IBM Curam Social Program Management

Curam Generic Search Server

Version 6.0.4

||||||||
]
I
1T
..lli
1L
@

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition appliesto version 6.0.4 of IBM Curam Socia Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008,2011 Curam Software Limited

Table of Contents

(O T= 1= I 1 11 0o [FTox 1 o o SRR 1
1.7 Clram Generic Search SErVEr GUIAEoocveeieiie et 1

B (=01 S (=S PRS 1

I N U T (1=, To: < TR 1
Chapter 2 Concepts and DEfINITIONSccccueiieiiiiiiiere s 2
FZ 1110 T [Tox (o o R 2

2.2 ThE GENENIC SEACN SEIVELeveieieeceeeie ettt e ettt e s s s e e s s sb e e e s sere e e s s ssabeeasssareees 2

B I 1 (10! 2

A o 1< Y/ o T 3

B2 T = 1= o 4

20 DOCUMENE ... 4

27 LUCENE oo 4

2.8 StAQIiNG DALBASEcocveeiiciesiee et 5

e O 11 o OSSPSR 5
A0 TEIM oo 5

D N = Y= S 5

D V=T o . OSSPSR 6

P Il 1 = o: (o] 6
Chapter 3 Generic Search SErver OVEINVIEWcocveieiiieesie et see e s ee s saee s 7
3.1 The Generic Search SErver and LUCENEoocvveveiiceeiee ettt a e 7

3.2 Importing Data from CUraMcooveeeiiireee e 7

3.3 Search Server SyNChronization ... 8

RS < (o [Oe) 011 o) | 1= SRR 9

B TRNE SEAICN PrOCESS ..ottt e et e e e e et eenees 10

BB REFEIEINCES ..o et e e et e e e e e et e n s 10
Chapter 4 Generic Search Server enabled SearChes ..., 11
L 1 011 0T (1o [IR 11

4.2 Generic Search Server related propertiesin the Clram applicationcccccve...... 11

4.3 Keeping Curam data and search data synchronizedccocecvvieiiecenciinecennn 12
4.3.1 Event-based SynChroNiZatioNcccceeiereenenieneerie e 12

Chapter 5 Staging Datahase TabIEScccoccvieeiece e 14
R 1110 T [Tox (o o I 14

I < (o AN AV To I IF= o [15

Curam Generic Search Server

5.2.132aICNSEIVICEIA ..o s 15
5.2.2 BXIKEYNAIME ...t 15

5. 2.3 @NAIYZEN ..ottt et nae e 15

5. 2.4 frecdREIOXTIMESIM ..ottt 15

5. 2.5 MAPPEINEGIMIE ...t re e s be e sne e snne e e nans 15
5.2.6 ADLBSIWIITIEN .ottt nne s 16
5.2.7 PISIBIODSIZE ... 16

5.3 SearchServiceField Table ... s 16
5.3. 1 SIChSEVICEFIAIT ..o 16
5.3.2 82AICNSEIVICEIA ... s 16
.33 NAIME ittt ettt e e e e ne e e ne e e e be e nne e e nne e nanes 16
G R 1V o TP TSP PR 16
Rl 1076 (1< o SRR 17
RGN S (] = o OSSR UR 17
5.3.7 ENULYNAIMIE ..ottt e e e s neenbeeneas 18
SRCRC R [01101:(= 11174= o USRS 18
5.3.9 @NAlYZEINEAITIEooeiiieieeeeee e e ae s 18
Chapter 6 Getting Started with the Generic Search Server APl ... 19
TR 111 oo [FTox 1 o o USSP 19
O Y =0 o £ TSRS 19
6.3 SEACH CONIOIEN ... e e e 20
6.4 Search Service CONMNECLONccoviiirieierie st 20
5.5 QUETTES ...uveeieecteectee et ste e et s e st e e st e e b e e sbeesateeabeesaseebeesaseebeessseebeesaseebeesaseebeesnneans 21
5.6 CUFBIMTEII ...t e s e e e b e e s e e e ne e smneeneesmneeneennneens 21
6.6.1 QUENY SITUCKUIE ..coviiiiiiiee sttt ettt s ba s sbe e snne e nnne e nans 22
6.6.2 StANAAIT TEIMS ...oviieieiieieiee ettt nee s 22
6.6.3 Date and Date RaNQE TEIMScceevieeiieceesiece ettt 23
LG I I = PR UPRUROPRRPRUPIN 23

6.7 GeNErating QUENTESccouieieeiiesieeiteseesteeste st e s e este e e e e saeeeesse e seeseesaeensesneesneenaeeneas 24
6.7.1 Constructing aQuery BUIlderccveeeiieiece e 24
6.7.2 Adding SEarch Criteriacccueceeeeieeie e 24
6.7.3 Generating QUEriesfrom aStrUCEccceeveevieiieveeee e 24
6.7.4 Specifying which search service fieldsto returncccccoeeveevicveceeceenee, 24
6.7.5 Obtaining the Query OBJECEcooveviieeceee e 25

6.8 Dealing With Search RESUILScceiieiieececece e 25
6.9 Data Types and String CONVEISIONcccceieeieerieeeeseesieseeseesseeeesseessessesseesseeneas 25
Chapter 7 Implementing a Search with the Generic Search Servercccvvvveveienenenens 27
R O Y= 1Y/ 1= S 27
7.2 Person Search EXample - OVEIVIEW ..o e 27
7.3 Develop SearchService DM X FIlES ..o 28
7.3.1 Setup SearchService RECOIoocvveriieiiieese e 28
7.3.2 Setup SearchServiceField RECOIdcooviieieiiiiresereereee e 28

7.4 Implement Mapper OPEILIONSccooverierererirereeieree et 29
7.4.1 Mapper.mapToStagingDb iNterface ... 29
7.4.2 Mapper.getObjectList INTEITACEcooeverieeieee e 29
7.4.3 Mapper.getEXtKeY INTEITACE ..o 31
7.4.4 Mapper.remMOVE INLEITACEcccireiieeeeeee e 31
7.4.5 Mapper.getFieldValue INterface ..o 31

Curam Generic Search Server

7.4.6 Mapper NEWINSLANCE() ...ooververierierieeie et sne e 32

7.5 Search Router and Implementalioncccoeeieeienee e e 32

7.6 Add Synchronization to each Search Entityccooeieeieniiniene e 32
Chapter 8 PUII IM@DPENoiueeieciesteete et ste et s e te e te et e s e s seeteeseesteetesseesseensesseesseensenneens 34
ST 1110 o [FTox 1 o o PSSP 34

8.2 PUIl MAPPEr OVEIVIEW ..ottt sttt e e be e saeenseennesneenneeneas 34

8.3 Developing with the PUll Mappercoveeieecece et 34
8.3.1 Enable Last Updated Field on your searchable entitiesc.cccccevvenenen. 34

8.3.2 Modelling the tabl@ SCaNcccceeiieie e 35

8.3.3 Defining YOUr SEarCh SEIVICEcoccvecieiieseee et 35

8.3.4 Writing YOUr MAaPPEN ClESScceeeeriieiieeiesieeieseeseeseeseesreeae e saeeeesneesneeneas 36

SRAN DI [= (o] o= (0] S 37
Chapter 9 Searches and QUENESIN DEPLNeevveeiece e 38
LS00 1 11 0o ¥ Tox 1 oo S 38

9.2 The Search Service - general gUIdEINESccoviiiiiiieiee e 38

9.3 Mapping your database structure to an Index - Denormalizationccccccevennene. 39

9.4 Tokenized and Untokenized FIEldScocvveieeiine it 39
SR/ o (o= o S 40

9.6 ANAlYZErSIN DEPLN ... e 40
Chapter 10 Running the Generic Search Server in EClipSecooovvviieiininneeic e 42
O g1 oo [F o 1 o o RSP STRTRN 42

10.2 BOOLSIIaD.PrOPEITIES ...couveiieeiieiieeiesiee st ee sttt sbe e s seesaeeeesaeesreeeesneens 42

10.3 Launching the Cdram Generic Search Server from EClipseccccooeveveienenenne. 42
Chapter 11 Deploying the Generic Search SErVEr ... 44
R 1 1o I8 o1 o o USSP 44

11.2 Deployment OPLIONScccviieiieieciese e eee e ste e ae e st eesseesreesaesneesneeeenneens 44
11.3 DeplOoyMENt PrOCESSociveiiieiiieieceesteesieseesteestessee s e esae s e sseesesseesseensesneesseensenneens 44
R @ = 1 o OSSR 45

IS = 10 1 o B I = PSSR 45
11.5. 1 WEDIOGICEARGSS ...ttt 45

11.5.2 WELSPhEr€EARGSSoiiciceee ettt 45

LTS3 TUNEXITBCION ..ottt 46

S (g = £ 1 TR USPSPPN 46

11.5.5 StartuPSEarCSEIVENcccveeeeiecieeie ettt sreere e 46

11.6 Database PerfOrmMannCeccoeeeeieieiisiese sttt 46

117 TimE CONSIAEIBLIONSvoviviiiiriieiieie ettt sb e nn b e nnas 47

(O T= 010 a2 o o7 1 174 1 Lo o PSS 48
12.7 Introduction t0 GSS LOCAIIZALIONcceevuereerieeiiesieseesie e sieeseeseesseesee e sseeneesneens 48

12.2 Localization Of GSS 10g MESSAGESccerveriirieriirieieiesie st see s 48
Chapter 13 PErfOIMANCEoociiiiieeeee ettt sreesaeeeesneens 49
RGN g 11 oo [F (o1 o o RS TRSRTR 49

G g o (= Gl 1N - OSSPSR 49

13.3 INAEX PEISISLENCEcueieieieeiie ittt sttt sb e e s sreeeenneens 50
13.3.1 Persistence Operation INVOCATONcoceeieereenieniie e siesee s 50

13.3.2 Index Persistence Database Configurationccoceveeeeneenesienseenennnns 50

Curam Generic Search Server

13.4 Testing and operational CONSIAEIaLIONScevueriereriieeie e 52

13.5 Performance TUNINGoooeieeieeieee ettt st e et saeeee e sreeneesneens 52
1351 Max Merge DOCUMENESccueiiiiiieieeeeie et 52

1352 MEIQE FACION ..o e s 53

13.5.3 ENADI@ PEFSISIENCEooieeiiieieeeeee e 53

L1354 REFEIEINCESc.eeeiiee ettt ettt s reeanes 53

13.6 SEArChEr POOIINGcoiiiiiiieiie sttt sre e nne e 53
L3.6. 1 OVEIVIEBIW ..ottt te et s et s e e be e s s e e be e eneeeaeesneeeteesnneenneeanes 53

13.6.2 Pool configuration Propertiesccceeereeiiereenieeiee e sie e see e see e neesneens 54

13.7 RAM LIMITALIONS ...oeiiuiiciiie ettt ettt ete e sraeeneesnneereesnneens 54
13.7.1 Index Size CalCUIBLIONccceereeiiieieeiesieeee et s ee e 54

13.8 Recommended CONfIQUIAtioNccoieriiniinieniieseesee et 55

13.9 Recommended configuration for Production Environmentccccceveeveeinnenne 55
Appendix A Caram Generic Search Server Configuration Propertiescccccevcveveveereeenen. 56
AL Configuration ProPErtiESccovceeiieiecie st see et e s ste e ste e ae e sne s 56
Appendix B Sample DMX Listings: PErsonSearchcccocevveeveeresicesieese e 60
B.1 Search SErviCE RECOITooieiieeceese e 60

B.2 Search Service FIeld RECOIcooeeiieeeeese e 61
N[o =SOSR OSRPP 64

Vi

Chapter 1

Introduction

1.1 Cdram Generic Search Server Guide

1.2

1.3

The Curam Generic Search Server is a tool provided by IBM Corporation
that can be used to develop performant and scalable searches for your ap-
plication solution.

This document describes the Cuiram Generic Search Server and provides an
overview of its architecture. It is also areference for the configuration of the
Generic Search Server and its database tables. Finally, it provides an end-
to-end example of how to implement a search using the Caram Generic
Search Server.

Prerequisites

Readers of the Cldram Generic Search Server Guide should be familiar with
the Cdram architecture, in addition to being familiar with Caram modeling
and development constructs and processes.

Audience

This document is intended to be read by architects, designers and devel opers
interested in using the Curam Generic Search server to implement search

pages.

2.1

2.2

2.3

Chapter 2

Concepts and Definitions

Introduction

This chapter introduces severa important searching and indexing concepts,
in addition to definitions related to the Clram Generic Search Server which
are used throughout this document.

The Generic Search Server

The Cadram Generic Search Server is a standalone application which sup-
ports performant searching of application data viaanumber of APIs. Behind
the scenes, the Generic Search Server isimplemented using the Apache Lu-
cene API. Those implementing GSS searches should use only the APIs ex-
posed by GSS.

The Generic Search Server can be deployed as a plain Java® Application
(to ease devel opment-time testing) as well as a J2EE® application.

Indices

At the heart of the Generic Search Server is the concept of searching an In-
dex, which is a performant, non-database representation of a set of related
searchable data. A Generic Search Server Index is an “inverted index” that
maps words to database records that they appear in.

2.4

Curam Generic Search Server

Inwverted Index

SearchTempe | ——
i Gt

SearohTemid |—
Domnvet
SearchTerml |——m

Domnnent !

Diomnment
Dncmnent

Domoment Fieldl
Field2
Fieldx:

Figure 2.1 Inverted Index Description

When searching an Index for a word, all matching records are retrieved
without having to search large datasets. As a result, such Indices scale well,
and for large systems it will be possible to run multiple Indices in paralld,
allowing for excellent search performance if the right deployment configur-
ation and Index tuning parameters are chosen.

Developers creating application searches do not manipulate or maintain In-
dices directly - al of thisis handled for them behind the scenes by the Gen-
eric Search Server.

Search Service

A Search Service describes:-

1. Information relating to fields being searched
2. Analyzersused on each field, field datatypes
3. Entity information to populate a run-time index
4

Status of Search Service (whether up to date or requires synchroniza-
tion)

2.5

2.6

2.7

Curam Generic Search Server

When seen in this way a Search Service is simply meta-data, however this
document also uses the term to describe the run-time populated index.

There should be one Search Service defined for each discrete set of data to
be searched upon (e.g. Person Search, Payment Search,etc.). Each search
performed must specify which Search Service it is to operate on.

Field

As mentioned above, Search Services are made up of sets of Fields. These
can be thought of as somewhat analogous to column definitions in database
tables. A Field has a name and atype, and if being returned from a search it
will also have avalue, which isthe result.

Fields may be marked as being 'Stored'. Fields marked in this way will
cause the Index to physically contain relevant values extracted (see Sec-
tion 2.13, Extractor) from the database. This means that their values can be
retrieved directly from the Index after a search and returned to the caller
without the need to access the related record on the application database ta-
ble. Note however that this does increase the Index size and may impact the
performance of the search.

Fields may also be marked as 'Indexed' or not. Fields marked as such are
searchable, and Fields not marked as such are not searchable. This featureis
useful for fields such as unique IDs that may be desirable to store in the In-
dex but not searched upon.

Note that Fields do not have to be marked as 'Stored' to be searchable.

Document

A Document isarecord in an Index. A Document isin turn made up of a set
of Fields. Search results are returned from the Generic Search Server as sets
of Documents which can then be converted to Cdram struct objects. For ex-
ample, a Person search Document might consist of Firstname, Surname, Ad-
dress, Gender, etc. Fields, and performing a Person search/Query (see Sec-
tion 2.9, Query) based on anumber of input criteriawill return zero or more
such Documents.

Lucene

Lucene is an open-source project created by the Apache Software Founda-
tion. Behind the scenes, the Clram Generic Search Server uses Lucene for
itsindexing and searching functionality.

i Note
Note that information on indexing and Lucene is provided purely for
background purposes - developers creating searches using the Gen-
eric Search Server do not need to manipulate Indices or Lucene ob-

2.8

2.9

2.10

2.11

Curam Generic Search Server

jects directly. These are all wrapped by the Generic Search Server
API.

Staging Database

The Generic Search Server staging database consists of a set of database
tables used for the following purposes:

« To store Search Service definitions - information about which Search
Services are available together with their structure

* To store values extracted from the operational database which will be
used to populate Indices corresponding to the Search Service Defini-
tions.

The fundamental design rationales for using database tables as an intermedi-
ary are asfollows:

* They offload the searches from the main database which means that
searches do not impact on live system performance

» They persist appropriately for the search service - Data is persisted in a
form that is suitable for the purposes of building the search indices. The
Application data is transformed, scrubbed and consolidated before being
stored in the staging database. Therefore, batch jobs will not have to be
continually rerun to re-extract the data each time a Generic Search Serv-
er instance is started.

Query

A Query is an object (a struct, to be precise) that is passed to the Generic
Search Server when a search is being performed.

Term

A Termisapart of a Query object. Currently, there are three different types
of Term - Standard terms for searching on regular text fields, Date terms for
searching on Date fields, and DateRange terms for specifying a range of
dates on which to search.

Analyzer

An Analyzer is a Lucene concept, representing a class that implements the
Luceneor g. apache. | ucene. anal ysi s. Anal yzer abstract class.

Analyzers prepare text for indexing and searching. For example, it doesn't
make sense that every word of atext field is indexed - stop words such as
“and” , “of” and “a’ may be irrelevant during a search. If these are to be ig-

2.12

2.13

Curam Generic Search Server

nored during a field search then the field is tokenized, ie. passed through an
analyzer before writing the field to the index and likewise for a term value
being searched.

Analyzers are language-specific - what defines a word is not the same in al
languages. Some can be configured to ignore common stop-words (an, the,
if, etc), to ignore numbers, and so on. Analyzers used by the Generic Search
Server are configurable on a per-Search Service basis.

Mapper

A Mapper is a class which has to be written by developers of application
searches for each Search Service. Its function is to transform data from the
application into a format which can be written onto the staging database and
imported into a Index. The transformation involves identifying relevant En-
tity properties of interest to the Search Service, constructing a list of these
values and mapping them to a single consolidated text value. This value,
stored in the staging database, is used later in the construction of a single
search index Document. Every Search Service that is written must provide
its own Mapper implementation.

Extractor

The Extractor uses the Search Service metadata to obtain the relevant ap-
plication data necessary to populate the search indices. The extractor inter-
rogates the relevant Application Entities identified via the metadata and the
required Entity properties are mapped(with the mapper) to the staging data-
base for indexing upon Search Service startup.

Chapter 3

Generic Search Server Overview

3.1 The Generic Search Server and Lucene

3.2

The concepts behind indexing and the Lucene API have aready been intro-
duced. So why not just use Lucene directly in Caram application?

Whereas Lucene is an excellent API for indexing and searching, it does not
address all of the requirements of a Cdram searching product:

It does not address deployment issues - how to run multiple search serv-
ers, how the application should communicate with the search servers,
etc.

It does not address the issue of how to import data into Indices

It does not address the issue of keeping Index data synchronized with
source data in the running application.

It does not address the issue of interpreting data returned from an Index
search as CUram datatypes and structs.

It does not address the more overarching application requirement of pro-
tecting the Application Developer from in-depth knowledge of specific
third-party products; given that Lucene is only one potential searching
solution, it would seem to make more sense to provide a more generic
searching API.

The Curam Generic Search Server was developed to deal with these require-
ments.

Importing Data from Cldram

One implication of using an indexing technology is that, before being able
to search an Index, it must first be created. Because alot of the hard work of
searching is essentialy done up-front in Index construction, runtime

3.3

Curam Generic Search Server

searches become fast; however, it is worth noting that the indexing process
itself may take some time, and this time increases proportionally with the
amount of data to be indexed.

Initialization of the Generic Search Server is done in two phases.

In the first phase, existing application data is exported from the application
into a set of database tables used by the Generic Search Server - the staging
tables. This export has been implemented as a batch process, called the
Database Search Extractor, and is provided as part of the Generic Search
Server distribution. The export only needs to be performed once, when the
Generic Search Server isfirst being used. Special helper classes called Map-
pers are needed for each Search Service; these assist the extractor in prepar-
ing the data to be imported into the Staging Tables.

In the second phase, an Index is constructed for every defined Search Ser-
vice. When the Generic Search Server is started up, a process is run to read
the appropriate data from the staging database tables and construct the In-
dices and other data structures to be used to perform searches. Once the In-
dices are constructed, the server will be in a position to respond to search re-
quests. Information on optimizing this performance is available in
Chapter 13, Performance

I F 9
Curam DB
Generic Search
Database N Server
Extractor Staging tables
[
I

Figure 3.1 Database Extractor and Generic Search Server Startup
Process

Search Server Synchronization

Because the Generic Search Server searches not on the live data itself but on
an Index that is built from that data, updates to application data need to be
replicated on the Index. In Cdram implementations, it is essentia that up-
dates to searchable data be reflected in the relevant Indices in a timely and
predictable fashion. With the Generic Search Server, the time lag is short
(and configurable).

3.4

Curam Generic Search Server

,(_4-"'_'_._-_'_"‘-\—\..\\
\.___‘_‘_____._'___'_ﬂ_/
Q Curam
Updates application
Yser 4 record
Curam DB
Periodic .
synchronization | Generic Search
Transform data Server
E Staging tables

Mappers | \
_______‘__________ﬂ_/

Figure 3.2 Data Synchronization

Similar to the initial import of data described above, there are two steps to
the synchronization process.

Thefirst step in the process occurs when the application data (which is used
in an Index) changes, typically as a result of an insert, update or logical de-
lete. When this occurs, the application must write information about this
data change to the Generic Search Server staging tables. All new and up-
dated items are marked with a timestamp.

In the second step (which happens on a periodic basis), the Generic Search
Server synchronizes its Indices against the current contents of the staging
database. To do this, it reads all newly changed items since the last time it
synchronized, and imports these into the Indices;, specificaly, this is
achieved by comparing timestamps associated with each changed item to
the latest timestamp used during the last synchronization step.

]

n Note

When writing unit tests that include calls to Generic Search Server
searches, it is important to bear in mind the delay in synchronizing
data. In addition, as aresult of the fact that the Generic Search Serv-
er instance will be running in a separate process to the unit tests, it
will not be part of the same transaction. Consequently, Generic
Search Server synchronizations will not pick up any data that has
changed in the test transaction, unlessit is explicitly committed.

Search Controller

The Search Controller is an important component of the synchronization
mechanism. It maintains a list of all the entities associated with each Search
Service.

When an entity changes, the Search Controller can be checked to see if that
entity is used by one or more Search Services. If it is used, the data in the
staging database should be updated in the same transaction as the entity up-
date. The Search Controller also provides an API for updating the staging
database.

3.5

3.6

Curam Generic Search Server

Note

A number of Curam Platform entities (which appear in some Clram
Platform searches) have been modified to alow for the implementa
tion of such synchronization updates in the future release. These
modifications have taken the form of the creation of pre- or post-
operation exit points which contain stubbed-out implementations;
these pre- and post- exit points are reserved for future implementa-
tion and should not be changed directly by customers.

=o

The Search Process

The search process can be broken down into three phases.

In the first phase, the Clram application constructs a valid Query to present
to the Generic Search Server. It populates this Query using search criteria
entered by the user.

In the second phase, the Clram application contacts a running Generic
Search Server instance and performs the search as defined by the Query ob-
ject.

In the final phase, the Clram application interprets the results it receives
back from the Generic Search Server as Caram datatypes, performs its usual
security checks regarding the sensitivity of the data, and displays them to
the user.

References

Lucene website: http://lucene.apache.org/ .

10

http://lucene.apache.org/

4.1

4.2

Chapter 4

Generic Search Server enabled searches

Introduction

IBM Corporation has introduced the Generic Search Server as an optional
searching mechanism for Platform and Solution Module searches. Several
searches have been implemented using both the Clram Generic Search
Server and database searching, and some are available only as GSS
searches. For the searches that are available either as database or GSS
searches customers may enable or disable performant search on a per-search
basis via setting application properties.

Generic Search Server related properties in the
Curam application

These properties are the application system properties and can be admin-
istered in the usual way via the property administration in the application.
All of the relevant properties are available under the Category called
“Application - Lucene enhanced search parameters’ . A full list of these
properties may be found in Section A.1, Configuration Properties

Property Name Description
curam.lucene.luceneEnhance Default: “NO” . By default, all Generic
dSearchEnabled Search Server functionality isdisabled. In

order to enable it, you must set this property
to “YES’ to turn on enhanced search. Unless
thisissetto “YES’ , no enhanced searches
will be available.

curam.lucene.luceneOnlineS Default: “NO” . To enable the event publish-

ynchronizationEnabled ing mechanism that makes changesin
searchable data available to the Search Serv-
er you must set this property to“YES” . Un-

11

4.3

4.3.1

Curam Generic Search Server

Property Name Description

lessthisis done, inserts and updates to
searchable data will not be propagated to the

Search Server.
curam.lucene.externalUpdate Default: “NO” . To ensurethat if any search
EventsEnabled service related data is updated externally,

then the external system receives related up-
date synchronization events to synchroniza-
tion the searchable data, in case if property
"curam.lucene.luceneOnlineSynchronization
Enabled" is not enabled. Enabling this prop-
erty has same impact as enabling
“curam.lucene.luceneOnlineSynchronization
Enabled” on the application. To enable prop-
erty

“curam.lucene.external UpdateEventsEnable
d” set this property to “YES’ .

Table 4.1 Caram Generic Search Server Related Properties

Finally, each search that supports Enhanced Search has a property that de-
termines whether it uses the Generic Search Server or the database. This al-
lows each organisation to choose on a per-search basis which enhanced
searches to use.

Keeping Cdram data and search data synchron-
ized

It is necessary to keep the live application data and the search index syn-
chronized if search results are to be accurate. The infrastructure that the
GSS provides in order to accomplish this has been described el sewhere (see
Section 6.3, Search Controller).

However, there is aso an onus on application developers to add calls to the
SearchController when relevant data changes in the application. This section
describes for information purposes the event-based approach used, and
which we recommend to customers implementing their own GSS-based
searches.

As well as the event mechanism we also provide the Pull Mapper synchron-
ization, which is described in its own chapter in this guide, see Chapter 8,
Pull Mapper .

Event-based synchronization

Curam provides events to allow loosely coupled parts of the application to
provide information to each other about changes of state. They are docu-

12

Curam Generic Search Server

mented in the Clram Server Developer's Guide. .

Each entity that contributes to a search service should have events raised
when it is created, deleted, or modified. The event handler then calls the
Sear chCont rol | er classto update the search server with the change.

Any entity that contributes to a search service must have postmodify,
postinsert and postremove operations added that raise the events.

13

5.1

Chapter 5

Staging Database Tables

Introduction

The staging database tables are database tables on the operational database
that are used by the Generic Search Server. There are four such tables:
SearchService , SearchServiceField , SearchServiceRow , and SearchSr-
VCROWEXt .

This chapter details the purpose and structure of the SearchService and
SearchServiceField tables. Developers creating search services do not need
to access the SearchServiceRow or SearchSrvcRowEXxt tables directly, nor
write DMX filesfor them.

The SearchService table defines Search Services known to the Generic
Search Server (see Section 2.4, Search Service for introduction to Search
Services). As an administration API for managing Search Services has not
been provided, Search Service records must currently be created and main-
tained by either accessing the database table directly or by editing DMX
files and rebuilding the application database.

The SearchServiceField table defines a single Field of a Search Service - its
name, its data type, and severa other attributes that are explained fully be-
low. Each SearchServiceField database row is associated with a single
SearchService row. As with Search Services, Search Service Field records
must currently be created and maintained by either accessing the database
table directly or by editing DMX files and rebuilding the application data-
base.

SearchServiceRow is a table used to store searchable data from the applica-
tion for use in building Indexes. The Generic Search Server provides an API
(see Chapter 6, Getting Started with the Generic Search Server API and
Chapter 7, Implementing a Search with the Generic Search Server) that is
used to manipulate SearchServiceRows - developers should interact with
this database table only viathis API rather than accessing it directly.

14

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

Curam Generic Search Server

There are two other GSS database tables: GSSMapper Type and GSSEntity .
These are used only with the Pull Mapper feature - otherwise they can beig-
nored. These tables are described in Chapter 8, Pull Mapper .

SearchService Table

Each Search Service must contain a record on the SearchService table. To-
gether with its SearchServiceField child rows, the SearchService table
defines the schema for each Search Service. A description of each column
of the SearchService tableis provided below:

searchServiceld

The Search Service Identifier; a string used to uniquely identify a Search
Service.

extkeyName

The name of a Search Service Field that will uniquely identify each record
in an Index created from this Search Service definition. It is essential that
values in the Index corresponding to this Search Service Field be unique, as
when searchable data is updated in the application database, the value of this
field will be used to identify the appropriate Document to be updated in the
Index.

analyzer

The Search Service analyzer to be used when converting from the applica
tion database text terms to Index terms. The contents of this column should
denote one of the predefined analyzer names provided by the Generic
Search Server (see the list below) or a fully qualified Java classname of a
class that implements the abstract class
or g. apache. | ucene. anal ysi s. Anal yzer . This may be either a
standard Lucene analyzer or a third-party or custom implementation. Note
that the class must be available on the Generic Search Server classpath if it
is not a standard Lucene analyzer.

For alist of the analyzers supplied with GSS and a more in-depth discussion
of how to choose an analyzer, see Section 9.6, Analyzersin Depth .

frcdReidxTimeStmp

Used by the Extractor to force the Generic Search Server to rebuild its In-
dices after an extract has been run. When creating Search Service records,
this should beinitially set to null.

mapperName

15

5.2.6

5.2.7

5.3

5.3.1

5.3.2

5.3.3

5.3.4

Curam Generic Search Server

The name of the mapper implementation (see Section 7.4, Implement Map-
per Operations). A Mapper implementation is a class that converts a set of
application entity data to a format suitable for indexing. The value of this
column should be the fully qualified classname of the Mapper class, and as
with the Analyzer implementation, this should be on the Generic Search
Server runtime classpath (If the Mapper is developed as part of the applica-
tion it will be on the classpath by default).

dbLastWritten

This is used in synchronization. It should not be initialized or updated by
application code or administrators.

prstBlobSize

This specifies the size of the blob associated with the table used to persist
this search service index. If not specified, the blob size defaultsto 50M. The
property type is a String and the value should conform to the size specifier
syntax of the concerned database.

SearchServiceField Table

Each Field of a Search Service must contain a record on the SearchService-
Field table. Each Search Service Field represents a SearchService element
that can be either searched upon, returned from a search, or both. Search
Service Field are used in a number of places throughout the Generic Search
Server - in Terms, in Queries, in Documents. A description of each column
of the SearchServiceField table is provided below:

srchServiceFIldld

The Unique Identifier of the Search Service Field.

searchServiceld

searchServiceld of the parent Search Service record.

name

The name associated with the Search Service Field. This is the name that is
used to reference the Field when performing searches or retrieving results. It
does not need to correspond exactly to Field names in Clram entities and
structs, although it simplifies development if it does so.

type
The Cuaram datatype of this field. The set of acceptable values is described

16

5.3.5

5.3.6

Curam Generic Search Server

in the table below.

The process of exporting and synchronizing data to the Search Service in-
volves some conversion of operational data to strings and vice-versa, so it is
important that an accurate data type be defined for each Field. See the fol-
lowing table for reference on this. If incorrect values are presented to the
Generic Search Server, it will throw an exception.

Domain Definition GSS Field data type

SRV_BOOLEAN boolean
SRV_DATE Date
SRV_DATETIME DateTime
SRV_INT8 byte
SRV_INT16 short
SRV_INT32 int
SRV_INT64 long
SRV_FLOAT float
SRV_DOUBLE double
SRV_MONEY Money
SRV_CHAR char
SRV_STRING String
SRV_UNBOUNDED_STRI String
NG

Table 5.1 Mappings from basic Caram Domain Definitions to GSS
Field data types

]

H Note

The type field is case sensitive, so ensure you use the type name ex-
actly aslaid out above.

indexed

Indicates whether this Field is searchable. Sometimes it may be desirable to
store avalue for arecord in the Search Service but not to search on it (an ex-
ample would be the unique ID of arecord, or perhaps it's sensitivity level).
Not indexing values that don't need to be indexed will minimize Index size
and help performance, so it is good practice to index only the fields your
searches will use.

stored

Indicates whether this field may be returned in a search result or not, i.e.
whether the value itself is stored in the Index. Note that stored fields will

17

5.3.7

5.3.8

5.3.9

Curam Generic Search Server

still only be returned if the Query object passed to the Generic Search Serv-
er indicates that they should be returned. Every field should be either in-
dexed or stored or both - if afield is neither then it is of no relevance to the
Search Service. Again, not storing values that your searches will not use
will minimize index size and help performance, so only store the fields your
searches will use.

entityName

The name of the application entity associated with this Field, or to be more
specific, the name of the application Entity containing an attribute corres-
ponding to this Field which will be used to populate the Index based on the
parent Search Service definition. This information is needed for synchroniz-
ation of application data with the Generic Search Server - all entities that are
listed as being related to Search Service Fields will be registered with the
SearchController (see Section 3.4, Search Controller) and monitored for in-
serts, updates, and deletions. It is vitally important that the entityName at-
tribute be populated with the appropriate values; omitted or invalid entity-
Name attributes may result in invalid Index updates over time.

untokenized

This property indicates whether a field is to be tokenized and passed
through the analyzer or not. It is a boolean value. If set to true, no tokeniz-
ing will be done and analysis will not be performed on this field before in-
dexing or while searching.

analyzerName

This property specifies the analyzer to be used when tokenizing this field.
The contents of this field may be set to LUCENESTANDARD , STANDARD ,
SI MPLE , STOP , VHI TESPACE , KEYBOARD . (see anayzer in Sec-
tion 5.2, SearchService Table) If thisfield is not set then the default analyz-
er used will be that taken from the analyzer field of the associated Search-
Service.

18

Chapter 6

Getting Started with the Generic Search Server

6.1

6.2

API

Introduction

This chapter is not intended to be an exhaustive description of the entire
Generic Search Server API - afull set of Javadoc is available as part of the
installation. The purpose of this chapter is to provide a short introduction to
the most important classes and operations in the API in order to allow Gen-
eric Search Server-based searches to be rapidly devel oped.

Mappers

Mappers are classes which define how Search Service data is mapped from
the application database tables to the staging database tables. Each Search
Service has its own Mapper - the Mapper to use is specified in the Search-
Service database table. For more details see Section 5.2.5, mapperName .

This Mapper functionality is used in two processes:

1. When the Database Extractor is run, each Search Service Field is iter-
ated over for a particular Search Service. For each Field, the corres-
ponding Entity Attribute data is retrieved from the application database
and populated into the SearchServiceRow staging database table

2. When acreate, update or remove operation is called for an entity that is
used in a Search Service, the relevant SearchServiceRow rows are up-
dated with the related entity modifications

In both of these processes, the relevant Mapper for each Search Service is
invoked to map data from the application database tables to the staging data-
base tables.

On initialization of the Generic Search Server, the staging database informa-

19

6.3

6.4

Curam Generic Search Server

tion is read and used to construct the Indices from the Search Service
metadata. The Search Server will periodically check the staging database for
updates and keep the service data up to date.

The following Mapper APl methods require implementation by search de-
velopers on a per-Search Service Basis:

Sear chSer vi ceRowDt | sLi st mapToSt agi ngDb(
final SearchServiceKey id) throws AppException,
I nf or mat i onal Excepti on;

Li st get Obj ectLi st (final SearchServi ceKey serviceld,
final Object obj) throws AppException, |nfornmational Exception;

String get Ext Key(final SearchServiceKey serviceld, List objlList);

voi d renove(Sear chServi ceKey serviceld, Object objKey)
throws AppException, |nformational Excepti on;

Ohj ect get Fi el dVal ue(final SearchServi ceKey serviceld,
final List objList, final SearchServiceFieldDtls field);

For more details see Section 7.4, Implement Mapper Operations

Search Controller

The Search Controller is a singleton object available for use in the applica
tion. It is responsible for keeping track of which entities are referenced in
which Search Services. In addition, it provides an APl for synchronizing
changes made to application data with the relevant Indices on the Generic
Search Server. Note that from a Client-Server perspective, the Search Con-
troller lives on the 'Client’ (in this case, the Caram Application Server), not
the 'Server' (in this case, the Generic Search Server).

The SearchController API is composed of three methods which can be in-
voked if any entity involved in populating an Index is modified. The search
developer must be aware of which application entity operations will result in
such modifications and invoke the appropriate methods on the SearchCon-
troller. The methods exposed in thisAPI are:

voi d SearchController.insert(Cbject objectDtls,
String entityNane);
voi d SearchControl |l er. nodi fy(Cbject objectDtls,
String entityNane)
voi d SearchControl |l er.renmove(Cbject objKey, String entityNane);

For more details see Section 7.6, Add Synchronization to each Search Entity

Search Service Connector

The SearchServiceConnector is a utility class that allows searches to be per-
formed. The 'search’ operation on this class is the only supported way for
search devel opers to invoke a search on a Generic Search Server Index.

Behind the scenes, this class handles the details of connecting from the run-
ning application to an instance of the Generic Search Server, wherever it
may be deployed.

20

6.5

6.6

Curam Generic Search Server

Searches may be performed with the SearchServiceConnector using the
method:

static SearchServerResults search(CuranmQuery query)
i Note
If the search index does not contain any data it will throw an Index-
EmptyException. Developers implementing searches should handle
this exception gracefully.

User credentials are required to connect to the Generic Search Server. The
connector picks up the details of the current user and uses those to commu-
nicate with the Generic Search Server.

2

n Note

Do not attempt to use the DoSearch method (or any Generic Search
Server method) directly - it will not work asit is running in the con-
text of the Curam application, and not the context of a running Gen-
eric Search Server application

Queries

In order to do a search, a CuramQuery object must be constructed. The
CuramQuery class consists of:

* The searchServiceld of the SearchService whose Index you wish to
search. See Section 2.4, Search Service for more information on the
concept of Search Services and Section 5.2.1, searchServiceld for de-
tails of how the searchServiceld is defined

« A list of CuramTerm objects or a Text attribute representing a Lucene
query string- these represent the search criteria. See below for more in-
formation on Clram Terms and the Text attribute

* A list of CuramField objects - values for these Fields will be returned as
part of the search results, but only if the fields have been marked as
‘Stored’ in the SearchServiceField definition (see Section 5.3.6, stored)

* An integer attribute maxHits indicating the maximum number of hits to
be returned for this query.

* A boolean flag maxHitsUnbounded indicating that the maximum num-
ber of hitsis not limited. If this flag is set the maxHits attribute value is
ignored.

CuramTerm

CuramTerms are the part of the CuramQuery structure that represents search
criteria.

There are three types of Terms. StandardTerm, a DateTerm, or a DateRange

21

6.6.1

6.6.2

Curam Generic Search Server

term. The CuramTerm object contains one of each of these types of these
types, and has termType attribute specifying which of the term subtypes
should be used. Only of one of the aggregated term subtypes is valid for
each CuramTerm object.

For al term types, the 'field' attribute specifies the name of the Field in the
Search Service to be searched (see Section 2.5, Field and Section 5.3.3,
name). The 'value' attribute is the search criterion to be used - the meaning
of thisvariesfor the different types of terms and is described below.

Query Structure

Each term has afield called occur s . How thisis set determines the struc-
ture of the query - whether all the search terms must exist, only one, or some
other combination. The possible values for occur s are MUST , SHOULD ,
MUST _NOT , and MUST_FI ELD.

If MUST is specified for the occur s attribute for set of terms then a result
will be returned only if all of the terms are found. If SHOULD is specified
for a set of terms then a result will be returned if one or more of the terms
are found. However, mixing these in a single query will give an undefined
result and should be avoided. If you need to construct complex queries with
AND and OR sub-queries then you must use the t ext query attribute de-
scribed in Section 6.6.4, Text .

If MUST_NOT is specified for the occur s attribute then only documents
that do not match the term will be returned. Terms specifying this value may
be mixed with terms specifying other values for the occur s attribute.

Using the MUST_FI ELD option allows you to construct a subquery testing a
particular index field for one of a set of values, i.e. an OR subquery within
your main query. You should set thisasthe occur s vaue for al the terms
dealing with that field and add a term for each acceptable value. Terms us-
ing MUST_FI ELD can be part of an overal query using either the MUST or
SHOULD term options.

Standard Terms

A Standard term is used for all searches that do not involve Dates, so thisis
the term type that you will use most frequently.

The most basic way to use a standard term is to simply specify the field
name and a single token as the value. The search server will return results
where the field value matches the search term exactly.

Another way to use a standard term is to specify a value that contains mul-
tiple tokens, such as in address. Again, the search server will return results
where the field value matches the search term exactly.

If the search term specified is a single token containing a wildcard character
then the search server will return all matching results. Supported wildcard
characters are *' which matches any string of characters, and '? which

22

6.6.3

6.6.4

Curam Generic Search Server

matches a single character. Example:- term = "Dub*"

A StandardTerm may be treated as a Prefix Search. This means that we are
looking for search results that contain the search criteria at the start. You
specify a Prefix Search by setting the i sPr ef i xSear ch attribute of the
StandardTerm. It has the same effect as specifying a *' multi-character
wildcard at the end of your search value. A prefix search term may not con-
tain any other wildcards.

Example 1: For a standard tokenized prefix term "abc" the underlying
search is for term = "abc*", for tokenized and prefixed multi-term searches,
for instance, a prefixed search term "abc def", the underlying search is for
term = "abc* def*"

Example 2: For a standard tokenized non-prefix starting with abc the term
value = "abc*" must be specified. For tokenized, non-prefixed, multi-term
searches starting with "abc" and "def" the value "abc* def*" should be spe-
cified.

Date and Date Range Terms

A Date term is similar to a Standard Term except that it is used to search
fields that are of type Date or DateTime.

A Date Range term can be used to search for values that are between a min-
imum date (beginDate) and a maximum date (endDate). The 'isExclusive
Boolean attribute determines if the begin and end dates are included in the
search criteria. If 'isExclusive' is set to true, the search is performed exclus-
ive of the begin and end dates. If 'isExclusive' is set to false, the search is
performed inclusive of the begin and end dates.

]

n Note

When a query contains more than one term, the returned results are
those that match al search terms - there is currently no concept of
OR or NOT in the Generic Search Server AP

i Note
Bear in mind when using Dates for searching that it is your respons-
ibility to ensure that the Date in your search term refers to the same
time zone as was used when exporting the data to the Search Service
Text

The text attribute of the CuramQuery class is an aternative to a set of terms
and alows more flexibility in specifying your search criteria. It should be
used only if required as it is also easier to introduce bugs in your searches
with this approach. The format for specifying search criteria using this at-
tribute is described in the Lucene documentation. This is available at ht-
tp://lucene.apache.org/javal2_2 O/queryparsersyntax.html .

Y ou cannot combine Terms and the use of the text query string. If the text

23

http://lucene.apache.org/java/2_2_0/queryparsersyntax.html
http://lucene.apache.org/java/2_2_0/queryparsersyntax.html

6.7

6.7.1

6.7.2

6.7.3

6.7.4

Curam Generic Search Server

guery string is present then any CuramTerms present in the query will beig-
nored.

Generating Queries

The Generic Search Server API contains a utility class designed to allow
you to construct CuramQuery objects easily. This class is:
curamcore.inpl.util.QueryBuil der .

Constructing a Query Builder

The Quer yBui | der is not a static class, you must construct a new
Quer yBui | der instance for each query you produce.

Use the set Unbounded(bool ean unbounded) and set Max-
H ts(l ong maxH ts) methods to specify the number of hits your gen-
erated query should return.

Adding Search Criteria

The Quer yBui | der provides a selection of methods of the form ad-

dXXTern(...paraneters...) toadd different types of search terms
to your generated query easily. These terms are ANDed together to form a
complex query. These methods will not be described fully here but full de-
tails are available in the GSS javadoc.

Generating Queries from a Struct

If you have a Cdram struct you wish to use to generate a query you can do
so using thismethod: set Ter ns(fi nal Cbj ect key) .

This expects a struct where each attribute XX has a corresponding boolean
attribute called sear chBy XX which specified whether that attribute should
be used to search. Each attribute XX will be assumed to correspond to a
SearchServiceField in your SearchService.

If the names of the attributes of your struct do not correspond to the names
of the Fields you have defined for your Search Service (see Section 2.5,
Field and Section 5.3.3, name), then you can define a mapping between
them using a dictionary HashMap. The mapping is from the attribute names
in the struct to the SearchServiceField names. Simply add the pairs of
strings to the HashMap, with the name of the struct attribute as the key and
the name of the Field as the value. The dictionary can be specified in the
constructor when you create your QueryBuilder object or later using the
set Di cti onary(HashMap<String, String>) method.

Specifying which search service fields to return

In your query you can specify which subset of the search service'sfields you

24

6.7.5

6.8

6.9

Curam Generic Search Server

would like returned as results. Often you will want all of them returned, so
you can use the following convenience methods:

e includeAllFieldslnService()
e excludeField(String fiel dNane)
« excludeFields(String[] fiel dNanes)

Obtaining the Query Object

Usetheget Quer y() method to get the generated CuramQuery object.

Dealing with Search Results

Similar to the requirement to convert Ciram key structs to Cur amQuery
objects, Cur anDocunent s returned from searches also need to be con-
verted to Clram structs to be used in the application.

The Sear chSer vi ceConnect or search method returns results in the
form of a Sear chServer Resul t s object. This consists of a list of
Cur anmDocunent s, and each Cur amDocunent consists of a list of
Curanfield S. A utility class called
curamcore.inpl.util.CuranDocToResul t Struct is provided
to convert between Cur anDocunent s and Clram structs.

static java.lang. Qbj ect convert (CuranmDocunent docunent,

java. |l ang. Obj ect struct Qbj,

java. util.HashMap dicti onary)
This method takes a Cur anDocunent and a struct instance (via the para-
meter structObj). For each Field in the Cur amDocunent , the method at-
tempts to find an attribute in the struct of the same name and datatype. A
struct containing all mapped values is returned, this should be cast to a
struct of the correct type.

If the names of the attributes of your struct do not correspond to the names
of the Fields you have defined for your Search Service (see Section 2.5,
Field and Section 5.3.3, name), then you can define a mapping between
them using the dictionary parameter. The mapping is from the Field names
in the Search Service to the attribute names in the struct - simply add the
pairs of strings to the HashMap, with the name of the Field as the key and
the name of the struct attribute as the value. The convert function will then
match Field names to attribute names using this HashMap

]

n Note

Note that the attributes in your results struct whose names corres-
pond to Fields in your document must have simple Clram types,
and not be aggregated structs.

Data Types and String Conversion

25

Curam Generic Search Server

The Generic Search Server contains an APl for converting searchable
Curam datatypes to Strings and vice versa. These may need to be used occa-
sionally in custom Mappers, or if parsing results directly rather than using
the supplied utility class
curamcore.inpl.util.CuranDocToResul t Struct .

The converter class IS
curam core.inpl.search. dat at ypes. Dat aTypeConverter .
This class contains methods to convert Clram datatypes to Strings and to
convert Strings back to Cdram datatypes (by means of passing in a struct
and specifying which attribute in the struct isto be set).

26

Chapter 7

Implementing a Search with the Generic Search

Server

7.1 Overview

7.2

This chapter provides a worked example of the implementation of a Generic
Search Server-based search within the Caram application. The example
worked through here is a Person Search.

The implementation steps are as follows:

» Write the SearchService and SearchServiceField dmx files
* Implement Mapper interface
* Implement search routing and invocation functionality

» Add synchronization of application operations to search entities (or use
the Pull Mapper approach, see Chapter 8, Pull Mapper

» Create auser interface and facade for the search - thisis normal applica-
tion development.

Person Search Example - Overview

It isimportant to note that users of the Clram Generic Search Server should
notice no functional difference between their searches and server searches
implemented using SQL; in addition, the screens and general user experi-
ence can remain the same. As such, the following example assumes that
readers will develop such application functionality (along with the appropri-
ate Facade classes, etc.) as normal.

In our Person Search example, users will navigate to the relevant UIM page
to perform a Person Search. On this page, they will fill in one or more

27

7.3

7.3.1

7.3.2

Curam Generic Search Server

search criteria. When they hit the 'Search' button, the search will be per-
formed. The results will consist of alist of records matching the search cri-
teria

In application searches, it is common for the search criteria and details re-
turned in the results list to be collated from multiple related entities. For the
Person Search the following entities and their attributes are either used as
search criteria or returned as result fields:

e Person - primaryAlternatel D, personBirthName, motherBirthSurname,
dateOfBirth, gender

» ConcernRole - sensitivity, concernRolel D
» AlternateName - firstForeName, surname
o AddressElement - city, address.

Each of these entitiesis related by aforeign key association; concernRolel D
is thus the external key of the SearchService attribute for the PersonSearch
Search Service (see Section 5.2, SearchService Table)

The following attributes will thus be used in the search - either as part of the
search criteria, or as adisplayable part of the results list:

* referenceNumber

« forename

¢ surname

« address

o City
 dateOfBirth
* SeX

e birthSurname

e motherSurname

As such, these will be the Fields stored in the SearchServiceField table for
the PersonSearch Search Service.

Develop SearchService DMX files

Setup SearchService Record

Please see Section B.1, Search Service Record and Section 5.2, SearchSer-
vice Table

Setup SearchServiceField Record

28

7.4

7.4.1

7.4.2

Curam Generic Search Server

Please see Section B.2, Search Service Field Record and Section 5.3,
SearchServiceField Table

Implement Mapper Operations

See Section 2.12, Mapper and Section 6.2, Mappers for an introduction to
Mappers.

The following sections describe the implementation of the Mapper interface
methods for each Search Service. An example for PersonSearch Search Ser-
viceis provided for each method of the interface. Comprehensive Javadoc is
also available for the Mapper interface and this should be read by all de-
velopers implementing a Search Service.

Mapper.mapToStagingDb interface

*

/
Maps information in the Application database to the search
servi ce staging database for the specified search service id.

@aramid the identifier of the search service.

@eturn the list of all napped rows for the specified search
service.

@ hrows AppException application exception

@hrows | nformational Exception information exception.

* ok ok F X Ok F X F

=
Sear chSer vi ceRowDt | sLi st mapToSt agi ngDb(
final SearchServiceKey id) throws AppException,
I nf or mat i onal Excepti on;
This method is invoked during the Database Extraction batch process; for
each Search Service, mapToStagingDb is called to retrieve information

from the source entities and return them to the batch process.

A Curam ReadmultiOperation needs to be written to process al records to
be stored on the staging database for each Search Service. A Generic Search
Server operation called ExtractReadM ultiOperation needs to be invoked on
each of these records. Internally, this operation works out what other entities
are required to populate an entire SearchServiceRow based on this data, and
also constructs a SearchServiceRow object.

The result of this whole processis simply alist of SearchServiceRows, con-
stituting all initial data to be populated into the staging database. The Data-
base Extraction batch process then takes care of inserting these rows onto
the staging database.

Mapper.getObjectList interface

*

/

Popul ates the list with all entity objects for the

Search Service given any one of the entity objects used.

@ar am searchServiceld. the search service identifier

@aram obj. The entity object fromwhich all other are
retrieved

@eturn the list of all entity objects for the this search
service given a specified object paraneter.

* % ok kX X X X

~

29

Curam Generic Search Server

Li st get Obj ectLi st (final SearchServi ceKey serviceld,
final Object obj) throws AppException,
I nf or mat i onal Excepti on;

As mentioned earlier, it is possible for data in a Search Service to be
gathered from a number of different entities. It is also possible for these en-
tities to be related by complex foreign key relationships (for example, an
Address record could be related to a Person record via an addressiD which
is linked via a concernRoleAddressiD which is in turn linked via a con-
cernRolelD).

Things are made more complex when one of these entities gets updated via
the application. When this happens, the Generic Search Server must be able
to work out which entity has just been affected, what Searchesiit is involved
in, and how it is related to every other entity included in each Search Ser-
vice.

Ultimately, one or more Documents on one or more Search Service Indices
will need to be updated, and information in these Documents may be
gathered from a range of entities, not just the one that just got modified.
However, given that Search Services have one and only one Mapper, each
Mapper implementation only needs to worry about assembling information
for its own Search Service.

The getObjectList interface method addresses this problem. Given a single
updated entity record, getObjectList assembles al other entity Dtls records
which will be required to update the corresponding Document in the current
Search Service Index. The getObjectList method needs to be coded in such a
way that any of the entities involved in a Search Service can be used as the
starting point of this process. getObjectList is responsible for:

* Working out what entity has been passed to it
* Working out all related entities for the Search Service in question

* Reading and assembling al related entity records based on the data in
the parameter entity

The mapper.getobjectList () method is called in the following processes :

» Database Synchronization inserts
» Database Synchronization modifys
» Initial Database Extraction

Note that for initial Database Extraction, the getObjectList interface method
gets invoked for every item fetched from the ReadmultiOperation; typically
thiswill be the top-level entity in this case (for example, for a Person Search
Extract, all Person records would be read in a readmulti; getObjectList will
then be called for each to retrieve al of the other information required to
build a SearchServiceRow).

If this method is called for an input that isn't relevant to this search service,
then the implementation should simply return an empty list.

30

7.4.3

7.4.4

7.4.5

Curam Generic Search Server

Mapper.getExtKey interface

/**

* Cets the Row external value for the specified object |ist.
* @aram searchServiceld. the search service identifier

* @aramobjList the list of Search Service related entity
* obj ect s.

*/@eturn t he ext ernal Key.

*

String get Ext Key(final SearchServiceKey serviceld, List objList) ;

The get Ext Key interface method returns a unique identifier for the spe-
cified Search Service. This key is used as the key for each row in the
Sear chSer vi ceRow table in the staging database. Note that the objList
parameter is the output of the getObjectList interface method described
above. For Example, cal | i ng get Ext Key for the PersonSearch Search
Service should return the concernRolel D of the record in question.

If this method is called for data that the search service doesn't care about
then it should return null.

Mapper.remove interface

/**

* Deletes the row identified by the specified key fromthe
* st agi ng

* dat abase.

* @aram serviceld identifier of the service.

* @aram obj Key the Key.

* @hrows AppException

* @hrows | nformational Exception
*

/

voi d renove(Sear chServi ceKey serviceld, Object objKey)
throws AppException, |nformational Excepti on;

Deletes the specified row object from the staging database.

Mapper.getFieldValue Interface

*

/

If a specialised field value can't be covered by the

<code>Sear chSer vi ceMapper . get Val ue()

<code> functionality this method

shoul d be overridden in the mapper for the specific search
servi ce.

@aram obj List list of entity objects for this specific
mappers service id.

@aram field the field whose value is required.

E R I I R R

~

Ohj ect get Fi el dVal ue(final SearchServi ceKey serviceld,
final List objList, final SearchServiceFieldDils fieldDtls);

The Generic Search Server infrastructure will try to retrieve an entity attrib-
ute value from an object list by using Field metadata retrieved from the
Search Service Field table. Typically, objectLists will contain entity dtls
structs, and in such casesit istrivial for the Generic Search Server to use re-
flection to identify the correct attribute and get its value - this is exactly
what is done behind the scenes.

However, if the objectList contains something other than an entity dtls struct
(as in the case of Person Search, where an AddressElementDtlsList is

31

7.4.6

7.5

7.6

Curam Generic Search Server

present, itself containing a single AddressElement struct) then the Map-
per.getFieldValue interface method should be implemented by search de-
velopers.

The Mapper.getFieldValue interface method should be implemented if a
Mapper cannot automatically map a specific attribute value. The relevant
entity and field name is passed in via the fieldDtls struct parameter, and the
attribute value can be retrieved from the objList using reflection. It is up to
the search developer to implement this method interface for the type or
types to be catered for.

Empty strings should not be returned from this method - null should always
be returned.

Mapper newlnstance()

If the mapper is modelled then the factory class should be specified for the
SearchService mapperName property. If the mapper is NOT modelled then
the mapper implementation must implement a

public static Mapper new nstance();

interface returning an new instance of this search service's mapper. In this
case the SearchService mapperName property will be the clasName of this
implementation class.

Search Router and Implementation

As mentioned previously, searching currently uses SQL. In future versions,
itislikely that Platform and Solution searches will begin to use the Generic
Search Server as the searching method of choice. However, it is likely that
SQL searching will also continue to be supported as-is currently, both from
an upgrade protection perspective, and from a fallback/failover option per-
spective in case of network or other deployment problems.

To facilitate this, a Search Router factory class should be implemented
which should returns a reference to either the database search implementa-
tion or the Generic Search Server based implementation based on a property
Setting.

Add Synchronization to each Search Entity

As noted earlier, the Generic Search Server staging database must be up-
dated in atimely manner when modifications are made to Search Servicere-
lated entities. A single entity may well be being used in more than one
Search Service, and each of these Search Services must reflect changes to
that entity.

The Sear chCont r ol | er classisresponsible for insuring that all staging
database information is up to date. The Sear chControl | er i nsert ,
nodi fy and r enbve methods must be called from the application when

32

Curam Generic Search Server

the corresponding Search Service entity operation is executed. Thei nsert
and nodi f y SearchController operations modify the SearchServiceRow ta-
ble information with the specified entity details struct data. Ther enove in-
terface requires a key identifying the entity object being removed and the
name of the entity.
/**

* Generic insertion of entity updates to the database.
@aram details the object details.
@aram entityNane the name of the entity
@ hrows AppException application exception retrieving the

registrar

or during Mapper insert.

@hrows | nformational Exception information exception.
/

* % ok kX F ok X

public final void insert(final Cbject details,
final String entityNane)
throws AppException, |nformational Exception

/**
* Generic Mddify of entity updates to the database.
*
* @aramdetails the object details.
* @aramentityNane the name of the entity
* @hrows AppException application exception retrieving the
* regi strar
* or during Mapper nodify.
* @hrows | nformati onal Exception information exception.
*/
public final void modify(final Object details,
final String entityNange)
t hrows AppException, |nfornmational Exception
/**
* Generic renpbve of entity fromthe database.
*
* @aram key the object key.
* @©@param entityNanme the nane of the entity
* @hrows AppException application exception.
* @hrows | nformational Exception infornation exception.
*/
public final void renove(final Object key,
final String entityNanme) throws AppExcepti on,
I nf or mat i onal Excepti on

33

Chapter 8

Pull Mapper

8.1 Introduction

In the previous chapter we described the events mechanism and how you
can use it to keep your data synchronized with your search service. The
Generic Search Server now provides another way to keep your search ser-
vice up to date, called the Pull Mapper. This chapter describes how the Pull
Mapper works and how you can use this with new searches you are develop-

ing.

8.2 Pull Mapper Overview

The event mechanism is by far the most efficient method of keeping your
search services up to date. However, if your searches are complex, develop-
ing and fully testing your search service may be cumbersome. This is the
problem the Pull Mapper sets out to solve.

The pull mapper uses timestamps on application records to find records that
have been created or updated since the pull mapper or the extractor last ran.
When it finds such records it hands them off to the Search Controller to up-
date the search services, and from here the process is exactly the same as the
standard event mechanism. This process requires that all database tables in-
volved in a search service are scanned, which does obviously require data-
base resources. In essence the Pull Mapper sacrifices some runtime perform-
ance to provide a quicker and easier way to develop searches.

8.3 Developing with the Pull Mapper

This section will walk you through the process of developing a search ser-
vice using the Pull Mapper.

8.3.1 Enable Last Updated Field on your searchable entities

34

8.3.2

8.3.3

Curam Generic Search Server

Timestamps are required on all your database entities that are involved in
search services and that use a Pull Mapper. These timestamp columns are
automatically added and kept up to date by infrastructure when you enable
the Last Updated Field feature for the entity in the model. The process for
enabling this feature is documented in the Ser ver Model | i ng CGui de .

Modelling the table scan

Another modelling requirement imposed by the Pull Mapper to model an
operation called searchByLastwitten (you must use this exact
spelling/case.

This operation should be a nsmulti. The value for no generated SQL should
be no. The operation should take a struct called key . You should model
your own struct as a parameter, but it must have an attribute called dat e-

ti me , which must be aDat eTi e . Later you will specify the classname
of this struct in the GSSEntity table, as described below.

Y ou need to provide SQL for the operation. Here is a simple example for a
simple entity called Customer :

Sel ect Custoner.custoner _id, Custoner.nane,
recordStatus from Custoner
WHERE Custoner.lastwitten >= :datetine
I NTO : custoner _id :nane :recordStatus

You must ensure you are selecting al the columns used by the search ser-
vice.

In addition to the table scan method, you must have a standard read method
on all your searchable entities.

Defining your search service

Y our search service should be defined in the usual way (see Chapter 7, Im-
plementing a Search with the Generic Search Server

In addition to the SearchService and SearchServiceField tables you must
add definitions to the GSSM apperType and GSSEntity tables.

GSSMapperType

This table simply maps the Search Service name to a string defining the
mapper type. The default is the standard event mapper, which does not need
to be specified. To use the pull mapper with a particular search service, a
row should be added to this table mapping the Search Service name to the
mapper type “PULL" .

searchServiceld

The Search Service Identifier; a string used to uniquely identify a Search
Service. Thisisaforeign key of the SearchService table.

35

8.3.4

Curam Generic Search Server

mapperType

Set this to 'PULL" (must be uppercase) to enable the Pull Mapper for the
search service.

GSSEntity

When the pull mapper is in use GSS requires more information about the
entities being used in the search services. For each unique entity listed in the
child searchServiceField records belonging to each SearchService using the
Pull Mapper, a GSSEntity record must be added (however if multiple fields
belong to the same entity, you don't need to repeat the information).

searchServiceld

The Search Service Identifier; a string used to uniquely identify a Search
Service. Thisisaforeign key of the SearchService table.

tblScanKeyStruct

Thisisthe full classname of the struct that is the parameter to your modelled
sear chByLastwri tt en method described here: Section 8.3.2, Model-
ling the table scan .

entityKeyStruct

Thisis the full classname of the parameter struct to your entity's read meth-
od.

EntityFactClass

Thisisthe full classname of the generated factory class for your entity.

Writing your mapper class

A SearchServiceMapper implementation with the PullMapper is very much
like a standard SearchServiceMapper implementation as described in the
Implementing a Search with GSS chapter of this guide. However, there are
some additional considerations.

When using the Pull Mapper with a complex search service that is com-
posed of severa related entities, ensure that your SearchServiceMapper im-
plementation will behave appropriately when it has to deal with incomplete
sets of entities, i.e. if entities A, B and C together comprise a search service
your mapper may get called when only A and C exist. Depending on your
search service the correct behaviour may be to add the incomplete set of
data to the search service, or to do nothing until the set is complete.

36

Curam Generic Search Server

8.4 Delete operations

The Pull Mapper cannot deal with standard delete operations. If you have a
searchable entity that can be deleted then you must use another mechanism
to deal with this operation (e.g the event based mechanism described in this
guide).

However, the Pull Mapper can deal with standard logical delete operations,
i.e. where a recordStatus column is set using the Recor dSt at us
codetable values.

37

9.1

9.2

Chapter 9

Searches and Queries in Depth

Introduction

Like any other piece of software, your GSS enabled searches must conform
to certain design constraints if they are to perform acceptably and work as
users expect. This chapter described in depth the process of designing a GSS
search and proper use of GSS queries.

The Search Service - general guidelines

Your first design task is to decide what data you want to be able to search.
Which fields do you want to be able to search on? What data do you want
your search to return? There are severa tradeoffs here so it's worth thinking
about these things carefully.

Firstly, your index should contain as few fields as possible. Less fields mean
a smaller index at runtime, and less use of system resources. Don't put it in
your search service unless you need it.

Each field in your index can be indexed (i.e. searchable), stored (i.e. you can
retrieve its value), or both. The reasons you would want to index afield are
obvious - you want to be able to search based on it. However, some fields
you might not want to search on - such as non-human-readable I1Ds. You
might wish to add these to your search service as stored but non-indexed
fields, so that you can perform database |ookups based on the results of your
searches. If you don't need to index a field, then don't - your extract pro-
cesses will run faster and your index will consume less system resources.

Likewise, you may choose to store field values or not. In general, the index
does not store the original value of afield, but keeps a searchable represent-
ation only. In general, to be useful, a search must store at least one field (the
corresponding primary key of the database record).

After that, whether or not to store fields is a tradeoff. Y ou could store all the

38

9.3

9.4

Curam Generic Search Server

fields you need in order to display your search results, or you could store
only the database IDs and use these to retrieve the data from the database to
display. The first option will result in a much larger index, but a faster dis-
play of search results because the database is not required.

Mapping your database structure to an Index -
Denormalization

Y ou may wish to include data from several different entities in your search.
Unlike database searching, searching with indexes is not conducted using
joins. Remember, the main benefit of using an index is to allow the work of
searching to essentially happen up-front, when the index is created rather
than when the search isinvoked. Accordingly, all database tables should be
denormalized for indexing. The alternative, which is to create separate in-
dexes, search them separately, then attempt to merge results is much more
complex and inefficient.

Example say you have the following entities. Entity Person with attributes
name, date of birth, and a foreign key pointing to an Address entity Entity
Address with attributes street address, city, and country. Y ou wish to create
a search that allows you to search for persons by name, DOB, street address,
city and country. You would create a searchable index that contains all the
data from both tables.

When you have multiple entities contributing to a single search index, bear
in mind that updates to any of the tables concerned can lead to the search in-
dex requiring an update.

Tokenized and Untokenized Fields

We have aready briefly touched on the issue of tokenization of search
fields. What tokenization entails is essentially breaking up the indexed data
into units called tokens. This is done by use of an anayzer. Different ana-
lyzers behave differently, some may break tokens at whitespace, some at
punctuation, etc. The resulting tokens are also usually transformed to lower-
case. For tokenized fields query strings are tokenized in the same way, so
searches are case insensitive, among other benefits.

For some fields it doesn't make sense to tokenize. Good examples of this are
computer generated values, such as codetable codes. In general, however,
most of your fields should be tokenized. In particular, the behaviour of mul-
tiword untokenized fields and searches is counterintuitive. If you find your
searches are not returning the data you expect consider whether this may be
the case.

Example: Take an address field, with a document containing "Joyce Way
Parkwest Dublin". If this were atokenized field using the standard analyzer,
then the index will contain four terms. joyce, way, parkwest and dublin.
Any gquery string that contains terms matching these terms (exactly or viaa

39

9.5

9.6

Curam Generic Search Server

wildcard) will find this document. For instance: "Dublin", "Joyce Way",
"park*", etc.

However, if this field is untokenized and the same document is added, the
index will contain asingle term: "Joyce Way Parkwest Dublin". Much fewer
query strings will match this, essentially only the string itself or the first part
of the string as a prefix search. The search will also be case sensitive.

Wildcards

GSS supports single character and multi-character wildcards. The gquestion
mark symbol, “?" matches any single character. The asterisk symbol, “*”
matches any sequence of characters. Neither of these may be used as the
first character in a search term because this results in poor performance.
When implementing a search developers should consider whether users
should be allowed enter these characters in searches, and if so provide use-
ful online help. Otherwise they can be escaped with an escape character: “\”
. It may aso be useful to check that these characters do not occur at the start
of search terms and return a more specific error message to the user than the
GSS infrastructure is capable of doing (a generic exception to indicate that
the query is invalid will be returned, but the developer implementing the
search will be able to add more information regarding which field is inval-
id).

Analyzers in Depth

As previoudly introduced, Analyzers prepare your searchable text for index-
ing and searching.

Your choice of analyzers is very important. Analyzers are concrete classes
that extend the class org.apache.lucene.analysis. Analyzer. The GSS comes
complete with several analyzers, and you can create and use your own.
Sometimes when you are tempted to define a field as untokenized you may
want to consider your choice of analyzer more carefully instead.

Each Search Service has a default analyzer, and any Search Service Field
can override that analyzer to define a specific analyzer for use with that field
(see Section 5.3.9, analyzerName) GSS will use the same anayzer both for
indexing and for searching.

The Generic Search Server provides the following predefined analyzers.

LUCENESTANDARD

Splits text at punctuation characters, removing punctuation. However, a
dot that's not followed by whitespace is considered part of a token.
Splits words at hyphens, unless there's a number in the token, in which
case the whole token is interpreted as a product number and is not split.
Recognizes email addresses and internet hostnames as one token. Nor-
malizes token text to lower case and removes common English stop
words.

40

Curam Generic Search Server

STANDARD

Similar to LUCENESTANDARD analyzer but common stopwords are
removed from the tokenized terms and if the content to be tokenized isa
single number it will not be atered (making it suitable for processing
generated infrastructure IDs which may be negative numbers).

SIMPLE

Splits text at non-letter characters and normalizes token text to lower
case.

STOP

Splits text at non-letter characters, normalizes token text to lower case
and removes common English stop words.

WHITESPACE

Splits text at whitespace. Adjacent sequences of non-Whitespace char-
acters form tokens.

KEYWORD

"Tokenizes' the entire stream as a single token. This is useful for data
like zip codes, ids, and some product names.

Note that if you are using an analyzer other than a predefined GSS analyzer
or analyzers shipped with Lucene the class must be available on the Generic
Search Server classpath.

41

Chapter 10

Running the Generic Search Server in Eclipse

10.1

10.2

10.3

Introduction

This chapter describes how to configure the development environment to
run the Generic Search Server in the Eclipse IDE for development and test
purposes.

The Generic Search Server can be run in RMI mode for development pur-
poses, in a similar way to the Clram application itself. This chapter details
how to set this up.

Bootstrap.properties

Before starting development, the relevant settings should be added to your
Boot strap. properti es file, where necessary. See Section A.1, Con-
figuration Properties for a description of the configuration properties.

Launching the Caram Generic Search Server
from Eclipse

Like the Curam application, in development mode the Generic Search Serv-
er requires atnameserv process to be running on your machine.

In your development installation, you will find the following implementa-
tion Java class files in your / EJBSer v-
er/tool s/ search/lib/gss.jar fileinEclipse:

e curam core.inpl.DataBaseSear chExtractor. cl ass

e curamcore.inpl.admn. Start SearchServer. cl ass

Y ou should be able to run both the above class files as a normal Java applic-
ation in the context of the EJBServer project in the usual way, i.e.

42

Curam Generic Search Server

* Right-click on the file and select Run as Java application

Run the DataBaseSearchExtractor to build your staging database before
StartSearchServer. And run the StartSearchServer process whenever you
need to run a Search Server instance to test your search functionality. You
should rerun your DataBaseSearchExtractor before you start your Search-
Server if you have rebuilt your application database.

]

H Note

If any of your Search Services use third party or custom Analyzers
(i.e. Analyzers that do not come as part of the Lucene distribution),
ensure that they are added to the classpath of the EJBSer ver
project.

43

11.1

11.2

11.3

Chapter 11

Deploying the Generic Search Server

Introduction

This chapter describes the process of deploying the Caram Generic Search
Server onto your application server. This chapter is aimed at administrators
who will be deploying the Search Server alongside Cdram application and
who are familiar with the relevant Caram Deployment Guide.

Deployment Options

Y ou can deploy GSS either initsown ear file or as part of the Caram ear
file. The EJBSer ver/
proj ect/confi g/ depl oynent _packagi ng. xm contains an op-
tion to include GSS, called r equi r eSear chSer ver . If you set thisand
build your Clram ear then you do not need to deploy GSS as a separate
ear file (in fact, your application server will not allow this). In general we
do not recommend this asit is not a highly performant deployment configur-
ation but it may be useful for testing purposes or small deployments.

If deploying GSS as part of the Caram ear then you must deploy online help
separately. Again, this option can be set usng depl oy-
ment _packagi ng. xm . If you build online help as norma and then
build your Caram ear filethe help will be built into a separate ear file that
can be deployed if required.

Deployment Process

Note that prior to building and deploying an ear that uses curam enhanced
search you will need to ensure that EJBServer/
t ool s/ search/ G obal SearchServer _li b/ gss.jar isincluded
on your PRE_CLASSPATH environment variable.

44

11.4

11.5

11.5.1

11.5.2

Curam Generic Search Server

The deployment process consists of the following steps:

e Set up your Bootstrap.properties with your configuration properties and
any properties related to your Search Server. See Section A.1, Configur-
ation Properties for a description of the configuration properties.

» Build your Curam application ear file as usua (this will aso build your
GSS ear file).

» Set up your database as usual.
* Run the Cdram Generic Search Server search database extractor.
» Deploy al your application ear files, including SearchServer.ear

* Log into the application as an administrator, and set up the system prop-
erties to enable the GSS-supported searches that you wish to use and to
enable the synchronization mechanism. See Chapter 4, Generic Search
Server enabled searches

* Run the generic search server startup process.

The Generic Search Server should then be available to respond to queries.

Clustering

Deploying multiple instance of GSS is supported on a cluster environment.
Extended discussion of advanced cluster deployment topologies is beyond
the scope of this guide. Also see Section 13.9, Recommended configuration
for Production Environment .

]

H Note
It isadvised to deploy GSSin its own cluster.

Build Targets

The following build targets are specific to the Caram Generic Search Serv-
er.

weblogicEARGSS

This target builds the SearchServer.ear file and copies it to the EJBServer/
build/ear/WL S/ directory, alongside your Curam ear file. It is run automatic-
ally as part of the webl ogi cEARtarget. The SearchServer ear file must be
built after the Cdram ear file. After the SearchServer ear file has been build
the application is ready for deployment onto Oracle® WebLogic Applica-
tion Server using the same build targets or manual processes as the Clram
ear file.

websphereEARGSS

45

11.5.3

11.5.4

11.5.5

11.6

Curam Generic Search Server

This target builds the SearchServer.ear file and copies it to the EJBServer/
build/ear/WLS/ directory, alongside your Curam ear file. It is run automatic-
aly as part of the webspher eEAR target. The SearchServer ear file must
be built after the Cdram ear file. After the SearchServer ear file has been
build the application is ready for deployment onto IBM® WebSphere® Ap-
plication Server using the same build targets or manua processes as the
Curam ear file.

runExtractor

This target must be run after your application database has been configured.
It extracts all data related to the CEF search services and any other search
services you have defined out of your application database and transforms it
into a format suitable for indexing. The length of time that this process will
take will increase with the amount of data to be extracted. This target may
be rerun multiple times if required.

runPersist

If you are using a persisted database index (see Section 13.3, Index Persist-
ence , this target builds the index from the staging database tables. It should
only be run after your application database has been configured and the
runExtract target has been run. The runExtract target will build your per-
sisted index if persistence is configured, therefore this target only needs to
be run separately if you have changed your configuration since running the
runExtractor target.

startupSearchServer

This target is optional. If it is to be run it must be run after your Generic
Search Server has been deployed onto your application server. It triggers the
Search Server to set up its indexes so that they are available for searching.
The length of time that this process will take will increase with the amount
of datato be indexed. If you don't run the startup target explicitly, the search
server will initialize its indexes on the first search request. This feature is
primarily there for ease of testing with small datasets. For large datasets the
automatic startup feature should not be used. Y ou can disable the automatic
startup by setting the property “curam.searchserver.autostartup.disabled” to
true in your Boot st rap. properti es . when you set up your ear file -
thisis recommended.

Database Performance

The Curam application and the Search Server application share a common
database, but impose quite different demands on it. The SearchServiceRow
table will see the bulk of writes and accesses, and it will grow very large, as
it essentially contains a version of al the searchable data. The Cdram ap-
plication will write to this table as searchable entities are inserted or up-

46

11.7

Curam Generic Search Server

dated. Periodicaly, if your Search Server is restarted or when it synchron-
izes, there will be alot of reads from this table. It may make sense to place
the SearchServiceRow table in a different tablespace to the rest of the ap-
plication tables, depending on your organisation's resources and needs.

Time Considerations

If different machines are used to run instances of the Curam application and
the Generic Search Server then all systems must have their clocks in sync
and remain in the same time zone. We recommend that a software solution
such as NTP (depending on your deployment platform) is employed to en-
sure this remains the case. If thisis not done then there can be no guarantee
that all updates to application data will be accurately reflected by the Gener-
ic Search Server.

47

12.1

12.2

Chapter 12

Localization

Introduction to GSS Localization

There are two aspects to localization of GSS. The first relates to dealing
with the data to be indexed and searched. Y ou must use appropriate analyz-
ers for the languages and character sets you are dealing with. See Sec-
tion 2.11, Analyzer and Section 9.6, Analyzers in Depth for more back-
ground on how GSS uses analyzers, and the Lucene website for information
on the language-specific analyzers that are available.

Localization of GSS log messages

The second aspect of GSS localization is localizing the message files GSS
USES..

GSS message files ae shipped in the search/d ob-
al SearchServer _| i b/ message directory, with a . i m file exten-
sion. In order to localize or override any GSS message, copy the . i ml file
containing that message to the message directory of a component in your
Curam application, for instance the custom component.

The message file may be modified to override messages or add new suppor-
ted locales. The nsggen build target can then be run in order to merge the
modifications with the ones shipped with infrastructure. See the Car am
Server Devel oper's GCuide for more information on editing and
localizing message files.

48

13.1

13.2

Chapter 13

Performance

Introduction

This chapter describes Cdram Search Server performance and how various
deployment scenarios and configuration settings may influence it.

Index Types

As described in Section 2.3, Indices an index is the data structure that
powers GSS searches. It can be a fairly sizable data structure (see Sec-
tion 13.7.1, Index Sze Calculation and this begs the question: where to store
it? GSS provides three options: memory, file, or in the database. For inform-
ation on how to configure these properties see Section A.1, Configuration
Properties

RAM (in-memory) directories must be reconstructed each time an applica-
tion server is started (unless persistence is used, see Section 13.3, Index Per-
sistence . They are fast to access but their memory requirements may exceed
the resources available. RAM directories may be very useful for testing
however, as they do not hold state.

Database (JDBC) indexes instead store the index in a database table in a
BLOB. They don't have the size constraints of RAM indexes and the index
can be built in advance of server startup. They are fast where the DBMS is
colocated with the application server hosting the GSS application. JDBC in-
dexes are stored exactly as described in Section 13.3.2, Index Persistence
Database Configuration .

File indexes can be used as an alternative to a JDBC index where the Gener-
ic Search Server and DBMS have a different physical deployment. The
Generic Search Server performance under such a configuration with a FILE
index setting is much improved over that with a JDBC index setting. Even
though the J2EE specification does not cover file system access in practice
this works with all supported versions documented in a separate document,

49

13.3

13.3.1

13.3.2

Curam Generic Search Server

Curam Supported Prerequisites document. Naturally the better the perform-
ance of the underlying filesystem used the better the performance of GSS
will be.

Index Persistence

Each Search Service has an associated index that is queried during each
search. This index is generated from the staging database tables when the
Search Server initializes. A substantial amount of time may be required to
read all the search service data from the staging database tables and sub-
sequently to generate the relevant indices for this data.

The Generic Search Server provides the means to persist the current index
on the database so as to improve the startup time. When index persistenceis
enabled, and before the staging tables are interrogated, the persisted index is
loaded if available. If it is not available, al data is read from the staging
tables and startup will be slower.

The persisted index has a timestamp associated with it and this is stored in
the appropriate Search Service table for that index. This timestamp indicates
the time that RAM index was last persisted to disk. Knowing this time en-
ables the Generic Search Server to retrieve any new or modified Search Ser-
vice data from the staging tables. The persisted index and the new/modified
data from the staging tables provide for a complete in-memory index ready
for searching. Time is saved by reducing the access to the staging tables and
the associated processing during index construction.

Persisted index data is stored in BLOB format, therefore performance of
reading and writing a large index from and to the database is optimal .

Persistence Operation Invocation

The Batch operation DataBasel ndexPersist.persistindex() is executed to per-
form the backup for all indices. The process for persisting each index isto:-

1. Read current persisted index

2. Read new or modified data from staging table data

3. Generate an in-memory index with 1) + 2) above.

4. Save newly generated in-memory index to the database.
5

Repest 1) to 4) for each search service.

Index Persistence Database Configuration

The Search Service indices are persisted in the database.

The indices are stored in database tables where the name of the table is
"GSS " + 'Search Service Name'. Example:- GSS_PersonSearch. Each table
entry describes a segment of the index. The table is described as follows:-

50

Curam Generic Search Server

Column Name Column Type Description

name_ VARCHAR The name of the index seg-

ment.

value BLOB A binary column where the

size

If

content of the segment is
stored

NUMBER The size of the current
saved datain the Value
column

TIMESTAMP The time that segment was
last modified

deleted bit If the segment is deleted or

not

Table 13.1 Persistence Table

Note:- If a persistence table does not exist during GSS startup then the
Search Service will default to index initialization from the staging tables.
However, it is highly recommended that you should run the r unPer si st
build target before starting your search server. See Section 11.5.4, runPer-

Sist

If index persistence is enabled, a default configuration for these tables is
provided by GSS during the persistindex() execution. Otherwise, the setup
of these tables may be overridden as follows:-

1

Create and populate a "dbType" SearchServices.properties with the rel-
evant SQL table initialization statements for the Search Service for
your component. "dbType" is the database type as defined by
curam db. t ype property. It can have either of the following val-
ues:-

* ORA - Oracle® Database.
- DB2-IBM® DB2® Database.
« zOS- IBM® DB2® for ZOS® Database.

So, for DB2, the file would be called DB2SearchServices.properties.
SQL constructs may be taken from the other relevant database sample
properties file. Sample Property files are contained in EJBServer/
tool9/search/Global SearchServer_lib/sample_properties folder.

Copy the "dbType"SearchServices.properties to EJIBServer/compon-
ents/(componentName)/properties folder.

From the EJB Server/tools/search folder rebuild your EAR.

For the development environment the "generate.db.properties’ target of
EJBServer/tools/search/gss _build.xml can be executed. This populates

51

13.4

13.5

13.5.1

Curam Generic Search Server

the EJBServer/project/properties/ CustomDB SearchServices.properties
file. Copy this file to the "curam/core/impl/gss/db" package and place
this on your Search Server runtime classpath.

When the GSS DataBaselndexPersist.persistindex() batch operation is in-
voked new persistence database tables are generated. If an overriding per-
sistence table setup is not specified for any search service, a default table
configuration is created. The size of the BLOB associated with the Search
Service table is configurable via a property in that service's Search Service
table entry. The property nameis pr st Bl obSi ze . If thisisn't set the de-
fault table size will be 50M.

Testing and operational considerations

Persisted indexes, FILE and JDBC indexes are designed to retain built in-
dexes between server resets.

The data also persists between database rebuild operations, and this may
cause issues for testers if index data becomes inconsistent with the current
database.

Similarly, in an operational setting, if database updates occur without search
index updates being enabled in the application (via the
“curam.lucene.luceneOnlineSynchronizationEnabled” property) the data in
the index will become out of date and problems may occur.

In the event of either of the above scenarios, persisted data can be removed
manually from the database by dropping all database tables that begin with
“GSS " (there will be one table for each Search Service). The persisted or
JDBC indexes will be rebuilt as normal when an extract or persist operation
isrun.

In the case of a FILE index the file may be deleted, and in the event of a
standard RAM search service encountering such issues, rerunning the ex-
tract process will fix the problems.

Performance Tuning

This section describes parameters that influence the performance of reading
and writing the search index. They determine how the index is constructed
and how new entries are to be written to it.

Max Merge Documents

curam sear chserver. | uceneadapt or . sear cher . i ndex. maxner gedocs

This property improves search times for higher values and for lower values
gives better results when an index encounters frequent updating. Small val-
ues (e.g., less than 10,000) are best if the index is frequently updated,
however, search times performance will be impacted. The default is
10000000. If the search performance is most important this value should be

52

13.5.2

13.5.3

13.5.4

13.6

13.6.1

Curam Generic Search Server

large, for example the default value, or else if the search data updating per-
formance is more important then the value should to a small value, for ex-
ample 10,000.

Merge Factor

curam sear chserver. | uceneadapt or . sear cher. pool . nmer gef act or

This property has an impact on RAM used while updating an index. The in-
dex requires updating as a result of search affecting application data up-
dates. For small values(less than 10), searches will be faster, however,
search index updates will be slower. With larger values(greater than 10),
more RAM is used during index updating, and while searches are slower,
index updating is faster. The default value is 10; If the search performance
IS most important this value should be less than 10 or else if the search data
updating performance is more important then the value should be greater
than 10.

Enable Persistence

curam sear chserver. server. i ndex. persi st ence. enabl e

add
curam sear chserver. server. i ndex. persi st ence. enabl e=
t r ue to Bootstrap.properties to enable index persistence.

Note:- If this property is enabled, during the Database extraction execution,
the new persisted indices will aso be generated.

References

For more information of parameters discussed in this section refer to ht-
tp://lucene.apache.org/javal2_2 O/api/index.html

Searcher Pooling

This section describes the how to configure Search Pools and the influence
this has on search performance.

Overview

Lucene has an internal caching mechanism which makes searches using
long-lived IndexSearcher objects faster than searches with newly created In-
dexSearcher instances. One shared IndexSearcher instance would be enough
to get fast searches in single-user environment, but a standard use case in a
server environment is that multiple clients search the index simultaneously.
To avoid sequencing the search requests in this setting, which would de-
grade individual search performance, the GSS uses an IndexSearcher pool
that keeps a defined number of IndexSearcher instances for reuse by simul-
taneous search requests.

53

http://lucene.apache.org/java/2_2_0/api/index.html
http://lucene.apache.org/java/2_2_0/api/index.html

13.6.2

13.7

13.7.1

Curam Generic Search Server

An IndexSearcher will only see the index as of the "point in time" that it
was opened. Any updates to the index after the IndexSearcher was opened
are not visible until the IndexSearcher is re-opened. Each IndexSearcher in-
stance can use a very significant amount of memory depending on index
size and whether the index has been updated in the meantime or not. The In-
dexSearcher pool takes care of closing and reopening IndexSearcher in-
stances when an index update occurs.

Pool configuration properties

IndexSearcher pool has two basic options - initial size and maximum size.
The following parameter

curam sear chserver. | uceneadapt or. sear cher. pool .initial size

specifies how many IndexSearcher instances will be open at startup and kept
open at all times for use by search clients. This is a required option and
takes positive integer values including O. If not specified the default value is
"0". Typicaly this property should be set to the anticipated maximum num-
ber of simultaneous client searches.

curam sear chserver. | uceneadapt or. sear cher . pool . naxsi ze

specifies what is the maximum number of IndexSearcher instances allowed
to be open at any given time. If more than this number of searches happens
at any time an exception will be thrown and logged for diagnostic purposes.
This option takes positive integer numbers, and if not specified the default
valueis"100". Thereis aso the associated

curam sear chserver. | uceneadapt or . sear cher . pool . maxsi zeunbounded

option which means the maximum pool size is unlimited. The option ac-
cepts values of "true" or "false". If not specified default is "true". If this op-
tion IS set to "true" the
curam sear chserver .| uceneadapt or. sear cher. pool . maxs
I ze option value will be ignored. One of those two associated optionsis re-
quired.

RAM Limitations

The Global Search Server indices are stored in-memory if configured to do
so. If using a 32-bit VM A memory limitation of ~3GB is encountered.
However, this figure is not only the memory available to GSS but also to all
other system processes. It isimportant to note that very large Search Service
indices could exceed the maximum RAM available to the GSS and other de-
ployed processes.

Index Size Calculation
The index size is approximately 30% of the text indexed. The Search Ser-

vice's indexed and stored properties (these can be obtained from the Search-
ServiceField attributes where indexed=true and stored=true) are used to es-

54

13.8

13.9

Curam Generic Search Server

timate the index size.
Person Search Index Example

e 1 million Person records. where 1 record = 1 index document.

* 1 document may contain the following indexed and stored properties de-
termined from the SearchServiceField table for a PersonSearch service:-
refnumber(10) forename(20), surname(20), AddressLinel(30), Address-
Line2(30), city(20), country(15), gender(10). where (*) = max value size
in character for that field.

* 1 document = (155 characters for stored value) + (66 characters for each
field/term name.) = 221.

 Memory 1M Person documents and Java using 16-bit unicode per char-
acter. Total indexed and returned text 442MB * 30% = 132MB.

Recommended configuration

The recommended configuration for Ciram Generic Search server is the use
of a FILE index type with index persistence turned off as standard. This
should provide good performance without sizing worries. The search server
should be deployed as a separate application and not colocated with Cdram
application (see Chapter 11, Deploying the Generic Search Server .

Recommended configuration for Production En-
vironment

FILE index type is the only supported configuration in production environ-
ment.

55

Appendix A

Curam Generic Search Server Configuration
Properties

A.1 Configuration Properties

Before starting development, or deploying your Curam Generic Search
Server the following settings should be added to your Boot -
strap. properti es file, where necessary.

Property name Description

curam.searchserver.sync.inter Theinterval in milliseconds between Gener-

val ic Search Server synchronization invoca-
tions. Thisis effectively the maximum time
between data being updated and it being
available for search. If this property is not
set, the default is to synchronize every 3

seconds.
curam.searchserver.sync.user The username used for logging into the ap-
name plication to perform synchronization. The

user must be authorized to run the DoGSS-
Sync.sync function identifier. Required
when running under WebSphere application
server only. Omitting to specify this property
and the associated password will not prevent
the sync operation from running but it will
result in security warnings being written to
the logfiles on each synchronization.

curam.searchserver.sync.pass Password associated with the

word curam.searchserver.sync.username described
in the entry above. This password should be
encryped with the standard Caram encrypt
build target.

56

Curam Generic Search Server

Property name Description

curam.searchserver.environm This property should be set to “ITD”
ent.vendor “IBM” , or “BEA” depending on whether
you are using the Search Server in devel op-
ment mode or deploying to WebSphere or
WebL ogic. If this property is not set the
Search Server will default to using
curam envi ronnent . as. vendor

property.
curam.searchserver.server.ho The domain name or |P address of the server
st on which your Search Server is running.

This must be set in order for you to be able
to run the server startup process from the
command line. If this property is not set the
default islocalhost.

curam.searchserver.server.po The port on which your application server's

rt RMI serviceis available. This must be set in
order for you to be able to run the server
startup process from the command line.

curam.searchserver.autostartu For testing and development purposes, the

p.disabled Search Server will initialize itsindexes on
the first search request, unless it has already
been started up. In a deployment scenario,
you may want to disable this behaviour and
ensure that the startup process is run from
the command line, to give you more control
over the process. Setting this property to true
disables the automatic startup behaviour.
Note that the search server will throw an ex-
ception in response to any search attempts
that occur before the startup is compl ete.

curam.searchserver.lucenead This property is used to tweak the perform-

aptor.searcher.index.maxmer ance of index reading and writing. Larger

gedocs values “1,000,000" are best for batched in-
dex writing and speedier searches. Smaller
values “10,000” are best for interactive in-
dexing where numerous individual index up-
dates occur.

curam.searchserver.lucenead Indicates the count of documents to update

aptor.document.flush.count before flushing to the index, when dealing
with alarge batch of documents. If not spe-
cified, this defaults to 1000 documents. Tun-
ing this property can reduce the time re-
quired to build your index initially on index
persistence or server startup.

curam.searchserver.term.min. Minumum allowable length of a search term.

57

Curam Generic Search Server

Property name Description

length Defaults to two characters. Using very short
search terms will result in poor search per-
formance, and usualy in poor quality of

search results.
curam.searchserver.directory. This specifies the type of storage to use for
type search services - may be RAM, JDBC or

FILE. RAM isthe default index type and
suitable for smaller indexes that require very
fast performance. JDBC storage uses the
database and is suitable for search services
with more data. FILE setting provides stor-
age for large indices on the File System.

curam.searchserver.fileindex This property indicates where to store the
Jlocation file index on the File System if
curam sear chserver.directory.t
ype=FI LE with more data. If deploying to
multiple machines the file location should
exist on each targeted machine.

Table A.1 Cdram Generic Search Server Basic Configuration
Settings

Property name Description

curam.searchserver.lucenead This property initializes the number of
aptor.searcher.pool.initialsize searchers within the searcher pool on startup.
The default is 0.

curam.searchserver.lucenead This property indicates the maximum num-
aptor.searcher.pool.maxsize ber of IndexSearchers within the searcher
pool. The default is 100.

curam.searchserver.lucenead This property set to “true” overrides

aptor.searcher.pool.maxsizeu cur am sear chserver. | uceneadapt

nbounded or . sear cher. pool . maxsi ze andin-
dicates there is no maximum number of In-
dexSearchers allowed within the searcher
pool. The default is“true” .

curam.searchserver.lucenead This property is used to tweak the perform-

aptor.searcher.pool.mergefact ance of index reading and writing. The de-

or fault valueis“10” . Minimum valueis“2” .
Higher values result in more RAM usage,
slower searching, but quicker index writing.

Table A.2 Caram Generic Search Server Searcher Pool Settings

58

Curam Generic Search Server

Property name Description

curam.searchserver.server.in - This property should be set to “true’ to en-
dex.persistence.enable able index persistence. If this property is not
set the default is“false” .

curam.searchserver.custom.d This property should be set to “true” when
b.init customising index persistence database
tables. It indicates that the default index per-
sistence tables are not to be used and the
Cust onDBSear chSer -
vi ces. properti es file should be used
to set up these tables.

Table A.3 Curam Generic Search Server Persistence Settings

59

B.1

Appendix B

Sample DMX Listings: PersonSearch

Search Service Record

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t abl e nane=" SEARCHSERVI CE" >

<col um nane="
searchServi cel d
" type="text" />
<col um nane="
nane
' type="text" />
<col um name="
ext KeyNanme
" type="text" />
<col um name="
anal yzer
" type="text" />
<col um name="
| ocked
' type="bool " />
<col um name="
f or cedRei ndexTi neSt anp
" type="timestanmp" />
<col um name="
mapper Name
" type="text" />
<col um nane="
pr st Bl obSi ze
" type="text" />
<r ow>
<attribute nane="sear chServicel d">
<val ue>
Per sonSear ch
</ val ue>
</attribute>
<attri bute nane="nane">
<val ue>
Per sonSear ch
</val ue> </attri bute>
<attribute nane="ext KeyNane" >
<val ue>
Concer nRol el D
</val ue> </attri bute>
<attribute name="anal yzer">
<val ue>

60

Curam Generic Search Server

STANDARD
</ val ue>
</attribute>
<attribute nanme="| ocked">

<val ue>
0
</val ue>

</attribute>
<attribute name="forcedRei ndexTi meSt anp" >
<val ue>
SYSTI ME
</val ue>
</attribute>
<attri bute name="napper Nane" >
<val ue>
curam core. i npl . Per sonSear chMapper
</ val ue>
</attribute>
<attri bute nanme="prstBl obSi ze" >
<val ue>
50M
</ val ue>
</attribute>
</ row>
</t abl e>

B.2 Search Service Field Record

<?xm versi on="1.0" encodi ng="UTF- 8" ?>
<t abl e nane=" SEARCHSERVI CEF| ELD" >

<col um nane="

searchServi ceFi el dl d

" type="text" />
<col um nane="

sear chServi cel d

" type="text" />
<col um nane="

nane

" type="text" />
<col um nane="

i ndexed

" type="bool " />
<col um nane="

type

" type="text" />
<col um nane="

st ored

" type="bool " />
<col um nane="

entityName

" type="text" />
<col um name="

anal yzer Name

" type="text" />
<col um name="

unt okeni zed

" type="bool " />

<r ow>

<attri bute nanme="searchServiceFi el dl d">
<val ue>
fieldo
</val ue>

</attribute>

<attribute nane="searchServicel d">
<val ue>
Per sonSear ch
</ val ue>

61

Curam Generic Search Server

</attribute><attribute nane="nane">
<val ue>
pri maryAl ternatel D
</ val ue>

</attribute><attribute nanme="i ndexed">
<val ue>
1
</val ue>

</attribute><attribute nanme="type">
<val ue>
String
</val ue>

</attribute><attribute nane="stored">
<val ue>
1
</val ue>

</attribute>

<attribute name="entityNane">
<val ue>
Per son
</ val ue>

</attribute>

<attribute name="anal yzer Nane" >
<val ue></val ue>

</attribute>

<attribute nanme="unt okeni zed" >

<val ue>
1
</ val ue>
</attribute>
</ r ow>
<r ow>
<attri bute nane="searchServiceFi el dl d">
<val ue>
fieldl
</ val ue>

</attribute>

<attribute nanme="sear chServicel d">
<val ue>
Per sonSear ch
</ val ue>

</attribute><attribute nane="nane">
<val ue>
firstForenane
</val ue>

</attribute><attribute nane="i ndexed">
<val ue>
1
</val ue>

</attribute><attribute nanme="type">
<val ue>
String
</val ue>

</attribute>

<attribute name="stored">

<val ue>
1
</ val ue>

</attribute>

<attribute name="entityNane">
<val ue>
Al t er nat eNanme
</ val ue>

</attribute>

<attribute name="anal yzer Nane" >
<val ue>
STANDARD
</ val ue>

</attribute>

<attribute nanme="unt okeni zed" >
<val ue>
0

62

Curam Generic Search Server

</ val ue>
</attribute>
</ row>

</t abl e>

63

Notices

This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law.
IBM Japan Ltd.

1623-14, Shimotsuruma, Y amato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

64

Curam Generic Search Server

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sitesisat your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of afee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

65

Curam Generic Search Server

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectivesonly

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming technigques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS', without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years . All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information

This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Curam Social Pogram Management.

66

Trademarks

Curam Generic Search Server

IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Apacheis atrademark of Apache Software Foundation.

Oracle, WebL ogic Server, Java and all Java-based trademarks and
logos are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

67

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Generic Search Server
	Table of Contents
	Chapter 1 Introduction
	1.1 Cúram Generic Search Server Guide
	1.2 Prerequisites
	1.3 Audience

	Chapter 2 Concepts and Definitions
	2.1 Introduction
	2.2 The Generic Search Server
	2.3 Indices
	2.4 Search Service
	2.5 Field
	2.6 Document
	2.7 Lucene
	2.8 Staging Database
	2.9 Query
	2.10 Term
	2.11 Analyzer
	2.12 Mapper
	2.13 Extractor

	Chapter 3 Generic Search Server Overview
	3.1 The Generic Search Server and Lucene
	3.2 Importing Data from Cúram
	3.3 Search Server Synchronization
	3.4 Search Controller
	3.5 The Search Process
	3.6 References

	Chapter 4 Generic Search Server enabled searches
	4.1 Introduction
	4.2 Generic Search Server related properties in the Cúram application
	4.3 Keeping Cúram data and search data synchronized
	4.3.1 Event-based synchronization

	Chapter 5 Staging Database Tables
	5.1 Introduction
	5.2 SearchService Table
	5.2.1 searchServiceId
	5.2.2 extKeyName
	5.2.3 analyzer
	5.2.4 frcdReidxTimeStmp
	5.2.5 mapperName
	5.2.6 dbLastWritten
	5.2.7 prstBlobSize

	5.3 SearchServiceField Table
	5.3.1 srchServiceFldId
	5.3.2 searchServiceId
	5.3.3 name
	5.3.4 type
	5.3.5 indexed
	5.3.6 stored
	5.3.7 entityName
	5.3.8 untokenized
	5.3.9 analyzerName

	Chapter 6 Getting Started with the Generic Search Server API
	6.1 Introduction
	6.2 Mappers
	6.3 Search Controller
	6.4 Search Service Connector
	6.5 Queries
	6.6 CuramTerm
	6.6.1 Query Structure
	6.6.2 Standard Terms
	6.6.3 Date and Date Range Terms
	6.6.4 Text

	6.7 Generating Queries
	6.7.1 Constructing a Query Builder
	6.7.2 Adding Search Criteria
	6.7.3 Generating Queries from a Struct
	6.7.4 Specifying which search service fields to return
	6.7.5 Obtaining the Query Object

	6.8 Dealing with Search Results
	6.9 Data Types and String Conversion

	Chapter 7 Implementing a Search with the Generic Search Server
	7.1 Overview
	7.2 Person Search Example - Overview
	7.3 Develop SearchService DMX files
	7.3.1 Setup SearchService Record
	7.3.2 Setup SearchServiceField Record

	7.4 Implement Mapper Operations
	7.4.1 Mapper.mapToStagingDb interface
	7.4.2 Mapper.getObjectList interface
	7.4.3 Mapper.getExtKey interface
	7.4.4 Mapper.remove interface
	7.4.5 Mapper.getFieldValue Interface
	7.4.6 Mapper newInstance()

	7.5 Search Router and Implementation
	7.6 Add Synchronization to each Search Entity

	Chapter 8 Pull Mapper
	8.1 Introduction
	8.2 Pull Mapper Overview
	8.3 Developing with the Pull Mapper
	8.3.1 Enable Last Updated Field on your searchable entities
	8.3.2 Modelling the table scan
	8.3.3 Defining your search service
	GSSMapperType
	searchServiceId
	mapperType

	GSSEntity
	searchServiceId
	tblScanKeyStruct
	entityKeyStruct
	EntityFactClass

	8.3.4 Writing your mapper class

	8.4 Delete operations

	Chapter 9 Searches and Queries in Depth
	9.1 Introduction
	9.2 The Search Service - general guidelines
	9.3 Mapping your database structure to an Index - Denormalization
	9.4 Tokenized and Untokenized Fields
	9.5 Wildcards
	9.6 Analyzers in Depth

	Chapter 10 Running the Generic Search Server in Eclipse
	10.1 Introduction
	10.2 Bootstrap.properties
	10.3 Launching the Cúram Generic Search Server from Eclipse

	Chapter 11 Deploying the Generic Search Server
	11.1 Introduction
	11.2 Deployment Options
	11.3 Deployment Process
	11.4 Clustering
	11.5 Build Targets
	11.5.1 weblogicEARGSS
	11.5.2 websphereEARGSS
	11.5.3 runExtractor
	11.5.4 runPersist
	11.5.5 startupSearchServer

	11.6 Database Performance
	11.7 Time Considerations

	Chapter 12 Localization
	12.1 Introduction to GSS Localization
	12.2 Localization of GSS log messages

	Chapter 13 Performance
	13.1 Introduction
	13.2 Index Types
	13.3 Index Persistence
	13.3.1 Persistence Operation Invocation
	13.3.2 Index Persistence Database Configuration

	13.4 Testing and operational considerations
	13.5 Performance Tuning
	13.5.1 Max Merge Documents
	13.5.2 Merge Factor
	13.5.3 Enable Persistence
	13.5.4 References

	13.6 Searcher Pooling
	13.6.1 Overview
	13.6.2 Pool configuration properties

	13.7 RAM Limitations
	13.7.1 Index Size Calculation

	13.8 Recommended configuration
	13.9 Recommended configuration for Production Environment

	Appendix A Cúram Generic Search Server Configuration Properties
	A.1 Configuration Properties

	Appendix B Sample DMX Listings: PersonSearch
	B.1 Search Service Record
	B.2 Search Service Field Record

	Notices
	Trademarks

