
24 August 2010 Mandarin Orchard, Singapore

A Practical Guide to Securing the SDLC

Kathleen Koh
Rational Solution Architect
IBM Software Group, Rational
kohslka@sg.ibm.com

Application Application SecuritySecurity is more visibleis more visible……

Managers & Developers Are Being Asked Difficult Questions

• What regulations and standards are required?

� PCI, HIPAA, FISMA

• What confidential data is at risk?

• What risk threshold is tolerable?

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

Combating Data Theft Supporting Compliance Securing the SDLCSecuring Outsourcing

� 49% of all vulnerabilities are Web application

vulnerabilities

� SQL injection and Cross-Site Scripting are

neck-and-neck in a race for the top spot

�90% of injection attacks are attributed to SQL-

related attacks

� Automated toolkits continue to flourish in 2009

� SQL injection attacks continue to grow up 50%
in Q1 2009 vs. Q4 2008 and nearly doubling in

Q2 vs. Q1

Web App Vulnerabilities Continue to DominateWeb App Vulnerabilities Continue to Dominate

Mapping from OWASP 2007 to 2010 Top 10Mapping from OWASP 2007 to 2010 Top 10

+

+

-

-

=

=

=

Source: http://www.owasp.org/index.php/Top_10

Web App Vulnerabilities Continue to DominateWeb App Vulnerabilities Continue to Dominate

Security and Spending are Unbalanced

“The cleanup cost for fixing a bug in a homegrown Web
application ranges anywhere from $400 to $4,000 to repair,

depending on the vulnerability and the way it's fixed.”
-Darkreading.com

Cost is a Significant DriverCost is a Significant Driver

During the
coding phase
$80/defect

During the
Build Phase
$240/defect

Once Released as
a product :
$7,600/defect +
Law suits, loss of
customer trust,
damage to brand

During the
QA/Testing phase:
$960/defect

The increasing costs of fixing a defect….

80% of development costs are
spent identifying and correcting
defects!*

*National Institute of Standards & Technology

Source: GBS Industry standard study

Defect cost derived in assuming it takes 8 hrs to find, fix and repair a defect when found in code and unit test.
Defect FFR cost for other phases calculated by using the multiplier on a blended rate of $80/hr.

Headlines Headlines -- Rate and Cost of Breaches Steadily Increasing Rate and Cost of Breaches Steadily Increasing

• What’s being done isn’t working

• Albert Einstein - “Insanity: doing the same thing over and over again and expecting
different results”

• Security isn’t always included

�Software Engineer vs. Software Security Engineer

�Coding guidelines vs. secure coding guidelines

• “Build Security In” – sounds deceptively simple

�Starts with training. This class is a good place to start.

�Requires a commitment to change. If we agree that what we are doing isn’t working than it should be
obvious that we need to change what we are doing.

• Policy is not a four letter word

�Requirements, Requirements, Requirements

�Developers need security requirements, if not given don’t assume, demand.

• Have a plan before you need one

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

Is this really necessary?Is this really necessary?

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

Create consistent

processes, policies,

and a culture of

improved securityDevelopers must

identify all

vulnerabilities in the

code, then remediate

the greatest risks first

Consistency

Prioritize

remediation

Provide the

whole picture

Large-scale design flaws

typically trump individual

coding errors

Follow the path to Follow the path to SecureSecure CodingCoding

Sometimes the answers canSometimes the answers can onlyonly be found in the source codebe found in the source code

• Does the application enforce or even
use appropriate access controls?

• In what ways and in what places
does the application attempt to
connect to the network?

• Is there malicious code or back
doors in your applications?

• Can user inputs or outputs can
corrupt your system ?

• Is customer credit card information
encrypted?

• Is sensitive data being stored
outside of your database?

WhereWhere to look for vulnerabilitiesto look for vulnerabilities

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

• Buffer overflows,
result from

mismanagement

of memory

• Race conditions,
result from call

timing mismatches

• Authentication
• Encryption
• Use of insecure external code
types
• Validation of data input and

application output

HowHow to look for vulnerabilitiesto look for vulnerabilities

• Manual Code Review

�Time-consuming, expensive, error
prone

• Penetration Testing

�Useful but can only discern a small
sub-set possible errors

• Automated Testing Tools

Copyright Copyright ©© 2009 Ounce Labs, Inc. All rights reserved.2009 Ounce Labs, Inc. All rights reserved.

“The most effective approach is to

integrate source code vulnerability

scanners into the application

development, integration and test

process.” (Gartner)

An Interesting Article An Interesting Article –– The Trustworthy Computing Security Development The Trustworthy Computing Security Development
LifecycleLifecycle

From Microsoft’s SDL http://msdn.microsoft.com/en-
us/library/ms995349.aspx

“However, one finding will come as no surprise to long-time
security researchers: penetration testing is not the way to
achieve security. Penetration testing is an element of the
Final Security Review (FSR) for a major software release, but
product team activities throughout the entire lifecycle focus
on threat modeling, code reviews, the use of automated
tools, and fuzz testing rather than penetration testing. The
latter measures are much more thorough in preventing or
removing security bugs than the classic ad hoc penetration
testing.”

That wasnThat wasn’’t really helpfult really helpful

• It is much more effective to look at the places in the SDLC that you can reduce risk.

�Requirements

�Design

�Implementation

�Test

�Deployment

RequirementsRequirements

• Identifying security requirements are an integral part of the software design process, and the
most neglected

• Plan for appropriate resources to support the product team’s schedule

• Include security milestones and exit criteria that is based on project size, complexity and risk.

• Maximize software security while minimizing disruption to plans and schedule

• Just as good project requirements requires use cases, good security requirements require
abuse cases

• Security Goals, Challenges and plans must be reflected in requirement planning documents

• Industry standards need to comply

• Must be able to identify all potential assets at risk and outline the required and acceptable
mitigation requirements.

� Example of a bad requirement:

• All sensitive data needs to be encrypted

� Example of a better requirement:

• All sensitive data needs to be encrypted both in transit and at rest using no less than 256 bit AES encryption,
see addendum A for the list of items that are considered sensitive for this application.

Security Requirements Categories and Formulate end to end securiSecurity Requirements Categories and Formulate end to end security ty
architecturearchitecture

� Auditing and Logging

� Authentication and Authorization

� Session Management

� Input validation and output encoding

� Exception Management

� Cryptography and Integrity

� Data at rest

� Data in motion

� Configuration Management

IBM’s Secure Engineering Framework:
http://www.redbooks.ibm.com/redpieces/abstracts/redp4641.html?Open

Design: Policy DefinitionDesign: Policy Definition

• It is important that organizations begin to formalize secure coding guidelines.

• Avoid the temptation to “grade” an organization, development manager, or
individual contributor’s, ability to deliver secure code without letting them know
what is on the test.

• Policy, in the case of security requirements, is to remove ambiguity as much as
possible.

• Examples

�New development projects using C/C++ must avoid the use of all following api’s: gets(),
strcpy(),unbouded use the printf and sprintf family of calls etc.

�All data transferred from web clients that contain customer specific information must be
transported using SSL, and if any personal information is stored using cookies the entire
application needs to be SSL enabled.

What Details: Threat ModelingWhat Details: Threat Modeling

• Threat modeling is an important aspect in developing good security requirements as well

as designing good mitigation strategies

• Aspects of threat modeling should occur in several phases of the SDLC

�During Requirements

� Phase 1: Identifying assets at risk and business objectives

� Phase 2: Generate use and abuse cases and assign an impact for each case

� Phase 3: Determine the probability of compromise and rank the risks

�During Design

� Phase 4: Identify components responsible for controlling access to and from assets identified

in Phase1.

� Phase 5: Identify the threats posed by Phase 2 and Phase 3 against the components outlined

in Phase 4.

�During Implementation & Test

� Phase 6: Review application to identify weaknesses against the threats identified in Phase 5

about and review mitigation and remediation efforts.

Design: Security Design ReviewDesign: Security Design Review

• The security design review is a critical step in the SDLC. The primary goal of this
step is to verify that the policies identified in the requirements and phases 1-6 of
the threat modeling exercise have the appropriate mitigation strategies identified
in the application architecture.

• Identify any gaps, this may include identifying new threats.

• This should be done as early in the process as possible, for an agile development
process every feature iteration that impacts security as identified by the
requirements needs to perform this step.

Application Vulnerability AssessmentApplication Vulnerability Assessment

• Think of this as the verification step. This is to verify that all policy requirements and

threats have the appropriate mitigation in the final product.

• This also enables unintended or new threats to have another chance of being found

prior to deployment.

• Leverage tools as much as possible to reduce costs.

WhatWhat To Look For: The ChecklistTo Look For: The Checklist

Security-related functions

Input/Output validation and encoding

errors

Error handling and logging

vulnerabilities

Insecure Components

Coding errors

“Detecting and correcting security

vulnerabilities early in the

application development life cycle,

prior to deployment and

operations, results in significant

risk and cost reduction.” Gartner

SecuritySecurity--related Functionsrelated Functions

Weak or Nonstandard Cryptography

Non-Secure Network
Communications

Access Control Vulnerabilities

� MD5 is no longer considered secure for highly sensitive and business critical
applications, SHA1 is also considered broken though no practical attacks have been
identified.

“Microsoft is banning certain cryptographic functions from new computer code, citing increasingly
sophisticated attack”, http://www.eweek.com/article2/0,1759,1859751,00.asp

� The following example was from a content management systems password reset
function.

/**

* Generates a random 10 characters password.

*

* @return the generated password.

*/

public static synchronized String generate()

{

return Long.toString(Math.abs(random.nextLong()) % MAX_RANDOM_LENGTH, Character.MAX_RADIX);

}

The biggest failure in encryption is not

often the algorithm used but more often

than not it is the failure to properly

identify what data needs to be

encrypted and making sure that the

appropriate encryption is always

utilized.

Input/Output Validation and Encoding ErrorsInput/Output Validation and Encoding Errors

Have we not learned to NEVER trust the user, all input needs to be validated?

What is the problem with the code below?

SQL Injection Vulnerabilities

Cross-Site Scripting Vulnerabilities

OS Injection Vulnerabilities

Custom Cookie/Hidden Field
Manipulation

It is not all about SQL Injection

and XSS (though those are still a

huge problem).

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws IOException, ServletException

{

String pageName = getParameter(“pageName”) ! =null ? “” :

getParameter(“pageName”);

log.info("Request for page: "+pageName);

String forward = "/"+pageName+"?“+req.getQueryString();

RequestDispatcher disp = req.getRequestDispatcher(forward);

disp.forward(req, res);

}

Error Handling & Logging VulnerabilitiesError Handling & Logging Vulnerabilities

Consider the following code example:

public void doPost(HttpServletRequest req, HttpServletResponse res)

throws IOException, ServletException

{

RequestDispatcher disp = null;

String user = getParameter(“user”) ! =null ? “” : getParameter(“user”);

String pwd = getParameter(“pwd”) !=null ? “” : getParameter(“pwd”);

if(!validUser(user,pwd)) {

log.warn(“Invalid login received from: “ + user + “ password:” +pwd);

disp = req.getRequestDispatcher(“/jsp/invalidLogin.jsp”);

} else {

log.info(“Successful login attempt from: “ + user);

disp = req.getRequestDispatcher("/jsp/loginSuccess.jsp”);

}

disp.forward(req, res);

}

Insecure Error Handling

Insecure or Inadequate Logging

There really are two major

issues with logging:

1. Lacking a consistent

logging framework.

2. Logging the wrong data or

breaking company policy

and regulations (think: PCI)

Insecure ComponentsInsecure Components

Developers need to understand where the utilities provided by the framework begin and end when
related to security. Consider the following code from a .NET web application.

<head>

<title>Registration Form Please Sign-In</title>

</head>

<%String loader = Request.Params[“loader”]; %>

<body onload = “<%=loader%>”>

…

</body>

Even if you have Microsoft’s page validation enabled (the default) you are still vulnerable.

As we focus our efforts to fix the low hanging fruit, the attacks are moving to the application layer.

There are many undocumented APIs that exist as public interfaces in the JDK or the .NET
framework

Many of these interfaces may bypass internal member data validation that if used directly could
crash the JVM (or lead to more serious vulnerabilities http://www.blackhat.com/presentations/win-usa-
03/bh-win-03-schoenfeld.pdf

Unsafe Native Methods

Unsupported API

Improper Use of 3rd Party Application
Frameworks

Coding ErrorsCoding Errors

Use of native libraries (System.loadLibrary, [DllImport]) can also
expose your web application to this more traditional style of attack.

What’s wrong with this code?

protected void doGet(HttpServletRequest

request,HttpServletResponse response) {

InputStreamReader inStr = new

InputStreamReader(request.getInputStream());

BufferedReader in = new BufferedReader(inStr);

while(in.readline()!=null) {

//process the request

…

}

}

Buffer Overflow
Vulnerabilities

Format String
Vulnerabilities

Denial of Service Errors

Race Conditions

Most modern day web

applications are immune to

the more traditional

“overflow” style of attacks,

but anytime the user is able

to control data that reaches

an internal system the

possibility exists.

http://documents.iss.net/whitepapers/IBM_X-Force_WP_final.pdf

Follow The Path: The ChecklistFollow The Path: The Checklist

• Security-related functions

• Weak or Nonstandard Cryptography

• Non-Secure Network Communications

• Application Configuration Vulnerabilities

• Access Control Vulnerabilities

• Input/Output validation and encoding
errors

• SQL Injection Vulnerabilities

• Cross-Site Scripting Vulnerabilities

• OS Injection Vulnerabilities

• Custom Cookie/Hidden Field
Manipulation

• Error handling and logging
vulnerabilities

• Insecure Error Handling

• Insecure or Inadequate Logging

• Insecure Components

• Unsafe Native Methods

• Unsupported Methods

• Improper use of 3rd Party

Application Frameworks

•Coding errors

• Buffer Overflow Vulnerabilities

• Format String Vulnerabilities

• Denial of Service Errors

• Race Conditions

Where?Where?

� Baking security into requirements: gathering security
requirements/needs, abuse cases, and threat modeling

� Baking security into design: security design patterns, security
reviews and threat modeling

� Baking security into development: secure coding guidelines, tools,
and audit

� Baking security into testing: negative testing, thinking like the bad
guy and “red teams”

� Baking security into deployment: secure deployment guidelines,
secure update mechanisms (patching) and much, much more!

When?When?

• As often as is practical
– Prioritize the most critical

applications

– Separate legacy from new

development

– Customer facing vs. internal

� Improve existing development process, not create new one

� Maximize security impact of personnel and technologies

� Use models as initial framework and tailor to individual
organization

� Select model with consideration for future requirements

How: Objectives for Practical SecurityHow: Objectives for Practical Security

31

Guidelines and best
practices for secure
software in design,
development and
deployment

Provides structure,
execution and accountability
for software and solution
development projects

Supply Chain Security

Secure

Engineering

Framework

Continually improve the
security characteristics of
software offerings through
Key Performance Indicators

Continuous

Security

Improvement

Common

Development

Process

Builds and Maintains trusted
relationships with suppliers,

distribution channels,
import/export and customer

support

IBM Secure Engineering Initiative

Link to Security Engineering Framework:

http://www.redbooks.ibm.com/redpieces/abstracts/redp4641.html?Open

Sample Secure Development Framework

IBM Security Framework includes integrated solutions for Web IBM Security Framework includes integrated solutions for Web
ApplicationApplication SecuritySecurity

Protect sensitive business data

Give the right users access to the right resources
at the right time
(Tivoli Identity & Access Family)

Keep applications available and protected from
malicious or fraudulent use
(Rational AppScan)

Optimize service availability & mitigate risks
(Security IPS, VSS for VMWare, DataPower)

Provide actionable intelligence and improve
effectiveness of physical infrastructure security

Secure Secure CodeCode DevelopmentDevelopment and and VulnerabilityVulnerability ManagementManagement –– IBM IBM
RationalRational®® AppScanAppScan®®

� A market leader for Web application vulnerability
scanning

� A leader in numerous industry “bake offs”

� Automatically scans Web applications
for vulnerabilities

� SQL Injection

� Cross-site Scripting

� Provides clear recommendations on
how to remediate identified vulnerabilities

� Scans Web sites for embedded malware

� Protect your Web site from distributing the next Conficker to every

Web site visitor

� Powered by the IBM Internet Security Systems™ X-Force®

malware prevention system

Enabling the Operationalization of Security TestingEnabling the Operationalization of Security Testing

Embed Security
into Development2 Outsource

Security Testing3

Control, Monitor, Collaborate and Report Web Application Security Testing
(AppScan Reporting Console)

� AppScan® Standard

� AppScan Enterprise

� AppScan Source

� AppScan Tester

� AppScan OnDemand

� AppScan Security
Consulting

Enable Security
Specialists1

Address Web Application Vulnerabilities in three ways:

Security in the SDLC ViewSecurity in the SDLC View

Build

Automate
Security /

Compliance
testing in the
Build Process

Security / compliance
testing incorporated

into testing &
remediation
workflows

Outsourced
testing for

security audits
& Production
Site Monitoring

Security &
Compliance
Testing,
oversight,

control, policy,
audits

Application Security Best Practices

Requirements
Composer

Security
requirements
defined before

design &
implementation

Requirements

Systems Architect
and Software
Architect

Threat Modeling
and Secure
Design

A & D

Build security
testing into the

IDE

Coding

AppScan Enterprise / Reporting Console
(enterprise-wide scanning and reporting)

AppScan Source
AppScan OnDemand Source Code

Scanning/Analysis (SaaS)

QA

AppScan Tester

Production

AppScan

OnDemand PSM
(SaaS)

Pre-Prod

AppScan Standard/
AppScan OnDemand /

Premium (SaaS)

Build

Automate
Security /

Compliance
testing in the
Build Process

Security / compliance
testing incorporated

into testing &
remediation
workflows

Outsourced
testing for

security audits
& Production
Site Monitoring

Security &
Compliance
Testing,
oversight,

control, policy,
audits

Application Security Best Practices

Requirements
Composer

Security
requirements
defined before

design &
implementation

Requirements

Systems Architect
and Software
Architect

Threat Modeling
and Secure
Design

A & D

Build security
testing into the

IDE

Coding

AppScan Enterprise / Reporting Console
(enterprise-wide scanning and reporting)

QA ProductionPre-Prod

AppScan Source
AppScan OnDemand Source Code

Scanning/Analysis (SaaS)

AppScan Tester AppScan

OnDemand PSM
(SaaS)

AppScan Standard/
AppScan OnDemand /

Premium (SaaS)

Security in the SDLC ViewSecurity in the SDLC View

38

Requirements Design Code Build Test Pre-prod Maintain

Automated pre-production scans

Operational Monitoring

security team focused
with specific
technologies

Initial improvement and automation of application security testing coverage

Application Assessments

Security in the SDLC Security in the SDLC ViewView

39

Requirements Design Code Build Test Pre-prod Maintain

Automated pre-production scans

Operational Monitoring

Application Assessments

Self Service Testing

Concurrent Testing

Test Management

Requirements Driven Testing

Defect Management

Multiple teams with
integrated

technologies

Improve and automate collaboration of security issues
Continue to Improve and automate application security testing coverage

Build Management

IDE

Configuration Management

Security in the SDLC ViewSecurity in the SDLC View

40

Requirements Design Code Build Test Pre-prod Maintain

Self Service Testing

Concurrent Testing

Test Management

Requirements Driven Testing

Application Assessments

Production Site Monitoring

Configuration Management

Defect Management

Improve and automate collaboration of security issues
Continue to Improve and automate application security testing coverage

Automated pre-prod scans

Build Management

IDE

Requirements Management

Architecture and Design

Secure SDLC and Application Security Practice

Proactively address
security

Instill application
security practices
across all projects

Security in the SDLC Security in the SDLC ViewView

Best Practices and Business Case FormulationBest Practices and Business Case Formulation

� Best Practices

�Establish a policy and internal standards for software security

�Build software security into the SDLC (including sourcing decisions)

�Establish policies and procedures for continual vulnerability detection and remediation

�Automate where possible for coverage, accuracy, efficiency and trending

�Establish a realistic Plan B. And C.

� Business Case

�Money savings via catching vulnerabilities and other security flaws earlier (well before they

reach production)

�Money and reputational savings when NERC fines for failure to comply with minimum

vulnerability identification, mitigation and remediation processes are avoided

�Utility’s and their customers’ savings when major outages are prevented via responsible

cyber security practices

To learn more about using IBM’s secure engineering

framework

http://www.redbooks.ibm.com/redpieces/abstracts/redp4641.

html?Open

For More Information…

43

Thank You

