..lli

IBM Curam Social Program Management

Curam Modeling Reference Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Curam Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
I Y= Y= R 1

2 N 1tV (<o A U o =g To <R 2

R 1 (=01 S (=S PR RS 2

1.4 Rational SOftWar€ ATCNITECTveeiieiii ittt e e e e e e e s e ee e e e e e e s sessrrrreeeeeeeeas 2

1.5 The CUram Server COUE GENEIAIONvveeeeeeeeeeeeeeieeeeseeeeeesssssreessserseeessasseesssssseeess 2

1.6 ChapterSiNthiS GUITEcccoiuiiiiiieee e 3
L.6. 1 Part 1 - UML OVEIVIEW ..eeeevieeeieeee e eeeeeeeeeeee e e st st ee e s e s sasssasseeesesssssasnssneeees 3

1.6.2 Part 2 - Class SEEMEOLYPESccceevuereerieeieeiesieesieseestee e es e e e ssee e e ssesneesseenes 3

1.6.3 Part 3 - AttribDute SEErEOtYPESc.veiveeieeieeee et 4

1.6.4 Part 4 - Operation SEFEOLYPESccceerueerierierieeriesieesieesieseesressseseesseessessessseenes 4
1.6.5Part 5 - Relationship SLErEOLYPESocueeruereerieeieseesee et 4

1.6.6 Part 6 - Other TOPICSeeveiueeriieiesie ettt sre s 5

Chapter 2 UML OVEIVIEWooceieiece ettt ste et ae e neeeeeneesseeneeneenneeneas 7
2.1 UML and the Input Metarmodelcccooieiieiice e e 7

2.2 Overview of the ArchiteCture LayersSccceceeieecee s 7
2.2.1 RemMOote INtErfaCe LayYErcccvcceeieee ettt 7

2.2.2 BUSINESS ODJECE LAYEN ..ottt 7

2.2.3 DAAACCESS LAYEN ..oeeiiieiiiiiie sttt sttt nanee s 8

PG IS (= (=011 0 OSTRP TR 8
RGN O -SSR (= 011 - S 8

2.3.2 AttribDULE SEEFEOLYPESocveeeieeee ettt 9

ZRCHCH® o' - (0] IS == 011 010 10

2.3. 4 RelaioNShip SEErEOLYPESc.veeeeeieecieeie ettt 11

P D T = 5 1Y/ 0 TSRS 12
Chapter 3 PACKAJESocueeieieeese ettt b et e et nn b e 16
T O Y= AV 1=V AP 16

2 @ o] [o] = ST OTPPR 16
3.2.1 CODE _PACKAGE ...ttt ettt st nre e 16

Chapter 4 Audit MappingS ClaSSESccuiiiiiiiie ettt srae s be e eereas 19
R @ V= V1=V AR 19

A2 RUIBS ettt ettt ettt et e e e et e e s eaaaeeeseaasaeeesaasseeessaasseeessaasseeesaaseeeessannneesaans 19

2.3 OULPULS ettt ettt ettt ettt ettt et e s e e e b e e sae e ease e e ae e e ase e saeeaaseeeseeeabeesaneanbeeanneanneas 21

T @ 1]'0] = PR R 21

Cuaram Modeling Reference Guide

Chapter 5 Domain DefiNitioN ClaSSEScccviiieiicie et nre e 23
5.1 OVEIVIBIW .ottt sttt b e bt b e st et et et nb e b bt et e e e e et et e b e 23
5.1.1 Defining aDomain HIerarchyccceceevieie e 24
5.1.2 Proper USe of DOMAINSccociiiieiieie et eae e s 25
5.1.3 Storage Options for String DOMAINSccvevviiereeie e 25

oI © o 1] 1SS 27
5.2.1Code TADIE NAMEoouiiiiiiiie e 27
5.2.2C008 TADIE ROOLc.eiuieiiiiiiiie sttt 27
5.2.3 Compress Embedded SPacescccevvveevieie s 27
5.2.4 CONVEIT L0 UPPEICASEvveiiiiieiieiesiee e siteeesiiesssiseessieesssseessssaessseessseesssseessanes 28
5.2.5 Custom Validation FUNCtION NaIMEccooveiiiiiiiienisesesesee e 28

5. 2.6 DEFAUIT ..ot 28
5.2.7 M@XIMUM SIZE ..ottt sttt sttt e b e 28
5.2.8MaxXimUM VEIUEccoiiiiiiiiie ettt 29

5. 2.9 MINIMUM SIZE ..oviviiiiiiee ettt st sttt b e 29
5210 MIiNIMUM VAU ...cveiiiiiiieise ettt s 29
5.2.11 Multibyte EXpansSion FaCLOrccccveeeieeiiecieseeie e e s 29
5.2.12 PatterN MEECH ...ocviiiiiiieieeiee ettt 29
5.2.13 Remove LeAdiNG SPACESoccvvereerieeieiiesie e eeese e see e eae e sne e sneesne s 30
5.2.14 Remove Trailling SPAaCEScccceeieeiierieseeiesee s esie e e eee e ste e sneesne s 30
RS (o] =0 (< Y/ o< RSP SPR 30

5.3 Overriding aDomain DEfiNItIONccceeveiieiicie e 30
5.3.1 How to use Domain Definition OVEITIAESccccoverireneneniniereesie e 30
5.3.2 Considerations/ LIMItAHIONSccccceerireriieieniesie e 30
5.3.3USAPERUIES ...ttt st nne s 31
Chapter 6 ENLIY ClASSEScccoiiiirieiisiesieeieeee ettt sb e e s snesne e 33
T @Y= VT S 33
OIS 33
B.3 ATHIDULES ... eneas 34
B.3. L DELAIS ..cuveieiece ettt et a et nrenaenne s 34
TR T =Y SRS 34

5.4 OPEIBLIONSeviviriieieeeeie ettt st b e bt s et e e et e eesbesbeebeebe e st ene e e e e e eenae e 34
6.4.1 Datahase OPEIELiONSccceeeriereririeriseeeeiesee st sie e e ss s s sne e 34
6.4.2 Non-database OPEralionscocevererirerieeieesiese e seens 34

5.5 OULPULS ..ottt sttt b e e bt e s e s bt e s e e e e nb e e b e e nnenne e nennnas 35
6.5.1 Standard K@Y SIIUCESooueiiiriirienisieneees e 35
6.5.2 Standard DetailS SITUCESccvevierieiiece e 35
6.5.3 Standard LiSt SITUCESeoveeiecie et 35

5.6 OPLIONS ...ttt sttt st b et b et e et b e b e bRt ne e b e nae e 35
LTI N o= i - o S 36
6.6.2 Allow OptimiStiC LOCKINGcooviriiiiiiiniirieieeee e 36
6.6.3 AUAIt FIEIAS ...c.veceeceecececees ettt nne 36
6.6.4 ENaDIe Validationcccooeerieiiee et 36
6.6.5 Last Updated FIeldccccoeieiiieeece e 36
6.6.6 NO Generated SQLccceeceerieieeeieseeieeseesieesie e sieesee e sseeeesseesseeeesseesseenees 36
6.6.7 REPIACE SUPENCIESSeeueieiieie e 37

6.7 Concurrency Control - OptimistiC LOCKINGc..covereririieiirenie e 37
6.8 Table Level AUTITINGcccooiiiieriiieeee et 38

Cuaram Modeling Reference Guide

6.8.1 Information Captured by Table-level Auditingcccccoveeiireeieniineeieee, 38
6.8.2 Storage of Audit INfOrMatioNccoceiieieeiinie s 39

5.9 EXIT POINES ...ceeitieiieie sttt sttt sttt e sbe e be s e e saeenteeneesneennenneas 40
B.9. 1 Pre DaAACCESS ...cueeieiiiieeiie ettt ettt ne e sne e sane e 40
5.9.2 POSE DALAACCESSeeiiieieiieeeeiee ettt ne e sne e sne e nans 40
SRS RC Y = 1T r= o o LSRR 40
B.9.4 ON-FAI1 et 40
6.9.5 EXIt POINE PArAMELEN'Socueeiiieieeiie ettt 41
6.9.6 What should exit pointsbe used for ..., 41
6.9.7 What should exit points not be used for ..., 41

6.10 ENtity INNEMTANCEooveeieeieieee ettt 42
6.10.1 Ruleswhen Using Entity INNEritanceccoccoveeveneeninin e 42
ORI 'S W00 = 1 o [1= Lo S 42
Chapter 7 EXIENSION ClIESSESeeiieiiiiesieeiieseesteeiteeeeseetessee s e estesseesseessessessseesesseesseensessenns 44
O V= oV T USSP 44
7.2 HOW t0 USE EXIENSION ClASSESoecviceieiecie ettt 44
7.3 When to Use EXENSION ClaSSEScoeriiriiriisesiisieseeee et 44
7.4 Considerations/ LIMITAHIONSc.cceiirieriesie et 45
T5USAPE RUIES ...ttt e et e e e saeente e e e sneenneeneas 45
Chapter 8 FaCae ClaSSESciuiiiiiieie e seeriesee st e et e s te e sreeneesseesseeneesseesseensesneens 46
ST O Y= VT S 46
ST U =S 46
RCH @ o7 - 1 [0] o TSSO 46
B.3. L AEFAUIT ..o et nre s 46
B.3.2D@ICH ..o e re s 47

8. 3.3 WIMAPACTIVITY ...veeiitiieieiieeee ettt nne s 47
B.3.4 QCONNECLONeeueeereeimeeeree e e e s e sne e e e s e e n e smeesne e s nneene e nneeeneesnneereennneens 47

SR @ o] [0] =TSRSS 47
LSTRAN AN o 1 - o SRRSO 47
8.4.2 Generate FaCale BEaNcccvccvveeieeie ettt 47
8.4.3 REPIACE SUPENCIESScueeueeiiiiie e 47
Chapter 9 ProCeSS ClaSSESciiiieeiiiiiesieeiteseesiee e ee sttt besstesseesbeesessessaeseesseesreensesneens 48
.1 OVEIVIBI ettt ettt sttt et e bt et s e sbe et e s st e s be e beeneesbe et e eneesneenenneas 48
9.2 BUSINESS ProCESS ODJECEScoiuiiiieieiiie et 48
ORI U =SS 49
R @01 - 1 0] TSR 49
N o 1= - 1 S SRSRSPSN 49
SR o (o o SRS 49

9. 4.3 WMAPACKIVITY ..ottt sttt sne e 49
Ao (o0 0] 01 o: (o AP STREUPRR T OTRPTR 49

SR O o 110] USSR 50
R N o= i - o SRR 50
9.5.2 GENEIALE FIDS ... 50
9.5.3 REPIACE SUPEICIASS ..ot 50
Chapter 10 SITUCE ClESSEScoviriiriiriisierieieie ettt sttt be bbb eenaeseesbe st 51
L @< oV USSP 51

Cuaram Modeling Reference Guide

LO.2Z RUIES ettt b et e et b et b b et be e 51
JO.3 OULPULS ...ttt ettt e b e e et e e ae e e s e e saeeeaseeaaeeeaseesaeeenneesneeenneesnneans 52
L0 @ (o] = RSP RRTR 52
TOA T AUAIE FIEIAS ... 52
Chapter 11 ATITDULESeoieeie ettt st e st e s e sreetesaeesneesnesneesreereaneens 53
R @< oV USSP 53
11.2 ARITDULE RUIES ...ttt 53
RGN 1] o101 (=T @ o)1 0] OSSR 54
L1131 AITOW NULLS oottt 54
11.3.2 Multibyte EXpansion FaCLOrccccoveiieiieciereeiee e see e ense s 54
Chapter 12 OPEIELIONScoovereerieriestestesieeieee et ste st st st st e e seestesbesbesaesbesse e e esenseseesseneens 56
12,1 OVEIVIBW .eeeeeeeieeeesieesieete e teete s e sseesaesseesseeneesseesseensesneesseensesseesseensenneesseensennenns 56
L2.2 RUIES ettt sttt ettt sttt e st e e nenaenaeneas 56
12.3 OpEration OPLIONSccveivirierieriieieiesee et sb et be b e s e s e see e sais 57
12.3.1 Audit BI (Business Interface) Callsto this Operationccccceevererennne 57
1232 AULO ID FIEI ..o 57
12.3.3 AULO ID K@Y .ottt 57
1234 BUSINESS DAL ..ottt 57
12.3.5 BytesMessage encoding CharaCter Selceovvveienenenc s 60
12.3.6 Database Table-level AUAItINGccooeiireiiieee e 60
12.3.7 FIeld LEVEl SECUNLY ...ocveieiiieeiieieieseese ettt 61
12.3.8 INDI name of the QueueConnectionFactory Classc.cccevvieierenennene 62
12.3.9 INDI name of the tranSmMiSSION QUEUEcccervereerieriereerieseeeeeeseeseesie e 62
12.3.10 INDI name of the reply QUEUEccceveriririeese e 62
12311 MESSAGE LYPE ..ttt 62
12.3.12 NO Generated SQLcccoveveriereeiesieseeeeseesie e sreessesee s esae e sseensesneens 62
12.3.13 ON Fail OPEFEHIONocviiiiiiieiieieie et 64
12.3.14 OptiMIStiC LOCKING ..oveiviiiieiieiiiesiesie et 64

R S @ (o (= g = VSRS 64
12.3.16 Post Data ACCESS OPEIELIONocververierierieeieeeeee et sae e 64
12.3.17 Pre Data ACCESS OPEIaliONcccooeririeririeeieieesiesie st seens 65
12.3. 18 REAAMUITE_IMBX ..cuviiiiiiiieiieieeeee et 65
12.3.19 Readmulti_INfOrmationalcccoovveereeiiesieneee e s se e e nee s 65
12.3.20 Response message timeout (SECONAS)ceveveriererieniereneeeseeee e 65
B2 A S < ol U 1 SRS 65
R s O | SR 66
12.3.23 TranSaCtIONAlccveiueeiecieeie et sse e ae e sreenseeneens 66
B V1Y o = SRS 66

12.4 Operation Parameter OPLIONSccueierieriererieneeeeee s see s 66
1241 Mandatory FIEIAScooeiiiiiieeees e 66
Chapter 13 Entity OperationS OVEIVIEWccciiiiriiriniseeieeesee s se e s e e s 68
RGN g 11 oo [F (o1 o o RS TRSRTR 68
13.2 Standard OPEIaliONSccceeeerierrieniesieesie e sieesee e e e seeseesresseesseessesnsesseessesnsesseens 68
13.2.1 Standard Single-Record Operationsccoueereereseeriesieeseese e seeseens 68
13.2.2 Standard Multi-Record OPerationsccccooeereereneesiesieeseese e seeeseeseens 69

13.3 NON-Standard OPEratioNSceeereereriieriesieesie e see e sresseesee e s e sreesseeneesneens 69
13.3.1 Generated SQL OPEratioNSccoeeiuereerieriieseesieeiesieeseeseesreeseeseeseesssesseens 69

Vi

Cuaram Modeling Reference Guide

13.3.2 Handcrafted SQL OPEIationscccceeeerierrirreesieeiie e sieseesieeseeseeseeeseesseens 70
134 NON-KEY OPEIAiONSeeeeiiiieriiriieiiesieeiie e stes e see e s seeseessesneesseesseensesseessesnsesseens 70
13.5 BaCh OPEIELIONSccueeveeieitiesieeie ettt bessee e sbe e sseesaeeeesaeesseensesneans 70

Chapter 14 Entity INSErt OPEIatiONScccoviveeieerieeieseeiteseeseesteseesseessesseesseessesseesseessessenns 71
@ Y a1 OSSR 71
S = 1 F= o 1 0= o OSSR 71

I B 1= o oo o OSSP 71

N 1= USRS 71

14.2.3 Parameter and Generator NOESccceeveeieeiiereeie et see s e 72
14.3 Non-standard Insert (Generated SQL)cccveveeieieeseeie e sieeeesee s see e see e 72

G I B 1= o o1 o o OSSP 72

1= USRS 72

14.3.3 Parameter and Generator NOEScceeveeieeiiereeie e s s 73

Chapter 15 Entity Read OPEralionSccocveieiirierieriesiesieseeeeee et seens 74
L5, L OVEIVIBIW ...ttt ettt ettt st e et e e s ae e s b e e ebeesabeesaaeenseesseeenseesneeenseesnneans 74
15.2 Standard REAAooeiiiii et nre s 74

15. 2.1 DESCIIPLION ..t stesieetesieee ettt sttt ss b st b bt e s e b e 74

S 1= SRS 74

15.2.3 Parameter and Generator NOLEScccveveeriereereeieseesieeeesee e see e seesneens 75
15.3 Standard REBAMUILTcecueiieeeeceesee e e e neeeneens 75

15.3. 1 DESCIIPLION ..ttt se b bbbt e e e e nne e 75

ST T 1= PSSR 75

15.3.3 Parameter and Generator NOLESccveveeieereereeieseesieseesee e se e e 76
15.4 Non-standard Read (Generated SQL)ccocoveriririierieiese e 76

15.4. 17 DESCIPLION ..ttt ettt sttt e s b bbbt e e s e nne b e 76

S 1= USRS 76

15.4.3 Parameter and Generator NOEScceeveeeereereeieseesieeeesee e e eneesneens 76
15.5 Non-standard Readmulti (Generated SQL)ccooveieierenenenesereeeeee e 77

15.5. 1 DESCIIPLION ..ttt sttt b e bbbt e e b e 77

1552 USB ittt sttt ettt st sttt et e aeeaeeneene e e e e eaenrenaenrens 77

15.5.3 Parameter and Generator NOEScccveveereereereeieseesieseesee e e e enee e 77
15.6 NON-KEY REAA ...t 78

15.6. 1 DESCIIPLION ..eeeueieetistesiesteeieeiee ettt b e bbbt e e e e b e 78

G 1= PSSR 78

15.6.3 Parameter and Generator NOESccceevveeereereeieseeseeeeesee e e e enee e 78
15.7 NON-Key REAAMUILEocuiiiiiiiiieeee e s 79

15.7. 1 DESCIIPLION ..veeueiieeistesiesteeieeiee ettt s e bbbt e e s e b nre s 79

S 1= SRS 79

15.7.3 Parameter and Generator NOEScccveveeeereereeieseesieseesee e e eneesneens 79

Chapter 16 Entity Update OPErationsSccoeeereeriereesieerieseesieesie e siesseessesssessessesssesnsesseens 80
LE. L OVEIVIBIW ...ttt ettt ettt et e et e e e s e e b e e e aeeeabeeaaaeeseesseeenbeesneeenreesnneans 80
16.2 Standard MOGITYooeeeeieeee et s 80

LA B T o | o 1o o USRS 80

G 1= SRS 80

16.2.3 Parameter and Generator NOEScceeveriiereeniene e 81
16.3 Non-standard Modify (Generated SQL)coceereriererieeee e 81

LG I BT o | o 1o o USRS 81

vii

Cuaram Modeling Reference Guide

GG U 1= USSR 81
16.3.3 Parameter and Generator NOEScceeverierienieeee e 81
16.4 NON-KEY MOITY ...t sre e sne e 82
LR B T o | o 1o o USRS 82
G 1= SRS 82
16.4.3 Parameter and Generator NOESceoveerieneenieeie e 82
Chapter 17 Entity Delet€ OPErationsccceiveeieereiieeseerieseeseesssseeseesseseeseesssseessesnsesseens 83
R @< oV USSP 83
17.2 StAaNdard REMOVEcoviuiiieriiiiieieie ettt st a b e s 83
2 B 1= o o 1o o OSSR 83
L7.2.2 USB ittt bbbt b bbb n ettt aenre s 83
17.2.3 Parameter and Generator NOEScceeveeieeiierieeie e e s s 84
17.3 Non-standard Remove (Generated SQL)ccccvveereeieiieesieeiesee s eseesee e e 84
G I B 1= o o1 o o SRS 84
G L= TSRS 84
17.3.3 Parameter and Generator NOEScceeveeeeiierieeie e eee e 84
17.4NON-KEY REMOVE ...ttt ettt et s e aesnaesneenennnens 85
I B 1= o o1 o o OSSR 85
R 1= OSSPSR 85
17.4.3 Parameter and Generator NOLES ... 85
Chapter 18 Entity BalCh OPEralionScccccoeeiierieririesisiseeeeee et sne e seens 86
18,1 OVEIVIBW .eeeeeeieeeesieesie e e et e e s esteesaesseesaeeneeese e seesseeneesseenseaneesseensenneessnensennenns 86
RS2 = 7= (01110 o PSSR 86
RSN DT o] o 1 o o E O RUR USSP 86
S 1= USRS 87
18.2.3 Parameter and Generator NOESccceeveeiereereeieseesieeeesee e see e enee e 87
18.3 BACHMOITY ...ttt e 88
18.3. 1 DESCIIPLION ..ttt sttt ss b st b et e e e e e nnenre s 88
S 1= SRS 88
18.3.3 Parameter and Generator NOLES ... 88
Chapter 19 Entity Handcrafted SQL OPErationscocceveieereeiinsiesieeseeseesessee e seesseesseens 90
L. T OVEIVIBIW ..ttt sttt et e st e e b e e e e e aeesbe et e eneesbeeneesneesbeeneenneens 90
RS 07 N o B =00 - o USSR RTR 90
RS A B T o | o o o USRS 90
B U 1= SRS 91
19.2.3 Parameter and Generator NOEScceeveriiereenenie e 91
19.3 NON-StANAAIrd MUITE ..o e 91
RS G B T o | o 1o o USRI 91
B U 1= SRS 92
19.3.3 Parameter and Generator NOLEScceeverrierieneeie e 92
19.3.4 Example 1 - nsmulti with a Single (List) Parameterc.ccoooveevveeienenne 92
19.3.5 Example 2 - nsmulti with Two Parameters (Key + List) .cococovvveeieeiennenne 94
19.4 Using Handcrafted SQL in Non-Standard Entity Operationsccccocceveeiennenne 97
L9471 OVEIVIEIW .ttt ettt ettt st et s et e see bt et e sneesbeeaesneesaeensesneans 97
19.4.2USINg HOSt VaiabIESceoeiiiieiiee e 97
19.4.3 NUIl CONSIAEIBLIONSeevieieriieieeie et eesreeee e 97
19.4.4 For Update Considerations With DB2 for Z/OSccccooviiieieicnenenins 98

viii

Cuaram Modeling Reference Guide

19.4.5 SQL EXAMPIE L ...ttt ettt 99

19.4.6 SQL EXAMPIE 2 ...ttt st s 99

(G0 {0l 2N To (=" = 1 o o 101

20. 1 OVEIVIBIW ..ottt sttt sttt e s et b e s bt sbe bt e st et e e e e e eenbenbenreas 101

20.2 Ruleswhen UsiNg AQOregationcccceeieeieseesieeieeseesseesessseessessesseessesessseenns 101

20.3 A SPECIAl CBSL ..o.viveiieiieiieie ettt bbbttt b nae s 101

20.4 0ONe-t0-ONE AQOregatioNccueeeeiieeiieieesieeieseesteeseeseesseeeesreesreseesreesseeneesreenes 101

20.5 0Ne-to-Many AQQregationccceererrerereserseesesseesse e sressese e ssesessessenens 103

Chapter 21 ASSIGNADIE ... 105

DA V= V= R 105

21.2 EXplicit Field ASSIGNMENTociiiiirieieieeeeee et 106

21.3 Suppressing Default Assignment FieldsScocoveiiiinenineneeeee e 108

21.4 COMDINING SEIUCESvevieiieiieieie ettt e e e se e sbe e 109

Chapter 22 FOreign KEYS ...ttt sttt st sb e b e nre s 110

221 OVEIVIBW ..ot eiee st eeesiea st ee st este st e saeesbeeseesaeesbe et e sseebeestesaeenbesneesseensesneesreenes 110

22.2 Ruleswhen Using FOreign KEYScociiieiiriiiierieeie et 110

22.3 How to Add aForeign Key to aDatabase Tablecccooveiiiiinincnneeiece e 110

22.4 Naming Primary and Foreign Key CONSIraintsSccooeeierieeneeneniieseenie e 111

22 5 BEXAMPIE .ottt sre s 111

(O = e B 1 o [o= 113

231 OVEIVIBW vttt be bttt e et et et b e s bt s be s bt e bt e st e e et e eenbennenee s 113

23.2 RUlesWhen USING INAICESocvviieiiecie ettt 113

23.3 How to Add an Index to aDatabase Tableccccoveviieninieninineeee e 113

PZAC T = o 0 1 o T g o o= 114

DGRl T 10 o S 114

Chapter 24 UNIQUE INAICESc..oiuiiieiieieeieieee ettt 116

@ V= V= S 116

Chapter 25 Generated Class HIErarChYcocoiiieriinereesese et e 118

BT @ V< V= SRR 118

25.2 Basic Hierarchy EXampPIeccooiiiiiiiieeee e e 118

25.3 Hierarchy for SUDCIBSSESoouiiieeeie e e 120

25.4 Hierarchy for ADSLract ClaSSESccceiiieeririirieenieeie et 121

PSRN OC0 01 [0 S = 1 [0] 0 TSR 122

25.5.1 Access Control - private/protected/public/packageccccoeevveieeienenns 122

2552 The Meaning Of SUPEYccoiiiiriieiiee et 122

25.5.3 Enforcing the Factory Mechanism ... 122

25.6 SUMIMIBIY ..eeieieieiee et eee et ettt e ee s se e sase e s ae e e se e sseeeaseesaeeeaseesaeeenseesaneenseesneeanneannns 122

Chapter 26 Clram JMS QUEUE CONNECLONSoceerueeieieerieerieeeesreesseeeesreessesseesseesseseesseenns 124

26. 1 OVEIVIBIW ..ttt sttt b et ae b et b s b e s be e bt e st et e e e e e neentenbeneeas 124

26.2 HOW 1t WOrKS/ What It DOBScocvriiiiiriiniinieieie et 124

26.3 Options on qCoONNECLOr OPEIAtiONSccveiueeiieieerieeieeseeste e e e eeesee e eeesreenes 125

26.4 How to Use Qeonnector OPErationScccecceeeerieeieeseesieeseeseesseseesseessessessseenns 126
26.4.1 Decide on Format of Message and Create the struct(s) to Correspond to the

Y SSS72 o [TSSOSO 126

Cuaram Modeling Reference Guide

26.4.2 Add the operation to the application meta-model.ccccevvrierienienenns 126

26.4.3 Configure the Queues in the Application SErverccccoceevevreeneeienens 126

26.4.4 Implement the message recipient in the remote systemccccceeveenenne 127

26.5 RUIES] RESIICHIONSoeoueiiiieiieie ettt sttt sttt be e see s 127
26.6 Encoding Methods for Fundamental TYPEScccoveriiiieninin e 127
26.7 Using Customized Encoding/Decoding Classesccoceivriereenieniinneeniesen e 128
26.8 Example 1 - Working with Variable Length Fields ... 129
26.9 Example 2 - Working With LISEScociiieiininieesieeie e 131
Chapter 27 SUDCIASSINGocveiieiieiieie ettt e et re e sreenesneesneeseeneesreenes 136
P2 | 11 L8 1 o o USSP 136

27.2 Reasons fOr SUBCIBSSINGccvccueiieiiie et 136
27.3HOW 1O MOGEL [T ..ot e 136
27.3.1 BaSIC SUDCIASSINGveeiveeieiieeie ettt s e e nnesneens 136

27.3.2 Replacing the SUPEICIBSSccccviieiiiieceere et 137

27.3.3 ADSIECE ClBSSESevueeuiiiirierie ettt e 137

PG R (= 1 o 1o TSRS 137

27.4 How to write Code for SUBCIESSINGccceevvieiiiiesiece e 138

27.5 Example - Using Subclassing to Override Entity Exit PoInts...........ccccccveeveenee. 138
27.5.1 Overriding Validation EXit POINtccccceiieiiiieneeie s seesne s 138

27.5.2 Overriding Pre Data Access, Post Data Access, and On-Fail exit points . 138

Chapter 28 Application CUSLOMIZELIONcceeoveeeereeieeeeseesieseeseesee e sree e seesseesseseesseenes 140
D22 T V= V= S 140

N o= 141

Chapter 1

Introduction

1.1 Overview

IBM Cdram Social Program Management enables the creation of client-
server applications by minimizing the complexity application developers
face in developing database access, EJB management, client-server interac-
tion, etc. This minimizing of complexity is achieved by developers model-
ing the application(s) they wish to create using a UML* meta-model.

The Caram Generator uses this UML meta-model to automatically generate
all the required stubs, skeletons, classes, and communications required to in-
teract with a back-end database and remote clients leaving the developer to
concentrate on providing the application business logic. This guide de-
scribes the tools and components available to an application developer when
they are modeling the application, and how the Ciram Server Code Gener-
ator will treat each of these components when generating classes.

The UML meta-model is a platform-independent model which describes the
following aspects of the application:

» Domains—application-specific datatypes. Analogous to C++ typedefs.

» Entities—the objects modelled and persistently stored by the applica-
tion. These correspond to relational database tables.

* Processes—related sets of activities to achieve some business goal.

e Sructs—passed as messages throughout the application. Analogous to
structsin C++.

» Remote Interfaces—client-visible interfaces through which server func-
tionality may be accessed.

This document provides a reference for Ciram model-based functionality
such as: Clram domains, classes, operations, attributes and how they map to
the underlying database.

1.2

1.3

1.4

1.5

Curam Modeling Reference Guide

The model is edited using the IBM® Rational® Software Architect and code
is generated using the Cldram Server Code Generator.

Intended Audience

This document should be read by people who will be using the Clram Serv-
er Development Environment for Java® (SDEJ) tools to generate applica-
tions from UML models.

Prerequisites

The reader should be familiar with Ctiram model development concepts and
should have a good working knowledge of the following before reading this
document:

o Curam server development (see the Clram Server Developer's Guide for
more details);

* Rational Software Architect;

e UML;
e Java.

Rational Software Architect

Rational Software Architect is the third-party tool used for developing and
maintaining the UML meta-model. It is primarily used as a tool for object
mapping, analysis and design. A key reason Rational Software Architect
was selected for these functions is because of its extensibility, which en-
ables support of modeling for Curam. The use of Rational Software Archi-
tect is covered in the Working with the Ciram Model in Rational Software
Architect document.

@

n Note

Please refer to the Caram Supported Prerequisites document for
more information on the supported versions of third party tools.

The Curam Server Code Generator

The Curam Server Code Generator takes as its input the UML meta-model
and produces the following outputs:

» Java server implementation code;

e Java beans;

1.6

1.6.1

1.6.2

Curam Modeling Reference Guide

« XML? for the database entities and other classes in the modél.

Chapters in this Guide

This chapters in this guide can be logicaly grouped into six parts as de-
scribed below.

Part 1 - UML Overview

Part 1 consists of a high-level overview of UML and how it applies to
Curam modeling. These are the chapters making up this part:

* Chapter 2 UML Overview
e Chapter 3 Packages

Part 2 - Class Stereotypes

Part 2 provides reference and usage information for the various class stereo-
types used with Cram modeling and related topics.

Some notes applicable to classesin general:

» Two or more struct or process classes may have the same name provided
they are in different packages and have different CODE_PACKAGE
names. All other class names must be completely unique within the in-
put model. For more information on the CODE_ PACKAGE option see the
CODE_PACKAGE option in Section 3.2, Options.

» All classes and domain definitions are visible to each other throughout
the model.

* All new classes should be created within a sub-package of a custom
model. It is advisable to model new classes within a suitable package
structure. The package structure within the Clram model is a good pat-
tern to follow. For clarity, new class name should be prefixed with arel-
evant acronym or abbreviated word as discussed in the Ciram Develop-
ment Compliancy Guide.

These are the chapters making up this part:

» Chapter 4 Audit Mappings Classes

» Chapter 5 Domain Definition Classes
o Chapter 6 Entity Classes

» Chapter 7 Extension Classes

» Chapter 8 Facade Classes

o Chapter 9 Process Classes

1.6.3

1.6.4

1.6.5

Curam Modeling Reference Guide

e Chapter 10 Struct Classes

Part 3 - Attribute Stereotypes

Part 3 provides reference and usage information for the attribute stereotypes
used with Caram modeling and is made up of this chapter:

» Chapter 11 Attributes

Part 4 - Operation Stereotypes

Part 4 provides reference and usage information for the operation stereo-
types used with Cdram modeling and related topics. These are the chapters
making up this part:

» Chapter 12 Operations

» Chapter 13 Entity Operations Overview

o Chapter 14 Entity Insert Operations

» Chapter 15 Entity Read Operations

» Chapter 16 Entity Update Operations

o Chapter 17 Entity Delete Operations

o Chapter 18 Entity Batch Operations

» Chapter 19 Entity Handcrafted SQL Operations

Part 5 - Relationship Stereotypes

Part 5 provides provides reference and usage information for the relation-
ship stereotypes used with Clram modeling and related topics.
Adding relationships to existing classes can be accomplished as follows:

Create a class diagram in the custom area of the model and drag the existing
class(es) onto this diagram. This does not create a copy of the class, rather,
it creates areferenceto it. Model the relationship on this diagram as normal.

These are the chapters making up this part:
» Chapter 20 Aggregation

» Chapter 21 Assignable

» Chapter 22 Foreign Keys

» Chapter 23 Indices

o Chapter 24 Unique Indices

Curam Modeling Reference Guide

1.6.6 Part 6 - Other Topics

Part 6 provides reference and usage information for other modeling topics.
These are the chapters making up this part:

» Chapter 25 Generated Class Hierarchy

» Chapter 26 Caram JM S Queue Connectors
» Chapter 27 Subclassing

» Chapter 28 Application Customization

Curam Modeling Reference Guide

Notes

lUML stands for Unified Modeling Language and is an open method used
to specify, visualize, construct and document the artifacts of an object-ori-
ented software system under development.

2The XML produced by the Clram Server Generator is then processed by
the Cliram Data Manager (described in the Ciram Server Developer's
Guide), which produces the relevant SQL scripts that are used to create the
required database structure for the application.

2.1

2.2

2.2.1

2.2.2

Chapter 2

UML Overview

UML and the Input Meta-model

UML constructs, created and maintained by the user with Rational Software
Architect, are referred to collectively as the input meta-model and this is
used as input to the Clram generator. It is a logica representation of the
system being developed. Another way of looking at it is: it is the mechanism
that developers use in order to tell the generator what to generate.

This meta-model consists of a set of packages, which in turn contain class
representations, potentially containing attributes and operations, which have
relationships with one another. Classes in the input meta-model result in
various generated Java classes and in some cases tables and indices in gen-
erated DDL".

Overview of the Architecture Layers

The Caram architecture is conceptually divided into three layers, as follows.

Remote Interface Layer

The Remote Interface Layer presents an interface to business functions that
can be used by a client program. It also interacts with third-party middle-
ware components to ensure consistency and atomicity of the transactions
that execute in business functions.

Business Object Layer

The Business Object Layer implements all of the server's business function-
ality. As such, thislayer contains the business application's “smarts’. Within
this layer, Business Process Objects (BPOSs) represent the basic business en-
tities modeled by the server application. BPOs implement the business logic

2.2.3

2.3

2.3.1

Cuaram Modeling Reference Guide

of a Clram server application. Typically these are responsible for manipu-
lating Entity Objects in a business-specific way. This is where most of the
development effort is (or should be) concentrated in business application de-
velopment. For more information about BPOs, see Chapter 9, Process
Classes.

Data Access Layer

The Data Access Layer is responsible for all interactions with the back end
Relational Database Management System (RDBMS). For more information
about Entities, see Chapter 6, Entity Classes.

Stereotypes

Stereotypes are a UML concept used to further describe the various aspects
of the Cdram application model. In UML a stereotype is a string expression
used to assign a classification to an object.

In general, stereotypes affect the behavior of the generator and thus determ-
ine its output. For example, an entity class is identified by having a stereo-
type of <<entity>> and consequently will have DDL and data-access
code produced by the generator.

The supported stereotypes are as shown in the following sections.

Class Stereotypes

The following table lists the class stereotypes with a short description and
reference to where they are described in more detail.

Stereotype Description Reference

audit_mappings An audit mappingsclass Chapter 4, Audit Map-
enables additional fields pings Classes
to be defined in the data-
base for auditing pur-
pOSes.

domain_definition A domain definitionisa Chapter 5, Domain Defini-
meta-model classwhich tion Classes
defines a datatype.

entity An entity classencapsu- Chapter 6, Entity Classes
lates data-maintenance
functionality on a data-
base table.

extension Extension classesarein- Chapter 7, Extension
tended to be used to Classes

change the Audi t
Fi el ds or Last Up-
dat ed Fi el d options

2.3.2

Stereotype

facade

listrdo

|loader

process

rdo

Struct

webservice

wsinbound

Curam Modeling Reference Guide

Description

of an<<entity>>or
<<st ruct >> class.

Facade classes are used to
create client-visible opera
tions. They provideasim-
plified interface to alarger
body of code, such asa
class.

ListRDO classes are
simply an aggregation
(list) of RDO classes.

L oader classes are spe-
cified for rules data items
in the model (<<r do>>
& <<l i strdo>>).

A process class encapsu-
lates a business process.

RDO (Rules Data Object)
classes are used to contain
data used by the Clram
rules engine.

A struct classis a meta-
model representation of a
Java class containing a
collection of fields.

A WebService class rep-
resents an inbound legacy
web service.

A WS Inbound class rep-
resents an inbound web
service,

Table 2.1 Cuaram Class Stereotypes

Attribute Stereotypes

Reference

Chapter 8, Facade Classes

Cuaram Rules Codification
Guide

Curam Rules Codification
Guide

Chapter 9, Process
Classes

Curam Rules Codification
Guide

Chapter 10, Struct Classes

Clram Web Services
Guide

Caram Web Services
Guide

The following table lists the attribute stereotypes with a short description
and reference to where they are described in more detail.

Stereotype
audit_mappings

dataitem

Description

Reference

An audit field entry on the Chapter 4, Audit Map-

Audit Mappings Class.

A attribute on aRDO or
ListRDO class.

pings Classes

Cuaram Rules Codification
Guide

2.3.3

Stereotype
default

details

key

Curam Modeling Reference Guide

Description

A public attribute or field
in astruct class.

Reference
Chapter 10, Sruct Classes

An attribute or field which Chapter 6, Entity Classes

is part of an entity but not
part of the entity key.

An attribute or field which Chapter 6, Entity Classes

is part of an entity's key.

Table 2.2 Caram Attribute Stereotypes

Operation Stereotypes

The following table lists the operation stereotypes with a short description
and reference to where they are described in more detail.

Stereotype
batch
batchinsert
batchmodify
default
insert
modify
nkmodify
nkread
nkreadmulti
nkremove
ns

nsinsert

Description

Process by the Batch
Launcher via generated
wrapper code

For inserting large
amounts of data via batch

For modifying large
amounts of data via batch

Star)dard non-database op-
eration

Standard database insert
Standard database update
Non-key database update
Non-key database read
Non-key database read
Non-key database delete
Database operation for

handcrafted SQL

Non-standard database in-
sert

Reference

Section 8.3.2, batch &
Section 9.4.2, batch

Section 18.2, Batchlnsert
Section 18.3, BatchModify

Section 8.3.1, default &
Section 9.4.1, default

Section 14.2, Sandard In-
sert

Section 16.2, Sandard
Modify
Section 16.4, Non-key
Modify

Section 15.6, Non-key
Read

Section 15.7, Non-key
Readmulti

Section 17.4, Non-key Re-
move

Section 19.2, Non-
standard

Section 14.3, Non-
standard Insert
(Generated QL)

10

2.3.4

Stereotype
nsmodify

nsmulti

nsread

nsreadmuilti

nsremove

gconnector

read
readmulti
remove

wmdpactivity

Curam Modeling Reference Guide

Description Reference
Non-standard database up- Section 16.3, Non-
date standard Modify
(Generated QL)
Database operation for Section 19.3, Non-
handcrafted SQL standard multi
Non-standard database Section 15.4, Non-

read

Non-standard database
read

Non-standard database de-
lete

For connecting to external
JMS

Standard database read
Standard database read
Standard database delete

Deferred processing

Table 2.3 Caram Operation Stereotypes

Relationship Stereotypes

standard Read (Generated
L)

Section 15.5, Non-
standard Readmulti
(Generated QL)

Section 17.3, Non-
standard Remove
(Generated QL)

Section 8.3.4, qconnector
& Section 9.4.4, qconnect-
or

Section 15.2, Sandard
Read

Section 15.3, Sandard
Readmulti

Section 17.2, Sandard
Remove

Section 8.3.3, wmdpactiv-
ity & Section 9.4.3, wmd-
pactivity

The following table lists the attribute stereotypes with a short description
and reference to where they are described in more detail.

Stereotype
aggregation

assignable

Description

The ability to embed or
nest instance(s) of one
type of class within anoth-
er type of class

An assignable relationship
provides the ability to
map differing or exclude
fields for an assign func-

Reference
Chapter 20, Aggregation

Chapter 21, Assignable

11

2.4

Cuaram Modeling Reference Guide

Stereotype Description Reference
tion.

extension Thelink between anex- Chapter 7, Extension
tensonclassandtarget ~ Classes
class.

foreignkey A modeled description of Chapter 22, Foreign Keys
a database foreign key.

index A modeled description of Chapter 23, Indices
a database index.

uniqueindex A modeled description of Chapter 24, Unigue In-

adatabase uniqueindex. dices

Table 2.4 Cuaram Relationship Stereotypes

Data types

The input meta-model supports a number of data types that provide abstrac-
tion for the developer from the different underlying data types used by the
database, middleware and Java layers. These data types can be used to
define attributes, arguments and return values in a platform and database
neutral way, and the SDEJ will take care of mapping them to the appropriate
data type in each layer of the application.

Type Description
SVR_BLOB Used for holding binary data.

Correspondsto classcuram uti | . t ype. Bl ob.

Requires asize qualifier although thisis only actually
used if the field is used on a database table.

Fields of type SVR_BLOB may be null on the data-
base.

SVR BOOLEAN Used for holding binary values.
Corresponds to the primitive Java type bool ean.

Is stored as a single character field on the database
where 0 =falseand 1 =true.

Fields of type SVR_BOOLEAN cannot be null on the
database.

SVR_CHAR Used for holding single character values. Note that
this data type cannot be used to hold strings or arrays
of characters and therefore does not take a size quali-
fier.

Corresponds to the primitive Java type char .

12

Cuaram Modeling Reference Guide

Type Description

Fields of type SVR_CHAR cannot be null on the data-
base.

SVR _DATE Used for holding date values with aresolution of one
day.
Correspondsto classcuram uti | .t ype. Dat e.

Fields of type SVR_DATE can be stored as null on the
database.

SVR_DATETIME Used for holding date and time values with a resolu-
tion of one second.

Correspondsto classcuram uti | . t ype. Dat e.

Fields of type SVYR_DATETI ME can be stored as null
on the database.

SVR DOUBLE Used for holding floating point numbers.
Corresponds to the primitive Java type doubl e.

Fields of type SVR_DOUBLE cannot be null on the
database.

SVR_FLOAT Used for holding floating point numbers.
Used for holding floating point numbers.
Corresponds to the primitive Java typef | oat .

Fields of type SVR_FLOAT cannot be null on the
database.

SVR_INTS8 An eight bit integer.
Corresponds to the primitive Java type byt e.

Fields of type SVR_| NT8 cannot be null on the data-
base.

SVR_INT16 A sixteen bit integer.
Corresponds to the primitive Java typeshort .

Fields of type SVR | NT16 cannot be null on the
database.

SVR_INT32 A thirty-two bit integer.
Corresponds to the primitive Java typei nt .

Fields of type SVR | NT32 cannot be null on the
database.

SVR_INT64 A sixty-four bit integer.
Corresponds to the primitive Java typel ong.
Fields of type SVR_| NT64 may be null on the data-

13

Cuaram Modeling Reference Guide

Type Description

base.

SVR_MONEY A fixed point numeric value with two decimal places
used for holding currency values.

Corresponds to the primitive Java type
curamutil.type. Money.

Fields of type SVR_MONEY cannot be null on the
database.

SVR_STRING Used for holding string values.

Corresponds to the Java class
java.lang. String.

A SVR_STRI NG may optionally have alength quali-
fier. A SVR_STRI NGwithout alength qualifier isa
SVR_UNBOUNDED_STRI NG. Strings stored on the
database must have alength qualifier to enable a max-
imum size to be specified for the database column.

A SVR_STRI NG can be stored on the database as
either CHAR, VARCHAR or CLOB depending on its
size and the type of database. For more information
about storage options for strings, see Section 5.1.3,
Storage Options for Sring Domains.

Fields of type SVR_STRI NGmay be null on the data-

base.
SVR_UNBOUNDE Used for holding string values for which a maximum
D_STRING length need not be specified.

Corresponds to the Java class
java.l ang. Stri ng.

SVR_UNBOUNDED_ STRI NGisthe only Curam data
type which cannot be used by an attribute of an
<<ent i t y>> class. Thisis because this data type
does not allow the developer to specify its maximum
size and therefore cannot be used to define a database
column. To define astring field onan <<ent i t y>>
you must use SVR_STRI NGwith alength qualifier.

Table 2.5 Caram Data Types

14

Curam Modeling Reference Guide

Notes

!DDL means Database Definition Language. It is an SQL language subset
enabling the structure and instances of a database to be defined in a human

and machine-readable form.

15

3.1

3.2

3.2.1

Chapter 3

Packages

Overview

The package structure in the UML meta-model does not affect any of the
generated outputs. The hierarchy of the metamodel is effectively
“flattened” during the build process.

The one area where the structure of the hierarchy is significant is that op-
tions, which can be specified at package level, will apply to all classes and
other packages within that package. However, any option can be overridden
in any of the sub-packages by setting the option at that level to its new
value.

Options

CODE_PACKAGE

It is possible for two or more process or struct classes in the model to have
the same name. Equally named classes are distinguished (on the server side
only) by their CODE_PACKAGE value which may be specified for one of its
containing packages.

The CODE_PACKAGE option, when specified, affects struct, entity, facade
and process classes within that package and in the packages contained with-
in that package. Applying the CODE_PACKAGE option to a class has the ef-
fect of moving that class into a package within the default package, cur am
and including any of the package's parent CODE_PACKAGE options. The
following example outlines how this works:

For example, the UML meta-model class MyPr ocess in the model causes
the following Java classes to be created:

e <ProjectPackage>.intf.MProcess

16

Curam Modeling Reference Guide

e <Project Package>. base. MyProcess

 <ProjectPackage>. fact. MyProcessFactory
and the developer must implement:
 <ProjectPackage>.inpl.MProcess

If the developer wishes to create another class named MyPr ocess, they
can do so provided that they create the class within a package for which a
different CODE_PACKAGE option has been specified. This is to ensure that
the corresponding Java classes can be stored in separate locations on disk.

The developer specifies the following option for the package containing the
MyPr ocess class (this must be manually typed into the documentation for
the package in the UML meta-model):

 CODE_PACKAGE=cust om

In thisinstance the following classes and interfaces will result:

» <ProjectPackage>. customintf. MyProcess

» <ProjectPackage>. cust om base. MyProcess
 <ProjectPackage>. custom fact. MyProcessFactory
and the developer must implement:

 <ProjectPackage>. custom i npl . MyProcess

Rules for the CODE_PACKAGE Feature

 CODE_PACKAGE values must be valid Java identifiers.

o Setting the CODE_PACKACE option for a package recursively affects
sub-packages and process, facade, entity and struct classes within the
package.

» Specifying a CODE_PACKAGE value within a package whose parent has
specified a CODE_PACKAGE will override the value specified by the
parent rather than append to it.

For example:

» Package A contains package B

» Package A specifies CODE_PACKAGE=cp1
» Package B specifies CODE_PACKAGE=cp2
Then:

» The effective code package of classesin package Aiscpl

17

Curam Modeling Reference Guide

» The effective code package of classes in package B is cp2 (Not
cpl. cp2).

A CODE_PACKAGCE setting of . (dot) or $ isinterpreted as blank. (This
is because a literal blank isignored by the generator and therefore can-
not be used to override anon-blank setting.)

Multiple level code packages may be specified using a similar syntax to
Java packages whereby each level is delimited by a dot. For example,
the following code package setting represents three levels of Java pack-

ages.
CODE_PACKAGE=Ccp1l. cp2. cp3

The CODE_PACKAGE option allows multiple struct and process classes
to have the same name, however only one instance of each facade class
name may exist. Caram clients currently cannot distinguish between
multiple facade classes with the same name, regardless of their
CODE_ PACKAGE setting.

The behavior of the CODE_PACKAGE option with entity classes is the
same as that of process and struct classes in that the resulting generated
interface and struct classes are produced in different packages. However,
entity class names must still be unique throughout the application re-
gardless of the CODE_PACKAGE option setting. This is due to the fact
that all entities correspond to tables in the single underlying database.

Generated list wrapper structs (triggered by the existence of readmulti
operations) are produced in the same code package as the structs that
they wrap. Note that this will not necessarily be the same code package
as the operation which caused their creation.

18

Chapter 4

Audit Mappings Classes

4.1 Overview

4.2

Audit Fidlds are fields which can be added to database tables to contain ex-
tra information about the modification history of each record for auditing
pUrpoSes.

Audit fields are only available on entity and struct classes and are updated
only by certain entity operations.

The information specified in audit fields can be specified by the developer.
Typicaly, the audit fields should include the following:

e Creationtime;
 Modification time;
* Program ID;

 UserliD.

Audit fields consist of all the attributes of a special class in the input meta-
model called Audi t Mappi ngs. A field corresponding to each attribute of
this class can then be automatically added to the database table, and also to
all the standard details structs for the entity.

Rules

The following rules apply to the Audi t Mappi ngs class:

* The stereotype must be <<audi t _nmappi ngs>>.
* The attributes of the class must be valid domain definitions.

» Theclassmust be“flat”, i.e. it cannot aggregate any other classes.

19

Curam Modeling Reference Guide

Audit mappings are made available to an application by adding a class
named Audi t Mappi ngs with a <<audi t _mappi hgs>> stereotype to
the model. Individual entity classes can then enable audit mappings by set-
ting the Audi t Fi el ds option.

If the meta-model contains an Audi t Mappi ngs class then a Java imple-
mentation class for it must be provided inthei npl package.

i Note
If this implementation class is not present, the server application
cannot be compiled. In this situation the developer should either:

* deletethe "AuditMappings’ class from the model

» explicitly disable audit mappings completely by specifying the
generator switch - noaudi t mappi ngs.

The following rules apply to the Audi t Mappi ngs implementation class:

* it must contain the same fields as defined in the meta-model (i.e. they
must have the same name and data type.)

» thesefields must be public
* it need not inherit from any other class

» it may optionally contain the following method:

public void set(final boolean islnsert, final
bool ean i sModi fy)

Thisis a call back method which is called whenever necessary (i.e. dur-
ing inserts and modifies) by the data access layer and should be used to
populate the fields of the "AuditMappings class. The two boolean para-
meters indicate whether the database operation is an insert or modify, re-
Spectively.

* it may optionally contain a public void method named set which takes
no parameters. This method will be called by the data-access layer
whenever it needs the fields to be updated. (In fact any public method
whose name starts with set and which takes no parameters will be
called in arbitrary order, but it is not recommended to use multiple setter
methods and support for doing so will be discontinued in future.)

If the details struct contains any of the audit mapping fields, then these are
updated in the struct automatically during the operation and are included in
the update or insert.

For audit mapping fields, which are not present in the details struct, the cor-
responding field will still be updated on the database, i.e. it is not necessary
to include the audit mapping fields in the details struct to get them updated
on the database. Note however that such fields are not included in table
level auditing.

20

4.3

4.4

Curam Modeling Reference Guide

Outputs

Switching on auditing for an entity has the following effect:

» Fields are automatically added to the entity and to the generated stand-
ard details struct for the entity.

» Infrastructure data-access code automatically makes calls to the Audit-
Mappings class to populate its fields whenever audit fields are being up-
dated on the database.

The following operation stereotypes cause audit information to be set:
« <<nodi fy>>;

e <<nsnodi fy>>;

e <<jnsert>>;

e <<nsinsert >>;

* <<nknodi fy>>;

 <<batchinsert >>;

o <<bat chnodi fy>>.

Options

Two options are available for attributes of the Audi t Mappi ngs class in
the model:

e Exclude frominsert

e Exclude fromnodify

If Excl ude from nodify is set for an audit mappings field, then the
vaue of this field will not be changed by a <<nodify>> /
<<nsnodi f y>> / <<nknodi f y>> operation. i.e. the field will be set
when arecord isinserted, and will never be changed by subsequent updates.
Similarly if Excl ude from i nsert is set then the value of the field
will not be set by a<<i nsert >>/ <<nsi nser t >> operation but will be
changed by any subsequent updates. The default value for each of these op-
tionsisf al se.

Note that it is not possible to cause audit mapping fields to be excluded
from operations of stereotype <<ns>>. Handcrafted SQL in these opera-
tions can still be used to access audit mapping fields directly.

2

H Note
If your audit mappings include a time stamp then you should popu-

21

Curam Modeling Reference Guide

late this field with the vaue returned by
Transacti onl nf o.get Progr amrli meSt anp() . Thiswill en-
sure that all audit mapping-enabled tables modified during the trans-
action will have the same time stamp value even though the tables
will not have been written to at the exact sametime.

22

Chapter 5

Domain Definition Classes

5.1 Overview

In relational database terminology, a domain defines the range of values al-
lowed for an attribute of an entity. IBM Cdram Social Program Manage-
ment uses domain definitionsin a similar way. Domains are datatype defini-
tions which resolve to either a primitive datatype or another domain. Equi-
valent primitive types are supported across client, middleware, server and
database components of a Curam application:

Caram Architecture Layer Datatypes

Server Remote Interface Layer Java datatypes
Server Business Object Layer Java datatypes
Server Data Access Layer Java datatypes
Database Database datatypes

Table 5.1 Domain primitive types at different levels of a Ciram
application

By working with domains, rather than primitive types, developers are pro-
tected from having to worry about different representations of data in the
various application layers. For this reason, entity and structure attributes
must be defined in terms of a previously defined domain - it is not possible
to use primitive datatypes directly.

Validations on each domain type are also allowed to be defined in the client
application. A specific validation can then be executed for all attributes
defined in terms of a given domain type, before transactions are invoked on
the server. This client-side pre-flight validation gives the user feedback on
basic datatype validation without having to call the server, resulting in lower
network overhead because of the reduced number of failed transactions.

23

Cuaram Modeling Reference Guide

5.1.1 Defining a Domain Hierarchy

Another advantage of using domains is that it allows changes to the data-
types of related attributes to be effected simply by changing a domain defin-
ition. Say, for example, that a particular type of reference number changes
from a 10-digit to a 12-digit number. The reference number probably ap-
pears as an attribute in many different entities and structures. As long as
these attributes have been defined in terms of a common domain definition,
they can all be changed together by modifying the domain definition
(obvioudly, there will also be database impact, etc. to consider).

By defining domains in terms of other domains, it is possible to set up a
hierarchy of related domain definitions. For instance, consider the following
entity classes and their domain-specified attributes:

¢ <<entity>>class Cust oner

Attribute Domain

<<det ai | s>> address 1 CUSTOMER_ADDRESS LINE
<<det ai | s>> address 2 CUSTOMER _ADDRESS LINE
<<det ai | s>> address 3 CUSTOMER _ADDRESS LINE

e <<entity>>class Enpl oyer

Attribute Domain

<<det ai | s>> address 1 EMPLOYER_ADDRESS _LINE
<<det ai | s>> address 2 EMPLOYER_ADDRESS LINE
<<det ai | s>> address 3 EMPLOYER ADDRESS LINE

In the above tables, the address attributes of the Customer and Employer en-
tities are defined in terms of CUSTOVER _ADDRESS LI NE and EMPLOY-
ER_ADDRESS LI NE respectively. Both of these domains are in turn
defined in terms of the ADDRESS LI NE domain. All of the domains ulti-
mately unwind to a 30-character string primitive datatype.

The following rules of thumb should be followed when defining attributes:

attributes whose types must be able to vary independently of each other
should be defined in terms of different domains;

attributes that should always have the same types should be defined in
terms of the same domain;

attributes that initially have the same type, but might in the future vary
independently should be defined in terms of related domains.

Thus, in the example, it is possible to change the ADDRESS LI NE domain
in order to change the types of all entity address line attributes, but the Cus-

24

5.1.2

5.1.3

Curam Modeling Reference Guide

tomer and Employer address line attributes can also be varied independ-
ently. Given different design decisions, the entity address line attributes
might just have been defined in terms of ADDRESS LI NE (on the assump-
tion that all address lines will always have the same type), or each address
line might have had a separate domain definition (on the assumption that ad-
dresslines 1, 2, and 3 might not always be the same size).

Proper Use of Domains

Getting the granularity of domain definitions right is important - too few
separate definitions might make it difficult to change the datatypes of some
attributes without impacting others; too many definitions make it difficult to
follow which attributes are related to which others. Remember that the gran-
ularity also determines at what level validations on attributes can be imple-
mented in the Cdram web client.

A design in which every attribute has a different associated domain is prob-
ably wrong. At the very least, attributes which are foreign keys should share
their domain definitions with the original key.

In general, an analysis of the types of data your application uses early in the
design stage is probably the best approach to coming up with a sensible do-
main hierarchy. Y ou should also decide at this point which domains will re-
quire specia client-side validations to be constructed.

Storage Options for String Domains

There are three categories of database storage for string: smal |, medi um
and | ar ge, corresponding to the maximum sizes of the CHAR, VARCHAR
and CLOB data types in the database. By default, the Caram generator will
place each string domain definition into the smallest possible category based
onitssize.

For example, in IBM® DB2® the maximum size of a CHAR column is 254
and the maximum size of a VARCHAR column is 32768, so a SVR_STRI NG
of up to 254 will be categorized 'small’', a SVR_STRI NGfrom 255 to 32768
will be categorized “medium”, and larger strings will be categorized as
“large” and are stored as a CLOB.

The St or age Type option allows developers to specify that a string be
treated as a small/medium/large regardless of the size of a string. For ex-
ample, in DB2, this enables devel opers to use VARCHAR or CLOB instead of
CHAR, or CLOB instead of VARCHAR, if necessary.!

The decision to override the default selection of small/mediunm/large - i.e.
CHAR/VARCHAR/CLOB - is a database tuning exercise which should in-
volve the developer and DBA, and can be quite complex. For example
CHAR can be more performant than VARCHAR but uses more space. And
while VARCHAR can save space, it can lead to row migration if not tuned
correctly. Database tuning is the responsibility of the DBA and is not
covered by this document.

25

Curam Modeling Reference Guide

This option is applicable to all domain definitions whose eventual typeis a
SVR_STRI NG Specifying this option on a domain definition will affect
that domain definition and all domain definitions derived from it - unless it
isoverridden in one of the derived domain definitions.

For

example, consider the following domain definitions:

PHONE_NUMBER isaSVR_STRI NG<32>.

This domain definition does not have a st or age_t ype option spe-
cified so the size 32 means that this domain definition will have a de-
fault st orage_t ype of smal | i.e. it will be stored as CHAR on the
database.

BUSI NESS_PHONE_NUMBER is a PHONE_NUMBER

This domain definition specifiesa st or age_t ype of medi um Soin-
stead of CHAR it will be stored as VARCHAR on the database.

ALTERNATE BUSI NESS PHONE_NUMBER is a BUSI -
NESS_PHONE_NUVBER

This domain definition does not have a st or age_t ype option spe-
cified so it inherits the value st or age_t ype specified in BUSI -
NESS PHONE NUMBER. Therefore it will be stored as VARCHAR on
the database

So while the underlying business meaning of the above three domain defini-
tions is the same - al are phone numbers - they can be stored differently on

the

2

1

=

database as appropriate.

Note

For database operations on entities in which the parameters are spe-
cified by the developer (i.e. <<nsr ead>>, <<ns>>, etc.) it is ne-
cessary to ensure the domain definitions used in the parameter
structs are the same or at least compatible with those in the entity.
This is because the type of the domain definition in the parameter
struct determines the type of host variable which gets produced in
the generated data-access-layer. For example, in DB2, this could
mean that a CLOB gets read into a CHAR host variable, or a
VARCHAR gets read into a CLOB host variable, etc. The combina-
tions permitted are different depending on the target database type.
Caution is advised whenever custom parameters are specified in this

way.
Note

For DB2 and IBM® DB2® for zZOS® the alocation of strings to
CHAR, VARCHAR and CLOB in the database may be impacted by the
setting of the Mul t i byt e_Expansi on_Fact or storage option
and related build-time settings. See Section 5.2.11, Multibyte Ex-
pansion Factor and the Caram Server Developer's Guide for more
information.

26

5.2

5.2.1

5.2.2

5.2.3

Curam Modeling Reference Guide

Options

The following are the options allowed for Domain Definitions:

Code Table Name

This specifies the name of the code table which contains valid entries for
this Domain Definition. If the domain definition represents a hierarchy of
code tables, the name of the lowest code table in the hierarchy should be
specified as the code table name.

For fields for which a code table has been specified, the client application
will display a drop-down list of valid values for the field if it is editable, or
the code table trandation for the field if it is read-only. In the case of a code
table hierarchy, if the code table field is editable, n-levels of drop-down lists
are displayed, where n is the number of code tables in the hierarchy. Only
thefirst level is populated and a selection must be made to populate the next
level in the hierarchy. For a read-only field where the code table is a hier-
archy, the trandation for the lowest level code table only is displayed.

Thisoption isonly valid for Domain Definitions which have been defined in
terms of one which hasthe Code Tabl e Root optionsettoyes.

Code Table Root

Specifies whether the current Domain Definition is the root of a hierarchy of
code table Domain Definitions. If thisis set to yes, then all Domain Defini-
tions which use this one (i.e. they are defined in terms of it) must specify the
Code Tabl e Nane option. If the developer forgets to specify the Code
Tabl e Nane option, an error will be displayed by the generator.

Since this Domain Definition will be used to hold code table codes, its type
should match that of a Clram code table code, i.e. SVR_STRI NG<10>.

For more information see Section 5.2.1, Code Table Name above.

Compress Embedded Spaces

Implemented in the Curam client application.

It specifies that any extra whitespace ? (not all whitespace) embedded in the
string, and that all leading and trailing whitespace is removed before being
sent to the server.

Extra whitespace consists of a run of whitespace characters immediately
after another whitespace character. This means that each run or sequence of
whitespace characters is deleted except for the first whitespace character of
the run. For example, a pair of words separated by three spaces will be con-
verted to the pair of words separated by one space.

Note that in cases where the first whitespace character is not a space, the

27

5.2.4

5.2.5

5.2.6

5.2.7

Curam Modeling Reference Guide

results may not be as expected. For example, a pair of words separated by
carriage-return, line-feed, space, space will be converted to the pair of
words separated by the carriage-return character.

Note aso that if this feature is used on multiple line text fields it will re-
move indentation.

2

n Note

Switching on this option also causes leading and trailing whitespace
to be trimmed from the string, regardless of the Renove Lead-
i ng Spaces and Renove Trailing Spaces option settings.

Convert to Uppercase

Implemented in the Cdram client application.

It specifies that the contents of this string field be converted to uppercase
before being sent to the server.

Custom Validation Function Name

Domain Definition validations implemented in the client infrastructure in-
clude a custom validation type which corresponds to a developer-supplied
function for performing validations on data entered by users via the client
interface.

This option allows the devel oper to specify the name of this function which
associates it with the application UML model. The value of the option
should be simply the name of a function (just function, not class + function,
since the class name is defaulted in the client code). It must also be a valid
Java identifier.

]

H Note

This feature has been deprecated, please see the “ Custom Data Con-
version and Sorting” chapter of the Web Client Reference Manual
for information on the new domain plug-in system.

Default

Implemented in the Cdram client application.

It specifiesthat thisfield will contain a default value after it is displayed.
Maximum Size

Implemented in the Curam client application and database DDL.

It specifies a maximum number of characters which can be entered to this
field before it can be sent to the server and forms the field storage size on
the database.

28

5.2.8

5.2.9

5.2.10

5.2.11

5.2.12

Curam Modeling Reference Guide

Maximum Value

Implemented in the Cdram client application.

It specifies a maximum permitted numeric value which must be entered into
thisfield before it can be sent to the server.

Minimum Size

Implemented in the Cdram client application.

It specifies a minimum number of characters which must be entered to this
field before it can be sent to the server.

Minimum Value

Implemented in the Cdram client application.

It specifies a minimum permitted numeric value which must be entered into
thisfield before it can be sent to the server.

Multibyte Expansion Factor

Implemented in the Data Manager for DB2 and DB2 for ZOS only.

For string domains it specifies an expansion factor (float from 1.0 to 4.0) to
be applied when multibyte character set (MBCS) data will be used with
DB2 or DB2 for ZOS It overrides the globa build-time property
(curam db. nmul ti byt e. expansi on. default.factor) and is
only necessary in order to deviate from the global setting (e.g. a particular
domain is causing a DB2 limit to be exceeded). A setting of 1.0 effectively
turns off expansion for this domain. Y ou might choose to set this option for
domains where you know the contents will never contain localized data; e.g.
they are constrained to programmatically-defined Western characters and
can't be input via a client. The same option set for a string entity attribute
can override this domain setting (see Section 11.3.2, Multibyte Expansion
Factor for more information). This option isignored if the feature is turned
off (curam db. nul ti byt e. expansi on set to f al se at build time;
see the Curam Server Developer's Guide for more information).

Pattern Match

Implemented in the Cdram client application.

It specifies a regular expression that the string value must match before it
can be sent to the server. The regular expression must match the whole
string, not just a portion of it. The regular expression syntax is the standard
Java regular expression syntax used in Java 1.5. Full details on the suppor-
ted syntax for these regular expressions can be found in the JavaDoc docu-
mentation for the j ava. util.regex. Pattern class supplied with

29

5.2.13

5.2.14

5.2.15

5.3

5.3.1

5.3.2

Curam Modeling Reference Guide

your Java SDK.

Remove Leading Spaces

Implemented in the Cdram client application.

It specifies that any leading spaces be stripped off the string before it is sent
to the server.

Remove Trailing Spaces

Implemented in the Cdram client application.

Specifies that any trailing spaces be stripped off the string before it is sent to
the server.

Storage Type

It allows the devel oper to specify what type of string storage datatype to use
for this domain definition on the database. See Section 5.1.3, Storage Op-
tions for Sring Domains for more information. This option is only relevant
for string domain definitions for which alength has been specified.

Overriding a Domain Definition

The SDEJ provides the facility to override existing domain definitions
without modifying the original domain definition. This is desirable in situ-
ations where the original domain definition is provided by athird party and
should not be modified locally.

Suggested uses:
» Change the maximum size of a string field.

e Changethe St or age Type of adomain definition.

How to use Domain Definition Overrides

A domain definition is overridden by creating a new domain definition with
the same name prefixed by an asterisk. For example, the domain definition,
PERSON_NAME, would be overridden by creating a domain definition
named * PERSON_NAME. At build time the overridden version is used in-
stead of the original version, complete with its own data type and options.

Considerations / Limitations

* Itisimportant to be aware that overriding a domain definition affects all
usages of the original domain definition. It is the responsibility of the
developer to ensure that pre-existing functionality is not broken by over-

30

5.3.3

Curam Modeling Reference Guide

riding domain definitions. Specifically attempting to change the Type of
the domain definition, the Code Table Name or the Code Table Root is
discouraged.

Usage Rules

* A domain definition may be overridden by only one override.

A domain definition override cannot be overridden. For example, if
PERSON_NAME is overridden by * PERSON_NANME, it is not permitted
to further override * PERSON_NANME with * * PERSON_NAME.

* |tisnot possible to create overrides for domain definitions which do not
exist. For example, if there is a domain definition override named
* PERSON_NANME then the model must contain a domain named PER-
SON_NAME.

» Domain definition overrides cannot be used as attributes of structs or en-
tities, i.e. attributes cannot use domain definitions whose names begin
with an asterisk.

31

Curam Modeling Reference Guide

Notes

!Note that if the developer specifies a Storage Type which is too small for
the actual size of the string, the next smallest category will be used. For ex-
ample, (in DB2), if a developer specifiesa St or age Type of smal | for
a SVR_STRI NG<1000> the generator will still treat this as a medi um
string since the maximum size of asmal | string (i.e. CHAR) in DB2 is 254.
A whitespace character consists of any character for which
j ava. | ang. Char act er.i sWi t espace(char) returns true
Such characters include the space character, the tab character and the line-
feed character.

32

Chapter 6

Entity Classes

6.1 Overview

Entity classes have a stereotype of <<enti t y>>.

An entity is a collection of fields and their associated database operations.
Entity classes are the fundamental building blocks of systems developed
with the IBM Curam Social Program Management framework. They corres-
pond to database tables and are the type of construct for which the Caram
generator gives the most support in terms of automatic code generation.

An entity classis essentialy an object wrapper for a database table. The at-
tributes of an entity are transformed to columns on the database table. Entit-
ies can have various data maintenance operations such as reads, inserts,
modifies, removes, readmultis (which read multiple records from a table
based on a partial key), etc. Standard operations (e.g. read, insert, etc.) oper-
ate on one database table by default. For example, in a banking system you
could have an Account entity class whose operations would include insert,
read, update, etc.

Entities are allowed to have attributes, operations, dependencies, inherits re-
lations, and aggregations. Each of these constructs has a set of rules associ-
ated with it, which are detailed below.

For more information, see Section 6.4, Operations

6.2 Rules

» Entities must have at least one attribute unless the entity is a subclass of
another entity, in which case it must have no attributes.

» Entities are not allowed to aggregate other classes.

33

6.3

6.3.1

6.3.2

6.4

6.4.1

6.4.2

Curam Modeling Reference Guide

Attributes

Entity attributes correspond to columns with the same name on their associ-
ated database table.

Attributes are not contained in the generated BOL or RIL. This is because
Curam interface objects are stateless and atomic. Instead these attributes are
contained within generated standard key and details structs (see Sec-
tion 10.3, Outputs).

The stereotype of an entity attribute cannot be blank. It must be one of the
following:

Details

The attribute is included as a column on the database table and in the stand-
ard details struct for the entity. For more information, see Section 6.5.2,
Sandard Details Sructs.

Key

The attribute is included as a column on the database table, it forms part of
the primary key, it is included in both the standard details struct and the
standard key struct for the entity. For more information, see Section 6.5.1,
Sandard Key Structs.

Operations

Entity operations can be divided into two categories as determined by their
stereotype:

Database Operations

These are operations whose stereotype is recognized by the generator. These
operations are fully or partially generated by the generator and operate dir-
ectly on the RDBMS table related to the entity. They include standard oper-
ationsto read, insert, update, delete, together with their variants.

Non-database Operations

These are operations whose stereotype is not recognized by the generator.
The generator generates only prototypes and skeletons for these operations,
no data-access operations are generated. The body of these functions must
be implemented in the BOL by the devel oper.

The operations available for entity classes are listed in Section 2.3.3, Opera-
tion Sereotypes.

34

6.5

6.5.1

6.5.2

6.5.3

6.6

Curam Modeling Reference Guide

Outputs

Entity classes are transformed into classes with operations and no attributes.
The attributes from the entity in the input meta-model are transformed into
one or more structs.

Standard Key Structs

Standard key structs are generated for entity classes and contain those attrib-
utes in the class whose stereotype is <<key>>. If no such attributes exist in
the class then a standard key struct is not generated.

This struct will be used as a parameter for operations requiring a primary
key. For example, reads and del etes.

Though standard key structs do not appear in the input meta-model they can
be used as arguments to operations in the input meta-model. The name giv-
en to standard key structs is the name of the corresponding entity with the
word Key appended. For example, the standard key struct for the class Em

pl oyer would be caled Enpl oyer Key.

Standard Details Structs

Standard details structs are generated for all entity classes and contain all
the attributes of the class. This struct is used as a data parameter to insert,
reads and updates. Structs containing arrays of standard details structs are
returned from standard readmulti operations.

Though standard details structs do not appear in the input meta-model they
can be used as arguments to operations in the input meta-model.

The name given to standard details structs is the name of the corresponding
entity with the word Dt | s appended. For example, the standard details
struct for the class Enpl oyer would be called Enpl oyer Dt | s.

Standard List Structs

Standard list structs are generated for entity classes which contain one or
more operations of stereotype <<r eadnul ti >> or <<nkr eadnul ti >>.
This struct contains a single attribute named dt | s which is a sequence of
the standard details struct for the entity.

The name for a standard list struct is the name of the standard details struct
for the entity with the word Li st appended. For example, the standard de-
tails struct for the <class Enployer would be cdled
Enpl oyer Dt | sLi st.

Options

35

6.6.1

6.6.2

6.6.3

6.6.4

6.6.5

6.6.6

Curam Modeling Reference Guide

The options available for entity classes are described in the sections below.

Abstract

Specifies that the class is abstract. Abstract classes are intended to be sub-
classed by other classes. For more information on abstract classes and sub-
classing, please see Chapter 27, Subclassing.

Allow Optimistic Locking

Only applicable for entities which are not subclasses. Optimistic locking is
supported on certain database operations (see Section 12.3.14, Optimistic
Locking in Section 12.3, Operation Options). In order to use optimistic
locking on an entity's operation, this option must first be switched on for the
class.

For more information on optimistic locking, see Section 6.7, Concurrency
Control - Optimistic Locking.

Audit Fields

Only applicable for entities which are not subclasses. Extra fields can be
configured to store additional information on a database table for auditing
purposes. These fields are covered in more detail in Chapter 4, Audit Map-
pings Classes.

If this option is switched on, then the available pre-configured audit fields
will be automatically added to this entity and its standard details struct.

Enable Validation

The validation operation is an exit point which gets called automatically for
the purpose of validating data. This exit point will get called before the data-
access layer entity operations whose stereotype is <<i nsert>> or
<<nodi f y>>.

For more information on exit points, see Section 6.9, Exit Points.

Last Updated Field

Only applicable to entity classes that are not subclasses.

In order to use the last updated field feature for an entity class, this option
must first be switched on. This results in the addition of an extra timestamp
field to the specified entity. This field gets updated with the current date and
time whenever the record is written - unless the write was performed by an
<<ns>> operation. For more information on the last updated field feature,
see Section 6.11, Last Updated Field.

No Generated SQL

36

6.6.7

6.7

Curam Modeling Reference Guide

Switches on the No Gener at ed SQL for al database operations of the
entity class. Individua entity operations can override the value of this op-
tion.

For more details see Section 12.3.12, No Generated SQL in Section 12.3,
Operation Options.

Replace Superclass

Thisisonly relevant to entities which are subclasses.

If this option is set, then requests to create instances of the superclass will
instead result in the creation of the subclass. This enables the developer to
change functionality by replacing subclasses with other classes.

Concurrency Control - Optimistic Locking

Using optimistic locking for concurrency control means that more than one
user can access a record at a time, but only one of those users can commit
changes to that record. Once one user has modified the record, another user
cannot modify it without first re-reading the latest version of the record.
Thusit is optimistic in the sense that one user does not expect another to at-
tempt to modify the same record at the same time.

The record being edited is locked for update only while the changes are be-
ing committed. This has the advantage of minimizing the time for which a
lock isin place.

The disadvantage of optimistic locking is that when a user begins to edit a
record, they cannot be sure that the update will succeed. An update that re-
lies on optimistic locking will fail if another user has updated a record while
thefirst user is still editing it.

Optimistic locking is implemented by adding an extra field to the database
table. The extra field contains the version number for the record and is auto-
matically incremented each time the record is modified. The generated DAL
code checks this version number while the record is being updated, and if
the version number on the database table is not the same as the version num-
ber on the original record then the update operation is aborted and an excep-
tion isthrown.

Optimistic locking is permitted only on Entity classes.

The following operation stereotypes support optimistic locking:
e <<nodi fy>>;

o <<nknodi fy>>;

e <<nsnodi fy>>.

The following operation stereotypes are affected by optimistic locking:

37

6.8

6.8.1

Curam Modeling Reference Guide

e <<insert>> - The verson number field is automatically included in
the details parameter and is automatically initialized before being writ-
ten to the database;

e <<nsinsert>> - If optimistic locking is enabled on an entity class,
the version number field must be included in the details struct by the de-
veloper and will be automatically initialized before being written to the
database.

Optimistic locking is only possible for operations which modify a single
database record and whose details struct includes the generated Version
Number field. This means that for non-standard operations, it is up to the
developer to ensure that the non-standard key parameter aways identifies a
single unique record and that the Version Number field is included in the
details struct. For <<nknodi f y>> operations, optimistic locking is only
possible if the database table contains exactly one record. This field must be
called ver si onNo and its type should be VERSI ON_NO. The developer
must ensure that the model contains a numeric domain definition named
VERSI ON_NO.

In order to support optimistic locking on an operation you must do two
things:
» SwitchontheAl | ow Opti m stic Locki ng option on the entity.

This will cause the Version Number field to be automatically added to
the entity.

e SwitchontheOpti m stic Locki ng option on the operation.

Thiswill cause the generator to generate code in the DAL for the opera-
tion which will check and update record version numbers accordingly.

Table Level Auditing

Auditing is supported on all stereotyped entity operations except <<ns>>,
<<nsmul ti >>, <<bat chi nsert >> and <<bat chnodi f y>>.

The information captured by table level auditing is stored in the database ta-
ble AuditTrail.

Table level auditing is enabled by switching on the Dat abase t abl e-
| evel auditing option for an operation. This causes the generated
data-access code to record audit information for an operation.

The type of audit information recorded depends on whether optimistic lock-
ing is switched on or off for the operation. If optimistic locking is switched
on, then the audit information includes the information of the new and old
versions of the record, otherwise it only includes information about the SQL
operation invoked.

Information Captured by Table-level Auditing

38

Curam Modeling Reference Guide

The following information is captured:

Date and time - The date and time of the transaction.

User ID - TheID of the user who invoked the transaction.

Table name - The name of the database table which was modified.
Program name - The FID of the function which invoked the transaction.

Transaction type - Indicates whether the transaction was online / batch /
deferred / etc.

Key info - The key which was provided to this operation. Note that this
may identify one or many records.

Details of changed data - These details are logged in an XML format.
The exact format of this XML can be seen in the JavaDoc details for the
class curamutil . audit. AuditLoglnterface in the doc/
api directory of the SDEJ. They include the names of the all the fields
referenced by the details struct, the field types, the new version of the
field data and, if optimistic locking is enabled, the old version of the
field data.

If optimistic locking is switched on, then the operation is guaranteed to
have only affected a single record. Therefore, the audit information in-
cludes information about the record before and after the operation. The
old version of the record is re-read, the old value of each field is com-
pared to the new value, and any field which has changed is included in
the audit information, i.e. unchanged fields are filtered out.

If optimistic locking is switched off then for performance reasons the re-
cord is not re-read during the update, so the audit information will con-
tain only the new versions of al the fields involved in the update, not a
before-after comparison of the record. Also, any non-optimistic updates
apart from the 'modify" stereotype can potentially affect more than one
record, in which case it is not possible to record a before-after comparis-
on of the update. All the detail fields will be included regardiess of
whether the new value is different to the old value.

This data can be compressed when using the default auditing handler by
specifying the
curam audit.audittrail . dataconpressiont hreshol d
property described in the Cdram Configuration Parameters appendix of
the Caram Server Developer's Guide.

Operation type - Indicates whether the operation was one of: create,
read, update or delete.

6.8.2 Storage of Audit Information

By default, the audit information captured is written to the AuditTrail data-
base table. The developer may also supply their own auditing handler by

39

6.9

6.9.1

6.9.2

6.9.3

6.9.4

Curam Modeling Reference Guide

specifying a class which implements the
curamutil.audit. AuditLogl nterface interface. For more in-
formation, see the section on Customization Settings in the Cdram Server
Developer's Guide.

Exit Points

An exit point is a callback function written by the developer and executed at
apredefined strategic point by the server.

Four types of exit point are supported:

Pre Data Access
This function is called before the DAL function (but after Validate func-
tions).

The function is named after the method to which it belongs, prefixed with
pre,egq.preread.

Post Data Access

Thisfunction is called after the DAL function.

The function is named after the method to which it belongs, prefixed with
post, eg. postread.

Validation

This function is called before standard insert and standard update opera
tions, and also before Pre-data Access functions. It provides a common
place to put validation code.

The function isnamed aut oval i dat e. Note that this exit point is enabled
per entity rather than per operation.

The validation exit point aways has exactly one parameter which is the
standard details struct for the entity, and is declared to throw the same ex-
ceptions as stereotyped operations of the entity.

Sinceit isonly <<i nsert >> and <<nodi f y>> which are guaranteed to
pass in the standard details struct, it is only these operation stereotypes
which can utilize the validation exit point. Other operation stereotypes do
not utilize this exit point, even if they have the standard details struct as one
of their parameters.

On-fail

Thisfunction is caled if an error occurs in the data access function.
The function is named after the method to which it belongs, prefixed with

40

Curam Modeling Reference Guide

onFai | ,eg.onFai |l r ead.

i Note
For non-void operations the return class isincluded in the arguments
to this method and will always be null.

6.9.5 Exit Point Parameters

With the exception of Validate exit points whose parameters are described
above, the parameters to an exit point method consist of the following:

» the parameters to the method to which the exit point belongs. (In fact if
any extra parameters have been specified for a database operation in the
model, thisisthe only place where the developer can access them.)

» thereturn type of the method to which the exit point belongs - if areturn
typeis present.
i Limitation
The return type parameter will not be included into the paramet-
ers of exit point methods for <<nsr ead>> and <<ns>> opera
tions.

The following approach can be used to generate the return type
parameter into the parameters of exit point methods for
<<nsr ead>> and <<ns>> operations:

e Add an un-stereotyped method to the entity class giving it
the same signature as the <<nsr ead>> or <<ns>> opera
tion.

» Set the Post Data Access option on your <<nsr ead>> or
<<ns>> operation to False.

* The implementation of your un-stereotyped operation will
then call the <<nsr ead>> or <<ns>> operation, and will
have accessto its return value as required.

« for on-fail exit points, an exception class. This is the exception which

was thrown from the data access layer. The exit point may handle the er-
ror or pass it on by throwing it.

6.9.6 What should exit points be used for

Exit points are intended to be used for validation or for completing a busi-
ness process. For example, after modifying an invoice detail line record, the
| ast nodifi ed dat e should be updated on the invoice header record.

6.9.7 What should exit points not be used for

41

6.10

6.10.1

6.11

Curam Modeling Reference Guide

It is recommended that exit points should not be used as a means of populat-
ing incomplete fields in incoming parameters. This situation should be
handled by wrapping the database function in a non-database function
which would take a copy of the incomplete record, fill in the missing fields
and invoke the database operation.

When adding an exit point to an entity operation, ensure that this will not
have any side effects for other users of the operation.

Entity Inheritance

Input meta-model Entity classes are allowed to subclass other entity classes.
Typically, entity classes will be subclassed in order to add functionality
(such as additional stereotyped operation) which are required for special
processing of the associated database table, but which do not belong in the
parent class.

For more information please see Chapter 27, Subclassing.

Rules when Using Entity Inheritance

» Entity classes are only allowed to inherit from other entity classes.

» Subclasses of entities can add any number of additional database and
user-defined operations.

e Subclasses of entities cannot add attributes. This is because the underly-
ing relational database table must not be affected by the inheritance.

* Entity subclasses do not have standard key and details generated for
them, they use the standard key and details structs from the base class.

Last Updated Field

This feature is similar to the Audit Mappings feature. It is afield which can
be added to database tables to contain extra information about the modifica-
tion time of each record for reporting purposes.

The feature is only available for entity classes and it is updated only by cer-
tain entity operations

Switching on the last updated field functionality for an entity has the follow-
ing effects:

o Afieldcalled | ast Wi tten of type SVR_DATETI ME is automatic-
ally added to the entity.

» The Cudram infrastructure automatically populates this field with the cur-
rent time whenever the record is written to the database - unless the
write was performed by an <<ns>> operation.

42

Curam Modeling Reference Guide

The following steps must be taken to avail of this feature:

To turn on the feature for an individua entity class the
Last Updated_Field property in the Rational Software Architect Caram
Properties tab must be set to '1 - yes using the supplied drop-down.

To turn on the feature for al of the entities for a particular application,
the following text must be appended to the ex-
tra. generator.options property in the Boot -
strap. properti es fileasfollows:

extra. generator.options=-defaultopti on cl ass_| ast updat edfi el d=yes
Example 6.1 extra.generator.options property in
Boot st rap. properties

extra. generator.options=-defaul toption
cl ass_| ast updat edfi el d=yes

A new domain definition must be specified in the model as follows:
* Domain Definition Name: LAST_UPDATED
* Domain Definition Type: SVR_DATETIME

Invoking operations with the following stereotypes cause the lastWritten
field to be set:

=

<<i nsert >>;
<<nsi nsert >>;
<<nodi f y>>;
<<nknodi f y>>;

<<nsnodi f y>>.

Note

Unlike the version number field utilized for the optimistic locking
feature, there is no requirement to add the last written field to struc-
tures involved in non-standard insert and modify operations. If the
last updated field feature has been enabled for an entity, thisfield is
always updated for the operation stereotypes listed above by the in-
frastructure data access code regardiess of whether the field is
present in the structure being used.

43

7.1

7.2

7.3

Chapter 7

Extension Classes

Overview

An extension class allows the developer to specify options for a target class
without modifying the meta-model definition of the target class. Each exten-
sion class should be linked to one target class. At build time the contents of
an extension class are effectively super-imposed on its target class.

How to use Extension Classes

To extend an existing class, create a new class of stereotype
<<Ext ensi on>>; see Working with the Ciram Model in Rational Soft-
ware Architect for more information on using and modeling with Rational
Software Architect.

Options can be added to the extension class in the same way as for other
classes. When any of these are added to an extension class they have the ef-
fect of adding (if not already existing) or modifying (if already existing) the
same named option on the target class.

When creating an Extension class in Rational Software Architect, keep in
mind that since it can apply to different class types. Y ou must make sure the
settings for the extension class are compatible with the class you are extend-

ing.
The extension class is linked to its target class by adding an relationship of

stereotype <<ext ensi on>> between the two classes. The new class
should be created within a custom sub-package of your model.

When to use Extension Classes

Extension Classes should only be used for the following purpose:

44

Curam Modeling Reference Guide

« ToswitchonthelLast Updat ed Fi el d optionon an entity.

 ToswitchontheAudi t Fi el ds option on an entity or struct.

i Note

The Rational Software Architect user interface allows you to specify
additional information such as attributes and options for
<<ext ensi on>> classes but only the above two options should
be included in the class. Other changes are not compliant.

7.4 Considerations / Limitations

» Storage of relationships. When a relationship is created between two
classes in Rational Software Architect, it should be noted that the rela-
tionship is not stored within either of the actual classes but rather as a
free standing object in a package. (Usually the relationship is stored in
the package containing the diagram on which it was drawn but thisis not
guaranteed.) The developer should ensure that the relationship is stored
in alocation where it will not be lost or overwritten during an upgrade.
Inheritance relationships are always stored within the subclass so there
isno risk of inadvertently losing these.

7.5 Usage Rules

» Anextension class may only be applied to one target class.
* A classmay be extended by multiple extension classes.

 Extensions may be applied to classes of stereotype <<entity>>,
<<struct >>.

45

8.1

8.2

8.3

8.3.1

Chapter 8

Facade Classes

Overview

A facade class is defined as a class which encapsulates a business process
that is visible to the client. They form the Business Object Layer (BOL) of
the application. It is a collection of operations. Facade classes do not have
data maintenance operations, or indeed any relationship with database
tables. Instead they manipulate other entity and process classes in order to
implement a business process.

Facade classes have a stereotype of <<f acade>>.

Rules

» Facade classes must have a stereotype of <<f acade>>.
» Facade classes cannot have aggregations to any other classes.

» Facade classes can only inherit from other facade classes - not from en-
tity or process classes.

» Facade classes cannot have attributes.

» Facade classes cannot have the same name. See Section 3.2, Options for
more details.

Operations

Within facade classes there are four operations supported:

default

The <<def aul t >> stereotype offers a standard or plain operation.

46

8.3.2

8.3.3

8.3.4

8.4

8.4.1

8.4.2

8.4.3

Curam Modeling Reference Guide

batch

For operations of stereotype <<bat ch>>, the Cdram generator will pro-
duce the necessary source code wrappers to build a batch wrapper program
which will enable this operation to be run by the Batch Launcher (see the
Cuaram Batch Processing Guide for more details).

The rules when defining batch operations are:

» Batch operations cannot have more than one parameter.
» Parameters to batch operations must be structs.

» A facade class cannot have more than one <<bat ch>> operation.

wmdpactivity

A method of afacade class can be designated as a deferred processing meth-
od by setting its stereotype to << wndpacti vi t y>>.

For more information please consult the Clram Server Devel oper's Guide.
gconnector

For operations of stereotype <<qconnect or >>, the generator will pro-
duce the necessary source code to connect to a JMS provider (e.g. IBM®
MQSeries®). For more information please see Chapter 26, Cdram JMS
Queue Connectors.

Options

Abstract

Specifies that the class is abstract. Abstract classes are intended to be sub-
classed by other classes. For more information on abstract classes and sub-
classing, please see Chapter 27, Subclassing.

Generate Facade Bean

This causes a statel ess session bean to be generated for this class. This bean
class can be used to allow your server to be accessed by other systems or by
message driven beans.

Replace Superclass

This is only relevant if this facade class has been subclassed from another
class. For more information on subclassing, please see Chapter 27, Sub-
classing.

47

Chapter 9

Process Classes

9.1 Overview

9.2

A process class is defined as a class which encapsulates a business process.
It isacollection of operations. Process classes do not have data maintenance
operations, or indeed any relationship with database tables. Instead they ma-
nipulate other entity and process classes in order to implement a business
process.

For example, in a banking system, you could have an account transfer pro-
cess which debits money from one account and credits another. In this case,
internally, the process would use the above Account entity class to update
one account to debit it, followed by an update of the other account to credit
it. Note that the process class itself does not do any database manipula-
tion—it merely packages a sequence of entity operations in order to carry
out the business process modelled.

Process classes have a stereotype of <<pr ocess>>.

Business Process Objects

Business Process Objects (BPOs) are the classes which reside in the Busi-
ness Object Layer (BOL) of a Cdram server application, i.e. the architectur-
a layer between the Remote Interface Layer (RIL) and the Data Access
Layer (DAL). All business logic isimplemented in this layer and as aresult,
BPOs constitute the large mgjority of handcrafted coding required to create
aserver application.

BPOs do not directly communicate with the RDBMS (implemented -
largely automatically - in the DAL), nor the middleware (implemented -
largely automatically - in the BOL): their job is specifically to implement
business logic.

48

9.3

9.4

9.4.1

9.4.2

9.4.3

9.4.4

Curam Modeling Reference Guide

Rules

* Process classes must have a stereotype of <<pr ocess>>.
* Process classes cannot have aggregations to any other classes.

* Process classes can only inherit from other process classes - not from
entity classes.

* Process classes cannot have attributes.

» Two or more process classes can have the same name provided that dif-
ferent CODE_PACKAGE values have been specified for each. See Sec-
tion 3.2, Options for more details.

Operations

Within process classes there are four operations supported:

default

The <<def aul t >> stereotype offers a standard or plain operation.

batch

For operations of stereotype <<bat ch>>, the Cdram generator will pro-
duce the necessary source code wrappers to build a batch wrapper program
which will enable this operation to be run by the Batch Launcher (see the
Cuaram Batch Processing Guide for more details).

The rules when defining batch operations are:

» Batch operations cannot have more than one parameter.
» Parameters to batch operations must be structs.

» A process class cannot have more than one <<bat ch>> operation.

wmdpactivity

A method of a process class can be designated as a deferred processing
method by setting its stereotype to << wndpacti vi t y>>.

For more information please consult the Clram Server Devel oper's Guide.

gconnector

For operations of stereotype <<qconnect or >>, the generator will pro-
duce the necessary source code to connect to a JMS provider (eg.

49

9.5

9.5.1

9.5.2

9.5.3

Curam Modeling Reference Guide

). For more information please see Chapter 26, Ciram JMS Queue Connect-
ors.

Options

Abstract
Specifies that the class is abstract. Abstract classes are intended to be sub-

classed by other classes. For more information on abstract classes and sub-
classing, please see Chapter 27, Subclassing.

Generate FIDs

Specifies that the class should have a Function Identifier generated for it.

Replace Superclass
Thisis only relevant if this process class has been subclassed from another

class. For more information on subclassing, please see Chapter 27, Sub-
classing.

50

Chapter 10

Struct Classes

10.1 Overview

10.2

Struct classes are Java classes with public attributes and no modeled meth-
ods (It is the Java equivalent of a C++ struct.). They alow for the grouping
of domain definitions and other struct classes to form programmeétic record
definitions.

Typically, struct classes are used as arguments to operations of entity and
process classes. Structs are used to 'package’ arguments in order to avoid
long argument lists. Struct classes can also aggregate each other; these ag-
gregations turn into struct members.

For example, in the case of a bank account entity, the parameters to a read
operation would consist of a key struct and a details struct. The key struct
might contain a single field for the account number. The details struct might
have several fieldsincluding Name, Balance, etc.

Struct classes have a stereotype of <<st r uct >>.

Rules

e Struct classes must have one or more attribute or aggregation, i.e. a
struct cannot be empty.

» Struct classes are not alowed to have operations.

o Struct attribute types must be defined in terms of valid domain defini-
tions.

» Struct classes may aggregate entity classes or other struct classes.
» Struct classes are not alowed to be involved in inheritance rel ationships.

e Struct classes used as key or details parameters to non-standard database

51

10.3

10.4

10.4.1

Curam Modeling Reference Guide

operations must not aggregate other structs, i.e. they must be “flat”.

» Two or more struct classes can have the same name provided that differ-
ent CODE_PACKACE values have been specified for each, i.e. similarly
named struct classes must be distinguishable by having
CODE_PACKAGE settings. See Section 3.2, Options for more details.

* Inmost cases you will have to define a struct in order to use it as a para-
meter to an operation. The exception to this rule is standard key and de-
tails structs. These are generated automatically by the Clram generator
and are available for use by the developer.

Outputs

Input meta-model struct classes map directly onto generated Java classes in
the <Proj ect Package>. <CodePackage>. struct package. The
Java <<st r uct >> class contains public fields corresponding to each at-
tribute defined in the model.

Each field isinitialized to its default value - zero for numerics, empty string
for Strings, etc. - so the developer does not have to worry about null values.

Each field is accompanied by comments describing the Domain Definition
hierarchy for the datatype.

The class also contains generated code enabling the struct to be cloned and
assigned to other structs.

Struct classes have no counterpart in generated DDL.
Options

Audit Fields
If this option is switched on then the available pre-configured audit fields
will be automatically added to this struct.

This option should be enabled if the struct class is being used as a write op-
eration of an entity which also has Audi t Fi el ds switched on.

For more information, see Chapter 4, Audit Mappings Classes.

52

11.1

11.2

Chapter 11

Attributes

Overview

Attributes represent fields of the underlying Java class. The class stereotype
determines the attribute stereotypes that are valid for the class. The combin-
ation of class and attribute stereotypes will determine behavior such as how
the Clram generator processes the UML meta-model. The following sec-

tions provide details on how attributes work and need to be specified.

Attribute Rules

The following table shows the mapping of class stereotypes to attribute ste-

reotypes.

Class Stereotype Valid Attribute Stereotypes

audit_mappings audit_mappings
domain_definition N/A

entity details, key
facade N/A

listrdo dataitem
|oader N/A
process N/A

rdo dataitem
struct default
webservice N/A
wsinbound N/A

Table 11.1 Mapping of Class and Attribute Stereotypes

53

11.3

11.3.1

11.3.2

Curam Modeling Reference Guide

» Attribute names must be unigque within a class.
» Attributes must be defined in terms of domain definitions.

» Since attributes ultimately appear in generated Java code, their names
must be valid Java identifiers.

* The order of attributes in the primary key of an entity is determined by
the order in which the attributes appear in the entity class. Since their or-
der in the entity is not critical, you can change this order to obtain the
primary key configuration you desire.

Attribute Options

Allow NULLs

This option is available only for <<det ai | s>> stereotyped attribute on an
entity class.

It determines whether NULL values are permitted on the corresponding
database field. Setting this option to no causesaNot Nul | qualifier to be
included with this field in the generated DDL script.

The default value for this option is dependent on the underlying data type of
the field. The default value of this option for the attributes for fields of type
SVR_BOOLEAN, SVR_CHAR, SVR_FLOAT, SVR_DOUBLE, SVR_MONEY,
SVR_ | NT8, SVR_I NT16, SVR_| NT32 isno.

The default value of this option for the attributes of type SVR_BLOB,
SVR_DATE, SVR_DATETI ME, SVR_STRI NG SVR | NT64 isyes.

Thistopic isdealt with in Section 19.4.3, Null Considerations.

Multibyte Expansion Factor

This is an override for the domain-level Mul ti byte Expansion
Fact or, described in Section 5.2.11, Multibyte Expansion Factor, and is
applicable to string entity attributes only.

It specifies an expansion factor (float from 1.0 to 4.0) to be applied when
multi-byte character set (MBCS) data will be used with DB2 or DB2 for z/
OS. It operates in conjunction with its equivalent domain option and the
global build-time properties
curam db. nul ti byt e. expansi on. defaul t. fact or and
curam db. mul ti byt e. expansi on, which are described in the
Curam Server Developer's Guide. This option is only necessary for DB2
MBCS data in order to deviate from the global or domain settings. For ex-
ample, you might choose to set this option to 1.0 (which effectively turns off
expansion) for a string attribute where you know the contents will never
contain localized data (e.g. they are constrained to programmatically defined
Western characters and can't be input via a client). This option is ignored if

54

Curam Modeling Reference Guide

the feature is turned off via the curam db. mul ti byt e. expansi on
property.

55

12.1

12.2

Chapter 12

Operations

Overview

Operations represent the functionality of modeled classes, which, depending
on their type, can be provided by the Clram generator or "handcrafted".

Rules

Operations must belong to either <<entity>>, <<process>>,
<<f acade>>, <<webser vi ce>>, or <<wsi nbound>> classes.

Operations can be fully handcrafted or can make use of the facilities
offered by standard operations. Standard operations are covered in detall
in later sections.

Operations cannot be individually hidden from or exposed to clients,
only whole classes can be hidden or exposed.

These are the rules regarding the requirements for using structs (versus do-
main values) as parameters and return values for operations:

Parameters for batch operations must be structs.
Parameters and return types for all database operations must be structs.
Parameters and return types for queue operations must be structs.

Parameters and return types for web service connector operations must
be structs.

Parameters and return types for client-visible operations must be structs.
(Domain parameters and return types are not supported by the HTML
client.)

Parameters and return types for other operation stereotypes including

56

12.3

12.3.1

12.3.2

12.3.3

12.3.4

Curam Modeling Reference Guide

web service client operations or other classes may be domain defini-
tions.

Operation Options

Audit BI (Business Interface) Calls to this Operation

Thisisonly relevant to client-visible operations.

This option specifies whether Business-Interface-level auditing should be
performed for this operation. For Business-Interface-level auditing records
the following information about the operation call is recorded:

» the operation name (Function Identifier);
* theusername of the cdler;
* thedate andtime;

» thetransaction type (online/batch/deferred/etc.).

This option can be overridden at application startup time using application
properties, this functionality is described with an example in the Database
Table-level Auditing option description contained in this section.

Auto ID Field

Thisisonly relevant for certain insert operations of entity classes.

Specify which field is to be used as the Auto ID field. The Auto ID field is
automatically populated with a generated unique ID during the insert to en-
sure that the record can be uniquely identified.

Auto ID Key

Thisoption isused only in conjunction withthe Aut o | D Fi el d option.

It alows you to specify the key set from which a unique ID should be gener-
ated.

Business Date

This option isonly relevant to operations of a process class.

It allows you to specify that one field of the operation parameters be treated
as the Business Date Field for the operation. This means that the value of
this parameter to the operation becomes the Business Date for the duration
of the transaction. The Business Date isthe Dat e or Dat eTi e which gets
returned by the following methods:

e curamutil.transaction. Transacti onl nf o.get Busi -

57

Curam Modeling Reference Guide

nessDat eTi me()

e curamutil.transaction. Transacti onl nf o.get Busi -
nessDat e()

e curamutil.type. Date.get Current Dat e()
e curamutil.type. DateTi me.get Current Dat eTi ne()

The main purpose of this feature is to give greater flexibility when running
batch programs for which processing dates are significant. Consider the ex-
ample where a report generating program is run at the end of each day to
count all payments issued that day. The payment records are obtained by
reading all records whose issue date equals
curamutil.transaction. Transacti onl nf o.get Busi ness-
Dat e() . This program will process a different set of records depending on
the day on which it isrun.

Now consider what would happen if you needed to re-generate the report
from 10 days ago.

Without the Busi ness Dat e feature you would have to do the following:
» Submit abatch request for your batch program.

» Change the system date on the machine where the batch program will be
run. Note that you will have to ensure that this doesn't affect anyone
else, so nobody else can use the machine while the system date is being
changed.

» Ensure that your batch request is the only one in the queue.
* Run the batch launcher to cause your batch program to be run.
* Revert the system date on the machine.

» Make the machine available for general usage again.

However if your batch program parameters include a Busi ness Dat e
field you need only do the following:

» Submit a batch request for your program, ensuring that the batch job
parameter which has been specified as the Business Date is set to the
date 10 days ago.

* Runthe batch launcher.

Syntax for Busi ness Dat e option:

The Business Date option should be specified in one of the following
formats:

« fieldNanme
 paramNane.fi el dNane

58

Curam Modeling Reference Guide

where

par anmNane isthe name of a parameter. Thisis optional and, if not spe-
cified, thefirst operation parameter is assumed.

fi el dName isthe name of afield in the parameter struct.

Business Date example 1

Struct Report Argunent s contains a Dat e field named ef f ect -
i veDat e.

The following is a batch operation: doRepor t Gener at i on(Repor -
t Argunent s ar g1).

To use ef f ect i veDat e as the Business Date for the operation, you
can st the Business Date option to either
argl. effecti veDat e or because it is the first (and only) paramet-
er:ef fecti veDat e.

Business Date example 2

Struct Gener at ePaynent sPar anet ers contains a Dat e field
named paynent Dat e.

The following is a batch operation: gener at ePaynent s(Some-
St ruct ar gA, Gener at ePaynent sPar anet ers ar gB).

To use paynent Dat e as the Business Date for the operation, you
would set the Busi ness Dat e optionto ar gB. paynent Dat e.

Rules for Busi ness Dat e option:

This option is only relevant to operations which correspond to individual
server transactions. Such operations are the operations of facade classes
and <<bat ch>> operations. Note that it is not applicable to workflow
activity or deferred processing operations.

The field which is specified as the Business Date Field must be of type
SVR_DATE or SVR_DATETI ME.

The Business Date Field only takes effect when the operation is invoked
by aremote client (either the HTTP client or aweb services client) or by
the Batch Launcher. It does not take effect for operations which are in-
voked directly from Java code. This is because the latter does not result
in anew server transaction being started.

If the Business Date Field is st to null,
curamutil.type. Dat e.kZer oDat e or
curamutil.type. Dat eTi me.kZer oDat eTi ne for amethod in-
vocation, it isignored and the Business Date does not get overridden for
that transaction. In this case the Business Date for the transaction will be

59

12.3.5

12.3.6

Curam Modeling Reference Guide

either the current system date, or the overridden value specified in ap-
plication properties - see the Dat e and Dat eTi me JavaDoc document-
ation for more details.

BytesMessage encoding character set

Thisis only relevant for <<qconnect or >> operations of process classes.
See Section 26.3, Options on gconnector Operations for more information.

Database Table-level Auditing

Thisisonly relevant to database operations of entity classes.

This option specifies whether table-level auditing should be performed for
this operation. Table-level auditing records detail information about the
changes made to actual data on the database table.

The behavior of auditing depends on whether Optimistic Locking is
switched on or off for the operation. For more information about Auditing,
see Section 6.8, Table Level Auditing.

This option can be overridden at application startup time using application
properties, this functionality is available to Audit Bl Calls and this option
and what follows is an example of how it should be used.

i Changing operation auditing options without rebuilding.
Changes to operation options Audi t Bl and Dat abase Ta-
bl e-1 evel auditing in the mode require a rebuild and re-
deploy to take effect. It is possible to override these properties in ap-
plication properties whereby the changes take effect when the ap-
plication is restarted.

These two options can be targeted at individual operations by spe-
cifying application properties whose format is as follows:

curam audit.audittrail . <Project Name>. <Cl assNa
me>. <Oper at i onNane>

curam audi t. opaudittrail . <Project Nanme>. <Cl ass
Nane>. <Oper at i onNane>

or, if the classisin a code package:

curam audit.audittrail . <Project Name>. <CodePac
kage>. <Cl assNanme>. <Qper at i onNanme>

curam audi t. opaudi ttrail . <Project Name>. <CodeP
ackage>. <Cl assNane>. <Oper at i onNane>

Properties whose names begin with
curam audi t. audi ttrail apply to the Database Table-Level
Auditing option and cause data to be captured to table AuditTrail.

Properties whose names begin with

60

Curam Modeling Reference Guide

curam audi t. opaudi ttrail apply to the Audit Bl calls op-
tion and cause data to be captured to table OpAuditTrail.

Example (1): To switch on table level auditing for operation nodi -
fy of entity CaseHeader which is in code package core of the
Curam application, set the property
curamaudit.audittrail.curam core. CaseHeader.
nmodi fy totrue.

Example (2):. To switch off operation auditing for operation nodi -
f yAddr ess of process class Parti ci pant which is in code
package cor e. f acade of the Clram application, set the property
curam audi t.opaudittrail.curam core. facade. Pa

rticipant. nodi fyAddresstofal se.

In Summary,

» changing the value of an auditing option requires an application restart
to take effect

e The curam audit.opaudittrail.* properties only affect cli-
ent-visible operations.

e The curamaudit.audittrail.* properties only affect stereo-
typed entity operations - excluding stereotypes <<ns>> and
<<nsmul ti>>,

12.3.7 Field Level Security

Field Level Security can be applied for the fields returned by client-visible
operations (i.e. operations of the Facade class). It is only relevant to opera-
tions of a client-visible operation (defined in a Facade class).

In Rational Software Architect the Secure Fields properties tab of the
Facade class operation allows you to apply security to any field returned by
an operation by specifying a security identifier (SID) for that field.

To establish secure returned fields for an an operation use the Secure Fields
button from the properties tab for the operation. Clicking the SSD Name cell
for the returned Field Name allows you to enter the security identifier (SID).
The maximum length of a security identifier is 100 characters.

The client infrastructure will then ensure that fields for which a SID has
been specified can only be viewed by users to whom that SID has been
granted. Fields for which no SID has been specified will be visible to al
USers.

All the information about Field Level Security - which SID is assigned to a
field - is written by the generator to an XML file and is loaded into database
table FieldLevel Security by the Data Manager. The Data Manager configur-
ation file dat amanager _confi g. xm must be changed to reference the
generated file <Pr oj ect Nane>_Fi el dsRet ur ned. xni . This can be
done by adding an entry to the initial target as shown in Example 12.1,
Sample datamanager _config.xml for adding field level security information

61

12.3.8

12.3.9

12.3.10

12.3.11

12.3.12

Curam Modeling Reference Guide

to the database below.

<target name "initial"
<entry
nanme="bui | d/ svr/ gen/ ddl / <Pr oj ect Nane>_Fi ds. xm "
type="xm" base="basedir" />
<entry
nane="bui | d/ svr/ gen/ ddl / <Pr oj ect Nanme>_Fi el dsRet ur ned. xm "
type="xm" base="basedir" />
</target>
Example 12.1 Sample datamanager_config.xml for adding field

level security information to the database

Once the field names and SIDs have been added to the FieldL evel Security
table, the SIDs should be loaded into the Securityldentifier to enable them to
be assigned to groups. This can be done using the database command shown
in Example 12.2, Inserting field level security SDs into the infrastructure
Securityldentifier table below.

I NSERT | NTO Securityldentifier(sidNane, sidType, versi onNo)
SELECT DI STI NCT sidNane, 'FIELD , 1 from Fi el dLevel Security
WHERE si dNane |S NOT NULL;

Example 12.2 Inserting field level security SIDs into the
infrastructure Securityldentifier table

These SIDs can then be assigned to user groups using the Security Adminis-
tration console.

JNDI name of the QueueConnectionFactory class

Thisis only relevant for <<qconnect or >> operations of process classes.
See Section 26.3, Options on gconnector Operations for more information.

JNDI name of the transmission queue

Thisis only relevant for <<gconnect or >> operations of process classes.
See Section 26.3, Options on gconnector Operations for more information.

JNDI name of the reply queue

Thisisonly relevant for <<gconnect or >> operations of process classes.
See Section 26.3, Options on gconnector Operations for more information.

Message type

Thisis only relevant for <<qconnect or >> operations of process classes.
See Section 26.3, Options on gconnector Operations for more information.

No Generated SQL

62

Curam Modeling Reference Guide

Thisisonly relevant to database operations of entity class.

Switches off generation of data access code, allowing developers to provide
their own implementation.

For example, if No Gener at ed SQL was set to yes for a standard read
operation named ny Read the generator will produce a declaration of an ab-
stract method named myRead_da with the same signature as the formerly
generated nyRead method. The developer must provide the implementa
tion of method ny Read_da asis shown in the following listing:

public M/EntityDtls nyRead_da(
final MyEntityKey key, final bool ean forUpdate)
t hrows AppException, |nformational Exception {

final M/EntityDtls result = new M/EntityDtls();
result.idNunber = "1234";
return result;

}

Example 12.3 Handcrafted data access implementation for a
standard read

For readmulti operations - i.e. operations of stereotype <<r eadnul ti >>,
<<nsreadmnul ti >>, <<nkreadmulti>> or <<nsnulti>> - the
handcrafted implementation must follow a different pattern. The method is
declared as returning a list struct but this return value is ignored. Readmulti
operations in Curam are implemented using the visitor design pattern
whereby a subclass of
curamutil . dataaccess. Readnul ti Operati on is passed into
the data access operation which then invokes its oper ati on(Obj ect)
for each record found. Usually this operation will add the record to a collec-
tion which gets returned to the caller. This is described in greater detail in
the Clram Server Developers Guide.

The key point is that for readmulti operations, data is returned to the caller
by adding it to the Readnul t i Qper at i on class by calling its oper a-
tion(Obj ect) method, and not by simply returning it from the method.
Thisis shown in the following example:

/*

* This inplenentation returns two hard coded dummy records.
*/

public M/EntityDtlsList readmulti _da(
final SoneKey k, final Readmnulti Qperation op,
final bool ean requirelnformational)
t hrows AppException, |nformational Exception {

/|l Create and add one record for return to the caller.
final M/EntityDtls oneDtls = new MyEntityDtls();

oneDt | s.i dNunmber = "2222";

op. operation(onebDt!s);

// Create and add another record for return to the caller.
final MyEntityDtls twoDtls = new MyEntityDtls();

twoDt | s. i dNunber = "3333";

op.operation(twobDt!s);

[/ our return value is ignored so just return null.
return null;

63

12.3.13

12.3.14

12.3.15

12.3.16

Curam Modeling Reference Guide

}

Example 12.4 Handcrafted data access implementation for a
readmulti

On Fail Operation

Thisisonly relevant for database operations of entity classes.
This option switches on the on-fail exit point.

If any error occursin the Data Access Layer (DAL), this function isinvoked
with a copy of the parameters given to the DAL and a copy of the DAL ex-
ception corresponding to the error.

The type of exception depends on the type of error which occurred. The er-
ror can either be handled in this exit point or the exception can be thrown
from here to allow the error to be handled elsewhere.

For more information on Exit Points, see Section 6.9, Exit Points.

Optimistic Locking

Thisisonly relevant for certain update operations of entity classes.
This option switches on optimistic locking for this operation.

Note that this option is only allowable if the Al l ow Optim stic
Locki ng option has been set for the entity class.

For more information on optimistic locking, see Section 6.7, Concurrency
Control - Optimistic Locking.

Order By
This option applies only to entity operations of stereotype
<<readnul ti >>,<<nsreadmnul ti >>and <<nkr eadnul ti >>.

This option allows you to specify the fields by which a sequence of records
are sorted as they are read from the database. Any or al of the fields of an
entity are valid arguments for this option. Records are always sorted in as-
cending order.

If thisoption is not specified, records will be returned in arbitrary order.

Post Data Access Operation

Thisisonly relevant for database operations of entity classes.

This option determines whether a standard database operation has a post-
exit point.

For more information on exit points, see Section 6.9, Exit Points.

64

12.3.17

12.3.18

12.3.19

12.3.20

12.3.21

Curam Modeling Reference Guide

Pre Data Access Operation

Thisisonly relevant for database operations of entity classes and determines
whether a database operation has a pre-exit point.

For more information on exit points, see Section 6.9, Exit Paints.

Readmulti_Max

This option applies only to entity operations of stereotype
<<readnmul ti >>, <<nsreadmulti>> <<nkreadnulti>> and
<<nsnul ti >>.

This allows you to specify the maximum number of records returned by a
readmulti operation. If there are more records available than the Read-
multi_Max, then handling is based on the setting of the Treat Read-
multi_Informational option (Section 12.3.19, Readmulti_Informational).

If this option is not specified then the generator system default will be used.

Specifying a value of O for this option isinterpreted asi nfi ni ty and no
limit will be applied to the number of records returned.

Readmulti_Informational

This option applies only to entity operations of stereotype
<<readnmul ti >>, <<nsreadmulti>>, <<nkreadnulti>> and
<<nsnul ti >>.

This alows you to determine the handling of the system when the specified
Readmulti_Max is reached (Section 12.3.18, Readmulti_Max). The default
behavior is that a Readmulti_Max message gets logged and all entries are
returned to the user. If this option is specified, then an InformationalMes-
sage can be added to the current transactions InformationalManager, for
handling in the Application's Facade layer. In this case only the specified
Readmulti_Max number of entries will be returned to the user.

If this option is not specified then the generator system default f al se will
be used.

Response message timeout (seconds)

Thisis only relevant for <<qconnect or >> operations of process classes.
See Section 26.3, Options on gconnector Operations for more information.

Security

Thisisonly relevant to client-visible records.

This option determines whether security will be applied to this operation. If
security is switched on for an operation, then the generator will generate

65

12.3.22

12.3.23

12.3.24

12.4

12.4.1

Curam Modeling Reference Guide

code in the RIL which checks whether the user is authorized to invoke the
operation. If the user is not authorized to invoke the operation an exception
will be thrown.

SQL
This is only relevant to entity operations of stereotype <<ns>> and
<<nsmul ti>>.

This option allows the developer to supply the SQL code to be executed by
the operation. The generator converts the supplied SQL into DAL (Java and
SQL) code.

For more information about this option, see Section 19.4, Using Handcr af-
ted SQL in Non-Sandard Entity Operations.

Transactional

This allows you to specify whether a transaction is started for an operation.
Thisisonly relevant to client-visible operations.

Where
Thisis only relevant to <<r eadmnul ti >> and <<nsr eadnul t i >>oper-
ations of entity classes.

This allows the developer to specify a custom WHERE clause for the gener-
ated SQL used by the DAL code for this operation.

Operation Parameter Options

Mandatory Fields

This option alows the developer to specify mandatory fields for any given
parameter. Mandatory fields are fields that must be populated when dis-
played on aclient page.

The option value must be populated with a single line, comma delimited
string.

Consider the following operation:

public interface Enployer

publ i ¢ voi d updat eEnpl oyer Det ai | s(
PersonDet ai |l s personDtls
Enpl oyment Det al | s enpl oynment Det ai | s)
throws AppException, |nformational Excepti on;

Example 12.5 Operation Signature

66

Curam Modeling Reference Guide

The pseudo-code for the structures involved as parameters in this operation
isoutlined below:

/1l Note that since a person can have two addresses,
/'l PersonDetails aggregates AddressDetails twi ce
[l - "honeAddress" and "wor kAddress".
struct PersonDetails {
String firstNaneg;
String surnane;
Addr essDet ai | s honeAddr ess;
Addr essDet ai | s wor kAddr ess;

}
/1 The role nane for the struct aggregation between
/1 PersonDetails and AddressDetails "honeAddress" struct
/1 is set to "honedtls"
struct AddressDetails {

String addressLi nel;

String addressLi ne2;

String city;

String country;

}
/1 Note that Enpl oynentDetails aggregates AddressDetails once.
/1 The role nanme for the struct aggregation between
/1 Enpl oyment Details and AddressDetails "enpl oyer Addr ess"
[l struct is set to "enploynentdtls”
struct Enpl oynentDetails {
String enpl oyer Nane;
Dat e enpl oynent St art Dat e;
Addr essDet ai | s enpl oyer Addr ess;
}
Example 12.6 Pseudo-Code for Parameter Structures
In this example, we want to make the following fields mandatory for our op-
eration parameter:

For theper sonDt | s parameter:

» the person'sfirst name; and

» thefirst line of the Per sonDet ai | s home address.
For the enpl oynent Det ai | s parameter:
» thefirst line of the employer's address.

Set the Mandat ory Fi el ds option of parameter per sonDt | s to:
firstNanme, homeAddr ess. addr essLi nel

Set the Mandat ory Fi el ds option of parameter enpl oymnent De-
tail s to:

enpl oyer Addr ess. addr essLi nel

Therefore, if adding mandatory fields that are contained in structures ag-
gregated by the parameter type class, they must be fully qualified by the rel-
evant aggregation role names as shown above.

67

13.1

13.2

13.2.1

Chapter 13

Entity Operations Overview

Introduction
This chapter provides an overview of entity operations, which are covered
in more detail in the following sections and chapters.

In the SDEJ, a database operation is an operation of an entity class whose
stereotype is recognized by the Clram generator. For these operations the
generator will generate data-access Java code based on the stereotype.

The generator treats all other operations as if their stereotype was blank and
will produce Java interfaces and factories for them, but does not generate
any data-access code for these operations. The developer must then provide
the implementation.

Standard Operations

Standard Single-Record Operations

Standard single-record operations are the most basic type of operation
provided in that only a single row from the database is returned and no argu-
ments are required to be modelled as the code generator assumes standard
key and details structs where appropriate.

These operations are represented by the following operation stereotypes:
s <<insert>>

« <<nodify>>

o <<read>>

e <<renobve>>

68

13.2.2

13.3

13.3.1

Curam Modeling Reference Guide

Standard Multi-Record Operations

Rather than operating on a single database table row, these operations allow
for processing multiple rows. In database maintenance applications, it is of-
ten necessary to return multiple records to a user interface, from which the
user selects one for processing. Batch programs also frequently operate on
multiple rows of a table; for example a Bank account statement printing
batch program will typically operate on the accounts of every client on re-
cord.

These operations are represented by the following operation stereotype:

e <<readnmulti>>

Non-Standard Operations

Generated SQL Operations

Non-standard generated SQL operations are similar to the standard opera-
tions except that the arguments and return type are not assumed to be stand-
ard key and standard details structs. The developer is required to specify a
struct for each argument and return type.

The attributes of the argument and return structs must be subsets of the
fields of the entity.

The argument structs can be user-defined structs from the input meta-model,
or the generated standard structs that are not explicitly defined in the input
meta-model. Using generated standard key and details structs as the para-
meters to non-standard operations is equivalent to simply using standard op-
erations.

It is important to remember that since the key struct of a non-standard gen-
erated SQL operation is defined by the developer, it is possible to define a
key struct which does not uniquely identify a single record. If this happens,
certain operations may not behave as expected. For example, in the case of a
non-standard modify operation, all records matching the key will be modi-
fied, not just the intended record.

These operations are represented by the following operation stereotypes:
e <<nsinsert>>

e <<nsnodi fy>>

* <<nsread>>

 <<nsreadnmul ti>>

e <<nSrenove>>

69

Curam Modeling Reference Guide

13.3.2 Handcrafted SQL Operations

Non-standard handcrafted SQL operations are the most flexible type of op-
eration provided by the generator. They allow the developer to specify cus-
tom parameters and SQL for the operation. No parameters are generated for
<<ns>> operations except those provided by the developer. All parameters
provided by the developer are replicated into all the generated layers of the
application.

This type of operation is intended to be used for situations where none of
the other operations are suitable. This includes joins across tables and quer-
ies which count or calculate max, etc.

These operations are represented by the following operation stereotypes:
e <ILNS>>

e <<psmul ti>>

13.4 Non-Key Operations

Non-key operations operate on all rows of a database table and so would
typically be used on tables containing one row.

These operations are represented by the following operation stereotypes.
e <<nknodi fy>>

* <<nkread>>

* <<nkreadnmul ti>>

e <<nkrenmove>>

13.5 Batch Operations

Batch programs, as described in the Cdram Batch Processing Guide have
operations available to them that are tailored specifically to the batch envir-
onment.

These operations are represented by the following operation stereotypes:

e <<bpatchi nsert>>

* <<bat chnodi fy>>

70

14.1

14.2

14.2.1

14.2.2

Chapter 14

Entity Insert Operations

Overview

Insert operations as their name suggests insert, or add, a row onto a database
table. Therefore, by definition, they operate on only a single row at a time.
There are two types:

e <<jnsert>>

e <<nSi nsert>>

Standard Insert

A standard insert operation has a stereotype <<i nsert >>.

Description

Standard insert operations insert a single record onto the appropriate data-
base table using the information passed in a standard details struct. No argu-
ments are required to be specified for these operations in the input model.
Extra arguments can be specified and these arguments can be accessed by
exit points for the operation, they do not have any effect on any of the gen-
erated code.

Use
Y ou should use a standard insert operation when you want to create a new
record on a database table, and you want to update each attribute.

No arguments are required to be specified for this operation in the input
model. Generated standard key and details structs are assumed as arguments
where appropriate.

71

14.2.3

14.3

14.3.1

14.3.2

Curam Modeling Reference Guide

Extra arguments can be specified for this operation and these arguments can
be accessed by exit points for the operation, they do not have any effect on
any of the generated code.

This pattern can also be used in conjunction with the Auto ID Field se-
guence number generation pattern.

Parameter and Generator Notes

Standard insert operations use the entity's details structure as an input para-
meter—this is automatically generated and contains all the fields of the re-
cord.

e Parameters- None.
e Return value - None.

» Generator action - The generator will add the standard details struct as a
parameter.

Non-standard Insert (Generated SQL)

A non-standard insert operation has a stereotype <<nsi nsert >>.

Description

Non-standard insert operations insert a single record onto the database table
of the parent entity with information from a non-standard details struct
provided by the devel oper.

Use

Y ou should use a non-standard insert operation when you want to create a
new record on a database table, and you do not need to update each attrib-
ute. Attributes not specified in the parameter to a non-standard insert are set
to null values on the database.

Non-standard insert operations are more efficient than standard inserts, be-
cause there is less /0 to the database. It is the responsibility of the applica-
tion designer to decide whether the improved efficiency is worth the extra
complexity of having more operations on your entities.

Y ou might choose to use a non-standard insert where you know the database
can perform the operation significantly more efficiently or where the opera-
tion will be used by a very high volume transaction.

Non-standard insert operations take a single input parameter - a structure de-
fining the attributes to be inserted. Each attribute of this structure must
match some entity attribute by name and type.

72

Curam Modeling Reference Guide

14.3.3 Parameter and Generator Notes

A Warning is displayed if a non-standard operation has non-standard details
parameter, which does not include fields that cannot be null. Refer to Sec-
tion 19.4.3, Null Considerations.

Fields which are not included in the details struct will not be initialized, i.e.
they will be set to <null> by the DBMS.

e Parameters - A non-standard details struct.
e Return Value - None.

* Generator action - None.

73

15.1

15.2

15.2.1

15.2.2

Chapter 15

Entity Read Operations

Overview

Read operations obtain one or more (multi) rows from the database table,
depending on the type of operation and arguments provided. These are the
read operation types:

e <<read>>

e <<readnulti>>

e <<nsread>>

e <<nsreadnulti>>
e <<nkread>>

e <<nkreadnmul ti >>

Standard Read

A standard read operation has a stereotype of <<r ead>>.

Description

Standard read operations read a single record from a database table into a
standard details struct, using a standard generated key struct (i.e., the
primary key) as search criteria. No arguments are required to be specified
for these operations in the input model. Extra arguments can be specified
and these arguments can be accessed by exit points for the operation, they
do not have any effect on any of the generated code.

Use

74

15.2.3

15.3

15.3.1

15.3.2

Curam Modeling Reference Guide

Y ou should use a standard singleton read operation when you want to read
all of the attributes of a specific database record. Standard singleton read op-
erations use the primary key of an entity to locate the target record. You
cannot create standard singleton read operations for entities that do not have
primary keys. Since the primary key of an entity is unique, a standard
singleton read aways returns a single database record.

Parameter and Generator Notes

Standard singleton read operations use the entity's key and details structures
as input and output parameters respectively - these are automatically gener-
ated and are not specified in the UML meta-model.

No arguments are required to be specified for these operations in the input
model. Generated standard key and details structs are assumed as arguments
where appropriate.

Extra arguments can be specified and these arguments can be accessed by
exit points for the operation, they do not have any effect on any of the gen-
erated code.

e Parameters- None.
e Return value - None.

» Generator action - The generator will add the standard key struct as a
parameter and the standard details struct as the return value.

Standard Readmulti

A standard readmulti operation has a stereotype <<r eadmnul ti >>.

Description

Standard multiple read operations use an input parameter which you desig-
nate as the key structure for the operation. The return value is a structure
containing a list of the entity's details structures. Y ou must specify the first
parameter, but since the return value is automatically generated, it is not
specified in the UML meta-model.

Use

Y ou should use a standard multiple read operation when you want to read
all of the attributes of a set of database records, based on a key that you spe-
cify. The stipulation about efficiency of keyed access, as described for non-
standard read, modify and remove operations, applies equally well to mul-
tiple reads - it is up to the designer to ensure efficient use of database in-
dices.

75

15.3.3

15.4

15.4.1

15.4.2

15.4.3

Curam Modeling Reference Guide

Parameter and Generator Notes

A standard readmulti operation takes a partial key struct, and returns alist of
standard details structs; every record matching the criteriais returned in the
list.

By default, the records in a readmulti are unsorted and are returned in arbit-
rary order.

This can be changed by using the Or der By option of the readmulti opera-
tion. This option takes a list of the fields of the entity and sorts them in as-
cending order.

o Parameters - A key struct to specify the search criteria for which re-
cord(s) to retrieve. The members of the struct must be a subset of the
standard details struct for the entity.

e Return value - None.

» Generator action - The generator will create alist wrapper for the stand-
ard details struct for the entity, and add this as the return value for the
operation.

Non-standard Read (Generated SQL)

A non-standard read operation has a stereotype <<nsr ead>>.

Description

Non-standard read operations read a single record from a database table into
adetails struct, using an key struct as search criteria.

Use

Y ou should use a non-standard read operation when you want to read a sub-
set of the attributes on a database record, or you want to use a key other than
the primary key of the entity. Non-standard operations use a key that you
specify to locate the target record. It is not possible to guarantee at develop-
ment time that only one record will be targeted. If there is more than one re-
cord in the result set, aruntime errors is generated.

Non-standard read operations can be more efficient than standard ones be-
cause they result in less database 1/0.

As with any operation where you specify the key yourself, there is no guar-
antee that the database will be able to access the target records efficiently -
it is up to the designer to ensure that appropriate indices are defined to en-
surethis.

Parameter and Generator Notes

76

15.5

15.5.1

15.5.2

15.5.3

Curam Modeling Reference Guide

Non-standard read operations use key and details structures - as input and
return types respectively - that you must create yourself and specify as oper-
ation parameters in the UML meta-model. Each attribute of each of these
structures must match some entity attribute by name and type. It is possible
to use standard (generated) key or details structures also.

o Parameters - A non-standard key struct to specify the record to be re-
trieved. The key must be capable of uniquely identifying a single record.
If more than one record matches the criteria, an exception will be
thrown.

e Return Value - A non-standard details struct into which the data is re-
trieved.

* Generator action - None.

Non-standard Readmulti (Generated SQL)

A non-standard readmulti operation has a stereotype <<nsr eadnul ti >>.

Description

Non-standard readmulti operations take a partial key struct and a details
struct as input meta-model parameters. They return alist of the provided de-
tails struct; every record matching the criteriaisreturned in the list.

The only difference between a non-standard readmulti and a standard read-
multi is that a non-standard readmulti must specify a return value whereas
for a standard readmulti this is assumed to be the standard generated details
struct for the entity. For non-standard readmulti the developer is required to
specify a struct as the return value of the operation. The fields of this struct
must be a subset of the fields of the entity.

Use

Y ou should use a non-standard multiple read operation when you want to
read a subset of the attributes of a set of database records, based on a key
that you specify. It is up to the designer to ensure efficient use of database
indices when reading based on this key.

Parameter and Generator Notes

Like standard operations, non-standard multiple read operations use an input
parameter which you designate as the key structure for the operation. The
return value that you specify in the UML meta-model is a structure contain-
ing the attributes that you want returned for each record read from the data-
base. The return value in the generated code is alist of the structure that you
specified in the meta-model (the structure containing the list is automatic-
ally generated).

77

15.6

15.6.1

15.6.2

15.6.3

Curam Modeling Reference Guide

o Parameters - A non-standard key struct to specify the search criteria for
which record(s) to retrieve. The members of the struct must be a subset
of the fields of the entity.

* Return Value - A non-standard details struct to specify which attributes
are to be returned from the readmulti operation. The members of this
struct must be a subset of the fields of the entity.

» Generator action - The generator will create a list wrapper for the non-
standard details struct specified by the developer, and use this as the re-
turn value for the operation.

Non-key Read

A non-key read operation has a stereotype <<nkr ead>>.

Description
Non-key read operations read the only record from a database table into a
standard details struct.

Non-key operations, as the name suggests, do not take a key parameter.
They operate by executing SQL statements which do not have a wher e
clause; i.e. they operate on all rows on atable.

For a non-key read operation, there should be a single row on the table - this
type of operation istypically used to read a value from a control table which
contains a single record.

There is no such thing as a non-key insert operation since insert operations
do not require akey parameter.

Use

Y ou should use a non-key singleton read operation when you want to read a
record from a database table on which there is a single record. A runtime er-
ror is generated if the database table contains more than one record.

This operation type is typically used for control tables containing a single
record.

Parameter and Generator Notes

Non-key singleton read operations take no parameters and the generator
automatically adds the standard details struct for the entity as the return

type.
If more than one record exists on the table, an exception is thrown.

* Parameters- None.

e Return value - None.

78

15.7

15.7.1

15.7.2

15.7.3

Curam Modeling Reference Guide

» Generator action - The generator will add the standard details struct as
the return value.

Non-key Readmulti

A non-key readmulti operation has a stereotype <<nkr eadnul ti >>.

Description

Non-key readmultis are very similar to standard readmulti operations, the
only difference being that they return all rows of a table rather than those
which match a partial key. They operate by executing SQL statements
which do not have awher e clause; i.e. they operate on all rows on atable.

Non-key operations, as the name suggests, do not take a key parameter.
They operate by executing SQL statements which do not have a wher e
clause; i.e. they operate on all rows on atable.

For a non-key read operation, there should be a single row on the table - this
type of operation istypically used to read a value from a control table which
contains a single record.

There is no such thing as a non-key insert operation since insert operations
do not require akey parameter.

Use

Y ou should use a non-key multiple read operation when you want to read all
of the attributes of all of the records on a database table.

Parameter and Generator Notes

Non-key multiple read operations take no key argument. The return value is
a structure containing a list of the entity's details structures as an output
parameters. Y ou specify no parametersin the UML meta-model (effectively
the same interface and behavior as a standard multiple read except there is
no key argument).

Generated non-key readmulti operationsin the RIL and BOL have one para-
meter; alist details struct, i.e. alist of standard details structs for the entity.

e Parameters- None.
e Return value - None.

» Generator action - The generator will create alist wrapper for the stand-
ard details struct for this entity, and use this as the return value.

79

16.1

16.2

16.2.1

16.2.2

Chapter 16

Entity Update Operations

Overview

Update operations modify data in one or more rows of the database table,
depending on the type of operation and arguments provided. These are the
update operation types:

* <<nodify>>
* <<nsnodi fy>>

e <<nknodi fy>>

Standard Modify

A standard modify operation has a stereotype <<nodi f y>>.

Description

Standard modify operations modify a specific record on an database table.
No arguments are required to be specified for these operations in the input
model. The record to be modified is specified using a generated standard
key struct and the modified datais contained in a generated standard details
struct. Extra arguments can be specified and these arguments can be ac-
cessed by exit points for the operation, they do not have any effect on any of
the generated code.

Use
Y ou should use a standard modify operation when you want to update all the

attributes on a specific database record. Standard modify operations use the
primary key of an entity to locate the target record. Y ou cannot create stand-

80

16.2.3

16.3

16.3.1

16.3.2

16.3.3

Curam Modeling Reference Guide

ard modify operations for entities that do not have primary keys. Since the
primary key of an entity is unique, a standard modify always updates a
single database record.

The standard modify pattern can also be used in conjunction with the Op-
timistic Locking pattern.

Parameter and Generator Notes

Standard modify operations use the entity's key and details structures as in-
put parameters - these are automatically generated and are not specified in
the UML meta-model.

e Parameters- None.
e Return value - None.

» Generator action - The generator will add the standard key struct and
standard details struct as parameters.

Non-standard Modify (Generated SQL)

A non-standard modify operation has a stereotype <<nsnodi f y>>.

Description

Non-standard modify operations update records on the database table of the
parent entity with information from a non-standard details struct provided
by the developer.

Use

Y ou should use a non-standard modify operation when you want to update a
subset of the attributes on a database record or records. Non-standard modi-
fy operations use a key that you specify to locate the target records, and this
may result in multiple records being updated. Y ou also specify which attrib-
utes of the entity are to be updated.

Non-standard modify operations can be more efficient than standard ones
because they result in less database /O, and the database may not have to
update as many indices as would be the case for a standard modify opera-
tion.

Parameter and Generator Notes

Non-standard modify operations use non-standard key and details structures
as input parameters that you must create yourself and specify as operation
parameters in the UML meta-model. Each attribute of each of these struc-
tures must match some entity attribute by name and type. It is possible to
use standard (generated) key or details structures also.

81

16.4

16.4.1

16.4.2

16.4.3

Curam Modeling Reference Guide

o Parameters- A non-standard key struct to specify the record to be modi-
fied. Note that this non-standard key may specify multiple records. In
this case, all records matching the non-standard key will be updated.

A non-standard details struct containing the updated version of the data.
* Return Value - None.

* Generator action - None.

Non-key Modify

A non-key modify operation has a stereotype <<nknodi f y>>.

Description
Non-key modify operations modify all records on a database table with the
information from a standard generated details struct.

Non-key operations, as the name suggests, do not take a key parameter.
They operate by executing SQL statements which do not have a wher e
clause; i.e. they operate on all rows on atable.

For a non-key read operation, there should be a single row on the table - this
type of operation istypically used to read a value from a control table which
contains a single record.

There is no such thing as a non-key insert operation since insert operations
do not require akey parameter.

Use

Y ou should use a non-key modify operation when you want to update all of
the records on a database table. The attribute values of each record are set to
those you specify in the parameter to the non-key modify function.

Typically you would only use a non-key modify operation for control tables
containing only one record.

Parameter and Generator Notes

Non-key modify operations use the entity's details structure as an input para-
meter - this is automatically generated and is not specified in the UML
meta-model.

e Parameters- None.
e Return value - None.

» Generator action - The generator will add the standard details struct as a
parameter.

82

17.1

17.2

17.2.1

17.2.2

Chapter 17

Entity Delete Operations

Overview

Delete operations remove one or more rows from the database table, de-
pending on the type of operation and arguments provided. These are the de-
lete operation types:

e <<renove>>
e <<NSrenove>>

e <<nkr enmove>>

Standard Remove

A standard remove operation has a stereotype <<r enove>>.

Description

Standard remove operations delete a specific record from a database table.
No arguments are required to be specified for these operations in the input
model. The record to be deleted is specified using a generated standard key
struct. Extra arguments can be specified and these arguments can be ac-
cessed by exit points for the operation, they do not have any effect on any of
the generated code.

Use

Y ou should use a standard remove operation when you want to delete a spe-
cific database record. Standard remove operations use the primary key of an
entity to locate the target record. Y ou cannot create standard remove opera-
tions for entities that do not have primary keys. Since the primary key of an

83

17.2.3

17.3

17.3.1

17.3.2

17.3.3

Curam Modeling Reference Guide

entity is unique, a standard remove always deletes a single database record.

Parameter and Generator Notes

Standard remove operations use the entity's key structure as an input para-
meter - this is automatically generated and is not specified in the UML
meta-model.

e Parameters- None.
e Return value - None.

» Generator action - The generator will add the standard key struct as a
parameter.

Non-standard Remove (Generated SQL)

A non-standard remove operation has a stereotype <<nsr enove>>.

Description

Non-standard remove operations delete records from the database table of
the parent entity matching the information in a key struct provided by the
developer.

Use

Y ou should use a non-standard remove operation when you want to delete a
database record or records, based on a key that you specify. If the key you
specify is not unique, multiple database records are deleted.

As with any operation where you specify the key yourself, there is no guar-
antee that the database will be able to access the target records efficiently -
it is up to the designer to ensure that appropriate indices are defined to en-
surethis.

Parameter and Generator Notes

Non-standard remove operations use a key structure as an input parameter
that you must specify in the UML meta-model. Each attribute of this key
must match some entity attribute by name and type.

]

H Note

When using segmented tablespaces with DB2 for zZ/OS (which are
the default for version 9), IBM has changed the behavior of the JD-
BC driver as per this Technote: ht-
tp://www-01.ibm.com/support/docview.wss?uid=swg21244002

Therefore, a Recor dNot FoundExcepti on error will not be
thrown when a negative row count is returned (i.e., a DELETE

84

http://www-01.ibm.com/support/docview.wss?uid=swg21244002
http://www-01.ibm.com/support/docview.wss?uid=swg21244002

Curam Modeling Reference Guide

FROMwith no predicate).

o Parameters- A non-standard key struct to specify the record to be modi-
fied. Note that this non-standard key may specify multiple records. In
this case, all records matching the non-standard key will be del eted.

e Return Value - None.

* Generator action - None.

17.4 Non-key Remove

17.4.1

17.4.2

17.4.3

A non-key remove operation has a stereotype <<nkr enove>>.

Description

Non-key remove operations remove al the records from a database table.

Non-key operations, as the name suggests, do not take a key parameter.
They operate by executing SQL statements which do not have a wher e
clause; i.e. they operate on all rows on atable.

For a non-key read operation, there should be a single row on the table - this
type of operation istypically used to read a value from a control table which
contains a single record.

There is no such thing as a non-key insert operation since insert operations
do not require akey parameter.

Use

Y ou should use a non-key remove operation when you want to delete all of
the records from a database table.

Parameter and Generator Notes

Non-key remove operations take no parameters.

e Parameters- None.
e Return value - None.

* Generator action - None.

85

Chapter 18

Entity Batch Operations

18.1 Overview

18.2

18.2.1

Batch operations are for inserting or removing a large number of records,
typically for performance reasons. More information on IBM Cdram Social
Program Management batch processing can be found in the Caram Batch
Processing Guide. These are the batch operation types:

e <<patchi nsert>>

* <<bat chnodi fy>>

Batchlnsert

A batch insert operation has a stereotype <<bat chi nsert >>.

Description

Batch insert operations are intended to be used whenever a large amount of
records are to be inserted into the database. By batching operations together,
the number of round trips to the database is reduced and performance is im-
proved.

Batch insert operations have a similar signature to non-standard insert oper-
ations and can be called in the same way. However, when a batch insert is
invoked the record is not written immediately to the database. The insert
statement is instead added to a batch of statements stored locally by the
Curam infrastructure by caling the
j ava. sgl . Prepar edSt at enent . addBat ch method. Once the
batch has reached the desired size, it must be executed by calling the
$execut e method of the operation.

@

n Note

86

18.2.2

18.2.3

Curam Modeling Reference Guide

The $execut e method is never called automatically. It must be
called from code written by the developer. If the entity object is des-
troyed without calling its $execut e method, any pending (not ex-
ecuted) batched inserts will be discarded.

This means that batched inserts or modifies cannot be spread across
multiple client invocations in an online environment because all en-
tity objects are destroyed at the end of each invocation (transaction).

The $execut e method of the operation callsthe execut eBat ch method
of j ava. sql . Prepar edSt at enent and returns the result of this call
which is an array of integers (int []). Each entry in this array corresponds to
one statement in the batch and indicates how many records were affected by
that statement. For example, for a successful batch of inserts, each entry of
the array should be 1 to indicate that each statement caused one record to be
written to the database. If one statement violated a unique constraint, its cor-
responding array entry would contain a zero. A returned vaue of
j ava. sgl . St at enent . EXECUTE_FAI LED indicates that the com-
mand failed to execute successfully.

The JDK documentation for java. sgl. PreparedSt at enent
provides further details regarding the information in this array, and how
gueued statements are executed.

The maximum number of statements in a batch is determined by the applic-
ation property cur am db. batch. | i m t (default value = 30), or can be
set for an individual operation by caling its $set Bat chSi ze(i nt)
method. The optimal size of a batch depends on many factors such as record
size, database configuration and database vendor and can be different for
each individual batch operation. It is the responsibility of the developer or
DBA to determine this value.

If the batch limit is exceeded, an AppException
(1 NFRASTRUCTURE. | D_BATCH_SI ZE_LI M T_HAS BEEN REACHE
D) isthrown by the batch insert operation. In this case the developer should
simply call the $execut e method of the operation, and then continue as
before.

Use

Y ou should use a<<bat chi nsert >> operation when you wish to insert a
large number of records to the same entity in a single transaction.

Parameter and Generator Notes

A <<bat chi nsert >> operation takes a single input parameter - a struc-
ture defining the attributes to be inserted. Each attribute of this structure
must match some entity attribute by name and type.

A warning is displayed if a <<bat chi nsert>> operation has non-
standard details parameter, which does not include fields that cannot be null.
Refer to section in Section 19.4.3, Null Considerations.

87

18.3

18.3.1

18.3.2

18.3.3

Curam Modeling Reference Guide

e Parameters - A non-standard details struct.
e Return Value - None.

Generator Action - The generator adds the following methods to a class
containing a batch insert operation:

e public void operationNane$set Bat chSi ze(final int
newBat chLi mi t) - This method sets the batch limit for the operation
(overridesthe value of thecur am db. bat ch. | i m t property).

e public int[] oper at i onNanme$execut e() t hr ows
AppException, |nformational Excepti on - This method ex-
ecutes the currently queued batch of statements for the operation.

BatchModify

A batch modify operation has a stereotype <<bat chnodi f y>>.

Description

Batch modify operations are similar to batch insert operations except, as the
name suggests, they are used to modify existing records rather than to insert
new records.

Use

Y ou should use a batch modify operation when you wish to modify a large
number of records on the same entity in a single transaction.

Parameter and Generator Notes

A batch modify operation uses non-standard key and details structures as in-
put parameters that you must create yourself and specify as operation para-
meters in the UML meta-model. Each attribute of each of these structures
must match some entity attribute by name and type. It is possible to use
standard (generated) key or details structures also.

A warning is displayed if a <<bat chnodi f y>> operation has non-
standard details parameter, which does not include fields that cannot be null.
Refer to section in Section 19.4.3, Null Considerations.

o Parameters- A non-standard key struct to specify the record to be modi-
fied. Note that this non-standard key may specify multiple records. In
this case, all records matching the non-standard key will be updated.

A non-standard details struct containing the updated version of the data.
* Return Value - None.

Generator action - The generator adds the following methods to a class con-

88

Curam Modeling Reference Guide

taining a batch modify operation:

=

public void operationNane$set Bat chSi ze(final int
newBat chLi m t) - This method sets the batch limit for the operation
(overridesthe value of thecur am db. bat ch. | i m t property).

public int[] oper at i onNanme$execut e() t hr ows
AppException, |nformational Excepti on - This method ex-
ecutes the currently queued batch of statements for the operation.

Note

<<bat chnodi f y>> operations cannot be spread across multiple
client-server invocations (transaction). A <<bat chnodi f y>> op-
eration can only be used in an online transaction if the batch is ex-
ecuted before the end of the transaction.

89

19.1

19.2

19.2.1

Chapter 19

Entity Handcrafted SQL Operations

Overview

Using non-standard ("ns') operations "handcrafted” SQL can be utilized
against the database. These are the non-standard operation types:

e <ILNS>>

e <<psmul ti>>

Non-standard

A non-standard operation has a stereotype <<ns>>.

Description

All parameters for a <<ns>> operation must be structs. This is because the
parameters are replicated in the Data Access Layer (DAL) and the DAL al-
lows parameters to be structs only.

The return value for a <<ns>> operation must also be a struct. Similar to
parameters for <<ns>> operations, the DAL alows return values to be
structs only.

The developer must provide SQL with all <<ns>> operations; no SQL is
automatically generated.

Non-standard operations must belong to an entity class. However, the SQL
guery can operate on any database table, it does not have to operate on only
the database table belonging to the entity class; i.e., it can be used to per-
form SQL joins across tables.

For details on how to specify SQL in an operation, see Section 19.4, Using
Handcrafted SQL in Non-Standard Entity Operations.

90

19.2.2

19.2.3

19.3

19.3.1

Curam Modeling Reference Guide

Use

Y ou should use a non-standard operation for a database operation which is
too complex for any of the above operations and which does not retrieve
multiple records. Examples of such operations are:

e queries whose wher e clause contains comparisons other than equals,
such as less-than, greater-than, etc.;

» queries or commands which operate on more than one database table;

» queries which return something other than an attribute of a table, such as
the results of max and count functions.

The developer must specify the SQL to be executed and can specify zero or
many parameters for the operation. All parameters must be structs and must
beflat, i.e. they cannot aggregate other structs.

The handcrafted SQL can perform any database operation provided that a
cursor is not required. This includes single-record-reads, single or multiple
record updates and deletes, and joins across multiple database tables. Thisis
because the parameter structs cannot aggregate other structs. If your hand-
crafted SQL requires a cursor then an <<nsmul t i >> operation should be
used.

Parameter and Generator Notes

o Parameters - Struct(s).
* Returnvalue - Struct.

* Generator action - None.

Non-standard multi

A non-standard multi operation has a stereotype <<nsnul ti >>.

Description

Non-standard multi operations are similar to non-standard operations except
for the following restrictions:

* There must be either zero or one parameter;
* The operation must return a struct;

* The SQL for the operation must perform areadmulti.

Typicaly, this type of operation is intended to be used for doing readmulti
operations which join two or more database tables.

91

19.3.2

19.3.3

19.3.4

Cuaram Modeling Reference Guide

This is the only entity operation that cannot utilize additional parameters,
which is usually done to provide extra parameters to exit points in the Busi-
ness Object Layer (BOL). Operations of this stereotype can have either zero
or one parameter only. You cannot add any extra parameters to this opera-
tion.

Use

Y ou should use non-standard multiple operations to either:

* retrieve attributes from multiple database tables, performing a relational
join across the tables, or;

* retrieve attributes from one or more database tables when the selection
criteria is too complex to use a <<readmulti>> or
<<nsr eadmnul ti >>. For example, if the wher e clause contains com-
parisons other than equals such as less-than, greater-than, etc.

A non-standard multiple operation is very similar (from a modeling per-
spective) to a non-standard multiple read operation (<<nsr eadnul ti >>).
The major difference is that the designer must specify the SQL to be ex-
ecuted. This enables multiple database tables to be referenced and/or com-
plex wher e clausesto be specified.

Parameter and Generator Notes

o Parameters- key parameter [optional].
* Returnvalue - list-details parameter.

» Generator action - The generator will create a list wrapper for the re-
turn-value struct specified by the developer, and use this as the return
value for the operation.

Y ou cannot specify any extra parameters for this operation.

Example 1 - nsmulti with a Single (List) Parameter
Consider an operation in the input meta-model to list every single transac-
tion in the system whose amount was for less than one dollar.

The following struct is defined in the model and will be used to contain the
information about each transaction. The type of each attribute of the struct is
not relevant here and has been omitted for clarity.

e <<struct>>classsM nor TxDetails

Attribute Domain

txDate DATE
txAccountNumber ACCOUNT_NUMBER

92

Curam Modeling Reference Guide

Attribute Domain

txXAmount AMOUNT

The table below shows an entity defined in the model with some of the at-
tributes, which will be used by the <<nsnul t i >> operation get M nor -
Transacti ons(), returning an instance of M nor TxDet ai | s.

* <<entity>>class: BankAccount

Attribute Domain

<<det ai | s>> txDate DATE
<<det ai | s>> txAccountNumber ACCOUNT_NUMBER
<<det ai | s>> txAmount AMOUNT

<<det ai | s>> txTellerNumber TELLER_NUMBER

The SQL for the operation (which must be supplied in the model by the de-
veloper) is as follows in Example 19.1, SQL for nsmulti with a single (list)
parameter:

SELECT t xAccount Nunber, txDate, txAnpunt
| NTO
1t xAccount Nunber ,
:t xDat e,
: t XAnount
FROM BankAccount
VHERE t XAnpunt < 1;

Example 19.1 SQL for nsmulti with a single (list) parameter

This is al that has to be provided by the developer, the remainder is pro-
duced by the generator and is shown below for illustrative purposes.

The following pseudo code in Example 19.2, Pseudocode for generated
structs for use by nsmulti operation describes the structs used in this opera
tion. The actual Java structs corresponding to the structs defined in the mod-
el are produced by the code generator.

struct M norTxDetails {
t xDat e;
t xAccount Nunber ;
t XAnmount ;

H

/] this is a generated |ist w apper:
struct M nor TxDet ai | sLi st {
sequence <M nor TxDet ai | s> dtls;

/] this is the standard details struct for the entity
/] just to show where its attributes are kept:
struct BankAccountDtls {

t xAccount Nunber ;

t xDat e;

t XAnpount ;

t xTel | er Nunber ;

}

93

19.3.5

Curam Modeling Reference Guide

Example 19.2 Pseudocode for generated structs for use by
nsmulti operation

The Java interface for this entity class - complete with the nsmulti operation
is produced by the code generator and would look like this:

public interface BankAccount {

/1 This is our "nsmulti" operation. Note how the
/'l generator has transforned the paraneter of this function
/1 from "M norTxDetails" to a "M nor TxDetail sList"
publi ¢ M nor TxDet ai | sLi st get M nor Transacti ons()
t hrows AppException, |nfornmational Excepti on;

Example 19.3 Generated Java interface for nsmulti operation

Example 19.4, Calling a nsmulti operation from handcrafted Java code (one
parameter) demonstrates how the developer would write handcrafted Java
code to call this method and to iterate through each element returned by the
method:
<Pr oj ect Package>. i nt f. BankAccount bankAccount
= <Proj ect Package>. f act . BankAccount Fact ory. newl nst ance()
doubl e theTot al Amount = 0;
/1 Call the operation:
M nor TxDet ai | sLi st t xLi st
= bankAccount . get M nor Tr ansacti ons();
/1 iterate through the set of results.
for (int i =0; I < txList.dtls.size(); i++) {
M nor TxDetails currentTx = txList.dtls.iten(i);

t heTot al Anbunt += current Tx. t xAnbunt ;

Example 19.4 Calling a <<nsrmul t i >> operation from
handcrafted Java code (one parameter)

Example 2 - nsmulti with Two Parameters (Key + List)

For this example, we will slightly modify the functionality of the previous
example.

Instead of returning all transactions for less than one dollar, in the whole
system, it will return only the transactions for one account which were less
than one dollar.

Another parameter is required to specify the account number we are inter-
ested in. Since <<nsmnul t i >> is a database operation and database opera-
tions require all parameters to be structs, we must use a struct for our ac-
count number parameter even though the struct will have only one field.

Note that the account number field appears in various guises - txAccount-
Number, txAccountNum, theAccountlD. Unlike the other database opera-

94

Curam Modeling Reference Guide

tions, the names of attributes do not have to correspond when used in
<<ns>> or <<nsnul t i >> operations, the handcrafted SQL can reference
the different field names as appropriate.

e <<struct>>class. Account NoW apper

Attribute Domain

txAccountNumber ACCOUNT_NUMBER

This struct can now be used as an input argument to the <<nsmul t i >> op-
eration get M nor Transacti ons(t heAccountI D : Account-
NoW apper), returning an instance of M nor TxDet ai | s for the entity
below:

* <<entity>>class: BankAccount

Attribute Domain

<<det ai | s>> txDate DATE

<<det ai | s>> txAccountNumber ACCOUNT_NUMBER
<<det ai | s>> txAmount AMOUNT

<<det ai | s>> txTellerNumber TELLER_NUMBER

The SQL for the operation is shown in Example 19.5, SQL for nsmulti with
a key and list parameters:

SELECT t xAccount Nunber, txDate, txAnmount
I NTO
: t XxAccount Nunber,
:t xDat e,
: t XAnmount
FROM BankAccount
VWHERE (txAmount < 1)
AND (txAccount Nunmber = :txAccount Num ;

Example 19.5 SQL for nsmulti with a key and list parameters

This is al that has to be provided by the developer, the remainder is pro-
duced by the generator and is shown below for illustrative purposes.

The following pseudo-code Example 19.6, Pseudocode for generated
structs for use by nsmulti with key and list parameters describes the structs
used in this operation (The actual Java structs corresponding to the structs
defined in the model are produced by the code generator.):

struct M norTxDetails {
t xDat e;
t xAccount Nunber ;
t XxAnmount ;

/] this is a generated |ist w apper:
struct M nor TxDet ai | sLi st {
sequence <M nor TxDetai |l s> dtls;

95

Curam Modeling Reference Guide

struct Account NoW apper {
t xAccount Num

/] this is the standard details struct for the entity
/] just to show where its attributes are kept:
struct BankAccountDtls {

t xAccount Nunber ;

t xDat e;

t xArmount ;

txTel | er Nunber ;

}

Example 19.6 Pseudocode for generated structs for use by
nsmulti with key and list parameters

The Java interface for this entity class - complete with the nsmulti operation
- is produced by the code generator and would look like the following:

public interface BankAccount {

/1 This is our "nsnmulti" operation. Note how the
/'l generator has transforned the return value of this
/1 function from"M norTxDetails" to a
/1 "M nor TxDet ai | sLi st"
publi c M nor TxDet ai | sLi st get M nor Transacti ons
(Account NoW apper t heAccount | D)
t hrows AppException, |nfornational Excepti on;

Example 19.7 Generated Java interface for nsmulti operation
with key and list parameters

Example 19.8, Calling a nsmulti operation from handcrafted Java code (two
parameters) demonstrates how the developer would write handcrafted Java
code to call this method and to iterate through each element returned by the
method:

<Pr oj ect Package>. i nt f. BankAccount bankAccount
= <Proj ect Package>. f act . BankAccount Fact ory. newl nst ance() ;

Account NoW apper accNoW apper = new Account NoW apper ;
accNoW apper . t xAccount Num = "57033186";
doubl e theTot al Amount = 0;
/] Call the operation:
M nor TxDet ai | sLi st txLi st
= bankAccount . get M nor Tr ansact i ons(accNoW apper) ;
/1 iterate through the set of results.
for (int i =0; I < txList.dtls.size(); i++) {
M nor TxDetails currentTx = txList.dtls.iten(i);

t heTot al Anbunt += current Tx. t xAnbunt ;

Example 19.8 Calling a <<nsnul t i >> operation from
handcrafted Java code (two parameters)

96

19.4

19.4.1

19.4.2

19.4.3

Curam Modeling Reference Guide

Using Handcrafted SQL in Non-Standard Entity
Operations

Overview

For entity operations of stereotype <<ns>> and <<nsnul ti >> the de-
veloper is required to specify the SQL to be used in the Ciram Data Access
Layer (DAL).

These queries have access to all the tables on the database and to all the
parameters of the operation.

Using Host Variables

Host variables in SQL directly reference fields in the parameter struct or re-
turn value struct.

The rulesfor using host variables are as follows:
» host variables must be prefixed with acolon ();
* host variables are case sensitive.

For example:
. sur name

o if afield in the parameter struct or return value struct is a result of ag-
gregation then the role name of aggregation is used for host variable.

For example:
: dt | s (see Section 20.4, One-to-One Aggregation)

“Null”” Considerations

When writing a handcrafted SQL statement, it is important to note that some
Cuaram datatypes are stored as nul | on the database if they are empty (i.e.
in their initial state), so when searching for these records your query must
search for “nul | ” rather than an empty string. For example:

Incorrect

SELECT ... INTO... FROM ... WHERE soneStringCol um = "'
Correct

SELECT ... INTO ... FROM....WHERE soneStringColum is null;

97

19.4.4

Cuaram Modeling Reference Guide

In generd, if the Clram data type corresponds to a Java class (as opposed to
a primitive Java type) then its empty state is stored on the database as a
nul | . If the data type corresponds to a primitive Java type then anul | on
the database is not a valid value for it and the Al | ow NULLS on this
dat abase fi el d option defaults to no. If necessary this default can be
overridden.

2

ﬂ Note

The Al l ow NULLs on this database fi el d option con-
trolsthe NOT NULL qualifier in generated DDL in an inverted way.
Setting this option to no causes the NOT NULL qualifier to be ad-
ded; setting it to yes causes the qualifier to be omitted.

The following table shows which Cldram data types can be represented as a
nul | on the database.

Datatype Nulls allowed

SVR_BLOB yes
SVR_BOCOLEAN no
SVR_CHAR no
SVR_DATE yes
SVR_DATETI ME yes
SVR_DOUBLE no
SVR_FLQOAT no
SVR | NT8 no
SVR_|I NT16 no
SVR_| NT32 no
SVR_| NT64 yes
SVR_MONEY no
SVR_STRI NG yes

Table 19.1 Data types and nulls

For Update Considerations With DB2 for z/0S

If running against a DB2 for z/OS database, any handcrafted SQL that expli-
citly uses a FOR UPDATE clause may need to be modified to prevent Re-

cor dLockedExcept i on errors from being thrown. If the particular SQL
statement is invoked simultaneously by multiple users, you should consider
using FOR UPDATE WTH RS USE AND KEEP UPDATE LOCKS in-
stead. The locking behavior of DB2 for zZ/OS is subtly different to that of
DB2 on distributed platforms. The KEEP UPDATE LOCKS syntax ensures
that the locking behavior with DB2 for ZOS is the same as it is on distrib-
uted platforms.

98

19.4.5

19.4.6

Curam Modeling Reference Guide

SQL Example 1

Consider an example where the entity Enpl oyer has a method Coun-
t Enpl oyer s (stereotype <<ns>>) which returns the number of recordsin
the Enpl oyer table.

The following struct is required to return the result, since stereotyped entity
operations cannot return primitive types:

public final class LongW apper
i npl ements Serializable, DeepCl oneabl e {

/**

* LONG_TYPE -> |l ong
*/
public long | ongVal ue = 0;

Example 19.9 Struct for return result
The Java interface for this operation would look like the following extract:

public interface Enpl oyer

publ i c LongW apper count Enpl oyers()
t hrows AppException, |nformati onal Excepti on;

Example 19.10 Java Interface

Finally, the SQL to implement this query is:

SELECT count (*)
I NTO : | ongVal ue
FROM Enpl oyer;

Example 19.11 SQL Implementation

Note that we do not need to specify the name of the LongW apper class,
we simply reference the name of thel ongVal ue attribute within that class
because the | NTO clause is automatically assumed to reference the return
value.

Thus if an attribute with the same name is used in the input parameter struct
and return value struct then it is assumed that INTO clause references the at-
tribute of return value struct.

SQL Example 2

This example shows how to use parameter host variables and expands the
previous example by adding another method which updates a numeric field
on one record of the Enpl oyer table.

public interface Enployer

99

Curam Modeling Reference Guide

publ i c void set Enpl oyer Si ze(Enpl oyer Key enpKey,
LongW apper newsSi ze)
throws AppException, |nfornmational Excepti on;
publi c LongW apper count Enpl oyers() throws AppException; }

Example 19.12 Java Interface
The following struct is required to contain the primary key for the employer:

public final class Enpl oyerKey
i mpl enents Serializable, Deepd oneable {
* %
* REFERENCE_NUMBER -> String
*/
public String enpl oyer Nunber = ""

Example 19.13 Struct for employer key
The SQL statement for this method is:

UPDATE Enpl oyer
SET size = :2.1ongVal ue
WHERE enpl oyer Nunber = : enpl oyer Nunber ;

Example 19.14 SQL Implementation
Note that since | ongVal ue is contained in the second parameter it is ne-

cessary to qualify it with 2. . Unqualified parameter references are assumed
to reference the first parameter.

The SQL statement below qualifies both parameters and is equivalent to the
one above:

UPDATE Enpl oyer
SET size = :2.newSi ze. | ongVal ue
VWHERE enpl oyer Nunber = : 1. enpl oyer Nunber ;

Example 19.15 SQL Implementation with qualified parameters

100

20.1

20.2

20.3

20.4

Chapter 20

Aggregation

Overview

Aggregation is essentially the ability to embed or nest instance(s) of one
type of class within another type of class.

The Curam generator supports two types of aggregation relationships. one-
to-one and one-to-many. One-to-one aggregation has the effect of embed-
ding a single instance of one class within another. One-to-many aggregation
has the effect of embedding a sequence of one class within another.

The main use for aggregation in the generator is to represent sequences in
the input meta-model.

Rules when Using Aggregation

The generator permits the following aggregation configurations:

« structs can aggregate structs;

» dfructs can aggregate entities.

A Special Case
The generator supports the aggregating of standard details structs, even
though they do not appear in the input model. Standard details structs are

aggregated by aggregating the entity class which “owns’ the standard de-
tails struct.

One-to-One Aggregation

The following example describes how to aggregate a struct class, Per son-

101

Curam Modeling Reference Guide

Det ai | s, into to another struct class, Per sonDet ai | sSW apper, using
one-to-one aggregation.

To create a one-to-one aggregation create an Rational Software Architect
diagram and do the following:

e Add classes PersonDet ai | s and PersonDet ai | sW apper to
the diagram,;

* Inthe diagram drag the appropriate arrowhead (appears when the mouse
cursor is over the class) between the two classes with Per sonDe-
tai |l sSWapper setasthesourceandPer sonDet ai | s the target;

» Select Create Aggregation from the popup menu;

» With the aggregation relationship selected in the diagram open the Gen-
eral Propertiestab.

This creates the aggregation relationship whereby one role corresponds to
class Per sonDet ai | sW apper and the other to class Per sonDe-

tails. A UML roleis essentially one end of a UML relationship so each
relationship has two roles whose names are Role A and Role B. Exactly one
of these roles - usually Role A - will have its Aggregate option set. The as-
signment of Role A and Role B is arbitrary. The key thing to remember is
that the role which has the Aggregate box checked denotes the outermost
class of the pair.

With the relationship line selected in the diagram the General Properties tab
should show Per sonDet ai | sW apper in the graphic at the top of the
properties sheet with the diamond associated with it. Set the following prop-
erties of the aggregation:

 TheLabe isoptional;

» For PersonDetail sSWrapper:
» The Aggregation radio button should indicate Composite;
* Multiplicity should be set to 1;

* For PersonDetails:

» The Aggregation radio button should indicate None;

» By default theroleis set to "dtls";

e Multiplicity should be set to 1 (to signify a one-to-one aggregation).
The class diagram would appear in the Rational Software Architect showing
the two classes joined by the UML aggregation relationship line (diamond
end touching Per sonDet ai | sW apper) and each side of the relation-

ship showing multiplicity of one and the Per sonDet ai | s showing arole
nameof - dtls.

102

20.5

Curam Modeling Reference Guide

i Note

The position of the diamond in the model diagram is important as it
denotes the outermost classin the pair.

The generated Java code resulting from this construct would take the fol-
lowing format:

public final class PersonDetails inplenents
Java.io. Serializable, curamutil.type. Deepd oneabl e {
public String personRefNo = "";
public String firstNane = ""

public final class PersonDetail sWapper inplenents
Java.io. Serializable, curamutil.type. DeepCl oneabl e {
/1 This class has a single instance of
/] class "PersonDetails" enbedded in it. PersonDetails dtls =
/ new Per sonDet ail s();

/
I

One-to-Many Aggregation

In this example a one-to-many aggregation is modeled, meaning that a list
of one class type is embedded into the other class. Here we create Per son-
Det ai | sLi st, which aggregates alist of Per sonDet ai | s. To create a
one-to-many aggregation, open an Rational Software Architect diagram and
do the following:

* Add classes PersonDetails and PersonDetailsList to the diagram;

* In the diagram drag the appropriate arrowhead (it appears when the
mouse cursor is hovering over the class) between the two classes with
PersonDetailsList as the source and PersonDetails as the target;

» Select Create Aggregation from the popup menu;

» With the aggregation relationship selected in the diagram open the Gen-
eral Properties tab.

This creates the aggregation relationship whereby one role corresponds to
class PersonDetailsList and the other to class PersonDetails.

]

H Note

The position of the diamond is important as it denotes the outermost
classin the pair.

With the relationship line selected in the diagram the General Properties tab
should show PersonDetailsList in the graphic at the top of the properties
sheet with the diamond associated with it.

Set the following properties of the aggregation:

* TheLabel isoptional;
» For PersonDetailsList:

103

Curam Modeling Reference Guide

» The Aggregation radio button should indicate Composite;
e Multiplicity should be set to *;

* For PersonDetalils:

» The Aggregation radio button should indicate None;
o By default theroleis set to "dtls";

e Multiplicity should be set to 1..* (to signify a one-to-many aggrega-
tion).

The class diagram would appear in the Rational Software Architect showing
the two classes joined by the UML aggregation relationship line (diamond
end touching Per sonDet ai | sLi st) and the aggregates side of the rela-
tionship showing a multiplicity of * and Per sonDet ai | s showing a mul-
tiplicity of 1. . * and arolenameof - dtl s.

The pseudo-code resulting from this construct would take the following
format:

struct PersonDetails inplenments
java.io. Serializable, curamutil.type. Deepd oneabl e {

String personRefNo = ""
String firstName = "";

struct PersonDetail sList inplenments
java.io. Serializable, curamutil.type. Deepd oneabl e {

public static class List_dtls
extends curamutil.type. Val uelLi st {
public void addRef (PersonDetails s) {
add(s);

}
public PersonDetails iten(int indx) {
return (PersonDetails) get(indx);

}

public PersonDetails[] itenms() {
PersonDetail s[] result = new PersonDetail s[size()];
toArray(result);
return result;

}
}

/1 This class contains an enbedded |ist of "PersonDetails":
public final List_dtls dtls = new List_dtls();

}

The resulting generated struct class for Per sonDet ai | sLi st hasafield
named dt | s which provides functionality required for lists such as adding
items, getting an item by index and getting the list contents as an array.

104

Chapter 21

Assignable

21.1 Overview

A function of the generated <<st r uct >> class is the ability to automatic-
aly assign values between matching fields in another <<st ruct >> as
provided by the generated <<struct>> classs super class
curamutil.type.struct. Struct. Consider an example of a
<<struct >>, BankBr anchSt r uct with several attributes:

« bankBranchl D

« bankld

e bankNane

* bankSort Code
* nane

LIS (o

A BankBr anchLi st Det ai | s <<struct >> class has a subset of at-
tributes shared with the BankBr anchSt r uct class:

« bankBranchl D
« bankSort Code

* hane

Based on this example modeling the following Java code illustrates how to
create these objects.

BankBr anchSt ruct bankBranchSt ruct
= new BankBranchStruct () ;

BankBr anchlLi st Det ai | s bankBranchLi stDetail s
= new BankBranchLi st Detail s();

105

21.2

Curam Modeling Reference Guide

Typicaly, the assignment from one struct to the other might look like this:

bankBr anchLi st Det ai | s. bankBr anchl D
= bankBr anchsSt ruct . bankBr anchl D
bankBr anchLi st Det ai | s. bankSor t Code
= bankBr anchsSt ruct . bankSor t Code;
bankBr anchLi st Det ai | s. name = bankBranchSt ruct . nane;

The above code can be simplified as follows using the assi gn function,
which becomes more significant as the size of the structs increases:

bankBr anchLi st Det ai | s. assi gn(bankBranchStruct);

An <<assi gnabl e>> relationship then is one which alows further con-
trol of the specifics of the automatic assignment with the assi gn function.
It is required where you want to do explicit field assignment between fields
with differing names or to suppress the default assignment between fields of
the same name.

Explicit Field Assignment

An explicit field assignment is one where fields with different names are
matched. It is represented in the model by adding an assi gnabl e rela
tionship between the two classes, and then adding attributes to be matched
to the both sides of the assignment. Any fields which are not explicitly
linked will be treated as default assignment fields.

The following classes are used to illustrate this.

e <<entity>>class: Addr ess

Attribute

addressIiD
addressLinel
addressLine2
addressLine3
addressLine4
cityCode
countryCode
postalCode
regionCode
comments

¢ <<struct>>class BankBranchSt r uct

Attribute
bankBranchlD

106

Cuaram Modeling Reference Guide

Attribute

bankID
bankName
addressIiD
addressLinel
addressLine2
addressLine3
addressLine4
countryCode
postal Code
regionCode
addressVersionNo
citylD

In an assi gnabl e relationship between the two classes Addr ess and
BankBranchStruct fields can be explicitly mapped; e.g. Bank-
BranchStruct. ci tyl D matched with Addr ess. ci t yCode. In Ra-
tional Software Architect this is shown in Role: fields (RoleA & RoleB) of
the General tab of the assignable relationship with the linked pair, ci t yl D
in one Role field and ci t yCode in the other. All the other common fields
(e.g. Addr essLi nel, etc.) are handled automatically by the generator.

For instance, the generated code without the explicit field assignment would
appear as shown below:

public curamutil.testnodel.struct.BankBranchStruct
assign(final curamutil.testnodel.struct. AddressDtls v)

addr ess| D = v. addressl D;

addr essLi nel v. addr essLi nel;
addr essLi ne2 v. addr essLi ne2;
addr essLi ne3 v. addr essLi ne3;
addr essLi ne4 v. addr essLi ne4;
countryCode = v. countryCode;
post al Code = v. post al Code;
regi onCode = v.regi onCode;
return this;

}

With the explicit field assignment the following code is then added to the
assi gn method: cityl D = v. ci t yCode. The handcrafted Java to as-
sign these structures would be as follows:

BankBranchStruct dtls = new BankBranchStruct();

AddressDt| s addressDtls = new AddressDtl s();

dtl s. addressLi nel = addressDt| s. addr essLi nel;

dtl s. addressLi ne2 = addressDt| s. addr essLi ne2;
s. addr essLi ne3 = addressDt| s. addr essLi ne3;

s. addressLi ne4 = addressDt| s. addr essLi ne4;

s.cityl D = addressDtl s. ci t yCode;

s.countryCode = addressDtls. countryCode;

s

s

u

. post al Code addr essDt | s. post al Code;
. regi onCode addr essDt | s. regi onCode;

By using the generated assignment operator, these lines of code can be re-

107

21.3

Curam Modeling Reference Guide

duced to just oneline as follows:
bankDt | s. assi gn(addr essDtl s) ;

Suppressing Default Assignment Fields

In some situations you may not want a pair of similarly named fields to be
matched. Y ou can cause a pair of fields to be omitted from an assignment by
listing one of the fields at one end of the relationship.

For the following two classes below, Per sonl nf o and Account | nf o,
having an <<st r uct >> relationship, the same named fields are matched.

e <<struct>>class: Account | nfo

Attribute

Id
Surname
FirstName
Balance

e <<struct>>class Personl nfo

Attribute

Id
Surname
FirstName

For this example we first create the objects for the Per sonl nf o and Ac-
count | nf o classes as described above:

Account I nfo account = new Account | nfo();
Per sonl nfo person = new Personl nfo();

This assignment:
account . assi gn(person);
is equivalent to the following three statements:

account.|ld = person.|d;
account. Surname = person. Sur nane;
account . Fi rst Nane = person. Fi r st Nane;

By adding | d as akey to one end of the relationship, it is excluded from the
generated assignment and now this assignment:

account . assi gn(person);

108

21.4

Curam Modeling Reference Guide

is equivalent to the following two statements; that is, the | d assignment will
no longer be made:

account. Surnane = person. Sur nane;
account . Fi rst Nane = person. Fi rst Nane;

Combining structs

Sometimes you may need to populate one struct with the contents of two or
more other structs.

A typical piece of Java code would look like the following:

BankBranchStruct dtls = new BankBranchStruct ();
AddressDt| s addressDtl s = new AddressDtl s();
BankBr anchDt | s bankBranchDt| s = new BankBranchDt| s();

/1 Copy fromthe "AddressDtls" struct

dtl s. addr essLi nel addr essDt | s. addr essLi nel;
dtl s. addr essLi ne2 addr essDt | s. addr essLi ne2;
dtl s. addr essLi ne3 addr essDt | s. addr essLi ne3;
dtl s. addr essLi ne4 addr essDt : s. addr essLi ne4;
S.

dtls. cityCode addr essDt ci t yCode;

dtl s. countryCode addressDt | s. count r yCode;
dtls. post al Code addr essDt | s. post al Code;
dtls. regi onCode = addressDtl| s. regi onCode;

dt | s. addressVersi onNo = addressDt| s. versi onNo;
/1 Copy fromthe "BankBranchDtls" struct

dt | s. bankBranchl D = bankBranchDt| s. bankBr anchl D;
dt | s. bankl D = bankBranchDt | s. bankl D

dt | s. bankSort Code = bankBranchDt| s. bankSort Code;
dtls. nane = bankBranchDt| s. nane;

dtls. versi onNo = bankBranchDt | s. ver si onNo;

Example 21.1 Example Java code for combining structs

By explicitly mapping the BankBr anchSt r uct . addr essVer si onNo
attribute to the Addr ess. ver si onNo in the <<assi gnabl e>> rela-
tionship the Java can now be written as:

/] Copy fromthe "AddressDtls" struct
dtls. assi gn(addressDtl s);

/] Copy fromthe "BankBranchDtls" struct
dtls. assi gn(bankBranchDt| s) ;

Example 21.2 Equivalent Java code for combining structs
Note that in this case, the second assi gn does not overwrite the first as it

happens to reference a different subset of fields, so the net effect is that the
two struct contents are merged.

109

22.1

22.2

22.3

Chapter 22

Foreign Keys

Overview

The Caram generator allows for foreign keys to be created between database
tables.

A Foreign Key relationship between two database tables is specified in the
input model by adding a relationship of stereotype <<f or ei gnkey>>
(one word, no spaces) between two entity classes. Optionally you can give
the relationship a name, this name is then applied to the foreign key con-
straint added to the database. Otherwise the database chooses its own name
for the constraint.

Rules when Using Foreign Keys

» Foreign key relationships are allowed on entity classes only.

» Fields referenced by a foreign key will be set to unique, as this is re-
quired by some databases.

» |f theforeign key references the primary key of another entity, a redund-
ant uni que clause will not be generated by the generator, as the

primary key is already unique.
» Foreign keys cannot be specified on subclass entities. The relationship

should be specified using the actual base entity classes themselves.
How to Add a Foreign Key to a Database Table
A foreign key is specified between a pair of entities by adding a relationship

between the two classes and adding key/qualifiers to the role touching the
referenced class. On a class diagram, this results in a line between two

110

22.4

22.5

Cuaram Modeling Reference Guide

classes, with abox containing the key/qualifiers at the referencing class.

The notation for linking pairs of fields in two different classes is the same
for foreign keys as for generated assignments. The class diagram will show
two classes joined by a line with pairs of linked attributes in a box at one
end of the line. The first name in the pair refers to an attribute in the nearer
class, the second name refers to an attribute in the other class.

Naming Primary and Foreign Key Constraints

It is possible to include a constraint name for foreign key constraints in
Caram models. The name given in the model to the <<f or ei gnkey>> re-
lationship will be applied to the foreign key constraint itself. If necessary
this feature can be suppressed by specifying -
nonanedf or ei gnkeyconst r ai nt ' on the generator command line.

Primary key constraints are also given names in the database. The name of
each constraint is the same as that of its corresponding entity. This also res-
ults in an accompanying index of the same name. This feature can be sup-
pressed by specifying - nonanedpr i mar ykeyconst r ai nt on the gen-
erator command line.

Example

Consider two <<ent i t y>> classes, BankAccount and BankTr ans-
act i on, where BankAccount .account No isa<<f or ei gnkey>> on
BankTr ansacti on. That is, the BankTransaction table (txAccountNo)
must have a record on the BankAccount table with a matching accountNo
value.

The tables below illustrate these two classes where the <<f or ei gnkey>>
would be between their <<key>> attributes:

* <<entity>>class. BankAccount

Attribute Domain

<<key>>accountNo ACCOUNT_NO
<<det ai | s>>clientID CLIENT_ID

<<det ai | s>> branchLocation BRANCH_LOCATION
<<det ai | s>> currentBalance MONEY

<<det ai | s>> |astTransaction DATE_TYPE

<<det ai | s>> |astStatement DATE_TYPE

* <<entity>>class: BankTransacti on

Attribute Domain
<<key>>txAccountNo ACCOUNT_NO

111

Curam Modeling Reference Guide

Attribute Domain

<<det ai | s>>txID TX_ID

<<det ai | s>> transactionDate TX_DATE
<<det ai | s>> transactionType TX_TYPE
<<det ai | s>> transactionAmount TX_AMOUNT

This foreign key results the following DDL being generated (Oracle SQL
shown):

ALTER TABLE BankTransacti on ADD(
FOREI GN KEY (t xAccount No)
REFERENCES BankAccount (account No)) ;

112

Chapter 23

Indices

23.1 Overview

The Curam generator allows for indices other than the primary index to be
created on database tables. Any number of indices can be created on each
table, with the usual speed vs. database size trade-offs associated with in-
dices.

An index for a database table is specified in the input model by adding are-
lationship of stereotype <<i ndex>> between an entity class and a struct
class.

The fact that a struct is being used to represent an index does not have any
side-effects on the struct apart from those mentioned in the rules below, i.e.
the struct can still be used as an argument to an operation. Typically the
struct would be used as both a key parameter and as an index to support
database accesses viathis key.

23.2 Rules when Using Indices

* The relationship must be given a name. This is the name which will be
given to the database index. (The name of the struct in the relationship
does not have any effect on the index.)

* The names of the attributes of the struct class must be a subset of the
names of the attributes of the entity.

» The struct class must not aggregate any other classes.

* Index names must be unique within the entire model.

23.3 How to Add an Index to a Database Table

113

23.4

23.5

Curam Modeling Reference Guide

Create a struct class whose fields are a subset of the fields of the entity
class.

Add a relationship of stereotype <<i ndex>> between the entity class and
the struct. The direction of the relationship is not important.

Set the relationship name to the name which you want given to the database
index.

Naming Indices

Developers will never explicitly reference an index but the DBA! will, so it
is recommended that index names be kept as meaningful and descriptive as
possible.

Example

Consider the following two classes with an <<i ndex>> relationship
named BankClientMNIndex:

* <<entity>>class Bankd i ent

Attribute Domain

<<key>> clientID CLIENT_ID

<<det ai | s>> firstName CUSTOMER_NAME
<<det ai | s>> middieName CUSTOMER_NAME
<<det ai | s>> lastName CUSTOMER_NAME
<<det ai | s>> addressl ADDRESS LINE
<<det ai | s>> address2 ADDRESS LINE
<<det ai | s>> address3 ADDRESS LINE
<<det ai | s>> addres4 ADDRESS LINE

e <<struct>>class. M ddl eNanmeW apper

Attribute Domain
middleName CUSTOMER_NAME

The above index results in the following DDL being produced by the gener-
ator:

CREATE | NDEX BankC i ent MNI ndex
ON Bankd i ent (i ddl eNane) ;

114

Curam Modeling Reference Guide

Notes
'Data Base Administrator.

115

Chapter 24

Unique Indices

24.1 Overview

A unique index in a IBM Curam Social Program Management model is
modeled by adding a relationship of stereotype <<uni quei ndex>>
between an entity class and a struct class. The rules for modeling a unique
index are the same as those for modeling a non-unique index.

Specifying a unique index for an entity causes the necessary information to
be included in the generated file
<Appl i cati on- name>_uni que_constrai nts. xm which must
then be referenced from the data manager configuration file (dat aman-
ager _config. xm).

Note that the file
<Appl i cati on- name>_uni que_constrai nts. xm contains two
sets of information:

1. Unique indexes. These correspond to explicit '<<uni quei ndex>>"'
relationships in the model and result in DDL of the form:

CREATE UNI QUE | NDEX <i ndex- name>

where '<i ndex- nane>' isthe name of the relationship in the model.

2. Unique constraints. These are implicit unique constraints which are
produced automatically by the generator and which are applied to all
fields which are referenced by a foreign key. They correspond to
<<f or ei gnkey>> relationships in the model and result in DDL of
the form:

ALTER TABLE <t abl e- nane> ADD
UNI QUE. . .

or, if there is a <<uni quei ndex>> for the fields referenced by the

116

Curam Modeling Reference Guide

foreign key:

ALTER TABLE
<t abl e- nane> ADD CONSTRAI NT <const rai nt - nane>
UNI QUE. . .

where '<constrai nt - name>' is the name of the corresponding
<<uni quei ndex>> relationship in the model.

When the data manager is run, the explicit unique indexes are created before
the implicit unique constraints. This alows the database to use the de-
veloper-specified unique indexes to enforce uniqueness rather than having
to create and use its own system-named indexes. For example the devel oper
may wish to model their specifically named unique index to correspond to a
particular foreign key in the model. In this case the generator will automat-
icaly give the unique constraint the same name as the corresponding unique
index.

117

25.1

25.2

Chapter 25

Generated Class Hierarchy

Overview

This section describes the hierarchy of classes generated by the server code
generator, and shows how they correspond to the classes designed in the ap-
plication model.

All classes are defined in the IBM Caram Social Program Management
model using UML notation. A single process, facade or entity class may
contain a mixture of automatically generated methods, and methods that the
application developer is required to implement. It is not desirable to store
handcrafted code and generated code in the same file due to the risk of the
generator overwriting handcrafted code, or vice versa. Therefore al de-
veloper code is stored in a single class, generated code is produced into a
number of other classes, and the set is linked together into a hierarchy by in-
heritance and implementation.

Note that since struct classes do not contain operations there are no issues of
separating handcrafted and generated code. Therefore each struct class in
the model corresponds to one generated Java struct class.

Basic Hierarchy Example

This section describes the elements of the generated and required handcraf-
ted class hierarchy for a basic entity class named MyCl ass, which does not
make use of inheritance or code packages.

The UML representation of the generated Java classes of the <<ent i t y>>
classMyCl ass would show the following four classes:

e« <PackageNane>.intf.MWd ass

» <PackageNane>. base. W ass

118

Curam Modeling Reference Guide

Implements, or realizes, thei nt f class.

It isthe super class.

<PackageNane>. i npl . Myd ass

A subclass of thebase class.

Contains any required (non-generated) handcrafted methods.

<PackageNane>. f act . My assFact ory

A subclass of thei npl class.

Returns an instance of thei nt f class.

Thus, there are four Java classes corresponding to the <<ent i t y>> class
in the UML model. Three of the classes have the same name as the class in
the model, the fourth has the same name with the word Fact ory appen-

ded.

A further description of the classes are as follows:

1

<Pr oj ect Name>.intf. MW C ass

This is a generated Java interface class containing al the public meth-
ods for the class.

The other classes in the hierarchy - either generated or handcrafted -
will be required to provide implementations for these methods.

<Pr oj ect Nane>. base. Myd ass

This is a generated abstract Java class which implements the interface
contained inthei nt f version of thefile. It contains the following:

* Theimplementations of data access methods (i.e. stereotyped meth-
ods of entity classes) and connector methods.

» Abstract method declarations for exit point methods.

Thisis to ensure that the developer is forced to provide implement-
ationsfor the exit points.

» Abstract method declarations for methods declared protected in the
model.

Thisisto ensure that the developer is forced to provide implement-
ations for these methods without having to expose them in the in-
terface (i nt f layer) for the class.

<Pr oj ect Nane>. i npl . Myd ass

This class is supplied by the developer and always inherits from the
corresponding base version.

It should be declared abstract to ensure that the class cannot be instanti-

119

25.3

Curam Modeling Reference Guide

ated directly - the class should only be instantiated using the factory
mechanism. (See below.)

In this class the developer must provide implementations for all the
methods declared in the class in the model for which an implementa-
tion was not produced by the generator.

While this class inherits from a generated class, it contains only hand-
crafted code and no generated code. This is so that there is no risk of
developer code overwriting generated code, or generated code over-
writing developer code.

4. <ProjectNanme>. fact. Myd assFactory

This is a generated Java class containing one static method: newl n-
st ance() . This method creates instances of the class and is the only
means by which entity, facade and process classes should be instanti-
ated.

Since afactory creates all instances of objects, it can aso be used to:

» transparently create and return a customized version of the class re-
guested. See Section 27.3.2, Replacing the Superclass. Pre-existing
code which used the original version of the class does not need to
be changed.

» transparently create and return a proxy class of the requested class.
The proxy class wraps the requested class (using the Java 1.3 Dy-
namic Proxy mechanism) and captures detailed tracing information
for al interactions with the class.

The following code sample shows how an instance of MyCl ass is created.
Note that the return type of MyCl assFact ory.new nstance is
sanmple.intf. Wd ass.

/1l Use the factory to create an instance:
sanple.intf. WC ass nyChject =
sanpl e. fact. MyCl assFact ory. new nst ance() ;

Example 25.1 Using a factory to create an instance of MyClass

Hierarchy for Subclasses

This section describes the elements of the generated/handcrafted class hier-
archy for a basic entity class named SubCl ass that inherits from MyC-
| ass.

The UML representation of the generated Java classes for the
<<entity>>class SubCl ass would show the following four classes:

« <PackageNanme>.intf. SubCl ass

e Itinheritsfromthe MyCl ass i ntf class.

120

25.4

Curam Modeling Reference Guide

<PackageNane>. base. Subd ass

* Implements, or realizes, thei nt f class.

e Itisthe super class.

» Itinheritsfromthe MyCl ass i npl class.
<PackageNane>. i npl . SubCl ass

» A subclass of thebase class.

» Contains any required (non-generated) handcrafted methods.
<PackageNane>. f act . SubCl assFactory

e A subclassof thei npl class.

* Returns an instance of thei nt f class.

As with the previous example there are four Java classes corresponding to
class SubCl ass. However the fact that SubCl ass inherits from MyC-
| ass resultsin two additional relationships, highlighted here:

1

Interface SubCl ass inherits from interface MyCl ass thereby ensur-
ing that SubCl ass must implement all of its own declared methods
plus those declared in MyCl ass.

Generated class <Pr o] ect Nane>. base. SubC ass inherits from
handcrafted class <Pr oj ect Name>. i npl . MyCl ass. This means
that SubCl ass inherits the implementations of the methods from
SubC ass as well as their declarations, so these methods are avail-
ableto SubCl ass and do not have to be re-implemented.

Hierarchy for Abstract Classes

In a Cram model the developer can mark classes abstract (See Sec-
tion 6.6, Options) meaning that they cannot be instantiated.

From the above example, if MyCl ass were qualified abst r act , the fol-
lowing hierarchy would result:

<PackageNane>.intf. Md ass

<PackageNane>. base. Myd ass

* Implements, or redlizes, thei nt f class.

* Itisthe super class.

<PackageNane>. i npl . MyCl ass

* A subclass of thebase class.

121

25.5

25.5.1

25.5.2

25.5.3

25.6

Curam Modeling Reference Guide

» Contains any required (non-generated) handcrafted methods.

The hierarchy is the same as for non-abstract classes except that no factory
is generated.

Considerations

Access Control - private/protected/public/package

The Java language supports four levels of access control for methods and
member variables. In Cdram models this is smplified to two levels: public
and protected. Since the generated class hierarchy includes different classes
in different packages it does not make sense to use the private and package
access levels. Note that this applies only to operations in Ciram models -
developers are still free to use private and public access in handcrafted Java
code as they seefit.

The Meaning of super

In Java, the super keyword is areference to the superclassi.e. the class from
which the current class (t hi s) inherits.

In the example shown in Section 25.3, Hierarchy for Subclasses the super-
class of Subd ass is Mydl ass. However when writing handcrafted Java
code for <Pr oj ect Nane>. i npl . SubCl ass it is important to remem-
ber that the superclass of this class is actualy
<Pr oj ect Nane>. base. SubCl ass rather than any verson of MyC-
| ass.

Enforcing the Factory Mechanism

For reasons mentioned above, entity, facade and process objects should be
created only by using their associated factory classes. Developers should not
bypass this mechanism by using the new keyword to instantiate these
classes. This can and should be enforced by making all implementation
classes (i.e. dl classesinthei npl packages) abstract. Failure to make these
classes abstract means that there is arisk of developers instantiating them
directly with the result that class replacement will not work as expected.

Summary

Certain individual objects in a Caram application model appear as multiple
classes in the output code. The objective of the generated class hierarchy is
to ensure the following:

* The developer provides all handcrafted implementation within a single
Java class.

122

Curam Modeling Reference Guide

The public parts of the object's interface are accessible to other objects
and the non-public parts of the object's interface are not accessible to
other objects.

The developer is forced to implement all of the declared interface, both
public and non-public - unless the generator produces the necessary im-
plementation.

Objects can be subclassed and a subclass can be defined to replace its
superclass transparently.

The run time type of an object is determined by a factory, to support re-
placement and tracing.

123

26.1

26.2

Chapter 26

Caram JMS Queue Connectors

Overview

IBM Cdram Social Program Management connectors provide a way for a
Curam application to connect to other systems by means of JM S queues. For
facade and process class operations with a stereotype of gconnect or the
generator will produce code that converts the operation parameter into a
JMS message, places the message on a queue, and optionally waits for an-
other message in response which is then converted back into a Ciram struct
and returned to the caller.

For many operations, queue connectors can be implemented without writing
any handcrafted code. It is aso possible to customize connectors with the
use of handcrafted code. Y ou may wish to do thisif:

» the default encoding of a datatype is not suitable for your purpose. For
example, you may wish to encode dates in the form DD- MVM YYYY in-
stead of the default format of YYYYMVDD.

* your parameter struct is “complex”. For example, it may contain a vari-
able length field, or may aggregate another struct.

How It Works / What It Does

Connections are not created directly, but are built using a connection fact-
ory. Factory objects are stored in a INDI namespace, insulating the IMS ap-
plication from provider-specific information.

The fields in the parameter struct are scanned using Java reflection, and
each is converted into afixed length string based on its datatype. The strings
are concatenated together into aJMS Byt esMessage which is then placed
on aJMS queue.

124

26.3

Curam Modeling Reference Guide

If a return type has been specified for the operation, the Curam application
will wait for a response message, typically on another queue. The remote
system must create a correctly formatted response message and send it to
the Curam application within the specified timeout period. When the mes-
sage is received, it is converted into an instance of the return type struct
which isthen returned to the caller.

Options on <<qconnect or >> Operations

The following options are available on qconnect or operations:

JNDI nane of t he QueueConnecti onFact ory
cl ass. Mandatory. This specifies the name of the QueueConnection-
Factory classin the INDI namespace.

Queue connections are not instantiated directly but are instead created
by connection factories. The connection factories are stored in the INDI
namespace of the application server.

JNDI nane of the transm ssion queue. Mandatory. This
specifies the INDI name of the queue onto which outgoing messages are
placed.

Response nessage tinmeout (seconds). Thisisonly relevant
for operations that have a return value. The return value is obtained by
receiving a response JMS message from the recipient and this timeout
value is used to ensure that the application does not wait indefinitely for
the response.

Default value: 30 seconds.

JNDI name of thereply queue. Thisis only relevant for operations that
have a return value. Specifies the INDI name of the queue from which
the response message should be taken.

M essage Type. BytesMessage or TextMessage. This allows you to spe-
cify whether a JMS Byt esMessage or Text Message is sent/re-
ceived by the connector. By default the IMS connectors send and re-
celveaJMSByt esMessage containing the bytes of a string represent-
ation of the struct parameters. If the system(s) being communicated with
use a different character encoding, then these bytes may not be correctly
trandlated by the other systems. In this case - provided the message
doesn't contain any binary data- a JMS Text Message can be used to
ensure that the message is correctly translated by the other systems.

BytesM essage encoding character set. Specifies the name of the char-
acter encoding to use when converting the string representation of a
struct to a IMS Byt esMessage, and vice versa. If this option is not
specified then the default local system character encoding is used.
(Usually 'Cp1252' for Microsoft® Windows, 'Cp1046' for EBCDIC on
IBM® z/OS®, etc.) This enables you to ensure that the character encod-

125

26.4

26.4.1

26.4.2

26.4.3

Curam Modeling Reference Guide

ing used for the message matches the character encoding of the other
system being communicated with.

This option is not relevant if TextMessage is used.

How to Use <<gconnect or >> Operations

The following section explains how gconnect or operations are represen-
ted in the meta-model and implemented on the remote system.

Decide on Format of Message and Create the struct(s)
to Correspond to the Message

The Curam developer and the remote application developer need to agree on
the format(s) of the messages passed between the two systems. This in-
volves:

 Theformat of each field in the message. The default encoding method
can be used for each field; but, see Table 26.1, Encoding methods and
Section 26.7, Using Customized Encoding/Decoding Classes for how a
custom encoding methodology may be implemented.

 The length of each field in the message. Like the encoding, the en-
coded length of each field depends on the type of the field and - for
some datatypes - its length as specified in the model. See Table 26.1,
Encoding methods for information on lengths of datatypes. The length of
the field can be changed by implementing a custom mapper for the field.

« The ordering of the fields in the message. The fields appear in the
message in the same order as they appear in the struct in the meta-mod-
el. The tool-bar contains a facility for changing the order of struct attrib-
utesif required.

Add the operation to the application meta-model.

A gconnect or operation is modelled like any other process or facade
class operation subject to the restrictions listed in Section 26.5, Rules / Re-
strictions. It is also necessary to use some of the operations listed in Sec-
tion 26.3, Options on gconnector Operations to specify the queue(s) and
some queuing parameters.

In summary, the method should have one struct parameter, may return void
or a struct, and should have options set to identify the MQSeries queues to
use.

Configure the Queues in the Application Server

The queue connection factory, and references to the queues themselves are
stored in the INDI namespace. These INDI names are be mapped to actual

126

26.4.4

26.5

26.6

Cuaram Modeling Reference Guide

connection factories and queues in the application server configuration.

Implement the message recipient in the remote system

The message recipient can be any system which has access to the MQSeries
queues. Typicaly thiswill be alegacy system to which accessis required by
the Cdram application. The target system can be either a IMS application or
abasic MQSeries application.

If no response is required from the remote system, the remote system simply
collects and decodes the received message, and uses it as required.

If aresponse message is required, i.e. if areturn type has been specified for
the operation, then the remote system must create a response message and
send it back to the waiting Cdram application. The response message is as-
sociated with the origina message using its Correl ati onl D, i.e, the
message recipient must set the Cor r el at i onl D of the response message
equal to the Messagel D of the original message.

Rules / Restrictions

e The gconnect or operation stereotype is valid in process or facade
classes only.

» Connector operations must have exactly one struct parameter.
» Connector operations may have areturn type of void or a struct.

e The parameter and return structs may take any form, however the gener-
ated code is only capable of mapping structs which are “flat” - structs
that do not aggregate other structs - and which have only fixed length
fields. For complex structs, it is necessary to implement a mapper class
to map the struct to and from messages. Examples of coding and decod-
ing complex structs are provided below.

Encoding Methods for Fundamental Types

Datatype Encoding method

SVR _BLOB Variable Converted directly to a
padded string

SVR_BOOLEAN 1 fase=0,true=1

SVR_CHAR 1 Converted directly toa 1
character string

SVR_DATE 8 yyyyMMdd

SVR_DATETIME 15 yyyyMMddThhmmss

(1SO 8601 standard)

127

26.7

Cuaram Modeling Reference Guide

Datatype Encoded Encoding method
Width

SVR_DOUBLE 25 Numeric
SVR_FLOAT 16 Numeric

SVR_INTS8 1 Numeric

SVR_INT16 6 Numeric

SVR_INT32 11 Numeric

SVR_INT64 21 Numeric
SVR_MONEY 25 Numeric
SVR_STRING Variable converted directly to a

padded string

SVR_UNBOUNDED_STRING N/A Not natively supported

Table 26.1 Encoding methods

« SVR BLOBand SVR_STRI NG are variable in that the length of the en-
coded message is equal to the length specified for that type in the model.
If the data in the string is less than the maximum amount allowed, space
padding is appended to the data in the message to bring it up to the max-
imum size.

« SVR_UNBOUNDED STRI NG is not natively supported because the
string length is not known at generate time and is required for creating
fixed length messages. However it is possible for the developer to im-
plement a custom mapper to handle unbounded strings.

* Numeric datatypes are converted to right-justified human-readable
strings. For example: 45678, -23123, 1000003. 14159,
1. 4E- 45.

Using Customized Encoding/Decoding Classes

By default the encoding method used for each field in a struct used or re-
turned by connector operations is based on the type of the field. For ex-
ample, the mapper class for curamutil.type. DateTine is
curamutil.connectors. ngseries. MJi el dvapper . Dat eTi
nmeMapper ; for boolean fields it is
curamutil.connectors. ngseri es. MJi el dvapper . Bool ea
nMapper .

For any individual field in any operation it is possible to override this de-
fault and specify the name of the class which should be used to map the
data. Names of the custom mapper classes are specified in the properties file
QueueConnect or Fi el dMapper s. properti es which must be in-
cluded in the application classpath.

128

26.8

Curam Modeling Reference Guide

Entriesin the properties file take the following format:
[class].[operation].[param . [field]=[mpper]
where

* [cl ass] isthe name of the process or facade class containing the con-
nector operation;

 [operation] isthe name of the connector operation;

[param isthe name of the parameter - or the property r et ur n to
specify the return value for the operation;

« [field] isthename of thefield withinthe parameter struct;

 [mapper] is the fully qualified class name of the required mapper
class. This must be a subclass of
curamutil.connectors. ngseries. MJi el dvapper.

MyBPO. connect or Opl. dt | s. phoneNunmber =com acne. uti | . PNMapper
M/BPO. connect or Opl. r et ur n. phoneNunber =com acne. uti | . PNMapper

Example 26.1 Sample QueueConnectorFieldMappers.properties

Example 1 - Working with Variable Length Fields

In the following example a custom field mapper classis used to implement a
primitive variable length field message. The variable length field is encoded
by prefixing the data with a six character string containing a number which
specifies the length of the data in the remainder of the string.

Note that this example only shows the implementation at the Ciram end of
the queue. The remote system will aso need to understand the encoding
method and implement the necessary trandations using the language of
choice on the remote system.

The following pseudo code describes the struct being used in the operation.
Fields i dNunber and dat eOf Bi rt h will use the default conversion
methods for their type and will be converted into ten and eight character
strings respectively. The hi st or yText field isavariable length field and
will be encoded and decoded by means of a custom mapper class.

struct PersonHistory {
String<10> i dNunber ;
String historyText;
Date dateOfBirth;

}
Example 26.2 Pseudo code for the struct to be mapped:
Method addToHi st ory of classLegacyBPOsendsaPer sonHi st ory

struct to a legacy system, the legacy system will append text to the variable
length field hi st or yText and return an updated copy of Per sonHi s-

129

Curam Modeling Reference Guide

tory.

i nterface LegacyBPO {
Per sonHi story addToHi story(dtls PersonHistory);

Example 26.3 Pseudo code for the BPO interface

Note that field hi st or yText is being used in two cases - once in the
parameter to operation addToPer sonHi st ory and once in the return
value from the operation. Therefore, the custom mapper class must be spe-
cified for each of these cases in QueueConnect or Fi el dVap-
pers. properties (thelinesare broken up for clarity).

LegacyBPO addToPer sonHi story. dtl s. hi st oryText =
com acne. nguti | s. Vari abl eStri ngMapper

LegacyBPO. addToPer sonHi st ory. ret urn. hi st oryText =
com acne. nguti | s. Vari abl eStri ngMapper

Example 26.4 The property file entries linking the fields to the
mapper

The following listing shows the implementation of the custom mapper class.

package com acne. nquti | s;

/1 inplenmentation for variable length string field nmapper class
public class Variabl eStringMapper

ext ends MQJFi el dMapper {

/**

* The size of a prefix at the beginning of the string
* which specifies the |l ength of follow ng data.

*/

private static final int kStringHeaderl|nfolLength = 6;

/**
* CGets the encoded version of the mapped field within
the given struct.

@ar am obj ect The struct class containing the
mapped fi el d.
@eturn The field encoded as a String.
@hrows AppException if the field could not be encoded.

/
public String encode(Object object)
t hrows AppException {
String historyText = null;
I g{et the "historyText" field fromthe given struct:
try
hi storyText = (String) getMappedFi el d(). get (object);
} catch (11l egal AccessException e) {
/1 use the handler in the superclass to deal with
/] this exception:
handl eEncodi ngExcepti on(e, object);

}

/1 construct the prefix which will hold the
/] size of the data.
int bufferLength = historyText.|ength();

* % ok 2k X X X F

String sizeSpecifierString = String.val ued (bufferLength);
/1 pad the size specifier to the right |length
sizeSpecifierString = MQLtil s. padRi ght (

si zeSpeci fierString,

kStri ngHeader | nf oLengt h) ;

130

26.9

Curam Modeling Reference Guide

/1 put the prefix and the data together.
String result = sizeSpecifierString + historyText;
return result;

*

Decodes the given string and assigns the resulting val ue
to the mapped field in the struct.

/

*

*

*

*

* @ar am obj ect The struct class containing the field
* @aram encodedString The encoded form of the data.

* @eturn the nunber of characters consuned fromthe
* encoded string.

* @hrows AppException if the target struct field could
* not be accessed.

*
u
h

/
public int decode(Object object, String encodedString)
t hrows AppException {
/1 the first N characters contain an expression
/1 specifying the width of the encoded field.
String sizeSpecifierString =
encodedStri ng. substring(0, kStringHeaderl nfolLength);
si zeSpecifierString = sizeSpecifierString.trin();
int sizeOString = |Integer.val ued (
si zeSpeci fierString).intVal ue();
// Now that we know the size of the data, take that
/1 many characters of data fromthe encoded string:
String historyText = encodedString. substring(
kStri ngHeader | nf oLengt h,
kStri ngHeader | nfoLength + sizeOf String);
/1 Update field "historyText" of the given struct:
try {
get MappedFi el d() . set (obj ect, historyText);
} catch (111 egal AccessException e)
/'l use the handler in the superclass to deal with
/1 this exception:
handl eDecodi ngExcepti on(e, encodedString);

/ indicate how many characters we decoded - renenber

/ to include both the characters used to indicate the
/| string size AND the actual string data.
e

}
/
/
/
return sizeO'String + kStringHeader | nfolLengt h;

}
}

Example 26.5 Mapper class implementation for variable string

Examples of MQSeries messages transmitted and received by this connector
operation are:

« 10000361li w4 One. 19700714
« 10000361i w0 One. Two. 19700714
« 10000361i wl6 One. Two. Three. 19700714

Where the first 10 characters are the i dNunber field, the last 8 characters
are the dat e Bi rt h field and the middle section is the variable length
hi st or yText field, of which the first six characters specify the length of
the data.

Example 2 - Working with Lists

In the following example a custom field mapper class is used to implement

131

Curam Modeling Reference Guide

encoding and decoding of a struct which aggregates a list of another struct.
Thelist is encoded into a single string whereby the first 4 characters contain
a number specifying the number of entries in the list and the remainder of
the string consists of the encoded form of each struct as a fixed length
string. The main purpose of this example is to illustrate how list aggrega-
tions are handled when implementing a custom mapper class.

As with the previous example, this example only shows the implementation
at the Caram end of the queue. The remote system will also need to under-
stand the encoding method and implement the necessary trandations using
the language of choice on the remote system.

The following pseudo code describes the struct being used in the operation.
Struct Per sonDt | s will be encoded as a fixed length 18 character string.
Struct Per sonDt | sLi st will be encoded by encoding each struct in its
list, concatenating the results into a string, and prefixing the string with a six
character string specifying the number of entriesin the list.

struct PersonDtls {
String<8> i dNunber;
String<10> sur nane;

struct PersonDtlsList {
sequence <PersonDtls> dtls;

Example 26.6 Pseudo code for the structs to be mapped:

Method processNanes of class LegacyBPO sends a Per-
sonDt | sLi st struct to a legacy system, the legacy system will perform
some processing on this data and return an updated copy of Per -
sonDt | sLi st.

i nterface LegacyBPO {
PersonDt | sLi st processNanes(pl PersonDtl sList);

Example 26.7 Pseudo code for the BPO interface

Again, as in the previous example, field dtls of struct Per -
sonDt | sLi st isbeing used in two cases. once in the parameter to opera
tion processNanmes and once in the return value from the operation.
Therefore the custom mapper class must be specified for each of these cases
in QueueConnect or Fi el dMappers. properties (the lines have
been split for clarity).

LegacyBPO. processNanes. pl. dtl s=
com acne. nguti | s. PersonDt | sLi st Mapper
LegacyBPO processNanmes. return. dtl s=
com acne. nguti | s. PersonDt | sLi st Mapper

Example 26.8 The property file entry linking the fields to the
mapper

The following listing shows the implementation of the custom mapper class.

132

Curam Modeling Reference Guide

package com acne. nquti | s;

/1 inplenentation
public class PersonDtl sLi st Mapper {

/**

* The size of a prefix at the beginning of the string
* which specifies the nunber of encoded entries in the
* remai nder of the string.

*/

private static final int kStringHeaderl|nfolLength = 4;
/**

* The nunmber of characters used to encode one

* 'PersonDtls' struct.

*/

private static final int kLengthOf OneEncodedStruct = 18;
/**

* Encodes the 'dtls' menber into a string. The first 4
characters contain the nunber of itens in the list, the

rest of the string consists of the encoded version of
each struct in the |list concatenated together.

@ar am obj ect the object containing the field to be
encoded

@hrows AppException if it couldn't be encoded

* @eturn A encoded string.

*/

public String encode(Object object) throws AppException {

* % ok kX X F

PersonDt | sList.List dtls d = null;

try
/Il get a reference to the field within the struct
/] to be encoded
d = (PersonDtl sList.List _dtls)

get MappedFi el d() . get (obj ect) ;
} catch (111l egal AccessException e) {
/1 use the handler in the superclass to deal with
/1 this exception:
) handl eEncodi ngExcepti on(e, object);

/] construct the prefix which will specify the nunber
[/ of items in the |ist.
int bufferLength = d.size();
String sizeSpecifierString =
String. val ued (buf f er Lengt h) ;

/1 apply padding to make it the right size
si zeSpecifierString =
MUt | s. padRi ght (
si zeSpecifierString, kStringHeaderl nfolLength);

/1 Now go through the itens in the

/1 list and encode each one.

String data = "";

for (int i =0; i <d.size(); i++) {
PersonDtls currentltem = d.iten(i);
data += encodeOneEntry(currentlten);

/1 put the prefix and the data together.
String result = sizeSpecifierString + data;
return result;

}
/**

* Decodes a series of PersonDtls entries in the string
* and adds themto field PersonDtlsList.List dtls in the
* given PersonDtl sList object.

133

}

/**
* Encodes the struct into a string. Each field is padded
* out to its maxi num size, and the fields are concatenated
* together to yield the result.
*
* @aramd the struct to be encoded.
* @eturn an encoded string containing the struct data.
* @hrows AppException If a field was too big to encode
*/

private String encodeOneEntry(PersonDtls d)

t hrows AppException {

Curam Modeling Reference Guide

blic int decode(Object object, String encodedString)
rows AppException {

PersonDt| sList.List_dtls dtls = null;

/] Get a reference to the list field within the object.
/1l Note that we will be adding to this rather than

/] reassigning it.

tr

y {
dtl's = (PersonDtl sList.List_dtls)
get MappedFi el d() . get (obj ect) ;
} catch (11l egal AccessException e) {
[/l use the handler in the superclass to deal wth
[/l this exception:
handl eEncodi ngExcepti on(e, object);

/1 find out how many entries to be decoded.
String header =

encodedStri ng. substring(0, kStringHeaderl nfolLength);
int nunOfEntries =

I nt eger. val uek (header.trim()).intVal ue();

/1 skip over the header.
i nt chunkBegi n = kStringHeader | nfolLengt h;

/] take chunks fromthe encoded string,

/! decode each one into an instance of the
/] struct, then add the struct to the list.
for (int i =0 ; i <nunmXEntries; i++) {

i nt chunkEnd = chunkBegi n + kLengt hOf OneEncodedSt r uct ;
String current Chunk =
encodedStri ng. substri ng(chunkBegi n, chunkEnd);
/] encode one struct...
PersonDt|l s newltem = decodeOneEnt ry(current Chunk) ;

// and add it to the |ist:
dtls.add(newltem;

chunkBegi n = chunkEnd;
}

/l tell the caller the nunber of characters we consuned
/1 fromthe encoded nessage.
return chunkBegi n;

String result
= MQtils.padRi ght (d.i dNunber, 8)
+ MQUti | s. padRi ght (d. surnane, 10);

return result;

@ar am obj ect The class containing the field to be decoded
@ar am encodedString the string containing the field data
@eturn a nunber indicating the nunber of characters decoded
@ hrows AppException if the string could not be decoded.

134

Curam Modeling Reference Guide

*

Decodes a string into an instance of the struct - does
the inverse of encodeOneEntry

/

@ar am encodedEntry an encoded struct

@eturn a new i nstance of the struct

@ee private String encodeOneEntry(PersonDtls)
/

E I N

private PersonDtls decodeOneEntry(String encodedEntry) {
PersonDtls result = new PersonDtl s();

resul t.i dNumber = encodedEntry. substring(0, 8).trinm();
resul t.surnane = encodedEntry.substring(8, 18).trin();

return result;

}
}

Example 26.9 Mapper class implementation for list of structs
For example, the following list of Ent 18131 structs:

« ("0000361i", "Janes")

« ("0024684x", "John")

e ("8211519f", "Sharon")

would be encoded as follows:

"3 0000361i Janes
0024684xJohn 8211519f Shar on "

where the first four characters contain a number specifying the number of
encoded structs to follow, and the remaining string consists of three 18 char-
acter blocks corresponding to the three encoded structs.

135

27.1

27.2

27.3

27.3.1

Chapter 27

Subclassing

Introduction

The IBM Curam Social Program Management SDEJ supports subclassing
for <<pr ocess>>, <<f acade>>, <<entity>>, <<webservi ce>>,
and <<wsi nbound>> classes and is intended to be used to add new func-
tionality or override existing functionality. It cannot be used to add extra at-
tributes to entities or structs.

Reasons for Subclassing

Reasons for using subclassing include:

» Adding new stereotyped methods to existing <<ent i t y>> classes.

» Adding or contributing to an existing <<ent i t y>>'s or operation's exit
points.

* Modifying an existing <<entity>> operation's Readnul ti Max
options.

How to Model It

Basic Subclassing

A classis transformed into a subclass by adding a “generalization” relation-
ship from the subclass to the superclass (base class). On a class diagram this
appears as a line between the two classes with an arrow pointing toward the
superclass.

This means that the subclass inherits all the operations of the superclass, and
in addition it may:

136

27.3.2

27.3.3

Curam Modeling Reference Guide

* Add extrafunctions;

* Modify the applicable options of the function in the superclass.

Consider two classes where MySubcl ass is a subclass of
MyBaseCl ass:

» MyBaseC ass hastwo operations. op1() and op2()

« My Subcl ass hasthree operations: op1(), op2() and op3() where
opl and op2 is inherited from MyBaseCl ass and MySubcl ass.op3
is provided only in the MySubcl ass class.

Replacing the Superclass

When you define a subclass, you may specify that the subclass replaces its
superclass entirely. To turn on the feature for an individual entity class the
Repl ace_Super cl ass property in the Rational Software Architect
Curam Properties tab must be set to “1 - yes” using the supplied drop-
down.

For example, setting Repl ace_Supercl ass to yes for a class,
MySubcl ass, means that instances of the base class, MyBaseC ass, will
no longer be created. All requests for the base class (MyBaseCl ass) will
now receive an instance of the subclass (MySubcl ass). Thisis handled by
the factory mechanism and is transparent to the user.

Abstract Classes

A class is made abstract by setting its Abst ract option to yes in the
meta-model. In this case the generated Java class hierarchy for this abstract
class will not include a factory class. This means that the class cannot be in-
stantiated and the only purpose of having the class is to enable it to be sub-
classed.

All non-abstract subclasses of the abstract classes will have the factory com-
ponent and are instantiated in the normal way.

The developer must provide thei npl Java code for abstract classes (unless
the abstract class has no subclasses). From here on the usual rules for ab-
stract classes apply: the i npl class can contain implementations for some
or all of the methods declared in the class, and any methods for which an
implementation has not been provided must be implemented by the sub-

class(es).

27.3.4 Restrictions

¢ Multipleinheritance is not supported by the Ciram generators.

¢ Subclassing can only be used to add or override operations, it cannot be
used to add or override attributes.

137

27.4

27.5

27.5.1

27.5.2

Curam Modeling Reference Guide

How to write Code for Subclassing

There are no specific restrictions on writing code for subclassing. It is pos-
sible to subclass any entity, facade or process class without having to
change the way that classis declared or used.

New subclasses of existing classes should be written in new source files. All
new source files should be placed within the source subdirectory of the
EJBSer ver\ conponent s\ <cust on® directory. Where <custom> is
any new directory created under the components directory that conforms to
the same directory structure as conponent s\ cor e. The generated class
hierarchy will dictate the packaging of the new source files.

Example - Using Subclassing to Override Entity
Exit Points

Overriding Validation Exit Point

In order to override the validation exit point of an <<enti t y>> in a sub-
class:

e enable the Automatic validation operation option on an
<<enti t y>> subclass;

o gpecify at least one of the <<entity>> superclass stereotype
<<i nsert >> or <<nodi f y>> operations in the subclass.

For example, consider two classes, MyEntityCd ass and M-
EntitySubd ass. The subclass, MyEnt i t ySubCl ass, would inherit
the <<key>> and <<det ai | s>> of the superclass. MyEnti t ySub-
Cl ass would have the Aut omat i ¢ val i dati on operati on option
enabled and would add the <<i nser t >> or <<nodi f y>> operations.

For more information on validation exit point, see Section 6.9.3, Validation.

Overriding Pre Data Access, Post Data Access, and On-
Fail exit points

In order to overridethe Pre Dat a Access, Post Data Access, or
On-fai |l exitpointsof an<<enti ty>>inasubclass:

» gpecify the operation(s) of <<ent i t y>> superclassin the subclass;

e enable the Pre Data Access, Post Data Access, or On-
fail options as appropriate on the operations of the <<entity>>
subclass.

For example, consider two classes, EntityCd ass and EntitySub-

138

Curam Modeling Reference Guide

Cl ass with the subclass, Enti t ySubCl ass, inheriting the <<key>>
and <<det ai | s>> of the superclass. The same operations would be
defined in both classes, eg. <<insert>> <<read>> and
<<nodi f y>>. In both these classes these operations would have the fol-
lowing exit point options enabled:

e On Fail operationisenabledon operationi nsert ;
» Post Data Access operati onisenabled onoperationr ead;

* Pre Data Access operati on isenabled onoperation nodi fy.

For more information on exit points see Section 6.9, Exit Points.

139

Chapter 28

Application Customization

28.1 Overview

One of the more difficult aspects of customizing an application is the hand-
ling of upgrades to the original model at a later stage. Any changes which
have been stored with the original model will be overwritten when a newer
version of the model is taken on. This situation can be avoided by storing
customizations separate from the original model. The original model can
then be upgraded without overwriting any of the customizations.

It is also important to read the Cdram Development Compliancy Guide for
more information about customizing the product.

The following features are available to facilitate the customization of an ap-
plication:

o Chapter 7, Extension Classes;
* Section 5.3, Overriding a Domain Definition;
o Chapter 27, Subclassing.

140

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

141

Curam Modeling Reference Guide

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

142

Curam Modeling Reference Guide

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

143

Trademarks

Curam Modeling Reference Guide

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Oracle, Java and al Java-based trademarks and logos are registered
trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other

company, product, and service names may be trademarks or service
marks of others.

144

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Modeling Reference Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Overview
	1.2 Intended Audience
	1.3 Prerequisites
	1.4 Rational Software Architect
	1.5 The Cúram Server Code Generator
	1.6 Chapters in this Guide
	1.6.1 Part 1 - UML Overview
	1.6.2 Part 2 - Class Stereotypes
	1.6.3 Part 3 - Attribute Stereotypes
	1.6.4 Part 4 - Operation Stereotypes
	1.6.5 Part 5 - Relationship Stereotypes
	1.6.6 Part 6 - Other Topics

	Chapter 2 UML Overview
	2.1 UML and the Input Meta-model
	2.2 Overview of the Architecture Layers
	2.2.1 Remote Interface Layer
	2.2.2 Business Object Layer
	2.2.3 Data Access Layer

	2.3 Stereotypes
	2.3.1 Class Stereotypes
	2.3.2 Attribute Stereotypes
	2.3.3 Operation Stereotypes
	2.3.4 Relationship Stereotypes

	2.4 Data types

	Chapter 3 Packages
	3.1 Overview
	3.2 Options
	3.2.1 CODE_PACKAGE
	Rules for the CODE_PACKAGE Feature

	Chapter 4 Audit Mappings Classes
	4.1 Overview
	4.2 Rules
	4.3 Outputs
	4.4 Options

	Chapter 5 Domain Definition Classes
	5.1 Overview
	5.1.1 Defining a Domain Hierarchy
	5.1.2 Proper Use of Domains
	5.1.3 Storage Options for String Domains

	5.2 Options
	5.2.1 Code Table Name
	5.2.2 Code Table Root
	5.2.3 Compress Embedded Spaces
	5.2.4 Convert to Uppercase
	5.2.5 Custom Validation Function Name
	5.2.6 Default
	5.2.7 Maximum Size
	5.2.8 Maximum Value
	5.2.9 Minimum Size
	5.2.10 Minimum Value
	5.2.11 Multibyte Expansion Factor
	5.2.12 Pattern Match
	5.2.13 Remove Leading Spaces
	5.2.14 Remove Trailing Spaces
	5.2.15 Storage Type

	5.3 Overriding a Domain Definition
	5.3.1 How to use Domain Definition Overrides
	5.3.2 Considerations / Limitations
	5.3.3 Usage Rules

	Chapter 6 Entity Classes
	6.1 Overview
	6.2 Rules
	6.3 Attributes
	6.3.1 Details
	6.3.2 Key

	6.4 Operations
	6.4.1 Database Operations
	6.4.2 Non-database Operations

	6.5 Outputs
	6.5.1 Standard Key Structs
	6.5.2 Standard Details Structs
	6.5.3 Standard List Structs

	6.6 Options
	6.6.1 Abstract
	6.6.2 Allow Optimistic Locking
	6.6.3 Audit Fields
	6.6.4 Enable Validation
	6.6.5 Last Updated Field
	6.6.6 No Generated SQL
	6.6.7 Replace Superclass

	6.7 Concurrency Control - Optimistic Locking
	6.8 Table Level Auditing
	6.8.1 Information Captured by Table-level Auditing
	6.8.2 Storage of Audit Information

	6.9 Exit Points
	6.9.1 Pre Data Access
	6.9.2 Post Data Access
	6.9.3 Validation
	6.9.4 On-fail
	6.9.5 Exit Point Parameters
	6.9.6 What should exit points be used for
	6.9.7 What should exit points not be used for

	6.10 Entity Inheritance
	6.10.1 Rules when Using Entity Inheritance

	6.11 Last Updated Field

	Chapter 7 Extension Classes
	7.1 Overview
	7.2 How to use Extension Classes
	7.3 When to use Extension Classes
	7.4 Considerations / Limitations
	7.5 Usage Rules

	Chapter 8 Facade Classes
	8.1 Overview
	8.2 Rules
	8.3 Operations
	8.3.1 default
	8.3.2 batch
	8.3.3 wmdpactivity
	8.3.4 qconnector

	8.4 Options
	8.4.1 Abstract
	8.4.2 Generate Facade Bean
	8.4.3 Replace Superclass

	Chapter 9 Process Classes
	9.1 Overview
	9.2 Business Process Objects
	9.3 Rules
	9.4 Operations
	9.4.1 default
	9.4.2 batch
	9.4.3 wmdpactivity
	9.4.4 qconnector

	9.5 Options
	9.5.1 Abstract
	9.5.2 Generate FIDs
	9.5.3 Replace Superclass

	Chapter 10 Struct Classes
	10.1 Overview
	10.2 Rules
	10.3 Outputs
	10.4 Options
	10.4.1 Audit Fields

	Chapter 11 Attributes
	11.1 Overview
	11.2 Attribute Rules
	11.3 Attribute Options
	11.3.1 Allow NULLs
	11.3.2 Multibyte Expansion Factor

	Chapter 12 Operations
	12.1 Overview
	12.2 Rules
	12.3 Operation Options
	12.3.1 Audit BI (Business Interface) Calls to this Operation
	12.3.2 Auto ID Field
	12.3.3 Auto ID Key
	12.3.4 Business Date
	Syntax for Business Date option:
	Rules for Business Date option:

	12.3.5 BytesMessage encoding character set
	12.3.6 Database Table-level Auditing
	12.3.7 Field Level Security
	12.3.8 JNDI name of the QueueConnectionFactory class
	12.3.9 JNDI name of the transmission queue
	12.3.10 JNDI name of the reply queue
	12.3.11 Message type
	12.3.12 No Generated SQL
	12.3.13 On Fail Operation
	12.3.14 Optimistic Locking
	12.3.15 Order By
	12.3.16 Post Data Access Operation
	12.3.17 Pre Data Access Operation
	12.3.18 Readmulti_Max
	12.3.19 Readmulti_Informational
	12.3.20 Response message timeout (seconds)
	12.3.21 Security
	12.3.22 SQL
	12.3.23 Transactional
	12.3.24 Where

	12.4 Operation Parameter Options
	12.4.1 Mandatory Fields

	Chapter 13 Entity Operations Overview
	13.1 Introduction
	13.2 Standard Operations
	13.2.1 Standard Single-Record Operations
	13.2.2 Standard Multi-Record Operations

	13.3 Non-Standard Operations
	13.3.1 Generated SQL Operations
	13.3.2 Handcrafted SQL Operations

	13.4 Non-Key Operations
	13.5 Batch Operations

	Chapter 14 Entity Insert Operations
	14.1 Overview
	14.2 Standard Insert
	14.2.1 Description
	14.2.2 Use
	14.2.3 Parameter and Generator Notes

	14.3 Non-standard Insert (Generated SQL)
	14.3.1 Description
	14.3.2 Use
	14.3.3 Parameter and Generator Notes

	Chapter 15 Entity Read Operations
	15.1 Overview
	15.2 Standard Read
	15.2.1 Description
	15.2.2 Use
	15.2.3 Parameter and Generator Notes

	15.3 Standard Readmulti
	15.3.1 Description
	15.3.2 Use
	15.3.3 Parameter and Generator Notes

	15.4 Non-standard Read (Generated SQL)
	15.4.1 Description
	15.4.2 Use
	15.4.3 Parameter and Generator Notes

	15.5 Non-standard Readmulti (Generated SQL)
	15.5.1 Description
	15.5.2 Use
	15.5.3 Parameter and Generator Notes

	15.6 Non-key Read
	15.6.1 Description
	15.6.2 Use
	15.6.3 Parameter and Generator Notes

	15.7 Non-key Readmulti
	15.7.1 Description
	15.7.2 Use
	15.7.3 Parameter and Generator Notes

	Chapter 16 Entity Update Operations
	16.1 Overview
	16.2 Standard Modify
	16.2.1 Description
	16.2.2 Use
	16.2.3 Parameter and Generator Notes

	16.3 Non-standard Modify (Generated SQL)
	16.3.1 Description
	16.3.2 Use
	16.3.3 Parameter and Generator Notes

	16.4 Non-key Modify
	16.4.1 Description
	16.4.2 Use
	16.4.3 Parameter and Generator Notes

	Chapter 17 Entity Delete Operations
	17.1 Overview
	17.2 Standard Remove
	17.2.1 Description
	17.2.2 Use
	17.2.3 Parameter and Generator Notes

	17.3 Non-standard Remove (Generated SQL)
	17.3.1 Description
	17.3.2 Use
	17.3.3 Parameter and Generator Notes

	17.4 Non-key Remove
	17.4.1 Description
	17.4.2 Use
	17.4.3 Parameter and Generator Notes

	Chapter 18 Entity Batch Operations
	18.1 Overview
	18.2 BatchInsert
	18.2.1 Description
	18.2.2 Use
	18.2.3 Parameter and Generator Notes

	18.3 BatchModify
	18.3.1 Description
	18.3.2 Use
	18.3.3 Parameter and Generator Notes

	Chapter 19 Entity Handcrafted SQL Operations
	19.1 Overview
	19.2 Non-standard
	19.2.1 Description
	19.2.2 Use
	19.2.3 Parameter and Generator Notes

	19.3 Non-standard multi
	19.3.1 Description
	19.3.2 Use
	19.3.3 Parameter and Generator Notes
	19.3.4 Example 1 - nsmulti with a Single (List) Parameter
	19.3.5 Example 2 - nsmulti with Two Parameters (Key + List)

	19.4 Using Handcrafted SQL in Non-Standard Entity Operations
	19.4.1 Overview
	19.4.2 Using Host Variables
	19.4.3 Null Considerations
	Incorrect
	Correct

	19.4.4 For Update Considerations With DB2 for z/OS
	19.4.5 SQL Example 1
	19.4.6 SQL Example 2

	Chapter 20 Aggregation
	20.1 Overview
	20.2 Rules when Using Aggregation
	20.3 A Special Case
	20.4 One-to-One Aggregation
	20.5 One-to-Many Aggregation

	Chapter 21 Assignable
	21.1 Overview
	21.2 Explicit Field Assignment
	21.3 Suppressing Default Assignment Fields
	21.4 Combining structs

	Chapter 22 Foreign Keys
	22.1 Overview
	22.2 Rules when Using Foreign Keys
	22.3 How to Add a Foreign Key to a Database Table
	22.4 Naming Primary and Foreign Key Constraints
	22.5 Example

	Chapter 23 Indices
	23.1 Overview
	23.2 Rules when Using Indices
	23.3 How to Add an Index to a Database Table
	23.4 Naming Indices
	23.5 Example

	Chapter 24 Unique Indices
	24.1 Overview

	Chapter 25 Generated Class Hierarchy
	25.1 Overview
	25.2 Basic Hierarchy Example
	25.3 Hierarchy for Subclasses
	25.4 Hierarchy for Abstract Classes
	25.5 Considerations
	25.5.1 Access Control - private/protected/public/package
	25.5.2 The Meaning of super
	25.5.3 Enforcing the Factory Mechanism

	25.6 Summary

	Chapter 26 Cúram JMS Queue Connectors
	26.1 Overview
	26.2 How It Works / What It Does
	26.3 Options on qconnector Operations
	26.4 How to Use qconnector Operations
	26.4.1 Decide on Format of Message and Create the struct(s) to Correspond to the Message
	26.4.2 Add the operation to the application meta-model.
	26.4.3 Configure the Queues in the Application Server
	26.4.4 Implement the message recipient in the remote system

	26.5 Rules / Restrictions
	26.6 Encoding Methods for Fundamental Types
	26.7 Using Customized Encoding/Decoding Classes
	26.8 Example 1 - Working with Variable Length Fields
	26.9 Example 2 - Working with Lists

	Chapter 27 Subclassing
	27.1 Introduction
	27.2 Reasons for Subclassing
	27.3 How to Model It
	27.3.1 Basic Subclassing
	27.3.2 Replacing the Superclass
	27.3.3 Abstract Classes
	27.3.4 Restrictions

	27.4 How to write Code for Subclassing
	27.5 Example - Using Subclassing to Override Entity Exit Points
	27.5.1 Overriding Validation Exit Point
	27.5.2 Overriding Pre Data Access, Post Data Access, and On-Fail exit points

	Chapter 28 Application Customization
	28.1 Overview

	Notices
	Trademarks

