
Linux

Developing software using the IBM Software
Development Kit for Linux on Power

���

Linux

Developing software using the IBM Software
Development Kit for Linux on Power

���

Note
Before using this information and the product it supports, read the information in “Notices” on
page 93.

Seventh Edition (April 2015)

© Copyright IBM Corporation 2012, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Developing software using the IBM
Software Development Kit for Linux on
Power v

1 Introducing IBM Software
Development Kit for Linux on Power . . 1
1.1 IBM SDK for Linux on Power requirements . . . 2
1.2 IBM SDK for Linux on Power supported Linux
distributions 4
1.3 IBM SDK for Linux on Power user interface . . 5

2 Setting up the ppc64le version of IBM
SDK for Linux on Power. 7
2.1 Installing the IBM Advance Toolchain for Linux
on Power 7
2.2 Downloading and installing the SDK 7

2.2.1 Automatically downloading and installing
using the IBM Linux on Power Tools Repository . 7

2.2.1.1 Downloading and installing the IBM
Linux on Power Tools Repository initialization
package 7
2.2.1.2 Installing the IBM SDK for Linux on
Power RPMs using the IBM Linux on Power
Tools Repository 8

2.3 Recommended and optional packages. 9
2.3.1 Downloading and installing RPM
development packages 9
2.3.2 Downloading and installing SystemTap. . . 9

2.3.2.1 Setting up SystemTap. 10
2.3.2.1.1 Setting up preferences for running
SystemTap remotely 10
2.3.2.1.2 Setting up SystemTap permissions
for SUSE Linux Enterprise Server 11
2.3.2.1.3 Setting up SystemTap permissions
for Red Hat Enterprise Linux and Fedora . 11
2.3.2.1.4 Setting up SystemTap permissions
for Ubuntu 12

2.4 Starting the IBM SDK for Linux on Power . . . 12
2.5 Creating a project 13

2.5.1 Creating and using local projects on Power
systems. 13

2.5.1.1 Creating a local C/C++ project . . . 13
2.5.1.2 Importing an existing Makefile project 14
2.5.1.3 Importing an existing Autotools project 15

2.5.1.3.1 Converting the imported project 16
2.5.1.3.2 Configuring the imported project 17
2.5.1.3.3 Building the imported project . . 18

2.5.1.4 Creating an empty Autotools project. . 18
2.5.1.5 Creating a “Hello World” Autotools
project 18
2.5.1.6 Changing the IBM Advance Toolchain
version 19
2.5.1.7 Running an executable program in a
project 19

2.5.1.8 Debugging a project with IBM Advance
Toolchain for Linux on Power 20

3 Setting up the x86_64 version of the
IBM SDK for Linux on Power 21
3.1 Downloading and installing the x86_64 client . . 21
3.2 Downloading and installing the server for
remote development 22
3.3 Setting up remote Power Systems server . . . 22
3.4 Creating and using synchronized projects on
x86_64 clients. 23

3.4.1 Creating a synchronized C/C++ project . . 23
3.4.2 Creating a synchronized project by
importing an existing Makefile project 24
3.4.3 Creating a synchronized project by
importing an existing Autotools project 24

3.4.3.1 Configuring the imported project . . . 25
3.4.3.2 Building the imported project 26

3.4.4 Creating a synchronized empty Autotools
project 26
3.4.5 Creating a synchronized “Hello World”
Autotools project 26
3.4.6 Running an executable program in a
synchronized project 27
3.4.7 Debugging a synchronized project 27

3.5 Creating and using cross-compiled projects . . 28
3.5.1 Creating a cross-compiled C/C++ project. . 28
3.5.2 Executing a cross-compiled project 29
3.5.3 Debugging a cross-compiled project . . . 30

3.6 Installing and using QEMU user-mode
emulation 31

3.6.1 Running a cross-compiled application with
QEMU user-mode emulation 31
3.6.2 Debugging a cross-compiled application
with QEMU user-mode emulation 32

3.7 Installing and executing the IBM POWER8
Functional Simulator 32

3.7.1 Installing and setting up the POWER8
Functional Simulator 32

3.7.1.1 Automatically installing the IBM
POWER8 Functional Simulator 33
3.7.1.2 Running the IBM POWER8 Functional
Simulator 33

4 Managing projects 35
4.1 Setting flags 35

4.1.1 Recommended debug, compiler, and linker
settings for Power processor tuning 35
4.1.2 Setting debug flags for Autotools-based
projects 40
4.1.3 Setting optimization level flags for
Autotools-based projects 41

4.2 Editing a project 42
4.2.1 Setting the Linux tools path 42
4.2.2 Using the coding assistant. 42

© Copyright IBM Corp. 2012, 2015 iii

4.3 Building a project 42
4.3.1 Building a project 42
4.3.2 Building a project with clean build 42
4.3.3 Adding and using a Make target 43

4.4 Creating a package with the RPM plug-in . . . 43
4.4.1 Creating an RPM project 43
4.4.2 Creating a remote RPM project 44
4.4.3 Creating a spec file in an existing RPM
project 45
4.4.4 Checking an RPM package with rpmlint . . 45
4.4.5 Generating an RPM package 46

5 Migrating an application from x86 to
Power Systems servers using
Migration Advisor 47
5.1 Enabling Migration Advisor checkers 47

5.1.1 Enabling additional Migration Advisor
options 47
5.1.2 Enabling indexing for Migration Advisor . . 48

5.2 Migration Advisor checkers 48
5.2.1 Customizing the performance degradation
checker 52
5.2.2 Customizing the syscall not available for
Linux on Power checker 52
5.2.3 Customizing the Linux/x86-specific API
checker 53

5.3 Running Migration Advisor 54
5.4 Using Migration Advisor quick fixes 54

6 Analyzing application performance
on Power Systems servers 57
6.1 Analyzing performance with the CPI breakdown
plug-in 57

6.1.1 CPI analysis overview 57
6.1.2 CPI events and metrics 57
6.1.3 Profiling a binary application with CPI from
the command line 63
6.1.4 Profiling a project with the CPI breakdown
plug-in 63
6.1.5 Profiling a synchronized project with the
CPI breakdown plug-in 64

6.2 Analyzing performance with OProfile 64
6.2.1 Profiling a project with OProfile 65
6.2.2 Profiling a synchronized project with
OProfile 65

6.3 Analyzing performance with Perf 66
6.3.1 Profiling a project with Perf 67
6.3.2 Profiling a synchronized project with Perf 67

6.4 Profiling a project with gprof 68
6.5 Analyzing application behavior using Valgrind 68

6.5.1 Profiling a project using Valgrind 69
6.5.2 Profiling a synchronized project using
Valgrind 69

6.5.3 Applying quick fixes for Valgrind-reported
errors 70

6.6 Monitoring performance using SystemTap . . . 70
6.6.1 Editing a SystemTap script 71
6.6.2 Running a SystemTap script 71
6.6.3 Running a SystemTap script with chart . . 72

6.7 Analyzing POSIX Threads using Trace Analyzer 72
6.7.1 Trace Analyzer overview 73
6.7.2 Profiling a project with Trace Analyzer . . 73
6.7.3 Profiling a synchronized project with Trace
Analyzer 73
6.7.4 Collecting a trace by setting variables from
the command line 74
6.7.5 Record Details view 75

6.8 Analyzing coverage with gcov 77
6.9 Analyzing performance with Power Performance
Advisor 77

7 Tuning application performance on
Power Systems servers 79
7.1 Analyzing performance with Source Code
Advisor and FDPR 79

7.1.1 Source Code Advisor and FDPR overview 79
7.1.2 Running the Source Code Advisor on a
project 80
7.1.3 Running the Source Code Advisor on a
synchronized project 80
7.1.4 Viewing Source Code Advisor on an
existing journal 81
7.1.5 Reviewing the Source Code Advisor results 82
7.1.6 Source Code Advisor events 82
7.1.7 Optimizing executable code using FDPR . . 83

7.1.7.1 Specifying FDPR optimization for a
project 83
7.1.7.2 Specifying FDPR optimization for a
synchronized project 85

8 Support for IBM SDK for Linux on
Power 87
8.1 Getting customer support 87
8.2 Using integrated bug reporting 87

8.2.1 Creating a report 87
8.2.2 Submitting a report to the Linux on Power
Community 88

8.3 Setting up SSH credentials 89
8.3.1 Logging in from workstation to remote
server with DSA key 89
8.3.2 Logging in with DSA key but no password 89

Notices 93
Trademarks 94

iv Linux: Developing software using the IBM Software Development Kit for Linux on Power

Developing software using the IBM Software Development Kit
for Linux on Power

The IBM® Software Development Kit for Linux on Power® is a free, Eclipse-based Integrated
Development Environment (IDE). The IBM SDK for Linux on Power integrates C/C++ source
development with the IBM Advance Toolchain for Linux on Power and classic Linux debugging and
performance analysis tools.

The official version of this user guide is located in the Linux Knowledge Center: Developing software
using the IBM Software Development Kit for Linux on Power (http://www.ibm.com/support/
knowledgecenter/linuxonibm/liaal/iplsdkmain.htm).

Note: By using the code examples, you agree to the terms of the 9, “Code license and disclaimer
information,” on page 91.

© Copyright IBM Corp. 2012, 2015 v

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkmain.htm
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkmain.htm

vi Linux: Developing software using the IBM Software Development Kit for Linux on Power

1 Introducing IBM Software Development Kit for Linux on
Power

The IBM SDK for Linux on Power provides you with an all-in-one solution for developing software on
Linux on Power servers. It integrates the Eclipse integrated development environment (IDE) with the IBM
Advance Toolchain for Linux on Power and open source tools such as OProfile, Valgrind, and Autotools.
In addition, it integrates the IBM tools Feedback Directed Program Restructuring (FDPR®) and Pthread
monitoring tool, which are specifically designed to analyze and exploit Power Systems™ servers and
includes powerful porting and analytic tools, such as Migration Advisor, Source Code Advisor, CPI
Breakdown and Trace Analyzer. The SDK also includes IBM SDK Java™ Technology Edition, Version
7.1-2.10 and IBM Runtime Environment Java Technology Edition, Version 7.1-2.10

The IBM Software Development Kit for Linux on Power is available for x86_64 and ppc64le architectures,
providing you with two different development modes:
v Locally on x86_64 or ppc64le
v Remotely using the x86_64 version to connect to a remote Power System server

Using the x86_64 version of the SDK, you can:
v Create, debug and profile remote projects using the IBM Advance Toolchain
v Migrate applications using Migration Advisor
v Cross-compile applications using IBM Advance Toolchain cross-compiler
v Take advantage of Qemu or IBM Power 8 Functional Simulator for development if you don't have a

real Power machine

With the ppc64le version, you can:
v Create applications using the IBM Advance Toolchain
v Run, debug, and profile applications
v Migrate applications using Migration Advisor

The SDK includes manuals in the form of help plug-ins for many tools that are included with or
integrated with IBM SDK for Linux on Power. To display these manuals, while in the user interface, click
Help > Help Contents

Before downloading and installing, you must decide which IBM SDK for Linux on Power package you
want to use.

Note: The IBM Software Development Kit for Linux on Power is provided as is only. Customers are not
entitled to IBM Software Support. However, you can get help from the Linux on Power Community. For
information, see 8.1, “Getting customer support,” on page 87.
Related information:

IBM Software Development Kit for Linux on Power website

IBM Advance Toolchain for Linux on Power documentation

© Copyright IBM Corp. 2012, 2015 1

https://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdklop.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM Advance Toolchain for PowerLinux Documentation

1.1 IBM SDK for Linux on Power requirements
The IBM Software Development Kit for Linux on Power has software prerequisites. Most of the
prerequisites can be automatically installed by the package manager of the Linux distribution.

Packages required by IBM SDK for Linux on Power

The IBM SDK for Linux on Power includes some required dependent packages to be installed on the
Power Systems server while manually installing the IBM SDK for Linux on Power RPM files. These
packages include:

fdprpro-version
FDPR post-link optimization tool.

pthread-mon-version
Pthread monitoring tool.

fdpr_wrap-version
Wrapper scripts for running FDPR under IBM SDK for Linux on Power.

These required packages are included in the IBM SDK for Linux on Power ISO image. They will be
installed automatically if you install IBM SDK for Linux on Power automatically using the IBM Linux on
Power Tools Repository

Other required packages from the distribution

Depending on the packages you installed with your Linux distribution, you might be required to install
additional packages from your distribution provider. If you install the SDK automatically using the IBM
Linux on Power Tools Repository, or if you use yum, zypper, or apt-get, these packages might be installed
automatically. If you are installing using rpm or dpkg, you must be aware of these dependencies and
install them from the distribution.

These packages include:

Table 1. Other packages required from the distribution.

Package name Package description Required for ppc64le
Required for
x86_64

Autoconf Produces shell scripts to
automatically configure
software source code packages.

Yes Yes

Automake Automatically generates
Makefile.in files that are
compliant with the GNU
coding standards.

Yes Yes

gettext Internationalization and
localization system for writing
multilingual programs.

Yes Yes

Git Distributed revision control
system. Required on server for
synchronized projects.

Yes No

GLIBC 2.3 or later GNU C library. Yes Yes

GTK2 Used to create graphical user
interfaces.

Yes Yes

2 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 1. Other packages required from the distribution (continued).

Package name Package description Required for ppc64le
Required for
x86_64

Libtool GNU Libtool, script for generic
shared library support.

Yes Yes

Perf Performance monitoring tool
for Linux Kernel. Perf is
required if you plan to use Perf
with IBM SDK for Linux on
Power. In addition, Perf is
required for using the CPI
Breakdown plug-in.

Yes, for using Perf or CPI
breakdown plug-in

No

Python Support for Python
programming language.

Yes Yes

Additional IBM tools installed with IBM SDK for Linux on Power

Table 2. Description of additional tools installed with IBM SDK for Linux on Power

Package name Package Description Required for ppc64le Required for x86_64

advance-toolchain-atversion-
runtime

Self contained toolchain
that provides preview
toolchain functionality in
GCC, binutils, GLIBC,
GDB, Valgrind, and
OProfile

Yes No

advance-toolchain-atversion-
devel

Packages necessary to build
applications that use the
features provided by the
IBM Advance Toolchain for
Linux on Power

Yes No

advance-toolchain-atversion-
perf

Performance library
installation targets for
Valgrind and OProfile

Yes No

advance-toolchain-atversion-
mcore-libs

Libraries to build
multi-threaded applications
using the specialized
multi-threaded libraries
Animo-CBB, URCU, and
Intel TBB

Yes No

advance-toolchain-atversion-
cross

IBM Advance Toolchain for
Linux on Power
cross-compiler to generate
Power-compatible binaries
from i686 development
environments.

No Yes

fdprpro-version IBM Feedback Directed
Program Restructuring
(FDPR), for post-link
optimization

Yes No

fpdr_wrap-version Wrapper scripts for
integrating FDPR with IBM
SDK for Linux on Power

Yes No

1 Introducing IBM SDK for Linux on Power 3

Table 2. Description of additional tools installed with IBM SDK for Linux on Power (continued)

Package name Package Description Required for ppc64le Required for x86_64

pthread-mon-version Pthread monitoring tool Yes No

Recommended packages

IBM SDK for Linux on Power includes two plugins that have additional dependencies. These packages
may only be installed if you plan to use their respective plugins. Most of the dependencies are available
in the repository of the Linux distribution, unless specified below:

Table 3. Description of recommended packages for IBM SDK for Linux on Power

Package name Package Description Required for ppc64le Required for x86_64

rpmlint Checks for common errors
in RPM packages. rpmlint
is required if you plan to
use the IBM SDK for Linux
on Power RPM plug-in.

Yes1 No

rpmdevtools RPM development tools for
creating packages.
rpmdevtools is required if
you plan to use the IBM
SDK for Linux on Power
RPM plug-in.

Yes1 No

rpm-devel RPM C library and header
files. rpm-devel is required
if you plan to use the IBM
SDK for Linux on Power
RPM plug-in.

Yes No

SystemTap A tool and scripting
language for dynamically
monitoring running Linux
applications. SystemTap is
required if you plan to use
SystemTap with IBM SDK
for Linux on Power, or
Trace Analyzer operating
system monitoring with
SystemTap.

Yes2 No

v
1 Manual installation is required. All of the rpm packages are available only in the Fedora or Red Hat
Enterprise Linux repositories. For SUSE Linux Enterprise Server, only rpmlint and rpm-devel are
available. These packages are not applicable to Ubuntu, which uses the DEB packaging format.

v
2 SystemTap requires the Linux kernel-devel and kernel-debuginfo packages.

Required authorities for IBM SDK for Linux on Power tasks

Many of the tasks for installing the SDK, such as installing packages, require you to be logged in to the
system as root, with super user (administrator) authorities.

1.2 IBM SDK for Linux on Power supported Linux distributions
This information lists the Linux distributions that are supported by the SDK.

4 Linux: Developing software using the IBM Software Development Kit for Linux on Power

The SDK was tested to verify that it works with the Linux distributions listed in the table that follows.
The usual compatibility with subsequent releases is assumed. The supported distributions vary according
to the different development modes or packages.

Table 4. IBM SDK for Linux on Power supported Linux distributions

IBM SDK for Linux on Power version Supported Linux distributions

ppc64le v Red Hat Enterprise Linux 7.1

v SUSE Linux Enterprise Server 12

v Ubuntu 14.04.2 LTS

x86_64 v Red Hat Enterprise Linux 6.5 and 7.1

v SUSE Linux Enterprise Workstation 12

v Fedora 20

v Ubuntu 14.04.2 LTS

Note: The IBM Software Development Kit for Linux on Power is provided as is only. Customers are not
entitled to IBM Software Support. However, you can get help from the Linux on Power Community. For
information, see 8.1, “Getting customer support,” on page 87.

1.3 IBM SDK for Linux on Power user interface
The SDK includes a launch bar that provides quick access to the plugin launches. It works like a short
cut for common tasks like running, debugging, and profiling an application.

This launch bar is composed for three buttons and three selectors. The buttons are design for:

Table 5. Launch icons

Graphic Description

Building your application before launching it

Run an application after it was built

Stop active action

In addiction to the three icons, there are two selectors.

1. Active Launch Mode: Select Run, Debug, or Profile.
2. Active Launch Descriptor: Lists all of the created launches.

All the launches that are created for an application are displayed in the Active Launch Descriptor list.
After you select one, you can choose to build, run, or stop the current launch.

The Launch Bar does not replace the default and known steps to complete these tasks; it aims to ease the
task of launching configurations.

1 Introducing IBM SDK for Linux on Power 5

6 Linux: Developing software using the IBM Software Development Kit for Linux on Power

2 Setting up the ppc64le version of IBM SDK for Linux on
Power

Follow these steps to set up and being using the IBM SDK for Linux on Power for development directly
on your Power system.

2.1 Installing the IBM Advance Toolchain for Linux on Power

About this task

The IBM Advance Toolchain for Linux on Power packages are stored in an ftp repository of the
University of Campinas, a public university in the state of São Paulo, Brazil. For information about
installing IBM Advance Toolchain for Linux on Power, see the IBM developerWorks® page
(http://ibm.co/AdvanceToolchain).

Procedure

Install the IBM Advance Toolchain for Linux on Power on the Power Systems server. This table lists the
required and recommended prerequisite packages for IBM Advance Toolchain for Linux on Power.

Table 6. IBM Advance Toolchain for Linux on Power required and recommended prerequisites

IBM Advance Toolchain for Linux on Power required
prerequisites

IBM Advance Toolchain for Linux on Power
recommended prerequisites

v advance-toolchain-at7.1-runtime-7.1-3 or greater

v advance-toolchain-at7.1-devel-7.1-3 or greater

v advance-toolchain-at7.1-perf-7.1-3 or greater

v advance-toolchain-at7.1-mcore-libs-7.1-3 or greater

v advance-toolchain-at8.0-runtime-8.0-3 or greater

v advance-toolchain-at8.0-devel-8.0-3 or greater

v advance-toolchain-at8.0-perf-8.0-3 or greater

v advance-toolchain-at8.0-mcore-libs-8.0-3 or greater

2.2 Downloading and installing the SDK
These topics describe how to download and install the the ppc64le version of the SDK.

You can automatically download and install using the IBM Linux on Power Tools Repository, or you can
manually download and install the IBM SDK for Linux on Power ISO image.

For any download method you choose, you must accept the license agreements and terms and
conditions.

2.2.1 Automatically downloading and installing using the IBM Linux on
Power Tools Repository
The simplest method for downloading and installing the packages for the SDK on Power Systems server
is to use the IBM Linux on Power Tools Repository. This method configures yum and zypper, allowing
for automatic download and installation. Using the repository speeds the installation because the installer
can install all the required and dependent packages, in the correct order.

2.2.1.1 Downloading and installing the IBM Linux on Power Tools Repository
initialization package
The first step for automatic downloading and installation is to download and install the Linux on Power
Software Repository initialization package.

© Copyright IBM Corp. 2012, 2015 7

About this task

To download and install the IBM Linux on Power Tools Repository initialization package, complete the
following steps.

Procedure
1. Download the Linux on Power Software Repository initialization package to the server in either of the

following ways:
v Download the Linux on Power Software Repository initialization package from the IBM Software

Development Kit for Linux on Power website at http://www-304.ibm.com/webapp/set2/sas/f/
lopdiags/sdkdownload.html#1.

v Download the configuration RPM file from the IBM Tools Repository for Linux on Power website at
http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/yum.html.

2. Install the Linux on Power Software Repository initialization package on the server as follows:
a. Log in as root user.
b. Enter the following command:

rpm -ivh ibm-power-repo-version.noarch.rpm

Note: Replace version with the version of the IBM Linux on Power Tools Repository initialization
package that you downloaded.

2.2.1.2 Installing the IBM SDK for Linux on Power RPMs using the IBM Linux on
Power Tools Repository
After the IBM Linux on Power Tools Repository is installed, you can download the IBM SDK for Linux
on Power RPMs to the server.

About this task

Install the SDK packages with the appropriate command for your distribution:

Procedure
v For Red Hat Enterprise Linux and Fedora, enter the following command:

yum install ibm-sdk-lop

v For SUSE Linux Enterprise Server, enter the following command:
zypper install ibm-sdk-lop

Note: The IBM Linux on Power Tools Repository is not available for the Ubuntu distributions.

Results

The ibm-sdk-lop package is installed, along with other dependent packages, such as the IBM Advance
Toolchain. Depending on the packages you installed with your Linux distribution, additional dependent
packages from the distribution repository might also be installed. See “Other required packages from the
distribution” on page 2 for a list of possible packages.

What to do next

After completing the installation of the SDK, consider installing recommended and optional packages on
the Power Systems server. See 2.3, “Recommended and optional packages,” on page 9.

8 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdkdownload.html#1
http://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdkdownload.html#1
http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/yum.html

2.3 Recommended and optional packages
Depending on your intended use of the SDK, you might want to install recommended and optional
packages.

2.3.1 Downloading and installing RPM development packages
The SDK includes a plugin that enables you to easily edit RPM specification files.

About this task

The following packages are needed only if you plan to use the RPM plugin.

Table 7. Packages required for the RPM plugin

Package name Package Description Required

rpmlint Checks for common errors in RPM
packages. rpmlint is required if you
plan to use the IBM SDK for Linux
on Power RPM plug-in.

Yes1

rpmdevtools RPM development tools for creating
packages. rpmdevtools is required if
you plan to use the IBM SDK for
Linux on Power RPM plug-in.

Yes1

rpm-devel RPM C library and header files.
rpm-devel is required if you plan to
use the IBM SDK for Linux on Power
RPM plug-in.

Yes

1 All of the rpm packages are available only in the Fedora or Red Hat Enterprise Linux repositories. For
SUSE Linux Enterprise Server, only rpmlint and rpm-devel are available. These packages are not
applicable to Ubuntu, which uses the DEB packaging format.

To install rpmlint, rpmdevtools, and rpm-devel on Fedora or Red Hat Enterprise Linux, execute the
following command as root:
* yum install rpmlint rpm-devel rpmdevtools

To install rpmlint and rpm-devel on SUSE Linux Enterprise Server, execute the following command as
root:
* zypper install rpmlint rpm-devel

2.3.2 Downloading and installing SystemTap
The SDK includes a plugin for SystemTap.

About this task

If you want to use SystemTap, install the following package.

Table 8. Package required for SystemTap

Package name Package Description Required

SystemTap A tool and scripting language for
dynamically monitoring running
Linux applications. SystemTap is
required if you plan to use
SystemTap

Yes1

2 Setting up the ppc64le version of IBM SDK for Linux on Power 9

1 Requires the Linux kernel -devel and kernel-debuginfo packages.

Procedure

To install SystemTap and its dependencies, execute the command for your Linux distribution as root:
v For Fedora:

yum install systemtap kernel-devel kernel-debug

v For Red Hat Enterprise Linux:
yum install systemtap-runtime kernel-devel
kernel-debuginfo kernel-debuginfo-common

v For Ubuntu:
apt-get install systemtap

Ensure that the set of the packages kernel-devel, kernel-debuginfo, and kernel-debug-info-common
versions (if applicable) match the version of the kernel that is running.

What to do next

You are now ready to set up SystemTap. See 2.3.2.1, “Setting up SystemTap.”

2.3.2.1 Setting up SystemTap
If you have installed the recommended and optional SystemTap packages on the server, you must
complete post-installation setup before you can use SystemTap to profile applications. Specifically, you
must set up preferences for running remotely and ensure that users have the required permissions.

Before you begin

Ensure that you have installed the recommended SystemTap package and optional ibm-sdk-lop-stp
package, as described in 2.3, “Recommended and optional packages,” on page 9.

2.3.2.1.1 Setting up preferences for running SystemTap remotely:
About this task

Before you can use SystemTap to profile applications, you must set up preferences for running remotely.
Because SystemTap runs as a client/server application, you must set these preferences, even for local
profiling. Complete the following steps in the SDK user interface.

Procedure

1. Click Window > Preferences.
2. Expand SystemTap > Remote Server.
3. On the Remote Server page, complete the following steps.

a. Type the host name, user name, and password in the appropriate fields.
b. Ensure that the port number is correct. If you are using a default SystemTap configuration, the

port number probably is already correct.
c. Click Apply.

4. Expand SystemTap > SystemTap IDE.
5. On the SystemTap IDE page, select the Use remote connection to load SystemTap probes and

functions check box. This selection ensures that all probes and functions displayed are available on
the remote server. Click Apply.

6. Optional: You can select a remote kernel source to explore while developing SystemTap scripts.
a. Expand SystemTap > SystemTap IDE > Kernel Source Path.
b. On the Kernel Source Path page, in the Kernel Source Location area, select Remote Machine.
c. In the Kernel source directory field, type the path of the kernel source in the remote server.

10 Linux: Developing software using the IBM Software Development Kit for Linux on Power

d. Click Apply.
7. Click OK.

2.3.2.1.2 Setting up SystemTap permissions for SUSE Linux Enterprise Server:
About this task

Complete the following steps if you are running SUSE Linux Enterprise Server. These steps are necessary
to ensure that users have the required permissions to run SystemTap when logged on from their user
names.

Procedure

1. Ensure that you are logged in to the server as root user.
2. Create the user groups stapdev and stapusr with the following commands:

groupadd stapdev
groupadd stapusr

3. To allow users to run SystemTap, add them to the stapdev and stapuser user groups. Use the
following command:
usermod -A stapdev,stapusr user_name

Insert the user name for user_name. Repeat this step for each user that will be running SystemTap on
the server.

4. Ensure that the /usr/bin/staprun file permission is set to superuser (administrator) and that the
stapusr group has permission to run staprun. Use the following command:
chown root:stapusr /usr/bin/staprun
chmod 04110 /usr/bin/staprun

5. Reboot the server to apply the changes.
6. To ensure that the changes took effect, complete the following test.

a. Log in to the server as user_name, where user_name is one of the users that you added to the
stapdev and stapusr user groups.

b. Run the following script to ensure that this user has access:
stap -ve ’probe begin { log("hello world") exit () }’

The resulting messages will indicate whether the script was successful or failed.

2.3.2.1.3 Setting up SystemTap permissions for Red Hat Enterprise Linux and Fedora:
About this task

Complete the following steps if you are running Red Hat Enterprise Linux or Fedora. These steps are
necessary to ensure that users have the required permissions to run SystemTap when logged on from
their user names.

Procedure

1. Ensure that you are logged in to the server as root user.
2. To allow users to run SystemTap, add them to the stapdev and stapuser user groups. Use the

following command:
usermod -aG stapdev,stapusr user_name

Insert the user name for user_name. Repeat this step for each user that will be running SystemTap on
the server.

3. Ensure that the /usr/bin/staprun file permission is set to superuser (administrator) and that the
stapusr group has permission to run staprun. Use the following command:
chown root:stapusr /usr/bin/staprun
chmod 04110 /usr/bin/staprun

2 Setting up the ppc64le version of IBM SDK for Linux on Power 11

4. Reboot the server to apply the changes.
5. To ensure that the changes took effect, complete the following test.

a. Log in to the server as user_name, where user_name is one of the users that you added to the
stapdev and stapusr user groups.

b. Run the following script to ensure that this user has access:
stap -ve ’probe begin { log("hello world") exit () }’

The resulting messages will indicate whether the script was successful or failed.

What to do next

For information about using SystemTap with the IBM Software Development Kit for Linux on Power, see
6.6, “Monitoring performance using SystemTap,” on page 70.

2.3.2.1.4 Setting up SystemTap permissions for Ubuntu:
About this task

If you are running Ubuntu, follow the setup instructions at the Ubuntu SystemTap wiki page
(https://wiki.ubuntu.com/Kernel/Systemtap). These steps are necessary to ensure that users have the
required permissions to run SystemTap when logged on with their user names.

2.4 Starting the IBM SDK for Linux on Power
You can start the SDK on the Power Systems server, and access it from your workstation.

About this task

To start the SDK, complete the following steps.

Procedure
1. On your workstation, begin either X11 forwarding or Virtual Network Computing (VNC) to connect

to the remote Power Systems server.
X11 forwarding provides the most seamless integration between the workstation and the server.
However, if your connection is not fast, you might experience network latency. In that case, VNC
might be a better option.
VNC works with either Linux or Microsoft Windows clients. In addition, when using VNC, you can
disconnect from the session while the IBM SDK for Linux on Power continues to run on the server.
v To use X11 forwarding, ensure that you have a running X Window System server as well as a

terminal emulator for the X Window System, such as GNOME Terminal, on your workstation, and
the xauth utility and X server font package installed on the server. To connect to the server, open a
terminal session and enter the ssh command with the -X option.

v To use VNC, ensure that you have a VNC server package installed on the Power Systems server, as
well as a terminal emulator for the X Window System, such as GNOME Terminal. You also need a
VNC client on your workstation. To start VNC, complete the following steps:
a. Log in to the server console and start a new VNC server by entering the vncserver command.
b. When prompted, choose and type a password. You will use this password later to connect to

the session.
When the command completes, it displays an address you will use to connect.

c. On the workstation, use the VNC client to connect. Specify the address that was displayed and
the password that you chose.

2. Once connected to the Power Systems server, choose one of the following options to start IBM SDK
for Linux on Power.

12 Linux: Developing software using the IBM Software Development Kit for Linux on Power

https://wiki.ubuntu.com/Kernel/Systemtap
https://wiki.ubuntu.com/Kernel/Systemtap

v Open a console and enter the following command:
ibm-sdk-lop

v If your VNC client provides you access to the System menus, select Applications > Programming >
IBM SDK for Linux on Power.

Note: Depending on the desktop environment you are using, the hierarchy of the System menus
might differ.

Results

Note: The first time it is started, the IBM SDK for Linux on Power might take several minutes to launch.
The operating system might consider the application unresponsive due to the intensive input/output
operations necessary to create the initial workspace. If you are prompted to wait or to end the
application, select Wait. The user interface loads within a few seconds. If prompted, select the location on
the Power Systems server that you will use to store the project files.

2.5 Creating a project
With SDK, you can create projects or import existing ones. You can leverage this integration with the IBM
Advance Toolchain to set specific flags for Power Systems.

For more information about remote projects, see 3.4, “Creating and using synchronized projects on x86_64
clients,” on page 23

2.5.1 Creating and using local projects on Power systems
See the following topics for detailed instructions about creating and using local projects.

2.5.1.1 Creating a local C/C++ project
You can create a C/C++ project that uses IBM Advance Toolchain for Linux on Power.

About this task

Complete the following steps in the SDK user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand IBM Advance Toolchain C/C++. Select either IBM Advance Toolchain

C Project or IBM Advance Toolchain C++ Project, as appropriate. Click Next.
3. In the Project window, type a name for the project in the Project name field.

Tip: At the bottom of the window, verify that the Show projects type and toolchains only if they
are supported on the platform check box is selected.

4. Optional: The project will be created in a directory structure in the file system. The default file
system location is displayed in the Location field. If you do not want to save the project in the
default location, clear the Use default location check box, and specify or browse for a new location.

5. In the Project type pane, expand one of the following, as appropriate:
v Executable

v Shared Library

v Static Library

Then, select IBM Advance Toolchain C Project or IBM Advance Toolchain C++ Project, as
appropriate. If you do not see IBM Advance Toolchain for Linux on Power in the Toolchains list,
ensure that you have installed a supported version of Advance Toolchain. For more information, see
IBM Advance Toolchain for Linux on Power prerequisite and recommended packages.

2 Setting up the ppc64le version of IBM SDK for Linux on Power 13

6. In the Toolchains pane, click the Advance Toolchain version GCC option corresponding to your IBM
Advance Toolchain for Linux on Power version. Click Next.

7. In the Compiler tuning window, select the appropriate options for tuning your application or library.
a. Environment: Select from - use default -, 64-bit, or 32-bit.
b. Generate POWER-series code that is compatible with: Select from - use default - or the listed

POWERn technology options.
c. Tune the instruction scheduling for: Select from - use default - or the listed POWERn

technology options. Click Next.
8. Optionally in the Templates window, you can select a project template for a specific version. In the

Library list, select from the following options:
v Do not use any library template. This is the default option.
v SPHDE (Shared Persistent Heap Data Environment). SPHDE is composed of two major software

layers: The Shared Address Space (SAS) layer provides the basic services for a shared address
space and transparent, persistent storage. The Shared Persistent Heap (SPH) layer organizes blocks
of SAS storage into useful functions for storing and retrieving data.

v AUXV (Auxiliary Vector). The AUX vector contains information about the system's platform and
hardware capabilities.

9. Optional: To allow optimizations for Power Systems servers when you are building the application
or library, complete these steps:
a. In the Select configurations window, click Advanced settings.
b. In the next window, expand C/C++ Build and click Settings.
c. On the Tool Settings tab, click POWER-specific optimizations. Then, select the appropriate

optimization options for your workload and application or library characteristics, and target
processor. You can change the default build settings to tune for POWER® processor capabilities
and the IBM SDK for Linux on Power analysis tools. See 4.1, “Setting flags,” on page 35 for
information about the recommended build settings, and instructions for setting them. When
finished, click OK.

10. Click Finish.
11. If prompted to open the C/C++ perspective, select No to stay in the IBM SDK for Linux on Power

perspective.

Results

The new project is shown in the Project Explorer pane. The new project will be built using IBM Advance
Toolchain for Linux on Power, with any Power-specific optimizations that you have chosen.

2.5.1.2 Importing an existing Makefile project
You can import an existing Makefile project into the IBM Software Development Kit for Linux on Power
to be used with IBM Advance Toolchain for Linux on Power.

Before you begin

Ensure that the Makefile project already exists on or has been saved to the Power Systems server.

About this task

To import a Makefile project, complete the following steps in the SDK user interface.

Procedure
1. Before importing the project, you should disable the option to build projects automatically. This

prevents the SDK from building a project that might not be ready after importing. Click Project and
clear the Build Automatically check box if it is selected.

14 Linux: Developing software using the IBM Software Development Kit for Linux on Power

2. Import the project by clicking File > Import.
3. In the Import window, expand C/C++, then click Existing Code as Makefile Project. Click Next.
4. In the Import Existing Code window, do the following.

a. Click Browse next to the Existing Code Location field. The project must exist on the Power
Systems server.

b. Optional: Type a name for the project in the Project Name field.
c. Successively click the displayed directories to locate the directory that contains the project to be

imported.
d. When you locate the directory, click OK.
e. Back in the Import Existing Code window, under Toolchain for Indexer Settings, click the Advance

Toolchain version GCC option corresponding to your IBM Advance Toolchain for Linux on Power
version. version is the version number of IBM Advance Toolchain for Linux on Power This causes
the binary files for the selected IBM Advance Toolchain for Linux on Power version to be used by
the Eclipse source code Indexer.

f. Click Finish.

The project is imported as a Makefile project and is shown in the Project Explorer pane.
5. You must export the environment variables CC or GCC to ensure that the make command builds using

the correct IBM Advance Toolchain for Linux on Power version. Choose one of the following
methods.
v Use the user interface options to change the settings of the environment variables.

a. View the project by clicking the project name in the Project Explorer pane.
b. Right-click the project name and click Properties.
c. Expand C/C++ Build and click Environment.
d. Click Export and type CC="/opt/atversion/bin/gcc".version is the version number of IBM

Advance Toolchain for Linux on Power
e. Click OK when finished.

v Change the environment variables manually by editing the Makefile. You edit the Makefile by
double-clicking on the project in the Project Explorer pane.

6. Optional: You can change the default build settings to tune for POWER processor capabilities and the
IBM SDK for Linux on Power analysis tools. See 4.1, “Setting flags,” on page 35 for information about
the recommended build settings, and instructions for setting them.
To change build settings such as CFLAGS, CPPFLAGS, and LDFLAGS, choose one of the following
methods.
v Use the user interface options to change the settings of the environment variables.

a. View the project by clicking the project name in the Project Explorer pane.
b. Right-click the project name and click Properties.
c. Expand C/C++ Build and click Environment.
d. Click Add to add environment variables, or click Select to select and change the value of an

existing environment variable. For example, a typical set of parameters for POWER8™ targets is
CC=/opt/at8.0/bin/gcc CFLAGS=’-m64 -g -O3 -mcpu=power8’ CXXFLAGS=’-m64
-g -O3 -mcpu=power8’ LDFLAGS=’-m64 -Wl,-q’.

e. Click OK when finished.
v Change the build settings manually by editing the Makefile. You edit the Makefile by

double-clicking on the project in the Project Explorer pane.

2.5.1.3 Importing an existing Autotools project
You can import an existing project that uses Autotools into the IBM Software Development Kit for Linux
on Power to be used with IBM Advance Toolchain for Linux on Power.

2 Setting up the ppc64le version of IBM SDK for Linux on Power 15

Before you begin

Ensure that the Autotools project already exists on or has been saved to the Power Systems server. The
Autotools project will be imported as a Makefile project, then converted to an Autotools project.

About this task

To import an Autotools project, complete the following steps in the SDK user interface.

Procedure
1. Before importing the project, you should disable the option to build projects automatically. This

prevents the SDK from building a project that might not be ready after importing. Click Project and
clear the Build Automatically check box if it is selected.

2. Import the project by clicking File > Import.
3. In the Import window, expand C/C++, then click Existing Code as Makefile Project. Click Next.
4. In the Import Existing Code window, do the following.

a. Click Browse next to the Existing Code Location field. The project must exist on the Power
Systems server.

b. Optional: Type a name for the project in the Project Name field.
c. Successively click the displayed directories to locate the directory that contains the project to be

imported.
d. When you locate the directory, click OK.
e. Back in the Import Existing Code window, under Toolchain for Indexer Settings, click GNU

Autotools Toolchain.
f. Click Finish.

The project is imported as a Makefile project and is shown in the Project Explorer pane.

What to do next

Continue to Converting the imported project.

2.5.1.3.1 Converting the imported project:
About this task

After the project import is complete, you must convert the Makefile project so that it is identified as an
Autotools project.

Procedure

1. To convert the project, click File > New > Other.
2. In the New window, expand C/C++, then click Convert to a C/C++ Autotools Project. Click Next.
3. In the Convert C/C++ Projects window, ensure that the check box for the project you imported is

selected. Click the radio button for the correct programming language, C or C++. Then click Finish.
4. You must export the environment variables CC or GCC to ensure that the make command builds using

the correct IBM Advance Toolchain for Linux on Power version. Use the user interface options to
change the settings of the environment variables.
a. View the project by clicking the project name in the Project Explorer pane.
b. Click Project > Properties.
c. In the Properties window, expand Autotools and click Configure Settings.
d. Click Advanced.

16 Linux: Developing software using the IBM Software Development Kit for Linux on Power

e. In the Additional command-line options field, type the build settings you want to change. To use
IBM Advance Toolchain for Linux on Power with Autotools projects, type CC="/opt/atversion/
bin/gcc", where version is the version number of IBM Advance Toolchain for Linux on Power. For
example: CC="/opt/at8.0/bin/gcc".

f. Click OK when finished.
5. Optional: You can change the default build settings to tune for POWER processor capabilities and the

IBM SDK for Linux on Power analysis tools. See 4.1, “Setting flags,” on page 35 for information about
the recommended build settings, and instructions for setting them.
To change build settings such as CFLAGS, CPPFLAGS, and LDFLAGS, choose one of the following
methods.
a. View the project by clicking the project name in the Project Explorer pane.
b. Right-click the project name and click Properties.
c. Expand Autotools and click Configure Settings.
d. Expand Configure and click Advanced.
e. In the Additional command-line options field, type the build settings you want to change. The

environment variables you can set in this interface are those that affect Autoconf. For example, a
typical set of parameters for POWER8 targets is
CC=/opt/at8.0/bin/gcc CFLAGS=’-m64 -g -O3 -mcpu=power8’ CXXFLAGS=’-m64
-g -O3 -mcpu=power8’ LDFLAGS=’-m64 -Wl,-q’.

f. Click OK when finished.

What to do next

Continue to Configuring the imported project.

2.5.1.3.2 Configuring the imported project:
About this task

After the project is imported, the SDK automatically indexes the source code for the project. The source
files then appear with the project in the Project Explorer pane.

Procedure

1. To view the project, click the project name in the Project Explorer pane. You can explore it and make
configuration updates.
v Use the Project Explorer pane to expand and explore the project.
v Double-click a project file to open it in the editor. The outline pane shows macro references and

program control statements.
v Open the autoconf configuration file (configure.ac) or the makefile configuration file

(makefile.am). This allows the SDK to index the file and provide proper syntax highlighting.
v You can set autoconf configuration script options in the project properties.

– Click Project > Properties.
– In the Properties window, expand Autotools and click Configure Settings.
– Under Configure, click Advanced.
– You can specify additional options in the Additional command-line options field. To use IBM

Advance Toolchain for Linux on Power with Autotools projects, type CC="/opt/atversion/bin/
gcc", where version is the version number of IBM Advance Toolchain for Linux on Power. For
example: /opt/at8.0/bin/gcc. On this field, you can also set other flags for your project. For
example, a typical set of parameters for POWER8 targets is
CC=/opt/at8.0/bin/gcc CFLAGS=’-m64 -g -O3 -mcpu=power8’ CXXFLAGS=’-m64
-g -O3 -mcpu=power8’ LDFLAGS=’-m64 -Wl,-q’.

– Click OK.

2 Setting up the ppc64le version of IBM SDK for Linux on Power 17

2. After you have made the configuration updates, reconfigure the project.
3. Right-click the project name, and select Reconfigure Project.
4. While the project is being configured, you can click the Console tab to monitor progress.

What to do next

Continue to Building the imported project.

2.5.1.3.3 Building the imported project:
About this task

After the project reconfiguration is complete, you can build the project.

Procedure

1. Return to the project view by clicking the project name in the Project Explorer pane.
2. Click Project > Build Project to build the project.
3. While the project is building, you can click the Console tab to monitor progress.
Related information:

An Introduction to the Autotools

2.5.1.4 Creating an empty Autotools project
You can use the SDK to create an empty Autotools project.

About this task

Complete the following steps in the SDK user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand IBM Advance Toolchain C/C++. Select either IBM Advance Toolchain C

Project or IBM Advance Toolchain C++ Project, as appropriate. Click Next.
3. In the Project type pane, expand GNU Autotools and select Empty Project.
4. In the Project window, type a name for the project in the Project name field.
5. The project will be created in a directory structure in the file system. The default file system location

is displayed in the Location field. If you do not want to save the project in the default location, clear
the Use default location check box, and specify or browse for a new location.

6. Click Finish.

Results

The new project is shown in the Project Explorer pane.

2.5.1.5 Creating a “Hello World” Autotools project
You can use the SDK to create a “Hello World” Autotools project.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.

18 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://www.gnu.org/savannah-checkouts/gnu/automake/manual/html_node/Autotools-Introduction.html#Autotools-Introduction

2. In the New window, expand IBM Advance Toolchain C/C++. Select either IBM Advance Toolchain C
Project or IBM Advance Toolchain C++ Project, as appropriate. Click Next.

3. In the Project type pane, expand GNU Autotools and select Hello World ANSI C Autotools Project.
4. In the Project window, type a name for the project in the Project name field.
5. The project will be created in a directory structure in the file system. The default file system location

is displayed in the Location field. If you do not want to save the project in the default location, clear
the Use default location check box, and specify or browse for a new location.

6. Click Finish.

Results

The new project is shown in the Project Explorer pane.

2.5.1.6 Changing the IBM Advance Toolchain version
After you have created a C/C++ Development Toolkit managed C/C++ project that uses the IBM
Advance Toolchain for Linux on Power, you can switch between installed IBM Advance Toolchain for
Linux on Power versions as needed.

About this task

Complete the following steps in the SDK user interface.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Right-click the project name and click Properties.
3. Expand C/C++ Build and click Tool Chain Editor.
4. In the Tool Chain Editor window, in the Current toolchain field, click the arrows to select the IBM

Advance Toolchain for Linux on Power version you want to use.
5. Optional: You can verify the version of IBM Advance Toolchain for Linux on Power being used by

doing the following:
a. Right-click the project name and click Properties.
b. Expand C/C++ Build and click Settings.

6. Switch the Linux tools path according to the IBM Advance Toolchain for Linux on Power version, to
ensure that the analysis and profiling tools use the correct IBM Advance Toolchain for Linux on
Power binary files. Complete the following steps:
a. Right-click the project name and click Properties.
b. Click Linux Tools Path.
c. Ensure that Prepend string to PATH is selected.
d. Select the appropriate IBM Advance Toolchain for Linux on Power version.

2.5.1.7 Running an executable program in a project
This topic provides instructions for running executable programs in local projects.

About this task

To run an executable program, complete the following steps in the SDK user interface.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Run as > Run configurations.
2. In the open space under C/C++ Application, double-click to create a new configuration.

2 Setting up the ppc64le version of IBM SDK for Linux on Power 19

3. In the New Run Configuration window, beside the C/C++ Application field, click Search Project to
select the executable program that you want to run.

4. On the Arguments tab, specify any arguments.
5. Click Run.

2.5.1.8 Debugging a project with IBM Advance Toolchain for Linux on Power
This topic provides instructions for debugging a local project using the debugger provided by IBM
Advance Toolchain for Linux on Power.

About this task

The C/C++ Development User Guide (http://help.eclipse.org/luna/topic/org.eclipse.cdt.doc.user/
concepts/cdt_o_home.htm) in the Eclipse platform help information contains additional general and
advanced information about debugging projects.

To begin debugging a project that was built with IBM Advance Toolchain for Linux on Power, complete
the following steps in the SDK user interface.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Click Debug as > Debug Configurations.
3. In the Debug Configurations window, click C/C++ Application in the left pane, and then click the

new launch configuration icon near the upper left of the window.
4. On the Main tab, beside the C/C++ Application field, click Search Project to select the binary file

that you want to debug.
5. If necessary, click the arrows in the Build configuration field and select Debug.
6. On the Arguments tab, specify any arguments.
7. Optional: The GDB debugger path was set when the project was created. However, you can check

the path as follows. On the Debugger tab, on the Main tab within the Debugger Options area, in the
GDB debugger field, verify the path for the location of the debugger to be used,
/opt/atversion/bin/gdb, where version is the version number of IBM Advance Toolchain for Linux
on Power. For example: /opt/at8.0/bin/gdb.

8. Click Apply, then click Debug to begin debugging.
9. You might be prompted to open the Debug perspective. If so, click Yes to open the Debug

perspective.
10. In the Debug perspective, you can use the displayed icons to step through the execution, inspect

variables, and set breakpoints.

20 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://help.eclipse.org/luna/topic/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm

3 Setting up the x86_64 version of the IBM SDK for Linux on
Power

You can start the IBM SDK for Linux on Power x86_64 client on a workstation and then connect to a
remote Power System to build, execute, debug, and analyze programs. You can also develop and build
your application locally using the IBM Advance Toolchain for Linux on Power cross-compiler.

For remote development, you must install the server package of the IBM SDK for Linux on Power. This
package ensure that all required dependencies are installed on the remote Power Systems.

3.1 Downloading and installing the x86_64 client
This topic gives instructions for downloading the and installing the x86_64 version of the SDK.

About this task

Complete the following steps.

Procedure
1. Install the IBM Advance Toolchain cross-compiler on the x86_64 system, if needed

Table 9. IBM Advance Toolchain for Linux on Power with cross-compiler feature required and recommended
prerequisites

IBM Advance Toolchain for Linux on Power
cross-compiler

IBM Advance Toolchain for Linux on Power
cross-compiler recommended prerequisites

v advance-toolchain-at7.1-cross-7.1-3 or greater v advance-toolchain-at8.0-cross-common-8.0-3 or greater

v advance-toolchain-at8.0-cross-ppc64-8.0-3 or greater

v advance-toolchain-at8.0-cross-ppc64le-8.0-3 or greater

For more details about installing the IBM Advance Toolchain for Linux on Power, see 2.1, “Installing
the IBM Advance Toolchain for Linux on Power,” on page 7.

2. Go to the IBM Software Development Kit for Linux on Power website at http://www-304.ibm.com/
webapp/set2/sas/f/lopdiags/sdkdownload.html#2..

3. Select from the following to download the IBM SDK for Linux on Power client for remote
development package, x86_64 client package, to the x86_64 client.
v For Red Hat Enterprise Linux, SUSE Linux Enterprise Server, and Fedora, in the Download

individual packages for IBM SDK section of the page, download ibm-sdk-lop-version.x86_64.rpm.
v For Ubuntu, in the Download the ISO image or the DEB image section of the page, download the

DEB image for the x86_64 client, ibm-sdk-lop_version_amd64.deb.

version is the version number of the package.
4. Install the IBM SDK for Linux on Power and its dependencies on the x86_64 host:

v For Red Hat Enterprise Linux, SUSE Linux Enterprise Server, and Fedora:
* yum install ibm-sdk-lop-version.x86_64.rpm

v For Ubuntu:
*dpkg -i ibm-sdk-lop_version_amd64.deb

If the installer warns you about missing dependencies, run the following command to automatically
download and install them:
apt-get -f install

© Copyright IBM Corp. 2012, 2015 21

http://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdkdownload.html#2
http://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdkdownload.html#2

3.2 Downloading and installing the server for remote development
With the x86_64 version of the SDK you can connect to a remote Power Systems that has the server
version of the SDK installed to create, build, debug, and profile applications.

About this task

Choose one of the following options to start the x86_64 version of the SDK.

Procedure
v Open a terminal emulator for the X Window System, such as GNOME Terminal, and enter the

following command:
/opt/ibm/ibm-sdk-lop/ibm-sdk-lop

v On the client desktop menus, select Applications > Programming > IBM SDK for Linux on Power.
Depending on the desktop environment that you are using, the hierarchy of the System menus might
differ.

Results

Note: The first time that the SDK is started, it might take several minutes to launch. The operating
system might consider the application unresponsive due to the intensive input/output operations
necessary to create the initial workspace. If you are prompted to wait or to end the application, select
Wait. The user interface loads within a few seconds.

3.3 Setting up remote Power Systems server
The Remote Setup Wizard that is available on the x86_64 of the SDK allows users to install the SDK
packages and their dependencies on Power Systems. It automatically detects the operating system of the
target system and automates all the necessary steps to install the SDK.

About this task

Complete the following steps to install the SDK with the Remote Setup Wizard:

Procedure
1. Click Help in the toolbar and select Setup Remote Machine.
2. If no systems are listed in table, complete the following steps:

a. Click New Machine.
b. In the Remote Services field, select Remote Tools and click Add.
c. In the Target Environment Configuration window, complete the fields: Target Name, Host, User,

and Password. Then, select Finish.
d. In the Preferences window, click OK.

3. Select one of the systems that are listed in the table and click Setup Machine.
4. In the new window, select the SDK packages and the IBM Advance Toolchain version to install, and

click Install.

Note: To proceed with installation, you need to agree with the license terms.
5. All the necessary packages are downloaded. When the download process is completed, a confirmation

message is displayed, informing you which packages will be installed. Select Yes to install those
packages.

6. During the installation process, you are prompted to enter your password. Type your user password
and select OK.

22 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Note: You need administrative privileges to install the packages.
7. When the installation is completed, a message is displayed, informing you that all the packages were

successfully installed. Select OK to complete the process.

3.4 Creating and using synchronized projects on x86_64 clients
If you have installed the x86_64 version of the SDK on you workstation and the server package on a
Power Systems, you can create synchronized projects on the server from the client.

See 3.2, “Downloading and installing the server for remote development,” on page 22 for instructions if
you have not already installed the packages.

3.4.1 Creating a synchronized C/C++ project
Synchronized projects are mirrored on the local system and the remote system. You can edit locally, and
your changes are synchronized with the remote system. This topic details how to create a synchronized
project that uses IBM Advance Toolchain for Linux on Power.

Before you begin

If you plan to use synchronized projects, you must first install the git package on the remote server. See
“Packages required by IBM SDK for Linux on Power ” on page 2.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Remote IBM Advance Toolchain and click to select Synchronized IBM

Advance Toolchain C/C++ Project. Click Next.
3. In the New IBM Advance Toolchain Synchronized Project window, type a name for the project in the

Project name field.
4. In the Remote service provider field, select Remote Tools.
5. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 8.3, “Setting
up SSH credentials,” on page 89.

6. For the location, click Browse to select the remote location where the project source is stored.
7. In the Project type pane, expand and select a project type for one of the following categories:

v Remote Advance Toolchain Executable
v Remote Advance Toolchain Shared Library
v Remote Advance Toolchain Static Library

In the project type, select Empty Project.
8. In the Toolchain pane, select an available Remote Advance Toolchain. Do not select “Local Toolchain”.
9. Click Next or Finish.

Results

The new project is shown in the Project Explorer pane. The new project will be built using IBM Advance
Toolchain for Linux on Power, with any Power-specific optimizations that you have chosen. The project
folder is created on the remote Power Systems server, and a local cached copy is maintained. IBM SDK

3 Setting up the x86_64 version of the IBM SDK for Linux on Power 23

for Linux on Power operations such as building, running, and profiling can be performed remotely.

3.4.2 Creating a synchronized project by importing an existing Makefile
project
You can import an existing Makefile project into the IBM Software Development Kit for Linux on Power
as a synchronized project to be used with IBM Advance Toolchain for Linux on Power.

Before you begin

If you plan to use synchronized projects, ensure that the Makefile project already exists on or has been
saved to the Power Systems server.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Remote IBM Advance Toolchain and click to select IBM Advance

Toolchain Synchronized C/C++ Project. Click Next.
3. In the New IBM Advance Toolchain Synchronized Project window, type a name for the project in the

Project name field.
4. In the Remote service provider field, select Remote Tools.
5. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 8.3, “Setting
up SSH credentials,” on page 89.

6. For the location, click Browse to select the remote location where the project source is stored.
7. In the Project type pane, expand Makefile Project and select Empty Project .
8. In the Remote Toolchain pane, select Remote Linux Advance Toolchain 7.0, 7.1, or 8.0. Do not select

“Local Toolchain”.
9. Click Finish.

3.4.3 Creating a synchronized project by importing an existing
Autotools project
You can import an existing project that uses Autotools into the IBM Software Development Kit for Linux
on Power to be used remotely with IBM Advance Toolchain for Linux on Power.

Before you begin

Ensure that the Autotools project already exists on or has been saved to the Power Systems server.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Before importing the project, you should disable the option to build projects automatically. This

prevents the SDK from building a project that might not be ready after importing. Click Project and
clear the Build Automatically check box if it is selected.

2. Click File > New > Other.

24 Linux: Developing software using the IBM Software Development Kit for Linux on Power

3. In the New window, expand Remote IBM Advance Toolchain and click to select Synchronized IBM
Advance Toolchain C/C++ Project. Click Next.

4. In the New IBM Advance Toolchain Synchronized Project window, type a name for the project in the
Project name field.

5. In the Remote service provider field, select Remote Tools.
6. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 8.3, “Setting
up SSH credentials,” on page 89.

7. For the location, click Browse to select the remote location where the project source is stored.
8. In the Project type pane, expand GNU Autotools, and select Empty project.
9. In the Remote Toolchain pane, select GNU Autotools Toolchain.

10. Click Finish.

Results

The project is imported as a Makefile project and is shown in the Project Explorer pane.

What to do next

Continue to Configuring the imported project.

3.4.3.1 Configuring the imported project
About this task

After the project is imported, the SDK automatically indexes the source code for the project. The source
files then appear with the project in the Project Explorer pane.

Procedure
1. To view the project, click the project name in the Project Explorer pane. You can explore it and make

configuration updates.
v Use the Project Explorer pane to expand and explore the project.
v Double-click a project file to open it in the editor. The outline pane shows macro references and

program control statements.
v Open the autoconf configuration file (configure.ac) or the makefile configuration file

(makefile.am). This allows the SDK to index the file and provide proper syntax highlighting.
v You can set autoconf configuration script options in the project properties.

– Click Project > Properties.
– In the Properties window, expand Autotools and click Configure Settings.
– Under Configure, click Advanced.
– You can specify additional options in the Additional command-line options field. To use IBM

Advance Toolchain for Linux on Power with Autotools projects, type CC="/opt/atversion/bin/
gcc", where version is the version number of IBM Advance Toolchain for Linux on Power. For
example: /opt/at8.0/bin/gcc. On this field, you can also set other flags for your project. For
example, a typical set of parameters for POWER8 targets is
CC=/opt/at8.0/bin/gcc CFLAGS=’-m64 -g -O3 -mcpu=power8’ CXXFLAGS=’-m64
-g -O3 -mcpu=power8’ LDFLAGS=’-m64 -Wl,-q’.

– Click OK.
2. After you have made the configuration updates, reconfigure the project.
3. Right-click the project name, and select Reconfigure Project.

3 Setting up the x86_64 version of the IBM SDK for Linux on Power 25

4. While the project is being configured, you can click the Console tab to monitor progress.

What to do next

Continue to Building the imported project.

3.4.3.2 Building the imported project
About this task

After the project reconfiguration is complete, you can build the project.

Procedure
1. Return to the project view by clicking the project name in the Project Explorer pane.
2. Click Project > Build Project to build the project.
3. While the project is building, you can click the Console tab to monitor progress.
Related information:

An Introduction to the Autotools

3.4.4 Creating a synchronized empty Autotools project
You can use IBM SDK for Linux on Power to create an empty synchronized Autotools project.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Remote IBM Advance Toolchain and click to select Synchronized IBM

Advance Toolchain C/C++ Project. Click Next.
3. In the Remote service provider field, select Remote Tools.
4. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 8.3, “Setting
up SSH credentials,” on page 89.

5. Click Browse to find the location where the project is to be stored on the remote server.
6. In the Project type pane, expand GNU Autotools and select Empty Project.
7. In the Project window, type a name for the project in the Project name field.
8. Click Finish.

Results

The new project is shown in the Project Explorer pane.

Note: Running Autotools in a remote project will fail if there are environment variables with no value
assigned in the local system (for example, VARIABLE=).

3.4.5 Creating a synchronized “Hello World” Autotools project
You can use IBM SDK for Linux on Power to create a “Hello World” synchronized Autotools project.

26 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://www.gnu.org/savannah-checkouts/gnu/automake/manual/html_node/Autotools-Introduction.html#Autotools-Introduction

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Remote IBM Advance Toolchain and click to select Synchronized IBM

Advance Toolchain C/C++ Project. Click Next.
3. In the Remote service provider field, select Remote Tools.
4. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 8.3, “Setting
up SSH credentials,” on page 89.

5. In the Project type pane, expand GNU Autotools and select Hello World ANSI C Autotools Project.
6. In the Project window, type a name for the project in the Project name field.
7. Click Finish.

Results

The new project is shown in the Project Explorer pane.

Note: Running Autotools in a remote project will fail if there are environment variables with no value
assigned in the local system (for example, VARIABLE=).

3.4.6 Running an executable program in a synchronized project
This topic provides instructions for running an executable program on a remote server.

About this task

To run a remote executable program, complete the following steps in the IBM SDK for Linux on Power
user interface.

Procedure
1. In the Project Explorer pane, right-click the remote project name. Click Run as > Run configurations.

Double-click Parallel Application.
2. On the Resources tab, complete the following steps.

a. In the Target System Configuration field, click the arrows to select IBM SDK Remote
Connection.

b. In the Remote service provider field, select Remote tools.
c. In the Please select a connection box, click the arrows to select the connection to the remote server,

or click New to create a connection.
3. On the Application tab, in the Application program field, click Browse to select the executable

program that you want to run.
4. Click Run.

3.4.7 Debugging a synchronized project
This topic provides instructions for debugging a synchronized project using the Scalable Debug Manager
(SDM).

3 Setting up the x86_64 version of the IBM SDK for Linux on Power 27

Before you begin

To debug a project on a remote Power Systems server, the RPM ibm-sdk-lop-server-version.ppc64.rpm
must be installed on the remote server.

About this task

To debug a synchronized project, complete the following steps.

Procedure
1. In the Project Explorer pane, right-click the synchronized project name. Click Debug as > Debug

configurations. Double-click Parallel Application.
2. On the Resources tab, complete the following steps.

a. In the Target System Configuration field, click the arrows to select IBM SDK Remote
Connection.

b. In the Remote service provider field, select Remote tools.
c. In the Please select a connection box, click the arrows to select the connection to the remote server,

or click New to create a connection.
3. On the Application tab, in the Application program field, click Browse to select the binary file that

you want to debug.
4. On the Debugger tab, complete the following steps.

a. Ensure that the Debugger field is set to SDM.
b. Ensure that the Debugger backend field is set to gdb-mi.

5. Click Debug. The Parallel Debug perspective opens automatically. You can then debug the
application.

6. In the Parallel Debug perspective, you can use the displayed icons to step through the execution,
inspect variables, and set breakpoints.

3.5 Creating and using cross-compiled projects

3.5.1 Creating a cross-compiled C/C++ project
You can create a C/C++ project that uses the IBM Advance Toolchain for Linux on Power cross-compiler.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand IBM Advance Toolchain C/C++. Select either IBM Advance Toolchain

C Project or IBM Advance Toolchain C++ Project, as appropriate. Click Next.
3. In the Project window, type a name for the project in the Project name field.

Tip: At the bottom of the window, verify that the Show projects type and toolchains only if they
are supported on the platform check box is selected.

4. Optional: The project will be created in a directory structure in the file system. The default file
system location is displayed in the Location field. If you do not want to save the project in the
default location, clear the Use default location check box, and specify or browse for a new location.

5. In the Project type pane, expand one of the following, as appropriate:
v Executable

28 Linux: Developing software using the IBM Software Development Kit for Linux on Power

v Shared Library

v Static Library

Then select IBM Advance Toolchain cross-compiler C Project or IBM Advance Toolchain
cross-compiler C++ Project, as appropriate.

6. In the Toolchains pane, select the GCC option corresponding to your IBM Advance Toolchain for
Linux on Power cross-compiler. Click Next.

7. In the Compiler tuning window, select the appropriate options for tuning your application or library.
a. Environment: Select from - use default -, 64-bit, or 32-bit.
b. Generate POWER-series code that is compatible with: Select from - use default - or the listed

POWERn technology options.
c. Tune the instruction scheduling for: Select from - use default - or the listed POWERn

technology options. Click Next.
8. In the Templates window, ensure that Do not use any library template is selected. If you select

either of the listed templates, you cannot build the application. These templates are not supported
for cross-compiled projects.

9. Optional: To allow optimizations for Power Systems servers when you are building the application
or library, complete these steps:
a. In the Select configurations window, click Advanced settings.
b. In the next window, expand C/C++ Build and click Settings.
c. On the Tool Settings tab, click POWER-specific optimizations. Then, select the appropriate

optimization options for your workload and application or library characteristics, and target
processor. You can change the default build settings to tune for POWER processor capabilities
and the IBM SDK for Linux on Power analysis tools. See 4.1, “Setting flags,” on page 35 for
information about the recommended build settings, and instructions for setting them. When
finished, click OK.

10. Click Finish.
11. If prompted to open the C/C++ perspective, select Yes.

Results

The new project is shown in the Project Explorer pane. The new project will be built using IBM Advance
Toolchain for Linux on Power, with any Power-specific optimizations that you have chosen.

The new project is shown in the Project Explorer pane. The new project will be built using IBM Advance
Toolchain for Linux on Power cross-compiler, with any Power-specific optimizations that you have
chosen.

3.5.2 Executing a cross-compiled project
This topic provides instructions for running an executable program remotely using the cross-compiler
development mode.

About this task

To run a cross-compiled executable program, complete the following steps in the IBM SDK for Linux on
Power user interface.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK. The

cross-compiled project should be displayed under the Project Explorer view.
2. In the Project Explorer pane, right-click the cross-compiled project name. Click Run as > Run

configurations. Double-click Parallel Application.

3 Setting up the x86_64 version of the IBM SDK for Linux on Power 29

3. On the Resources tab, complete the following steps.
a. In the Target System Configuration field, click the arrows to select IBM SDK Remote

Connection.
b. In the Remote service provider field, select Remote tools.
c. In the Please select a connection box, click the arrows to select the connection to the remote server,

or click New to create a connection.
4. On the Application tab, complete the following steps.

a. In the Application program field, type a name for the application to be created on the remote
server.

b. Select the Copy executable from local filesystem check box.
c. In the Path to local executable field, click Browse to select the executable program that was

generated when the project was built.
d. Optional: If you want to see the output from the running application, ensure that the Display

output from all processes in a console view check box is selected.
5. Click Run.

3.5.3 Debugging a cross-compiled project
This topic provides instructions for debugging a cross-compiled project using the Scalable Debug
Manager (SDM).

Before you begin

To debug a project on a remote Power Systems server, the ibm-sdk-lop-server-version package must be
installed on the remote server.

About this task

To debug a cross-compiled project, complete the following steps.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK. The

cross-compiled project should be displayed under the Project Explorer view.
2. In the Project Explorer pane, right-click the cross-compiled project name. Click Debug as > Debug

configurations. Select the parallel application that was created previously when you ran the compiled
program. The application has the same name as your project.

3. On the Resources tab, complete the following steps.
a. In the Target System Configuration field, click the arrows to select IBM SDK Remote

Connection.
b. In the Remote service provider field, select Remote tools.
c. In the Please select a connection box, click the arrows to select the connection to the remote server,

or click New to create a connection.
4. On the Application tab, in the Application program field, click Browse to select the binary file that

you want to debug.
5. On the Debugger tab, complete the following steps.

a. Ensure that the Debugger field is set to SDM.
b. Ensure that the Debugger backend field is set to gdb-mi.

6. Click Debug. The Parallel Debug perspective opens automatically. You can then debug the
application.

7. In the Parallel Debug perspective, you can use the displayed icons to step through the execution,
inspect variables, and set breakpoints.

30 Linux: Developing software using the IBM Software Development Kit for Linux on Power

3.6 Installing and using QEMU user-mode emulation
The SDK provides integration with QEMU user-mode emulation. In this mode, QEMU can launch
processes compiled for one CPU on another CPU, allowing for easy cross-compilation and
cross-debugging.

Before you begin

Before you begin using QEMU user-mode emulation, ensure that you have the following prerequisites
installed on your system:
v The IBM Advance Toolchain for Linux on Power cross-compiler package, as detailed in 2.1, “Installing

the IBM Advance Toolchain for Linux on Power,” on page 7.
v IBM Software Development Kit for Linux on Power, as detailed in 3.2, “Downloading and installing the

server for remote development,” on page 22

About this task

At the CPU level, user-mode emulation is a subset of the full system emulation. No memory
management unit (MMU) simulation is done because QEMU supposes the user memory mappings are
handled by the host operating system. QEMU includes a generic Linux system call converter to handle
endianness issues and 32/64 bit conversions. Because QEMU supports exceptions, it emulates the target
signals exactly. Each target thread is run in one host thread.

Procedure
1. Download and install the latest packages for your operating system from the Unicamp FTP site

(ftp://ftp.unicamp.br/pub/linuxpatch/sdk/qemu/).
2. Install the packages using the command appropriate for your Linux distribution.

v For Red Hat Enterprise Linux 6.5 and 7.1, SUSE Linux Enterprise Server 12, and Fedora 20:
#yum install -y qemu-user-space-emulator-<version>.x86_64.rpm

v For Ubuntu:
#dpkg -i qemu-user-space-emulator_<version>_amd64.deb

3.6.1 Running a cross-compiled application with QEMU user-mode
emulation
Follow these steps to run a cross-compiled application with QEMU user-mode emulation.

Before you begin

Before using QEMU to run your application, you must create (or import) and build a cross-compiled
project. See 3.5.1, “Creating a cross-compiled C/C++ project,” on page 28 for details.

About this task

In order to run your cross-compiled application using QEMU user-mode, follow these steps.

Procedure
1. Select the target project, then Run > Run As > QEMU. If this is the first time you are using QEMU,

the launcher configuration opens.
2. From the Application options menu, select Browse. A new window appears.
3. Select the application binary. If the Advance Toolchain version cannot be detected, you are prompted

to select the toolchain used to build the project. After you select the binary and identify the toolchain
version, the remaining fields are automatically populated.

3 Setting up the x86_64 version of the IBM SDK for Linux on Power 31

ftp://ftp.unicamp.br/pub/linuxpatch/sdk/qemu/
ftp://ftp.unicamp.br/pub/linuxpatch/sdk/qemu/

4. Optional: Set arguments for your application from Applications > Parameters.
5. Select from the QEMU options. Descriptions for each options display as you move your cursor over

the option name.
6. By default, the Libraries Paths fields contains the paths for the Advance Toolchain libraries. If you

need to use any other library available on your system, select Browse and enter the location of the
library.

7. Press Run.

3.6.2 Debugging a cross-compiled application with QEMU user-mode
emulation
Follow these steps to debug a cross-compiled application with QEMU user-mode emulation.

Procedure
1. After building your application, select Run > Run As > Run Configurations > QEMU to open the

QEMU launcher. If this is the first time you are using the QEMU launcher, first follow the steps in
3.6.1, “Running a cross-compiled application with QEMU user-mode emulation,” on page 31.

2. Right-click your application, and select Run > Run As > Run Configurations.
3. From the Run Configurations window, select the QEMU entry related to your project.
4. From the QEMU options menu, set the GNU Project Debugger (GDB) port (for example, 12345). Press

Apply and then Run. QEMU has its own GDB server embedded. When you set the port and press
Run, QEMU waits for a GDB client connection.

5. Follow these steps to connect to the QEMU GDB session:
a. Select the target project from the project explorer view.
b. Right click the project, then select Debug As > Debug Configurations.
c. Create a new debug configuration by double-clicking C/C++ Attach to Application.
d. From the Debugger tab, select GDB server from the Debugger menu.
e. From the Debugger options, select the Connection tab, and set the port you selected previously in

the Port Number field.
f. Press Debug. The Debug perspective opens.

Note: Ensure that you select Instruction Step Mode from the main bar. When debugging using
QEMU user-mode, you cannot navigate through source code. You may only access the instructions
set.

3.7 Installing and executing the IBM POWER8 Functional Simulator
The IBM Software Development Kit for Linux on Power provides integration with the IBM POWER8
Functional Simulator, a POWER8 simulator that can be installed in any x86_64 system. The simulator
instantiates a Power virtual machine to which the x86_64 version of SDK can connect. Once connected,
the client for remote development package can compile and run ppc64le programs, all in the x86_64
client machine.

3.7.1 Installing and setting up the POWER8 Functional Simulator
Follow these steps to install, set up, and run the POWER8 Functional Simulator on your POWER8 system
and x86_64 client.

About this task

During the installation process, you will install the simulator and a disk image to boot the virtual
machine. You must install the simulator on the same physical system where the x86_64 version of the
SDK is installed.

32 Linux: Developing software using the IBM Software Development Kit for Linux on Power

You will also install a disk image from which to boot the virtual machine. The SDK supports a Debian
ppc64le image. The image contains the root filesystem of the standard version of Debian, including
system libraries and basic system binaries.

3.7.1.1 Automatically installing the IBM POWER8 Functional Simulator
If your POWER8 system has Internet access, you can install the POWER8 Functional Simulator
automatically.

About this task

The installation process is fully automated through a script. This results in a ready-to-use simulator, and
a Debian ppc64le system that can be booted into the Simulator.

Procedure
1. Log in to the POWER8 system as a non-privileged user.

Note: Ensure that you logged in as the user who will perform code development using the SDK. The
installation process identifies the current user, and grants access to the virtual machine only for this
user.

2. Run the setup script as shown here:
$ /opt/ibm/ibm-sdk-lop/bin/setup_simulator.sh -i

The script downloads the Functional Simulator installation package, the disk image, and all necessary
dependencies. The setup script will place the disk image and all necessary files in a temporary
directory.

3. Wait for the installation to complete. After the installation finishes, it provides you instructions to
complete the next step.

4. The instructions provided direct you to enter the following command:
$ /opt/ibm/ibm-sdk-lop/bin/setup_simulator.sh -f <path_to_disk_image>

Where <path_to_disk_image> is the location where the setup script has saved the disk image to be used
by the simulator.

5. To register the users that are allowed to run simulator, enter the following commands while logged in
as a non-privileged user:
$ sudo groupadd systemsim_sdk
$ sudo usermod -a -G systemsim_sdk <user>

Where <user> is the user name in the Linux system.

3.7.1.2 Running the IBM POWER8 Functional Simulator
To run the IBM POWER8 Functional Simulator, follow these steps.

Procedure
1. Launch the IBM Software Development Kit for Linux on Power.
2. Open the Remote Environments view. Select Window > Show View > Other > Remote Tools >

Remote Environments.
3. Right-click Local Power Simulator, select Create to create a new instance. The Target Environment

Configuration window opens.
4. Set the configuration values or keep the default values, as desired.
5. Click Finish.
6. Select the simulator instance that was just created. Click Play, which is in the corner of the Remote

Environments view.

3 Setting up the x86_64 version of the IBM SDK for Linux on Power 33

What to do next

Note: If you are getting connectivity issues, it is important to certify that your firewall is not blocking the
simulator connection with the host. The simulator connects with the host machine through the
tap_systemsim interface using TCP and UDP protocols. Thus, your firewall needs to unblock these
following rules:

FORWARD -s 172.20.0.0/16 -i tap_systemsim -j ACCEPT
FORWARD -d 172.20.0.0/16 -o tap_systemsim -j ACCEPT

After unblocking the rules, restart the systemsim-sdk-network service by running this command:
sudo service systemsim-sdk-network restart

34 Linux: Developing software using the IBM Software Development Kit for Linux on Power

4 Managing projects

You can use the IBM Software Development Kit for Linux on Power to create C/C++ projects, or to
import existing Makefile or Autotools projects. With IBM SDK for Linux on Power you can edit the
application source code, as well as run and debug the executable program.

The C/C++ Development User Guide (http://help.eclipse.org/luna/topic/org.eclipse.cdt.doc.user/
concepts/cdt_o_home.htm) in the Eclipse platform help information contains information about creating
Eclipse projects, importing Makefile or Autotools projects, and editing, running, and debugging. Much of
this information applies to IBM SDK for Linux on Power projects.

4.1 Setting flags
Some of the tools included with the SDK require that certain flags be set. This can be done when you
create the project, or by editing the project before you run the tools.

4.1.1 Recommended debug, compiler, and linker settings for Power
processor tuning
This topic provides recommendations for debug, compiler, and linker settings to use POWER processor
capabilities and the IBM Software Development Kit for Linux on Power analysis tools. These
recommendations should be considered along with the workload and characteristics of applications that
are being built.

Compiler and linker flags are normally passed along all build stages to avoid failures. The flags are
passed by setting environment variables such as CFLAGS, CXXFLAGS, CPPFLAGS, and LDFLAGS for
Makefile or Autotools projects in the IBM SDK for Linux on Power. See the following websites for details
about the environment variables.
v GCC, the GNU Compiler Collection website (http://gcc.gnu.org)
v GNU Operating System - Make website (http://www.gnu.org/software/make/)
v GNU Operating System - Autoconf website (http://www.gnu.org/software/autoconf/)

Recommendations for debug flags

Many analysis and debug tools in the IBM SDK for Linux on Power rely on debugging information that
is produced when the -g flag is enabled. Therefore, it is highly recommended that you set that option by
using the CFLAGS or CXXFLAGS environment variables.
v Source Code Analyzer and FDPR

Source Code Analyzer and FDPR tools use information that is produced by the -Wl,-q option, which
leaves relocation sections and contents in fully linked executable programs. These tools are also able to
analyze the post-linked executable program (or library) and to make modifications to improve
application performance.

v Gprof
Gprof requires the -pg compiler option. This option instruments the resulting binary file to produce
profiling information, in the gmon.out file, when the executable file or shared library runs.

v Gcov
Gcov requires the -ftest-coverage and -fprofile-arcs compiler options. These options produce a text
file that the gcov utility uses to show program coverage, and create a program flow graph for each
function of your program and a spanning tree for the graph .

© Copyright IBM Corp. 2012, 2015 35

http://help.eclipse.org/luna/topic/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm
http://gcc.gnu.org
http://www.gnu.org/software/make/
http://www.gnu.org/software/autoconf/

See 4.1.2, “Setting debug flags for Autotools-based projects,” on page 40 for instructions for setting debug
flags.

Recommendations for optimization level options

Optimization level -O0 is appropriate only for low-level debugging, where every source line must appear
to execute sequentially. Other debugging can use optimization levels of -O1 or -O2. Production builds
should use a -O3 optimization level.

If you have installed IBM Advance Toolchain for Linux on Power 7.1 or later, you can use optimization
level -Ofast. -Ofast sets optimization level -O3 and compiler flag -ffast-math.

See Options That Control Optimization(https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Optimize-
Options.html) in the GNU GCC documentation for details about the optimization level options.

See 4.1.3, “Setting optimization level flags for Autotools-based projects,” on page 41 for instructions for
setting optimization levels.

Recommendations for compiler flags

Several different compiler flags are recommended for improving performance in applications that are
running on Power Systems servers. These compiler flags can be set using the CFLAGS or CXXFLAGS
environment variables.

See IBM RS/6000 and PowerPC Options (https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/RS_002f6000-
and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options) in the GNU GCC documentation for
details about these and other Power specific compiler flags.

Table 10. Recommended compiler flags

Flag Short description Extended description Values

-ffast-math Enables faster, but
non-IEEE 754
compliant math
results

Sets -fno-math-errno, -funsafe-math-optimizations,
-ffinite-math-only, -fno-rounding-math,
-fno-signaling-nans, and -fcx-limited-range options.
This option causes the preprocessor macro
“__FAST_MATH__” to be defined.

This option is not enabled by any -O option, because it
might result in incorrect output for programs that
depend on an exact implementation of IEEE or ISO
specifications for math functions. It might, however,
yield faster code for programs that do not require the
guarantees of these specifications.

-ffp-contract Generates code that
does or does not use
floating point
multiply and
accumulate
instructions

Available with IBM Advance Toolchain for Linux on
Power 7.1 and later.

fast: Generates code that uses floating point multiply
and accumulate instructions. Equivalent to
-mfused-madd.

off: Generates code that does not use floating point
multiply and accumulate instructions. Equivalent to
-mno-fused-madd.

fast, off, or
on

-fpeel-loops Simplifies loops or
splits them into
multiple loops to
eliminate
dependencies

Loop peeling is a special case of loop splitting, which
splits any problematic first (or last) few iterations from
the loop and performs them outside of the loop body.

36 Linux: Developing software using the IBM Software Development Kit for Linux on Power

https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/RS_002f6000-and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options

Table 10. Recommended compiler flags (continued)

Flag Short description Extended description Values

-fPIC Specifies to emit
position-independent
code (PIC) suitable for
use in a shared
library

Specifies to emit position-independent code (PIC)
suitable for use in a shared library. Also, this option
avoids any limit on the size of the global offset table.
Note: At present, -fPIC applies only for 32-bit shared
libraries. It does not apply for 64-bit.

-funroll-loops Unrolls loops, and
replicates the body of
the loop N times to
reduce loop system
use and improve
scheduling
opportunities.

Unrolls loops for which the number of iterations can be
determined at compile time or upon entry to the loop.
This option makes code larger, and might or might not
make it run faster.

-m32 Generates code for a
32-bit environment.

Generates code for a 32-bit environment.

-m64 Generates code for a
64-bit environment.

Generates code for a 64-bit environment.

-maltivec Generates code that
uses AltiVec
instructions.

Generates code that uses AltiVec instructions, and also
enables the use of built-in functions that allow more
direct access to the AltiVec instruction set. You might
also need to set -mabi=altivec (using Other
POWER-specific flags) to adjust the current ABI with
AltiVec ABI enhancements.

Setting -mcpu=power8 is preferred because it sets -mvsx,
-maltivec, and -mabi=altivec.

-mno-altivec Generates code that
does not use AltiVec
instructions.

Generates code that does not use AltiVec instructions.

-mavoid-indexed-
addresses

Generates code that
avoids indexed
load/store
instructions.

Generates code that tries to avoid the use of indexed
load or store instructions. These instructions can incur a
performance penalty on POWER6® processors in certain
situations, such as when a program is stepping through
large arrays that cross a 16M boundary. This option is
enabled by default when a program is targeting
POWER6, and disabled otherwise.

-mno-avoid-indexed-
addresses

Generates code that
does not avoid
indexed load/store
instructions

Generates code that does not try to avoid the use of
indexed load or store instructions. These instructions
can incur a performance penalty on POWER6
processors in certain situations, such as when a
program is stepping through large arrays that cross a
16M boundary. This option is enabled by default when
a program is targeting POWER6, and disabled
otherwise.

4 Managing projects 37

Table 10. Recommended compiler flags (continued)

Flag Short description Extended description Values

-mcmodel=model Sets code model small: Generates PowerPC® 64-bit code for the small
model. The TOC is limited to 64 K in size.

medium: Generates PowerPC 64-bit code for the
medium model. The TOC and other static data is
limited to 4G in size.

large: Generates PowerPC 64-bit code for the large
model. The TOC is limited to 4G in size. Other data
and code is limited only by the 64-bit address space.

Note:

v Most applications should use -mcmodel=medium.

v If you are using -mcmodel=medium or -mcmodel=large,
you should also remove the -mminimal-toc flag, if it
is set.

small,
medium,
or large

-mcpu=cpu_type Sets machine type
parameters

Sets architecture type, register usage, choice of
mnemonics, and instruction scheduling parameters for
machine type cpu_type.

power8 or
any Power
CPU type

-mrecip=option Controls which type
of reciprocal estimate
instructions can be
used

Controls which reciprocal estimate instructions can be
used. option is a comma-separated list of options, which
can be preceded by a “!” to invert the option.

all enable all estimate instructions

default enable the default instructions, equivalent
to-m-recip

none disable all estimate instructions, equivalent to
-mno-recip

div enable the reciprocal approximation
instructions for both single and double
precision

divf enable the single precision reciprocal
approximation instructions

divd enable the double precision reciprocal
approximation instructions

rsqrt enable the reciprocal square root
approximation instructions for both single and
double precision

rsqrtf enable the single precision reciprocal square
root approximation instructions

rsqrtd enable the double precision reciprocal square
root approximation instructions

For example,-mrecip=all,!rsqrtd enables all reciprocal
estimate instructions except for FRSQRTE,
XSRSQRTEDP, and XVRSQRTEDP instructions, which
handle the double precision reciprocal square root
calculations. -ffast-math must be enabled to use this
option.

all, default,
none, div,
divf, divd,
rsqrt,
rsqrtf, or
rsqrtd

38 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 10. Recommended compiler flags (continued)

Flag Short description Extended description Values

-mrecip-precision Specifies to assume
that the reciprocal
estimate instructions
have higher precision
than needed by the
ABI

Specifies to assume that the reciprocal estimate
instructions provide higher precision estimates than is
mandated by the POWERPC ABI. Selecting
-mcpu=power8 automatically selects -m-recip-precision.
The double precision square root estimate instructions
are not generated by default on low precision
machines, because they do not provide an estimate that
converges after three steps. -ffast-math must be
enabled to use this option.

-mno-recip-precision Specifies to not
assume that the
reciprocal estimate
instructions have
higher precision than
needed by the ABI

Specifies to not assume that the reciprocal estimate
instructions provide higher precision estimates than is
mandated by the POWERPC ABI. -ffast-math must be
enabled to use this option.

-mtune=cpu_type Sets machine tuning
parameters

Sets the instruction scheduling parameters for machine
type cpu_type, but does not set the architecture type,
register usage, or choice of mnemonics as
-mcpu=cpu_type would. The same values for cpu_type are
used for -mtune as for -mcpu. If both are specified, the
code that is generated uses the architecture, registers,
and mnemonics that are set by -mcpu, but the
scheduling parameters that are set by -mtune.

power8 or
any Power
CPU type

-mupdate Generates code that
updates the base
register

Generates code that uses the load or store instructions
that update the base register to the address of the
calculated memory location. These instructions are
generated by default.

-mno-update Generates code that
does not update the
base register

Generates code that does not use the load or store
instructions that update the base register to the address
of the calculated memory location. These instructions
are generated by default.

-mveclibabi=MASS Specifies type of ABI
to use for the
vectorizing intrinsics

Specifies the ABI type to use for vectorizing intrinsics
by using an external library. The only type supported
currently is MASS, which specifies to use IBM
Mathematical Acceleration Subsystem (MASS) libraries
for vectorizing intrinsics by using external libraries
when generating code for POWER7®.

Flags -ftree-vectorize, -funsafe-math-optimizations,
and -ffast-math must be enabled. The MASS libraries
must be specified at link time.

-mvsx Generates code that
uses the vector/scalar
instructions

Generates code that uses vector/scalar (VSX)
instructions, and also enables the use of built-in
functions that allow more direct access to the VSX
instruction set.

Setting -mcpu=power8 is preferred because it sets -mvsx,
-maltivec, and -mabi=altivec.

-mno-vsx Generates code that
does not use the
vector/scalar
instructions

Generates code that does not use the vector/scalar
(VSX) instructions.

4 Managing projects 39

Table 10. Recommended compiler flags (continued)

Flag Short description Extended description Values

-mpower8-fusion Specifies to fuse an
integer load with a
preceding addis
instruction and to
fuse a vector load
with a preceding addi
instruction.

Specifies to fuse an integer load with a preceding addis
instruction and to fuse a vector load with a preceding
addi instruction. Setting -mtune=power8 specifies this
also.

-mpower8-vector Enables POWER8
vector instructions.

Enables POWER8 vector instructions. This option
requires that -mvsx also are set.

-mcrypto Enables POWER8
cryptographic built-in
functions.

Enables POWER8 cryptographic built-in functions. This
option requires that -maltivec also are set.

-mdirect-move Enables POWER8
moves between
general purpose
registers and vector
registers.

Enables POWER8 moves between general purpose
registers and vector registers. This option requires that
-mvsx also are set.

-mquad-memory Enables quadword
memory instructions,
including quadword
atomic instructions.

Enables quadword memory instructions, including
quadword atomic instructions. This option requires that
-m64 also are set.

Recommendations for linker flags

The -Bsymbolic flag enables the linker to bind global symbol references to local definitions within the
shared library. Normally this binding is deferred until program load time. At load time, global symbol
references are bound to the definitions that are loaded first, starting with the main program. Early
binding to local definitions reduces processor usage during calls, but also disables symbol overrides using
preloaded libraries.

The -m32 and -m64 flags enable the linker to generate code for 32-bit and 64-bit environments. In most
Makefile and Autotools projects, these flags can be passed along all build stages by setting them using
the LDFLAGS environment variable.

4.1.2 Setting debug flags for Autotools-based projects
This topic details the steps for setting debug flags to use POWER processor capabilities and the IBM
Software Development Kit for Linux on Power analysis tools, Source Code Analyzer and FDPR, gprof,
and gcov in Autotools-based projects.

Before you begin

Note: If your project was created by importing a Makefile project, you must manually edit the Makefile
file to export build control variables such as CFLAGS and LDFLAGS with debug flags.

See “Recommendations for debug flags” on page 35 for details on the recommended settings.

About this task

To set debug flags for projects that were created by importing Autotools projects, complete the following
steps in the IBM SDK for Linux on Power user interface.

40 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Right-click the project name and click Properties.
3. Expand Autotools and click Configure Settings.
4. Click Advanced.
5. Choose from the following steps to set debug flags for particular tools.

v For gcov and gprof, complete the following steps:
a. In the right pane, select the Debug (-g) check box.
b. In the right pane, select the Gprof support (-pg) or Gcov support (-fprofile-arcs-ftest-coverage)

check box, as appropriate.
v For Source Code Analyzer and FDPR, complete the following steps:

a. In the right pane, ensure that the Debug (-g), Gprof support (-pg), and Gcov support
(-fprofile-arcs-ftest-coverage) check boxes are not selected. If the source code is compiled with
these options, Source Code Analyzer and FDPR cannot work properly.

b. In the Additional command-line options field, set the value of CFLAGS (C) or CXXFLAGS
(C++) to -g -Wl,-q. For example, type the following in the field:
CFLAGS="-g -Wl,-q"

6. Click Apply.

4.1.3 Setting optimization level flags for Autotools-based projects
This topic details the steps for setting optimization levels for debugging with IBM Software Development
Kit for Linux on Power in Autotools-based projects.

Before you begin

Note: If your project was created by importing a Makefile project, you must manually edit the Makefile
file to export build control variables such as CFLAGS and LDFLAGS with debug flags.

See “Recommendations for optimization level options” on page 36 for details on the recommended
settings.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Right-click the project name and click Properties.
3. Expand Autotools and click Configure Settings.
4. Click Advanced.
5. In the right pane, ensure that the Debug (-g), Gprof support (-pg), and Gcov support

(-fprofile-arcs-ftest-coverage) check boxes are not selected. If you need any of these flags to be set at
build time, you must re-export them together with optimization level flags as described in the next
step.

6. In the Additional command-line options field, set the value of CFLAGS (C) or CXXFLAGS (C++)
with the appropriate optimization level, such as -03 or -0fast. For example, type the following in the
field:
CFLAGS="-g -O3"

7. Click Apply.

4 Managing projects 41

4.2 Editing a project
After you have imported or created a project, you can use the IBM Software Development Kit for Linux
on Power graphical user interface to edit project preferences, build options, and application source code
for the project.

The C/C++ Development User Guide (http://help.eclipse.org/luna/topic/org.eclipse.cdt.doc.user/
concepts/cdt_o_home.htm) in the Eclipse platform help information contains the information you need to
edit projects using IBM SDK for Linux on Power.

Most project preferences and build options you might want to customize are documented in the C/C++
Development User Guide. See 4.1.1, “Recommended debug, compiler, and linker settings for Power
processor tuning,” on page 35 for information about setting options for Power Systems.

4.2.1 Setting the Linux tools path
A customization that is unique to IBM SDK for Linux on Power is setting the Linux tools path. The Linux
tools path is set automatically when creating a project, but you can change it. See 2.5.1.6, “Changing the
IBM Advance Toolchain version,” on page 19 for information about this customization.

4.2.2 Using the coding assistant
IBM SDK for Linux on Power provides a coding assistant that helps with code completion, function
templates, and context-sensitive information for libauxv and libsphde libraries and the altivec API when
using the C/C++ editor. While you are editing your code, you can use the following methods to display
information:
v Move your mouse over a function.
v Type the initial letters, press Ctrl+Spacebar, and select a listed function.

4.3 Building a project
After a project is created or imported, you can select to build it or perform a clean build.

The C/C++ Development User Guide (http://help.eclipse.org/luna/topic/org.eclipse.cdt.doc.user/
concepts/cdt_o_home.htm) in the Eclipse platform help information contains additional information
about building projects.

4.3.1 Building a project
This topic describes a basic project build.

About this task

To build, or compile, a project, complete the following steps.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Click Project > Build Project to build the project.
3. While the project is building, you can click the Console tab to monitor progress.

4.3.2 Building a project with clean build
A clean build discards previous build status information and problem markers, and causes the project to
be rebuilt from the beginning.

42 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://help.eclipse.org/luna/topic/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm
http://help.eclipse.org/luna/topic/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm

About this task

Complete the following steps.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Click Project > Clean.
3. In the Clean window, click the Clean projects specified below radio button.
4. Select the check box for the project you want to clean. Click OK.
5. While the project is building, you can click the Console tab to monitor progress.

4.3.3 Adding and using a Make target
For Makefile and Autotools projects, you can add Make targets, for transforming the source file to a
specific target result. Example Make targets include “clean”, “check”, and “install”.

About this task

Note: Adding Make targets is intended for advanced users.

Complete the following steps.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Right-click the project name and select one of the following, as appropriate:

v Make Target > Create to add a new Make target to your project. Click OK after specifying the
information for the new target.

v Make Target > Build > Target name to select a specific Make target. Click Build build the selected
target.

4.4 Creating a package with the RPM plug-in
The RPM plug-in allows you to create RPM packages containing a compiled version of software, the
source code of an application, or scripts. The plug-in creates the package using a spec file. The plug-in
includes a wizard for creating a spec file based on pre-existing templates.

The RPM plug-in requires optional packages to be installed on the Power Systems server. See 2.3,
“Recommended and optional packages,” on page 9.

4.4.1 Creating an RPM project
You can use the RPM plug-in to create an RPM project.

Before you begin

The RPM plug-in requires optional packages to be installed on the Power Systems server. See 2.3,
“Recommended and optional packages,” on page 9.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

4 Managing projects 43

Procedure
1. Click File > New > Other.
2. In the New window, expand RPM and click to select RPM Project. Click Next.
3. In the Create a new RPM project window, complete the following steps:

a. Type a name for the project in the Project name field.
b. Optional: The project will be created in a directory structure in the file system. The default file

system location is displayed in the Location field. If you do not want to save the project in the
default location, clear the Use default location check box, and specify or browse for a new
location.

c. Select a project layout, RPMBUILD or FLAT, from the Project layout list. The default is
RPMBUILD.

RPMBUILD
If you choose the RPMBUILD project layout, then the project is created with the following
folders: RPMS, SOURCES, SPECS, and SRPMS.

FLAT If you choose the FLAT project layout, the project is created with no folders.
4. Click Finish. The new project is shown in the Project Explorer pane. If you selected the RPMBUILD

project layout, the project contains the folders RPMS, SOURCES, SPECS, and SRPMS. Otherwise, it
contains no folders.

5. To import files or create files for the project, complete the following steps.
a. Right-click on the appropriate folder within the project and click Import.
b. Click General > File System

c. Locate the file in your file system.
d. Click Finish.

4.4.2 Creating a remote RPM project
You can create an RPM project on a remote server.

Before you begin

The RPM plug-in requires optional packages to be installed on the Power Systems server. See 2.3,
“Recommended and optional packages,” on page 9.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand RPM and click to select RPM Project. Click Next.
3. In the Create a new RPM project window, clear the Use default location check box if it is selected.
4. In the Choose file system field, click the arrows to select Remote Tools.
5. Click Browse to find the location where the project is to be stored on the remote server.
6. In the Remote service provider field, select Remote tools.
7. In the Please select a connection box, click the arrows to select the connection to the remote server,

or click New to create a connection.
8. In the Project window, type a name for the project in the Project name field.
9. Click Finish. The new project is shown in the Project Explorer pane. The project contains the folders

RPMS, SOURCES, SPECS, and SRPMS.
10. To import files or create files for the project, complete the following steps.

44 Linux: Developing software using the IBM Software Development Kit for Linux on Power

a. Right-click on the appropriate folder within the project and click Import.
b. Click General > File System

c. Locate the file in your file system.
d. Click Finish.

4.4.3 Creating a spec file in an existing RPM project
You can use the RPM plug-in create a spec file based on pre-existing templates.

Before you begin

The RPM plug-in requires optional packages to be installed on the Power Systems server. See 2.3,
“Recommended and optional packages,” on page 9.

About this task

The RPM plug-in uses the rpmdev-newspec command from rpmdevtools to create a spec file based on
pre-existing templates. To create a spec file into an existing RPM project from an RPM, complete the
following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand RPM and click to select Specfile based on template. Click Next.
3. In the Project field, select the previously created projects that you want to use as a spec file template.
4. Optional: Customize the following fields as needed:

v Type of template, for example: minimal, lib, python, and others
v Name
v Version
v Summary
v License
v URL
v Source files

5. Click Finish.

4.4.4 Checking an RPM package with rpmlint
You can use rpmlint to check for errors in your RPM project.

Before you begin

The RPM plug-in requires optional packages to be installed on the Power Systems server. See 2.3,
“Recommended and optional packages,” on page 9.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Select from one of the following options to run rpmlint.

4 Managing projects 45

v Right-click the project name, select RPM, and click Add/Remove rpmlint warnings to enable or
disable the program warnings. If the warnings are currently disabled, they become enabled, and
rpmlint runs immediately. If the warnings are currently enabled, they become disabled.

v Right-click the project name, select RPM, and click Run rpmlint. The rpmlint tools runs
immediately.

4.4.5 Generating an RPM package
You can generate the RPM package from the RPM project.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. In the Project Explorer pane, click the project name to view the project.
2. Right-click the project and expand the RPM option.
3. Select one of the following options:

v Build SRPM
v Build RPMS
v Build ALL

Results

The generated package is placed within the project in the Project Explorer pane.

46 Linux: Developing software using the IBM Software Development Kit for Linux on Power

5 Migrating an application from x86 to Power Systems servers
using Migration Advisor

The IBM Software Development Kit for Linux on Power includes a Migration Advisor to help in moving
Linux applications from x86 systems to Power Systems servers. The advisor uses the Eclipse C/C++
Development Tools code analysis tool. The code analysis tool locates potential migration problems within
a project, such as source code that might produce different results when run on Power Systems servers.

5.1 Enabling Migration Advisor checkers
The IBM Software Development Kit for Linux on Power Migration Advisor contains several checkers that
look for code in the project that might produce a different result in Power Systems servers. Warnings are
displayed showing the kind of problem found.

About this task

To enable Migration Advisor checkers, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ and click Code Analysis. The Code Analysis window displays all the

installed Migration Advisor checkers.
3. Find the Linux/x86 to Linux on Power application migration group of checkers in the window, by

scrolling if needed. Expand this group.
4. Click the check box beside Linux/x86 to Linux on Power application migration to select all the

checkers, or click the check boxes for the specific checkers that you want to select.
5. Click Apply.

5.1.1 Enabling additional Migration Advisor options
The Migration Advisor has additional options that you can enable.

About this task

Note: By using the code examples, you agree to the terms of the 9, “Code license and disclaimer
information,” on page 91.

The following options are available:

Enable checkers in blocks inactivated by the preprocessor and macro definitions
This option causes Migration Advisor to analyze inactive blocks. For example, if this option is not
selected, Migration Advisor would not look for problems in this sample code:
1. #if 0
2. //Code with problems
3. #endif

Report problems in statements that come from macro expansion
This option enables Migration Advisor to flag problems in macro expansions. For example,
Migration Advisor displays a warning for the macro definition shown in line 1 of the sample
code only if this option is not selected. Conversely, Migration Advisor would display a warning
for line 2 of the sample code only when this option is selected.
1. #define MACRO asm("asm_with_errors");
2. MACRO

© Copyright IBM Corp. 2012, 2015 47

Enable Scalability mode in Migration Advisor
Inactive blocks in large files might not be analyzed if this option is enabled. If this option is
disabled, blocks from large files are analyzed and a large amount of memory is used.

To enable the additional options, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ > Code Analysis and click Migration Advisor.
3. Click the check box beside one or both of the following options.

v Enable checkers in blocks inactivated by the preprocessor and macro definitions

v Report problems in statements that come from macro expansion

v Enable Scalability mode in Migration Advisor

4. Click Apply.

5.1.2 Enabling indexing for Migration Advisor
Some checkers use the C/C++ index, so it is important to enable the C/C++ indexer and to ensure that
the indexer has run before using Migration Advisor.

About this task

To enable the C/C++ indexer, complete the following steps.

Procedure
1. In the left pane, expand C/C++ and click Indexer.
2. Click Apply.

5.2 Migration Advisor checkers
These topics describe the checkers used by the Migration Advisor.

Note: By using the code examples, you agree to the terms of the 9, “Code license and disclaimer
information,” on page 91.

x86-specific compiler built-in checker

Some x86 compiler built-ins are not available for 32-bit POWER or 64-bit POWER architectures. This
checker finds all occurrences of x86-specific built-ins.

Example
void foo() {

__builtin_infq(); //x86-specific built-in
}

x86-specific assembly checker

Inline assembly code usually cannot be migrated without problems. Therefore, warnings are displayed for
inline assembly code.

Example
void foo() {

asm("mov %ax, 0"); //assembly code
__asm__("mov %ax, 0"); //assembly code

}

48 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Struct with bitfields checker

x86 and POWER architectures have different endianness, which refers to the ordering of separately
addressable components. Because of this, the order of bit fields in a struct is different in a Power Systems
server, which can result in migration issues. It is important to ensure that bit fields are used correctly to
avoid problems.

It is also a good idea to see where the struct is referenced to check whether there are endianness issues.
To do this, you can navigate in struct declarations and references.
v To navigate in struct references in your project, select the object name, right-click, and select References

> Project. All references display in the Search View. Double-click the file names in the Search View to
open them in the Editor View.

v To navigate in struct declarations, select the struct name, right-click, and select Declarations > Project.
The results also display in the Search View.

v Declarations can contain typedefs. Be sure to also check all references of the typedefs.

Examples

The following example would also be flagged by the cast with endianness issues checker.
#include <stdio.h>
struct _my_struct {
int a:4;
int b:4;
} my_struct;

void foo() {
char my_char;
my_struct.a = 0xFF;
my_struct.b = 0x00;
my_char = *(char *)&my_struct;
//This prints 0x0f in x86 (or x86_64) machines and 0xf0 in ppc (or ppc64) machines.
printf("%x\n", my_char);

}

The following example would also cause endianness problems if it is changed to use the network instead
of a file to read and write data.
#include
#include
#include

void foo() {
int file;
char my_char;
struct _my_struct {

int a:4;
int b:4;

} my_struct;

//initial values
my_struct.a = 0x1;
my_struct.b = 0x2;

//Writing to a file
file = open("my_file", O_CREAT | O_WRONLY);
write(file, &my_struct, 1);
close(file);

//Reading from a file
file = open("my_file", O_RDONLY);

5 Migrating an application from x86 to Power Systems 49

read(file, &my_char, 1);
close(file);
printf("%x\n", my_char);

}

Cast with endianness issues checker

Casting can create endianness problems in C or C++ code. This happens when casting pointers for types
with different sizes. The cast with endianness issues checker analyzes all casts in the code and flags the
casts that can cause an endianness problem.

Example
void foo() {

short int val = 0xFF00;
char *char_pointer = (char *) &val;
//This prints 0 in x86 (or x86_64) machines and ff in ppc (or ppc64) machines.
printf("%x\n", *char_pointer);

}

Union with endianness issues checker

Using the several fields from a union in the same object can cause endianness issues. The union with
endianness issues checker analyzes all unions in the code and flags the unions that can cause endianness
problems.

It is a good idea to see where the struct is referenced to check whether there are endianness issues. To do
this, you can navigate in union declarations and references.
v To navigate in union references in your project, select the object name, right-click, and select

References > Project. All references display in the Search View. Double-click the file names in the
Search View to open them in the Editor View.

v To navigate in union declarations, select the union name, right-click, and select Declarations > Project.
The results also display in the Search View.

v Declarations can contain typedefs. Be sure to also check all references of the typedefs.

Example
void foo() {

union {
short int val1;
char val2;

} u;
u.val1 = 0xFF00;
//This prints 0 in x86 (or x86_64) machines and ff in POWER 32-bit (or 64-bit) machines.
printf("%x\n", u.val2);

}

Long double usage checker

The use of long double might be a migration problem because of the differences in size and format
between x86 and POWER architecture.With current GCC compilers, long double is 128 bits (AIX® double
double format) for POWER architecture. Therefore, long double for POWER architecture is in a different
format than long double for x86 ILP32 (96 bits) or x86 ILP64 (binary 128).

Performance degradation checker

It is usual to see performance improvements made for one specific architecture in an area of the code.
This is mainly done using a preprocessor #if statement to check the current architecture. The
performance degradation checker looks for #if and #ifdef statements that contain preprocessor

50 Linux: Developing software using the IBM Software Development Kit for Linux on Power

definitions belonging to x86 or x86_64 architectures, but do not contain preprocessor definitions for
POWER architectures. This is a sign that the code might not be optimized for POWER processors.

You can change the preprocessor definitions used by the performance degradation checker. For
information, see 5.2.1, “Customizing the performance degradation checker,” on page 52.

Example
#if defined(__x86__)
//code specific for x86 architectures
#else
//code that will work for all architectures, but it isn’t optimized.
#endif

Syscall not available for Linux on Power checker

Almost all x86 and x86_64 Linux system calls (syscalls) are available for POWER architecture. Using an
x86-specific system call causes problems when migrating your code to POWER architecture. The syscall
not available for Linux on Power checker analyzes all system calls in your code and displays a warning
for system calls that are not available for 32-bit or 64-bit POWER architectures. The warning message
states whether the system call is unavailable only for 32-bit POWER, only for 64-bit POWER, or
unavailable for both architectures.

You can specify that this checker look for only those system calls that are not available for 32-bit or 64-bit
POWER architectures. For information, see 5.2.2, “Customizing the syscall not available for Linux on
Power checker,” on page 52.

Linux/x86-specific API checker

The Intel-specific API checker looks for usage of functions from the following libraries:
v Intel Integrated Performance Primitives 7.0
v Intel Math Kernel Library 10.3
v Message Passing Interface Library 2.2
v Decimal Floating-Point Math Library 2.0

You can customize the Linux/x86-specific API checker by selecting which library APIs the checker looks
for. In addition, you can add, edit, and remove APIs from the checker. For information, see 5.2.3,
“Customizing the Linux/x86-specific API checker,” on page 53.

Hardware Transaction Memory checker

This checker finds occurrences of x86 hardware transaction memory usage, which is not supported for
POWER architectures. Transactional Synchronization Extensions (TSX), an x86 instruction set extension,
enables hardware transaction memory support to speed up the execution of multithreaded programs.
#include <rtmintrin.h>

void foo(unsigned int a, unsigned int b){
while(1){
unsigned status = _xbegin();

if(status == XBEGIN_STARTED) {
trans_func(a, b);

_xend();
break;

}
else{

_xabort();
}

}
}

5 Migrating an application from x86 to Power Systems 51

Non-portable Pthreads implementation checker

Some Pthreads functions and data types are not supported on POWER architectures. This checker finds
occurrences of non-portable Pthreads API usage.
#include <pthread.h>
void foo(){

pthread_id_np_t tid;
tid = pthread_getthreadid_np();

}

5.2.1 Customizing the performance degradation checker
You can change the preprocessor definitions used by the performance degradation checker.

About this task

To change the definitions, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ and click Code Analysis. The Code Analysis window displays all the

installed Migration Advisor checkers.
3. Find the Linux/x86 to Linux on Power application migration group of checkers in the window, by

scrolling if needed. Expand this group.
4. Select the Performance Degradation checker and click Customize > Customize Selected.
5. Edit preferences as needed.

v Add or remove the predefined macros for Power and non-Power architectures.
v Select or clear the check box for Case sensitive when comparing preprocessor definitions.

Click OK when finished.

5.2.2 Customizing the syscall not available for Linux on Power checker
You can specify that this checker look for only those system calls that are not available for 32-bit or 64-bit
POWER architectures.

About this task

To select this option, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ and click Code Analysis. The Code Analysis window displays all the

installed Migration Advisor checkers.
3. Find the Linux/x86 to Linux on Power application migration group of checkers in the window, by

scrolling if needed. Expand this group.
4. Select the Syscall not available for Linux on Power checker and click Customize > Customize

Selected.
5. Edit the preferences to select the check box for Check for syscalls only unavailable for 32-bit Power

architecture, Check for syscalls only unavailable for 64-bit Power architecture, or both. Click OK
when finished.

6. Click Apply.

52 Linux: Developing software using the IBM Software Development Kit for Linux on Power

5.2.3 Customizing the Linux/x86-specific API checker
You can customize the Linux/x86-specific API checker by selecting which library APIs the checker looks
for. In addition, you can add, edit, and remove APIs from the checker.

About this task

To customize the checker, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ > Code Analysis > Migration Advisor.
3. In the Migration Advisor window, click Customize the API Checker. The API customization window

is displayed.
4. In the API customization window, choose from the following options:

v Select the check box for each API that you want the API checker to look for. Clear the check box for
each API that you do not want the checker to look for.

v To add an API to the checker, click Add API. Type the name, optionally type a description, and
click OK.

v To edit an API, click the API name to select it, then click Edit API. Type a different name or
description, and click OK.

v To add a function to an API, click the API name to select it, then click Add function. Type the
function name, and click OK. To display the new function name if it is not already displayed,
expand the API name in the API customization window. You can add multiple functions to an API.

v To add a type to an API, click the API name to select it, then click Add type. Type the type name,
and click OK. To display the new type name if it is not already displayed, expand the API name in
the API customization window. You can add multiple types to an API.

v To add a function from a file, click the API name to select it, then click Add function from a file.
Type the file name or click Browse to locate and select it.

Note: The file must contain only the function names, with one name per line.
After you specify the file, click OK. All the functions that are listed in the specified file are added
and displayed.

v To add a type from a file, click the API name to select it, then click Add type from a file. Type the
file name or click Browse to locate and select it.

Note: The file must contain only the type names, with only one name per line.
After you specify the file, click OK. All the types that are listed in the specified file are added and
displayed.

v To remove an API from the checker, click the API name to select it, then click Remove. When
prompted, click OK to confirm.

v To export an API and any functions or types that it contains to an XML file to be imported later,
click the API name to select it. Then, click Export to a XML file. Type the file name, including file
type xml, or click Browse to locate and select it. Then, click OK.

v To import an API and any functions or types that it contains from an existing XML file, click the
API name to select it, then click Import a XML file. Type the file name, including file type xml, or
click Browse to locate and select it. Then, click OK.

v To restore the API checker to the default list of APIs included in the Migration Advisor, click
Restore Defaults.

Note: All customization changes will be lost.
5. When finished customizing, click OK to save your changes.

5 Migrating an application from x86 to Power Systems 53

5.3 Running Migration Advisor
After checkers are enabled, you can run the IBM Software Development Kit for Linux on Power
Migration Advisor.

About this task

To run Migration Advisor on a project in the Project Explorer pane, right-click the project name and select
Run Migration Advisor.

From the Migration Advisor options, select the target architecture to port your application. If you select
Power Little Endian, all the endianness checkers from Migration Advisor are disabled. If you select
Power Big Endian, Migration Advisor uses all the checkers. To enable or disable the project checkers,
right-click the project and select Properties. Select C/C++ General > Code Analysis.

The Migration Advisor begins running. Large projects might take several minutes to complete. The
Migration Advisor View is displayed, and all potential migration issues are displayed as warnings.

In addition to warnings, you might see a single error displayed. If this occurs, it is because the C/C++
Development Toolkit Codan (CODe ANalysis) tool has not yet run after importing the project.

The following are actions you can take using Migration Advisor and the Migration Advisor View.

Procedure
v To display the code that has a reported potential issue, double-click the warning and the correct file is

loaded in the editor view.
v You can continue to type in the editor window while the Migration Advisor is running. Because

Migration Advisor is a live tool, the warnings are updated automatically as you edit.
v Because some issues might not be a problem for your project, Migration Advisor allows you to ignore,

or hide, them. To ignore an issue, right-click the warning and select the Ignore Warning option. The
warning no longer displayed.

v You can also decide to display ignored warnings again. Click the menu arrow in the upper right of the
Migration Advisor View, and choose one of the following options.
– Click Disable Ignored Warnings to display all ignored warnings. This option redisplays the ignored

warnings, but it still retains the information that they are ignored.
– Click Enable Ignored Warnings to hide all ignored warnings that you selected to redisplay with the

Disable Ignored Warnings.
– Click Forget All Ignored Warnings to stop ignoring all warnings.

Note: You cannot undo this option, so be sure that you want to stop ignoring all warnings before
you select it.

v If a single error is displayed, you can run the code analysis tool to find all the errors in the project.
1. Right-click the project name and click Run C/C++ Code Analysis.
2. Refer to Problems view (C/C++) in the C/C++ Development User Guide for information about

working with the errors.

5.4 Using Migration Advisor quick fixes
Quick fixes can help you resolve migration problems found by running the Migration Advisor. Quick
fixes are suggestions or tips that might help correct identified migration issues.

54 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://help.eclipse.org/kepler/topic/org.eclipse.cdt.doc.user/reference/cdt_u_problems_view.htm

About this task

Migration Advisor quick fixes are available only for the following checkers:
v x86-specific compiler built-in checker. See “x86-specific compiler built-in checker” on page 48.
v x86-specific assembly checker. See “x86-specific assembly checker” on page 48.
v Struct with bitfields checker. See “Struct with bitfields checker” on page 49.
v Performance degradation checker. See “Performance degradation checker” on page 50.
v Decimal Floating-Point Math Library as part of Linux/x86-specific API checker. See “Linux/x86-specific

API checker” on page 51.
v Hardware Transaction Memory checker. See “Hardware Transaction Memory checker” on page 51.

After you run Migration Advisor, you can take the following actions using the Migration Advisor view.

Procedure
1. If a line of code has a warning, you can determine whether there is a quick fix available by selecting

the line. A pop-up window appears stating if there is a quick fix available.
2. If a quick fix is available, right-click the line and click Quick Fix. Alternatively, you can press Ctrl+1.

A window displays the Migration Advisor quick fixes, along with any other quick fixes, that are
available. For the Migration Advisor quick fixes, the associated checker is displayed.

3. To see a description of the quick fix, click the title. The description of the quick fix is displayed,
including either a suggested code sample, or documentation of the solution, or both.

Note: Consider whether it makes sense to implement the suggested fix for your migration.
4. To implement the suggested fix, double-click or press Enter.

5 Migrating an application from x86 to Power Systems 55

56 Linux: Developing software using the IBM Software Development Kit for Linux on Power

6 Analyzing application performance on Power Systems
servers

IBM Software Development Kit for Linux on Power provides many performance analysis tools.

6.1 Analyzing performance with the CPI breakdown plug-in
The CPI breakdown plug-in profiles C/C++ applications with the CPI (cycles per instruction) breakdown
model for POWER8 systems.

If you want to use the CPI Breakdown plug-in, you must download and install Perf as described in 2.3,
“Recommended and optional packages,” on page 9.

6.1.1 CPI analysis overview
CPI (cycles per instruction) analysis can be used to improve application performance.

CPI refers to how many processor cycles are needed to complete an instruction. An instruction can be a
read/write from memory operation, an arithmetic calculation, or bit-wise operation. The more cycles the
processor takes to complete an instruction, the poorer the performance of the application in the processor.

Application performance can be improved by decreasing the number of cycles that are needed for the
processor to complete instructions. In the CPI breakdown model, a set of processor events is broken
down into components. Processor performance counters calculate metrics for the event components. This
approach provides a complete view of how the application behaves concerning processor performance.

Because each processor architecture has different performance counters, POWER and Intel have different
CPI breakdown models. Even within Power Systems servers, differences exist between each version of the
processor.

Processor performance can be measured by profiling the application with tools such as OProfile or Perf.
The CPI breakdown plug-in automates this process, enabling you to access the CPI breakdown model of
any C/C++ application without manually tracking the events and calculating the metrics.

6.1.2 CPI events and metrics
The CPI breakdown plug-in collects several required events, and then calculates metrics for the CPI
breakdown model.

The perf stat command collects the following POWER8 events:
v PM_RUN_CYC: Processor Cycles gated by the run latch. Operating systems use the run latch to

indicate when they are doing useful work. The run latch is typically cleared in the OS idle loop. Gating
by the run latch filters out the idle loop.

v PM_CMPLU_STALL: Cycles where a thread was not completing any groups, when the group
completion table had entries for that thread.

v PM_GCT_NOSLOT_CYC: Cycles when the Global Completion Table has no slots from this thread.
v PM_GRP_CMPL: A group completed. Microcoded instructions that span multiple groups will generate

this event once per group.
v PM_CMPLU_STALL_LSU: Following a completion stall (any period when no groups completed, while

group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Load store Unit.

© Copyright IBM Corp. 2012, 2015 57

v PM_CMPLU_STALL_VSU: Cycles stalled by Vector-and-Scalar Unit (PM_CMPLU_STALL_VECTOR,
PM_CMPLU_STALL_SCALAR and PM_CMPLU_STALL_DFP).

v PM_CMPLU_STALL_FXU: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Fixed Point Unit.

v PM_CMPLU_STALL_SCALAR: Following a completion stall (any period when no groups completed,
while group completion table was not empty for that thread) the last instruction to finish before
completion resumes was a scalar floating point instruction.

v PM_CMPLU_STALL_VECTOR: Following a completion stall (any period when no groups completed,
while group completion table was not empty for that thread) the last instruction to finish before
completion resumes was a vector instruction.

v PM_CMPLU_STALL_REJECT: Following a completion stall (any period when no groups completed,
while group completion table was not empty for that thread) the last instruction to finish before
completion resumes suffered a load/store reject.

v PM_CMPLU_STALL_DIV: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was a fixed-point divide instruction.

v PM_CMPLU_STALL_SCALAR_LONG: Following a completion stall (any period when no groups
completed, while group completion table was not empty for that thread) the last instruction to finish
before completion resumes was a floating point divide or square root instruction.

v PM_CMPLU_STALL_VECTOR_LONG: Following a completion stall (any period when no groups
completed, while group completion table was not empty for that thread) the last instruction to finish
before completion resumes was a long latency vector instruction.

v PM_CMPLU_STALL_DFU: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Decimal Floating Point Unit.

v PM_CMPLU_STALL_ERAT_MISS: Following a completion stall (any period when no groups
completed, while group completion table was not empty for that thread) the last instruction to finish
before completion resumes suffered an ERAT miss.

v PM_CMPLU_STALL_DCACHE_MISS: Cycles stalled by Data Cache (L1) misses.
v PM_CMPLU_STALL_STORE: Following a completion stall (any period when no groups completed,

while group completion table was not empty for that thread) the last instruction to finish before
completion resumes was a store. This generally happens when we run out of real SRQ entries, which
prevents stores from issuing.

v PM_CMPLU_STALL_THRD: Following a completion stall (any period when no groups completed,
while group completion table was not empty for that thread) the thread could not complete a group
because the completion port its sharing was being used by another thread. In SMT4 mode Thread0 and
Thread2 share a completion port and Thread1 and Thread3 share another completion port.

v PM_CMPLU_STALL_IFU: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Instruction fetch unit (either Branch Unit or CR unit).

v PM_CMPLU_STALL_BRU: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Branch Unit. This mostly occurs where the branch has dependencies on a long
latency instruction such as a load.

v PM_GCT_NOSLOT_IC_MISS: Cycles when the Global Completion Table has no slots from this thread
because of an Instruction Cache miss.

v PM_GCT_NOSLOT_BR_MPRED: Cycles when the Global Completion Table has no slots from this
thread because of a branch misprediction.

v PM_GCT_NOSLOT_BR_MPRED_IC_MISS: Cycles when the Global Completion Table has no slots from
this thread because of a branch misprediction and Instruction cache miss.

58 Linux: Developing software using the IBM Software Development Kit for Linux on Power

v PM_1PLUS_PPC_CMPL: A group containing at least one PowerPC instruction completed. For
microcoded instructions that span multiple groups, this will only occur once.

v PM_1PLUS_PPC_DISP: Cycles at least one Instr Dispatched.
v PM_CMPLU_STALL_VECTOR_LONG: Completion stall due to long latency vector instruction
v PM_CYC: Processor Cycles.
v PM_CMPLU_STALL_BRU_CRU: Completion stall due to IFU.
v PM_CMPLU_STALL_FXLONG: Completion stall due to a long latency fixed point instruction.
v PM_CMPLU_STALL_DMISS_L2L3: Completion stall by Dcache miss which resolved in L2/L3.
v PM_CMPLU_STALL_DMISS_L2L3_CONFLICT: Completion stall due to cache miss due to L2 L3

conflict.
v PM_CMPLU_STALL_DMISS_L3MISS: Completion stall due to cache miss resolving missed the L3.
v PM_CMPLU_STALL_DMISS_LMEM: GCT empty by branch mispredict + IC miss.
v PM_CMPLU_STALL_DMISS_L21_L31: Completion stall by Dcache miss which resolved on chip

(excluding local L2/L3).
v PM_CMPLU_STALL_DMISS_REMOTE: Completion stall by Dcache miss which resolved from remote

chip (cache or memory).
v PM_CMPLU_STALL_REJECT_LHS: Completion stall due to reject (Load Hit Store).
v PM_CMPLU_STALL_ERAT_MISS: Completion stall due to LSU reject ERAT miss.
v PM_CMPLU_STALL_REJ_LMQ_FULL: Completion stall due to LSU reject LMQ full.
v PM_CMPLU_STALL_LOAD_FINISH: Completion stall due to a Load finish.
v PM_CMPLU_STALL_ST_FWD: Completion stall due to store forward.
v PM_CMPLU_STALL_NTCG_FLUSH: Completion stall due to NTCG flush.
v PM_NTCG_ALL_FIN: Cycles in which all instructions in the group have finished but completion is still

pending.
v PM_CMPLU_STALL_LWSYNC: Completion stall due to ISYNC/LWSYNC.
v PM_CMPLU_STALL_HWSYNC: Completion stall due to HWSYNC.
v PM_CMPLU_STALL_MEM_ECC_DELAY: Completion stall due to mem ECC delay.
v PM_CMPLU_STALL_FLUSH: Completion stall due to flush by own thread.
v PM_CMPLU_STALL_COQ_FULL: Completion stall due to CO q full.
v PM_GCT_NOSLOT_IC_L3MISS: GCT empty for this thread due to Icache L3 miss.
v PM_GCT_NOSLOT_BR_MPRED_ICMISS: GCT empty for this thread due to Icache Miss and branch

mispred.
v PM_GCT_NOSLOT_DISP_HELD_MAP: GCT empty for this thread due to dispatch hold on this thread

due to Mapper full.
v PM_GCT_NOSLOT_DISP_HELD_SRQ: GCT empty for this thread due to dispatch hold on this thread

due to SRQ full.
v PM_GCT_NOSLOT_DISP_HELD_ISSQ: GCT empty for this thread due to dispatch hold on this thread

due to Issue q full.
v PM_CMPLU_STALL_DMISS_DISTANT: Cycles stalled by L1 reloads from distant interventions and

distant memory.

After collecting the events, the perf stat command calculates the necessary metrics for the CPI
breakdown model.

Table 11. CPI breakdown metrics for POWER8

Metric Formula

PM_CMPLU_STALL_CRU PM_CMPLU_STALL_BRU_CRU -
PM_CMPLU_STALL_BRU

6 Analyzing application performance on Power Systems servers 59

Table 11. CPI breakdown metrics for POWER8 (continued)

Metric Formula

PM_CMPLU_STALL_FXU_OTHER PM_CMPLU_STALL_FXU -
PM_CMPLU_STALL_FXLONG

PM_CMPLU_STALL_VECTOR_OTHER PM_CMPLU_STALL_VECTOR -
PM_CMPLU_STALL_VECTOR_LONG

PM_CMPLU_STALL_SCALAR_OTHER PM_CMPLU_STALL_SCALAR -
PM_CMPLU_STALL_SCALAR_LONG

PM_CMPLU_STALL_VSU_OTHER PM_CMPLU_STALL_VSU -
PM_CMPLU_STALL_VECTOR -
PM_CMPLU_STALL_SCALAR_LONG

PM_CMPLU_STALL_DMISS_L2L3_NO_CONFLICT PM_CMPLU_STALL_DMISS_L2L3 -
PM_CMPLU_STALL_DMISS_L2L3_CONFLICT

PM_CMPLU_STALL_DMISS_DISTANT (PM_CMPLU_STALL_DMISS_L3MISS -
(PM_CMPLU_STALL_DMISS_LMEM +
PM_CMPLU_STALL_DMISS_L21_L31 +
PM_CMPLU_STALL_DMISS_REMOTE))

PM_CMPLU_STALL_REJECT_OTHER (PM_CMPLU_STALL_REJECT -
(PM_CMPLU_STALL_REJECT_LHS +
PM_CMPLU_STALL_ERAT_MISS +
PM_CMPLU_STALL_REJ_LMQ_FULL))

PM_CMPLU_STALL_LSU_OTHER (PM_CMPLU_STALL_LSU -
(PM_CMPLU_STALL_DCACHE_MISS +
PM_CMPLU_STALL_REJECT +
PM_CMPLU_STALL_STORE +
PM_CMPLU_STALL_LOAD_FINISH +
PM_CMPLU_STALL_ST_FWD))

PM_CMPLU_STALL_OTHER PM_CMPLU_STALL - PM_CMPLU_STALL_BRU_CRU -
PM_CMPLU_STALL_FXU - PM_CMPLU_STALL_VSU -
PM_CMPLU_STALL_LSU -
PM_CMPLU_STALL_NTCG_FLUSH

PM_CMPLU_STALL_BLOCK_OTHER (PM_CMPLU_STALL_THRD -
(PM_CMPLU_STALL_LWSYNC +
PM_CMPLU_STALL_HWSYNC +
PM_CMPLU_STALL_MEM_ECC_DELAY +
PM_CMPLU_STALL_FLUSH +
PM_CMPLU_STALL_COQ_FULL))

PM_GCT_NOSLOT_IC_L2L3 PM_GCT_NOSLOT_IC_MISS -
PM_GCT_NOSLOT_IC_L3MISS

PM_GCT_NOSLOT_DISP_HELD PM_GCT_NOSLOT_DISP_HELD_MAP +
PM_GCT_NOSLOT_DISP_HELD_SRQ +
PM_GCT_NOSLOT_DISP_HELD_ISSQ +
PM_GCT_NOSLOT_DISP_HELD_OTHER

PM_GCT_EMPTY_OTHER PM_GCT_NOSLOT_CYC - PM_GCT_NOSLOT_IC_MISS
- PM_GCT_NOSLOT_BR_MPRED -
PM_GCT_NOSLOT_BR_MPRED_IC_MISS -
PM_GCT_NOSLOT_DISP_HELD_MAP -
PM_GCT_NOSLOT_DISP_HELD_SRQ -
PM_GCT_NOSLOT_DISP_HELD_ISSQ -
PM_GCT_NOSLOT_DISP_HELD_OTHER

OTHER_CPI PM_RUN_CYC - PM_CMPLU_STALL -
PM_NTCG_ALL_FIN - PM_CMPLU_STALL_THRD -
PM_GCT_NOSLOT_CYC - PM_GRP_CMPL

60 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 11. CPI breakdown metrics for POWER8 (continued)

Metric Formula

STALL_CPI PM_CMPLU_STALL / PM_RUN_INST_CMPL

RUN_CPI PM_RUN_CYC / PM_RUN_INST_CMPL

The CPI breakdown model flow that is defined for POWER8 technology enablement is depicted in the
following table. The sum of the events in a column is the same for each column across the table.

6 Analyzing application performance on Power Systems servers 61

Table 12. CPI breakdown model flow for POWER8

Cycles Breakdown 1 Breakdown 2 Breakdown 3 Breakdown 4 Breakdown 5

PM_RUN
_CYC

PM_CMPLU
_STALL

PM_CMPLU
_STALL_BRU_CRU

PM_CMPLU_STALL_BRU

PM_CMPLU_STALL_CRU

PM_CMPLU
_STALL_FXU

PM_CMPLU_STALL_FXLONG

PM_CMPLU_STALL_FXU_OTHER

PM_CMPLU
_STALL_VSU

PM_CMPLU
_STALL_VECTOR

PM_CMPLU_STALL_VECTOR_LONG

PM_CMPLU_STALL_VECTOR_OTHER

PM_CMPLU
_STALL_SCALAR

PM_CMPLU_STALL_SCALAR_LONG

PM_CMPLU_STALL_SCALAR_OTHER

PM_CMPLU_STALL_VSU_OTHER

PM_CMPLU
_STALL_LSU

PM_CMPLU
_STALL_DCACHE
_MISS

PM_CMPLU
_STALL_DMISS
_L2L3

PM_CMPLU_STALL_DMISS
_L2L3_CONFLICT

PM_CMPLU_STALL_DMISS
_L2L3_NO_CONFLICT

PM_CMPLU
_STALL_DMISS
_L3MISS

PM_CMPLU_STALL_DMISS_LMEM

PM_CMPLU_STALL_DMISS_L21_L31

PM_CMPLU_STALL_DMISS_REMOTE

PM_CMPLU_STALL_DMISS_DISTANT

PM_CMPLU
_STALL_REJECT

PM_CMPLU_STALL_REJECT_LHS

PM_CMPLU_STALL_ERAT_MISS

PM_CMPLU_STALL_REJ_LMQ_FULL

PM_CMPLU_STALL_REJECT_OTHER

PM_CMPLU_STALL_STORE

PM_CMPLU_STALL_LOAD_FINISH

PM_CMPLU_STALL_ST_FWD

PM_CMPLU_STALL_LSU_OTHER

PM_CMPLU_STALL_NTCG_FLUSH

PM_CMPLU_STALL_OTHER

PM_NCTG_ALL_FIN

PM_CMPLU
_STALL
_THRD

PM_CMPLU_STALL_LWSYNC

PM_CMPLU_STALL_HWSYNC

PM_CMPLU_STALL_MEM_ECC_DELAY

PM_CMPLU_STALL_FLUSH

PM_CMPLU_STALL_COQ_FULL

PM_CMPLU_STALL_BLOCK_OTHER

PM_GCT
_NOSLOT
_CYC

PM_GCT_NOSLOT
_IC_MISS

PM_GCT_NOSLOT_IC_L3MISS

PM_GCT_NOSLOT_IC_L2L3

PM_GCT_NOSLOT_BR_MPRED

PM_GCT_NOSLOT_BR_MPRED_ICMISS

PM_GCT_NOSLOT
_DISP_HELD

PM_GCT_NOSLOT_DISP_HELD_MAP

PM_GCT_NOSLOT_DISP_HELD_SRQ

PM_GCT_NOSLOT_DISP_HELD_ISSQ

PM_GCT_NOSLOT_DISP_HELD_OTHER

PM_GCT _EMPTY_OTHER

PM_GRP_CMPL

OTHER_CPI

62 Linux: Developing software using the IBM Software Development Kit for Linux on Power

6.1.3 Profiling a binary application with CPI from the command line
You can use a simplified version of the CPI breakdown plug-in in the command line, outside the IDE.

About this task

Complete these steps to profile a binary application with CPI from the command line:

Procedure
1. On your Power Systems server, navigate to the /opt/ibm/ibm-sdk-lop/bin folder.
2. Locate the cpi_profile.sh script
3. Run the script.

Note: Run the script without parameters to see the usage instructions.

6.1.4 Profiling a project with the CPI breakdown plug-in
You can use the CPI breakdown plug-in to analyze your project for performance improvement through
the CPI breakdown model.

About this task

Complete these steps to profile a project on the local system using the CPI breakdown plug-in.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK.
2. View the project by clicking the project name in the Project Explorer pane.
3. Click Profile as > Profile Configurations.
4. In the Profile Configurations window, click Profile with CPI in the left pane, and then click the New

launch configuration icon near the upper left of the window.
5. Optional: If necessary, select the binary file to be profiled. On the Main tab, beside the C/C++

Application field, click Search Project to select the binary file that you want to profile.
6. Optional: If necessary, click the arrows in the Build configuration field and select Default.
7. Optional: On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
8. Optional: On the CPI Options tab, set the maximum duration for CPI Breakdown analysis.
9. Click Profile to begin the profiling. After the profiling completes, a CPI Breakdown perspective

opens, with the CPI breakdown model (CBM) view shown. The CPI Breakdown Model view shows
all the metrics, events, and their values. Red boxes represent hot spot events.
In addition, the following views open in the lower left:
v The Events view shows all the events that were gathered using the ocount tool. Use the search

field to quickly find a specific event.
v The Metrics view shows all the metrics that were calculated. Use the search field to quickly find a

specific metric.
10. You can drill down through the profiling results to the source code.

a. In the CPI breakdown model view, double-click any red box that represents a hot spot. The
Drilldown view opens in the lower left. The Drilldown view lists the source code elements that
caused the event you selected.

b. In the Drilldown view, double-click a source code element. This action displays the source code,
at the line that corresponds to the selected event, in the source code view on the lower right. The
source code view lists the source file name as the tab name.

6 Analyzing application performance on Power Systems servers 63

6.1.5 Profiling a synchronized project with the CPI breakdown plug-in
You can use the CPI breakdown plug-in to analyze a synchronized project for performance improvement
through the CPI breakdown model.

About this task

Complete these steps to profile a synchronized project using the CPI breakdown plug-in.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK.
2. View the project by clicking the project name in the Project Explorer pane.
3. Click Profile as > Profile Configurations.
4. In the Profile Configurations window, click Profile with CPI (Remote) in the left pane, and then click

the New launch configuration icon near the upper left of the window.
5. On the Main tab, below C/C++ Executable, click Browse to select the binary file that you want to

profile. No other selections are needed because the profiler inherits settings from the remote project.
6. Optional: On the CPI Options tab, set the maximum duration for CPI Breakdown analysis.
7. Click Profile to begin the profiling. After the profiling completes, a CPI Breakdown perspective opens,

with the CPI breakdown model (CBM) view shown. The CPI Breakdown Model view shows all the
metrics, events, and their values. Red boxes represent hot spot events.
In addition, the following views open in the lower left:
v The Events view shows all the events that were gathered using the ocount tool. Use the search field

to quickly find a specific event.
v The Metrics view shows all the metrics that were calculated. Use the search field to quickly find a

specific metric.
8. You can drill down through the profiling results to the source code.

a. In the CPI breakdown model view, double-click any red box that represents a hot spot. The
Drilldown view opens in the lower left. The Drilldown view lists the source code elements that
caused the event you selected.

b. In the Drilldown view, double-click a source code element. This action displays the source code, at
the line that corresponds to the selected event, in the source code view on the lower right. The
source code view lists the source file name as the tab name.

6.2 Analyzing performance with OProfile
OProfile is a system-wide profiler for Linux systems that allows for the analysis of system performance
and the identification of code hot spots. It also contains support for hardware performance counters. IBM
Software Development Kit for Linux on Power provides Eclipse integration with OProfile to allow you to
profile running applications while conserving system resources.

OProfile profiles hardware and software interrupt handlers, kernel modules, the kernel, shared libraries,
and applications. OProfile provides commands, or utilities, for controlling profiling.

Legacy OProfile consists of the opcontrol shell script for configuring, starting, and stopping a profiling
session. To this purpose, a kernel driver is used for collecting samples, which are recorded into sample
files. A disadvantage of this mode is the necessity of elevated user privileges to run opcontrol.

Operf was designed to be used in place of opcontrol for profiling. It uses the Linux Performance Events
Subsystem, and therefore, does not require the use of the opcontrol daemon or any elevated privileges.

You can use either method, opcontrol or operf, to profile with OProfile and IBM SDK for Linux on
Power.

64 Linux: Developing software using the IBM Software Development Kit for Linux on Power

6.2.1 Profiling a project with OProfile
You can use OProfile to profile your project to analyze system performance while running applications.

Before you begin

Ensure that you have completed the following:
1. OProfile available on your system.
2. Building the project.
3. Verifying that the Linux tools path specifies the version of IBM Advance Toolchain for Linux on

Power you want to use during profiling. See 2.5.1.6, “Changing the IBM Advance Toolchain version,”
on page 19 for information.

About this task

Complete these steps to profile a project using OProfile.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK.
2. View the project by clicking the project name in the Project Explorer pane.
3. Click Profiling Tools > Profiling Tools Configurations.
4. In the Profiling Tools Configurations window, click Profile with OProfile in the left pane, and then

click the New launch configuration icon near the upper left of the window.
5. On the Main tab, beside the C/C++ Application field, click Search Project to select the binary file

that you want to profile.
6. If necessary, click the arrows in the Build configuration field and select Default.
7. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
8. On the Global tab, click the arrow in the Profile with field to select which profiling method,

opcontrol or operf, to use. If you select opcontrol, you can also select from the following options:
v Specify a kernel image file. This option collects more detailed information about the operation of

a program in the Linux kernel. Type the file name or click Browse to locate and select it.

Note: When you select this option, you must also select the Include dependent kernel modules
option.

v Include dependent shared libraries. Select this option to include samples from shared libraries
that are used by the profiled program. These samples are then aggregated in the profile results.

9. Optional: On the Events tab, you can clear the Use default event check box to select a different
event to be monitored. You can also select multiple events within the same group. The number of
events varies by system, but typically you can select up to six events.

10. Click Profile to begin the profiling. After the profiling completes, an OProfile tab opens and displays
the event types that were profiled.

11. You can expand the events to view the binary image, function, and line numbers where the profiling
collected most of the events that were profiled. The results are sorted with the functions that the
program spent the most time executing shown first. You can click on an item to open the source
code.

Related information:

Taking advantage of OProfile

6.2.2 Profiling a synchronized project with OProfile
You can use OProfile to profile a synchronized project to analyze system performance while running
applications.

6 Analyzing application performance on Power Systems servers 65

http://www.ibm.com/developerworks/wikis/display/LinuxP/Taking+advantage+of+oprofile

Before you begin

Ensure that you have completed the following:
1. OProfile available on your system.
2. Building the project.
3. Verifying that the Linux tools path specifies the version of IBM Advance Toolchain for Linux on

Power you want to use during profiling. See 2.5.1.6, “Changing the IBM Advance Toolchain version,”
on page 19 for information.

About this task

Complete these steps to profile a synchronized project using OProfile.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profiling Tools > Profiling Tools

Configurations.
2. In the Profiling Tools Configurations window, click Profile with OProfile (Remote) in the left pane,

and then click the New launch configuration icon near the upper left of the window.
3. On the Main tab, below C/C++ Executable, click Browse to select the binary file that you want to

profile.
4. If necessary, click the arrows in the Build configuration field and select Default.
5. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
6. Optional: On the Events tab, you can clear the Use default event check box to select a different event

to be monitored. You can also select multiple events within the same group. The number of events
varies by system, but typically you can select up to six events.

7. On the Global tab, click the arrow in the Profile with field to select which profiling method,
opcontrol or operf, to use. If you select opcontrol, you can also select from the following options:
v Specify a kernel image file. This option collects more detailed information about the operation of a

program in the Linux kernel. Type the file name or click Browse to locate and select it.

Note: When you select this option, you must also select the Include dependent kernel modules
option.

v Include dependent shared libraries. Select this option to include samples from shared libraries that
are used by the profiled program. These samples are then aggregated in the profile results.

8. Click Profile to begin the profiling. After the profiling completes, an OProfile tab opens and displays
the event types that were profiled.

9. You can expand the events to view the binary image, function, and line numbers where the profiling
collected most of the events that were profiled. The results are sorted with the functions that the
program spent the most time executing shown first. You can click on an item to open the source code.

Related information:

Taking advantage of OProfile

6.3 Analyzing performance with Perf
You can use Perf to profile your project and analyze its performance. Perf uses information produced by
the Linux kernel perf events subsystem to profile a running application. Perf analyzes software,
hardware, and tracepoint events.

Perf is an optional but recommended package. If you want to use Perf, you must download and install it
as described in 2.3, “Recommended and optional packages,” on page 9.

66 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://www.ibm.com/developerworks/wikis/display/LinuxP/Taking+advantage+of+oprofile

6.3.1 Profiling a project with Perf
You can use Perf to profile your project to analyze its performance.

Before you begin

Before you can use Perf, you must ensure that you have downloaded and installed it as described in 2.3,
“Recommended and optional packages,” on page 9.

About this task

Complete these steps to profile a project using Perf.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK.
2. View the project by clicking the project name in the Project Explorer pane.
3. Click Profiling Tools > Profiling Tools Configurations.
4. In the Profiling Tools Configurations window, click Profile with Perf in the left pane, and then click

the New launch configuration icon near the upper left of the window.
5. On the Main tab, beside the C/C++ Application field, click Search Project to select the binary file

that you want to profile.
6. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
7. Optional: On the Perf Options tab, you can change default profiling settings.
8. Optional: On the Perf Events tab, you can clear the Default Event check box to select a different

event to be monitored. You can also select multiple events.
9. Click Profile to begin the profiling. After the profiling completes, a Perf tab opens and displays the

event types that were profiled.
10. You can expand the events to view the binary image, function, and line numbers where the profiling

collected most of the events that were profiled. The results are sorted with the functions that the
program spent the most time executing shown first. You can click on an item to open the source
code.

6.3.2 Profiling a synchronized project with Perf
You can use Perf to profile a synchronized project to analyze its performance.

Before you begin

Before you can use Perf, you must ensure that you have downloaded and installed it as described in 2.3,
“Recommended and optional packages,” on page 9.

About this task

Complete these steps to profile a synchronized project using Perf.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profiling Tools > Profiling Tools

Configurations.
2. In the Profiling Tools Configurations window, click Profile with Remote Perf in the left pane, and

then click the New launch configuration icon near the upper left of the window.
3. On the Main tab, below C/C++ Executable, click Browse to select the binary file that you want to

profile.
4. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.

6 Analyzing application performance on Power Systems servers 67

5. Optional: On the Perf Options tab, you can change default profiling settings.
6. Optional: On the Perf Events tab, you can clear the Default Event check box to select a different event

to be monitored. You can also select multiple events.
7. Click Profile to begin the profiling. After the profiling completes, a Perf tab opens and displays the

event types that were profiled.
8. You can expand the events to view the binary image, function, and line numbers where the profiling

collected most of the events that were profiled. The results are sorted with the functions that the
program spent the most time executing shown first. You can click on an item to open the source code.

6.4 Profiling a project with gprof
The GNU profiler, or gprof, is a performance analysis tool that creates an execution profile of your C or
C++ program. Gprof uses static instrumentation to calculate the amount of time expended in a function
of the program, and the number of times the function is called.

Before you begin

You must compile the binary files with the -pg option. This option produces profiling information
required for analysis by gprof. See “Recommendations for debug flags” on page 35 and 4.1.2, “Setting
debug flags for Autotools-based projects,” on page 40 for details and instructions for setting the flags.

About this task

Complete these steps to profile a project with gprof.

Procedure
1. Run the application. See 2.5.1.7, “Running an executable program in a project,” on page 19. Profiling

information is output to the gmon.out file in the same folder location as the application binary file.
2. Refresh the view by right-clicking the project name and clicking Refresh.
3. Double-click the gmon.out file.
4. In the Binary File selection window, click Workspace or File System to select the binary file that

produced the profile data. Click OK. A gprof view tab appears. The view enables you to visualize
profiling information.

5. Optional: Use the controls in the upper right of the view to change information visualization.

6.5 Analyzing application behavior using Valgrind
Valgrind is an open source programming tool used for detecting memory leaks, memory debugging, and
performing detailed profiling to find blockages in programs. IBM Software Development Kit for Linux on
Power provides Eclipse integration with Valgrind, so that you can debug and profile projects. Supported
Valgrind tools include Memcheck memory error detector, Helgrind thread error detector, Massif memory
usage profiler, and Cachegrind cache and branch-prediction profiler.

Memcheck detects memory management problems, reporting these errors as they occur. Memcheck gives
the source line number at which the error occurred, and a stack trace of the functions called up to that
line. Problems detected by Memcheck include the following:
v Illegal read and write operations
v Use of unitialized values
v Use of uninitialized or unaddressable values in system calls
v Illegal freeing of memory
v Memory freed with inappropriate deallocation functions
v Overlapping of source and destination blocks on memory copy functions

68 Linux: Developing software using the IBM Software Development Kit for Linux on Power

v Memory leaks

Helgrind is a POSIX thread (Pthreads) debugger that finds data races in multithreaded programs as well
as other Pthread-related problems. Problems detected by Helgrind include the following:
v Misuses of the Pthreads API
v Deadlock caused by lock ordering
v Data race conditions

Massif is a memory profiler that analyzes heap and stack usage.

Cachegrind is a cache and branch-prediction profiler. Cachegrind identifies the number of cache misses,
memory references, and instructions executed for each line of source code.

6.5.1 Profiling a project using Valgrind
You can use Valgrind to profile your project to detect memory leaks, debug memory issues, and perform
detailed profiling.

Before you begin

Before you profile a project, ensure that the project has been built.

About this task

Complete these steps to profile a project using Valgrind.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK.
2. View the project by clicking the project name in the Project Explorer pane.
3. Click Profiling Tools > Profiling Tools Configurations.
4. In the Profiling Tools Configurations window, click Profile with Valgrind in the left pane, and then

click the New launch configuration icon near the upper left of the window.
5. On the Main tab, beside the C/C++ Application field, click Search Project to select the binary file that

you want to profile.
6. If necessary, click the arrows in the Build configuration field and select Default.
7. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
8. On the Valgrind Options tab, select the tool to run and select the options that best fit your profiling

needs.
9. Click Profile to begin the profiling.

Results

The source code is displayed. Lines that have errors that were detected by Valgrind are highlighted with
an “X”. See 6.5.3, “Applying quick fixes for Valgrind-reported errors,” on page 70 for information about
how to resolve them.

6.5.2 Profiling a synchronized project using Valgrind
You can use Valgrind to profile your synchronized project to detect memory leaks, debug memory issues,
and perform detailed profiling.

Before you begin

Before you profile a project, ensure that the project has been built.

6 Analyzing application performance on Power Systems servers 69

About this task

Complete these steps to profile a synchronized project using Valgrind.

Procedure
1. Switch to the remote C/C++ perspective by clicking Window > Open Perspective > Other > Remote

C/C++. Click OK. The synchronized project should be displayed under the Project Explorer view.
2. In the Project Explorer pane, right-click the project name. Click Profiling Tools > Profiling Tools

Configurations.
3. In the Profiling Tools Configurations window, click Profile with Valgrind (Remote) in the left pane,

and then click the New launch configuration icon near the upper left of the window.
4. On the Main tab, beside the C/C++ Application field, click Browse to select the binary file that you

want to profile.
5. If necessary, click the arrows in the Build configuration field and select Default.
6. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
7. On the Valgrind Options tab, select the tool to run and select the options that best fit your profiling

needs.
8. Click Profile to begin the profiling.

Results

The source code is displayed. Lines that have errors that were detected by Valgrind are highlighted with
an “X”. See 6.5.3, “Applying quick fixes for Valgrind-reported errors” for information about how to
resolve them.

6.5.3 Applying quick fixes for Valgrind-reported errors
IBM SDK for Linux on Power provides quick fixes for errors found by Valgrind. Quick fixes are
suggestions or tips that might help correct identified errors.

Before you begin

Ensure that you have profiled your project with Valgrind, as described in 6.5.1, “Profiling a project using
Valgrind,” on page 69 and 6.5.2, “Profiling a synchronized project using Valgrind,” on page 69.

About this task

After you run Valgrind, the source code is displayed, and the lines that have errors are highlighted with
an “X”. Complete these steps to fix problems that are found with Valgrind.

Procedure
1. Right-click the line with the error, and select Quick Fix. If there are any quick fixes available, they are

displayed in a list.
2. Select the appropriate quick fix. The fix is applied and the program source changed automatically to

fix the source.

6.6 Monitoring performance using SystemTap
SystemTap is a tool and scripting language you can use to dynamically monitor running Linux
applications. SystemTap allows you to gather data and diagnose complex performance problems.

SystemTap is an optional but recommended package. In addition, an optional ibm-sdk-lop-stp package is
available. Both packages are required if you want to use SystemTap with IBM SDK for Linux on Power.

70 Linux: Developing software using the IBM Software Development Kit for Linux on Power

You must download and install both packages as described in 2.3, “Recommended and optional
packages,” on page 9. In addition, you must complete post-installation setup tasks described in 2.3.2.1,
“Setting up SystemTap,” on page 10.

6.6.1 Editing a SystemTap script
Use the SystemTap IDE perspective to create and edit SystemTap scripts.

Before you begin

Ensure that you have completed the following:
1. Installed the optional SystemTap package, as described in 2.3, “Recommended and optional

packages,” on page 9.
2. Completed the setup tasks in 2.3.2.1, “Setting up SystemTap,” on page 10.

About this task

Complete these steps to edit or create a SystemTap script.

Procedure
1. Switch to the SystemTap IDE perspective by clicking Window > Open Perspective > Other. In the

Open Perspective window, click SystemTap IDE. Click OK.
2. Open a SystemTap script. SystemTap scripts must have a file extension of .stp.

v To edit an existing script, click Open a File in the toolbar and select the script.
v To create a script, click File > New > Other. Specify a name for the script with the file extension

.stp.
3. Edit the SystemTap script. Make selections from the three tabs displayed on the left.

v The Probe Alias tab displays all available kernel probes. Kernel probes are a set of tools that collect
Linux kernel debugging and performance information. To add a probe to the current SystemTap
script, double-click it on the Probe Alias tab.

v The Function tab displays all available functions for SystemTap scripts. To add a function to the
current SystemTap script, double-click it on the Function tab.

v The Kernel Source tab is used to explore the kernel source, while editing a SystemTap script. To
open a kernel source file, double-click it on Kernel Source tab.

6.6.2 Running a SystemTap script
You can run a SystemTap script from the SystemTap IDE perspective. Optionally, you can select to
generate a chart containing your results.

Before you begin

Ensure that you have completed the following:
1. Installed the optional SystemTap package, as described in 2.3, “Recommended and optional

packages,” on page 9.
2. Completed the setup tasks in 2.3.2.1, “Setting up SystemTap,” on page 10.

About this task

Complete these steps to run a SystemTap script.

Procedure
1. Switch to the SystemTap IDE perspective by clicking Window > Open Perspective > Other. In the

Open Perspective window, click SystemTap IDE. Click OK.

6 Analyzing application performance on Power Systems servers 71

2. Open a SystemTap script by clicking Open a File in the toolbar and selecting the script.
3. To run the script, click Run the Script in the toolbar. The results of the script are displayed in the

Console view.
4. To stop a running script, click Stop running Script in the toolbar.

Results

The chart is displayed in the main view.

6.6.3 Running a SystemTap script with chart
You can run a SystemTap script and generate a chart containing your results from the SystemTap IDE
perspective.

Before you begin

Ensure that you have completed the following:
1. Installed the optional SystemTap package, as described in 2.3, “Recommended and optional

packages,” on page 9.
2. Completed the setup tasks in 2.3.2.1, “Setting up SystemTap,” on page 10.

About this task

Complete these steps to run a SystemTap script and produce a chart with results.

Procedure
1. Switch to the SystemTap IDE perspective by clicking Window > Open Perspective > Other. In the

Open Perspective window, click SystemTap IDE. Click OK.
2. Open a SystemTap script by clicking Open a File in the toolbar and selecting the script.
3. To run the script, click Run the Script w/ Chart in the toolbar. The Create Data Set window is

displayed.
4. In the Create Data Set window, select either Row Data Set or Table Data Set to specify how your

data is to be formatted.

Tip: An example of the formatting type are displayed on the right when you select the option.
Click Next.

5. In the Select Row Data Set Parsing window, specify the number of columns and type the names of
each column. Click Finish. The SystemTap Graphing perspective displays and the results display in
the Console view and in a table in the Data View tab.

6. Click Create Graph, in the left of the Data View tab. The Create Graph window is displayed.
7. In the Create Graph window, complete the following steps.

a. Select an option to specify the type of chart you want to generate. Click Next.
b. Type a title for the chart, and select the X axis and Y axis to be used to plot the chart. Click Finish.

Results

The chart is displayed in the main view.

6.7 Analyzing POSIX Threads using Trace Analyzer
The IBM Software Development Kit for Linux on Power includes Trace Analyzer, an Eclipse plug-in for
graphical and numerical analysis of performance traces.

72 Linux: Developing software using the IBM Software Development Kit for Linux on Power

6.7.1 Trace Analyzer overview
Trace Analyzer allows graphic visualization and analysis of POSIX Threads (Pthreads) concurrency.

Concurrency information is generated by a Pthread monitoring tool running on Pthread-based
applications. The monitoring tool can be invoked from within the visualizer or from the command line.
The concurrency information includes synchronization using mutexes, spinlocks, and conditional variable
signaling.

With the Trace Analyzer, you can perform the following analysis tasks:
v Collect the Pthreads profile and view the resulting trace.
v View the active threads and the blocking operations.
v View the active locks and spinlocks, threads waiting on locks, threads holding locks, and queue sizes.
v View conditional variables, threads waiting for them, and the contention for the associated mutexes.
v Collect a trace of blocking I/O requests, and view the trace together with the synchronization data.

6.7.2 Profiling a project with Trace Analyzer
You can profile a project with Trace Analyzer to analyze Pthreads concurrency.

Before you begin

Before you profile a project, ensure that it has been built. In addition, if you plan to enable operating
system I/O monitoring using SystemTap, ensure that the optional package ibm-sdk-lop-stp has been
installed. See 2.3, “Recommended and optional packages,” on page 9.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profile as > Profile Configurations.
2. In the Profile Configurations window, double-click Trace Analyzer for Pthreads to create a new

configuration. Alternatively, click the new launch configuration icon near the upper left of the Profile
Configurations window.

3. Optional: To enable operating system I/O monitoring using SystemTap along with data collection,
complete this step. On the pthread-mon+ tab in the Operating system monitoring section, select the
I/O option from the list of available options. The default is no I/O monitoring. If I/O monitoring is
enabled, the I/O monitoring traces read and write system calls. The system call times are shown with
application times.

4. Optional: To adjust the depth of stack trace information to be collected in the traces, complete this
step. On the pthread-mon tab in the Number of frames to back trace section, select the number of
frames from the list of available options. Available values are 0 - 9; the default is 2.

5. Click Profile.

6.7.3 Profiling a synchronized project with Trace Analyzer
You can profile a synchronized project with Trace Analyzer to analyze Pthreads concurrency.

Before you begin

Before you profile a project, ensure that it has been built. In addition, ensure that the Pthread monitoring
tool is installed on the remote server.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profile as > Profile Configurations.

6 Analyzing application performance on Power Systems servers 73

2. In the Profiling Tools Configurations window, double-click Trace Analyzer for Pthreads Remote to
create a configuration. Alternatively, click the new launch configuration icon near the top left of the
window.

3. On the Resources tab, complete the following steps.
a. In the Target System Configuration field, click the arrows and select IBM-SDK-Remote-

Connection.
b. In the Remote service provider field, select Remote tools.
c. In the Please select a connection box, click the arrows to select the connection to the remote server,

or click New to create a connection.
4. On the Application tab, select the application program by clicking Browse to locate the binary file in

the remote server file system.
5. Optional: To enable operating system I/O monitoring using SystemTap along with data collection,

complete this step. On the pthread-mon+ tab in the Operating system monitoring section, select the
I/O option from the list of available options. The default is no I/O monitoring. If I/O monitoring is
enabled, the I/O monitoring traces read and write system calls. The system call times are shown with
application times.

6. Optional: To adjust the depth of stack trace information to be collected in the traces, complete this
step. On the pthread-mon tab in the Number of frames to back trace section, select the number of
frames from the list of available options. Available values are 0 - 9; the default is 2.

7. Click Profile.

6.7.4 Collecting a trace by setting variables from the command line
You can set variables from the command line to affect how a trace is collected.

About this task

Select from the following options.

Procedure
v Set the SASSTOREPATH variable to point to a directory for temporary log files. Ensure that you have

write permission and enough disk space in the directory. 32-bit and 64-bit applications must use
different directories. Different profiling runs can use the same directory if they use different tags.
– If the application under monitoring terminates abnormally, clean the data directory by setting the

SASSTOREPATH variable as follows:
SASSTOREPATH=directory <$PMHOME>/pthreadmon/ bin/sasutil

Specify the same directory as in the monitoring run for directory. Running this command displays a
list of options; select 6 to remove the data.

v Set the MONITOREDAPPTAG variable to be the identifier of the monitored execution. Allowed characters are
a to z, A to Z, and 0 to 9. Usually the tag contains the application name, settings description, and date
and time of the run. The tag cannot be longer than 100 characters.

v Optional: Set the BT_LEVEL variable to be the depth of the call stack to be recorded with monitored
events. Allowed values are 0 - 4; the default is 2.

v Optional: Set the OSMONITOR variable to describe the operating system data to collect. The only
supported value is io, which triggers logging of read/write system calls. It is supported only for 64-bit
programs and might not work with large logs.

74 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Results

The log files are written to ($MONITOREDAPPTAG)_logfile_number.pthreads files in the current directory. If
the monitored data is large, the log is split into multiple files, for example:
($MONITOREDAPPTAG)_log0.pthreads, ($MONITOREDAPPTAG)_log1.pthreads,
($MONITOREDAPPTAG)_log2.pthreads, and so on.

Note: If there is not enough space to hold all of the events, the logger might drop events in the
beginning of the trace.

Example

Note: By using the code examples, you agree to the terms of the 9, “Code license and disclaimer
information,” on page 91.
[pmhome/pthread-mon/test]# SASSTOREPATH=/tmp/sasdata64
MONITOREDAPPTAG=appTag BT_LEVEL=2 ../scripts/pthread-mon ./app64
<... snip ...>
Hello world!

[pmhome/pthread-mon/test]# cat appTag_log0.pthreadss
0 1350069905206059 27241 0x10010c90
1 1350069905216439 27241 0 4398060282400
2 1350069905216827 27241 4398060282400 0x10000758 0x4000014276c
99 0x10000758 ../app/app ./app.c:20
99 0x4000014276c /lib64/power5/libc.so.6 ??:0
3 1350069905296762 27241 0

6.7.5 Record Details view
The Record Details view shows name/value pairs for all the fields defined for the selected record.

The call-stack information in the Record Details view can be used to match specific blocking events to
source code lines. For example, BacktraceExec0 is the executable program, and BacktraceLine0 is the line
in that executable program from which the blocking function is called.

The Record Details view includes the following tabs: Overview, Waits by thread, Hot locks, Hot spins,
and Hot Cond Var. In each tab of the view, the x axis is the time, increasing from left to right. Each
Pthread view has options available in the Properties view for toggling the display of each metric.

Overview tab

The Overview tab view gives an overview of all threads synchronization actions . The threads are shown
as gray blocks spanning the entire thread lifetime. Synchronization events are shown above the thread
block, and operating system events (if available) are shown below it.

Start Indicates when the thread is created.

End Indicates when the thread is ended.

Join Indicates that the thread is waiting to join another thread.

Mutex_lock
Indicates that the thread is blocking because it is trying to acquire a mutex.

Condvar_wait
Indicates that the thread is blocking because it is waiting on a conditional variable.

IO Indicates that the thread was blocked in I/O (operating system event).

6 Analyzing application performance on Power Systems servers 75

Waits by thread tab

The Waits by thread tab view displays the Pthread locks for each thread that is blocked, waiting to
acquire a specific mutex. The display includes colors to differentiate between the different mutexes. The
list of displayed threads can be edited through the Properties view.

Hot locks tab

The Hot locks tab view shows the number of Pthreads that are blocked, waiting to acquire each mutex.

Blocking before lock
Shows the number of threads blocking as a result of calling pthread_mutex_lock. The color
displayed is determined by the last thread in the queue.

Hold Shows the lock lifetime and the intervals for which the lock was held. The colors displayed for
lock lifetime match those in the Waits by thread view. The color displayed for the intervals is
determined by the holding thread.

Blocking after wait
Shows the number of threads blocking while trying to reacquire a mutex that was lost while
waiting on a conditional variable. The color displayed is determined by the last thread in the
queue.

Hot spins tab

The Hot spins tab view shows the thread holding the spin lock and number of threads waiting on that
spin lock over time.

Wait Shows the number of threads blocking as a result of calling pthread_spin_lock. The color
displayed is determined by the oldest thread in the queue.

Hold Shows the spin lock lifetime and the intervals in which it was held. The colors displayed for lock
lifetime match those in the Waits by thread view. The color displayed for the intervals is
determined by the holding thread.

Hot Cond Var tab

The Hot Cond Var tab view shows the number of Pthreads waiting for each conditional variable. In
addition, the view shows how many threads are blocking, waiting to acquire this mutex, for each mutex
guarding the conditional variable. As in the Hot locks tab, the view on this tab contains two graphs for
each mutex.

Blocking before lock
Shows the number of threads blocking as a result of calling pthread_mutex_lock. The color
displayed is determined by the last thread in the queue.

Hold Shows the lock lifetime and the intervals for which the lock was held. The colors displayed for
lock lifetime match those in the Waits by thread view. The color displayed for the intervals is
determined by the holding thread.

Blocking after wait
Shows the number of threads blocking while trying to reacquire a mutex that was lost while
waiting on a conditional variable. The color displayed is determined by the last thread in the
queue.

The list of displayed conditional variables can be edited through the Properties view.

76 Linux: Developing software using the IBM Software Development Kit for Linux on Power

6.8 Analyzing coverage with gcov
The GNU test coverage program, or gcov, is a tool that uses static instrumentation to generate test
coverage information.

Before you begin

Ensure that the following steps have been completed before you use gcov.
1. Compile the binary files with the -ftest-coverage and -fprofile-arcs options.

-ftest-coverage produces a text file that gcov uses to show program coverage. -fprofile-arcs
instruments the resulting binary flow arcs. See “Recommendations for debug flags” on page 35 and
4.1.2, “Setting debug flags for Autotools-based projects,” on page 40 for details and instructions for
setting the flags.

2. Link the binary files to the gcov library. Complete the following steps.
a. Expand C/C++ Build > Settings.
b. Expand GCC C++ Linker > Libraries.
c. In the Libraries window, click +, the “Add...” icon.
d. In the Libraries field in the Enter Value window, type gcov.

About this task

Complete these steps to profile a project with gcov.

Procedure
1. Run the application. See 2.5.1.7, “Running an executable program in a project,” on page 19. Coverage

data is saved to object_name.gcda files, one for each object.
2. Refresh the view by right-clicking the project name and clicking Refresh.
3. Double-click the object_name.gcda file.
4. In the Binary File selection window, click Workspace or File System to select the binary file that

produced the coverage data. Click OK. A gcov view tab appears. The view enables you to visualize
profiling information. Double-click any row in the report to display source code with coverage
highlighted.

5. Optional: Use the controls in the upper right of the view to change information visualization.

6.9 Analyzing performance with Power Performance Advisor
The POWER Performance Advisor (PPA) plug-in allow users to profile C/C++ applications selecting a set
of metrics based on the chosen target processor. PPA leverages Ocount tool; an OProfile tool used to
count native hardware events, to gather the processor performance data and calculate the metrics.

About this task

Complete those steps to profile a local or a synchronized project that uses PPA plug-in.

Procedure
1. Switch to the C/C++ perspective by selecting Window > Open Perspective > C/C++. Click OK.
2. Right-click the project in the Project Explorer pane.
3. Select Profile as > Profile Configurations.
4. In the Profiling Configurations window, select Profile with PPA in the left pane, and then select the

New launch configuration icon near the upper left of the window.
5. On the Metrics tab, complete the following fields:

6 Analyzing application performance on Power Systems servers 77

POWER CPU version in CPU Model field
Metric analysis type in the Analysis type field
Metrics in the Metrics groupfield

Note: To change the Ocount that is used during the profile, select Change path from the Counter
Tool group.

6. On the Main tab, click Browse from the C/C++ executable field to select the binary file to be profiled.
7. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
8. Click Profile to begin the profiling. After the profiling completes, a PPA view opens and displays each

metrics value with their corresponding events.

78 Linux: Developing software using the IBM Software Development Kit for Linux on Power

7 Tuning application performance on Power Systems servers

You can use the Source Code Advisor (SCA) and Feedback Directed Program Restructuring tool (FDPR)to
improve the performance of your applications on Power Systems servers.

7.1 Analyzing performance with Source Code Advisor and FDPR
The IBM Software Development Kit for Linux on Power provides two related tools, Source Code Advisor
(SCA) and the Feedback Directed Program Restructuring tool (FDPR), that implement feedback-directed,
post-link program analysis and optimization technology. SCA finds and visualizes performance problems
in the application source code, using journaling information produced by using FDPR. SCA alerts you to
problems, and provides you with tips for restructuring source code and modifying compiler flags.

7.1.1 Source Code Advisor and FDPR overview
Source Code Advisor (SCA) and Feedback-Directed Program Restructuring (FDPR) work together to
allow you to analyze and optimize your applications.

FDPR works similarly to a compiler: it reads a linked executable program and produces an optimized
version of it. Both regular executable and shared library forms are supported. The optimization uses an
execution profile, collected by running an instrumented version of the input.

During the code optimization process, FDPR produces a journal of the optimizations performed. The
Source Code Advisor uses this journal, produced as an XML file, to highlight potential problems in your
source code and to offer suggested solutions. The journal explains each optimization site, including the
source location, execution count, the performance problem found, and the user action required to resolve
the problem. It is important to select a representative workload for both SCA and for FDPR so that the
optimization step is effective.

Because SCA uses information gathered by FDPR, knowledge of this tool is important. To understand the
main requirements and principles, review the FDPR Getting Started document, available in the IBM SDK
for Linux on Power online help. (You can access this document from the user interface by clicking Help >
Help Contents. Then expand FDPR Optimization Tools Documentation > Getting Started.)

The combination of SCA and FDPR provide you with two major approaches to performance analysis and
optimization:
v Find and visualize performance problems in the source program using feedback-directed analysis.
v Perform feedback-directed optimization of an executable program (or a shared library).

Performance problem visualization using Source Code Advisor

The SCA configuration allows you to specify the workload needed to collect the profile of the program.
When running this configuration, the program is built, if necessary, using the standard project build
process. Once the executable is available, FDPR creates an instrumented version and runs it using the
specified workload. FDPR then performs a pseudo optimization step producing a journal of the
performance problems found. The result is an XML-formatted file that lists the specific problems found,
their exact location in the source, and so on. With the XML journal available, the Source Code Advisor
view is displayed to visualize the set of problems, allowing you to navigate through the problems and
the corresponding places in the source where they were found. The view provides a recommended course
of action for each problem at various abstraction levels (source change, compiler switches, and so on.)

© Copyright IBM Corp. 2012, 2015 79

Feedback-directed optimization using FDPR

FDPR optimization is begun through the FDPR configuration. As with the SCA configuration, you specify
a workload, typically the same workload. You can also specify the set of optimizations to be used.
Running the FDPR configuration includes optional instrumentation and profiling steps. These steps are
needed if the original program has changed, if no profile exists yet, or if you specifically requested to
re-create it. Following that, the optimization step is performed, producing the optimized version.

7.1.2 Running the Source Code Advisor on a project
You can run SCA on a project to begin the process of performance problem visualization.

Before you begin

Ensure that you compile the binary files with the -Wl and -q flags. See “Recommendations for debug
flags” on page 35 and 4.1.2, “Setting debug flags for Autotools-based projects,” on page 40 for details and
instructions for setting the flags.

About this task

Complete the following steps.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profile as > Profile Configurations.
2. In the Profile Configurations window, expand Source Code Advisor and click New to create a

configuration profile.
3. On the Main tab, type the name of the main program in the C/C++ Application field. By default, this

is the project name. You can type the path relative to the project directory or the full path, or use
Search Project or Browse.

4. On the Arguments tab, specify the command-line arguments to be used to run the workload.
5. On the FDPR Options tab, select appropriate options. See 7.1.7, “Optimizing executable code using

FDPR,” on page 83 for more details on specifying FDPR options.
6. Click Profile.

Results

SCA first builds the program, if necessary, using the standard project build process. After the executable
file is available, an instrumented version is created by FDPR and run using the specified workload. FDPR
then performs a pseudo-optimization step, producing a journal of the performance problems found and
fixed. The journal is an XML formatted file that lists the specific problems found and their exact location
in the source. The journal corresponds to a specific workload, as specified on the Arguments tab in the
profile configuration.

When the journal is available, the SCA results are displayed automatically in the Source Code Advisor
view. See 7.1.5, “Reviewing the Source Code Advisor results,” on page 82 for information about using the
SCA view.

7.1.3 Running the Source Code Advisor on a synchronized project
You can run the Source Code Advisor on a synchronized project to begin the process of performance
problem visualization.

80 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Before you begin

Ensure that you compile the binary files with the -Wl and -q flags. See “Recommendations for debug
flags” on page 35 and 4.1.2, “Setting debug flags for Autotools-based projects,” on page 40 for details and
instructions for setting the flags.

About this task

Complete the following steps.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profile as > Profile Configurations.
2. In the Profile Configurations window, expand Source Code Advisor Remote and click New to create

a configuration profile.
3. On the Resources tab, complete the following steps.

a. In the Target System Configuration field, click the arrows and select IBM-SDK-Remote-
Connection.

b. In the Remote service provider field, select Remote tools.
c. In the Please select a connection box, click the arrows to select the connection to the remote server,

or click New to create a connection.
4. On the Application tab, complete the following.

a. Type the name of the main program in the Parallel Project field. By default, this is the project
name. You can type the path relative to the project directory or the full path, or use Search Project
or Browse.

b. Type the name of the binary file in the Application Program field. You can type the path relative
to the project directory or the full path, or use Browse.

5. On the Arguments tab, specify the command-line arguments to be used to run the workload.
6. On the FDPR Options tab, select appropriate options. See 7.1.7, “Optimizing executable code using

FDPR,” on page 83 for more details on specifying FDPR options.
7. Click Profile.

Results

SCA first builds the program, if necessary, using the standard project build process. After the executable
file is available, an instrumented version is created by FDPR and run using the specified workload. FDPR
then performs a pseudo-optimization step, producing a journal of the performance problems found and
fixed. The journal is an XML formatted file that lists the specific problems found and their exact location
in the source. The journal corresponds to a specific workload, as specified on the Arguments tab in the
profile configuration.

When the journal is available, the SCA results are displayed automatically in the Source Code Advisor
view. See 7.1.5, “Reviewing the Source Code Advisor results,” on page 82 for information about using the
SCA view.

7.1.4 Viewing Source Code Advisor on an existing journal
You can open SCA on a journal that has already been collected.

About this task

Complete the following steps.

7 Tuning application performance on Power Systems servers 81

Procedure
1. If the SCA view is not already open, complete the following steps to open the SCA view.

a. Click Window > Show View > Other.
b. In the Show View window, expand FDPR and click Source Code Advisor. Click OK.

2. In the Project Explorer pane, select the journal file to be viewed. The journal file name begins with the
name of the program and ends with -jour.xml. See 7.1.5, “Reviewing the Source Code Advisor
results” for information about using the SCA view.

3. If you reprofile the program with SCA, the profile will be replaced. If you want to keep the journal
file but collect a journal for a different workload, you can save it with a different name. To save the
file, copy and paste it with a different name. Ensure that the new name ends with -jour.xml.

7.1.5 Reviewing the Source Code Advisor results
After you run SCA, you can review the results including the specific performance problems.

About this task

The SCA results are shown in the Source Code Advisor view. This view consists of the following panes:
v A performance event pane, in an expandable tree format, on the left.
v A problem/solution pane on the right.

At the top level, the performance event tree shows each of the performance event types, such as FIX
LOAD-HIT-STORE, UNROLL LOOP, and INLINE FUNCTION. The right pane shows the problem and
solution for the selected event. Refer to 7.1.6, “Source Code Advisor events” for information about the
performance events and the various levels (source code, compiler, and linker).

The performance event tree provides detailed information about the actual instances of the performance
events in the user program.

Procedure
v To display the functions where a performance event occurred, expand an event type at the root level .

The function entries are sorted by frequency of occurrence when the instrumented program was run.
v To display site-specific parameters for the event, expand a line entry for the event. For example, select

a parameter the represents a site in the program such as a line number or function. This displays the
corresponding source code in the editor.

7.1.6 Source Code Advisor events
Events flagged by the Source Code Advisor are journal entries produced by FDPR. Each journal entry
includes information about the performance problem and a general approach for solving it. It also
includes suggested changes for compiler or linker command-line flags, and suggested source code
changes.

The Source Code Advisor supports the following FDPR journal entries.

Table 13. SCA events

Event Problem description

INLINE FUNCTION High call overhead of a hot small function.

UNROLL LOOP High branch penalty in a small loop.

DIRECT TOC ACCESS Data cache pressure is caused by TOC-load instructions.

REDUCE FOR EARLY EXIT Heavy register-save prolog with dominant early exit.

PREDICT BRANCH STATICALLY Highly-predictable condition branch uses dynamic
prediction.

82 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 13. SCA events (continued)

Event Problem description

PREDICT BRANCH DYNAMICALLY Unpredictable condition branch uses static prediction.

MOVE HOT CODE TO COLD AREA Hot code is loop-invariant.

FIX LOAD-HIT-STORE Load instruction is rejected when it hits previous store to
the same address before store reaches cache.

DE-VIRTUALIZE FUNCTION CALL Indirect call to common targets has high miss penalty.

SHORTCUT PLT CALL Call-through-PLT to local procedure has high call
overhead.

EXTSW INSTRUCTION A hot “int to long” integer conversion that results from a
mix of integer and long integers (32 and 64 bits) in an
expression or a function call.

For information about the suggested solution, compiler and linker flag changes, and source code changes,
see the Source Code Advisor Problems/Solutions Reference document, available in the IBM SDK for
Linux on Power online help. (You can access this document from the user interface by clicking Help >
Help Contents. Then expand FDPR Optimization Tools Documentation > Reference > Source Code
Advisor problem/solution reference.)

7.1.7 Optimizing executable code using FDPR
Feedback Directed Program Restructuring (FDPR) allows you to perform feedback-directed optimization
of an executable or shared library. Also known as the post-link optimization tool, FDPR optimizes the
executable image of a program based on a typical profile.

FDPR optimization is performed in three distinct steps:
v Instrumentation: FDPR analyzes the input program and creates an instrumented version and an empty

profile.
v Profiling: The instrumented program is run with some representative input. During this run, the profile

is filled with various counts, such as how many times each branch was executed.
v Optimization: FDPR processes the input program together with the now filled profile. It performs

various optimizations based on this profile, such as code restructuring, making the program run more
efficiently.

The IBM Software Development Kit for Linux on Power allows you to run FDPR through the FDPR
plug-in.

7.1.7.1 Specifying FDPR optimization for a project
You can specify workload and optimization flags for FDPR for a project.

About this task

To specify workload and optimization flags for FDPR, complete the following steps.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Run as > Run Configurations.
2. In the Profile Configurations window, expand FDPR and click New to create a configuration profile.
3. On the Main tab, type the name of the main program in the C/C++ Application field. By default, this

is the project name. You can type the path relative to the project directory or the full path, or use
Search Project or Browse.

7 Tuning application performance on Power Systems servers 83

4. On the Arguments tab, specify the workload to be used to form the execution profile. It is important
to select a representative workload so that the following optimization step is effective. Typically the
same workload should be used for both SCA and for FDPR.

5. On the FDPR Options tab, select appropriate options.
v The Optimized binary section specifies the component of the application that is being optimized.

Select the main executable program or a shared library.
v The Optimization level section allows you to specify the optimization flags used by FDPR. Select

from options such as O, O2, O3, and O4. Or you can specify Other to specify specific options.

Note: For more detailed information about specifying options for FDPR, refer to the FDPR
reference manual, available in the IBM SDK for Linux on Power online help. You can access this
document from the user interface by clicking Help > Help Contents. Then expand FDPR
Optimization Tools Documentation > Reference > FDPR reference manual.

v The Architecture field controls architecture-specific optimizations, like code alignment. Select a
specific architecture, such as power8, power7, power6, or power5.

v The Info output section lists options to control the informational output. Select the maximum level
of warnings printed to the console and whether to print progress messages to the console.

v The Start/continue profile and program section lists options for profiling or optimizing a running
server application. This section includes three radio button groups to control the way the profile
and program are started or continued.
– Start program (default) or Continue program: Start program causes the program to be restarted.

The program is kept running if Continue program is selected.
– Start with empty profile (default) or Continue with last profile: By default, the profile is

cleared before actual profiling begins. If Continue with last profile is selected, the last profile
collected is used to initialize the profile.

– Profile until completion (default) or Profile for ___ seconds: By default, the profile is collected
until the program completes. If the other option is selected, a number of seconds must be
specified. The profile is collected only for that amount of time, and the program continues to
run.

For example, some typical cases might include the following:
a. Start the program with an empty profile and profile until the program terminates.
b. Start the program with an empty profile. Profile for a specified number of seconds, and leave

the program running.
c. Begin with the previous case to start the program or server, and collect an initial profile. Then,

continue the program with the existing profile and profile for a specified number of seconds.
This case can be repeated multiple times, accumulating profile information across several time
periods.

6. On the Environment tab, you can specify the following environment variables:

FDPR_BINDIR
The directory where FDPR binary files were installed. Default: /opt/ibm/fdprpro/bin.

FDPR_LIBDIR
The directory where FDPR libraries were installed. Default: /opt/ibm/fdprpro/lib.

FDPR_PROF_COMMAND
A user-provided script used to profile the program. The script is invoked as script prog arg
..., where prog is the instrumented program or, when profiling a shared library, the original
program. The default is to directly execute the program with the specified arguments.

7. Click Run.
Related information:

Feedback Directed Program Restructuring (FDPR)

84 Linux: Developing software using the IBM Software Development Kit for Linux on Power

https://www.research.ibm.com/haifa/projects/systems/cot/fdpr/

7.1.7.2 Specifying FDPR optimization for a synchronized project
You can specify workload and optimization flags for FDPR for a project on a remote server.

About this task

To specify workload and optimization flags for FDPR, complete the following steps.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Run as > Run Configurations.
2. In the Run Configurations window, expand FDPR Remote and click New to create a configuration

profile.
3. On the Resources tab, complete the following steps.

a. In the Target System Configuration field, click the arrows and select IBM-SDK-Remote-
Connection.

b. In the Remote service provider field, select Remote tools.
c. In the Please select a connection box, click the arrows to select the connection to the remote server,

or click New to create a connection.
4. On the Application tab, type the name of the main program in the Application Program field. You

can type the path relative to the project directory or the full path, or use Browse.
5. On the Arguments tab, specify the workload to be used to form the execution profile. It is important

to select a representative workload so that the following optimization step is effective. Typically the
same workload should be used for both SCA and for FDPR.

6. On the FDPR Options tab, select appropriate options.
v The Optimized binary section specifies the component of the application that is being optimized.

Select the main executable program or a shared library.
v The Optimization level section allows you to specify the optimization flags used by FDPR. Select

from options such as O, O2, O3, and O4. Or you can specify Other to specify specific options.

Note: For more detailed information about specifying options for FDPR, refer to the FDPR
reference manual, available in the IBM SDK for Linux on Power online help. You can access this
document from the user interface by clicking Help > Help Contents. Then expand FDPR
Optimization Tools Documentation > Reference > FDPR reference manual.

v The Architecture field controls architecture-specific optimizations, like code alignment. Select a
specific architecture, such as power8, power7, power6, or power5.

v The Info output section lists options to control the informational output. Select the maximum level
of warnings printed to the console and whether to print progress messages to the console.

v The Start/continue profile and program section lists options for profiling or optimizing a running
server application. This section includes three radio button groups to control the way the profile
and program are started or continued.
– Start program (default) or Continue program: Start program causes the program to be restarted.

The program is kept running if Continue program is selected.
– Start with empty profile (default) or Continue with last profile: By default, the profile is

cleared before actual profiling begins. If Continue with last profile is selected, the last profile
collected is used to initialize the profile.

– Profile until completion (default) or Profile for ___ seconds: By default, the profile is collected
until the program completes. If the other option is selected, a number of seconds must be
specified. The profile is collected only for that amount of time, and the program continues to
run.

For example, some typical cases might include the following:
a. Start the program with an empty profile and profile until the program terminates.

7 Tuning application performance on Power Systems servers 85

b. Start the program with an empty profile. Profile for a specified number of seconds, and leave
the program running.

c. Begin with the previous case to start the program or server, and collect an initial profile. Then,
continue the program with the existing profile and profile for a specified number of seconds.
This case can be repeated multiple times, accumulating profile information across several time
periods.

7. On the Environment tab, you can specify the following environment variables:

FDPR_BINDIR
The directory where FDPR binary files were installed. Default: /opt/ibm/fdprpro/bin.

FDPR_LIBDIR
The directory where FDPR libraries were installed. Default: /opt/ibm/fdprpro/lib.

FDPR_PROF_COMMAND
A user-provided script used to profile the program. The script is invoked as script prog arg
..., where prog is the instrumented program or, when profiling a shared library, the original
program. The default is to directly execute the program with the specified arguments.

8. Click Run.
Related information:

Feedback Directed Program Restructuring (FDPR)

86 Linux: Developing software using the IBM Software Development Kit for Linux on Power

https://www.research.ibm.com/haifa/projects/systems/cot/fdpr/

8 Support for IBM SDK for Linux on Power

This section provides information about troubleshooting problems with using IBM Software Development
Kit for Linux on Power.

8.1 Getting customer support
The IBM Software Development Kit for Linux on Power is provided as is only. Customers are not entitled
to IBM Software Support. However, you can get help from the Linux on Power Community.

Getting product updates

The IBM SDK for Linux on Power latest ISO image, related packages, and this user guide can be found at
the IBM SDK for Linux on Power page (http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/
installtools/home.html).

Getting help from the Linux on Power Community

You can submit questions and review technical information about the IBM SDK for Linux on Power in
the IBM developerWorks Linux on Power Community. You can go directly to the Linux on Power
Community page (http://ibm.biz/BdxXrC2), or go to IBM developerWorks (https://www.ibm.com/
developerworks/mydeveloperworks/) and search for the “PowerLinux™ community group”.

You can also use IBM SDK for Linux on Power integrated bug reporting, which allows you to create a
report that contains source code, error markers, and logs to be posted in the IBMdeveloperWorks Linux
on Power Community message board. See 8.2, “Using integrated bug reporting” for information.

8.2 Using integrated bug reporting
The IBM SDK for Linux on Power includes integrated bug reporting, which allows you to create a report
that contains source code, error markers, and logs to be posted in the IBM developerWorks Linux on
Power Community message board. You can include specifics about your question or problem.

8.2.1 Creating a report
You can create a report that contains source code, error markers, and logs to be posted in the IBM
developerWorks Linux on Power Community message board. The report also includes information about
your system. You can include specifics about your question or problem.

About this task

You can create a report in three different ways. Choose from the following options.

Procedure
v Create a report about a code excerpt in your C/C++ project on which you have a question. Complete

the following steps:
1. Within your C/C++ project, select the code excerpt on which you have a question.
2. Right-click the code excerpt and click Ask for help in Linux on Power Community. The Code

Reports view is displayed.
3. In the Code Reports view, expand Code to see the code report you created.
4. To edit the report, double-click the report name. In the Report Editor window, type a name for the

report and other details that you want to include in the report. Click File > Save or press Ctrl+S.

© Copyright IBM Corp. 2012, 2015 87

https://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/sdklop.html
http://ibm.biz/BdxXrC
http://ibm.biz/BdxXrC
https://www.ibm.com/developerworks/mydeveloperworks/

v Create a report about a problem that was flagged by IBM SDK for Linux on Power in the Problems
view. Complete the following steps:
1. Within the Problems view, select the problem for which you want to create a report.
2. Right-click the problem and click Ask for help in Linux on Power Community. The Code Reports

view is displayed.
3. In the Code Reports view, expand Problems to see the problem report you created.
4. To edit the report, double-click the report name. In the Report Editor window, type a name for the

report and other details that you want to include in the report. Click File > Save or press Ctrl+S.
v Create an empty report to which you can add your own content. Complete the following steps.

1. Open the Code Reports view, if it is not already open. To open the Code Reports view, click
Window > Show View > Reports. The remaining steps take place in the Code Reports view.

2. Optional: You can create the report in an existing report category, or in a new report category. To
create a report category, click + (Create a new Category). Type a name for the category and click
OK. The Code Reports view is updated to show the new category.

3. Right-click the category and click New Item. The Report Editor window is displayed.
4. In the Report Editor window, type a name for the report and other details that you want to include

in the report. Click File > Save or press Ctrl+S.

8.2.2 Submitting a report to the Linux on Power Community
After you have created a report, you can use integrated bug reporting to submit the report to the IBM
developerWorks Linux on Power Community message board.

Before you begin

Ensure that you have an IBM ID and have joined the Linux on Power Community.
v To get an IBM ID, go to developerWorks registration.
v To join the Linux on Power Community, go to The Linux on Power Community, sign in, and click Join

this Group.

About this task

To submit a bug report that you have created, complete the following steps.

Procedure
1. Open the Code Reports view, if it is not already open. To open the Code Reports view, click Window

> Show View > Reports.
2. Expand the report category to see the report you want to submit.
3. Right-click the report and click Ask for Help. A warning is displayed to let you know that a report

will be created including system data. Click OK.
Your default browser opens with a new window to the Linux on Power Community message board.

4. If prompted, sign in with your IBM ID.
5. To submit the report, you must create a topic to contain the report. On the Linux on Power

Community message board page, click Start a topic.
6. In the New Topic window, add your report as follows:

a. Type a topic name that describes your report.
b. In the content area, right-click and click Paste to add your report to the topic.
c. Click OK.

7. To subscribe to comments that are made by other Linux on Power Community members on your
submission, use one of the Feed options at the bottom of the page.

88 Linux: Developing software using the IBM Software Development Kit for Linux on Power

https://www.ibm.com/developerworks/dwwi/jsp/Register.jsp
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=fe313521-2e95-46f2-817d-44a4f27eba32

8.3 Setting up SSH credentials
You can set up SSH credentials so that you can create a connection without a password.

About this task

This method allows you to set up SSH with DSA public key authentication.

Procedure
1. On your workstation, generate a DSA Key Pair. Log into the workstation and enter the following

command:
ssh-keygen -t dsa

a. When prompted to enter a file in which to save the key, press Enter.
b. When prompted, specify a password, and then confirm it.

The private key is saved to /home/user_name/.ssh/id_dsa

2. Ensure that you have permissions for the .ssh directory. Enter the following commands:
cd
chmod 755 .ssh

3. Copy the public key file from your workstation to the remote server as ~/.ssh/authorized_keys.
Enter the following command:
scp ~/.ssh/id_dsa.pub user@remote_server_name:.ssh/authorized_keys

4. On the remote server, ensure that you have permissions for the .ssh/authorized_keys file. Log into
the remote server and enter the following command:
chmod 600 ~/.ssh/authorized_keys

8.3.1 Logging in from workstation to remote server with DSA key
About this task

You can use scp or ssh from the workstation to log in to the remote server. These methods still require
you to enter the password you created.

Procedure
v ssh user@remote_server_name

v ssh user@remote-server.com

v scp file user@remote_server_name:/tmp

8.3.2 Logging in with DSA key but no password
About this task

You can use a shell prompt to specify your password, and not be prompted to specify it again when
using ssh or scp.

Procedure
1. At a shell prompt, enter the following commands:

exec /usr/bin/ssh-agent $SHELL
ssh-add

2. When you are prompted, enter your password. This sets your identity and allows you to avoid being
prompted for passwords when using ssh or scp.

8 Troubleshooting and support 89

90 Linux: Developing software using the IBM Software Development Kit for Linux on Power

9 Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

© Copyright IBM Corp. 2012, 2015 91

92 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 903
11501 Burnet Road
Austin, TX 78758-3400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

© Copyright IBM Corp. 2012, 2015 93

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® and ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A
current list of IBM trademarks is available on the Web at Copyright and trademark information at
www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

94 Linux: Developing software using the IBM Software Development Kit for Linux on Power

����

Printed in USA

	Contents
	Developing software using the IBM Software Development Kit for Linux on Power
	1 Introducing IBM Software Development Kit for Linux on Power
	1.1 IBM SDK for Linux on Power requirements
	1.2 IBM SDK for Linux on Power supported Linux distributions
	1.3 IBM SDK for Linux on Power user interface

	2 Setting up the ppc64le version of IBM SDK for Linux on Power
	2.1 Installing the IBM Advance Toolchain for Linux on Power
	2.2 Downloading and installing the SDK
	2.2.1 Automatically downloading and installing using the IBM Linux on Power Tools Repository
	2.2.1.1 Downloading and installing the IBM Linux on Power Tools Repository initialization package
	2.2.1.2 Installing the IBM SDK for Linux on Power RPMs using the IBM Linux on Power Tools Repository

	2.3 Recommended and optional packages
	2.3.1 Downloading and installing RPM development packages
	2.3.2 Downloading and installing SystemTap
	2.3.2.1 Setting up SystemTap
	2.3.2.1.1 Setting up preferences for running SystemTap remotely
	2.3.2.1.2 Setting up SystemTap permissions for SUSE Linux Enterprise Server
	2.3.2.1.3 Setting up SystemTap permissions for Red Hat Enterprise Linux and Fedora
	2.3.2.1.4 Setting up SystemTap permissions for Ubuntu

	2.4 Starting the IBM SDK for Linux on Power
	2.5 Creating a project
	2.5.1 Creating and using local projects on Power systems
	2.5.1.1 Creating a local C/C++ project
	2.5.1.2 Importing an existing Makefile project
	2.5.1.3 Importing an existing Autotools project
	2.5.1.3.1 Converting the imported project
	2.5.1.3.2 Configuring the imported project
	2.5.1.3.3 Building the imported project

	2.5.1.4 Creating an empty Autotools project
	2.5.1.5 Creating a “Hello World” Autotools project
	2.5.1.6 Changing the IBM Advance Toolchain version
	2.5.1.7 Running an executable program in a project
	2.5.1.8 Debugging a project with IBM Advance Toolchain for Linux on Power

	3 Setting up the x86_64 version of the IBM SDK for Linux on Power
	3.1 Downloading and installing the x86_64 client
	3.2 Downloading and installing the server for remote development
	3.3 Setting up remote Power Systems server
	3.4 Creating and using synchronized projects on x86_64 clients
	3.4.1 Creating a synchronized C/C++ project
	3.4.2 Creating a synchronized project by importing an existing Makefile project
	3.4.3 Creating a synchronized project by importing an existing Autotools project
	3.4.3.1 Configuring the imported project
	3.4.3.2 Building the imported project

	3.4.4 Creating a synchronized empty Autotools project
	3.4.5 Creating a synchronized “Hello World” Autotools project
	3.4.6 Running an executable program in a synchronized project
	3.4.7 Debugging a synchronized project

	3.5 Creating and using cross-compiled projects
	3.5.1 Creating a cross-compiled C/C++ project
	3.5.2 Executing a cross-compiled project
	3.5.3 Debugging a cross-compiled project

	3.6 Installing and using QEMU user-mode emulation
	3.6.1 Running a cross-compiled application with QEMU user-mode emulation
	3.6.2 Debugging a cross-compiled application with QEMU user-mode emulation

	3.7 Installing and executing the IBM POWER8 Functional Simulator
	3.7.1 Installing and setting up the POWER8 Functional Simulator
	3.7.1.1 Automatically installing the IBM POWER8 Functional Simulator
	3.7.1.2 Running the IBM POWER8 Functional Simulator

	4 Managing projects
	4.1 Setting flags
	4.1.1 Recommended debug, compiler, and linker settings for Power processor tuning
	4.1.2 Setting debug flags for Autotools-based projects
	4.1.3 Setting optimization level flags for Autotools-based projects

	4.2 Editing a project
	4.2.1 Setting the Linux tools path
	4.2.2 Using the coding assistant

	4.3 Building a project
	4.3.1 Building a project
	4.3.2 Building a project with clean build
	4.3.3 Adding and using a Make target

	4.4 Creating a package with the RPM plug-in
	4.4.1 Creating an RPM project
	4.4.2 Creating a remote RPM project
	4.4.3 Creating a spec file in an existing RPM project
	4.4.4 Checking an RPM package with rpmlint
	4.4.5 Generating an RPM package

	5 Migrating an application from x86 to Power Systems servers using Migration Advisor
	5.1 Enabling Migration Advisor checkers
	5.1.1 Enabling additional Migration Advisor options
	5.1.2 Enabling indexing for Migration Advisor

	5.2 Migration Advisor checkers
	5.2.1 Customizing the performance degradation checker
	5.2.2 Customizing the syscall not available for Linux on Power checker
	5.2.3 Customizing the Linux/x86-specific API checker

	5.3 Running Migration Advisor
	5.4 Using Migration Advisor quick fixes

	6 Analyzing application performance on Power Systems servers
	6.1 Analyzing performance with the CPI breakdown plug-in
	6.1.1 CPI analysis overview
	6.1.2 CPI events and metrics
	6.1.3 Profiling a binary application with CPI from the command line
	6.1.4 Profiling a project with the CPI breakdown plug-in
	6.1.5 Profiling a synchronized project with the CPI breakdown plug-in

	6.2 Analyzing performance with OProfile
	6.2.1 Profiling a project with OProfile
	6.2.2 Profiling a synchronized project with OProfile

	6.3 Analyzing performance with Perf
	6.3.1 Profiling a project with Perf
	6.3.2 Profiling a synchronized project with Perf

	6.4 Profiling a project with gprof
	6.5 Analyzing application behavior using Valgrind
	6.5.1 Profiling a project using Valgrind
	6.5.2 Profiling a synchronized project using Valgrind
	6.5.3 Applying quick fixes for Valgrind-reported errors

	6.6 Monitoring performance using SystemTap
	6.6.1 Editing a SystemTap script
	6.6.2 Running a SystemTap script
	6.6.3 Running a SystemTap script with chart

	6.7 Analyzing POSIX Threads using Trace Analyzer
	6.7.1 Trace Analyzer overview
	6.7.2 Profiling a project with Trace Analyzer
	6.7.3 Profiling a synchronized project with Trace Analyzer
	6.7.4 Collecting a trace by setting variables from the command line
	6.7.5 Record Details view

	6.8 Analyzing coverage with gcov
	6.9 Analyzing performance with Power Performance Advisor

	7 Tuning application performance on Power Systems servers
	7.1 Analyzing performance with Source Code Advisor and FDPR
	7.1.1 Source Code Advisor and FDPR overview
	7.1.2 Running the Source Code Advisor on a project
	7.1.3 Running the Source Code Advisor on a synchronized project
	7.1.4 Viewing Source Code Advisor on an existing journal
	7.1.5 Reviewing the Source Code Advisor results
	7.1.6 Source Code Advisor events
	7.1.7 Optimizing executable code using FDPR
	7.1.7.1 Specifying FDPR optimization for a project
	7.1.7.2 Specifying FDPR optimization for a synchronized project

	8 Support for IBM SDK for Linux on Power
	8.1 Getting customer support
	8.2 Using integrated bug reporting
	8.2.1 Creating a report
	8.2.2 Submitting a report to the Linux on Power Community

	8.3 Setting up SSH credentials
	8.3.1 Logging in from workstation to remote server with DSA key
	8.3.2 Logging in with DSA key but no password

	Notices
	Trademarks

