
IBM Cúram Social Program Management

Working with the Cúram Model in Rational
Software Architect

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Audience .. 1
1.3 Prerequisites ... 1
1.4 Chapters in this Guide .. 2

Chapter 2 The Rational Software Architect Workbench ... 3
2.1 Introduction .. 3
2.2 Integrating the Cúram Model into Rational Software Architect 3
2.3 The Modeling Perspective ... 4

2.3.1 Project Explorer View ... 4
2.3.2 The Properties View ... 4
2.3.3 The Diagram Editor .. 5
2.3.4 The Model Editor .. 5

2.4 Working with the Model .. 6
2.4.1 Creating a Model ... 6
2.4.2 Opening a Model ... 7
2.4.3 Closing a Model .. 7
2.4.4 Navigating the Model ... 7

2.5 Working with Model Elements .. 8
2.5.1 Viewing an Element .. 8
2.5.2 Adding an Element to the Model .. 8
2.5.3 Modifying an Element .. 9
2.5.4 Creating a Relationship between Elements ... 9
2.5.5 Removing an Element from a Model .. 10
2.5.6 Copying and Pasting ... 10
2.5.7 Attribute Order .. 11

2.6 Searching in Rational Software Architect .. 11
2.6.1 Searching the Model ... 11
2.6.2 Searching for References to an Element ... 12
2.6.3 Searching for Elements using the Type Browser .. 12

2.7 Specialized Tabs and Wizards ... 12
2.7.1 Foreign Key Tab ... 12
2.7.2 Secure Field Tab ... 13
2.7.3 Manage Operation Parameters Wizard ... 13
2.7.4 Operation Wizard .. 13

iii

2.7.5 Entity Operation Wizard ... 14
2.7.6 Domain Definition Wizard ... 14

2.8 Working with Class Diagrams ... 14
2.9 Working with Fragments ... 14

2.9.1 Creating a Fragment .. 15
2.9.2 Absorbing a Fragment ... 15

2.10 Validating a Model .. 16

Chapter 3 Using Rational Software Architect with the Cúram Model 17
3.1 Introduction .. 17
3.2 Working with Domain Definitions .. 17

3.2.1 Creating a Domain Definition ... 18
3.2.2 Renaming a Domain Definition .. 18
3.2.3 Modifying a Domain Definition ... 19

3.3 Working with Entities .. 19
3.3.1 Creating an Entity ... 19
3.3.2 Adding an Attribute to an Entity ... 19
3.3.3 Adding an Operation to an Entity ... 20
3.3.4 Adding a Return Type to an Entity Operation .. 20
3.3.5 Adding an 'ns' Operation to an Entity ... 20

3.4 Working with Structs ... 21
3.4.1 Creating a Struct ... 21
3.4.2 Adding Attribute to a Struct .. 21

3.5 Working with Aggregations ... 21
3.5.1 Creating an Aggregate Relationship ... 21

3.6 Working with Process Classes ... 22
3.6.1 Creating a Business Process Class .. 22
3.6.2 Adding Operations to a Process Class .. 22
3.6.3 Adding an Argument to a Process Operation ... 23
3.6.4 Adding a Return Type to a Process Operation .. 23

3.7 Working with Facade Classes .. 23
3.7.1 Creating a Facade Class .. 23
3.7.2 Adding Operations to a Facade Class ... 23
3.7.3 Adding Arguments and a Return Type to Facade Operations 24

Appendix A How Rational Software Architect differs from Rational Rose 25
A.1 Introduction ... 25
A.2 Shadow Classes ... 25

A.2.1 Specifying a Shadow Type for a Parameter or Operation Return Type 25
A.2.2 Adding an Relationship between a Shadow Class and a Class in the Model 26

A.3 Server Components ... 26
A.4 Modeling Facade Classes .. 26
A.5 Generating Function Identifiers for Model Classes .. 27
A.6 Modeling Web Service Classes ... 27
A.7 Assignable Relationship Field Mappings ... 27
A.8 Class Abstract Options .. 27
A.9 RDO Description Stereotype .. 28

Appendix B Right Click Context Menu Options in the Project Explorer View 29
B.1 Introduction ... 29

Working with the Cúram Model in Rational Software Architect

iv

B.2 Child Options for Class Types .. 29
B.3 Other Options .. 30

Appendix C Broken Reference Resolution .. 31
C.1 Broken Reference Resolution .. 31

C.1.1 Background .. 31
C.1.2 Rational Software Architect changes in References 31
C.1.3 Extension to Broken Reference Resolution ... 32
C.1.4 Resource Reference Resolution Process .. 32

Notices ... 34

Working with the Cúram Model in Rational Software Architect

v

Chapter 1

Introduction

1.1 Purpose

The purpose of this guide is to detail how IBM® Rational® Software Archi-
tect is used to work with the IBM® Cúram Social Program Management
UML model. Rational Software Architect primarily as a tool for UML mod-
eling, analysis, and design. A key reason that Rational Software Architect is
used for these functions is because of its support for domain specific lan-
guages and Eclipse extensibility, which enables the use of a powerful and
intuitive user interface.

Although Rational Software Architect is used for UML analysis and design,
a discussion of these topics falls outside the scope of this document which
focuses on specific tasks that can be performed with the Cúram model in
Rational Software Architect.

1.2 Audience

This guide is intended for any reader who will be using Rational Software
Architect to perform common modeling tasks on the Cúram UML model.

1.3 Prerequisites

Readers should have a good working knowledge of UML, Java®, and Ec-
lipse.

Note

Rational Software ArchitectRational Software Architect is third-
party software. Please refer to the Cúram Supported Prerequisites
document for more information on the supported versions of third
party tools.

1

The Cúram Modeling Reference Guide should be consulted as reference for
further information on the IBM Cúram Social Program Management model-
ing elements.

1.4 Chapters in this Guide

The following list describes the chapters within this guide:

The Rational Software Architect Workbench
This chapter describes the Rational Software Architect workbench and
the various views that make up the workbench. It also covers Rational
Software Architect basics including creating, opening and closing a
model, basic tasks for model elements, and creating and absorbing mod-
el fragments.

Using Rational Software Architect with the Cúram model
This chapter describes in detail specific Cúram model elements and how
they are manipulated in Rational Software Architect.

How Rational Software Architect Differs from IBM® Rational Rose®
This appendix compares and contrasts the differences between model-
ing in Rational Rose and Rational Software Architect.

Right Click Context Menu Options for Model Elements
This appendix describes what can be added from the right click context
menu for each model class in the Rational Software Architect project
explorer window.

Working with the Cúram Model in Rational Software Architect

2

Chapter 2

The Rational Software Architect Workbench

2.1 Introduction

This chapter details the main parts of the Rational Software Architect work-
bench that you will use when working with the IBM Cúram Social Program
Management model. In Rational Software Architect, a perspective is a par-
ticular layout of views, an editor and tool bars. Here the Rational Software
Architect modeling perspective is described. This perspective allows you to
view, create, and maintain elements of the Cúram model.

The most common tasks that are performed in Rational Software Architect
are also detailed in this chapter. These include:

• Creating, opening, and closing a model

• Basic maintenance tasks common to all model elements

• Working with model fragments

• Searching in the model

Note

Rational Software Architect can be used as a modeling tool or as a
plug-in for Eclipse. For the purposes of this guide, the focus will be
on using the Rational Software Architect standalone tool.

2.2 Integrating the Cúram Model into Rational Soft-
ware Architect

The Cúram model uses a small subset of the range of functionality provided
by Rational Software Architect. In order to simplify the use of Rational Soft-
ware Architect for the Cúram model, a number of techniques are used to
tailor the tool to the Cúram model.

3

A Cúram profile is provided for working with the Cúram model. The Cúram
profile defines what UML stereotyped elements and values can be defined
within the Cúram model.

When you create a model in Rational Software Architect, the Cúram model
template is used. This combines the Cúram profile with a filtering capability
to remove unnecessary or unsupported functionality from menus and op-
tions in the Rational Software Architect workbench. The Cúram model tem-
plate is automatically used when you open an existing Cúram model. You
should always select it when creating a new model.

Note

Some options which are not supported in the Cúram model cannot
be hidden from the user. If the user performs an unsupported action,
a validation message is displayed and the action is reversed. For
more information on this please refer to Section 2.5.3, Modifying an
Element.

2.3 The Modeling Perspective

The Rational Software Architect Modeling Perspective is used for UML
modeling and consists of four main views: the Project Explorer view, the
Properties view, the Diagram Editor view, and the Model Editor view.

View Description
Project Explorer Allows you to see all the related parts of the

Cúram model in a navigable tree structure

Properties Allows you to view and maintain information
about a selected model element.

Diagram Editor Allows you to create, view, and edit model dia-
grams using the custom Cúram palette.

Model Editor Allows you to view and edit a model's configura-
tion in a tabbed view.

Table 2.1 Modeling Views

2.3.1 Project Explorer View

The Project Explorer view allows you to view all the related model ele-
ments, diagrams, and children of a selected model element. The right-click
context menu in this view provides a range of options that can be performed
for the selected element.

2.3.2 The Properties View

The Properties view allows you to view and edit the properties for the selec-
ted model element. It allows you to configure general and stereotype proper-

Working with the Cúram Model in Rational Software Architect

4

ties for an element, set element relationships, manage element documenta-
tion, etc.

The tabs in the Properties view used for Cúram model development are the
General tab, and the Documentation tab, and the Cúram tab. These are de-
scribed in the table below.

Tab Description
General The General tab allows you to maintain the base

UML configuration of an element in a model,
e.g., name, visibility, etc.

Documentation The Documentation tab allows you to create,
view, and edit documentation relevant to a specif-
ic element.

Cúram The Cúram tab holds the properties that are relev-
ant to a stereotyped element in the Cúram do-
main. These properties are specific to the Cúram
model and are used to enhance the configuration
of an element.

Table 2.2 Description of tabs in the Properties view used in
Cúram Modeling

2.3.3 The Diagram Editor

The Diagram Editor is used to create, view, and edit diagrams. It is split into
two areas, a Diagram view and a Palette. The Palette contains a Cúram
"drawer" which contains a number of the most commonly used Cúram mod-
el elements for dragging and dropping into the Diagram Editor. The Dia-
gram view is where you can view and modify a model element in relation to
other elements. A right-click context menu is also available for the addition
of model classes in the Diagram Editor.

2.3.4 The Model Editor

The Model Editor allows you to view and edit information related to a mod-
el or sub-unit fragment. To open a model in the model editor right-click on
the model in the project explorer, select Open With, and then Model Editor.

The Cúram Profile can be viewed in the Details tab of the Model Editor.
The profiles and model libraries that are used for working with the Cúram
model are pre-configured for the Cúram model. In general, you should not
need to alter the profiles and/or model libraries supplied with the Cúram
model.

There are 5 tabs in the Model Editor view: Overview, Details, Diagrams,
References, Fragments. These are described below.

Working with the Cúram Model in Rational Software Architect

5

Tab Description
Overview The Overview tab contains general information

related to the selected model. You can also edit
documentary information related to the model
here.

Details The Details tab allows you to maintain the pro-
files and model libraries that are applied to the
model you are currently viewing.

Diagrams The Diagrams tab allows you to view a list of
available diagrams for the selected model.

References The References tab provides a list of other models
and profiles from the workspace referenced by the
selected model. It also provides a list of other
models from the workspace that reference the se-
lected model.

Fragments The physical resources associated with the model
elements are called fragments and are essentially
separate files. The ability to divide a model into
fragments is particularly useful in large develop-
ment projects. This is done by extracting pack-
ages into physical sub-units, or fragments. The
physical location of the model elements are trans-
parent, and the fragments remain a logical part of
the original model.

The Fragments tab contains a list of fragments
that are included in the model. You can choose to
search for and absorb fragments into the contain-
ing model from this list. For more information on
absorbing fragments, please see Section 2.9.2,
Absorbing a Fragment.

Table 2.3 Description of Tabs in the Model Editor

2.4 Working with the Model

This sections below describe how to create, open, close, and navigate a
model in Rational Software Architect.

2.4.1 Creating a Model

Rational Software Architect provides the Create Model Wizard to assist you
in creating new models from stored templates. A Cúram template is
provided in the Cúram plugin for Rational Software Architect. When using
the template to create a new model, the model capabilities are set to what is
appropriate for that template. Using the Cúram model template to create

Working with the Cúram Model in Rational Software Architect

6

your model ensures that the menus and options are available while modeling
are those supported by the Cúram model.

There are two ways of invoking the Create Model Wizard in Rational Soft-
ware Architect:

• Right-click on the model directory and select Create Model.

• Select File from the topmost menu bar, New, and then UML Model.

To create a Cúram model in the Create Model Wizard:

1. Name the model and specify a location.

2. Select the Standard Template option.

3. Select Cúram in the Categories pane (check the ‘Show All Templates’
option to see the Cúram category).

4. Select Cúram model in the templates pane.

5. Select the model capabilities. By default, Cúram capabilities are selec-
ted. It is recommended that you use the default capabilities.

6. Select the referenced models, if there are any.

The '< Back' and 'Next >' buttons allow you step forward and backward
through the Create Model wizard steps. You can exit the Create Model wiz-
ard at any time by clicking on the Finish button. The model will be saved at
the point you exit the wizard.

2.4.2 Opening a Model

You can open a model in the Modeling perspective within Rational Soft-
ware Architect or Eclipse. The default settings for this perspective display
the Project Explorer view on the left-hand side. When a model exists in your
project, the Project Explorer contains two additional folders (Diagrams &
Models). Expanding these, and the model underneath, opens the Model at
that point.

Rational Software Architect uses a form of lazy loading whereby the full
model will not be opened initially and each portion is opened as it is navig-
ated to. Alternatively you if want to force a load of the full model you can
right-click on the top level model file and select Open All Sub-Fragments.

2.4.3 Closing a Model

To close a model, right-click on the model and select Close or Close All
from the right-click context menu.

2.4.4 Navigating the Model

To move through the packages and elements of a model, select the expand

Working with the Cúram Model in Rational Software Architect

7

'+' option for the package or element where children exist in the Project Ex-
plorer. If a package is not currently loaded, it will be loaded and the icon
will change. The package will be expanded to display the child elements.
Modeling elements can be added to the model in the Diagram Editor using
the Model Palette and the Cúram Drawer.

2.5 Working with Model Elements

The UML Model elements utilized by Cúram include Packages, Classes, At-
tributes, Operations, Parameters and Relationships.

• Packages are containers for classes.

• Classes define the Business Processes, Value and Rules Objects or Data-
base Schema e.g. Facade, WebService, RDO, Entity, etc.

• Attributes define fields on the value or rules objects or database entities.

• Operations represent the business or SQL functions on relevant to a par-
ent class.

• Parameters are the input or return arguments to a parent operation.

• Relationships define bonds between the various classes that make up the
application e.g. aggregation of structs, foreign keys between entities.

The sections below describe how to view elements, add elements to a mod-
el, modify elements, remove elements from a model, and create relation-
ships between classes.

2.5.1 Viewing an Element

To view an element, ensure that the Properties view is opened in the fore-
ground and select the element in the Project Explorer. The element will then
be opened in the Properties view and a number of tabs relevant to that ele-
ment will be available to maintain that element.

The right-click context menu in the Project Explorer allows you to access
functionality for that element as well as view information related to the ele-
ment.

Selecting to expand a modeling element in Project Explorer will load that
element's sub-fragments. The modeling element's icon will change in the
Project Explorer to mark that its sub-fragments have loaded.

2.5.2 Adding an Element to the Model

There are a two main ways to add an element to a model in Rational Soft-
ware Architect, using the Project Explorer right-click context menu or the
Diagram View and Palette. These are described below.

Working with the Cúram Model in Rational Software Architect

8

Using the Project Explorer

1. Right-click on the existing parent element in Project Explorer.

2. Select the relevant element type from the list of child element types of
your selected element.

Using the Diagram View

1. Open the diagram you wish to add the new element to in the Diagram
view.

2. Double click on the required element in the Cúram Palette, or right-
click in the Diagram view and select the element you wish to add from
the right-click context menu.

2.5.3 Modifying an Element

A model element's name can be modified from the right-click context menu
in the Project Explorer or the Diagram view. More extensive modification,
including an element's documentation, can be performed through the proper-
ties view and the tabs available there.

Element properties that are specific to Cúram are managed on the Cúram tab
in the Properties view. Depending on what is being modified some modific-
ations require two separate changes to be made, one on the Cúram tab and
one on another tab in the Properties view. For example, changing the return
type of an operation from an entity shadow class to a handcrafted struct re-
quires you to change both the return type on the General tab and the Shadow
Type on the Cúram tab. For more information on Shadow Types see Sec-
tion A.2, Shadow Classes. Similarly changing the primitive type for a do-
main definition from SVR_INT16 to SVR_STRING requires you to change
both the primitive type on the Attributes tab and add a Maximum_Size entry
on the Cúram tab.

Important

When you attempt to perform an action that is not supported by the
Cúram model, a validation will be displayed and the action will be
reversed. Due to a bug in Rational Software Architect, the view may
not be updated until refreshed for example; navigating to another
element and back to the element being updated. The use of the oper-
ations, attributes and parameters tabs to add elements is not cur-
rently supported for use with the Cúram model as these tabs do not
provide the correct Cúram stereotypes.

2.5.4 Creating a Relationship between Elements

To create a relationship between elements:

Working with the Cúram Model in Rational Software Architect

9

1. Select the element you wish to create a relationship with in the Project
Explorer.

2. In the Properties view, navigate to the Relationships tab.

3. Search for the other element for the relationship and select the source
or target.

4. Select the type of relationship you wish to create between the two ele-
ments.

5. The General Tab of the Relationship can then be used to specify a
name, multiplicity, etc.

Relationships can also be created in the Diagram view using connector
handles. To do this:

1. Hover over an element in a diagram.

2. Drag one of the available arrowheads onto another element in the dia-
gram to create a relationship. The two different arrowheads signify
whether the element being dragged from is the source or target of the
relationship.

3. The General Tab of the Relationship can then be used to specify a
name, multiplicity, etc.

2.5.5 Removing an Element from a Model

Model Elements can be deleted in the Project Explorer or Diagram Editor.
To delete an element in the Project Explorer, right-click the element and se-
lect Delete from Model. Elements can also be deleted in the same way in the
Diagram Editor.

In the Diagram view, you can choose to delete an element just from the dia-
gram, or from the complete model. Deleting an element from the model
means that the element will be unavailable to other parts of the model and
will be removed from the Project Explorer tree.

Important

References to other elements in Rational Software Architect are
maintained by an internal identifier system. Each element is given a
unique identifier on creation and references are made to this unique
identifier. This differs from Rational Rose where references could
be determined both by id and qualified name. It is therefore import-
ant to note that if a class is removed, recreating the class with the
same name is not sufficient to correct any broken references and the
broken reference resolution process will be required to reconnect
broken references.

2.5.6 Copying and Pasting

Working with the Cúram Model in Rational Software Architect

10

To save time and effort, you can use the Rational Software Architect Project
Explorer to copy and paste Classes, Operations and Attributes. Operations
and attributes can only be copied in the same class or between classes of the
same type. An example of how to copy and paste between classes is:

• Select the attribute(s) in the tree control of the Rational Software Archi-
tect Project Explorer.

• Right-click on the selected attribute(s) to be copied and choose 'Copy'
from the context menu.

• Then right-click on the class (of the same type) to receive the new attrib-
ute and choose 'Paste'.

You can use a similar technique for moving attributes via 'Cut' and 'Paste'.

Note

If you try to copy/paste across different class types you will receive
an error dialog indicating: "The requested action violates the integ-
rity of the model."

2.5.7 Attribute Order

Be aware that by default Rational Software Architect displays the order of
attributes alphabetically. Attribute ordering is significant for Entity and
Struct classes when they are used to define indexes as the DDL that's gener-
ated for index creation relies on this ordering. You can view the attribute or-
dering via the Attribute tab of the class. You can also change the default be-
havior of Rational Software Architect from its default ordering of 'Stereo-
typed Type then Alphabetically' to 'Storage Order' by selecting the Windows
menu and Preferences submenu. From the resulting dialog navigate to
Views, Modeling, and Project Explorer where you can use the Project Ex-
plorer settings, Sort By drop-down to change the ordering; click OK to save
your changes.

If you need to change the order of the attributes the Attributes tab provides
'Move up' and 'Move down' buttons as appropriate.

2.6 Searching in Rational Software Architect

The sections below describe how to search in a model, search for element
references in a model, and search for elements using the type browser.

2.6.1 Searching the Model

The Search option is a powerful text search tool that can be used to search
the model using a broad range of criteria. The Model Search functionality
can be used to see how an element is related to the rest of the model. To
search for an element in the model:

Working with the Cúram Model in Rational Software Architect

11

1. Select the Search option from the main menu bar and click on the Mod-
el Search tab.

2. Specify your search criteria. There are a range of search criteria that
can be specified that allow you to narrow your search.

3. Search results are displayed in a tab beside the Properties view. Double
clicking on a search result listing will cause the project explorer to
jump to that element.

2.6.2 Searching for References to an Element

You can search for references to an element. To do this:

1. Select the element you wish to search for references to.

2. From the right-click context menu, select the Modeling Refer-
ences option. You can choose to search for references in the enclos-
ing model, the enclosing package, the workspace, or you can define a
custom working set.

3. The results of your search will then be displayed in the Search
Results tab as seen below. Double clicking on a search result listing
will cause the project explorer to jump to that element.

2.6.3 Searching for Elements using the Type Browser

The Type Browser is used during the creation of an element that requires the
specification of a type or element reference. It is used to search for the type
of model element you wish to create, for example, the parent of a Domain,
the Return Type of an Operation, etc. When you open the Type Browser,
you can enter the name of the element to search for, or you can also browse
for the element directly in the model. The Modify Search Scope op-
tion will control the scope of the search. Searching is based on an index that
Rational Software Architect will maintain across sessions and does not re-
quire the complete model to be opened. Please note that the first search will
be longer due to the creation of this index.

2.7 Specialized Tabs and Wizards

Some specialized tabs and wizards are provided to support assisting fre-
quent tasks or management of specific complex content.

2.7.1 Foreign Key Tab

The Foreign Key tab offers a tab to allow for the definition and maintenance
of a foreign key's name and mappings. This tab is visible on the Properties
View of a Foreign Key relationship.

Working with the Cúram Model in Rational Software Architect

12

The Name field is used to manage the foreign key name and manipulates the
label entry on the General Tab.

The Table contains two columns; child and parent and these columns indic-
ate the direction of the foreign key and name the entities on either end of the
relationship. The table serves as a widget to edit the foreign key mappings
which are stored on the appropriate role fields on the General tab.

Rows on the table relate to the mappings in the foreign key where a entry in
the child column will be mapped to an entry in the parent column. The entry
in the row can be selected by utilizing a drop-down on the row which lists
the applicable attributes for that entity. Rows can be removed by setting the
drop-down to blank and can be re-ordered using the 'Move up' and 'Move
down' buttons on the right of the table.

2.7.2 Secure Field Tab

The Secure Field tab offers a tab to allow for the definition and maintenance
of a Facade class operation's Secure Fields. This tab is visible on the Proper-
ties View of a Facade owned operation.

The tab contains two columns; field name and Security Identifier (SID)
Name. The field name entries are computed from walking the available
fields for the return type of the operation. SID Names can be entered, edited
or deleted from the right column as required. This table serves as a widget to
edit the Secure_Fields property on the Curam tab.

2.7.3 Manage Operation Parameters Wizard

The Manage Operation Parameters Wizard is to create and maintain the
parameters and return type of an operation. The Parameters and Return
Type frames will be visible where the operation allows addition of such.

The Parameters Frame offers tabular listing of the parameters where para-
meters can be added, deleted or re-ordering using the buttons to the right of
the table. The table offers direct in-place editing for the name, type and
Shadow Type of the parameter. For more information on Shadow Types see
Section A.2, Shadow Classes.

The Return Type Frame offers the ability to select the type and manipulate
the Shadow Type of the return value.

2.7.4 Operation Wizard

The Operation wizard is to create operations. The parameters and return
type frames will be visible where the operation allows addition of such.

The wizard utilizes the same layout and functionality as the Manage Opera-
tion Parameters Wizard, with additionally providing a field to enter the
name of the operation.

Working with the Cúram Model in Rational Software Architect

13

2.7.5 Entity Operation Wizard

The Entity Operation Wizard is to create standard and non-standard data-
base operations where the input/output structures can be determined from
the entity. The wizard contains a list of input and/or output attributes which
is used to specify the attributes that form a struct class which is generated by
the wizard.

The generation firstly checks whether a struct exists in the same package
with the same attributes and prompts whether to use this struct or generate a
new struct to promote re-use of existing structs.

The naming pattern for this generated struct class is:

<Entity Name><Key (Input)/Dtls (Output)>Struct<Unique Number>

e.g. PersonKeyStruct1

2.7.6 Domain Definition Wizard

The Domain Definition Wizard is used when creating a Domain Definition
and offers a simple process for creating a Domain Definition class.

The wizard allows the ability to set the name of the Domain Definition and
browse for the type.

Optionally, the Max Size field will be editable when a Domain is chosen
that is based on a SVR_STRING or SVR_BLOB to allow for the regular
size value to be set.

2.8 Working with Class Diagrams

To create a class diagram:

1. Right-click on the package in which you want to create a class diagram
in the Project Explorer.

2. Select Add Diagram and then Class Diagram from the right-click con-
text menu. The new diagram is then created and opened in the Diagram
Editor.

3. Elements can then be dragged from the Project Explorer onto the Dia-
gram Editor.

Modeling elements can be added to the model in the Diagram Editor using
the Model Palette and Cúram drawer. For more information on using the
Diagram Editor, see Section 2.3.3, The Diagram Editor.

2.9 Working with Fragments

Working with the Cúram Model in Rational Software Architect

14

The Cúram model is a collection of elements that are logically related but
physically separated.

When you open a model that contains fragments, the fragments do not load
automatically, they load when you open them or when you access function-
ality that requires artifacts from the fragments. When you load a fragment,
the parent resource is also loaded.

The sections below describe how to create a fragment and absorb a fragment
into the parent model.

2.9.1 Creating a Fragment

To create a fragment:

1. Right-click on the package that you wish to create a controlled frag-
ment from.

2. Select Refactor, and then Create Fragment.

3. You will be prompted to name the fragment and select the location
where you wish to save the fragment.

4. Once the fragment is saved, another dialog appears in which you must
ensure that you have the 'Update references to elements in new frag-
ment' option set. If not set you risk breaking references to child ele-
ments contained in this fragment.

Once the fragment has been created, the icon for the package changes to sig-
nify that it is a controlled fragment.

2.9.2 Absorbing a Fragment

Occasionally you may want to remove a fragment by absorbing it back into
its containing fragment or model. To do this:

1. Right-click on the fragmented package and selecting Refactor.

2. Choose the Absorb Fragment option.

3. When absorbing a fragment, you must ensure that a tick is placed in the
'Update references to elements in the fragment' box. This ensures that
existing references in the fragment are not broken in the process of ab-
sorbing the fragment.

It is also possible to absorb all the fragments in a model at the same time. To
do this:

1. Right-click on a model and select Refactor.

2. Select the Absorb All Sub-Fragments option. All the fragments in the
model will then be absorbed. You should also ensure that you update
element references when absorbing all the fragments in a model.

Working with the Cúram Model in Rational Software Architect

15

2.10 Validating a Model

Rational Software Architect offers the ability to validate a model. A model
can be validated by right-clicking on the model and selecting validate.

The validation reports a summary in the console panel and describes any
warnings or errors found in the Problems View. The problem description
should indicate the issue and link to the location found in the model.

Working with the Cúram Model in Rational Software Architect

16

Chapter 3

Using Rational Software Architect with the Cúram
Model

3.1 Introduction

This chapter also provides detailed instructions on how to model IBM
Cúram Social Program Management elements in Rational Software Archi-
tect.

The sections below describe typical development tasks with some of the ex-
ample model element types that make up the application. Each section takes
a model element type and describes how it is used in the model. These ele-
ment types include:

• Domain Definitions

• Entities

• Structs

• Aggregations

• Processes

• Facades

3.2 Working with Domain Definitions

The datatypes of attributes in IBM Cúram Social Program Management are
modeled as Domains. Domains are defined in terms of a fundamental data-
type such as a string or an integer or in terms of another already existing ap-
plication domain. Domains have application-specific type names such as
SOCIAL_SECURITY_NUMBER, PAYMENT_AMOUNT, etc. Domains
can have associated validations defined for them such as uppercase, range

17

checks, code tables, pattern matches, or custom validations.

3.2.1 Creating a Domain Definition

New domain definitions can be added to the model using the right-click
context menu in the Project Explorer. With Rational Software Architect you
are not restricted in terms of the package structure. Domains can be added to
any existing named package or combined with other elements in the same
package. For consistency care should be taken to preserve standard struc-
ture. This allows them to be easily managed and re-used across the applica-
tion.

You can create a domain definition using the following steps:

1. In the Project Explorer, navigate to the package where you want to cre-
ate the new domain definition.

2. Right-click on the package and navigate to the Add Class Menu and se-
lect Domain Definition.

3. In the Create Domain Definition Wizard, enter the name of the domain
and select a domain definition type. If the type you select is
SVR_STRING you must also specify the maximum size.

Note

When searching for the base Domain Types e.g.
SVR_STRING, you will have to modify the Search Scope and
select the Search non-imported UML libraries.
The base types exist in a plugin delivered with the SDEJ and
can only be searched for and cannot be browsed to.

4. Choose the domain type. This can be done in two ways: through the
type browser or by searching the model. Once you have selected the
domain type, click Finish.

3.2.2 Renaming a Domain Definition

You can rename a domain definition in one of two ways:

1. Right-click on the domain definition in the Project Explorer and re-
name it.

2. Select the domain definition in the Project Explorer and then edit it in
the General tab of the Properties view.

Important

When you rename a domain definition, you must also rename its
single attribute to the same name. This can be done in the Attributes
tab in the Properties view for the domain definition.

Unlike Rational Rose, the process of renaming a Domain Definition

Working with the Cúram Model in Rational Software Architect

18

will maintain any references to that Domain.

3.2.3 Modifying a Domain Definition

A domain definition contains a single attribute whose type represents the
domain it inherits from. To modify a domain definition do the following:

1. Navigate to the Attributes tab in the Properties view and double-click
the Type cell for the single attribute.

2. Search for and select the domain type in the Type Browser.

3.3 Working with Entities

Entities are objects which represent the persistent storage of the application.
They have attributes which are defined as domains. They can have primary
keys and index and foreign key relationships.

Create, read, update, and delete style operations are defined on entities as
stereotyped methods. The signatures of these operations are implied by the
stereotype. Other operations can be defined on entities by defining their sig-
natures in the model. Operations requiring complex database queries can be
specified in SQL.

3.3.1 Creating an Entity

To create an entity, select the package where you want to create it and from
the right-click context menu, choose Class, then Entity.

As an example, consider the Person entity in the Cúram model. Once it is
added to the Person package, the required attributes are created for it. Entity
operations are also added which handle the data passing to and from the
database tables.

3.3.2 Adding an Attribute to an Entity

Attributes are required in order to store information related to an entity. For
example, in the Person entity, the CountryOfBirth attribute is used to store
the country of birth for a person. The domain definition for this attribute is
COUNTRY_CODE.

An entity will generally have at least one attribute that contains a unique
identifier. This is identified by the key attribute. The Person entity contains
a key attribute concernRoleID.

To add an attribute to an entity:

1. Select Add Attribute from the right-click context menu for the entity.

2. Select Key or Details as required. This opens the Create Attribute Wiz-
ard. Here you can name the attribute and select its type.

Working with the Cúram Model in Rational Software Architect

19

3.3.3 Adding an Operation to an Entity

Operations are added to entity classes via the right-click context menu. To
add an operation to an entity:

1. Select Add Operation from the right-click context menu and choose the
stereotype for the operation you want to create.

2. Accept the default name of the operation which will match the stereo-
type you selected.

Most of the operation stereotypes do not require you to model the arguments
or return types. If the stereotype you choose does require a return type to be
modeled it must be a struct. To do this:

1. Select the return type in the wizard using the 'Select Type' button.

2. If the return type you select is an entity, you must also select the Shad-
ow Type from the drop down to identify the actual struct that will be
used. If the return type you select is a struct, do not select a Shadow
Type.

3.3.4 Adding a Return Type to an Entity Operation

Some of the entity operation stereotypes do not require you to model the re-
turn type as it is implied by the stereotype. You can set the return type on an
entity operation when you create the operation. If you want to add a return
type later or change the return type, do the following:

1. Select the operation in the Project Explorer.

2. Select the General tab in the Properties page and select 'Set return
type'.

If the return type you select is an entity, you must also select the Shadow
Type. To select the Shadow Type:

1. Open the Cúram tab, select the required Shadow Type value for the
Shadow_Type property.

2. If you change the return type on an operation and the new return type
does not require a Shadow_Type, make sure that the ShadowType on
the Cúram page is set to unspecified.

3.3.5 Adding an 'ns' Operation to an Entity

Complex database operations are modeled as 'ns' type operations. To add
this type of an operation to an entity:

1. Right-click on the entity and select Operation.

Working with the Cúram Model in Rational Software Architect

20

2. Choose the stereotype of the operation from the list of available stereo-
types.

3. You will then be presented with the Create 'ns' Operation Wizard
where you can name the operation, it's parameters and select the return
type. If the parameter, return type you select is an entity, you must also
select a Shadow Type.

To add the SQL for the operation, navigate to the Cúram tab of the Proper-
ties view, and edit the SQL property string value.

3.4 Working with Structs

Method arguments and return types on operations and entity classes are
modeled as structs. A struct is a value object. Attributes of structs are spe-
cified as Domain Definitions. The following sections describe how to create
a struct and add attributes to it.

3.4.1 Creating a Struct

To create a struct, do the following:

1. Right-click on the package you wish to create a struct in, and select
Struct from the right-click menu option for the package.

2. Provide a name for the struct in the properties view of the General tab.

3.4.2 Adding Attribute to a Struct

Attributes describe the data that is contained in the struct. To add an attrib-
ute to a struct, do the following:

1. Select the struct you wish to add an attribute to in the project explorer.

2. Select Add Attribute, and select Default from the right-click context
menu.

3. In the the Create Default Attribute Wizard, name the attribute and
choose its type from the list of available types.

3.5 Working with Aggregations

Relationships are bonds between classes. A number of different relationship
types can be modeled such as aggregation (one class contains another), as-
signable (attribute values of one class may be copied to the other), foreign
key (for referential constraints), index and unique index (to define database
indexes on entity classes).

3.5.1 Creating an Aggregate Relationship

Working with the Cúram Model in Rational Software Architect

21

An aggregation relationship is used to model a relationship between objects
where one object contains another. In IBM Cúram Social Program Manage-
ment this relationship will always be between two structs.

In the Project Explorer:

1. Select the struct which will be the containing struct in the relationship.

2. In the Properties view, select the Relationships tab for the struct.
Choose to add a relationship originating from this element.

3. Select the object to be contained, as the target of the relationship and
select Aggregation as the relationship type.

If the contained object is an entity you must pick the Shadow Type to identi-
fy the actual struct to be contained. This can be done in the Cúram tab of the
Properties view.

On the relationships page, right-click the aggregation you have just created
and select Navigate from the context menu. This opens the Properties view
of the newly created aggregation. Verify that your aggregation is correct by
viewing the diagram on the General tab.

In the diagram, the 'diamond' should appear beside the containing struct. In
the Cúram tab, type a role name for the contained struct and set the multipli-
city of the relationship. The multiplicity of the container struct must be 1.
The multiplicity of the contained struct can be 1..* (for a 1 to many relation-
ship) or 1 (for a 1 to 1 relationship).

3.6 Working with Process Classes

Business functions are represented in the Cúram model as methods of pro-
cess classes. The arguments and return type for methods are modeled as
structs or domain types. The model defines the interface for process class
methods, but not their implementation. Process classes can call on entity
classes to perform database operations as required.

3.6.1 Creating a Business Process Class

To add a business process class to a package, select Add Class, and then
Process from the right-click context menu and name the class.

3.6.2 Adding Operations to a Process Class

Operations are added to process classes via the right-click context menu. To
add an operation to a process class:

1. Select Operation from the right-click context menu and choose Default.

2. This opens the Create 'default' Operation Wizard where you can name
the operation, add it's parameters and select its return type.

Working with the Cúram Model in Rational Software Architect

22

3.6.3 Adding an Argument to a Process Operation

Arguments for process operations are defined as structs or domain types. To
add an argument to a process operation:

1. Right-click on the process and select Manage Parameters.

2. In the Manage Operation Parameters Wizard, name the parameter and
select the parameter type. If the type you select is an entity, you must
also select the Shadow Type.

3.6.4 Adding a Return Type to a Process Operation

The return type from a process class operation is a struct or domain type.
You can set the return type on an process class operation when you create
the operation.

If you want to add a return type later or change the return type:

1. Select the operation in the Project Explorer.

2. In the General tab in the Properties page for the operation, select 'Set
return type'.

If the return type you select is an entity, you must also select the Shadow
Type. To select the Shadow Type:

1. Open the Cúram tab and the select the required Shadow Type value for
the Shadow_Type property.

2. If you change the return type on an operation and the new return type
does not require a Shadow Type, make sure that the Shadow_Type on
the Cúram page is set to unspecified.

3.7 Working with Facade Classes

Some business process functions are invoked from the client application
while others provide utility functions not directly available to the client. A
facade class is a process class whose interface is visible to the client.

3.7.1 Creating a Facade Class

To add a facade class to a package, select Add Class, Facade from the right-
click context menu and name the class.

3.7.2 Adding Operations to a Facade Class

Operations are added to Facade classes via the right-click context menu. To
add an operation to a Facade class:

Working with the Cúram Model in Rational Software Architect

23

1. Select Operation from the right-click context menu and choose Default.

2. In the Create 'default' Operation Wizard, name the operation, paramet-
ers and select its return type.

3.7.3 Adding Arguments and a Return Type to Facade Opera-
tions

Arguments and return types are added to facade operations in the same man-
ner as they are added to process classes. Please refer to Section 3.6.3,
Adding an Argument to a Process Operation and Section 3.6.4, Adding a
Return Type to a Process Operation respectively.

Working with the Cúram Model in Rational Software Architect

24

Appendix A

How Rational Software Architect differs from
Rational Rose

A.1 Introduction

This chapter describes the differences between modeling in Rational Rose
and Rational Software Architect for IBM Cúram Social Program Manage-
ment. Each section details a specific aspect of the modeling process in Ra-
tional Rose and then describes how it differs in Rational Software Architect.

A.2 Shadow Classes

In Rational Rose, shadow classes are placeholders created for classes which
are not visible inside the model but are produced when the server code is
generated. An example of such a class is the standard entity key struct, e.g.
the PersonKey struct for the Person entity. In this case the shadow class Per-
sonKey created inside the model is used to represent the future generated
class.

In Rational Software Architect, server shadow classes are not used. A refer-
ence must always be be directed to an existing class in the model. Instead of
using shadow classes, a Shadow Type property has been introduced for the
following model types:

• Operations - to signify the return type

• Parameters

• Relationships

A.2.1 Specifying a Shadow Type for a Parameter or Operation
Return Type

25

In Rational Rose, the Merlin Toolbar listed all possible future generated
classes as available types when setting the parameter type or operation re-
turn type.

When setting a future generated class in Rational Software Architect as a
type of a Parameter, you first specify the parameter type as the class from
which the future generated class is created. The Shadow_Type stereotype
property, found on the Curam tab, can then be set to represent the generated
class type.

When setting a future generated class (for example, the standard entity de-
tails struct) as an operation return type in Rational Software Architect you
must do the following:

• Add an operation

• Specify return type as the class from which a future generated class is
created

• Set the Shadow_Type stereotype property for the operation as the future
generated class type.

A.2.2 Adding an Relationship between a Shadow Class and a
Class in the Model

In Rational Rose, in order to add an relationship between a future generated
class and an existing class or between two future generated classes; shadow
stereotyped classes which represent future generated classes needed to be
created. The relationships could then be drawn between them.

In Rational Software Architect, when adding an relationship between a fu-
ture generated class and a class in the model, you must add a relationship
between the base classes and set the Left_Class_Shadow_Type or
Right_Class_Shadow_Type stereotype property depending on the dir-
ection of the relationship as per the Relationships General Tab.

A.3 Server Components

In Rational Rose, Server component classes are used to signify client visib-
ility of process classes outside of the model. This relationship was stored in
the Curam.mdl and .cat file containing the process class.

In Rational Software Architect, while moving to a multi-model solution it
was necessary to remove elements that bound the model into a single model.
Instead of assigning <<process>> classes to server components the classes
must have a particular stereotype applied.

A.4 Modeling Facade Classes

In Rational Rose, all process classes assigned to a Server Component with a

Working with the Cúram Model in Rational Software Architect

26

stereotype of <<ejb>> become client-visible classes for the application.
Adding a class to a server component with this stereotype also makes it vis-
ible to the webclient.

To add a client-visible class for the application in Rational Software Archi-
tect, a Facade class should be chosen.

A.5 Generating Function Identifiers for Model Classes

In Rational Rose, all classes assigned to a component with a blank stereo-
type result in the generation of Function Identifiers for that class. No EJB or
webservice components are generated.

To add this type of class in Rational Software Architect, a Process class is
created with the value of the stereotype property Generate_Fids set to True.

A.6 Modeling Web Service Classes

For Apache Axis2 web services:

• Axis2 web services do not exist in previous versions, so there is no ana-
logue in Rational Rose.

For Apache Axis 1.4 web services:

• In Rational Rose, all classes assigned to a component class with a ste-
reotype of webservice are also visible to the client.

In Rational Software Architect, to add a web service class for the applic-
ation, a Web Service class should be chosen.

A.7 Assignable Relationship Field Mappings

Assignable relationship field mappings are used, for example, in an explicit
field assignment where fields with different names are matched. In Rational
Rose, assignable field mappings are created by adding keys/qualifiers to one
of the Association roles.

In Rational Software Architect, assignable field mappings are maintained on
the General tab of the assignable relationship's properties. The mapping is
maintained by defining the fields involved in the Role option of each class.
Additional fields can by specifying using a comma separated entry.

A.8 Class Abstract Options

The Abstract option specifies that the class is abstract. In Rational Rose, the
Abstract option is available along with the options for entity or process
classes.

In Rational Software Architect, this option is not listed along with the other

Working with the Cúram Model in Rational Software Architect

27

IBM Cúram Social Program Management-specific stereotype properties in
the Properties tab. Instead, the standard Rational Software Architect abstract
option is used for this. In order to specify that the class is abstract you need
to place a check in the 'Abstract' checkbox which can be found in the Gener-
al tab.

A.9 RDO Description Stereotype

Child attributes of RDO and ListRDO classes are handled a bit differently:
In Rational Rose, RDO and ListRDO classes used to have two stereotypes
of attributes: <<dataitem>> and <<description>>. The description stereo-
type was used to identify which attribute should be used as the description
for that RDO/ListRDO.

In Rational Software Architect, the description stereotype is no longer used
for these attributes; instead the dataitem stereotype has a boolean de-
scription property to indicate that it is the description for the RDO/
ListRDO. As with the description stereotype in Rational Rose, only
one child attribute of the RDO/ListRDO should have its description in-
dicator set to true.

Working with the Cúram Model in Rational Software Architect

28

Appendix B

Right Click Context Menu Options in the Project
Explorer View

B.1 Introduction

This appendix describes what can be added from the right-click context
menu for each model class in the Rational Software Architect project ex-
plorer window.

B.2 Child Options for Class Types

The table below describes the specific attributes and operations that are
available to be added to each class from the right-click context menu in the
project explorer.

Class Available Attributes Available Operations
audit_mappings audit_mappings n/a

facade n/a default, wmdpactivity,
qconnector, batch

webservice n/a default, wmdpactivity,
qconnector, batch

wsinbound n/a default, wmdpactivity,
qconnector, batch

process n/a default, wmdpactivity,
qconnector, batch

struct default n/a

entity key, details batchinsert, batchmodify,
insert, modify, nkmodify,
nkread, nkreadmulti, nkre-
move, ns, nsinsert, nsmodi-

29

Class Available Attributes Available Operations
fy, nsmulti, nsread, nsread-
multi, nsremove, read, read-
multi, remove, default

rdo dataitem n/a

listrdo dataitem n/a

loader n/a n/a

do-
main_definition

n/a n/a

extension default, dataitem, key, de-
tails

batchinsert, batchmodify,
insert, modify, nkmodify,
nkread, nkreadmulti, nkre-
move, ns, nsinsert, nsmodi-
fy, nsmulti, nsread, nsread-
multi, nsremove, read, read-
multi, remove, default, wm-
dpactivity, qconnector,
batch

Table B.1 Right Click Context Menu Options for Classes

B.3 Other Options

Option Applicable Parent Applicable Children
Package Package, Model Any class type

Manage
Parameters

Any applicable operation n/a

Table B.2 Additional Right-Click Context Menu Options

Working with the Cúram Model in Rational Software Architect

30

Appendix C

Broken Reference Resolution

C.1 Broken Reference Resolution

C.1.1 Background

A resource reference is where an element refers to another element either in
the same file or another model/file. An example of this is the type of an at-
tribute/parameter or relationship e.g. association/index.

In Rational Rose references were resolved through a two stage look-up pro-
cess;

1. Firstly the qualified name of the reference was used to find the ele-
ment;

2. Where the element could not determined by qualified name, the id of
the element was used.

If the element still could not be found the element reference was considered
as broken and needed to be manually resolved by the model owner.

C.1.2 Rational Software Architect changes in References

In Rational Software Architect only the id of the element is used to resolve a
reference which has led to the possibility that there will be more instances of
broken references requiring manual intervention.

This possibility is due to support of previous product versions. When an ele-
ment is created in a model it gets a unique id (adding an element across mul-
tiple product lines, which is sometimes the case required to introduce a new
feature into the product) can subsequently introduce multiple unique IDs for
the same added element. If a customer refers to this added element in their
model and then later jumps product stream, the reference will then be
broken from the customer's model to new Cúram model.

31

A broken reference can be reported during two phases:

1. Opening your model in Rational Software Architect, here the IBM®
Rational® automated resource reference resolution process will be in-
voked but may be unable to find a resolution and will report any fail-
ures in the Problems View;

2. Extracting the model using the command line build tooling, here errors
will be reported in relation to the type of a attribute, parameter or rela-
tionship not being found.

C.1.3 Extension to Broken Reference Resolution

To account for this possibility of references being broken during a product
upgrade and avoid the requirement for manual intervention, an extension to
the Rational-provided resource resolution process is provided. This exten-
sion requires a map of the previous model's IDs is extracted and then is used
to resolve references in the current model. This map is processed to look up
the broken ID and determine the qualified name of what it was previously
referring to and from this resolve the breakage through discovery of the id in
the new model for the qualified name found.

As the map needs to be extracted from the previous model an export option
has been introduced into Rational Software Architect which should be run
against the previous model and it should be called as follows:

1. Navigate to File > Export > Curam > Qualified Name
Map

2. Select the project to export e.g. EJBServer.

3. Browse to a location to save the file.

4. Clicking Finish will invoke the export process.

The output of this task is a model map that needs to be referenced when
opening a new upgraded model.

To reference the map a Preference page is used within Rational Software
Architect as follows:

1. Navigate to Window > Preferences > Curam > Quali-
fied Name Map

2. Browse to the map created earlier.

C.1.4 Resource Reference Resolution Process

If an error is found indicating a broken reference. The model containing the
broken reference should be opened and a dialog will pop-up indicating a
broken reference.

Working with the Cúram Model in Rational Software Architect

32

The repair process should then resolve and correct the reference.

If the process fails and the reference remains broken it will become an error
in the Problems view. Here there is a right-click option offering an addition-
al Search or browse for a valid reference which can be
used as a last resort.

Working with the Cúram Model in Rational Software Architect

33

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

34

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Working with the Cúram Model in Rational Software Architect

35

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Working with the Cúram Model in Rational Software Architect

36

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Apache is a trademark of Apache Software Foundation.

Java and all Java-based trademarks and logos are registered trade-
marks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Working with the Cúram Model in Rational Software Architect

37

http://www.ibm.com/legal/us/en/copytrade.shtml

	Working with the Cúram Model in Rational Software Architect
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Prerequisites
	1.4 Chapters in this Guide

	Chapter 2 The Rational Software Architect Workbench
	2.1 Introduction
	2.2 Integrating the Cúram Model into Rational Software Architect
	2.3 The Modeling Perspective
	2.3.1 Project Explorer View
	2.3.2 The Properties View
	2.3.3 The Diagram Editor
	2.3.4 The Model Editor

	2.4 Working with the Model
	2.4.1 Creating a Model
	2.4.2 Opening a Model
	2.4.3 Closing a Model
	2.4.4 Navigating the Model

	2.5 Working with Model Elements
	2.5.1 Viewing an Element
	2.5.2 Adding an Element to the Model
	Using the Project Explorer
	Using the Diagram View

	2.5.3 Modifying an Element
	2.5.4 Creating a Relationship between Elements
	2.5.5 Removing an Element from a Model
	2.5.6 Copying and Pasting
	2.5.7 Attribute Order

	2.6 Searching in Rational Software Architect
	2.6.1 Searching the Model
	2.6.2 Searching for References to an Element
	2.6.3 Searching for Elements using the Type Browser

	2.7 Specialized Tabs and Wizards
	2.7.1 Foreign Key Tab
	2.7.2 Secure Field Tab
	2.7.3 Manage Operation Parameters Wizard
	2.7.4 Operation Wizard
	2.7.5 Entity Operation Wizard
	2.7.6 Domain Definition Wizard

	2.8 Working with Class Diagrams
	2.9 Working with Fragments
	2.9.1 Creating a Fragment
	2.9.2 Absorbing a Fragment

	2.10 Validating a Model

	Chapter 3 Using Rational Software Architect with the Cúram Model
	3.1 Introduction
	3.2 Working with Domain Definitions
	3.2.1 Creating a Domain Definition
	3.2.2 Renaming a Domain Definition
	3.2.3 Modifying a Domain Definition

	3.3 Working with Entities
	3.3.1 Creating an Entity
	3.3.2 Adding an Attribute to an Entity
	3.3.3 Adding an Operation to an Entity
	3.3.4 Adding a Return Type to an Entity Operation
	3.3.5 Adding an 'ns' Operation to an Entity

	3.4 Working with Structs
	3.4.1 Creating a Struct
	3.4.2 Adding Attribute to a Struct

	3.5 Working with Aggregations
	3.5.1 Creating an Aggregate Relationship

	3.6 Working with Process Classes
	3.6.1 Creating a Business Process Class
	3.6.2 Adding Operations to a Process Class
	3.6.3 Adding an Argument to a Process Operation
	3.6.4 Adding a Return Type to a Process Operation

	3.7 Working with Facade Classes
	3.7.1 Creating a Facade Class
	3.7.2 Adding Operations to a Facade Class
	3.7.3 Adding Arguments and a Return Type to Facade Operations

	Appendix A How Rational Software Architect differs from Rational Rose
	A.1 Introduction
	A.2 Shadow Classes
	A.2.1 Specifying a Shadow Type for a Parameter or Operation Return Type
	A.2.2 Adding an Relationship between a Shadow Class and a Class in the Model

	A.3 Server Components
	A.4 Modeling Facade Classes
	A.5 Generating Function Identifiers for Model Classes
	A.6 Modeling Web Service Classes
	A.7 Assignable Relationship Field Mappings
	A.8 Class Abstract Options
	A.9 RDO Description Stereotype

	Appendix B Right Click Context Menu Options in the Project Explorer View
	B.1 Introduction
	B.2 Child Options for Class Types
	B.3 Other Options

	Appendix C Broken Reference Resolution
	C.1 Broken Reference Resolution
	C.1.1 Background
	C.1.2 Rational Software Architect changes in References
	C.1.3 Extension to Broken Reference Resolution
	C.1.4 Resource Reference Resolution Process

	Notices
	Trademarks

