
IBM Cúram Social Program Management

Cúram Batch Streaming Developers Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 About this Document ... 1
1.2 Prerequisites ... 1
1.3 Audience .. 1

Chapter 2 Why Develop Streamed Batch Programs .. 2
2.1 Introduction .. 2
2.2 Built-in features ... 2
2.3 Batch Volumes ... 3

Chapter 3 Designing Streamed Batch Programs .. 4
3.1 Identify the Processing Unit ... 4

3.1.1 Understanding Processing Unit Dependencies ... 4
3.1.2 Multiple Batch Programs .. 5

3.2 Providing Meaningful Information using the Batch Summary 6
3.3 Identifing any Required Extra Processing ... 7

Chapter 4 Implementating Streamed Batch Programs ... 8
4.1 Introduction .. 8
4.2 Modeling and Class structure ... 8
4.3 Chunker Entry-point .. 10

4.3.1 Extracting Processing Units IDs for the Chunker ... 11
4.3.2 Configuring the Chunker .. 11

4.4 Extra Processing ... 12
4.5 Setting the Batch Stream Entry Point .. 12
4.6 Processing a Single Record ID .. 12
4.7 Processing Skipped Cases .. 13
4.8 Encoding Batch Summary Information ... 14
4.9 Decoding Batch Summary Information ... 14
4.10 Sending a Batch Report ... 14
4.11 Global Batch StreamConfiguration Options .. 15

Chapter 5 Advanced Topics ... 16
5.1 Running Multiple Chunker Processes in a Single Instance 16
5.2 Running Multiple Instances of the Same Batch Program .. 16
5.3 Using Composite Keys to Identify Processing Units ... 17

Notices ... 18

iii

Chapter 1

Introduction

1.1 About this Document

The purpose of this guide is to describe how to design and develop streamed
batch programs using the infrastructure provided by the application.

A streamed batch program is one where the processing load is divided into
streams of independent processing, where these streams can be processed on
separate machines as required. At a technical level the work of the batch
program is divided into processing units which can be processed independ-
ently of each other, for example the payments for a person or the reassess-
ment of a case.

At execution time, there is "chunker" process which identifies these pro-
cessing units and clusters these into chunks of a predefined size. The stream
processes then process one chunk at a time, once all the chunks have been
processed the chunker summarizes the processing carried out by the streams
and reports on the batch processing carried out.

1.2 Prerequisites

The Cúram Batch Performance Mechanisms Guide gives a good back-
ground on the general mechanisms for managing the performance of batch
programs including streaming.

1.3 Audience

This guide is intended for any reader who wants to develop a streamed batch
program.

1

Chapter 2

Why Develop Streamed Batch Programs

2.1 Introduction

The decision to develop a streamed batch program can be triggered by a
known requirement or project imperative. However, there are a number of
reasons why it should be considered in the absence of such a driver, these
are set out in this chapter.

2.2 Built-in features

The batch streaming infrastructure implements a number of features which
are typically required for batch programs. Using the batch streaming infra-
structure means that these features do not need to be directly implemented
in your batch program. The following are the main features of the batch
streaming infrastructure:

Commit point processing
The transaction is committed after each chunk is processed. This stops
the transaction size getting too large which can cause performance and/
or database locking issues.

Skipping processing for records with errors
Any record which causes an error when being processed is automatic-
ally skipped. The transaction for the chunk is rolled back, the record in
error is added to a skip list and the processing of the chunk restarts.

Generic batch logging/reporting
Logging of progress of the batch process should assist in locating any
issues that might be found. The generic elements of the reporting of the
work done by the batch program - chunks processed, any chunks unpro-
cessed and any records skipped - are built-in. Additional reporting can
be added, see Section 3.2, Providing Meaningful Information using the

2

Batch Summary .

Re-startability
In the situation where the chunker and/or stream processes crash or are
killed. They can be restarted and processing will continue from the
point where processing was stopped. This typically means that any
chunks being processed at the time the stream(s) exited will be re-
started, however there is potential under limited circumstances that one
or more chunks could remain unprocessed in the event of a restart.

2.3 Batch Volumes

Typically the decisive reason to stream a batch program is because the anti-
cipated volume of records cannot be processed inside the available time us-
ing a single thread of execution. However, it's very hard to accurately pre-
dict the actual volumes that may be encountered in a production system, so
the best option (where possible) is to use streaming for all batch programs -
even if the "default" run configuration just uses the chunker with an in-
process stream.

Some styles of processing can never be streamed and must be run as a serial
process inside a single transaction. However, even where this is seemingly
the case it is worth closely examining the options to see if the use of para-
meters to batch programs or developing multiple batch programs will allow
the required elements to be run serially while still running in parallel within
those serial elements. For example a batch program is required to reassess
every active case in the system. All cases of type A should be reassessed be-
fore cases of type B. Case type is used as a parameter which allows the
batch program to be streamed. This is achieved by running the batch pro-
gram with case type A as a parameter and then again with case type B as a
parameter.

Cúram Batch Streaming Developers Guide

3

Chapter 3

Designing Streamed Batch Programs

3.1 Identify the Processing Unit

Identifying the processing unit is the key to the design of streamed batch
programs. The aim here is to identify the smallest possible unit of work that
can be executed without risk of overlap between processing units. While
there may be a readily identifiable grouping (by case or participant), more
work will be needed where some serial processing may be required. It's im-
portant to note that this sub-division of the processing is a fundamental
activity where the work of a batch program needs to be done in parallel and
this is not merely a feature of the batch streaming infrastructure, but of the
problem being addressed.

3.1.1 Understanding Processing Unit Dependencies

It is also important to understand the different sorts of dependencies than
can exist between potential processing units. There are serial dependencies
where dependent processing needs to be carried out in set order (before or
after) the related processing. This serial dependency may form a single lo-
gical transaction of work - where both sets of processing should either be
completed or not. There are "fan out" dependencies where during the pro-
cessing of one element a set of other elements requiring processing may be
identified. Such fan out's of processing either need to be handled in the con-
text of the processing that identified them, which may cause issues with the
overlaps between streams and/or with the volume of work in processing a
single record (with the fan out) becoming excessive; or the additional pro-
cessing required needs to noted to be processed at a later stage (this could be
implemented using Multiple Batch Programs, see Section 3.1.2, Multiple
Batch Programs .

There are many approaches to this sub-division of the processing, but some
of the more common are listed below:

4

Indirect units
An indirect unit is where the unit of processing is not made up of the ar-
tifacts being processed directly, but rather using a different (related)
grouping. For example when generating payments, which processes In-
struction Line Items (ILIs) the processing unit is a participant - this is
necessary because of the business requirement to issue all payments
(ILIs) due to a single participant in a single payment instrument, group-
ing by ILI would lead to overlaps as the roll-up of a participant payment
pulled in other ILIs.

Composite keys
Composite keys can be used where there is no "natural" key in the data
which uniquely identifies the unit of processing, for example where the
combination of a participant and case needs to be used. However, be-
cause the database design of the application makes it unlikely that any
composition wouldn't have a unique ID in it's own right (Case Parti-
cipant Role in the example above), this is not directly supported by the
batch streaming infrastructure, but some further information is available
in Section 5.3, Using Composite Keys to Identify Processing Units .

Sub-division of processing space
Sub-division of processing space is useful where rather than dividing
the entire processing space into a single logical set of processing units,
it is necessary to first divide the processing space into large sub-units
and then produce a set of processing units within each of these. For ex-
ample where there are a number of types of financial transactions to be
processed, say payments, bills and account transfers, it may not be pos-
sible to divide all of the financial transactions as a group into suitable
processing units. By first sub-dividing by transaction type, each sub-
division can then be broken down into processing units. This is not dir-
ectly supported by the batch streaming infrastructure, but can be
achieved using Multiple Batch Programs, see Section 3.1.2, Multiple
Batch Programs .

3.1.2 Multiple Batch Programs

Where a sub-division of processing space or large amounts of extra pro-
cessing (see Section 3.3, Identifing any Required Extra Processing) are re-
quired, it may be beneficial to divide the processing between multiple batch
programs rather than trying to complete all the processing in a single batch
program. In particular the development of multiple batch programs may sig-
nificantly simplify the design and development effort for each program as
well as allowing the processing and choice of processing unit be optimized
for each distinct task. There are two distinct options for developing multiple
batch programs:

Independent Batch Programs
The advantage of this approach is that given each process has a distinct

Cúram Batch Streaming Developers Guide

5

chunker and stream implementation more specialized approaches can be
taken to improve performance etc. It's also important to note that, given
suitable hardware and scheduling software, independent batch programs
can be run at the same time - this can offer substantially better utiliza-
tion of the batch window provided the processing for each program is
independent. Alternatively, it is possible to create a single batch pro-
gram that runs several distinct chunker processes in sequence without
creating multiple batch programs, see Section 5.1, Running Multiple
Chunker Processes in a Single Instance .

Single Batch Program using parameters
This is not directly supported by the batch streaming infrastructure, but
can be achieved by adding a (mandatory) parameter to the chunker
identifying the subset of data to be processed and scheduling a run of
the chunker for each sub-division. It's important to note that, barring a
specialized implementation (see Section 5.2, Running Multiple In-
stances of the Same Batch Program) multiple instances of a single
batch program can not be run at the same time - the batch streaming in-
frastructure uses a program key to allow the chunker to be restarted in
the event of a crash. Two instances cannot be run concurrently with the
same key.

3.2 Providing Meaningful Information using the Batch
Summary

By default the batch streaming infrastructure reports on the number of
chunks skipped as well the total execution time. As the report is generic, it
can only report in terms of chunks and the number of records in each chunk.
By including summary information when implementing a batch program,
additional information on the number of business artifacts processed, in-
cluding categorization can be included. This information is included in an
email/report aimed at the operator running the batch programs. The batch
summary report should convey only the key details of the processing. In
general the report should contain no more than ten categorizations. For ex-
ample, included below is the output of the GenerateInstruments batch pro-
gram - the seven counts in the center are produced as summary information.

Report from GenerateInstruments batch job run on 2011-09-06 at
10:44:53.

Total number of Instruction Line Item record(s) processed: 6

Total number of additional Surcharge Instruction Line Item
records(s) created: 0

Total number of Interest record(s) created: 0

Total number of Payment Instruction record(s) created: 1

Total number of Payment Instrument record(s) created: 1

Total number of Payment Received Instruction record(s) created: 0

Cúram Batch Streaming Developers Guide

6

Total number of Liability Instrument record(s) created: 0

Job started at 10:44:44 and took 00:00:09 to complete.

Example 3.1 GenerateInstruments batch program report

3.3 Identifing any Required Extra Processing

Extra processing that is required is processed by the chunker after the
chunking has been completed. This allows processing to start on other
streams. However the extra processing happens before the chunker starts it's
own stream (if configured to do so), in a single database transaction. It is
important therefore to take the total volume of processing expected when
designing any extra processing into account. In general if the five year max-
imum volume of data is likely to take more than a couple of minutes to pro-
cess, then a separate batch program (see Section 3.1.2, Multiple Batch Pro-
grams) is a better option than using extra processing. Where extra pro-
cessing is typically used is where there is some additional processing cannot
be associated with any one chunk.

Cúram Batch Streaming Developers Guide

7

Chapter 4

Implementating Streamed Batch Programs

4.1 Introduction

The implementation of a streamed batch program may seem complex at first
glance, however if the individual elements of the implementation are con-
sidered separately it can be broken down into more manageable tasks. This
chapter should guide you through these tasks. Before starting into the detail,
there is one key note in relation to transaction management.

Use of Transaction Management calls is not supported

Because the Batch Streaming infrastructure uses the database as an
effective communication mechanism between the stream(s) and the
chunker it needs to retain control over the database transactions. To
this end no transaction management calls should be made within any
of the code involved within the streamed batch program. In particu-
lar none of the following methods should be called:

• curam.util.transaction.TransactionInfo.begi
n()

• curam.util.transaction.TransactionInfo.comm
it()

• curam.util.transaction.TransactionInfo.roll
back()

4.2 Modeling and Class structure

In other for the correct classes to be generated, along with the supporting
meta-data for the batch launcher, a class must be defined in the UML model
with one method of stereotype <<batch>> for each batch executable. For
more information on the <<batch>> stereotype, please consult the Cúram
Modeling Reference Guide . When writing a streamed batch program two

8

batch executables are required for the chunker and the stream. For example,
consider two classes each with a method called process .

In other to use the batch streaming infrastructure the following is also re-
quired:

1. a chunker implementation which implements the BatchMain inter-
face.

2. a stream implementation which implements the BatchStream inter-
face

To minimize the volume of classes required, it is recommended to add the
methods from the interfaces, which are required for the implementation, to
the modeled classes created above. This gives rise to two modeled classes as
shown in the figure below.

Figure 4.1 UML Model for Example Streamed Batch Program

The factory mechanism used for generated Cúram classes prevents other
classes seeing the interfaces implemented by the impl classes. To get
around this, it is necessary to create a wrapper class to implement the re-
quired interfaces. This is shown in the examples below.

public class DetermineProductDeliveryEligibilityWrapper
implements BatchMain {

private curam.core.intf.DetermineProductDeliveryEligibility
determineProdDeliveryEligibilityObj;

public DetermineProductDeliveryEligibilityWrapper(
curam.core.intf.DetermineProductDeliveryEligibility
determineProductDeliveryEligibility) {

determineProdDeliveryEligibilityObj =
determineProductDeliveryEligibility;

}

public void sendBatchReport(
String instanceID, BatchProcessDtls batchProcessDtls,
BatchProcessChunkDtlsList processedBatchProcessChunkDtlsList,
BatchProcessChunkDtlsList unprocessedBatchProcessChunkDtlsList)
throws AppException, InformationalException {

determineProdDeliveryEligibilityObj.sendBatchReport(instanceID,
batchProcessDtls, processedBatchProcessChunkDtlsList,
unprocessedBatchProcessChunkDtlsList);

}

public BatchProcessingResult doExtraProcessing(

Cúram Batch Streaming Developers Guide

9

BatchProcessStreamKey batchProcessStreamKey,
Blob batchProcessParameters)
throws AppException, InformationalException {

return null;

}

}

Example 4.1 Chunker Wrapper implementation

In this particular example the doExtraProcessing operation isn't im-
plemented and so the wrapper just returns and the modeled class doesn't
contain this method.

public class DetermineProductDeliveryEligibilityStreamWrapper
implements BatchStream {

private curam.core.intf.DetermineProductDeliveryEligibilityStream
determineProdDeliveryEligibilityStreamObj;

public DetermineProductDeliveryEligibilityStreamWrapper(
curam.core.intf.DetermineProductDeliveryEligibilityStream
determineProdDeliveryEligibilityStream) {

determineProdDeliveryEligibilityStreamObj =
determineProdDeliveryEligibilityStream;

}

public String getChunkResult(int skippedCasesCount)
throws AppException, InformationalException {

return determineProdDeliveryEligibilityStreamObj.getChunkResult(
skippedCasesCount);

}

public BatchProcessingSkippedRecord processRecord(
BatchProcessingID batchProcessingID, Object parameters)
throws AppException, InformationalException {

return determineProdDeliveryEligibilityStreamObj.processRecord(
batchProcessingID,
(DetermineProductDeliveryEligibilityKey) parameters);

}

public void processSkippedCases(
BatchProcessingSkippedRecordList batchProcessingSkippedRecordList)
throws AppException, InformationalException {

determineProdDeliveryEligibilityStreamObj.processSkippedCases(
batchProcessingSkippedRecordList);

}

}

Example 4.2 Chunker Wrapper implementation

4.3 Chunker Entry-point

The process method described in the example above needs to complete a

Cúram Batch Streaming Developers Guide

10

few steps in order to initialize and start the chunker.

1. Call batchStreamHelper.setStartTime() to start the run
timer for the program.

2. Set the instanceID , in general this should be based on a hard coded
entry in the Batch Process Name code table. However, making
this value dynamic can allow more than one instance of the batch pro-
gram to be run concurrently, see Section 5.2, Running Multiple In-
stances of the Same Batch Program .

3. Extract IDs of processing units, see Section 4.3.1, Extracting Pro-
cessing Units IDs for the Chunker for more details.

4. Set the batch main parameters, see Section 4.3.2, Configuring the
Chunker for more details.

5. Call batchStreamHelper.runChunkMain to start the chunker
processing. This method will exit when all the processing for the
chunker has completed. Typically this method just returns at this point,
allowing the chunker process to exit. However, by restarting from step
one above another chunker instance could be run in the same process
after the first chunker has completed, see Section 5.1, Running Multiple
Chunker Processes in a Single Instance .

4.3.1 Extracting Processing Units IDs for the Chunker

The list of ID's passed into the chunker must be an instance of the struct
BatchProcessingIDList . In general, it's possible to construct a
modeled entity operation that returns an instance of this struct or populate
an instance of this struct using the results of one or more entity operations in
code.

However, if necessary, complex business logic could be constructed to pop-
ulate this list with an appropriate set of IDs. But, in this instance, it's import-
ant to consider that this processing will all take place in the chunkers thread
of execution and it may be more efficient to forgo some of the optimization
at this point and allow the streams to filter out some instances where no
work is required as this effort will be parallelized across all the streams.

While the infrastructure assumes that the IDs passed in this struct are single
keys, it is possible to use composite keys if necessary, see Section 5.3, Us-
ing Composite Keys to Identify Processing Units .

4.3.2 Configuring the Chunker

There are a set of configuration options passed into the chunker when it
starts, that control various parameters of the operation of the streamed batch
program.

1. The ChunkMainParameters.chunkSize parameter controls the
number of records in each chuck. Because this value typically has to be

Cúram Batch Streaming Developers Guide

11

tuned for productive use, so that the transaction time for each chunk re-
mains low, it is typically exposed as an EnvVar with a sensible de-
fault value.

2. The ChunkMainParameters.dontRunStream parameter con-
trols whether or not a stream is run in the chunker process while wait-
ing for the other streams to complete. Because this value typically has
to be tuned for productive use, it may be the case that the machine
hosting the chunker is required for other processing while the streams
run elsewhere, it is typically exposed as an EnvVar with a default
value to run the stream (false).

3. The ChunkMainParameters.startChunkKey parameter spe-
cifies the key value for the first chunk to be picked up by the streams.
Where extra processing has been implemented this value is typically
offset by one to allow for the ChunkResult used for the extra ro-
cessing, see Section 4.4, Extra Processing for further details.

4. The ChunkMainParameters.unProcessedChunkReadWait
parameter controls the wait time when re-scanning to detected unpro-
cessed chunks once all the chunks have been handed out to streams.
Because this value typically has to be tuned for productive use, so that
the value is sensible relative to the transaction time for each chunk, it is
typically exposed as an EnvVar with a sensible default value.

4.4 Extra Processing

Extra processing is typically processing which logically belongs in the batch
program, but doesn't fit in the context of any one chunk. As this is executed
in a single transaction by the chunker the potential size of any processing
needs to be considered carefully. This is implemented in the doEx-
traProcessing method that gets the BatchProcessStreamKey and
batchProcessParameters as parameters and is expected to return a
BatchProcessingResult instance containing the encoded results of
it's processing, see Section 4.8, Encoding Batch Summary Information .

4.5 Setting the Batch Stream Entry Point

This method, called process in the example above, needs to set the in-
stanceID, to a value that matches that set by the chunker, then call batch-
StreamHelper.runStream to start the stream processing. Typically
this method just returns at this point, allowing the stream process to exit,
however by restarting from the beginning above another stream instance
could be run in the same process after the first stream has completed, see
Section 5.1, Running Multiple Chunker Processes in a Single Instance .

4.6 Processing a Single Record ID

Cúram Batch Streaming Developers Guide

12

The core processing of the stream takes place in this method, implemented
in processRecord . This method gets BatchProcessingID and
batchProcessParameters as parameters and is expected to return a
BatchProcessingResult instance containing the encoded results of
it's processing, see Section 4.8, Encoding Batch Summary Information for
further details.

If an unrecoverable technical error is encountered when processing the re-
cord passed into this method an exception should be thrown. This will cause
the batch streaming infrastructure to add this ID to a skip list, roll back the
transaction and re-start the processing of the current chunk. This method
will not be called for an record IDs on the skipped list. Examples of unre-
coverable technical errors would include database errors or errors writing to
third party systems. The key point to consider is the expectation that the er-
ror is transient i.e. that there is a reasonable chance that it will not recur the
next time the processing is run. It is also possible that the chunker may retry
the skipped records once all the streams have completed, for more informa-
tion, see Section 4.7, Processing Skipped Cases

Given that only a count of skipped IDs will be reported and that the records
will be re-processed on the next run of the batch program, careful considera-
tion needs to be given to any unrecoverable business errors detected. It may
make more sense to modify the business state of the governing business ob-
ject, for example suspending the case, and informing a user so they can take
corrective action, via a task sent to the case owner. Examples of unrecover-
able business errors would include incomplete or invalid data. Note that er-
rors like this will only be resolved by the intervention of a knowledgeable
user.

One class of unrecoverable business error requires special consideration:
where there is invalid or incomplete configuration data. In this instance we
would expect this to effect many (if not all) of the records to be processed.
But by acting to modify the business state of the governing business object
and individually informing users, the impact on the business might be very
bad - imagine 1,000,000 suspended cases and individual tasks for users! In
this instance it is better to treat such issues in the same way as unrecover-
able technical errors.

4.7 Processing Skipped Cases

This method implemented by the stream in processSkippedCases is
called once per chunk, passing in the list of skipped records, in a parameter
of type BatchProcessingSkippedRecordList . This allows any re-
quired processing for the skipped records, for example creating notifica-
tions, to take place. Because skipped records can be re-processed, either in
the chunker or in a separate run of the batch program, it's important that any
actions, like the notification, make it clear that subsequent processing may
have resolved the issue and this should be verified before taking any cor-
rective action.

Cúram Batch Streaming Developers Guide

13

4.8 Encoding Batch Summary Information

The method implemented in getChunkResult is called at the end of
each processed chunk to encode the results of the processing for this chunk.
The count of skipped chunks is passed into the method. Other values (totals
of subcategories of processing, etc) should be accessed as instance variables
in the streamer implementation. As this method results in a single String
it is up to the developer to choose a suitable encoding mechanism to deal
with multiple values. A tab delimiter is typically used. The meaning and or-
dering of the fields along with the encoding used should match the decoding
processing implemented for the chunker - see Section 4.9, Decoding Batch
Summary Information for further information.

Any instance variables used to values used in this method need to be reset at
the end of the encoding process to ensure the count for the next chunk isn't
inflated by the values for the previous chunk(s).

4.9 Decoding Batch Summary Information

This processing needs to be implemented in the chunker, in the example
above this is in a separate decodeProcessChunkResult method,
which is reused from the Send Report processing. The meaning and or-
dering of the fields along with the encoding used needs to match the encod-
ing processing implemented for the stream - see Section 4.8, Encoding
Batch Summary Information for further information.

4.10 Sending a Batch Report

Report processing is implemented in the sendBatchReport method of
the chunker. This method gets the InstanceID , BatchProcessDtls ,
ProcessedBatchProcessChunkDtlsList and Unprocessed-
BatchProcessChunkDtlsList as parameters. It is up to the developer
as to what information is included in the report and how it's distributed
(saved as a file, emailed, sent as a notification or task in the application,
etc).

However, typically a count of the chunks processed and skipped as well as
the totaled summary information is included, along with the total runtime
for the batch program. The curam.core.impl.CuramBatch class is
typically used for this purpose, assuming a StringBuffer (called
emailMessage in the example) has been built up, then the code example
below will result in an email being sent and the report saved to the file sys-
tem.

curamBatchObj.emailMessage = emailMessage.toString();

// constructing the Email Subject based on a message file entry
curamBatchObj.setEmailSubject(

curam.message.BPODETERMINEPRODUCTDELIVERYELIGIBILITY

Cúram Batch Streaming Developers Guide

14

.INF_DETERMINE_ELIGIBILITY_SUB);

// set output file identifier -
// the initial part of the file name, the datetime is added to this.
curamBatchObj.outputFileID =

curam.message.BPODETERMINEPRODUCTDELIVERYELIGIBILITY
.INF_DETERMINE_PROD_DEL_ELIG.getMessageText(

ProgramLocale.getDefaultServerLocale());

// set the elapsed time
curamBatchObj.setStartTime(batchProcessDtls.startDateTime);
curamBatchObj.setEndTime();

// send email
curamBatchObj.sendEmail();

Example 4.3 Sending a Batch Report using CuramBatch

4.11 Global Batch StreamConfiguration Options

In addition to the Section 4.3.2, Configuring the Chunker there are a set of
global configuration options which are set via EnvVars which effect the
behavior of all streamed batch programs. These are referenced directly by
the batch streaming infrastructure and as such do not need to be referenced
by any specific implementation. However, as these can affect the behavior
of the finished batch process they are documented below:

curam.batch.streams.batchprocessreadwaitinterval
Sets the interval (in milliseconds) for which a batch stream will wait be-
fore retrying when reading the batch process table. The default value for
this is 1000.

curam.batch.streams.chunkkeyreadwaitinterval
Sets the interval (in milliseconds) for which a batch stream will wait be-
fore retrying when reading the chunk key table. The default value for
this is 1000.

curam.batch.streams.scanforunprocessedchunkswaitinterval
Sets the interval (in milliseconds) for which the main batch stream
(chunker) will wait before trying to scan for unprocessed chunks, once
the value in the chunk key table has exceeded the number of chunks.
The default value for this is 1000.

curam.trace.batchprogress
Controls the logging within the batch streaming infrastructure. The de-
fault value for this is false (logging off).

Cúram Batch Streaming Developers Guide

15

Chapter 5

Advanced Topics

5.1 Running Multiple Chunker Processes in a Single
Instance

Given that the batchStreamHelper.runChunkMain method returns
once the chunker has finished it is possible to write a batch process which
kicks off several chunkers in turn. The equilivent for the stream is to do the
same after the batchStreamHelper.runStream method returns, al-
lowing multiple streams to be started one after the other.

However, extreme care is required to ensure when doing this that each
chunker/stream process does not pickup any traces of the previous pro-
cess(es). To this end it's recommend that the batch program instance be cre-
ated as a separate class with a distinct class for each chunker/stream in-
stance allowing them to kept totally separate.

5.2 Running Multiple Instances of the Same Batch
Program

By varying the instanceID programmatically, most obviously by setting
it based on a parameter passed in, it is possible to run multiple instances of
the same chunker implementation at the same. This would also require a
similar mechanism to set the instanceID of the stream instance(s) as this
ID acts as the pairing mechanism between the two.

However, while this is technically possible, care must be taken that this
varying of the instanceID also varies the set of processing units picked
by the chunker. The situation can arise where streams with different in-
stance IDs end up processing the same unit at the same time and contention
and/or cross-locking can occur.

16

5.3 Using Composite Keys to Identify Processing
Units

While not directly supported it is possible to use a composite key to identify
processing units. However, because the batch streaming infrastructure itself
encodes all the IDs for a chunk into a string (using a tab separator) care
must be taken. The encoding used to turn the composite key into a string can
not include tab characters or the elements separated by the tab will be
passed separately into the processRecord method. It is also worth not-
ing that the implementation of the processRecord method will need to
decode the BatchProcessingID into the sub-elements of the composite
key.

Cúram Batch Streaming Developers Guide

17

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

18

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Batch Streaming Developers Guide

19

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Batch Streaming Developers Guide

20

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Batch Streaming Developers Guide

21

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Batch Streaming Developers Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 About this Document
	1.2 Prerequisites
	1.3 Audience

	Chapter 2 Why Develop Streamed Batch Programs
	2.1 Introduction
	2.2 Built-in features
	2.3 Batch Volumes

	Chapter 3 Designing Streamed Batch Programs
	3.1 Identify the Processing Unit
	3.1.1 Understanding Processing Unit Dependencies
	3.1.2 Multiple Batch Programs

	3.2 Providing Meaningful Information using the Batch Summary
	3.3 Identifing any Required Extra Processing

	Chapter 4 Implementating Streamed Batch Programs
	4.1 Introduction
	4.2 Modeling and Class structure
	4.3 Chunker Entry-point
	4.3.1 Extracting Processing Units IDs for the Chunker
	4.3.2 Configuring the Chunker

	4.4 Extra Processing
	4.5 Setting the Batch Stream Entry Point
	4.6 Processing a Single Record ID
	4.7 Processing Skipped Cases
	4.8 Encoding Batch Summary Information
	4.9 Decoding Batch Summary Information
	4.10 Sending a Batch Report
	4.11 Global Batch StreamConfiguration Options

	Chapter 5 Advanced Topics
	5.1 Running Multiple Chunker Processes in a Single Instance
	5.2 Running Multiple Instances of the Same Batch Program
	5.3 Using Composite Keys to Identify Processing Units

	Notices
	Trademarks

