
IBM Cúram Social Program Management

Cúram Web Client Reference Manual

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008-2012 IBM Corporation

Table of Contents

Chapter 1 Introduction ... 1
1.1 Introduction .. 1
1.2 Prerequisites ... 1
1.3 Companion Guides ... 1
1.4 Structure ... 2
1.5 Summary .. 2

Chapter 2 Concepts .. 3
2.1 Objective .. 3
2.2 Prerequisites ... 3
2.3 Introduction .. 3
2.4 Application User Interface Overview .. 4
2.5 User Interface Meta-data .. 5

2.5.1 Page Content Meta-data .. 5
2.6 Applications ... 8
2.7 Page Context .. 11
2.8 Page Look-and-Feel ... 11
2.9 Application Controller Java Server Page ... 12
2.10 Direct Browsing ... 12
2.11 Summary .. 12

Chapter 3 Development ... 14
3.1 Objective .. 14
3.2 Prerequisites ... 14
3.3 Introduction .. 14
3.4 Outline of the Development Process .. 14
3.5 Installation .. 15
3.6 Project Folder Structure ... 16
3.7 Application Components ... 19

3.7.1 Component Folders ... 19
3.7.2 Component Order .. 20

3.8 Component Artifacts .. 21
3.9 Application Locales ... 22
3.10 Building an Application ... 23

3.10.1 Build Targets ... 23
3.10.2 Related Build Targets ... 25
3.10.3 Full and Incremental Builds .. 25

iii

3.10.4 Dependency Checking .. 26
3.10.5 Build Logs ... 26
3.10.6 Error Reporting ... 26
3.10.7 Server Interface Reference .. 27
3.10.8 Page Previews ... 28
3.10.9 UIM Generator Tool ... 28
3.10.10 External Client Applications ... 29

3.11 Deployment .. 30
3.11.1 Overview ... 30
3.11.2 Configuring the Application ... 30
3.11.3 Customizing the Web Application Descriptor .. 34

3.12 Customization .. 36
3.12.1 Overview ... 36
3.12.2 Adding New Artifacts ... 36
3.12.3 Overriding or Merging Artifacts ... 37
3.12.4 Externalized Strings .. 37
3.12.5 Images ... 38
3.12.6 Image Mapping ... 39
3.12.7 CuramLinks.properties .. 40
3.12.8 XML Runtime Configuration Files ... 40
3.12.9 Login Pages ... 40
3.12.10 JavaScript Files ... 41
3.12.11 Cascading Stylesheets ... 42
3.12.12 Application Configuration Files ... 44
3.12.13 General Configuration .. 45
3.12.14 Custom Resources ... 52

Chapter 4 Localization ... 55
4.1 Objective .. 55
4.2 Prerequisites ... 55
4.3 Introduction .. 55
4.4 Numbers ... 55
4.5 File Encoding ... 55

4.5.1 XML Files ... 56
4.5.2 Java properties files ... 56
4.5.3 Non-XML Files ... 57

4.6 Locales ... 57
4.6.1 Non JavaScript property files .. 58
4.6.2 JavaScript property files ... 58

4.7 UIM Externalized Strings .. 59
4.8 JavaScript Externalized Strings ... 59

4.8.1 Accessing properties in JavaScript ... 60
4.9 Image.properties ... 60
4.10 Infrastructure Widget Properties Files ... 61

4.10.1 Frequency Pattern Selector Localization .. 62
4.11 CDEJResources.properties ... 64
4.12 ApplicationConfiguration.properties ... 64
4.13 Application-wide Menu ... 64
4.14 Tabbed Configuration Artifacts ... 65

Cúram Web Client Reference Manual

iv

4.15 Runtime Messages ... 65

Chapter 5 UIM Reference .. 67
5.1 Objective .. 67
5.2 Prerequisites ... 67
5.3 Introduction .. 67
5.4 Creating UIM Documents .. 67
5.5 UIM Document Types ... 67
5.6 UIM Pages ... 68
5.7 UIM Views ... 68
5.8 Externalized Strings ... 69
5.9 UIM Reference for Pages and Views ... 69

5.9.1 Introduction ... 69
5.9.2 Connection Types ... 69
5.9.3 ACTION_CONTROL ... 71
5.9.4 ACTION_SET .. 76
5.9.5 CLUSTER ... 78
5.9.6 CONDITION .. 81
5.9.7 CONNECT .. 82
5.9.8 CONTAINER ... 82
5.9.9 DETAILS_ROW ... 84
5.9.10 DESCRIPTION ... 85
5.9.11 FIELD ... 86
5.9.12 FOOTER_ROW .. 91
5.9.13 IMAGE ... 93
5.9.14 INCLUDE ... 93
5.9.15 INITIAL .. 94
5.9.16 INFORMATIONAL ... 94
5.9.17 INLINE_PAGE ... 95
5.9.18 IS_FALSE ... 97
5.9.19 IS_TRUE ... 98
5.9.20 JSP_SCRIPTLET .. 98
5.9.21 LABEL .. 101
5.9.22 LINK ... 102
5.9.23 LIST .. 108
5.9.24 MENU ... 111
5.9.25 PAGE .. 118
5.9.26 PAGE_PARAMETER .. 121
5.9.27 PAGE_TITLE ... 122
5.9.28 SCRIPT ... 123
5.9.29 SERVER_INTERFACE ... 124
5.9.30 SOURCE ... 126
5.9.31 TAB_NAME ... 127
5.9.32 TARGET ... 128
5.9.33 TITLE ... 128
5.9.34 VIEW .. 129

5.10 UIM Reference for Widgets ... 130
5.10.1 Introduction ... 130
5.10.2 WIDGET ... 130

Cúram Web Client Reference Manual

v

5.10.3 WIDGET_PARAMETER ... 132
5.10.4 The EVIDENCE_COMPARE Widget ... 133
5.10.5 The FILE_EDIT Widget ... 133
5.10.6 The FILE_UPLOAD Widget .. 136
5.10.7 The FILE_DOWNLOAD Widget ... 139
5.10.8 The MULTISELECT Widget ... 140
5.10.9 The SINGLESELECT Widget .. 144
5.10.10 The RULES_SIMULATION_EDITOR Widget 144
5.10.11 The IEG_PLAYER Widget .. 146

5.11 Dynamic UIM Cross Reference ... 146
5.12 Dynamic UIM System Initialization .. 147

Chapter 6 Application Configuration ... 149
6.1 Objective .. 149
6.2 Prerequisites ... 149
6.3 Introduction .. 149
6.4 Configuration Files .. 150
6.5 Applications ... 151

6.5.1 Introduction ... 151
6.5.2 Definition .. 152
6.5.3 Optional Header .. 158
6.5.4 Example .. 158
6.5.5 Associate an Application with User .. 160

6.6 Sections .. 161
6.6.1 Introduction ... 161
6.6.2 Definition .. 162
6.6.3 Example .. 164

6.7 Section Shortcut Panel ... 164
6.7.1 Introduction ... 164
6.7.2 Definition .. 165
6.7.3 Example .. 167

6.8 Tabs .. 167
6.8.1 Introduction ... 168
6.8.2 Definition .. 169
6.8.3 Context Panel UIM ... 175
6.8.4 Example .. 176

6.9 Tab Actions Menu .. 176
6.9.1 Introduction ... 176
6.9.2 Definition .. 177
6.9.3 Dynamic Support .. 181
6.9.4 File Download Menu Item .. 182
6.9.5 Example .. 183

6.10 Tab Navigation ... 183
6.10.1 Introduction ... 183
6.10.2 Definition .. 184
6.10.3 Dynamic Support .. 188
6.10.4 Example .. 189

6.11 Opening Tabs and Sections .. 190
6.11.1 Introduction ... 190

Cúram Web Client Reference Manual

vi

6.11.2 Links ... 190
6.11.3 Page to Tab Associations .. 191
6.11.4 Tab to Section Associations .. 192
6.11.5 Page Parameters .. 192

Chapter 7 Session Management ... 195
7.1 Objective .. 195
7.2 Prerequisites ... 195
7.3 Introduction .. 195
7.4 Session Basics .. 195
7.5 Tab Restoration .. 196
7.6 Configuration ... 197
7.7 Limitations ... 198
7.8 Browser Specific Session Management ... 198

Chapter 8 Domain Specific Controls ... 200
8.1 Objective .. 200
8.2 Prerequisites ... 200
8.3 Introduction .. 200
8.4 Dates .. 200
8.5 Date-Times ... 201

8.5.1 Representing time-only values .. 201
8.5.2 Customizing the Time Format .. 202

8.6 Frequency Pattern Selector .. 202
8.7 Selection Lists .. 203

8.7.1 Populated from a Code-Table ... 203
8.7.2 Populated from Server Interface Properties .. 204
8.7.3 Drop-down, Scrollable and Checkboxed List types 205
8.7.4 Adding an Empty Entry to a List for Non-Mandatory Fields 205
8.7.5 Enabling Multiple Selection ... 205
8.7.6 Transfer List Widget ... 206

8.8 User Preferences Editor ... 206
8.9 Rules Trees ... 207

8.9.1 Introduction ... 207
8.9.2 Default Rules View ... 208
8.9.3 Summary Rules View ... 209
8.9.4 Failed Rules View ... 209
8.9.5 Dynamic Rules View .. 209
8.9.6 Dynamic Full Tree Rules View .. 213
8.9.7 Rules Editor .. 213

8.10 Meeting View ... 215
8.10.1 Overview ... 216
8.10.2 Single Selection Mode .. 216
8.10.3 Multiple Selection Mode ... 216
8.10.4 XML Formats .. 216

8.11 Charts ... 218
8.11.1 Overview ... 218
8.11.2 Chart appearance ... 218
8.11.3 Chart configuration ... 221
8.11.4 Chart Data Formats ... 225

Cúram Web Client Reference Manual

vii

8.12 Heatmap Widget .. 226
8.12.1 Overview ... 226
8.12.2 Configuration .. 227

8.13 Workflow ... 228
8.13.1 Overview ... 228
8.13.2 Workflow Details .. 228
8.13.3 Workflow XML Formats .. 229

8.14 Evidence View ... 233
8.14.1 Evidence Display Mode .. 233
8.14.2 Evidence Comparison Mode ... 234
8.14.3 Configuration .. 234
8.14.4 Data Format .. 235

8.15 Calendar ... 236
8.16 Payment Statement View ... 240
8.17 Batch Function View ... 242
8.18 Addresses ... 242
8.19 Schedule View ... 244
8.20 Radio Button Group ... 245
8.21 Pop-up Pages .. 245

8.21.1 Configure the Pop-up Page ... 245
8.21.2 Create the Pop-up Page ... 248
8.21.3 Using the Pop-up Page .. 251
8.21.4 Using Multiple Pop-up Search Pages for a Single Field 252
8.21.5 Configure the Multiple Pop-up Page .. 252
8.21.6 Using the Multiple Pop-up Page ... 253

8.22 Agenda Player .. 254
8.22.1 Agenda Player screen structure ... 254
8.22.2 Navigation modes ... 255
8.22.3 Navigator-less View .. 256
8.22.4 Agenda Player Configuration ... 256
8.22.5 Agenda Player Customization ... 257
8.22.6 Player data ... 258

8.23 LOCALIZED_MESSAGE Domain ... 262
8.24 Decision Assist: Decision Matrix Widget .. 263

8.24.1 Overview ... 263

Chapter 9 Custom Data Conversion and Sorting ... 264
9.1 Objective .. 264
9.2 Prerequisites ... 264
9.3 Introduction .. 264
9.4 Data Conversion and Sorting Operations .. 265
9.5 Data Conversion Life Cycle ... 267
9.6 The Domain Hierarchy and Domain Plug-ins ... 268
9.7 Overview of Domain Plug-ins ... 270

9.7.1 Common Features of Plug-ins .. 270
9.7.2 Converter Plug-ins .. 270
9.7.3 Comparator Plug-ins ... 272
9.7.4 Default Value Plug-ins .. 272

9.8 Domain Plug-in Configuration .. 273

Cúram Web Client Reference Manual

viii

9.9 Out-of-the-Box Domain Plug-ins .. 275
9.9.1 Extending Existing Plug-ins ... 275
9.9.2 Converter Plug-ins .. 277
9.9.3 Comparator Plug-ins ... 283
9.9.4 Default Value Plug-ins .. 285

9.10 Error Reporting .. 286
9.10.1 Exception Classes ... 286
9.10.2 Custom Exception Classes .. 287
9.10.3 Reusing Cúram Error Messages .. 290

9.11 Java Object Representations .. 290
9.12 Customization Guidelines .. 291

9.12.1 Where to Start ... 291
9.12.2 Custom Formatting ... 292
9.12.3 Custom Parsing ... 294
9.12.4 Custom Validation .. 295
9.12.5 Custom Sorting ... 297
9.12.6 Custom Error Reporting .. 301
9.12.7 Custom Default Values ... 302

9.13 Advanced Topics ... 304
9.13.1 Type Checking and Null Checking ... 304
9.13.2 Plug-in Instance Management ... 304
9.13.3 Naming Conventions .. 305
9.13.4 Generic Parse Operations .. 306
9.13.5 Code-Tables .. 306

Appendix A Unsupported Dynamic UIM features .. 308
A.1 Introduction ... 308
A.2 PAGE .. 308
A.3 PAGE TITLE .. 309
A.4 CLUSTER ... 309
A.5 LIST .. 309
A.6 FIELD ... 310
A.7 CONTAINER .. 310
A.8 ACTION_SET .. 310
A.9 WIDGET ... 311
A.10 ACTION_CONTROL ... 311
A.11 LINK ... 312
A.12 INLINE_PAGE ... 312
A.13 MENU ... 313
A.14 SERVER_INTERFACE ... 313
A.15 INFORMATIONAL ... 313

Appendix B Maintaining Dynamic UIM Pages ... 315
B.1 Working in a Development Environment ... 315
B.2 Working in a Running System .. 317

B.2.1 Search for Dynamic UIM Pages by Category .. 317
B.2.2 Uploading a Dynamic UIM page to the Resource Store 317
B.2.3 Editing a Dynamic UIM page in the resource store 318
B.2.4 Deleting a Dynamic UIM File from the Resource Store 318
B.2.5 Validating a dynamic UIM file in the resource store 319

Cúram Web Client Reference Manual

ix

B.2.6 Publish dynamic UIM files .. 319
Notices ... 320

Cúram Web Client Reference Manual

x

Chapter 1

Introduction

1.1 Introduction

This guide is the definitive reference guide for all aspects of the develop-
ment of Cúram web client applications using the Cúram Client Develop-
ment Environment for Java® (Cúram CDEJ).

The Cúram web client application produces a HTML user interface which is
generated by a middle-tier web application. This conforms to the Java EE
architecture, in which the Cúram web client application is a HTML user in-
terface driven by JavaServer Pages (JSP) and Servlet technology based on
the Apache Struts framework. This HTML user interface makes use of
standard browser and Web 2.0 technologies, including JavaScript and Cas-
cading Style Sheets (CSS).

The Cúram CDEJ provides a means of easily developing a HTML client ap-
plication by reducing the complexity of development associated with web
based applications, and insulating the developer from the underlying techno-
logies.

1.2 Prerequisites

A basic understanding of Java EE development environments, XML and
Web technologies such as Hypertext Transfer Protocol (HTTP), JavaServer
Pages (JSP), Cascading Style Sheets (CSS) and JavaScript is helpful, but not
required, before reading this document.

1.3 Companion Guides

Working with the Cúram User Interface acts as a companion guide to this
reference manual. It illustrates the application of features outlined in this
guide using an example led approach.

1

In addition a separate reference guide, the Cúram Web Client Error Mes-
sage Guide, lists all messages that can be reported by the Cúram CDEJ de-
velopment tools at development time and by the web application at runtime,
including what they mean, and how they can be resolved.

1.4 Structure

This document is divided into the following chapters:

Chapter 2, Concepts introduces Cúram's meta-data driven development
paradigm for client applications.

Chapter 3, Development describes how, after installing the Cúram Applica-
tion (IBM Cúram Social Program Management), the web client application
project is structured, where each type of file should be created, and how to
override and extend the default application.

Chapter 4, Localization outlines the process of localizing an application into
several languages.

Chapter 5, UIM Reference is a complete reference for the User Interface
Meta-data (UIM) of the Cúram Application.

Chapter 6, Application Configuration is a complete reference for the User
Interface configuration files of the Cúram Application.

Chapter 7, Session Management details how browser sessions are handled
by the Cúram application.

Chapter 8, Domain Specific Controls details controls that are used to handle
specific domain types such as dates, schedules, and calendars.

Chapter 9, Custom Data Conversion and Sorting describes a feature that
supports the association of custom validation and sorting routines with do-
main definitions.

1.5 Summary

• This guide is the definitive reference for all Cúram web client develop-
ment. It should be read with the companion guide, Working with the
Cúram User Interface.

• The Cúram Client Development Environment (CDEJ) allows the devel-
opment of lightweight, standards-based (Java EE), portable client ap-
plications that can be accessed from a web browser.

• The Cúram CDEJ simplifies the development associated with web based
applications by insulating the developers from the underlying technolo-
gies.

Cúram Web Client Reference Manual

2

Chapter 2

Concepts

2.1 Objective

In this chapter you will be introduced to the concepts and terminology used
to describe the Cúram Client Development Environment (CDEJ).

2.2 Prerequisites

A basic understanding of Java EE development environments, XML and
Web technologies such as Hypertext Transfer Protocol (HTTP), JavaServer
Pages (JSP), Cascading Style Sheets (CSS) and JavaScript is helpful, but not
required, before reading this chapter.

2.3 Introduction

The goal within the Cúram application is to reduce the complexity of devel-
oping web applications by providing mechanisms to generate client screens
which define content, layout and navigation. When working with the Cúram
CDEJ, a user interface developer can concentrate on the data required on a
screen rather than the graphical layout. The CDEJ will generate a standard-
ized user interface from a simple meta data description.

The Cúram user interface comprises of a number of user interface elements
that can be combined together. The main element of the interface is a User
Interface Meta-data (UIM) page. A UIM page defines the data to be dis-
played in a page. UIM pages are combined together to provide a view of
Cúram known as an application.

In this chapter Section 2.5, User Interface Meta-data provides an overview
of the User Interface Meta-data used to define a UIM page and Section 2.6,
Applications provides an overview of the elements that can be combined in
an application.

3

By the end of this chapter you will understand the main concepts that power
the Cúram CDEJ to generate a HTML user interface. The concepts defined
in this chapter are expanded on throughout the guide.

2.4 Application User Interface Overview

The figure below illustrates an overview of the User Interface meta data in a
sample Cúram application page. This sample application page will be re-
used elsewhere in the guide, in order to describe how each of the User Inter-
face elements can be configured in an application.

Figure 2.1 Application User Interface Overview

This table describes the mapping between the numbers and User Interface
elements referenced in the figure above.

Number User Interface Element Name
1 Application Banner

1.1 Application Name

1.2 Welcome Message

1.3 Application Menu

1.4 Application Search

2 Application Sections

3 Application tab

4 Tab Title Bar

5 Tab Actions Menu

6 Tab Context Panel

7 Section Shortcut Panel

7.1 Section Shortcut Category

7.1.1 Section Shortcut Menu Item

Cúram Web Client Reference Manual

4

Number User Interface Element Name
8 Content Area Navigation Bar

9 Page Title

10 Page Action Control

11 Refresh Button

12 Print Button

13 Help Button

14 In page Navigation Tabs

15 Page Content Area

16 Page Group Navigation Bar

17 Fields

18 Clusters

19 Action Controls

20 Smart Panel

21 List

Table 2.1 User Interface Elements

2.5 User Interface Meta-data

User Interface Meta-data (UIM) is an XML language that describes the con-
tents and layout of one of the main elements in the Cúram user interface, a
UIM page.

By limiting the variety of interface layout options available to developers,
and by defaulting user interface characteristics based on the known formats
of server interfaces, the UIM is kept simple and the user interface layout has
an enforced consistency across the whole application.

The developer creates the UIM page definitions in files with a .uim exten-
sion, with each file corresponding to a single page.

Individual pages are made up from different elements such as page titles, la-
bels, buttons and links as well as the most important element, the data con-
tent. UIM focuses on defining elements rather than how they are graphically
laid out. The CDEJ provides the tools to generate client screens from UIM
definitions.

2.5.1 Page Content Meta-data

The main content area of an application allows server data to be displayed
and entered. The basic unit of data is a field. Each field is either an output or
input parameter of a server interface.

• Fields. Fields are visually organized into clusters and lists on a UIM

Cúram Web Client Reference Manual

5

page. There may be zero or more of each on a page. Clusters and lists
can have a title which describes the type of data displayed. There may
also be a title for the whole UIM page. Refer to User Interface element 9
in Figure 2.1, Application User Interface Overview for an example of a
page title.

• Clusters. A cluster is a rectangular areas that displays fields in a tabular
format. A cluster can have one or more columns of fields, and fields can
be displayed with or without an associated label. Fields can be read-
only, or they may be editable. If editable, they appear as a control such
as a text area, drop-down menu, or check-box.

Refer to User Interface Element 18 in Figure 2.1, Application User In-
terface Overview which shows an example of two configured clusters in
the page content area - each with a configured title.

• Lists. A list is used to display rows of repeating (or indexed) fields. As
in clusters, fields can have associated labels which are displayed as
column headings in the list.

Refer to User Interface Element 21 in Figure 2.1, Application User In-
terface Overview which shows an example of a list in the page content
area. The list's title is configured.

• Action Controls. Action Controls, displayed as buttons, are used to sub-
mit form data, to link to related pages, or to open a modal dialog. Action
controls can be organized into Action Sets which are associated with
clusters, lists, or the UIM page. Individual Action Controls can also be
associated with a single field in a cluster or a column in a list. When an
action control is used to link to another page it can also send parameters
to the target page which are normally used as keys to retrieve server data
that populates the target page.

Refer to User Interface Element 19 in Figure 2.1, Application User In-
terface Overview which shows an example of two action controls. These
action controls are configured to only appear at the bottom of a cluster
but by default Action Controls appear at the top and bottom of the wid-
get they are associated with.

• Server Interfaces. A server interface is a method that has been imple-
mented using the Cúram Server Development Environment (SDEJ). See
Cúram Server Developers Guide and the Cúram Server Modelling
Guide for more information on developing server interface methods.

The server interface is a non-visual element of a UIM page and each
UIM page can be associated with one or more server interface methods.
Each method is associated with either the initialization phase or the pro-
cess phase. When the UIM page is first opened, the initialization phase
methods are executed. Typically an initialization phase method uses
Page Parameters as input parameters, and the resulting server data is
mapped to output fields on the screen.

The Process Phase is initiated when an Action Control of type Submit is

Cúram Web Client Reference Manual

6

selected by the user. Data from input fields on the screen are mapped to
input parameters of process phase server methods and the methods are
invoked. After execution of process phase methods, the flow of control
is determined by the Submit Action, which can specify a link to a new
target page, or by the default action which returns to the same page.

Various XML elements correspond to the user interface elements described
above—PAGE, FIELD, CLUSTER, LIST, ACTION_CONTROL, AC-
TION_SET and so on. Other elements such as PAGE_PARAMETER and
SERVER_INTERFACE do not have visual representations, but are import-
ant to the functionality of the page. The CONNECT element is an important
construct that allows fields to be associated with parameters to Server Inter-
faces. As well as mapping fields, connections can also map page parameters
and static text. The latter is not stored directly in the UIM, but is external-
ized in a property file which facilitates easier language localization of user
interfaces.

Example 2.1, Page UIM Example contains an extract of UIM used to create
the content area. This extract displays how the major elements that make up
a screen of content area, such as clusters and lists, are represented in UIM.
Chapter 5, UIM Reference is a full UIM reference. Refer to User Interface
Element 15 in Figure 2.1, Application User Interface Overview to see an
example of a configured page content area.

<PAGE PAGE_ID="Person_search">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT"

PROPERTY="PageTitle.StaticText1"/>
</CONNECT>

</PAGE_TITLE>

<SERVER_INTERFACE NAME="ACTION"
CLASS="Person_fo"
OPERATION="search"
PHASE="ACTION" />

<CLUSTER NUM_COLS="2"
TITLE="Cluster.Title.SearchCriteria">

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="referenceNumber"/>
</CONNECT>

</FIELD>

<FIELD CONTROL="SKIP"/>

</CLUSTER>

<CLUSTER NUM_COLS="2"
TITLE="Cluster.Title.AdditionalSearchCriteria">

<FIELD LABEL="Field.Label.FirstName">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="forename"/>
</CONNECT>

</FIELD>

... more <FIELD> elements...

Cúram Web Client Reference Manual

7

<ACTION_SET ALIGNMENT="CENTER" TOP="false">

<ACTION_CONTROL LABEL="ActionControl.Label.Search"
IMAGE="SearchButton"
TYPE="SUBMIT">

<LINK PAGE_ID="THIS"/>
</ACTION_CONTROL>

<ACTION_CONTROL LABEL="ActionControl.Label.Reset"
IMAGE="ResetButton">

<LINK PAGE_ID="Person_search"/>
</ACTION_CONTROL>

</ACTION_SET>
</CLUSTER>

<LIST TITLE="List.Title.SearchResults">

<FIELD LABEL="Field.Title.Name" WIDTH="44">
<CONNECT>

<SOURCE NAME="ACTION"
PROPERTY="personName"/>

</CONNECT>
</FIELD>
... more <FIELD> elements...

</LIST>

</PAGE>

Example 2.1 Page UIM Example

2.6 Applications

When a user logs into the Cúram application they are presented with a view
that is specific to their role. This view is known as an application. An ap-
plication in the Cúram user interface is a collection of user interface ele-
ments, predominantly based on UIM pages, combined to create specific
content for a particular user or role.

Figure 2.2 Application User Interface Overview

• Application Banner. An application is defined to present a specific
view of the data for a user or user role. The application banner provides

Cúram Web Client Reference Manual

8

the user with the context of the application they are currently accessing.
Refer to User Interface Element 1 of Figure 2.2, Application User Inter-
face Overview for more details of a configured application banner in an
application. The banner also include a number of application links, i.e.
Help, Logout and Preferences and an application search facility.

• Application Sections. An application contains a number of sections ,
which allow quick and easy access to some of the more common tasks
and activities performed by a user. Refer to User Interface Element 2 of
Figure 2.2, Application User Interface Overview for more details of con-
figured sections in an application.

• Section Shortcut Panel. Each section can optionally have a section
shortcut panel, which is collapsed by default. When expanded the short-
cut panel provides quick links to open content, in the form of UIM
pages, and perform actions within the section. The content in the section
shortcut panel is organized into categories of menu items. Refer to User
Interface Element 7 of Figure 2.2, Application User Interface Overview
for more details of a configured section shortcut panel in an application.

• Tabs. Content in a section is displayed in a tab, and each section can
open multiple tabs, where each tab represents a business object or logic-
al grouping of information. A tab can also be described as a logical
grouping of UIM pages. Refer to User Interface Element 3 of Fig-
ure 2.2, Application User Interface Overview for more details of a con-
figured tab in an application.

• Tab Context Panel. A tab contains a context panel , which contains
context information associated with the data displayed in the tab. This
context information is always available when working with the data on
the tab. See Refer to User Interface Element 6 of Figure 2.2, Application
User Interface Overview for more details of a configured context panel
in an application.

• Tab Navigation. A tab comprises of one or more pages of information,
represented by UIM pages. These pages can be navigated using a navig-
ation bar, which contains navigation tabs linking to single pages or sets
of pages. Where a navigation tab links to a set of pages, a page group
navigation bar is displayed. Refer to User Interface Element 8 of Fig-
ure 2.2, Application User Interface Overview for more details of a con-
figured navigation bar in an application.

• Content Area. The content area displays the currently selected UIM
page. Refer to User Interface Element 15 of Figure 2.2, Application
User Interface Overview for more details of a configured page content
area in an application.

In addition to defining the layout of the screen, an application controls the
flow between pages available in the application. Within an application, links
to other pages are available from a section shortcut panel, the tab navigation
bar and page group navigation bar, in addition to links on the page displayed
in the content area.

Cúram Web Client Reference Manual

9

Activating any of these links will result in accessing a new page in the con-
tent area, or opening a new page in a modal dialog. For new pages in the
content area, the application definition is used to determine what tab the
page belongs to and what section the relevant tab belongs to. The page is
then opened in the context of the relevant section and tab.

Applications are defined in an XML format using a number of different
files. For example, an application is defined using an XML file with the ex-
tension .app. Each section referenced in the application is defined using an
XML file with the extension .sec and any tabs referenced by the section
are defined using an XML file with the extension .tab.

Example 2.2, Sample Application (.app) File details an example of an ap-
plication configuration file (.app). The example creates an application con-
taining two sections, in addition to an application banner with a quick search
facility.

<?xml version="1.0" encoding="ISO-8859-1"?>
<ac:application

id="SimpleApp"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ac:application-menu>

<ac:application-search>
<ac:search-pages>
<ac:search-page type="SAS01"

description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>

<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />

</ac:search-pages>
<ac:further-options-link

description="Search.Further.Options.Link.Description"
page-id="Person_search" />

</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Example 2.2 Sample Application (.app) File

This separation of configuration into multiple files allows for reuse of dif-
ferent elements across multiple applications. For example, a common Inbox
section can be defined and referenced by multiple applications. For more in-
formation on application configuration consult Chapter 6, Application Con-
figuration.

Cúram Web Client Reference Manual

10

2.7 Page Context

UIM pages are displayed in different contexts within an application. The
context the UIM page is displayed in may result in different behavior for
some of the elements. The main contexts are outlined below.

• Content Area. The content area is where the main content for an ap-
plication is displayed. When a UIM page is displayed in the content area
it will automatically contain a refresh, help and print button 1 within its
title bar. Refer to User Interface Element 15 of Figure 2.2, Application
User Interface Overview to see an example of a configured content area.

• Context Panel. A context panel displays a specific kind of UIM page
that displays common information for the tab that is always viewable.
Refer to User Interface Element 6 of Figure 2.2, Application User Inter-
face Overview to see a configured example of context panel.

• List Dropdown Panel. A list dropdown panel displays a UIM page
when a list row is expanded in a list. Expanded rows are a supported fea-
ture of lists. Refer to User Interface Element 21 of Figure 2.2, Applica-
tion User Interface Overview to see unexpanded list items (toggle but-
tons) in a list. Refer to Section 5.9.23, LIST for more information.

• Modal Dialog. A modal dialog displays a UIM page in a dialog win-
dow, displayed above the main content. While the dialog is open, the
parent content cannot be accessed. See Section 5.9.22.3.1, Using Modal
Dialogs for more information.

• Smart Panel. A smart panel, is an optional panel that can be added to
the right of the content area in a tab and displays a UIM page. For more
information see Section 6.8.2.5, smart-panel. Refer to see User Interface
Element 20 of Figure 2.2, Application User Interface Overview to see
an example of a configured smart panel in an application.

2.8 Page “Look-and-Feel”

Just as important to the simplicity of the Cúram client development ap-
proach is what you do not specify in application and page meta-data. There
is very little positioning information for user interface elements:

• the application banner, sections and tabs are in fixed positions;

• clusters and lists flow from top to bottom on a page;

• fields are automatically positioned within them.

Some control is allowed through attributes of the various elements, but sens-
ible defaults are provided for all these attributes to minimize the situations
where they have to be used. Refer to User Interface Element 19 of Fig-
ure 2.2, Application User Interface Overview to see how action controls are

Cúram Web Client Reference Manual

11

aligned to the center of a cluster. This was achieved with the ALIGNMENT
attribute of the ACTION_SET element in Example 2.1, Page UIM Example.

2.9 Application Controller Java Server Page

A single Java Server Page, AppController.do, is responsible for ren-
dering the Cúram client on the browser. This application controller JSP is
why the URL in the browser is always AppController.do and does not
change as the user navigates between separate pages within the Cúram ap-
plication. As a result of this, the back button of the browser is not supported.

It is still possible to request the URL of a specific page in the browser. In
this scenario, on receipt of the request, the browser will be automatically re-
directed to AppController.do which loads the requested page. See
Section 2.10, Direct Browsing for details.

2.10 Direct Browsing

A page can be directly accessed by typing its full URL into the browser's
navigation bar, e.g. ht-
tp://host:port/Curam/en_US/SomePage.do. In this scenario
the session and its associated tabs will first be restored, then a request will
be sent for the specified page. The page will then be loaded in it's associated
section and tab. However, if this page is not associated with a tab, it will be
loaded in the currently selected tab. In the case of a new session, this will be
the “Home” tab.

Tabs changed in this manner can be returned to their default state by closing
and reopening the tab where possible. For the “Home” tab; logging out and
back into the application will restore the “Home” tab to the user's default
home page. See Section 7.5, Tab Restoration for more information on tab
restoration and session management.

2.11 Summary

• Cúram web application development is simplified by describing pages
and applications in terms of their content and flow rather than the graph-
ical “look-and-feel” and layout of that content.

• User Interface Meta-data (UIM) consists of definitions in XML format
that describe the contents, and to a certain extent the layout, of one of
the main elements in the Cúram user interface, a UIM page.

• An application is a collection of user interface elements, predominantly
based on UIM pages, combined to create specific content for a particular
user or role.

• Graphical layout options available to a developer are restricted to en-
force a consistent user interface across the whole application.

Cúram Web Client Reference Manual

12

Notes
1The Cúram application does not support the web browser File->Print func-
tionality. A print button is provided for printing the contents of the Content
Area only.

Cúram Web Client Reference Manual

13

Chapter 3

Development

3.1 Objective

This chapter will describe the structure of the Cúram web client application
project, including related files in the Cúram server project, and how to de-
velop, build and deploy the application.

3.2 Prerequisites

You should be familiar with the basic concepts of Cúram CDEJ develop-
ment (see Chapter 2, Concepts) and should have some knowledge of the ba-
sic format of XML documents. Finally, you should know how to set and edit
system environment variables.

3.3 Introduction

The Cúram CDEJ translates files specified in UIM (User Interface Meta-
data) format into the JavaServer Pages (JSP) that will be deployed on your
web application server. These UIM files are supported by various properties
files, configuration files, and others. Collectively, these files are called the
application's artifacts.

Your Cúram web client application project can be divided into various func-
tional components for ease of development. With this system, application
changes and updates can be introduced by dropping in a new component
that will automatically override the artifacts of another component, where
appropriate. The location and purpose of these artifacts and components will
be described in detail in this chapter.

3.4 Outline of the Development Process

14

Much of the client development process is driven by executing specific
build scripts. The following is an outline of the typical steps in the process:

1. Install the Cúram Application and the Cúram CDEJ. Directions to the
installation guide are provided in Section 3.5, Installation.

2. The installer creates both an server application and client application
project on your file system containing all the source files. These files
will include the application configuration files, the XML-based User
Interface Metadata (UIM) for all your pages, any images and other re-
sources that the application requires.

3. Create and edit your source files (UIM and application configuration
files) or customize existing files.

4. Deploy your application to an application server. During development,
this might be a server embedded in your integrated development envir-
onment.

5. Once deployed, you can test your application using a web browser, for
example using the following URL:

http://localhost:9080/'server_name'/AppController.do

3.5 Installation

To install the Cúram CDEJ, follow the instructions contained in the Cúram
Installation Guide. The installer will install the Cúram CDEJ and the Cúram
Application project ready for further development and customization. The
Cúram Application is divided into two major parts: the server application
that defines the business entities and business logic of the application, and
the web client application that defines how this information is presented to
the user.

In this manual, the folders into which parts of the application and the infra-
structure are installed will be referred to using placeholders, as the actual
locations will vary depending on where they are installed and whether or not
you are developing the Cúram Application, additional applications or
samples.

Folder Placeholders

<app-dir>

The top-level application folder containing both the server application
and the client application.

<client-dir>

The folder containing the web client application. Typically this is a
folder called webclient within the <app-dir> folder.

<server-dir>

The folder containing the server application. Typically this is a folder

Cúram Web Client Reference Manual

15

called EJBServer within the <app-dir> folder.

<cdej-dir>

The folder containing the Cúram CDEJ, the tools and infrastructure re-
quired to build and run web client applications. Typically this is a folder
called CuramCDEJ.

<sdej-dir>

The folder containing the Cúram SDEJ, the tools and infrastructure re-
quired to build and run server applications. Typically this is a folder
called CuramSDEJ. More information on this folder can be found in
the Cúram Server Developers Guide

For example, if you have installed the Cúram Application into the folder
C:/Curam, then the <app-dir> placeholder refers to this folder, the
<client-dir> placeholder refers to the C:/Curam/webclient
folder, the <server-dir> refers to the C:/Curam/EJBServer folder,
and the <cdej-dir> refers to the C:/Curam/CuramCDEJ folder.

3.6 Project Folder Structure

A Cúram web client application project is organized into a folder structure
that is recognized by the Cúram CDEJ when the application is built. Ex-
ample 3.1, Web Client Folder Structure, shows an outline of this folder
structure for the project and the list that follows describes each folder within
this structure in more detail. The base folder of this structure is the
<client-dir> folder.

<client-dir>
+ build

+ bean-doc
+ buildlogs
+ components

+ core
+ <custom>
+ Images
+ javasource
+ WebContent

+ JavaSource
+ project
+ WebContent

+ <locale>
+ Previews
+ WEB-INF

Example 3.1 Web Client Folder Structure

Web Client Folders

build

Temporary generated artifacts. The only contents of interest are the gen-
erated reference documentation for the façade server interfaces.

build/bean-doc

Generated reference documentation for the façade server interfaces in
HTML format. These are regenerated each time the application model

Cúram Web Client Reference Manual

16

changes. See Section 3.10.7, Server Interface Reference for more de-
tails.

buildlogs

Log files generated from each build. See Section 3.10.5, Build Logs for
more details.

components

The top-level folder for the application components. Each sub-folder of
this folder contains a separate application component. See Section 3.7,
Application Components for more information on application compon-
ents.

components/core

The pre-defined core Cúram application component artifacts that
provide the core functionality. These artifacts should not be modified
directly. To change them, you should create new artifacts in another
component which will then override the core artifacts.

components/<custom>

One or more extra application components containing artifacts that add
additional application functionality or customize existing functionality.

components/<custom>/Images

Arbitrary custom resources that you want to deploy with your applica-
tion. Files and folders within this folder will be copied to the top-level
WebContent folder during the build process.

components/<custom>/javasource

Javasource code and properties files used to add extra functionality to
an application or to define externalized strings used across many applic-
ation pages. There are a number of different customizations that can be
applied to files within this directory. These include updates to control
one or more of the data conversion or sorting operations. Please refer to
Chapter 9, Custom Data Conversion and Sorting for more details on
these customizations. This javasource directory is optional,
however if this directory is added, the webclient/.classpath file
must be updated to reference this new source directory. This ensures
that the changes in this directory are recompiled when a client build is
run within the specified development environment. The following is an
entry in the webclient/.classpath file, (where <custom> rep-
resents the name of a custom directory):

<classpathentry kind="src" path="components/<custom>/javasource"/>

components/<custom>/WebContent

Arbitrary custom resources that you want to deploy with your applica-
tion. Files and folders within this folder will be copied to the top-level
WebContent folder during the build process.

JavaSource

Contains the CDEJResources.properties file that defines prop-

Cúram Web Client Reference Manual

17

erties used across many application pages. This file is described in fur-
ther detail throughout this document. Also contains the Ini-
tial_ApplicationConfiguration.properties file, that is
described in Section 3.11.2, Configuring the Application.

project

Configuration files used when customizing the application deployment
descriptors. See Section 3.11.3, Customizing the Web Application
Descriptor for more details.

WebContent

The generated web application files. This contains the generated JSP
files and other application artifacts that can be used to start and test an
application in the development environment. When an application is to
be deployed outside of the development environment, many of the files
in this folder are packaged in the application EAR file. See Sec-
tion 3.11, Deployment for more details.

WebContent/<locale>

The generated JSP files for each locale supported by the application are
placed in folders named after the locales. For example, for American
English pages there will be a folder named en_US. These JSP files are
generated as necessary when the application is built, so they will be re-
placed automatically if deleted or out of date with respect to the corres-
ponding UIM file. The JSP files are placed in sub-folders of the locale
folder using the first two letters of the page ID as the sub-folder name.
This reduces the likelihood that an option provided by some application
server software to pre-compile the JSP files will fail when trying to pre-
compile too many JSP files at the same time.

WebContent/Previews

Generated HTML files providing a rough preview of what each corres-
ponding JSP will look like when the application is running. These pre-
views can be viewed directly in a web browser without running the ap-
plication. See Section 3.10.8, Page Previews for more information.

WebContent/WEB-INF

The standard folder which must exist in every Java EE web application.
No files in this folder will be served by the web container, the files are
only used internally by the web client application. It contains a
classes folder that contains all the compiled Java class files and
properties files required by the application. In a Cúram web application
project, this includes the classes and properties files from the compon-
ent specific javasource folders and the properties file from the
<client-dir>/JavaSource directory. It also contains a lib
folder that contains all required library classes packaged in JAR files.
The CDEJ supplies all the JAR files required for this folder and they are
copied during the build process. You should not modify any files in this
folder.

In addition to the web client folders, there are a number of folders in the
<server-dir> project that are relevant to web client application devel-

Cúram Web Client Reference Manual

18

opment. The <server-dir> project maintains a similar structure to the
web client, specifically in relation to the component folder.

Server Folders

components/<component-name>/clientapps

Application configuration artifacts. These are the XML configuration
files for defining applications, sections, tabs, etc. For more information
see Chapter 6, Application Configuration.

components/<component-name>/tab

Application configuration artifacts pre-defined in the Cúram applica-
tion. XML configuration files shipped with the core and other out-
of-the-box components will exist in this folder. These should not be
modified. To change these you should create new artifacts in the cli-
entapps folder in another component, which will then override these
artifacts.

3.7 Application Components

3.7.1 Component Folders

Cúram web client applications are organized into collections of artifacts
called components. Each component has its own folder below the
<client-dir>/components folder. The core component is always
present. This contains all of the artifacts needed for the core functionality of
the Cúram reference application. The name of the component folder is used
as the name of the component.

A component does not necessarily define a discrete part of an application;
rather it defines an additional customization layer of an application. By
adding new components, it is possible to selectively replace pages in the
core application, add new pages, change the appearance of the application
and alter various settings. It should never be necessary to edit files within
the core application, thereby ensuring that when the core application is up-
graded, the core changes do not overwrite your custom changes.

Within a component, you can use an arbitrary folder structure to allow you
to organize your artifacts as you see fit. Artifacts in a component must have
unique file names and the folder structure does not affect this. For example,
you cannot place two UIM files with the same name within the same com-
ponent, even though they would be in different folders. Likewise, a UIM file
in one component is considered equivalent to a UIM file in another compon-
ent, even if the folders within the components containing these UIM files
have different names. Technically, a component represents a single
namespace for artifacts and the folder structures within the components are
mostly ignored.

The only exception to the requirement to use unique file names for artifacts
is within the optional WebContent folder within a component. Within this

Cúram Web Client Reference Manual

19

folder, you can place arbitrary files in an arbitrary folder structure that you
want to deploy with your application. The files will be copied to the main
<client-dir>/WebContent folder during the build process and the
folder structure will be preserved, so files in different folders may share the
same name.

3.7.2 Component Order

There can be any number of application components, but they are processed
in a strict component order. This order determines the priority that will be
given to artifacts that share the same name but appear in different compon-
ents. This is fundamental to the manner in which Cúram web client applica-
tions are customized.

The component order is defined by the CLIENT_COMPONENT_ORDER en-
vironment variable. This is a comma-separated list of component names.
Use only commas; do not use spaces. You must place the component with
the highest-priority first in the list and continue in descending order of prior-
ity. The core component always has the lowest priority and is implicitly
assumed to be at the end of the list; you do not need to add it explicitly.

For example, setting the component order to
“MyComponentOne,MyComponentTwo” will give the highest priority to
artifacts in the MyComponentOne folder within
<client-dir>/components, a lower priority to artifacts in the My-
ComponentTwo folder, and the lowest priority to artifacts in the core
folder. Any component folder not listed in the component order will not be
included in the build and a warning will be displayed to indicate that these
components have been ignored. If you do not set the component order at all,
the default component order will include all components in alphabetical or-
der.

Note

The SERVER_COMPONENT_ORDER order, used for the
<server-dir> project, will always include all component folders
existing in the components folder. If they are omitted from the
SERVER_COMPONENT_ORDER environment variable, they will
automatically be added to the end of the component order in alpha-
betical order. For more information consult the Cúram Server De-
velopers Guide.

Localized Components

Localized components contains translated artifacts for the base components
and are of the format “<component name>_<locale>”. It is not necessary for
these to be added to the CLIENT_COMPONENT_ORDER environment vari-
able as the tooling that processes this environment variable will prepend any
available components that match entries in the LOCALE_LIST environment
variable. Localized components are matched both on complete locale entry
and on the two-character, lower-case language code. Localized components

Cúram Web Client Reference Manual

20

are prepended before the base component in the complete component order.

3.8 Component Artifacts

Components contain a number of artifacts that are used to build an applica-
tion. All the artifacts in a single component have the same priority in the
component order. The artifacts in one component may be used to customize
the artifacts in a lower-priority component, or they may be entirely new arti-
facts that extend the application. The main type of artifacts are as follows:

UIM Pages
UIM pages are the principal artifacts of a web client application. Each
UIM page describes a web page that users will see when accessing the
web client application with their web browsers. The files for these arti-
facts use the .uim extension.

UIM Views
UIM views define portions of a page that may be re-used by many UIM
pages. The files for these artifacts use the .vim extension.

Properties Files
Properties files store the natural language text for a page separately
from the pages, views and page groups. When applications are localized
into different languages, there will be a separate properties file for each
language (or locale, see Section 3.9, Application Locales). This allows a
single UIM page, view or page group to be defined for all of the suppor-
ted languages.

Note

UIM properties files do not support any form of visual layout or
formatting capabilities such as using carriage returns or insert-
ing HTML elements.

Application Configuration Files
Application configuration files define the layout of the user interface
and how UIM pages are grouped into sections and tabs. The files for
these artifacts are defined using the extensions .app, .sec, .tab,
.nav, .mnu, and .ssp. Note, these files are located in the
<server-dir> project. See Chapter 6, Application Configuration for
details.

Image Files
Images file referenced from your UIM pages or views can be added to
your component's Images sub-folder. See Section 3.12.5, Images for
details.

Configuration Files
Configuration files are used to alter the behavior or appearance of the
application or of elements of the application. There are a variety of dif-
ferent configuration files that can be used for different purposes.

Cúram Web Client Reference Manual

21

Custom Resources
Custom resources are arbitrary files that you want to deploy with your
application. For example, you may want to customize the appearance of
a page to reference you own image file for a logo; this image file is a
custom resource.

3.9 Application Locales

A locale describes a user's language, country and determines what the user
will see in the pages they access via their web browser. While the data will
largely remain the same (other than in the details of the formatting of num-
bers and dates) the labels for the data will appear in the appropriate lan-
guage. Locales are specified using a simple identifier that contains a two-
character, lower-case language code optionally followed by an underscore
character and a two-character, upper-case country code. For example, “en”
indicates the English language, and “en_US” indicates the regional variation
of the English language appropriate for the United States of America. This
regional variation may help to identify differences in the dialect or usage of
the language, American English in this example, but it may also affect the
way dates and numbers are formatted.

The language and country codes have been standardized and support for any
specific locale is determined by the Java Runtime Environment (JRE) that
you are using for you application and whether you have localized your ap-
plication appropriately for that locale. Consult the documentation provided
by the vendor of your JRE for details on the support locales and see
Chapter 4, Localization for full information on the procedure for localizing
a Cúram web client application.

Before building a Cúram application that may have been localized for a
number of locales, you need to specify what locales you want to include. To
do this, you set the LOCALE_LIST environment variable to a comma-
separated list of the locale codes. Use only commas, do not use spaces. For
example, “en_US,es” specifies the American English locale and the Spanish
locale (with no regional variation). The first locale in the list is treated as the
default locale. Certain operations, such as the generation of page previews
(see Section 3.10.8, Page Previews), are only performed for the default loc-
ale.

Improving Build Performance

The Cúram CDEJ performs most of the translation work for the ap-
plication's locales during the build process; from a single UIM file it
will produce one JSP file for each locale in the locale list. If your
application supports many locales, you may find it convenient when
developing the application to omit some of the locale codes from the
locale list, as this will improve the build performance. You can re-
place the locales when you want to view or test all of the localized
pages.

Cúram Web Client Reference Manual

22

3.10 Building an Application

3.10.1 Build Targets

The client application is built using Apache® Ant build scripts. These build
scripts define ordered sequences of processing steps called targets. To in-
voke a target, you open a command prompt window and change to the
<client-dir> folder and then pass the name of the target to the com-
mand you use to start Apache Ant. Typically this command is called build
or appbuild. The name depends on the script provided for your application,
but it will be referred to as build in this manual. For example, to build the
web client application, the command is build client. You can run
more than one target at a time by passing the target names separated by
space characters. For example, build clean client will first clean all
the generated output that may be present before building the full web client
application again.

The following build targets are available for Cúram client projects:

client

Builds the client application. See Section 3.10.3, Full and Incremental
Builds for further details.

clean

Deletes all of output generated by the other build targets. See Sec-
tion 3.10.3, Full and Incremental Builds for further details.

beandoc

Generates reference documentation for the façade server interfaces. See
Section 3.10.7, Server Interface Reference for further details.

client-with-previews

Builds the client application and also generates previews of the pages in
HTML format in the <client-dir>/WebContent/Previews
folder. See Section 3.10.8, Page Previews for further details.

uimgen

Generates skeleton UIM pages from the façade server interface defini-
tions. See Section 3.10.9, UIM Generator Tool for further details.

A number of environment variables affect the build process for a web client
application. Some have been introduced already and others are explained
elsewhere, but all are shown below. When you install the Cúram Applica-
tion, the build command will set most of these for you, as they mostly refer
to files and folders that will be in fixed locations relative to where you in-
stalled the application. However, for a new application, or if you are modi-
fying the build command, you may need to confirm that these are set cor-
rectly.

Cúram Web Client Reference Manual

23

Name Re-
quired

Description

CURAMCDEJ Yes The location of the installed
Cúram CDEJ infrastructure.
This is the same as the value of
the <cdej-dir> placeholder
used in this manual. See Sec-
tion 3.5, Installation for details.

CLIENT_DIR Yes The location of your web client
application. This is the same as
the value of the
<client-dir> placeholder
used in this manual. See Sec-
tion 3.5, Installation for details.

CLIENT_PROJECT_NAME Yes Defines the name of the applic-
ation being built. This name is
used as a base name for many
generated artifacts, for ex-
ample, for Java package names.
The name is defined in the
UML model. For the installed
Cúram Application, the value
should be “Curam”.

LOCALE_LIST Yes Defines the locales that will be
supported by the application.
See Section 3.9, Application
Locales for details.

CLI-
ENT_COMPONENT_ORDER

No Defines the prioritized order of
the application's components.
See Section 3.7.2, Component
Order for details. This is not re-
quired, but it is highly recom-
mended that you set it expli-
citly. By default, all compon-
ents will be processed in alpha-
betical order.

ENCODING No Defines the character encoding
that will be used to interpret
files that do not explicitly
define an encoding. By default,
the system's default character
encoding will be used. See Sec-
tion 4.5, File Encoding for de-
tails.

MUL-
TIPLE_VALIDATION_ERRO

No Controls the number of errors
that are reported during the

Cúram Web Client Reference Manual

24

Name Re-
quired

Description

RS build process before the build
terminates. See Section 3.10.6,
Error Reporting for details.

Table 3.1 Environment Variables

3.10.2 Related Build Targets

The server application is built using Apache Ant build scripts, in the same
way as the client application is built. The application configuration files are
located in the <server-dir> project and as a result, the targets for pro-
cessing these are part of the server project. The following targets are used to
process the client application configuration files:

inserttabconfiguration

Combines and imports the client application configuration files onto the
database. See Section 6.4, Configuration Files for more details.

database

The last step of the database target is to call the inserttabconfigura-
tion target. For more information the database target see the Cúram
Server Developers Guide.

3.10.3 Full and Incremental Builds

The client build target will generate a complete web client application. If
no previous build output is present, running this target will build the entire
application. This is called a full build. Subsequently, on running this target,
the build scripts will compare your source files to the previously generated
output files to detect what you have changed and will update the minimum
number of output files possible. This is called an incremental build. An in-
cremental build is performed automatically as long as the output of a previ-
ous build is present and is much faster than a full build. To perform a full
build again, you must first run the clean target to remove all of the outputs
from the previous build.

Building after Upgrading

If you upgrade your Cúram application or Cúram CDEJ, you must
perform a full build by first running the clean target. Failure to do
this could result in unpredictable behavior during the build process
or when then application is running.

Platform Specific Setting

When executing the client build target from a text-only interface
(e.g., using a terminal emulator to access a UNIX® machine), -

Cúram Web Client Reference Manual

25

Djava.awt.headless=true must be added to the ANT_OPTS
environment setting.

3.10.4 Dependency Checking

For most changes that you make, you need only run the incremental build,
as the changes will be detected automatically and only the dependent output
files will be updated. However, some changes are not detected and you may
need to run a full build for your changes to take effect. In particular, if you
change a setting in the curam-config.xml configuration file that affects
the build process (typically by affecting the appearance of the pages in a
way that is applied at build-time), then you will need to perform a full build
manually, as the changes will not be detected automatically.

Dependency checking will identify changes to server interfaces used by
UIM pages. Server interfaces are defined in the application's UML model
and more information can be found in Section 3.10.7, Server Interface Ref-
erence. Only changes to interface properties, not their underlying domain
types, are recognized in an incremental build. For example, changing a
code-table name will not be detected by dependency checking and a clean
build will be required.

3.10.5 Build Logs

Every time you run the client target to build the application, all of the
messages produced by the build scripts are written to a file in the
<client-dir>/buildlogs folder. The files created are named for the
date and time on which the build was started. If errors occur during a build,
you may find it easier to review them by reading the log file instead of
scrolling through messages at the command prompt.

3.10.6 Error Reporting

One of the main steps performed by the client target is the generation of the
JSP files from the UIM files. This process will check the validity of your
UIM files as they are processed. The validity of the UIM files is determined
in a number of steps:

1. They must contain well-formed XML and must not attempt to include
VIM files that do not exist.

2. They must conform to the XML schema for UIM and to some addition-
al context-sensitive rules that cannot be defined in the XML schema.

3. They must refer only to externalized strings that exist in their associ-
ated properties files.

4. They must meet a number of other requirements related to the connec-
tions made to the properties of server interfaces. For example, the prop-
erty names must be unambiguous, or an address field must be the only
field in a cluster.

Cúram Web Client Reference Manual

26

Normally, the processing will stop when the first error occurs and the indic-
ated problem must be fixed before the build can be executed again.
However, for the errors detected in the second step—the schema and
schema-related validation errors—there is an option to continue processing
as far as possible after an error occurs to allow you to locate and fix more
than one error at a time. Errors reported during the other steps will always
stop the build immediately.

To allow multiple validation errors to be reported during a build, set the
MULTIPLE_VALIDATION_ERRORS environment variable to true. If
not set, the default value is false and the build will terminate after the first
validation error occurs.

The number of errors reported is limited by the number of UIM files being
validated at one time. The validation is typically performed on files in
groups of one hundred, so this option will cause all of the validations errors
in the current group to be reported before the build is terminated. No further
groups will be processed after a group containing files with validation errors
has been encountered.

3.10.7 Server Interface Reference

When developing UIM pages, you will need to know details about the
façade server interfaces and their properties so that you can select the in-
formation that you want to display on each page. This information is all
defined in the application's UML model, but, for your convenience, you can
generate simple reference documentation in HTML format to make the in-
formation more easily accessible.

The beandoc target generates this reference documentation for all of the
available façade server interfaces (“classes”), creating many HTML files in
the <client-dir>/build/bean-doc folder. To view the documenta-
tion, open the index.html file created in that folder in a web browser.
This document provides links to alphabetical lists of all classes, all opera-
tions on those classes, all domain definitions used by properties of those op-
erations, and all code-tables referenced by any of those domain definitions.
Each of these lists provides further links for cross-references or providing
more details. Viewing a class will display a list of its operations and select-
ing an operation will show a list of its properties.

In UIM, you do not have to use the full property name; you can use only
part of the ending of the name as long as it is unambiguous. In the reference
documentation for each operation, both the full property name and the
shortest, unique ending of the property name are given. This will help you to
choose a name that is short and readable, but that will not cause any build
errors later.

Beside many of the class, operation, and property names, you will see a
Copy button. Clicking this button will copy the name to the clipboard, al-
lowing you to paste it into your UIM file. For property names, the shortest
unique name is copied. Copying to the clipboard using the Copy button only

Cúram Web Client Reference Manual

27

works in Microsoft®Internet Explorer. In other browsers, you will have to
select the text and use the normal copying commands.

3.10.8 Page Previews

Page previews are produced by running the client-with-previews
build target. This will generate static HTML pages for the default locale that
can be opened in a browser to give you an impression of what the page will
look like when the application is running. The HTML pages are located in
the <client-dir>/WebContent/Previews folder. You do not need
to start a server to view the pages. The pages display a default value for
each field but do not support any user-interaction (buttons, links, pop-ups,
etc. do not function). The preview page represents only the main content
area of the page (the part specified in UIM) and not the sidebar or page
header or footer.

The default values for the fields are defined by associating a default value
with the domain definition of the field. These default values are used only
for the preview pages and are defined in the domain-defaults.xml
file in <client-dir>/components/core. Overriding this file in oth-
er components is not currently supported so it must be modified in place.

The file uses a simple XML format, a sample of which is shown below. The
root element is DOMAIN_DEFAULTS. This element contains one DOMAIN
element for each domain definition for which a default value is to be
defined. The DOMAIN element requires a NAME attribute specifying the do-
main name, and a DEFAULT attribute specifying the default value for that
domain.

<DOMAIN_DEFAULTS>
<DOMAIN NAME="MY_DOMAIN" DEFAULT="My value"/>
<DOMAIN NAME="YOUR_DOMAIN" DEFAULT="Your value"/>

</DOMAIN_DEFAULTS>

Example 3.2 Default Preview Values for Domain Definitions

When generating preview pages, if there is no default value defined for a
domain, a warning message will be displayed. These warnings will not pre-
vent the preview page from being generated and a fall-back value will be
used in the generated page (for example, “[field-value]”). Note that fields
that have a complex domain value are not parsed or processed in the normal
manner. Most of these are simply replaced by an image of the typical output
and no default value is required. Complex fields like this are described in
Chapter 8, Domain Specific Controls.

3.10.9 UIM Generator Tool

The UIM Generator tool provides a user interface for automatically generat-
ing a UIM page for a particular server interface.

To start the UIM Generator tool:

Cúram Web Client Reference Manual

28

1. Open a command prompt and change to the <client-dir> folder.

2. Run build uimgen.

3. The first time you run the UIM Generator you will be asked to locate a
ServerAccessBeans.xml file. This file is generated by the cli-
ent target and can be found in the <client-dir>/build folder.

Once the UIM Generator has started, you should see a screen containing the
following:

• A File menu containing options to view your current configuration set-
tings and to exit the application.

• A tree on the left hand side which lists all the server interfaces in the ap-
plication.

• Two options, Display Phase and Action Phase, which determine when
the selected server interface is called in the generated page.

• A Make Page button which generates the UIM for the current settings.

To generate a page perform the following:

1. Select the interface you wish to test from the tree (e.g. Register-Per-
son.read).

2. Select the phase in which the interface should be called, for example,
Action. Action phase pages call the interface when the page is submit-
ted. Data can be entered for each input field and a button is generated
to submit the page.

3. Click the Make Page button and you will be asked to specify a location
for the generated UIM. You can change the default name if you wish.
The location should be in the appropriate component folder of your ap-
plication.

A UIM file and a properties file are generated. The labels for each field are
given defaults based on the name of the server interface property associated
with the field.

3.10.10 External Client Applications

Due to the webclient directory containing a mix of components that are tar-
geted for different EAR packaging, it can be difficult to use the single de-
velopment environment and component order to develop and test these.

To allow for this a build target external-client will allow for creation
of an environment and building of the components specified for an EAR
entry in the deployment_packaging.xml.

The target requires a parameter -Dapp which should refer to the name of an
EAR entry within the deployment_packaging.xml.

Cúram Web Client Reference Manual

29

build external-client -Dapp=SamplePublicAccess

Example 3.3 external-client invocation

The build target will copy the components specified for this EAR entry to a
webclient\build\apps\<app name> directory and here will both
build the project and create the relevant Eclipse project configuration files to
allow for the project directory to be imported into Eclipse and development-
type testing to be performed on these external client applications.

3.11 Deployment

3.11.1 Overview

A detailed description of the deployment procedure is provided in the
Cúram Deployment Guide appropriate for your application server and oper-
ating system. However, there are a number of configuration settings avail-
able in your web client application project prior to deployment. These set-
tings are described below.

3.11.2 Configuring the Application

The ApplicationConfiguration.properties file defines the
most important application configuration settings. The file should be located
in the curam/omega3 sub-folder of the <client-dir>/JavaSource
folder. When you create a new application, this folder will contain a sample
file named Initial_ApplicationConfiguration.properties.
You should copy this file and rename it to ApplicationConfigura-
tion.properties and change the settings to match your requirements.
For the installed Cúram Application, this will be already be done for you,
but you may still want to make some changes.

The properties that may be set in this file are as follows:

dateformat

Example: dateformat=M d yyyy

The application-wide date format used when displaying dates or when
parsing dates entered by a user. This specific format (per user) is not
supported within the Cúram application.

The value of dateformat can be set to any one of a number of pre-
defined formats. Formats in day-month-year order: “d M yyyy” (the de-
fault), “d MMM yyyy”, “d MMMM yyyy”, “dd MM yyyy”, “dd MMM
yyyy”, “dd MMMM yyyy”. Formats in month-day-year order: “M d
yyyy”, “MMM d yyyy”, “MMMM d yyyy”, “MM dd yyyy”, “MMM dd
yyyy”, “MMMM dd yyyy”. Formats in year-month-day order: “yyyy M
d”, “yyyy MMM d”, “yyyy MMMM d”, “yyyy MM dd”, “yyyy MMM
dd”, “yyyy MMMM dd”.

Cúram Web Client Reference Manual

30

In these predefined formats, “d” represents the day number, “dd” rep-
resents the two-digit day number padded with a leading zero if neces-
sary, “M” represents the month number, “MM” represents the two-digit
month number padded with a leading zero if necessary, “MMM” repres-
ents the abbreviated month name, “MMMM” represents the full month
name, and “yyyy” represents the four-digit year. An upper-case letter
“M” is used for the month, as the lower-case letter “m” is used in Java
applications to represent the minute value when formatting times. The
formats are specified using a space character as a separator. The actual
separator character that you wish to use is specified separately.

dateseparator

Example: dateseparator=/

The value of dateseparator can be set to one of “.”, “,”, “/”, or “-”.
The date separator character that will be applied to the specified date
format. The value can be set to any one of a number of predefined sep-
arator characters: “/” (the default), “.”, “,”, or “-”.

timeformat

Example: timeformat=HH mm

The value of timeformat can be set to one of “h m s a”, “h m a”, “H
m”, “hh mm a”, “HH mm”, “hhmm a” or “HHmm”. Where not spe-
cified, “HH mm” is used as the default.

timeseparator

Example: timeseparator=:

The value of timeseparator can be set to one of “:” or “.”. Where
not specified, “:” is used as the default.

serverConnectionType

Example: serverConnectionType=single

Do not change this value.

addressFormatType

Example: addressFormatType=US

Default address format for addresses in the application.

addressDefaultCountryCode

Example: addressDefaultCountryCode=US

Default, application-wide country code for addresses. This must match
an entry on the server application's Country code table.

uploadMaximumSize

Example: uploadMaximumSize=-1

Maximum file upload size in bytes. Files that exceed this size will be re-
jected. This should be set to match the allocated storage in the database
for fields containing uploaded files. This cannot be tailored to suit dif-
ferent database fields. The value -1 indicates no maximum limit.

Cúram Web Client Reference Manual

31

uploadThresholdSize

Example: uploadThresholdSize=1024

The maximum size in bytes of an uploaded file before a temporary file
will be created on the server to reduce the memory overhead of storing
the data as it is being processed. By default, uploaded files are written
to temporary disk storage if they exceed 1024 bytes.

uploadRepositoryPath

Example: uploadRepositoryPath=c:/temp

Temporary files created during file upload will be written to this loca-
tion if they exceed the upload threshold size. By default files will be
written to the Java system temporary folder (as defined by the Java sys-
tem property property java.io.tmpdir).

use.synchronizer.token

Example: use.synchronizer.token=true

Whether to use a synchronizer token to prevent accidental re-
submission of forms due to use of the browser's Back button. Can be set
to true (default) or false.

synchronizer.token.timeout

Example: synchronizer.token.timeout=1800

A synchronizer token will expire if its associated form is never submit-
ted. Values are specified in seconds. The default value for this property
is 1,800 seconds.

errorpage.stacktrace.output

Example: errorpage.stacktrace.output=false

The value for this property is true or false, with true as the de-
fault.

Stacktrace output is used in the development environment for debug-
ging purposes. When the value for this property is true, the Java ex-
ception errors are output into the HTML error pages.

The property must be set to to false in a production environment, e.g.
errorpage.stacktrace.output=false, otherwise it will in-
troduce security vulnerabilities into the application. The HTML error
pages, which contain the Java exception stack trace, are not subject to
the Cúram's application malicious code and filtering checks and will po-
tentially leave the application open to injection attacks, e.g. Cross-site
scripting and link injection.

dbtojms.credentials.getter

Example: dbto-
jms.credentials.getter=curam.sample.CredentialsG
etter

Specifies the name of the class used to obtain credentials to be used for
triggering a DBtoJMS transfer. If not specified, a default set of creden-

Cúram Web Client Reference Manual

32

tials will be used for this operation. For more information about DBto-
JMS and using this property please see section entitled 'Security Con-
siderations' of the Cúram Batch Processing Guide.

modal.dialogs.minimum.height

Example: modal.dialogs.minimum.height=200

Specifies the minimum required height for a modal dialog in pixels and
will be used when the calculated height of the modal dialog is less than
the minimum required height or the specified height is less than the
minimum required height. The default value of 100 pixels applies if this
is not set.

tabSessionUpdateCountThreshold

Example: tabSessionUpdateCountThreshold=10

Specifies the number of tab session data updates that must be received
before the data is persisted from the web tier to the database. Once the
threshold is reached, the recent updates are written and counting starts
again from zero until the threshold is reached. A value of one causes
writes on every update. A value of zero (or a negative or invalid value)
disables writing based on update counts.

The default is every 10 updates.

For more information consult Chapter 7, Session Management.

tabSessionUpdatePeriodThreshold

Example: tabSessionUpdatePeriodThreshold=120

Specifies the number of seconds that must have elapsed since the last
time session data was persisted from the web tier to the database before
a new update will trigger another write. A value of zero (or a negative
or invalid value) disables writing based on update periods.

The default value is 120 seconds, or 2 minutes.

For more information consult Chapter 7, Session Management.

resourceCacheMaximumSize

Example: resourceCacheMaximumSize=16000000

Specifies the size of the application resource store cache. By default, the
cache is limited to 16MB (approx.) in size. When that limit is reached,
the least recently used resources will be ejected from the cache to make
room for newly requested resources that are not already in the cache.
The size of the cache is specified in bytes.

Note: If a single resource exceeds the size limit for the cache, it will not
be cached.

dynamicUIMInitModelOnStart

Example: dynamicUIMInitModelOnStart=false

Indicates if the Dynamic UIM system should initialize the required in-
formation on the application model during startup or when it is first re-

Cúram Web Client Reference Manual

33

quired for a Dynamic UIM page. The default value is true and it
should be set to false to cause the model to be initialized when it is
first required by a Dynamic UIM page.

See Section 5.12, Dynamic UIM System Initialization for more detailed
information.

sanitize.link.parameter

Example: sanitize.link.parameter=true

Enables protection from link injection attacks. The default value is
false.

When the value of this property is true, any parameters in the request
URL containing links to content with the Cúram application are valid-
ated using a regular expression. The validation ensures that a third party
hasn't replaced the link value with a malicious link to an external site.

Tracing

As described in Chapter 4, Localization , the file webcli-
ent\JavaSource\curam\omega3\i18n\CDEJResources.prop
erties defines properties for localizing certain features of the application.
It also contains the setting to enable tracing of server function calls on the
web-tier. Add the following property to enable this tracing:
TraceOn=true

When enabled, the inputs to and outputs from all server function calls will
be written to “Standard Out”1.

3.11.3 Customizing the Web Application Descriptor

The web application descriptor—defined in a file named web.xml—is a
standard Java EE web application file. A Cúram web application contains
various settings that a developer may wish to change, for example, server
connection settings and the session time-out. The default settings can be
seen in the following files based on the environment you are running the ap-
plication from:

Development Environment
<cdej-dir>/lib/curam/web/WEB-INF/web.xml

IBM ® WebSphere ® Application Server
<cdej-dir>/ear/WAS/war/WEB-INF/web.xml

WebLogic® Application Server
<cdej-dir>/ear/WLS/war/WEB-INF/web.xml

Customizing the web.xml file is done differently depending on whether
you are changing the version of the file to be included in the Cúram EAR
file or the version to be used at development time (e.g. in Apache Tomcat).

Customizing the web.xml for development time can be done by creating a

Cúram Web Client Reference Manual

34

custom version of the web.xml file in the WebContent/WEB-INF dir-
ectory of a particular component, e.g. custom. Where multiple versions of
web.xml exist in different components, the version in the highest preced-
ence component, based on CLIENT_COMPONENT_ORDER, will be used.

The web.xml used within a Cúram EAR file can be customized using the
deployment_packaging.xml file located in the Curam Server
project/config directory. It is possible to specify a custom web.xml
using the custom-web-xml property. For more information on customiz-
ing web.xml at runtime please consult the Cúram Deployment Guide for
the relevant Application Server.

When customizing web.xml, the existing security, filter and servlet set-
tings should not be modified.

The server and port settings in ApplicationConfigura-
tion.properties are now obsolete and no longer need to be specified.
They are now automatically configured as context-param elements in
web.xml when the Cúram EAR file is created. The server and port values
are set according to the values specified in the AppServer.properties
files (see the Cúram Server Deployment Guides for more inform-
ation), with the exception of the web.xml used at development time. The
development web.xml, located in
<cdej-dir>/lib/curam/web/WEB-INF/web.xml, has the server
and port set to localhost and 900 respectively.

To change or add a locale, locate the init-param elements of the Ac-
tionServlet and duplicate them, changing the value of the param-
name element as appropriate so it is in the form config/
<locale-code>. See the example below.

<init-param>
<param-name>config/en</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

Example 3.4 Configuring an Application Locale

By default the web.xml for both WebSphere and WebLogic application serv-
ers is configured to enforce secure http (https), i.e. a secure SSL connection
between the web client and the server. This can be modified by changing the
transport-guarantee from CONFIDENTIAL to NONE. Note, this
does not disable access to the Cúram web client over https, but enables addi-
tional access via http. Please refer to the Curam Security Handbook for fur-
ther details.

Customizing the 404 or Page Not Found error response.

The 404 or Not Found error message is a HTTP standard response code in-
dicating that the client was able to communicate with the server, but the
server could not find what was requested. The default web.xml files for
WebSphere, and WebLogic specify a default error page for the Cúram ap-
plication when an HTTP 404 error is thrown by the application server. The

Cúram Web Client Reference Manual

35

following is the error message displayed on that default page:

• The page you have requested is not available. One possible cause for
this is that you are not licensed for the necessary Cúram module - if that
is the case, you can use the User Interface administration screens to re-
move these links.

This message may be customized by adding a HT-
TP404Error.properties file into the webcli-
ent\JavaSource\curam\omega3\i18n folder of the application
and overriding the error.message property specified in that file.

3.12 Customization

3.12.1 Overview

A Cúram web client application can be customized without modifying the
original components or their artifacts. This makes it easier to upgrade a base
application while preserving your custom changes to that application. In this
section you will see how the customization process works and how you can
modify or extend a base application.

Customizations are applied according to the component order. The changes
that you make to customize an application should be made in a separate
component from the application's original components. The Cúram Applica-
tion will be installed with a number of components (the core component and
a number of other add-on components). To make customizations, create a
new component folder—a new sub-folder in the folder called compon-
ents—and add that component's name—the folder name—to the compon-
ent order (see Section 3.7.2, Component Order). You will always want to
add your component name to the beginning of the component order to give
it the highest priority when artifacts are being selected at build-time. You
can add more that one custom component, but you must decide what their
relative position in the component order should be.

To begin with, your custom component will be an empty folder. You make
your customizations by adding artifacts (e.g., UIM pages, configuration,
files, etc.) to this component folder. You can create arbitrary sub-folders to
help you organize these artifacts. You can customize an application by
adding new artifacts, overriding existing artifacts, or merging new content
with existing artifacts.

3.12.2 Adding New Artifacts

You can add new artifacts to extend a base application. To add a new arti-
fact, you simply create the new file in your component folder. The file name
of the artifact should not be the same as the file name of an artifact in anoth-
er component. If it is, the artifact will override another artifact or be merged
with one. All types of artifacts can be added to an application in this man-

Cúram Web Client Reference Manual

36

ner, note artifacts added to the WebContent sub-folder will always override
other delivered artifacts, as described in Section Section 3.12.14, Custom
Resources .

3.12.3 Overriding or Merging Artifacts

Some types of artifacts can be overridden (effectively replaced) by adding
an artifact with the same file name as an artifact in another component to
your custom component. When building the application, the artifact in the
highest priority component will be selected and the others ignored. Not all
types of artifacts are overridden so completely. Other types of artifacts are
merged with the same named artifacts in the lower priority components. The
content of all of the artifacts is combined and, where the content is related,
the content from the highest priority component is selected. The customized
artifacts only need to share the same file name, they do not have to share the
same relative folder location, though you may find it advantageous to organ-
ize them in a similar manner.

For example, for UIM files that share the same name, the file in the highest
priority component will be selected and the others ignored; but for proper-
ties files that share the same name, all of the properties are merged together
and, where the files contain properties with the same key name, the value of
the property from the file in the highest priority component will be used.
When building an application, the artifacts in the components are not modi-
fied. The selection and merging of artifacts is performed in temporary loca-
tions, leaving the original artifacts intact.

The different ways in which artifacts are merged or overridden is covered in
the sections below.

3.12.4 Externalized Strings

All string values in UIM documents and JavaScript must be externalized.
This aids maintenance and allows the application to be localized. JavaScript,
UIM pages and UIM views can reference externalized strings.

The syntax of a properties file is simple. Each line contains a name=value
pair, where the name is an arbitrary name for the string (it should not con-
tain the “=” character), and the value is the localized string value. Blank
lines and lines beginning with a “#” character are ignored. Example 3.5, A
Sample Properties File contains an example. The syntax is defined by the
java.util.Properties class provided with your Java Runtime Envir-
onment; you can consult the API documentation for that class for more de-
tails.

It is worth noting that the property value will be reproduced in the final ap-
plication page exactly as you have typed it in the properties file. The value
can contain any character from any language and it does not matter if that
character is reserved in XML, HTML or anywhere else—it will be safely
processed and displayed as you intended in the application.

Cúram Web Client Reference Manual

37

If you find that you need to enter a character in a property value that you
cannot generate from the keyboard, the only one way to do it is to use the
Unicode value of that character in a Unicode escape sequence—a backslash
and a “u” followed by the four-digit hexadecimal character code. For ex-
ample, if you want to enter a non-breaking space, the corresponding Uni-
code escaped sequence is “\u00a0”. An example of this is included in the
sample properties file below.

Main Titles
MyPage.Title=My First Page
Cluster.User.Title=User Details

Field labels
Field.FirstName.Label=First Name
Field.Surname.Label=Surname

Other
Separator=\u00a0

Example 3.5 A Sample Properties File

As you can see, using “.” characters is a useful way to add some structure to
the properties in the file, though it is not a requirement.

When customizing an application, you can customize properties independ-
ently of pages and views by adding the appropriately named properties file
to your custom component and defining the externalized string properties.
You do not need to add the corresponding page or view file to your com-
ponent and you do not need to redefine any of the properties that you do not
want to change.

3.12.5 Images

All references to icons or other graphics within a UIM document are extern-
alized in a manner similar to normal strings. The Image.properties
file (you can include one in each component, if you wish) uses the same
format as the string properties files to associate image references with image
file names. The image files should be stored in the component's Images
sub-folder and can be organized into a folder structure below this folder if
desired. Most web browsers will support images in the portable network
graphics (PNG) format, the graphics interchange format (GIF), and the joint
photographic experts group (JPEG) format.

The Image.properties file simply associates a key with a path to the
corresponding image file specified relative to the component folder. A
sample of this file is shown below. To use these images, the key is used as
the value of the IMAGE attribute on the ACTION_CONTROL element in the
UIM page.

Button.Ok=Images/ok.gif
Button.Cancel=Images/cancel.gif
MyPage.Title.Icon=Images/bluedot.gif

Example 3.6 A Sample Image.properties File

Cúram Web Client Reference Manual

38

The entries in the Image.properties file in the core component can be
overridden individually or in total by creating an Image.properties
file in your custom component and overriding the properties as required.
You can override the image files themselves by creating files in your cus-
tom component with the same names as the files in the core component.

If you need to localize your images for different languages, you can add
several Image.properties files using a different locale code as the file
name suffix. See Section 4.6, Locales for details on locale code suffixes.
Each properties file should define the same keys, but the image files can be
different for each locale. If only some of the images need to be localized,
the common images can be defined in the default Image.properties
file (the one without the locale code suffix) and only properties for the local-
ized images in the other properties files.

3.12.6 Image Mapping

Images can also be used within the Cúram application to represent different
values of displayed fields instead of presenting the value as text. For ex-
ample, a typical boolean value of true or false could be represented by
two images of, say, a green check mark and a red X.

The mapping between values and images is stored in the ImageMapCon-
fig.xml file. There is no need to specify this in any way in UIM. If you
use a property with a domain listed in the ImageMapConfig.xml file, it
will automatically be displayed as an image.

<map>
<domain name="MY_BOOLEAN">

<locale name="en">
<mapping value="true"

image="Images/ValuesToImages/true.gif"
alt="True"/>

<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="False"/>

</locale>
<locale name="fr">
<mapping value="true"

image="Images/ValuesToImages/true.gif"
alt="Vrai"/>

<mapping value="false"
image="Images/ValuesToImages/false.gif"
alt="Pas Vrai"/>

</locale>
</domain>

</map>

Example 3.7 A Sample ImageMapConfig.xml file

In the example, a field with domain type MY_BOOLEAN has been assigned
an image mapping. Note that you should specify an image mapping for each
available locale even if the images used are identical. This is because the al-
ternative text (“alt text”) attached to the image will be different for different
locales. This text is important for accessibility reasons (users who have
visual difficulties might use an audio browser, for example, which will read
out the “alt text”).

Cúram Web Client Reference Manual

39

ImageMapConfig.xml files in different components are merged with all
unique image mappings preserved. If the same value in the same locale is
mapped in two ImageMapConfig.xml files in two different compon-
ents, the mapping from the higher priority component prevails.

3.12.7 CuramLinks.properties

The UIM LINK element allows links to other client pages to be specified in-
directly. The PAGE_ID_REF attribute is a key into the Curam-
Links.properties file that returns the actual ID of the linked page.

Many links can point to the same page reference. The advantage of using a
page reference is that all the links can be updated by changing a single entry
in this file.

Each component can have its own CuramLinks.properties file. Dur-
ing generation, these individual files will be merged. As usual, if a particular
key is present in more than one CuramLinks.properties file, the
component priority order is used to decide which value is retained.

3.12.8 XML Runtime Configuration Files

There are a few miscellaneous XML files that are used by the running client
application. To change any of these files, copy the original file into the
custom component sub-directory and modify the copied file. The default
files can be found in <cdej-dir>/lib.. The client generators will use
the xml file from the highest priority as specified by the CLI-
ENT_COMPONENT_ORDER environment variable. The following is a list of
these files:

• CalendarConfig.xml

• DynamicMenuConfig.xml

• ICDynamicMenuConfig.xml

• MeetingViewConfig.xml

• RatesTableConfig.xml

• RulesDecisionConfig.xml

• RulesEditorConfig.xml

Further details on the customization of these configuration files are given in
Chapter 8, Domain Specific Controls.

3.12.9 Login Pages

A default login page is supplied, called logon.jsp and located in the
lib/curam/web/jsp directory of the Cúram Client Development En-
vironment. This can be overridden by placing a copy, with the required

Cúram Web Client Reference Manual

40

changes, in a webclient/components/<custom compon-
ent>/WebContent folder. However, there are some guidelines that
should be followed.

Firstly, the following JavaScript should be included in the head section of
the page:

<jsp:include page="no-dialog.jsp"/>
<script type="text/javascript"

src="${pageScope.path1}/CDEJ/jscript/curam/util/Logon.js">
//script content</script>

<script type="text/javascript">
curam.util.Logon.ensureFullPageLogon();
function window_onload() {
document.loginform.j_username.focus();
return true;

}
</script>

This prevents the login page from being loaded in a dialog window.

Secondly, if it is desired to use the j_security_check login mechan-
ism, the form submitted from the page should have an action attribute of
j_security_check, a user name input with the name attribute
j_username and a password input with the name attribute
j_password.

The Cúram Server Developers Guide contains details of some common cus-
tomizations to the logon.jsp file to support an external user client ap-
plication and automatic login.

The styling of logon.jsp can be customized in the usual way. Simply
add relevant CSS to any .css file in the custom component.

3.12.10 JavaScript Files

The UIM SCRIPT element allows events on the page to trigger JavaScript
functions. You can simply provide a path to the JavaScript file that is relat-
ive to your component folder. For example, if you have a JavaScript file in a
sub-folder of your component folder: MyComponent/
scripts/myScript.js, you can just refer to this in the SCRIPT tag as
follows:
<SCRIPT SCRIPT_FILE="scripts/myScript.js" ...>

The paths you have specified will be fully preserved during application gen-
eration.

JavaScript allows HTML and CSS to be queried and manipulated. The un-
derlying HTML and CSS source code used to style the Cúram application is
not documented. No guarantees are made about its stability across Cúram
releases. Therefore, custom JavaScript may have to be updated in line with
changes to HTML structure.

A number of JavaScript APIs for use in the custom JavaScript code are
provided within the Cúram application. They are documented in the follow-
ing location in your CDEJ installation:Curam-
CDEJ\doc\Javascript\index.html. Use of any other Cúram

Cúram Web Client Reference Manual

41

JavaScript APIs, discovered through web developer tools for example, is not
supported. The same is true of the JavaScript APIs and functions of third
party frameworks used within the Cúram application. While there is nothing
prevent a developer using these, using them means the code will be im-
pacted by changes to the Cúram application in future releases.

Using the techniques described above to add new JavaScript files to the cus-
tom component, new third party APIs could be added to Cúram pages. This
is at the customers discretion, as no guarantees can be made on third-party
APIs that have not been used and verified within the Cúram application.

3.12.11 Cascading Stylesheets

Stylesheets (*.css) define the appearance (colors, fonts, etc.) of the client
pages when viewed in a web browser. Default stylesheets are provided for
the Cúram client application. It should never be necessary to edit these files,
you can view them in the WebContent/WEB-INF/css folder. Instead,
you can override particular styles or add new styles by creating new CSS
files in one of your application components. Any CSS file located in the
component/<some-component> folder (or sub-folder) will be auto-
matically concatenated into the custom.css file. The custom.css file
is included on all pages in the Cúram client application.

The underlying HTML and associated CSS used to style the Cúram user in-
terface can easily be viewed in a variety of ways, such as using developer
tools like the Internet Explorer Developer Toolbar. An example of custom-
ization would be to view the CSS used to apply a color to a field's label. The
same CSS style can then be added to your custom CSS file and a different
color specified. For example, assuming the HTML and CSS has been ana-
lyzed and the CSS rule .field .label applies the label color, the fol-
lowing CSS could be used to override the default:

.field .label {
color: red;
}

This will take precedence over the Cúram style because custom CSS is in-
cluded on the page after Cúram's default CSS. Another customization tech-
nique would be to create a new rule that is an extension of a Cúram rule.
Continuing the above example, a developer analyzes the HTML and sees
that within the Cúram application a span element is generated as a child of
the .label element. It is possible to create a new rule that is specific to
this span, even if Cúram has not done so. The complete customization will
now look like this:

.field .label {
color:red;

}
.field .label span{
color:blue;
}

The underlying HTML and CSS source code used to style the Cúram user

Cúram Web Client Reference Manual

42

interface is not documented (hence the use of developer tools to view it). No
guarantee is made about its stability across Cúram releases. Therefore, cus-
tomizations as described above or any customization based on analysis of
the Cúram application's underlying HTML and CSS may be lost as new re-
leases are taken on. The customizations may have to be re-applied by ana-
lyzing the HTML and CSS again.

Note

Some UIM elements support the STYLE tag which allows specific
styling to be added to any instance of that element. This styling will
always override that included in .CSS files. For more information,
see Chapter 5, UIM Reference.

Application Specific CSS

CSS can be specific to the application being viewed. The id of the applica-
tion (.app file) currently being viewed is added as a class on the BODY ele-
ment of each HTML page, allowing application specific styling to be added
to that page.

For example, a System Administrator views the SYSADMAPP application.
The following is an example of CSS specific to that application:

.SYSADMAPP .field .label {
color:red;

}

Media Specific CSS

CSS can be specific to the type of media being used to view the web page.
So, for example, it is possible to have some styles that only apply when a
page is printed and others that only apply on-screen. It is possible to include
CSS specific to a media using the following pattern:

<STYLE type="text/css">
@media print {

BODY {font-size: 10pt; background: white;}
}
@media screen {

BODY {font-size: medium;}
}
</STYLE>

Browser Specific CSS

CSS can be specific to the browser used to view the web page. Internet Ex-
plorer specific CSS files can be created in any folder in a component. A
naming convention is used to distinguish between versions of Internet Ex-
plorer. Specifically the following suffixes are to be used:

• ie.css This file will be included in all versions of Internet Explorer.

Cúram Web Client Reference Manual

43

• _ie6.css This file will be included in Internet Explorer 6.

• _ie7.css This file will be included in Internet Explorer 7.

• _ie8.css This file will be included in Internet Explorer 8.

Please note that developers should continue to strive for using the same CSS
on all browsers. Internet Explorer specific styling should only be used as a
last resort.

3.12.12 Application Configuration Files

The application configuration files for defining application, section and tabs
can be added to the
<server-dir>\components\<component-name>\clientapps
directory, where <component-name> is a custom component. Sub-
folders are supported within the clientapps folder. Any artifacts added
to this directory will override files of the same name in the
<server-dir>\components\<component-name>\tab directory.
The tab directory contains files that are shipped with existing components
within the Cúram application and these files should not be modified.

Note

The OOTB Cúram application uses fragments of configuration arti-
facts that are merged into single files at build time, this is not sup-
ported for custom application configuration artifacts. (i.e.) you
should not have a tab folder in EJBServ-
er\components\custom.

When customizing application configuration files that ship with the Cúram
application, the XML configuration file and .properties file should always
be customized as a unit. For example, a change to the SimpleApp.properties
file, associated with the SimpleApp.app file, should result in adding both
SimpleApp.app and SimpleApp.properties to the clientapps folder. These
files should be based on the merged version of the files. The inserttabcon-
figuration target can be used to get a development copy of the merged file.
See the Cúram Server Developer Guide for more information.

There are a few general rules and best practices when working with the ap-
plication configuration files:

• The id attribute on the root element of each configuration file must
match the name of the file. E.g. SimpleApp.app must have an id of
SimpleApp.

• The id attributes should not contain the period (.) or underscore (_)
characters.

• Localizable text should be added to a .properties file which
matches the name of the configuration file. E.g. SimpleApp.app will
have a corresponding SimpleApp.properties.

Cúram Web Client Reference Manual

44

• Properties files can be re-used across configuration files. E.g. Per-
son.nav and Person.tab can share the same Per-
son.properties file.

• Ensure when developing the XML files to add the proper namespace in-
formation. This will allow for validation. For example:

<ac:application
...
</ac:application>

3.12.13 General Configuration

Overview

The curam-config.xml file contains a number of general-purpose con-
figuration options that affect the appearance or behavior of the web client
application. Each of the following sections describe in detail the main ele-
ments of this configuration file.

POPUP_PAGES

See Section 8.21, Pop-up Pages.

MULTIPLE_POPUP_DOMAINS

See Section 8.21, Pop-up Pages.

ERROR_PAGE

If an error occurs at run-time, the user will be redirected to a page defined
here. Depending on the error cause, two types of error page could be
provided for reporting system or application failure (or a default page for re-
porting both kind of errors could be configured instead).

<ERROR_PAGE TYPE="SYSTEM" PAGE_ID="CuramSystemError"/>
<ERROR_PAGE TYPE="APPLICATION" PAGE_ID="CuramError"/>

Example 3.8 Error_Page Section Example

<ERROR_PAGE PAGE_ID="CuramError"/>

Example 3.9 Error_Page Section Example with one default page

Please note: when overriding the ERROR_PAGE setting it is not possible for
a custom configuration to define an ERROR_PAGE element without a TYPE
attribute if a low priority component defines an ERROR_PAGE element
with a TYPE attribute. In that case, the custom component needs to use a
TYPE attribute and must override both supported types of error page to get

Cúram Web Client Reference Manual

45

the desired effect

MULTIPLE_SELECT

Domains which should display as multiple select list boxes in forms are spe-
cified here. The MULTIPLE attribute, if true, allows multiple selection in
the list.

<MULTIPLE_SELECT>
<DOMAIN NAME="PRIMARY_ID" MULTIPLE="true"/>
<DOMAIN NAME="OTHER_ID" MULTIPLE="true"/>

</MULTIPLE_SELECT>

Example 3.10 Multiple Select Section Example

FILE_DOWNLOAD_CONFIG

See Section 5.9.3.1, File Downloads.

ENABLE_COLLAPSIBLE_CLUSTERS

Set to false to disable collapsible clusters. By default this value is set to
true.

<ENABLE_COLLAPSIBLE_CLUSTERS>false</ENABLE_COLLAPSIBLE_CLUSTERS>

Example 3.11 Disable Collapsible Clusters Example

APPEND_COLON

Set to true to automatically append colons to FIELD and CONTAINER la-
bels within CLUSTER elements.

<APPEND_COLON>true</APPEND_COLON>

Example 3.12 Append Colon Section Example

ADDRESS_CONFIG

See Chapter 8, Domain Specific Controls.

ADMIN

The ADMIN element can contain any number of CODETABLE_UPDATE,
TAB_CONFIG_UPDATE and RESOURCE_UPDATE elements. The
PAGE_ID attribute of these elements specifies the page that will clear the
relevant caches whenever its submit action is called.

<ADMIN>
<CODETABLE_UPDATE PAGE_ID="CodeTableAdmin" />

</ADMIN>
<TAB_CONFIG_UPDATE PAGE_ID="ApplicationConfigAdmin"/>

Cúram Web Client Reference Manual

46

<RESOURCE_UPDATE PAGE_ID="publishResourceChanges"/>

Example 3.13 Admin Section Example

Please note: The caches are only cleared for the current instance of the web
application. Other instances will have to be restarted to receive the code ta-
ble updates. This feature applies at development time only.

STATIC_CONTENT_SERVER

This option specifies a base URL for all static content such as images, CSS
files and JavaScript files.

<STATIC_CONTENT_SERVER>
<URL>http://www.myserver.com/staticresources/</URL>

</STATIC_CONTENT_SERVER>

Example 3.14 Static Content Base URL Example

The forward slash at the end of the URL is optional. A full build is required
to pick up this setting. This option allows the relocation of all static content
to a separate server. If this option is used, the following folders and files
need to be duplicated on the static content server:

• WebContent/*.*

• WebContent/CDEJ/**/*.*

• WebContent/genImages/**/*.*

• WebContent/Images/**/*.*

FIELD_ERROR_INDICATOR

This option indicates if field level error indicators are to be displayed when
an error occurs. The error message is the alt text of the image and is avail-
able as a tool-tip when the mouse is hovered over the image. The feature
only applies to text input and date-time fields. Also, this feature only applies
to web-tier generated messages (data-type validation, mandatory fields etc.),
it does not apply to messages generated from server side code since there is
no way to associate a server exception with a client side field.

<FIELD_ERROR_INDICATOR>true</FIELD_ERROR_INDICATOR>

Example 3.15 Field Error Indicators Example

Please note if the FIELD_ERROR_INDICATOR element is not specified, it
defaults to FALSE.

SECURITY_CHECK_ON_PAGE_LOAD

All server functions used on a Cúram screen are checked for authorization

Cúram Web Client Reference Manual

47

when the page is initially loaded. If a user fails authorization for any of the
server functions, an authorization error message will be displayed and the
user will be prevented from viewing the page.

The SECURITY_CHECK_ON_PAGE_LOAD setting in curam-config.xml
allows this functionality to be disabled and defers the authorization check to
the server. For example, on an edit page that has both DISPLAY and AC-
TION server interfaces, the user must have authorization rights for the DIS-
PLAY server interfaces at a minimum. If they do not have authorization
rights for the ACTION server interfaces, the page will display, but they will
get an authorization error message when they submit the page. To disable
authorization on page load add the following to the curam-config.xml:

<SECURITY_CHECK_ON_PAGE_LOAD>false</SECURITY_CHECK_ON_PAGE_LOAD>

Example 3.16 Security Check on Page Load Example

Please note if the SECURITY_CHECK_ON_PAGE_LOAD element is not
specified, it defaults to TRUE.

ENABLE_SELECT_ALL_CHECKBOX

The multi-select check-box WIDGET described here displays a column of
check-boxes used to select items in a LIST. The following configuration
setting causes a check-box to be displayed in the column header that can be
used to select or de-select all of the check-boxes at once.

<ENABLE_SELECT_ALL_CHECKBOX>true</ENABLE_SELECT_ALL_CHECKBOX>

Example 3.17 Enable Select All Check-box Example

Please note if the ENABLE_SELECT_ALL_CHECKBOX element is not spe-
cified, it defaults to FALSE.

TRANSFER_LISTS_MODE

When set to true all multiple selection controls in an application are dis-
played as Transfer List widgets.

<TRANSFER_LISTS_MODE>true</TRANSFER_LISTS_MODE>

Example 3.18 Transfer Lists Mode Example

Please note if the TRANSFER_LISTS_MODE element is not specified, it
defaults to FALSE.

HIDE_CONDITIONAL_LINKS

When set to true all conditional links that evaluate to false are not dis-
played. When set to false all conditional links that evaluate to false are
displayed as disabled links.

Cúram Web Client Reference Manual

48

<HIDE_CONDITIONAL_LINKS>true</HIDE_CONDITIONAL_LINKS>

Example 3.19 Hide Conditional Links

Please note if the HIDE_CONDITIONAL_LINKS element is not specified,
it defaults to TRUE.

DISABLE_AUTO_COMPLETE

When set to true auto complete on all input fields is disabled. When set to
false auto complete on all input fields is enabled.

<DISABLE_AUTO_COMPLETE>true</DISABLE_AUTO_COMPLETE>

Example 3.20 Disable Auto Complete

Please note if the DISABLE_AUTO_COMPLETE element is not specified, it
defaults to FALSE.

SCROLLBAR_CONFIG

The SCROLLBAR_CONFIG element allows a vertical scrollbar to appear on
a LIST or CLUSTER element after a maximum height is reached. It can
contain two or less ENABLE_SCROLLBARS elements. The EN-
ABLE_SCROLLBARS element has the following attributes:

• TYPE : Specifies the element in which vertical scrollbars are to be en-
abled. Can only be set to LIST or CLUSTER.

• MAX_HEIGHT : Specifies the maximum height a CLUSTER or LIST
can reach before a vertical scrollbar is displayed.

<SCROLLBAR_CONFIG>
<ENABLE_SCROLLBARS TYPE="LIST" MAX_HEIGHT="150" />
<ENABLE_SCROLLBARS TYPE="CLUSTER" MAX_HEIGHT="100" />

</SCROLLBAR_CONFIG>

Example 3.21 Scrollbar Configuration

Please note if the SCROLLBAR_CONFIG element is not specified no LIST
or CLUSTER element will display a vertical scrollbar.

PAGINATION

This element configures the LIST pagination options for the whole applica-
tion. Individual lists can override the global settings.

<PAGINATION ENABLED="true">
<DEFAULT_PAGE_SIZE>15</DEFAULT_PAGE_SIZE>
<PAGINATION_THRESHOLD>15</PAGINATION_THRESHOLD>

</PAGINATION>

Example 3.22 Sample Pagination Configuration

Cúram Web Client Reference Manual

49

Option Name Required Default Description
ENABLED No true Enables the ability to page through

lists displayed in Cúram pages.
Any LIST longer than the con-
figured minimum size will display
only the first "page" of data and
the pagination controls will be dis-
played below the list.

DE-
FAULT_PAGE_S
IZE

No 15 Specifies the page size the list will
get by default. The page size can
be then changed at runtime by the
user.

PAGINA-
TION_THRESHO
LD

No Based
on the
DE-
FAULT
PAGE
SIZE
value.

Specifies the minimum list size at
which pagination will be enabled.
For shorter lists there will be no
pagination, even if otherwise pa-
gination is switched on.

Table 3.2 Pagination configuration options

Customizing Configuration Settings

The core component contains a copy of the curam-config.xml file, but
you are free to augment and override the settings by including your own
curam-config.xml file in your custom component. All of the individu-
al curam-config.xml files will be merged into one at generation. The
effect of this merging depends on each particular setting.

Some entries are global settings for the application and so must only appear
once in the final output. These entries are as follows:

• HELP

• ERROR_PAGE

• APPEND_COLON

• ADMIN

• POPUP_PAGES/CLEAR_TEXT_IMAGE

• MULTIPLE_POPUP_DOMAINS/CLEAR_TEXT_IMAGE

• STATIC_CONTENT_SERVER

If you define one of these in a custom component, it will completely over-
ride that of the core component.

The other entries will be merged. This applies to the following elements:

Cúram Web Client Reference Manual

50

• MULTIPLE_POPUP_DOMAINS

• POPUP_PAGES

• MULTIPLE_SELECT

• FILE_DOWNLOAD_CONFIG

• PAGINATION

• ADDRESS_CONFIG

Note, however, that particular address formats can be overridden. So, for ex-
ample, if the core component had the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Core.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Core.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Core.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Core.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Core.Label.Zip" />

</ADDRESS_FORMAT>

Example 3.23 Extract from curam-config.xml File (1)

and if your custom component had the following address format definition:

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Custom.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.Zip" />

</ADDRESS_FORMAT>

Example 3.24 Extract from curam-config.xml File (2)

then it is the second one (i.e., the custom definition) that will appear in the
final merged curam-config.xml file. This is because both address
formats have the same name (“US”).

Dividing the Configuration File

The curam-config.xml file can be divided into manageable chunks. If
you like, you can take one part of the configuration and save it in a file with
a different name. Taking the previous address format configuration as an ex-

Cúram Web Client Reference Manual

51

ample, you can create a file with the following contents:

<APP_CONFIG>
<ADDRESS_CONFIG>

<LOCALE_MAPPING LOCALE="en_US"
ADDRESS_FORMAT_NAME="US">

<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">
<ADDRESS_ELEMENT NAME="ADD1"

LABEL="Custom.Label.Address.1"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ADD2"
LABEL="Custom.Label.Address.2" />

<ADDRESS_ELEMENT NAME="CITY"
LABEL="Custom.Label.City" />

<ADDRESS_ELEMENT NAME="STATE"
LABEL="Custom.Label.State"
CODETABLE="AddressState"
MANDATORY="true"/>

<ADDRESS_ELEMENT NAME="ZIP"
LABEL="Custom.Label.Zip" />

</ADDRESS_FORMAT>
</ADDRESS_CONFIG>

</APP_CONFIG>

Example 3.25 Sample address-config.xml File

You would then save this with a file name that ends with -config.xml
anywhere within your component, say, address-config.xml. Note
that the file must have the same APP_CONFIG root element as the full
curam-config.xml file. As long as you follow these conventions, all of
your configuration files will be merged into a single address-con-
fig.xml file at build time.

Configuration File Names

Two naming patterns are used for most configuration files. Some
use the pattern XConfig.xml and others X-config.xml, where
“X” is some prefix. For example, ImageMapConfig.xml and
address-config.xml. The former pattern indicates a stan-
dalone configuration file that is not related to other configuration
files. The latter pattern indicates that the file is really just part of the
curam-config.xml file.

3.12.14 Custom Resources

Arbitrary files can be included in the web application by doing the follow-
ing:

1. At the root of a component, created a folder called WebContent, for
example
<client-dir>/components/MyComponent/WebContent.

2. Place files in this folder using any folder structure you wish.

3. When you run the client build target these files will be copied directly
to the <client-dir>/WebContent which represents the root of
the web application. The folder structure will be maintained during the
copy.

Cúram Web Client Reference Manual

52

Files included in the application in this way take precedence over the mer-
ging and overriding process as described in previous sections for other re-
sources. For example, if you include a CSS file in this way, the contents of
the file will not be included in the CSS overriding process described in Sec-
tion 3.12.11, Cascading Stylesheets. The copying of custom resources oc-
curs after other source artifacts are built and merged, so it is possible to re-
place existing resources. Care should be taken in this case. For example, it
would be possible to have a component with a file in WebContent/
WEB-INF/struts-config.xml that would completely replace the
Struts configuration file generated by the client build and therefore break the
application. Finally, when multiple components have a WebContent
folder they are copied based on component priority, but the copy is time-
stamp based. The copy command always uses verbose output for these files
so the developer can see exactly what files are being copied.

Cúram Web Client Reference Manual

53

Notes
1Due to classloader issues with Log4j, the web-tier does not currently
provide a configurable logging system in the same way as the server-tier.

Cúram Web Client Reference Manual

54

Chapter 4

Localization

4.1 Objective

This chapter will introduce you to the various files that need to be updated
when translating a Cúram application to a new language.

4.2 Prerequisites

You should be familiar with the basic concepts of Cúram CDEJ develop-
ment (see Chapter 2, Concepts).

4.3 Introduction

Cúram is designed to support an application running simultaneously in as
many languages as required. To simplify the translation process, the lan-
guage-specific parts of the application are separated out from the application
code.

4.4 Numbers

Numbers are language-specific and so a Cúram application treats numbers
in a locale-specific manner depending on the preferred language of the user.
For example, a decimal number can be represented as 7,99 or 7.99 de-
pending on whether the user's locale is French or English.

4.5 File Encoding

OOTB Cúram supports the development of applications localized into many
languages. The Cúram CDEJ generators support files encoded in the various
character encodings appropriate for those languages. There are a number of

55

ways to define the encoding for a file, this is dependent on the type of file.
The following sections describe how the encoding is set for the different
types of files.

4.5.1 XML Files

The encoding for XML-format files is declared explicitly within the XML
file itself, where the first line, the XML declaration, may look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

This tells the XML parser that the file uses the ISO-8859-1 encoding, a typ-
ical encoding for Western European languages. If the XML declaration is
omitted, the parser will assume UTF-8 encoding, which covers most modern
languages and many others, besides being based on the Unicode standard. It
is very important that the XML declaration matches the actual file encoding.
The declaration does not determine the encoding, it only identifies it; chan-
ging the declaration does not automatically change the file encoding. If you
use a specialized XML editor application, then it will probably recognize
the declaration and change the file encoding for you. Most plain-text editors
will not do this, so you must ensure that you select the correct encoding in
your editor before saving the file.

4.5.2 Java properties files

For Java properties files (used in the application, for example, to define the
text strings that appear on client screens), there is no equivalent of the expli-
cit XML declaration. The client generator must assume an encoding for the
client properties files. The assumption the generator makes is that Java
properties files are encoded in the default system encoding of the machine
that the build is running on. This is a reasonable assumption given that the
files themselves were likely created on the same machine or a machine of
similar type in the same country. On a Microsoft® Windows® machine in
Western Europe, for example, the system encoding is probably Cp1252, the
Windows variant of ISO-8859-1. This encoding will handle the accented
characters of Western European languages but does not cover, say, Cyrillic
or Chinese characters.

If, for some reason, you are building on a machine that does not share its
system encoding with the files that are being processed, you must indicate
this by setting the ENCODING environment variable. For example, to build
a Chinese language web client application on an English language Microsoft
Windows machine, you might choose to save your properties files in the
UTF-8 encoding, so you would set the ENCODING environment variable to
UTF-8. During the build, you can see that the generator overrides its normal
default setting:

System encoding is Cp1252.
Using encoding UTF-8 to read properties files.

Cúram Web Client Reference Manual

56

The Java Runtime Environment will always assume that properties files use
the ISO-8859-1 encoding. This is not very helpful if you want to create
properties files using the UTF-8 encoding for localization to, say, Chinese.
To overcome this limitation, the Cúram CDEJ will automatically translate
properties files from your preferred encoding (either the system default en-
coding, or the encoding specified via the ENCODING environment variable)
into the encoding required by Java. This is performed automatically during
the build process and your original properties files will not be affected.

Troubleshooting

Where a properties file has been saved in UTF-8 encoding, and this
does not match the system encoding, build failures can occur. The
build failure will report a PageGenerationException, where
the build could not find a property even though the property exists
in the relevant file. This happens where the properties file has been
saved by a UTF-8 editor which adds the Byte Order Mark (BOM) at
the beginning of the file. The property reported in the error will be
the first property in the file. To resolve the issue the file should be
saved in the correct encoding, ensuring the BOM character has been
removed.

4.5.3 Non-XML Files

The non-XML files in the Cúram Reference Application are encoded in the
ASCII encoding. ASCII has the useful property of being a subset of most
other common file encodings. This means you do not generally need to con-
vert the English language files that ship with the OOTB Cúram application
in a new encoding in order to build them in a different language environ-
ment.

4.6 Locales

A Java locale identifier has three parts:

Language
A lower-case, two-letter, ISO-639 code.

See http://www.unicode.org/onlinedat/languages.html.

Country
An upper-case, two-letter, ISO-3166 code.

See http://www.unicode.org/onlinedat/countries.html.

Variant
A vendor-specific or browser-specific code.

The language code is required, but the other parts are optional. The indi-
vidual parts are separated by an underscore character. Some examples of
valid locales are: “en” (English language), “en_US” (English language for

Cúram Web Client Reference Manual

57

http://www.unicode.org/onlinedat/languages.html
http://www.unicode.org/onlinedat/countries.html

the United States), zh_HK (Chinese language for Hong Kong). This system
is used within the Cúram application to identify locales. Most locale-spe-
cific information in the application are contained in properties files.

4.6.1 Non JavaScript property files

When localizing an application (see Section 4.6.2, JavaScript property files
for details on localizing JavaScript), you will need to create new properties
files for each locale. The files for the default locale are named simply as
SomeFile.properties. The files for other locales are identified by
appending the locale identifier to the end of the file name after a separating
“_” (underscore) character (i.e., between the name of the page and the
.properties extension). For example, SomeFile_es.properties
would be the name of the Spanish language version of Some-
File.properties.

It is useful to note that if a particular property is not found by the application
in SomeFile_es.properties, the properties file for the default locale,
i.e. SomeFile.properties, will be searched. This is particularly
handy in the case of Image.properties, described below, where only
some of your images contain text and thus need to be localized. Properties
for the other images can be defined once in the default locale properties file
and they will be picked up in all locales.

Once done adding localized .properties files, update the LOC-
ALE_LIST environment variable as appropriate (this variable defines the
list of locales the client will be built for), for example, set it to “en,es” for a
default English language application and a Spanish language application.
See Section 3.9, Application Locales for more details on this setting.

The merging of localized properties files from different components hap-
pens in exactly the same way as it does for default locale properties files.
See Section 3.12.4, Externalized Strings for more details on the merging of
properties files.

4.6.2 JavaScript property files

When localizing JavaScript files in the application, you will need to create
new JavaScript property files for each locale. The files for the default locale
are named simply as *.js.properties. The files for other locales are
identified by appending the locale identifier - after a separating “_”
(underscore) character - between the .js extension and the
.properties extension. For example, SomeJS-
File.js_es.properties would be the name of the Spanish language
version of SomeJSFile.js.properties file. This file will be auto-
matically processed by a client build. Similar to the non JavaScript property
files, if a particular property is not found by the application in SomeJS-
File.js_es.properties file, then the property from the default prop-
erties file (SomeJSFile.js.properties) will be used.

Cúram Web Client Reference Manual

58

4.7 UIM Externalized Strings

As described in Section 3.12.4, Externalized Strings, all string values in
UIM files are externalized to .properties files.

If MyPage.uim is the UIM file, then MyPage.properties is the cor-
responding properties file. To add localized properties files, please see Sec-
tion 4.6, Locales.

The strings are stored in a properties file in the same folder as the page or
view file. This file must have the same name as the page or view file but
with the extension .properties. For example, if the page is stored in a
file called MyPage.uim, the strings will be stored in the file
MyPage.properties in the same folder. Similarly, views will see the
.vim extension changed to .properties.

While UIM documents in the highest priority component override those in
all other components, properties files in different components are merged
together. Individual properties override those with the same property name
defined in lower priority components. Also, when a UIM page includes a
UIM view (a .vim file), all of the properties defined for both the page and
the view are merged and the properties for the page override those defined
for the view where they share the same property name. These two merging
steps happen separately with the component order applied first for each
properties file and the page-view order applied on the resulting properties. A
property defined for a page will override a property of the same name
defined for a view, even if the property for the view was defined in a higher
priority component.

4.8 JavaScript Externalized Strings

As described in Section 3.12.4, Externalized Strings, all string values in
JavaScript files should be externalized to JavaScript property files
(.js.properties files).

By convention the name of the resource file for your JavaScript must be de-
rived from name of the .js file itself. For example if your JavaScript file is
called SomeJSFile.js then related localizable resources should be placed in
SomeJSFile.js.properties file. A *.js.properties file can be placed anywhere
in the component directory, but by convention it should be in the same dir-
ectory as the related *.js file.

The exception to this is that a *.js file within a WebContent directory cannot
have its associated *.js.properties file within the same directory. The associ-
ated *.js.properties file must be placed within a directory outside of the
WebContent directory. To add localized JavaScript properties files, please
see Section 4.6, Locales.

JavaScript Properties files with the same name across all components will
be merged together during processing. Any property with the same name

Cúram Web Client Reference Manual

59

will be overwritten by the highest component in the component order.

The use of placeholders within a property value is supported. The place-
holders must be in the format %ns or '%ns' where n represents an integer
from 1...n, and n must be within a defined range. The range is defined by the
number of of placeholders used within a property value. For example, if
there are three placeholders within a property value then the placeholders
must be numbered from 1 to 3 (e.g. %1s, %2s, %3s) and anything outside of
this range is not supported.

4.8.1 Accessing properties in JavaScript

There are three requirements for accessing a JavaScript property.

// 1.
dojo.requireLocalization("curam.application", "SomeJSFile");

// 2.
dojo.require("curam.util.ResourceBundle");
var bundle = new curam.util.ResourceBundle("SomeJSFile");

// 3.
var localizedMessage = bundle.getProperty("myPropertyKey");
var localizedMessageWithSubstitutions

= bundle.getProperty("my.sub.key", ["a", "b"]);

curam.application is the default package into which all localizable
resources are placed by the Curam infrastructure. SomeJSFile is derived
from the name of the related JavaScript properties file.

Example 4.1 Accessing a property

1. Load the resources using dojo.requireLocalization(). Refer to com-
ment 1 in Example 4.1, Accessing a property for an example of this.

2. Create an instance of the curam.util.ResourceBundle object. This
is required in order to be able to access the localized resources. Refer
to comment 2 in Example 4.1, Accessing a property for an example of
this.

3. Access a property. The getProperty() method can be used to ac-
cess a property on the instantiated ResourceBundle. Refer to com-
ment 3 in Example 4.1, Accessing a property for an example of how to
get a property and a substituted (2 substitutions) property respectively.

4.9 Image.properties

The Image.properties file (see Section 3.12.5, Images) can be local-
ized as per other properties files, please see Section 4.6, Locales for more
information on localizing properties files. Once the localized properties file
is created, place this beside the Image.properties file.

Cúram Web Client Reference Manual

60

It is useful to note that if the application does not find a particular property
in a localized properties file, it will check the default locale properties file.
This is generally true for all properties files but it is particularly useful in the
case of Image.properties. You might find that some of your images
can be used no matter what language is displayed, whereas other images
contain text and thus must be altered. It is only these latter images that need
to be mentioned in the localized properties file.

4.10 Infrastructure Widget Properties Files

The following is a list of .properties files associated with Infrastruc-
ture widgets, e.g. the AgendaPlayer.properties file is associated
with the AgendaConfig.xml file, which defines the Agenda Player wid-
get.

• AgendaPlayer.properties

• BarChart.properties

• Calendar.properties

• ComparedEvidence.properties

• DateTimeSelector.properties

• DecisionMatrixAddMessage.properties

• DisplayEvidence.properties

• EvidenceComparison.properties

• EvidenceReview.properties

• EvidenceTabContainer.properties

• FrequencyPatternSelector.properties

• GanttChart.properties

• IEGPlayer.properties

• Logon.properties

• MeetingView.properties

• PaymentStatement.properties

• RatesTable.properties

• Rules.properties

• TypicalPictureEditor.properties

• Workflow.properties

• WordFileEdit.properties

Cúram Web Client Reference Manual

61

Note

The names of the properties files associated with infrastructure wid-
gets are reserved names and must not be used for the name of any
other client properties file. No warning is printed to the console in
this scenario, therefore care must be taken when naming other prop-
erties files.

To customize a widget properties file, create a new version under the web-
client/components/custom component folder, where the default
content for the file can be found in the corresponding sample widget proper-
ties file located in the <cdej-dir>/doc/defaultproperties/
folder. For each entry in Cúram's version of the file you wish to change, add
a corresponding entry to your custom file. These properties files can be loc-
alized as per Section 4.6, Locales.

4.10.1 Frequency Pattern Selector Localization

The Frequency Pattern Selector infrastructure widget is used to construct
frequency patterns such as:

the first day of every 1 month(s)

This sentence is made up of fixed text from its associated Fre-
quencyPatternSelector.properties file as well as values selec-
ted by a user from an input field and two drop-downs in the widget, refer to
this example frequency pattern in Figure 8.1, Frequency Pattern Selector
Pop-up.

Because of the grammar differences between different languages, the con-
struction of this example frequency pattern sentence can be dramatically
changed in other languages, like the values selected by a user can be re-
ordered in it. Therefore, the placeholders are introduced to represent these
user selected values so that we can localize every frequency pattern as
"whole" into every single property in the properties file.

Here is the property entry from the FrequencyPatternSelect-
or.properties for this example frequency pattern:

Text.monthly.freq.type.two= The %ordinal% %dayOfWeekExtended%
of every %monthInterval% month(s)

The strings %ordinal%, %dayOfWeekExtended% and
%monthInterval% in this property entry are the placeholders that map to
the values that will be selected from two drop-downs and one input field in
the widget. The detailed explanation of these three placeholders will be
covered later in a table.

In order to use these placeholders properly, you need to stick to the follow-
ing two rules:

• The placeholders control the layout of the widget. Any change of the
location of a placeholder in a localized text for a certain frequency pat-

Cúram Web Client Reference Manual

62

tern would cause the change of the layout of this frequency pattern to be
displayed on the Frequency Pattern Selector widget.

• The placeholders that can be used for every frequency pattern are
fixed . You could not change, add or reduce placeholders used for a cer-
tain frequency pattern. It will cause this widget failing to work.

A description of all these placeholders used in the properties file of this wid-
get is listed as follows:

Placeholder Name Description
%dayInterval% A day interval. It maps to an input field

where you can enter a number for a day in-
terval for a frequency pattern.

%weekInterval% A week interval. It maps to an input field
where you can enter a number for a week in-
terval for a frequency pattern.

%dayOfWeek% A set of days in a week. It maps to a collec-
tion of check boxes where you can multi se-
lect the days in a week for a frequency pat-
tern.

%dayOfWeekExtended% It is an extension of the values represented
by %dayOfWeek%, which also includes the
weekday, weekend day and day value.
It maps to a drop-down where you can select
one of those day values for a frequency pat-
tern.

%monthInterval% A month interval. It maps to an input field
where you can enter a number for a month
interval for a frequency pattern.

%ordinal% an ordinal, e.g. first, second. It maps to a
drop-down where you can select an ordinal
for a frequency pattern.

%dayIntervalOne%,
%dayIntervalTwo%

Two day intervals in a frequency pattern.
They should be used together and map to
two input field where you can enter a num-
ber for a day interval respectively for a fre-
quency pattern.

%ordinalOne%,
%ordinalTwo%

Two ordinals in a frequency pattern. They
should be used together and map to two
drop-downs where you can select an ordinal
respectively for a frequency pattern.

%monthOfYear% A month in a calendar year. It maps to a
drop-down where you can select a month for
a frequency pattern.

Table 4.1 Placeholders used in Frequency Pattern Selector

Cúram Web Client Reference Manual

63

As stated in the second rule above, the placeholders used for every fre-
quency pattern are fixed. So you need to take care that you have used them
properly when localizing the properties in this widget properties file. As
long as you keep this in mind, the customization of this widget properties
file is also no difference from other infrastructure widgets. The following ta-
ble lists all the properties and the placeholders they contain for every fre-
quency pattern sentence displayed on the Frequency Pattern Selector.

Property Name Placeholders it contains
Text.daily.freq.type.one %dayInterval%

Text.daily.freq.type.two None.

Text.weekly.freq.type %weekInterval%,
%dayOfWeek%

Text.monthly.freq.type.on
e

%dayInterval%,
%monthInterval%

Text.monthly.freq.type.tw
o

%ordinal%,
%dayOfWeekExtended%,
%monthInterval%

Text.bimonthly.freq.type.
one

%dayIntervalOne%,
%dayIntervalTwo%

Text.bimonthly.freq.type.
two

%ordinalOne%,
%ordinalTwo%, %dayOfWeek%

Text.yearly.freq.type.one %monthOfYear%,
%dayInterval%

Text.yearly.freq.type.two %ordinal%,
%dayOfWeekExtended%,
%monthOfYear%

Table 4.2 Properties used for the Frequency Pattern Selector

4.11 CDEJResources.properties

This properties file can be localized as per Section 4.6, Locales. Images
defined in this file can also be customized per locale.

4.12 ApplicationConfiguration.properties

This properties file does not, in itself, need to be localized but there are a
couple of settings within this file which are related to the localization of date
and address formatting. See Section 3.11.2, Configuring the Application for
details.

4.13 Application-wide Menu

Cúram Web Client Reference Manual

64

The contents of the application-wide menu (that normally appears in the
top-right of the screen) are defined in curam-config.xml. It is possible
to put the text that will appear on screen directly into this file, in the LABEL
attribute of the LINK element. That approach, however, is not suitable if the
application should be viewable in multiple languages, so the application will
first check if the LABEL attribute is actually a key into the CDEJRe-
sources.properties file. If it finds the key, it will use the corres-
ponding value in the menu. To localize the menu, therefore, simply include
the same key in the localized version of CDEJRe-
sources.properties. This properties file can be localized as per Sec-
tion 4.6, Locales.

4.14 Tabbed Configuration Artifacts

Each tabbed configuration artifact will have a corresponding properties file
for any text that may be localizable. To localize this text for a specific lan-
guage, you must add the locale-specific properties file beside its associated
tabbed configuration artifact in your <custom> component. These properties
file can be localized as per Section 4.6, Locales.

4.15 Runtime Messages

The Cúram CDEJ runtime messages can be localized or customized by cre-
ating a RuntimeMessages.properties file within the curam/
omega3/i18n folder below the web application project's JavaSource
folder, i.e. the <client-dir>/JavaSource folder. The default content
for this file can be found in the
<cdej-dir>/doc/defaultproperties/ folder. Any messages
present in this file will override the corresponding messages from the
RuntimeMessages.properties shipped with the Cúram CDEJ. The
standard file naming convention for Java properties files can be used to add
locale-specific messages. For example, to create a Spanish version, a file
RuntimeMessages_es.properties would be created.

It is not necessary to copy all of the messages into the custom message cata-
log when customizing only some of them. Only the messages that are cus-
tomized need to be defined in the custom message catalog; the other mes-
sages will be loaded from the default message catalog.

When resolving error messages, the custom message catalog is checked first
and all the locale fall-backs are applied. If a message is not found, then the
default message catalog (from the Cúram CDEJ) is checked. Therefore, a
message in a custom message catalog will take precedence over one in a de-
fault catalog even if the locale of the default catalog is more specific.

When customizing a message, the message argument placeholders cannot be
changed. The message argument placeholders have the form %ns where n is
the argument number. The message arguments can be moved around and
their order changed, but no new arguments may be added and none may be

Cúram Web Client Reference Manual

65

removed. The meaning of each message argument for every error message
is provided in the Cúram Web Client Error Message Guide.

Cúram Web Client Reference Manual

66

Chapter 5

UIM Reference

5.1 Objective

This chapter provides you with all the information about UIM required to
develop Cúram web application pages.

5.2 Prerequisites

You should be familiar with the basic concepts of Cúram CDEJ develop-
ment (see Chapter 2, Concepts) and web application development. You
should also have some knowledge of the basic format of XML documents.

5.3 Introduction

UIM is the Cúram User Interface Meta-data format used to specify the con-
tents of the Cúram web application client pages. UIM is an XML dialect and
all UIM files are well-formed XML. The Cúram CDEJ will translate UIM
files into JSP files that can be deployed to your web application server.

5.4 Creating UIM Documents

You can use any text editor to write UIM documents, but it is usually easier
if a specialized XML editor is used. The CDEJ includes an XML Schema
file defining the syntax of a UIM document and when this is combined with
a schema-aware XML editor, you will have access to many time-saving fa-
cilities such as auto-completion, syntax checking, etc.

5.5 UIM Document Types

When creating UIM documents, there are four root elements that are valid:

67

PAGE, VIEW, PAGE_GROUP and APPLICATIONS. These root elements
are used to create the two types of UIM document:

PAGE

This defines a UIM page that will be translated into a JSP page. The file
name must be the same as the value of the PAGE_ID attribute of the
root element. The file extension to use is .uim. UIM pages can be or-
ganized arbitrarily into sub-folders within a component folder for con-
venience in managing a large number of files. Ultimately, all UIM
pages are generated into JSP pages in a single folder, so the PAGE_ID
attribute of the PAGE element and consequently the file names of all the
.uim files must be unique within a component.

VIEW

This defines a portion of a page that can be included into a PAGE ele-
ment in another UIM document. This allows common sequences of ele-
ments to be reused. The file name is not restricted. The file extension to
use is .vim. Like UIM pages, views can be organized into an arbitrary
folder structure within a component folder, but the file names must be
unique within that component.

5.6 UIM Pages

Chapter 2, Concepts covered the basic concepts behind UIM pages and what
clusters, lists, action sets, action controls, containers, and fields are, so this
information will not be repeated here.

The elements in a page must follow a strict order imposed by the XML
Schema definition of UIM. However, this order is only imposed when edit-
ing using a schema-aware XML editor. The JSP generator does not check
the ordering at present. The order in which elements are presented in the
child element tables in this reference is the order in which the elements
should be used in the UIM documents unless otherwise indicated. There is
no specific ordering for attribute values.

5.7 UIM Views

A PAGE element can contain an INCLUDE element anywhere at the top
level that allows commonly used fragments of UIM to be inserted at that
point during translation. The included elements are defined in a UIM docu-
ment called a view. The view document uses VIEW as the root element. Ele-
ments included from a view must be valid in the context in which they have
been included. For example, a PAGE element that already contains a
PAGE_TITLE element, cannot include a view that also defines a
PAGE_TITLE element. Similarly, the schema rules governing the order of
elements in a page must be observed when elements are included from a
view.

Views are similar to pages in what they can contain, the only differences are

Cúram Web Client Reference Manual

68

as follows:

• A view cannot contain an INCLUDE element to include another view.

• A view does not have any PAGE_ID attribute, this is defined in the page
that includes the view.

All other elements that are valid in a PAGE element at the top level, are also
valid in a VIEW.

When including views, the name of the view file must be specified. Regard-
less of where in the component the file including the view is, only the name
of the view file is required, not its path.

5.8 Externalized Strings

All string values and image references in UIM documents must be external-
ized, i.e., the actual values are stored in files separated from the UIM. This
aids maintenance and allows the application to be localized.

See Section 3.12.4, Externalized Strings for details on externalizing strings.

5.9 UIM Reference for Pages and Views

5.9.1 Introduction

This section describes the PAGE and VIEW elements and all of the child ele-
ments that they can contain with the exception of WIDGET elements. These
are treated in the next section.

Most elements have a list of attributes that can be used in any order. Some
attributes are optional and have default values when omitted. Others can
have one of a range of values. Boolean attributes can only have the values
true and false (case-sensitive).

Many elements can have child elements and these are listed in the order in
which they must be added and include details on their cardinality. Cardinal-
ities use “0” to indicate that the element is optional, “1” to indicate that it
can appear only once, and “n” to indicate that it can be appear any number
of times. The “..” indicates the range of the cardinality. For example, “0..1”
indicates that the element can appear zero or one times in this location, i.e.,
it is optional, while “1..n” indicates that an element must appear at least
once, but can appear any number of times thereafter.

5.9.2 Connection Types

UIM pages use connections for associating components on a page with actu-
al data. The connection type is reflected in the connection tag name and is
roughly equivalent to data direction. The three types of connection available
are SOURCE, TARGET and INITIAL (see Section 5.9.30, SOURCE, Sec-

Cúram Web Client Reference Manual

69

tion 5.9.32, TARGET, and Section 5.9.15, INITIAL, respectively).

Connection endpoints are further distinguished by the setting of the NAME
attribute. The value of this attribute may be the name of the server interface
used, TEXT, CONSTANT or PAGE. These values designate objects which
supply or consume data. TEXT or CONSTANT can only be used when TAR-
GET has a server interface defined in the ACTION phase.

<PAGE PAGE_ID="APage">
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title.Static"/>

</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="DISPLAY_SI"
CLASS="sourceClass"
OPERATION="read"
PHASE="DISPLAY"/>

<SERVER_INTERFACE NAME="ACTION_SI"
CLASS="targetClass"
OPERATION="modify"
PHASE="ACTION/>

<PAGE_PARAMETER NAME="P_PARAM"/>

<CONNECT>
<SOURCE NAME="CONSTANT"

PROPERTY="From.Constants.Props"/>
<TARGET NAME="ACTION_SI"

PROPERTY="aProperty"/>
</CONNECT>

<ACTION_SET BOTTOM="true" TOP="false">
<ACTION_CONTROL TYPE="SUBMIT" LABEL="Button.Submit">

<LINK PAGE_ID="APage">
<CONNECT>

<SOURCE NAME="DISPLAY_SI" PROPERTY="PARAM"/>
<TARGET NAME="PAGE" PROPERTY="P_PARAM"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</ACTION_SET>

<CLUSTER NUM_COLS="1" SHOW_LABELS="false">
<FIELD LABEL="Label.Text">
<CONNECT>

<SOURCE NAME="DISPLAY_SI" PROPERTY="sourceField"/>
</CONNECT>
<CONNECT>

<TARGET NAME="ACTION_SI" PROPERTY="targetField"/>
</CONNECT>

</FIELD>
</CLUSTER>

</PAGE>

Example 5.1 Connection Types Example

Most frequent is a connection to a server interface. Here, the NAME attribute
corresponds to an existing (i.e. declared on the page) SERV-
ER_INTERFACE NAME attribute value (DISPLAY_SI and ACTION_SI
in the example above).

A value of TEXT means data is sourced from a properties file. The PROP-
ERTY attribute in this case contains the name of an externalized string in a
page-specific property file. In the example, the file APage.uim has a page

Cúram Web Client Reference Manual

70

title which references the Page.Title.Static property in the associ-
ated APage.properties file.

A value of CONSTANT provides similar functionality to TEXT but the ex-
ternalized string is component-specific rather than page-specific and is
sourced from a file called Constants.properties. In the example,
there is a page level connection to a From.Constants.Props property.

A connection might also source its data from a page parameter (i.e., a vari-
able declared on a page, P_PARAM in the example). In this case PAGE is
used as the value of the NAME attribute.

There are limitations and restrictions on the use of the various connection
types in various contexts. The UIM element descriptions below detail these
limitations where they arise.

5.9.3 ACTION_CONTROL

The ACTION_CONTROL element defines a link (text based), button or file
download link that the user can activate on a page.

File Downloads

An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD results in
the generation of a hyperlink on the page. Clicking on the hyperlink invokes
a special FileDownload servlet included in the Cúram CDEJ that returns
the contents of a file from the database. The FileDownload servlet is
configured with the server interface to call to get the file contents and the
parameters to pass to identify that file. The configuration is performed in the
curam-config.xml file. A single server interface can be configured for
each page of the application that includes file download action controls. An
example configuration is shown in Example 5.2, Example Configuration for
File Download, below:

A WIDGET with the TYPE set to FILE_DOWNLOAD can also be used to
generate a hyperlink to download a file. You should use the AC-
TION_CONTROL element when the hyperlink text is the fixed LABEL
value. The FILE_DOWNLOAD WIDGET allows the hyperlink text to be a
dynamic value retrieved from a server interface property.

<APP_CONFIG>
<FILE_DOWNLOAD_CONFIG>

<FILE_DOWNLOAD PAGE_ID="FileDownload"
CLASS="curam.interfaces.FilePkg.File_read_TH">

<INPUT PAGE_PARAM="fileID" PROPERTY="key$fileID"/>
<FILE_NAME PROPERTY="dtls$fileName"/>
<FILE_DATA PROPERTY="dtls$fileData"/>

</FILE_DOWNLOAD>
</FILE_DOWNLOAD_CONFIG>

</APP_CONFIG>

Example 5.2 Example Configuration for File Download

Each configuration for downloading files is contained in a
FILE_DOWNLOAD element within the FILE_DOWNLOAD_CONFIG ele-

Cúram Web Client Reference Manual

71

ment in the configuration file. There should be one FILE_DOWNLOAD ele-
ment for each page that contains file download action controls.

The FILE_DOWNLOAD element takes two attributes: PAGE_ID for the
identifier of the page containing the action controls to which this configura-
tion will be applied, and CLASS containing the name of the server interface
that will be called by the FileDownload servlet when the generated hy-
perlink is invoked.

The FILE_DOWNLOAD element can contain zero or more INPUT elements
specifying the key values to set before the server interface is called. These
INPUT elements associate page parameters with properties of the server in-
terface. The PAGE_PARAM attribute specifies the name of the page para-
meter whose value will be used as a key value, and the PROPERTY attribute
specifies the key property of the server interface that must be set to identify
the file. The page parameters are set by the LINK element within the AC-
TION_CONTROL, as you will see below.

The other three elements, FILE_NAME and FILE_DATA, and CON-
TENT_TYPE all have PROPERTY attributes that indicate the properties of
the server interface that will contain; the name of the file, the contents of the
file, and the content type of the file respectively, after the server interface is
called. This data is returned to the client in response to the activation of the
hyperlink and the user's browser will present them with the download dialog
box prompting them to save or open the file.

Where property names are specified, the names must be written in full and
cannot be abbreviated like they can in UIM documents.

Attributes

The ACTION_CONTROL element has the following attributes. The LABEL
attribute must be present.

Attribute
Name

Required Default Description

LABEL See
above.

A reference to an externalized
string containing the label text for
this action control. If the TYPE is
ACTION, this will be the text of
the hyperlink. If the TYPE is
SUBMIT, this will be caption of
the submit button.

LA-
BEL_ABBREVI
ATION

No A reference to an externalized
string containing the label abbrevi-
ation text for this action control.
This label abbreviation is placed
only on table headers in a LIST.

TYPE No ACTION The type of action control to cre-
ate. There are six types: ACTION

Cúram Web Client Reference Manual

72

Attribute
Name

Required Default Description

(the default) defines a link to an-
other page, SUBMIT forwards the
page's form data to the action
phase for processing, DISMISS
closes a pop-up page, SUB-
MIT_AND_DISMISS combines a
submit with closing a pop-up page
(see Section 8.21, Pop-up Pages
for details on working with pop-up
pages), FILE_DOWNLOAD defines
a link that triggers the download of
a file from the server, and CLIP-
BOARD places a predefined value
to the system clipboard.

STYLE No The class name of the CSS style to
use when formatting the action
control. Supported by action con-
trols in action sets only.

CONFIRM No Use the CONFIRM attribute of
ACTION_CONTROL to force a
confirmation dialog when the ac-
tion control is activated.

The value of the CONFIRM attrib-
ute is a reference to the confirma-
tion message in the page properties
file.

DEFAULT No false If there is more than one submit
action on a page, it is useful to
specify which one is executed
when the user hits the Enter key.
This is especially recommended
when the submitting action con-
trols are contained within the dif-
ferent action sets as in this case the
default action could be different
than the first submit action de-
clared on the page. The default ac-
tion can be specified by setting
this attribute to true. Note that
only one submit action on a page
can have a DEFAULT value of
true.

ACTION_ID No A custom identifier for action con-
trols of TYPE=SUBMIT. It is used

Cúram Web Client Reference Manual

73

Attribute
Name

Required Default Description

in conjunction with AC-
TION_ID_PROPERTY attribute
of SERVER_INTERFACE element
to inform the server side code
which action control was used to
make the server call.

This attribute is only valid on ac-
tion controls of TYPE= SUBMIT.

The value of this attribute among
the action controls within the page
must be unique.

The value of this attribute must be
in the format suitable for the do-
main associated with the property
specified in the AC-
TION_ID_PROPERTY attribute
of SERVER_INTERFACE.

This attribute must be either spe-
cified on all action controls within
the page or not specified on any of
them.

If this attribute is specified then
the ACTION_ID_PROPERTY at-
tribute of SERVER_INTERFACE
must also be specified.

IMAGE No The value of this attribute refers to
an externalized string which maps
to a specific icon or graphic in the
application. An action control with
this attribute can only be used
within a CONTAINER element.

ALIGNMENT No RIGHT When contained in a page level
ACTION_SET of a Modal Dialog,
the ALIGNMENT attribute is sup-
ported. This will define the indi-
vidual horizontal alignment of the
action control. It can be set to
LEFT or RIGHT. The default is to
right aligned.

Table 5.1 Attributes of the ACTION_CONTROL Element

Child Elements

Cúram Web Client Reference Manual

74

The ACTION_CONTROL element can contain the following child elements:

Element Name Cardinality / Description
LINK 0..1. An action control with a TYPE of AC-

TION that has no LINK element will create a
link to the previous page in the history that
had SAVE_LINK set to true on the link
that led to this page (this is typically used for
Cancel buttons). However this type of AC-
TION_CONTROL should not be present on a
page that is directly referenced by any tabbed
configuration artifact. Also, if this type of
ACTION_CONTROL is preceded by another
ACTION_CONTROL of the same type in the
page history, there is the potential of a circu-
lar reference between these pages.

An action control with a TYPE of SUBMIT
that has no LINK element will submit the
field values to the action phase and then re-
turn to the previous page in the history that
had SAVE_LINK set to true on the link
that led to this page.

An action control with a TYPE of
FILE_DOWNLOAD only requires a link if it
must provide the page parameter values spe-
cified in the INPUT elements of its configur-
ation. Each CONNECT element in the link can
contain a SOURCE element to specify the
value and a TARGET element specifying the
page parameter to which to map the value.
The PROPERTY attribute value of the page
parameter must match the PAGE_PARAM at-
tribute value of the INPUT element in the
configuration.

CONNECT 0..1. A CONNECT element specifying a single
SOURCE end-point. As a direct child it is
used only for an action control with a TYPE
of CLIPBOARD. Such an action control
places predefined textual data into the system
clipboard when clicked.

Text to be copied to clipboard can be sourced
from the server, the request or a properties
file.

The CONNECT element used can only contain
a SOURCE element with a NAME property of
PAGE, TEXT or the name of a server inter-
face defined within the page.

Cúram Web Client Reference Manual

75

Element Name Cardinality / Description
SCRIPT 0..n. A script element associated with an ac-

tion control. For a detailed description of this
element see Section 5.9.28, SCRIPT.

SCRIPT elements are not supported on AC-
TION_CONTROL elements with a type of
CLIPBOARD.

CONDITION 0..1. Affects whether or not the AC-
TION_CONTROL is displayed.

Table 5.2 Child Elements of the ACTION_CONTROL Element

When linking to another page, the link must specify all page parameters de-
clared on the target page.

5.9.4 ACTION_SET

The ACTION_SET element groups a number of ACTION_CONTROL ele-
ments together. Depending on the context in which the action set is defined,
the action controls will be displayed in differing ways.

At the page level, action controls are displayed at the left side of the page
title bar, see the Page Level Action Control in User Interface Element 10 of
Figure 2.1, Application User Interface Overview. If the action set contains
two or less action controls, then each link is displayed side by side with a
new item icon to the left of it. The SEPARATOR child element has no affect.

If three or more action controls exist at the page level, then a drop down
menu will display each action control as a menu item. In this case, the SEP-
ARATOR element inserts a gray separator into the drop down menu at the
position indicated in the UIM file.

At the list level, all action controls will be displayed in a menu drop down.
The SEPARATOR element inserts a gray separator into the drop down menu.

For action sets defined at the cluster or list level, the action controls can be
displayed above and/or below the element with which the action set is asso-
ciated and are aligned horizontally.

In all scenarios, conditional links that evaluate to false will not display if
HIDE_CONDITIONAL_LINKS attribute is set to true, otherwise the condi-
tional link displays but is disabled.

Attributes

The ACTION_SET element has the following attributes:

Attribute Name Required Default Description
TOP No true Defines whether the action

controls will be displayed

Cúram Web Client Reference Manual

76

Attribute Name Required Default Description
above the associated element.
Can be set to true (the de-
fault) or false.

BOTTOM No true Defines whether the action
controls will be displayed be-
low the associated element.
Can be set to true (the de-
fault) or false.

ALIGNMENT No DEFAULT Defines the horizontal align-
ment of the set of action con-
trols with respect to the associ-
ated element. Can be set to
LEFT, RIGHT, CENTER, or
DEFAULT The value DE-
FAULT corresponds to the
CSS class ac_default in
curam_common.css. The
default is to be left aligned. In
addition, for a page level AC-
TION_SET in a Modal Dia-
log, LEFT, RIGHT and DE-
FAULT values are supported.

TYPE No DEFAULT Defines the location of the ac-
tion set. This can be set to
LIST_ROW_MENU or DE-
FAULT.

LIST_ROW_MENU is applic-
able where the ACTION_SET
is contained within a LIST. It
indicates that the action set
should be displayed as a list
actions menu within each list
row entry.

Table 5.3 Attributes of the ACTION_SET Element

Note

An ACTION_SET of type LIST_ROW_MENU should not be used to
open a Pop-up search dialog.

Child Elements

The ACTION_SET element can contain the following child element:

Cúram Web Client Reference Manual

77

Element Name Cardinality / Description
ACTION_CONTROL 1..n. See the description of ACTION_SET's

parent element to see what AC-
TION_CONTROL elements are valid in each
context.

CONDITION 0..1. Affects whether or not the AC-
TION_SET is displayed.

SEPARATOR 0..n. allows the for ability to add a visual sep-
arator between action controls that display in
the page action drop down menu.

Table 5.4 Child Elements of the ACTION_SET Element

5.9.5 CLUSTER

The CLUSTER element defines a group of input and/or output fields con-
taining data from any data source (server interface property values, external-
ized string values, or page parameter values) and supplying data to other
data targets (server interface properties, or page parameters). Clusters gener-
ally show the fields with labels to the left and these label/field pairs in a
number of columns. Clusters can also include other clusters and lists in
place of fields to allow more complex layouts.

Attributes

The CLUSTER element has the following attributes:

Attribute Name Required Default Description
TITLE No A reference to an externalized

string containing the title string
for this cluster.

NUM_COLS No 1 The number of columns to display
in the cluster (a cluster column in-
cludes both the label and field).

TAB_ORDER No COLUMN Indicates the order to layout ele-
ments in a multi-column cluster.
The elements can be ordered by
ROW or COLUMN (default). Please
note, if a CLUSTER has
NUM_COLS set to 2 or above and
is going to contain a mix of LIST
and FIELD elements, the
TAB_ORDER must be set to ROW.

SHOW_LABELS No true Can be set to true (the default)
to show labels beside the field
values or false to show no la-

Cúram Web Client Reference Manual

78

Attribute Name Required Default Description
bels at all.

LAYOUT_ORDER No LABEL Labels can be displayed to the left
or to the right of their associated
fields. Set the attribute value to
LABEL to show labels to the left
(this is the default behavior). Set
the attribute value to FIELD to
show labels to the right.

WIDTH No 100 The percentage of the width of the
containing area that the cluster
should occupy.

STYLE No The class name of the CSS style
to associate with this cluster for
formatting.

DESCRIPTION No A reference to an externalized
string that provides more details
about the cluster than the title
alone. This will be displayed be-
low the title on the page.

LABEL_WIDTH No The percentage of the width of a
cluster column that the label
should occupy. By default, the
web browser will determine the
widths as appropriate.

This attribute has an effect even if
SHOW_LABELS is set to false.
It is possible, say, to use action
controls in place of text labels.
You might want to control the
width of these action control
columns and you can do that by
setting the LABEL_WIDTH attrib-
ute. The specified width will be
applied to every other column.
Whether this starts with the first
or second column depends on the
LAYOUT_ORDER attribute.

The LABEL_WIDTH attribute
will not apply to codetable hier-
archy fields when
SHOW_LABELS is set to false
or the FIELD attribute CONFIG
has a value of
CT_DISPLAY_LABELS. See the
CONFIG attribute in Sec-

Cúram Web Client Reference Manual

79

Attribute Name Required Default Description
tion 5.9.11, FIELD for more in-
formation on code table hierarch-
ies.

BEHAVIOR No EXPAN-
DED

Collapsible clusters can be ini-
tially displayed expanded or col-
lapsed on a page. Set the attribute
value to EXPANDED to display a
collapsible cluster fully expanded.
Set the attribute to COLLAPSED
to display a collapsible cluster
collapsed. To remove the col-
lapsible functionality from a
cluster set the attribute to NONE.
Note that this attribute is only ap-
plicable when the property EN-
ABLE_COLLAPSIBLE_CLUST
ERS is not set or is set to true in
curam_config.xml. For de-
tails see Section 3.12.13, General
Configuration. This feature is cur-
rently not supported on clusters
containing Charts, Evidence Re-
view Widgets, Evidence Compar-
ison Widgets, or Evidence Tab
Containers.

SUMMARY No A reference to an externalized
string containing the summary of
this cluster. The SUMMARY attrib-
ute describes the purpose and/or
structure of a cluster.

SCROLL_HEIGH
T

No Specifies in pixels the desired
maximum height of a scrollable
cluster.

Table 5.5 Attributes of the CLUSTER Element

Child Elements

The CLUSTER element must contain one of the following elements; AC-
TION_SET, FIELD, WIDGET, CONTAINER, CLUSTER or LIST.

Element Name Cardinality / Description
CONDITION 0..1. Affects whether or not the cluster is displayed.

TITLE 0..1. The TITLE element will be displayed above the
CLUSTER.

Cúram Web Client Reference Manual

80

Element Name Cardinality / Description
DESCRIPTION 0..1 The DESCRIPTION element has the same beha-

vior as the DESCRIPTION attribute but allows the de-
scription to be built up from a number of sources. If
both are specified, this element takes precedence over
the corresponding attribute.

ACTION_SET 0..1. The action set can contain ACTION_CONTROL
elements of any type. The action controls will be dis-
played above or below the entire cluster.

FIELD 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER,
and LIST elements can be freely intermingled.

WIDGET 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER,
and LIST elements can be freely intermingled.

CONTAINER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER,
and LIST elements can be freely intermingled.

CLUSTER 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER,
and LIST elements can be freely intermingled.

LIST 0..n. The FIELD, CONTAINER, WIDGET, CLUSTER,
and LIST elements can be freely intermingled.

Table 5.6 Child Elements of the CLUSTER Element

5.9.6 CONDITION

The CONDITION element represents the condition under which an AC-
TION_SET, ACTION_CONTROL, LIST, or a CLUSTER is displayed. If a
condition evaluates to true, then the parent element will be displayed; if the
condition evaluates to false, then the parent element is not displayed with
the following exception: An ACTION_SET or ACTION_CONTROL element
will display disabled links if the condition evaluates to false and the
HIDE_CONDITIONAL_LINKS attribute on the PAGE element or in
thecuram_config.xml file has been set to false. Conditional AC-
TION_SETS and ACTION_CONTROLS are mutually exclusive from one
another and therefore the CONDITION element should be set for either one
(depending on the requirements) but not both.

Finally, if the condition equates to false for those conditional action sets or
action controls which appear as drop down menu items, then a single dis-
abled menu item titled, 'No Contents' is displayed (upon selecting the drop
down menu icon).

Attributes

The CONDITION element has no attributes.

Child Elements

Cúram Web Client Reference Manual

81

The CONDITION element must contain either an IS_TRUE element or an
IS_FALSE element. It must not be empty and it must not contain more than
one element.

Element Name Cardinality / Description
IS_TRUE 0..1 If the property referenced by the

IS_TRUE element returns true then the con-
dition is true.

IS_FALSE 0..1 If the property referenced by the
IS_FALSE element returns false then the
condition is true.

Table 5.7 Child Elements of the CONDITION Element.

For Agenda Player specific use, see Section 8.22, Agenda Player

5.9.7 CONNECT

The CONNECT element defines a data connection between two connection
end points such as server interface bean properties, page parameters, screen
controls, localized string values, etc.

Attributes

The CONNECT element has no attributes.

Child Elements

The CONNECT element must contain at least one of the child elements from
the table below, but the details of how these elements are used depends on
the context in which the CONNECT element is defined. See the specific par-
ent or child element's description for more details.

Element Name Cardinality / Description
INITIAL 0..1. This element is only valid in CONNECT

elements contained within FIELD elements.

SOURCE 0..1. Within a FIELD element, the SOURCE
is the source of the value displayed in the
field control (unless INITIAL is used).

TARGET 0..1. Within a FIELD element, the TARGET
is the property to which the value in the field
control will be assigned.

Table 5.8 Child Elements of the CONNECT Element

5.9.8 CONTAINER

Cúram Web Client Reference Manual

82

The CONTAINER element groups FIELD, ACTION_CONTROL and IMAGE
elements so that they can be used in a single cell of a CLUSTER or LIST
element.

Attributes

The CONTAINER element has the following attributes:

Attribute
Name

Required Default Description

LABEL No A reference to an externalized
string that should be used as the
associated label for this contain-
er.

LA-
BEL_ABBREVI
ATION

No A reference to an externalized
string containing the associated
label abbreviation text for this
container. This label abbreviation
is placed only on table headers in
a LIST.

WIDTH No 100 The percentage of the width of
the field value cell in the cluster
or list that the container should
occupy.

ALIGNMENT No DEFAULT Defines the horizontal alignment
of the elements within the con-
tainer. Can be set to LEFT,
RIGHT, CENTER, or DEFAULT.
The value DEFAULT corres-
ponds to the CSS class de-
fault in
curam_common.css. Cur-
rently the default is to be left
aligned.

SEPARATOR No A reference to an externalized
string to use as the separator
between the elements within the
container.

STYLE No A CSS class to be applied to this
container.

Table 5.9 Attributes of the CONTAINER Element

Child Elements

The CONTAINER element can contain the following child elements. It must

Cúram Web Client Reference Manual

83

contain at least one element.

Element Name Cardinality / Description
FIELD 0..n. The FIELD, ACTION_CONTROL, IM-

AGE and WIDGET elements can be freely in-
termingled.

IMAGE 0..n. The FIELD, ACTION_CONTROL, IM-
AGE and WIDGET elements can be freely in-
termingled.

ACTION_CONTROL 0..n. The FIELD, ACTION_CONTROL, IM-
AGE and WIDGET elements can be freely in-
termingled.

WIDGET 0..n. The FIELD, ACTION_CONTROL, IM-
AGE and WIDGET elements can be freely in-
termingled.

Table 5.10 Child Elements of the CONTAINER Element

5.9.9 DETAILS_ROW

The DETAILS_ROW element is used within a LIST element to enable each
row to be expanded to show more details about the row. Child elements of
DETAILS_ROW define the content that is displayed when the row is expan-
ded. Currently only the INLINE_PAGE element is supported as a child.

When a page a page containing a list with expanded rows is submitted to
self or refreshed after a dialog submit, the rows will be re-expanded after the
page loads again. This functionality is based on page parameters to the cor-
responding INLINE_PAGE and the following limitations apply:

• The INLINE_PAGE must take page parameters and they must uniquely
identify each row within the list.

• The functionality is supported for pages submitted to self or refreshed
after a dialog submit. In all other cases all rows after refresh are reset to
default - collapsed.

• If the list contains duplicate items, only the first of them will retain the
expanded state after refresh.

• If an edit operation in a dialog changes values that are used in the IN-
LINE_PAGE parameters, this row will be collapsed after refresh.

• If an expanded row is expandable conditionally and it is no longer ex-
pandable after the page is refreshed, its state will be always set to col-
lapsed.

Note that DETAILS_ROW element is not allowed in a list using the
SCROLL_HEIGHT attribute.

Cúram Web Client Reference Manual

84

Attributes

The DETAILS_ROW element has the following attribute.

Attribute
Name

Required Default Description

MINIM-
UM_EXPANDED
_HEIGHT

No 30px Specifies minimum height in
pixels of an expanded row for this
list. To be used for in-line pages
that are expected to contain nested
lists with long actions menus
which would not fit to the default
expanded row height.

Table 5.11 Attributes of the DETAILS_ROW Element

Child Elements

The DETAILS_ROW element contains the following child elements.

Element Name Cardinality / Description
INLINE_PAGE 1..1 This defines the page to be shown when

the list row is expanded. Currently this is the
only supported element, hence it's 1..1 car-
dinality.

CONDITION 0..1. Affects whether or not the details row is
displayed.

Table 5.12 Child Elements of the INFORMATIONAL Element

5.9.10 DESCRIPTION

The DESCRIPTION element defines the description associated with a
PAGE_TITLE, CLUSTER or LIST element. A DESCRIPTION is con-
structed by concatenating a number of connection sources together.

Attributes

The DESCRIPTION element has the following attributes:

Attribute
Name

Required Description

SEPARATOR No A reference to an externalized string to use as
the separator between the elements within the
container.

Cúram Web Client Reference Manual

85

Table 5.13 Attributes of the DESCRIPTION Element

Child Elements

The DESCRIPTION element can contain child elements as follows:

Element Name Cardinality / Description
CONNECT 1..n. Only CONNECT elements containing

SOURCE elements can be included (one
SOURCE per CONNECT). Sources can be
server interface properties or, with the NAME
attribute set to TEXT, references to strings in
a properties file.

Table 5.14 Child Elements of the DESCRIPTION Element

5.9.11 FIELD

The FIELD element specifies a data value to be displayed in a CLUSTER, a
value to be retrieved from the user via an input control in a CLUSTER, or a
list of data values to be displayed in a LIST column. FIELD elements can
also be aggregated within CONTAINER elements so that they fill a single
cell of a CLUSTER or LIST element.

Attributes

The FIELD element has the following attributes:

Attribute Name Required Default Description
LABEL No A reference to an externalized

string that should be used as the
associated label for this field.
The LABEL attribute is mandat-
ory when a CONNECT element
exists, that contains a TARGET.

LA-
BEL_ABBREVIA
TION

No A reference to an externalized
string containing the associated
label abbreviation text for this
field. This label abbreviation is
placed only on table headers in
a LIST.

DESCRIPTION No A reference to an externalized
string that is displayed below
the label text.

ALT_TEXT No A reference to an externalized
string that is used as the altern-

Cúram Web Client Reference Manual

86

Attribute Name Required Default Description
ate text for the field. This is
only applicable when the field
has a target connection, i.e. it is
an input field. If this attribute is
not specified the LABEL is
used. Browsers supported by
the Cúram application display
alternate text when the mouse is
hovered over the input control.

WIDTH No Specifies the width of the field
value within its cluster or list
cell.

WIDTH_UNITS No PERCENT The units in which the width is
interpreted. This can be PER-
CENT to indicate the percent-
age of the space available to the
field, or CHARS to indicate the
number of visible characters
wide the field will be.

HEIGHT No 1 For input fields that resolve to a
text input control, this specifies
the number of visible lines of
text that the control will dis-
play. For input fields that re-
solve to a selection list, this
specifies the number of entries
that are initially displayed. i.e. a
scrollable selection list is dis-
played instead of a drop-down
selection list.

ALIGNMENT No DEFAULT Defines the horizontal align-
ment of the field value. Can be
set to LEFT, RIGHT, CENTER,
or DEFAULT. The value DE-
FAULT corresponds to the CSS
class default in
curam_common.css. Cur-
rently the default is to be left
aligned. In a CLUSTER, only
input fields are aligned. In a
LIST, all fields are aligned.

USE_DEFAULT No true If set to true (the default) and
the field has no SOURCE con-
nection, then if a sensible de-
fault value for the field can be
determined automatically, it

Cúram Web Client Reference Manual

87

Attribute Name Required Default Description
will be displayed.

For example, numeric fields
will display a zero, string fields
will be empty, date fields will
default to the current date, etc.

USE_BLANK No false If the field source is a code-ta-
ble based property, or a server
interface list property, it will be
displayed in a list. If this attrib-
ute is set to true, an extra
blank value will be added to the
top of the list.

CONTROL No DEFAULT The CONTROL attribute can
take one of a number of values:

DEFAULT: the field behaves in
the standard fashion.

SUMMARY, DYNAMIC, DY-
NAMIC_FULL_TREE and
FAILURE: these settings only
apply to rules fields. See Sec-
tion 8.9, Rules Trees for further
details.

SKIP: indicates that the field is
only present to occupy space in
a CLUSTER to balance the lay-
out. No label or value will be
displayed. The label back-
ground will still be presented,
however.

TRANSFER_LIST: Enables a
list on a page to be displayed as
a transfer list widget. This
mode is only applicable and
supported for list controls with
multiple selection capability.

CT_HIERARCHY_HORIZONT
AL displays a list as a horizont-
al code table hierarchy.

CT_HIERARCHY_VERTICAL
displays a list as a vertical code
table hierarchy. Consult the
Cúram Server Developers
Guide for more information on

Cúram Web Client Reference Manual

88

Attribute Name Required Default Description
code table hierarchies.

CONFIG No Identifies configuration details
for this FIELD instance. This
attribute can only be used in
conjunction with a FIELD
whose CONTROL attribute is
for a widget that supports con-
figuration. For example, if the
CONTROL attribute is DYNAM-
IC for a FIELD of the RES-
ULT_TEXT domain then the
CONFIG attribute should match
an ID on a config element in
the RulesDecisionCon-
fig.xml file. See Sec-
tion 8.9.5, Dynamic Rules View
for further details on configura-
tion.

CT_DISPLAY_LABELS: Dis-
plays labels for each code table
in a code table hierarchy. See
the CONTROL attribute in Sec-
tion 5.9.11, FIELD for further
information regarding code ta-
ble hierarchies.

INI-
TIAL_FOCUS

No false A FIELD element whose INI-
TIAL_FOCUS attribute is set
to true will get focus when
the page is displayed. In other
words, the cursor will be placed
in that field ready for data
entry. If no FIELD requests the
initial focus, the cursor will be
placed in the first input field on
the page. It is not allowed to
have more than one FIELD
with the INITIAL_FOCUS at-
tribute set to true specified on
a page.

PROMPT No false The setting of this attribute will
allow for prompt to appear in
the text field if the text field is
blank. On focus, the prompt
will disappear to allow for data
entry.

Cúram Web Client Reference Manual

89

Table 5.15 Attributes of the FIELD Element

Child Elements

The FIELD element can contain the following child elements:

Element
Name

Cardinality / Description

CONNECT 0..3. A field can contain up to three CONNECT elements.
The SOURCE connection defines the initial value for the
field (this will be the static value shown if there is no tar-
get end-point, or the initial value of an input control if
there is a target end-point). The TARGET end-point
defines the property that will be set from the field value
during the action phase. If a TARGET end-point is spe-
cified the SOURCE end-point can only be from a server
interface property. This is because domain information is
required to correctly format the value for display in the
input control.

If an INITIAL end-point is used and the property is not
a list value, it specifies the visible value of the field
(which will be read-only). The SOURCE value will be
hidden, and the pair of values can only be changed via a
pop-up search page. The TARGET end-point will be sup-
plied with the hidden value.

If an INITIAL end-point is used and the property is a list
value, it specifies the visible values in a drop-down list.
The INITIAL element's HIDDEN_PROPERTY specifies
the corresponding list of hidden values that will be sup-
plied to the TARGET end-point. In this instance, the
SOURCE end-point specifies one of the hidden values in
the list that should be used as the initial list selection (the
corresponding visible value is displayed).

LINK 0..1. Only valid for output fields (those with no TARGET
connection end-point). The value of the output field will
be used as the text for the hyperlink specified by this
LINK element.

If the field is based on a domain which requires a pop-up
window then the LINK element can be used to supply
parameters to the pop-up page. In this case the LINK ele-
ment must not have a PAGE_ID attribute specified. See
Section 8.21.3, Using the Pop-up Page for further details.

LABEL 0..1. Allows the label for a FIELD to constructed from a
number of sources. If both a LABEL attribute and LABEL
child element are specified, the element takes precedence.
See Section 5.9.21, LABEL for more details.

Cúram Web Client Reference Manual

90

Element
Name

Cardinality / Description

SCRIPT 0..n. A script file associated with this FIELD that con-
tains JavaScript code to be activated in response to the
specified event on the field control. See Section 5.9.28,
SCRIPT for more details and limitations on this element
usage.

Table 5.16 Child Elements of the FIELD Element

5.9.12 FOOTER_ROW

The FOOTER_ROW element is used to define a single footer row at the end
of a list. A list can have multiple footer rows.

A FOOTER_ROW element may only contain FIELD elements. The number
of FIELD elements must match the number of columns in the parent list.

There are two CSS classes associated with footer row fields. A FIELD with
a TEXT SOURCE connection is output with the footerheader CSS
class. All other SOURCE connections are output with the footervalue
CSS class. Both of these classes are defined in curam_common.css and
can thus be customized.

Spanning column widths are supported through the use of skip fields. For
instance, if one normal field and two skip fields are used in a FOOTER_ROW
element, this normal field will span three columns. Example code is shown
below.

<LIST TITLE="List.Title.One" DESCRIPTION="List.Description.One">
<FIELD LABEL="Field.Title.BankId" WIDTH="40">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.Name" WIDTH="35">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$date"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Title.VersionNo" WIDTH="25">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$total"/>

</CONNECT>
</FIELD>

<FOOTER_ROW>
<FIELD CONTROL="SKIP"/>
<FIELD WIDTH="40" LABEL="Field.Title.Footer" >
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Footer.Text.Entitlement"/>
</CONNECT>

</FIELD>
<FIELD>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="dtls$entitlement"/>
</CONNECT>

</FIELD>
</FOOTER_ROW>

Cúram Web Client Reference Manual

91

</LIST>

<LIST>
<FIELD WIDTH="40">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$deduction"/>

</CONNECT>
</FIELD>
<FIELD WIDTH="35">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$date"/>

</CONNECT>
</FIELD>
<FIELD WIDTH="25">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="dtls$total"/>

</CONNECT>
</FIELD>

<FOOTER_ROW>
<FIELD CONTROL="SKIP"/>
<FIELD WIDTH="40" LABEL="Field.Title.Footer" >
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Footer.Text.Deductions"/>
</CONNECT>

</FIELD>
<FIELD>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="dtls$subTotal"/>
</CONNECT>

</FIELD>
</FOOTER_ROW>

<FOOTER_ROW>
<FIELD CONTROL="SKIP"/>
<FIELD>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Footer.Text.Payment"/>
</CONNECT>

</FIELD>
<FIELD>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="dtls$payment"/>
</CONNECT>

</FIELD>
</FOOTER_ROW>

</LIST>

Example 5.3 Example of a FOOTER_ROW in a List.

Attributes

The FOOTER_ROW element has no attributes.

Child Elements

The FOOTER_ROW element contains the following child elements.

Element Name Cardinality / Description
FIELD 1..n Each FOOTER_ROW must contain the

same number FIELD elements as there are
columns in the parent LIST.

Table 5.17 Child Elements of the FOOTER_ROW Element

Cúram Web Client Reference Manual

92

5.9.13 IMAGE

The IMAGE element inserts an image into a CONTAINER.

Attributes

The IMAGE element has attributes as follows:

Attribute
Name

Required Default Description

IMAGE Yes A reference to an entry in the Im-
age.properties file.

LABEL Yes The entry in the UIM's associated
properties file which is used as the
alternate (or “alt”) text of the im-
age.

STYLE No A CSS style to associate with the
image.

Table 5.18 Attributes of the IMAGE Element

Child Elements

The IMAGE element has no child elements.

5.9.14 INCLUDE

The INCLUDE element indicates that the elements within an external UIM
view document should be included at this position in the page.

Attributes

The INCLUDE element has attributes as follows:

Attribute
Name

Required Default Description

FILE_NAME Yes The file name of the UIM view
document to be included. No path
to the file should be specified. The
file name alone is sufficient to
identify the document.

Table 5.19 Attributes of the INCLUDE Element

Child Elements

Cúram Web Client Reference Manual

93

The INCLUDE element has no child elements.

5.9.15 INITIAL

This element is only valid within a CONNECT element contained in a
FIELD element. Use of this connection type is described in further detail in
the following sections:

• For pop-up pages see Section 8.21, Pop-up Pages

• For selection lists populated from server interface properties see Sec-
tion 8.7, Selection Lists

Attributes

The INITIAL element has the following attributes:

Attribute Name Re-
quired

Default Description

NAME Yes The name of the SERV-
ER_INTERFACE instance to
use as the source of the prop-
erty value.

PROPERTY Yes The source of the data to be
displayed in the visible field.
This can be a list or a non-
list field type.

HIDDEN_PROPERTY No The source of the list data
that has a one-to-one map-
ping (based on the list in-
dexes) to the list property
specified in the PROPERTY
attribute.

Table 5.20 Attributes of the INITIAL Element

Child Elements

The INITIAL element contains no child elements.

5.9.16 INFORMATIONAL

The INFORMATIONAL element is used to display informational messages
returned from the server. These are different to error messages in that the
server call completes successfully. The messages are created in server side
code using the SDEJ Informational Manager API (see the Cúram Server De-
velopers Guide for more details). This API allows a developer to assign

Cúram Web Client Reference Manual

94

messages to an output list field(s). This field must then be referenced using
child CONNECT elements. The message will be displayed at the top of the
page in the same area as error messages and this may not be on the page on
which the INFORMATIONAL element was defined. It could be on the fol-
lowing page or on the parent page in the case of modal dialogs. Finally,
messages will never be displayed within the context panel of the applica-
tion, but will instead will always be displayed within the main content area
of the page.

Attributes

The INFORMATIONAL element has no attributes.

Child Elements

The INFORMATIONAL element contains the following child elements.

Element Name Cardinality / Description
CONNECT 1..n Each CONNECT element specifies a

single SOURCE end-point. This is a field of a
bean which contains informational messages.

Table 5.21 Child Elements of the INFORMATIONAL Element

5.9.17 INLINE_PAGE

The INLINE_PAGE element is used to display the contents of one UIM
page in-line in another. Currently this is only supported within the DE-
TAILS_ROW element of a LIST to support displaying extra content when a
list row is expanded.

Attribute

The INLINE_PAGE element has the following attributes:

Attribute Name Re-
quired

Default Description

PAGE_ID Yes The ID of the UIM page to
display. Circular dependen-
cies must not be introduced.
If a page is used inline, it is
not allowed for it to be
mapped to a tab at the same
time.

URI_SOURCE_NAME No The name of the SERV-
ER_INTERFACE instance to
use as the source of the URI.
This attribute is paired with

Cúram Web Client Reference Manual

95

Attribute Name Re-
quired

Default Description

URI_SOURCE_PROPERTY.
Note that a URI can only be
sourced from a server inter-
face. This attribute cannot be
used to specify page para-
meters or properties files as a
source for the URI. The serv-
er interface reference must
be called during the
“display-phase” and the par-
ent ACTION_CONTROL
must be of type ACTION
when this property is used.

URI_SOURCE_PROPE
RTY

No The name of the property to
use as the source of the URI.

Table 5.22 Attributes of the INLINE_PAGE Element

Child Elements

The INLINE_PAGE element contains the following child elements.

Element Name Cardinality / Description
CONNECT 0..n. Connections on this element define the

parameters to be exported to the page tar-
geted by the INLINE_PAGE elements
PAGE_ID attribute. The CONNECT should
contain both a SOURCE and a TARGET ele-
ment and the TARGET element should have
the NAME attribute set to PAGE and the
PROPERTY attribute set to the name of the
page parameter.

Table 5.23 Child Elements of the INLINE_PAGE Element

Restrictions on usage

The UIM page opened in an expanded row is intended for only viewing ad-
ditional information about the row. It should not be used for editing inform-
ation about that row. Instead a modal dialog should be launched from the
page when an edit is required.

As these pages are for viewing information only, the following rules/
restrictions should be noted for these "in-line" pages.

Cúram Web Client Reference Manual

96

• The "in-line" pages displayed in an expanded row must not be used for
editing information.

• The "in-line" pages displayed in an expanded row should not display
very complex widgets that require a "full screen". This includes the fol-
lowing domain specific controls and UIM elements:

• Decision Assist: The Decision Matrix Widget

• Decision Assist: Typical Picture Editor Widget

• Decision Assist: Evidence Review Widget

• Agenda Player

• Batch Function View

• The Rules Simulation Editor

• The Rates Table

• The Meeting View Widget

• The FILE_EDIT Widget

• The Calendar

• Rules Trees

Note

There are no validations in place for these restrictions and it is the
responsibility of the developer to ensure they don't use unsupported
widgets in an expandable list.

5.9.18 IS_FALSE

A Boolean test to evaluate if the parent CONDITION succeeds or fails. This
element evaluates to true when the referenced property value is false.

Attributes

The IS_FALSE element has the following attributes:

Attribute Name Re-
quired

Default Description

NAME Yes The name of the SERV-
ER_INTERFACE instance to
use as the source of the prop-
erty value.

PROPERTY Yes The name of the property be-
ing accessed. It must be a
Boolean value.

Cúram Web Client Reference Manual

97

Table 5.24 Attributes of the IS_FALSE Element

See Section 5.9.19.1, Attributes for more details on the use of this element
to access the values of action-phase server interface properties.

Child Elements

The IS_FALSE element contains no child elements.

5.9.19 IS_TRUE

A Boolean test to evaluate if the parent CONDITION succeeds or fails. This
element evaluates to true when the referenced property value is true.

Attributes

The IS_TRUE element has the following attributes:

Attribute Name Re-
quired

Default Description

NAME Yes The name of the SERV-
ER_INTERFACE instance to
use as the source of the prop-
erty value.

PROPERTY Yes The name of the property be-
ing accessed. It must be a
Boolean value.

Table 5.25 Attributes of the IS_TRUE Element

In the majority of cases the NAME and PROPERTY combination will refer-
ence a display-phase server interface property. However when a page sub-
mits to itself using an ACTION_CONTROL with a child LINK element that
has the PAGE_ID set to THIS (e.g., a search page), properties of the action-
phase server interface can be referenced. When the page is first displayed
the action-phase server interface will not be in scope and the property is
treated as if its value is false. When the page is submitted, the action-phase
server interface will be in scope and the referenced property will be evalu-
ated as normal.

Child Elements

The IS_TRUE element contains no child elements.

5.9.20 JSP_SCRIPTLET

The JSP_SCRIPTLET element defines JSP scriptlet code that should be
inserted into the page at that point relative to any other LIST or CLUSTER

Cúram Web Client Reference Manual

98

elements. Any TextHelper beans declared by a SERVER_INTERFACE ele-
ment to be in the DISPLAY phase are available to the scriptlet by getting
the attribute of the page context with the same name as the NAME attribute
of the SERVER_INTERFACE element. An example is shown in Ex-
ample 5.4, Example JSP_SCRIPTLET Accessing a TextHelper below.

<SERVER_INTERFACE NAME="MyBeanName" CLASS="MyClass"
OPERATION="getMyData" />

<JSP_SCRIPTLET>
<![CDATA[

curam.omega3.texthelper.TextHelper th =
pageContext.findAttribute("MyBeanName");

String myValue = th.getFieldValue("myPropertyName");
out.print("VALUE: " + myValue);

]]>
</JSP_SCRIPTLET>

Example 5.4 Example JSP_SCRIPTLET Accessing a TextHelper

As the code within the JSP_SCRIPTLET element may contain reserved
XML characters1, you can either replace these characters with the appropri-
ate XML character entity or enclose the contents of the element in the
CDATA (“character data”) block as shown above which will prevent the
XML parser from trying to interpret the contents of the block.

A common use of the JSP_SCRIPTLET element is to write code that will
redirect the current page to another page. Example 5.5, Example
JSP_SCRIPTLET Redirecting to a Page, below, shows an example of this.

<PAGE PAGE_ID="Activity_resolveAttendeeHome">
<JSP_SCRIPTLET>

<![CDATA[
curam.omega3.request.RequestHandler rh

= curam.omega3.request.RequestHandlerFactory
.getRequestHandler(request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory

.getUserPreferences(pageContext.getSession())

.getLocale() + "/";
String url = context + "UserCalendarPage.do?"

+ "startDate=&calendarViewType=CVT3";
url += "&" + rh.getSystemParameters();
response.sendRedirect(response.encodeRedirectURL(url));

]]>
</JSP_SCRIPTLET>

</PAGE>

Example 5.5 Example JSP_SCRIPTLET Redirecting to a Page

This demonstrates the API used to access the system parameters that control
an application's ability to return to previous pages. The information about
the previous page is stored in the system parameters accessible via the Re-
questHandler.getSystemParameters() method. By adding the
system parameters, any Cancel button on the following page will return to
the expected page when clicked. The
RequestHandlerFactory.getRequestHandler() method is
passed the JSP request object and will return the appropriate request hand-
ler. The system parameters should be appended to the redirect URL and just
require a separating “&” character as they are already formatted in

Cúram Web Client Reference Manual

99

value pairs.

When using a JSP_SCRIPTLET to redirect to another page, the
JSP_SCRIPTLET should be the only child element of the PAGE element.
When this is the case, no HTML content will be generated for the page: it
will not be displayed, so no HTML is required. If other elements are
present, then HTML content will be generated. This can include the page
header, navigation menus, footer, title, etc. If this HTML content exceeds
the size of the buffer on the web container serving the page, then the content
will be transmitted to the web browser. Once any content is transmitted in
this way, the redirect operation will have no effect. Therefore, ensuring that
the page contains a single JSP_SCRIPTLET element and no other ele-
ments will ensure that the redirect operation works as expected.

If you need to access a TextHelper instance from a JSP scriptlet that redir-
ects to another page, then you cannot use the SERVER_INTERFACE ele-
ment to declare the TextHelper as shown in Example 5.4, Example
JSP_SCRIPTLET Accessing a TextHelper, as this extra element would
cause HTML content to be generated. Instead, you must declare the
TextHelper instance within the scriptlet code as shown below.

It should be noted that, when using JSP_SCRIPTLET, there is limited er-
ror handling capability. Thus, code should not make calls to secured server
interface methods. Instead, the target page of any JSP_SCRIPTLET should
be secured appropriately.

<PAGE PAGE_ID="Activity_resolveApplicationHome">
<JSP_SCRIPTLET>

<![CDATA[
curam.omega3.request.RequestHandler rh

= curam.omega3.request.RequestHandlerFactory
.getRequestHandler(request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory

.getUserPreferences(pageContext.getSession())

.getLocale() + "/";
String activityID = request.getParameter("ID");
String eventType = request.getParameter("TYPE");
String url = context;

curam.interfaces.ActivityPkg.Activity_readDescription_TH
th = new curam.interfaces.ActivityPkg

.Activity_readDescription_TH();
th.setFieldValue(

th.key$activityDescriptionKey$activityID_idx,
activityID);

th.callServer();

String description = th.getFieldValue(
th.result$activityDescriptionDetails$description_idx);

if (eventType.equals("AT1")) {
url = "Activity_viewUserRecurringActivityPage.do?";

} else {
url = "Activity_viewUserStandardActivityPage.do?";

}
url += "activityID=" + activityID;
url += "&description="

+ curam.omega3.request.RequestUtils.escapeURL(
description);

url += "&" + rh.getSystemParameters();
response.sendRedirect(response.encodeRedirectURL(url));

]]>
</JSP_SCRIPTLET>

Cúram Web Client Reference Manual

100

</PAGE>

Example 5.6 Example JSP_SCRIPTLET Redirecting and Accessing
a TextHelper

When adding parameters to the parameter list, care must be taken if the
parameter value may contain non-ASCII characters. Values containing non-
ASCII characters must be escaped before they are added to the parameter
list to ensure that the characters are preserved correctly. The Reques-
tUtils.escapeURL(String) method can be used to perform the es-
caping. An example of the Java code to perform this escaping is shown in
the example above. Code following that pattern should be included within
your JSP scriptlet.

Attributes

The JSP_SCRIPTLET element has no attributes.

Child Elements

The JSP_SCRIPTLET element contains no child elements. The body of
the element must only contain the JSP scriptlet code to be inserted into the
page.

5.9.21 LABEL

The LABEL element can be used as a child element of FIELD to construct a
label by concatenating multiple values. An example of the field and label
data is shown in Example 5.7, Example of a Dynamic LABEL, below.

<CLUSTER TITLE="Cluster.Title">
<FIELD>

<LABEL>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Label.Text" />
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personName" />
</CONNECT>
<CONNECT>

<SOURCE NAME="TEXT" PROPERTY="Label.Separator" />
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="dateOfBirth" />
</CONNECT>

</LABEL>

<CONNECT>
<TARGET NAME="ACTION" PROPERTY="fieldName"/>

</CONNECT>
</FIELD>

</CLUSTER>

Example 5.7 Example of a Dynamic LABEL

Attributes

Cúram Web Client Reference Manual

101

The LABEL element has no attributes:

Child Elements

The LABEL element can contain the following child elements.

Element Name Cardinality / Description
CONNECT 1..n. A CONNECT element specifying a single

SOURCE end-point. Action-phase server interfaces
cannot be used in the SOURCE end-point.

Table 5.26 Child Elements of the LABEL Element

5.9.22 LINK

The LINK element specifies the page to go to after an action phase. Altern-
atively, a LINK element can specify any external web page or certain re-
source. Links can contain CONNECT elements to map values to parameters
to be added to the link.

Attributes

The LINK element has the following attributes. Note that the PAGE_ID,
PAGE_ID_REF, URL, URI, and URI_REF attributes are mutually exclus-
ive as well as the pair of attributes URI_SOURCE_NAME and
URI_SOURCE_PROPERTY.

Please note that attributes that have the ability to link to external web pages
or resources (i.e mailto: links) will have their link back functionality
stripped away. This link back functionality keeps a link to the previous
page. An example of where this is needed is with cancel buttons where if
they are used, the page will link back to the previous page. In order to keep
this, the link will have to be to an internal Curam page. In order to mark a
link as being a link to an internal Curam page, the keyword 'curam:' needs to
be added before the link text.

Attribute Name Required Default Description
PAGE_ID No The unique identifier of the page

to be opened. This is the value of
the PAGE_ID attribute of the
PAGE element in the required
UIM page document.

If this attribute is set to the
PAGE_ID of the current page,
the page will be re-opened with
all the input fields reset to their
default state.

If the link is on an action control

Cúram Web Client Reference Manual

102

Attribute Name Required Default Description

with a TYPE set to SUBMIT and
this attribute is set to the value
THIS, the link will return to the
current page after the action
phase and the input fields will not
be reset to their default state. This
is useful for search pages where
the search criteria need to be pre-
served.

PAGE_ID_REF No A PAGE_ID can alternatively be
specified by reference to an entry
in the Curam-
Links.properties file. This
allows many links to refer to the
same target page yet all can be
updated by changing the entry in
the Curam-
Links.properties file.

URL No It is recommended to use the new
URI attribute which is described
below. The URL attribute is
maintained for backward compat-
ibility.

URI No Rather than link to another page
in the application, the URI attrib-
ute allows the creation of a link
to any URI whatsoever. This can
be used to link to pages or other
resources completely outside of
the application. Parameters must
be supplied by CONNECT ele-
ments withing the LINK to en-
sure correct encoding.

URI_REF No A URI (or URL) can alternatively
be specified by reference to an
entry in the Curam-
Links.properties file. This
allows many links to refer to the
same target yet all can be updated
by changing the entry in the
CuramLinks.properties
file. The file can be placed in any
component in the application.

URI_SOURCE_N
AME

No The name of the SERV-
ER_INTERFACE instance to use

Cúram Web Client Reference Manual

103

Attribute Name Required Default Description
as the source of the URI. This at-
tribute is paired with
URI_SOURCE_PROPERTY.
Note that a URI can only be
sourced from a server interface.
This attribute cannot be used to
specify page parameters or prop-
erties files as a source for the
URI. The server interface refer-
ence must be called during the
“display-phase” and the parent
ACTION_CONTROL must be of
type ACTION when this property
is used.

URI_SOURCE_P
ROPERTY

No The name of the property to use
as the source of the URI.

OPEN_NEW No false When set to true, this flag in-
dicates that the linked page
should be opened in a new win-
dow. When set to false (the de-
fault) the linked page will be
opened in the current window.
This setting is only supported for
links to external sites.

SAVE_LINK No true This attribute indicates that the
page containing the link should
be returned to if an action control
on the target page is configured
to return to the previous page. An
action control without a LINK
child element will return the user
to the previous page. If there is a
sequence of pages and any one of
them needs to go back to a
“starting” page, then each page in
the sequence should set this at-
tribute to false so that sub-
sequent pages do not return to
their immediate previous page in
the chain.

SET_HIERARCH
Y_RETURN_PAG
E

No false This attribute is no longer used
but has been retained in the UIM
schema to avoid upgrade impact.

USE_HIERARCH
Y_RETURN_PAG
E

No false This attribute is no longer used
but has been retained in the UIM
schema to avoid upgrade impact.

Cúram Web Client Reference Manual

104

Attribute Name Required Default Description
HOME_PAGE No If this attribute is set to true, the

link will take a user directly to
their home page. During develop-
ment the home page can be con-
figured by setting the
“application code” field of the
Cúram “users” table. This value
of this field corresponds to an
entry on the APPLICA-
TION_CODE code-table. At
runtime, the Cúram Administra-
tion application allows the home
page to be set when creating or
editing a user.
Note, that in the development en-
vironment Java EE security is not
enabled. Therefore, since a user
name is not available the home
page link cannot be displayed.

OPEN_MODAL No "false" If this attribute is set to true, the
link will open the referenced
page in a new window. The new
window is modal, meaning that
while it is open the parent win-
dow cannot be accessed. When a
user navigates from the original
page in the modal dialog, either
by submitting a form or clicking
a link, the modal dialog is closed,
and the parent page that spawned
it is sent to the new location. This
behavior is only supported in In-
ternet Explorer, all other
browsers will simply open a nor-
mal pop-up window.

DIS-
MISS_MODAL

No "true" If this attribute is set to false,
the link will open the referenced
page in the same pop-up window,
modal or normal depending on
what the browser supports.

WIN-
DOW_OPTIONS

No "width=
800,heig
ht=450"

The size of each modal dialog is
configurable using this paramet-
er. The value of the attribute is a
comma separated list of name
value pairs. The currently suppor-
ted options are width and

Cúram Web Client Reference Manual

105

Attribute Name Required Default Description
height, both of which take an
integer value, which is translated
directly to a pixel value. Any oth-
er parameters will cause an ex-
ception to be thrown. This attrib-
ute should only be set when
OPEN_MODAL is set to true on
the same LINK tag.

Table 5.27 Attributes of the LINK Element

Child Elements

The LINK element can contain the following child elements:

Element Name Cardinality / Description
CONNECT 0..n. Connections on a link define the para-

meters to be exported to the page targeted by
the link. The CONNECT should contain both a
SOURCE and a TARGET element and the
TARGET element should have the NAME at-
tribute set to PAGE and the PROPERTY at-
tribute set to the name of the page parameter.
Any type of SOURCE element can be used
with the following exceptions. TEXT and
where the LINK is inside an AC-
TION_CONTROL with TYPE=SUBMIT. In
the last scenario, the SOURCE must have an
ACTION phase bean, a page parameter or a
CONSTANT. The reason being the URL is
generated in the action class and the DIS-
PLAY bean is not accessible at the stage.

CONDITION 0..1. Affects whether or not the link is dis-
played.

Table 5.28 Child Elements of the LINK Element

Modal Dialogs

A Modal Dialog is similar to a Pop-up Page, in that it opens a dialog box to
display a page on top of the main application content. However, modal dia-
log is different in a number of ways.

• When a modal dialog is open, its parent page cannot be accessed. The
parent page is grayed-out and ignores any user action.

Cúram Web Client Reference Manual

106

• Changing the page in the Modal Dialog, either by submitting a form or
by clicking a hyperlink, causes it to close, and the parent page to be
changed to the changed page, with the following exceptions

• If the page linked to has the same id as the current modal page (e.g. a
'save & new' button/link), then the page will be refreshed within the
same modal window

• If the link clicked has the attribute DISMISS_MODAL set to false,
the page linked to will opened within the same modal window

• If the link clicked has the attribute OPEN_MODAL set to true, it
will open in a new modal window

• The usage of Modal Dialogs is different to that of Pop-up pages. It is
considerably less complex, consisting of using either one or two optional
attributes on the LINK tag.

Using Modal Dialogs

A LINK tag is made to open in a Modal Dialog, rather than the default ac-
tion of opening a new page in the same window, by setting the
OPEN_MODAL attribute to true.
<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true" />

Note in the example the use of the OPEN_MODAL attribute on the LINK tag.

Setting OPEN_MODAL on a LINK that is inside an ACTION_CONTROL of
type SUBMIT has no effect. Setting OPEN_MODAL=true on a link implies
also having DISMISS_MODAL=false on that link, and setting DIS-
MISS_MODAL=true on it is ignored. Setting DISMISS_MODAL=false im-
plies OPEN_MODAL=false, so there is no need to set it.

Configuring Modal Dialogs

Modal Dialogs can be individually configured by setting the WIN-
DOW_OPTIONS attribute on a LINK tag which also has the OPEN_MODAL
attribute set to true. Multiple options can set using this attribute, which is
formatted as a comma separated list of name value pairs. The currently sup-
ported parameters are

• width - sets the width of the Modal Dialog, measured in pixels. This
parameter takes an integer value.

• height - sets the height of the Modal Dialog, measured in pixels. This
parameter takes an integer value.

<LINK PAGE_ID="MultiSelectWidgetResult" OPEN_MODAL="true"
WINDOW_OPTIONS="width=600,height=500" />

Note in the example above the use of the WINDOW_OPTIONS attribute. The
values specified for width and height are simple integers and do not
have any alphabetic characters appended. A default width of 600 pixels is

Cúram Web Client Reference Manual

107

used if no width parameter is specified. If no height parameter is specified
the height will be automatically calculated to accommodate the page con-
tents. If an unsupported parameter is placed in the WINDOW_OPTIONS, a
build exception will be thrown.

If the WINDOW_OPTIONS attribute is also specified on the PAGE element
of the page the LINK points to, it will take precedence over the value spe-
cified on the LINK itself.

The minimum required height for modal dialogs can be configured using the
property modal.dialogs.minimum.height that is located in the
ApplicationConfiguration.properties file.

Controlling Modal Dialogs from custom JavaScript

Modal Dialogs can be controlled from custom JavaScript by using the
provided curam.util.UimDialog API. For details see the full API
documentation in HTML format, accessible by opening
<cdej-dir>\doc\JavaScript\index.html in a Web browser.

Loading custom non-UIM pages in a Modal Dialog

Custom non-UIM pages must hook into a specific set of API functions in or-
der to work correctly in a Modal Dialog. These functions are provided by
the curam.util.Dialog API. The details are available in the full API
documentation: <cdej-dir>\doc\JavaScript\index.html.

5.9.23 LIST

The LIST element defines the layout of a control used to display lists of
data. Each field or action control becomes a column and data values are then
tabulated.

Attributes

The LIST element has the following attributes:

Attribute Name Required Default Description
TITLE No A reference to an externalized

string containing the title string for
this list. See also note below.

STYLE No The class name of the CSS style to
associate with this list for format-
ting.

DESCRIPTION No A reference to an externalized
string that provides more details
about the list than the title alone.
This will be displayed below the
title on the page.

Cúram Web Client Reference Manual

108

Attribute Name Required Default Description
SORTABLE No true Lists can be sorted by clicking on

the appropriate headers. This is set
by default to be enabled without
the use of the attribute. This attrib-
ute allows this feature to be con-
trolled with false disabling the
feature and true enabling it.

SUMMARY No A reference to an externalized
string containing the summary of
this list. The SUMMARY attribute
describes the purpose and/or struc-
ture of a list.

SCROLL_HEIGH
T

No Specifies in pixels the desired
fixed height of a scrollable list. A
vertical scrollbar is provided once
the list exceeds the scroll height.
The scrollbar is only applied to the
list body and the list's column
headers remain fixed Scroll height
is independent of the list contents
and therefore an empty list will
still be set to the height specified.

BEHAVIOR No Optional attribute which controls
the display and behavior of the
toggle button used to expand or
collapse the list.

Three value options are available
for this attribute:

• NONE which prevents the
toggle button from being dis-
played in the list header.

• EXPANDED: the toggle button
is displayed and the list is ini-
tially expanded.

• COLLAPSED: the toggle but-
ton is displayed and the list is
initially collapsed.

When the BEHAVIOR is not set
for a list, its default value of EX-
PANDED is implied.

Note that this attribute is only ap-
plicable when the property EN-
ABLE_COLLAPSIBLE_CLUSTE

Cúram Web Client Reference Manual

109

Attribute Name Required Default Description
RS is not set or is set to true in
curam_config.xml. For de-
tails see Section 3.12.13, General
Configuration.

PAGINATED No true Enables the ability to page through
lists displayed in Cúram pages.
Any LIST longer than the con-
figured minimum size will display
only the first "page" of data and
the pagination controls will be dis-
played below the list.

DE-
FAULT_PAGE_S
IZE

No Based
on the
global
con-
figured
value,
usually
15.

Specifies the page size the list will
get by default. The page size can
be then changed at runtime by the
user.

PAGINA-
TION_THRESHO
LD

No Based
on the
global
con-
figured
value,
usually
same as
DE-
FAULT
PAGE
SIZE.

Specifies the minimum list size at
which pagination will be enabled.
For shorter lists there will be no
pagination, even if otherwise pa-
gination is switched on.

Table 5.29 Attributes of the LIST Element

Note

Lists on search pages now display the number of items found as a
result of the search. The number of items will be displayed beside
the list title.

The text used to display the number of items can be customized by
setting the following property in the CDEJRe-
sources.properties file, for example:

record.number.message=Items found:

Cúram Web Client Reference Manual

110

The actual number of items will be displayed after the text.

This feature only applies to search pages and must be enabled by
adding the following to the curam-config.xml file:

<LIST_ROW_COUNT>true</LIST_ROW_COUNT>

Child Elements

The LIST element can contain the following child elements. It must contain
at least one ACTION_CONTROL, FIELD, or CONTAINER element.
SOURCE connections can be made to list or non-list properties. Within a ta-
ble all list properties must belong to the same list structure defined in the
server interface model. This ensures that they are all the same length. The
number of rows in the list will be equal to the number of elements in the list
properties. The value of a non-list property is simply repeated on each row.

Element Name Cardinality / Description
TITLE 0..1. The TITLE element will be displayed above

the LIST.

DESCRIPTION 0..1 The DESCRIPTION element has the same be-
havior as the DESCRIPTION attribute but allows
the description to be built up from a number of
sources. If both are specified, this element takes
precedence over the corresponding attribute.

ACTION_SET 0..1. The action set can contain AC-
TION_CONTROL elements of any type. The action
controls will be displayed above and/or below the
entire list.

FIELD 0..n. The FIELD, CONTAINER, and AC-
TION_CONTROL elements can be freely inter-
mingled. Only output fields can be used (i.e., fields
with no target connection.)

CONTAINER 0..n. The FIELD, CONTAINER, and AC-
TION_CONTROL elements can be freely inter-
mingled. Within the container, only output fields
can be used (i.e., fields with no target connection.)

CONDITION 0..1. Affects whether or not the list is displayed.

FOOTER_ROW 0..n. This should be defined after all other child
elements.

Table 5.30 Child Elements of the LIST Element

5.9.24 MENU

Cúram Web Client Reference Manual

111

The MENU element is used to define six types of menus in a Cúram client
application. The menu types are:

• STATIC: The menu is made up of ACTION_CONTROL elements that
will appear on the page menu. The ACTION_CONTROL elements must
have the TYPE of ACTION.

• NAVIGATION: The menu is made up of ACTION_CONTROL elements
that will be appended to the “Navigation” menu. The AC-
TION_CONTROL elements must have the TYPE of ACTION.

• DYNAMIC: The menu is driven by XML data constructed on the server
application.

• INTEGRATED_CASE: The menu is driven by XML data constructed on
the server application. This menu is specific to the Cúram-style Integ-
rated Case user interface and is rendered as a set of of tabs.

• IN_PAGE_NAVIGATION: The menu is made up of AC-
TION_CONTROL elements that will appear on the in-page-navigation
menu at the top of the main content area.

• WIZARD_PROGRESS_BAR: This is another specific type of menu
rendered as a button bar on the top of the content area in a modal dialog
for displaying a sequence of related pages in the wizard manner. The
menu is driven by a resource stored in the server application.

Attributes

The MENU element has the following attribute:

Attribute
Name

Required Default Description

MODE No STATIC The type of menu to create. The
mode can be STATIC (the de-
fault), NAVIGATION, DYNAMIC,
INTEGRATED_CASE,
IN_PAGE_NAVIGATION or
WIZARD_PROGRESS_BAR.

Static, navigation and in-
page-navigation menus contain
one or more ACTION_CONTROL
elements that represent links to
other pages. The static menu nor-
mally appears just above the main
content area of the page. Naviga-
tion menu items will be appended
to the navigation menu, normally
on the left of the page. In-
page-navigation menu items ap-

Cúram Web Client Reference Manual

112

Attribute
Name

Required Default Description

pear at the top of the main content
area and the wizard progress bar
appears at the top of the modal
dialog content area.

Dynamic menus of both types
(DYNAMIC and INTEG-
RATED_CASE) are created from
data retrieved from the server and
contain a single CONNECT ele-
ment specifying a SOURCE end-
point to a server interface prop-
erty.

Table 5.31 Attributes of the MENU Element

Child Elements

The MENU element can contain the following child elements. Note that the
ACTION_CONTROL and CONNECT elements are mutually exclusive.

Element Name Cardinality / Description
ACTION_CONTROL 1..n. Only action controls with a TYPE of

ACTION can be used.

CONNECT 1. A CONNECT element specifying a single
SOURCE end-point.

Table 5.32 Child Elements of the MENU Element

DYNAMIC and INTEGRATED_CASE type menus

The data for both DYNAMIC and INTEGRATED_CASE menu's are driven
by the same XML format. An example of the menu data sent by the applica-
tion server is shown below.

<DYNAMIC_MENU>
<LINK PAGE_ID="CaseHome"

DESC="2:field1:curam.omega3.myMessages:info_menu1:()"
TYPE="case" >

<PARAMETER NAME="caseID" VALUE="1234" />
</LINK>
<LINK PAGE_ID="ProductHome"

DESC="2:field1:curam.omega3.myMessages:info_menu2:()"
TYPE="product" >

<PARAMETER NAME="productID" VALUE="5678" />
<PARAMETER NAME="caseID" VALUE="1234" />

</LINK>
</DYNAMIC_MENU>

Example 5.8 Example of Dynamic MENU Data

Cúram Web Client Reference Manual

113

All the menu links are contained within the DYNAMIC_MENU root element.
Each entry on the menu is specified by a LINK element. The LINK element
has the following attributes:

• PAGE_ID: Specifies the target page for the link.

• DESC: Specifies the server message catalog entry to be looked up and
used as the text for the link. The Cúram SDEJ provides an API to create
the string representation of a message catalog entry shown in the ex-
ample above. Consult the Cúram Server Developers Guide for details on
using message catalogs.

• TYPE: specifies a value that is looked up in appropriate menu configura-
tion file (described below) to identify the icon that should be associated
with the link.

Each LINK element can contain a number of PARAMETER elements that
specify additional parameters that will be added to the link from the menu.
The PARAMETER element has the following attributes:

• NAME: The parameter name.

• VALUE: The parameter value.

The configuration files for the DYNAMIC and INTEGRATED_CASE menu's
are DynamicMenuConfig.xml and ICDynamicMenuConfig.xml
respectively. The following are examples each configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<DYNAMIC_MENU_CONFIG>

<SEPARATOR IMAGE="Images/separator.gif"
TEXT="Dyn.Menu.Separator"/>

<LINK TYPE="case" IMAGE="Images/case.gif"
TEXT="Dyn.View.Case"/>

<LINK TYPE="product" IMAGE="Images/product-delivery.gif"
TEXT="Dyn.View.Product"/>

</DYNAMIC_MENU_CONFIG>

Example 5.9 Example of a DYNAMIC Menu Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<INTEGRATED_CASE_MENU_CONFIG>

<LINK TYPE="case" IMAGE="Images/case.gif"
TEXT="Dyn.View.Case"/>

<LINK TYPE="product" IMAGE="Images/product-delivery.gif"
TEXT="Dyn.View.Product"/>

</DYNAMIC_MENU_CONFIG>

Example 5.10 Example of an INTEGRATED_CASE Menu
Configuration File

The differences to note are the root elements, DYNAMIC_MENU_CONFIG
and INTEGRATED_CASE_MENU_CONFIG, and the SEPARATOR ele-
ment which is not used in an INTEGRATED_CASE because of its very spe-
cific look and feel.

The SEPARATOR element describes an image or a piece of text used to sep-

Cúram Web Client Reference Manual

114

arate the menu items and has the following attributes:

• IMAGE: Specifies an image to use as the separator.

• TEXT: Specifies an entry in the CDEJResources.properties file.
This attribute is mandatory. If an image is specified this will be used as
the alternate text for the image, if not, then the text will be displayed.

The LINK element has the following attributes.

• TYPE: This must match the TYPE attribute of the LINK element re-
turned from the server application.

• IMAGE: Specifies an image to use in the link. This attribute is mandat-
ory.

• TEXT: Specifies an entry in the CDEJResources.properties file.
This attribute is mandatory. It will be used as the alternate text for the
image.

The IN_PAGE_NAVIGATION type menu

The in-page navigation menu, see User Interface Element 9 of Figure 2.1,
Application User Interface Overview, allows for the addition of a set of
links which will be displayed as tabs embedded within a UIM page. Each
UIM page in the set must define the same MENU element. The currently se-
lected UIM page, aka tab, is identified by the
STYLE="in-page-current-link" attribute. This will differ on each
of the UIM pages in the set and should be set on the ACTION_CONTROL
that matches the UIM page the MENU is contained in.

<PAGE PAGE_ID="InPageNav">
<PAGE_TITLE>

<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Title.Text"/>

</CONNECT>
</PAGE_TITLE>
<MENU MODE="IN_PAGE_NAVIGATION">
<ACTION_CONTROL LABEL="Label.page1">

<LINK PAGE_ID="Page1" SAVE_LINK="false"/>
</ACTION_CONTROL>
<ACTION_CONTROL

LABEL="Page2.Label"
STYLE="in-page-current-link" >

<LINK PAGE_ID="Page2" SAVE_LINK="false" />
</ACTION_CONTROL>

</MENU>
........
</PAGE>

Example 5.11 Example of the IN_PAGE_NAVIGATION menu in UIM

WIZARD_PROGRESS_BAR menu

The wizard progress menu bar is inserted on a page by including a MENU

Cúram Web Client Reference Manual

115

element which has a MODE attribute set to WIZARD_PROGRESS_BAR. It
binds a number of pages, allowing for the sequential navigation through
them. For instance, in a modal dialog which contains a wizard progress
menu bar, pages can be navigated through by clicking the previous or next
button. At the same time, the wizard progress menu bar presented on the top
of it will indicate its progress.

The UIM wizard pages

There are some specifics regarding the UIM pages used with the WIZ-
ARD_PROGRESS_BAR menu:

• The wizard pages should open in the modal dialog. The wizard progress
bar functionality should not be used in standard non-modal UIM pages.

• Each page in the wizard flow is implemented as standard UIM with a
wizard progress bar widget placed at the top of each page.

• The pages should have action controls for advancing through the wizard
(back and forward buttons as required by the scenario). The LINK ele-
ments of these action controls should have DISMISS_MODAL attribute
set to false (except for the controls supposed to close the wizard). Ad-
ditionally, the SAVE_LINK attribute should also be set to false.

<PAGE PAGE_ID="Sample_PageOne">
<MENU MODE="WIZARD_PROGRESS_BAR">

<CONNECT>
<SOURCE
NAME="DISPLAY" PROPERTY="resourceID" />

</CONNECT>
</MENU>
<PAGE_TITLE>
<CONNECT>

<SOURCE NAME="TEXT"
PROPERTY="PageTitle" />

</CONNECT>
</PAGE_TITLE>
<SERVER_INTERFACE
CLASS="WizardSample"

NAME="DISPLAY" OPERATION="getResourceID"
PHASE="DISPLAY" />

<ACTION_SET ALIGNMENT="CENTER" TOP="false">
<ACTION_CONTROL

LABEL="ActionControl.Label.Cancel"/>
<ACTION_CONTROL

LABEL="ActionControl.Label.Next">
<LINK PAGE_ID="Sample_PageTwo"

SAVE_LINK="false"
DISMISS_MODAL="false"/>

</ACTION_CONTROL>
</ACTION_SET>
........
</PAGE>

Example 5.12 An example of wizard-type menu UIM

In the example above the connection in the MENU provides the identifier of
the server-side resource describing this wizard (see below).

Cúram Web Client Reference Manual

116

Wizard menu configuration

The text required by the wizard progress bar items come from a property re-
source whose identifier must be provided to the wizard progress bar menu.

Number.Wizard.Pages=2
Sample_pageOne.Wizard.Item.Text=Child
Sample_pageOne.Wizard.Page.Title=Step 1: Child Details
Sample_pageOne.Wizard.Page.Desc=Capture some details
Wizard.PageID.1=Sample_pageOne

Sample_pageTwo.Wizard.Item.Text=Parent
Sample_pageTwo.Wizard.Page.Title=Step 2: Parent Details
Sample_pageTwo.Wizard.Page.Desc=Capture some details 1
Wizard.PageID.2=Sample_pageTwo

Example 5.13 Example of the required properties in the resource
store property file

Property Name Description
Number.Wizard.Pages The value of this property defines the number

of items to be rendered for the wizard pro-
gress bar. The value must be a numeric whole
number greater than zero.

<PageID>.Wizard.Ite
m.Text

Defines the text to be displayed within the
wizard progress bar item for each page of the
wizard. There must be one of these properties
defined for each page in the wizard. The
property is uniquely identified for each wiz-
ard page by the <PageID> prefix which rep-
resents the actual identifier of that UIM page
in the wizard flow.

<PageID>.Wizard.Pag
e.Title

Defines the title to be displayed within the
wizard progress bar for the current page of
the wizard. There must be one of these prop-
erties defined for each page in the wizard.
The property is uniquely identified for each
wizard page by the <PageID> prefix which
represents the actual identifier of that UIM
page in the wizard flow.

<PageID>.Wizard.Pag
e.Desc

Defines the description to be displayed within
the wizard progress bar for the current page
of the wizard. There must be one of these
properties defined for each page in the wiz-
ard. The property is uniquely identified for
each wizard page by the <PageID> prefix
which represents the actual identifier of that
UIM page in the wizard flow.

Cúram Web Client Reference Manual

117

Property Name Description
Wiz-
ard.PageID.<PageNum
>

Defines the position of the page within the
wizard flow. The widget uses this informa-
tion to style the bar items correctly. There
must be one of these properties defined for
each page in the wizard. This property is
uniquely identified for each wizard page by
the <PageNum> suffix which represents the
position of each page within the list of wizard
menu pages.

Table 5.33 Properties in the wizard defining resource

The order of the properties declaration in the resource is important as the as-
sociated menu widget will draw the wizard items for the progress bar in that
order. The page title and description are added by the widget for the current
page of the wizard.

5.9.25 PAGE

The PAGE element is the root element of a UIM document that describes the
data to be included in a generated JSP page.

Attributes

The PAGE element has the following attributes:

Attribute Name Required Default Description
PAGE_ID Yes An identifier for the page used

when referencing the page from
LINK elements. This identifier
must be unique within a project.
The file name of the document
must be the same as the value of
this attribute and have the exten-
sion .uim.

POPUP_PAGE No false Indicates that this page is a pop-
up that will be opened from a
parent page. Pop-up pages do not
include the side-bar, header and
footer of standard pages. The
value can be set to true or
false. The attribute must only
be used for pages configured ac-
cording to Section 8.21, Pop-up
Pages (i.e., search pop-up pages).

SCRIPT_FILE No The name of the script file con-

Cúram Web Client Reference Manual

118

Attribute Name Required Default Description
taining the JavaScript functions
that are specified in the ACTION
attribute of any SCRIPT ele-
ments on the page. If no
SCRIPT_FILE attribute is set
on a particular SCRIPT element
within a FIELD or AC-
TION_CONTROL the PAGE
script file is used by default. The
script file should be added in a
component. If another script file
has the same name in another
component, the version in the
highest priority component will
be used. Each SCRIPT can spe-
cify its own script file if required,
or share this common script file.

APPEND_COLON No Set to true to automatically ap-
pend colons to FIELD and CON-
TAINER labels within CLUSTER
elements. This overrides the
value of the APPEND_COLON
element in the curam-con-
fig.xml file for that individual
page (see Section 3.12.13.8, AP-
PEND_COLON).

WIN-
DOW_OPTIONS

No "width=
600,heig
ht=auto-
calcu-
lated"

The size of the page when dis-
played in a modal dialog is con-
figurable using this parameter.
The value of the attribute is a
comma separated list of name
value pairs. The currently suppor-
ted options are width and
height, both of which take an
integer value, which is translated
directly to a pixel value. Only a
width needs to be specified
however as the height will be dy-
namically calculated. Any other
parameters will cause an excep-
tion to be thrown.

TYPE No DE-
FAULT

Used to define specific types of
UIM pages. Two types are sup-
ported, DETAILS and
SPLIT_WINDOW.

SPLIT_WINDOW enables the use

Cúram Web Client Reference Manual

119

Attribute Name Required Default Description
of frames within the page. If the
attribute is not present or is set to
DEFAULT then frames are not
used. See Section 8.22, Agenda
Player for an example of use.

DETAILS defines a UIM page
that will be used as a context pan-
el page. For more information see
Section 6.8.3, Context Panel
UIM.

HIDE_CONDITI
ONAL_LINKS

No TRUE Set to true to hide conditional
links that evaluate to false. Set to
false to show a disabled condi-
tional link that evaluate to false.
This overrides the value of the
HIDE_CONDITIONAL_LINKS
element in the curam-con-
fig.xml file for that individual
page (see Section 3.12.13.8, AP-
PEND_COLON).

Table 5.34 Attributes of the PAGE Element

Child Elements

The PAGE element can contain child elements as follows:

Element Name Cardinality / Description
INCLUDE 0..1. This element can be used before any

other child element of a PAGE element.

PAGE_TITLE 0..1

DESCRIPTION 0..1

SHORTCUT_TITLE 0..1

SERVER_INTERFACE 0..n. Multiple SERVER_INTERFACE ele-
ments are supported, however it is recom-
mended that only one SERV-
ER_INTERFACE with the PHASE attribute
set to ACTION is defined per PAGE element.
See Section 5.9.29, SERVER_INTERFACE
for more information.

INFORMATIONAL 0..1

MENU 0..2. The page can contain one optional stat-
ic and one optional dynamic menu as well as
append extra items to the navigation menu.

Cúram Web Client Reference Manual

120

Element Name Cardinality / Description
ACTION_SET 0..1. In this context, the action set defines

the set of action controls that will appear
around the page's main content area.

PAGE_PARAMETER 0..n

CONNECT 0..n. In this context, the connections can
copy values directly from the properties of
source server interfaces to properties of the
target server interfaces. Each CONNECT ele-
ment should contain both a SOURCE and a
TARGET element.

JSP_SCRIPTLET 0..n. JSP_SCRIPTLET, CLUSTER and
LIST can be intermingled freely and the or-
der in UIM will be preserved in the gener-
ated page.

CLUSTER 0..n. JSP_SCRIPTLET, CLUSTER and
LIST can be intermingled freely and the or-
der in UIM will be preserved in the gener-
ated page.

LIST 0..n. JSP_SCRIPTLET, CLUSTER and
LIST can be intermingled freely and the or-
der in UIM will be preserved in the gener-
ated page.

SCRIPT 0..n. A script associated with the PAGE that
will be activated in response to the specified
event. See Section 5.9.28, SCRIPT for more
details.

Table 5.35 Child Elements of the PAGE Element

Where a page is configured to contain a large number of scrollable list and
cluster elements (approximately 15), it may cause JSP compile issues in
Weblogic. This is due to a Weblogic system limitation in how big a page
can be rendered at run time. To overcome this restriction, arrange the dis-
play of the required scrollable lists and clusters over a number of pages.

5.9.26 PAGE_PARAMETER

The PAGE_PARAMETER element declares a parameter to the current page.
Once a parameter is declared, it can be used as the source of a connection by
setting the connection source bean NAME attribute to PAGE.

Attributes

The PAGE_PARAMETER element has the following attributes:

Cúram Web Client Reference Manual

121

Attribute Name Required Default Description
NAME Yes The name of the parameter to use

in SOURCE connection end-points.

Table 5.36 Attributes of the PAGE_PARAMETER Element

Child Elements

The PAGE_PARAMETER element contains no child elements.

5.9.27 PAGE_TITLE

The PAGE_TITLE element defines the title that appears at the top of a
page's main content area. A title is constructed by concatenating a number
of connection sources together. These can include localized strings and data
from server interfaces.

Note

The PAGE_TITLE element defines the text for the tab title bar
where the UIM page is used as a context panel page. See Sec-
tion 6.8.3, Context Panel UIM for more information.

Attributes

The PAGE_TITLE element has the following attributes:

Attribute Name Required Default Description
DESCRIPTION No A reference to a localized string

that provides a more detailed de-
scription of the page than the title
alone. This will be displayed with
the title in the page's main content
area.

STYLE No The name of the CSS class to use
when displaying the title on the
page.

ICON No A reference to an entry in the Im-
age.properties file specify-
ing the image file to use beside the
title in the main content area.

Table 5.37 Attributes of the PAGE_TITLE Element

Child Elements

The PAGE_TITLE element can contain child elements as follows:

Cúram Web Client Reference Manual

122

Element Name Cardinality / Description
CONNECT 1..n. Only CONNECT elements containing

SOURCE elements can be included (one
SOURCE per CONNECT). Sources can be
server interface properties or, with the NAME
attribute set to TEXT, references to strings
from a properties file.

DESCRIPTION 0..1 The DESCRIPTION element has the
same behavior as the DESCRIPTION attrib-
ute but allows the description to be built up
from a number of sources. If both are spe-
cified, this element takes precedence over the
corresponding attribute.

Table 5.38 Child Elements of the PAGE_TITLE Element

5.9.28 SCRIPT

The SCRIPT element defines an exit point to allow the invocation of a
script (JavaScript) in response to an event. Scripts are supported for pages,
read-write fields and action controls. These elements are not applicable and
not supported for fields within a LIST or read-only fields.

Attributes

The SCRIPT element has the following attributes:

Attribute Name Required Default Description
EVENT Yes The JavaScript name of the event

as defined in the W3C HTML re-
commendations.

JavaScript events are valid within
the PAGE, FIELD or AC-
TION_CONTROL elements, with
the exception of FIELD elements
within a LIST or read-only
FIELD elements.

Note that the ONCLICK event will
be ignored for AC-
TION_CONTROL with a TYPE of
CLIPBOARD (for further informa-
tion see Section 5.9.3, AC-
TION_CONTROL.).

In addition, please note that by de-
fault when a link is clicked in the
Cúram application the link is pro-

Cúram Web Client Reference Manual

123

Attribute Name Required Default Description

cessed by Cúram specific code. If
you are adding some scripting to a
link and do not want this default
processing to occur, the event
should be stopped using the JavaS-
cript APIs available.

ACTION Yes The JavaScript to be invoked if the
event occurs. This must be a func-
tion call including parameters, if
any. For example; someFunc-
tion() or someFunc-
tion(someParam) where
someParam may be a global
variable defined in script file.

SCRIPT_FILE No The name of the script file con-
taining the JavaScript functions
that are specified in the ACTION
attribute of the SCRIPT element.
If no SCRIPT_FILE attribute is
set on a particular SCRIPT ele-
ment within a FIELD or AC-
TION_CONTROL the PAGE script
file is used by default. The script
file should be added in a compon-
ent. If another script file has the
same name in another component,
the version in the highest priority
component will be used. If not
specified, the SCRIPT will expect
to find the functions in the page-
level script file specified with the
PAGE element's SCRIPT_FILE
attribute.

Table 5.39 Attributes of the SCRIPT Element

Child Elements

The SCRIPT element contains no child elements.

5.9.29 SERVER_INTERFACE

The SERVER_INTERFACE element defines a server interface to which oth-
er elements of the page can connect.

Cúram Web Client Reference Manual

124

Attributes

The SERVER_INTERFACE element has the following attributes:

Attribute
Name

Required Default Description

NAME Yes A unique name for this instance of
the server interface on this page.

CLASS Yes The name of the server interface
class.

OPERATION Yes The name of the server interface
operation on the class.

PHASE No DISPLAY The phase of the page in which the
server interface is called. This can
be DISPLAY (the default) or AC-
TION. Server interfaces set to the
DISPLAY phase are called as the
page is displayed (i.e., the execu-
tion of the JSP page).

Server interfaces set to the AC-
TION phase are only called in re-
sponse to the activation of an AC-
TION_CONTROL with a TYPE of
SUBMIT. It is recommended that
only one SERVER_INTERFACE
is set to the ACTION phase per
PAGE.

AC-
TION_ID_PR
OPERTY

No Specifies a name of the server ac-
cess bean property that will be
populated with ACTION_ID of
the action control used to make the
server call. The value of of this at-
tribute must be a valid property
name of the corresponding server
access bean. The use of shorthand
notation is allowed (for example
specify theProperty instead of
the fully qualified
dtls$theProperty).

This attribute is only valid on serv-
er interfaces with PHASE= AC-
TION and must be specified on all
server interfaces within the page or
not specified on any of them.

If multiple server interfaces spe-

Cúram Web Client Reference Manual

125

Attribute
Name

Required Default Description

cify ACTION_ID_PROPERTY
with different domains the value of
ACTION_ID on all action controls
within the page must be suitable
for all of the domains. Failing to
comply with this rule will lead to
error at runtime when the corres-
ponding action control is activated.

If this attribute is specified then
the ACTION_ID attribute of AC-
TION_CONTROL element must
also be specified.

Table 5.40 Attributes of the SERVER_INTERFACE Element

Note

It is technically possible to specify multiple SERVER_INTERFACE
elements set to the ACTION phase. However, this is not recommen-
ded. Each SERVER_INTERFACE is essentially a separate transac-
tion and when an invocation fails, no further invocations of other
server interfaces are made and completed transactions are not rolled
back.

For example, three SERVER_INTERFACE elements are defined,
each set to the ACTION phase. When the page is executed, the first
server interface invocation succeeds and the second fails. In this
scenario, the third server interface is never invoked and the action of
the first will not be rolled back.

Child Elements

The SERVER_INTERFACE element contains no child elements.

5.9.30 SOURCE

The SOURCE element defines the source end-point of a data connection.
The source can be the value of a server interface property, the value of a
parameter to the page (which must be declared via the PAGE_PARAMETER
element), or the value of an externalized string.

Attributes

The SOURCE element has the following attributes:

Cúram Web Client Reference Manual

126

Attribute
Name

Re-
quired

Default Description

NAME Yes The name of the SERV-
ER_INTERFACE instance to use as
the source of the property value, or
PAGE, if the source is the value of a
page parameter, or TEXT (or CON-
STANT) if the source is the value of
an externalized text string. TEXT or
CONSTANT can only be used when
TARGET has a server interface
defined in the ACTION phase.

PROPERTY Yes The name of the server interface
property, the name of the input page
parameter, or the string reference to
the externalized string whose value
is required.

Table 5.41 Attributes of the SOURCE Element

Child Elements

The SOURCE element contains no child elements.

5.9.31 TAB_NAME

The TAB_NAME element defines the text used for the tab in the tab bar,
where the UIM page is used as a context panel UIM page. The text is con-
structed by concatenating a number of connection sources together. These
can include localized strings and data from server interfaces.

This element only applies where the TYPE attribute of the PAGE element is
set to DETAILS. See Section 6.8.3, Context Panel UIM for more informa-
tion.

Child Elements

The TAB_NAME element can contain child elements as follows:

Element Name Cardinality / Description
CONNECT 1..n. Only CONNECT elements containing

SOURCE elements can be included (one
SOURCE per CONNECT). Sources can be
server interface properties or, with the NAME
attribute set to TEXT, references to strings
from a properties file.

DESCRIPTION 0..1 The DESCRIPTION element has the

Cúram Web Client Reference Manual

127

Element Name Cardinality / Description
same behavior as the DESCRIPTION attrib-
ute but allows the description to be built up
from a number of sources. If both are spe-
cified, this element takes precedence over the
corresponding attribute.

Table 5.42 Child Elements of the TAB_NAME Element

5.9.32 TARGET

The TARGET element defines the target end-point of a data connection. The
target can be the value of a server interface property or the value of a para-
meter to be exported from the page.

Attributes

The TARGET element has the following attributes:

Attribute Name Required Default Description
NAME Yes The name of the SERV-

ER_INTERFACE instance to use
as the target of the property value,
or PAGE, if the target is the value
of a page parameter.

PROPERTY Yes The name of the server interface
property, or the name of the output
page parameter whose value is to
be set.

Table 5.43 Attributes of the TARGET Element

Child Elements

The TARGET element contains no child elements.

5.9.33 TITLE

The TITLE element defines the title that appears at the top of a CLUSTER
or LIST element. A TITLE is constructed by concatenating a number of
connection sources together. These can include localized strings and data
from server interfaces.

Attributes

The TITLE element has the following attributes:

Cúram Web Client Reference Manual

128

Attribute
Name

Required Description

SEPARATOR No A reference to an externalized string to use as
the separator between the elements within the
container.

Table 5.44 Attributes of the TITLE Element

Child Elements

The TITLE element can contain child elements as follows:

Element Name Cardinality / Description
CONNECT 1..n. Only CONNECT elements containing

SOURCE elements can be included (one
SOURCE per CONNECT). Sources can be
server interface properties or, with the NAME
attribute set to TEXT, references to strings in
a properties file.

Table 5.45 Child Elements of the TITLE Element

5.9.34 VIEW

The VIEW element is the root element of a UIM document that defines ele-
ments to be included in a UIM page document. A view cannot include other
views using the INCLUDE element.

Attributes

The VIEW element has no attributes.

Child Elements

The VIEW element can contain child elements as follows:

Element Name Cardinality / Description
PAGE_TITLE See the PAGE element.

SHORTCUT_TITLE See the PAGE element.

SERVER_INTERFACE See the PAGE element.

MENU See the PAGE element.

ACTION_SET See the PAGE element.

PAGE_PARAMETER See the PAGE element.

CONNECT See the PAGE element.

Cúram Web Client Reference Manual

129

Element Name Cardinality / Description
JSP_SCRIPTLET See the PAGE element.

CLUSTER See the PAGE element.

LIST See the PAGE element.

SCRIPT See the PAGE element.

Table 5.46 Child Elements of the VIEW Element

5.10 UIM Reference for Widgets

5.10.1 Introduction

Widgets are used when the handling of data in the client application is too
complicated to do with the automatic domain definition recognition of the
FIELD element. Widgets allow several different sources of data to be con-
nected to a control that can then supply data to several different targets.

There are a number of predefined types of WIDGET element. Each type of
WIDGET can contain one or more WIDGET_PARAMETER elements. The
configuration of these WIDGET_PARAMETER elements depends on the type
of the widget. These are described in the sections below.

Most widget types can only be defined within CLUSTER elements
(exceptions to this are described below). There may also be restrictions on
how many widgets of a particular type can be included in a single UIM doc-
ument.

5.10.2 WIDGET

The WIDGET element is used to define the type of widget to include and it
holds the WIDGET_PARAMETER elements that configure the widget.

Attributes

The WIDGET element has the following attributes:

Attribute Name Required Default Description
TYPE Yes The type of WIDGET. This can be

one of the following:

• EVIDENCE_COMPARE

• FILE_EDIT

• FILE_UPLOAD

• MULTISELECT

Cúram Web Client Reference Manual

130

Attribute Name Required Default Description

• SINGLESELECT

• RULES_SIMULATION_EDI
TOR

• FILE_DOWNLOAD

• IEG_PLAYER

LABEL No A reference to an externalized
string that should be used as the
associated label string for this
widget.

WIDTH No The width of the control specified
in the appropriate units.

WIDTH_UNITS No PER-
CENT

The units in which the width is in-
terpreted. This can be PERCENT
to indicate the percentage of the
space available to the widget, or
CHARS to indicate the number of
visible characters wide the widget
will be.

HEIGHT No 1 A HEIGHT value that may be
used by the widget.

ALIGNMENT No DE-
FAULT

Defines the horizontal alignment
of the widget. Can be set to LEFT,
RIGHT, CENTER, or DEFAULT.
The value DEFAULT corresponds
to the CSS class default in
curam_common.css. Currently
the default is to be left aligned.

HAS_CONFIRM_
PAGE

No false Attribute to be used only on wid-
get of type of MULTISELECT.
Used to specify that the widget se-
lection data is to be submitted to
the confirmation page. Can be
true or false. See Sec-
tion 5.10.8.1, Confirmation Pages.

Table 5.47 Attributes of the WIDGET Element

Child Elements

The WIDGET element can contain the following child element:

Cúram Web Client Reference Manual

131

Element Name Cardinality / Description
WIDGET_PARAMETER 1..n. The parameters depend on the type of

widget.

Table 5.48 Child Elements of the WIDGET Element

5.10.3 WIDGET_PARAMETER

The WIDGET_PARAMETER element is used to define the properties of an
individual widget. In particular, the WIDGET_PARAMETER elements allow
connections to be made between named properties of the widget and various
source and target data end-points.

Attributes

The WIDGET_PARAMETER element has the following attribute:

Attribute Name Required Default Description
NAME Yes The name of the property on the

WIDGET that this element config-
ures.

Table 5.49 Attributes of the WIDGET_PARAMETER Element

Child Elements

The WIDGET_PARAMETER element can contain the following child ele-
ment:

Element Name Cardinality / Description
CONNECT A WIDGET_PARAMETER can be connected

in one of two ways depending on the spe-
cification for the particular WIDGET. The
first way is similar to that of FIELD ele-
ments:

1..n. The parameter can contain multiple
CONNECT elements. Usually (the
FILE_DOWNLOAD WIDGET is an exception
to this) a WIDGET_PARAMETER contains up
to three CONNECT elements, SOURCE, TAR-
GET, and INITIAL connection end-points.
The valid types of source or target depend on
the individual parameter.

The second way to connect a parameter is
similar to the CONNECT elements in a LINK
element.

Cúram Web Client Reference Manual

132

Element Name Cardinality / Description

1..n. CONNECT elements that each connect a
SOURCE end-point to a TARGET end-point.

Table 5.50 Child Elements of the WIDGET_PARAMETER Element

5.10.4 The EVIDENCE_COMPARE Widget

The EVIDENCE_COMPARE widget displays the differences between two
sets of evidence. These differences are high-lighted using the following col-
ors: evidence items that have changed are shown in red; new items are
shown in green; deleted items are shown in gray.

This widget should be the sole element in a CLUSTER. Its TYPE should be
set to EVIDENCE_COMPARE and its WIDGET_PARAMETER elements
should be set as follows:

Parameter Name Required Description and Connec-
tions

OLD_EVIDENCE Yes This parameter must include a
single CONNECT element that
must specify a SOURCE end-
point.

The SOURCE end-point
should specify a property of
the EVIDENCE_TEXT do-
main that contains the original
evidence.

NEW_EVIDENCE Yes This parameter must include a
single CONNECT element that
must specify a SOURCE end-
point.

The SOURCE end-point
should specify a property of
the EVIDENCE_TEXT do-
main that contains the new
evidence.

Table 5.51 Parameters to the EVIDENCE_COMPARE Widget

5.10.5 The FILE_EDIT Widget

The FILE_EDIT widget allows a user to edit a Microsoft Word® docu-
ment on their local computer and then save it to the server. A document can
be created automatically from a template where the template details can be

Cúram Web Client Reference Manual

133

set before the document is presented to the user for editing.

A UIM page containing the FILE_EDIT widget will only operate in the
main content panel of the application. If such page is opened in a modal
window then the modal will close immediately and the page will be loaded
in the main content panel.

The widget uses a Java applet to manage the interaction between the user's
browser and Word. Only the source and target documents and the template
details are required. If key details, or other data, are required by the server
interfaces that handle the document, these should be provided by page para-
meters and page-level connections.

Each time the document is saved in Word, the submit button for the page is
activated automatically. This triggers the ACTION phase but returns to the
same page rather than opening the page linked to by the submit button. Only
when the Word document is closed will the next page be opened. This beha-
vior requires that the server interface for the ACTION phase allows multiple
invocations for the same editing session and that it saves the document to
the database on each invocation.

The first time the Word document is loaded successfully with the template
details, it is automatically saved to the server before further editing.

When editing the document, the user has the option to save it. This triggers
the normal saving behavior and the page will not be changed when the AC-
TION phase completes. After the document has been closed, the ACTION
phase will be triggered again to open the next page, but this time the server
interface will not be invoked and the document (which has already been
saved) will not be saved again. Because the server interface is not invoked,
it is not permitted to use any property of the ACTION phase server interface
in a SOURCE connection of the submit button's LINK element. Typically,
the submit button will return to the previous page and will not need a LINK
element, so this limitation should have little impact.

Using the FILE_EDIT widget is simple. The WIDGET element should have
the TYPE attribute set to FILE_EDIT. Two WIDGET_PARAMETER ele-
ments are required:

Parameter Name Required Description and Connec-
tions

DOCUMENT Yes Defines the source document
(usually a template) and the
target to which to write the
saved document. The para-
meter must contain a CON-
NECT element with a
SOURCE set from a DIS-
PLAY phase sever interface
and a TARGET set from an
ACTION phase sever inter-
face. Both fields should be

Cúram Web Client Reference Manual

134

Parameter Name Required Description and Connec-
tions
Word documents.

The data-type for both the
source and target document
must be SVR_BLOB.

DETAILS Yes The template details that
should be set in the document
before presenting it to the user
for editing. The parameter
must contain a CONNECT ele-
ment with a SOURCE set from
a DISPLAY phase sever inter-
face. The details are in XML
format, described below.

The data-type for the template
details must be SVR_BLOB.

Table 5.52 Parameters to the FILE_EDIT Widget

The template details must be provided in a simple XML format. An example
of the format is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<FIELDS>

<FIELD NAME="personName" VALUE="John Smith"/>
<FIELD NAME="AddressLine1" VALUE="1 Main Street"/>
<FIELD NAME="AddressLine2" VALUE="Newtown"/>
<FIELD NAME="AddressLine3" VALUE="Erehwon"/>

</FIELDS>

Example 5.14 Sample Template Details

It is recommended that your XML uses UTF-8 encoding to handle multi-
byte characters. To preserve the correct encoding it is important that any
code that manipulates the XML honors the encoding of the document. If the
encoding is not honored, this can lead to characters being displayed incor-
rectly when opened in Microsoft®Word .

Each FIELD element identifies the name of a field in the document tem-
plate and the value to which it should be set.

While editing the document in Word, navigation within the originating
browser window is disabled. An alert message will be displayed if any at-
tempt is made to navigate from the page. If the originating browser window
is closed, the Word document will stay open, but the editing session will be
terminated. Any unsaved changes will not be persisted in database.

User Machine Configuration

Cúram Web Client Reference Manual

135

On first use of a new version of the integration applet the user will be
presented with a popup dialog window to confirm if the code from publisher
"IBM Corporation" should be allowed to run. The checkbox "Always trust
the content from this publisher" should be selected and dialog confirmed,
which will ensure the widget executes successfully and the prompt is not
displayed again on subsequent uses. New versions of the widget will be
downloaded to the user's machine automatically when the Cúram applica-
tion is upgraded to a new version.

When a user attempts to edit a Word document, execution of the integration
applet may be blocked depending on security settings of the Java browser
plugin on that particular machine. This causes the editing session to fail. If
you experience this kind of issues issues, please check the following:

• Microsoft Word 2002 or higher should be installed on the user's ma-
chine.

• Word installation should be working as expected on the user's machine
when started manually.

• The Web browser Popup blocker feature on the user's machine should be
disabled.

• For supported browsers other than Internet Explorer if you are getting a
message about the missing Java plugin even though it is installed on the
machine, verify the following option is enabled:Control Panel -> Java ->
Advanced -> Default Java for browsers-> Mozilla family

• Generally if you are getting message about the missing Java plugin even
though it is installed on the machine, check if a slide-down message is
displayed in the small popup window that opens when you attempt to
edit a Word document. If so, then confirm that you want to always run
code from this publisher and reload the application in the browser.

5.10.6 The FILE_UPLOAD Widget

The FILE_UPLOAD widget is a type of widget used to allow a user to spe-
cify a file on their local computer to be uploaded to the server. It will appear
as a text field with a Browse... 2 button beside it. The user can click on the
button to open a file dialog box with which they can select their file.

The normal widget attributes WIDTH and WIDTH_UNITS are not applic-
able for the FILE_UPLOAD widget. Some browsers do not allow width of
the filename entry box to be set for security reasons (it could be set to zero
width and thus be hidden while remaining active).

File Size Validation

There are settings to limit the maximum size of a file that is allowed
to be uploaded. The validations for these settings are carried out on
the server side after the file is fully uploaded to a temporary direct-
ory. Therefore, it should be kept in mind that large files could be up-

Cúram Web Client Reference Manual

136

loaded consuming a large amount of disk space. We recommend
checking the file upload folder at intervals to ensure disk space us-
age meets requirements.

There are three application-level configuration settings for the
FILE_UPLOAD widget. These control how the web-server handles the in-
coming files. Default settings are already present, but the default values can
be overridden by adding configuration settings to the ApplicationCon-
figuration.properties file. The settings follow the same name =
value format of all the other entries there. The settings are as follows:

uploadMaximumSize

This is the maximum size of a file that can be uploaded to the server.
The number is specified in bytes. If the number is negative, there is no
limit to the file size. By default, the value is -1 (no limit).

uploadThresholdSize

This is maximum number of bytes of the file's content that the web-
server will hold in memory while the file is being uploaded. Once the
number of bytes uploaded exceeds this limit, the web-server will begin
to store the file on disk to save memory. By default, the value is 1024.

uploadRepositoryPath

This is the path to the folder on the disk in which the files will be stored
as they are uploaded if they exceed the threshold size. By default, the
value is the JVM defined temp folder, so this folder must be present on
your system. If it is not on your system, you can create it or explicitly
set the uploadRepositoryPath to a folder of your choice.

The WIDGET element should have the TYPE attribute set to
FILE_UPLOAD. The widget supports the following WID-
GET_PARAMETER elements:

Parameter Name Required Description and Connections
CONTENT Yes This parameter indicates the target

connection for the actual content of
the uploaded file.

A single CONNECT element with a
TARGET that connects to a property of
an ACTION phase server interface is
required.

FILE_NAME No This parameter represents the name of
the file to be uploaded. The parameter
can be set to provide a default name
for the file to be uploaded, and can
also supply the name of the file chosen
by the user.

If present, the parameter can include
CONNECT elements for either or both

Cúram Web Client Reference Manual

137

Parameter Name Required Description and Connections
end-points: a SOURCE end-point for
the initial name of the file, and a
TARGET end-point for the file that
was actually chosen. The SOURCE
end-point can specify a property of a
DISPLAY phase server interface. The
TARGET end-point can specify a prop-
erty of an ACTION phase server inter-
face.

Note: Many browsers do not allow a
default value for the name of a file to
be uploaded. In this case, setting a
SOURCE connection will have no ef-
fect.

CONTENT_TYPE No This parameter indicates the target
connection for the content type of the
uploaded file. The content type de-
scribes the format of the uploaded
data. For example, a simple text file
would have a content type of
“text/plain” and a Microsoft Word
document would have a content type
of “application/msword”.

A single CONNECT element with a
TARGET that connects to a property of
an ACTION phase server interface is
required.

ACCEPT-
ABLE_CONTENT_TYP
ES

No A HTML page only allows certain
types of content to be uploaded by de-
fault (the actual default types are de-
pendent on the browser). This para-
meter can specify the types of content
that the page will accept. The value of
the parameter should be a comma-
separated list of content types. If there
is more than one FILE_UPLOAD wid-
get on a page, the acceptable content
types of all widgets are pooled togeth-
er and define what is acceptable for
that page (this is a limitation of the
HTML specification.)

A single CONNECT element with a
SOURCE that connects to a TEXT
property is allowed.

Cúram Web Client Reference Manual

138

Table 5.53 Parameters to the FILE_UPLOAD Widget

5.10.7 The FILE_DOWNLOAD Widget

A WIDGET with the TYPE set to FILE_DOWNLOAD results in the genera-
tion of a hyperlink on the page. Clicking on the hyperlink invokes a special
FileDownload servlet included in the Cúram CDEJ that returns the con-
tents of a file from the database. The FileDownload servlet is configured
with the server interface to call to get the file contents and the parameters to
pass to identify that file. The configuration is performed in the curam-
config.xml file. An example configuration is shown in Section 5.9.3.1,
File Downloads. A single server interface can be configured for each page
of the application that includes a file download widget. An example config-
uration is shown in Example 5.2, Example Configuration for File
Download.

An ACTION_CONTROL with the TYPE set to FILE_DOWNLOAD can also
be used to generate a hyperlink to download a file. You should use the AC-
TION_CONTROL element when the hyperlink text is a fixed value retrieved
from the page's corresponding properties file. The FILE_DOWNLOAD WID-
GET allows the hyperlink text to be a dynamic value retrieved from a server
interface property.

The FILE_DOWNLOAD widget can also be utilized within the Actions menu
of the Context Panel. The menu item TYPE must be set to
FILE_DOWNLOAD. The menu item PAGE-ID must match the PAGE_ID
attribute of the FILE_DOWNLOAD widget configuration. The file identifier
must be available as a page parameter in the respective .tab file for the
menu. This page parameter must match the PAGE_PARAM attribute of the
FILE_DOWNLOAD widget configuration.

The WIDGET element should have the TYPE attribute set to
FILE_DOWNLOAD. The widget supports the following WID-
GET_PARAMETER elements:

Parameter Name Required Description and Connections
LINK_TEXT Yes This parameter indicates the source

connection for sourcing content of the
link text which will appear on the
screen.

A single CONNECT element with a
SOURCE that connects to a property of
a DISPLAY phase server interface is
required. If you want to use a fixed
text value, you should use an AC-
TION_CONTROL with the TYPE set
to FILE_DOWNLOAD instead of a
WIDGET.

PARAMS No This optional parameter supplies the

Cúram Web Client Reference Manual

139

Parameter Name Required Description and Connections
FileDownload servlet with the ne-
cessary parameters.

The parameter can include CONNECT
elements with a SOURCE end-point for
the page parameter supplying a value
for the FileDownload servlet, and
a TARGET end-point for specifying
the servlet parameter to supply the
value to. The SOURCE end-point
should refer to a parameter on the page
declared by a corresponding
PAGE_PARAMETER element. The
TARGET end-point can specify a para-
meter whose name corresponds to a
configured FileDownload servlet
parameter name. Thus both end-points
should have a NAME attribute set to
PAGE.

Table 5.54 Parameters to the FILE_DOWNLOAD Widget

5.10.8 The MULTISELECT Widget

The MULTISELECT widget allows you to specify that the first column in a
LIST should contain a check-box on each row and to allow several rows to
be selected. A “Select All” feature can be enabled which displays a check-
box in the column header. See Section 3.12.13.14, EN-
ABLE_SELECT_ALL_CHECKBOX for further details.

Each check box can represents multiple entities in the row. For each check
box that is selected, the fields on that row will be compiled into a “|” delim-
ited string and each row will be tab delimited and passed as a page paramet-
er when a specific type of page link is activated.

The UIM document in Example 5.15, MULTISELECT Example is an ex-
ample of a page with multiple rows with check boxes. When the form is
submitted, a single string, containing multiple fields for each selected row,
is passed to the in$tabbedString field on the target page. Following
the UIM is a detailed description of each relevant part of the UIM that im-
plement this functionality.

<PAGE PAGE_ID="MultiSelectWidgetTest"
xsi:noNamespaceSchemaLocation="CuramUIMSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SERVER_INTERFACE NAME="DISPLAY" CLASS="MyBean"
OPERATION="Display" PHASE="DISPLAY"/>

<SERVER_INTERFACE NAME="ACTION" CLASS="MyBean"
OPERATION="Submit" PHASE="ACTION"/>

Cúram Web Client Reference Manual

140

<LIST TITLE="List.Title">
<ACTION_SET BOTTOM="false">
<ACTION_CONTROL TYPE="SUBMIT">

<LINK PAGE_ID="MultiSelectWidgetResult">
<CONNECT>

<SOURCE NAME="ACTION"
PROPERTY="in$tabbedString"/>

<TARGET NAME="PAGE"
PROPERTY="referenceNumTabString"/>

</CONNECT>
</LINK>

</ACTION_CONTROL>
</ACTION_SET>
<CONTAINER LABEL="List.Multiselect.Header" WIDTH="5"

ALIGNMENT="CENTER">
<WIDGET TYPE="MULTISELECT"

HAS_CONFIRM_PAGE="true">
<WIDGET_PARAMETER NAME="MULTI_SELECT_SOURCE">

<CONNECT>
<SOURCE PROPERTY="personID" NAME="DISPLAY"/>

</CONNECT>
<CONNECT>

<SOURCE PROPERTY="caseID" NAME="DISPLAY"/>
</CONNECT>

</WIDGET_PARAMETER>
<WIDGET_PARAMETER NAME="MULTI_SELECT_TARGET">

<CONNECT>
<TARGET PROPERTY="in$tabbedString" NAME="ACTION"/>

</CONNECT>
</WIDGET_PARAMETER>
<WIDGET_PARAMETER NAME="MULTI_SELECT_INITIAL">

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="out$tabString"/>

</CONNECT>
</WIDGET_PARAMETER>

</WIDGET>
</CONTAINER>
<FIELD LABEL="Field.Title.ReferenceNumber" WIDTH="35">
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Title.Forename" WIDTH="30">
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="firstName"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Title.Surname" WIDTH="30">
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="surname"/>
</CONNECT>

</FIELD>
</LIST>

</PAGE>

Example 5.15 MULTISELECT Example

The main points to note in the above UIM example are:

• The WIDGET of TYPE equal to MULTISELECT is a child node of a
CONTAINER element. The container's label will be used as the column
header unless the select all check box is enabled in curam-con-
fig.xml. See Section 3.12.13.14, EN-
ABLE_SELECT_ALL_CHECKBOX for further details.

• Up to three WIDGET_PARAMETER elements are allowed within the
WIDGET element. MULTI_SELECT_SOURCE and

Cúram Web Client Reference Manual

141

MULTI_SELECT_TARGET are mandatory and
MULTI_SELECT_INITIAL is optional.

• The MULTI_SELECT_SOURCE can have multiple CONNECT elements,
each with one SOURCE element. Each SOURCE is added to the “|” de-
limited string. If only one SOURCE element is specified the string will
not contain any “|” delimiters. Then each select row will be delimited
by a tab character.

• The MULTI_SELECT_TARGET element must contain only one CON-
NECT element with only one TARGET element. This TARGET element
specifies the field on the action phase bean that the “|” and tab-
delimited string will be assigned to when the page is submitted.

• The MULTI_SELECT_INITIAL contains only one CONNECT element
with a single SOURCE element. This contains a “|” and tab-delimited
string which specifies the rows that are selected when the page is loaded.

• In the LIST element the ACTION_SET has one ACTION_CONTROL
element.

• Optional HAS_CONFIRM_PAGE attribute is used to indicate that the
page with MULTISELECT widget submits to a confirmation page,
where user selection is re-displayed for confirmation. See Sec-
tion 5.10.8.1, Confirmation Pages

Below is an example of the delimited string passed as a parameter to the
specified page.

101|case121 102|case122 103|case123

Parameter Name Required Description and Connec-
tions

MULTI_SELECT_SOURCE Yes This parameter can include
multiple CONNECT elements
that must specify a SOURCE
end-point.

The SOURCE end-point must
be a list property containing
the key data for the row.

MULTI_SELECT_TARGET Yes This parameter must include
one CONNECT element that
must specify a TARGET end-
point.

The TARGET end-point must
be a string property contain-
ing the key data for selected
rows.

MULTI_SELECT_INITIAL No This parameter must include

Cúram Web Client Reference Manual

142

Parameter Name Required Description and Connec-
tions
one CONNECT element that
must specify a SOURCE end-
point.

The SOURCE end-point must
be a string property contain-
ing the key data for the rows
that are initially check when
page is loaded.

Table 5.55 Parameters to the MULTISELECT Widget

Confirmation Pages

MULTISELECT widget has a specific mechanism allowing for confirming
user selection on a separate page. This confirmation page is supposed to re-
display values selected by an user on the MULTISELECT widget offering a
choice to review these values and confirm them or re-visit the previous page
to refine the selection.

Confirming user selection can become a problem where there is a lot of se-
lected values from a big MULTISELECT widget to be passed to the con-
firmation page. There are request length limitations in place, so in order to
pass bigger amounts of data possible in this case different request mechan-
ism (request forwarding) has to be used.

MULTISELECT widget with the selection to be confirmed is specified by
HAS_CONFIRM_PAGE optional attribute on the WIDGET element. The at-
tribute is to be set to true. It is only valid for a widget of TYPE of
MULTISELECT.

Some things to keep in mind with confirmation pages:

• As request forwarding is used to carry the data in this case, the URL for
the confirmation page will not be displayed with the forwarding page
URL shown instead.

• Even though the mentioned attribute is set on a MULTISELECT widget,
the setting applies to the whole page (as there is only one form per
page). So, in case where multiple submit buttons exist on a page with
MULTISELECT widget to be confirmed, a confirmation step should be
assumed for all of these buttons (i.e., there is no way to have a submit
with confirmation and another without confirmation on that page).

• The confirmation is to be the immediate step carried out on submitting
the form with user selection; no resolve page should be used in the
middle.

• It is recommended to have a read-only page for user selection confirma-

Cúram Web Client Reference Manual

143

tion, allowing user to cancel and return to the previous page if the selec-
tion is to be refined.

5.10.9 The SINGLESELECT Widget

The SINGLESELECT widget allows you to specify that the first column in
a LIST should contain a radio button on each row. This widget functions in
same way as the MULTISELECT widget, except you are limited to selecting
a single item via radio buttons instead of check boxes. See Section 5.10.8,
The MULTISELECT Widget for further details.

Parameter Name Required Description and Connec-
tions

SELECT_SOURCE Yes This parameter must include
multiple CONNECT elements
that must specify a SOURCE
end-point.

The SOURCE end-point must
be a list property containing
the key data for the rows to be
displayed.

SELECT_TARGET Yes This parameter must include
one CONNECT element that
must specify a TARGET end-
point.

The TARGET end-point must
be a string property contain-
ing the key data for selected
row.

SELECT_INITIAL No This parameter must include
one CONNECT element that
must specify a SOURCE end-
point.

The SOURCE end-point must
be a string property contain-
ing the key data for the row
that is initially checked when
page is loaded.

Table 5.56 Parameters to the SINGLESELECT Widget

5.10.10 The RULES_SIMULATION_EDITOR Widget

The RULES_SIMULATION_EDITOR widget is used to edit or create data
used when simulating the execution of a rule-set. The widget generates

Cúram Web Client Reference Manual

144

clusters of fields that correspond to the fields of Rules Data Objects (RDO).
A normal cluster is used to display the fields of a basic RDO and a multi-
column cluster is used for a list RDO. A standard list is not used, as a list
RDO with many fields would result in a list that had too many columns to
be displayed on the screen.

The user can enter or modify values on the page corresponding to the RDO
fields and, for list RDOs displayed in a multi-column cluster, press a button
to create additional columns for field values.

The WIDGET element should have the TYPE attribute set to
RULES_SIMULATION_EDITOR. The parameters to the widget are as fol-
lows:

Parameter Name Required Description and Connec-
tions

VALUES Yes The simulation data values. A
previous set of values can be
displayed and edited or a new
set of values can be created.

The parameter should contain
a CONNECT element with a
SOURCE set to a DISPLAY
phase bean field containing
the values and a TARGET set
to an ACTION phase bean
field that will receive the ed-
ited values. If the SOURCE
has no values set, the editor
will create them.

META_DATA Yes The simulation meta-data.
The meta-data contains details
about the structure of the
RDOs necessary to generated
the input fields.

The parameter should contain
a CONNECT element with a
SOURCE set to a DISPLAY
phase bean field containing
the meta-data.

ADD_BUTTON_CAPTION Yes The caption to use on the but-
ton displayed at the bottom of
each multi-column cluster and
used to add a new column of
extra data to a list RDO. If an
image is also specified, this
caption is used as the “alt”
text of the image.

Cúram Web Client Reference Manual

145

Parameter Name Required Description and Connec-
tions

The parameter should contain
a CONNECT element with a
SOURCE that gets a localized
string from a TEXT source.

ADD_BUTTON_IMAGE No The path to the image file to
use if an image button is to be
used in place of a standard
button. The path is relative to
the WebContent folder.

The parameter should contain
a CONNECT element with a
SOURCE that gets a localized
string from a TEXT source.

Table 5.57 Parameters to the RULES_SIMULATION_EDITOR
Widget

The widget should be placed in a CLUSTER element. The clusters for the
RDOs will be rendered within that cluster. The SHOW_LABELS attribute
should be set to false. The LABEL_WIDTH attribute of the CLUSTER
element will be inherited by the clusters that are generated by the widget, so
it can be used to control the layout. An ACTION_CONTROL element in the
cluster or on the page should be added to save and process the simulation
data created by the widget in the usual manner.

When a widget is not supplied with any simulation data values, it will dis-
play empty fields. For list RDOs, a single empty column of fields will be
displayed; values can be entered and more columns added as needed. If val-
ues are supplied, they will be displayed. In a multi-column cluster, pressing
the defined “add” button will add a single empty column to the right of any
existing columns. All other empty columns will be removed at this time, so
deleting the values in one or more columns has the effect of removing those
columns from the multi-column cluster.

5.10.11 The IEG_PLAYER Widget

Consult the Cúram Intelligent Evidence Gathering (IEG) guide for details.

5.11 Dynamic UIM Cross Reference

Dynamic UIM as its name implies, is UIM that is cached in the resource
store - rather than static UIM (described in earlier sections) which resides on
the file system - so that the server and client do not have to be rebuilt in or-
der for a page to be displayed in an application. All string values in dynamic

Cúram Web Client Reference Manual

146

UIM documents must be externalized in properties files, which must also be
cached in the resource store.

When creating a dynamic UIM document, only the PAGE element is a valid
root element. All the UIM features (elements and attributes) referenced in
Section 5.9, UIM Reference for Pages and Views are supported for dynamic
UIM, except for those which are listed in Appendix A, Unsupported Dy-
namic UIM features.

Refer to Appendix B, Maintaining Dynamic UIM Pages on details about
how to maintain dynamic UIM pages in the Resource Store.

5.12 Dynamic UIM System Initialization

There are two ways in which the Dynamic UIM system can be initialized;
when the application is started, or the first time that there is a request for a
Dynamic UIM page in the running application. By default the Dynamic
UIM system is initialized when the application is started. In order to over-
ride the default initialization of the Dynamic UIM system - so that it is ini-
tialized when a Dynamic UIM page is first requested - a configuration set-
ting can be added to the ApplicationConfigura-
tion.properties file. This settings follows the same name = value
format of all the other entries there. It should be set as follows:

dynamicUIMInitModelOnStart

This value should be set to false in order to override the default set-
ting.

If a developer intends to access dynamic UIM pages in the application, then
the default initialization of the dynamic UIM system must be used. Other-
wise, if the developer is not using dynamic UIM pages and finds their Tom-
cat start-up time is too slow, the default initialization of the dynamic UIM
should be overridden, as described above.

Cúram Web Client Reference Manual

147

Notes
1The reserved characters in XML are “'”, “"”, “&”, “<”, and “>”. The re-
spective XML character entities are “'”, “"”, “&”,
“<”,and “>”.
2The actual appearance of the button depends on the browser being used and
may be different from this. The button is created by the browser and there is
no control over its appearance.

Cúram Web Client Reference Manual

148

Chapter 6

Application Configuration

6.1 Objective

This chapter provides you with all the information about application config-
uration files required to develop Cúram web client applications.

6.2 Prerequisites

You should be familiar with the basic concepts of Cúram CDEJ develop-
ment, as outlined in Chapter 2, Concepts, in addition to the Cúram User Ex-
perience Guidelines. You should also have some knowledge of the basic
format of XML documents.

In addition, the Working with the Cúram User Interface guide is a compan-
ion guide to this document and illustrates the usage of the features outlined
in this chapter using concrete examples.

6.3 Introduction

An application in the Cúram user interface is a collection of user interface
elements, predominantly based on UIM. 1 pages, combined to create specif-
ic content for a particular user or role. An application comprises of an ap-
plication banner and one or more application sections. Each section, con-
tains an optional section shortcut panel and one or more tabs. A tab repres-
ents a business object or logical grouping of information.

149

Figure 6.1 Application User Interface Overview

Figure 6.1, Application User Interface Overview illustrates a functional
overview of the User Interface Elements within a sample application page.

The following sections of this chapter outline how to develop an applica-
tion, using the relevant XML configuration files.

6.4 Configuration Files

Applications, sections, tabs and their relevant elements are defined using
XML based configuration files. These files are located in the
<server-dir>\components\<component-name>\clientapps
directory. Section 3.12.12, Application Configuration Files should be con-
sulted for more information on the clientapps directory, and best prac-
tices for working with application configuration files.

Each configuration file has a specific extension and an associated schema
file detailing the supported attributes. A summary of the file extensions and
related schema files is available in Table 6.1, Configuration Files.

File
Ex-
ten-
sion

Schema File Description

.app application-view.xsd Configuration file to define an ap-
plication, including the application
banner, referenced sections and ap-
plication search.

.sec section.xsd Configuration file to define the refer-
enced tabs and section shortcut panel
in a section.

.ssp section-shortcut-panel.xsd Configuration file to define the con-
tents of a section shortcut panel.

Cúram Web Client Reference Manual

150

File
Ex-
ten-
sion

Schema File Description

.tab tab.xsd Configuration file to define a tab, in-
cluding the context panel and refer-
enced navigation and actions menu.

.nav navigation.xsd Configuration file to define the con-
tent of a tab navigation bar.

.mnu menubar.xsd Configuration file to define the con-
tent of a tab actions menu.

Table 6.1 Configuration Files

The schema files are all located in the <sdej-dir>\lib directory and
can be used during development for validation in any XML editor.

The configuration files for applications, sections and tabs are processed as
part of the database target and stored on the database for use at runtime. A
standalone target, inserttabconfiguration, is also available for processing
the configuration files only. This command is useful during development
because it is more efficient than the full database target. For more informa-
tion on these targets please consult the Cúram Server Developers Guide.

The inserttabconfiguration validates all the configuration files, ensuring
that they conform to the XML schema, in addition to ensuring that all man-
datory elements and attributes are specified. All files are processed before
the build fails, listing all validation errors.

6.5 Applications

6.5.1 Introduction

An application is a particular view of the Cúram client defined for a specific
user or role. The application definition file details the application banner
and a reference to the sections that are part of the application.

An application banner provides the user with the context of the application
they are currently accessing. The banner contains the following elements:

• The name of the application. Refer to User Interface Element 1.1 in
Figure 6.1, Application User Interface Overview to see an example of an
application name configured in the User Interface.

• The role of the user that this application is intended for.

• A welcome message for the user. Refer to User Interface Element 1.2
in Figure 6.1, Application User Interface Overview to see an example of

Cúram Web Client Reference Manual

151

a welcome message configured in the User Interface.

• An application menu, which includes links to the User Preferences dia-
log, application help, the about box, and to logout of the application.
Refer to User Interface Element 1.3 in Figure 6.1, Application User In-
terface Overview to see an example of an application menu configured
in the User Interface.

• A quick search facility for the application. Refer to User Interface Ele-
ment 1.4 in Figure 6.1, Application User Interface Overview to see an
example of an application search configured in the User Interface.

The application search is an optional addition to the application banner
which provides a quick search facility. The application search supports:

• A text entry field where the user can enter their search criteria.

• An optional search type combo box, which lists the types of object
which can be searched on.

• A search button to trigger the actual search.

• An optional link to more search options.

Refer to User Interface Element 1.4 in Figure 6.1, Application User Inter-
face Overview to see an example of a fully configured application search in
the User Interface. This example has both the optional serach type combo
box, and optional link with more serach options enabled

6.5.2 Definition

An application is defined by creating an XML file with the extension .app
in the clientapps directory. The root XML element in the .app file is
the application element and the attributes allowed on this element are
defined in Table 6.2, Attributes of the application Element. The application
banner is configured using these attributes.

Attribute Description
id Mandatory.

The unique identifier for the application, which
must match the name of the file. This id matches to
an APPLICATION_CODE entry and is used to de-
termine the application to display for a particular
user.

See Section 6.5.5, Associate an Application with
User for more information.

title Optional.
The text for the title that will be displayed as part of
the application banner. The attribute must reference
an entry in the associated properties file.

Cúram Web Client Reference Manual

152

Attribute Description
sub-title Optional.

The text for the subtitle that will be displayed as part
of the application banner. The attribute must refer-
ence an entry in the associated properties file.

user-message Optional.
The text for the welcome message that will be dis-
played as part of the application banner. The attrib-
ute must reference an entry in the associated proper-
ties file.

The text can contain a placeholder,
%user-full-name, which will be replaced with
the users full name. The full name is determined
based on the FirstName and Surname fields on
the Users database table.

hide-tab-container Optional.
When set to true, this indicates that there is only one
section in the application and the section tab should
not be displayed. The default is false.

header-type Optional.
This indicates that an additional header is to be used
and what type of content will be provided. The val-
ues supported are static and dynamic.

See Section 6.5.3, Optional Header for more in-
formation.

header-source Optional.
A reference to the source that will be used as an ad-
ditional header. The value of this depends on the
value of header-type. For static content, the at-
tribute should reference a filename of a file in the re-
source store. For dynamic content, the attribute
should reference a custom widget.

See Section 6.5.3, Optional Header for more in-
formation.

Table 6.2 Attributes of the application Element

The application element supports the child elements detailed in Ta-
ble 6.3, Supported Child Elements of the application Element.

Element Description
section-ref 1..n.

The application must contain a minimum of
one section-ref element. Each section-ref
element references a section to be included in the

Cúram Web Client Reference Manual

153

Element Description
application. See Section 6.5.2.3, section-ref for more
information.

application-menu Optional.
Allows for the optional addition of links to the ap-
plication banner. The links supported include the
user preferences editor, application logout and help.
See Section 6.5.2.1, application-menu for more in-
formation.

application-search Optional.
Allows for the optional addition of a quick search
facility on the application banner. See Sec-
tion 6.5.2.2, application-search for more informa-
tion.

Table 6.3 Supported Child Elements of the application Element

application-menu

The application menu forms part of the application banner, and allows for
the optional addition of up to three links, specifically a link to the applica-
tion help, a link to logout of the application and a link to open the user pref-
erences dialog. Refer to User Interface Element 1.3 in Figure 6.1, Applica-
tion User Interface Overview to see an example of an application menu con-
figured in the Application Banner.

Each link is defined as a child element of application-menu element
and the supported elements are detailed in Table 6.4, Supported Child Ele-
ments of the application-menu Element.

Element Description
preferences Optional.

Defines a link to the user preferences dialog. This
dialog allows a user to configure customizations for
the application view.

The title of the preferences link is defined using
the supported title attribute. The value of the
title attribute should be a reference to an entry in
the associated properties file.

help Optional.
Defines a link to the general help for the Cúram ap-
plication.

The title of the help link is defined using the sup-
ported title attribute. The value of the title at-
tribute should be a reference to an entry in the asso-
ciated properties file.

Cúram Web Client Reference Manual

154

Element Description
logout Optional.

Defines a link to allow a user to end their session
and logout of the application.

The title of the logout link is defined using the
supported title attribute. The value of the title
attribute should be a reference to an entry in the as-
sociated properties file.

Table 6.4 Supported Child Elements of the application-menu
Element

application-search

Refer to User Interface Element 1.4 in Figure 6.1, Application User Inter-
face Overview to see an example of a fully configured application search in
the User Interface.

The application search, is defined using the application-search ele-
ment. In its simplest form, the application-search element requires
two attributes, which are used when there is only one type of search and no
combo box is to be displayed:

Attribute Description
default-search-page Optional.

A reference to the UIM page that will be displayed
when the search button is clicked.

When this attribute is used, it is assumed there is
only one type of search and no search type combo
box is displayed.

initial-text Optional.
The text to be displayed in the text entry field as a
prompt. This text should describe what type of in-
formation can be provided for the search, e.g. Enter
a participant reference number.

The attribute must reference an entry in the associ-
ated properties file.

Table 6.5 Attributes of the application-search Element

The application-search element supports two child elements, de-
tailed in Table 6.6, Supported Child Elements of the application-search Ele-
ment, which are used for more complex style searches.

Element Description
search-pages Optional.

Cúram Web Client Reference Manual

155

Element Description
Defines multiple types of search. See Sec-
tion 6.5.2.2.1, search-pages for more information.

further-options-link Optional.
Defines a link to a more advanced search page. See
Section 6.5.2.2.2, further-options-link for more in-
formation.

Table 6.6 Supported Child Elements of the application-search
Element

search-pages

The search-pages element is used when multiple search types are re-
quired, e.g. Person, Case, or types of search, e.g. Person Surname, Person
Reference Number. Each search type is listed in a combo box and a differ-
ent prompt is displayed in the text entry field depending on the selected
entry in the combo box.

The search-pages element supports the child elements detailed in Ta-
ble 6.7, Supported Child Elements of the search-pages Element.

Element Description
search-page 1..n.

Defines a single search type. The attributes of the
search-page element are defined in Table 6.8,
Attributes of the search-page Element.

Table 6.7 Supported Child Elements of the search-pages Element

Note

Where the search-pages element is used to define multiple
types of search, the initial-text and default-
search-page must not be specified.

Attribute Description
type Mandatory.

The unique identifier for the type of search. It will
be passed as a parameter (searchType) to the
UIM page invoked when the application search is
performed.

description Mandatory.
The text to be displayed for the search option in the
combo box. The attribute must reference an entry in
the associated properties file.

page-id Mandatory.

Cúram Web Client Reference Manual

156

Attribute Description
A reference to a UIM page that will be displayed
when the search button is clicked.

initial-text Mandatory.
The text to be displayed as a prompt in the text entry
field when that business object is selected in the
combo box. The attribute must reference an entry in
the associated properties file.

default Optional.
A boolean indicating if this entry is the default entry
to be selected in the combo box. One, and only one,
entry should have the default specified as true.

Table 6.8 Attributes of the search-page Element

Note

Blank values are not allowed in the search type combo box, so if the
user requires a generic search (i.e. across all business objects), they
must provide configuration data for this. For example, a business
object of "All" linked to a page that will carry out the search across
all the business objects that have been defined.

Search pages are linked using a reference to the UIM page to be opened
when the search button is clicked. The UIM pages defined for a search can
expect a number of parameters to be passed to them and used as part of the
search:

• searchText. The search text that has been entered in the text entry field.

• searchType. The selected search type. This is only applicable where
multiple search types have been defined.

For more information on creation of UIM pages see Chapter 5, UIM Refer-
ence

further-options-link

In addition to multiple search types, the application search also supports a
link to a more advanced search page. This is specified using the further-
options-link element, which requires the following attributes:

Attribute Description
description Mandatory.

The text of the link. The attribute must reference an
entry in the associated properties file.

page-id Mandatory.
A reference to a UIM page that will be displayed
when the link is clicked. This UIM page should re-

Cúram Web Client Reference Manual

157

Attribute Description
quire no page parameters.

Table 6.9 Attributes of the further-options Element

section-ref

An application must reference a minimum of one, and up to a maximum of
five sections, using the section-ref element. See Section 6.6, Sections
for more information.

Attribute Description
id Mandatory.

The id of a section configuration file (.sec).

Table 6.10 Attributes of the section-ref Element

6.5.3 Optional Header

A custom header can be specified in addition to, or instead of, the applica-
tion banner. The optional header is defined using the header-type and
header-source attributes on the application element and can be
defined as either a static HTML fragment or as a custom widget.

Where the header is required instead of the application banner, the optional
attributes of the applications element, as listed in Table 6.2, Attributes
of the application Element, should be omitted.

The header-type attribute is restricted to the values static or dynamic.
Setting a static value indicates that a HTML fragment is to be placed within
the header. In this instance, the header-source attribute should refer-
ence a file that is stored in the resource store. This file must be stored with a
content type of text/xml.

If the header-type attribute is set to dynamic, the header-source at-
tribute should reference the custom widget to be used to display the content.
This reference will be the same as that specified with the relevant styles-
config.xml. For more information on creating and referencing custom
widgets please consult the Cúram Custom Widget Development Guide.

Whether a custom widget or HTML fragment is used it must always start
with a <div> element.

6.5.4 Example

Example 6.1, Simple.app details an example application, which would be
stored in a file called SimpleApp.app.

Cúram Web Client Reference Manual

158

<?xml version="1.0" encoding="ISO-8859-1"?>
<ac:application

id="SimpleApp"
logo="SimpleApp.logo"
title="SimpleApp.title"
subtitle="SimpleApp.subtitle"
user-message="SimpleApp.UserMessage">

<ac:application-menu>
<ac:preferences title="preferences.title"/>
<ac:help title="help.title"/>
<ac:logout title="logout.title"/>

</ac:application-menu>

<ac:application-search>
<ac:search-pages>
<ac:search-page type="SAS01"

description="Search.Person.LastName.Description"
page-id="Person_searchResolver"
initial-text="Search.Person.LastName.InitialText"
default="true"/>

<ac:search-page type="SAS02"
description="Search.Person.Gender.Description"
page-id="Person_listByGender"
initial-text="Search.Person.Gender.InitialText" />

</ac:search-pages>
<ac:further-options-link

description="Search.Further.Options.Link.Description"
page-id="Person_search" />

</ac:application-search>

<ac:section-ref id="SimpleHomeSection"/>
<ac:section-ref id="SimpleWorkspaceSection"/>

</ac:application>

Example 6.1 Simple.app

Note

In the above example a namespace, ac has been declared and all
elements are prefixed with the namespace. This is recommended
practice. Consult Section 3.12.12, Application Configuration Files
for more information.

The SimpleApp.app should have a corresponding Simple-
App.properties file, which details the localizable content. For ex-
ample:

SimpleApp.logo=CDEJ/themes/v6/images/application-logo.png
SimpleApp.title=C\u00FAram
SimpleApp.subtitle=Simple Application
SimpleApp.UserMessage=Welcome, %user-full-name

preferences.title=User Preference
help.title=Help
logout.title=Logout
Search.Person.LastName.Description=Surname
Search.Person.LastName.InitialText=Enter surname to search for
Search.Person.Gender.Description=Gender
Search.Person.Gender.InitialText=Enter gender to search for
Search.Further.Options.Link.Description=Advanced Search

Cúram Web Client Reference Manual

159

In the above example, the Cúram logo image is referencing the default logo
image shipped with the Cúram Client Development Environment (CDEJ). A
custom logo can be added to the Images folder in the component and ref-
erenced directly as Images/my-custom-logo.png.

Note

In the properties file for the SimpleApp.app example, the ú in
Cúram is added using the Unicode escape sequence. An alternative
approach is to add the ú directly and ensure the file is saved in the
UTF-8 format. Both approaches are supported for the application
configuration files.

6.5.5 Associate an Application with User

A user must be mapped to the application and home page to display when
they first login. The home page is the initial page, displayed in its associated
tab. This is done using the following mapping:

• APPLICATIONCODE field on the Users database table

maps to

• an entry in the APPLICATION_CODE codetable

maps to

• the id attribute of an application

When a user logs in, the value of the APPLICATIONCODE field in the
Users database table is used to determine both the application and home
page to display.

The value field of the code table entry must match the name of the applic-
ation (.app) file to use and the description field of the code table entry
indicates the name of the UIM page to be displayed as the home page. The
following example shows a subset of a code table definition:

<codetable java_identifier="APPLICATION_CODE"
name="APPLICATION_CODE">

<code default="false" java_identifier="SIMPLE_HOME"
status="ENABLED" value="SimpleApp">

<locale language="en" sort_order="0">
<description>SimpleHome</description>
<annotation></annotation>

</locale>
</code>

</codetable>

Example 6.2 CT_APPLICATIONCODE.ctx

Note

For more information on code tables see the Cúram Server De-

Cúram Web Client Reference Manual

160

velopers Guide.

In this example, a code table entry SimpleApp has been defined, with a
description of SimpleHome. The code SimpleApp, matches the id of the
SimpleApp.app example. The description, SimpleHome, indicates the
UIM page to be displayed as the home page. This page must be associated
with the relevant application. For more details on how to associate pages
with an application, see Section 6.11, Opening Tabs and Sections.

6.6 Sections

6.6.1 Introduction

Figure 6.2 Application User Interface Overview

An application can contain one or more application sections, where a sec-
tion is a collection of tabs and an optional section shortcut panel. A section
shortcut panel supports quick links to open tabs and dialogs within a section.

It is recommended that a maximum of five sections be used, each represent-
ing a different set of activities that can be performed by a user. The five re-
commended types of sections are:

Refer to User Interface Element 2 in Figure 6.2, Application User Interface
Overview to see sections configured in the User Interface. The section that is
currently open is a lighter shade of color than the other sections.

• Home. The Home section is intended to contain only one tab, with a
single page that acts as a home page for the user. The home page should
provide a summary of significant information and quick links to com-
mon activities.

• Workspace. The Workspace section is where the majority of tasks re-
lating to the user role will be performed.

• Inbox. The Inbox section represents the area of the application where

Cúram Web Client Reference Manual

161

the user can access the work currently allocated to them.

• Calendar. The Calendar section contains a calendar of the users activit-
ies and schedules.

• Reports. The Reports section contains a number of reports relevant for
the particular user.

6.6.2 Definition

A section is defined by creating an XML file with the extension .sec in the
clientapps directory. The root XML element in the .sec file is the
section element and the attributes allowed on this element are defined in
Table 6.11, Attributes of the section Element.

Attribute Description
id Mandatory.

The unique identifier for the section, which must
match the name of the file. This is used when refer-
enced from an application (.app) configuration
file.

title Mandatory.
The text for the title that will be displayed on the
section tab. The attribute must reference an entry in
the associated properties file.

hide-tab-container Optional.
When set to true, this indicates that there is only one
tab in the section and the tab bar should not be dis-
played. The default is false.

default-page-id Optional.
A reference to a UIM page that should be opened by
default when the section is opened. The UIM page
referenced must be directly associated with a tab.
For more information on associating pages with
tabs, consult Section 6.8, Tabs.

This attribute ensures that an anchored default tab is
always open when the section is opened. An
anchored tab does not contain an option to close it.

Table 6.11 Attributes of the section Element

Note

The default-page-id attribute must not be used on the
"Home" or first section of an application. The user's home page, and
its associated tab are opened automatically when a user logs into an
application. See Section 6.5.5, Associate an Application with User
for more information.

Cúram Web Client Reference Manual

162

The section element supports the child elements detailed in Table 6.12,
Supported Child Elements of the section Element.

Element Description
tab 1..n.

A reference to a tab to be included in this section.
See Section 6.6.2.1, tab for more information.

shortcut-panel-ref Optional.
A reference to the section shortcut panel to be in-
cluded in this section. See Section 6.6.2.2, shortcut-
panel-ref for more information.

Table 6.12 Supported Child Elements of the section Element

tab

A section is a collection of tabs and to associate a tab with a section the tab
element should be used. A section must define at least one tab element
and tabs must only ever be referenced by one section in any application.
This means that tabs can be reused in different sections, as long as the sec-
tion is included in a separate application.

The attributes of the tab element are detailed in Table 6.13, Attributes of
the tab Element

Attribute Description
id Mandatory.

The id of a tab configuration file (.tab). See Sec-
tion 6.6.2.1, tab for more information.

Table 6.13 Attributes of the tab Element

shortcut-panel-ref

The shortcut-panel-ref element is used to define the section short-
cut panel to add to the section. Only one shortcut-panel-ref should
be specified per section. See Section 6.7, Section Shortcut Panel for more
information.

The attributes of the shortcut-panel-ref element are detailed in Ta-
ble 6.14, Attributes of the shortcut-panel-ref Element

Attribute Description
id Mandatory.

The id of a section shortcut panel (.sec). See Sec-
tion 6.7, Section Shortcut Panel for more informa-
tion.

Cúram Web Client Reference Manual

163

Table 6.14 Attributes of the shortcut-panel-ref Element

6.6.3 Example

Example 6.3, SimpleWorkspaceSection.sec details an example section,
which would be stored in a file called SimpleWorkspaceSec-
tion.sec.

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:section

id="SimpleWorkspaceSection"
title="SimpleWorkspaceSection.title">

<sc:shortcut-panel-ref id="SimpleShortcutPanel"/>

<sc:tab id="Person" />
<sc:tab id="Employer" />
<sc:tab id="Case" />
...

</sc:section>

Example 6.3 SimpleWorkspaceSection.sec

The SimpleWorkspaceSection.sec should have a corresponding
SimpleWorkspaceSection.properties file, which details the loc-
alizable content. For example:

SimpleWorkspaceSection.title=Workspace

6.7 Section Shortcut Panel

6.7.1 Introduction

Each section can optionally contain a section shortcut panel which provides
quick links to open content and perform actions within the section. The
menu items in the shortcut panel can be divided into categories. Refer to
User Interface Element 7 of Figure 6.2, Application User Interface Over-
view to see an example of a configured section shortcut panel.

When a section is first opened, the section shortcut panel is collapsed by de-
fault. The double arrow beside the title of the shortcut panel can be used to
expanded, and subsequently collapse, the panel.

Menu items in a shortcut panel which open modal dialogs are identified by
an ellipses (...), which indicates that further actions are required. Refer to
User Interface Element 7.1.1 of Figure 6.2, Application User Interface
Overview to see an example of a configured menu item in an expanded cat-
egory of a shortcut panel.

Cúram Web Client Reference Manual

164

6.7.2 Definition

A section shortcut panel is defined by creating an XML file with the exten-
sion .ssp in the clientapps directory. The root XML element in the
.ssp file is the section-shortcut-panel element and the attributes
allowed on this element are defined in Table 6.15, Attributes of the section-
shortcut-panel Element.

Attribute Description
id Mandatory.

The unique identifier for the section shortcut panel,
which must match the name of the file. This is used
when referenced from a section (.sec) configura-
tion file.

title Mandatory.
The text for the title that will be displayed for the
sections shortcut panel, both when it is expanded
and when it is collapsed. The attribute must refer-
ence an entry in the associated properties file.

Table 6.15 Attributes of the section-shortcut-panel Element

The section-shortcut-panel element supports the child elements
detailed in Table 6.16, Supported Child Elements of the section-short-
cut-panel Element.

Element Description
nodes Mandatory.

Groups together multiple child node elements. See
Section 6.7.2.1, node for more information.

Table 6.16 Supported Child Elements of the
section-shortcut-panel Element

node

The node element is used to represent menu items and categories used
within the shortcut panel. There are three supported types of node element
and the type attribute is used to define this:

• group. A group node in a shortcut panel represents a category and is
used to categorize a number of menu items as described in Section 6.7,
Section Shortcut Panel. “Registration” are defined using node Each
category is defined using node elements of type group. This type of
node supports child node elements of type leaf and separator.

• leaf. A leaf in a shortcut panel is a menu item within a category, which

Cúram Web Client Reference Manual

165

can open a page in an existing or new tab, or open a modal dialog 2 .
Where a menu item opens a modal dialog, an ellipsis is appended to the
text displayed to indicate more information is required.

• separator. A separator can be used to add extra space between menu
items within a node of type group (i.e. a category).

The attributes supported by the node element are detailed in Table 6.17, At-
tributes of the node Element.

Attribute Description
id Mandatory.

The identifier for the node. This must be unique
within the .ssp file.

type Mandatory.
The type of node, where three types are supported:

• group

• leaf

• separator

title Mandatory.
The text for the title of the node. The attribute must
reference an entry in the associated properties file.

Note: This is not required where the type is spe-
cified as separator.

page-id Optional.
A reference to the UIM page to be displayed when
the menu item is selected. This is only applicable for
node elements with a type of leaf.

open-as Optional.
Where set, this attribute indicates the UIM page to
be displayed when the menu item is selected should
be opened as a modal dialog. The only value sup-
ported is modal.

This is only applicable for node elements with a
type of leaf.

append-ellipsis Optional.
A boolean attribute which indicates if the ellipsis
automatically appended to the menu item which
opens in a modal dialog should be disabled. The de-
fault is true. The attribute is applicable only where
the type attribute is leaf and the open-as attrib-
ute has been set.

Note: Setting this attribute to true where the open-
as attribute has not been set will not add the ellipsis

Cúram Web Client Reference Manual

166

Attribute Description
to the menu item.

Table 6.17 Attributes of the node Element

6.7.3 Example

Example 6.4, SimpleShortcutPanel.ssp details an example section shortcut
panel, which would be stored in a file called SimpleShortcutPan-
el.ssp.

<?xml version="1.0" encoding="ISO-8859-1"?>
<sc:section-shortcut-panel

id="SimpleShortcutPanel"
title="SimpleShortcutPanel.Title">

<sc:nodes>
<sc:node id="Searches" type="group"

title="Searches.Title">
<sc:node id="PersonSearch" type="leaf"

page-id="Person_search"
title="PersonSearch.Title" />

...
</sc:node>
<sc:node id="QuickLinks" type="group"

title="QuickLinks.Title">
...

</sc:node>
<sc:node id="Registration" type="group"

title="Registration.Title">
<sc:node id="RegisterEmployer" type="leaf"

page-id="Employer_register"
title="RegisterEmployer.Title"
open-as="modal"/>

...
<sc:node type="separator" id="separator"/>
...

</sc:node>

</sc:nodes>
</section-shortcut-panel>

Example 6.4 SimpleShortcutPanel.ssp

The SimpleShortcutPanel.ssp should have a corresponding
SimpleShortcutPanel.properties file, which details the localiz-
able content. For example:

SimpleShortcutPanel.Title=Shortcuts Panel
Searches.Title=Searches
PersonSearch.Title=Person Search
QuickLinks.Title=Quick Links
Registration.Title=Registration
RegisterEmployer.Title=Register an Employer

6.8 Tabs

Cúram Web Client Reference Manual

167

Figure 6.3 Application User Interface Overview

6.8.1 Introduction

A tab typically represents a business object, e.g. a Case or a Participant,
though it can also be used to represent a logical grouping of information.
Refer to User Interface Element 3 of Figure 6.3, Application User Interface
Overview for an example of a configured tab in an application.

• Tab Title Bar. The title bar contains text to identify the current tab.
Refer to User Interface Element 4 of Figure 6.3, Application User Inter-
face Overview for an example of a tab title bar configured in an applica-
tion.

• Tab Actions Menu. The actions menu provides actions associated with
the business object represent by the tab. The actions can be a mix of
menu items and other menus, each of which links to a page that will be
displayed in the tab content area or a modal dialog. Refer to User Inter-
face Element 5 of Figure 6.3, Application User Interface Overview for
an example of a tab actions menu configured in an application.

• Tab Context Panel. The context panel is typically used to present sum-
mary information about the business object. This summary information
is always available, no matter what page is displayed in the content area.
Refer to User Interface Element 6 of Figure 6.3, Application User Inter-
face Overview for an example of a tab context panel configured in an ap-
plication.

The context panel can be collapsed and expanded to provide more space
for the tab content area.

• Tab Content Area. A tab comprises of one or more pages of informa-
tion. These pages are displayed in the content area and can be navigated
using the navigation bar.

• Navigation Bar. The navigation bar contains a number of naviga-

Cúram Web Client Reference Manual

168

tion tabs, each of which link to a page or set of pages that are part of
the tab. The navigation bar can be used to separate the business ob-
ject information into logical groupings of pages. Refer to User Inter-
face Element 8 of Figure 6.3, Application User Interface Overview
for an example of a navigation bar configured in an application.

• Page Group Navigation Bar. Where a tab links to a set of pages,
the pages are displayed as a page group navigation bar, with the first
one selected by default. Refer to User Interface Element 16 of Fig-
ure 6.3, Application User Interface Overview for an example of a
page group navigation bar configured in an application.

• Page Content. Selecting a navigation tab or page group entry will
display the corresponding UIM page content within the content area.
Refer to User Interface Element 15 of Figure 6.3, Application User
Interface Overview for an example of a page content area configured
in an application.

In addition to the above elements a Tab also supports an optional smart pan-
el. A smart panel is an optional panel, displaying a UIM page, that is added
to the right of the content area in a tab. It can be collapsed and expanded,
and is collapsed by default. In addition, the size of the smart panel can be in-
creased and decreased when it is expanded. Refer to User Interface Element
20 of Figure 6.3, Application User Interface Overview for an example of a
smart panel configured in an application.

Finally, a tab supports the ability to dynamically enable/disable and hide/
show entries in the tab actions menu, tab navigation bar and page group
navigation bar. This dynamic content is updated based on configured refresh
events.

A refresh event updates the specified part of the tab based on the submit of a
modal dialog page or when a specific UIM page is loaded in the content
area. For more information on configuring refresh events consult Sec-
tion 6.8.2.6, tab-refresh.

6.8.2 Definition

A tab is defined by creating an XML file with the extension .tab in the
clientapps directory. The root XML element in the .tab file is the
tab-config element and the attributes required by this are defined in Ta-
ble 6.18, Attributes of the tab-config Element.

Attribute Description
id Mandatory.

The identifier for the tab, which must match the
name of the file.

The id attribute is used to reference the tab config-
uration from section configuration files (.sec). See
Section 6.6.2.1, tab for more information.

Cúram Web Client Reference Manual

169

Table 6.18 Attributes of the tab-config Element

The tab-config element supports the child elements detailed in Ta-
ble 6.19, Supported Child Elements of the tab-config Element.

Element Description
page-param 0..n.

Defines a parameter required when opening a tab.
See Section 6.8.2.1, page-param for more informa-
tion.

menu Optional.
A reference to the actions menu configuration. See
Section 6.8.2.2, menu for more information.

context Mandatory.
A reference to the UIM page to be used as the tab
context panel, or alternatively details of the tab
name and title. See Section 6.8.2.3, context for more
information.

navigation Mandatory.
A reference to the tab navigation configuration, or
alternatively the name of the UIM page that will be
opened in this tab. See Section 6.8.2.4, navigation
for more information.

smart-panel Optional.
A reference to the UIM page to be used for the
smart panel. See Section 6.8.2.5, smart-panel for
more information.

tab-refresh Optional.
Defines what part of a tab should refresh under what
circumstances. See Section 6.8.2.6, tab-refresh for
more information.

Table 6.19 Supported Child Elements of the tab-config Element

page-param

The page-param element allows for multiple page parameters to be
defined for a tab. Each page parameter defined maps to the name of a name-
value pair that will be passed to all UIM pages that are opened from both the
tab actions menu and the navigation bar.

Page parameters are also used to identify unique instances of a tab. For ex-
ample, a tab is defined for a Person object. Two instances of this tab can be
opened, one for James Smith and one for Linda Smith. The instances are
uniquely identified by the page parameter, id, which has been defined for
the tab. This id parameter maps to the unique id for the person and will be
different for both James Smith and Linda Smith.

Cúram Web Client Reference Manual

170

For more information on the behavior associated with opening tabs see Sec-
tion 6.11, Opening Tabs and Sections.

Attribute Description
name Mandatory.

A unique identifier for the page parameter.

Table 6.20 Attributes of the page-param Element

menu

The menu element contains a reference to the tab action menu configuration
which is maintained in a separate configuration file, (.mnu). See Sec-
tion 6.9, Tab Actions Menu for more information.

Attribute Description
id Mandatory.

A reference to the id of a tab action menu configura-
tion file (.mnu).

Table 6.21 Attributes of the menu Element

context

The context element defines a context panel by referencing a UIM page
which forms the content of the context panel. The element is mandatory and
if no context panel is to be defined, then a tab name and tab title must be
specified.

The tab title bar and tab name can be populated with data using either the
context panel UIM page or using the tab-name and tab-title attributes in the
.tab file. Where the context panel UIM page is used only to add content to
the tab name and tab title, the height attribute should be set to zero.

For more information on defining context panel UIM pages see Sec-
tion 6.8.3, Context Panel UIM

Attribute Description
page-id Optional.

A reference to the UIM page that will be used for
the content of the context panel. If this is not spe-
cified, the tab-name and tab-title attributes
must be specified.

tab-name Optional.
The text that will be displayed in the tab bar. The at-
tribute must reference an entry in the associated
properties file.

tab-title Optional.

Cúram Web Client Reference Manual

171

Attribute Description
The text that will be displayed in the tab title bar.
The attribute must reference an entry in the associ-
ated properties file.

height Optional.
The pixel height of the context panel. This is only
relevant if a page-id attribute has been specified
to define a context panel.

The default value if not specified is 150 pixels.

Table 6.22 Attributes of the context Element

navigation

The navigation element defines what pages will be opened within the
tab. A single page can be defined using the page-id attribute, or multiple
pages can be defined using a reference to the tab navigation configuration
file (.nav). For more information on tab navigation configuration see Sec-
tion 6.10, Tab Navigation.

Note

The navigation element is mandatory and one of either page-
id or id must be specified.

Attribute Description
page-id Optional.

A reference to the UIM page that will be opened in
the tab. When a link to this UIM page is selected, it
will automatically trigger the page to be opened in a
new tab.

id Optional.
A reference to a tab navigation configuration file
(.nav). See Section 6.10, Tab Navigation for more
information.

Table 6.23 Attributes of the navigation Element

smart-panel

The content of the smart panel is defined by a UIM page, referenced by the
page-id attribute. Like the context panel, the UIM elements that can be
used are limited. See Section 6.8.3, Context Panel UIM for details of the
limitations of the smart panel UIM. Refer to User Interface Element 20 of
Figure 6.3, Application User Interface Overview for an example of a smart
panel configured in an application.

Cúram Web Client Reference Manual

172

Attribute Description
page-id Mandatory.

A reference to the UIM page that will be displayed
in the smart panel of the tab.

title Mandatory.
The text for the title that will be displayed for the
smart panel, both when it is expanded and when it is
collapsed. The attribute must reference an entry in
the associated properties file

width Optional.
The initial width of the smart panel when it is ex-
panded. The default value if this attribute is not set
is 250 pixels.

collapsed Optional.
Boolean indicating if the smart panel should be ex-
panded or collapsed by default. The default value if
this attribute is not set is true.

Table 6.24 Attributes of the smart-panel Element

tab-refresh

By default, only the content area of a tab is refreshed when a modal dialog
is submitted. When a modal dialog is closed/cancelled, i.e. no action is per-
formed, the content area is not refreshed.

The tab-refresh element allows different aspects of a tab to be re-
freshed. The tab actions menu, tab navigation and context panel can all be
refreshed based on two events. The first is when a specific UIM page is
loaded in the content area and the second when a UIM page is submitted
from a modal or the content area.

• Tab Actions Menu. Refreshing the tab actions menu results in updat-
ing the entries in the menu that can be dynamically disabled or hidden.
For more information on dynamic support in the tab actions menu see
Section 6.9.3, Dynamic Support.

• Tab Navigation. Refreshing the tab navigation results in updating the
entries in the tab navigation bar and page group navigation bar that can
be dynamically disabled or hidden. For more information on dynamic
support in tab navigation see Section 6.10.3, Dynamic Support.

• Context Panel. Refreshing the context panel simply reloads the UIM
page displayed in the context panel.

• Content Area. Refreshing the content area reloads the UIM page dis-
played in the content area. This refresh option is available for use only
where a modal dialog has been opened from the list dropdown panel of a
nested expandable list.

Cúram Web Client Reference Manual

173

By default only the parent of list dropdown panel is updated when the
modal dialog is submitted. Where the list dropdown panel exists in a
nested expandable list, this will result in the parent list reloading and not
the entire content area.

Under some circumstances, the entire content area may require updating
and this option can be used to achieve this for this specific scenario.

The two different type of refresh events can be configured using the child
elements detailed in Table 6.25, Supported Child Elements of the tab-re-
fresh Element.

Element Description
onload 1..n.

Defines a refresh event, where when the specified
page is loaded in the content area, the defined parts
of the tab are updated.

onsubmit 1..n.
Defines a refresh event, where when the specified
page is submitted from a modal or in the content
area, the defined parts of the tab are updated.

Table 6.25 Supported Child Elements of the tab-refresh Element

onsubmit/onload

The onsubmit and onload elements both require the same set of attrib-
utes, as described in Table 6.26, Attributes of the onload/onsubmit Elements.

Attribute Description
page-id Mandatory.

A reference to the UIM page to associate with the
refresh event.

context Optional.
Boolean indicating if the context panel should be
update when the specified page is loaded or submit-
ted.

menu-bar Optional.
Boolean indicating if the tab actions menu should be
updated when the specified page is loaded or sub-
mitted. See Section 6.9.3, Dynamic Support for
more information.

navigation Optional.
Boolean indicating if the tab navigation should be
updated when the specified page is loaded or sub-
mitted. See Section 6.10.3, Dynamic Support for
more information.

Cúram Web Client Reference Manual

174

Attribute Description
main-content Optional.

Boolean indicating if the main content area should
be updated when the specified page is loaded or sub-
mitted.

This type of refresh event must only be used for
modal dialogs that are opened from a list dropdown
panel in a nested expandable list.

Table 6.26 Attributes of the onload/onsubmit Elements

6.8.3 Context Panel UIM

A context panel is a specific type of UIM page identified by the PAGE ele-
ment containing an attribute of TYPE="DETAILS".

This type of UIM page can only use a subset of existing UIM elements. Spe-
cifically:

• SERVER_INTERFACE can only be used with a DISPLAY phase

• ACTION_CONTROL can only be used with an ACTION type

• The following elements are not supported:

• MENU

• SHORTCUT_TITLE

• JSP_SCRIPTLET

• DESCRIPTION

• INFORMATIONAL

• SCRIPT

• INCLUDE

• VIEW

Note

These same limitations apply to the smart panel UIM pages, but are
not enforced.

A mandatory TAB_NAME element is required for context panel UIM pages,
which allows for dynamic information to be added to the tab name. In addi-
tion the PAGE_TITLE element is used to add information to the tab title
bar. For more information on these elements see Section 5.9.31,
TAB_NAME and Section 5.9.27, PAGE_TITLE.

Cúram Web Client Reference Manual

175

6.8.4 Example

Example 6.5, SimpleTab.tab details an example tab configuration file, which
would be stored in a file called SimpleTab.tab.

<?xml version="1.0" encoding="ISO-8859-1"?>
<tc:tab-config

id="SimpleTab">

<tc:page-param name="concernroleid"/>

<tc:menu id="SimpleMenu"/>

<tc:context page-id="SimpleDetailsPanel"
tab-name="simple.tab.name" />

<tc:navigation id="SimpleNavigation"/>

<tc:smart-panel page-id="SimpleSmartPanel"
title="smart.panel.title"
collapsed="true"
width="300" />

<tc:tab-refresh>
<tc:onload page-id="SimpleHome" navigation="true"/>
<tc:onsubmit page-id="ModifySomething"

context="true" menu-bar="true"/>
</tc:tab-refresh>

</tc:tab-config>

Example 6.5 SimpleTab.tab

The SimpleTab.tab should have a corresponding Sim-
pleTab.properties file, which details the localizable content. For ex-
ample:

simple.tab.name=Simple Tab
smart.panel.title=Smart Panel

6.9 Tab Actions Menu

6.9.1 Introduction

The tab actions menu is a dropdown menu in the tab title bar. The menu
items listed in the menu allow actions specific to the tab to be performed.

The items support opening UIM pages in the content area of a tab, or altern-
atively opening a modal dialog to perform some action - these are identified
by an ellipses (...). Additionally, it is possible to download a file directly
from a menu item.

The tab actions menu also supports the ability to dynamically hide/show and

Cúram Web Client Reference Manual

176

enable/disable items in the menu. Refer to User Interface Element 5 of Fig-
ure 6.3, Application User Interface Overview for an example of a tab actions
menu configured in an application. The menu items that are dynamically
hidden are disabled in the menu.

6.9.2 Definition

A tab actions menu is defined by creating an XML file with the extension
.mnu in the clientapps directory. The root XML element in the .mnu
file is the menu-bar element and the attributes allowed on this element are
defined in Table 6.27, Attributes of the menu-bar Element.

Attribute Description
id Mandatory.

The unique identifier for the menu, which must
match the name of the file. The identifier is used
when a menu is included in a tab configuration, us-
ing the menu element. See Section 6.8.2.2, menu for
more information.

Table 6.27 Attributes of the menu-bar Element

A menu definition can be reused and referenced by multiple tab configura-
tions. The menu itself comprises of menu items and submenus, which are
used to group menu items. The child elements outlined in Table 6.28, Sup-
ported Child Elements of the menu-bar Element are used to define the struc-
ture of the menu.

Element Description
menu-item 0..n.

Defines a single entry in the menu, which links to a
UIM page that can be opened in a modal dialog or in
the content area of a tab. See Section 6.9.2.1, menu-
item for more information.

submenu 0..n.
Defines a grouping of menu items, which form a sub
menu. See Section 6.9.2.2, submenu for more in-
formation.

menu-separator 0..n.
Defines a separator line between entries in the
menu. See Section 6.9.2.3, menu-separator for more
information.

loader-registry Optional.
Defines the server interfaces that can be called to
dynamically change the state of the menu-items.
See Section 6.9.2.4, loader-registry for more in-
formation.

Cúram Web Client Reference Manual

177

Table 6.28 Supported Child Elements of the menu-bar Element

menu-item

An action entry in the tab actions menu is defined by the menu-item ele-
ment. The attributes of this element are defined in Table 6.29, Attributes of
the menu-item Element.

A menu-item can

• open a UIM page in the content area of a tab;

• open a UIM page in a modal dialog.

• download a file.

Menu items which open modal dialogs are identified by an ellipsis (...),
which indicates that further actions are required.

Attribute Description
id Mandatory.

The unique identifier for the menu-item, which
must be unique within the configuration file.

page-id Mandatory.
A reference to the UIM page to open when the
menu-item is selected.

title Mandatory.
The text that will be displayed for the menu-item.
The attribute must reference an entry in the associ-
ated properties file.

open-as Optional.
Where set, this attribute indicates that the UIM page
to be displayed should be opened as a modal dialog.
The only value supported is modal.

append-ellipsis Optional.
A boolean attribute which indicates if the ellipsis
automatically appended to menu-items which
open in a modal dialog should be displayed. The de-
fault is true. The attribute is applicable only where
the open-as attribute has been set.

Note: Setting this attribute to true where the open-
as attribute has not been set will not add the ellipsis
to the menu-item.

window-options Optional.
Defines the height and width of a modal dialog
opened from the menu-item. This is only applic-
able where the open-as attribute is set to modal.

Cúram Web Client Reference Manual

178

Attribute Description

The format for the attribute is:
width=<pixel value>,height=<pixel value>

For example:
window-options="width=500,height=300"

The height portion of the window-options is
optional and if not specified, the height of the dialog
will be automatically calculated.

dynamic Optional.
Boolean indicating that the menu-item can be dy-
namically disabled or hidden. See Section 6.9.3, Dy-
namic Support for more information.

visible Optional.
Boolean indicating if the menu-item is hidden or
visible. The default is true.

type Optional.
Defines a menu-item that downloads a file when
selected. The only value supported is
FILE_DOWNLOAD.

For more information see Section 6.9.4, File Down-
load Menu Item for more information.

description Optional.
Defines text which forms a description for the
menu-item. This is used for administration pur-
poses only. The attribute must reference an entry in
the associated properties file.

Table 6.29 Attributes of the menu-item Element

submenu

A submenu is a group of menu items and is defined using the submenu ele-
ment. The attributes of the submenu element are defined in Table 6.30, At-
tributes of the submenu Element.

Attribute Description
id Mandatory.

The unique identifier for the submenu, which must
be unique within the configuration file.

title Mandatory.
The text that will be displayed for the submenu.
The attribute must reference an entry in the associ-
ated properties file.

description Optional.

Cúram Web Client Reference Manual

179

Attribute Description
Defines text which forms a description for the sub-
menu. This is used for administration purposes
only. The attribute must reference an entry in the as-
sociated properties file.

Table 6.30 Attributes of the submenu Element

The submenu element allows for further submenus to be defined, in addi-
tion to including menu items and menu separators. The supported child at-
tributes (Table 6.31, Supported Child Elements of the submenu Element) can
be used to achieve this.

Element Description
menu-item 0..n.

Defines a single entry in the submenu, which links
to a UIM page that can be opened in a modal dialog
or in the content area of a tab. See Section 6.9.2.1,
menu-item for more information.

submenu 0..n.
Defines a further sub grouping of menu items.

menu-separator 0..n.
Defines a separator between entries in the submenu.
See Section 6.9.2.3, menu-separator for more in-
formation.

Table 6.31 Supported Child Elements of the submenu Element

menu-separator

An actions menu, including submenus of this, can include a line separator to
divide the entries in the menu. This is defined using a menu-separator
element. The attributes of the menu-separator are outlined in Ta-
ble 6.32, Attributes of the menu-separator Element.

Attribute Description
id Mandatory.

The unique identifier for the menu-separator.

Table 6.32 Attributes of the menu-separator Element

loader-registry

The loader-registry element defines a list of loader implementations
that will be used to dynamically enabled/disable and hide/show the menu
items in the tab actions menu. For more information see Section 6.9.3, Dy-

Cúram Web Client Reference Manual

180

namic Support.

Element Description
loader 1..n.

Defines one or more loader implementations that
will be used to dynamically set the visibility and en-
abled state of the menu items. See Section 6.9.2.5,
loader for more information.

Table 6.33 Supported Child Elements of the loader-registry
Element

loader

The loader element defines a single loader implementation that will dy-
namically set the state of the menu items in a tab actions menu. For more in-
formation see Section 6.9.3, Dynamic Support.

Attribute Description
class Mandatory.

The fully qualified class name of an implementation
of the
curam.util.tab.impl.DynamicMenuStat
eLoader interface.

Table 6.34 Attributes of the loader Element

6.9.3 Dynamic Support

The tab actions menu supports the ability to dynamically enable/disable and
hide/show entries. This feature is supported using a combination of the dy-
namic attribute of the menu-item element, the loader-registry
element and a Java loader implementation.

The Java loader implementation registered in the navigation configuration
will be called when the tab is first loaded and based on the refresh options
configured for a tab. The refresh options are configured in the tab configura-
tion file (.tab). See Section 6.8.2.6, tab-refresh for more information.

A menu item can be specified as dynamic in the menu configuration file
(.mnu) by adding dynamic="true" to the relevant menu-item ele-
ment.

Where the dynamic attribute is set, a loader-registry is then re-
quired and should define the fully qualified classname which implements
the curam.util.tab.impl.DynamicMenuStateLoader interface.

The DynamicMenuStateLoader interface requires one method, load-
MenuState, to be implemented. The loadMenuState method is passed
the following parameters:

Cúram Web Client Reference Manual

181

• a list of menu item identifiers

• a set of name-value page parameters pairs

The loader implementation must decide which menu items to disable or
hide. The method returns an object that represents the state of a given menu
bar. A state must be set for all identifiers in the list. For more information on
this interface, consult the Java Documentation.

Note

The list of menu item identifiers passed to the loadMenuState
method are only those that have been identified as dynamic by the
dynamic attribute on the menu-item element.

6.9.4 File Download Menu Item

A menu-item can reference a FILE_DOWNLOAD configuration using
the type="FILE_DOWNLOAD" attribute. For example:

<mc: menu-item id="filedownloadItem" title="some.text.title"
type="FILE_DOWNLOAD" page-id="FileDownload"/>

The page-id attribute must match the page-id attribute specified for a
FILE_DOWNLOAD element configured in the curam-config.xml file.
For more information on the FILE_DOWNLOAD element in curam-
config.xml see Section 5.9.3.1, File Downloads.

When configuring the FILE_DOWNLOAD element in curam-con-
fig.xml, only the parameters defined for the tab can be used as values for
the PAGE_PARAM attribute of the INPUT element.

Example 6.6, FILE_DOWNLOAD Configuration from curam-config.xml
shows a fragment of the FILE_DOWNLOAD configuration from the
curam-config.xml file. In this example, the fileID page parameter
must be specified as a page-param element in the tab configuration file
(.tab).

Note also that the PAGE_ID attribute value of FileDownload matches the
page-id attribute in the example above.

<FILE_DOWNLOAD CLASS="some.pkg.readFile"
PAGE_ID="FileDownload">

<INPUT PAGE_PARAM="fileID"
PROPERTY="key$fileID"/>

<FILE_NAME PROPERTY="result$name"/>
<FILE_DATA PROPERTY="result$contents"/>
<CONTENT_TYPE PROPERTY="result$contentType"/>

</FILE_DOWNLOAD>

Cúram Web Client Reference Manual

182

Example 6.6 FILE_DOWNLOAD Configuration from
curam-config.xml

6.9.5 Example

Example 6.7, SimpleMenu.mnu details an example actions menu configura-
tion file, which would be stored in a file called SimpleMenu.mnu.

<?xml version="1.0" encoding="ISO-8859-1"?>
<mc:menu-bar

id="SimpleMenu"

<mc:loader-registry>
<mc:loader class="some.pkg.SimpleMenuStateLoader"/>

</mc:loader-registry>

<mc:submenu id="Person">

<mc:menu-item id="dynamicLink"
title="dynamicLink.title"
page-id="SomeDynamicContent"
dynamic="true"/>

<mc:menu-separator id="separator1"/>

<mc:menu-item id="simpleLink"
title="simpleLink.title"
page-id="SimplePage"/>

</mc:submenu>

<mc:menu-item id="OpenModal"
title="openmodal.title"
page-id="DoSomethingInModal"
open-as="modal"
window-options="width=600"/>

</mc:menu-bar>

Example 6.7 SimpleMenu.mnu

The SimpleMenu.mnu should have a corresponding Simple-
Menu.properties file, which details the localizable content. For ex-
ample:

dynamicLink.title=Some Dynamic Link
simpleLink.title=A Simple Link
openmodal.title=Open a Modal

6.10 Tab Navigation

6.10.1 Introduction

Tab navigation describes how the various UIM pages grouped as part of a

Cúram Web Client Reference Manual

183

tab can be navigated to within a tab. There are two elements to tab naviga-
tion; the Content Area Navigation Bar, and the Page Group Navigation Bar.

• Navigation Bar. The navigation bar contains a number of tabs, each of
which can map to a single UIM page or alternatively a set of UIM pages.
The tabs in the navigation bar are referred to as navigation tabs. Refer to
User Interface Element 8 of Figure 6.3, Application User Interface
Overview for an example of a navigation bar configured in an applica-
tion.

• Page Group Navigation Bar. Where a navigation tab maps to a set of
UIM pages, these UIM pages are displayed as a page group navigation
bar. Each link in the page group navigation bar is referred to as a naviga-
tion page. Refer to User Interface Element 16 of Figure 6.3, Application
User Interface Overview for an example of a page group navigation bar
configured in an application.

Selecting a navigation tab or navigation page will result in displaying the
relevant UIM page in the content area of the tab. For navigation tabs that
have a page group navigation bar, the first navigation page in the page
group navigation bar is selected when the navigation tab is selected.

If a user selects a subsequent navigation page and then changes to a differ-
ent navigation tab, the selected navigation page is remembered when the
user returns to the original navigation tab and the page is reloaded.

The tab navigation configuration is key to when new tabs are opened. It is
used to determine what UIM page is associated with what tab. For more in-
formation on this consult Section 6.11, Opening Tabs and Sections.

6.10.2 Definition

Tab navigation is defined by creating an XML file with the extension .nav
in the clientapps directory. The root XML element in the .nav file is
the navigation element and the attributes allowed on this element are
defined in Table 6.35, Attributes of the navigation Element.

Attribute Description
id Mandatory.

The unique identifier for the navigation configura-
tion, which must match the name of the file. The
identifier is used when a navigation configuration is
included in a tab configuration, using the naviga-
tion element. See Section 6.8.2.4, navigation for
more information.

Table 6.35 Attributes of the navigation Element

The child elements outlined in Table 6.36, Supported Child Elements of the
navigation Element are used to define the structure of the navigation.

Cúram Web Client Reference Manual

184

Element Description
nodes Mandatory.

Groups navigation pages and navigation tabs togeth-
er. See Section 6.10.2.1, nodes for more informa-
tion.

loader-registry Optional.
Defines the server interfaces that can be called to
dynamically change the state of the navigation tabs
and navigation pages. See Section 6.10.2.4, loader-
registry for more information.

Table 6.36 Supported Child Elements of the navigation Element

nodes

The nodes element groups together the elements that represent navigation
tabs and navigation pages. These elements are outlined in Table 6.37, Sup-
ported Child Elements of the nodes Element.

Element Description
navigation-page 1..n.

Defines a navigation tab that has no page group nav-
igation bar. See Section 6.10.2.3, navigation-page
for more information.

navigation-group 1..n.
Defines a navigation tab which contains a page
group navigation bar. This element groups together
navigation-page elements that form the page
group navigation bar. See Section 6.10.2.2, naviga-
tion-group for more information.

Table 6.37 Supported Child Elements of the nodes Element

navigation-group

The navigation-group element defines a navigation tab that contains a
page group navigation bar. The attributes of this element are outlined in Ta-
ble 6.38, Attributes of the navigation-group Element.

Attribute Description
id Mandatory.

The unique identifier for the navigation-
group, which must be unique within the configura-
tion file.

title Mandatory.
The text that will be displayed for the navigation tab

Cúram Web Client Reference Manual

185

Attribute Description
in the navigation bar. The attribute must reference
an entry in the associated properties file.

dynamic Optional.
Boolean indicating that the navigation tab can be
dynamically disabled or hidden. See Section 6.10.3,
Dynamic Support for more information.

visible Optional.
Boolean indicating if the navigation tab is hidden or
visible. The default is true.

description Optional.
Defines text which forms a description for the nav-
igation tab. This is used for administration purposes
only. The attribute must reference an entry in the as-
sociated properties file.

Table 6.38 Attributes of the navigation-group Element

The navigation-group element groups together navigation-page
elements to form the page group navigation bar. The first navigation-
page element defined indicates the UIM page to display the first time a
navigation tab is selected.

Subsequent selections of the navigation tab, for a given instance of a tab,
will remember the previously selected navigation page.

Element Description
navigation-page 1..n.

Defines the set of navigation pages that are grouped
together to form the page group navigation bar. See
Section 6.10.2.3, navigation-page for more informa-
tion.

Table 6.39 Supported Child Elements of the navigation-group
Element

navigation-page

A navigation-page element can represent both a navigation tab and
navigation page:

• Where the navigation-page element is defined a child element of
the nodes element, it represent a navigation tab which is part of the
navigation bar.

• Where the navigation-page element is defined a child element of
the navigation-group element, it represent a navigation page
which is part of the page group navigation bar.

Cúram Web Client Reference Manual

186

The attributes of the navigation-page element are outlined in Ta-
ble 6.40, Attributes of the navigation-page Element.

Attribute Description
id Mandatory.

The unique identifier for the navigation-page,
which must be unique within the configuration file.

page-id Mandatory.
A reference to the UIM page to open when the nav-
igation tab or navigation page is selected.

title Mandatory.
The text that will be displayed for the navigation tab
or navigation page. The attribute must reference an
entry in the associated properties file.

dynamic Optional.
Boolean indicating that the navigation tab or naviga-
tion page can be dynamically disabled or hidden.
See Section 6.10.3, Dynamic Support for more in-
formation.

visible Optional.
Boolean indicating if the navigation tab or naviga-
tion page is hidden or visible. The default is true.

description Optional.
Defines text which forms a description for the nav-
igation tab or navigation page. This is used for ad-
ministration purposes only. The attribute must refer-
ence an entry in the associated properties file.

Table 6.40 Attributes of the navigation-page Element

loader-registry

The loader-registry element defines a list of loader implementations
that will be used to dynamically enabled/disable and hide/show both the
navigation pages and navigation tabs. For more information see Sec-
tion 6.10.3, Dynamic Support.

Element Description
loader 1..n.

Defines one or more loader implementations that
will be used to dynamically set the visibility and en-
abled state of the navigation pages and navigation
tabs. See Section 6.10.2.5, loader for more informa-
tion.

Table 6.41 Supported Child Elements of the loader-registry
Element

Cúram Web Client Reference Manual

187

loader

The loader element defines a single loader implementation that will dy-
namically set the state of the navigation pages and navigation tabs. For more
information see Section 6.10.3, Dynamic Support.

Attribute Description
class Mandatory.

The fully qualified class name of an implementation
of the
curam.util.tab.impl.DynamicNavState
Loader interface.

Table 6.42 Attributes of the loader Element

6.10.3 Dynamic Support

The tab navigation bar and page group navigation bar support the ability to
dynamically enable/disable and hide/show navigation tabs and navigation
pages. This feature is supported using a combination of the dynamic at-
tribute of the navigation-page and navigation-group elements,
the loader-registry element and a Java loader implementation.

The Java loader implementation registered in the menu configuration will be
called when the tab is first loaded and based on the refresh options con-
figured for a tab. The refresh options are configured in the tab configuration
file (.tab). See Section 6.8.2.6, tab-refresh for more information.

A navigation tab and navigation page can be specified as dynamic in the
navigation configuration file (.nav) by adding dynamic="true" to the
relevant navigation-page or navigation-group elements.

Where a dynamic attribute is set, a loader-registry is then required
and should define the fully qualified classname which implements the
curam.util.tab.impl.DynamicNavStateLoader interface.

The DynamicNavStateLoader interface requires one method, load-
NavState, to be implemented. The loadMenuState method is passed
the following parameters:

• a list of navigation-group and navigation-page identifiers

• a set of name-value page parameters pairs

The loader implementation must decide which items to disable or hide. The
method returns an object that represents the state of the navigation tabs and
navigation pages. A state must be set for all identifiers in the list. For more
information on this interface, consult the Java Documentation.

Note

Cúram Web Client Reference Manual

188

The list of navigation identifiers passed to the loadNavState
method are only those that have been identified as dynamic by the
dynamic attribute on the navigation-page or naviga-
tion-group elements.

In addition, a navigation-page and navigation-group
element cannot use the same identifier. The identifiers must be
unique for all elements within the file.

6.10.4 Example

Example 6.8, SimpleNavigation.nav details an example tab navigation con-
figuration file, which would be stored in a file called SimpleNaviga-
tion.nav.

<?xml version="1.0" encoding="ISO-8859-1"?>
<nc:navigation

id="SimpleNavigation"

<nc:loader-registry>
<nc:loader class="some.pkg.SimpleNavStateLoader"/>

</nc:loader-registry>

<nc:nodes>
<nc:navigation-page id="Home"

page-id="Home"
title="Home.Title"/>

<nc:navigation-group id="Background"
title="Background.Title">

<nc:navigation-page id="Addresses"
page-id="ParticipantAddressList"
title="Addresses.Title"/>

<nc:navigation-page id="PhoneNumbers"
page-id="ParticipantPhoneNumbers"
title="Phone.Title"/>

</nc:navigation-group>

<nc:navigation-page id="Identity"
title="Identity.Title"
page-id="ParticipantIdentity"
dynamic="true"/>

</nc:nodes>

</nc:navigation>

Example 6.8 SimpleNavigation.nav

The SimpleNavigation.nav should have a corresponding Sim-
pleNavigation.properties file, which details the localizable con-
tent. For example:

Home.Title=Home
Background.Title=Background
Addresses.Title=Addresses
Phone.Title=Phone Numbers
Identity.Title=Identity

Cúram Web Client Reference Manual

189

6.11 Opening Tabs and Sections

6.11.1 Introduction

There are a number of ways to trigger opening a new section or tab.

• A section can be opened directly by selecting the relevant section tab
control

• A tab can be opened directly by selecting the relevant tab control.

• Any link in the application has the potential to open a new tab.

• A section can be opened when a new tab is opened that is associated
with a section other than the current section.

Opening a section or tab by selecting the relevant tab control is straightfor-
ward. To open a tab that is already open, but not in focus, the tab control is
selected and focus is given to the tab.

Opening a section by selecting the relevant section tab control will give fo-
cus to that section. Any tabs already open in that section will then be access-
ible.

When a section is opened (directly) for the first time, it may contain no tabs
or may result in the automatic opening of a default tab. This depends on the
section configuration (see Section 6.6, Sections).

Opening a section or tab as a result of selecting a link is more complicated.
When a link is selected, before the relevant UIM page is opened, the Cúram
client will automatically determine if it should be opened in a new tab and if
that tab should be opened in a new section. This is determined based a num-
ber of factors that will be detailed in the following sections.

6.11.2 Links

One of the actions that can trigger opening a new tab or new section is se-
lecting a link to a UIM page. There are many different ways in the Cúram
application to open a UIM page and many different contexts in which a
UIM can be displayed.

A UIM page can be displayed in the following areas of an application:

• A content area

• A tab context panel

• A tab smart panel

• A modal dialog

• A list dropdown panel

Cúram Web Client Reference Manual

190

A UIM page in any of these contexts can define links to another UIM page.
There are different types of links:

• Page level actions menu (content area only)

• Modal button bar (modal dialog only)

• Buttons

• Hyperlinked text

• List actions menu

In addition to links on a UIM page, a UIM page can be opened via the fol-
lowing actions:

• Selecting an entry in the tab actions menu

• Selecting a link in the section shortcut panel

• Selecting a navigation bar tab

• Selecting a page group navigation bar entry

For more information on all the different types of action controls that can be
defined in a UIM page, consult Chapter 5, UIM Reference. For the purposes
of this section, selecting a link will apply to any action that can open a new
UIM page.

6.11.3 Page to Tab Associations

A page is associated with tab based on the navigation configuration for the
tab. The navigation for a tab is configured using the navigation element
in the tab configuration file (.tab) and also, if defined, the navigation con-
figuration file (.nav). See Section 6.10, Tab Navigation and Sec-
tion 6.8.2.4, navigation for more information.

Where no tab navigation is defined for a tab, the navigation element
defines a single UIM page (via the page-id attribute) that will result in
opening the tab. A link to this page will open it in the relevant tab.

Where tab navigation is defined, any UIM page listed using a page-id at-
tribute in the navigation configuration file (.nav) is considered to be asso-
ciated with the tab. This means that a link to any of these referenced UIM
pages will result in opening the relevant tab.

The page to tab association must be unique. This means that a page can be
referenced only once by the navigation configuration for a tab. As a result, a
navigation configuration cannot be re-used across multiple tabs.

There are a number of exceptions to this rule, but they are limited:

• The same UIM page can be referenced by more than one navigation
configuration file (.nav), where the page is only ever linked-to from
within the context of the tab.

Cúram Web Client Reference Manual

191

This means that any links to the UIM page are always within the same
tab. For example, a Notes UIM page is referenced by both the Person
and Employer tabs. The only link to the Notes UIM page is from the
page group navigation bar. The Notes UIM page is never referenced
from a shortcut panel or linked by a UIM page that is not displayed
within the context of the Employer or Person tabs.

• The same UIM page can be referenced by more than one navigation
configuration for a tab, where the tabs are included in different applica-
tion configurations (.app).

• A navigation configuration file (.nav) can be reused by two tabs,
where the tabs are included in two different application configurations
(.app).

Resolve Pages

It is recommended against using resolve pages 3 in a navigation con-
figuration. The reason for this is based on how the Cúram client ap-
plication handles resolve pages and opening new tabs.

When a link to a resolve page is selected, the Cúram client recog-
nises it is a resolve page and executes the content of the
JSP_SCRIPTLET. The resulting UIM page that the
JSP_SCRIPTLET redirects to is then used to determine what tab
the page should be opened in.

6.11.4 Tab to Section Associations

A tab is associated with a section by listing it using the tab element in the
section configuration file (.sec).

When a new tab is opened as a result of selecting a link, the tab is opened in
the associated section and focus is given to that section and tab.

6.11.5 Page Parameters

The client determines if a new tab is opened based on the page to tab to sec-
tion association. In addition, existing opens tabs and values of the paramet-
ers passed to a tab are taken into consideration.

Two instances of the same tab can be opened, where each instance is identi-
fied by the page parameters that have been provided. For example, James
Smith and Linda Smith are uniquely identified by their concern role ID. The
concern role ID is defined as a page parameter for the Person tab.

When a link to James Smith is selected, a new tab is opened showing the de-
tails for James Smith. A subsequent link to Linda Smith is selected and a
new instance of the same tab configuration is opened, displaying Linda
Smiths details.

When a link is selected, the Cúram client application automatically determ-

Cúram Web Client Reference Manual

192

ines what tab, and section, it is associated with. It then compares this in-
formation, along with the page parameters to determine what action to take.

The rules for opening tabs are detailed in Table 6.43, Tab Opening Rules.

Note

The parameters passed when a link is selected must match the
names of the page parameters defined in the tab configuration file.

Where not all required page parameters are provided, the behavior
of those tabs within the application is not guaranteed. Any extra
parameters provided will be ignored and not passed to the tab.

Page to Tab As-
sociation

Page Parameter
Values

Action

Page maps to cur-
rent tab

Match Page opens in current tab

Page maps to cur-
rent tab

Differ Page opens in new in-
stance of tab

Page maps to exist-
ing open tab

Differ Page opens in a new in-
stance of existing tab

Page maps to exist-
ing open tab

Match Page opens in existing tab

Page maps to new,
unopened tab

N/A Page opens in new tab

Table 6.43 Tab Opening Rules

Limitations

There are a number of limitations and notes to be aware of when
designing UIM pages to open in new tabs.

• Links in a modal dialog obey dialog rules first and only obey the
rules for opening a tab when the dialog is closing.

• A link defined to open a modal dialog ignores the tab rules.

• Links in a tab navigation bar and page group navigation bar will
always open within the context of the current tab.

• A submit link within the content area cannot open a new tab,
even if the UIM page is configured to be associated with a dif-
ferent tab.

• If a UIM page is configured to be associated with a tab then the
same page cannot be used as INLINE_PAGE in expandable
lists.

Cúram Web Client Reference Manual

193

Notes
1Consult Chapter 5, UIM Reference for more information on User Interface
Meta-data.
2A modal dialog is a UIM page opened in a new window, where the parent
window cannot be accessed while it is open. Consult Section 5.9.22.3.1, Us-
ing Modal Dialogs for more information.
3 A resolve page is a specific type of UIM page that contains only a
JSP_SCRIPTLET element. See Section 5.9.20, JSP_SCRIPTLET for more
information.

Cúram Web Client Reference Manual

194

Chapter 7

Session Management

7.1 Objective

This chapter provides detailed information on how browser sessions are
handled in the Cúram application.

7.2 Prerequisites

You should be familiar with the basic concepts of Cúram CDEJ develop-
ment (see Chapter 2, Concepts) and web application development.

7.3 Introduction

The current set of open tabs for a particular user is restored each time the
user logs out of the application and logs back in. In addition, if the browser
is refreshed (e.g. using the F5 button), the currently open tabs are also re-
stored.

The browser session plays an important role in the expected behavior when
restoring tabs, and this chapter will detail how browser sessions interact
with the restoration of tabs. In addition, a number of configuration options
for the tab restoration feature are detailed.

7.4 Session Basics

A browser session can be defined as a continuous period of user activity in
the web browser, where successive events are separated by no more than 30
minutes. The following listing shows the common examples of when a
Cúram browser session is started or finished.

• A session starts when a user first logs into the application.

195

• As long as the user is actively using the browser, the session remains
active.

If the browser is left inactive for a period of time, the session will
timeout. In this case, the user will be required to log back in and a new
session is started.

The default timeout is 30 minutes, but this can be configured using the
application server's configuration settings. See the Cúram Deployment
Guides for more information on application server configuration.

• The user can explicitly logout, using the logout link in the application
banner. The session is terminated in this case and logging back in will
start a new one.

• The browser is shutdown and a new browser instance is started. In this
case, a new session is started and the user will be required to log in.

7.5 Tab Restoration

The list of currently open tabs is stored temporarily in the web tier, associ-
ated with the browser session, and more permanently on the database so that
it can be restored after a user logs out of the application.

The data is persisted from the web tier to the database intermittently. As a
result, there are cases where the last few changes to the open tabs may not
be restored when the user logs in. This is most likely to happen where the
session times out or the browser is restarted.

The behavior of tab restoration is different depending on whether it was the
result of a browser refresh (F5) or the start of a new session (i.e. the user has
logged in).

• Browser Refresh

If the browser is refreshed, tabs are restored to their current state from
the web tier session data. No tab changes will be lost.

• The tab that was last selected in the selected section will remain the
selected tab.

• The selected tab in other sections will revert to the first tab in those
sections.

• The expanded or collapsed states of the shortcut panel, smart panel
and page contents are not restored.

• New Session

When a new session starts, usually requiring the user to login, the tabs
are restored to their current state using the session data stored on the
database.

• The “Home” tab is restored as the selected tab.

Cúram Web Client Reference Manual

196

• The selected tab in other sections will revert to the first tab in those
sections.

• The expanded or collapsed states of the shortcut panel, smart panel
and page contents are not restored.

• If no previous tab session data is available, only the “Home” tab is
opened.

Note

See Section 2.10, Direct Browsing for a special case of tab restora-
tion, where pages are directly accessed through the browser naviga-
tion bar.

7.6 Configuration

Each time a new tab is opened, a tab is closed or the content area of a tab is
updated, the information is stored in the web tier. The tab session data is
persisted from the web tier to the database intermittently. How often the
data is persisted can be configured using the following options, which can
be set in the ApplicationConfiguration.properties file.

• tabSessionUpdateCountThreshold. Specifies the number of tab ses-
sion data updates that must be received before the data is persisted from
the web tier to the database. Once the threshold is reached, the recent
updates are written and counting starts again from zero until the
threshold is reached. A value of one causes writes on every update. A
value of zero (or a negative or invalid value) disables writing based on
update counts. The default is every 10 updates.

• tabSessionUpdatePeriodThreshold. Specifies the number of seconds
that must have elapsed since the last time session data was persisted
from the web tier to the database before a new update will trigger anoth-
er write. A value of zero (or a negative or invalid value) disables writing
based on update periods. The default value is 120 seconds, or 2 minutes.

The properties work together based on which value is reached first. In other
words, if the update count threshold (tabSessionUpdateCount-
Threshold) is not reached, but the update period threshold (tabSes-
sionUpdatePeriodThreshold) has been reached, a write will occur,
and vice versa.

If the update count threshold is set to one, the update period threshold is ig-
nored. The reason for this is that writes will happen on every update, so
there is no need to write based on a time period.

Note

Tab session data is persisted to the database when the user logs out,
regardless of the value of the current update count and update peri-

Cúram Web Client Reference Manual

197

od. The exception to this is if both the update count threshold and
the update period threshold are set to zero.

Each user account has one persistent tab session database record for an ap-
plication. The same user logging in to the application from different browser
sessions will cause some interference and unpredictability in what data is
persisted across sessions.

The interference and unpredictability of the persisted data, when multiple
users are using the same login ID, is most likely encountered in a testing en-
vironment. It is recommended that the tabSessionUpdatePeriod-
Threshold and tabSessionUpdateCountThreshold properties
are set to zero for testing environments to prevent this. Setting both proper-
ties to zero ensures that the tab session data is only persisted for the length
of a browser session and not across sessions, i.e. login and logout.

It is also recommended that these settings are used where an "external" ap-
plication is deployed and the external users all share the same generic user
account.

7.7 Limitations

The tab session data records a limited number of tabs. The limit imposed
relates to the total size of the tab session data and is approximately 70-80
tabs. Once this limit has been exceeded, tab session data is maintained only
in the web tier and is no longer written to the database.

Restoration of the tab session when the browser is refreshed is not affected.
However, if a user logs out with more tabs open than can be recorded for a
session, only the state of the tabs at the time the limit was first exceeded will
be restored.

Closing tabs will reduce the size of the tab session data and writing to the
database will then resume as normal.

7.8 Browser Specific Session Management

The version of the browser used can have an effect on when new sessions
are started and when they are shared. Two browser instances that share the
same session will result in the same set of open tabs displayed in both in-
stances. This can cause similar interference and unpredictability of the per-
sisted data as with two users using the same login ID from different ma-
chines.

Example Session Issue

A user logs into the Cúram application in one browser instance.
They then open a new browser tab, which is sharing the same ses-
sion. From here, they directly access the Cúram login page and login
as a different user.

In this situation, they are still logged in as the original user and will

Cúram Web Client Reference Manual

198

see the tabs that were open in the original browser tab.

Within the same browser session, a user must always logout to end
the session and be able to login as a new user.

The most common browsers supported are Internet Explorer 7 and Internet
Explorer 8 and they share sessions across browser instances in different
ways:

• Internet Explorer 7

If a new browser instance, or browser tab, is opened in Internet Explorer
7 using the File→New Tab or File→New Window options, from an exist-
ing browser instance, the session is shared across the instances. This
means that if the user was already logged into the Cúram application in
the original browser instance, they will also be logged into Cúram in the
new tab or window.

If a new browser instance is started using the Internet Explorer link in
the Start menu, the sessions are not shared and the user must login again
to Cúram.

• Internet Explorer 8

Sessions are always shared in Internet Explorer 8, no matter where the
browser instance or tab was started from. This is the default behavior.

To start a new instance of the browser that does not share the existing
session, the File→New Session option should be used.

For further information on browser specific behavior, please consult the rel-
evant online documentation.

Cúram Web Client Reference Manual

199

Chapter 8

Domain Specific Controls

8.1 Objective

This chapter describes the domain specific controls that are provided by the
Cúram CDEJ. These domain specific controls are employed to provide a
more sophisticated interface for user information than the standard set of
HTML controls.

8.2 Prerequisites

The reader should understand how to model their Cúram application, choos-
ing appropriate domains for more complicated data. Knowledge of client de-
velopment within the Cúram application is also necessary.

8.3 Introduction

Examples of domains requiring sophisticated controls include: dates, date-
times, the meeting view and the rules decision tree. Any UIM page contain-
ing a server access bean with fields of this nature will have a web page gen-
erated containing a custom control appropriate to the type. For example,
when a server bean contains the CALENDAR_XML_STRING domain, a cal-
endar will be generated which expects server information in a particular
XML format. Each of the following sections details the custom controls
translated for particular domains.

8.4 Dates

Dates are mapped to the SVR_DATE domain. Any server access bean con-
taining fields of this type will display a date selector to the user for data in-
put. These selectors are HTML text fields with an adjacent pop-up icon
which causes a pop-up menu to be displayed allowing the user to select a

200

date or date time with ease. Note that this functionality is based on JavaS-
cript and it is important that the user have JavaScript enabled in their
browser for this selector to work. The appearance of the date selector pop-
up can be altered by overriding its dedicated cascading stylesheet. See Sec-
tion 3.12.11, Cascading Stylesheets for more details. The out-of-the-box
date date pop-up dialog has three input controls; a drop-down field for the
month, a text input field for the year, and the days of the month are dis-
played so that a day can be selected. When the day of the month is selected,
this will populate the date field.

The date format string associated with date format validations are customiz-
able in the file CDEJResources.properties and defined by the prop-
erty curam.validation.calendar.dateFormat:

curam.validation.calendar.dateFormat=M/dd/yyyy

Example 8.1 Customizing the Date Format

If this value is not set, the date format string will default to the date format
setting specified in the ApplicationConfiguration.properties
file.

8.5 Date-Times

Date-times are mapped to the SVR_DATETIME domain. Any server access
bean containing fields of this type will display a date selector (see previous
section) next to a time entry field.

Similar to the date selector, the pop-up here requires JavaScript to function
correctly. It is important that the user have JavaScript enabled in their
browser for these selectors to work.

There is an additional control for entering time as hours and minutes. It is
displayed as two side-by-side drop down lists for selecting the hour and
minute values.

When the CURAM_TIME domain (a descendant of the SVR_DATETIME do-
main) is used, the date input field will not be displayed.

The date time format string associated with date time format validations are
customizable in the file CDEJResources.properties and defined by
the property curam.validation.calendar.dateTimeFormat:

curam.validation.calendar.dateTimeFormat=HH:mm

Example 8.2 Customizing the Date Time Format

If this value is not set, the date time format string will default to HH mm
ss.

8.5.1 Representing time-only values

Cúram Web Client Reference Manual

201

As has been described above Curam has a base type for "date-only" and
"date-time" values, however there is no specific base type for "time-only"
values.

A CURAM_TIME domain is provided in out-of-the-box Curam and this is
used by the client infrastructure to display a corresponding time only wid-
get, in addition to performing certain processing when parsing and format-
ting values based on this domain. However, the underlying data representa-
tion is the same as for SVR_DATETIME and when working with time-only
domains the corresponding server-side code must completely ignore the date
part of the value.

Because time-only domains are based on the SVR_DATETIME domain, it
should be noted that the default values will also be the same. The "zero date
time" of 0001-01-01 00:00:00 is the value sent to the server if the field is
left blank. If the field is set to 00:00, then 00:00 time value of today's date is
sent.

The time input field rendered for CURAM_TIME domain is an editable
combo box as the example below shows. The combo box contains selectable
time values for every 30 minutes. The exact time value can also be entered
directly in the field.

The values to be selected are in the application-wide format set in Ap-
plicationConfiguration.properties, including AM/PM for the
12 hour display. A manually typed value should follow the same format.

8.5.2 Customizing the Time Format

The application-wide time format setting can be changed by setting or modi-
fying the timeformat and timeseparator values in the Applica-
tionConfiguration.properties file as described in Sec-
tion 3.11.2, Configuring the Application.

8.6 Frequency Pattern Selector

Frequency patterns are mapped to the FREQUENCY_PATTERN domain.
Any server access bean containing fields of this type will display a fre-
quency pattern selector to the user for data input. These selectors are non
editable HTML text fields with an adjacent pop-up icon which causes a pop-
up menu to be displayed allowing the user to select a frequency pattern with
ease. Note that this functionality is based on JavaScript and it is important
that the user have JavaScript enabled in their browser for this selector to
work. The appearance of the frequency pattern selector pop-up can be
altered by overriding its dedicated cascading stylesheet. See Sec-
tion 3.12.11, Cascading Stylesheets for more details. The figure below
shows the frequency pattern selector.

Cúram Web Client Reference Manual

202

Figure 8.1 Frequency Pattern Selector Pop-up

It is worth noting that the frequency pattern text selected varies in length,
depending on the pattern selected. This makes the display of the selected
pattern prone to re-sizing and wrapping, depending on the layout of the UIM
page and the display space available.

8.7 Selection Lists

Within the Cúram application, the use of the standard HTML selection list
i.e. the select element is supported. Selection lists will truncate long data
strings in order to preserve the correct page layout. To combat this, the
data's full value is available as a tooltip for each item in the list. The list can
be populated with data in a number of ways as described in the following
sections.

8.7.1 Populated from a Code-Table

If a FIELD has a target connection mapped to a property based on a code-
table domain, a drop-down selection list will be displayed containing all
code-table entries that are marked as “enabled”. The entries will be sorted
alphabetically according to their code descriptions. This can be overridden
by setting the “sort order” of each entry. Consult the Cúram Server De-
velopers Guide for full details on creating code-tables in a Cúram applica-
tion.

When the selection list is displayed the initially selected item is evaluated as
follows:

1. The code value specified by the source connection of the field.

2. The default code of the code-table if the FIELD element's

Cúram Web Client Reference Manual

203

USE_DEFAULT attribute is not set to false.

3. The first item in the selection list, if no default code is defined or the
default code is marked as “disabled”.

4. Blank, if the FIELD element's USE_DEFAULT attribute is set to
false.

A drop-down selection list can also be displayed as a scrollable selection list
where a number of entries are initially displayed instead of just one. To do
this simply set the HEIGHT attribute of the FIELD element to a value great-
er than 1.

8.7.2 Populated from Server Interface Properties

Data retrieved through server interface properties can also be used to popu-
late a selection list. The INITIAL connection end-point is used in this case.
The following are examples of a selection list on an insert and a modify
page.

<FIELD LABEL="Field.Label">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>

</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Example 8.3 Selection List on an Insert Page

In this example the field has an INITIAL connection end-point to populate
the selection list and a TARGET connection end-point to specify what field
the selected value should be mapped to. The PROPERTY attribute of the
INITIAL connection end-point is the list of values you want the user to see
in the selection list. When the list is displayed, the first item in the list will
initially be selected. The HIDDEN_PROPERTY attribute specifies a list of
corresponding values, when selected, will be mapped to the property spe-
cified in the TARGET connection end-point. The target property is a single
field, not a list. In this example a list of people's names will be displayed but
it is the selected person's unique ID that will be mapped to the target prop-
erty. In certain circumstances the set of values visible to the user may also
be what you want mapped to the target property. In this case do not use the
HIDDEN_PROPERTY attribute.

The following example shows the same selection list, but used on a modify
page. The only difference is a SOURCE connection end-point is used to spe-
cify what is selected in the list when the page is first displayed.

<FIELD LABEL="Field.Label">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"
HIDDEN_PROPERTY="personID"/>

</CONNECT>

Cúram Web Client Reference Manual

204

<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="sourcePersonID" />

</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Example 8.4 Selection List on a Modify Page

8.7.3 Drop-down, Scrollable and Checkboxed List types

Drop-down and Scrollable List

The selection list can be displayed as a drop-down list or as a scrollable se-
lection list with a number of entries visible. A drop-down selection list is
displayed by default. To change this to a scrollable selection list set the
HEIGHT attribute of the FIELD element to a value greater than 1.The ap-
pearance of a selection list differs from a drop-down list in two noticeable
ways. For a drop-down list only the default value is displayed and all the
other selectable values are displayed only when the drop down arrow is se-
lected. Additionally the drop-down list is not scrollable. However, a scrol-
lable selection list does not have the drop-down arrow, a subset of the val-
ues are initially displayed - the size of the subset is dependant on the value
of the HEIGHT that is set. This list has a scrollbar which can be used to
scroll the list, and view and select the remainder of the selectable values.

Checkboxed List

Checkboxed selection list offers an alternative method of selecting individu-
al entries, in this case using the check box control. This variation will be
used if CONTROL attribute is set to CHECKBOXED_LIST. It is just an al-
ternative way of representation, so everything else applicable to Scrollable
List applies for Checkboxed List without change.

8.7.4 Adding an Empty Entry to a List for Non-Mandatory
Fields

Browsers will select the first item in a selection list by default if no item is
marked as selected. In certain cases you may not want to “suggest” a value
to the user. A blank entry would be more suitable. Set the USE_BLANK at-
tribute of the FIELD element to true to add a blank entry as the first item
on the selection list.

8.7.5 Enabling Multiple Selection

Browsers allow multiple items to be selected in a selection list. To enable
this first use a scrollable list as described above (you cannot select multiple
items from a drop-down list). Then add the following to the curam-

Cúram Web Client Reference Manual

205

config.xml file.

<MULTIPLE_SELECT>
<DOMAIN NAME="MY_DOMAIN" MULTIPLE="true"/>

</MULTIPLE_SELECT>a

Example 8.5 Enabling multiple selection in curam-config.xml

For each domain which you want to enable multiple selection add a DO-
MAIN child element to the MULTIPLE_SELECT element. If a FIELD has a
target connection which is based on a domain listed in the MUL-
TIPLE_SELECT element, multiple selection will be enabled. When the
form containing the selection list is submitted, the selected values will be
packaged into a tab-delimited string. Therefore the target property must be
based on a string domain. The same way, the source property in this case is
also expected in the form of a tab-separated string of values to be selected
initially (the values should match some of those specified via HID-
DEN_PROPERTY).

8.7.6 Transfer List Widget

Overview

The Transfer List widget is a control used to facilitate multiple selections
for a user (i.e. it is used as an alternative to an regular list which has mul-
tiple selection enabled). It consists of two HTML select controls placed side
by side. The left control contains the items from which selections can be
made (see See Section 8.7.3, Drop-down, Scrollable and Checkboxed List
types for more details on selection lists.), the one to the right displays
already selected items. Four buttons between the lists allow for selecting/
de-selecting individual or all items (transferring them from one list to anoth-
er and back as required).

Configuration

The Transfer List widget is displayed instead of a regular HTML multiple
selection control when configured in one of the two ways described below.
In order for all multiple selection controls in an application to be displayed
as Transfer List widgets, curam-config.xml should contain the
TRANSFER_LISTS_MODE element with its value is set to true. Alternat-
ively, individual multiple select controls might be configured to be dis-
played that way by setting the CONTROL attribute on the appropriate UIM
FIELD to be TRANSFER_LIST. This setting is applicable just for fields
rendered as multiple selection controls on the resulting UIM page and will
be ignored in any other case.

The Transfer List widget requires the same data and the same configuration
for enabling multiple selection as a regular selection list.

8.8 User Preferences Editor

Cúram Web Client Reference Manual

206

The User preferences editor allows a user to edit a user preference value for
use anywhere within the application. For details on the definition of user
preferences please consult the Cúram Server Developers Guide.

The editor may be accessed from the taskbar by clicking the preferences
button. On clicking this button a popup window should be displayed with a
list of all visible user preferences. Those preferences that are editable will
appear as either a text field, radio buttons or a drop-down menu, depending
on the type.

If the user wishes, they may edit the value of a preference and save the
value using the Submit Changes link. When the user returns to the edit-
or the updated values will appear. Any changes to user preferences using the
editor will be applied immediately.

To return the values to those that were originally defined, the user should
click the Reset to Default link. Selecting either of these buttons will
close the popup window.

8.9 Rules Trees

8.9.1 Introduction

The RESULT_TEXT domain contains information about the success or fail-
ure of a particular claim against a set of rules. When the server supplies this
information it is translated into a tree view displaying all rules. Figure 8.2,
Default Rules Tree View below shows the default rules tree view.

Cúram Web Client Reference Manual

207

Figure 8.2 Default Rules Tree View

The RULES_DEFINITION domain also produces a rules tree, in this case
displayed with the rules editor. For more details on the rules editor see Sec-
tion 8.9.7, Rules Editor.

It is possible to use the FIELD element's CONTROL attribute to change the
format of the rules display. The following sections will describe the various
options for this attribute. Furthermore, the FIELD element's CONFIG attrib-
ute can be used to configure these rules trees.

Behavior of Summary and Highlight-On-Failure Rules Flags

The summary-flag has no effect in this view. All rules items are displayed.

The highlight-on-failure flag causes failed rules to be highlighted in a differ-
ent color to those that have succeeded.

8.9.2 Default Rules View

The default rules view of the rules tree (Figure 8.2, Default Rules Tree
View), specified by setting the CONTROL attribute of the FIELD element to
DEFAULT, shows data in an expanded tree view using standard HTML.
This view should be visible in most standard web browsers. However, as the
rules result is often quite verbose, the resulting output can be confusing to
the viewer of your web page.

Cúram Web Client Reference Manual

208

8.9.3 Summary Rules View

To display a summary rules view, set the CONTROL attribute of the FIELD
element to SUMMARY. The view of this tree is very similar to the default
rules tree view which can be seen in Figure 8.2, Default Rules Tree View ex-
cept that the details about why a rule failed or succeeded are not displayed
in the tree.

Any rules, regardless of type, marked as summary items are displayed. The
following section, Section 8.9.4, Failed Rules View, describes a similar view
that only displays rules items whose type is explicitly set to rule. This
view can be configured in the same manner as the dynamic rules view men-
tioned below. See Section 8.9.5, Dynamic Rules View.

8.9.4 Failed Rules View

To display a failed rules view, set the CONTROL attribute of the FIELD ele-
ment to FAILURE. This view is similar in layout to the previously men-
tioned summary view. See Section 8.9.3, Summary Rules View

Any rules whose type is rule (and not objective or rule group for
example) and are marked as summary items are displayed. This view can be
configured in the same manner as the dynamic rules view mentioned below.
See Section 8.9.5, Dynamic Rules View

8.9.5 Dynamic Rules View

When the CONTROL attribute is set to DYNAMIC, this causes an expanding/
contracting version of the decision to be displayed instead of a static tree. In
this view the entire tree is not displayed. The view is “compressed” into
multiple trees for each rules-item that has failed coupled with the
“summary” flag on the item. See Section 8.9.5.1, Behavior of Summary and
Highlight-On-Failure Indicator for more details on the summary flag. This
is accomplished using scalable vector graphics (SVG) content displayed in
the Adobe® SVG Viewer instead of HTML. Refer to the Cúram v6 Suppor-
ted Prerequisites document to see the supported version of this Web
Browser Plugin.

Although the dynamic view requires an extra browser plug-in, it provides
the user with a much more comprehensive and interactive view of the rules
data. The rules tree is more comprehensively organized with a supplement-
ary conjunction text displayed next to the rules. The following image illus-
trates the dynamic rules view.

Cúram Web Client Reference Manual

209

Figure 8.3 Dynamic Rules View

There is no need to set a HEIGHT or WIDTH as the rules window resizes it-
self automatically. The developer is limited to two dynamic rules windows
per page.

Localization of the text to display within the viewer is accomplished
through JavaScript property files as described in Section 4.8, JavaScript Ex-
ternalized Strings. The name of these JavaScript property files should be
SVGText. For example, SVGText.js_es.properties would be the
name of the Spanish language version of SVGText.js.properties
file.

All style information related to the dynamic rules widgets is held in a separ-
ate file called curam_svg.css. For further details see Section 3.12.11,
Cascading Stylesheets.

The developer can configure the rules tree using an XML configuration file.
For all rules widgets based on the RESULT_TEXT domain this configura-
tion is read from RulesDecisionConfig.xml. A version of this file
should be in your components directory. This XML configuration file is
merged during the build process in a similar method to other XML configur-
ation files.

The CONFIG attribute of the FIELD displaying rules is used to specify an
ID matching a CONFIG element in the RulesDecisionConfig.xml
file. The following is a sample of a RulesDecisionConfig.xml file:

<RULES-CONFIG DEFAULT="default-config">
<CONFIG ID="default-config" HYPERLINK-TEXT="false">

<TYPE NAME="PRODUCT"
SUCCESS-ICON="Images/product-16x16.gif"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ASSESSMENT"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SUBRULESET"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE_GROUP"

Cúram Web Client Reference Manual

210

SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE_LIST_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="OBJECTIVE"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE_GROUP"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE_LIST_GROUP"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RULE"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>

</CONFIG>
<CONFIG ID="Rules.Config.Core"

HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>
</RULES-CONFIG>

Example 8.6 Sample RulesDecisionConfig.xml File

Note that the RULES-CONFIG root element only contains the DEFAULT
attribute. This attribute is mandatory and should match an ID attribute value
on a CONFIG element in this document. The default configuration contains
the icon information as well as the default nodes to link to if no configura-
tion is required for a widget. These are covered by the SUCCESS-ICON,
FAILURE-ICON, and EDIT-PAGE attributes respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to
specify whether the text next to a rules node in the widget is also to be used
as a hyperlink to the link page set by the EDIT-PAGE for the TYPE in
question.

Note that the CONFIG with the ID of value of Rules.Config.Core has
the optional attribute OPEN-NODE-PARAM. This attribute is the name of a
page parameter whose value is the ID of a node to open when the page is
loaded. This configuration file is also used for configuration of the dynamic
full tree rules view described in the next section.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-
ID-TARGET are used to identify a page parameter whose value will be the
source for a new parameter (named by the DECISION-ID-TARGET) ap-

Cúram Web Client Reference Manual

211

pended to each link on the widget. The above example will look for a page
parameter called source-Decision-ID and pass on its value as a parameter to
any links on the widget. This new value will be identified by a parameter
named decision-ID.

The decision ID parameter may also be sourced from a field on a server
bean instead of from a page parameter. This is achieved by adding DE-
CISION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD at-
tributes to the CONFIG element instead of a DECISION-ID-SOURCE at-
tribute. A validation error is thrown if all three are present. The DE-
CISION-ID-SOURCE attribute should be the name of a bean on the page
and the DECISION-ID-SOURCE-FIELD attribute should be the full
name of a field providing the decision ID value. The following is an ex-
ample of this configuration:

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>

Example 8.7 Example of Decision ID Sourced from a Bean

Behavior of Summary and Highlight-On-Failure Indicator

The highlight-on-failure indicator on a rules item does not have any effect in
this view.

If an item fails and is marked as a summary item, this item should only be
displayed as a separate tree if no item along its parent path (i.e. any group
that contains it) has failed and is marked as a summary item. Consider the
following tree of rule groups and rules and note the result and summary
attributes on each item. Note that this is purely for illustrative purposes and
does not represent the data-format created by the Rules Engine.

<decision>
<rules-item id="B" type="rule-group"

result="success" summary="true">
<rules-item id="C" type="rule"

result="success" summary="false" />
<rules-item id="D" type="rule"

result="fail" summary="true" />
</rules-item>
<rules-item id="E" type="rule-group"

result="fail" summary="true">
<rules-item id="F" type="rule"

result="fail" summary="false" />
<rules-item id="G" type="rule"

result="success" summary="false" />

Cúram Web Client Reference Manual

212

</rules-item>
<rules-item id="H" type="rule-group"

result="success" summary="true">
<rules-item id="I" type="rule"

result="success" summary="true" />
<rules-item id="J" type="rule"

result="fail" summary="false" />
</rules-item>

</decision>

Example 8.8 Example of Rules Tree Items with Summary Flag

A rule that fails and is marked as "not a summary item" may still display as
long as it is contained within another node that fails and has summary set to
"true". A rule that fails and is marked as "not a summary item" will never
display as the root of a tree in the dynamic rules view. So, the data above
will result in separate “trees” as follows.
- D

- E
-- F
-- G

From the first rule-group “B”, only the item “D” is displayed because it has
failed and is marked as a summary item. It appears as a single-node tree.

The rule-group “E” is marked as a summary item and it has failed, therefore
it and all it's child nodes are displayed no matter what the success\failure
status or summary flag on the child nodes is.

The entire rule-group “H” is filtered out. “H” itself, and “I” have succeeded
and will not be displayed. Although “J” has failed it is not marked as a sum-
mary item and therefore is not displayed.

8.9.6 Dynamic Full Tree Rules View

When the CONTROL attribute is set to DYNAMIC_FULL_TREE a view,
similar in functionality to the dynamic rules view described in the previous
section, is displayed. The main difference is that the entire rule set is dis-
played, similar to the default rules view, although the tree is interactive thus
requiring the SVG viewer. There is no filtering of the display of rule groups
in this view, potentially making it difficult to understand for someone who
is not familiar with the rules engine. Configuration of this view is through
the RulesDecisionConfig.xml file described in the previous section.

8.9.7 Rules Editor

The RULES_DEFINITION domain produces the rules editor. This control
has a default HTML-only view or, if the FIELD's CONTROL attribute is set
to DYNAMIC, an SVG view. See Section 8.9.2, Default Rules View and Sec-
tion 8.9.5, Dynamic Rules View for more information.

This widget uses the CONFIG attribute to specify an ID attribute value
matching the ID attribute value of a CONFIG element in the RulesEdit-
orConfig.xml file. This XML configuration file is merged during the

Cúram Web Client Reference Manual

213

build process in a similar method to other XML configuration files. The fol-
lowing is a sample of RulesEditorConfig.xml:

<RULES-CONFIG DEFAULT="DefaultConfig">
<CONFIG ID="DefaultConfig" HYPERLINK-TEXT="true">

<TYPE NAME="Product"
SUCCESS-ICON="Images/product-16x16.gif"
FAILURE-ICON="Images/productFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Assessment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SubRuleSet"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ObjectiveGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="ObjectiveListGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Objective"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="SubRuleSetLink"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RuleGroup"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="RuleListGroup"
SUCCESS-ICON="Images/rule-group-16x16.gif"
FAILURE-ICON="Images/ruleGroupFail.gif"
EDIT-PAGE="RatesNewColumn"/>

<TYPE NAME="Rule"
SUCCESS-ICON="Images/rule-16x16.gif"
FAILURE-ICON="Images/ruleFail.gif"/>

<TYPE NAME="DataItemAssignment"
SUCCESS-ICON="Images/default-16x16.gif"
FAILURE-ICON="Images/defaultFail.gif"
EDIT-PAGE="RatesNewColumn"/>

</CONFIG>
<CONFIG ID="Editor.Config"

HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-SOURCE="source-Decision-ID"
DECISION-ID-TARGET="decision-ID">

<TYPE NAME="Product" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Assessment" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SubRuleSet" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ObjectiveGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ObjectiveListGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Objective" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SubRuleSetLink" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RuleGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RuleListGroup" EDIT-PAGE="RulesResult"/>
<TYPE NAME="Rule"/>
<TYPE NAME="DataItemAssignment" EDIT-PAGE="RulesResult"/>

</CONFIG>
</RULES-CONFIG>

Example 8.9 Sample RulesEditorConfig.xml File

Note that the RULES-CONFIG root element only contains the DEFAULT

Cúram Web Client Reference Manual

214

attribute. This attribute is mandatory and should match an ID on a CONFIG
element in this document. The default configuration contains the icon in-
formation as well as the default nodes to link to if no configuration is
present for a widget. These are covered by the SUCCESS-ICON, FAIL-
URE-ICON, and EDIT-PAGE attributes respectively.

Each CONFIG element has a HYPERLINK-TEXT attribute which is used to
specify whether the text next to a rules node in the widget is also to be used
as a hyperlink to the link page set by the EDIT-PAGE for the TYPE in
question.

Note that the CONFIG with the ID of value of Editor.Config has the
optional attribute OPEN-NODE-PARAM. This attribute is the name of a page
parameter whose value is the ID of a node to open to when the page is
opened.

The CONFIG attributes DECISION-ID-SOURCE and DECISION-
ID-TARGET are used to identify a page parameter whose value will be the
source for a new parameter (named by the DECISION-ID-TARGET) ap-
pended to each link on the widget. The above example will look for a page
parameter called source-Decision-ID and pass on its value as a para-
meter to any links on the widget. This new value will be identified by a
parameter named decision-ID.

The decision ID parameter may also be sourced from a field on a server
bean instead of from a page parameter. This is achieved by adding DE-
CISION-ID-SOURCE-BEAN and DECISION-ID-SOURCE-FIELD at-
tributes to the CONFIG element instead of a DECISION-ID-SOURCE at-
tribute. A validation error is thrown if all three are present. The DE-
CISION-ID-SOURCE attribute should be the name of a bean on the page
and the DECISION-ID-SOURCE-FIELD attribute should be the full
name of a field providing the decision ID value. The following is an ex-
ample of this configuration:

<CONFIG ID="Decision.ID.Bean.Source"
HYPERLINK-TEXT="true"
OPEN-NODE-PARAM="openNode"
DECISION-ID-TARGET="decision-ID"
DECISION-ID-SOURCE-BEAN="DISPLAY"
DECISION-ID-SOURCE-FIELD="dtls$decision-ID">

<TYPE NAME="PRODUCT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="ASSESSMENT" EDIT-PAGE="RulesResult"/>
<TYPE NAME="SUBRULESET" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="OBJECTIVE" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE_GROUP" EDIT-PAGE="RulesResult" />
<TYPE NAME="RULE_LIST_GROUP" EDIT-PAGE="RulesResult"/>
<TYPE NAME="RULE" EDIT-PAGE="RulesResult"/>

</CONFIG>

Example 8.10 Example of Decision ID Sourced from a Bean

8.10 Meeting View

Cúram Web Client Reference Manual

215

8.10.1 Overview

The meeting view is a control that displays scheduling information in a
chart format. It is associated with the USER_DAILY_SCHEDULE domain.
The data to display in the meeting view is in XML format. Configuration
settings for the meeting view must be in a file called MeetingViewCon-
fig.xml in a component. The format for the XML data and configuration
settings are described below. Finally, the control has two modes of opera-
tion: single and multiple selection.

8.10.2 Single Selection Mode

The first column gives a list of users. The second column indicates the dura-
tion of the event to be scheduled. The third column displays the times dur-
ing the day that the user is available or busy. The available times are hyper-
links that can be clicked to indicate the schedule the start time for the meet-
ing. Note that any parameters passed to a page containing the meeting view
will be included in any links within the view.Only start times that can ac-
commodate the relevant meeting duration will be hyperlinks. For example,
in Figure 8.4, Single Selection Mode Example below, John Smith is busy
from 10:30 until 12:30, so it would not be possible to select 10:00 as the
start time for a meeting with a duration of one hour and the 10:00 time slot
will not be a hyperlink.

Figure 8.4 Single Selection Mode Example

Note that any parameters passed to a page containing the meeting view will
be included in any links within the view.

8.10.3 Multiple Selection Mode

This view returns a tab-delimited list of the user IDs of selected rows. The
meeting view widget in this mode is the same as that described above for
the single selection mode except that it has an extra column which is inser-
ted as the first column in the list and has a selectable checkbox for each list
item. The users in this mode of widget are chosen by selecting their associ-
ated check boxes. Time slots are not hyperlinked and are for display only.

8.10.4 XML Formats

Cúram Web Client Reference Manual

216

The meeting view control expects information in a specific XML format.
Below is an example of this:

<SCHEDULE MODE="Single|Multiple" TYPE="User"
READ_ONLY="False" DATE="2003-30-10">

<USER NAME="John Smith" ID="12345" DURATION="90">
<BUSY START="2003-30-10 10:30:00" END="2003-30-10 12:30:00"/>
<BUSY START="2003-30-10 15:45:00" END="2003-30-10 16:15:00"/>

</USER>
<USER NAME="James Smith" ID="12346" DURATION="90">

<BUSY START="2003-30-10 12:30:00" END="2003-30-10 13:30:00"/>
<BUSY START="2003-30-10 15:00:00" END="2003-30-10 18:15:00"/>

</USER>
</SCHEDULE>

Note that in the format above: the MODE attribute is either Single or
Multiple; the DURATION attribute is in minutes; START and END attrib-
utes are date-times in the format “yyyy-MM-dd HH:mm:ss”. The
READ_ONLY attribute, if set to false, indicates that no time slot will be
selectable as a hyperlink. The DATE attribute contains the date of the current
scheduling and must be supplied. It should be in the format “yyyy-MM-dd”.
Finally, the TYPE attribute associates the schedule information with config-
uration settings which are also specified in an XML format as below:

<SCHEDULE_CONFIG>
<CONFIG TYPE="User" INTERVAL="15" START="08:00" END="16:00">

<USER_HOME PAGE="PersonHome"
ID_PARAM="UserID" NEW_WINDOW="True" />

<NEW_EVENT PAGE="AddNewEvent" ID_PARAM="UserID"
START_PARAM="start" END_PARAM="end" />

<MULTI_SELECT PAGE="SelectedUsers"
TAB_STRING_PARAM="selectedUsers"
DATE_PARAM="eventDate" />

</CONFIG>
</SCHEDULE_CONFIG>

Where INTERVAL is the duration in minutes of each segment of the time
line. This can be 15, 30, or 60. Only these values are acceptable. The
START and END attributes detail the beginning and end times of the time
line. They are in the form “HH:mm”. Each CONFIG element can have the
following sub-elements:

USER_HOME

The PAGE attribute details which page to link to when clicking on the
user's name. The ID_PARAM attribute is the name of the parameter to
supply with the user's ID as a value. NEW_WINDOW attribute, true by
default, specifies if the link opens in a new window or not.

NEW_EVENT

The PAGE attribute details which page to link to when clicking on a
time slot. The ID_PARAM attribute is the name of the parameter to sup-
ply with the user's ID as a value. The START_PARAM attribute is the
name of the parameter to supply with the start time of the new event.
Similarly, the END_PARAM describes the name of the end time para-
meter. Both of these attributes will be in the current application's date-
time format.

Cúram Web Client Reference Manual

217

MULTI_SELECT

The PAGE attribute details which page to link to when the submit but-
ton on the multi-select view is pressed. TAB_STRING_PARAM is the
name of the link parameter to supply containing the tab-delimited string
of selected users. DATE_PARAM is the name of another link parameter
containing the date of the event in question. The date value is taken
from the value of the DATE attribute on the SCHEDULE element.

8.11 Charts

8.11.1 Overview

Charts are displayed when one of the domains of CHART_XML,
LINE_CHART_XML, PIE_CHART_XML or BARCHART_XML domains (or
any derivation of them) is used as the source of a field.

Note

Charts are rendered in the browser using Adobe®Flex technology.
which requires Adobe®Flash Player. Refer to the Cúram Third-
Party Tools Installation Guide for Windows document to see the
supported version of Adobe Flash Player.

8.11.2 Chart appearance

The figure below shows a bar chart. Each row represents a unit of informa-
tion comprised of a caption and a stack of differently colored bars of vari-
able length. Their length represents the quantity of the unit in question and
can be ascertained using the numbered marks on the horizontal axis, or a
data tip which is available when you hover over the unit, as described be-
low. The chart scale is chosen to fit the biggest stack of bars (this might be
overriden by a configuration setting). Each bar is a hyperlink to a page con-
taining further information. The vertical axis of this chart displays captions,
describing each bar stack category. Captions might be dates as in example
below, date ranges or textual values. Captions are optionally rendered as hy-
perlinks leading to pages with additional information. Both bar links and
caption links are configurable, as described in Section 8.11.3, Chart config-
uration.

Figure 8.5 Bar Chart Example

Cúram Web Client Reference Manual

218

Note

Colors are not customizable, they are automatically calculated by
Adobe Flex technology.

Captions might be dates as in example below, date ranges or textual values.
They are optionally rendered as hyperlinks leading to pages with additional
information, in which case captions are additionally visually indicated when
hovered over.

Textual captions, as shown above, might get longer than one line. In such a
case long captions are wrapped within the category segment. If a caption
text exceeds two lines, though, it is truncated at that point and an additional
tool tip with the full label text is displayed when such a label is hovered
over.

Both bar links and caption links are configurable, as described in Sec-
tion 8.11.3, Chart configuration.

A column chart example is shown below. This chart is similar to the bar
chart and configurable the same way, except that units of information are
displayed in column stacks rather than bars, and axes are interchanged ac-
cordingly. It is also possible to configure a column chart so that it has a le-
gend that describes what each of the possible shaded areas in a column rep-
resents. The user can hover over a shaded area in a column, which displays
what it represents when mapped to an entry in the legend.

Figure 8.6 Column Chart Example

Another way of presenting chart information is to use a line chart. In this
chart, information is rendered as points in each category group, with points
of the same type joined by straight lines (e.g. to represent data changes over
time). Line charts differ from bar and column charts in that neither the
points nor lines are currently hyperlinks. The same applies to line chart cap-
tions.

Cúram Web Client Reference Manual

219

Figure 8.7 Line Chart Example

The last available chart type is a pie chart, an example of which is shown
below. Charts of this type are typically used to illustrate relative mag-
nitudes, frequencies or percentages. The arc length of each sector is propor-
tional to the quantity it represents. Together, the sectors create a full disk.
Pie charts use callout-like labels, which provide details of the item represen-
ted by a sector and its percentage in the pie. Sectors are rendered as hyper-
links, leading to pages with additional information; however, chart labels
are not currently available as hyperlinks.

Figure 8.8 Pie Chart Example

By default, charts are displayed without a legend so that all the available
space can be dedicated to the chart itself. However, charts can be configured
to include a legend which shows extra information on what is represented
by the elements of the chart. An example of a chart with a legend is shown
below.

The example also shows data tips, which are displayed on a chart when you
hover the mouse over a particular chart data element. Data tips are shown
regardless of whether a legend is included or not.

• The data tip for bar and column charts shows absolute and relative
quantitive information attributed to the element and the element stack,
the category (group) to which that element belongs and the type of the
element (corresponding to an entry in the legend, if present).

Cúram Web Client Reference Manual

220

• As line charts are not stacked, relative quantity information is not shown
in their data tips; line chart data tips are also displayed only when the
mouse is over a data point and not over a line.

• For a pie chart, a data tip displays absolute quantitive information for the
particular sector and the percentage of the sector within the disk.

Note

Line charts always display a legend and this is currently not config-
urable. A legend is currently not displayed for pie charts.

8.11.3 Chart configuration

Various aspects of charts can be configured. This is accomplished by setting
the CONFIG attribute on the UIM field in question. The appropriate XML
configuration file must contain a configuration section with a unique identi-
fier matching the text in the CONFIG attribute.

All the necessary chart configuration files are to be in your component dir-
ectory.

Different types of charts are currently configured in separate configuration
files:

• Bar charts and column charts both use ChartConfig.xml and are
also backward compatible with the previous configuration file version,
BarChartConfig.xml (data is taken from whichever of those two
files contains a configuration with the required ID; if configurations
with the same ID exist in both files, the one found in ChartCon-
fig.xml takes precedence).

• LineChartConfig.xml configuration file is used to look for line
chart configuration data.

• Pie chart configuration data is to be placed into file PieChartCon-
fig.xml

The following is a sample of a chart configuration file:

<CHART-CONFIG>
<CONFIG ID="Column.Chart.Config" ORIENTATION="VERTICAL"

X_AXIS_LABEL="Vert.BarChart.X-Axis"
Y_AXIS_LABEL="Vert.BarChart.Y-Axis">

<LEGEND CODETABLE="Attendance">
<ITEM CODE="CR1"/>
<ITEM CODE="CR2"/>
<ITEM CODE="CR3"/>

</LEGEND>
<LINK LOCATION="ComponentRedirect">
<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"

USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>

</LINK>
<CAPTION_LINK LOCATION="AnotherPage">
<PARAMETER NAME="vertID" VALUE="ID" USE_PAGE_PARAM="false"/>
<PARAMETER NAME="dueDate" VALUE="START_DATE"

Cúram Web Client Reference Manual

221

USE_PAGE_PARAM="false"/>
<PARAMETER NAME="transID" VALUE="ID" USE_PAGE_PARAM="true"/>

</LINK>
</CONFIG>

<CONFIG ID="BarChart.Config" ORIENTATION="HORIZONTAL"
CAPTION="Status.Caption"
CAPTION_TEXT_CODETABLE="Cars"
MIN_HEIGHT="200" MAX_HEIGHT="500">

<LEGEND VISIBLE="true" CODETABLE="OldCars">
<ITEM CODE="CR1"/>
...

</LEGEND>
<LINK LOCATION="TransferPage">
<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
...

</LINK>
</CONFIG>
<CONFIG ID="BarChart.Config" TYPE="line"

CAPTION="Line.Chart.Caption">
<LEGEND>
<ITEM CODE="CR1"/>
...

</LEGEND>
<LINK LOCATION="ComponentRedirect">
<PARAMETER NAME="horID" VALUE="ID" USE_PAGE_PARAM="false"/>
...

</LINK>
</CONFIG>

</CHART-CONFIG>

The CHART-CONFIG root element contains only CONFIG elements. The
CONFIG element contains all configuration for a particular field, identified
by the ID attribute. The following table describes all attributes of the CON-
FIG element. BarChart.properties referred to in this table is a prop-
erties file in the client application's
<CLIENT_DIR>\components\core folder, used to look up values re-
quired.

Attribute Description
ID Unique identifier for this CONFIG element.

TYPE Can be either line or pie, depending on required
type of chart. If not present, ORIENTATION attrib-
ute will be used to define if bar or column chart is to
be displayed.

ORIENTATION Can be either HORIZONTAL or VERTICAL, de-
pending on required type of chart, HORIZONTAL
meaning bar chart and VERTICAL - column chart.

CAP-
TION_TEXT_CODE
TABLE

Code table currently used for label captions
throughout a chart. If not specified, literal values
from chart data will be used.

MAX_VALUE Maximum value for a numeric axis of column or bar
chart. Automatically calculated to fit the maximum
element, if not specified.

MAX_INCREMENT Maximum increment value for a numeric axis of a
chart. Numbered ticks are drawn on a chart at the

Cúram Web Client Reference Manual

222

Attribute Description
specified intervals. If not specified, numbered ticks
are placed at uniform intervals along the numeric
axis, taking into account it's maximum value.

X_AXIS_LABEL Key to a text property in
BarChart.properties. This text is used as the
label for the x-axis in the column or line chart, or y-
axis in the bar chart. Not used on pie chart.

Y_AXIS_LABEL Key to a text property in
BarChart.properties. This text is used as the
label for the y-axis in the column or line chart, or x-
axis in the bar chart. Not used on pie chart.

MIN_HEIGHT This setting is used to define minimum chart object
height and is to be specified in pixels. Where a chart
contains a small number of items and would be short
based on that content size, minimum height intro-
duced by this setting is used. The setting is optional,
so 250px default minimum height is used if
MIN_HEIGHT is not specified.

MAX_HEIGHT This setting is used to define the maximum chart ob-
ject height on screen and should be specified in
pixels. Where a chart contains numerous items and
its contents exceeds the MAX_HEIGHT specified,
this setting is used for the chart object height and a
vertical scrollbar appears to allow for access to the
rest of the items in the chart. The setting is optional
and a default of 250px is used if the attribute is not
specified. A value of -1 for MAX_HEIGHT means
that the chart takes whichever height its content
needs to be displayed in full. It is worth noting that
the minimum height setting, either default or expli-
cit, is still taken into account in this case. As a res-
ult, charts with little content will not be shorter than
minimum or default height implies. Finally, a chart
with MAX_HEIGHT set to -1 will not display its
vertical scrollbar and the browser scrollbar will ap-
pear once the chart is too big to fit into the screen
area available.

CAPTION Key to a text property in
BarChart.properties. This text is used as the
label for the whole chart.

Table 8.1 Attributes of the CONFIG element

Note

The example lists sample ChartConfig.xml contents. The older

Cúram Web Client Reference Manual

223

format in BarChartConfig.xml is almost the same except that
the root element is called BARCHART-CONFIG.

The older versions of BarChartConfig.xml do not contain
configuration for label links. This element might be added, if re-
quired to this file directly; it is preferable, though, to create appro-
priate full configuration with the same ID in the ChartCon-
fig.xml which will override the older version.

MIN_HEIGHT and MAX_HEIGHT settings currently do not apply to
line or pie charts and will be ignored for these types.

The CONFIG element has three child elements: LEGEND, LINK and option-
al CAPTION_LINK.

• The LEGEND element defines the items available for use in the TYPE at-
tribute of a BLOCK element in chart data returned from the server. The
element has an optional CODETABLE attribute, specifying the code table
used for legend item translation, and an optional VISIBLE attribute
which indicates if the legend should be seen on screen or not. This at-
tribute has a default value of false, so it must be explicitly set to
true in order for the legend to be displayed.

The ITEM child element of specifies each legend entry. Its CODE attrib-
ute is the text or code table code used to identify a legend item. The
code table containing the CODE value will be ascertained first from the
CAPTION_TEXT_CODETABLE value of the CONFIG element, then the
CODETABLE attribute on the LEGEND element value, or, in case neither
of these attributes are present or do not apply to a particular CODE, the
literal value will be used as a caption. The same caption is used for a
context data tip displayed when mouse pointer is over a corresponding
chart element.

• The LINK child element is used to configure hyperlinks on bar chart
bars and column chart columns or pie chart segments. Its LOCATION at-
tribute is the ID of the UIM page to link to. A LINK element can have
any number of PARAMETER child elements. The NAME attribute of a
PARAMETER is the name to give the parameter when transferred as part
of hyperlink. The VALUE attribute is the name of the attribute on the
BLOCK element or the CAPTION element in the chart input data re-
turned from the server (see below) to use as a parameter value unless
USE_PAGE_PARAM is true, in which case VALUE is the name of a
page parameter.

• Finally, the CAPTION_LINK element is used whenever chart captions
are intended to be rendered as links and contains separate settings for
such links. The CAPTION_LINK element contents are similar to those
of the LINK element. When this element is skipped, captions are dis-
played as static text. Also, captions as links are currently supported on
bar and column charts only.

Texts for chart caption and axes labels can be customized and localized by
creating a properties file called BarChart.properties in the client ap-

Cúram Web Client Reference Manual

224

plication's <CLIENT_DIR>\components\core folder and placing
there values under keys, corresponding to the ones specified among CON-
FIG element parameters as described above.

In addition, the text displayed for the word total displayed in the bar tool-
tips is customizable using the key total.tooltip.text in the
BarChart.properties file.

Note

Bar colors are not customizable in charts and are automatically cal-
culated by Adobe FLEX.

Collapsible Cluster Support

Collapsible clusters are not supported for any cluster containing this
widget.

8.11.4 Chart Data Formats

The data to be displayed in a chart comes from the server in XML format.

Below is example of the XML used to create a chart:

<CHART>
<UNIT>

<CAPTION TEXT="TR1" START_DATE="2004-12-31"
END_DATE="2005-03-06"/>

<BLOCK ID="1" TYPE="CR1" DUE_DATE="2005-01-01" LENGTH="33"/>
<BLOCK ID="2" TYPE="CR3" DUE_DATE="2005-02-01" LENGTH="14"/>

</UNIT>
<UNIT>

<CAPTION TEXT="TR2" START_DATE="2004-12-31" />
<BLOCK ID="3" TYPE="CR3" DUE_DATE="2005-01-02" LENGTH="11"/>

</UNIT>
<UNIT>

<CAPTION TEXT="TR3" END_DATE="2005-03-08" />
<BLOCK ID="4" TYPE="CR1" DUE_DATE="2005-01-03" LENGTH="22"/>
<BLOCK ID="5" TYPE="CR2" DUE_DATE="2005-01-09" LENGTH="15"/>
<BLOCK ID="6" TYPE="CR3" DUE_DATE="2005-01-01" LENGTH="8"/>

</UNIT>
</CHART>

Example 8.11 Sample Horizontal Bar Chart XML

The root element, CHART, can contain any number of UNIT elements.
These elements are used to group related information into groups (clusters)
and contain one CAPTION element and one or more BLOCK child elements.

The CAPTION element displays an appropriate caption depending on what
attributes are set:

• If either the START_DATE or both START_DATE and END_DATE
attributes are set, then the caption will be either a single start date or a
range of dates.

• If the TEXT attribute is set, then the caption text is first looked for in the
code table specified in the CAPTION_TEXT_CODETABLE attribute of
the CONFIG element (see above), then looked for as a property in

Cúram Web Client Reference Manual

225

BarChart.properties using the TEXT value as a key, or, if
neither attempt is a match, the literal TEXT value is rendered as a cap-
tion.

Each BLOCK element represents a block to be drawn on a chart as a bar,
column, line chart point or pie chart sector. This element must have an asso-
ciated TYPE attribute to match it with a particular item. The LENGTH attrib-
ute is necessary to define the measurement of the block. In the bar or
column chart this is the length/height of a bar/column; in a line chart it's the
position of an edge point; in a pie chart it's the relative sector arc length. The
ID attribute is a unique identifier for a block and can be used as a
parameter for any hyperlinks. The optional DUE_DATE attribute can also be
used as an ID parameter for hyperlinks on a particular block. It represents
the due date for a given block.

Note

• There are no restrictions on the number or names of the attrib-
utes of BLOCK element. This facilitates passing an arbitrary set
of attributes in the links from a chart (provided the configuration
is updated appropriately). However, one should keep in mind,
that the names of the attributes provided in this section are re-
served and bound to the particular elements, i.e. even though
START_DATE attribute could be added to a BLOCK element, in
this case it will be interpreted as a literal value and not a date as
it would be in the context of CAPTION element.

• Due to the nature of pie chart, no more than one BLOCK element
will be processed and displayed in this type of chart.

8.12 Heatmap Widget

8.12.1 Overview

The Heatmap widget is a control which displays a grid of items of different
importance. Items in the widget are presented by color shades varying from
red to blue, indicating their importance level from highest to lowest.

The widget is inserted into the page when the XML_HEATMAP domain is as-
sociated with UIM source property of a FIELD.

The Heatmap widget expects XML data from the server in the following
format:
<HEATMAP>

<REGION REGION_ID="R1" LABEL="highest importance"/>
<REGION REGION_ID="R2" LABEL="middle importance">

<ITEM ITEM_ID="id9" LABEL="0009" />
<ITEM ITEM_ID="id10" LABEL="0010"/>
<ITEM ITEM_ID="id21" LABEL="0021"/>

</REGION>
<REGION REGION_ID="R3" LABEL="lowest importance">

<ITEM ITEM_ID="id22" LABEL="0022"/>

Cúram Web Client Reference Manual

226

</REGION>
...

</HEATMAP>

Here, the REGION elements specify the importance level ("heat") of their
contained ITEMs. There should be at least two regions in a heatmap widget.
The color will always start from red, so if no items of that importance are
there, empty REGION elements should be inserted for the widget to render
properly.

The following image shows an example of the Heatmap widget.

Figure 8.9 Heatmap Example

8.12.2 Configuration

Different types of heatmap can be configured by creating entries in the
HeatmapConfig.xml file in your components directory, using the
following format:
<HEATMAP_CONFIG>

<CONFIG ID="Map1" NUM_COLS="10" NUM_ROWS="4"
LEGEND_POSITION="LEFT"
LEGEND_TITLE="Deadline"
LEGEND_TITLE_PROPERTY="Localised.Legend.Title">

<ITEM_LINK PAGE_ID="Sample_page">
<PARAM NAME="configParameter" VALUE="ITEM_ID"/>

</ITEM_LINK>
</CONFIG>
<CONFIG ID="Map2" NUM_COLS="6">

...
</CONFIG>

</HEATMAP_CONFIG>

The attributes of a CONFIG element are summarized in the following table:

Attribute Description
NUM_COLS This attribute allows you to set the number of items

displayed in each row of the Heatmap

NUM_ROWS This attribute allows you to specify the number of
visible rows in the Heatmap. If this attribute is set to
less rows than are required to display the data, a ver-
tical scrollbar will be provided. If this attribute is
not present, the widget will expand to display as
many rows as are required.

LE- By default, the Heatmap legend is drawn to the right

Cúram Web Client Reference Manual

227

Attribute Description
GEND_POSITION of the widget. This attribute can be used to draw the

legend to the left instead, by setting it's value to
LEFT.

LEGEND_TITLE The default title for a legend is Legend. This attrib-
ute can be used to specify a more logical title to use.

LE-
GEND_TITLE_PRO
PERTY

Optional attribute used to customize/localize the dis-
played title. The value here is the key in the
CDEJResources.properties file or its local-
ized version (see Chapter 4, Localization for more
details on localization).

Table 8.2 Attributes for CONFIG element

The ITEM_LINK element can be used to specify the page to which to link
when a user clicks on an item in the Heatmap, by setting it's PAGE_ID at-
tribute. The PARAM child element can be used to specify what page para-
meters to pass (the NAME attribute) and what data items to use as their value
(the VALUE attribute). Values which don't match any attributes in the ITEM
elements in the Heatmap XML are assumed to be literal values.

To specify which configuration to use for a given instance of the Heatmap
widget, the CONFIG attribute of the field containing the widget should be
set to the ID of the desired configuration.

8.13 Workflow

8.13.1 Overview

A workflow depicts a series of steps that routinely take place in order for a
unit of work to be completed. The WORKFLOW_GRAPH_XML domain, or
any derivation of it, causes a workflow to be displayed. The data to be dis-
played in a workflow comes from the server in XML format. Configuration
settings for the Workflow must be in a file called
WorkflowConfig.xml, of which there can be only one per component.
The format for the XML data and configuration settings are described be-
low. Any static text for this view can be customized and localized by creat-
ing a properties file called Workflow.properties in the client applica-
tion's <CLIENT_DIR>\components\core folder.

8.13.2 Workflow Details

Figure 8.10, Workflow shows a sample workflow view. A box, along with a
representative icon, represents a discrete unit of work and is called an activ-
ity. Any line connecting nodes is called a transition and is intended to illus-
trate the flow of work. For this reason, the start and end activities are repres-

Cúram Web Client Reference Manual

228

ented by icons only. Workflow proceeds from the left and ends at the right-
most activity. An activity is a hyperlink to a tab containing further details on
that activity. An activity can have a second, smaller icon indicating that
there is a notification on this activity. Clicking on the notification icon (a
small envelope in the image below) will open a separate tab with details of
the notification.

An activity has an entry point and an exit point for a transition, on the right
and the left respectively. When two or more transitions leave an exit point
this is called a split. The transitions in a split can be given a number to in-
dicate their relative progression. When two or more transitions meet at an
activity's entry point this is called a join. If either a join or a split is an “and”
type, also called a “conjunction”, then it is represented as a small square.
This implies that a series of transitions have to take place together in order
for the workflow to proceed. If a join or a split is an “xor” type, an either-or
situation, then a small circle is used. There are examples of both in the fig-
ure below. Finally, a transition can have an associated transition condition.
This means that certain criteria have to be met in order for a transition to
proceed. This is represented by an asterisk on the transition and the full con-
dition information is displayed in a pop-up if the user hovers the mouse over
the symbol.

Figure 8.10 Workflow

8.13.3 Workflow XML Formats

The workflow widgets require XML data that conforms to the workflow
schema defined in the workflow.xsd file located in the
lib\curam\xml\schema folder of your CDEJ installation folder. Be-
low is an example of workflow XML data:

<WORKFLOW ID="4791830003522207744" PROCESS-VERSION="1">

Cúram Web Client Reference Manual

229

<NODE ID="6953557824660045824" X="2.0" Y="1.0"
TEXT="Loop Activity [End]" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT9" HAS-NOTIFICATION="true"
IS-EXECUTED="false" SPLIT-TYPE="AND" JOIN-TYPE="AND"
TASK-ID="1"/>

<NODE ID="-3566850904877432832" X="3.0" Y="1.0"
TEXT="EndProcessActivity" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT7" IS-EXECUTED="false"
JOIN-TYPE="AND" TASK-ID="2"/>

<NODE ID="2702159776422297600" X="1.0" Y="2.0"
TEXT="Activity 1" HIDDEN="false"
ACTIVITY-TYPE-CODE="AT5" IS-EXECUTED="false"
SPLIT-TYPE="AND" JOIN-TYPE="AND" TASK-ID="3"/>

<EDGE FROM="6953557824660045824" TO="-3566850904877432832"
HIDDEN="false" TRANSITION-ID="1621295865853378560"
IS-EXECUTED="false" REVERSE-ARROW="false"/>

<EDGE FROM="3566850904877432832" TO="2702159776422297600"
HIDDEN="false" TRANSITION-ID="0" IS-EXECUTED="false"
REVERSE-ARROW="true"/>

</WORKFLOW>

The root element, WORKFLOW, can have any number of NODE (activity) and
EDGE (transition) elements. The ID attribute on WORKFLOW identifies this
particular workflow as does the PROCESS-VERSION attribute.

The NODE element represents a single activity in the workflow. All attrib-
utes of a node are defined in the following table:

Attribute Description
ID Unique identifier for this element, supplied as a

parameter in the row header hyperlink.

X An x-coordinate for an element on the workflow
graph.

Y A y-coordinate for an element on the workflow
graph.

TEXT The text of an activity.

ACTIVITY-
TYPE-CODE

Code for an activity type. Used as a parameter in a
hyperlink.

HIDDEN Boolean property to indicate if an edge or node is to
be hidden. If true the node will not be displayed.

IS-EXECUTED Boolean property to indicate if an activity has
already been executed for a particular process in-
stance. If set to true then the activity has been ex-
ecuted.

SPLIT-TYPE The split type associated with an activity.

JOIN-TYPE The join type associated with an activity.

ACTIVITY-IN-
STANCE-ID

The unique identifier of an activity instance for a
particular process instance.

START-
DATE-TIME

The start date time of an activity instance or trans-
ition instance for an executed or currently executing
process.

END-DATE-TIME The end date time of an activity instance or trans-

Cúram Web Client Reference Manual

230

Attribute Description
ition instance for an executed or currently executing
process.

STATUS The current status of an activity instance.

TASK-STATUS Code for the status of a task.

TASK-RE-
SERVED-BY

The name of the user reserving the task.

TASK-
TOTAL-
TIME-WORKED

The total time worked on a task in seconds.

NUMBER-IT-
ERATIONS

The number of times the activity contained in a node
has been executed.

TASK-ID The unique identifier for the task.

Table 8.3 Attributes of a Node

The EDGE element represents a single transition in the workflow. All attrib-
utes of an edge are defined in the following table:

Attribute Description
FROM The ID of the node this edge is from.

TO The ID of the node this edge is to.

TRANSITION-ID The unique identifier of a transition.

IS-FOLLOWED Boolean property to indicate if a particular transition
has already been followed for a process instance.

TRANSITION-IN-
STANCE-ID

The unique identifier of a transition instance for a
particular process instance.

REVERSE-ARROW Boolean property to indicate if an arrow on an edge
should be reversed. In this case, the arrow will be
going into the FROM node instead of the TO node.

IS-EXECUTED Boolean property to indicate if an activity has
already been executed for a particular process in-
stance. If set to true then the activity has been ex-
ecuted.

TRANSITION-CON-
DITION

The condition associated with a transition in an
edge.

REAL_FROM ID of a node that this edge is actually from as op-
posed to an intermediate hidden node identified by
the FROM attribute.

REAL_TO ID of a node that this edge is actually to as opposed
to an intermediate hidden node identified by the TO
attribute.

ENABLED Boolean property to indicate if an edge is to be en-

Cúram Web Client Reference Manual

231

Attribute Description
abled as a hyperlink. This attribute is false by de-
fault.

ORDER Indicates the order of an edge relative to other
edges.

Table 8.4 Attributes of an Edge

As mentioned above, workflow charts are configurable. This is accom-
plished by setting the CONFIG attribute on the UIM field in question. The
WorkflowConfig.xml XML configuration file must contain a configur-
ation section with a unique identifier matching the text in the CONFIG at-
tribute. The XML schema format for this file is defined in the workflow-
config.xsd file located in the lib\curam\xml\schema folder of
your CDEJ installation folder. The following is a sample of this file:

<WORKFLOW_CONFIG>
<ICON CODE="AT1" PATH="Images/manual.gif"/>
<ICON CODE="AT2" PATH="Images/automatic.gif"/>
<ICON CODE="AT4" PATH="Images/subflow.gif"/>
<ICON CODE="AT5" PATH="Images/route.gif"/>
<ICON CODE="AT6" PATH="Images/eventwait.gif"/>
<ICON CODE="AT7" PATH="Images/endprocess.gif"/>
<ICON CODE="AT8" PATH="Images/loopbegin.gif"/>
<ICON CODE="AT9" PATH="Images/loopend.gif"/>
<ICON CODE="AT10" PATH="Images/decision.gif"/>
<ICON CODE="AT11" PATH="Images/startprocess.gif"/>
<ICON NOTIFICATION="true"

PATH="CDEJ/cdej-images/notification.gif"/>
<CONFIG ID="WorkFlow.Config"

NOTIFICATION_PAGE="viewActivityNotification"
DETAILS_PAGE="componentRedirect"
START_PROCESS_TYPE="AT11" END_PROCESS_TYPE="AT7"/>

</WORKFLOW_CONFIG>

The WORKFLOW_CONFIG root element contains CONFIG elements and
ICON elements. The CONFIG element contains all configuration for a par-
ticular field, identified by the ID attribute. The following table describes all
attributes of the CONFIG element:

Attribute Description
ID Unique identifier for this configuration.

DETAILS_PAGE ID of a UIM page to use as a destination for
a hyperlink on a node.

HEIGHT Height in pixels of a workflow chart. If
height is not specified, a height will be
chosen that attempts to maximize the use of
available space.

ACTIVITY_CODETABLE Codetable name for resolving ACTIVITY-
TYPE-CODE attribute values.

TASKSTATUS_CODETABL
E

Codetable name for resolving TASK-
STATUS attribute values.

Cúram Web Client Reference Manual

232

Attribute Description
PRO-
CESSSTATUS_CODETABL
E

Codetable name for resolving the status of a
process instance (e.g. In Progress, Com-
pleted, Suspended or Aborted).

SHOW_INSTANCE_DATA Determines if the chart should display a text
area containing all instance data information.
Valid settings are true and false.

START_PROCESS_TYPE Code identifying the ACTIVITY-
TYPE-CODE set as the start process type.
This activity will be drawn without a box.

END_PROCESS_TYPE Code identifying the ACTIVITY-
TYPE-CODE set as the end process type.
This activity will be drawn without a box.

NOTIFICATION_PAGE ID of a UIM page to use as a destination for
a hyperlink on a notification icon.

READONLY_VIEW Determines if the links on a workflow graph
should be disabled.

HIGH-
LIGHT_ACTIVITY_PARA
M

Represents the parameter used to determine
the current activity in a workflow. The value
of the parameter is matched with a corres-
ponding attribute in the XML data returned
from the server to indicate which node has to
be highlighted.

Table 8.5 Attributes of Workflow CONFIG element

The ICON child element of the WORKFLOW_CONFIG root element defines
all icons for the workflow chart. Either the CODE attribute or the NOTI-
FICATION attribute defines what kind of icon this is. If CODE is set then
the ACTIVITY-TYPE-CODE on a NODE is used to match an icon to a par-
ticular activity type. If the NOTIFICATION attribute is set to true then
this icon is used as a graphic depicting a notification present on an activity.
The PATH attribute on ICON is used to point to an image file, relative to
your project's WebContent directory.

8.14 Evidence View

This view has two modes for displaying and comparing evidence data.

8.14.1 Evidence Display Mode

The EVIDENCE_XML domain results in a table displaying evidence items.
There are three columns in the table. The first displays the evidence item
name, the second shows the group to which evidence item belongs and the
value of the item is displayed in the third column. The value of the item will

Cúram Web Client Reference Manual

233

be formatted based on it's domain.

8.14.2 Evidence Comparison Mode

The EVIDENCE_XML_COMPARE domain results in three tables displaying
evidence comparison results. The comparison results consist of three tables
to display items which were modified, added or deleted. All three tables fol-
low the same format: the first column displays the evidence item name; the
second column displays the group which the evidence item belongs to and
corresponding values are displayed in the third (the modified evidence table
will have a fourth fourth column to show previous values against current
values) column.

8.14.3 Configuration

The evidence view is configurable by changing settings in appropriate prop-
erties files. For Evidence Display mode this is the DisplayEvid-
ence.properties file and for Evidence Comparison mode configura-
tion, ComparedEvidence.properties file is used. These properties
files should be created in the <CLIENT_DIR>\components\core
folder.

Configuration files contain table headers and captions for all the columns as
well as visibility settings for each column. There is also a links section for
specifying links to pages for each evidence item and item group column if
needed. If a link is not required, leave the value empty rather than deleting
the property itself. Also there are properties containing textual substitution
for an empty value case and textual insert used in evidence item name.

Note

The properties specifying visibility settings are not localizable
strings and should contain either “true” or “false” depending on de-
sired visibility of the corresponding column.

Below is an example of the configuration settings for display evidence
mode:

#Textual descriptions for comparison sections.
Table.Summary.Single=This table contains evidence items.

Comparison section labels
Evidence.Table.Label=Evidence Items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Value.Column.Header=Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Value.Column.Visible=true

Localizable messages
Message.No.Value=This item is not set
Message.Item.Joint=referenced by rule item

Cúram Web Client Reference Manual

234

#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

The following is an example of the configuration settings for the evidence
comparison mode:

#Textual descriptions for comparison sections.
Table.Summary.MODIFIED=This table contains modified evidence
Table.Summary.NEW=This table contains newly added evidence items.
Table.Summary.REMOVED=This table contains removed evidence.

Comparison section labels
Evidence.Label.MODIFIED=Modified evidence
Evidence.Label.NEW=Newly added evidence items
Evidence.Label.REMOVED=Removed evidence items

#Column headers
Description.Column.Header=Rule
Group.Column.Header=Group
Oldval.Column.Header=Previous Value
Value.Column.Header=New Value

#Visibility
Description.Column.Visible=true
Group.Column.Visible=true
Oldval.Column.Visible=true
Value.Column.Visible=true

#Links (Values should be UIM PAGE_IDs)
Description.Column.Link=Home
Group.Column.Link=GroupHome

8.14.4 Data Format

The Evidence view expects the following XML format. Below is an ex-
ample for Evidence Comparison mode:

<EVIDENCE_COMPARE>
<EVIDENCE TYPE="MODIFIED">

<GROUP ID="mod1ID"
DESCRIPTION="en|EvidenceGroup1">

<EVIDENCE_ITEM ID="modItem1ID"
DESCRIPTION="en|Number of Children"
OLDVAL="11" VALUE="13"
DOMAIN="SVR_INT32"/>

</GROUP>
<GROUP ID="mod2ID"

DESCRIPTION="en|EvidenceGroup2">
<EVIDENCE_ITEM ID="modItem3ID"

DESCRIPTION="en|Are you married"
OLDVAL="false" VALUE="true"
DOMAIN="SVR_BOOLEAN"/>

</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="NEW">

<GROUP ID="new1ID"
DESCRIPTION="en|EvidenceGroup1">

<EVIDENCE_ITEM ID="newItem1ID"
DESCRIPTION="en|Number of cars"
VALUE="6"
DOMAIN="SVR_INT32"/>

</GROUP>
</EVIDENCE>
<EVIDENCE TYPE="REMOVED">

Cúram Web Client Reference Manual

235

<GROUP ID="del1ID"
DESCRIPTION="en|Deletion">

<EVIDENCE_ITEM ID="delItem1ID"
DESCRIPTION="en|Number of houses"
OLDVAL="1"
DOMAIN="SVR_INT32"/>

</GROUP>
</EVIDENCE>

</EVIDENCE_COMPARE>

The following is an example of the Evidence Display mode:

<evidence>
<group id="group1" display-name="EvidenceGroup1">

<item name="item11"
display-name="Number of Children"
initial-value="13" no-value="false"
type="SVR_INT32"/>

<item name="item12"
display-name="item with no value"
initial-value="" no-value="true"
type="SVR_STRING"/>

</group>
<group id="group2" display-name="EvidenceGroup2">

<item name="item21"
display-name="Are you married"
initial-value="true" no-value="false"
type="SVR_BOOLEAN"/>

<item name="item22"
display-name="Some important dates"
initial-value="" no-value="false"
type="SVR_DATE">

<value position="10" description="Important date 1"
value="20050401T000000">

<value position="18" description="Important date 2"
value="20050601T000000">

<value position="5" description="Important date 3"
value="20051231T000000">

</item>
</group>

</evidence>

The display-name attribute represents a description for every item or
group, the description does the same for the value element. Group
ids, evidence item names and value descriptions are supplied by the evid-
ence text returned from the rules engine. The type attribute is used to se-
lect particular representation for different data types from the server. The
name attribute of item and the id attribute of group are used as link
parameters if a link is specified for the first or second column.

8.15 Calendar

The calendar is used by any UIM page which displays a field from a server
access bean containing a CALENDAR_XML_STRING domain. This view al-
lows for scheduling of events from different time-frames; monthly, weekly
and daily. The following image shows a section of the calendar week view
as it would be displayed in a web page.

Cúram Web Client Reference Manual

236

Figure 8.11 Calendar Week View

Programmatically, the calendar expects to be populated with information
about events in an XML format.

The following is an example of what the XML received from the server
might look like:

<CURAM_CALENDAR_DATA TYPE="UserCalendar">
<EVENT>

<ID>1</ID>
<DATE>2002-10-10</DATE>
<STARTTIME>10:10:10</STARTTIME>
<ENDTIME>10:10:10</ENDTIME>
<DURATION>0</DURATION>
<DESCRIPTION>Hello World!</DESCRIPTION>
<STATUS>ATS1</STATUS>
<PRIORITY>AP1</PRIORITY>
<LEVEL>AL1</LEVEL>
<RECURRING>false</RECURRING>
<READ_ONLY>false</READ_ONLY>
<ALL_DAY>false</ALL_DAY>
<ATTENDEE>true</ATTENDEE>
<ACCEPTANCE>true</ACCEPTANCE>

</EVENT>
<SINGLE_DAY_EVENT>

<ID>2</ID>
<DATE>2003-04-01</DATE>
<TYPE>ET1</TYPE>
<DESCRIPTION>April Fool's Day</DESCRIPTION>

</SINGLE_DAY_EVENT>
</CURAM_CALENDAR_DATA>

Example 8.12 Calendar XML Stream

Notice that there can be two kinds of event elements contained within the
CURAM_CALENDAR_DATA XML data: EVENT and
SINGLE_DAY_EVENT. In the schema of the XML data expected the root
element, CURAM_CALENDAR_DATA, can hold any number (zero to many)
of EVENT and SINGLE_DAY_EVENT elements;
CURAM_CALENDAR_DATA can optionally have a TYPE attribute which as-
sociates this sequence of events with a particular calendar configuration (see
example below).

The following tables describe the schema definitions for each of the attrib-

Cúram Web Client Reference Manual

237

utes allowed on the EVENT and the SINGLE_DAY_EVENT elements re-
spectively.

Attribute
Name

Description Required

ID A string to uniquely identify this event.

DATE The date of the event in xs:date format:
(CCYY-MM-DD) I.e. 21- Aug-2002 is
represented as 2002-08-21.

No

STARTTIME The start time in xs:time format:
(hh:mm:ss). I.E. 1:34 pm and 56 seconds
is represented as 13:34:56.

ENDTIME The start time in xs:time format:
(hh:mm:ss).

No

DURATION The duration of the event in minutes.
This should be an integer.

No

DESCRIPTION A Description of the event. No

STATUS The status of the event. This node is lim-
ited to values stored in the Activity-
TimeStatus code table in the reference
application.

No

PRIORITY The priority of the event. This node is
limited to values stored in the ActivityP-
riority code table in the reference applic-
ation.

No

LEVEL Code that shows the level of the activity.
This node is limited to the values stored
in the ActivityLevel code table in the
reference application.

No

RECURRING Recurring indicator: true if this event is a
recurring event. Otherwise false.

No

READ_ONLY Read-only indicator: true if this event is
a read-only event. Otherwise false.

No

ALL_DAY All-day indicator: True if this is an all-
day event. Otherwise false.

No

ATTENDEE Attendee indicator: true if the user is at-
tending a meeting. Otherwise false.

No

ACCEPTANCE Acceptance indicator: True if the user
has accepted an invitation to a meeting.
Otherwise false.

POSITION For a spanning event, indicates first or
last component of the event.

No

Table 8.6 EVENT attributes in schema

Cúram Web Client Reference Manual

238

Attribute
Name

Description Required

ID A string to uniquely identify this event. No

DATE The date of the event in xs:date format. No

TYPE The type of a single day event. No

DESCRIPTION A Description of the event. No

Table 8.7 SINGLE_DAY_EVENT attributes in schema

Once a field based on the CALENDAR_XML_STRING domain returns XML
information formatted according to the aforementioned schema, it will be
displayed in the appropriate time position by the calendar. Any web page
containing a calendar can be set to open on different dates and views by spe-
cifying the startDate and calendarViewType parameters in the
page's URL. The startDate parameter should be formatted according to
the date format expected by the application and the calendarViewType
parameter should be one of the following codes.

Code Value
CVT1 Day view

CVT2 Week view

CVT3 Month view

Table 8.8 Calendar View Type Values

You can configure the display of calendar information using the Calen-
darConfig.xml file. There should be at least one copy of this in the
components folder. This file should contain configuration information for
each type of calendar, the TYPE attribute of the
CURAM_CALENDAR_DATA element mentioned above associates a calendar
data stream with a particular type. The following is an example of the struc-
ture of the CalendarConfig.xml

<CONFIGURATION MONTH_CELL_HEIGHT="4"
SHOW_REPEAT_EVENT_TEXT="true">

<CALENDAR TYPE="UserCalendar">
<DESCRIPTION_LOCATION>DetailsPage.do</DESCRIPTION_LOCATION>
<DAY_VIEW_TIME_FORMAT>24</DAY_VIEW_TIME_FORMAT>

</CALENDAR>
<EVENT_TYPES>

<TYPE NAME="ET1" ICON="Images/mandatory.gif"/>
<TYPE NAME="ET2" ICON="Images/case.gif"/>
<TYPE NAME="ET3" ICON="Images/concern.gif"/>

</EVENT_TYPES>
</CONFIGURATION>

Example 8.13 CalendarConfig.xml Example

The overall schema for this configuration file specifies the CONFIGURA-
TION element as the root element. The CONFIGURATION has an optional
MONTH_CELL_HEIGHT attribute which sets the maximum number of rows

Cúram Web Client Reference Manual

239

to display in a single cell in the month view. The default value is three. The
SHOW_REPEAT_EVENT_TEXT optional attribute, if set to true, will dis-
play the event description in each month cell if an event spans multiple
days. This attribute is false by default.

The CONFIGURATION root element can hold any number of CALENDAR
elements and a single EVENT_TYPES element. The TYPE attribute of
CALENDAR associates this configuration information with an XML stream
returned from the server. The DESCRIPTION_LOCATION element of
CALENDAR is for constructing a link to a page containing more information
on any event in the calendar. The following table lists the parameters passed
with this hyperlink.

Parameter Name Description
ID the event ID

RE Recurrence indicator

AT Attendee indicator

RO Read-only indicator

LV_ Activity level

AC Acceptance indicator

Table 8.9 Parameters Passed to Event Description Pages

The CALENDAR element should also contain an element called
DAY_VIEW_TIME_FORMAT. The valid values for this element are 12 and
24. They specify whether the time in the day view is displayed using a 12 or
24 hour format.

The EVENT_TYPES element is used for mapping images to display as icons
next to single day events. The NAME attribute of the TYPE element must
match a TYPE element on a SINGLE_DAY_EVENT supplied by the server
for the image specified by the ICON attribute to be displayed.

The schema for the calendar configuration file (CalendarConfigura-
tion.xsd) and the schema for the CALENDAR_XML_STRING domain
(CuramCalendar.xsd) are located in your project's WebContent/
WEB-INF/CDEJ/schema folder.

8.16 Payment Statement View

The payment statement view is used for displaying under or over payment
within the Cúram application framework. This following image demon-
strates this view:

Cúram Web Client Reference Manual

240

Figure 8.12 Payment Statement View

The payment statement view supports the display of benefits as well as liab-
ilities. The domain BENEFIT_REASSESSMENT_RESULT_TEXT should
be used for a benefit payment statement view. The domain LIABIL-
ITY_REASSESSMENT_RESULT_TEXT should be used for a liability pay-
ment statement view. It is expected that all string data returned for this field
follows a specific tab-delimited format. Examples of using these domains
can be found in the Cúram reference application.

There is also a properties file associated with this view: PaymentState-
ment.properties in the <CLIENT_DIR>\components\core
folder. The link to a page providing further details on a statement can be
defined using a set of four parameters:
PaymentStatement.RowLink.Benefit.PageID
PaymentStatement.RowLink.Benefit.ParameterName
PaymentStatement.RowLink.Benefit.Label
PaymentStatement.RowLink.Benefit.Image

There is one set of parameters for Benefit pages and one for Liability pages.
PageID is the name of the page to link to. ParameterName is the name
of the parameter to be passed to this page to identify the id of the payment
in question. Label supplies the text of the link, if Image is not used. Oth-
erwise it supplies the tool-tip for the image-based link.

The remaining properties are simply externalized strings for the widget.

PaymentStatement.RowLink.Benefit.PageID=FromBenefit
PaymentStatement.RowLink.Liability.PageID=FromLiability

PaymentStatement.RowLink.Benefit.ParameterName=param1
PaymentStatement.RowLink.Liability.ParameterName=param2

PaymentStatement.RowLink.Benefit.Label=Link Text 1
PaymentStatement.RowLink.Liability.Label=Link Text 2

#PaymentStatement.RowLink.Benefit.Image=Images/icon.gif
PaymentStatement.RowLink.Liability.Image=Images/icon.gif

PaymentStatement.Text.fromToDateSeparator=\ to
PaymentStatement.Text.Action=Action
PaymentStatement.Text.Period=Period

Cúram Web Client Reference Manual

241

PaymentStatement.Text.Desc=Description
PaymentStatement.Text.Actual=Actual
PaymentStatement.Text.Reassessed=Reassessed
PaymentStatement.Text.Liability.Received=Received
PaymentStatement.Text.Diff=Difference
PaymentStatement.Text.GrossTotal=Total Gross Over Payment
PaymentStatement.Text.TaxTotal=Total Tax Deduction
PaymentStatement.Text.UtilityTotal=Total Utility Deduction
PaymentStatement.Text.LiabilityTotal=Total Liability Deduction
PaymentStatement.Text.NetTotal=Net Under or Over Payment

Example 8.14 A Sample PaymentStatement.properties File

8.17 Batch Function View

The batch function view is generated from the PARAM_TAB_LIST domain.
It allows you to enter parameters to submit a batch program for execution.
The labels of each field are provided to the view by a single tab-delimited
string.

8.18 Addresses

The ADDRESS_DATA domain type maps to a tag for entering and display-
ing addresses. Although the user sees several fields, addresses are stored as
a single string field.Each of the fields displayed as part of the out-of-the-box
address are text input fields except for the state field which is drop-down
field.

To parse the address and display it, the elements that make up the address
have to be defined in the curam-config.xml file. Different address
configurations for different locales in the Cúram application can be defined.
Example 8.15, Address Configuration in curam-config.xml demonstrates
how to set this configuration using the ADDRESS_CONFIG element.

<ADDRESS_CONFIG>
<LOCALE_MAPPING LOCALE="en_US"

ADDRESS_FORMAT_NAME="US"/>
<LOCALE_MAPPING LOCALE="en_GB"

ADDRESS_FORMAT_NAME="UK"/>
<ADDRESS_FORMAT NAME="US" COUNTRY_CODE="US">

<ADDRESS_ELEMENT LABEL="Address.Label.AptSuite"
NAME="ADD1"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Street.1"
NAME="ADD2"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Street.2"
NAME="ADD3"/>

<ADDRESS_ELEMENT LABEL="Address.Label.City"
NAME="CITY"/>

<ADDRESS_ELEMENT CODETABLE="AddressState"
LABEL="Address.Label.State"
NAME="STATE"/>

<ADDRESS_ELEMENT LABEL="Address.Label.Zip"
NAME="ZIP"/>

</ADDRESS_FORMAT>

<ADDRESS_FORMAT NAME="UK" COUNTRY_CODE="GBR">
<ADDRESS_ELEMENT LABEL="Address.Label.Address.1"

MANDATORY="true" NAME="ADD1"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.2"

Cúram Web Client Reference Manual

242

NAME="ADD2"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.3"

NAME="ADD3"/>
<ADDRESS_ELEMENT LABEL="Address.Label.Address.4"

NAME="ADD4"/>
<ADDRESS_ELEMENT LABEL="Address.Label.County"

NAME="ADD5"/>
<ADDRESS_ELEMENT LABEL="Address.Label.City"

NAME="CITY"/>
<ADDRESS_ELEMENT LABEL="Address.Label.PostCode"

NAME="POSTCODE"/>
<ADDRESS_ELEMENT CODETABLE="Country"

LABEL="Address.Label.Country"
NAME="COUNTRY"/>

</ADDRESS_FORMAT>
</ADDRESS_CONFIG>

Example 8.15 Address Configuration in curam-config.xml

The ADDRESS_CONFIG element is built using multiple, LOC-
ALE_MAPPING elements and ADDRESS_FORMAT elements. In a situation
where the Cúram application is deployed with multiple locales a developer
may wish to use different ADDRESS_FORMAT tags for different locales.
To do this we use the LOCALE_MAPPING element. This element contains a
LOCALE attribute which defines the locale and an AD-
DRESS_FORMAT_NAME attribute which defines the ADDRESS_FORMAT
element to map to. By default, the OOTB Cúram application has two AD-
DRESS_FORMAT elements defined. A US format which is automatically
mapped to the en_US locale and a UK format which is automatically
mapped to the en_GB locale. As these locales are automatically mapped we
are not required to define LOCALE_MAPPING elements for them, but they
are shown in the example above to illustrate how the LOCALE_MAPPING
element is used.

The ADDRESS_FORMAT has an optional COUNTRY_CODE attribute which
is used in the address header when an address is first created. If it is not set,
the COUNTRY_CODE defaults to GBR when the address format specified is
UK and to US for everything else. The COUNTRY_CODE is not used by the
infrastructure. It is one of the fields in the address string used by the applica-
tion, but infrastructure provides an initial value for it.

The ADDRESS_FORMAT elements contain ADDRESS_ELEMENT elements
which defines the fields in the address tag. The ADDRESS_ELEMENT ele-
ment has a LABEL attribute which refers to properties contained in the
CDEJResources.properties file. This file is located in your
<client-dir>/JavaSource/curam/omega3/i18n folder. The
address is then built using ADDRESS_ELEMENT tags which must be given
a name and label. Note that a code table can also be specified for each AD-
DRESS_ELEMENT. When a code table is specified, a drop-down list will
display the code table entries and the default code will be pre-selected.

The optional MANDATORY attribute specifies if an address element is re-
quired to be filled in. The Mandatory indicator is an asterisk beside the field
label as shown in the example above. Please note, that in order for MAN-
DATORY settings in curam-config.xml to work, the field supplying the

Cúram Web Client Reference Manual

243

address data should be marked mandatory in application model.

8.19 Schedule View

The schedule view is used for any domain of the type SCHEDULE_DATA.
This view displays a grid of time-line information for the hours between 8
am and 8 pm. Each row in this grid represents a person whose full name is
displayed in the row header. Each cell in the person's row represents a half
hour period containing an indicator for whether they are available or not. If
a user clicks on a free cell, they should be linked to a page allowing them to
enter further schedule events.

The information and setup of this particular view involves a particular setup
in a page's UIM file. Example 8.16, UIM Example of Schedule View is an
example of the UIM for a schedule field.

<FIELD>
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="schedule"/>
</CONNECT>
<CONNECT>

<LINK PAGE_ID="IncomeScreening_confirmAppointment">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="appointmentDate"/>
<TARGET NAME="PAGE" PROPERTY="date"/>
</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="userFullName"/>
<TARGET NAME="PAGE" PROPERTY="fullUserName"/>

</CONNECT>
<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="userName"/>
<TARGET NAME="PAGE" PROPERTY="userName"/>

</CONNECT>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="caseID"/>
<TARGET NAME="PAGE" PROPERTY="caseID"/>

</CONNECT>
<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="pageDescription"/>
<TARGET NAME="PAGE" PROPERTY="pageDescription"/>

</CONNECT>
</LINK>

</FIELD>

Example 8.16 UIM Example of Schedule View

The Cúram page generator expects any schedule FIELD element to be fol-
lowed by a LINK element which details the PAGE_ID of the page to go to
when a free cell is clicked on. The following three CONNECT elements
should be fields which provide the following attributes to the link: the date
of the day in question (the time is appended to this date); the full name of
the user; and the user's unique identifier. The order of these CONNECT ele-
ments is important or the schedule view will not contain the correct links.

The SCHEDULE_DATA domain is expected to be a list of user names and
32 bit schedule fields separated by a tab. An example of one such element of
this list would be:

John Smith<tab>16777212

Cúram Web Client Reference Manual

244

Please note that 16777212 is the integer value which translates to the bit
field 00000000111111111111111111111100. A one represents a half hour
when Mr. Smith is busy and a zero stands for free time. The bit field is read
from the least significant bit first, i.e. from right to left, with 8 am represen-
ted by the right-most bit. As we are dealing with a twelve hour period and
each bit stands for a half hour, only the first 24 bits are important. The last
byte is disregarded.

The rendered widget is displayed as series of horizontal rectangular blocks
(per user), with each block representing half an hour. Half hour blocks of
free time are displayed differently than the other blocks (busy) in terms of
color and size.

8.20 Radio Button Group

An alternative way to present a set of code table values is as a radio button
group, each radio button representing a code table item. To display in the
form of radio buttons, a field representing a code table value should be
mapped to the SHORT_CODETABLE_CODE domain or to a domain directly
inheriting from SHORT_CODETABLE_CODE.

8.21 Pop-up Pages

This section describes how to set up a pop-up page. The Cúram application
has a number of built-in pop-up pages such as the Date Selector pop-up de-
scribed earlier which are “helpers” used to enter data. Developers are also
allowed to specify their own pop-up pages. For example, when scheduling a
meeting for a person you don't want the user to have to know or fill in that
persons unique ID. Instead the user should be provided with a search facility
or a pre-populated list of valid options they can select from. This is achieved
in Cúram with pop-up pages.

The out-of-the-box pop-up widget has a input field (grey in color) with a
search - in the form of a magnifying glass - and a clear icon beside it. When
the user clicks on the search icon this will activate a pop-up page. The user
can select an item from the pop-page which will populate the text input field
on the pop-up widget.

The following sections describe the steps involved in creating a pop-up.

8.21.1 Configure the Pop-up Page

The first step is to configure the pop-up page. This is performed by the
POPUP_PAGES element in curam-config.xml.

<POPUP_PAGES DISPLAY_IMAGES="true|false">
<CLEAR_TEXT_IMAGE>Images/minus.gif<CLEAR_TEXT_IMAGE>
<POPUP_PAGE PAGE_ID="PersonSearch"

CREATE_PAGE_ID="RegisterPerson"
CONTROL_TYPE="textunderline|textinput"
CONTROL_EDITABLE="true|false"

Cúram Web Client Reference Manual

245

CONTROL_INSERT_MODE="overwrite|insert|append">
<DOMAIN>PERSON_ID</DOMAIN>
<WIDTH>800</WIDTH>
<HEIGHT>600</HEIGHT>
<SCROLLBARS>true</SCROLLBARS>
<IMAGE>Images/search.gif</IMAGE>
<LABEL>Search</LABEL>
<CREATE_IMAGE>Images/new.gif</CREATE_IMAGE>
<CREATE_LABEL>New</CREATE_LABEL>

</POPUP_PAGE>
</POPUP_PAGES>

Example 8.17 Pop-up Configuration Example

On the root element the DISPLAY_IMAGES attribute can be used to con-
figure whether images or text is used for the actions which open a pop-up or
clear the currently selected value.

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a “clear this
text” button. Note that this is an application wide setting.

POPUP_PAGE : For each domain definition which requires a pop-up there
must be instance of this element. Up to two pop-ups can be associated with
a single domain; one to search for an existing item, another to create a new
item. The following attributes and child elements control various aspects of
how the pop-up is presented to the user.

Name Description
PAGE_ID Specifies the UIM page id of the pop-up page to

open to search for an existing item.

CREATE_PAGE_ID Specifies the UIM page id of the the pop-up page to
open to create a new item.

CONTROL_TYPE Specifies the type of control where the value re-
turned from the pop-up will be written to. The de-
fault value is textunderline which displays
static text with an underline. To display a text input
field set the value to textinput. When a a text in-
put control is configured, on the UIM FIELD which
uses a pop-up, the HEIGHT attribute can be used to
change from a single line text input to a multi-line
text area.

CON-
TROL_EDITABLE

This attribute is only valid when CONTROL_TYPE
is set to textinput. It controls whether the text
input field is editable or not. Set to true to create a
editable field and false to create a non-editable
field. Note that Internet Explorer does not give any
visual indication that the text input field is not edit-
able.

CON-
TROL_INSERT_MO

This attribute is only valid when CONTROL_TYPE
is set to textinput. It allows you to configure

Cúram Web Client Reference Manual

246

Name Description
DE how a value selected from a pop-up is inserted into

the associated input control. The default is over-
write which means the selected value will over-
write the previous contents. Setting the attribute to
insert means the selected value will be inserted at
the current cursor position. Setting the attribute to
append means the selected value will be appended
to the previous contents of the input control.

Table 8.10 Attributes of the POPUP_PAGE element.

Name Description
DOMAIN Domain used to identify this pop-up page. If a

FIELD element with a TARGET connection is based
on this domain, a pop-up will be used instead of a
standard text entry box.

CT_CODE This is a second way to identify a pop-up page. The
attribute contains a code table code value and is
used when associating multiple pop-up pages with a
single field and is described in further detail below.

WIDTH Width in pixels of pop-up dialog. This element is
optional. If not included, the default width of 600
pixels will be used.

HEIGHT Height in pixels of pop-up dialog. This element is
optional. If not included, the height will be automat-
ically calculated based on the page contents.

IMAGE Location of image which when clicked launches the
pop-up defined by the POPUP_PAGE element's
PAGE_ID attribute.

IMAGE_PROPERTY Optional key in the CDEJRe-
sources.properties file under which the loc-
ale-specific location of the pop-up launcher image
otherwise specified by IMAGE attribute is stored. If
the IMAGE is also specified for the same configura-
tion, it will take precedence over the IM-
AGE_PROPERTY and this attribute will be ignored.

HIGH_CONTRAST_
IMAGE

Location of the high contrast image which when
clicked launches the pop-up defined by the
POPUP_PAGE element's PAGE_ID attribute.

HIGH_CONTRAST_
IMAGE_PROPERTY

Optional key in the CDEJRe-
sources.properties file under which the loc-
ale-specific location of the pop-up launcher image
otherwise specified by HIGH_CONTRAST_IMAGE
attribute is stored. If the

Cúram Web Client Reference Manual

247

Name Description
HIGH_CONTRAST_IMAGE is also specified for the
same configuration, it will take precedence over the
HIGH_CONTRAST_IMAGE_PROPERTY and this
attribute will be ignored.

LABEL Alternate text for the image defined by the IMAGE
element. If the POPUP_PAGE element's DIS-
PLAY_IMAGES attribute is set to false, this text
will be displayed instead of the image.

LABEL_PROPERTY Optional key in the CDEJRe-
sources.properties file under which the loc-
ale-specific value of the label attribute otherwise
specified by the LABEL attribute is stored. If LA-
BEL is also specified for the same configuration, it
will take precedence over the LABEL_PROPERTY
and this attribute will be ignored.

CREATE_IMAGE Location of image which when clicked launches the
pop-up defined by the POPUP_PAGE element's
CREATE_PAGE_ID attribute.

CRE-
ATE_IMAGE_PROP
ERTY

Optional key in the CDEJRe-
sources.properties file under which the loc-
ale-specific location of the pop-up launcher image
otherwise specified by CREATE_IMAGE attribute is
stored. If the CREATE_IMAGE is also specified for
the same configuration, it will take precedence over
the CREATE_IMAGE_PROPERTY and this attribute
will be ignored.

CREATE_LABEL Alternate text for the image defined by the CRE-
ATE_IMAGE element. If the POPUP_PAGE ele-
ment's DISPLAY_IMAGES attribute is set to
false, this text will be displayed instead of the im-
age.

CRE-
ATE_LABEL_PROP
ERTY

Optional key in the CDEJRe-
sources.properties file under which the loc-
ale-specific value otherwise specified by the CRE-
ATE_LABEL attribute is stored. If the CRE-
ATE_LABEL is also specified for the configuration,
it will take precedence over the CRE-
ATE_LABEL_PROPERTY and this attribute will be
ignored.

Table 8.11 Child elements of the POPUP_PAGE element.

8.21.2 Create the Pop-up Page

A Cúram pop-up page is written in UIM. It can be written to display a set of

Cúram Web Client Reference Manual

248

existing items for the user to select from or to register a completely new
item.

A pop-up which returns existing items

The following is an example of a pop-up page which accepts user input, dis-
plays a list of search results, one of which can be selected and its unique
identifier returned to the parent page.
<PAGE PAGE_ID="Person_search" POPUP_PAGE="true">

<PAGE_TITLE ICON="PersonSearchPageIcon">
<CONNECT>
<SOURCE NAME="TEXT"

PROPERTY="PageTitle.StaticText1"/>
</CONNECT>

</PAGE_TITLE>
<SERVER_INTERFACE NAME="ACTION"

CLASS="Person"
OPERATION="search"
PHASE="ACTION"

/>
<CLUSTER NUM_COLS="2" TITLE="Cluster.Title.SearchCriteria">

<ACTION_SET ALIGNMENT="CENTER" TOP="false">
<ACTION_CONTROL LABEL="ActionControl.Label.Search"

TYPE="SUBMIT" DEFAULT="true">
<LINK PAGE_ID="THIS"/>

</ACTION_CONTROL>
<ACTION_CONTROL LABEL="ActionControl.Label.Cancel"

IMAGE="CancelButton" TYPE="DISMISS"/>
</ACTION_SET>

<FIELD LABEL="Field.Label.ReferenceNumber">
<CONNECT>

<TARGET NAME="ACTION"
PROPERTY="personSearchKey$referenceNumber"/>

</CONNECT>
</FIELD>

</CLUSTER>

<LIST TITLE="List.Title.SearchResults">
<CONTAINER LABEL="Container.Label.Action">
<ACTION_CONTROL LABEL="ActionControl.Label.Select"

TYPE="DISMISS" >
<LINK>

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION"
PROPERTY="dtls$personFullName" />

<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>

</LINK>
</ACTION_CONTROL>

</CONTAINER>
<FIELD LABEL="Field.Title.ReferenceNumber">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="dtls$referenceNumber"/>
</CONNECT>

</FIELD>
<FIELD LABEL="Field.Title.FirstName">
<CONNECT>

<SOURCE NAME="ACTION" PROPERTY="dtls$personName"/>
</CONNECT>

</FIELD>
</LIST>

</PAGE>

Cúram Web Client Reference Manual

249

The points to note about this example are:

• The PAGE_ID attributes of the UIM PAGE element and the
POPUP_PAGE element in curam-config.xml must match.

• The POPUP_PAGE attribute of the UIM PAGE element must be set to
true.

• The submit action is linked to THIS. This means the page will be redis-
played after the submit button is pressed.

• To cancel the pop-up an action control of type DISMISS is used. If the
action control does not have a child LINK element, the pop-up will be
closed without returning any values to the parent page which opened it.

• The search results list in this example is made up of three columns. The
first contains a link which will close the pop-up and return the selected
values, the remaining columns display further information about the per-
son.

• To close the pop-up and return values, an action control of type DIS-
MISS is used. This is placed in a CONTAINER so it is the first column
in the search results list. The user can click this link to select one of the
search results.

• To specify what values should be returned a child LINK element is ad-
ded to the action control. When used in an action control to close a pop-
up all standard attributes of the LINK element (e.g. PAGE_ID) have no
meaning and will be ignored.

• For Cúram pop-up pages two values must always be returned. These are
specified using CONNECT elements. Both connections must use a target
of PAGE and have the PROPERTY set to value and description.
The value connection specifies the value required on the page that
opened the pop-up, in this example the persons unique record ID. The
description connection specifies descriptive text to be shown to the
user, in this example the person's name. So, on the page which opened
the pop-up, the person's name will be displayed to the user, but it is their
unique ID which will be submitted to the server.

It is not necessary for pop-up pages to accept input. For example, the LIST
can be populated from a display phase server interface if necessary.

A pop-up which creates a new item

A pop-up may also create a new item and have the newly generated unique
identifier for that item returned to the parent page. To do this create a page
which a ACTION_CONTROL of type SUBMIT_AND_DISMISS must be
used. For example;
<ACTION_CONTROL TYPE="SUBMIT_AND_DISMISS" LABEL="Button.Submit">

<CONNECT>
<SOURCE NAME="ACTION" PROPERTY="dtls$personID" />
<TARGET NAME="PAGE" PROPERTY="value" />

Cúram Web Client Reference Manual

250

</CONNECT>
<CONNECT>

<SOURCE NAME="ACTION"
PROPERTY="dtls$personFullName" />

<TARGET NAME="PAGE" PROPERTY="description" />
</CONNECT>

</ACTION_CONTROL>

Once the type attribute is set to SUBMIT_AND_DISMISS the rules for the
child LINK and CONNECT element is the same as described in the previous
section for a DISMISS action control. After the form is successfully sub-
mitted the pop-up will be dismissed and the new values returned to the par-
ent page.

8.21.3 Using the Pop-up Page

Pop-up pages are opened using standard UIM FIELD elements. If the field
has a target connection which is based on a domain as configured in
curam-config.xml a link to open the pop-up will be generated rather
than a standard text entry field. This is illustrated in the screen shot above
with the “Preferred Office” input field.

The following is the most basic example of a FIELD opening a pop-up. It is
from an insert page so only a target connection is specified. Using the cur-
rent example, the person's unique ID will be assigned to the field specified
in the target connection and the person's name will only be used for visual
purpose to display to the user.

<FIELD LABEL="Field.Label.person">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Example 8.18 Opening a Pop-up from an Insert Page

The following example is from a modify page which means the field will
have a source value which must be displayed to the user. It is slightly more
complex that standard fields on a modify page because there are actually
two source values to handled. The person's unique ID and the person's
name. In this case the INITIAL connection is used to specify the person's
name. This will only be used to display to the user and note that is not sub-
mitted to the server. Following that the field is just like any other on a modi-
fy page. The source connection specifies the existing value of the field, the
target connection specifies where the value should be submitted to.

<FIELD LABEL="Field.Label.person">
<CONNECT>

<INITIAL NAME="DISPLAY" PROPERTY="personName"/>
</CONNECT>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="personID"/>
</CONNECT>
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>

</FIELD>

Cúram Web Client Reference Manual

251

Example 8.19 Opening a Pop-up from a Modify Page

When invoking a pop-up it is also possible to supply page parameters to the
pop-up. This is a slight variation on the two examples above and involves
the use of the LINK element. The following is an example of two paramet-
ers passed to a pop-up page, one sourced from an existing page parameter,
the other from a server interface property. When a LINK element is used in
this context no attributes such as PAGE_ID should be specified. Also a
TEXT source connection cannot be used to supply a parameter to a pop-up
page.

<FIELD LABEL="Field.Label.person">
<CONNECT>

<TARGET NAME="ACTION" PROPERTY="personID"/>
</CONNECT>
<LINK>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="personID"/>
<TARGET NAME="PAGE" PROPERTY="param1"/>

</CONNECT>
<CONNECT>
<SOURCE NAME="DISPLAY" PROPERTY="personName"/>
<TARGET NAME="PAGE" PROPERTY="param2"/>

</CONNECT>
</LINK>

</FIELD>

Example 8.20 Supplying Parameters to a Pop-up Page

8.21.4 Using Multiple Pop-up Search Pages for a Single Field

In some cases we need to search for different types of Cúram entities but
that search is associated with a single field. For example you may have a re-
quirement to search for a Cúram client which has a generic domain of
CURAM_CLIENT_ID. This could be a person, an employer, a product pro-
vider etc. Individual search pages may already exist for these types so you
should be able to reuse them. Assuming the pop-up search pages already ex-
ist, this involves two extra steps which are described in the following sec-
tions and. The resulting pop-up widget is as described in Section 8.21, Pop-
up Pages except that there is an additional drop-down field rendered to the
left of the text input field. In order to activate the pop-up page for this wid-
get, the user first selects the type of search to be performed from the drop
down list and then clicks on the search icon.

8.21.5 Configure the Multiple Pop-up Page

This can be configured through the MULTIPLE_POPUP_DOMAINS ele-
ment in curam-config.xml. The following is an example:

<MULTIPLE_POPUP_DOMAINS>
<CLEAR_TEXT_IMAGE>Images/clear.gif</CLEAR_TEXT_IMAGE>
<MULTIPLE_POPUP_DOMAIN>

<DOMAIN>CURAM_CLIENT_ID</DOMAIN>
<LABEL>Search</LABEL>
<IMAGE>Images/search.gif</IMAGE>

Cúram Web Client Reference Manual

252

</MULTIPLE_POPUP_DOMAIN>
</MULTIPLE_POPUP_DOMAINS>

Example 8.21 Multiple Pop-up Domains

The nested elements are:

CLEAR_TEXT_IMAGE : The location of the image to use as a “ clear this
text” button. This is an application wide setting.

MULTIPLE_POPUP_DOMAIN : For each domain which you wish to asso-
ciate multiple pop-up windows create an instance of this element.

DOMAIN : The name of the domain which is associated with multiple pop-
up windows

IMAGE : Location of image to be used for pop-up icon.

LABEL : Alternate text to be used for pop-up icon.

As shown above, when using multiple pop-up pages a drop-down list is re-
quired to select the pop-up type. This drop-down list is populated as normal
from a code-table. The code-table codes are the link between the drop-down
list and pop-up that is opened. This requires the CT_CODE child element of
the POPUP_PAGE element to be set to the code-table code value.

8.21.6 Using the Multiple Pop-up Page

Once the configuration is done the final step is the write the UIM necessary
to display the pop-up search.

<CONTAINER LABEL="Label.person">
<FIELD LABEL="Field.Label">

<CONNECT>
<TARGET PROPERTY="popupType" NAME="ACTION"/>

</CONNECT>
</FIELD>
<FIELD LABEL="Field.Label">

<CONNECT>
<TARGET PROPERTY="clientID" NAME="ACTION"/>

</CONNECT>
</FIELD>

</CONTAINER>

Example 8.22 UIM to Use Multiple Pop-up Windows

The main points to note are:

• A CONTAINER and two FIELD elements are required, one for the drop-
down list, the other for the value which will be returned from the pop-
up. The container must not include any other FIELD elements.

• The first field should be based on a code-table domain which contains a
list of codes which corresponds to the CT_CODE element described
earlier.

• The second field should have a target connection which is based on a
domain using the MULTIPLE_POPUP_DOMAIN element.

Cúram Web Client Reference Manual

253

8.22 Agenda Player

The Agenda Player (or player for short) is a wizard-like control which
provides guided navigation through a specified set of screens. As the name
implies the screens in the Agenda Player are supposed to be part of a certain
agenda or scenario, most typically involving step-by-step collecting of in-
formation.

Figure 8.13 Agenda Player Example

Note

Agenda Player widget is not supported outside the modal dialog
context, an attempt to open it in the tab content panel or elsewhere
(e.g., as the inline page of an expandable list) will lead to an explicit
error message stating this.

8.22.1 Agenda Player screen structure

Depending on how the Agenda Player player is configured, the screen is di-
vided into either three or four parts:

• Along the top is the Agenda Player header. It contains a customizable
Agenda Player title on the left and, where appropriate, a progress bar on
the top right, which shows the user's progress through the agenda. The
steps completed in the progress bar will be shaded in color whereas the
steps that have yet to be completed will not. See Figure 8.13, Agenda
Player Example for more details.

• On the left of an Agenda Player, a navigation panel (optional) shows the
list of pages in the current agenda. The user's progress through the se-
quence is continuously displayed there (in addition to progress bar) by
highlighting of the current page. The appearance and behavior of the

Cúram Web Client Reference Manual

254

other pages in the agenda depends on the mode used (see below). The
pages in an agenda can be grouped into sections and the player provides
the ability to collapse and expand visited sections.

At the bottom of the navigation panel is the summary link, which allows
users to jump directly to the player summary page (they would also get
there by navigating through all the pages in the agenda). The summary
link is only displayed if there is an appropriate element specified in the
agenda XML. The navigation panel is not displayed in the navigator-less
(claimant) view of the Agenda Player.

• Along the bottom, a set of buttons is displayed to allow the user to step
forward and back through the Agenda Player. There are also buttons to
jump to the summary page (displayed optionally) and to quit the Play-
er.See Figure 8.13, Agenda Player Example for more details.

Note

The text used for these buttons can be customized (see below).
However, for the remainder of this section they are further re-
ferred as the Back, Next, Finish and Cancel buttons, which are
their default captions.

• The main area of the screen is the content area. This area displays nor-
mal client pages which might also be used outside of the Agenda Player.

8.22.2 Navigation modes

In addition to using the back and next buttons to navigate through an
agenda, the player can provide additional options in the navigation panel,
depending on the mode used.

The Agenda Player can be configured to operate in one of three navigation
modes: basic, incremental or full, with incremental mode be-
ing the default.

• The basic mode is used for strictly sequential navigation through the
agenda pages. In this mode the navigation panel is just used for addition-
al information, indicating which page the user is currently on. The only
navigation means are the standard player buttons.

• The incremental mode expands on the basic mode by providing
links in the navigation panel to any pages which have already been vis-
ited. A user can use these links to skip back and forward between previ-
ously visited pages, but will still need to use the next button to progress
any further.

• The full mode is actually a non-sequential mode as all the navigation
panel elements are initially rendered as links. Sequential advancing is
possible here as well, as the player buttons are fully functional, but there
are no restrictions placed on the order in which you navigate through the
agenda. This, however, means that things related to the sequential pro-

Cúram Web Client Reference Manual

255

gress might be unavailable, or not work properly in this mode (for ex-
ample, the progress bar is not displayed for this mode at all; dynamic
parameters might not be available if a screen which expects these para-
meters is visited before the one where these parameters are initialized,
etc.). Because of this the full navigation mode should be used where
specifically required and the agenda should be designed/configured
keeping in mind the possible consequences.

Agenda Player mode configuration is described in Section 8.22.4,
Agenda Player Configuration

Note

Within the Player screens there might be hyperlinks leading to other
pages, which open in the client area, yet do not belong to the spe-
cified Player screen set. In this case all the navigation means on the
Player, including buttons and links rendered for incremental or
full mode are disabled until the flow returns back to an Agenda
Player screen. This means in particular that such a 'side' page should
provide means of returning to the AgendaPlayer page flow (by link-
ing to the appropriate page or closing the modal opened from the
Player).

8.22.3 Navigator-less View

By default, an Agenda Player is displayed with all the screen parts present.
However, in some situations, you may like to simplify the view and behavi-
or of the player using the view without the navigation panel (also called
Claimant view after the expected usage - i.e. online claimants). In this view
Agenda Player is displayed without the navigation panel. Only the standard
player buttons can be used for navigation, so the mode setting is effectively
ignored.

The fourth player button, Finish, is automatically available om the button
bar at the bottom of the page (see Figure 8.13, Agenda Player Example for
more details) for the Claimant view. The button makes it possible to jump
directly to the summary page rather than having to advance to it through all
the pages. It is shown only when there is a summary page present in the
agenda XML returned from the server.

Player configuration to allow for Claimant view is described in the section
below.

8.22.4 Agenda Player Configuration

The Agenda Player can be configured by adding/modifying entries in
AgendaConfig.xml. A version of this file should be in your compon-
ents directory.

The following is an example of the Agenda Player configuration file con-
tents:

Cúram Web Client Reference Manual

256

<AGENDA>
<PLAYER ID="DefaultConfig" TITLE="Default.Title"

MODE="incremental" CONFIRM-QUIT="false"/>
...
<PLAYER ID="Claimant.Config" TITLE="Claimant.Title"

NAVIGATOR-HIDDEN="true" MODE="incremental"
CONFIRM-QUIT="true"/>

</AGENDA>

The attributes that can be used for particular configuration (PLAYER ele-
ment) are as follows.

Attribute Description
ID The ID of this particular configuration

(referred to by CONFIG attribute of FIELD
element in UIM which contains Agenda
Player).

TITLE Title key for Agenda Player title, displayed
on its header. This key is used to look up
customized/localized title from appropriate
properties file as described in Section 8.22.5,
Agenda Player Customization.

MODE This attribute allows for specifying Agenda
Player navigation mode. It might have val-
ues of basic, incremental or full,
incremental being the default one, used
if the attribute is skipped in an configuration.

NAVIGATOR-HIDDEN When this attribute is specified and set to
true, Agenda Player will be displayed in
Claimant View (see above).

CONFIRM-QUIT This attribute can be used to display a con-
firmation dialog when a user clicks on the
Cancel button. When present and set to
true, a confirmation dialog will be dis-
played to confirm the user's intention to quit
the Agenda Player or to cancel and return to
the player.

Table 8.12 Attributes of the PLAYER element

8.22.5 Agenda Player Customization

The Agenda Player comes with support for customization/localization of
certain elements. The elements which can be customized are the player title,
Progress Bar text, the player button texts, the quit confirm dialog text and
descriptions for each of the frames in the player.

Player related properties are kept in the files
<client-dir>/JavaSource/curam/omega3/i18n/CDEJResou
rces.properties and

Cúram Web Client Reference Manual

257

<client-dir>/components/<component_name>/AgendaPlay
er.properties. where <component_name> represents the name of
the component where the customizations are being applied.

Player title is customized by specifying custom value under the key used for
it in AgendaConfig.xml (see above). The value under the key is to be
placed into AgendaPlayer.properties.

The Progress Bar text is customized within an Agenda Player header by
modifying the AgendaPlayer.properties file to include values for
the keys: Progress.Bar.Prefix, Progress.Bar.Middle, Pro-
gress.Bar.Suffix. Please note that all three keys must be present with
blank values for unused ones in order to ensure clean rendering of the cus-
tomized Progress Bar text. If this is not the case then a situation may occur
where a non-blank default value is used instead of one undefined.

The text strings associated with Agenda Player control buttons are custom-
izable in the file CDEJResources.properties and defined by proper-
ties wizard.button.back.title, wiz-
ard.button.forward.title,
wizard.button.finish.title, and wiz-
ard.button.quit.title.

The frame descriptions are useful for users of screen readers but don't ap-
pear visually on the screen. The entries for frame description customizations
in CDEJResources.properties are wizard.frameset.title,
wizard.header.frame.title, wiz-
ard.navigation.frame.title, wiz-
ard.content.frame.title, wizard.button.frame.title.

Note

The Agenda Player was formerly known as the Wizard widget, so
several attribute and property names still refer to wizard.

In order to change the default question in the quit confirmation dialog, the
property Quit.Dialog.Question should be added/changed in
AgendaPlayer.properties.

8.22.6 Player data

There are some specific UIM pages related with Agenda Player:

• Navigation page: Each Player requires a navigation page that will be-
come the navigation panel of the Agenda Player. This page has two re-
quired characteristics. First, the root PAGE element has a TYPE of
SPLIT_WINDOW. This indicates that the page will form part of a frame-
set. Second, the page contains a field with a single source connection
and domain type AGENDA_XML. This field supplies the Agenda Player
with the list of pages, parameters and other information that drives the
Agenda Player.

• Summary page: This page is optional and might just be a regular UIM

Cúram Web Client Reference Manual

258

page. However, summary page, specifically displaying summary of vis-
ited and unvisited pages is also available. If this information is to be dis-
played in a summary page, a WIDGET element with TYPE attribute set
to WIZARD_SUMMARY should be present among page elements.

• Exit page: This is a regular UIM page to which the user is forwarded
after quitting the player.

The following is an example of the UIM used to specify the navigation
page. It contains a single field which supplies the agenda XML data.
<PAGE PAGE_ID="WizardTest" TYPE="SPLIT_WINDOW">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="page.title"/>

</CONNECT>
</PAGE_TITLE>

<SERVER_INTERFACE NAME="DISPLAY" CLASS="Agenda"
OPERATION="getAgenda"/>

<PAGE_PARAMETER NAME="agendaRef"/>

<CONNECT>
<SOURCE NAME="PAGE" PROPERTY="agendaRef"/>
<TARGET NAME="DISPLAY" PROPERTY="key$agendaRef"/>

</CONNECT>

<CLUSTER SHOW_LABELS="false">
<FIELD>
<CONNECT>

<SOURCE NAME="DISPLAY" PROPERTY="agendaXML"/>
</CONNECT>

</FIELD>
</CLUSTER>

</PAGE>

The following is an example of a specific summary page:
<PAGE PAGE_ID="WizardSummary">

<PAGE_TITLE>
<CONNECT>
<SOURCE NAME="TEXT" PROPERTY="Page.Title"/>

</CONNECT>
</PAGE_TITLE>

<CLUSTER SHOW_LABELS="false" TITLE="Cluster.Title">
<WIDGET TYPE="WIZARD_SUMMARY"/>

</CLUSTER>

</PAGE>

The agenda data that drives the Player looks like this:
<?xml version="1.0" encoding="UTF-8"?>

<agenda>
<page-flow>

<section description="First section"
status="SCT1">

<page id="Person_homePage" description="Home"
status="SC1" initial="true"
submitonnext="true"/>

</section>
<section description="Second section"

status="SCT2">
<page id="Person_listAddress" status="SC2"

description="Addresses"/>

Cúram Web Client Reference Manual

259

<page id="Person_listBankAccount" status="SC1"
description="Bank Accounts"
submitonnext="true"/>

<page id="Person_listCommunication" status="SC3"
description="Communications"/>

<page id="Person_listTask" status="SC2"
description="Tasks"/>

<page id="Person_listCitizenship" status="SC2"
description="Citizenships"/>

<page id="Person_listFinancial" status="SC2"
description="Financial"/>

<page id="Person_listNote" status="SC4"
description="Notes"/>

</section>
<summary id="WizardSummary"

description="Summary Page"
close-on-submit="true"
status="SCT3"/>

</page-flow>
<parameters>

<parameter name="concernRoleID" value="101"/>
<parameter name="dynamicParam" value="0"/>

</parameters>
<exit-page id="Person_homePage">

<parameters>
<parameter name="concernRoleID" value="101"/>

</parameters>
</exit-page>

</agenda>

There is one page element per screen to be displayed in the Agenda Player.
The attributes that can be used in this element are as follows.

Attribute Description
id The page id for the page (as set in the

PAGE_ID of the PAGE element in the page's
UIM definition).

description The description of the page that will be dis-
played in the Navigation Panel.

status A status code that is mapped to an image.

initial Set to true if this is the page that should be
displayed when the Agenda Player is first
opened.

disableback Set to true if the Back button should be
disabled on this page.

disableforward Set to true if the Forward button should be
disabled on this page.

submitonnext Set to true if the Forward button should
submit the form on this page.

close-on-submit This attribute applies to summary element
only and allows for alternative way of quit-
ing the player, as described below.

Table 8.13 Attributes of the page element

The important features to note are:

Cúram Web Client Reference Manual

260

• The sequence of screens in the Agenda Player is exactly as listed in the
agenda data.

• One of the pages in the Agenda Player can be marked as the start page
by setting the initial attribute to true. When the Agenda Player is
first displayed, this page will be loaded but it will still be possible to
navigate back to previous pages. If the Player is configured to use in-
cremental mode, pages prior to the initial pages on the navigation
panel will be rendered as hyperlinks; for a full navigation mode all the
page items except current one will be hyperlinks.

• In the XML sent back by the application server, the page elements
might be contained within section elements or there might be no
section element at all. The optional summary element, however, is
to be always placed directly within page-flow.

• All pages in the Agenda Player take the same set of parameters or a sub-
set thereof. These parameters are specified in the agenda data.

• Page parameters can also be dynamic. These parameters initially carry
special value of 0 (note dynamicParam in the Agenda Player sample
data above) and are intended to be initialized during user interaction
with Agenda Player (e.g., user ID is only available after a user registers
herself).

• The exit-page denotes the page which the user will be taken to when
the Cancel button is clicked. This page will completely replace the
Agenda Player and can be any page in the application with any paramet-
ers (matching those specified by exit-page parameter sub-
elements in agenda XML from the server).

• When submitonnext is set for a page, the submit button on that page
(there should only be one) will be hidden when it is displayed within the
player. The player's Next button can be used to submit the form instead
and will proceed to the next page if no validation error occurs. If there
are validation errors, the page will return to itself displaying the valida-
tion errors on the top, as it would for any other application page.

To allow for pages where the record itself is optional (i.e. you could
move on to the next screen without creating one), but some of the fields
are mandatory, if you do try to create a record, the infrastructure will not
perform mandatory field validations if no value has been entered/chosen
for any field on the page. The appropriate server interface will still be
called, so it is up to the application logic to work out what was intended
(e.g. don't create a record, delete an existing record, etc.). This behavior
only applies when using the submitonnext feature.

• The summary page can provide an alternative way to quit the Player. In
order to do this, the summary page should contain a submit button, and
the summary element in the agenda XML from the server should have
close-on-submit specified and set to be true. If the user clicks on
the submit button on such a summary page and the submit succeeds, the

Cúram Web Client Reference Manual

261

player closes down and the user is forwarded to whatever page is spe-
cified by the link associated with the submit button.

• Each page can be assigned a status code using the status. These status
codes can be anything at all as long as they are mapped in the Im-
ageMapConfig.xml file under the domain AGENDA_XML. When the
list of pages is displayed in the left column, each will have an icon at-
tached corresponding to its status code.

The following is an example of mapping status codes to images the Im-
ageMapConfig.xml file.
<domain name="AGENDA_XML">

<locale name="en">
<mapping value="SC1" image="Images/Wizard/status1.gif"

alt="English text..."/>
...
<mapping value="SC4" image="Images/Wizard/status4.gif"

alt="English text..."/>
</locale>
<locale name="fr">

<mapping value="SC1" image="Images/Wizard/status1.gif"
alt="French text..."/>

...
</locale>

</domain>

The appearance of the Agenda Player control buttons, the summary screen
and the navigation is defined in CSS. For details, please see Section 3.12.11,
Cascading Stylesheets.

The UIM CONDITION element allows for the conditional display of action
controls, clusters or lists on a page that is displayed within an Agenda Play-
er (see See Section 5.9.6, CONDITION for more details on the condition
element). To hide/display elements based on whether the page is in an
Agenda Player or not, the NAME and PROPERTY attributes can only have
the values CONTEXT and inWizard respectively.

<ACTION_SET ...>
<CONDITION>

<IS_TRUE NAME="CONTEXT" PROPERTY="inWizard"/>
</CONDITION>
...

</ACTION_SET>

Example 8.23 Condition example:

This indicates that the action set should be displayed only when that Action
Set is on a page that is displaying within a Agenda Player.

8.23 LOCALIZED_MESSAGE Domain

The LOCALIZED_MESSAGE domain allows entries in a server message
catalog to be displayed on a client screen. The domain is string based but
expects the string to be formatted in specific way. The Cúram Server Devel-
opment Environment (SDEJ) provides support for formatting a message
catalog entry in this way so it can be returned to the client. See the Cúram

Cúram Web Client Reference Manual

262

Server Developers Guide for full details on working with message catalogs.

Once the message catalog entry has been formatted on the server side it
should be assigned to a field which is based on the LOCALIZED_MESSAGE
domain and returned to the client. The message entry will be displayed ac-
cording to the current locale and values will be assigned to the message
placeholders.

8.24 Decision Assist: Decision Matrix Widget

8.24.1 Overview

The Decision Matrix widget is a control that is used to construct question-
naires. Refer to the Decision Assist Administration Class and Widget Over-
view chapter in the Inside Cúram Decision Assist Guide for more details.

Cúram Web Client Reference Manual

263

Chapter 9

Custom Data Conversion and Sorting

9.1 Objective

This chapter describes how to customize the data formatting, parsing, valid-
ation and sorting behavior of a Cúram web application.

9.2 Prerequisites

You should be familiar with the concept of domain definitions described in
the Domain Definitions chapter of the Cúram Modeling Reference Guide,
the development of client application pages, and basic Java programming.

9.3 Introduction

Custom data conversion and sorting allows most aspects of the management
of data in the presentation layer of Cúram applications to be customized.
Customizations can control how data is formatted, parsed, validated and sor-
ted; error reporting can also be customized and controlled. Operations are
performed on data values according to a well-defined data life-cycle and, at
each stage, the operations can be customized. To understand how, when,
and where to customize the operations, you must first understand the opera-
tions available and how they fit into the life-cycle.

Unsupported Customizations

This chapter describes the supported mechanisms for the customiza-
tion of data conversion and comparison operations. For complete-
ness, and to aid understanding, some operations are described, but
the corresponding customization mechanisms are not documented,
as customization of these operations is not supported (or not suppor-
ted using the programmatic mechanisms described here).

The descriptions of the Java interfaces and classes presented here

264

may be incomplete, as unsupported methods may be omitted from
their descriptions for clarity. However, the JavaDoc documentation
for these interfaces and classes may include more information and
describe more comprehensive customization mechanisms, but only
the mechanisms described here are supported.

9.4 Data Conversion and Sorting Operations

The are a number of operations that are carried out on data values by the cli-
ent infrastructure. Some are controlled by the domain definition options that
were set in the UML model and are performed automatically, others are
controlled by domain-specific plug-ins that can be overridden and custom-
ized; these plug-ins will be described later. First, the operations that are per-
formed on the data values need to be understood:

format
When data is retrieved from the application server, it is represented by a
Java object appropriate to the root domain of the data. For example, a
value in the SVR_INT64 domain is represented as a
java.lang.Long object. The format operation is responsible for
converting these objects to their string representation, as it is the string
representation that must be embedded in the XHTML stream returned to
the web browser.

A format operation is only required to return a non-null string; there are
no other limitations. However, each domain-specific formatter will usu-
ally return a string representation of the Java object according to the
usual conventions. For example, a money value may have a currency
symbol added during formatting and be limited to two significant digits
after the decimal point. For most data values, the formatter should gen-
erate a string representation that can later be converted back into the ori-
ginal data value.

pre-parse
When a user enters values in a form on an application page and submits
the form to the client application, the web browser submits all of these
values in string format. These string values need to be parsed to create
the appropriate Java object representations, but first a pre-parse opera-
tion is performed to prepare the string for parsing.

The UML model supports several domain definition options that are re-
cognized by the pre-parse operation (see the Cúram Modeling Refer-
ence Guide for more information on domain definition options). The
domain definition options may indicate that leading and trailing
whitespace characters should be trimmed from the string, that all se-
quences of whitespace characters should be compressed to single space
characters, and that the string should be converted to upper-case. The
pre-parse operation applies these options automatically to the string val-
ues and the modified string values are then ready to be parsed. The pre-
parse operation is controlled and customized by setting these domain

Cúram Web Client Reference Manual

265

definition options in the UML model.

parse
After the pre-parse operation has completed, the parse operation must
convert the resulting string value into its Java object representation be-
fore it can be submitted to the application server. In general, the parse
operation is the reverse of the format operation. If the format operation
formatted a money value to a string and added a currency symbol and
grouping separator (e.g., thousands separator) characters, the parse op-
eration must be able to remove these additions and create a Java object
representation of the actual money value.

All that is required of the parse operation is to produce a Java object, it
does not validate that value. However, while not explicitly a validation
operation, the parse operation usually needs to perform some validation
to ensure that the value can be parsed correctly. For example, a date
may later be determined to be invalid if it is out of range, but the parse
operation must first determine what the date value is and may fail if the
string does not represent a date in any recognized format.

pre-validate
Like the pre-parse operation, the pre-validate operation is performed to
apply domain definition options defined in the UML model. However,
unlike the pre-parse operation, different domain definition options are
applied to data values depending on the domain. The data is not modi-
fied. String and BLOB values are tested to ensure that they do not ex-
ceed their maximum or minimum defined sizes (or lengths), while nu-
meric values are tested to ensure that they do not exceed their maximum
or minimum values. Any failures will be reported as errors. See Ta-
ble 9.5, Behavior of the Pre-Validate Operations for a detailed descrip-
tion of the actual validations performed.

validate
The pre-validate operation is convenient and is applied automatically,
but there are situations where it may not be able to validate data suffi-
ciently. The validate operation is a catch-all that allows any kind of val-
idation to be performed that is not possible using UML domain defini-
tion options alone. For example, ID values may be tested to see if their
check-digit is valid. Errors can be reported if any value does not meet
such specific conditions. Data is not modified by this operation.

compare
When a list of data is returned from the server, the sort order of the val-
ues in the list is determined using the compare operation. This sort or-
der is used to support the sorting of lists on application pages when
users click on the column headers. The compare operation is passed two
data values (in their Java object representations, not in their formatted
string representations) and must return a positive or negative number to
indicate which comes first in the sort order. Like the format operation,
the compare operation is not restricted in what calculations it performs,
but it will typically sort values alphabetically or numerically.

Cúram Web Client Reference Manual

266

Each data conversion operation has access to information about the active
user's locale and to information about the domain being processed. It is also
possible for one operation to access and execute any of the operations
should that be necessary. For example, a format operation might format val-
ues differently for each locale and a compare operation might invoke the
format operation before making a comparison.

9.5 Data Conversion Life Cycle

The CDEJ infrastructure is responsible for the retrieval of data from the ap-
plication server, the display of this data, the processing of user input, and
the submission of data back to the application server. This process has a
well-defined life cycle. Operations at each stage in the life cycle are per-
formed in a domain-specific manner.

Not all data goes through each stage in the life cycle. Some data is displayed
but not modified or resubmitted by the user (read-only); some data is cre-
ated by the user and submitted without any initial value being retrieved from
the application server (write-only); and some data is retrieved, modified by
the user, and then resubmitted to the application server (read-write).

In the context of the value of a single property, the life cycle for reading the
value is as follows:

Read-only Life Cycle

1. The value is fetched from the application server by invoking a business
operation.

2. If the value is one of a list of values for the same property, the related
values are sorted using the compare operation and the resulting sort or-
der is recorded.

3. The value is formatted to a string representation by the format opera-
tion and is stored for later display.

4. When the page is displayed, the value is retrieved and inserted into the
XHTML stream.

The life cycle for writing a value is as follows:

Write-only Life Cycle

1. A string representation of the value is entered on a form by the user
and the value submitted.

2. The domain definition options for whitespace compression and trim-
ming and for upper-case translation are applied to the string value by
the pre-parse operation. The value remains in string form.

3. If the business operation has declared the value to be mandatory, the
value is checked to ensure that it is not empty or null. An error will

Cúram Web Client Reference Manual

267

be reported if this check fails.

4. The value is parsed from its string representation by the parse operation
and the resulting native Java object replaces the string value.

5. The domain definition options for the size range, value range, and pat-
tern match are applied by the pre-validate operation is applicable. The
value is not modified by this operation. If a validation fails, an error
will be reported.

6. The value is validated by the validate operation to apply any arbitrary
validation rules. Again, the value is not modified by this operation and
validation failures are reported.

7. The parsed and validated value is sent to the application server.

For a value that is treated as read-write, the life cycle is simply the combina-
tion of the read-only life cycle followed by the write-only life cycle.

9.6 The Domain Hierarchy and Domain Plug-ins

At each step in data life-cycle, knowledge of a value's domain is required to
ensure that the correct processing is performed. Embedding this domain in-
formation in the application is one of the tasks performed by the application
code generators. With this information available, the application can invoke
data conversion and comparison operations tailored for each domain.

Not only is information about each domain available at run-time, informa-
tion about the relationships between these domains is also available. A mod-
el of the domain hierarchy is maintained in memory using tree structures
and all the necessary information about how values in the domains should
be processed “hangs” from these trees.

The domain hierarchy is composed of nodes implementing the
curam.util.common.domain.Domain interface. The main methods
declared in this interface are listed below. For more information see the
Cúram JavaDoc documentation for this interface.

• getName(). This method is used to get the name of this domain.

• getParent(). This method is used to get the parent domain of this
domain if it exists.

• getRootDomain(). This method is used to get the ultimate root do-
main of this domain.

• getChildren(). This method is used to get the list of children of this
domain.

• getPlugIn(). This method is used to get the named plug-in object
associated with this domain.

For the purposes of writing custom data conversion and comparison opera-

Cúram Web Client Reference Manual

268

tions, this interface is rarely used directly, but it is instructive of the mech-
anism by which custom code is integrated into an application.

Each domain has a unique name: the name defined for it in the UML model.
As domains can be derived from other domains, parent-children relation-
ships exist, and these are also represented. Also, the root domain (the ulti-
mate ancestor of any domain) is readily accessible. A root domain is one
that does not have a parent domain. Several root domains (for dates, strings,
integers, etc.) are supported in the Cúram application, so the domain hier-
archy is represented by a “forest” of separate trees, rather than a single tree.
All information about a domain, other than its name and relationships to
other domains, is provided via domain plug-ins.

As described in the list above, the
curam.util.common.domain.Domain interface also describes a
method for the retrieval of plug-ins, getPlugIn, that takes the name of
the type of plug-in required. The method returns the plug-in configured for
the domain or the equivalent plug-in configured for the nearest ancestor do-
main if none has been configured directly; this is the simple inheritance
mechanism. Domain plug-ins are Java classes that implement the data con-
version and comparison operations and other features that are specific to
each domain. There are four supported plug-in types, each with a unique
plug-in name:

“converter”
Converter plug-ins are responsible for implementing the format, pre-
parse, parse, pre-validate, and validate operations for each domain.
Converter plug-ins can be customized to influence the appearance of
values on an application page, to support the parsing of new data
formats, and to prevent the submission of invalid data.

“comparator”
Comparator plug-ins are responsible for implementing the compare op-
eration for each domain. Comparator plug-ins can be customized to in-
fluence the sorting of data.

“default”
Default plug-ins are responsible for providing default values for each
domain when no value is available. While this type of plug-in can be
customized freely, there will rarely be any need to modify the imple-
mentations provided within the Cúram application.

“options”
Options plug-ins are responsible for providing access to the domain
definition options that were defined in the UML model. This type of
plug-in is built into the client infrastructure and cannot be customized.

The mechanism used to configure the domain plug-ins exploits the domain
hierarchy to simplify the configuration dramatically: very few domains need
to be configured, as domains that are not configured will inherit the config-
uration from their ancestor domains. Each root domain needs to be con-
figured (so that every domain has an ancestor from which it can inherit its

Cúram Web Client Reference Manual

269

configuration), and a small number of specialized sub-domains are also con-
figured further (the most notable being CODETABLE_CODE, a derivative of
the root domain SVR_STRING). In all, less than 1% of domains are directly
configured, so the configuration information is very manageable. The
Cúram application comes complete with plug-in implementations and con-
figuration information for all the domains used by the reference application;
modifications are only required to handle specialized custom extensions.

9.7 Overview of Domain Plug-ins

9.7.1 Common Features of Plug-ins

Domain plug-ins are just Java classes that conform to a well-defined inter-
faces. There is a base interface that describes common features of all do-
main plug-ins and more specialized interfaces for each type of plug-in. At
run-time, the infrastructure co-ordinates instantiation and invocation of all
plug-ins, so the process of writing plug-ins is straightforward: methods need
to be implemented that perform the data conversion and comparison opera-
tions and very little else needs to be considered.

All plug-in classes implement the
curam.util.common.domain.DomainPlugIn interface. This
defines some common operations and provides access to basic information
that the plug-in may require. The main methods declared in this interface are
listed below. For more information see the Cúram JavaDoc documentation.

• getName(). This method is used to get the name of this plug-in (one
of the four plug-in names described above).

• getLocale(). This method is used to get the locale associated with
this plug-in instance.

• getDomain(). This method is used to get the domain applicable to
this plug-in instance.

• getInstance(). The final method is used to get an instance of a do-
main plug-in; it is not invoked in custom code. Instantiation issues are
described in more detail in Section 9.13.2, Plug-in Instance Manage-
ment. You should use the default implementations of these methods
provided by the Cúram plug-in classes.

The methods of the DomainPlugIn interface do not really do anything in-
teresting. Derived interfaces define the specific operations that each type of
plug-in performs.

9.7.2 Converter Plug-ins

The DomainConverter interface is the one most likely to be used for
customizations. It defines several simple methods that perform the main

Cúram Web Client Reference Manual

270

data conversion operations. They are listed as follows. For more information
see the Cúram JavaDoc documentation for this interface.

• format(). This method is used to format the given object to a string
representation.

• parse(). This method is used to parse the given string representation
into an object.

• validate(). This method is used to validate an object according to
the domain-specific constraints. It may throw an exception if the object
is invalid, but does not modify the object or return any value.

• getDomainClass(). This method returns the class object that indic-
ates the required type of the object that is passed to the other converter
methods or returned by them.

• getGenericLocale(). This method is used to get the locale to be
used when formatting or parsing generic values. This should be the
“en_US” locale and you should not change this value; it does not matter
if this locale is not otherwise used in your application.

• formatGeneric(). This method is used to format the given object to
a generic string representation.

• parseGeneric(). This method is used to parse the given generic
string representation into an object of the appropriate type for the associ-
ated domain.

As described above, the formatGeneric and parseGeneric methods
are similar to the format and parse methods, but they are used when
converting the values of the domain definition options entered in the UML
model by developers or of values embedded in XML-based data. Domain
definition option values—for example, maximum date values, minimum
size values, or regular expressions used for pattern matching—are extracted
from the UML model at build-time and are parsed to their Java object rep-
resentations at run-time, so that they can be used when validating data
entered by a user. A similar process is used when extracting values from
XML data returned from the application server and when constructing XML
data before it is returned to the application server. The default implementa-
tions of the formatGeneric and parseGeneric methods are suffi-
cient for all purposes (see Section 9.13.4, Generic Parse Operations for in-
formation on protecting the generic parse operation from side-effects).

It is by implementing these converter methods or overriding existing imple-
mentations of them that most customizations are performed. The simple
method signatures disguise the fact that, via the inherited DomainPlugIn
interface, each method has access to the active user's locale and the full do-
main information if necessary.

Implementations of the pre-parse and pre-validate operations are provided
for all of the root domains in the Cúram application. As these operations are
controlled completely by the setting of domain definition options in the

Cúram Web Client Reference Manual

271

UML model, there is rarely any need to customize them programmatically.
However, there are circumstances where custom error messages are re-
quired, so you may need to “wrap” these operations to intercept and replace
error messages (this is described in detail in Section 9.12.6, Custom Error
Reporting). These operations are defined on a separate ClientDomain-
Converter interface. They are listed as follows. For more information
about these methods, see the Cúram JavaDoc documentation for this inter-
face.

• preParse(). This method prepares a string for parsing by applying
the relevant domain options. For example, the string may have
whitespace removed or compressed, or may be converted to upper-case.
The locale is used for the conversion to upper-case, if that is required.

• preValidate(). This method performs the standard validation
checks that are controlled by the domain options specified in the UML
model. The checks include the maximum and minimum size, the max-
imum and minimum value, and the matching of a pattern. The specific
data-type of the object will determine which of these checks are appro-
priate. The options and comparator are available from the domain.

Access to the ClientDomainConverter interface is only supported for
the purposes of error message interception. However, as all converter plug-
ins created for use by the client infrastructure must implement this interface,
you must sub-class an existing converter plug-in class (or abstract class)
when creating custom converter plug-ins to inherit an appropriate imple-
mentation.

9.7.3 Comparator Plug-ins

The DomainComparator interface is used to control sort orders and it
extends the DomainPlugIn interface and the standard
java.util.Comparator interface. For more information about Do-
mainComparator, see the Cúram JavaDoc documentation.

The java.util.Comparator interface defines a compare method
that takes two java.lang.Object arguments and returns an integer that
is positive if the first argument comes before the second argument in the sort
order, negative if it comes after, and zero if the objects are equal. (See the
JavaDoc documentation for the java.util.Comparator interface for
more details.) An equals method is also defined by that interface, but it is
of lesser importance; all Java classes inherit an implementation of the
equals method from java.lang.Object or from another ancestor
class and no further implementation is necessary.

9.7.4 Default Value Plug-ins

The DomainDefault interface is used to define default values for do-
mains where no default value is available. The main methods in this inter-
face are listed as follows. For more information about these methods, see

Cúram Web Client Reference Manual

272

the Cúram JavaDoc documentation for this interface.

• getAssumedDefault(). This method is used to get the default value that
will be assumed when a user clears a field on a form and submits no
value.

• getDisplayedDefault(). This method is used to get the default value that
should be displayed when an input field has no initial value to display.

From the methods listed above, we can see there are two types of default
value: the value assumed when no value is available to send to the applica-
tion server, and the value displayed when no initial value has been defined
for a form field on an application page. The two default values are often the
same, but there are some cases where they need to be different.

The assumed default value is needed when a form is submitted and the form
data contains no value for a field that was not defined to be mandatory. The
web client never submits null data values to the application server, so it
must assume some value for the field and then submit that. The assumed
value is nearly always intuitive: zero for any kind of number, an empty
string for any string value, or a zero date or date-time for such values. The
actual assumed default values used in the Cúram application are listed in
Table 9.7, Out-of-the-Box Default Value Plug-ins.

The displayed default value is needed when a form field has not been initial-
ized with any other value (as is usual on forms used to create new entities).
The UIM FIELD element has a USE_DEFAULT attribute that defaults to
true, so, unless that attribute is set to false, the displayed default value
may be used. The displayed default value for numbers and strings is usually
the same as that used as the assumed default value, but for dates and times,
the current date and time is used instead of the zero date and time. Like the
assumed default values, the displayed default values are likely to be suffi-
cient for most applications, so you are unlikely to need to customize them.

There is also a third source for default values: there is a domain definition
option for a default value supported in the UML model. However, if no such
option is set, it is the plug-in's displayed default value that is used as a fall-
back, so the two can be treated in the same way. If only the displayed de-
fault value needs to be customized, it is easier to do this using the UML do-
main definition option rather than writing and configuring a new plug-in
class, but the assumed default value can only be modified via a plug-in.

The default code used for values in a code-table domain is controlled via the
application's code-table administration interface. You should not attempt to
control it programmatically.

9.8 Domain Plug-in Configuration

Domain plug-ins are configured by means of an XML configuration file.
The format is simple: the file contains a domains root element; for each
domain to be configured, a domain element is inserted; within that ele-
ment, plug-in elements are used to specify the name of the type of plug-

Cúram Web Client Reference Manual

273

in and the Java class that implements the operations of that type of plug-in.
The domain elements are not nested within other domain elements to re-
flect the domain hierarchy. The configuration information is relatively
“flat”; each entry configures a separate domain and the inheritance of plug-
ins is determined automatically. Here is a sample of such a configuration
file:

<dc:domains
<dc:domain name="SVR_INT64">

<dc:plug-in name="converter" class=
"curam.util.client.domain.convert.SvrInt64Converter"/>

<dc:plug-in name="comparator" class=
"curam.util.client.domain.compare.SvrInt64Comparator"/>

<dc:plug-in name="default" class=
"curam.util.client.domain.defaults.SvrInt64Default"/>

</dc:domain>
<dc:domain name="INTERNAL_ID">

<dc:plug-in name="converter" class=
"curam.util.client.domain.convert.InternalIDConverter"/>

</dc:domain>
</dc:domains>

Example 9.1 Sample Domain Configuration

The configuration elements are defined in the XML namespace shown
above. In the example, the namespace declaration assigns the prefix “dc” to
this namespace, so that prefix is used before the element names. While you
must declare this namespace in your configuration file, you can declare it to
be a default namespace and omit the prefix, or even use a different prefix,
but you must not omit the namespace declaration.

The example shows the configuration of two domains (these are the actual
default configurations for these domains, as provided in the out-of-the-box
Cúram application). Three plug-ins are configured for the Cúram root do-
main SVR_INT64. This is a complete set of plug-ins, as the “options” plug-
in is built-in and is never directly configured. All descendant domains of
SVR_INT64 will inherit these plug-ins unless further configured. Such a
configuration is provided for the INTERNAL_ID domain. This domain is a
descendant of SVR_INT64, but a different converter plug-in is configured;
the comparator and default plug-ins will be inherited from SVR_INT64.
This particular configuration is used within the Cúram application to over-
ride the format operation for INTERNAL_ID values so that grouping separ-
ators are not used in the string representations of the integers. An integer
formatted by the SvrInt64Converter plug-in as “1,234,567” will be
formatted by the InternalIDConverter class as “1234567”. This en-
sures that values such as case identifiers (the CASE_ID domain is a des-
cendant of the INTERNAL_ID domain) are not represented as ordinary nu-
merical values, but as more abstract unique key values. However, sorting
and the calculation of default values remains unchanged, as these plug-ins
are not overridden and the inherited plug-ins will be used.

There is a master configuration file called domains-config.xml loc-
ated in your CDEJ installation's lib/curam/xml/config folder. This
file contains the complete domain configuration information for all of the
Cúram root domains and some descendant domains. You must not make any

Cúram Web Client Reference Manual

274

changes to this file; it is overwritten each time the development environment
is upgraded. However, the information in this file is useful when you need
to make customizations. You can override or extend any configuration set-
ting in this file using the mechanism described here.

Domain plug-in configuration follows the typical pattern used for when con-
figuring other aspects of application components. You create configuration
files, place them in component folders, and the component order determines
which parts of each file take precedence when the files are merged together.
A single custom configuration results and this may override or extend the
master configuration without limitation. The domain elements in the con-
figuration are merged where they have the same domain name defined in the
name attribute. The plug-in elements of the merged domains are then
collected and those with the same name attribute value as an existing
plug-in element take precedence over that setting. New domain configur-
ations can also be introduced. If the newly configured domain has descend-
ant domains, they will inherit the new configuration. When configuring
plug-ins, the name returned by a plug-in's getName method must match
the name attribute value defined on the plug-in element in the configura-
tion file; this helps to avoid mistakes in the configuration file.

The configuration files that you place in your component folders must be
named DomainsConfig.xml (a slightly different name to the master
configuration file to prevent confusion of the two). You can create one or
more of these files (one in each component), but a single file is probably
sufficient for most purposes. The format is just that shown in the example
above. Further configuration examples are included in Section 9.12, Cus-
tomization Guidelines.

9.9 Out-of-the-Box Domain Plug-ins

9.9.1 Extending Existing Plug-ins

Domain plug-ins for all of the root domain definitions (and a few others) are
provided in the out-of-the-box Cúram application. Rather than write your
own plug-in implementation from scratch, it is far easier to extend one of
these existing plug-ins. The supplied plug-ins are suitable for the majority of
uses, but all can be overridden in whole or in part as necessary, or used as
the basis for new plug-ins that customize the processing of values in new
domains. The details of these supplied plug-ins and the behavior of their op-
erations are described in the sections below.

Abstract plug-in classes are also provided to be used as the basis of new
plug-ins. These abstract classes are used by the Cúram plug-ins themselves
and provide some useful functionality that is rarely necessary to override.
The abstract classes you might use are:

• curam.util.client.domain.convert.AbstractConvert
er

Cúram Web Client Reference Manual

275

• curam.util.client.domain.compare.AbstractCompara
tor

• curam.util.client.domain.defaults.AbstractDefaul
t

Their behavior is as follows:

Abstract Plug-in Class Behavior
AbstractConverter Returns the correct name for this type of

plug-in: “converter”.

Formats an object that is an instance of
java.lang.Number using the standard
Java locale-specific number format. Other
object types are formatted by calling their
toString method.

Pre-parses an object by trimming leading
and trailing whitespace, compressing se-
quences of spaces, and converting to upper-
case if specified by the UML domain defini-
tion options for the domain.

Does not implement any parse operation.

Pre-validates an object by checking its max-
imum and minimum values if these are spe-
cified by the UML domain definition options
for the domain.

Validates an object by throwing a
java.lang.NullPointerException
if an object is null, but otherwise performs
no validation.

Performs generic parsing by invoking the or-
dinary parse operation that must be imple-
mented in the sub-class. See Section 9.13.4,
Generic Parse Operations for information
on protecting the generic parse operation
from side-effects.

Performs generic formatting by invoking the
object's toString method.

Returns the correct value for the generic loc-
ale.

AbstractComparator Returns the correct name for this type of
plug-in: “comparator”.

AbstractDefault Returns the correct name for this type of
plug-in: “default”.

Defines constants with suitable assumed de-

Cúram Web Client Reference Manual

276

Abstract Plug-in Class Behavior

fault values for each of the root domains.

Returns the displayed default value by look-
ing up the default value defined in the UML
domain definition options, or, if not found
there, returns the assumed default value.

Does not implement getAssumedDe-
fault.

Table 9.1 Behavior of the Abstract Plug-in Classes

These abstract classes are used by the Cúram plug-in classes and all extend
the curam.util.common.domain.AbstractDomainPlugIn
class. This class implements the locale and domain properties of the Do-
mainPlugIn interface and also provides the plug-in instance management
implementation that should be used by all plug-ins (see Section 9.13.2,
Plug-in Instance Management for details).

While it is possible to write plug-ins from scratch, you should follow the
guidelines presented in this chapter and extend either the existing plug-in
classes or their abstract base classes. Other approaches cannot be supported
due to the complexity of some features, such as instance management and
generic parsing, that are best avoided and the default implementations used.
Reusing these classes will also ensure that your code will be protected from
changes to the plug-in interfaces, as default implementations of new inter-
face methods will be inherited during upgrades and no custom code changes
should be necessary.

9.9.2 Converter Plug-ins

Converter plug-ins implement the format, parse, validate, and related opera-
tions. The following converter plug-ins are provided out-of-the-box. While
most are pre-configured against certain domains, others are left to be con-
figured as described in Section 9.8, Domain Plug-in Configuration (all of
the plug-ins are in the curam.util.client.domain.convert Java
package):

Domain Converter Plug-in Class
SVR_BLOB SvrBlobConverter

SVR_BOOLEAN SvrBooleanConverter

SVR_CHAR SvrCharConverter

SVR_DATE SvrDateConverter

SVR_DATETIME DateTimeConverter

CURAM_TIME CuramTimeConverter

SVR_DOUBLE SvrDoubleConverter

Cúram Web Client Reference Manual

277

Domain Converter Plug-in Class
SVR_FLOAT SvrFloatConverter

SVR_INT8 SvrInt8Converter

SVR_INT16 SvrInt16Converter

SVR_INT32 SvrInt32Converter

SVR_INT64 SvrInt64Converter

INTERNAL_ID InternalIDConverter

SVR_MONEY SvrMoneyConverter

SVR_STRING SvrStringConverter

SVR_UNBOUNDED_STRING SvrStringConverter

LOCALIZED_MESSAGE LocalizedMessageConverter

CODETABLE_CODE CodeTableCodeConverter

N/A SvrInt8BareConverter

N/A SvrInt16BareConverter

N/A SvrInt32BareConverter

N/A SvrInt64BareConverter

Table 9.2 Out-of-the-Box Converter Plug-ins

The format operations of these plug-ins determine the string representations
of data values that appear on application pages. The format operations be-
have as follows:

Plug-in Class Formatting Behavior
SvrBlobConverter Formatted as base-64 encoded

strings. The base-64 encoding
scheme is defined in RFC 2045
[http://ietf.org/rfc/rfc2045.txt].

SvrBooleanConverter Formatted as the string values true
or false. These values are not loc-
ale-aware. Cúram application pages
rarely display formatted Boolean val-
ues directly, instead, check-boxes are
used or values are translated to loc-
ale-specific strings.

SvrCharConverter Formatted as Unicode characters, not
as numbers.

SvrDateConverter Formatted using the application date
format. If the format includes month
or day names, these are localized us-
ing the active user's locale. If the
date is the system “zero” date, an
empty string is returned.

Cúram Web Client Reference Manual

278

http://ietf.org/rfc/rfc2045.txt

Plug-in Class Formatting Behavior
DateTimeConverter Formatted using the application date

and time formats and the user's pre-
ferred time zone. If the format in-
cludes month or day names, these are
localized using the active user's loc-
ale. If the date-time is the system
“zero” date-time, an empty string is
returned.

CuramTimeConverter Formatted using the application time
format. If the date-time is the system
“zero” date-time, an empty string is
returned.

SvrDoubleConverter Formatted as numbers with grouping
separator (e.g., thousands separator)
and decimal point characters appro-
priate for the active user's locale.

SvrFloatConverter Formatted in the same manner as the
SvrDoubleConverter.

SvrInt8Converter Formatted as numbers with grouping
separator (e.g., thousands separator)
characters appropriate for the active
user's locale, but without any decim-
al point.

SvrInt16Converter Formatted in the same manner as the
SvrInt8Converter.

SvrInt32Converter Formatted in the same manner as the
SvrInt8Converter.

SvrInt64Converter Formatted in the same manner as the
SvrInt8Converter.

InternalIDConverter Formatted as numbers in a non-
locale-specific manner without
grouping separator characters.

SvrInt8BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt16BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt32BareConverter Formatted in the same manner as
InternalIDConverter.

SvrInt64BareConverter Formatted in the same manner as
InternalIDConverter.

SvrMoneyConverter Formatted in the same manner as the
SvrDoubleConverter, but with
exactly two significant digits after

Cúram Web Client Reference Manual

279

Plug-in Class Formatting Behavior
the decimal point.

SvrStringConverter Formatted literally, i.e., strings are
not changed by the format operation.

LocalizedMessageConverter Formatted by decoding the message
information, localizing the string in-
dicated by the message catalog de-
tails, and replacing any encoded
string arguments. The active user's
locale is used throughout.

CodeTableCodeConverter Formatted as the code description
corresponding to the code value us-
ing the active user's locale and the
domain's associated code-table.

Table 9.3 Behavior of the Format Operations

Pre-parse operations are used to perform string-related operations, indicated
by domain definition options set in the UML model, before the strings are
parsed to their Java object representations. The operations performed are the
same for all root domains and are as follows: trimming of leading
whitespace, trimming of trailing whitespace, compression of sequences of
whitespace characters to a single space character, and conversion to upper-
case. The pre-parse operations should be customized via the domain defini-
tion options in the UML model. Customization of these options via domain
plug-ins is not necessary and not supported.

Parse operations are used to interpret string values submitted from a form on
an application page or via parameters to a URL and convert then to their
Java object representations. The string values received from the web
browser are interpreted as being in the UTF-8 encoding. This encoding is
used when creating the Unicode Java strings that are passed to the parse op-
erations. The parse operations behave as follows:

Plug-in Class Parsing Behavior
SvrBlobConverter Parsed as a base-64 encoded string.

SvrBooleanConverter Recognizes any of true, yes, or
on as Boolean true values, and any
of false, no, or off as Boolean
false values. The parsing is not
case-sensitive or locale-aware. Other
values are reported as errors.

SvrCharConverter Parsed as a single Unicode character.
The presence of extra characters is
reported as an error.

SvrDateConverter Parsed using the application date
format and the active user's locale.

Cúram Web Client Reference Manual

280

Plug-in Class Parsing Behavior
DateTimeConverter Parsed using the application date and

time formats and the active user's
locale. The user's preferred time zone
is assumed.

CuramTimeConverter Parsed using the application time
format. The server's time zone is as-
sumed.

SvrDoubleConverter Parsed as a number with optional
grouping separator characters and
decimal point characters appropriate
for the active user's locale.

SvrFloatConverter Parsed in the same manner as
SVR_DOUBLE values.

SvrInt8Converter Parsed as a number with optional
grouping separator characters appro-
priate for the active user's locale. The
presence of a decimal point is treated
as an error.

SvrInt16Converter Parsed in the same manner as the
SvrInt8Converter.

SvrInt32Converter Parsed in the same manner as the
SvrInt8Converter.

SvrInt64Converter Parsed in the same manner as the
SvrInt8Converter.

InternalIDConverter Parsed in a non-locale-specific man-
ner. Grouping separators are not per-
mitted and for negative values the
minus sign must be on the left.

SvrInt8BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt16BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt32BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrInt64BareConverter Parsed in the same manner as the
InternalIDConverter.

SvrMoneyConverter Parsed in the same manner as
SVR_DOUBLE values, but the mag-
nitude of the values are limited to
1e13 to avoid the possibility of
rounding errors.

SvrStringConverter Parsed literally, i.e., strings are not
changed by the parse operation.

Cúram Web Client Reference Manual

281

Plug-in Class Parsing Behavior
LocalizedMessageConverter Parsed literally in the same manner

as the SvrStringConverter.
Localized messages are not suppor-
ted as input values, so this parser is
never invoked.

CodeTableCodeConverter Parsed literally as a code value in the
domain's associated code-table. An
error is reported if the code is not
defined in that code-table.

Table 9.4 Behavior of the Parse Operations

Pre-validate operations are used to perform validation checks, indicated by
domain definition options set in the UML model, after values have been
parsed to their Java object representations. The checks performed are not the
same for all domains. The possible validation checks are: maximum size
(length), minimum size (length), maximum value, minimum value, and pat-
tern match. The maximum and minimum values are checked using the com-
pare operation. The pre-validate checks applied as follows:

Plug-in Class Max./Min.
Size

Max./Min
Value

Pattern
Match

SvrBlobConverter Yes No No

SvrBooleanConverter No Yes No

SvrCharConverter No Yes No

SvrDateConverter No Yes No

DateTimeConverter No Yes No

CuramTimeConverter No Yes No

SvrDoubleConverter No Yes No

SvrFloatConverter No Yes No

SvrInt8Converter No Yes No

SvrInt16Converter No Yes No

SvrInt32Converter No Yes No

SvrInt64Converter No Yes No

InternalIDConverter No Yes No

SvrInt8BareConverter No Yes No

SvrInt16BareConverter No Yes No

SvrInt32BareConverter No Yes No

SvrInt64BareConverter No Yes No

SvrMoneyConverter No Yes No

LocalizedMessageConverter Yes No Yes

Cúram Web Client Reference Manual

282

Plug-in Class Max./Min.
Size

Max./Min
Value

Pattern
Match

SvrStringConverter Yes No Yes

CodeTableCodeConverter Yes No No

Table 9.5 Behavior of the Pre-Validate Operations

The pre-validate operations should be customized via the domain definition
options in the UML model. Customization of these options via domain plug-
ins is not necessary and not supported.

The default implementations of the validate operations do not perform any
extra validations.

9.9.3 Comparator Plug-ins

Comparator plug-ins implement the compare operations that determine the
sort order of lists of values. Comparator plug-ins are provided for the fol-
lowing domains (all of the plug-ins are in the
curam.util.client.domain.compare package):

Domain Plug-in Class Behavior
SVR_BLOB SvrBlobComparator Not sorted, as there is no

useful sort order for these
non-human-readable val-
ues.

SVR_BOOLEAN SvrBooleanCompar-
ator

Sorted with Boolean true
values before false val-
ues.

SVR_CHAR SvrCharComparator Sorted strictly numerically
with no locale-aware pro-
cessing.

SVR_DATE SvrDateComparator Sorted chronologically with
the earliest date first.

SVR_DATETIME SvrDateTimeCompar-
ator

Sorted chronologically with
the earliest date-time first.

CURAM_TIME CuramTimeComparat-
or

Sorted chronologically with
the earliest time first.
CURAM_TIME is based on
the SVR_DATETIME do-
main, so values may in-
cluded date information,
but for comparisons, the
date part is ignored and
only the time part is used to
determine the sort order.

Cúram Web Client Reference Manual

283

Domain Plug-in Class Behavior
SVR_DOUBLE SvrDoubleComparat-

or
Sorted numerically; smal-
lest value first.

SVR_FLOAT SvrFloatComparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_INT8 SvrInt8Comparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_INT16 SvrInt16Comparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_INT32 SvrInt32Comparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_INT64 SvrInt64Comparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_MONEY SvrMoneyComparator Sorted in the same manner
as SVR_DOUBLE values.

SVR_STRING SvrStringComparat-
or

Sorted lexicographically
based on the numeric Uni-
code value of each charac-
ter in the string. The com-
parison is not locale-aware.

SVR_STRING SvrStringCaseIn-
sensitiveComparat-
or

Sorted identically to
SvrStringComparat-
or except the case is ig-
nored.

SVR_STRING SvrStringLoc-
aleAwareComparator

Sorted according to the
sorting rules defined by
Java for the locale.

SVR_UNBOUNDE
D_STRING

SvrStringComparat-
or

Sorted in the same manner
as SVR_STRING values.

CODETABLE_CO
DE

CodeTableCodeCom-
parator

Sorted according to the
defined code-table sort or-
der for the code values. If
the defined sort orders are
equal, the code descriptions
are sorted lexicographically
based on the numeric Uni-
code value of each charac-
ter in the string. The com-
parison is not locale-aware.

CODETABLE_CO
DE

CodeTableCodeCase-
InsensitiveCompar-
ator

Sorted identically to
CodeTableCodeCom-
parator except case is
ignored.

CODETABLE_CO CodeTableCodeLoc- Similar to the above, but

Cúram Web Client Reference Manual

284

Domain Plug-in Class Behavior
DE aleAwareComparator the comparison of code de-

scriptions uses the sorting
rules defined by Java for
the locale.

Table 9.6 Out-of-the-Box Comparator Plug-ins

The SvrStringComparator and CodeTableCodeComparator
classes are configured by default to sort values in the SVR_STRING and
CODETABLE_CODE domains respectively. If locale-aware sorting is re-
quired, the default plug-in configuration can be overridden to use the
SvrStringLocaleAwareComparator and CodeTableCodeLoc-
aleAwareComparator classes instead. If case-insensitive sorting is re-
quired, override using SvrStringCaseInsensitiveComparator
and CodeTableCodeCaseInsensitiveComparator. See Sec-
tion 9.8, Domain Plug-in Configuration above for details on overriding the
default plug-in configuration. Using these locale-aware comparators, lists
will be sorted according to the expected sorting rules of the active locale.
However, applying these sorting rules takes more time, so there will be
some performance degradation. The implementation of locale-aware sorting
uses Java's built-in sorting rules, so the availability of correct sorting rules
for each locale depends on the Java JRE being used.

9.9.4 Default Value Plug-ins

Default value plug-ins supply the default values used when no values are
available. Default value plug-ins are provided for the following domains (all
of the plug-ins are in the curam.util.client.domain.defaults
package):

Domain Plug-in Class Assumed
Value

Displayed
Value

SVR_BLOB SvrBlobDefault Empty
BLOB

Empty
BLOB

SVR_BOOLEAN SvrBooleanDefault False False

SVR_CHAR SvrCharDefault Character
zero

Character
zero

SVR_DATE SvrDateDefault Zero date Current date

SVR_DATETIME SvrDateTimeDefault Zero date-
time

Current
date-
midnight

SVR_DATETIME SvrDate-
TimeDefaultCur-
rTime

Zero date-
time

Current date
- Current
time

SVR_DOUBLE SvrDoubleDefault Zero Zero

Cúram Web Client Reference Manual

285

Domain Plug-in Class Assumed
Value

Displayed
Value

SVR_FLOAT SvrFloatDefault Zero Zero

SVR_INT8 SvrInt8Default Zero Zero

SVR_INT16 SvrInt16Default Zero Zero

SVR_INT32 SvrInt32Default Zero Zero

SVR_INT64 SvrInt64Default Zero Zero

SVR_MONEY SvrMoneyDefault Zero Zero

SVR_STRING SvrStringDefault Empty string Empty string

SVR_UNBOUNDED
_STRING

SvrStringDefault Empty string Empty string

CODETABLE_COD
E

CodeTable-
CodeDefault

Empty code
string

Empty code
string

Table 9.7 Out-of-the-Box Default Value Plug-ins

Within the Cúram application, the zero date and time is represented as mid-
night on January 1,0001; this is interpreted as if no date and time has been
set at all.

Also, the default value for a code-table code is an empty code string; a dif-
ferent mechanism is used to define default code-table codes during code-ta-
ble administration.

SvrDateTimeDefault plug-in is time zone aware and the displayed value it
returns is offset by the difference between the user and server time zones.
The configured converter plug-in is expected to also consider time zone set-
tings and offset the value accordingly. The end result is that the time part of
date-time value is set to midnight regardless the time zone settings.

9.10 Error Reporting

9.10.1 Exception Classes

Many customizations require the addition of exception handling and error
reporting code. All the necessary infrastructure is provided to make this as
simple as possible. A simple formulaic approach can be followed that will
provide all of the necessary functionality. Before looking at how you can
write customizations, you must first learn the necessary error reporting tech-
niques.

All of the plug-in methods that throw exceptions, throw one of two excep-
tion types:

• curam.util.common.domain.DomainException

Cúram Web Client Reference Manual

286

• curam.util.client.domain.convert.ConversionExcep
tion

ConversionException is derived from DomainException, so in-
stances of these exceptions can both be treated as DomainException ob-
jects when convenient. The ConversionException class is used for
exceptions that are thrown by the methods of converter plug-ins. Unlike a
DomainException, a ConversionException can be associated
with a particular property of a server interface so that error messages repor-
ted to a user can indicate the label of the field in error and an error icon can
be placed beside that field. The only exceptions that custom code normally
needs to throw are instances of ConversionException, so this is the
only exception class than needs to be understood to implement your own ex-
ception handling and reporting.

Conversion exceptions (and most other exceptions in the client infrastruc-
ture) carry information about the error message that needs to be reported,
but not the error message itself. When an exception is thrown, the identifier
of the localized error message string, the values that will be substituted for
the placeholders in that string, and any causal exception object are included
in the exception details. Each exception class can be associated with an error
message catalog (a set of localized Java properties files) that is used when
the localized message string is resolved from the message identifier. The
localization and substitution steps are not performed until the message is re-
ported to the user, so the exception can be propagated and augmented with
more information for some time before the message string becomes fixed.
This allows, in the case of conversion exceptions, the field label to be added
automatically by the infrastructure after your custom code has thrown the
exception and makes it very easy to integrate your error reporting require-
ments into the system.

9.10.2 Custom Exception Classes

The purpose of a custom exception class is to integrate the look-up of local-
ized message strings in a custom message catalog into the mechanism used
for error reporting in the client infrastructure. If you only need one error
message catalog, you will only need one custom exception class, but there is
no restriction on the number of exception classes or message catalogs you
can create.

Implementing custom exception handling using a custom exception class is
formulaic. As the custom exception class must integrate into the existing
message reporting system, only numeric message identifiers are supported
for custom exceptions and there is very little room for deviation from the
prescribed approach. You cannot, for example, use literal message strings in
your code, you must use references to externalized strings.

Here is an example of a custom exception class:

public class CustomConversionException

Cúram Web Client Reference Manual

287

extends ConversionException {

private static final MessageLocalizer MESSAGE_LOCALIZER
= new CatalogMessageLocalizer("custom.ErrorMessages");

public CustomConversionException(int messageID) {
super(messageID);

}

public CustomConversionException(int messageID,
String[] messageArgs) {

super(messageID, messageArgs);
}

public CustomConversionException(int messageID,
String messageArg) {

super(messageID, messageArg);
}

public MessageLocalizer getMessageLocalizer() {
return MESSAGE_LOCALIZER;

}
}

Example 9.2 Custom Exception Class

This class extends ConversionException and implements a number of
constructors simply by invoking the equivalent constructors in the super-
class. You only need to implement the constructors that you intend to use,
the rest of the constructors in the super-class can be ignored (Java classes do
not inherit constructors, hence the need to re-implement them). The avail-
able constructors are described in the JavaDoc. Next, it defines a static
MessageLocalizer field and instantiates it with a CatalogMes-
sageLocalizer object that takes your custom catalog name as its argu-
ment. The getMessageLocalizer method then returns this static ob-
ject. That is all there is to it.

When you throw exceptions of this type, you need to pass your message
identifier and optional arguments to the relevant constructor. You can define
constants for your numeric message identifiers in this class if you wish.
Your message strings can contain placeholders such as “%1s”, “%2s”, etc.,
to be replaced by the argument strings (only string types are supported). For
an array of arguments, “%1s” will be replaced by the first argument in the
array (index zero), and so on. The special argument “%0s” can be used to
represent the name of the field in error, but you will not need to provide any
matching argument string for that value; it will be substituted automatically.
You can also use the same placeholder several times in a single message if
you want the same value to be inserted in more than one place. Here is a
sample message catalog file containing a single message:

-200000=ERROR: The field '%0s' contains an invalid value '%1s'.

Example 9.3 Custom Message Catalog

The file is a standard Java properties file where each line contains a numeric
identifier and a message string separated by an equals character. A collec-
tion of properties files with the same base name but with locale codes ap-

Cúram Web Client Reference Manual

288

pended is treated as a single message catalog. The custom exception class in
the example above refers to the message catalog as
“custom.ErrorMessages”, so the properties files should be located on the
Java classpath in the custom package folder and in files named Er-
rorMessages.properties, ErrorMes-
sages_en_US.properties, ErrorMes-
sages_fr_CA.properties, etc., as you would do for any other cus-
tom properties files. There should be one properties file for each locale that
your application supports. The selection of the correct locale-specific prop-
erties file at run-time is completely automatic once you have written your
custom exception class as shown above.

Ensuring that these files end up on the classpath is simply a matter of pla-
cing them in their appropriate package folders below your web application's
<client-dir>/<custom>/javasource folder, where custom is
the name of a custom component. (see Section 3.6, Project Folder Structure
for details). The Java source files for your custom exceptions should also be
placed below the <client-dir>/<custom>/javasource folder in
the appropriate folders for the package names you have used.

When throwing a custom exception, the code will look like this (assuming
you have decided not to use constants for your error message identifiers):

throw new CustomConversionException(-200000, myInvalidValue);

Example 9.4 Throwing a Custom Exception

Remember, it is not necessary to pass any argument corresponding to the
“%0s” placeholder; it will be calculated and substituted automatically.

Numeric Message Identifiers

When creating message catalog files, try to ensure that the error
numbers do not conflict with the numbers of existing Cúram error
messages, as this may cause confusion when errors are being invest-
igated. Values below -200000 should be safe to use, though conflict-
ing numbers will not actually cause any application problems, as the
message catalogs are separate from those used by the infrastructure.

If you examine the constructors of the ConversionException class,
you will note that many accept a java.lang.Throwable object as the
last argument. You can implement similar constructors and pass Throw-
able objects (usually other exception objects) to your custom exceptions
when you want your custom exception to include the exception that caused
it. This is often very useful as error messages for both exceptions will be re-
ported automatically and both stack traces will be included on an application
error page if the error page is required. In fact, there is no imposed limit to
the length of the chain of exceptions that can be built this way; the excep-
tion that you add to your own may already contain a reference to another ex-
ception, and so on.

This example show how you can even report two separate error messages at

Cúram Web Client Reference Manual

289

once. Perhaps one is a generic message that states that a field does not con-
tain a valid value and another suggests the expected format for that value.
You will have to implement the appropriate constructor to support this, but
the reporting mechanism is automatic.

throw new CustomConversionException(
-200000, myInvalidValue,
new CustomConversionException(-200003));

Example 9.5 Throwing Multiple Exceptions

9.10.3 Reusing Cúram Error Messages

It is possible to reuse existing Cúram error messages for your own purposes
and avoid writing your own exception class, but this reuse is not supported
for upgrades, as Cúram error messages are regularly modified and reorgan-
ized and your code could cease to function correctly if it depended on
Cúram error messages that had been modified or removed. These internal
changes within the Cúram application are not normally announced in any re-
lease notes. However, you may decide that the benefit of reusing the mes-
sages, and the relative ease of manually correcting problems introduced
when upgrading to new Cúram releases, outweighs this lack of support dur-
ing upgrades.

Each Cúram error message described in the Cúram Web Client Er-
ror Message Guide has an associated error name and number. This er-
ror name is the same as the name of a Java constant that is defined to be
equal to the error number. While you can use the error number directly, it is
safer to use the constant. All of the constants are implement by the Con-
versionException class, so you can access them as static fields. Each
error message may also contain optional placeholders for dynamic values
that will be substituted for the placeholders when the error is reported. If
you reuse an error message, you must provide a value for each placeholder
it uses except the “zero” placeholder represented by “%0s”.

Here is an example of how you might reuse existing Cúram error messages:

// Error message taking one argument.
throw new ConversionException(

ConversionException.ERR_CONV_PARSE_FAILED,
myInvalidValue);

// Error message taking two arguments.
throw new ConversionException(

ConversionException.ERR_CONV_OUT_OF_RANGE,
new String[] { MY_MAX_VALUE, MY_MIN_VALUE });

Example 9.6 Reusing Cúram Error Messages (Unsupported)

9.11 Java Object Representations

The data conversion and comparison operations manipulate strings and oth-
er Java objects. Each value in a root domain is represented by an object of a

Cúram Web Client Reference Manual

290

corresponding Java class. The Java class used by a root domain is the same
for all descendant domains of that root domain and cannot be changed.
When customizing the operations, knowledge of the type of data being pro-
cessed is important. The table below shows the Java class used for data ob-
jects for each of the root domains.

Domain Java Class
SVR_BLOB curam.util.type.Blob

SVR_BOOLEAN java.lang.Boolean

SVR_CHAR java.lang.Character

SVR_DATE curam.util.type.Date

SVR_DATETIME curam.util.type.DateTime

SVR_DOUBLE java.lang.Double

SVR_FLOAT java.lang.Float

SVR_INT8 java.lang.Byte

SVR_INT16 java.lang.Short

SVR_INT32 java.lang.Integer

SVR_INT64 java.lang.Long

SVR_MONEY curam.util.type.Money

SVR_STRING java.lang.String

SVR_UNBOUNDED_ST
RING

java.lang.String

CODETABLE_CODE curam.util.common.util.CodeItem

Table 9.8 Classes Used for Java Object Representations

Though derived from SVR_STRING, the Java class used for
CODETABLE_CODE is different to that of its parent. This is the only excep-
tion to the rule that the Java class used is the same for all descendant do-
mains of a root domain.

9.12 Customization Guidelines

9.12.1 Where to Start

Most customizations aim to control one or more of the data conversion or
sorting operations. Guidelines are provided in the following sections to
show you how each of these operations can be customized. Following these
guidelines will ensure that your customizations are as simple and effective
as possible.

When you have written your custom plug-ins, you need to configure them
and ensure that the Java classes are available at run-time.Configuration was
described in Section 9.8, Domain Plug-in Configuration. The Java source

Cúram Web Client Reference Manual

291

files for your custom plug-in classes are added to the web application in ex-
actly the same way as the Java source code files for your custom exception
classes (see Section 9.10.2, Custom Exception Classes): they are placed in
their appropriate package folders in your
<client-dir>/<custom>/javasource folder, (where <custom>
is the name of a custom component).

9.12.2 Custom Formatting

Custom formatting may be required when a value displayed on an applica-
tion page is not in the required format. A custom formatter might be used to
pad values with extra characters, so that they appear to be the same length;
insert a currency symbol into money values; format numeric values without
grouping separator characters; or even take a date value based on the
Gregorian calendar and format it after converting it to another calendar sys-
tem.

Guidelines for Custom Formatting

1. Identify an existing converter plug-in class that you want to customize.
It will most likely be the converter that is already configured for the
domain in question or inherited by it from an ancestor domain.

2. Create a new sub-class of the relevant converter plug-in and override
the format method.

3. In the implementation of the method, you can perform some processing
before or after invoking the super-class's method of the same name, or
implement the formatting code from scratch.

4. Configure your new plug-in for the relevant domains.

The calendar scenario is somewhat unrealistic because the date selector wid-
get would not be compatible, but inserting a currency symbol, or an analog-
ous operation, is something that you may want to do. If multiple currencies
are supported, then domains such as US_DOLLAR_AMOUNT or
EURO_AMOUNT might be used to represent values in each currency (though
the out-of-the-box Cúram application uses a different scheme for represent-
ing money values in different currencies). Custom converter plug-ins may
then be written to format money values for each of these domains by adding
the appropriate currency symbol.

This example shows how a converter plug-in can be written that takes a
money value and prefixes the formatted numeric value with a dollar symbol.
The out-of-the-box Cúram application comes with a converter plug-in that
formats money values, but without any currency symbol, so you can reuse
its format operation to simplify the implementation.

/**
* Converter that supports the use of a dollar symbol for
* money values.
*/

Cúram Web Client Reference Manual

292

public class USDollarConverter
extends SvrMoneyConverter {

public String format(Object data)
throws ConversionException {

return "$" + super.format(data);
}

}

Example 9.7 Custom Formatting for Currency Values

The implementation is very trivial: the super-class does all the work and re-
turns a nicely formatted money value; the customization just adds the dollar
symbol.

The configuration file for this customization is shown below. The file might
also include entries for other customizations that have been made. As the
comparator and default value plug-ins have not been customized, they do
not appear in the configuration. These plug-ins will be inherited from the
ancestors of the US_DOLLAR_AMOUNT domain (probably the SVR_MONEY
domain).

<dc:domains xmlns:dc=
<dc:plug-in name="converter"

class="custom.USDollarConverter"/>
</dc:domain>

</dc:domains>

Example 9.8 Configuration for Custom Formatting

Values displayed on an application page (or even those passed behind the
scenes in hidden page connections) may be submitted back to the web ap-
plication. If you write a formatter that inserts a currency symbol, or you al-
low users to insert currency symbols in values that they type in, then you
will need to accommodate such values in the parse operation. The next sec-
tion will demonstrate the custom parse operation required to match this cus-
tom format operation.

Another common need for custom formatting is to format integer values
without grouping separator characters. For example, an integer value that
represents the year “2005” should probably be formatted as “2005” and not
“2,005”. If the year value is represented by the YEAR_VALUE domain and
that domain is derived from the SVR_INT16 domain, the custom format
operation would look like this:

/**
* Converter that formats year values without adding grouping
* separator characters.
*/
public class YearValueConverter

extends SvrInt16Converter {
public String format(Object data)

throws ConversionException {
return data.toString();

}
}

Example 9.9 Custom Formatting without Grouping

Cúram Web Client Reference Manual

293

This converter overrides the format method of the Sv-
rInt16Converter class and simply converts the data object (a
java.lang.Short) to a string. Unlike the routines used by the super-
class, the toString method will not do any locale-aware formatting or
add any grouping separator characters. The parse method is not overrid-
den, so values that are entered with or without grouping separator characters
will be accepted. This converter is configured in the same way that the cur-
rency symbol converter was configured.

9.12.3 Custom Parsing

Custom parsing is implemented when users must enter values in a form that
existing parse operations do not recognize or when some other processing
must be performed on values before they are submitted to the application
server. Custom parsing may be as simple as a routine that first removes a
currency symbol from a numeric value before parsing it, where the currency
symbol may have been entered by a user or added by a custom format oper-
ation. It could also be something more unusual: a translation of a date to an-
other calendar system, a routine that pads string values, or an arbitrary cal-
culation on numeric values.

Guidelines for Custom Parsing

1. Identify an existing converter plug-in class that you want to customize.
It will most likely be the converter that is already configured for the
domain in question or inherited by it from an ancestor domain.

2. Create a new sub-class of the relevant converter plug-in and override
the parse method.

3. In the implementation of the method, you can perform some processing
before or after invoking the super-class's method of the same name, or
implement the parsing code from scratch.

4. Configure your new plug-in for the relevant domains.

The currency symbol scenario is continued in this example to complement
the example shown for a custom format operation above. The example be-
low shows the same class developed to format money values with a cur-
rency symbol; the class is now extended with a corresponding parse opera-
tion. In a case like this, you do not write separate converter plug-ins for
formatting and parsing; you must implement both operations in the same
converter plug-in and then associate the plug-in with the appropriate do-
main.

/**
* Converter that supports the use of a dollar symbol for
* money values.
*/
public class USDollarConverter

extends SvrMoneyConverter {
public String format(Object data)

Cúram Web Client Reference Manual

294

throws ConversionException {
return "$" + super.format(data);

}

public Object parse(String data)
throws ConversionException {

if (data.startsWith("$")) {
return super.parse(data.substring(1));

}
return super.parse(data);

}
}

Example 9.10 Custom Parsing for Currency Values

The value passed to the parse method is the same value that was entered
by the user; it is possible that it contains no currency symbol or it might
contain space characters between the currency symbol and the value. You
can use the UML domain definition options to ensure that the pre-parse op-
eration will have removed any whitespace before the currency symbol, or
simply report an error if the currency symbol or a digit is not the first char-
acter. The parse method above assumes that the currency symbol is the
optional first character and then leaves all other decisions up to the parse
method of the super-class. This is probably the best approach, as it limits the
number of formatting rules that a user needs to be aware of and keeps the
code as simple as possible.

The configuration for this plug-in is unchanged from that shown for the cus-
tom format operation.

9.12.4 Custom Validation

Custom validation can be performed in two ways: by setting the domain
definition options in the UML model, or by implementing a validate opera-
tion in a custom converter plug-in. It is also possible to combine both ways
to meet your validation requirements.

The domain definition options in the UML model are limited to a small
number of validations that are described in the Cúram Modeling Reference
Guide and summarized in Table 9.5, Behavior of the Pre-Validate Opera-
tions above. If the domain definition options meet your needs, you should
use them in preference to any programmatic alternative. If the options meet
only some of your needs, you should use them and also create a custom con-
verter plug-in to complete the validations. If the options are not useful, you
should create a custom converter plug-in and implement all the validations
there. Some uses for custom validation routines might include the validation
of check digits or the imposition of any other arbitrary restrictions on the
permitted values.

Guidelines for Custom Validation

1. Identify an existing converter plug-in class that you want to customize.
It will most likely be the converter that is already configured for the
domain in question or inherited by it from an ancestor domain.

Cúram Web Client Reference Manual

295

2. Create a new sub-class of the relevant converter plug-in and override
the validate method.

3. In the implementation of the method, invoke the super-class's method
of the same name to perform any existing validations (if that is appro-
priate).

4. Complete the implementation by performing your validations and
throwing an exception if any validation fails.

5. Configure your new plug-in for the relevant domains.

In this example, a new converter plug-in is created that extends the In-
ternalIDConverter plug-in with a validation that only permits even
numbers. The InternalIDConverter is derived from the Sv-
rInt64Converter class that is configured for use by the SVR_INT64
domain. Values in this domain are represented by java.lang.Long ob-
jects.

/**
* Reports ID numbers as invalid if they are odd.
*/
public class EvenIDConverter

extends InternalIDConverter {
public void validate(Object data)

throws ConversionException {
// Perform any existing validations first.
super.validate(data);

if (((Long) data).longValue() % 2 != 0) {
throw new CustomConversionException(-200010);

}
}

}

Example 9.11 Custom Validation for Odd Numbers

The error message entry in the custom message catalog may look like this:

-200010=ERROR: The field '%0s' must be an even number.

Example 9.12 Custom Validation Failure Message

If this validation is to be applied to the EVEN_ID and the NOT_ODD_ID
domains, then the configuration will look like this:

<dc:domains xmlns:dc=
<dc:domain name="EVEN_ID">

<dc:plug-in name="converter"
class="custom.EvenIDConverter"/>

</dc:domain>
<dc:domain name="NOT_ODD_ID">

<dc:plug-in name="converter"
class="custom.EvenIDConverter"/>

</dc:domain>
</dc:domains>

Example 9.13 Configuration for Custom Validation

Cúram Web Client Reference Manual

296

9.12.5 Custom Sorting

When lists of values are displayed in an application page, a user can sort the
list by clicking on the column headers. The sort order of the rows will be de-
termined by the sort order of the values in the selected column. Successive
clicks on a column header alternate between the forward and reverse sort or-
der for that column. The sort order for any type of data can be customized
easily, though the sort-order for code-table codes must be controlled using
the code-table administration interface. The sort order is calculated when re-
sponding to a user's request, so the user's active locale is available by calling
the inherited getLocale method and can be used to influence the sort or-
der in a locale-specific manner.

The domain comparator plug-ins are responsible for making the comparis-
ons that control the sort order. The sorting algorithms swap the position of
values in their value lists depending on the value returned by the compare
method of the plug-in. The comparator plug-ins used in the Cúram applica-
tion behave as described in Section 9.9.3, Comparator Plug-ins. These sort
orders are simple and intuitive, but may not meet the needs of some special-
ized domains. In these cases, custom sort orders may be required and there
is no limitation on what order can be used.

What Values are Compared?

All compare operations are performed by invoking the comparator
plug-ins compare method. This takes two java.lang.Object
arguments. The method is invoked automatically by the client infra-
structure before the values are formatted. This means that the ob-
jects passed are of the types shown in Section 9.11, Java Object
Representations, not formatted string representations of the values.

In most cases, having access to Java object representations makes
the comparisons much easier to perform: comparing dates and num-
bers is much easier when they are represented by objects that con-
veniently provide a compareTo method that returns the same val-
ues that the compare method must return. However, there are
some situations where, for example, encoded strings are decoded by
the format operation and comparing them before they are formatted
is not simple or would involve the duplication of the formatting
code. In these cases, it is possible to invoke the appropriate format-
ter and compare the results. This will be described later.

The general guidelines for implementing a custom comparator plug-in to
control the sort order for a domain are as follows:

Guidelines for Custom Comparators

1. Create a new sub-class of the AbstractComparator class de-
scribed in Section 9.9.1, Extending Existing Plug-ins.

2. Implement the compare method to perform your custom comparison.

Cúram Web Client Reference Manual

297

3. Configure your new plug-in for the relevant domains.

To illustrate this, you will see how to write a comparator that compares
string values as if they were numbers. Some of the entities in the Cúram ap-
plication use a string-based domain for their key values to support the use of
identifiers that may not just contain digits. Sorting of these types works well
in most cases, but there can be problems. Because the base domain is a
string, the values are sorted lexicographically, not numerically. If the values
are all of the same length, this is not a problem, but if the lengths differ, the
sorting becomes confusing. For example, the string values “22” and “33”
will be sorted into the order “22”, “33”, but if the values are “22” and “3”,
the sort order will be “22”, “3”, because the character “2” comes before the
character “3” in a lexicographical sort and representations of numbers with
positional digits are not recognized.

There are a number of ways to solve this problem:

• The string values could be stored in the database with leading zeros used
to pad all values to the same length, this would trick the lexicographical
sorting into working correctly (the lexicographical sort order for “22”
and “03” is “03”, “22”). If the leading zeros were not desired for display
purposes, they could be stripped by the format operation and replaced by
the parse operation. Legacy data, however, would need to be updated to
conform to the new format.

• Write a custom comparison routine that parses the numeric values from
the strings and then performs the comparison. This would work fine, but
the parsing is a little complicated and it may be complicated further if
the values have trailing check letters or other non-digit characters.

• Pad the value with zeros for the purposes of making the comparison, but
do this inside the compare operation, so that no other application
changes are necessary.

The latter solution is, perhaps, the easiest to achieve. Here is an example of
a custom comparator plug-in that does this for values that are limited to no
more than ten characters:

/**
* Compares string values after padding them with leading
* zeros to make the sorting work correctly for numeric
* values. Values must not be longer than ten characters.
*/
public class IDComparator

extends AbstractComparator {
public int compare(Object s1, Object s2) {

return _pad((String) s1).compareTo(_pad((String) s2));
}

private String _pad(String s) {
return "0000000000".substring(0, 10 - s.length()) + s;

}
}

Example 9.14 Sorting Strings Numerically

Cúram Web Client Reference Manual

298

The _pad method pads a value with leading zeros, so that all returned
strings will be ten characters long and numeric values will be compared cor-
rectly as the positional digits will all be aligned correctly. No change needs
to be made to the format or parse operations or to any existing values in the
database; the sort order is entirely controlled by this simple comparator
code. While the numeric values could have been parsed from the strings and
a numeric comparison made, this sample code is much simpler and more ef-
ficient.

Another need for custom sorting arises when values are in an encoded form
that is decoded by the format operation. In this case, sorting of the encoded
form may not be meaningful. For example, if a domain exists that uses an
encoded string containing several localized messages and their locale codes
like this “en|Hello|es|Hola”, calculating the sort orders for such strings is
meaningless. The string could be decoded, but, as decoding must be done by
the format operation, it is simpler to invoke the format operation instead and
compare the values that it returns.

/**
* Compares two encoded message strings using their
* formatted values.
*/
public class MessageComparator

extends AbstractComparator {
public int compare(Object value1, Object value2) {

final DomainConverter converter;

try {
converter = ((ClientDomain) getDomain())

.getConverter(getLocale());
return converter.format(value1)

.compareTo(converter.format(value2));
} catch (Exception e) {
// Do nothing except report the values to be equal.
return 0;

}
}

}

Example 9.15 Sorting Formatted Values

This code retrieves the converter plug-in that implements the format opera-
tion for the same domain as that of the values being compared. The returned
converter will also be aware of the active user's locale. The exact mechan-
ism behind this is unimportant, simply copying the code above is all that is
needed. Other uses of the ClientDomain class are not supported. The ex-
ception handling is simple: it does nothing. The compare method is not
declared to throw exceptions, and thrown run-time exceptions trigger an ap-
plication error page, so there is not much useful error handling that can be
performed. The reason that none is attempted at all is that if the converter
cannot be retrieved or the format operation fails, it will be for reasons bey-
ond the control of the comparator plug-in and these reasons will cause fail-
ures in other places that will be reported in time. In fact, the sorting opera-
tion is carried out just before the infrastructure formats all of the values
ready for display, so the very next operation will detect and report the errors
that may have been ignored by the comparator.

Cúram Web Client Reference Manual

299

A final example shows how to make the Cúram application zero date
(January 1,0001), appear after all other dates instead of before them:

/**
* Compares dates, but places the zero date at the end,
* rather than the start, or the sort order.
*/
public class ZeroDateComparator

extends AbstractComparator {
public int compare(Object value1, Object value2) {

final Date date1 = (Date) value1;
final Date date2 = (Date) value2;

if (Date.kZeroDate.equals(date1)
&& !Date.kZeroDate.equals(date2)) {

return -1;
} else if (!Date.kZeroDate.equals(date1)

&& Date.kZeroDate.equals(date2)) {
return 1;

}
return date1.compareTo(date2);

}
}

Example 9.16 Sorting Zero Dates

The comparator returns a negative number (the magnitude is not important)
if the first date is the zero date and the second date is not the zero date to in-
dicate that the first date comes after the second in the sort order. Likewise, a
positive number is returned if the first date is not the zero date and the
second date is the zero date to indicate that the order is correct. Otherwise,
the dates are compared as normal. This causes the zero date to be positioned
after all other dates instead of before them in the sort order.

This type of manipulation should be used with caution: the comparator plug-
ins are also used during pre-validation to check a value against the maxim-
um and minimum values defined for its domain in the UML model's domain
definition options. In this case, if the UML domain definition options define
a maximum date and no date is set, then the zero date will be assumed and
this will appear to be later than all other dates, including the maximum date,
and the pre-validation check will always fail with an error. If no maximum
value is specified in the model, then this comparator will work without
problems.

To override the default comparator for all dates with this new comparator,
the configuration will look like this:

<dc:domains xmlns:dc=
<dc:domain name="SVR_DATE">

<dc:plug-in name="comparator"
class="custom.ZeroDateComparator"/>

</dc:domain>
</dc:domains>

Example 9.17 Configuration for Custom Sorting

Now, all date values for all domains that are descendants of the root
SVR_DATE domain, and values in the root domain itself, will be sorted ac-

Cúram Web Client Reference Manual

300

cording to the new rules. There is no need to configure any other domains,
as they will all inherit this new comparator (unless, of course, a descendant
domain has been configured with another comparator that will override any
inherited comparator). This comparator could also be applied more select-
ively to descendant domains of SVR_DATE.

9.12.6 Custom Error Reporting

It is possible that a plug-in performs the operations exactly as you require,
but you need to customize the error reporting. One area of the Cúram ap-
plication where this may happen is in the pre-validation operation when the
pattern matching option is applied. A pattern is a regular expression defined
in the UML model. When this validation fails, the error reports that the data
was “not in a recognized format ”, as few users would be able to interpret
the meaning of a regular expression if presented to them. If the format is a
common and intuitive one (a phone number, say), then this message will
probably suffice. However, if the format is more obscure, the error message
may need to be changed to present a human-readable description of the
format (correctly localized). There are two ways to achieve this:

• Remove the pattern option from the UML model and implement your
own pattern match validation as you would for any type of custom valid-
ation.

• Intercept the exception from the pre-validation operation and replace it
with a different exception carrying your alternative error message.

A custom validation is possible and you will just need to follow the usual
guidelines for such a customization, but it is complicated by the need to ac-
cess the pattern information and perform the pattern matching operation. As
you would then need to report your custom error message, it is much sim-
pler to let the existing infrastructure do all the pattern matching and just fo-
cus on the error message.

Custom error reporting is really only applicable to the parse and pre-
Validate methods of a converter plug-in. These are the only methods that
may be invoked and passed values that a user has entered and that a user
may be able to correct in response to an error message. The converter plug-
ins supplied with the out-of-the-box Cúram application do not report any er-
rors from their validate methods, so, unless you want to customize an-
other custom converter plug-in, the validate method can be ignored.

Guidelines for Intercepting Exceptions

1. Identify the method that is generating the exception that carries the er-
ror message that you want to customize. The likely candidates are the
converter plug-in's parse and preValidate methods.

2. Create a new sub-class of the relevant converter plug-in and override
the appropriate method.

3. In the implementation of the method, invoke the super-class's method

Cúram Web Client Reference Manual

301

of the same name and catch any exception thrown.

4. Test the error number on the caught exception to ensure it is the one
you want to override.

5. If the error number is correct, throw a new exception carrying your er-
ror message, otherwise, re-throw the caught exception, as it is not the
one you wish to override.

6. Configure your new plug-in for the relevant domains.

This example shows how this might be done to override the pattern match
failure message. The custom exception class described in Section 9.10.2,
Custom Exception Classes is used.

/**
* Reports that social security numbers must match the format
* "xxx-xx-xxxx" when the regular expression defined in the
* UML model "\d{3}\-\d{2}\-\d{4}" does not match a social
* security number entered by a user.
*/
public class SSNConverter

extends SvrStringConverter {
public void preValidate(Object data)

throws ConversionException {
try {
super.preValidate(data);

} catch (ConversionException e) {
if (e.getMessageObject().getMessageID()

== e.ERR_CONV_NO_MATCH) {
throw new CustomConversionException(-200001);

}
throw e;

}
}

}

Example 9.18 Custom Error Reporting

The error message entry in the custom message catalog will look like this:

-200001=ERROR: The field '%0s' must use the format 'xxx-xx-xxxx'.

Example 9.19 Custom Pattern Match Failure Message

Domains that require this converter can be configured in the same manner
as shown for the other converters above.

The same warnings apply to the interception of error messages as those that
apply to the reuse of error message (see Section 9.10.3, Reusing Cúram Er-
ror Messages): Cúram error messages are subject to change without notice.
However, in the specific case of the pattern match failure message, the error
-122128 - ERR_CONV_NO_MATCH will be preserved, as the possible
need to intercept this message is recognized.

9.12.7 Custom Default Values

It is unlikely that you will ever need to customize a default value plug-in for

Cúram Web Client Reference Manual

302

a domain. The displayed default value can be customized using the respect-
ive UML domain definition option. The predefined assumed default values
for the domains are probably sufficient for every need. However, in the un-
likely event that you need to customize an assumed default value, the steps
are little different from those for other plug-ins.

Another reason for customizing a default value plug-in is where the dis-
played default value is not fixed and cannot be defined in the UML model.
An example of this is the use of the current date as a displayed default
value.

Guidelines for Custom Default Values

1. Identify an existing default value plug-in class that you want to cus-
tomize.

2. Create a new sub-class of the relevant default value plug-in and over-
ride the getDisplayedDefault method.

3. The implementation of the method should simply return a value com-
patible with the Java type used to represent values for the relevant root
domain. These Java types are listed in Section 9.11, Java Object Rep-
resentations.

4. Configure your new plug-in for the relevant domains.

In this example, the displayed default value for an interest rate is calculated
dynamically using a notional CentralBank class that somehow returns
the current interest rate.

/**
* Returns the current interest rate by contacting the
* central bank!
*/
public class InterestRateDefault

extends SvrFloatDefault {
public Object getDisplayedDefault()

throws DomainException {
try {
return new Float(CentralBank.getInterestRate());

} catch (Exception e) {
throw new CustomDomainException(-200099, e);

}
}

}

Example 9.20 Custom Default Date-Time Value

The example assumes that the InterestRateDefault class will be as-
sociated with a descendant of the SVR_FLOAT domain that requires a de-
fault value to be of the java.lang.Float type. By extending the
SvrFloatDefault class, the new default value plug-in will automatic-
ally use zero as the assumed default interest rate value.

The exception handling uses a CustomDomainException class. As the
getDisplayedDefault method throws a DomainException, and

Cúram Web Client Reference Manual

303

not a ConversionException, you could create such a custom excep-
tion class by deriving it from DomainException in exactly the same way
as the CustomConversionException class was derived from Con-
versionException in Section 9.10.2, Custom Exception Classes. You
might note that, as the DomainException class is an ancestor of the
CustomConversionException class that the CustomConver-
sionException class could be used here instead. This will work, but
you must not attempt to report a message containing the “%0s” placeholder
for the field label, as automatic replacement of the field label is not suppor-
ted when a DomainException type is expected.

The example above shows the unknown exception thrown by the Cent-
ralBank class being added to the new custom exception. You only need to
implement the appropriate constructor to support this. The super-class
already has a constructor with the same signature, so your constructor's im-
plementation need only call that. There is no need to extract a string value or
stack trace from the exception; all will be reported correctly when neces-
sary.

9.13 Advanced Topics

9.13.1 Type Checking and Null Checking

You may have noticed that none of the examples in this chapter show the
string or object values passed to the methods being checked to see if they
are null or of the wrong type. The reason is that it is not necessary. The
client infrastructure guarantees that no method will be called with a null
value and that no conversion operation will be invoked for an object that is
not compatible with the class returned by the converter plug-in's getDo-
mainClass method. Your custom code need never include any error hand-
ling and reporting code for these checks.

9.13.2 Plug-in Instance Management

For efficiency, a Cúram client application pools the minimum number of
domain plug-in instances possible. This reduces the overhead involved in
creating new plug-in instances each time their operations are invoked, but it
does impose some restrictions on the way plug-ins can be written.

Domain plug-ins maintain state information: a reference to the domain and
the active user's locale. Custom code can access this state information by
calling the getDomain and getLocale methods and use it as required.
The potential for concurrent access to plug-ins in typical multi-threaded
servers impacts the way the plug-in instances (with their state information)
are managed. If concurrent requests are received from users who are using
different locales, then the same plug-in instance cannot be used when servi-
cing these requests, as only one locale value can be set in a plug-in instance.
However, as any Cúram application only supports a finite number of loc-
ales, maintaining a single plug-in instance for each locale is sufficient to

Cúram Web Client Reference Manual

304

avoid concurrency problems or synchronization overheads. This, of course,
has to be multiplied by the number of domains, as the domain information
also constitutes state. The result is that each domain in the domain hierarchy
accesses a pool of plug-in instances specific to that domain and each pool
contains one instance of each type of plug-in for each locale.

This instance management system is entirely driven by the plug-ins them-
selves. Each type of plug-in can implement its own instantiation strategy
most appropriate to its needs. However, to avoid over-complicating instance
management, the AbstractDomainPlugIn class (see Section 9.9.1, Ex-
tending Existing Plug-ins) implements the single, consistent pooling
strategy that balances efficiency against other considerations.

While it would be more efficient to dispense with the domain and locale
state information and pass these values to the various converter and compar-
ator methods, this poses several other problems that make this approach less
desirable:

• The method signatures would be complicated by values that may not be
used.

• Some method signatures, such as the compare method of the
java.util.Comparator interface would not be compatible.

• The addition of new state information in the future would break all ex-
isting implementations. Using accessor methods for state information al-
lows the abstract super-classes to implement the accessors and the signa-
tures of the other interface methods can remain unchanged. During an
upgrade no changes would need to be made to any existing custom code
that has followed the guidelines and extended these abstract super-
classes or other classes derived from them.

It is this latter point that is most important, successful upgrades depend on
custom code that does not attempt to implement the plug-in interfaces from
scratch. This is why such an approach cannot be supported.

The pooling strategy used means that there is one main limitation on how
plug-ins can be written: plug-ins must not attempt to store any state inform-
ation. In short, no customization should add fields to a plug-in class and at-
tempt to store information in them; concurrent application requests will
probably cause such a plug-in to fail intermittently or introduce obscure
bugs.

Domain plug-in classes must also provide a default constructor (i.e., a con-
structor that takes no arguments). However, any Java class that does not ex-
plicitly define a default constructor will automatically have one defined for
it if the default constructor of an ancestor class is visible. For custom plug-
in classes that extend the plug-in classes and abstract plug-in classes
provided with the out-of-the-box Cúram application, no explicit default con-
structor is required.

9.13.3 Naming Conventions

Cúram Web Client Reference Manual

305

Custom domain plug-in classes may implement utility methods to support
the implementation of the main interface methods. An example is the _pad
method shown in Example 9.14, Sorting Strings Numerically. To avoid in-
advertently overriding another inherited method, or using a method name
that conflicts with a method introduced in a later Cúram release, you should
prefix such utility methods with an underscore character as shown. Under-
score characters will not be used in the client infrastructure, so they will
guarantee that no naming conflict will arise in the future. For similar reas-
ons, do not create classes in packages that might conflict with Cúram pack-
age names. All Cúram packages begin with “curam”, so avoiding that name
is sufficient. The examples in this chapter used the package name prefix
“custom”, but this is not a requirement.

9.13.4 Generic Parse Operations

The generic parse operation, performed by the DomainConverter inter-
face's parseGeneric method, needs some explanation, so that care can
be taken not to disable its operation by mistake. The generic parse operation
is responsible for parsing the string representation of values defined in the
UML model's domain definition options. Domain options for maximum,
minimum and default values are expressed in formats that are not locale-
specific, as the UML model is not locale-aware. Each of the root domains
accepts values in a particular format (e.g., ISO-8601 format for SVR_DATE
domains) and customization of this format is not supported. Therefore, the
default implementations of the parseGeneric method must be respected.

For some domains, the format supported by the converter's parse method
is the same as the format supported by the parseGeneric method. The
default implementation of the parseGeneric method in the Ab-
stractConverter class just calls the parse method (which is not im-
plemented in this class). Therefore, if you sub-class the AbstractCon-
verter class and implement a parse method, the same implementation
will be used by the parseGeneric method. This may be what you re-
quire, but, if it is not, you may want to implement a different parseGen-
eric method.

All of the out-of-the-box, concrete converter classes separate the imple-
mentations of the two methods, so you can override one without changing
the behavior of the other. Again, this may be what you require, but, if it is
not, you may want to override both methods.

9.13.5 Code-Tables

Data conversion and sorting for code-table domains should be managed via
the code-table administration interface. While the client infrastructure uses
the same plug-in mechanism described here to manage code-table values,
the customization of code-table-related plug-ins is not supported. Code-table
data is more complex to handle (formatting and parsing are not symmetrical
operations as they are for other types) and all of the necessary customiza-

Cúram Web Client Reference Manual

306

tions can be accomplished without resorting to programmatic means.

The formatting of code-table values is achieved by modifying the descrip-
tions of each code. Parsing operations receive the code values and simply
pass them on. Pre-parsing, pre-validation, and validation are not important.
Default codes and custom sort orders are controlled entirely via the adminis-
tration interface.

Cúram Web Client Reference Manual

307

Appendix A

Unsupported Dynamic UIM features

A.1 Introduction

This appendix lists the elements and attributes (features) that are not suppor-
ted in dynamic UIM.

A.2 PAGE

Name Feature Type
FIELD Child Element

CONTAINER Child Element

WIDGET Child Element

INCLUDE Child Element

SHORTCUT_TITLE Child Element

TAB_NAME Child Element

JSP_SCRIPTLET Child Element

SCRIPT Child Element

SCRIPT_FILE Attribute

POPUP_PAGE Attribute

APPEND_COLON Attribute

HIDE_CONDITIONAL_LINKS Attribute

COMPONENT_STYLE Attribute

TYPE Attribute

Table A.1 Unsupported PAGE Features

308

A.3 PAGE TITLE

For full details on the supported features of this element in static UIM, see
Section 5.9.27, PAGE_TITLE.

Name Feature Type
DESCRIPTION Child Element

ICON Attribute

Table A.2 Unsupported PAGE_TITLE Features

A.4 CLUSTER

For full details on the supported features of this element in static UIM, see
Section 5.9.5, CLUSTER.

Name Feature Type Supported/Unsup-
ported attribute val-
ues

TITLE Child Element

DESCRIPTION Child Element

WIDGET Child Element

SUMMARY Attribute

TAB_ORDER Attribute

Table A.3 Unsupported CLUSTER Features

A.5 LIST

For full details on the supported features of this element in static UIM, see
Section 5.9.23, LIST.

Name Feature Type Supported/Unsup-
ported attribute val-
ues

TITLE Child Element

DESCRIPTION Child Element

FOOTER_ROW Child Element

ACTION_CONTROL Child Element

SUMMARY Attribute

SORTABLE Attribute

Cúram Web Client Reference Manual

309

Name Feature Type Supported/Unsup-
ported attribute val-
ues

PAGINATED Attribute

DEFAULT_PAGE_SIZE Attribute

PAGINA-
TION_THRESHOLD

Attribute

Table A.4 Unsupported LIST Features

A.6 FIELD

For full details on the supported features of this element in static UIM, see
Section 5.9.11, FIELD.

Name Feature Type
LABEL Child Element

SCRIPT Child Element

EDITABLE Attribute

LABEL_ABBREVIATION Attribute

DESCRIPTION Attribute

INITIAL_FOCUS Attribute

ALT_TEXT Attribute

CONTROL Attribute

CONFIG Attribute

Table A.5 Unsupported FIELD Features

A.7 CONTAINER

For full details on the supported features of this element in static UIM, see
Section 5.9.8, CONTAINER.

Name Feature Type
IMAGE Child Element

LABEL_ABBREVIATION Attribute

Table A.6 Unsupported CONTAINER Features

A.8 ACTION_SET

Cúram Web Client Reference Manual

310

For full details on the supported features of this element in static UIM, see
Section 5.9.4, ACTION_SET.

Name Feature Type
CONDITION Child Element

SEPARATOR Child Element

TOP Attribute

BOTTOM Attribute

Table A.7 Unsupported ACTION_SET Features

A.9 WIDGET

For full details on the supported features of this element in static UIM, see
Section 5.10.2, WIDGET.

Name Feature Type Supported/Unsup-
ported attribute val-
ues

WIDTH Attribute

WIDTH_UNITS Attribute

ALIGNMENT Attribute

HAS_CONFIRM_PAGE Attribute

CONFIG Attribute

COMPONENT_STYLE Attribute

TYPE Attribute Only the value
SINGLESELECT is sup-
ported, all other values
are unsupported

Table A.8 Unsupported WIDGET Features

A.10 ACTION_CONTROL

For full details on the supported features of this element in static UIM, see
Section 5.9.3, ACTION_CONTROL.

Name Feature Type Supported/Unsup-
ported attribute val-
ues

CONNECT Child Element

SCRIPT Child Element

Cúram Web Client Reference Manual

311

Name Feature Type Supported/Unsup-
ported attribute val-
ues

CONDITION Child Element

LABEL_ABBREVIATION Attribute

IMAGE Attribute

CONFIRM Attribute

DEFAULT Attribute

ACTION_ID Attribute

ALIGNMENT Attribute

TYPE Attribute Only the values ACTION
and SUBMIT1 are sup-
ported, all other values
are unsupported

Table A.9 Unsupported ACTION_CONTROL Features

A.11 LINK

For full details on the supported features of this element in static UIM, see
Section 5.9.22, LINK.

Name Feature Type
CONDITION Child Element

PAGE_ID_REF Attribute

SAVE_LINK Attribute

URL Attribute

URI_REF Attribute

URI_SOURCE_NAME Attribute

URI_SOURCE_PROPERTY Attribute

SET_HIERARCHY_RETURN_PAGE Attribute

USE_HIERARCHY_RETURN_PAGE Attribute

HOME_PAGE Attribute

Table A.10 Unsupported LINK Features

A.12 INLINE_PAGE

For full details on the supported features of this element in static UIM, see
Section 5.9.17, INLINE_PAGE.

Cúram Web Client Reference Manual

312

Name Feature Type
URI_SOURCE_NAME Attribute

URI_SOURCE_PROPERTY Attribute

Table A.11 Unsupported INLINE_PAGE Features

A.13 MENU

For full details on the supported features of this element in static UIM, see
Section 5.9.24, MENU.

Name Feature Type Supported/Unsupported
attribute values

CONNECT Child Element

MODE Attribute Only the value
IN_PAGE_NAVIGATION is
supported, all other values
are unsupported.

Table A.12 Unsupported MENU Features

A.14 SERVER_INTERFACE

For full details on the supported features of this element in static UIM, see
Section 5.9.29, SERVER_INTERFACE.

Name Feature Type
ACTION_ID_PROPERTY Attribute

Table A.13 Unsupported SERVER_INTERFACE Features

A.15 INFORMATIONAL

Only Informationals whose connections endpoints are associated with a
server interface defined in the DISPLAY phase, are supported. See Sec-
tion 5.9.16, INFORMATIONAL for more details on informationals.). In-
formationals with other any type of connection endpoints are not supported.

Cúram Web Client Reference Manual

313

Notes
1An action of type SUBMIT is not supported within a list action menu or a
page level action menu. A list action menu is an ACTION_SET element
within a LIST that has a value of 'LIST_ROW_MENU' on it's 'TYPE' attrib-
ute. A page level action menu is an ACTION_SET defined at the PAGE
level. See the Section 5.9.4, ACTION_SET for further details. All other sub-
mit actions are supported.

Cúram Web Client Reference Manual

314

Appendix B

Maintaining Dynamic UIM Pages

This appendix provides details on how to load dynamic UIM pages into the
application resource store.

The way you store your screens differs depending on whether you are work-
ing in a development environment or a running system.

Caution

Currently the development of custom dynamic UIM pages is only
supported for the presentation of decision details only. Refer to the
the chapter Calculating and Displaying Decision Details in the In-
side Cúram Eligibility and Entitlement Using Cúram Express Rules
documentation for more details.

Development of dynamic UIM for any purpose beyond that de-
scribed in this guide is not supported.

B.1 Working in a Development Environment

In order to load a dynamic UIM page into the resource store, you must add
two separate entries to the AppResource.dmx file in the custom com-
ponent, each entry corresponding to a dynamic UIM file and an associated
properties file.

The following is an example of how to add the DUIMSample dynamic UIM
page to the AppResource.dmx file, so that it will be loaded into the ap-
plication resource store at build time.

<row>
<attribute name="resourceid">
<value>1</value>
</attribute>
<attribute name="localeIdentifier">
<value/>
</attribute>
<attribute name="name">
<value>DUIMSample</value>

315

</attribute>
<attribute name="contentType">
<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">
<value>inline</value>
</attribute>
<attribute name="content">
<value>./custom/data/initial/clob/DUIMSample.uim</value>
</attribute>
<attribute name="internal">
<value>0</value>
</attribute>
<attribute name="lastWritten">
<value>2011-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">
<value>1</value>
</attribute>
<attribute name="category">
<value>RS_XML</value>
</attribute>

</row>

<row>
<attribute name="resourceid">
<value>2</value>
</attribute>
<attribute name="localeIdentifier">
<value/>
</attribute>
<attribute name="name">
<value>DUIMSample.properties</value>
</attribute>
<attribute name="contentType">
<value>text/plain</value>
</attribute>
<attribute name="contentDisposition">
<value>inline</value>
</attribute>
<attribute name="content">
<value>./custom/data/initial/clob/DUIMSample.properties</value>
</attribute>
<attribute name="internal">
<value>0</value>
</attribute>
<attribute name="lastWritten">
<value>2011-06-13-19.29.40</value>
</attribute>
<attribute name="versionNo">
<value>1</value>
</attribute>
<attribute name="category">
<value>RS_PROP</value>
</attribute>

</row>

Note

The value of the contentType attribute specifies the location on the
file system that each entry (dynamic UIM file and associated prop-
erties file) can be uploaded from. The value of the category attribute
in the AppResource.dmx categorizes a dynamic UIM page re-
source so that they can be distinguished from other kinds of re-
sources in the resource store. The dynamic UIM file should be cat-

Cúram Web Client Reference Manual

316

egorized (as shown in the example) as a RS_XML resource. The as-
sociated properties file should be categorized as RS_PROP. Each
dynamic UIM resource that is added to the AppResource.dmx
should also be given the same value so that they all belong to the
same category. See the section below for details of how new dynam-
ic UIM pages are loaded into the resource store at runtime. The
value of the localeIdentifier attribute should be empty (as in the ex-
ample) if the user's required locale is English. Otherwise the actual
locale should be used as the value for this attribute for both the UIM
and properties file.

B.2 Working in a Running System

In order to navigate to the home dynamic UIM administration screen in the
application, the user must do the following:

• Log into the “admin” application.

• From the shortcut menu, select the “Dynamic UIM” menu item from the
“Dynamic UIM” category.This should open the home dynamic UIM ad-
ministration screen

A user can maintain dynamic UIM pages in the resource store by perform-
ing the following actions:

• Add a dynamic UIM page to the Resource Store

• Edit a dynamic UIM page in the Resource Store

• Delete a dynamic UIM page from the Resource Store

• Validate a dynamic UIM page in the Resource Store

B.2.1 Search for Dynamic UIM Pages by Category

In order to view the current list of dynamic UIM pages in the resource store
you must perform a search based on the resource store category. This can be
done from the home dynamic UIM administration screen as follows:

• Select a menu item for the drop-down list on “Category Search” field.

• Click on the “Search” button. This will return the list of dynamic UIM
pages for the selected category.

B.2.2 Uploading a Dynamic UIM page to the Resource Store

From the home dynamic UIM administration screen, a dynamic UIM page
can be added to the resource store by doing the following

• Select the New... page level action control. This will open a modal dia-
log page with four mandatory fields.

Cúram Web Client Reference Manual

317

• Enter the value of the page Page ID field. The value must be the same as
the value of the PAGE_ID attribute in the UIM file that is being up-
loaded, otherwise an error message will be displayed.

• Select the locale from the drop-down list on the locale field. The default
is locale is English.

• Use the “Browse” button on the “UIM File” field to navigate to the dy-
namic UIM file that is to be uploaded to the resource store. As indicated,
this is a mandatory field.

• Use the “Browse” button on the “Properties File” field to navigate to the
associated properties file to upload to the resource store. As indicated,
this is a mandatory field.

B.2.3 Editing a Dynamic UIM page in the resource store

From the home dynamic UIM administration, a dynamic UIM page can be
added to the resource store by doing the following:

• From the list of dynamic UIM pages displayed, navigate to the dynamic
UIM page that you would like to edit (by Page ID), and select the
“Edit...” menu item for the list action menu. This should open a modal
dialog page with three fields.

• If you would like to download the current version of the dynamic UIM
file and associated properties file (to be edited) from the Resource Store
the locale file system, then select the “Download” button and save the
zip file - containing both aforementioned files - to the file system. The
dynamic UIM file and associated properties file can then be unzipped
from the downloaded zip and edited as required.

• Use the “Browse” button on the “UIM File” field to navigate to the dy-
namic UIM file that is to be uploaded to the resource store. As indicated,
this is a mandatory field.

• Use the “Browse” button on the “Properties File” field to navigate to the
associated properties file to upload to the resource store. As indicated,
this is a mandatory field.

B.2.4 Deleting a Dynamic UIM File from the Resource Store

From the home dynamic UIM administration, a dynamic UIM page can be
deleted from the resource store by doing the following:

• From the list of dynamic UIM pages displayed, navigate to the dynamic
UIM page that you would like to edit (by Page ID), and select the
“Delete...” menu item for the list action menu. As a result of this action
a modal dialog will be displayed, with a message looking for confirma-
tion that you want to delete the selected dynamic UIM page from the re-
source store.

Cúram Web Client Reference Manual

318

• The Yes button should be selected to delete the dynamic UIM page from
the resource store. A new search for dynamic UIM pages in the resource
store should reflect the fact that this dynamic UIM page has been re-
moved from the resource store.

B.2.5 Validating a dynamic UIM file in the resource store

From the home dynamic UIM administration, a dynamic UIM page can be
validated in the resource store by doing the following:

• From the list of dynamic UIM pages displayed, navigate to the dynamic
UIM page that you would like to edit (by Page ID), and select the
“Validate...” menu item for the list action menu. As a result of this ac-
tion a modal dialog will be displayed, with a message stating whether
the validation has passed of failed. If the validation fails, then the source
of the error page will appear in the dialog and the full details of the error
can be found in the server logs.

B.2.6 Publish dynamic UIM files

The changes to the dynamic UIM files will not be made public until they are
intentionally published to the resource store. This can be done by selecting
the “Publish...” page action control from the home dynamic UIM adminis-
tration screen. This action will open a modal dialog page asking for con-
firmation that the changes are to be published to the resource store.

Cúram Web Client Reference Manual

319

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

320

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Web Client Reference Manual

321

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Web Client Reference Manual

322

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Adobe, the Adobe logo, Adobe SVG Viewer, Adobe Reader, Adobe
Flash, and Adobe Flex are either registered trademarks or trade-
marks of Adobe Systems Incorporated in the United States, other
countries, or both.

Apache is a trademark of Apache Software Foundation.

Microsoft, Windows, Internet Explorer, and Word, are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Mozilla, is registered trademarks of Mozilla Foundation.

UNIX is a registered trademark of the Open Group in the United
States and other countries.

WebLogic Server, Java and all Java-based trademarks and logos are
registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Web Client Reference Manual

323

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Web Client Reference Manual
	Table of Contents
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Prerequisites
	1.3 Companion Guides
	1.4 Structure
	1.5 Summary

	Chapter 2 Concepts
	2.1 Objective
	2.2 Prerequisites
	2.3 Introduction
	2.4 Application User Interface Overview
	2.5 User Interface Meta-data
	2.5.1 Page Content Meta-data

	2.6 Applications
	2.7 Page Context
	2.8 Page Look-and-Feel
	2.9 Application Controller Java Server Page
	2.10 Direct Browsing
	2.11 Summary

	Chapter 3 Development
	3.1 Objective
	3.2 Prerequisites
	3.3 Introduction
	3.4 Outline of the Development Process
	3.5 Installation
	3.6 Project Folder Structure
	3.7 Application Components
	3.7.1 Component Folders
	3.7.2 Component Order
	Localized Components

	3.8 Component Artifacts
	3.9 Application Locales
	3.10 Building an Application
	3.10.1 Build Targets
	3.10.2 Related Build Targets
	3.10.3 Full and Incremental Builds
	3.10.4 Dependency Checking
	3.10.5 Build Logs
	3.10.6 Error Reporting
	3.10.7 Server Interface Reference
	3.10.8 Page Previews
	3.10.9 UIM Generator Tool
	3.10.10 External Client Applications

	3.11 Deployment
	3.11.1 Overview
	3.11.2 Configuring the Application
	Tracing

	3.11.3 Customizing the Web Application Descriptor
	Customizing the 404 or Page Not Found error response.

	3.12 Customization
	3.12.1 Overview
	3.12.2 Adding New Artifacts
	3.12.3 Overriding or Merging Artifacts
	3.12.4 Externalized Strings
	3.12.5 Images
	3.12.6 Image Mapping
	3.12.7 CuramLinks.properties
	3.12.8 XML Runtime Configuration Files
	3.12.9 Login Pages
	3.12.10 JavaScript Files
	3.12.11 Cascading Stylesheets
	Application Specific CSS
	Media Specific CSS
	Browser Specific CSS

	3.12.12 Application Configuration Files
	3.12.13 General Configuration
	Overview
	POPUP_PAGES
	MULTIPLE_POPUP_DOMAINS
	ERROR_PAGE
	MULTIPLE_SELECT
	FILE_DOWNLOAD_CONFIG
	ENABLE_COLLAPSIBLE_CLUSTERS
	APPEND_COLON
	ADDRESS_CONFIG
	ADMIN
	STATIC_CONTENT_SERVER
	FIELD_ERROR_INDICATOR
	SECURITY_CHECK_ON_PAGE_LOAD
	ENABLE_SELECT_ALL_CHECKBOX
	TRANSFER_LISTS_MODE
	HIDE_CONDITIONAL_LINKS
	DISABLE_AUTO_COMPLETE
	SCROLLBAR_CONFIG
	PAGINATION
	Customizing Configuration Settings
	Dividing the Configuration File

	3.12.14 Custom Resources

	Chapter 4 Localization
	4.1 Objective
	4.2 Prerequisites
	4.3 Introduction
	4.4 Numbers
	4.5 File Encoding
	4.5.1 XML Files
	4.5.2 Java properties files
	4.5.3 Non-XML Files

	4.6 Locales
	4.6.1 Non JavaScript property files
	4.6.2 JavaScript property files

	4.7 UIM Externalized Strings
	4.8 JavaScript Externalized Strings
	4.8.1 Accessing properties in JavaScript

	4.9 Image.properties
	4.10 Infrastructure Widget Properties Files
	4.10.1 Frequency Pattern Selector Localization

	4.11 CDEJResources.properties
	4.12 ApplicationConfiguration.properties
	4.13 Application-wide Menu
	4.14 Tabbed Configuration Artifacts
	4.15 Runtime Messages

	Chapter 5 UIM Reference
	5.1 Objective
	5.2 Prerequisites
	5.3 Introduction
	5.4 Creating UIM Documents
	5.5 UIM Document Types
	5.6 UIM Pages
	5.7 UIM Views
	5.8 Externalized Strings
	5.9 UIM Reference for Pages and Views
	5.9.1 Introduction
	5.9.2 Connection Types
	5.9.3 ACTION_CONTROL
	File Downloads
	Attributes
	Child Elements

	5.9.4 ACTION_SET
	Attributes
	Child Elements

	5.9.5 CLUSTER
	Attributes
	Child Elements

	5.9.6 CONDITION
	Attributes
	Child Elements

	5.9.7 CONNECT
	Attributes
	Child Elements

	5.9.8 CONTAINER
	Attributes
	Child Elements

	5.9.9 DETAILS_ROW
	Attributes
	Child Elements

	5.9.10 DESCRIPTION
	Attributes
	Child Elements

	5.9.11 FIELD
	Attributes
	Child Elements

	5.9.12 FOOTER_ROW
	Attributes
	Child Elements

	5.9.13 IMAGE
	Attributes
	Child Elements

	5.9.14 INCLUDE
	Attributes
	Child Elements

	5.9.15 INITIAL
	Attributes
	Child Elements

	5.9.16 INFORMATIONAL
	Attributes
	Child Elements

	5.9.17 INLINE_PAGE
	Attribute
	Child Elements
	Restrictions on usage

	5.9.18 IS_FALSE
	Attributes
	Child Elements

	5.9.19 IS_TRUE
	Attributes
	Child Elements

	5.9.20 JSP_SCRIPTLET
	Attributes
	Child Elements

	5.9.21 LABEL
	Attributes
	Child Elements

	5.9.22 LINK
	Attributes
	Child Elements
	Modal Dialogs
	Using Modal Dialogs
	Configuring Modal Dialogs
	Controlling Modal Dialogs from custom JavaScript
	Loading custom non-UIM pages in a Modal Dialog

	5.9.23 LIST
	Attributes
	Child Elements

	5.9.24 MENU
	Attributes
	Child Elements
	DYNAMIC and INTEGRATED_CASE type menus
	The IN_PAGE_NAVIGATION type menu
	WIZARD_PROGRESS_BAR menu
	The UIM wizard pages
	Wizard menu configuration

	5.9.25 PAGE
	Attributes
	Child Elements

	5.9.26 PAGE_PARAMETER
	Attributes
	Child Elements

	5.9.27 PAGE_TITLE
	Attributes
	Child Elements

	5.9.28 SCRIPT
	Attributes
	Child Elements

	5.9.29 SERVER_INTERFACE
	Attributes
	Child Elements

	5.9.30 SOURCE
	Attributes
	Child Elements

	5.9.31 TAB_NAME
	Child Elements

	5.9.32 TARGET
	Attributes
	Child Elements

	5.9.33 TITLE
	Attributes
	Child Elements

	5.9.34 VIEW
	Attributes
	Child Elements

	5.10 UIM Reference for Widgets
	5.10.1 Introduction
	5.10.2 WIDGET
	Attributes
	Child Elements

	5.10.3 WIDGET_PARAMETER
	Attributes
	Child Elements

	5.10.4 The EVIDENCE_COMPARE Widget
	5.10.5 The FILE_EDIT Widget
	User Machine Configuration

	5.10.6 The FILE_UPLOAD Widget
	5.10.7 The FILE_DOWNLOAD Widget
	5.10.8 The MULTISELECT Widget
	Confirmation Pages

	5.10.9 The SINGLESELECT Widget
	5.10.10 The RULES_SIMULATION_EDITOR Widget
	5.10.11 The IEG_PLAYER Widget

	5.11 Dynamic UIM Cross Reference
	5.12 Dynamic UIM System Initialization

	Chapter 6 Application Configuration
	6.1 Objective
	6.2 Prerequisites
	6.3 Introduction
	6.4 Configuration Files
	6.5 Applications
	6.5.1 Introduction
	6.5.2 Definition
	application-menu
	application-search
	search-pages
	further-options-link

	section-ref

	6.5.3 Optional Header
	6.5.4 Example
	6.5.5 Associate an Application with User

	6.6 Sections
	6.6.1 Introduction
	6.6.2 Definition
	tab
	shortcut-panel-ref

	6.6.3 Example

	6.7 Section Shortcut Panel
	6.7.1 Introduction
	6.7.2 Definition
	node

	6.7.3 Example

	6.8 Tabs
	6.8.1 Introduction
	6.8.2 Definition
	page-param
	menu
	context
	navigation
	smart-panel
	tab-refresh
	onsubmit/onload

	6.8.3 Context Panel UIM
	6.8.4 Example

	6.9 Tab Actions Menu
	6.9.1 Introduction
	6.9.2 Definition
	menu-item
	submenu
	menu-separator
	loader-registry
	loader

	6.9.3 Dynamic Support
	6.9.4 File Download Menu Item
	6.9.5 Example

	6.10 Tab Navigation
	6.10.1 Introduction
	6.10.2 Definition
	nodes
	navigation-group
	navigation-page
	loader-registry
	loader

	6.10.3 Dynamic Support
	6.10.4 Example

	6.11 Opening Tabs and Sections
	6.11.1 Introduction
	6.11.2 Links
	6.11.3 Page to Tab Associations
	6.11.4 Tab to Section Associations
	6.11.5 Page Parameters

	Chapter 7 Session Management
	7.1 Objective
	7.2 Prerequisites
	7.3 Introduction
	7.4 Session Basics
	7.5 Tab Restoration
	7.6 Configuration
	7.7 Limitations
	7.8 Browser Specific Session Management

	Chapter 8 Domain Specific Controls
	8.1 Objective
	8.2 Prerequisites
	8.3 Introduction
	8.4 Dates
	8.5 Date-Times
	8.5.1 Representing time-only values
	8.5.2 Customizing the Time Format

	8.6 Frequency Pattern Selector
	8.7 Selection Lists
	8.7.1 Populated from a Code-Table
	8.7.2 Populated from Server Interface Properties
	8.7.3 Drop-down, Scrollable and Checkboxed List types
	Drop-down and Scrollable List
	Checkboxed List

	8.7.4 Adding an Empty Entry to a List for Non-Mandatory Fields
	8.7.5 Enabling Multiple Selection
	8.7.6 Transfer List Widget
	Overview
	Configuration

	8.8 User Preferences Editor
	8.9 Rules Trees
	8.9.1 Introduction
	Behavior of Summary and Highlight-On-Failure Rules Flags

	8.9.2 Default Rules View
	8.9.3 Summary Rules View
	8.9.4 Failed Rules View
	8.9.5 Dynamic Rules View
	Behavior of Summary and Highlight-On-Failure Indicator

	8.9.6 Dynamic Full Tree Rules View
	8.9.7 Rules Editor

	8.10 Meeting View
	8.10.1 Overview
	8.10.2 Single Selection Mode
	8.10.3 Multiple Selection Mode
	8.10.4 XML Formats

	8.11 Charts
	8.11.1 Overview
	8.11.2 Chart appearance
	8.11.3 Chart configuration
	8.11.4 Chart Data Formats

	8.12 Heatmap Widget
	8.12.1 Overview
	8.12.2 Configuration

	8.13 Workflow
	8.13.1 Overview
	8.13.2 Workflow Details
	8.13.3 Workflow XML Formats

	8.14 Evidence View
	8.14.1 Evidence Display Mode
	8.14.2 Evidence Comparison Mode
	8.14.3 Configuration
	8.14.4 Data Format

	8.15 Calendar
	8.16 Payment Statement View
	8.17 Batch Function View
	8.18 Addresses
	8.19 Schedule View
	8.20 Radio Button Group
	8.21 Pop-up Pages
	8.21.1 Configure the Pop-up Page
	8.21.2 Create the Pop-up Page
	A pop-up which returns existing items
	A pop-up which creates a new item

	8.21.3 Using the Pop-up Page
	8.21.4 Using Multiple Pop-up Search Pages for a Single Field
	8.21.5 Configure the Multiple Pop-up Page
	8.21.6 Using the Multiple Pop-up Page

	8.22 Agenda Player
	8.22.1 Agenda Player screen structure
	8.22.2 Navigation modes
	8.22.3 Navigator-less View
	8.22.4 Agenda Player Configuration
	8.22.5 Agenda Player Customization
	8.22.6 Player data

	8.23 LOCALIZED_MESSAGE Domain
	8.24 Decision Assist: Decision Matrix Widget
	8.24.1 Overview

	Chapter 9 Custom Data Conversion and Sorting
	9.1 Objective
	9.2 Prerequisites
	9.3 Introduction
	9.4 Data Conversion and Sorting Operations
	9.5 Data Conversion Life Cycle
	9.6 The Domain Hierarchy and Domain Plug-ins
	9.7 Overview of Domain Plug-ins
	9.7.1 Common Features of Plug-ins
	9.7.2 Converter Plug-ins
	9.7.3 Comparator Plug-ins
	9.7.4 Default Value Plug-ins

	9.8 Domain Plug-in Configuration
	9.9 Out-of-the-Box Domain Plug-ins
	9.9.1 Extending Existing Plug-ins
	9.9.2 Converter Plug-ins
	9.9.3 Comparator Plug-ins
	9.9.4 Default Value Plug-ins

	9.10 Error Reporting
	9.10.1 Exception Classes
	9.10.2 Custom Exception Classes
	9.10.3 Reusing Cúram Error Messages

	9.11 Java Object Representations
	9.12 Customization Guidelines
	9.12.1 Where to Start
	9.12.2 Custom Formatting
	9.12.3 Custom Parsing
	9.12.4 Custom Validation
	9.12.5 Custom Sorting
	9.12.6 Custom Error Reporting
	9.12.7 Custom Default Values

	9.13 Advanced Topics
	9.13.1 Type Checking and Null Checking
	9.13.2 Plug-in Instance Management
	9.13.3 Naming Conventions
	9.13.4 Generic Parse Operations
	9.13.5 Code-Tables

	Appendix A Unsupported Dynamic UIM features
	A.1 Introduction
	A.2 PAGE
	A.3 PAGE TITLE
	A.4 CLUSTER
	A.5 LIST
	A.6 FIELD
	A.7 CONTAINER
	A.8 ACTION_SET
	A.9 WIDGET
	A.10 ACTION_CONTROL
	A.11 LINK
	A.12 INLINE_PAGE
	A.13 MENU
	A.14 SERVER_INTERFACE
	A.15 INFORMATIONAL

	Appendix B Maintaining Dynamic UIM Pages
	B.1 Working in a Development Environment
	B.2 Working in a Running System
	B.2.1 Search for Dynamic UIM Pages by Category
	B.2.2 Uploading a Dynamic UIM page to the Resource Store
	B.2.3 Editing a Dynamic UIM page in the resource store
	B.2.4 Deleting a Dynamic UIM File from the Resource Store
	B.2.5 Validating a dynamic UIM file in the resource store
	B.2.6 Publish dynamic UIM files

	Notices
	Trademarks

