
IBM Cúram Social Program Management

Cúram Evidence Generator Cookbook

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008,2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Content Summary .. 1
1.3 Intended Audience ... 2
1.4 Prerequisites ... 2

Chapter 2 Quick Overview .. 3
2.1 Introduction .. 3
2.2 Sample Component .. 3
2.3 Inputs and Outputs ... 4

2.3.1 Generator Inputs .. 4
2.3.2 Generator Outputs ... 4

Chapter 3 Configure an Existing Product .. 5
3.1 Introduction .. 5
3.2 Step 1: Create an Evidence Directory .. 5
3.3 Step 2: Create and Configure Evidence Properties File ... 5
3.4 Step 3: Create General Properties File (general.properties) 6
3.5 Step 4: Create Product Employment Properties File (employment.properties) 7
3.6 Step 5: Configure the Module .. 7

Chapter 4 Asset Example ... 8
4.1 Introduction .. 8
4.2 Step 1: Model Evidence Entity .. 8

4.2.1 Asset Entity and Aggregations .. 8
4.2.2 Asset Modeling Diagram .. 9

4.3 Step 2: Create Evidence Metadata ... 9
4.3.1 Asset Server XML .. 9
4.3.2 Asset Client EUIM .. 10

4.4 Step 3: Standard Evidence Configuration .. 11

Chapter 5 Executing the Generator .. 12
5.1 Introduction .. 12
5.2 Generator Targets ... 12

5.2.1 Standard Generator Targets .. 12
5.2.2 Evidence Generator Specific Targets .. 13

5.3 Generator Output ... 13

iii

Chapter 6 Asset Handcrafted Code .. 15
6.1 Introduction .. 15
6.2 Asset Hook::getDetailsForListDisplay() ... 15

Chapter 7 Customizing a Product .. 17
7.1 Introduction .. 17
7.2 Setting up a Custom Product ... 17

7.2.1 Custom evidence properties .. 17
7.2.2 Overview of Build Process and Generated Files .. 18

7.3 Overriding Display Text .. 18
7.4 Overriding an OOTB Evidence Entity ... 19

7.4.1 Modeling ... 19
7.4.2 Metadata .. 19
7.4.3 What is Generated ... 21

7.5 Adding a Brand New Custom Entity ... 21
7.5.1 What is Generated ... 22

Chapter 8 Identifying Entities, Patterns and Relationships ... 23
8.1 Identifying Evidence Entities ... 23
8.2 Identifying Patterns .. 23
8.3 Identifying Relationships ... 23

8.3.1 Parent-Child Relationship ... 23
8.3.2 Pre-Associated Relationship ... 24
8.3.3 Multiple Mandatory Parents Relationship .. 24
8.3.4 Related Relationship ... 24

Chapter 9 Identifying Problems ... 25
9.1 Introduction .. 25
9.2 Configuration (Evidence Properties) ... 25

9.2.1 Generation Errors .. 25
9.2.2 Runtime Errors .. 28

9.3 Model ... 28
9.3.1 Generation Errors .. 28
9.3.2 Compilation Errors .. 28

9.4 Metatypes ... 32
9.4.1 Incorrect Participant Metatype .. 32
9.4.2 Incorrect Date Metatype ... 32
9.4.3 Incorrect Comments Metatype .. 33

9.5 Properties ... 33
9.5.1 Generation Errors .. 33

Notices ... 35

Cúram Evidence Generator Cookbook

iv

Chapter 1

Introduction

1.1 Purpose

This document is intended to be a practical handbook for developers who
are using the Cúram Evidence Generator. The document gives examples of
how to use the generator to implement evidence, and provides troubleshoot-
ing tips. It is intended that the document be used in conjunction with the
Cúram Evidence Generator Modeling Guide and Cúram
Evidence Generator Specification document.

1.2 Content Summary

This guide presents all aspects of evidence generation from entity develop-
ment to screen options. It starts with a quick overview of the generator.

Following on from this, Chapter 3 works through the required steps in con-
figuring an existing product to use the evidence generator and Chapter 4
gives a detailed example of implementing an evidence type from start to fin-
ish using the evidence generator.

The execution of the generator is described in chapter 5. This goes through
the targets that will be used by developers when generating / building evid-
ence.

After execution of the generator, a certain amount of handcrafted code
needs to be written by a custom developer. Example code is shown from in
Chapter 6 relating to the earlier example.

If a solution is built in-house using the generator, and customers want to
override any aspect of it, it must support customizations of the entity itself,
the server functionality and the client side pages. How they go about doing
this is covered in the chapter 'Customizing a Product'.

Chapter 8 looks at identifying patterns and relationships that fit into the gen-
erator as well as describing the metadata that needs to be configured to sup-

1

port these patterns on both the server and client side.

In order to aid developers to track down any obvious mistakes that can be
made, a chapter has been dedicated to identifying and resolving problems.
This details common errors that can occur due to the non-setting or non-
configuration of properties and the resolution to each.

It is hoped that this cookbook will not only prove a useful guide to de-
velopers to get them up and running with evidence generation but also a
useful reference for finding resolutions to common problems.

1.3 Intended Audience

This document is aimed at those intending to use the generator to develop
evidence based solutions using the Cúram Enterprise Framework™ .

1.4 Prerequisites

To make best use of this guide, you should have a good knowledge of XML,
data modeling and temporal evidence solutions. Ideally, readers should be
familiar with the Cúram Temporal Evidence Solutions Guide
and Cúram Temporal Evidence Developers Guide before em-
barking upon the exercise of evidence generation.

Cúram Evidence Generator Cookbook

2

Chapter 2

Quick Overview

2.1 Introduction

The evidence generator caters for all of the high level, repeatable patterns
that have been identified across a number of large evidence based solutions
provided by the application. These patterns are outlined in detail in the
Cúram Evidence Generator Specification guide. Custom
solutions may identify patterns not catered for by the generator. In these in-
stances it will be necessary for the solution to develop the entities manually,
i.e. outside of the generator. It is believed that such patterns are in the
minority.

The evidence generator is run as part of the standard Cúram build targets. It
iterates through every evidence folder under each component. It initially
looks for one specific file, evidence.properties. This should define the paths
to a number of files and folders required during generation. If evid-
ence.properties does not exist, the generator moves onto the next folder.

2.2 Sample Component

A sample directory of the finished componenet will have the following de-
tails:.

1. A model directory, as usual, which would contain any model files used
for the evidence entity modelling.

2. An 'evidence' directory containing 'evidence.properties'.

3. The 'evidence.properties' would then define locations for:

Any server, evidence metadata

Any integrated case, client, evidence metadata

Any product delivery, client, evidence metadata

3

The required properties files for common client display text

2.3 Inputs and Outputs

2.3.1 Generator Inputs

The following are the list of resources used by the generator as input data.

evidence.properties
This is a resource for configuring the Evidence Generator and contains
all the product/component specific properties such as naming conven-
tions, directory locations and product-wide settings. Some of these
properties are also passed onto the generation itself. These properties
are defined once per product.

general.properties and employment.properties
These resources are for generating the client screens. They contain gen-
eric text labels that are used on many client screens as well as descrip-
tions of these fields are used in the application online help. These prop-
erties are defined once per product.

Server Metadata File(e.g. Expenses.xml)
This defines your entities name and it's relationships to other evidence
entities.

Client Metadata File(e.g. Expenses.euim)
This defines the client screens used to maintain your evidence entity.

Client Properties File(e.g. Expenses.properties)
This is required by your EUIM file and defines the text labels that are
used, as well as descriptions of these fields used for the application on-
line help.

and a modeled entity.

2.3.2 Generator Outputs

The following is the list of outputs generated by the generator.

1. Facade and Service Layer Model

2. Java Code

3. Client UIM/VIM

4. Wizard Data APPRESOURCE.dmx

5. Tab Configurations

Cúram Evidence Generator Cookbook

4

Chapter 3

Configure an Existing Product

3.1 Introduction

This chapter will summarize the steps involved in configuring an existing
product to use the Evidence Generator. Completing these steps will mean
the product will be ready for its first generatable evidence implementations.

1. Create an Evidence Directory

2. Create and Configure Evidence Properties File

3. Create General Properties File (general.properties)

4. Create Product Employment Properties File (employment.properties)

5. Configure the Module

3.2 Step 1: Create an Evidence Directory

Create directory evidence under product root directory in EJBServer. For
the example, SampleEGProduct will be used as the Product name. Therefore
the evidence directory would be EJBServer/compon-
ents/SampleEGProduct/evidence.

3.3 Step 2: Create and Configure Evidence Proper-
ties File

Create an evidence.properties file. This file is used to configure
various mandatory product parameters including locations of input files
such as EUIMs and locations of output files such as generated UIMs.

Caution

5

The location of the evidence.properties is important. This
must be located within a directory called evidence , however this
directory may be located anywhere within your component. For
convenience the following location is suggested:
EJBServer/components/
SampleEGProduct/evidence/evidence.properties

The developer is then free to specify within this properties file the
location of the remaining mandatory files in arbitrary locations.
Again, for convenience, sub-directories under the evidence directory
would be the logical choice.

The following is a sample of the product parameters required. For the com-
plete list see Cúram Evidence Generator Specification - Ap-
pendix A evidence.properties
product.name=SampleEGProduct

This setting would result in the generated evidence files being copied to
../components/SampleEGProduct.
product.ejb.package=seg

Following on from the product name in the previous example, the code
package name here could be seg, so generated classes would have a package
structure like curam.seg.evidence

It should be noted that setting this property to evidence will result in a gen-
erated package structure of curam.evidence and not
curam.evidence.evidence
product.prefix=SEG

The prefix is prepended to the name of all generated UIM pages and certain
generated classes, such as the façade. In this case the façade class generated
would be SEGEvidenceMaintenance
product.webclient=${webclient.dir}/components/${product.name}

The root directory for client product is located at webclient/compon-
ents/SampleEGProduct.

Note

${webclient.dir} is a property that is set in the Evidence Generator
itself and points to the webclient/components directory. The user is
free to use it or not.

3.4 Step 3: Create General Properties File
(general.properties)

This file contains all generic client page properties, client message proper-
ties and online help properties for this product.

All of the keys (properties) specified in Cúram Evidence Generator
Specification - Appendix B general.properties are mandatory . Omis-

Cúram Evidence Generator Cookbook

6

sion of any keys is likely to break the build or cause compilation errors.

3.5 Step 4: Create Product Employment Properties
File (employment.properties)

This file contains all generic employment specific client page properties, cli-
ent message properties and online help properties for this product.

As with the general.properties, all of the keys (properties) specified in
Cúram Evidence Generator Specification - Appendix C em-
ployment.properties are mandatory . Omission of any keys is likely to break
the build or cause compilation errors.

3.6 Step 5: Configure the Module

The evidence generator will generate a single registrar module for all the
generated evidence types. This registers the implementations of the evid-
ence interface and the evidence comparison interface. Add the fully quali-
fied class name to the Module Class Name initial data.

The class generated in our example would be

• curam.seg.evidence.service.impl.SEGRegistrarModule

Cúram Evidence Generator Cookbook

7

Chapter 4

Asset Example

4.1 Introduction

This chapter outlines how to implement a sample evidence type, Asset, as
generated evidence. This covers the metadata and the modeling required to
successfully generate the server-side and client-side artefacts for the evid-
ence entity.

4.2 Step 1: Model Evidence Entity

This part of the process is totally removed from the evidence generator. The
evidence entity is modeled in the standard way following the guidelines in
Cúram Evidence Generator Modeling Guide and will be
picked up in the standard Cúram build. The modeling of entities, structs and
aggregations is well described in that guide, and the standards, naming con-
ventions etc. described must be adhered to. All the metadata defined is used
to support and connect to this via the service layer, façade layer or client.

4.2.1 Asset Entity and Aggregations

The Asset entity has the following attributes:

• Value

• Asset Type

• Start Date

• End Date

The primary key of the entity must be called 'evidenceID' as the generator
expects this. All other attributes may be named as required. Optimistic lock-
ing is enabled on the entity. The entity should have the standard read, insert

8

and modify operations generated automatically.

There are a number of conventions outlined in the Cúram Evidence
Generator Modeling Guide that must be adhered to. These include
the naming of structs and aggregations required for each entity, as well as
multiplicities for the aggregations and code packages matching the
product.ejb.package property.

4.2.2 Asset Modeling Diagram

Once the entity's attributes have been defined and the necessary structs and
aggregations modeled, it's possible to put it all together. Our Asset entity is
modeled in Fig 4.1 below:

Figure 4.1 Asset entity diagram

4.3 Step 2: Create Evidence Metadata

The evidence generator has been configured to look in the configured direct-
ories for server XML metadata files, Integrated Case EUIM metadata files
and their corresponding properties files and Product Delivery EUIM
metadata files and their corresponding properties files. Each entity will have
one server XML file and one pair of EUIM and properties files defining it.

4.3.1 Asset Server XML

The following is the server XML metadata file for Asset:
<EvidenceEntity>

<Entity

Cúram Evidence Generator Cookbook

9

logicalName="Asset"
relateEvidenceParticipantID=""

>
<RelatedEntityAttributes
exposeOperation="No"
relatedEntityAttributes="No"

/>
<Relationships/>
<BusinessDates
startDate="startDate"
endDate="endDate"

/>
</Entity>

</EvidenceEntity>

4.3.2 Asset Client EUIM

The following is the client EUIM metadata file for Asset:
<Entity name="Asset" displayName="Asset">

<UserInterface>
<Clusters>
<Cluster label="Cluster.Title.AssetDetails"

numCols="2">
<Field label="Field.Label.AssetType"

columnName="assetType" mandatory="Yes"
use_blank="true"/>

<Field label="Field.Label.StartDate"
columnName="startDate" mandatory="No"
use_default="false"/>

<Field label="Field.Label.AssetValue"
columnName="value" mandatory="Yes"
use_default="false"/>

<Field label="Field.Label.EndDate"
columnName="endDate" mandatory="No"
use_default="false"/>

</Cluster>
<Cluster label="Cluster.Title.Comments">

<Field columnName="comments" mandatory="No"
metatype="COMMENTS" label=""/>

</Cluster>
</Clusters>

</UserInterface>
</Entity>

Note

EUIM is similar in nature to UIM. For example, data is described in
terms of 'fields' and the layout is described in terms of 'labels',
'clusters' and 'fields'. The idea behind the introduction of 'EUIM'
(Evidence UIM) was to use a format that developers would be fa-
miliar with.

The following is the associated properties file for Asset.euim:
Cluster.Title.AssetDetails=Asset Details

Field.Label.AssetType=Type
Field.Label.AssetType.Help=The type of the asset

Field.Label.AssetValue=Value
Field.Label.AssetValue.Help=The value of the asset

Field.Label.StartDate=Received
Field.Label.StartDate.Help=The date the asset was received

Field.Label.EndDate=Disposed
Field.Label.EndDate.Help=The date the asset was disposed

Cúram Evidence Generator Cookbook

10

Cluster.Title.Comments=Comments
Cluster.Title.Comments.Help=Additional information

4.4 Step 3: Standard Evidence Configuration

There are a number of steps involved when configuring a new evidence
type. Here is a checklist.

Configuration before generating Asset

• Name the Asset evidence type by adding an entry to Evidence Type
Code Table.

• Optionally, create a static description for Asset evidence via a new entry
in the Text Translation initial data. Link this Text Translation to a new
entry in the Localizable Text initial data. This step can be defered until
later. It's only visible to the user on the New Evidence screen.

• Add a new entry in the Evidence Metadata initial data linking it to the
the Evidence Type and, optionally for now, the Localizable Text.

• Link the Evidence Metadata to either an integrated case or a product by
adding an entry to the Admin IC Evidence Link or the Product Evidence
Link initial data respectively. If the evidence is to belong to an Evidence
Category (e.g. Resources) set the category attribute here.

• If the Asset Evidence Business Object Tab is to be utilised in a given
Section of the application, contribute to the section definition (e.g. De-
faultAppSection.sec). Without this contribution the Asset Evidence
Business Object page will simply load in the current content panel.

A sample section file is generated for each product including all the
evidence tabs. This sample is located at EJBServer/components/EvGen/
tab/BusinessObjectTab/<product.prefix>GeneratedAppSection.sec

<sc:section
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sc=
"http://www.curamsoftware.com/curam/util/client/section-config"
id="DefaultAppSection"

>
<sc:tab id="AssetObject"/>

</sc:section>

Note

There is one handcrafted implementation that must be completed
after running the generator, as without it, some evidence screens
will not be accessible. See Section 6.2, Asset
Hook::getDetailsForListDisplay() .

Cúram Evidence Generator Cookbook

11

Chapter 5

Executing the Generator

5.1 Introduction

This chapter looks at the evidence generator targets that the user can call on
and the expected outcome.

5.2 Generator Targets

5.2.1 Standard Generator Targets

The evidence generator has been designed to be transparent to the de-
veloper, i.e. it integrates into the standard build targets so no additional en-
vironment variables need to be set nor do any new targets need to be called
to generate evidence. Once the steps outlined in the preceding chapters have
been fulfilled, the standard build targets will suffice to generate or clean the
metadata driven evidence along with the standard files.

build generated

Calling this target in EJBServer will generate the evidence inf and impl lay-
ers as well as the normal server layers.

build client

Calling this target in webclient will generate and build the client screens as
well as the standard client screens.

Note

As is the case with a normal build, if the build client is called prior
to a build generated after model / metadata changes have been
made, the client build can fail. Normally the failure would be the

12

result of the changes made in the client UIMs / VIMs to use new
features implemented on the server and then rebuilding the client
without first rebuilding the server.

With evidence generation, any change made to the EUIMs / server
XMLs will be automatically generated the next time the client gen-
eration occurs. This is why it is important to generate the server first
if those changes affect the façade layer in any way.

build clean

The target to clean generated evidence is incorporated into the standard tar-
get and is therefore transparent to the developer. The target here is the same
on both the server and the client, build clean.

Note

Customized generated code (see Chapter 6, Asset Handcrafted Code
) will be not be deleted.

5.2.2 Evidence Generator Specific Targets

As well as incorporating the evidence generator build targets into the stand-
ard targets, there are two optional targets the developer may use to provide
more granular control over evidence generation. These are intended for
cleaning of generated evidence without removing any of the standard gener-
ated files, thereby speeding up the development process. Both of these tar-
gets exist within the EJBServer/build.xml.

build egtools.clean

This target will clean all server related evidence files. A clean will only oc-
cur if the prerequisites have been met and will occur regardless of new EU-
IM and server XML files being added, or existing ones having been updated
since the last build.

build egtools.client.clean

This target will clean all client related evidence files. A clean will only oc-
cur if the prerequisites have been met and will occur regardless of new EU-
IM and server XML files being added, or existing ones having been updated
since the last build.

5.3 Generator Output

On completion of evidence generation, there will be a number of new direct-
ories in the locations specified in the evidence.properties file.

Note

Cúram Evidence Generator Cookbook

13

All entity, service and façade level generated code is written directly
to the build directory and so will not appear within your components
source directory

Cúram Evidence Generator Cookbook

14

Chapter 6

Asset Handcrafted Code

6.1 Introduction

The generated server output contains some stubs in which custom code may
be written, i.e. placeholders for customers to add their own code. These add
a degree of flexibility when a generated evidence pattern is not a perfect fit
for an evidence entity.

See Cúram Evidence Generator Specification - Chapter 6,
Adding Functionality for the full list of generated stub classes and their
methods.

6.2 Asset Hook::getDetailsForListDisplay()

All evidence entities must implement the Hook method, getDetailsForL-
istDisplay. This method creates the text description for a particular Asset
Business Object on the evidence workspace pages. As this is link text used
on the client screens, it must be populated in order to access all the screens.

The following is the getDetailsForListDisplay implementation for Asset:
//__
/**
* Get evidence details for the list display
*
* @param key Key containing the evidenceID and evidenceType
*
* @return Evidence details to be displayed on the list page
*/
public EIFieldsForListDisplayDtls getDetailsForListDisplay(

EIEvidenceKey key)
throws AppException, InformationalException {

// Return object
EIFieldsForListDisplayDtls eiFieldsForListDisplayDtls =

new EIFieldsForListDisplayDtls();

// Asset entity key
final AssetKey assetKey = new AssetKey();
assetKey.evidenceID = key.evidenceID;

15

// Read the Asset entity to get display details
final AssetDtls assetDtls =

AssetFactory.newInstance().read(assetKey);

// Set the start / end dates
eiFieldsForListDisplayDtls.startDate = assetDtls.startDate;
eiFieldsForListDisplayDtls.endDate = assetDtls.endDate;

LocalisableString summary = new LocalisableString(
BIZOBJDESCRIPTIONS.BIZ_OBJ_DESC_ASSET);

summary.arg(
CodeTable.getOneItem(SAMPLEASSETTYPE.TABLENAME,
assetDtls.assetType));

// Format the amount for display
TabDetailFormatter formatterObj =

TabDetailFormatterFactory.newInstance();
AmountDetail amount = new AmountDetail();
amount.amount = assetDtls.value;
summary.arg(formatterObj.formatCurrencyAmount(amount).amount);

eiFieldsForListDisplayDtls.summary =
summary.toClientFormattedText();

return eiFieldsForListDisplayDtls;
}

Cúram Evidence Generator Cookbook

16

Chapter 7

Customizing a Product

7.1 Introduction

An 'out-of-the-box'(OOTB) evidence solution is provided with some of the
Cúram solutions, the customer may decide to extend and customize this
OOTB evidence solution to better fit their business requirements.

7.2 Setting up a Custom Product

This section deals with setting up a custom product which will override an
OOTB product.

7.2.1 Custom evidence properties

The OOTB product will come pre-configured with an evidence.properties
file - see Section 3.3, Step 2: Create and Configure Evidence Properties
File for details. For the purposes of overriding an OOTB product, the cus-
tom product will require its own, thin version of evidence.properties.

The crucial property here is 'override.product'. If this is not set, the evidence
generator will assume that this evidence product is brand new. If it is set, it
must be set to the 'product.name' of an existing evidence generation product.
All the other properties have already been defined in Cúram Evidence
Generator Specification - Appendix A evidence.properties .

Unique name (product.name) of the OOTB product to override
override.product=SampleEGProduct

Prefix used to specify where all metadata files are copied to
product.prefix=SEG

Other Mandatory Properties in an Overriding Product

product.build.option=true

evidence.properties.dir

17

= %SERVER_DIR%/components/custom/EvGenComponents/SEG/evidence

properties.home=${evidence.properties.dir}/properties/

server.metadata=${evidence.properties.dir}/server/metadata

caseType.integratedCase.metadata
= ${evidence.properties.dir}/integrated/metadata

caseType.product.metadata
= ${evidence.properties.dir}/product/metadata

Example 7.1 Sample custom evidence.properties

Caution

The location of the evidence.properties is not optional. This must be
located in a directory named 'evidence' which resides in any subdir-
ectory of:
EJBServer/components/custom

As the custom directory may eventually contain many of these over-
ridden products (and evidence directories), it is recommended that
some sort of naming scheme be devised. e.g.
EJBServer/components/custom

/EvGenComponents/<ProductName>/evidence

7.2.2 Overview of Build Process and Generated Files

The evidence generator build process looks for evidence subdirectories in
all the components listed in the SERVER_COMPONENT_ORDER. For
each of these the first step is to gather the product's metadata (and display
properties) to the build directory. Next, a search across the custom directory
is performed to find any evidence.properties that overrides the queued
product. It is at this point in the build that any overriding gets done. This is
done by gathering the customized metadata (and display properties) and
copying them over (not merging them with) the queued product's metadata
in the build directory. The product's evidence is then generated from this su-
per-set of metadata.

It is worth noting that most artefacts generated by an OOTB product are not
modifiable. Nor are they placed under source control. The only artefacts that
are modifiable, are the handcrafted Java® classes provided for customizable
hook points called to throughout the non-modifiable generated codebase.
These are only generated where they previously did not exist. Thereafter,
they must be maintained under source control.

Therefore, by overwriting the metadata before the build, all the generated
custom artefacts get generated as if they belonged to the OOTB product (i.e.
to the OOTB product's directories). The only exception to this is these hand-
crafted classes which will be described in more detail later on.

7.3 Overriding Display Text

Cúram Evidence Generator Cookbook

18

Display text is defined in the properties files associated with an EUIM, the
general properties file and the employment properties file. These can all be
overridden in the custom directory.

7.4 Overriding an OOTB Evidence Entity

For this example it is assumed that the Expense entity has been provided as
part of a Cúram evidence solution. The customer has decided that the entity
does not provide the fields required to fully meet the business requirements.
To meet their requirements, the customer has decided to add two additional
attributes to the entity. The first attribute is the username of the user who
creates / modifies the record. The second is the number of children that the
case participant has (if any).

7.4.1 Modeling

In keeping with the guidelines set out in the Cúram Evidence Gener-
ator Modeling Guide (Section 2.1.5) and the Cúram Server
Modeling Guide (Section 30.2), an Extension class will be created and
this class will be linked to the provided Expense entity.

The modeled extension is shown below:

7.4.2 Metadata

Cúram Evidence Generator Cookbook

19

The metadata for a customized entity is almost identical to the standard
metadata. It is captured in two files, <Entity-Name>.xml and
<Entity-Name>.euim. To begin customization of an entity, it is recommen-
ded to copy all of the OOTB entity's metadata and make any modifications
as appropriate.

Server-side Metadata

As the changes to Asset only relate to additional fields, the server-side
metadata should be identical to the metadata of the entity that is being over-
ridden with one exception. An additional node, Override , is required.
This additional node specifies whether or not the entity is brand new and
which custom handcrafted classes need to be generated. For more informa-
tion, see the Cúram Evidence Generator Specification - Ap-
pendix E.1.1 Override Node .

The following is the custom server XML metadata file for Asset:

<EvidenceEntity>
<Entity logicalName="Asset"

relateEvidenceParticipantID="">
<Override newEntity="No" customize="No" hook="Yes"

relatedAttribute="No" validation="No" />
<RelatedEntityAttributes exposeOperation="No"

relatedEntityAttributes="No" />
<Relationships/>
<BusinessDates
startDate="startDate"
endDate="endDate"

/>
</Entity>

</EvidenceEntity>

Client-side Metadata

The client-side metadata should be identical to the metadata of the entity
that is being overridden except for the inclusion of any additional fields
where appropriate. In the presented example, the developer will want to in-
clude the 'reference text' field on the screen as the user will be populating
this themselves. The developer will not want to expose the username on the
screen.

Note

Similar to any other customization within the application, it is not
possible to remove any attributes from an entity.

The following is the custom client EUIM metadata file for Asset:

<Entity name="Asset" displayName="Asset">
<UserInterface>

<Clusters>
<Cluster label="Cluster.Title.AssetDetails"

numCols="2">
<Field label="Field.Label.AssetType"

columnName="assetType" mandatory="Yes"
use_blank="true"/>

Cúram Evidence Generator Cookbook

20

<Field label="Field.Label.StartDate"
columnName="startDate" mandatory="No"
use_default="false"/>
<Field label="Field.Label.ReferenceText"
columnName="referenceText" mandatory="No"
use_default="false"/>
<Field label="Field.Label.AssetValue"
columnName="value" mandatory="Yes"
use_default="false"/>

<Field label="Field.Label.EndDate"
columnName="endDate" mandatory="No"
use_default="false"/>

</Cluster>
<Cluster label="Cluster.Title.Comments">

<Field columnName="comments" mandatory="No"
metatype="COMMENTS" label=""/>

</Cluster>
</Clusters>

</UserInterface>
</Entity>

The following is the associated properties file for Asset.euim:

Cluster.Title.AssetDetails=Asset Details
Field.Label.ReferenceText=Reference Name

Field.Label.ReferenceText.Help=Reference Name to help the user
differentiate similar records.

Field.Label.AssetType=Type
Field.Label.AssetType.Help=The type of the asset

Field.Label.AssetValue=Value
Field.Label.AssetValue.Help=The value of the asset

Field.Label.StartDate=Received
Field.Label.StartDate.Help=The date the asset was received

Field.Label.EndDate=Disposed
Field.Label.EndDate.Help=The date the asset was disposed

Cluster.Title.Comments=Comments
Cluster.Title.Comments.Help=Additional information

7.4.3 What is Generated

As stated earlier, everything except the handcrafted code is generated as it
would be if the entity had been defined OOTB.

In the case of a custom extension of an OOTB entity, these handcrafted im-
plementations will already exist. The generator creates handcrafted classes
in the custom source package which are modeled using the replace super-
class option, where the superclass is the existing OOTB implementation.
These will only contain method stubs each of which will, by default, begin
by calling the superclass implementation.

In the current example, the handcrafted preCreate function will need to be
updated by the developer to assign the value of the username attribute to the
creation struct. Also, the handcrafted validateDetails function may need to
be updated to ensure the 'reference text' field is not left blank.

7.5 Adding a Brand New Custom Entity

Cúram Evidence Generator Cookbook

21

Adding a brand new custom entity to a custom evidence product that over-
rides an OOTB product is exactly the same as developing one in any other
product with one exception. The Override node must be used and the
newEntity attribute must be set to Yes.

Note

The codepath is the same as it would be in the OOTB product.

7.5.1 What is Generated

In this case, there will be no OOTB implementation of the handcrafted code.
In order to keep the code as straightforward as possible, a dummy OOTB
implementation of these is generated inside the build source directory un-
derneath the OOTB's code package. Also, the derived custom version is
generated into the custom source directory and should be placed under
source control.

Cúram Evidence Generator Cookbook

22

Chapter 8

Identifying Entities, Patterns and Relationships

8.1 Identifying Evidence Entities

Evidence is the data collected by an organization to facilitate the delivery of
services to the organization's clients. In the application, evidence is typically
used in the determination of eligibility and entitlement for clients. For the
evidence generator, it is any entity which implements the standard evidence
interface and is maintained using the temporal evidence solution.

8.2 Identifying Patterns

A pattern is a piece of functionality that is used by an evidence entity. This
functionality might be features on a maintenance screen or additional code
specific to an entity. The evidence generator provides the functionality to
specify which patterns apply to which entities via metadata captured in
XML. This metadata is then read, during generation, and converted to the
appropriate feature, e.g. button on a client page or callout class stub in
which a developer can then implement business logic.

8.3 Identifying Relationships

Relationships in evidence are ways to describe how evidence entities inter-
act and exist in relation to each other. The generator provides the functional-
ity to specify these relationships. It then generates all of the associated serv-
er-side code and client page functionality to facilitate the maintenance of the
relationships. The most common relationship is the Parent-Child relation-
ship. The other relationships the generator caters for are Pre-Associations,
Multiple Mandatory Parents and the Related relationship.

8.3.1 Parent-Child Relationship

23

Parent-Child is one of the most common logical relationships between evid-
ence entities. Typically this is a one-to-many relationship where the Parent
can have many children and each Child must belong to a Parent. Parent-
Child relationships should be used to capture the logical relationship
between two entities where the Child entity cannot live without the Parent
entity and the details on the Child are logically related to the details cap-
tured on the Parent. For example, student details may be held on a Student
entity and student expenses on a Student Expenses entity. It this instance,
Student Expenses could not exist without Student being present but Student
could exist on its own.

8.3.2 Pre-Associated Relationship

Pre-Associations are non-hierarchical relationships between evidence entit-
ies which can exist independently of each other. The association is known
before creating the evidence. This means the developer can access data from
the associated entity at create time.

8.3.3 Multiple Mandatory Parents Relationship

Where an entity must simultaneously be the child of more than one parent
entity, the pattern for multiple mandatory parents should be used.

8.3.4 Related Relationship

Related relationships are again non-hierarchical in nature and are used to re-
late an evidence record to a non-evidence record. The primary example of
this, which has occurred in all evidence based modules built by the applica-
tion, is the relation of evidence based employment records to the Core Em-
ployment record. Examples of evidence based employment entities would
be Self Employment and Paid Employment. This is a key functional area in
a lot of solutions hence the decision to treat it as a separate pattern.

Cúram Evidence Generator Cookbook

24

Chapter 9

Identifying Problems

9.1 Introduction

When running the Evidence Generator, problems can occur if any of the set-
up steps outlined in the preceding chapters are carried out incorrectly.

9.2 Configuration (Evidence Properties)

9.2.1 Generation Errors

Evidence will not build / clean

Symptom:
No new evidence is generated when the target is generated. No evidence
is deleted when the target is clean.

Cause:
product.build.option is set to false or missing.

Solution:
Set product.build.option=true if this evidence is to be generated. If it is
missing from the evidence.properties, add it with this value.

Evidence not found.

Symptom:
Error when build generated is called on EJBServer:
..\CEF-Core\EJBServer\components\<$product.name>\Evidence not
found.

Cause:

25

The property product.name in evidence.properties does not match that
in the codebase.

Solution:
Set product.name=correct Product Name as it appears under EJBServer/
components/ <ProductName>

'<EntityName>Details' is not present in the model

Symptom:
Error when build generated is called from EJBServer: Parameter 'dtls'
(of operation ...) has type <EntityName> EvidenceDetails', but
'<EntityName>Details' is not present in the model.

Cause:
The property product.ejb.package in evidence.properties does not match
part of the CODE_PACKAGE on the model.

Solution:
Set product.ejb.package=Model CODE_PACKAGE up to first "." de-
limiter. For example
CODE_PACKAGE = seg.evidence.entity

product.ejb.package=seg

No source files matching the extensions XML

Symptom:
Error when build generated is called displayed in the XML Digestor
output: The source location <$server.metadata> was found to contain
no source files matching the extensions XML

Cause:
server.metadata does not match physical root directory for Product's
evidence directory

Solution:
Set server.metadata to point to the correct directory.

The general properties file was not found

Symptom:
Error when build generated is called displayed in the XML Digestor
output: The general properties file was not found at the location
$properties.home\

Cause:
properties.home does not match physical properties directory.

Solution:
Set properties.home=Directory where general.properties was created.

Cúram Evidence Generator Cookbook

26

<$server.metadata> was found to contain no source files match-
ing the extensions XML

Symptom 1:
Error when build generated is called on EJBServer: Error # The source
location <$server.metadata> was found to contain no source files
matching the extensions XML

Cause 1:
The property server.metadata in evidence.properties does not point to
the location of server XML files.

Solution 1:
Set server.metadata=<correct location of server metadata>;

Symptom 2:
Error when build client is called on Webclient: Error # The source loca-
tion <$server.metadata> was found to contain no source files matching
the extensions XML

Cause 2:
The property product.name in evidence.properties does not match that
in the codebase.

Solution 2:
Set product.name=correct Product Name as it appears under EJBServer/
components/ <ProductName>

No EUIM source files

Symptom 1:
Error when build generated is called on EJBServer: No EUIM source
files were found within the EUIM source directory
<$caseType.integratedCase.metadata>

Cause 1:
The property caseType.integratedCase.metadata in evidence.properties
does not point to the location of integrated EUIM files.

Solution 1:
Set caseType.integratedCase.metadata=<correct location of integrated
metadata>

Symptom 2:
Error when build generated is called on EJBServer: No EUIM source
files were found within the EUIM source directory
<$caseType.product.metadata>

Cause 2:
The property caseType.product.metadata in evidence.properties does
not point to the location of product EUIM files.

Cúram Evidence Generator Cookbook

27

Solution:
Set caseType.product.metadata=<correct location of product metadata>

9.2.2 Runtime Errors

HTTP Status 404 Error Message

Symptom:
Page not found error when trying to access generated evidence work-
space.

Cause:
product.codetable is set incorrectly, i.e. not pointing at product
codetable directory.

Solution:
Set product.codetable=<product_Root_CodeTable_directory>.

9.3 Model

9.3.1 Generation Errors

Invalid Mandatory Field

Symptom:
Error when build generated is called from EJBServer: The mandatory
field 'dtls.<fieldName> specified for parameter 'dtls' of operation
'<EntityName>.create<EntityName>Evidence' is invalid.

Cause:
The "dtls" association between the <EvidenceEntity>Details struct and
the EvidenceEntity entity is missing. This association is mandatory for
all evidence entities.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

9.3.2 Compilation Errors

<EntityName>Details' is not present in the model.

Symptom:
Error when build generated is called: <EntityName>Details' is not
present in the model.

Cúram Evidence Generator Cookbook

28

Cause 1:
The first element (i.e. up to first delimiter ".") in CODE_PACKAGE
does not match evidence property product.ejb.package in evid-
ence.properties.

Cause 2:
The second and third elements in CODE_PACKAGE are not evid-
ence.entity.

Solution 1:
Set first part of CODE_PACKAGE=product.ejb.package (or vice versa)

Solution 2:
Set second part of CODE_PACKAGE=evidence. Set third part of
CODE_PACKAGE=entity .

details.parEvKey cannot be resolved or is not a field

Symptom:
Compilation error in generated code: details.parEvKey cannot be re-
solved or is not a field

Cause:
The "parEvKey" association between the <EvidenceEntity>Details
struct and the EvidenceKey struct is missing. This association is neces-
sary if the evidence entity in question is a child of another evidence en-
tity.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

evidenceDetails.parEvKey cannot be resolved or is not a field

Symptom:
Compilation error in generated code: evidenceDetails.parEvKey cannot
be resolved or is not a field

Cause:
This error is also a result of the "parEvKey" association between the
<EvidenceEntity>Details struct and the EvidenceKey struct missing and
should be dealt with in the same manner.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

dtls.selectedParent cannot be resolved or is not a field

Symptom:

Cúram Evidence Generator Cookbook

29

Compilation error in generated code: dtls.selectedParent cannot be re-
solved or is not a field

Cause:
The "selectedParent" association between the <EvidenceEntity>Details
struct and the ParentSelectDetails struct is missing. The ParentSelect-
Details is present and the association between this and the entity details
struct is necessary if the entity is a child of another evidence entity.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

dtls.caseIDKey cannot be resolved or is not a field

Symptom:
Compilation error in generated code: dtls.caseIDKey cannot be resolved
or is not a field

Cause:
The "caseIDKey" association between the <EvidenceEntity>Details
struct and the CaseIDKey struct is missing. This association is mandat-
ory for all evidence entities.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

evidenceDetails.caseIDKey cannot be resolved or is not a field

Symptom:
Compilation error in generated code: evidenceDetails.caseIDKey can-
not be resolved or is not a field

Cause:
This error is also a result of the "caseIDKey" association between the
<EvidenceEntity>Details struct and the EvidenceKey struct missing and
should be dealt with in the same manner.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

readEvidenceDetails.descriptor cannot be resolved or is not a
field

Symptom:
Compilation error in generated code: readEvidenceDetails.descriptor
cannot be resolved or is not a field

Cúram Evidence Generator Cookbook

30

Cause:
The "descriptor" association between the Read<EvidenceEntity>Details
struct and the EvidenceDescriptorDetails struct is missing. This associ-
ation is mandatory for all evidence entities.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

details.descriptor cannot be resolved or is not a field

Symptom:
Compilation error in generated code: details.descriptor cannot be re-
solved or is not a field

Cause:
The "descriptor" association between the <EvidenceEntity>Details
struct and the EvidenceDescriptorDetails struct is missing. This associ-
ation is mandatory for all evidence entities.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

evidenceDetails.descriptor cannot be resolved or is not a field

Symptom:
Compilation error in generated code: evidenceDetails.descriptor cannot
be resolved or is not a field

Cause:
This error is also a result of the "descriptor" association between the
<EvidenceEntity>Details struct and the EvidenceDescriptorDetails
struct missing and should be dealt with in the same manner.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

readEvidenceDetails.dtls cannot be resolved or is not a field

Symptom:
Compilation error in generated code: readEvidenceDetails.dtls cannot
be resolved or is not a field

Cause:
The "dtls" association between the Read<EvidenceEntity>Details struct
and the <EvidenceEntity> entity is missing. This association is mandat-
ory for all evidence entities.

Cúram Evidence Generator Cookbook

31

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

readEvidenceDetails.caseParticipantDetails cannot be resolved
or is not a field

Symptom:
Compilation error in generated code: readEvidenceDe-
tails.caseParticipantDetails cannot be resolved or is not a field

Cause:
The "caseParticipantDetails" association between the ReadCaseParti-
cipantDetails struct and the <EvidenceEntity> entity is missing. This as-
sociation is mandatory for all evidence entities.

Solution:
Create an association as described between the two structs. See Sec-
tion 4.2.1, Asset Entity and Aggregations for more details.

9.4 Metatypes

Specifying metatypes on fields is a way to force certain additional behavior
on the field, e.g. turning the stored value into a link or having a text area
rather that field displayed. It is possible that a developer might incorrectly
specify a metatype. Examples of the common mistakes are outlined below.

9.4.1 Incorrect Participant Metatype

Symptom:
The primary case participant's name does not appear on the evidence
maintenance screens as a link to the case participant home page.

Cause:
One of CASE_PARTICIPANT_SEARCH or PAR-
ENT_CASE_PARTICIPANT_ROLE_ID was not specified as the meta-
type on the field that stores the case participant role ID.

Solution:
Set the metatype of the of the field that stores the case participant role
ID to be one of CASE_PARTICIPANT_SEARCH or PAR-
ENT_CASE_PARTICIPANT_ROLE_ID.

9.4.2 Incorrect Date Metatype

Symptom:
The "start" and "end" dates on the evidence workspace screen are not

Cúram Evidence Generator Cookbook

32

being populated.

Cause:
In the metadata for the fields storing the "start" and "end" dates, the
metatype of START_DATE or END_DATE was not specified.

Solution:
Specify the metatype of START_DATE or END_DATE to the appro-
priate field.

9.4.3 Incorrect Comments Metatype

Symptom:
Comments field on an evidence screen has field height of one row and
spans only half the screen.

Cause:
In the metadata for the field storing the Comments data, the metatype of
COMMENTS was not specified.

Solution:
Specify the metatype of COMMENTS to the appropriate field.

9.5 Properties

9.5.1 Generation Errors

The general properties file was not found at the location
$properties.home\

Symptom:
Error when build generated is called displayed in XML Digestor output:
The general properties file was not found at the location
$properties.home\

Cause:
general.properties does not exist.

Solution:
If general.properties does not exist, create and set properties.home to
point to it.

The employment properties file was not found at the location
$properties.home\

Symptom:
Error when build generated is called displayed in XML Digestor output:

Cúram Evidence Generator Cookbook

33

The employment properties file was not found at the location
$properties.home\

Cause:
employment.properties does not exist.

Solution:
If employment.properties does not exist, create and set properties.home
to point to it.

No such property exists

Symptom:
Error when build client is called: The text property <evidence property>
used in the file <generated evidence VIM or UIM > could not be re-
solved as no such property exists in the properties file <generated evid-
ence properties file >.

Cause:
The property key above is missing from either the general.properties or
employment properties file.

Solution:
See Cram Evidence Generator Specification - Appendix
B general.properties and Chram Evidence Generator Spe-
cification - Appendix C employment.properties for mandatory
property keys. The missing key should be in one of these. The generated
properties file that is required to have it should give an indication
whether this property is from the general or employment.properties.

Cúram Evidence Generator Cookbook

34

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

35

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Evidence Generator Cookbook

36

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Evidence Generator Cookbook

37

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Java and all Java-based trademarks and logos are registered trade-
marks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Evidence Generator Cookbook

38

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Evidence Generator Cookbook
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Content Summary
	1.3 Intended Audience
	1.4 Prerequisites

	Chapter 2 Quick Overview
	2.1 Introduction
	2.2 Sample Component
	2.3 Inputs and Outputs
	2.3.1 Generator Inputs
	2.3.2 Generator Outputs

	Chapter 3 Configure an Existing Product
	3.1 Introduction
	3.2 Step 1: Create an Evidence Directory
	3.3 Step 2: Create and Configure Evidence Properties File
	3.4 Step 3: Create General Properties File (general.properties)
	3.5 Step 4: Create Product Employment Properties File (employment.properties)
	3.6 Step 5: Configure the Module

	Chapter 4 Asset Example
	4.1 Introduction
	4.2 Step 1: Model Evidence Entity
	4.2.1 Asset Entity and Aggregations
	4.2.2 Asset Modeling Diagram

	4.3 Step 2: Create Evidence Metadata
	4.3.1 Asset Server XML
	4.3.2 Asset Client EUIM

	4.4 Step 3: Standard Evidence Configuration

	Chapter 5 Executing the Generator
	5.1 Introduction
	5.2 Generator Targets
	5.2.1 Standard Generator Targets
	build generated
	build client
	build clean

	5.2.2 Evidence Generator Specific Targets
	build egtools.clean
	build egtools.client.clean

	5.3 Generator Output

	Chapter 6 Asset Handcrafted Code
	6.1 Introduction
	6.2 Asset Hook::getDetailsForListDisplay()

	Chapter 7 Customizing a Product
	7.1 Introduction
	7.2 Setting up a Custom Product
	7.2.1 Custom evidence properties
	7.2.2 Overview of Build Process and Generated Files

	7.3 Overriding Display Text
	7.4 Overriding an OOTB Evidence Entity
	7.4.1 Modeling
	7.4.2 Metadata
	Server-side Metadata
	Client-side Metadata

	7.4.3 What is Generated

	7.5 Adding a Brand New Custom Entity
	7.5.1 What is Generated

	Chapter 8 Identifying Entities, Patterns and Relationships
	8.1 Identifying Evidence Entities
	8.2 Identifying Patterns
	8.3 Identifying Relationships
	8.3.1 Parent-Child Relationship
	8.3.2 Pre-Associated Relationship
	8.3.3 Multiple Mandatory Parents Relationship
	8.3.4 Related Relationship

	Chapter 9 Identifying Problems
	9.1 Introduction
	9.2 Configuration (Evidence Properties)
	9.2.1 Generation Errors
	Evidence will not build / clean
	Evidence not found.
	'<EntityName>Details' is not present in the model
	No source files matching the extensions XML
	The general properties file was not found
	<$server.metadata> was found to contain no source files matching the extensions XML
	No EUIM source files

	9.2.2 Runtime Errors
	HTTP Status 404 Error Message

	9.3 Model
	9.3.1 Generation Errors
	Invalid Mandatory Field

	9.3.2 Compilation Errors
	<EntityName>Details' is not present in the model.
	details.parEvKey cannot be resolved or is not a field
	evidenceDetails.parEvKey cannot be resolved or is not a field
	dtls.selectedParent cannot be resolved or is not a field
	dtls.caseIDKey cannot be resolved or is not a field
	evidenceDetails.caseIDKey cannot be resolved or is not a field
	readEvidenceDetails.descriptor cannot be resolved or is not a field
	details.descriptor cannot be resolved or is not a field
	evidenceDetails.descriptor cannot be resolved or is not a field
	readEvidenceDetails.dtls cannot be resolved or is not a field
	readEvidenceDetails.caseParticipantDetails cannot be resolved or is not a field

	9.4 Metatypes
	9.4.1 Incorrect Participant Metatype
	9.4.2 Incorrect Date Metatype
	9.4.3 Incorrect Comments Metatype

	9.5 Properties
	9.5.1 Generation Errors
	The general properties file was not found at the location $properties.home\
	The employment properties file was not found at the location $properties.home\
	No such property exists

	Notices
	Trademarks

