on protecting the generic parse operation from side-effects).

It is by implementing these converter methods or overriding existing imple-
mentations of them that most customizations are performed. The simple
method signatures disguise the fact that, via the inherited Dormai nPI ugl n
interface, each method has access to the active user's locale and the full do-
main information if necessary.

Implementations of the pre-parse and pre-validate operations are provided
for al of the root domainsin the Clram application. As these operations are
controlled completely by the setting of domain definition options in the

271

9.7.3

9.7.4

Curam Web Client Reference Manual

UML model, there is rarely any need to customize them programmaticaly.
However, there are circumstances where custom error messages are re-
quired, so you may need to “wrap” these operations to intercept and replace
error messages (this is described in detail in Section 9.12.6, Custom Error
Reporting). These operations are defined on a separate Cl i1 ent Domai n-
Converter interface. They are listed as follows. For more information
about these methods, see the Caram JavaDoc documentation for this inter-
face.

e preParse(). This method prepares a string for parsing by applying
the relevant domain options. For example, the string may have
whitespace removed or compressed, or may be converted to upper-case.
Thelocaleis used for the conversion to upper-case, if that is required.

e preValidate(). This method performs the standard validation
checks that are controlled by the domain options specified in the UML
model. The checks include the maximum and minimum size, the max-
imum and minimum value, and the matching of a pattern. The specific
data-type of the object will determine which of these checks are appro-
priate. The options and comparator are available from the domain.

Accesstothe C i ent Domai nConvert er interface is only supported for
the purposes of error message interception. However, as al converter plug-
ins created for use by the client infrastructure must implement this interface,
you must sub-class an existing converter plug-in class (or abstract class)
when creating custom converter plug-ins to inherit an appropriate imple-
mentation.

Comparator Plug-ins

The Domai nConpar at or interface is used to control sort orders and it
extends the Domai nPlugln inteeface and the standard
java. util . Conparat or interface. For more information about Do-
mai nConpar at or , see the Caram JavaDoc documentation.

The java. util . Conpar at or interface defines a conpar e method
that takestwo j ava. | ang. Qbj ect arguments and returns an integer that
ispositive if the first argument comes before the second argument in the sort
order, negative if it comes after, and zero if the objects are equal. (See the
JavaDoc documentation for the j ava. uti | . Conpar at or interface for
more details.) An equal s method is also defined by that interface, but it is
of lesser importance; al Java classes inherit an implementation of the
equal s method from j ava. | ang. Qbj ect or from another ancestor
class and no further implementation is necessary.

Default Value Plug-ins
The Domai nDef aul t interface is used to define default values for do-

mains where no default value is available. The main methods in this inter-
face are listed as follows. For more information about these methods, see

272

9.8

Curam Web Client Reference Manual

the Caram JavaDoc documentation for this interface.

o getAssumedDefault(). This method is used to get the default value that
will be assumed when a user clears a field on a form and submits no
value.

» getDisplayedDefault(). This method is used to get the default value that
should be displayed when an input field has no initial value to display.

From the methods listed above, we can see there are two types of default
value: the value assumed when no value is available to send to the applica-
tion server, and the value displayed when no initial value has been defined
for aform field on an application page. The two default values are often the
same, but there are some cases where they need to be different.

The assumed default value is needed when aform is submitted and the form
data contains no value for afield that was not defined to be mandatory. The
web client never submits nul | data values to the application server, so it
must assume some value for the field and then submit that. The assumed
value is nearly always intuitive: zero for any kind of number, an empty
string for any string value, or a zero date or date-time for such values. The
actual assumed default values used in the Curam application are listed in
Table 9.7, Out-of-the-Box Default Value Plug-ins.

The displayed default value is needed when a form field has not been initial-
ized with any other value (as is usual on forms used to create new entities).
The UIM FI ELD element has a USE_DEFAULT attribute that defaults to
t rue, so, unless that attribute is set to f al se, the displayed default value
may be used. The displayed default value for numbers and strings is usually
the same as that used as the assumed default value, but for dates and times,
the current date and time is used instead of the zero date and time. Like the
assumed default values, the displayed default values are likely to be suffi-
cient for most applications, so you are unlikely to need to customize them.

There is also a third source for default values: there is a domain definition
option for a default value supported in the UML model. However, if no such
option is set, it is the plug-in's displayed default value that is used as a fall-
back, so the two can be treated in the same way. If only the displayed de-
fault value needs to be customized, it is easier to do this using the UML do-
main definition option rather than writing and configuring a new plug-in
class, but the assumed default value can only be modified viaa plug-in.

The default code used for values in a code-table domain is controlled via the
application's code-table administration interface. You should not attempt to
control it programmatically.

Domain Plug-in Configuration

Domain plug-ins are configured by means of an XML configuration file.
The format is simple: the file contains a donmai ns root element; for each
domain to be configured, a donai n element is inserted; within that ele-
ment, pl ug- i n elements are used to specify the name of the type of plug-

273

Curam Web Client Reference Manual

in and the Java class that implements the operations of that type of plug-in.
The domai n elements are not nested within other domai n elements to re-
flect the domain hierarchy. The configuration information is relatively
“flat”; each entry configures a separate domain and the inheritance of plug-
ins is determined automatically. Here is a sample of such a configuration
file:

<dc: domai ns
<dc: domai n name="SVR_| NT64" >
<dc: pl ug-in nane="converter" cl ass=
“curamutil.client.domain.convert. Svrlnt64Converter"/>
<dc: pl ug-i n name="conparator" cl ass=
"curamutil.client.donain.conpare. Svrlnt 64Conparator"/>
<dc: plug-in name="default" cl ass=
"curamutil.client.donain.defaults. Svrlnt64Default"/>
</ dc: donmi n>
<dc: domai n name="| NTERNAL_I| D' >
<dc: plug-in name="converter" class=
"curamutil.client.domain.convert.Internal | DConverter"/>
</ dc: domai n>
</ dc: domai ns>

Example 9.1 Sample Domain Configuration

The configuration elements are defined in the XML namespace shown
above. In the example, the namespace declaration assigns the prefix “dc” to
this namespace, so that prefix is used before the element names. While you
must declare this namespace in your configuration file, you can declare it to
be a default namespace and omit the prefix, or even use a different prefix,
but you must not omit the namespace declaration.

The example shows the configuration of two domains (these are the actual
default configurations for these domains, as provided in the out-of-the-box
Curam application). Three plug-ins are configured for the Curam root do-
main SVR_| NT64. Thisisacomplete set of plug-ins, as the “options” plug-
in is built-in and is never directly configured. All descendant domains of
SVR_| NT64 will inherit these plug-ins unless further configured. Such a
configuration is provided for the | NTERNAL_| D domain. This domain is a
descendant of SVR_| NT64, but a different converter plug-in is configured,;
the comparator and default plug-ins will be inherited from SVR _| NT64.
This particular configuration is used within the Caram application to over-
ride the format operation for | NTERNAL | D values so that grouping separ-
ators are not used in the string representations of the integers. An integer
formatted by the Svr | nt 64Converter plug-in as “1,234,567" will be
formatted by the | nt er nal | DConvert er class as “1234567”. This en-
sures that values such as case identifiers (the CASE | D domain is a des-
cendant of the | NTERNAL_| D domain) are not represented as ordinary nu-
merical values, but as more abstract unique key values. However, sorting
and the calculation of default values remains unchanged, as these plug-ins
are not overridden and the inherited plug-ins will be used.

There is a master configuration file caled domai ns- confi g. xm loc-
ated in your CDEJ installation's | i b/ cur am’ xml / confi g folder. This
file contains the complete domain configuration information for al of the
Curam root domains and some descendant domains. Y ou must not make any

274

9.9

9.9.1

Curam Web Client Reference Manual

changesto thisfile; it is overwritten each time the devel opment environment
is upgraded. However, the information in this file is useful when you need
to make customizations. Y ou can override or extend any configuration set-
ting in this file using the mechanism described here.

Domain plug-in configuration follows the typical pattern used for when con-
figuring other aspects of application components. Y ou create configuration
files, place them in component folders, and the component order determines
which parts of each file take precedence when the files are merged together.
A single custom configuration results and this may override or extend the
master configuration without limitation. The domai n elements in the con-
figuration are merged where they have the same domain name defined in the
nane attribute. The pl ug-i n elements of the merged domains are then
collected and those with the same nane attribute value as an existing
pl ug-i n element take precedence over that setting. New domain configur-
ations can aso be introduced. If the newly configured domain has descend-
ant domains, they will inherit the new configuration. When configuring
plug-ins, the name returned by a plug-in's get Name method must match
the nane attribute value defined on the pl ug- i n element in the configura-
tion file; this helps to avoid mistakes in the configuration file.

The configuration files that you place in your component folders must be
named Domai nsConfi g. xm (a dightly different name to the master
configuration file to prevent confusion of the two). You can create one or
more of these files (one in each component), but a single file is probably
sufficient for most purposes. The format is just that shown in the example
above. Further configuration examples are included in Section 9.12, Cus-
tomization Guidelines.

Out-of-the-Box Domain Plug-ins

Extending Existing Plug-ins

Domain plug-insfor all of the root domain definitions (and afew others) are
provided in the out-of-the-box Curam application. Rather than write your
own plug-in implementation from scratch, it is far easier to extend one of
these existing plug-ins. The supplied plug-ins are suitable for the majority of
uses, but all can be overridden in whole or in part as necessary, or used as
the basis for new plug-ins that customize the processing of values in new
domains. The details of these supplied plug-ins and the behavior of their op-
erations are described in the sections below.

Abstract plug-in classes are also provided to be used as the basis of new
plug-ins. These abstract classes are used by the Clram plug-ins themselves
and provide some useful functionality that is rarely necessary to override.
The abstract classes you might use are:

e curamutil.client.domin.convert. Abstract Convert
er

275

Curam Web Client Reference Manual

e curamutil.client.domain.conpare. Abstract Conpara
tor

e curamutil.client.donmnin. defaults. Abstract Def aul
t

Their behavior is as follows:

Abstract Plug-in Class Behavior

Abst ract Converter Returns the correct name for this type of
plug-in: “converter”.

Formats an object that is an instance of

j ava. | ang. Nunber using the standard
Javalocale-specific number format. Other
object types are formatted by calling their

t oSt ri ng method.

Pre-parses an object by trimming leading
and trailing whitespace, compressing se-
guences of spaces, and converting to upper-
caseif specified by the UML domain defini-
tion options for the domain.

Does not implement any parse operation.

Pre-validates an object by checking its max-
imum and minimum values if these are spe-
cified by the UML domain definition options
for the domain.

Validates an object by throwing a

j ava. | ang. Nul | Poi nt er Excepti on
if anobjectisnul | , but otherwise performs
no validation.

Performs generic parsing by invoking the or-
dinary parse operation that must be imple-
mented in the sub-class. See Section 9.13.4,
Generic Parse Operations for information
on protecting the generic parse operation
from side-effects.

Performs generic formatting by invoking the
object'st oSt r i ng method.

Returns the correct value for the generic loc-
ae.

Abst ract Conpar at or Returns the correct name for this type of
plug-in: “comparator”.

Abstract Def aul t Returns the correct name for this type of
plug-in: “default”.

Defines constants with suitable assumed de-

276

9.9.2

Curam Web Client Reference Manual

Abstract Plug-in Class Behavior

fault values for each of the root domains.

Returns the displayed default value by look-
ing up the default value defined in the UML
domain definition options, or, if not found
there, returns the assumed default value.

Does not implement get AssunedDe-
faul t.

Table 9.1 Behavior of the Abstract Plug-in Classes

These abstract classes are used by the Cdram plug-in classes and all extend
the curamutil.comon. domai n. Abst ract Domai nPl ugl n
class. This class implements the locale and domain properties of the Do-
mai nPl ugl n interface and also provides the plug-in instance management
implementation that should be used by al plug-ins (see Section 9.13.2,
Plug-in Instance Management for details).

While it is possible to write plug-ins from scratch, you should follow the
guidelines presented in this chapter and extend either the existing plug-in
classes or their abstract base classes. Other approaches cannot be supported
due to the complexity of some features, such as instance management and
generic parsing, that are best avoided and the default implementations used.
Reusing these classes will also ensure that your code will be protected from
changes to the plug-in interfaces, as default implementations of new inter-
face methods will be inherited during upgrades and no custom code changes
should be necessary.

Converter Plug-ins

Converter plug-ins implement the format, parse, validate, and related opera-
tions. The following converter plug-ins are provided out-of-the-box. While
most are pre-configured against certain domains, others are left to be con-
figured as described in Section 9.8, Domain Plug-in Configuration (all of
the plug-ins areinthecuram uti | . cl i ent. donai n. convert Java

package):

Domain Converter Plug-in Class

SVR _BLOB Svr Bl obConverter
SVR_BOCLEAN Svr Bool eanConvert er
SVR_CHAR Svr Char Converter
SVR _DATE Svr Dat eConverter
SVR _DATETI ME Dat eTi neConverter
CURAM TI ME Cur anmli neConverter
SVR_DOUBLE Svr Doubl eConverter

277

Curam Web Client Reference Manual

Domain Converter Plug-in Class

SVR FLOAT
SVR | NT8

SVR | NT16

SVR | NT32

SVR | NT64

| NTERNAL_| D
SVR_MONEY

SVR STRI NG
SVR_UNBOUNDED STRI NG
LOCALI ZED MESSAGE
CODETABLE_CODE

N A

N A

N A

N A

Svr Fl oat Convert er

Svr | nt 8Converter

Svr il nt 16Converter
Svrlnt 32Converter

Svrl nt 64Converter

I nt ernal | DConverter
Svr MoneyConvert er

Svr StringConverter

Svr Stri ngConverter
Local i zedMessageConvert er
CodeTabl eCodeConvert er
Svr | nt 8Bar eConverter
Svr i nt 16Bar eConvert er
Svr | nt 32Bar eConverter
Svr | nt 64Bar eConverter

Table 9.2 Out-of-the-Box Converter Plug-ins

The format operations of these plug-ins determine the string representations
of data values that appear on application pages. The format operations be-

have as follows:

Plug-in Class
Svr Bl obConvert er

Svr Bool eanConvert er

Svr Char Converter

Svr Dat eConvert er

Formatting Behavior

Formatted as base-64 encoded
strings. The base-64 encoding
schemeis defined in RFC 2045
[http://ietf.org/rfc/rfc2045.txt].

Formatted as the string valuest r ue
or f al se. These values are not loc-
ale-aware. Clram application pages
rarely display formatted Boolean val-
ues directly, instead, check-boxes are
used or values are translated to loc-
ale-specific strings.

Formatted as Unicode characters, not
as numbers.

Formatted using the application date
format. If the format includes month
or day names, these are localized us-
ing the active user's locale. If the
date isthe system “zero” date, an
empty string is returned.

278

http://ietf.org/rfc/rfc2045.txt

Curam Web Client Reference Manual

Plug-in Class Formatting Behavior

Dat eTi meConvert er

Cur anili nreConverter

Svr Doubl eConvert er

Svr Fl oat Convert er

Svr | nt 8Converter

Svr | nt 16Convert er
Svr | nt 32Convert er
Svr |l nt 64Converter

I nt er nal | DConvert er

Svr | nt 8Bar eConvert er

Svr i nt 16Bar eConverter
Svr | nt 32Bar eConverter
Svr | nt 64Bar eConverter

Svr MoneyConvert er

Formatted using the application date
and time formats and the user's pre-
ferred time zone. If the format in-
cludes month or day names, these are
localized using the active user's loc-
ale. If the date-time is the system
“zero” date-time, an empty string is
returned.

Formatted using the application time
format. If the date-time is the system
“zero” date-time, an empty string is
returned.

Formatted as numbers with grouping
separator (e.g., thousands separator)
and decimal point characters appro-
priate for the active user's locale.

Formatted in the same manner as the
Svr Doubl eConvert er.

Formatted as numbers with grouping
separator (e.g., thousands separator)
characters appropriate for the active
user's locale, but without any decim-
al point.

Formatted in the same manner as the
Svr i nt 8Converter.

Formatted in the same manner as the
Svr | nt 8Converter.

Formatted in the same manner as the
Svr |l nt 8Convert er.

Formatted as numbersin anon-
local e-specific manner without
grouping separator characters.

Formatted in the same manner as
| nt er nal | DConvert er.

Formatted in the same manner as
I nt ernal | DConverter.

Formatted in the same manner as
I nt er nal | DConverter.
Formatted in the same manner as
I nt er nal | DConverter.

Formatted in the same manner as the
Svr Doubl eConvert er, but with
exactly two significant digits after

279

Curam Web Client Reference Manual

Plug-in Class Formatting Behavior

the decimal point.

Svr StringConverter Formatted literally, i.e., strings are
not changed by the format operation.

Local i zedMessageConvert er Formatted by decoding the message
information, localizing the string in-
dicated by the message catalog de-
tails, and replacing any encoded
string arguments. The active user's
locale is used throughout.

CodeTabl eCodeConvert er Formatted as the code description
corresponding to the code value us-
ing the active user's locale and the
domain's associated code-table.

Table 9.3 Behavior of the Format Operations

Pre-parse operations are used to perform string-related operations, indicated
by domain definition options set in the UML model, before the strings are
parsed to their Java object representations. The operations performed are the
same for al root domains and are as follows. trimming of leading
whitespace, trimming of trailing whitespace, compression of sequences of
whitespace characters to a single space character, and conversion to upper-
case. The pre-parse operations should be customized via the domain defini-
tion options in the UML model. Customization of these options via domain
plug-ins is not necessary and not supported.

Parse operations are used to interpret string values submitted from aform on
an application page or via parameters to a URL and convert then to their
Java object representations. The string values received from the web
browser are interpreted as being in the UTF-8 encoding. This encoding is
used when creating the Unicode Java strings that are passed to the parse op-
erations. The parse operations behave as follows:

Plug-in Class Parsing Behavior

Svr Bl obConverter Parsed as a base-64 encoded string.

Svr Bool eanConvert er Recognizesany of t r ue, yes, or
on asBooleant r ue values, and any
of f al se, no, or of f asBoolean
f al se values. The parsing is not
case-sensitive or locale-aware. Other
values are reported as errors.

Svr Char Converter Parsed as a single Unicode character.
The presence of extra charactersis
reported as an error.

Svr Dat eConverter Parsed using the application date
format and the active user'slocale.

280

Curam Web Client Reference Manual

Plug-in Class Parsing Behavior

Dat eTi meConvert er

Cur anili nreConverter

Svr Doubl eConvert er

Svr Fl oat Convert er

Svr | nt 8Converter

Svr | nt 16Convert er
Svr | nt 32Convert er
Svr |l nt 64Converter

I nt er nal | DConvert er

Svr | nt 8Bar eConvert er

Svr | nt 16Bar eConverter
Svr | nt 32Bar eConverter
Svr | nt 64Bar eConverter

Svr MoneyConvert er

Svr StringConverter

Parsed using the application date and
time formats and the active user's
locale. The user's preferred time zone
is assumed.

Parsed using the application time
format. The server'stime zoneis as-
sumed.

Parsed as a number with optional
grouping separator characters and
decimal point characters appropriate
for the active user's locale.

Parsed in the same manner as
SVR _DOUBLE values.

Parsed as a number with optional
grouping separator characters appro-
priate for the active user'slocale. The
presence of adecimal point is treated
as an error.

Parsed in the same manner as the
Svr | nt 8Converter.

Parsed in the same manner as the
Svr | nt 8Converter.

Parsed in the same manner as the
Svr |l nt 8Convert er.

Parsed in a non-locale-specific man-
ner. Grouping separators are not per-
mitted and for negative values the
minus sign must be on the left.

Parsed in the same manner as the
| nt er nal | DConvert er.

Parsed in the same manner as the
I nt ernal | DConverter.

Parsed in the same manner as the
I nt er nal | DConverter.

Parsed in the same manner as the
I nt er nal | DConverter.

Parsed in the same manner as
SVR_DOUBLE values, but the mag-
nitude of the values are limited to
1lel3to avoid the possibility of
rounding errors.

Parsed literally, i.e., strings are not
changed by the parse operation.

281

Curam Web Client Reference Manual

Plug-in Class Parsing Behavior

Local i zedMessageConvert er Parsed literally in the same manner
astheSvr St ri ngConverter.
L ocalized messages are not suppor-
ted as input values, so this parser is
never invoked.

CodeTabl eCodeConverter Parsed literally as a code value in the
domain's associated code-table. An
error isreported if the code is not
defined in that code-table.

Table 9.4 Behavior of the Parse Operations

Pre-validate operations are used to perform validation checks, indicated by
domain definition options set in the UML model, after values have been
parsed to their Java object representations. The checks performed are not the
same for all domains. The possible validation checks are: maximum size
(length), minimum size (Iength), maximum value, minimum value, and pat-
tern match. The maximum and minimum values are checked using the com-
pare operation. The pre-validate checks applied as follows:

Plug-in Class Max./Min. Max./Min Pattern
Size Value Match
Svr Bl obConvert er Yes No No
Svr Bool eanConvert er No Yes No
Svr Char Convert er No Yes No
Svr Dat eConverter No Yes No
Dat eTi neConvert er No Yes No
Cur anTi neConvert er No Yes No
Svr Doubl eConverter No Yes No
Svr Fl oat Convert er No Yes No
Svr |l nt 8Converter No Yes No
Svrilnt 16Converter No Yes No
Svr | nt 32Converter No Yes No
Svr |l nt 64Converter No Yes No
| nt ernal | DConverter No Yes No
Svr | nt 8Bar eConverter No Yes No
Svr |l nt 16Bar eConvert er No Yes No
Svr |l nt 32Bar eConvert er No Yes No
Svr | nt 64Bar eConverter No Yes No
Svr MoneyConvert er No Yes No
Local i zedMessageConverter Yes No Yes

282

9.9.3

Curam Web Client Reference Manual

Plug-in Class Max./Min. Max./Min Pattern
Size Value Match

Svr StringConverter Yes No Yes

CodeTabl eCodeConvert er Yes No No

Table 9.5 Behavior of the Pre-Validate Operations

The pre-validate operations should be customized via the domain definition
options in the UML model. Customization of these options viadomain plug-
insis not necessary and not supported.

The default implementations of the validate operations do not perform any
extravalidations.

Comparator Plug-ins

Comparator plug-ins implement the compare operations that determine the
sort order of lists of values. Comparator plug-ins are provided for the fol-
lowing domains (al of the plug-ins ae in the
curamutil.client.domain. conpar e package):

Domain Plug-in Class Behavior

SVR_BLOB Svr Bl obConpar at or Not sorted, asthereisno
useful sort order for these
non-human-readable val-

ues.
SVR_BOOLEAN Svr Bool eanConpar - Sorted with Booleant r ue
at or values beforef al se val-
Ues.

SVR_CHAR Svr Char Conpar at or Sorted strictly numerically
with no locale-aware pro-
cessing.

SVR_DATE Svr Dat eConpar at or Sorted chronologically with
the earliest date first.

SVR_DATETI ME Svr Dat eTi neConpar - Sorted chronologically with

at or the earliest date-time first.
CURAM TI ME Cur anili neConpar at - Sorted chronologically with
or the earliest time first.

CURAM TI ME is based on
the SVR_DATETI ME do-
main, so values may in-
cluded date information,
but for comparisons, the
date part isignored and
only the time part is used to
determine the sort order.

283

Domain
SVR _DOUBLE

SVR_FLOAT
SVR | NT8

SVR | NT16
SVR | NT32
SVR | NT64
SVR_MONEY

SVR_STRI NG

SVR _STRI NG

SVR_STRI NG

Curam Web Client Reference Manual

Plug-in Class
Svr Doubl eConpar at -

or
Svr Fl oat Conpar at or
Svr | nt 8Conpar at or

Svr | nt 16Conpar at or
Svr | nt 32Conpar at or
Svr | nt 64Conpar at or

Svr MoneyConpar at or

Svr St ri ngConpar at -
or

Svr Stri ngCasel n-
sensi ti veConpar at -
or

Svr StringLoc-
al eAwar eConpar at or

SVR_UNBOUNDE Svr St ri ngConpar at -

D _STRI NG

or

CODETABLE_CO CodeTabl eCodeCom

DE

par at or

CODETABLE_CO CodeTabl eCodeCase-

DE

I nsensi ti veConpar -
at or

CODETABLE_CO CodeTabl eCodelLoc-

Behavior

Sorted numerically; smal-
lest valuefirst.

Sorted in the same manner
as SVR_DOUBLE values.

Sorted in the same manner
as SVR_DOUBLE values.

Sorted in the same manner
as SVR_DOUBLE values.

Sorted in the same manner
as SVR_DOUBLE values.

Sorted in the same manner
as SVR_DOUBLE values.

Sorted in the same manner
as SVR_DOUBLE values.

Sorted lexicographically
based on the numeric Uni-
code value of each charac-
ter in the string. The com-
parison is not locale-aware.

Sorted identically to

Svr St ri ngConpar at -
or except the caseisig-
nored.

Sorted according to the
sorting rules defined by
Javafor the locale.

Sorted in the same manner
as SVR_STRI NGvalues.

Sorted according to the
defined code-table sort or-
der for the code values. If
the defined sort orders are
equal, the code descriptions
are sorted |lexicographically
based on the numeric Uni-
code value of each charac-
ter in the string. The com-
parison is not locale-aware.

Sorted identically to
CodeTabl eCodeCom
par at or except caseis
ignored.

Similar to the above, but

284

9.9.4

Curam Web Client Reference Manual

Domain Plug-in Class Behavior

DE al eAwar eConpar at or the comparison of code de-
scriptions uses the sorting
rules defined by Java for
the locale.

Table 9.6 Out-of-the-Box Comparator Plug-ins

The SvrStringConparator and CodeTabl eCodeConpar at or
classes are configured by default to sort values in the SVR_STRI NG and
CODETABLE_CODE domains respectively. If locale-aware sorting is re-
quired, the default plug-in configuration can be overridden to use the
Svr Stri ngLocal eAwar eConpar at or and CodeTabl eCodelLoc-
al eAwar eConpar at or classes instead. If case-insensitive sorting is re-
quired, override using Svr Stri ngCasel nsensi ti veConpar at or
and CodeTabl eCodeCasel nsensi ti veConparator. See Sec-
tion 9.8, Domain Plug-in Configuration above for details on overriding the
default plug-in configuration. Using these locale-aware comparators, lists
will be sorted according to the expected sorting rules of the active locale.
However, applying these sorting rules takes more time, so there will be
some performance degradation. The implementation of locale-aware sorting
uses Javas built-in sorting rules, so the availability of correct sorting rules
for each locale depends on the Java JRE being used.

Default Value Plug-ins

Default value plug-ins supply the default values used when no values are
available. Default value plug-ins are provided for the following domains (all
of the plug-ins are in the curam util.client. domai n. defaults

package):

Domain Plug-in Class Assumed Displayed
Value Value
SVR_BLOB Svr Bl obDef aul t Empty Empty
BLOB BLOB
SVR_BOOLEAN SvrBool eanDefault Fase False
SVR_CHAR Svr Char Def aul t Character ~ Character
zero zero
SVR DATE Svr Dat eDef aul t Zerodate Current date
SVR_DATETI ME Svr Dat eTi neDef aul t Zerodate- Current
time date-
midnight
SVR _DATETI ME Svr Dat e- Zerodate- Current date
Ti meDef aul t Cur - time - Current
rTi me time
SVR DOUBLE Svr Doubl eDef aul t Zero Zero

285

9.10

9.10.1

Curam Web Client Reference Manual

Domain Plug-in Class Assumed Displayed
Value Value
SVR_FLOAT Svr Fl oat Def aul t Zero Zero
SVR_| NT8 Svr | nt 8Def aul t Zero Zero
SVR_ | NT16 Svr | nt 16Def aul t Zero Zero
SVR | NT32 Svr | nt 32Def aul t Zero Zero
SVR | NT64 Svr | nt 64Def aul t Zero Zero
SVR_MONEY Svr MoneyDef aul t Zero Zero

SVR_STRI NG Svr St ri ngDef aul t Empty string Empty string

SVR_UNBOUNDED Svr St ri ngDef aul t Empty string Empty string
_STRI NG

CODETABLE_COD CodeTabl e- Empty code Empty code
E CodeDef aul t string string

Table 9.7 Out-of-the-Box Default Value Plug-ins

Within the Caram application, the zero date and time is represented as mid-
night on January 1,0001; thisis interpreted as if no date and time has been
set at all.

Also, the default value for a code-table code is an empty code string; a dif-
ferent mechanism is used to define default code-table codes during code-ta-
ble administration.

SvrDateTimeDefault plug-in is time zone aware and the displayed value it
returns is offset by the difference between the user and server time zones.
The configured converter plug-in is expected to also consider time zone set-
tings and offset the value accordingly. The end result is that the time part of
date-time valueis set to midnight regardless the time zone settings.

Error Reporting

Exception Classes

Many customizations require the addition of exception handling and error
reporting code. All the necessary infrastructure is provided to make this as
simple as possible. A ssmple formulaic approach can be followed that will
provide all of the necessary functionality. Before looking at how you can
write customizations, you must first learn the necessary error reporting tech-
niques.

All of the plug-in methods that throw exceptions, throw one of two excep-
tion types:

e curamutil.comon. domai n. Dormai nExcepti on

286

9.10.2

Curam Web Client Reference Manual

e curamutil.client.domain.convert. Conversi onExcep
tion

Conver si onExcept i on is derived from Domai nExcepti on, so in-
stances of these exceptions can both be treated as Dormai nExcept i on ob-
jects when convenient. The Conver si onExcepti on class is used for
exceptions that are thrown by the methods of converter plug-ins. Unlike a
Domai nExcepti on, a Conver si onExcepti on can be associated
with a particular property of a server interface so that error messages repor-
ted to a user can indicate the label of the field in error and an error icon can
be placed beside that field. The only exceptions that custom code normally
needs to throw are instances of Conver si onExcepti on, so thisis the
only exception class than needs to be understood to implement your own ex-
ception handling and reporting.

Conversion exceptions (and most other exceptions in the client infrastruc-
ture) carry information about the error message that needs to be reported,
but not the error message itself. When an exception is thrown, the identifier
of the localized error message string, the values that will be substituted for
the placeholders in that string, and any causal exception object are included
in the exception details. Each exception class can be associated with an error
message catalog (a set of localized Java properties files) that is used when
the localized message string is resolved from the message identifier. The
localization and substitution steps are not performed until the message is re-
ported to the user, so the exception can be propagated and augmented with
more information for some time before the message string becomes fixed.
This allows, in the case of conversion exceptions, the field label to be added
automatically by the infrastructure after your custom code has thrown the
exception and makes it very easy to integrate your error reporting require-
ments into the system.

Custom Exception Classes

The purpose of a custom exception class is to integrate the look-up of local-
ized message strings in a custom message catalog into the mechanism used
for error reporting in the client infrastructure. If you only need one error
message catalog, you will only need one custom exception class, but thereis
no restriction on the number of exception classes or message catalogs you
can create.

Implementing custom exception handling using a custom exception class is
formulaic. As the custom exception class must integrate into the existing
message reporting system, only numeric message identifiers are supported
for custom exceptions and there is very little room for deviation from the
prescribed approach. Y ou cannot, for example, use literal message strings in
your code, you must use references to externalized strings.

Here is an example of a custom exception class:

public class CustonConversi onExcepti on

287

Curam Web Client Reference Manual

ext ends Conver si onException {

private static final MessagelLocal i zer MESSAGE LOCALI ZER
= new Cat al ogMessagelocal i zer (" cust om Error Messages") ;

publ i c Cust omConversi onException(int nessagel D) {
super (messagel D) ;

publ i c CustomConversi onException(int nessagel D,
String[] nessageArgs) {
super (nmessagel D, nmessageArgs) ;

publ i c CustomConversi onException(int nessagel D,
String messageArg) {
super (nmessagel D, nessageArg);

publ i c MessagelLocal i zer get MessagelLocal i zer () {
return MESSACGE LOCALI ZER;

}
}
Example 9.2 Custom Exception Class

This class extends Conver si onExcept i on and implements a number of
constructors simply by invoking the equivalent constructors in the super-
class. You only need to implement the constructors that you intend to use,
the rest of the constructors in the super-class can be ignored (Java classes do
not inherit constructors, hence the need to re-implement them). The avail-
able constructors are described in the JavaDoc. Next, it defines a static
MessagelLocal i zer field and instantiates it with a Cat al ogMes-
sagelocal i zer object that takes your custom catalog name as its argu-
ment. The get MessagelLocal i zer method then returns this static ob-
ject. That isal thereistoit.

When you throw exceptions of this type, you need to pass your message
identifier and optional arguments to the relevant constructor. Y ou can define
constants for your numeric message identifiers in this class if you wish.
Y our message strings can contain placeholders such as “%1s’, “%2s’, €tc.,
to be replaced by the argument strings (only string types are supported). For
an array of arguments, “%1s’ will be replaced by the first argument in the
array (index zero), and so on. The special argument “%0s’ can be used to
represent the name of the field in error, but you will not need to provide any
matching argument string for that value; it will be substituted automatically.
Y ou can also use the same placeholder several times in a single message if
you want the same value to be inserted in more than one place. Here is a
sample message catal og file containing a single message:

- 200000=ERROR: The field '9%s' contains an invalid value '%s"'.
Example 9.3 Custom Message Catalog
Thefile is a standard Java properties file where each line contains a numeric

identifier and a message string separated by an equals character. A collec-
tion of properties files with the same base name but with locale codes ap-

288

Curam Web Client Reference Manual

pended is treated as a single message catalog. The custom exception classin
the example above refers to the message catalog as
“custom.ErrorMessages’, so the properties files should be located on the
Java classpath in the cust om package folder and in files named Er -
ror Messages. properti es, Error Mes-
sages_en_US. properties, Error Mes-
sages_fr_ CA. properti es, etc., as you would do for any other cus-
tom properties files. There should be one properties file for each locale that
your application supports. The selection of the correct locale-specific prop-
erties file at run-time is completely automatic once you have written your
custom exception class as shown above.

Ensuring that these files end up on the classpath is simply a matter of pla-
cing them in their appropriate package folders below your web application's
<client-dir>/<custonp/]avasource folder, where cust om is
the name of a custom component. (see Section 3.6, Project Folder Structure
for details). The Java source files for your custom exceptions should also be
placed below the <cl i ent - di r >/ <cust on®/ j avasour ce folder in
the appropriate folders for the package names you have used.

When throwing a custom exception, the code will look like this (assuming
you have decided not to use constants for your error message identifiers):

t hr ow new Cust onConver si onExcepti on(-200000, nylnvali dVval ue);

Example 9.4 Throwing a Custom Exception

Remember, it is not necessary to pass any argument corresponding to the
“%0s" placeholder; it will be calculated and substituted automatically.

@ Numeric Message ldentifiers

When creating message catalog files, try to ensure that the error
numbers do not conflict with the numbers of existing Clram error
messages, as this may cause confusion when errors are being invest-
igated. Values below -200000 should be safe to use, though conflict-
ing numbers will not actually cause any application problems, as the
message catal ogs are separate from those used by the infrastructure.

If you examine the constructors of the Conver si onExcepti on class,
you will note that many accept aj ava. | ang. Thr owabl e object as the
last argument. You can implement similar constructors and pass Thr ow

abl e objects (usually other exception objects) to your custom exceptions
when you want your custom exception to include the exception that caused
it. Thisis often very useful as error messages for both exceptions will be re-
ported automatically and both stack traces will be included on an application
error page if the error page is required. In fact, there is no imposed limit to
the length of the chain of exceptions that can be built this way; the excep-
tion that you add to your own may already contain a reference to another ex-
ception, and so on.

This example show how you can even report two separate error messages at

289

9.10.3

9.11

Curam Web Client Reference Manual

once. Perhaps one is a generic message that states that a field does not con-
tain a valid value and another suggests the expected format for that value.
You will have to implement the appropriate constructor to support this, but
the reporting mechanism is automatic.

t hr ow new Cust onConver si onExcepti on(
-200000, nylnvalidVval ue,
new Cust onConver si onExcepti on(-200003));

Example 9.5 Throwing Multiple Exceptions

Reusing Caram Error Messages

It is possible to reuse existing Clram error messages for your own purposes
and avoid writing your own exception class, but this reuse is not supported
for upgrades, as Clram error messages are regularly modified and reorgan-
ized and your code could cease to function correctly if it depended on
Curam error messages that had been modified or removed. These internal
changes within the Cdram application are not normally announced in any re-
lease notes. However, you may decide that the benefit of reusing the mes-
sages, and the relative ease of manualy correcting problems introduced
when upgrading to new Cdram releases, outweighs this lack of support dur-
ing upgrades.

Each Claram error message described in the Caram Wb dient Er-

ror Message Gui de hasan associated error name and number. This er-
ror name is the same as the name of a Java constant that is defined to be
equal to the error number. While you can use the error number directly, itis
safer to use the constant. All of the constants are implement by the Con-

ver si onExcepti on class, so you can access them as static fields. Each
error message may also contain optional placeholders for dynamic values
that will be substituted for the placeholders when the error is reported. If
you reuse an error message, you must provide a value for each placeholder
it uses except the “zero” placeholder represented by “%0s’.

Here is an example of how you might reuse existing Clram error messages:

/1 Error message taking one argunent.

t hrow new Conver si onExcepti on(
Conver si onExcept i on. ERR_CONV_PARSE_FAI LED,
nmyl nval i dVval ue) ;

/1 Error message taking two argunents.

t hrow new Conver si onExcepti on(
Conver si onExcepti on. ERR_CONV_QOUT_OF_ RANGE,
new String[] { MY_MAX_VALUE, MY_M N_VALLE });

Example 9.6 Reusing Curam Error Messages (Unsupported)

Java Object Representations

The data conversion and comparison operations manipulate strings and oth-
er Java objects. Each value in aroot domain is represented by an object of a

290

9.12

9.12.1

Curam Web Client Reference Manual

corresponding Java class. The Java class used by aroot domain is the same
for al descendant domains of that root domain and cannot be changed.
When customizing the operations, knowledge of the type of data being pro-
cessed is important. The table below shows the Java class used for data ob-
jectsfor each of the root domains.

Domain Java Class

SVR_BLOB curamutil.type. Bl ob
SVR_BOCOLEAN j ava. | ang. Bool ean
SVR_CHAR j ava. | ang. Char act er
SVR_DATE curamutil.type. Date
SVR_DATETI ME curamutil.type. Dat eTi nme
SVR_DOUBLE j ava. | ang. Doubl e
SVR_FLOAT j ava. | ang. Fl oat

SVR_| NT8 java. |l ang. Byt e

SVR I NT16 j ava. | ang. Short

SVR | NT32 java. |l ang. | nt eger
SVR_| NT64 java.l ang. Long
SVR_MONEY curamutil.type. Money
SVR_STRI NG java.l ang. Stri ng
SVR_UNBOUNDED ST j ava.l ang. String

RI NG

CODETABLE_CODE curamutil.common. util. Codeltem
Table 9.8 Classes Used for Java Object Representations

Though derived from SVR STRI NG the Java class used for
CODETABLE_CODE is different to that of its parent. Thisis the only excep-
tion to the rule that the Java class used is the same for al descendant do-
mains of aroot domain.

Customization Guidelines

Where to Start

Most customizations aim to control one or more of the data conversion or
sorting operations. Guidelines are provided in the following sections to
show you how each of these operations can be customized. Following these
guidelines will ensure that your customizations are as simple and effective
as possible.

When you have written your custom plug-ins, you need to configure them
and ensure that the Java classes are available at run-time.Configuration was
described in Section 9.8, Domain Plug-in Configuration. The Java source

291

9.12.2

Curam Web Client Reference Manual

files for your custom plug-in classes are added to the web application in ex-
actly the same way as the Java source code files for your custom exception
classes (see Section 9.10.2, Custom Exception Classes): they are placed in
their appropriate package folders in your
<client-dir>/<custone/javasource folder, (where <cust onp
is the name of a custom component).

Custom Formatting

Custom formatting may be required when a value displayed on an applica-
tion page is not in the required format. A custom formatter might be used to
pad values with extra characters, so that they appear to be the same length;
insert a currency symbol into money values; format numeric values without
grouping separator characters, or even take a date value based on the
Gregorian calendar and format it after converting it to another calendar sys-
tem.

Guidelines for Custom Formatting

1. Identify an existing converter plug-in class that you want to customize.
It will most likely be the converter that is already configured for the
domain in question or inherited by it from an ancestor domain.

2. Create a new sub-class of the relevant converter plug-in and override
thef or mat method.

3. Intheimplementation of the method, you can perform some processing
before or after invoking the super-class's method of the same name, or
implement the formatting code from scratch.

4. Configure your new plug-in for the relevant domains.

The calendar scenario is somewhat unrealistic because the date selector wid-
get would not be compatible, but inserting a currency symbol, or an analog-
ous operation, is something that you may want to do. If multiple currencies
are supported, then domains such as US DOLLAR AMOUNT or
EURO_AMOUNT might be used to represent values in each currency (though
the out-of-the-box Curam application uses a different scheme for represent-
ing money values in different currencies). Custom converter plug-ins may
then be written to format money values for each of these domains by adding
the appropriate currency symbol.

This example shows how a converter plug-in can be written that takes a
money value and prefixes the formatted numeric value with a dollar symbol.
The out-of-the-box Caram application comes with a converter plug-in that
formats money values, but without any currency symbol, so you can reuse
its format operation to simplify the implementation.

/**

* Converter that supports the use of a dollar synbol for
* nmoney val ues.
*/

292

Curam Web Client Reference Manual

public class USDol | ar Converter
ext ends SvrMoneyConverter {
public String format(CObject data)
t hrows Conversi onException {
return "$" + super.format(data);
}
}

Example 9.7 Custom Formatting for Currency Values

The implementation is very trivial: the super-class does al the work and re-
turns a nicely formatted money value; the customization just adds the dollar
symbol.

The configuration file for this customization is shown below. The file might
also include entries for other customizations that have been made. As the
comparator and default value plug-ins have not been customized, they do
not appear in the configuration. These plug-ins will be inherited from the
ancestors of the US_DOLLAR_AMOUNT domain (probably the SYR_MONEY
domain).

<dc: domai ns xm ns: dc=
<dc: pl ug-in nane="converter"
cl ass="cust om USDol | ar Converter"/>
</ dc: domai n>
</ dc: domai ns>

Example 9.8 Configuration for Custom Formatting

Values displayed on an application page (or even those passed behind the
scenes in hidden page connections) may be submitted back to the web ap-
plication. If you write a formatter that inserts a currency symbol, or you al-
low users to insert currency symbols in values that they type in, then you
will need to accommodate such values in the parse operation. The next sec-
tion will demonstrate the custom parse operation required to match this cus-
tom format operation.

Another common need for custom formatting is to format integer values
without grouping separator characters. For example, an integer value that
represents the year “2005” should probably be formatted as “2005” and not
“2,005". If the year value is represented by the YEAR VALUE domain and
that domain is derived from the SVR | NT16 domain, the custom format
operation would look like this:

/**

* Converter that formats year val ues wi thout addi ng grouping
* separator characters

*

/
public class Year Val ueConverter

ext ends Svrlnt 16Converter {
public String format(Object data)
t hrows Conver si onException {
return data.toString();

}
}
Example 9.9 Custom Formatting without Grouping

293

9.12.3

Curam Web Client Reference Manual

This converter overrides the format method of the Sv-

rintl6Converter class and simply converts the data object (a
j ava. | ang. Short) to a string. Unlike the routines used by the super-
class, the t oSt ri ng method will not do any locale-aware formatting or
add any grouping separator characters. The par se method is not overrid-
den, so values that are entered with or without grouping separator characters
will be accepted. This converter is configured in the same way that the cur-
rency symbol converter was configured.

Custom Parsing

Custom parsing is implemented when users must enter values in a form that
existing parse operations do not recognize or when some other processing
must be performed on values before they are submitted to the application
server. Custom parsing may be as ssmple as a routine that first removes a
currency symbol from a numeric value before parsing it, where the currency
symbol may have been entered by a user or added by a custom format oper-
ation. It could also be something more unusual: atranslation of a date to an-
other calendar system, a routine that pads string values, or an arbitrary cal-
culation on numeric values.

Guidelines for Custom Parsing

1. Identify an existing converter plug-in class that you want to customize.
It will most likely be the converter that is already configured for the
domain in question or inherited by it from an ancestor domain.

2. Create a new sub-class of the relevant converter plug-in and override
the par se method.

3. Intheimplementation of the method, you can perform some processing
before or after invoking the super-class's method of the same name, or
implement the parsing code from scratch.

4. Configure your new plug-in for the relevant domains.

The currency symbol scenario is continued in this example to complement
the example shown for a custom format operation above. The example be-
low shows the same class developed to format money values with a cur-
rency symbol; the class is now extended with a corresponding parse opera-
tion. In a case like this, you do not write separate converter plug-ins for
formatting and parsing; you must implement both operations in the same
converter plug-in and then associate the plug-in with the appropriate do-
main.

/**
* Converter that supports the use of a dollar synbol for
* nmoney val ues.
*/
public class USDol | ar Converter
ext ends SvrMoneyConverter {
public String format(CObject data)

294

9.12.4

Curam Web Client Reference Manual

t hr ows Conver si onException {
return "$" + super.format(data);

public Object parse(String data)
t hrows Conversi onException {
if (data.startsWth("$")) {
return super. parse(data. substring(1));

) return super. parse(data);
}
Example 9.10 Custom Parsing for Currency Values

The value passed to the par se method is the same value that was entered
by the user; it is possible that it contains no currency symbol or it might
contain space characters between the currency symbol and the value. You
can use the UML domain definition options to ensure that the pre-parse op-
eration will have removed any whitespace before the currency symbol, or
simply report an error if the currency symbol or a digit is not the first char-
acter. The par se method above assumes that the currency symbol is the
optional first character and then leaves al other decisions up to the par se
method of the super-class. Thisis probably the best approach, asit limits the
number of formatting rules that a user needs to be aware of and keeps the
code as simple as possible.

The configuration for this plug-in is unchanged from that shown for the cus-
tom format operation.

Custom Validation

Custom validation can be performed in two ways: by setting the domain
definition options in the UML model, or by implementing a validate opera-
tion in a custom converter plug-in. It is also possible to combine both ways
to meet your validation requirements.

The domain definition options in the UML model are limited to a small
number of validations that are described in the Cliram Modeling Reference
Guide and summarized in Table 9.5, Behavior of the Pre-Validate Opera-
tions above. If the domain definition options meet your needs, you should
use them in preference to any programmatic alternative. If the options meet
only some of your needs, you should use them and also create a custom con-
verter plug-in to complete the validations. If the options are not useful, you
should create a custom converter plug-in and implement all the validations
there. Some uses for custom validation routines might include the validation
of check digits or the imposition of any other arbitrary restrictions on the
permitted values.

Guidelines for Custom Validation

1. Identify an existing converter plug-in class that you want to customize.
It will most likely be the converter that is already configured for the
domain in question or inherited by it from an ancestor domain.

295

Curam Web Client Reference Manual

2. Create a new sub-class of the relevant converter plug-in and override
theval i dat e method.

3. In the implementation of the method, invoke the super-class's method
of the same name to perform any existing validations (if that is appro-
priate).

4. Complete the implementation by performing your validations and
throwing an exception if any validation fails.

5. Configure your new plug-in for the relevant domains.

In this example, a new converter plug-in is created that extends the I n-
ternal | DConverter plug-in with a validation that only permits even
numbers. The | nternal | DConverter is derived from the Sv-
r1 nt 64Converter classthat is configured for use by the SVR | NT64
domain. Values in this domain are represented by j ava. | ang. Long ob-
jects.

/**
* Reports |ID nunbers as invalid if they are odd.
*
/
public class Evenl DConverter
ext ends | nternal | DConverter {
public void validate(Object data)
t hrows Conversi onException {
/1 Perform any existing validations first.
super. val i date(dat a) ;

if (((Long) data).longValue() %2 != 0) {
t hr ow new Cust ontConver si onExcepti on(-200010);
}
}
}

Example 9.11 Custom Validation for Odd Numbers

The error message entry in the custom message catalog may ook like this:

-200010=ERROR: The field '%s' nust be an even nunber.

Example 9.12 Custom Validation Failure Message

If this validation is to be applied to the EVEN | D and the NOT_CODD | D
domains, then the configuration will ook like this:

<dc: domai ns xnl ns: dc=
<dc: domai n name="EVEN_| D" >
<dc: pl ug-in name="converter"
cl ass="cust om Evenl DConverter"/>
</ dc: domai n>
<dc: domai n nane="NOT_ODD | D" >
<dc: pl ug-in name="converter"
cl ass="cust om Evenl DConverter"/>
</ dc: domai n>
</ dc: domai ns>

Example 9.13 Configuration for Custom Validation

296

Curam Web Client Reference Manual

9.12.5 Custom Sorting

When lists of values are displayed in an application page, a user can sort the
list by clicking on the column headers. The sort order of the rows will be de-
termined by the sort order of the values in the selected column. Successive
clicks on a column header alternate between the forward and reverse sort or-
der for that column. The sort order for any type of data can be customized
easily, though the sort-order for code-table codes must be controlled using
the code-table administration interface. The sort order is calculated when re-
sponding to a user's request, so the user's active locale is available by calling
the inherited get Local e method and can be used to influence the sort or-
der in alocale-specific manner.

The domain comparator plug-ins are responsible for making the comparis-
ons that control the sort order. The sorting algorithms swap the position of
values in their value lists depending on the value returned by the conpar e
method of the plug-in. The comparator plug-ins used in the Clram applica-
tion behave as described in Section 9.9.3, Comparator Plug-ins. These sort
orders are simple and intuitive, but may not meet the needs of some special-
ized domains. In these cases, custom sort orders may be required and there
Isno limitation on what order can be used.

[What Values are Compared?
@

All compare operations are performed by invoking the comparator
plug-ins conpar e method. This takestwo j ava. | ang. Obj ect
arguments. The method is invoked automatically by the client infra-
structure before the values are formatted. This means that the ob-
jects passed are of the types shown in Section 9.11, Java Object
Representations, not formatted string representations of the values.

In most cases, having access to Java object representations makes
the comparisons much easier to perform: comparing dates and num-
bers is much easier when they are represented by objects that con-
veniently provide a conpar eTo method that returns the same val-
ues that the conpar e method must return. However, there are
some situations where, for example, encoded strings are decoded by
the format operation and comparing them before they are formatted
is not simple or would involve the duplication of the formatting
code. In these cases, it is possible to invoke the appropriate format-
ter and compare the results. Thiswill be described later.

The general guidelines for implementing a custom comparator plug-in to
control the sort order for adomain are as follows:

Guidelines for Custom Comparators

1. Create a new sub-class of the Abstract Conpar at or class de-
scribed in Section 9.9.1, Extending Existing Plug-ins.

2. Implement the conpar e method to perform your custom comparison.

297

Curam Web Client Reference Manual

3. Configure your new plug-in for the relevant domains.

To illustrate this, you will see how to write a comparator that compares
string values as if they were numbers. Some of the entities in the Cdram ap-
plication use a string-based domain for their key values to support the use of
identifiers that may not just contain digits. Sorting of these types works well
in most cases, but there can be problems. Because the base domain is a
string, the values are sorted lexicographically, not numerically. If the values
are al of the same length, thisis not a problem, but if the lengths differ, the
sorting becomes confusing. For example, the string values “22" and “33"
will be sorted into the order “22”, “33”, but if the values are “22” and “3",
the sort order will be “22”, “3", because the character “2" comes before the
character “3” in a lexicographical sort and representations of numbers with
positional digits are not recognized.

There are anumber of ways to solve this problem:

» The string values could be stored in the database with leading zeros used
to pad all values to the same length, this would trick the lexicographical
sorting into working correctly (the lexicographical sort order for “22”
and “03" is“03", “22"). If the leading zeros were not desired for display
purposes, they could be stripped by the format operation and replaced by
the parse operation. Legacy data, however, would need to be updated to
conform to the new format.

» Write a custom comparison routine that parses the numeric values from
the strings and then performs the comparison. This would work fine, but
the parsing is a little complicated and it may be complicated further if
the values have trailing check letters or other non-digit characters.

» Pad the value with zeros for the purposes of making the comparison, but
do this inside the compare operation, so that no other application
changes are necessary.

The latter solution is, perhaps, the easiest to achieve. Here is an example of
a custom comparator plug-in that does this for values that are limited to no
more than ten characters:

/**
* Conpares string values after padding themw th | eadi ng
* zeros to make the sorting work correctly for numeric
*/val ues. Val ues nmust not be |onger than ten characters.
*
public class | DConpar at or
ext ends Abstract Conpar at or {
public int conpare((bject sl1, Object s2) {
return _pad((String) sl1).conpareTo(_pad((String) s2));

private String _pad(String s) {
return "0000000000". substring(0, 10 - s.length()) + s;

}
}
Example 9.14 Sorting Strings Numerically

298

Curam Web Client Reference Manual

The _pad method pads a value with leading zeros, so that all returned
strings will be ten characters long and numeric values will be compared cor-
rectly as the positional digits will all be aligned correctly. No change needs
to be made to the format or parse operations or to any existing values in the
database; the sort order is entirely controlled by this simple comparator
code. While the numeric values could have been parsed from the strings and
anumeric comparison made, this sample code is much simpler and more ef-
ficient.

Another need for custom sorting arises when values are in an encoded form
that is decoded by the format operation. In this case, sorting of the encoded
form may not be meaningful. For example, if a domain exists that uses an
encoded string containing several localized messages and their locale codes
like this “en|Hellojes|Hola”, calculating the sort orders for such strings is
meaningless. The string could be decoded, but, as decoding must be done by
the format operation, it is simpler to invoke the format operation instead and
compare the values that it returns.

/**

* Conpares two encoded nessage strings using their
*/fornatted val ues.
*
public class MessageConpar at or
ext ends Abstract Conparator {
public int conpare((Cbject valuel, Object value2) {
final Domai nConverter converter;

try {
converter = ((CientDoreain) getDomain())
. get Converter(getLocal e());
return converter.fornat(val uel)
. conpar eTo(converter. format (val ue2));
} catch (Exception e) {
/1 Do nothing except report the values to be equal
return O;
}
}
}

Example 9.15 Sorting Formatted Values

This code retrieves the converter plug-in that implements the format opera-
tion for the same domain as that of the values being compared. The returned
converter will also be aware of the active user's locale. The exact mechan-
ism behind this is unimportant, ssmply copying the code above is dll that is
needed. Other uses of the Cl i ent Domai n class are not supported. The ex-
ception handling is simple: it does nothing. The conpar e method is not
declared to throw exceptions, and thrown run-time exceptions trigger an ap-
plication error page, so there is not much useful error handling that can be
performed. The reason that none is attempted at al is that if the converter
cannot be retrieved or the format operation fails, it will be for reasons bey-
ond the control of the comparator plug-in and these reasons will cause fail-
ures in other places that will be reported in time. In fact, the sorting opera-
tion is carried out just before the infrastructure formats all of the values
ready for display, so the very next operation will detect and report the errors
that may have been ignored by the comparator.

299

Curam Web Client Reference Manual

A final example shows how to make the Curam application zero date
(January 1,0001), appear after all other dates instead of before them:

/**
* Conpares dates, but places the zero date at the end,
*/rather than the start, or the sort order.
*
publi c cl ass Zer oDat eConpar at or
ext ends Abstract Conpar at or {
public int conpare(Cbject valuel, Object value2) {
final Date datel (Date) val uel;
final Date date2 (Date) val ue2;

i f (Date.kZeroDate. equal s(datel)
&& ! Dat e. kZer oDat e. equal s(date2)) {
return -1;
} else if (!Date.kZeroDate. equal s(datel)
&& Dat e. kZer oDat e. equal s(date2)) {
return 1;

return datel. conpar eTo(date2);

}
}

Example 9.16 Sorting Zero Dates

The comparator returns a negative number (the magnitude is not important)
if the first date is the zero date and the second date is not the zero date to in-
dicate that the first date comes after the second in the sort order. Likewise, a
positive number is returned if the first date is not the zero date and the
second date is the zero date to indicate that the order is correct. Otherwise,
the dates are compared as normal. This causes the zero date to be positioned
after all other dates instead of before them in the sort order.

This type of manipulation should be used with caution: the comparator plug-
ins are also used during pre-validation to check a value against the maxim-
um and minimum values defined for its domain in the UML model's domain
definition options. In this case, if the UML domain definition options define
a maximum date and no date is set, then the zero date will be assumed and
thiswill appear to be later than all other dates, including the maximum date,
and the pre-validation check will always fail with an error. If no maximum
value is specified in the model, then this comparator will work without
problems.

To override the default comparator for al dates with this new comparator,
the configuration will look like this:

<dc: domai ns xm ns: dc=
<dc: domai n name="SVR DATE" >
<dc: pl ug-i n name="conpar at or "
cl ass="cust om Zer oDat eConpar at or "/ >
</ dc: domai n>
</ dc: domai ns>

Example 9.17 Configuration for Custom Sorting

Now, all date values for all domains that are descendants of the root
SVR_DATE domain, and values in the root domain itself, will be sorted ac-

300

9.12.6

Curam Web Client Reference Manual

cording to the new rules. There is no need to configure any other domains,
as they will al inherit this new comparator (unless, of course, a descendant
domain has been configured with another comparator that will override any
inherited comparator). This comparator could also be applied more select-
ively to descendant domains of SVR_DATE.

Custom Error Reporting

It is possible that a plug-in performs the operations exactly as you require,
but you need to customize the error reporting. One area of the Clram ap-
plication where this may happen isin the pre-validation operation when the
pattern matching option is applied. A pattern is aregular expression defined
in the UML model. When this validation fails, the error reports that the data
was “not in a recognized format ”, as few users would be able to interpret
the meaning of aregular expression if presented to them. If the format is a
common and intuitive one (a phone number, say), then this message will
probably suffice. However, if the format is more obscure, the error message
may need to be changed to present a human-readable description of the
format (correctly localized). There are two ways to achieve this:

* Remove the pattern option from the UML model and implement your
own pattern match validation as you would for any type of custom valid-
ation.

* Intercept the exception from the pre-validation operation and replace it
with adifferent exception carrying your alternative error message.

A custom validation is possible and you will just need to follow the usual
guidelines for such a customization, but it is complicated by the need to ac-
cess the pattern information and perform the pattern matching operation. As
you would then need to report your custom error message, it is much sim-
pler to let the existing infrastructure do all the pattern matching and just fo-
cus on the error message.

Custom error reporting is really only applicable to the par se and pr e-
Val i dat e methods of a converter plug-in. These are the only methods that
may be invoked and passed values that a user has entered and that a user
may be able to correct in response to an error message. The converter plug-
ins supplied with the out-of-the-box Caram application do not report any er-
rors from their val i dat e methods, so, unless you want to customize an-
other custom converter plug-in, theval i dat e method can be ignored.

Guidelines for Intercepting Exceptions

1. Identify the method that is generating the exception that carries the er-
ror message that you want to customize. The likely candidates are the
converter plug-in's par se and pr eVal i dat e methods.

2. Create a new sub-class of the relevant converter plug-in and override
the appropriate method.

3. In the implementation of the method, invoke the super-class's method

301

9.12.7

Curam Web Client Reference Manual

of the same name and catch any exception thrown.

4. Test the error number on the caught exception to ensure it is the one
you want to override.

5. If the error number is correct, throw a new exception carrying your er-
ror message, otherwise, re-throw the caught exception, as it is not the
one you wish to override.

6. Configure your new plug-in for the relevant domains.

This example shows how this might be done to override the pattern match
failure message. The custom exception class described in Section 9.10.2,
Custom Exception Classesis used.

/**

* Reports that social security nunbers nust match the format
* "XXX- XX-xxxx" when the regul ar expression defined in the
* UML nodel "\d{3}\-\d{2}\-\d{4}" does not match a soci al

* security nunber entered by a user.

*
/
public class SSNConverter
extends SvrStringConverter {
public void preValidate(Object data)
t hrows Conver si onException {

try {
super . preVal i dat e(dat a) ;

} catch (Conversi onException e) {

i f (e.getMessageOhject (). get Messagel ()
== e. ERR_CONV_NO MATCH) {
t hr ow new Cust ontConver si onExcepti on(-200001) ;

t hrow e;

}

}
}

Example 9.18 Custom Error Reporting

The error message entry in the custom message catalog will ook like this:

-200001=ERROR: The field '9%0s' must use the format ' XxX-XX-XXXX'.
Example 9.19 Custom Pattern Match Failure Message

Domains that require this converter can be configured in the same manner
as shown for the other converters above.

The same warnings apply to the interception of error messages as those that
apply to the reuse of error message (see Section 9.10.3, Reusing Caram Er-
ror Messages): Clram error messages are subject to change without notice.
However, in the specific case of the pattern match failure message, the error
-122128 - ERR_CONV_NO_MATCH will be preserved, as the possible
need to intercept this message is recognized.

Custom Default Values

It isunlikely that you will ever need to customize a default value plug-in for

302

Curam Web Client Reference Manual

adomain. The displayed default value can be customized using the respect-
ive UML domain definition option. The predefined assumed default values
for the domains are probably sufficient for every need. However, in the un-
likely event that you need to customize an assumed default value, the steps
are little different from those for other plug-ins.

Another reason for customizing a default value plug-in is where the dis-
played default value is not fixed and cannot be defined in the UML model.
An example of this is the use of the current date as a displayed default
value.

Guidelines for Custom Default Values

1. Identify an existing default value plug-in class that you want to cus-
tomize.

2. Create a new sub-class of the relevant default value plug-in and over-
ridetheget Di spl ayedDef aul t method.

3. The implementation of the method should simply return a value com-
patible with the Java type used to represent values for the relevant root
domain. These Java types are listed in Section 9.11, Java Object Rep-
resentations.

4. Configure your new plug-in for the relevant domains.

In this example, the displayed default value for an interest rate is calculated
dynamically using a notional Cent r al Bank class that somehow returns
the current interest rate.

/**

* Returns the current interest rate by contacting the
* central bank!
*/
public class InterestRateDefault
ext ends SvrFl oat Default {
public Object getD splayedDefaul t()
t hr ows Domai nException {

try {
return new Fl oat (Central Bank. getlnterestRate());

} catch (Exception e) {
t hr ow new Cust onDonai nExcepti on(-200099, e);
}
}
}

Example 9.20 Custom Default Date-Time Value

The example assumes that the | nt er est Rat eDef aul t classwill be as-
sociated with a descendant of the SVR_FLOAT domain that requires a de-
fault value to be of the j ava. |l ang. Fl oat type. By extending the
Svr Fl oat Def aul t class, the new default value plug-in will automatic-
ally use zero as the assumed default interest rate value.

The exception handling uses a Cust onDomai nExcept i on class. Asthe
get Di spl ayedDef aul t method throws a Domai nExcepti on, and

303

9.13

9.13.1

9.13.2

Curam Web Client Reference Manual

not a Conver si onExcepti on, you could create such a custom excep-
tion class by deriving it from Domai nExcept i on in exactly the same way
as the Cust onConver si onExcepti on class was derived from Con-
ver si onExcepti on in Section 9.10.2, Custom Exception Classes. You
might note that, as the Domai nExcepti on class is an ancestor of the
Cust ontConver si onExcepti on class that the CustonConver -
si onExcepti on class could be used here instead. This will work, but
you must not attempt to report a message containing the “%0s’ placeholder
for the field label, as automatic replacement of the field label is not suppor-
ted when aDomai nExcept i on typeis expected.

The example above shows the unknown exception thrown by the Cent -

r al Bank class being added to the new custom exception. Y ou only need to
implement the appropriate constructor to support this. The super-class
already has a constructor with the same signature, so your constructor's im-
plementation need only call that. There is no need to extract a string value or
stack trace from the exception; all will be reported correctly when neces-
sary.

Advanced Topics

Type Checking and Null Checking

You may have noticed that none of the examples in this chapter show the
string or object values passed to the methods being checked to see if they
are nul | or of the wrong type. The reason is that it is not necessary. The
client infrastructure guarantees that no method will be called with a nul |
value and that no conversion operation will be invoked for an object that is
not compatible with the class returned by the converter plug-in's get Do-
mai nCl ass method. Y our custom code need never include any error hand-
ling and reporting code for these checks.

Plug-in Instance Management

For efficiency, a Caram client application pools the minimum number of
domain plug-in instances possible. This reduces the overhead involved in
creating new plug-in instances each time their operations are invoked, but it
does impose some restrictions on the way plug-ins can be written.

Domain plug-ins maintain state information: a reference to the domain and
the active user's locale. Custom code can access this state information by
calling the get Domai n and get Local e methods and use it as required.
The potential for concurrent access to plug-ins in typical multi-threaded
servers impacts the way the plug-in instances (with their state information)
are managed. If concurrent requests are received from users who are using
different locales, then the same plug-in instance cannot be used when servi-
cing these requests, as only one locale value can be set in a plug-in instance.
However, as any Culram application only supports a finite number of loc-
ales, maintaining a single plug-in instance for each locale is sufficient to

304

Curam Web Client Reference Manual

avoid concurrency problems or synchronization overheads. This, of course,
has to be multiplied by the number of domains, as the domain information
also constitutes state. The result is that each domain in the domain hierarchy
accesses a pool of plug-in instances specific to that domain and each pool
contains one instance of each type of plug-in for each locale.

This instance management system is entirely driven by the plug-ins them-
selves. Each type of plug-in can implement its own instantiation strategy
most appropriate to its needs. However, to avoid over-complicating instance
management, the Abst r act Domai nPl ugl n class (see Section 9.9.1, Ex-
tending Existing Plug-ins) implements the single, consistent pooling
strategy that balances efficiency against other considerations.

While it would be more efficient to dispense with the domain and locale
state information and pass these values to the various converter and compar-
ator methods, this poses several other problems that make this approach less
desirable:

* The method signatures would be complicated by values that may not be
used.

« Some method signatures, such as the compare method of the
java. util . Conpar at or interface would not be compatible.

» The addition of new state information in the future would break all ex-
isting implementations. Using accessor methods for state information al-
lows the abstract super-classes to implement the accessors and the signa-
tures of the other interface methods can remain unchanged. During an
upgrade no changes would need to be made to any existing custom code
that has followed the guidelines and extended these abstract super-
classes or other classes derived from them.

It is this latter point that is most important, successful upgrades depend on
custom code that does not attempt to implement the plug-in interfaces from
scratch. Thisiswhy such an approach cannot be supported.

The pooling strategy used means that there is one main limitation on how
plug-ins can be written: plug-ins must not attempt to store any state inform-
ation. In short, no customization should add fields to a plug-in class and at-
tempt to store information in them; concurrent application requests will
probably cause such a plug-in to fail intermittently or introduce obscure
bugs.

Domain plug-in classes must also provide a default constructor (i.e., a con-
structor that takes no arguments). However, any Java class that does not ex-
plicitly define a default constructor will automatically have one defined for
it if the default constructor of an ancestor class is visible. For custom plug-
in classes that extend the plug-in classes and abstract plug-in classes
provided with the out-of-the-box Caram application, no explicit default con-
structor is required.

9.13.3 Naming Conventions

305

9.13.4

9.13.5

Curam Web Client Reference Manual

Custom domain plug-in classes may implement utility methods to support
the implementation of the main interface methods. An exampleisthe pad
method shown in Example 9.14, Sorting Srings Numerically. To avoid in-
advertently overriding another inherited method, or using a method name
that conflicts with a method introduced in alater Clram release, you should
prefix such utility methods with an underscore character as shown. Under-
score characters will not be used in the client infrastructure, so they will
guarantee that no naming conflict will arise in the future. For similar reas-
ons, do not create classes in packages that might conflict with Caram pack-
age names. All Curam packages begin with “curam”, so avoiding that name
is sufficient. The examples in this chapter used the package name prefix
“custom”, but thisis not a requirement.

Generic Parse Operations

The generic parse operation, performed by the Domai nConvert er inter-
face's par seGener i ¢ method, needs some explanation, so that care can
be taken not to disable its operation by mistake. The generic parse operation
is responsible for parsing the string representation of values defined in the
UML model's domain definition options. Domain options for maximum,
minimum and default values are expressed in formats that are not locale-
specific, as the UML model is not locale-aware. Each of the root domains
accepts values in a particular format (e.g., 1SO-8601 format for SVR_DATE
domains) and customization of this format is not supported. Therefore, the
default implementations of the par seGener i ¢ method must be respected.

For some domains, the format supported by the converter's par se method
is the same as the format supported by the par seGeneri ¢ method. The
default implementation of the parseGeneri c method in the Ab-
stract Converter classjust cals the par se method (which is not im-
plemented in this class). Therefore, if you sub-class the Abst r act Con-
verter class and implement a par se method, the same implementation
will be used by the par seGeneri ¢ method. This may be what you re-
quire, but, if it is not, you may want to implement a different par seGen-
er i ¢ method.

All of the out-of-the-box, concrete converter classes separate the imple-
mentations of the two methods, so you can override one without changing
the behavior of the other. Again, this may be what you require, but, if it is
not, you may want to override both methods.

Code-Tables

Data conversion and sorting for code-table domains should be managed via
the code-table administration interface. While the client infrastructure uses
the same plug-in mechanism described here to manage code-table values,
the customization of code-table-related plug-insis not supported. Code-table
data is more complex to handle (formatting and parsing are not symmetrical
operations as they are for other types) and al of the necessary customiza-

306

Curam Web Client Reference Manual

tions can be accomplished without resorting to programmeatic means.

The formatting of code-table values is achieved by modifying the descrip-
tions of each code. Parsing operations receive the code values and simply
pass them on. Pre-parsing, pre-validation, and validation are not important.

Default codes and custom sort orders are controlled entirely viathe adminis-
tration interface.

307

Appendix A

Unsupported Dynamic UIM features

A.1 Introduction

This appendix lists the elements and attributes (features) that are not suppor-
ted in dynamic UIM.

A.2 PAGE
FI ELD Child Element
CONTAI NER Child Element
W DGET Child Element
| NCLUDE Child Element
SHORTCUT _TI TLE Child Element
TAB_NANVE Child Element
JSP_SCRI PTLET Child Element
SCRI PT Child Element
SCRI PT_FI LE Attribute
POPUP_PAGE Attribute
APPEND COLON Attribute
HI DE_CONDI TI ONAL_LI NKS Attribute
COVPONENT _STYLE Attribute
TYPE Attribute

Table A.1 Unsupported PAGE Features

308

A.3

A.4

A.5

Curam Web Client Reference Manual

PAGE TITLE

For full details on the supported features of this element in static UIM, see
Section 5.9.27, PAGE_TITLE.

Name Feature Type

DESCRI PTI ON Child Element
| CON Attribute

Table A.2 Unsupported PAGE_TITLE Features

CLUSTER

For full details on the supported features of this element in static UIM, see
Section 5.9.5, CLUSTER.

Feature Type Supported/Unsup-

ported attribute val-

ues
TI TLE Child Element
DESCRI PTI ON Child Element

W DGET Child Element
SUVVARY Attribute
TAB_ORDER Attribute

Table A.3 Unsupported CLUSTER Features

LIST

For full details on the supported features of this element in static UIM, see
Section 5.9.23, LIST.

Feature Type Supported/Unsup-

ported attribute val-

ues
TI TLE Child Element
DESCRI PTI ON Child Element
FOOTER _ROW Child Element

ACTI ON_CONTRCL Child Element
SUVVARY Attribute

SORTABLE Attribute

309

A.6

A.7

Curam Web Client Reference Manual

Feature Type Supported/Unsup-

ported attribute val-

ues
PAG NATED Attribute
DEFAULT_PAGE_SI ZE Attribute
PAG NA- Attribute

TI ON_THRESHOLD
Table A.4 Unsupported LIST Features

FIELD

For full details on the supported features of this element in static UIM, see
Section 5.9.11, FIELD.

Name Feature Type
LABEL Child Element
SCRI PT Child Element
EDI TABLE Attribute
LABEL_ABBREVI ATI ON Attribute
DESCRI PTI ON Attribute
I NI TI AL_FOCUS Attribute
ALT TEXT Attribute
CONTROL Attribute
CONFI G Attribute

Table A.5 Unsupported FIELD Features

CONTAINER

For full details on the supported features of this element in static UIM, see
Section 5.9.8, CONTAINER.

Name Feature Type

| MAGE Child Element
LABEL _ABBREVI ATl ON Attribute

Table A.6 Unsupported CONTAINER Features

A.8 ACTION_SET

310

A.9

A.10

Curam Web Client Reference Manual

For full details on the supported features of this element in static UIM, see
Section 5.9.4, ACTION_SET.

Name Feature Type

CONDI TI ON Child Element
SEPARATOR Child Element
TOP Attribute
BOTTOM Attribute

Table A.7 Unsupported ACTION_SET Features

WIDGET

For full details on the supported features of this element in static UIM, see
Section 5.10.2, WIDGET.

Feature Type Supported/Unsup-

ported attribute val-

ues
W DTH Attribute
W DTH UNI TS Attribute
ALl GNVENT Attribute
HAS CONFI RM_PAGE Attribute
CONFI G Attribute
COVPONENT _STYLE Attribute
TYPE Attribute Only the value

SI NGLESELECT issup-
ported, all other values
are unsupported

Table A.8 Unsupported WIDGET Features

ACTION_CONTROL

For full details on the supported features of this element in static UIM, see
Section 5.9.3, ACTION_CONTROL.

Feature Type Supported/Unsup-

ported attribute val-
ues

CONNECT Child Element
SCRI PT Child Element

311

Curam Web Client Reference Manual

Feature Type Supported/Unsup-

ported attribute val-

ues
CONDI TI ON Child Element
LABEL_ABBREVI ATI ON Attribute
| MAGE Attribute
CONFI RM Attribute
DEFAULT Attribute
ACTION_I D Attribute
ALl GNVENT Attribute
TYPE Attribute Only the values ACTI ON

and SUBM T are sup-
ported, all other values
are unsupported

Table A.9 Unsupported ACTION_CONTROL Features

A.11 LINK

For full details on the supported features of this element in static UIM, see
Section 5.9.22, LINK.

Name Feature Type

CONDI TI ON Child Element
PAGE | D REF Attribute
SAVE LI NK Attribute
URL Attribute
URI _REF Attribute
URI _ SOURCE_NAME Attribute
URI _ SOURCE PROPERTY Attribute

SET_HI ERARCHY_ RETURN_ PAGE Attribute
USE_HI ERARCHY_ RETURN_PAGE Attribute
HOVE_PAGE Attribute

Table A.10 Unsupported LINK Features

A.12 INLINE_PAGE

For full details on the supported features of this element in static UIM, see
Section 5.9.17, INLINE_PAGE.

312

Curam Web Client Reference Manual

Name Feature Type

URI _SOURCE_NAME Attribute
URI _SOURCE_PROPERTY Attribute

Table A.11 Unsupported INLINE_PAGE Features

A.13 MENU

For full details on the supported features of this element in static UIM, see
Section 5.9.24, MENU.

Feature Type Supported/Unsupported
attribute values
CONNECT Child Element
MODE Attribute Only the value

| N_PAGE_NAVI GATI ONis
supported, all other values
are unsupported.

Table A.12 Unsupported MENU Features

A.14 SERVER_INTERFACE

For full details on the supported features of this element in static UIM, see
Section 5.9.29, SERVER _INTERFACE.

Name Feature Type
ACTI ON_I| D_PROPERTY Attribute

Table A.13 Unsupported SERVER_INTERFACE Features

A.15 INFORMATIONAL

Only Informationals whose connections endpoints are associated with a
server interface defined in the DI SPLAY phase, are supported. See Sec-
tion 5.9.16, INFORMATIONAL for more details on informationals.). In-
formationals with other any type of connection endpoints are not supported.

313

Curam Web Client Reference Manual

Notes

*An action of type SUBMIT is not supported within a list action menu or a
page level action menu. A list action menu is an ACTION_SET element
within aLIST that hasavaueof 'LIST_ROW_MENU' on it's ' TYPE' attrib-
ute. A page level action menu is an ACTION_SET defined at the PAGE
level. See the Section 5.9.4, ACTION_SET for further details. All other sub-

mit actions are supported.

314

B.1

Appendix B

Maintaining Dynamic UIM Pages

This appendix provides details on how to load dynamic UIM pages into the
application resource store.

The way you store your screens differs depending on whether you are work-
ing in adevelopment environment or a running System.

] Caution
]

Currently the development of custom dynamic UIM pages is only
supported for the presentation of decision details only. Refer to the
the chapter Calculating and Displaying Decision Details in the In-
side Caram Eligibility and Entitlement Using Clram Express Rules
documentation for more details.

Development of dynamic UIM for any purpose beyond that de-
scribed in this guide is not supported.

Working in a Development Environment

In order to load a dynamic UIM page into the resource store, you must add
two separate entries to the AppResour ce. dnx file in the custom com-
ponent, each entry corresponding to a dynamic UIM file and an associated
propertiesfile.

The following is an example of how to add the DUIMSample dynamic UIM
page to the AppResour ce. dnx file, so that it will be loaded into the ap-
plication resource store at build time.

<r ow>
<attribute nane="resourcei d">
<val ue>1</val ue>
</attribute>
<attribute nanme="I| ocal el dentifier">
<val ue/ >
</attribute>
<attribute nane="nane">
<val ue>DUl Msanpl e</ val ue>

315

Curam Web Client Reference Manual

</attribute>
<attribute nane="content Type">
<val ue>t ext/ pl ai n</ val ue>
</attribute>
<attri bute name="content Di sposition">
<val ue>i nl i ne</ val ue>
</attribute>
<attribute nanme="content">
<val ue>./custom data/initial/cl ob/DU Msanpl e. ui nx/ val ue>
</attribute>
<attribute name="internal ">
<val ue>0</ val ue>
</attribute>
<attribute nanme="l|astWitten">
<val ue>2011- 06- 13- 19. 29. 40</ val ue>
</attribute>
<attribute nane="versi onNo" >
<val ue>1</val ue>
</attribute>
<attribute name="category">
<val ue>RS_XM.</ val ue>
</attribute>
</row>

<r ow>
<attri bute nanme="resourceid">
<val ue>2</ val ue>
</attribute>
<attribute nanme="|ocal el dentifier">
<val ue/ >
</attribute>
<attribute nane="nane">
<val ue>DUl Msanpl e. properti es</val ue>
</attribute>
<attribute nane="content Type">
<val ue>t ext/ pl ai n</ val ue>
</attribute>
<attribute nanme="content D sposition">
<val ue>i nl i ne</ val ue>
</attribute>
<attribute nanme="content">
<val ue>./custonfdata/initial/cl ob/DU Msanpl e. properties</val ue>
</attribute>
<attribute name="internal ">
<val ue>0</ val ue>
</attribute>
<attribute nanme="l|astWitten">
<val ue>2011- 06- 13- 19. 29. 40</ val ue>
</attribute>
<attribute nane="versi onNo" >
<val ue>1</val ue>
</attribute>
<attribute nane="category">
<val ue>RS_PROP</ val ue>
</attribute>
</ row>

i Note

The value of the contentType attribute specifies the location on the
file system that each entry (dynamic UIM file and associated prop-
erties file) can be uploaded from. The value of the category attribute
in the AppResour ce. dnk categorizes a dynamic UIM page re-
source so that they can be distinguished from other kinds of re-
sources in the resource store. The dynamic UIM file should be cat-

316

B.2

B.2.1

B.2.2

Curam Web Client Reference Manual

egorized (as shown in the example) as a RS XML resource. The as-
sociated properties file should be categorized as RS PROP. Each
dynamic UIM resource that is added to the AppResour ce. dnk
should also be given the same value so that they all belong to the
same category. See the section below for details of how new dynam-
ic UIM pages are loaded into the resource store at runtime. The
value of the localeldentifier attribute should be empty (as in the ex-
ample) if the user's required locale is English. Otherwise the actual
locale should be used as the value for this attribute for both the UIM
and propertiesfile.

Working in a Running System

In order to navigate to the home dynamic UIM administration screen in the
application, the user must do the following:

* Logintothe“admin” application.

* From the shortcut menu, select the “Dynamic UIM” menu item from the
“Dynamic UIM” category.This should open the home dynamic UIM ad-
ministration screen

A user can maintain dynamic UIM pages in the resource store by perform-
ing the following actions:

e Addadynamic UIM page to the Resource Store

« Edit adynamic UIM page in the Resource Store

» Delete adynamic UIM page from the Resource Store
» Validate adynamic UIM page in the Resource Store

Search for Dynamic UIM Pages by Category

In order to view the current list of dynamic UIM pages in the resource store
you must perform a search based on the resource store category. This can be
done from the home dynamic UIM administration screen as follows:

» Select amenu item for the drop-down list on “Category Search” field.
» Click on the “Search” button. This will return the list of dynamic UIM

pages for the selected category.
Uploading a Dynamic UIM page to the Resource Store

From the home dynamic UIM administration screen, a dynamic UIM page
can be added to the resource store by doing the following

o Select the New... page level action control. This will open a modal dia-
log page with four mandatory fields.

317

B.2.3

B.2.4

Curam Web Client Reference Manual

Enter the value of the page Page ID field. The value must be the same as
the value of the PAGE | D attribute in the UIM file that is being up-
loaded, otherwise an error message will be displayed.

Select the locale from the drop-down list on the locale field. The default
islocaleis English.

Use the “Browse” button on the “UIM File” field to navigate to the dy-
namic UIM file that is to be uploaded to the resource store. Asindicated,
thisisamandatory field.

Use the “Browse” button on the “Properties File” field to navigate to the
associated properties file to upload to the resource store. As indicated,
thisisamandatory field.

Editing a Dynamic UIM page in the resource store

From the home dynamic UIM administration, a dynamic UIM page can be
added to the resource store by doing the following:

From the list of dynamic UIM pages displayed, navigate to the dynamic
UIM page that you would like to edit (by Page | D), and select the
“Edit...” menu item for the list action menu. This should open a modal
dialog page with three fields.

If you would like to download the current version of the dynamic UIM
file and associated properties file (to be edited) from the Resource Store
the locale file system, then select the “Download” button and save the
zip file - containing both aforementioned files - to the file system. The
dynamic UIM file and associated properties file can then be unzipped
from the downloaded zip and edited as required.

Use the “Browse” button on the “UIM File” field to navigate to the dy-
namic UIM file that is to be uploaded to the resource store. Asindicated,
thisisamandatory field.

Use the “Browse” button on the “Properties File” field to navigate to the
associated properties file to upload to the resource store. As indicated,
thisisamandatory field.

Deleting a Dynamic UIM File from the Resource Store

From the home dynamic UIM administration, a dynamic UIM page can be
deleted from the resource store by doing the following:

From the list of dynamic UIM pages displayed, navigate to the dynamic
UIM page that you would like to edit (by Page | D), and select the
“Delete...” menu item for the list action menu. As a result of this action
amodal dialog will be displayed, with a message looking for confirma-
tion that you want to delete the selected dynamic UIM page from the re-
source store.

318

B.2.5

B.2.6

Curam Web Client Reference Manual

* The Yes button should be selected to delete the dynamic UIM page from
the resource store. A new search for dynamic UIM pages in the resource
store should reflect the fact that this dynamic UIM page has been re-
moved from the resource store.

Validating a dynamic UIM file in the resource store

From the home dynamic UIM administration, a dynamic UIM page can be
validated in the resource store by doing the following:

* From thelist of dynamic UIM pages displayed, navigate to the dynamic
UIM page that you would like to edit (by Page | D), and select the
“Validate...” menu item for the list action menu. As a result of this ac-
tion a modal dialog will be displayed, with a message stating whether
the validation has passed of failed. If the validation fails, then the source
of the error page will appear in the dialog and the full details of the error
can be found in the server logs.

Publish dynamic UIM files

The changes to the dynamic UIM files will not be made public until they are
intentionally published to the resource store. This can be done by selecting
the “Publish...” page action control from the home dynamic UIM adminis-
tration screen. This action will open a modal dialog page asking for con-
firmation that the changes are to be published to the resource store.

319

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

320

Curam Web Client Reference Manual

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

321

Curam Web Client Reference Manual

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

322

Trademarks

Curam Web Client Reference Manual

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Adobe, the Adobe logo, Adobe SVG Viewer, Adobe Reader, Adobe
Flash, and Adobe Flex are either registered trademarks or trade-
marks of Adobe Systems Incorporated in the United States, other
countries, or both.

Apacheis atrademark of Apache Software Foundation.

Microsoft, Windows, Internet Explorer, and Word, are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Mozilla, isregistered trademarks of Mozilla Foundation.

UNIX is a registered trademark of the Open Group in the United
States and other countries.

WebL ogic Server, Java and all Java-based trademarks and logos are
registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

323

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Web Client Reference Manual
	Table of Contents
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Prerequisites
	1.3 Companion Guides
	1.4 Structure
	1.5 Summary

	Chapter 2 Concepts
	2.1 Objective
	2.2 Prerequisites
	2.3 Introduction
	2.4 Application User Interface Overview
	2.5 User Interface Meta-data
	2.5.1 Page Content Meta-data

	2.6 Applications
	2.7 Page Context
	2.8 Page Look-and-Feel
	2.9 Application Controller Java Server Page
	2.10 Direct Browsing
	2.11 Summary

	Chapter 3 Development
	3.1 Objective
	3.2 Prerequisites
	3.3 Introduction
	3.4 Outline of the Development Process
	3.5 Installation
	3.6 Project Folder Structure
	3.7 Application Components
	3.7.1 Component Folders
	3.7.2 Component Order
	Localized Components

	3.8 Component Artifacts
	3.9 Application Locales
	3.10 Building an Application
	3.10.1 Build Targets
	3.10.2 Related Build Targets
	3.10.3 Full and Incremental Builds
	3.10.4 Dependency Checking
	3.10.5 Build Logs
	3.10.6 Error Reporting
	3.10.7 Server Interface Reference
	3.10.8 Page Previews
	3.10.9 UIM Generator Tool
	3.10.10 External Client Applications

	3.11 Deployment
	3.11.1 Overview
	3.11.2 Configuring the Application
	Tracing

	3.11.3 Customizing the Web Application Descriptor
	Customizing the 404 or Page Not Found error response.

	3.12 Customization
	3.12.1 Overview
	3.12.2 Adding New Artifacts
	3.12.3 Overriding or Merging Artifacts
	3.12.4 Externalized Strings
	3.12.5 Images
	3.12.6 Image Mapping
	3.12.7 CuramLinks.properties
	3.12.8 XML Runtime Configuration Files
	3.12.9 Login Pages
	3.12.10 JavaScript Files
	3.12.11 Cascading Stylesheets
	Application Specific CSS
	Media Specific CSS
	Browser Specific CSS

	3.12.12 Application Configuration Files
	3.12.13 General Configuration
	Overview
	POPUP_PAGES
	MULTIPLE_POPUP_DOMAINS
	ERROR_PAGE
	MULTIPLE_SELECT
	FILE_DOWNLOAD_CONFIG
	ENABLE_COLLAPSIBLE_CLUSTERS
	APPEND_COLON
	ADDRESS_CONFIG
	ADMIN
	STATIC_CONTENT_SERVER
	FIELD_ERROR_INDICATOR
	SECURITY_CHECK_ON_PAGE_LOAD
	ENABLE_SELECT_ALL_CHECKBOX
	TRANSFER_LISTS_MODE
	HIDE_CONDITIONAL_LINKS
	DISABLE_AUTO_COMPLETE
	SCROLLBAR_CONFIG
	PAGINATION
	Customizing Configuration Settings
	Dividing the Configuration File

	3.12.14 Custom Resources

	Chapter 4 Localization
	4.1 Objective
	4.2 Prerequisites
	4.3 Introduction
	4.4 Numbers
	4.5 File Encoding
	4.5.1 XML Files
	4.5.2 Java properties files
	4.5.3 Non-XML Files

	4.6 Locales
	4.6.1 Non JavaScript property files
	4.6.2 JavaScript property files

	4.7 UIM Externalized Strings
	4.8 JavaScript Externalized Strings
	4.8.1 Accessing properties in JavaScript

	4.9 Image.properties
	4.10 Infrastructure Widget Properties Files
	4.10.1 Frequency Pattern Selector Localization

	4.11 CDEJResources.properties
	4.12 ApplicationConfiguration.properties
	4.13 Application-wide Menu
	4.14 Tabbed Configuration Artifacts
	4.15 Runtime Messages

	Chapter 5 UIM Reference
	5.1 Objective
	5.2 Prerequisites
	5.3 Introduction
	5.4 Creating UIM Documents
	5.5 UIM Document Types
	5.6 UIM Pages
	5.7 UIM Views
	5.8 Externalized Strings
	5.9 UIM Reference for Pages and Views
	5.9.1 Introduction
	5.9.2 Connection Types
	5.9.3 ACTION_CONTROL
	File Downloads
	Attributes
	Child Elements

	5.9.4 ACTION_SET
	Attributes
	Child Elements

	5.9.5 CLUSTER
	Attributes
	Child Elements

	5.9.6 CONDITION
	Attributes
	Child Elements

	5.9.7 CONNECT
	Attributes
	Child Elements

	5.9.8 CONTAINER
	Attributes
	Child Elements

	5.9.9 DETAILS_ROW
	Attributes
	Child Elements

	5.9.10 DESCRIPTION
	Attributes
	Child Elements

	5.9.11 FIELD
	Attributes
	Child Elements

	5.9.12 FOOTER_ROW
	Attributes
	Child Elements

	5.9.13 IMAGE
	Attributes
	Child Elements

	5.9.14 INCLUDE
	Attributes
	Child Elements

	5.9.15 INITIAL
	Attributes
	Child Elements

	5.9.16 INFORMATIONAL
	Attributes
	Child Elements

	5.9.17 INLINE_PAGE
	Attribute
	Child Elements
	Restrictions on usage

	5.9.18 IS_FALSE
	Attributes
	Child Elements

	5.9.19 IS_TRUE
	Attributes
	Child Elements

	5.9.20 JSP_SCRIPTLET
	Attributes
	Child Elements

	5.9.21 LABEL
	Attributes
	Child Elements

	5.9.22 LINK
	Attributes
	Child Elements
	Modal Dialogs
	Using Modal Dialogs
	Configuring Modal Dialogs
	Controlling Modal Dialogs from custom JavaScript
	Loading custom non-UIM pages in a Modal Dialog

	5.9.23 LIST
	Attributes
	Child Elements

	5.9.24 MENU
	Attributes
	Child Elements
	DYNAMIC and INTEGRATED_CASE type menus
	The IN_PAGE_NAVIGATION type menu
	WIZARD_PROGRESS_BAR menu
	The UIM wizard pages
	Wizard menu configuration

	5.9.25 PAGE
	Attributes
	Child Elements

	5.9.26 PAGE_PARAMETER
	Attributes
	Child Elements

	5.9.27 PAGE_TITLE
	Attributes
	Child Elements

	5.9.28 SCRIPT
	Attributes
	Child Elements

	5.9.29 SERVER_INTERFACE
	Attributes
	Child Elements

	5.9.30 SOURCE
	Attributes
	Child Elements

	5.9.31 TAB_NAME
	Child Elements

	5.9.32 TARGET
	Attributes
	Child Elements

	5.9.33 TITLE
	Attributes
	Child Elements

	5.9.34 VIEW
	Attributes
	Child Elements

	5.10 UIM Reference for Widgets
	5.10.1 Introduction
	5.10.2 WIDGET
	Attributes
	Child Elements

	5.10.3 WIDGET_PARAMETER
	Attributes
	Child Elements

	5.10.4 The EVIDENCE_COMPARE Widget
	5.10.5 The FILE_EDIT Widget
	User Machine Configuration

	5.10.6 The FILE_UPLOAD Widget
	5.10.7 The FILE_DOWNLOAD Widget
	5.10.8 The MULTISELECT Widget
	Confirmation Pages

	5.10.9 The SINGLESELECT Widget
	5.10.10 The RULES_SIMULATION_EDITOR Widget
	5.10.11 The IEG_PLAYER Widget

	5.11 Dynamic UIM Cross Reference
	5.12 Dynamic UIM System Initialization

	Chapter 6 Application Configuration
	6.1 Objective
	6.2 Prerequisites
	6.3 Introduction
	6.4 Configuration Files
	6.5 Applications
	6.5.1 Introduction
	6.5.2 Definition
	application-menu
	application-search
	search-pages
	further-options-link

	section-ref

	6.5.3 Optional Header
	6.5.4 Example
	6.5.5 Associate an Application with User

	6.6 Sections
	6.6.1 Introduction
	6.6.2 Definition
	tab
	shortcut-panel-ref

	6.6.3 Example

	6.7 Section Shortcut Panel
	6.7.1 Introduction
	6.7.2 Definition
	node

	6.7.3 Example

	6.8 Tabs
	6.8.1 Introduction
	6.8.2 Definition
	page-param
	menu
	context
	navigation
	smart-panel
	tab-refresh
	onsubmit/onload

	6.8.3 Context Panel UIM
	6.8.4 Example

	6.9 Tab Actions Menu
	6.9.1 Introduction
	6.9.2 Definition
	menu-item
	submenu
	menu-separator
	loader-registry
	loader

	6.9.3 Dynamic Support
	6.9.4 File Download Menu Item
	6.9.5 Example

	6.10 Tab Navigation
	6.10.1 Introduction
	6.10.2 Definition
	nodes
	navigation-group
	navigation-page
	loader-registry
	loader

	6.10.3 Dynamic Support
	6.10.4 Example

	6.11 Opening Tabs and Sections
	6.11.1 Introduction
	6.11.2 Links
	6.11.3 Page to Tab Associations
	6.11.4 Tab to Section Associations
	6.11.5 Page Parameters

	Chapter 7 Session Management
	7.1 Objective
	7.2 Prerequisites
	7.3 Introduction
	7.4 Session Basics
	7.5 Tab Restoration
	7.6 Configuration
	7.7 Limitations
	7.8 Browser Specific Session Management

	Chapter 8 Domain Specific Controls
	8.1 Objective
	8.2 Prerequisites
	8.3 Introduction
	8.4 Dates
	8.5 Date-Times
	8.5.1 Representing time-only values
	8.5.2 Customizing the Time Format

	8.6 Frequency Pattern Selector
	8.7 Selection Lists
	8.7.1 Populated from a Code-Table
	8.7.2 Populated from Server Interface Properties
	8.7.3 Drop-down, Scrollable and Checkboxed List types
	Drop-down and Scrollable List
	Checkboxed List

	8.7.4 Adding an Empty Entry to a List for Non-Mandatory Fields
	8.7.5 Enabling Multiple Selection
	8.7.6 Transfer List Widget
	Overview
	Configuration

	8.8 User Preferences Editor
	8.9 Rules Trees
	8.9.1 Introduction
	Behavior of Summary and Highlight-On-Failure Rules Flags

	8.9.2 Default Rules View
	8.9.3 Summary Rules View
	8.9.4 Failed Rules View
	8.9.5 Dynamic Rules View
	Behavior of Summary and Highlight-On-Failure Indicator

	8.9.6 Dynamic Full Tree Rules View
	8.9.7 Rules Editor

	8.10 Meeting View
	8.10.1 Overview
	8.10.2 Single Selection Mode
	8.10.3 Multiple Selection Mode
	8.10.4 XML Formats

	8.11 Charts
	8.11.1 Overview
	8.11.2 Chart appearance
	8.11.3 Chart configuration
	8.11.4 Chart Data Formats

	8.12 Heatmap Widget
	8.12.1 Overview
	8.12.2 Configuration

	8.13 Workflow
	8.13.1 Overview
	8.13.2 Workflow Details
	8.13.3 Workflow XML Formats

	8.14 Evidence View
	8.14.1 Evidence Display Mode
	8.14.2 Evidence Comparison Mode
	8.14.3 Configuration
	8.14.4 Data Format

	8.15 Calendar
	8.16 Payment Statement View
	8.17 Batch Function View
	8.18 Addresses
	8.19 Schedule View
	8.20 Radio Button Group
	8.21 Pop-up Pages
	8.21.1 Configure the Pop-up Page
	8.21.2 Create the Pop-up Page
	A pop-up which returns existing items
	A pop-up which creates a new item

	8.21.3 Using the Pop-up Page
	8.21.4 Using Multiple Pop-up Search Pages for a Single Field
	8.21.5 Configure the Multiple Pop-up Page
	8.21.6 Using the Multiple Pop-up Page

	8.22 Agenda Player
	8.22.1 Agenda Player screen structure
	8.22.2 Navigation modes
	8.22.3 Navigator-less View
	8.22.4 Agenda Player Configuration
	8.22.5 Agenda Player Customization
	8.22.6 Player data

	8.23 LOCALIZED_MESSAGE Domain
	8.24 Decision Assist: Decision Matrix Widget
	8.24.1 Overview

	Chapter 9 Custom Data Conversion and Sorting
	9.1 Objective
	9.2 Prerequisites
	9.3 Introduction
	9.4 Data Conversion and Sorting Operations
	9.5 Data Conversion Life Cycle
	9.6 The Domain Hierarchy and Domain Plug-ins
	9.7 Overview of Domain Plug-ins
	9.7.1 Common Features of Plug-ins
	9.7.2 Converter Plug-ins
	9.7.3 Comparator Plug-ins
	9.7.4 Default Value Plug-ins

	9.8 Domain Plug-in Configuration
	9.9 Out-of-the-Box Domain Plug-ins
	9.9.1 Extending Existing Plug-ins
	9.9.2 Converter Plug-ins
	9.9.3 Comparator Plug-ins
	9.9.4 Default Value Plug-ins

	9.10 Error Reporting
	9.10.1 Exception Classes
	9.10.2 Custom Exception Classes
	9.10.3 Reusing Cúram Error Messages

	9.11 Java Object Representations
	9.12 Customization Guidelines
	9.12.1 Where to Start
	9.12.2 Custom Formatting
	9.12.3 Custom Parsing
	9.12.4 Custom Validation
	9.12.5 Custom Sorting
	9.12.6 Custom Error Reporting
	9.12.7 Custom Default Values

	9.13 Advanced Topics
	9.13.1 Type Checking and Null Checking
	9.13.2 Plug-in Instance Management
	9.13.3 Naming Conventions
	9.13.4 Generic Parse Operations
	9.13.5 Code-Tables

	Appendix A Unsupported Dynamic UIM features
	A.1 Introduction
	A.2 PAGE
	A.3 PAGE TITLE
	A.4 CLUSTER
	A.5 LIST
	A.6 FIELD
	A.7 CONTAINER
	A.8 ACTION_SET
	A.9 WIDGET
	A.10 ACTION_CONTROL
	A.11 LINK
	A.12 INLINE_PAGE
	A.13 MENU
	A.14 SERVER_INTERFACE
	A.15 INFORMATIONAL

	Appendix B Maintaining Dynamic UIM Pages
	B.1 Working in a Development Environment
	B.2 Working in a Running System
	B.2.1 Search for Dynamic UIM Pages by Category
	B.2.2 Uploading a Dynamic UIM page to the Resource Store
	B.2.3 Editing a Dynamic UIM page in the resource store
	B.2.4 Deleting a Dynamic UIM File from the Resource Store
	B.2.5 Validating a dynamic UIM file in the resource store
	B.2.6 Publish dynamic UIM files

	Notices
	Trademarks

