
IBM Cúram Social Program Management

Cúram Security Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Cúram Software Limited

Table of Contents

Chapter 1 Cúram Security .. 1
1.1 Purpose ... 1
1.2 Audience .. 1
1.3 Overview .. 2
1.4 Chapters in this Guide .. 2

Chapter 2 Authentication ... 4
2.1 Overview .. 4
2.2 Authentication .. 4
2.3 Authentication Architecture ... 5
2.4 Default Authentication ... 5
2.5 The Login Page .. 6

2.5.1 Customization of the Login Page .. 6
2.6 Cúram JAAS Login Module .. 7

2.6.1 Password Encryption .. 8
2.6.2 Default Configuration for WebLogic Server .. 8
2.6.3 Default Configuration for WebSphere .. 8
2.6.4 Customization of the JAAS Login Module .. 11

2.7 Verification Process for Authentication ... 11
2.7.1 Default Authentication .. 11
2.7.2 Identity Only Authentication .. 12
2.7.3 External Access Security Authentication .. 14
2.7.4 Custom Verifications .. 14

Chapter 3 Authorization ... 16
3.1 Overview .. 16
3.2 Users, Roles and Groups .. 16
3.3 Security Identifiers (SIDs) ... 17

3.3.1 Function Identifiers (FIDs) ... 18
3.3.2 Field Level Security Identifiers .. 18

3.4 User Defined SIDs ... 18
3.5 Runtime Authorization ... 18

3.5.1 Client Authorization Checks ... 19
3.5.2 Server Authorization Checks .. 19

Chapter 4 Security Data Caching ... 20
4.1 Overview .. 20

iii

4.2 Cúram Security Cache ... 20
4.2.1 Cache Refresh ... 20

4.3 WebSphere Caching Behavior ... 21

Chapter 5 Security for Alternative Clients ... 23
5.1 Overview .. 23

5.1.1 Mandatory Cúram Users ... 23
5.1.2 Web Services .. 24
5.1.3 Batch Processing ... 24
5.1.4 JMS Messaging ... 25
5.1.5 Deferred Processing .. 25

Chapter 6 External User Applications ... 26
6.1 Overview .. 26
6.2 External User Applications .. 26
6.3 User Scope ... 27
6.4 Deployment of an External Application .. 27

Chapter 7 Using Single Sign On .. 30
7.1 Overview .. 30
7.2 Single Sign On with WebSphere ... 30
7.3 Single Sign On for WebLogic Server .. 31

Chapter 8 Other Security Considerations .. 33
8.1 Overview .. 33
8.2 SSL Settings for the Application ... 33

Chapter 9 Customizing Authentication .. 35
9.1 Customizing the Login Page .. 35

9.1.1 Applying Styling to the Login Page ... 35
9.1.2 Enabling Usernames With Extended Characters for WebLogic Server 35

9.2 Changing the Case-Sensitivity of the Username ... 36
9.3 Adding Custom Verifications to the Authentication Process 36

9.3.1 Configuring the Custom Authenticator ... 37
9.4 Configuring Identity Only Authentication ... 37
9.5 Adding the Cache Refresh Failure Callback Interface .. 37
9.6 Turning Off SSL Settings for the Application ... 37

9.6.1 Modifying the web.xml File for the Client Application 38
9.6.2 Modifying the Application Server Configuration ... 38

Chapter 10 Customizing Authorization ... 39
10.1 Overview .. 39

10.1.1 Creating Authorization Data Mapping .. 39
10.1.2 Creating Function Identifiers (FIDs) .. 41
10.1.3 Switching Security off for a Process Method ... 41
10.1.4 Security Considerations During Development ... 41

10.2 Controlling the Logging of Authorization Failures for the Client 42
10.3 Authorizing New SID Types ... 42
10.4 Analyzing the AuthorisationLog Database Table .. 43

Chapter 11 Customizing External User Applications .. 45

Cúram Security Guide

iv

11.1 Overview .. 45
11.2 Creating an External User Application .. 45
11.3 Creating an External User Client Login Page .. 45
11.4 Creating an External User Client Automatic Login Page 46
11.5 Implementing the External Access Security Interface ... 47

11.5.1 Authenticating an External User ... 48
11.5.2 Determine External User Details .. 49
11.5.3 Authorizing an External User ... 50
11.5.4 Determining the User Type ... 50
11.5.5 Preventing the Deletion of a Security Role: Role Usage Count 51
11.5.6 Retrieving a Registered Username .. 51
11.5.7 Reading User Preferences ... 52
11.5.8 Modifying User Preferences ... 52
11.5.9 Configuring External Access Security .. 53

11.6 Determining if a User is Internal or External using the UserScope Interface 53
11.6.1 User Type Determination .. 53

Notices ... 55

Cúram Security Guide

v

Chapter 1

Cúram Security

1.1 Purpose

The purpose of this guide is to describe the aspects of security that must be
considered when developing and deploying a IBM Cúram Social Program
Management enterprise application. The term security is used to describe
many different areas. For the purpose of this document, the following areas
will be covered: authentication and authorization. This guide also describes
the securable elements of IBM Cúram Social Program Management applic-
ations.

This guide is divided into two parts. The first part contains an overview of
the security areas and should be read by all interested parties, both technical
architects and developers. The second part provides development "how to"
information and examples for application security.

1.2 Audience

There are two main audiences for this document:

• Technical Architects who need to consider integration with other sys-
tems at deployment time, e.g., LDAP.

• Developers who must consider the type of application that will de-
veloped, i.e., is the application for internal users, external users, or both.

Note

Internal users are users that exist on the Cúram Users database table.
They are part of the organisation and typically are there to manage
claims for participants. External users are all other types of users.
External users are not part of the organisation. Their access is lim-
ited. An example of an external user would be a provider that
provides a service to the organisation.

1

1.3 Overview

Security is built into the infrastructure that underpins the development of the
IBM Cúram Social Program Management application. It supports the au-
thentication of a user at login time as well as providing support for the au-
thorization process. The design of an application is not complete without
first considering the implications of securing the application against unau-
thorized access to sensitive data or functionality. Security is therefore one of
the key priorities during application development.

The following are the main concepts of IBM Cúram Social Program Man-
agement security:

• Authentication

• Authorization

There is also the concept of location based security. At the organization
level, location security limits a user's access to client and case information.
Location data security can also be configured to allow a user to access loca-
tions other than their own. This guide does not detail location based secur-
ity. The Cúram Location Administration Guide should be consulted for fur-
ther details on location based security.

1.4 Chapters in this Guide

This guide is in two parts. Part 1 consists of the following chapters, which
provide a high-level overview of the IBM Cúram Social Program Manage-
ment security architecture for the application and deployment to application
servers:

Chapter 2 Authentication
This chapter describes the authentication architecture for IBM Cúram
Social Program Management, giving a detailed description of each area
and any customizable points available;

Chapter 3 Authorization
This chapter describes how authorization works and how this can be
configured for users;

Chapter 4 Security Data Caching
This chapter describes the in-built Cúram Security Cache and also de-
scribes the IBM® WebSphere® Application Server cache and how it af-
fects user authentication;

Chapter 5 Security for Alternative Clients
This chapter describes the usernames that must exist on the Cúram
Users database table to ensure processes like Workflow can run suc-
cessfully.

Cúram Security Guide

2

Chapter 6 External User Applications
This chapter describes why an external user application would be
needed and what should be considered for this.

Chapter 7 Using Single Sign On
This chapter describes the application server properties that must be
considered when IBM Cúram Social Program Management will be used
in a Single Sign On solution.

Chapter 8 Other Security Considerations
This chapter gives a brief overview of some external security practices
and considerations.

Part 2 consists of the following chapters, which provide several how-to's on
development activities for coding and customizing security:

Chapter 9 Customizing Authentication
This chapter describes customization points and development artefacts
relevant to authentication.

Chapter 10 Customizing Authorization
This chapter describes how to implement authorization for IBM Cúram
Social Program Management.

Chapter 11 Customizing External User Applications
This chapter describes how to develop an external user application.

Cúram Security Guide

3

Chapter 2

Authentication

2.1 Overview

This chapter covers authentication for IBM Cúram Social Program Manage-
ment. Authentication is the process of determining if a user is who they say
they are. Authentication is needed where a user must be verified in order to
access a secure resource on a system.

Form-based authentication is where a user is presented with a form allowing
them to enter username and password credentials. These credentials are
compared against the credentials stored on the system for this username, if
they match the user is considered an authenticated user for the system. For
security reasons, it is recommended that the password for authenticating a
user is stored on the system in an encrypted form.

The IBM Cúram Social Program Management web client is configured to
support form-based authentication, which means that before a user can ac-
cess any of the web client content, they will be redirected to a login form to
authenticate.

The authentication process involves the verification of the username and
password, and this is performed by default by a JAAS (Java® Authentica-
tion and Authorization Service) login module. HTTPS/SSL is turned on by
default in the web client ensuring the form-based login authentication mode
is secure.

2.2 Authentication

Different authentication modes can be configured (depending on authentica-
tion requirements) via the Cúram JAAS login module.

The following are the authentication modes supported:

• Default Authentication;

4

• Identity Only Authentication;

• External Access Security Authentication.

Each of these modes are described in detail in the sections below.

2.3 Authentication Architecture

Figure 2.1 Authentication Architecture

Figure 2.1, Authentication Architecture, above, outlines the architecture for
the authentication process of a user. Out-of-the-box, default authentication
is performed for a user. This behavior can be customized for both internal
and external users, depending on the authentication requirements. The fol-
lowing sections in this chapter describe in detail each of the functional areas
that make up the authentication architecture, indicating where customiza-
tions are possible.

2.4 Default Authentication

Default out-of-the-box authentication for IBM Cúram Social Program Man-
agement involves the user logging in, via the login screen, where the user is
prompted for a username and password as credentials. These credentials are
then passed to the Cúram JAAS login module configured in the application
server.

The default authentication is invoked and the username and password
entered are checked against the username and password stored on the Cúram
Users database table. A number of verifications are also checked for the
user. Section 2.7.1, Default Authentication should be consulted for full de-
tails on the verifications.

Cúram Security Guide

5

Provided all verifications are successful, the user is considered to be authen-
ticated by the application.

Once the user is authenticated, the user is then added to the Cúram Security
Cache. The Cúram Security Cache stores the username and all related au-
thorization data for that user in order to optimize the authorization data re-
trieval for a user. Chapter 4, Security Data Caching should be consulted for
further details on the Cúram Security Cache. Figure 2.3 below highlights the
path taken for default authentication.

Figure 2.2 Default Authentication

2.5 The Login Page

The default out-of-box login page is represented by the logon.jsp file.
This logon.jsp represents the login page for the user to complete form-
based login authentication. By default, the logon.jsp file contains the
username and password fields. However, the logon.jsp file can be cus-
tomized to pass an additional parameter by adding the user_type field. This
field determines the type of user logging in, i.e., internal or external user.
The username, password and user_type (if present) are all passed to the
Cúram JAAS login module as part of the authentication process.

The default out-of-the-box logon.jsp file does not have the user_type
property set. If this property is omitted, the user is assumed to be internal.
When this property is set, it indicates that an external user is logging in.
This property can be set to any value other than 'INTERNAL'.

2.5.1 Customization of the Login Page

The logon.jsp file can be customized, i.e. the logon.jsp file can be
completely replaced by a custom logon.jsp file, for a number of reasons

Cúram Security Guide

6

including the following:

An external user client application is being developed;
If an external user client application is being developed, a new lo-
gon.jsp file must be created, as the user type must be set to indicate
an external user is logging in. Section 11.3, Creating an External User
Client Login Page should be referenced for further details.

Automatic login is needed;
Some external user client applications require no user authentication
and hence a username and password should not be requested, i.e. in the
case of a external public access application. It is not possible to disable
authentication, so the best way to achieve this requirement is to write an
automatic login script. This is done by customizing the logon.jsp
file for the external public access application. Section 11.4, Creating an
External User Client Automatic Login Page should be referenced for
further details.

Different styling is required;
The section on Login Pages in the Cúram Web Client Reference Manual
should be referenced for further details on styling for the logon.jsp
file.

A requirement exists for usernames to contain extended characters
(valid only for Oracle® WebLogic Server).

WebLogic Server provides a proprietary attribute,
j_character_encoding, which must be added to the lo-
gon.jsp file. Section 9.1.2, Enabling Usernames With Extended
Characters for WebLogic Server should be consulted for further details.

2.6 Cúram JAAS Login Module

Authentication is performed by a JAAS login module. It is configured in the
application server and is invoked automatically by the application server as
part of the authentication process for any access to the IBM Cúram Social
Program Management application. The advantage to this approach is that
the default authentication mechanism can be used with, or replaced by, a
custom approach, without affecting the IBM Cúram Social Program Man-
agement application.

As mentioned earlier, the Cúram JAAS login module can be configured to
operate in three modes. For more information on the configuration of the lo-
gin modules and any application server specific behavior, the section on Ap-
plication Server Configuration within the Cúram Server Deployment Guide
for the application server being used should be consulted for further details.

Project specific requirements may mean that more than one login module is
needed, e.g., a user may be required to enter more than the username and
password for verification purposes. It is possible to configure multiple login
modules in the application server. Each login module will be executed in the
order as determined by the settings in the application server. For more in-

Cúram Security Guide

7

formation on these settings, the WebSphere or WebLogic Server documenta-
tion should be consulted.

Once the user is successfully authenticated by all login modules that require
successful authentication of the user (this is configurable in the application
server), the user is considered authenticated by the application.

2.6.1 Password Encryption

The passwords for all users are stored in their encrypted form on the Cúram
Users database table. When the Cúram JAAS login module receives the
password, it is encrypted, before being sent to the login bean. This encryp-
tion is a one way encryption algorithm to ensure the security of the pass-
word. The password stored for the user on the database is encrypted using
the same encryption, thereby ensuring the encrypted passwords can be suc-
cessfully compared to each other.

The
curam.util.security.EncryptionAdmin.encryptPassword
() method is used to encrypt the user passwords. The Java documentation
for this class should be consulted.

2.6.2 Default Configuration for WebLogic Server

The Cúram JAAS login module is configured as an authentication provider
in WebLogic Server. The Cúram authentication provider is the only provider
configured by the configuration scripts provided for WebLogic Server. As it
is the only configured authentication provider, the Cúram authentication
provider is responsible for authenticating and verifying the user. As men-
tioned previously, it is possible there may be more than one authentication
provider configured in WebLogic Server, in this case the Cúram authentica-
tion provider may not be responsible for authenticating and verifying the
user. Section 7.3, Single Sign On for WebLogic Server should be referenced
for further details.

2.6.3 Default Configuration for WebSphere

The Cúram JAAS login module is configured as a system login module in
WebSphere. The default, scripted security configuration within WebSphere
involves the default file-based user registry and the Cúram system login
module. The user registry in WebSphere is the default authentication mech-
anism and can be configured to be:

• A custom user registry;

• An LDAP directory server;

• The Local OS or;

• The WebSphere file-based repository.

Cúram Security Guide

8

There are multiple system login configurations for WebSphere. The Cúram
system login module is configured for the DEFAULT, WEB_INBOUND and
RMI_INBOUND configurations. The same login module is used for all three
configurations. WebSphere automatically invokes the login modules con-
figured as system login modules under certain circumstances:

• DEFAULT

The login modules specified for the DEFAULT configuration are in-
voked for authentication of web services and JMS invocations. They are
also invoked during the startup phase of WebSphere;

• WEB_INBOUND

The login modules specified for the WEB_INBOUND configuration are
used for authentication of web requests;

• RMI_INBOUND

The login modules specified for the RMI_INBOUND configuration are
used for authentication of Java clients.

The Cúram JAAS login module exists as a login module within a chain of
login modules set up in WebSphere. It is expected that at least one of these
login modules be responsible for adding credentials for the user. By default,
the Cúram login module adds credentials for an authenticated user. As a res-
ult of this, the configured WebSphere user registry handled by a subsequent
login module does not add credentials. Therefore, it is not necessary to
define Cúram users within the WebSphere user registry. This behavior is
configurable through the use of the
curam.security.user.registry.enabled property set in the
AppServer.properties file. The Cúram Deployment Guide for Web-
Sphere Application Server or Cúram Deployment Guide for WebSphere Ap-
plication Server on z/OS should be consulted for further details on setting
this property. Figure 2.3, Default Authentication Flow for WebSphere below
illustrates the default authentication flow for WebSphere. Figure 2.4, Au-
thentication Flow for WebSphere with User Registry Enabled below illus-
trates the authentication flow for WebSphere where its user registry is also
queried, i.e. where the
curam.security.user.registry.enabled property is set to
true.

Cúram Security Guide

9

Figure 2.3 Default Authentication Flow for WebSphere

Figure 2.4 Authentication Flow for WebSphere with User
Registry Enabled

As part of the security configuration there are certain users that are excluded
from authentication and for these users the configured user registry will be
queried. This list of users is configured automatically to be the WebSphere
security user, as specified by the security.username property in
AppServer.properties and the database user, as specified by the
curam.db.username property in Bootstrap.properties. These
two users are classified administrative users and not application users. It is

Cúram Security Guide

10

possible to extend this list of excluded users manually, see the Cúram De-
ployment Guide for WebSphere Application Server and Cúram Deployment
Guide for WebSphere Application Server on z/OS for more information.

Warning

The security.username and curam.db.username users
are automatically added to the WebSphere file-based user repository
by the provided configuration scripts. If the configured WebSphere
user registry is not the default, these users must exist in the alternate
WebSphere user registry.

2.6.4 Customization of the JAAS Login Module

It is possible that the Cúram JAAS login module may not support the au-
thentication requirements for a particular custom solution. We strongly re-
commend that when developing a custom login module, that the Cúram
JAAS login module be left in place and used with identity only authentica-
tion enabled. However, if deemed necessary, the Cúram JAAS login module
can be removed and replaced by a custom solution. If this is the case Sup-
port must be consulted.

Warning

While it is possible to remove the Cúram JAAS login module com-
pletely, it should be noted that users must still exist in the Cúram
Users database table for authorization reasons.

The Cúram JAAS login module adds new users to the Cúram Security
Cache automatically, and when this Cúram JAAS login module is replaced
by a custom JAAS login module, this functionality is no longer present. If a
custom JAAS login module is completely replacing the Cúram JAAS login
module, it is the responsibility of the custom JAAS login module to ensure
an update of the Security Cache is triggered when a new user is added to the
database.

2.7 Verification Process for Authentication

The type of verifications performed is dependent on the authentication mode
being used. Below is a list of the authentication modes/configurations and
full details on the verifications completed for each authentication mode.

2.7.1 Default Authentication

Default authentication is part of the out-of-the-box configuration and this
mode of authentication involves verifying the username and password spe-
cified during login against the Cúram Users database table. All login in-
formation in this case is maintained by the IBM Cúram Social Program
Management application.

Default Verification Process

Cúram Security Guide

11

The verifications performed by the Cúram login module during default au-
thentication are:

• username and password.

• account and/or password expiry.

• username synchronization with security cache.

• break-in detection, e.g. upper limit on password entry attempts, incorrect
usernames, password change failures.

• day and time access restrictions - day of the week and time range within
the day.

The authentication and authorization of usernames is case sensitive by de-
fault, however it is possible to disable case sensitive authentication. If du-
plicate case insensitive usernames exist (e.g. caseworker, CaseWorker), au-
thentication will fail due to an ambiguous username. Section 9.2, Changing
the Case-Sensitivity of the Username should be referenced for further details
on this.

Authentication Attempts

Authentication failures are not reported directly to a client as this would
provide extra information to an intruder attempting to break into the system.
For example, reporting an incorrect password would indicate that the user-
name is valid. All authentication attempts (both success and failure) are in-
stead logged in a database table called the AuthenticationLog. Section 10.4,
Analyzing the AuthorisationLog Database Table should be consulted for
further details.

Customization of Default Authentication

The default implementation cannot be customized, but the ability to add ex-
tra verifications is available by implementing the custom authenticator. Sec-
tion 2.7.4, Custom Verifications should be referenced for further details.

2.7.2 Identity Only Authentication

Authentication can be configured to perform identity-only verification, in
place of the default verifications listed in Section 2.7.1.1, Default Verifica-
tion Process above.

Identity only verification means that the authentication mechanism only en-
sures that the username for the user logging in exists on the Cúram Users
database table. Full authentication must be completed by an alternative
mechanism, to be configured in the application server.

An example of an alternative mechanism is an LDAP directory server,
which is supported as an authentication mechanism by both the WebSphere
and WebLogic Server application servers. Another alternative is to use a

Cúram Security Guide

12

Single Sign-On Solution for authentication, or to implement a custom login
module. For custom application server solutions the IBM or Oracle docu-
mentation should be consulted.

With identity-only authentication (as for default authentication), entries are
added to the AuthenticationLog database table at the end of the authentica-
tion process.

For a successful login the following status is used:

• AUTHONLY

For a failure scenario, the following status is used:

• BADUSER

This is the only possible failure scenario where a user does not exist.

The loginFailures and lastLogin fields of the AuthenticationLog
are not set. This is true even if customized verifications are implemented.

When the password expiry information for a user is set (on the Cúram Users
database table), the password expiry warning will be displayed if it is about
to expire. With identity-only authentication this warning is misleading. It is
recommended that any fields relating to the authentication verifications,
such as password expiry or account enabled, are not used if identity-only au-
thentication is enabled.

When identity-only authentication is enabled, security is not used for au-
thentication but is still used for authorization purposes. As a result of this,
all users requiring access to the application must still exist in the Cúram
Users database table, as well as in the alternative authentication mechanism,
e.g., LDAP. It is important to note that there are two users that must exist in
both locations, i.e. the SYSTEM user and the DBTOJMS user. Chapter 5,
Security for Alternative Clients should be consulted for further details on
these users.

Section 9.4, Configuring Identity Only Authentication should be consulted
for details on how to configure identity only for an application server.

Cúram Security Guide

13

Figure 2.5 Identity Only Authentication

Customization of Identity Only Authentication

The identity-only implementation cannot be customized, but extra verifica-
tions can be added by implementing the custom authenticator. Section 2.7.4,
Custom Verifications should be consulted for further details.

2.7.3 External Access Security Authentication

The architecture allows a developer to implement their own custom authen-
tication solution for external users by providing a “hook” into the existing
authentication and authorization infrastructure of the SDEJ.

To “hook” the custom solution into the application the
curam.util.security.ExternalAccessSecurity interface
must be implemented. The implementation of this interface is used during
the authentication and authorization process to determine required informa-
tion relating to the External User. Chapter 11, Customizing External User
Applications should be consulted for further details.

2.7.4 Custom Verifications

Support is provided for adding custom verifications to the authentication
process e.g., a user may be required to answer a security question that must
then be verified. The custom code, if implemented, is invoked after the rel-
evant IBM Cúram Social Program Management verifications or identity as-
sertion, and only if they have been successful.

After the custom verifications are invoked, the authentication process will
update the relevant fields on the Users database table.

Section 9.3, Adding Custom Verifications to the Authentication Process

Cúram Security Guide

14

should be consulted for further details.

Cúram Security Guide

15

Chapter 3

Authorization

3.1 Overview

In IBM Cúram Social Program Management the process of granting or re-
fusing a user access to functional elements of an application is called au-
thorization. The functional element can be anything to which a unique iden-
tifier can be attached, such as:

• a server process call,

• an element of the application that requires security checking, e.g. a
series of registered welfare products.

Access to the functional element is controlled by a Security Identifier (SID)
that forms part of the IBM Cúram Social Program Management authoriza-
tion data. This data is linked to a user and can be configured through the
Cúram Administration screens or through the Data Manager. The Cúram
Server Developer's Guide should be consulted for further details.

The security data created for authorization is central to the processing per-
formed during every client-server call, and it is important that access be op-
timized for performance reasons. The Cúram Security Cache is responsible
for caching authorization data for a user. Section 4.2, Cúram Security Cache
should be consulted for further details.

The following sections describe the relationship for these authorization con-
cepts and how this works within IBM Cúram Social Program Management.

3.2 Users, Roles and Groups

The security information associated with an application must first be organ-
ized into security profiles before it can be utilized in a runtime environment.
A security profile consists of a security role, one or more security groups
and the associations between security identifiers (SIDs) and securable ele-

16

ments of an application.

Every authorized user is assigned a security role during security configura-
tion and these roles are associated with a number of security groups. Each
security group is associated with a number of security identifiers. The secur-
ity identifier represents the securable elements of IBM Cúram Social Pro-
gram Management, e.g., a method or a field. The role, groups and identifier
information is stored on the database in a number of tables and is configured
using the application Data Manager or the Cúram Administration screens.

This data structure makes it possible to authorize every user against any se-
cured element of an application. This is a powerful and flexible method of
providing authorization to Cúram users.

There is a minimum set of SIDs required for a user to operate the Social
Program Management Platform application. These SIDs are associated to
the out-of-the-box BASESECURITYGROUP group. The EJBServer/
components/
core/data/initial/handcraftedscripts/Supergroup.sql
file should be consulted to identify the list of these SIDs. This file is re-
sponsible for linking the SIDs to the BASESECURITYGROUP out-
of-the-box.

A simple way to ensure that all users have the privileges from this set of
SIDs is to create a single security group for them and then associate that se-
curity group with every security role in the system.

3.3 Security Identifiers (SIDs)

Every secured element in IBM Cúram Social Program Management is given
a security identifier (SID) that is unique across the entire application.

The authorization process is built into the infrastructure and once the secur-
able elements have been identified, the rest is handled by code generators,
scripts and the Cúram Administration screens. The analysis of what ele-
ments must be securable is a manual process that must be done by the de-
veloper or security administrator. This section outlines the infrastructure
available to set up authorization.

The first type of authorization to consider is that of the process meth-
od(facade) also known as function-level security. In the Cúram model, a de-
veloper may choose if security is switched on or off at the process method
level. The option applies only to Business Process Objects (BPOs) since
they encapsulate the calls exposed to the client. Entity object methods are
not included in the authorization process.

There are a number of types of SIDs and these include:

• Function Identifiers (FIDs)

• Field Level Security Identifiers

• User defined SID types.

Cúram Security Guide

17

3.3.1 Function Identifiers (FIDs)

Function identifiers (FIDs) are a specialized type of security identifier (SID)
where the type is set to FUNCTION. When a method is made publicly ac-
cessible (by setting the stereotype as facade in the model), a FID is gener-
ated for that method and security is automatically switched on.

It is possible to switch security off for a process method at design time. Sec-
tion 10.1.3, Switching Security off for a Process Method should be refer-
enced for further details on this.

3.3.2 Field Level Security Identifiers

The Field Level SID allows authorization to be applied to specific fields on
a publicly accessible method. At runtime, if a user does not have access
rights to view the field to be displayed, the contents of the field are dis-
played as a number of asterisks (***). For more information on Field Level
SIDs, the Cúram Modeling Reference Guide should be consulted.

3.4 User Defined SIDs

In the previous sections, we have described

FIDs;
An automatically generated SID of type function.

Field Level SID;
Security applied to specific fields on a method.

There is also the concept of a user defined SID. The authorization process is
sufficiently flexible to accommodate any securable element of an IBM
Cúram Social Program Management application. The developer can effect-
ively customize the authorization process by defining new types of SIDs.
The new types represent a conceptual element requiring security. The fol-
lowing server interface method enables authorization to be invoked directly
on these new user defined SID types.

curam.util.security.Authorisation.isSIDAuthorised()

Out-of-the-box, the LOCATION and PRODUCT SIDs are SIDs of this
type. Using the above method there is effectively no limit to the SID types
that can be defined. Section 10.3, Authorizing New SID Types should be
consulted for further details.

3.5 Runtime Authorization

The IBM Cúram Social Program Management infrastructure performs au-
thorization checks from both the web client and server side.

Cúram Security Guide

18

3.5.1 Client Authorization Checks

Before a user can access a method or field, the web client performs author-
ization checks before the page is initially loaded. If the user does not have
access, the client authorization check fails, and the server is not invoked.
This check is configurable in the curam-config.xml by setting the SE-
CURITY_CHECK_ON_PAGE_LOAD property. Section 3.12.13 General
Configuration in the Cúram Web Client Reference Manual should be con-
sulted for further details on this.

By default any such web client authorization failures are not recorded. This
behavior is configurable. Section 10.2, Controlling the Logging of Authoriz-
ation Failures for the Client should be consulted for further details.

3.5.2 Server Authorization Checks

To cater for other access to IBM Cúram Social Program Management, and
where the web client authorization check is disabled, there is a second level
authorization check made by the server. This server side check will always
log authorization failures, and the client property does not affect this log-
ging.

The log of all authorization failures is stored on the database to allow these
failures to be audited at a later stage. The AuthorisationLog table contains
the User Name and Security Identifier for the failed authorization, as well as
a timestamp indicating when the failure occurred. Section 10.4, Analyzing
the AuthorisationLog Database Table should be consulted for further details
on the AuthorisationLog table.

Cúram Security Guide

19

Chapter 4

Security Data Caching

4.1 Overview

This chapter describes the Cúram Security Cache, which stores all authoriz-
ation data for a user. Details on the WebSphere cache and how this affects
the authentication of a user at login are also included in this chapter.

4.2 Cúram Security Cache

Security information from the database tables supporting the profiles men-
tioned in Section 3.2, Users, Roles and Groups is cached by the infrastruc-
ture. This is done to optimize the search and retrieval of data during the au-
thorization process.

To optimize performance, the cache is loaded on demand as security author-
ization requests come into the application and is a shared resource. For ap-
plication code, the cache is a protected resource and cannot be accessed dir-
ectly. It is accessible, for queries only, through the authorization interface
(curam.util.security.Authorisation) which allows a de-
veloper to implement a customized authorization procedure. Section 10.3,
Authorizing New SID Types should be referenced for further details on this.

When the curam.security.casesensitive property is set to false
the security cache will store all usernames in upper case and all queries to
the cache will automatically change the specified username into the upper
case equivalent. It is also worth noting that the existence of duplicate case
insensitive usernames will cause a fatal error during the initialization of the
security cache. Section 9.2, Changing the Case-Sensitivity of the Username
should be consulted for further details on this.

4.2.1 Cache Refresh

As security data is so important to the operation of IBM Cúram Social Pro-

20

gram Management, the cache must be refreshed whenever any changes have
been made to security related database tables. The refreshing of the Cúram
Security Cache is an asynchronous process.

Cache Refresh Failure

The refreshing of the Cúram Security Cache is triggered by either an applic-
ation reboot, or by the system administrator (sysadmin) via the Cúram Ad-
ministration screens, therefore, the administrator receives no feedback if the
cache reload fails. Having to check the system logs or manually verify the
application following a refresh to verify its success can be cumbersome. It is
therefore recommended that the optional callback interface for providing
feedback in the event of a cache reload failure be implemented. Section 9.5,
Adding the Cache Refresh Failure Callback Interface should be consulted
for further details.

4.3 WebSphere Caching Behavior

WebSphere caches user information and credentials in its own security
cache. The Cúram login module will not be invoked while a user entry is
valid in this cache. The default invalidation time for this security cache is
ten minutes, where the user has been inactive for ten minutes.

For example, the first time a user logs into the application from the web cli-
ent they will be requested for their username and password. The Cúram lo-
gin module will be invoked, and will authenticate the information specified.
If the same user opens a second new web browser and attempts to access the
application, they will again be requested for their username and password.
When WebSphere receives this information it will query the security cache
to determine if the username and password are already in the cache. If they
are, and the password matches, WebSphere will not query the login mod-
ules.

The impact of this behavior is that any modifications to a user's account re-
strictions or password will not take effect until the user has been invalidated
from the WebSphere security cache.

For more information on this behavior consult the IBM Documentation. 1

Cúram Security Guide

21

Notes
1 An IBM Technical Note detailing the WebSphere security cache behavior
is available here: ht-
tp://www-1.ibm.com/support/docview.wss?uid=swg21238913

Cúram Security Guide

22

http://www-1.ibm.com/support/docview.wss?uid=swg21238913
http://www-1.ibm.com/support/docview.wss?uid=swg21238913

Chapter 5

Security for Alternative Clients

5.1 Overview

There are processes that may not be associated with a specific logged in
user. These include alternative clients, e.g. non-web processes such as batch
processing, web services and deferred processing. As any process that inter-
acts with a IBM Cúram Social Program Management application must be
authenticated, a valid user must exist for each of these processes. The fol-
lowing sections provide details on the users that must exist on the Cúram
Users table as well as details on the processes that depend on these users.

5.1.1 Mandatory Cúram Users

A number of users must always exist in the Cúram Users database table.
These users are necessary for application processes such as deferred pro-
cessing and workflow. If these users do not exist, then authentication will
fail and subsequently these processes will fail.

Note

The usernames and passwords are detailed below. These passwords
are documented here as they are stored in their encrypted form as
shipped out-of-the-box.

The usernames and passwords for each of the processed below are the de-
fault out-of-the-box credentials and it is recommended that these credentials
be changed for security reasons.

These users include:

• SYSTEM

The SYSTEM user is the user under which JMS messages are executed.
This user must exist and the username is case sensitive. Section 5.1.4,
JMS Messaging should be referenced for further details.

23

• DBTOJMS

The DBTOJMS user is the default user under which the Database to
JMS (DBToJMS) trigger for batch processing is executed. This user
must exist and the username is case sensitive. Section 5.1.3, Batch Pro-
cessing should be referenced for further details.

• WEBSVCS

The WEBSVCS user is the default user under web services are ex-
ecuted. This user must exist and the username is case sensitive. Sec-
tion 5.1.2, Web Services should be referenced for further details.

5.1.2 Web Services

For Apache Axis2 (the recommended implementation for web services)
there are default credentials for authentication. A user has the ability to
change these credentials at a global level or per service if required. To en-
sure that web services are not vulnerable to a security breach this default
user is not authorized to access web services by default. For authorization, a
web service must be associated with a security group and in turn a security
role that is linked to the user (e.g. WEBSVCS) in order to access it. Ensur-
ing the user is authorized is a manual process. Please see the Customizing
Receiver Runtime Functionality section in the Cúram Web Services Guide
for further details on web services and also the chapter on Authorization in
this book.

For Apache Axis 1.4, i.e. legacy web services, once a process is modeled as
a web service, this web service will automatically be logged into the applic-
ation using default credentials. This default user is set up for authorization
automatically, i.e. the user will have access to the web service created.
Therefore caution is advised when making a class visible as a web service.
Please see the Legacy Inbound Web Services section within the Cúram Web
Services Guide.

There are a number of other topics related to the security of web services -
for example, encrypting data - using Rampart. The Cúram Web Services
Guide should be consulted for further details on these.

5.1.3 Batch Processing

Since the Batch Launcher does not require the application server to be run-
ning, it does not perform any application level authentication or authoriza-
tion. It must only authenticate against the database. The same credentials as
used by the application server (located in
%SERVER_DIR%/project/properties/Bootstrap.propertie
s) are used by the Batch Launcher to connect to the database and run batch
programs.

The Batch Launcher or batch programs can optionally trigger the applica-
tion server to begin a DB-to-JMS transfer. This involves logging in and in-

Cúram Security Guide

24

voking a method on the server, which in turn requires a valid username and
password. By default the DB-to-JMS transfer operation uses default creden-
tials; therefore, the DBTOJMS account must exist on the Cúram Users table
and must be enabled and assigned the role 'SYSTEMROLE' to allow author-
ization. The locale DB-to-JMS transfer is the default locale for this user as
specified in field 'defaultLocale' on the Users table.

The Security Considerations section in the Cúram Batch Processing Guide
guide should be consulted for further details on changing the user for the
DB-to-JMS transfer.

The property batch.username can be used to specify the user name for the
operations run by the Batch Launcher. This is set using the -D parameter.
For example: build runbatch -Dbatch.username=admin

5.1.4 JMS Messaging

JMS messages are used for communication purposes by deferred processes
and Workflow. Since JMS messages are triggered by the application server
and need to interact with the IBM Cúram Social Program Management ap-
plication, valid Cúram credentials must exist. The SYSTEM user account
must exist on the Cúram Users table and must be enabled and assigned the
role 'SYSTEMROLE' to ensure authorization. The locale for JMS messages
is the default locale for this user as specified in field 'defaultLocale' on the
Users table.

It is possible to change the SYSTEM username during or after the deploy-
ment of the application. For more information the Cúram Server Deploy-
ment Guide for the relevant application server should be consulted.

5.1.5 Deferred Processing

A deferred process in IBM Cúram Social Program Management is a busi-
ness method that is invoked asynchronously. As deferred processes interact
with the application, valid Cúram credentials must exist. The SYSTEM user
account must exist on the Cúram Users table and must be enabled and as-
signed the role 'SYSTEMROLE' to ensure authorization. The locale for de-
ferred processes is the default locale for this user as specified in field 'de-
faultLocale' on the Users table. In the case of offline unit-testing of deferred
processes, the username is blank and the effective locale is the default locale
for the IBM Cúram Social Program Management server.

Cúram Security Guide

25

Chapter 6

External User Applications

6.1 Overview

The IBM Cúram Social Program Management default, out-of-the-box ap-
plication is enabled for internal users. Internal users are users that exist on
the Cúram Users database table. A typical internal user would be a case
worker who creates and manages claims for participants and has full access
to the application. The infrastructure provides functionality for authenticat-
ing and authorizing these internal users.

There is also the concept of a user that needs to securely access parts of the
IBM Cúram Social Program Management application. These users are out-
side the organisation. Their access is limited. These users are considered ex-
ternal users and authentication for these users is completely customizable
through the use of the External Access Security hook point provided. As ex-
ternal users are processed differently to internal users, a specific web applic-
ation is required for external users.

6.2 External User Applications

When developing an application for an external user, the following must be
implemented:

• An external user client application, i.e., a separate EAR file containing
the web client application.

• A custom logon.jsp, where the external application must pass in a
parameter user_type indicating an external user is logging in.

• An implementation of the
curam.util.security.ExternalAccessSecurity interface.
This interface contains methods responsible for the authentication and
authorization of an external user.

26

As well as there being internal and external user types. There can also be
different types of external users. For example, there may be an external user
of type 'PUBLIC' who could have limited access to an external application.
There could be another external user of type 'PROVIDER' who is a re-
gistered external user. The ability to have different types of external users
provides more flexibility within an external application, allowing finer
grained control over authentication of the external user based on the external
user type.

6.3 User Scope

There are two different types, or scopes, of users within the IBM Cúram So-
cial Program Management application: internal and external. The type of a
user is determined in one of the following ways:

• By the Cúram Security Cache;

If the user exists in the Cúram Security Cache, the type is assumed to be
in internal. If the user does not exist in the cache, the type is assumed to
be external. In this case, (which is the default behavior) all usernames,
internal and external, must be unique.

• By the UserScope custom interface;

If the UserScope custom interface is implemented. This custom inter-
face, takes precedence over the check for a user in the Cúram Security
Cache to determine the user type. Consult Section 11.6, Determining if a
User is Internal or External using the UserScope Interface for further
details.

When the type of a user is external the implementation of the
curam.util.security.ExternalAccessSecurity.getSecur
ityRole() method will be used to determine the user role instead of the
internal security roles. Section 11.5.3, Authorizing an External User should
be consulted for further details on this method.

To support alternative methods for determining if a user is internal or ex-
ternal the custom interface, UserScope, is available. Consult Section 11.6,
Determining if a User is Internal or External using the UserScope Interface
for more details.

6.4 Deployment of an External Application

When deploying an application to an application server, the security config-
uration for the application server is applicable to all IBM Cúram Social Pro-
gram Management applications deployed to that application server instance.
Therefore, care must be taken when considering the deployment architecture
for more than one application. This is important when deciding if an internal
and external application will be deployed to the same application server in-
stance.

Cúram Security Guide

27

An example of some considerations to think about are:

• Is identity only being used for internal users?

• Is an alternative authentication mechanism used , e.g., LDAP;

• Will both internal and external users be authenticated by LDAP?

The answers to the considerations above will affect the setting of the applic-
ation server properties (i.e. properties specified in the AppServ-
er.properties file), that affect the behavior of the Cúram JAAS login
module. These considerations will also drive the implementation of the Ex-
ternalAccessSecurity interface for external users.

The application server properties in the Cúram JAAS login module allow
for finer grained control over the authentication of user types. External users
and internal users can be authenticated differently, as can different types of
external users, in a situation where the internal and external applications are
deployed to the same application server. These properties include the fol-
lowing:

• curam.security.user.registry.disabled.types;

Set this property to a comma separated list of user types for which the
application server user registry will not be queried, i.e. the implementa-
tion within the ExternalAccessSecur-
ity.authenticateUser() method is responsible for authenticat-
ing the external user of this type. For example, LDAP could be con-
figured to be the user registry.

• curam.security.user.registry.enabled.types.

Set this property to a comma separated list of user types for which the
user registry will be queried, i.e., the implementation within the Ex-
ternalAccessSecurity.authenticateUser() method does
not have to fully authenticate the user. The user registry will be respons-
ible for authenticating this type of external user. For example, LDAP
could be configured as the user registry, and in this case, LDAP could be
responsible for the authentication of these external user types.

These properties are dependent on the implementation of the Extern-
alAccessSecurity interface.

Consider the following example project requirements:

• An internal user must authenticate with LDAP.

• An external user of type 'EXT_PUBLIC' must authenticate with IBM
Cúram Social Program Management and not LDAP;

• An external user of type, 'EXTERNAL' must authenticate with LDAP
only and not IBM Cúram Social Program Management.

• Both the internal and external applications are deployed to the same ap-
plication server instance.

Cúram Security Guide

28

The following settings could cater for the example above:

• curam.security.check.identity.only set to true;

• curam.security.user.registry.disabled.types=EXT_
PUBLIC.

As well as the properties being set, the implementation of the Extern-
alAccessSecurity interface must have the logic to cater for the differ-
ent types of external users and how they will be authenticated.

Cúram Security Guide

29

Chapter 7

Using Single Sign On

7.1 Overview

The number of applications in an enterprise often results in an increase in
the number of usernames and passwords in use, resulting in poor user exper-
ience and additional cost of maintaining them. Multiple user names and
passwords also compromise security as users either choose very simple
passwords or write down their passwords in easy to find locations. For the
system administrators additional applications result in an increased directory
maintenance effort and fielding increased help desk calls to reset passwords.
Some of the problems caused by additional applications can be resolved by
using single sign-on functionality. Single sign-on (SSO) functionality allows
users to access multiple secure applications by authenticating only once.

Note

Secure refers to applications that require users to be authenticated
before accessing the functionality

Single sign on is supported for the supported application servers, by allow-
ing alternative mechanisms to be used alongside the Cúram login module.
The implementation of an SSO solution is the responsibility of the custom
implementation. It is recommended that a third party tool be used, e.g.
IBM® Tivoli® or CA SiteMinder.

This chapter describes the application server properties that allows use of an
SSO solution. The Single Sign On for Cúram: An Example Guide should be
consulted for details on how to implement a Single Sign On solution.

7.2 Single Sign On with WebSphere

When SSO is required with WebSphere, it can be achieved using the Web-
Sphere lightweight third-party authentication mechanism (LTPA) and addi-
tional custom login modules. The LTPA protocol results in a token being

30

created for an authenticated user. In WebSphere, a token is generated once
credentials are added for an authenticated user. This token is then used to re-
trieve identity information for an authenticated user in an SSO environment.

Security is implemented as a Cúram login module within a chain of login
modules set up in WebSphere. It is expected that at least one of these login
modules be responsible for adding credentials for the user. By default, the
Cúram login module adds credentials for an authenticated user. As a result
of this, the configured WebSphere user registry handled by a subsequent lo-
gin module does not add credentials. The recommended approach to imple-
menting an SSO solution is to add a custom login module somewhere along
the chain of login modules.

The ability to disable the addition of credentials for an unauthenticated user
is provided, thus enabling an SSO solution to be implemented.

The Cúram JAAS login module for WebSphere checks if an LTPA token
exists within WebSphere using the WSCredTokenCallbackImpl callback for
WebSphere. If this token exists and is valid, then no authentication is per-
formed by the Cúram login module.

Credentials may be added to the WebSphere user registry. Credentials in-
clude authentication information on the user logging in, including the
unique identifier for the user. WebSphere checks that credentials exist for a
user after all configured system login modules have executed, if the creden-
tials exist, then the WebSphere user registry is not queried. Credentials are
not added by the Cúram JAAS login module if the following settings are in
place:

• curam.security.check.identity.only property is set to
true.

• curam.security.user.registry.enabled property is set to
true.

As mentioned in Section 6.4, Deployment of an External Application, there
are properties relating to the type of external user that control if credentials
are added to WebSphere for a specific external user type. These include:

• curam.security.user.registry.enabled.types property.

• curam.security.user.registry.disabled.types prop-
erty.

These properties provide fine grained control over authentication for extern-
al user types.

In the case where the Cúram JAAS login module does not add credentials,
the WebSphere user registry will be queried to attempt to add credentials for
the user.

7.3 Single Sign On for WebLogic Server

Cúram Security Guide

31

When SSO is required with WebLogic Server, it can be achieved by using
the WebLogic Server authentication provider or a custom authentication pro-
vider. Consult the WebLogic Server documentation for further information
on authentication providers. WebLogic Server expects credentials/principals
and the group the user belongs to, to be added by the configured authentica-
tion provider. For an SSO solution the Cúram JAAS login module does not
add credentials to the JAAS subject to allow for an alternative authentica-
tion provider to be responsible for adding credentials.

Credentials are not added if the following settings are in place:

• curam.security.check.identity.only is set to true.

• curam.security.user.registry.enabled is set to true.

As mentioned in Section 6.4, Deployment of an External Application, there
are properties relating to the type of external user that control if credentials
are added to WebLogic Server for a specific external user type. These in-
clude:

• curam.security.user.registry.enabled.types property.

• curam.security.user.registry.disabled.types prop-
erty.

These properties provide fine grained control over authentication for extern-
al user types.

The responsibility for adding credentials is left to another authentication
provider, i.e., the main authentication provider for authenticating the user. In
an SSO scenario, only one of the authentication providers needs to add cre-
dentials to the JAAS subject during the commit() method of the login mod-
ule for a user

Cúram Security Guide

32

Chapter 8

Other Security Considerations

8.1 Overview

Another important security concern is protecting content as it is entered, dis-
played and transferred across the network for the IBM Cúram Social Pro-
gram Management application. The default configuration uses SSL
provided by the application server to secure content as it is transferred.

In addition to this, during the development lifecycle, industry leading
products are used to regularly monitor for security vulnerabilities in the ap-
plication. Examples of such potential vulnerabilities include: cross site
scripting, and SQL injection. Such threats are resolved within the infrastruc-
ture when discovered.

It is recommended that customers perform similar security monitoring of
their application.

8.2 SSL Settings for the Application

SSL is on by default for access to the web application. This ensures a secure
SSL connection between the client and server and also ensures data is en-
crypted. SSL is turned on for the client through settings in the web.xml
file for the web client application. SSL is turned on at the application server
level by settings in WebLogic Server and WebSphere. These settings for the
application servers are done through the IBM Cúram Social Program Man-
agement configuration scripts.

Important

The configuration scripts ensure SSL is turned on by default,
however, this is a default configuration that must be updated and
new certificates must be established for the SSL protocol.

It is recommended to leave SSL on for access to the IBM Cúram Social Pro-

33

gram Management application, however depending on specific project con-
figurations, there may be a need to turn SSL off for the application.

It is possible, but not recommended to turn off SSL. Section 9.6, Turning
Off SSL Settings for the Application should be consulted for further details.

Cúram Security Guide

34

Chapter 9

Customizing Authentication

9.1 Customizing the Login Page

The default out-of-box login screen is represented by the logon.jsp file
located in the lib/curam/web/jsp directory of the Client Development
Environment for Java (CDEJ). The logon.jsp file can be customized by
creating a copy of the out-of-the-box file and placing this in a webcli-
ent/components/<custom>/WebContent folder, where <custom>
represents the name of the custom web client component.

The section on Login Pages in the Cúram Web Client Reference Manual has
guidelines on what needs to remain in place in the logon.jsp file and
should be referenced for further details.

9.1.1 Applying Styling to the Login Page

Styling changes can be applied to the logon.jsp in the usual way, i.e., by
adding the relevant CSS to any .css file in the custom component. The
Cúram Web Client Reference Manual should be consulted for details on
styling.

9.1.2 Enabling Usernames With Extended Characters for Web-
Logic Server

If the WebLogic Server application server is not being used, this section can
be ignored.

In the event that you have Cúram user names or passwords with extended
characters (e.g. "üßer") WebLogic Server provides a proprietary attribute,
j_character_encoding, which must be added to the logon.jsp
form-based login page. The WebLogic Server documentation should be con-
sulted for more information. The attribute must be added to the table ele-
ment in the logon.jsp file, as illustrated below: Example 9.1, WebLogic

35

Server Support for Logins With Extended Characters.

<input type="hidden" name="j_character_encoding" value="UTF-8"/>

Example 9.1 WebLogic Server Support for Logins With Extended
Characters

9.2 Changing the Case-Sensitivity of the Username

The curam.security.casesensitive property controls the case
sensitivity of usernames. By default, this is set to true in the Applica-
tion.prx file. When set to false in the Application.prx file, this
will result in the authentication and authorization mechanisms ignoring the
case of the username.

The Cúram Configuration Settings chapter in the Cúram Server Developer's
Guide should be consulted for further details on the Application.prx
file.

9.3 Adding Custom Verifications to the Authentica-
tion Process

To add custom verifications, the
curam.util.security.CustomAuthenticator interface must be
implemented. This interface contains one method - authentic-
ateUser(). The authenticateUser() method is invoked for both
default authentication and identity only authentication. The results of this
method are expected to be an entry from the
curam.util.codetable.SECURITYSTATUS codetable. In the case
of successful authentication, the result must be
curam.util.codetable.SECURITYSTATUS.LOGIN

For authentication failures anything, including null, can be returned. It is re-
commended though that another code from the
curam.util.codetable.SECURITYSTATUS codetable be used. This
codetable can be extended to include custom codes as detailed in the chapter
on Code Tables in the Cúram Server Developer's Guide.

After the custom verifications are invoked, the authentication process will
update the relevant fields on the Users database table. For example, if the
result of the customized verifications is not SECURITYSTATUS.LOGIN
the number of login failures is increased by 1, and if the break-in threshold
is reached, the account will be disabled. Alternatively, if the result is SE-
CURITYSTATUS.LOGIN, the login failures are reset to 0 and the last suc-
cessful login field is updated.

Note

When identity-only authentication is enabled the fields of the Users
database table are not updated, irrespective of the result of the cus-

Cúram Security Guide

36

tom verification.

9.3.1 Configuring the Custom Authenticator

To configure the application to use this custom extension, the property
curam.custom.authentication.implementation in the Ap-
plication.prx must be set to the fully qualified name of the class im-
plementing the CustomAuthenticator interface.

The Cúram Configuration Settings chapter in the Cúram Server Developer's
Guide should be consulted for further details on the Application.prx
file.

9.4 Configuring Identity Only Authentication

To configure identity-only authentication the
curam.security.check.identity.only property should be set to
true in the AppServer.properties file before running the configure
target. It is also possible to set this property once the application is deployed
through the application server console. For more information on configuring
the application server the Cúram Server Deployment Guides for the applica-
tion server being used should be consulted.

9.5 Adding the Cache Refresh Failure Callback Inter-
face

The new callback class must implement the interface:
curam.util.security.SecurityCacheFailureCallback in a
class that has a public default constructor. The implementation of the
callback is registered by setting the application property
curam.security.cache.failure.callback to the name of the
implementation class. If the property is not set, no attempt is made to invoke
a callback handler.

9.6 Turning Off SSL Settings for the Application

SSL is on by default for access to the IBM Cúram Social Program Manage-
ment application. This ensures a secure SSL connection between the client
and server and also ensures data is encrypted. SSL can be turned on and off
for the client through settings in the web.xml file for the web client applic-
ation, and at the application server level by settings in WebLogic Server and
WebSphere. These settings for the application servers are configured via the
configuration scripts. It is recommended to leave SSL on for access to the
application, however depending on specific project configurations, there
may be a need to turn SSL off for the application. The following sections
detail how to do this.

Cúram Security Guide

37

9.6.1 Modifying the web.xml File for the Client Application

This can be modified by changing the <transport-guarantee> from CON-
FIDENTIAL to NONE in the web.xml file. Note, this does not disable ac-
cess to the web client over HTTPS, but enables additional access via HTTP.
For further details on modifying the web.xml file, the section on Custom-
izing the Web Application Descriptor in the Cúram Web Client Reference
Manual should be referenced. An example of setting this property is below:

<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

9.6.2 Modifying the Application Server Configuration

Modifying the configuration for WebSphere can be done in one of two
ways. The first approach below being the recommended approach.

• Use the existing non-secure port, setup by default for Web Services
(recommended approach). This caters for both SSL and non-SSL con-
nections.

1. Navigate to Environment -> Virtual Hosts -> client_host->Host ali-
ases

2. Click New and enter * for host name and 9082 for port number,
then click OK

3. On the next page click Save to store your new value to the server
configuration. Please note that the port 9082 corresponds to the
CuramWebServicesChain configured in the default client ap-
plication and this port is now the port that can be used to access the
application using HTTP

• Reuse the current SSL port of 9044 :

The current port can be set up as a non-secure port. The steps to do this
are described in the Cúram Deployment Guide for WebSphere Applica-
tion Server - Section A.2.11 Server Configuration - Set up port access.
Follow Steps 7 to 11 inclusive. The only difference for Step 11, is that
that the Transport Chain Template should be set to 'WebContainer' (and
not WebContainer Secure).

Cúram Security Guide

38

Chapter 10

Customizing Authorization

10.1 Overview

This chapter details how to set up authorization for users.

10.1.1 Creating Authorization Data Mapping

The authorization data for a user can be set up through the use of the Data
Manager (DMX files) or through the Cúram Administration screens. The
Cúram System Configuration Guide should be consulted for details on
identifying how to group security from a business perspective.

To create a new security role for a user, the security identifiers (SIDs) that
the user must have access to, need to be identified. These SIDs should then
be organized into groups of SIDs. The role, groups and SIDs, once identi-
fied, need to be set up on the security tables that these represent.

Security data is considered essential for the set up of a IBM Cúram Social
Program Management application. As such, the examples below describe
adding security data to the data/initial directory within the compon-
ent.

Creating a New Security Role

To create a new security role, a new entry must be added to the SecurityR-
ole database table, setting the rolename attribute.

To do this, create/add to the SecurityRole.dmx file in the
%SERVER_DIR%/components/<custom>/data/initial, where
<custom> is any new directory created under components that conforms
to the same directory structure as components/core.

Creating a New Security Group

39

To create a new security group, a new entry must be added to the Security-
Group database table setting the groupname attribute.

To do this, create/add to the SecurityGroup.dmx file in the
%SERVER_DIR%/components/<custom>/data/initial, where
<custom> is any new directory created under components that conforms
to the same directory structure as components/core.

Linking the Security Group to the Security Role

The security role must be linked to the security group. To do this, create a
new entry in the SecurityRoleGroup table, setting the rolename and
groupname attributes.

To do this, create/add to the SecurityRoleGroup.dmx file in the
%SERVER_DIR%/components/<custom>/data/initial, where
<custom> is any new directory created under components that conforms
to the same directory structure as components/core.

Creating the Security Identifier (SID)

The create a new SID, an entry must be added to the SecurityIdentifier table,
setting the sidname and sidtype attributes.

To do this, create/add to the SecurityIdentifier.dmx file in the
%SERVER_DIR%/components/<custom>/data/initial, where
<custom> is any new directory created under components that conforms
to the same directory structure as components/core.

Linking the Security Group to the SID

To link the security group with the SID, an entry must be added to the Se-
curityGroupSID table, setting the groupname and sidname attributes.

To do this, create/add to the SecurityGroupSID.dmx file in the
%SERVER_DIR%/components/<custom>/data/initial, where
<custom> is any new directory created under components that conforms
to the same directory structure as components/core.

Linking the Security Role to the User

To associate authorization data to a user, the security role must be linked to
the user.

To do this, update the entry for the specified user in the Users.dmx file
located in the
%SERVER_DIR%/components/<custom>/data/initial, where
<custom> is any new directory created under components that conforms
to the same directory structure as components/core, setting the role-
name attribute to be the rolename as specified on the SecurityRole table.

Loading Security Information onto the Database

Cúram Security Guide

40

Once all of the information has been entered in the various DMX files, the
Data Manager should be used to load the DMX data onto the database. The
Data Manager chapter in the Cúram Server Developer's Guide should be
consulted for further details.

10.1.2 Creating Function Identifiers (FIDs)

When a method is made publicly accessible; by setting the stereotype to be
<<facade>>, security is automatically switched on. This means a SID is
automatically generated for that method and the security enabled flag for the
method is set to true. The SID and its fidenabled flag are stored in the
database-independent <ProjectName>_Fids.xml file located in the /
build/svr/gen/ddl subdirectory. This file is used to insert the FID in-
formation onto the database via the Data Manager.

A FID follows the naming convention of
<classname>.<methodname>, and the maximum length of a FID is
100 characters. For example, for a BPO called ProductEligibility,
with two methods called insertProduct and testProduct, two FIDs
are created: ProductEligibility.insertProduct and Produc-
tEligibility.testProduct.

If security for a process method is switched off at design time in the model,
a SID/FID is still generated but the security enabled flag is set to false.
Setting the security enabled flag to false means that no authorization
check is performed for this method.

10.1.3 Switching Security off for a Process Method

Setting the Generate_Security option on the process method to
false in the model switches off security for a process method.

If security for a process method is switched off at design time in the model,
a FID is still generated but the security enabled flag is set to false. Setting
the security enabled flag to false means that no authorization check is per-
formed for this method.

10.1.4 Security Considerations During Development

It is important to consider the effect of these design options when imple-
menting security during the development of a IBM Cúram Social Program
Management application. They are the first and last line of defense against
unauthorized access to application process functionality. Generally speak-
ing, security will be switched on for almost all process methods. Security
may be switched off for a process method that does not need security, e.g., a
login method that gets invoked when a user tries to login to an application.
As a user has not yet been authenticated or authorized, they need access to
this method in order to login, therefore switching off security for this meth-
od may be necessary.

Cúram Security Guide

41

During the initial design phase of an application the overhead of keeping the
security environment “in sync” with an evolving application can be tedious.
It is possible to disable the authorization check by setting the
curam.security.disable.authorisation property in the Ap-
plication.prx file.

Warning

The curam.security.disable.authorisation property
should only be turned on at design phase. This should never be set
to true in a production environment.

Finally, it should be noted that once the code and scripts have been gener-
ated from a working model, the information associated with a FID cannot be
changed. To change this information requires modifying the model, re-
generating and re-building the database.

10.2 Controlling the Logging of Authorization Failures
for the Client

By default, web client authorization failures are not recorded.

The curam.enable.logging.client.authcheck property con-
trols whether the authorization failures encountered by the web client are
logged or not. This property is false by default, meaning these failures
will not be logged. When set to true a log of these authorization failures is
stored on the database table AuthorisationLog. The Cúram Server De-
velopers Guide, Application.prx - Dynamic properties section should be
consulted for more information on this property.

10.3 Authorizing New SID Types

A server interface method is provided to enable authorization to be per-
formed directly. This method may be added to a class that manipulates data
on the conceptual element being secured by the new SID type.

curam.util.security.Authorisation.isSIDAuthorised()

A usage example of this method is below:

// The SID associated with the conceptual element
// to be secured.
String someSID = "someSID";

// Get the logged in username
String loggedUser =

curam.util.transaction.TransactionInfo.getProgramUser();

// Check if the user has access rights
if (curam.util.security.Authorisation.isSIDAuthorised(

someSID, loggedUser)) {
// Do something sensitive that this user has rights to do
...

} else {
// Throw an exception indicating the user doesn't have

Cúram Security Guide

42

// access to perform this action
AppException exception
= new AppException(MESSAGE.ERR_USER_NO_ACCESS);

throw exception;
}

Example 10.1 Example Usage of isSIDAuthorised()

10.4 Analyzing the AuthorisationLog Database Table

All authentication attempts (both success and failure) are instead logged in a
database table called the AuthenticationLog. The following are the rows of
interest on this table:

Field Meaning
timeEntered The timestamp of the entry in the log.

userName The username associated with the login at-
tempt.

loginFailures The number of login failures for this user since
their last successful login.

lastLogin The date and time of the last successful login.

loginStatus The status of the login attempt. This may be
one of:

• LOGIN: Successful login.

• ACCDISABLE: The account has been ex-
plicitly disabled.

• ACCEXPIRED: The password expiry date
has been reached.

• PWDEXPIRED: The number of days
which the user was given to change their
password has been exceeded.

• BADUSER: The user does not exist.

• AUTHONLY: This is used in the case of
identity only authentication and indicates
that only authorization verifications will be
performed.

• BADPWD: The specified password was in-
correct.

• BREAKIN: A specified number of incor-
rect passwords has been reached. The ac-
count is disabled.

• RESTRICTED: The user is not allowed ac-

Cúram Security Guide

43

Field Meaning

cess the system at this time.

• LOGEXPR: The number of login attempts
which the user was given to change their
password has been exceeded.

• AMBIGUOUS: The specified username is
ambiguous as it is a case insensitive duplic-
ate of another username.

Table 10.1 Contents of the Authentication Log

The LogAdmin API can be used to query the AuthenticationLog database
table. The Java documentation for this class should be referenced for further
details.

Cúram Security Guide

44

Chapter 11

Customizing External User Applications

11.1 Overview

As external users are processed differently to internal users, a separate IBM
Cúram Social Program Management web application is required specific-
ally for external users.

11.2 Creating an External User Application

A new web client application must be developed for external users. The
Cúram Web Client Reference Manual should be consulted for details on cre-
ating a new web client application.

11.3 Creating an External User Client Login Page

A new logon.jsp must be created for an external user application.The Social
Program Management Platform ships with a default login page, lo-
gon.jsp, located in the lib/curam/web/jsp directory of the CDEJ
(Client Development Environment for Java). This file should be copied to a
webclient/components/<custom component>/WebContent
folder in the web client application and modified as follows:

The table element should be extended to include a hidden input field
user_type:

<input type="hidden" name="user_type"
value="EXTERNAL"/>

Where EXTERNAL indicates the type of external user. This can be set to any
value, excluding INTERNAL.

11.4 Creating an External User Client Automatic Login

45

Page

Some external user client applications require no user authentication and
hence a username and password should not be requested. It is not possible to
disable authentication in IBM Cúram Social Program Management, so the
best way to achieve this requirement is to write an automatic login script.

The automatic login script takes a hard coded username and password and
provides that as the authentication information when requested. This means
that all users for such an application will always execute under the same
username. Use of such a script should be limited to true open access applic-
ations.

When implementing applications that have a need for an automatic login,
the implications for session management must be considered. Session man-
agement in IBM Cúram Social Program Management maintains a user's ses-
sion information to ensure when the user logs back in, the relevant session
information, i.e., their tabs and navigation opens to where they left off for
them. In the case of a user that has been automatically logged in, this in-
formation must not be maintained, therefore session management may need
to be turned off in this scenario. The Cúram Web Client Reference Manual
should be referenced for further details on how to turn this off.

The following are examples of automatic login and logout JSP scripts.

Note

Security implementations and configurations differ across applica-
tion server vendors so these examples may not work in all cases or
for all application server versions.

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:prefix="URI"
version="2.0">
<jsp:directive.page buffer="32kb"

contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" />

<jsp:text>
<![CDATA[
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>

</jsp:text>

<!-- Automatic redirect to login security check of user
details specified below -->

<html>
<head>
<script type="text/javascript">

function autoSubmit() {
document.getElementById("loginform").submit();

}
</script>
<meta content="text/html; charset=UTF-8"

http-equiv="Content-Type" />
</head>
<body class="logonBody"

style="visibility: hidden;"

Cúram Security Guide

46

onload="autoSubmit()">
<form id="loginform"

name="loginform"
action="j_security_check"
method="post">

<input type="hidden"
name="j_username"
value="generalpublic" />

<input type="hidden"
name="j_password"
value="password" />

<input type="hidden"
name="user_type"
value="EXTERNAL" />

</form>
</body>

</html>
</jsp:root>

Example 11.1 Automatic Login JSP

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:prefix="URI"
version="2.0">
<jsp:directive.page buffer="32kb"

contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" />

<jsp:text>
<![CDATA[
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">]]>

</jsp:text>
<html>

<head>
<script type="text/javascript">

function autoSubmit() {
document.getElementById("logout").submit();

}
</script>
<meta content="text/html; charset=UTF-8"

http-equiv="Content-Type" />
</head>
<body class="logoutBody"

style="visibility: hidden;"
onload="autoSubmit()">

<form id="logout"
name="logout"
action="servlet/ApplicationController"
method="post">

<input type="submit"
name="j_logout"
value="Log Out" />

<input type="hidden"
name="logoutExitPage"
value="redirect.jsp" />

</form>
</body>

</html>
</jsp:root>

Example 11.2 Automatic Logout JSP

11.5 Implementing the External Access Security Inter-
face

Cúram Security Guide

47

To “hook” the custom solution into the application the
curam.util.security.ExternalAccessSecurity interface
must be implemented. The implementation of this interface is used during
the authentication and authorization process to determine required informa-
tion relating to the external user. This interface and its methods are de-
scribed in detail below.

11.5.1 Authenticating an External User

The authenticateUser() method is responsible for authenticating an
external user. It is invoked during the authentication process if the user is
identifier as an external user. In the case of external users this method is in-
voked in place of the configured authentication.

Note

If an alternative authentication mechanism, e.g. LDAP, is con-
figured, the external users must be able to authenticate against this
mechanism.

/**
* The implementation of this method should validate the
* identifier and password and return the result of the
* validation. If the information is valid, the codetable
* code SECURITYSTATUS.LOGIN should be returned.
*
* @param identifier The identifier of the external user.
* @param password The encrypted password.
* @param userType The type of external user.
*
* @return The status of the authentication in the form of a
* codetable code.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
String authenticateUser(String identifier,
String password, String userType)

throws AppException, InformationalException;

The input parameters to the method include an identifier, the encrypted
password and the type of external user to be authenticated. The password is
encrypted by a one way hashing algorithm before this method is invoked, so
the stored database password must be encrypted in the same fashion before
comparing the values. The
curam.util.security.EncryptionAdmin.encryptPassword
() method is used to encrypt these user passwords.

The user type parameter is intended to allow for support of multiple types of
external users that require different authentication mechanisms. The use of
this parameter depends on the custom implementation.

The expected result of this method will be an entry from the
curam.util.codetable.SECURITYSTATUS codetable. In the case
of successful authentication the result must be:

Cúram Security Guide

48

curam.util.codetable.SECURITYSTATUS.LOGIN

For authentication failures this codetable contains a number of entries, in-
cluding BADUSER, BADPWD and PWDEXPIRED. This codetable can be ex-
tended to include custom codes as detailed in Section 10.3.2. Customizing a
Code Table File in the Cúram Server Developers Guide.

The authentication result returned by this method is automatically logged in
the AuthenticationLog database table. For more information on this
table see the Cúram Server Developers Guide.

11.5.2 Determine External User Details

Details for an external user are retrieved by calling the getLoginDe-
tails() method. These details are returned directly after authentication to
direct the external user to the correct application homepage.

/**
* The implementation of this method should retrieve the
* details of the user required to redirect them to the correct
* application page. This information includes the name of the
* application home page for the user, the default locale for
* the user and a list of warnings/messages for the user.
*
* @param identifier The identifier of the external user.
*
* @return The user details, including the application
* home page.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
UserLoginDetails getLoginDetails(String identifier)

throws AppException, InformationalException;

An instance of the curam.util.security.UserLoginDetails
class must be created and returned from this method. The following inform-
ation should be returned using this class:

• UserLoginDetails.setApplicationCode(String code)

The code corresponding to the application homepage for the external
user.

This must be a valid entry in the APPLICATION_CODE codetable.

• UserLoginDetails.setDefaultLocale(String default-
Locale)

The default locale for the external user.

This is the locale the application will be displayed in by default for the
external user.

• UserLoginDetails.addInformation-
als(InformationalManager informationalManager)

Any informationals that must be displayed to the external user.

Cúram Security Guide

49

The curam.util.exception.InformationalManager class
can be used to create a number of informational or warning messages
that will be displayed when the external user logs in. For example, a
warning to let the external user know that their password is due to ex-
pire.

11.5.3 Authorizing an External User

The getSecurityRole() method is used during authorization to de-
termine the security role associated with the external user. The security roles
used for external users are configured in the same way as the security roles
for internal users.

/**
* The implementation of this method should return the security
* role associated with the external user for authorization
* purposes. If the user does not exist null should be
* returned.
*
* @param identifier The identifier of the external user.
*
* @return The security role for authorization.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
String getSecurityRole(String identifier)

throws AppException, InformationalException;

The SDEJ will invoke an implementation of this method during the author-
ization process if the user does not exist in the security cache. Only internal
users can exist in the security cache. This means that the identifiers used to
identify external users must be unique and not conflict with usernames setup
for internal users, unless the custom UserScope interface as described in
Section 6.3, User Scope, is implemented. Otherwise, if any usernames con-
flict the access rights assigned to the internal user will also be used for the
external user.

If a role cannot be determined for the external user, null must be returned so
that the SDEJ can report the authorization error correctly.

11.5.4 Determining the User Type

The getUserType() method is used to determine if a user is an external
user.

/**
* Return the type of the user. This is to allow support for
* different types of external user. If there is only one
* type of external user, simply return "EXTERNAL".
*
* @param identifier The identifier of the external user.
*
* @return The type of the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.

Cúram Security Guide

50

*/
String getUserType(final String identifier)

throws AppException, InformationalException;

The getProgramUserType() in
curam.util.transaction.TransactionInfo will invoke this
method to return the type of user if the user is not recognized as an internal
user. For internal users “INTERNAL” is always returned.

For external users, there may be multiple types of external users, so this
method should return the specific type of external user.

11.5.5 Preventing the Deletion of a Security Role: Role Usage
Count

The getRoleUsageCount() method is used to prevent the deletion of a
security role that is currently referenced by an external user.

/**
* Return the number of users using a particular role. This
* method is used to ensure that a role cannot be deleted when
* it is in use by an external user.
*
* @param role The security role name.
*
* @return The number of users currently using the
* specified role.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
int getRoleUsageCount(String role)

throws AppException, InformationalException;

Security roles that are referenced by any user, internal or external, cannot be
removed. This method should return a number of 1 or more if any external
users reference the specified role.

11.5.6 Retrieving a Registered Username

The getRegisteredUserName() method is used retrieve the correct
case username, which may be independent of the username typed during lo-
gin.

/**
* Gets the correct casing for this user independent of mixed
* case which may have been typed in by the logged in user.
*
* @param identifier The identifier of the external user,
* whose casing may not match that of the persisted identifier
* for the user.
*
* @return The actual case for this user, before its case has
* been modified by external factors.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
public String getRegisteredUserName(final String identifier)

Cúram Security Guide

51

throws AppException, InformationalException;

The default implementation for this method should return the username that
has been provided. It is only if the
curam.security.casesensitive has been set to false that this
method may need to change the case of the username returned.

Note

Where the curam.security.casesensitive property has
been set to false and is required for external users, it is the respons-
ibility of all methods in this interface to handle any case specific re-
quirements.

11.5.7 Reading User Preferences

The getUserPreferenceSetID()method is used to retrieve the user
preference set ID associated with an external user. If no user preferences ex-
ist for an external user, then the default preferences will be used for the ex-
ternal user. The User Preferences chapter in the Cúram Server Developer's
Guide should be referenced for further details on user preferences.

/**
* This method is used to retrieve a set of user preferences
* associated with an external user. The userPrefSetID is a
* foreign key to the UserPreferenceInfo table.
* The UserPreferenceInfo table contains information on
* the user preferences.
*
* @param identifier The identifier of the external user.
*
* @return The userPrefSetID for the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
String getUserPreferenceSetID(final String identifier)

throws AppException, InformationalException;

The default implementation for this method should return the user prefer-
ence set ID for the user preferences associated with an external user.

11.5.8 Modifying User Preferences

The modifyUserPreferenceSetID()method is used to update the
external user details with a new set of user preferences. Please see User
Preferences for further details on user preferences.

/**
* This method updates the external user details with new user
* preferences.
*
* @param userPreferenceSetID The ID for the user preferences.
* @param username The identifier of the external user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/

Cúram Security Guide

52

void modifyUserPreferenceSetID(
final String userPreferenceSetID, final String username)

throws AppException, InformationalException;

The default implementation for this method should update the user prefer-
ence set id associated with an external user.

11.5.9 Configuring External Access Security

The curam.custom.externalaccess.implementation property
must be set in the Application.prx to indicate the fully qualified name
of the class which implements the above interface.

Note

The curam.custom.externalaccess.implementation
property is not dynamic, and if changed the application must be re-
started before the change will take effect.

11.6 Determining if a User is Internal or External us-
ing the UserScope Interface

To support alternative methods for determining if a user is internal or ex-
ternal the custom interface, UserScope, is available. For example, this
custom interface could be implemented to determine user type based on ad-
ditional information, and remove the requirement for unique names between
external and internal users.

To provide a custom implementation for determining the type of user, the
curam.util.security.UserScope interface must be implemented.
This interface has one method isUserExternal()that determines the
type of user. This method should return true if the user is considered extern-
al or false indicating the user is internal.

To specify the custom implementation to use the
curam.custom.userscope.implementation property must be set
in the Application.prx. This should be set to the fully qualified name
of the class that implements the UserScope interface.

Note

The curam.custom.userscope.implementation prop-
erty is not dynamic, and if changed the application must be restarted
before the change will take effect.

The isUserExternal() method of the UserScope interface is detailed below:

11.6.1 User Type Determination

The isUserExternal() method is invoked anywhere in the application
where the type of user is to be determined. This includes when the user logs

Cúram Security Guide

53

into the application and when they attempt authorization to access secured
elements of IBM Cúram Social Program Management.

/**
* The implementation of this method should determine the type of
* User that is logged into the application. There are 2 types of
* users: INTERNAL and EXTERNAL. If the user is an EXTERNAL user,
* then this method should return true. If false is returned,
* then the user is considered INTERNAL.
*
* @param username - The username.
* @return A boolean value of true indicating an EXTERNAL user,
* false indicates an INTERNAL user.
*
* @throws AppException Generic Exception Signature.
* @throws InformationalException Generic Exception Signature.
*/
boolean isUserExternal(String username)

throws AppException, InformationalException;

Cúram Security Guide

54

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

55

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Security Guide

56

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Security Guide

57

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Oracle, WebLogic Server, Java and all Java-based trademarks and
logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Security Guide

58

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Security Guide
	Table of Contents
	Chapter 1 Cúram Security
	1.1 Purpose
	1.2 Audience
	1.3 Overview
	1.4 Chapters in this Guide

	Chapter 2 Authentication
	2.1 Overview
	2.2 Authentication
	2.3 Authentication Architecture
	2.4 Default Authentication
	2.5 The Login Page
	2.5.1 Customization of the Login Page

	2.6 Cúram JAAS Login Module
	2.6.1 Password Encryption
	2.6.2 Default Configuration for WebLogic Server
	2.6.3 Default Configuration for WebSphere
	2.6.4 Customization of the JAAS Login Module

	2.7 Verification Process for Authentication
	2.7.1 Default Authentication
	Default Verification Process
	Authentication Attempts
	Customization of Default Authentication

	2.7.2 Identity Only Authentication
	Customization of Identity Only Authentication

	2.7.3 External Access Security Authentication
	2.7.4 Custom Verifications

	Chapter 3 Authorization
	3.1 Overview
	3.2 Users, Roles and Groups
	3.3 Security Identifiers (SIDs)
	3.3.1 Function Identifiers (FIDs)
	3.3.2 Field Level Security Identifiers

	3.4 User Defined SIDs
	3.5 Runtime Authorization
	3.5.1 Client Authorization Checks
	3.5.2 Server Authorization Checks

	Chapter 4 Security Data Caching
	4.1 Overview
	4.2 Cúram Security Cache
	4.2.1 Cache Refresh
	Cache Refresh Failure

	4.3 WebSphere Caching Behavior

	Chapter 5 Security for Alternative Clients
	5.1 Overview
	5.1.1 Mandatory Cúram Users
	5.1.2 Web Services
	5.1.3 Batch Processing
	5.1.4 JMS Messaging
	5.1.5 Deferred Processing

	Chapter 6 External User Applications
	6.1 Overview
	6.2 External User Applications
	6.3 User Scope
	6.4 Deployment of an External Application

	Chapter 7 Using Single Sign On
	7.1 Overview
	7.2 Single Sign On with WebSphere
	7.3 Single Sign On for WebLogic Server

	Chapter 8 Other Security Considerations
	8.1 Overview
	8.2 SSL Settings for the Application

	Chapter 9 Customizing Authentication
	9.1 Customizing the Login Page
	9.1.1 Applying Styling to the Login Page
	9.1.2 Enabling Usernames With Extended Characters for WebLogic Server

	9.2 Changing the Case-Sensitivity of the Username
	9.3 Adding Custom Verifications to the Authentication Process
	9.3.1 Configuring the Custom Authenticator

	9.4 Configuring Identity Only Authentication
	9.5 Adding the Cache Refresh Failure Callback Interface
	9.6 Turning Off SSL Settings for the Application
	9.6.1 Modifying the web.xml File for the Client Application
	9.6.2 Modifying the Application Server Configuration

	Chapter 10 Customizing Authorization
	10.1 Overview
	10.1.1 Creating Authorization Data Mapping
	Creating a New Security Role
	Creating a New Security Group
	Linking the Security Group to the Security Role
	Creating the Security Identifier (SID)
	Linking the Security Group to the SID
	Linking the Security Role to the User
	Loading Security Information onto the Database

	10.1.2 Creating Function Identifiers (FIDs)
	10.1.3 Switching Security off for a Process Method
	10.1.4 Security Considerations During Development

	10.2 Controlling the Logging of Authorization Failures for the Client
	10.3 Authorizing New SID Types
	10.4 Analyzing the AuthorisationLog Database Table

	Chapter 11 Customizing External User Applications
	11.1 Overview
	11.2 Creating an External User Application
	11.3 Creating an External User Client Login Page
	11.4 Creating an External User Client Automatic Login Page
	11.5 Implementing the External Access Security Interface
	11.5.1 Authenticating an External User
	11.5.2 Determine External User Details
	11.5.3 Authorizing an External User
	11.5.4 Determining the User Type
	11.5.5 Preventing the Deletion of a Security Role: Role Usage Count
	11.5.6 Retrieving a Registered Username
	11.5.7 Reading User Preferences
	11.5.8 Modifying User Preferences
	11.5.9 Configuring External Access Security

	11.6 Determining if a User is Internal or External using the UserScope Interface
	11.6.1 User Type Determination

	Notices
	Trademarks

