
IBM Cúram Social Program Management

Cúram Temporal Evidence Developers
Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008,2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Prerequisites ... 1
1.3 Audience .. 1

Chapter 2 Server / Client Temporal Evidence Components .. 2
2.1 Server Side Artifacts .. 2

2.1.1 Standard Evidence Interface ... 2
2.1.2 Evidence Interface .. 5
2.1.3 Participant Evidence Interface .. 6
2.1.4 Accessing Non-modeled Functions .. 8

2.2 Client Side Artifacts ... 8

Chapter 3 Developing an Evidence Solution ... 11
3.1 Administration ... 11

3.1.1 Evidence Metadata .. 11
3.1.2 Product Evidence Link .. 11

3.2 Common Evidence Maintenance Operations ... 11
3.2.1 Create Evidence .. 11
3.2.2 Modify Evidence ... 14
3.2.3 Read Evidence .. 18
3.2.4 List Evidence .. 20

3.3 Evidence Dashboard and EvidenceFlow ... 21
3.4 Validations ... 22
3.5 More On Validations .. 22
3.6 Evidence Attribution .. 24

3.6.1 Re-attribution .. 24
3.7 Evidence Relationship ... 25
3.8 Registering Evidence Implementations ... 25

3.8.1 Evidence Registrar Module ... 26
3.8.2 Legacy Evidence Registrar ... 26

3.9 Custom Hooks .. 27
3.9.1 Evidence Controller Hook .. 27
3.9.2 Evidence Controller Hook Registrar & Manager ... 27

Chapter 4 Participant Evidence Integration ... 29
4.1 Overview .. 29

iii

4.2 Integration of Participant Data as Temporal Evidence .. 30
4.3 Administration ... 30

4.3.1 AdminICEvidenceLink ... 30
4.3.2 ProductEvidenceLink .. 30

4.4 Integrating new Participant entities as Temporal Evidence 31
4.4.1 Implementing the ParticipantEvidenceInterface ... 31
4.4.2 Register entity in a Registrar Module ... 31
4.4.3 Applying Participant Evidence to all Cases .. 32
4.4.4 Modifications required to existing business processes 32

4.5 Sequence Diagrams for Participant evidence .. 33
4.5.1 Create Participant Evidence Sequence Diagram ... 33
4.5.2 Specific Processing For Participant Data when Creating Evidence 33
4.5.3 Modify Participant Evidence Sequence Diagram ... 34

Notices ... 36

Cúram Temporal Evidence Developers Guide

iv

Chapter 1

Introduction

1.1 Purpose

The purpose of this document is to provide assistance to developers intend-
ing to implement evidence solutions using Cúram's Temporal Evidence
solution. It outlines common pieces of evidence maintenance functionality
and describes how a developer can design / implement such functionality.

1.2 Prerequisites

The readers should be familiar with the evidence capturing aspect of case
management as well as its use in determining eligibility and entitlement on a
case. They should also have read "The Temporal Evidence Pattern" in the
Cúram Temporal Evidence Solutions guide.

1.3 Audience

This document is targeted at a technical audience, both developers and ar-
chitects, intending to implement evidence solutions using Cúram’s Tempor-
al Evidence framework.

1

Chapter 2

Server / Client Temporal Evidence Components

2.1 Server Side Artifacts

All of the Temporal Evidence server side infrastructure artifacts are shipped
in the "curam.core.sl.infrastructure.impl" package. The key elements found
here include the Evidence Controller / Evidence Controller Hook (see sec-
tion 3.8) classes and the Evidence Interfaces. The Interfaces form part of the
Interface Hierarchy. The Participant Evidence Interface and Evidence Inter-
face both extend the parent Interface, Standard Evidence Interface. These
Evidence Interfaces will be the artifacts of most interest to designers / de-
velopers as each evidence entity will need to implement this interface.

2.1.1 Standard Evidence Interface

The Standard Evidence Interface defines the following methods which are
common to both inheriting interfaces. The interface and its associated meth-
ods are shown below with the appropriate javadoc comments:

/*
* Copyright 2005-2006,2011 Curam Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary information
* of Curam Software, Ltd. ("Confidential Information"). You
* shall not disclose such Confidential Information and shall use
* it only in accordance with the terms of the license agreement
* you entered into with Curam Software.
*/
package curam.core.sl.infrastructure.impl;

import curam.core.sl.infrastructure.entity.struct
.AttributedDateDetails;

import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EIEvidenceKeyList;
import

curam.core.sl.infrastructure.struct.EIFieldsForListDisplayDtls;
import curam.core.sl.infrastructure.struct.ValidateMode;
import curam.core.struct.CaseKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

2

import curam.util.type.Date;

/**
* This interface is a key component of the Curam Temporal
* Evidence Solution. Implementations hoping to manage evidence
* via the Temporal Evidence Solution must ensure that the
* evidence entities contained within the solution implement the
* Evidence Interface. By doing this, the evidence is utilizing
* the Evidence Controller pattern whereby a lot of the common
* business functions for maintaining evidence are contained
* within the out-of-the-box evidence infrastructure.
*
* This interface is the super interface that will be
* extended by other evidence interfaces that wish to provide
* custom functionality for that type of evidence. The methods
* defined on this evidence are common to any interface that
* extends it.
*/
public interface StandardEvidenceInterface {

// __
/**
* Method for calculating case attribution dates. The
* calculation of evidence attribution is an integral part of a
* temporal evidence solution as it determines the period of
* time for which a piece of evidence is effective. The
* implementation of this function will contain the logic that
* derives the appropriate effective period for the evidence of
* a particular type.
*
* @param caseKey
* Contains a case identifier
* @param evKey
* Contains the evidenceID / evidenceType pairing of
* the evidence to be attributed
*
* @return Case attribution details
*/
AttributedDateDetails calcAttributionDatesForCase(

CaseKey caseKey, EIEvidenceKey evKey)
throws AppException, InformationalException;

// __
/**
* Retrieves a summary of evidence details which are used to
* populate the 'Details' column on the following evidence
* pages:
*
* - All evidence workspace pages
* - Apply changes page
* - Apply user changes page
* - Approve page
* - Reject page
*
* @param key
* Contains an evidenceID / evidenceType pairing
*
* @return A summary of the evidence details to be displayed
*/
EIFieldsForListDisplayDtls getDetailsForListDisplay(

EIEvidenceKey key)
throws AppException, InformationalException;

// __
/**
* Method to get the business end date for this evidence
* record.
*
* @param key
* Contains an evidenceID / evidenceType pairing
*
* @return The end date for this evidence

Cúram Temporal Evidence Developers Guide

3

*/
Date getEndDate(EIEvidenceKey evKey) throws AppException,

InformationalException;

// __
/**
* Method to get the business start date for this evidence
* record.
*
* @param key
* Contains an evidenceID / evidenceType pairing
*
* @return The start date for this evidence
*/
Date getStartDate(EIEvidenceKey evKey) throws AppException,

InformationalException;

// __
/**
* Method for inserting case evidence.
*
* @param dtls
* Custom evidence details to be inserted
* @param parentKey
* Contains the evidence type of the evidence being
* inserted
*
* @return Contains the evidenceID / evidenceType of the
* evidence inserted
*/
EIEvidenceKey insertEvidence(

Object dtls, EIEvidenceKey parentKey)
throws AppException, InformationalException;

// __
/**
* Method for inserting case evidence on modification. An
* insert on modification takes place when the record being
* modified is 'Active'.
*
* @param dtls
* Evidence details to be inserted
* @param origKey
* Contains the evidenceID / evidenceType pairing of
* the evidence being modified
* @param parentKey
* Contains the evidence type of the evidence to be
* inserted
*
* @return Contains the evidenceID / evidenceType of the
* evidence inserted
*/
EIEvidenceKey insertEvidenceOnModify(Object dtls,

EIEvidenceKey origKey, EIEvidenceKey parentKey)
throws AppException, InformationalException;

// __
/**
* Method for modifying case evidence. This function is called
* when 'In Edit' evidence is being modified in place.
*
* @param key
* Contains the evidenceID / evidenceType pairing of
* the evidence to be modified
* @param dtls
* Modified evidence details
*/
void modifyEvidence(EIEvidenceKey key, Object dtls)

throws AppException, InformationalException;

// __
/**

Cúram Temporal Evidence Developers Guide

4

* Method for retrieving all child evidence for a specified
* parent
*
* @param key
* Contains a parent evidenceID / evidenceType pairing
*
* @return List of all child evidence (evidenceID /
* evidenceType pairings) for the specified parent
*/
EIEvidenceKeyList readAllByParentID(EIEvidenceKey key)

throws AppException, InformationalException;

// __
/**
* Method for reading case evidence.
*
* @param key
* Contains the evidenceID / evidenceType pairing of
* the evidence to be read
*
* @return Custom evidence details
*/
Object readEvidence(EIEvidenceKey key)

throws AppException, InformationalException;

// __
/**
* Method for retrieving the list of evidence to be used in
* the validation procedure. This is based on the evidenceID /
* evidenceType pairing passed into this function.
*
* If the input evidence key was that of parent evidence, then
* this function should return the parent and its associated
* 'Active' and 'In Edit' child evidence records, if they
* exist.
*
* @param evKey
* Contains the evidenceID / evidenceType pairing of
* the evidence being "acted upon".
*
* @return List of evidenceID / evidenceType pairings to be
* used in the validation procedure
*/
EIEvidenceKeyList selectForValidation(EIEvidenceKey evKey)

throws AppException, InformationalException;

// __
/**
* Method for validating evidences based on the validate mode
* setting.
*
* @param evKey
* The evidenceID / evidenceType pairing of the
* evidence being "acted upon"
* @param evKeyList
* The evidence hierarchy structure for the evKey
* parameter. If the evKey identified the parent
* evidence, the evKeyList may contain this parent and
* its relevant children for validation purposes
*
* @param mode
* The validation mode (insert, modify,
* validateChanges,applyChanges)
*/
void validate(EIEvidenceKey evKey, EIEvidenceKeyList evKeyList,

ValidateMode mode)
throws AppException, InformationalException;

}

2.1.2 Evidence Interface

Cúram Temporal Evidence Developers Guide

5

The Evidence Interface and its associated methods are shown below with
the appropriate javadoc comments:

/*
* Copyright 2005-2007 Curam Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary
* information of Curam Software, Ltd. ("Confidential
* Information"). You shall not disclose such Confidential
* Information and shall use it only in accordance with the
* terms of the license agreement you entered into with
* Curam Software.
*/

package curam.core.sl.infrastructure.impl;

import curam.core.sl.infrastructure.struct
.AttributedDateDetails;

import curam.core.struct.CaseHeaderKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

/**
* This interface extends the StandardEvidenceInterface,
* therefore any class that implements EvidenceInterface
* must provide its own implementations of the methods
* defined in the standard interface. Any methods specific
* to "classic" (i.e. not participant) evidence are to be
* defined in this interface.
*/

public interface EvidenceInterface
extends StandardEvidenceInterface {

// __
/**
* Transfers evidence from one case to another.
*
* @param details
* Contains the evidenceID / evidenceType pairings of
* the evidence to be transferred and the transferred
* @param fromCaseKey
* The case from which the evidence is being
* transferred
* @param toCaseKey
* The case to which the evidence is being
* transferred
*/
void transferEvidence(EvidenceTransferDetails details,

CaseHeaderKey fromCaseKey, CaseHeaderKey toCaseKey)
throws AppException, InformationalException;

}

2.1.3 Participant Evidence Interface

The Participant Evidence Interface and its associated methods are shown be-
low with the appropriate javadoc comments:

/*
* Copyright 2007 Curam Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary information
* of Curam Software, Ltd. ("Confidential Information"). You
* shall not disclose such Confidential Information and shall use
* it only in accordance with the terms of the license agreement

Cúram Temporal Evidence Developers Guide

6

* you entered into with Curam Software.
*/
package curam.core.sl.infrastructure.impl;

import java.util.ArrayList;

import curam.core.sl.infrastructure.struct.EIEvidenceKey;
import curam.core.sl.infrastructure.struct.EIEvidenceKeyList;
import curam.core.sl.struct.ConcernRoleIDKey;
import curam.util.exception.AppException;
import curam.util.exception.InformationalException;

/**
* This interface extends the StandardEvidenceInterface therefore
* any class that implements ParticipantEvidenceInterface must
* provide its own implementations of the methods defined in the
* standard interface. Any methods specific to participant
* evidence be defined in this interface.
*/
public interface ParticipantEvidenceInterface

extends StandardEvidenceInterface {

// __
/**
* Method to check if the attributes that changed during a
* modify require reassessment to be run when they are applied.
*
* @param attributesChanged
* - A list of Strings. Each represents the name of an
* attribute that changed
*
* @return true if Reassessment required
*/
boolean checkForReassessment(ArrayList attributesChanged)

throws AppException, InformationalException;

// __
/**
* Method for creating the snapshot record related to a
* participant evidence record.
*
* @param key
* Contains an evidenceID / evidenceType pairing
*
* @return The uniqueID and the evidence type of the Snapshot
* record.
*/
EIEvidenceKey createSnapshot(EIEvidenceKey key)

throws AppException, InformationalException;

// __
/**
* Method to compare attributes on two records of the same
* entity type. It then returns an ArrayList of strings with
* the names of each attribute that was different between them.
*
* @param key
* - Contains an evidenceID / evidenceType pairing
* @param dtls
* - a struct of the same type as the key containing
* the attributes to be compared against
*
* @return A list of Strings. Each represents an attribute name
* that differed.
*/
ArrayList getChangedAttributeList(

EIEvidenceKey key, Object dtls)
throws AppException, InformationalException;

// __
/**
* Method to search for records on a participant entity by

Cúram Temporal Evidence Developers Guide

7

* concernRoleID and status.
*
* @param key
* - The unique concernRoleID of the participant.
*
* @return A list of EIEvidenceKey objects each containing an
* evidenceID/evidenceType pair.
*/
EIEvidenceKeyList readAllByConcernRoleID(ConcernRoleIDKey key)

throws AppException, InformationalException;

// __
/**
* Method removing participant evidence. This method is called
* when participant evidence is being canceled
*
* @param key
* - Contains an evidenceID / evidenceType pairing
* @param dtls
* - Modified evidence details
*/
void removeEvidence(EIEvidenceKey key, Object dtls)

throws AppException, InformationalException;

}

Adopting an interface approach enforces a pattern upon entity design / de-
velopment as each entity must implement the same interface. This approach
allows the Cúram Enterprise Framework™ to provide as much common
functionality as possible so that custom implementations can concentrate
more on business aspects of evidence maintenance, e.g.validations. Each
evidence entity must implement the Evidence Interface to have access to the
Evidence Controller class.This class implements the common business logic
across all evidence entities and the custom business logic specific to each
evidence entity.

2.1.4 Accessing Non-modeled Functions

When the Evidence Interfaces are implemented by evidence entities, the
methods defined by these interfaces will be implemented by those entities.
These methods will of course be non-modeled so will only exist on the evid-
ence entity impl classes. In order to access the non-modeled functions, it's
necessary to cast from the impl class. Examples of this can be seen in the
entity program listings later in section 3.2 of this document. This casting
mechanism will not work though unless the factory class is extending the
impl class as opposed to the base class. The only way that this can be
achieved, if no non-stereotyped functions are being added to the class, is to
add a non-stereotyped dummy function. If this is not done, it will result in a
runtime error when the casting is executed.

2.2 Client Side Artifacts

The client side infrastructure artifacts are located inside the
..\webclient\components\core\Evidence Infrastructure directory. This folder
primarily contains uim and vim client pages. The vim files will typically be
included inside solution specific uim pages to manage generic evidence de-

Cúram Temporal Evidence Developers Guide

8

tails whereas the uim pages contain complete out-of-the-box evidence main-
tenance functionality.

The key benefit of the .im files is that they can be changed in line with any
enhancements made to the evidence maintenance solution without any im-
pact on specific implementations, i.e. the upgrade is seamless.

Examples of infrastructural .vim files are as follows:

• Evidence_createHeader.vim

• Evidence_modifyHeader.vim

• Evidence_viewHeader.vim

• Evidence_viewHeaderForModal.vim

These artifacts manage the infrastructural attributes of evidence mainten-
ance and should be included in create, modify and view evidence pages.
This will be highlighted later when a sample implementation of the Tempor-
al Evidence solution is discussed. Some further examples of vim files in-
clude:

• Evidence_typeWorkspace.vim

• Evidence_workspaceInEditHighLevelView.vim

• Evidence_workspaceActiveHighLevelView.vim

These artifacts are used to populate evidence workspaces. An evidence
workspace is a central location for managing evidence. The above vim files
will be included by workspace .uim pages.

Some examples of infrastructural uim pages which provide entire evidence
maintenance functions are:

• Evidence_applyChanges1.uim

• Evidence_addNewEvidence.uim

• Evidence_dashboard.uim

Evidence_applyChanges1 lists all work-in-progress evidence, i.e. all new
and updated evidence or evidence that is pending removal. The display and
action bean on this page live on the Evidence facade which is part of the
centralized evidence maintenance functionality.

Evidence_addNewEvidence lists all possible evidence types, filtered by cat-
egory, and launches an appropriate create page for each.

Evidence_dashboard lists all evidence types on the given case broken into
categories. It highlights which types have In Edit evidence recorded and
which have verifications or issues outstanding.

Note

It is important to note that in some cases .vim files found in the cli-

Cúram Temporal Evidence Developers Guide

9

ent infrastructure package are actually included in infrastructure
pages. For instance, Evidence_dashboardView.vim is included in-
side the Evidence_dashboard page and Evidence_flowView.vim is
included inside the Evidence_flow page.

Cúram Temporal Evidence Developers Guide

10

Chapter 3

Developing an Evidence Solution

3.1 Administration

3.1.1 Evidence Metadata

The Evidence Metadata entity contains metadata information relating to
each evidence type. This entity must be populated before evidence mainten-
ance can proceed. A number of evidence page names, including the view
and modify page names, are included in the metadata. These page names are
retrieved at runtime via evidence infrastructure resolve scripts and via im-
plementations of the Evidence Type interface on the server. The records on
the Evidence Metadata entity are effective dated to facilitate pages changing
over time, due to legislation for example.

3.1.2 Product Evidence Link

The Product Evidence Link entity links evidence to a product. In some cir-
cumstances, evidence may be stored at the Integrated Case level but only
some of this evidence may apply to a given product on the Integrated Case.
To know which evidence should be attributed to a given product, a lookup
of this entity is performed as part of the attribution processing and only
evidence linked to the product is attributed.

3.2 Common Evidence Maintenance Operations

In this section, some common evidence maintenance operations are out-
lined. This is done using sequence diagrams, client screenshots and server
code snippets from the a sample product implementation. This product is
used for demonstration purposes only.

3.2.1 Create Evidence

11

The development, both client and server, of a create evidence operation is
outlined here.

Create Evidence Sequence Diagram

Figure 3.1 Sequence Diagram for Creating Evidence

Client - Screen to Be Developed

The client page to be developered must include the evidence infrastructure
page Evidence_createHeader.vim. This included .vim page facilitates the
management of infrastructure attributes. For example, the Evidence
Descriptor's receivedDate attribute is currently managed through this infra-
structure page. If, at some point in the future, additional attributes which
need to be managed through the create function were added to the Evidence
Descriptor entity, then these attributes could be mapped through this infra-
structure page. Hence, this requires just a once-off infrastructure change
rather than many changes to custom artifacts.

Server - Methods to Be Implemented

• SEGEvidenceMaintainenance.createAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
// __
/**
* Creates an Asset evidence record.
*
* @param dtls Details of the new evidence record to be created.
*
* @return The details of the created record.
*/
public ReturnEvidenceDetails createAssetEvidence(
AssetEvidenceDetails dtls)
throws AppException, InformationalException {

// set the informational manager for the transaction
TransactionInfo.setInformationalManager();

Cúram Temporal Evidence Developers Guide

12

// Asset evidence manipulation object
Asset evidenceObj = AssetFactory.newInstance();

// return object
ReturnEvidenceDetails createdEvidenceDetails =

new ReturnEvidenceDetails();

// create the Asset record and populate the return details
createdEvidenceDetails =

evidenceObj.createAssetEvidence(dtls);

createdEvidenceDetails.warnings =
EvidenceControllerFactory.newInstance().getWarnings();

return createdEvidenceDetails;
}

• Asset.createAssetEvidence service layer operations

These overloaded service layer operations call the Evidence Controller
infrastructure function for inserting evidence.
// __
/**
* Creates a Asset record.
*
* @param dtls Contains Asset evidence record creation details.
*
* @return the new evidence ID and warnings.
*/
public ReturnEvidenceDetails createAssetEvidence(

AssetEvidenceDetails dtls)
throws AppException,InformationalException {

return createAssetEvidence(dtls, null, null, false);
}

// __
/**
* Creates a Asset record.
*
* @param dtls Contains Asset evidence record creation details.
*
* @param sourceEvidenceDescriptorDtls If this function is called
* during evidence sharing, this parameter will be non-null and
* it represents the header of the evidence record being shared
* (i.e. the source evidence record)
*
* @param targetCase If this function is called during evidence
* sharing, this parameter will be non-null and it represents the
* case the evidence is being shared with.
*
* @param sharingInd A flag to determine if the function is
* called in evidence sharing mode. If false, the function is
* being called as part of a regular create.
*
* @return the new evidence ID and warnings.
*/
public ReturnEvidenceDetails createAssetEvidence(

AssetEvidenceDetails dtls,
EvidenceDescriptorDtls sourceEvidenceDescriptorDtls,
CaseHeaderDtls targetCase, boolean sharingInd)
throws AppException,InformationalException {

// validate the mandatory fields
validateMandatoryDetails(dtls);

EvidenceControllerInterface evidenceControllerObj =
(EvidenceControllerInterface)
EvidenceControllerFactory.newInstance();

EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =

Cúram Temporal Evidence Developers Guide

13

new EvidenceDescriptorInsertDtls();

ReturnEvidenceDetails createdEvidence =
new ReturnEvidenceDetails();

if (sharingInd) {

EvidenceDescriptorDtls sharedDescriptorDtls =
evidenceControllerObj.shareEvidence(

sourceEvidenceDescriptorDtls,
targetCase);

// Return the evidence ID and warnings
createdEvidence.evidenceKey.evidenceID =
sharedDescriptorDtls.relatedID;

createdEvidence.evidenceKey.evType =
sharedDescriptorDtls.evidenceType;

} else {

// As there is no participant associated with this evidence
// we must retrieve the case participant to set the evidence
// descriptor participant.
CaseHeaderKey caseHeaderKey = new CaseHeaderKey();
caseHeaderKey.caseID = dtls.caseIDKey.caseID;
evidenceDescriptorInsertDtls.participantID =
CaseHeaderFactory.newInstance().readCaseParticipantDetails(

caseHeaderKey).concernRoleID;

// Evidence descriptor details
evidenceDescriptorInsertDtls.caseID = dtls.caseIDKey.caseID;
evidenceDescriptorInsertDtls.evidenceType =
CASEEVIDENCE.ASSET;

evidenceDescriptorInsertDtls.receivedDate =
dtls.descriptor.receivedDate;

// Upon creation, the change reason should be Initial
evidenceDescriptorInsertDtls.changeReason =
EVIDENCECHANGEREASON.INITIAL;

// Evidence Interface details
EIEvidenceInsertDtls eiEvidenceInsertDtls =
new EIEvidenceInsertDtls();

eiEvidenceInsertDtls.descriptor.assign(
evidenceDescriptorInsertDtls);

eiEvidenceInsertDtls.evidenceObject = dtls.dtls;

// Insert the evidence
EIEvidenceKey eiEvidenceKey =
evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);

// Return the evidence ID and warnings
createdEvidence.evidenceKey.evidenceID =
eiEvidenceKey.evidenceID;

createdEvidence.evidenceKey.evType =
eiEvidenceKey.evidenceType;

createdEvidence.warnings =
evidenceControllerObj.getWarnings();

}

return createdEvidence;
}

3.2.2 Modify Evidence

The development, both client and server, of a modify evidence operation is
outlined here.

Cúram Temporal Evidence Developers Guide

14

Modify Evidence Sequence Diagram

Figure 3.2 Sequence Diagram for Modifying Evidence

Client - Screen to Be Developed

The client page to be developed must include the evidence infrastructure
page Evidence_modifyHeader1.vim. This included .vim page facilitates the
viewing / modification of some infrastructure attributes. For example, re-
ceived date can be viewed or modified via this .vim. Also, change reason
and effective date of change can be set on the edited record. If, at some
point in the future, additional attributes which need to be managed through
the modify function were added to the Evidence Descriptor entity, then
these attributes could be mapped through this infrastructure page. Hence,
this requires just a once-off infrastructure change rather than many changes
to custom artifacts.

The inclusion of Evidence_modifyHeader1.vim facilitates the following
three types of evidence modification:

• Editing Evidence In Place

Cúram Temporal Evidence Developers Guide

15

This refers to the modification of incorrect data on a piece of evidence
which has not yet been activated. In this scenario, if the effective date is
modified an error will be thrown informing the user that the date can
only be modified when updating an active record.

• Evidence Correction

An evidence correction occurs when a piece of data on an active evid-
ence record is modified resulting in the current active record being su-
perseded. In this scenario, the effective date field must not be modified
as this will result in a new record in the succession being created - see
evidence succession.

• Evidence Succession

If the user modifies the effective date when updating a piece of active
evidence, they are specifying a new record in the succession set, i.e. the
new record will have the same successionID as the active record. There-
fore, the active record will essentially be copied and made effective
from the effective date specified by the user and the update applied to
this record.

Note: Activation of newly created records in a succession will cause
reattribution of records in that succession set.

Server - Methods to Be Implemented

• SEGEvidenceMaintenance.modifyAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
// __
/**
* Modifies an Asset evidence record.
*
* @param details The modified evidence details.
*
* @return The details of the modified evidence record.
*/
public ReturnEvidenceDetails modifyAssetEvidence(

AssetEvidenceDetails dtls)
throws AppException, InformationalException {

// set the informational manager for the transaction
TransactionInfo.setInformationalManager();

// Asset evidence manipulation object
Asset evidenceObj = AssetFactory.newInstance();

// return object
ReturnEvidenceDetails modifiedEvidenceDetails =

new ReturnEvidenceDetails();

// modify the Asset record and populate the return details
modifiedEvidenceDetails =

evidenceObj.modifyAssetEvidence(dtls);

modifiedEvidenceDetails.warnings =
EvidenceControllerFactory.newInstance().getWarnings();

Cúram Temporal Evidence Developers Guide

16

return modifiedEvidenceDetails;
}

• Asset.modifyAssetEvidence service layer operation

This service layer operation calls the Evidence Controller infrastructure
function for modifying evidence.
// __
/**
* Modifies an Asset record.
*
* @param dtls Contains Asset evidence record modification
* details.
*
* @return The modified evidence ID and warnings.
*/
public ReturnEvidenceDetails modifyAssetEvidence

(AssetEvidenceDetails details)
throws AppException, InformationalException {

// validate the mandatory fields
validateMandatoryDetails(details);

// EvidenceController business object
EvidenceControllerInterface evidenceControllerObj =

(EvidenceControllerInterface)
EvidenceControllerFactory.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

//
// Call the EvidenceController to modify the evidence
//

eiEvidenceKey.evidenceID = details.dtls.evidenceID;
eiEvidenceKey.evidenceType = CASEEVIDENCE.ASSET;

// Create the evidence interface modification struct and assign
// the details
EIEvidenceModifyDtls eiEvidenceModifyDtls =

new EIEvidenceModifyDtls();
eiEvidenceModifyDtls.descriptor.receivedDate =

details.descriptor.receivedDate;
eiEvidenceModifyDtls.descriptor.versionNo =

details.descriptor.versionNo;
eiEvidenceModifyDtls.descriptor.effectiveFrom =

details.descriptor.effectiveFrom;
eiEvidenceModifyDtls.descriptor.changeReceivedDate =

details.descriptor.changeReceivedDate;
eiEvidenceModifyDtls.descriptor.changeReason =

details.descriptor.changeReason;
eiEvidenceModifyDtls.evidenceObject = details.dtls;

evidenceControllerObj.modifyEvidence(
eiEvidenceKey, eiEvidenceModifyDtls);

//
// Return details from the modify operation
//

ReturnEvidenceDetails returnEvidenceDetails =
new ReturnEvidenceDetails();

returnEvidenceDetails.evidenceKey.evidenceID =
eiEvidenceKey.evidenceID;

returnEvidenceDetails.evidenceKey.evType =
eiEvidenceKey.evidenceType;

returnEvidenceDetails.warnings =
evidenceControllerObj.getWarnings();

Cúram Temporal Evidence Developers Guide

17

return returnEvidenceDetails;
}

3.2.3 Read Evidence

The development, both client and server, of a read evidence operation is
outlined here.

View Evidence Sequence Diagram

Figure 3.3 Sequence Diagram for Viewing Evidence

Client - Screen to Be Developed

The client page includes the evidence infrastructure page Evid-
ence_viewHeaderForModal.vim. This included .vim facilitates the viewing
of some infrastructure attributes.

Server - Methods to Be Implemented

• SEGEvidenceMaintenance.readAssetEvidence facade operation

The facade operation calls the evidence service layer implementation.
// __
/**
* Reads an Asset evidence record.
*
* @param key Identifies the evidence record to read.
*
* @return The details of the evidence record.
*/
public ReadAssetEvidenceDetails readAssetEvidence(

Cúram Temporal Evidence Developers Guide

18

EvidenceCaseKey key)
throws AppException, InformationalException {

// Asset evidence manipulation object
Asset evidenceObj = AssetFactory.newInstance();

// return object
ReadAssetEvidenceDetails readEvidenceDetails =

new ReadAssetEvidenceDetails();

// read the Asset record and populate the return details
readEvidenceDetails = evidenceObj.readAssetEvidence(key);

return readEvidenceDetails;

}

This service layer operation calls the Evidence Controller infrastructure
function for reading evidence.
// __
/**
* Reads an Asset record.
*
* @param key contains ID of record to read.
*
* @return Asset evidence details read.
*/
public ReadAssetEvidenceDetails readAssetEvidence(

EvidenceCaseKey key)
throws AppException, InformationalException {

// EvidenceController business object
EvidenceControllerInterface evidenceControllerObj =

(EvidenceControllerInterface)
EvidenceControllerFactory.newInstance();

EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
eiEvidenceKey.evidenceID = key.evidenceKey.evidenceID;
eiEvidenceKey.evidenceType = CASEEVIDENCE.ASSET;

// Retrieve the evidence details
EIEvidenceReadDtls eiEvidenceReadDtls =

evidenceControllerObj.readEvidence(eiEvidenceKey);

// Retrieve the evidence descriptor details
EvidenceDescriptor evidenceDescriptorObj =

EvidenceDescriptorFactory.newInstance();

EvidenceDescriptorKey evidenceDescriptorKey =
new EvidenceDescriptorKey();

evidenceDescriptorKey.evidenceDescriptorID =
eiEvidenceReadDtls.descriptor.evidenceDescriptorID;

EvidenceDescriptorDtls evidenceDescriptorDtls =
evidenceDescriptorObj.read(evidenceDescriptorKey);

//
// Return the evidence
//

ReadAssetEvidenceDetails readEvidenceDetails =
new ReadAssetEvidenceDetails();

readEvidenceDetails.descriptor
.assign(evidenceDescriptorDtls);

readEvidenceDetails.descriptor.approvalRequestStatus =
eiEvidenceReadDtls.descriptor.approvalRequestStatus;

readEvidenceDetails.descriptor.updatedBy =
eiEvidenceReadDtls.descriptor.updatedBy;

readEvidenceDetails.descriptor.updatedDateTime =
eiEvidenceReadDtls.descriptor.updatedDateTime;

Cúram Temporal Evidence Developers Guide

19

// assign the evidence to the return object
readEvidenceDetails.dtls.assign(

(AssetDtls)(eiEvidenceReadDtls.evidenceObject));

return readEvidenceDetails;
}

3.2.4 List Evidence

The development, both client and server, of a list evidence operation is out-
lined here. The list operation is used to populate an evidence workspace
page.

List Evidence Sequence Diagram

Figure 3.4 Sequence Diagram for Listing Evidence

Server - Methods to Be Developed

Much of the data displayed on the workspace page is retrieved via the Evid-
ence Descriptor entity. The description and period are retrieved via Evid-
ence Interface methods which must be implemented for each evidence type.

• Asset.getDetailsForListDisplay entity operation

The description, or summary details, is retrieved via the getDetailsForL-
istDisplay Evidence Interface method which is implemented by the evid-
ence entities. The implementation of the getDetailsForListDisplay meth-
od for the Asset is shown below. This interface function is also used to
retrieve summary data when applying, approving, rejecting evidence as
well as in evidence sharing, verifications and issues screens.
// __

Cúram Temporal Evidence Developers Guide

20

/**
* Gets evidence details for the list display
*
* @param key Evidence key containing the evidenceID and
* evidenceType
*
* @return Evidence details to be displayed on the list page
*/
public EIFieldsForListDisplayDtls getDetailsForListDisplay(

EIEvidenceKey key)
throws AppException, InformationalException {

// Return object
EIFieldsForListDisplayDtls eiFieldsForListDisplayDtls =

new EIFieldsForListDisplayDtls();

// Asset entity key
final AssetKey assetKey = new AssetKey();
assetKey.evidenceID = key.evidenceID;

// Read the Asset entity to get display details
final AssetDtls assetDtls =

AssetFactory.newInstance().read(assetKey);

// Set the start / end dates
eiFieldsForListDisplayDtls.startDate = assetDtls.startDate;
eiFieldsForListDisplayDtls.endDate = assetDtls.endDate;

LocalisableString summary = new LocalisableString(
BIZOBJDESCRIPTIONS.BIZ_OBJ_DESC_ASSET);

summary.arg(
CodeTable.getOneItem(SAMPLEASSETTYPE.TABLENAME,
assetDtls.assetType));

// Format the amount for display
TabDetailFormatter formatterObj =

TabDetailFormatterFactory.newInstance();
AmountDetail amount = new AmountDetail();
amount.amount = assetDtls.value;
summary.arg(formatterObj.formatCurrencyAmount(amount).amount);

eiFieldsForListDisplayDtls.summary =
summary.toClientFormattedText();

return eiFieldsForListDisplayDtls;
}

3.3 Evidence Dashboard and EvidenceFlow

The Evidence Dashboard and EvidenceFlow are user interface constructs in-
troduced to assist user navigation to all evidence on a case. No custom code
is required in order to configure these for a custom case as these are infra-
structural.

From these pages, a user can select a particular evidence type which should
open the respective evidence workspace for that type of evidence. In the
case of the Dashboard, this will open in a new tab, whereas the Evidence-
Flow will redirect the bottom portion of the page.

The existence of 'In Edit' evidence records, outstanding verifications and
outstanding issues are all highlighted graphically.

The list of evidence types on the case may be split into categories on these
pages, by defining the category on the AdminICEvidenceLink table for In-

Cúram Temporal Evidence Developers Guide

21

tegrated Cases, or on the ProductEvidenceLink table for Product Deliveries.

3.4 Validations

The infrastructure facilitates the validation of work-in-progress changes.
The validate page can be used either at a case level or on an individual evid-
ence type.

The purpose of the case level validate page is to provide a means to test val-
idations in advance of applying the changes. For some products, the full
evidence set may be quite sizeable resulting in the apply changes listing
containing a considerable number of evidence changes of varying evidence
types. In that scenario, the individual evidence type validate page may make
it easier to associate a validation message with the correct evidence record.
The validate page allows a user to pre-test the evidence changes. The user
can see which validations will fail and fix them before applying the changes.

3.5 More On Validations

Two of the Evidence Interface functions which form part of the infrastruc-
ture support for evidence validation are selectForValidations and validate.

The selectForValidations function will typically be used to select all evid-
ences which are related to or are dependant on the piece of evidence being
validated. An example of this would be the modification of an amount on a
parent evidence record. As part of the validation of the parent evidence, a
check might need to be performed to ensure the sum of the child evidence
records does not exceed the modified parent amount.

When a user applies changes to evidence records, the Evidence Controller
calls out to the selectForValidations interface function on the entities for
each evidence record. The logic within this method retrieves all related 'Act-
ive' and 'In Edit' evidences within the hierarchy for validation. For instance,
if we are validating a child evidence record within a parent-child-grandchild
relationship structure, both parent evidence and grandchild evidence are re-
trieved for the validation processing.

Once processing returns to the Evidence Controller, a filter is applied to the
list of evidence. This filters the input list and leaves only 'Active' records, or
'In Edit' records as appropriate depending on whether the function must val-
idate against work-in-progress or active only evidence. This filtered list is
then passed to the validate function where custom validation is applied.

The program listing below shows a selectForValidations implementation
used in the Asset demo.

// __
/**
* Selects all the records for validations
*
* @param evKey Contains an evidenceID / evidenceType pairing
*

Cúram Temporal Evidence Developers Guide

22

* @return List of evidenceID / evidenceType pairings
*/
public EIEvidenceKeyList selectForValidation(

EIEvidenceKey evKey)
throws AppException, InformationalException {

// Return object
EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();

// Casting to impl due to calling non-modeled interface
curam.seg.evidence.entity.intf.AssetOwnership
assetOwnershipObj =

(curam.seg.evidence.entity.impl.AssetOwnership)
AssetOwnershipFactory.newInstance();

eiEvidenceKey.evidenceID = evKey.evidenceID;
eiEvidenceKey.evidenceType =
CASEEVIDENCE.ASSET;

EIEvidenceKeyList eiEvidenceKeyList =
assetOwnershipObj.readAllByParentID(eiEvidenceKey);

eiEvidenceKeyList.dtls.add(0, evKey);

return eiEvidenceKeyList;
}

The code here, on the Asset parent entity, makes a call to the readAllByPar-
entID interface method implementation on the child entity, Asset Owner-
ship. The implementation of the readAllByParentID function on the Asset
Ownership is shown in the program listing below.

// __
/**
* Read all Asset Ownership records
*
* @param key Contains the evidenceID and evidenceType
*
* @return A list of evidenceID and evidenceType pairs
*/
public EIEvidenceKeyList readAllByParentID(EIEvidenceKey key)

throws AppException, InformationalException {

// Return object
EIEvidenceKeyList eiEvidenceKeyList = new EIEvidenceKeyList();

// Create the link entity object
EvidenceRelationship evidenceRelationshipObj =

EvidenceRelationshipFactory.newInstance();

// parent entity key
ParentKey parentKey = new ParentKey();
parentKey.parentID = key.evidenceID;
parentKey.parentType = key.evidenceType;

// Reads all relationship details for the specified parent
ChildKeyList childKeyList =

evidenceRelationshipObj.searchByParent(parentKey);

// Iterate through the link details list
for (int i = 0; i < childKeyList.dtls.size(); i++) {

if (childKeyList.dtls.item(i).childType.equals(
CASEEVIDENCE.ASSETOWNERSHIP)) {

EIEvidenceKey listEvidenceKey = new EIEvidenceKey();

listEvidenceKey.evidenceID =
childKeyList.dtls.item(i).childID;

listEvidenceKey.evidenceType =

Cúram Temporal Evidence Developers Guide

23

childKeyList.dtls.item(i).childType;

eiEvidenceKeyList.dtls.addRef(listEvidenceKey);
}

}

return eiEvidenceKeyList;

}

The function above retrieves all child evidence keys for the specified parent.
The childID and childType pairings are returned to the calling mechanism.

3.6 Evidence Attribution

Evidence attribution refers to the assignment of a period of time to a given
piece of evidence during which that piece of evidence will be used for enti-
tlement calculations. The attribution period may range from a basic one to
one mapping from the business start and end dates through to a more soph-
isticated algorithm considering any number of factors. This custom logic
calculates the attribution period and the evidence controller takes care of
synchronizing these with the specified effective dates – see example(s) be-
low. It should also be noted that the attribution from and to dates can be null
in which case the piece of evidence is assumed effective from the case start
date to the expected end date.

One of the Evidence Interface functions is calcAttributionDatesForCase and
the implementation of this function on an entity class is where the attribu-
tion from and to dates are determined for evidence on that entity.

3.6.1 Re-attribution

When evidence is modified as part of a succession and subsequently activ-
ated, re-attribution of the evidence records in the succession set occurs. A
basic example of how this works is shown below:

Business Start Date: 3rd May 2006 (=attribution from date)

Business End Date: 30th July 2006 (=attribution to date)

A succession record is created effective from 5th June 2006. On activation
of this record, the evidence is re-attributed and the following attribution re-
cords created:

3rd May 2006 to 4th June 2006

5th June 2006 to 30th July 2006

Re-attribution also occurs if evidence in a succession set is removed. For ex-
ample, if the following three attribution records exist for records in the same
succession set

3rd May 2006 to 4th June 2006

5th June 2006 to 30th July 2006

Cúram Temporal Evidence Developers Guide

24

31st July 2006 to 29th Sept 2006

and the evidence record associated with the middle one is removed, apply-
ing changes will cause the following re-attribution

3rd May 2006 to 30th July 2006

31st July 2006 to 29th Sept 2006

The attribution record from 5th June 2006 to 30th July 2006 remains on the
database but won't be picked up by eligibility processing as the associated
evidence is removed, i.e. has a status of 'Canceled'.

3.7 Evidence Relationship

By default, the Temporal Evidence infrastructure facilitates the linking of
parent-child evidence via the EvidenceRelationship link entity. The struc-
ture of the EvidenceRelationship link entity is as follows:

Evidence Relationship
evidenceRelationshipID

parentID

parentType

childID

childType

Table 3.1 Evidence Relationship Link Entity

This supports the relationship between any parent-child evidence and does
away with the necessity for customers to model their own link entities for
managing such relationships. When evidence is being inserted, the generic
EvidenceController.insertEvidence function makes a call to the business
process EvidenceRelationship.createLink. If a parent type has been spe-
cified, i.e. passed in from the client as part of the insert, then a record will
be written to the EvidenceRelationship entity linking the child evidence to
its parent. Also, a call is made to the business process EvidenceRelation-
ship.cloneLinks directly after the call to the interface operation insertEvid-
enceOnModify. From cloneLinks, two further calls are made to cloneLinks-
ForParent and cloneLinksForChild.

If customers are using their own link entities to manage relationships, they
will need to override the Evidence Relationship business processes for cre-
ating and cloning links. The evidence type is available in the input keys of
both these functions which means that responsibility can be delegated to the
appropriate custom relationship processing based on the evidence type in
the key.

3.8 Registering Evidence Implementations

Cúram Temporal Evidence Developers Guide

25

The evidence maintenance pattern requires the set of evidence entities to be
registered before they can be used. This is so that the controller can access
these evidence entities at runtime.

The Core Cúram Framework does not know in advance which evidence en-
tities will be used for the given evidence maintenance facility associated
with a particular product implementation. The evidence types and their im-
plementation must be paired at runtime.

3.8.1 Evidence Registrar Module

Google Guice dependency injection should be used in order to register the
different evidence types and their implementations. This can be done by
writing a new module class, or adding to a pre existing one. Once this is ad-
ded to the ModuleCalssName table, then at runtime it will be loaded and the
evidence types registered.

Example
/*
* Copyright 2011 Cúram Software Ltd.
* All rights reserved.
*
* This software is the confidential and proprietary information
* of Cúram Software, Ltd. ("Confidential Information"). You
* shall not disclose such Confidential Information and shall use
* it only in accordance with the terms of the license agreement
* you entered into with Cúram Software.
*/

package curam.seg.evidence.service.impl;

import curam.codetable.CASEEVIDENCE;
import com.google.inject.AbstractModule;
import curam.core.impl.FactoryMethodHelper;
import java.lang.reflect.Method;
import com.google.inject.multibindings.MapBinder;
import curam.core.impl.RegistrarImpl;
import curam.core.impl.Registrar.RegistrarType;

/**
* A module class which provides registration for all of the
* evidence hook implementations.
*/
public class SEGRegistrarModule extends AbstractModule {

@Override
public void configure() {

// Register all hook implementations which implement the
// interface EvidenceInterface.
MapBinder<String, Method> evidenceInterfaceMapBinder =
MapBinder.newMapBinder(binder(), String.class,

Method.class, new RegistrarImpl(RegistrarType.EVIDENCE));

evidenceInterfaceMapBinder
.addBinding(CASEEVIDENCE.ASSET)

.toInstance(FactoryMethodHelper.getNewInstanceMethod(
curam.seg.evidence.entity.fact.AssetFactory.class));

}
}

3.8.2 Legacy Evidence Registrar

Cúram Temporal Evidence Developers Guide

26

The legacy mechanism for registration of evidence entities is still supported.
i.e. using the Application Properties to specify the factories to populate a
hashmap of the hook classes. The factory code will not change in order to
maintain backward compatibility but all out of the box, legacy implementa-
tions have been deprecated.

3.9 Custom Hooks

As the Evidence Controller functionality is generic to all evidence solutions,
the only way to facilitate an organization's unique requirements is by the
provision of hooks where custom logic can be located in order to extend the
core solution. Call outs to these hooks, or extension points, are made within
the Evidence Controller maintenance functions.

3.9.1 Evidence Controller Hook

Evidence Controller Hook is the evidence infrastructure class which con-
tains the extension points for the evidence maintenance pattern. An example
of a hook in this class is postRemoveEvidence. A call is made to this func-
tion inside the Evidence Controller removeEvidence operation. Customers
must override the hook with their custom version if they want to perform
post remove evidence processing.

3.9.2 Evidence Controller Hook Registrar & Manager

Following on from the Evidence Registrar and the underlying Dependency
Injection pattern, a similar approach has been taken for the registration of
the Evidence Controller Hook class. An Evidence Controller Hook Registrar
interface is shipped as part of the evidence infrastructure. As before, at
runtime, the Evidence Controller invokes the Registrar's register method
which performs the dependency injection of the associated custom Evidence
Controller Hook. This is the class which will have extended the out-
of-the-box Evidence Controller Hook and overridden the methods being
customized. This "injector" class is located through runtime configuration
where the injector class itself is referred to as the "Evidence Controller
Hook Registrar".

The dependency injection involves two steps. First, a custom Evidence Con-
troller Hook Registrar, which implements the Evidence Controller Hook Re-
gistrar interface, must be located and the Registrar then invoked to register
the customized hook class. For example, the product type and custom Evid-
ence Controller Hook class pairing will be entered into a hashmap and then
the class looked up via the product type when it's required. In order to locate
the Evidence Controller Hook Registrar, its class name must be configured
using the environment variable
"curam.case.evidencecontrollerhook.registrars". Note: additional entries
need to be added to this environment variable in a comma delimited format.

The implementation of the Registrar's register method must reference the

Cúram Temporal Evidence Developers Guide

27

customized Evidence Controller Hook class. Doing this in code, rather than
as configuration, provides a compile time check that the referenced class ex-
ists. The existence of the Registrar, though, is only ascertained from the
provided configuration, and may result in a runtime failure if the application
is mis-configured.

The Evidence Controller Hook Manager class manages the static initializa-
tion of the Evidence Controller Hook mapping as well as the retrieval of the
subclass of the Evidence Controller Hook. If no subclass is found, the out-
of-the-box version of the Evidence Controller Hook class is returned.

Cúram Temporal Evidence Developers Guide

28

Chapter 4

Participant Evidence Integration

4.1 Overview

Evidence is the term used for data in the calculation of eligibility and enti-
tlement. Participant data is also regarded as evidence, a concern's date of
birth for example, but in the past it wasn't always treated as classic evidence.
It is obviously correct for a concern's date of birth to be maintained within
the Participant Manager rather than being stored on a separate evidence en-
tity, i.e. one that is interfaced to the Evidence API, but it must also be
propagated across all cases belonging to the concern and any changes in
such evidence must trigger reassessment.

• A modification applied to Participant data will automatically apply to all
cases using this data

• Modifying such data will trigger reassessment of all cases using this data

The following Core Participant entities have been integrated with Temporal
Evidence:

• Address

• AlternateID

• AlternateName

• BankAccount

• Citizenship

• ConcernRole

• ConcernRoleRelationship

• Education

• Employer

29

• Employment

• EmploymentWorkHour

• Foreign Residency

• Person

• ProspectEmployer

• ProspectPerson

4.2 Integration of Participant Data as Temporal Evid-
ence

Participant Evidence Integration is available out of the box but, like Tem-
poral Evidence, it requires a certain amount of configuration. If the config-
uration is not carried out, then all newly integrated Participant evidence will
not integrate with the Evidence API. It will, however, continue to function
as it always has. Once configured, the Participant evidence will be linked to
one or more cases via an Evidence Descriptor. As in the case of classic evid-
ence, the Evidence Descriptor can be associated with either an Integrated
Case or a Product Delivery.

The required configuration links the Participant evidence types to the Integ-
rated Case(s) or Product(s) that will use them. Such data is stored on the Ad-
minICEvidenceLink and ProductEvidenceLink respectively. Participant data
that will be stored at the Integrated Case level needs to be configured on the
AdminICEvidenceLink entity whereas Participant evidence that will be used
by a Product needs to be configured on the ProductEvidenceLink entity.

4.3 Administration

4.3.1 AdminICEvidenceLink

Every integrated case type that wants to integrate the available 15 entities as
temporal evidence will need to insert an entry into the AdminICEvid-
enceLink table. This table must link evidenceMetadataID (from Evid-
enceMetadata table) and adminIntegratedCaseID (from AdminIntegrated-
Case table) for each participant entity required as evidence and for each in-
tegrated case type.

4.3.2 ProductEvidenceLink

Every product delivery case type that wants to integrate the available 15 en-
tities as temporal evidence will need to insert an entry into the ProductEvid-
enceLink table. This table must link evidenceMetadataID (from Evid-
enceMetadata table) and productID (from Product table) for each participant

Cúram Temporal Evidence Developers Guide

30

entity required as evidence and for each product type.

4.4 Integrating new Participant entities as Temporal
Evidence

Integrating new, or existing, Participant entities with Temporal Evidence re-
quires a number of steps. As mentioned above, meta-data needs to be con-
figured for Integrated Case types and Product types. As well as this, other
infrastructural support needs to be implemented by a developer in order for
the integration to work.

4.4.1 Implementing the ParticipantEvidenceInterface

A Participant entity being integrated into the Temporal Evidence solution
must implement the ParticipantEvidenceInterface. This means that the entity
will need to implement the following functions:

• calcAttributionDatesForCase

• getDetailsForListDisplay

• getEndDate

• getStartDate

• insertEvidence

• insertEvidenceOnModify

• modifyEvidence

• readAllByParentID

• readEvidence

• selectForValidation

• validate

• checkForReassessment

• createSnapshot

• getChangedAttributeList

• readAllByConcernRoleID

• removeEvidence

4.4.2 Register entity in a Registrar Module

Participant entities being integrated to Temporal Evidence need to be re-
gistered via a Registrar Module as outlined in Section 3.8.1, Evidence Re-

Cúram Temporal Evidence Developers Guide

31

gistrar Module . The out of the box participant evidence types has been con-
figured in CoreRegistrarModule. This binds the evidence type to it's entity.
These map bindings are loaded at runtime and are used by the Evidence
Controller when looking up the appropriate evidence entity for a given type,
i.e. the entity that has implemented the ParticipantEvidenceInterface.

4.4.3 Applying Participant Evidence to all Cases

A new hook class ApplyChangesForEvidence has been added.

The new ApplyChangesForEvidence class represents a hook which can be
overridden by custom code. The ApplyChangesForEvid-
ence.isApplyChangesAutomatedForEvidence method is called from Evid-
ence Controller to decide whether reassessment needs to be triggered when
evidence is applied. The default implementation defaults to false and there-
fore the user will have to manually apply the changes on the associated
cases. If the solutions wish to customize, the implementers should use Pro-
ductHookRegistrar.registerApplyChangesHooks method to add details of
the hooks to use for applying changes. The static map attribute, ap-
plyChangesHookMap present in ProductHookManager class is used to store
pairs of product type and the name of the class that implements the hook for
that product type. The method ProducHookManager.getApplyChangesHook
gets the implementation subclass of the ApplyChangesForEvidence class for
the specified product type. The method EvidenceControl-
ler.applyParticipantEvodence has been updated to obtain product delivery
and product details for the case and then call ProducHookMan-
ager.getApplyChangesHook to obtain correct instance of the Ap-
plyChangesForEvidence class for the given product.

4.4.4 Modifications required to existing business processes

In all places where there are existing calls to insert, modify, and less fre-
quently, remove methods, the code needs to be updated to invoke the Evid-
enceController as well as the insert, modify and remove methods as appro-
priate. An example of how an insert works with Temporal Evidence is
shown below:

// insert new citizenship entry
citizenshipObj.insert(citizenshipDtls);

Figure 4.1 Before

//
// Call the EvidenceController object and insert evidence
// Evidence descriptor details
EvidenceDescriptorInsertDtls evidenceDescriptorInsertDtls =

new EvidenceDescriptorInsertDtls();
evidenceDescriptorInsertDtls.participantID =

details.concernRoleID;
evidenceDescriptorInsertDtls.evidenceType =

CASEEVIDENCE.CITIZENSHIP;
evidenceDescriptorInsertDtls.receivedDate =
Date.getCurrentDate();

Cúram Temporal Evidence Developers Guide

32

// Evidence Interface details
EIEvidenceInsertDtls eiEvidenceInsertDtls =

new EIEvidenceInsertDtls();
eiEvidenceInsertDtls.descriptor.assign(

evidenceDescriptorInsertDtls);
eiEvidenceInsertDtls.descriptor.participantID =

citizenshipDtls.concernRoleID;
eiEvidenceInsertDtls.evidenceObject =

citizenshipDtls;

// EvidenceController business object
curam.core.sl.infrastructure.impl.EvidenceControllerInterface

evidenceControllerObj =
(curam.core.sl.infrastructure.impl.EvidenceControllerInterface)
curam.core.sl.infrastructure.fact.EvidenceControllerFactory
.newInstance();

// Insert the evidence
EIEvidenceKey eiEvidenceKey =

evidenceControllerObj.insertEvidence(eiEvidenceInsertDtls);

Figure 4.2 After

4.5 Sequence Diagrams for Participant evidence

The development, both client and server, of creating and modifying evid-
ence operations are outlined here:

4.5.1 Create Participant Evidence Sequence Diagram

Figure 4.3 Participant Evidence Sequence

4.5.2 Specific Processing For Participant Data when Creating
Evidence

Cúram Temporal Evidence Developers Guide

33

Figure 4.4 Evidence Sequence Diagram

4.5.3 Modify Participant Evidence Sequence Diagram

Cúram Temporal Evidence Developers Guide

34

Figure 4.5 Modify participant

Cúram Temporal Evidence Developers Guide

35

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

36

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Temporal Evidence Developers Guide

37

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Temporal Evidence Developers Guide

38

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Java and all Java-based trademarks and logos are registered trade-
marks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Temporal Evidence Developers Guide

39

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Temporal Evidence Developers Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Prerequisites
	1.3 Audience

	Chapter 2 Server / Client Temporal Evidence Components
	2.1 Server Side Artifacts
	2.1.1 Standard Evidence Interface
	2.1.2 Evidence Interface
	2.1.3 Participant Evidence Interface
	2.1.4 Accessing Non-modeled Functions

	2.2 Client Side Artifacts

	Chapter 3 Developing an Evidence Solution
	3.1 Administration
	3.1.1 Evidence Metadata
	3.1.2 Product Evidence Link

	3.2 Common Evidence Maintenance Operations
	3.2.1 Create Evidence
	Create Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	3.2.2 Modify Evidence
	Modify Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	3.2.3 Read Evidence
	View Evidence Sequence Diagram
	Client - Screen to Be Developed
	Server - Methods to Be Implemented

	3.2.4 List Evidence
	List Evidence Sequence Diagram
	Server - Methods to Be Developed

	3.3 Evidence Dashboard and EvidenceFlow
	3.4 Validations
	3.5 More On Validations
	3.6 Evidence Attribution
	3.6.1 Re-attribution

	3.7 Evidence Relationship
	3.8 Registering Evidence Implementations
	3.8.1 Evidence Registrar Module
	3.8.2 Legacy Evidence Registrar

	3.9 Custom Hooks
	3.9.1 Evidence Controller Hook
	3.9.2 Evidence Controller Hook Registrar & Manager

	Chapter 4 Participant Evidence Integration
	4.1 Overview
	4.2 Integration of Participant Data as Temporal Evidence
	4.3 Administration
	4.3.1 AdminICEvidenceLink
	4.3.2 ProductEvidenceLink

	4.4 Integrating new Participant entities as Temporal Evidence
	4.4.1 Implementing the ParticipantEvidenceInterface
	4.4.2 Register entity in a Registrar Module
	4.4.3 Applying Participant Evidence to all Cases
	4.4.4 Modifications required to existing business processes

	4.5 Sequence Diagrams for Participant evidence
	4.5.1 Create Participant Evidence Sequence Diagram
	4.5.2 Specific Processing For Participant Data when Creating Evidence
	4.5.3 Modify Participant Evidence Sequence Diagram

	Notices
	Trademarks

