
Linux

Developing software using the IBM Software
Development Kit for Linux on Power

IBM

Linux

Developing software using the IBM Software
Development Kit for Linux on Power

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on
page 97.

Ninth Edition (April 2016)

© Copyright IBM Corporation 2012, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Developing software using the IBM
Software Development Kit for Linux on
Power v

1 Introducing IBM Software
Development Kit for Linux on Power . . 1
1.1 IBM SDK for Linux on Power requirements . . . 2
1.2 IBM SDK for Linux on Power supported Linux
distributions 4
1.3 IBM SDK for Linux on Power user interface . . 5

2 Setting up the ppc64 or ppc64le
version of the IBM SDK for Linux on
Power 7
2.1 Downloading and installing the SDK 7

2.1.1 Using the installation script to download and
install the IBM Software Development Kit for
Linux on Power 7
2.1.2 Automatically downloading and installing
using the IBM Linux on Power Tools Repository . 7

2.1.2.1 Downloading and installing the IBM
Linux on Power Tools Repository initialization
package 7
2.1.2.2 Installing the IBM SDK for Linux on
Power RPMs using the IBM Linux on Power
Tools Repository 8

2.1.3 Automatically downloading and installing
the IBM SDK for Linux on Power on Ubuntu . . 8

2.2 Recommended and optional packages. 9
2.2.1 Downloading and installing the IBM XL
C/C++ Community Edition Compiler 9

2.2.1.1 Manually installing the IBM XL C/C++
Compiler 9
2.2.1.2 Automatically installing with the
Remote Setup Wizard plugin 10

2.2.2 Installing the Advance Toolchain for Linux
on Power 11

2.3 Starting the IBM SDK for Linux on Power . . . 11
2.4 Creating a project 12

2.4.1 Creating a C/C++ project directly on a
Power Systems server using Advance Toolchain . 12
2.4.2 Creating a local C/C++ project direct on a
Power Systems server using the IBM XL C/C++
Community Edition Compiler 13
2.4.3 Importing an existing Makefile project . . 14
2.4.4 Importing an existing Autotools project . . 15

2.4.4.1 Configuring the imported project . . . 16
2.4.4.2 Building the imported project 16

2.4.5 Creating an empty Autotools project . . . 16
2.4.6 Creating a “Hello World” Autotools project 17
2.4.7 Changing the Advance Toolchain version. . 17
2.4.8 Running an executable program in a project 18

2.4.9 Debugging a project with Advance
Toolchain for Linux on Power or IBM XL C/C++
Community Edition Compiler 18

3 Setting up the x86_64/amd64 version
of the IBM SDK for Linux on Power . . 21
3.1 Downloading and installing the x86_64/amd64
client 21
3.2 Setting up remote Power Systems server . . . 22
3.3 Creating and using synchronized projects on
x86_64/amd64 clients 22

3.3.1 Creating a synchronized C/C++ project . . 23
3.3.2 Creating a synchronized project by
importing an existing Makefile project 23
3.3.3 Creating a synchronized project by
importing an existing Autotools project 24

3.3.3.1 Configuring the imported project . . . 25
3.3.3.2 Building the imported project 25

3.3.4 Creating a synchronized empty Autotools
project 26
3.3.5 Creating a synchronized “Hello World”
Autotools project 26
3.3.6 Running an executable program in a
synchronized project 27
3.3.7 Debugging a synchronized project 27

3.4 Creating and using cross-compiled projects . . 28
3.4.1 Creating a cross-compiled C/C++ project. . 28
3.4.2 Executing a cross-compiled project 29
3.4.3 Debugging a cross-compiled project . . . 29

3.5 Installing and using QEMU user-mode
emulation 30

3.5.1 Running a cross-compiled application with
QEMU user-mode emulation 31

3.6 Installing and executing the IBM POWER
Functional Simulator 31

3.6.1 Installing and setting up the POWER
Functional Simulator 31
3.6.2 Installing the IBM POWER Functional
Simulator 32

3.7 Running the IBM POWER Functional Simulator 32
3.7.1 Running the IBM POWER Functional
Simulator from within the SDK. 32

3.7.1.1 Running the IBM POWER Functional
Simulator from within the command line . . 33

3.8 Simulator networking 33

4 Managing projects 35
4.1 Setting flags 35

4.1.1 Recommended debug, compiler, and linker
settings for Power processor tuning 35
4.1.2 Setting debug flags for Autotools-based
projects 40
4.1.3 Setting optimization level flags for
Autotools-based projects 41

4.2 Editing a project 42

© Copyright IBM Corp. 2012, 2016 iii

4.2.1 Setting the Linux tools path 42
4.2.2 Using the coding assistant. 42

4.3 Building a project 42
4.3.1 Building a project 42
4.3.2 Building a project with clean build 42
4.3.3 Adding and using a Make target 43

5 Migrating an application to Power
Systems servers using Migration
Advisor 45
5.1 Running Migration Advisor 45
5.2 Using the Migration Wizard to configure the
Migration Advisor 45

5.2.1 Basic Migration Advisor configuration . . 46
5.2.2 Advanced Migration Advisor configuration 46

5.3 Migration Advisor checkers 47
5.3.1 Linux/x86 to Linux/Power application
migration checker 51
5.3.2 Linux/Power application optimization
checker 52
5.3.3 Linux/Power 32bit to Linux/Power 64bit
application migration checkers 52
5.3.4 Customizing the performance degradation
checker 54
5.3.5 Customizing the syscall not available for
Linux on Power checker 55
5.3.6 Customizing the Linux/x86-specific API
checker 55

5.4 Configuring Migration Advisor checkers
manually 56
5.5 Using Migration Advisor quick fixes 56

6 Analyzing application performance
on Power Systems servers 59
6.1 Analyzing performance with the CPI breakdown
plug-in 59

6.1.1 CPI analysis overview 59
6.1.2 CPI events and metrics for POWER7 . . . 59
6.1.3 CPI events and metrics for POWER8 . . . 62
6.1.4 Profiling a binary application with CPI from
the command line 68
6.1.5 Profiling a project with the CPI breakdown
plug-in 68

6.2 Analyzing performance with OProfile 69
6.2.1 Profiling a project with OProfile 69
6.2.2 Profiling a synchronized project with
OProfile 70

6.3 Analyzing performance with Perf 71
6.3.1 Profiling a project with Perf 71
6.3.2 Profiling a synchronized project with Perf 72

6.4 Profiling a project with gprof 72
6.5 Analyzing application behavior using Valgrind 73

6.5.1 Profiling a project using Valgrind 73
6.5.2 Profiling a synchronized project using
Valgrind 74
6.5.3 Applying quick fixes for Valgrind-reported
errors 75

6.6 Analyzing POSIX Threads using Trace Analyzer 75
6.6.1 Trace Analyzer overview 75
6.6.2 Profiling a project with Trace Analyzer . . 75
6.6.3 Collecting a trace by setting variables from
the command line 76
6.6.4 Record Details view 77

6.7 Analyzing coverage with gcov 78
6.8 Analyzing performance with IBM Power System
Performance Advisor 79
6.9 Analyzing projects built with the Build Advisor 80

6.9.1 Enabling the Build Advisor 80
6.9.2 Enabling extra advice from Build Advisor 80
6.9.3 Using the Build Advisor 81

7 Analyzing performance with Source
Code Advisor and FDPR 83
7.1 Source Code Advisor and FDPR overview . . . 83
7.2 Running the Source Code Advisor on a project 84
7.3 Viewing Source Code Advisor on an existing
journal 85
7.4 Reviewing the Source Code Advisor results . . 85
7.5 Source Code Advisor events 85
7.6 Optimizing executable code using FDPR . . . 86

7.6.1 Specifying FDPR optimization for a project 87

8 Automatic updates 89

9 Support for IBM SDK for Linux on
Power 91
9.1 Getting customer support 91
9.2 Using integrated bug reporting 91

9.2.1 Creating a report 91
9.2.2 Submitting a report to the Linux on Power
Community 92

9.3 Setting up SSH credentials 93
9.3.1 Logging in from workstation to remote
server with DSA key 93
9.3.2 Logging in with DSA key but no password 93

Notices 97
Trademarks 98

iv Linux: Developing software using the IBM Software Development Kit for Linux on Power

Developing software using the IBM Software Development Kit
for Linux on Power

The IBM® Software Development Kit for Linux on Power® is a free, Eclipse-based Integrated
Development Environment (IDE). The SDK integrates C/C++ source development with the IBM Advance
Toolchain for Linux on Power and classic Linux debugging and performance analysis tools.

The official version of this user guide is located in the Linux Knowledge Center: Developing software
using the IBM Software Development Kit for Linux on Power (http://www.ibm.com/support/
knowledgecenter/linuxonibm/liaal/iplsdkmain.htm).

Note: By using the code examples, you agree to the terms of the 10, “Code license and disclaimer
information,” on page 95.

© Copyright IBM Corp. 2012, 2016 v

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%20for%20PowerLinux%20Documentation
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%20for%20PowerLinux%20Documentation
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkmain.htm
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkmain.htm

vi Linux: Developing software using the IBM Software Development Kit for Linux on Power

1 Introducing IBM Software Development Kit for Linux on
Power

The IBM SDK for Linux on Power provides you with an all-in-one solution for developing software on
Linux on Power servers. It integrates the Eclipse integrated development environment (IDE) with the
Advance Toolchain and open source tools such as OProfile, Valgrind, and Autotools. In addition, it
integrates the Feedback Directed Program Restructuring (FDPR®) and Pthread monitoring tool, which are
specifically designed to analyze and exploit Power Systems™ servers and includes powerful porting and
analytic tools, such as Migration Advisor, Source Code Advisor and CPI Breakdown. The SDK also
includes IBM SDK Java™ Technology Edition, Version 8.0-3.11 and IBM Runtime Environment Java
Technology Edition, Version 8.0-3.11

The IBM Software Development Kit for Linux on Power is available for x86_64/amd64, ppc64 and
ppc64le architectures, providing you with two different development modes:
v Locally on x86_64/amd64, ppc64 and ppc64le
v Remotely using the x86_64/amd64 version to connect to a remote Power System server

Using the x86_64/amd64 version of the SDK, you can:
v Create, debug and profile remote projects using the Advance Toolchain
v Migrate applications using Migration Advisor
v Cross-compile applications using Advance Toolchain cross-compiler
v Take advantage of QEMU user-mode or IBM Power 8 and Power 9 Functional Simulator for

development if you don't have a real Power machine

With the ppc64 and ppc64le versions, you can:
v Create applications using the Advance Toolchain and IBM XL C/C++ Community Edition Compiler
v Run, debug, and profile applications
v Migrate applications using Migration Advisor

The SDK includes manuals in the form of help plug-ins for many tools that are included with or
integrated with IBM SDK for Linux on Power. To display these manuals, while in the user interface, click
Help > Help Contents

Note: The IBM Software Development Kit for Linux on Power is provided as is only. Customers are not
entitled to IBM Software Support. However, you can get help from the Linux on Power Community. For
information, see 9.1, “Getting customer support,” on page 91.
Related information:

IBM Software Development Kit for Linux on Power website

IBM Advance Toolchain for Linux on Power documentation

© Copyright IBM Corp. 2012, 2016 1

https://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdklop.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM Advance Toolchain for PowerLinux Documentation

1.1 IBM SDK for Linux on Power requirements
The IBM Software Development Kit for Linux on Power has software prerequisites. Most of the
prerequisites can be automatically installed by the package manager of the Linux distribution.

Packages required by IBM SDK for Linux on Power

The IBM SDK for Linux on Power includes some required dependent packages to be installed on the
Power Systems server while manually installing it. These packages include:

fdprpro-version
FDPR post-link optimization tool.

pthread-mon-version
Pthread monitoring tool.

fdpr_wrap-version
Wrapper scripts for running FDPR under IBM SDK for Linux on Power.

These required packages are included in the IBM SDK for Linux on Power ISO image. If you configure
the SDK's apt repository or the IBM Linux on Power Tools Repository, all the required packages are
installed automatically.

Note: The Advance Toolchain is not available in the SDK's apt repository.

Other required packages from the distribution

Depending on the packages you installed with your Linux distribution, you might be required to install
additional packages from your distribution provider. If you install the SDK automatically using yum, dnf,
zypper, or apt-get, these packages might be installed automatically. If you are installing using rpm or
dpkg, you must be aware of these dependencies and install them manually from the distribution.

These packages include:

Table 1. Other packages required from the distribution.

Package name Package description
Required for ppc64 and
ppc64le

Required for
x86_64/amd64

Autoconf Produces shell scripts to
automatically configure
software source code packages.

Yes Yes

Automake Automatically generates
Makefile.in files that are
compliant with the GNU
coding standards.

Yes Yes

gettext Internationalization and
localization system for writing
multilingual programs.

Yes Yes

Git Distributed revision control
system. Required on server for
synchronized projects.

Yes No

GLIBC 2.3 or later GNU C library. Yes Yes

GTK2 Used to create graphical user
interfaces.

Yes Yes

2 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 1. Other packages required from the distribution (continued).

Package name Package description
Required for ppc64 and
ppc64le

Required for
x86_64/amd64

Libtool GNU Libtool, script for generic
shared library support.

Yes Yes

Perf Performance monitoring tool
for Linux Kernel. Perf is
required if you plan to use Perf
with IBM SDK for Linux on
Power. In addition, Perf is
required for using the CPI
Breakdown plug-in.

Yes, for using Perf or CPI
breakdown plug-in

No

Python Support for Python
programming language.

Yes Yes

Additional IBM tools installed with IBM SDK for Linux on Power

Table 2. Description of additional tools installed with IBM SDK for Linux on Power

Package name Package Description
Required for ppc64 and
ppc64le Required for x86_64/amd64

advance-toolchain-atversion-
runtime

Self contained toolchain
that provides preview
toolchain functionality in
GCC, binutils, GLIBC,
GDB, Valgrind, and
OProfile

Yes No

advance-toolchain-atversion-
devel

Packages necessary to build
applications that use the
features provided by the
Advance Toolchain

Yes No

advance-toolchain-atversion-
perf

Performance library
installation targets for
Valgrind and OProfile

Yes No

advance-toolchain-atversion-
mcore-libs

Libraries to build
multi-threaded applications
using the specialized
multi-threaded libraries
Animo-CBB, URCU, and
Intel TBB

Yes No

1 Introducing IBM SDK for Linux on Power 3

Table 2. Description of additional tools installed with IBM SDK for Linux on Power (continued)

Package name Package Description
Required for ppc64 and
ppc64le Required for x86_64/amd64

advance-toolchain-atversion-
cross-common

advance-toolchain-atversion-
cross-arch

advance-toolchain-atversion-
cross-arch-mcore-libs

advance-toolchain-atversion-
cross-arch-runtime-extras

Where atversion is the
version of the Advance
Toolchain and arch is the
architecture, which can be
either ppc64 or ppc64le.

Advance Toolchain
cross-compiler to generate
Power-compatible binaries
from i686 development
environments.

No Yes

fdprpro-version IBM Feedback Directed
Program Restructuring
(FDPR), for post-link
optimization

Yes No

fpdr_wrap-version Wrapper scripts for
integrating FDPR with IBM
SDK for Linux on Power

Yes No

pthread-mon-version Pthread monitoring tool Yes No

Required authorities for IBM SDK for Linux on Power tasks

Many of the tasks for installing the SDK, such as installing packages, require you to be logged in to the
system as root, with super user (administrator) authorities.

1.2 IBM SDK for Linux on Power supported Linux distributions
This information lists the Linux distributions that are supported by the SDK.

The SDK was tested to verify that it works with the Linux distributions listed in the table that follows.
The usual compatibility with subsequent releases is assumed. The supported distributions vary according
to the different development modes or packages.

Table 3. IBM SDK for Linux on Power supported Linux distributions

IBM SDK for Linux on Power version Supported Linux distributions

ppc64 v Red Hat Enterprise Linux 7.2, and later

ppc64le v Red Hat Enterprise Linux 7.2, and later

v SUSE Linux Enterprise Server 12 SP1

v Ubuntu 14.04 LTS and 16.04 LTS

v Fedora 22

v CentOS 7

4 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 3. IBM SDK for Linux on Power supported Linux distributions (continued)

IBM SDK for Linux on Power version Supported Linux distributions

x86_64/amd64 v Red Hat Enterprise Linux 7.2, and later

v SUSE Linux Enterprise Server 12 SP1

v Fedora 22

v Ubuntu 14.04 LTS and 16.04 LTS

v CentOS 7

Note: The IBM Software Development Kit for Linux on Power is provided as is only. Customers are not
entitled to IBM Software Support. However, you can get help from the Linux on Power Community. For
information, see 9.1, “Getting customer support,” on page 91.

1.3 IBM SDK for Linux on Power user interface
The SDK includes a launch bar that provides quick access to the plugin launches. It works for common
tasks like running, debugging, and profiling an application.

This launch bar is composed for three buttons and three selectors.

1. Build the application before launching
2. Run or profile an application after it was built.
3. Stop the active action.
4. Allow selecting the launch mode: Run, Debug or Profile.
5. List all created launches.

The Launch Bar does not replace the default and known steps to complete these tasks; it aims to ease the
task of launching configurations.

1 Introducing IBM SDK for Linux on Power 5

6 Linux: Developing software using the IBM Software Development Kit for Linux on Power

2 Setting up the ppc64 or ppc64le version of the IBM SDK for
Linux on Power

You can download and install the packages for the SDK on Power Systems server.

2.1 Downloading and installing the SDK
These topics describe how to download and install the ppc64 and ppc64le versions of the SDK.

You can automatically download and install these using the IBM Linux on Power Tools Repository or
using the installation script. In addition, you can manually download and install the IBM SDK for Linux
on Power ISO image.

For any download method you choose, you must accept the license agreements and terms and
conditions.

2.1.1 Using the installation script to download and install the IBM
Software Development Kit for Linux on Power
The simplest method for downloading and installing the packages for the SDK on Power Systems server
is to download the install-sdk.sh script.

You can download the script at Support and Downloads after clicking I agree. This method installs the
IBM Linux on Power Tools Repository, the Advance Toolchain, and the SDK.

2.1.2 Automatically downloading and installing using the IBM Linux on
Power Tools Repository
You can download and install the packages for the SDK on Power Systems server by using the IBM
Linux on Power Tools Repository. This method configures yum, dnf, and zypper, allowing for automatic
download and installation. Using the repository speeds the installation because all the required packages
are installed in the correct order.

2.1.2.1 Downloading and installing the IBM Linux on Power Tools Repository
initialization package
The first step for automatic downloading and installation is to download and install the Linux on Power
Software Repository initialization package.

About this task

To download and install the IBM Linux on Power Tools Repository initialization package, complete the
following steps.

Procedure
1. Download the Linux on Power Software Repository initialization package to the server in either of the

following ways:
v Download the Linux on Power Software Repository initialization package from the IBM Software

Development Kit for Linux on Power website at http://www-304.ibm.com/webapp/set2/sas/f/
lopdiags/sdkdownload.html#1.

v Download the configuration RPM file from the IBM Tools Repository for Linux on Power website at
http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/yum.html.

© Copyright IBM Corp. 2012, 2016 7

http://ibm.biz/BdsR8c
http://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdkdownload.html#1
http://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdkdownload.html#1
http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/yum.html

Note: The code is now downloaded as ibm-power-repo-latest.noarch.rpm
2. Install the Linux on Power Software Repository initialization package on the server as follows:

a. Log in as root user.
b. Enter the following command:

For RHEL: yum install ibm-power-repo-latest.noarch.rpm
For Fedora: dnf install ibm-power-repo-latest.noarch.rpm
For SLES: zypper install ibm-power-repo-latest.noarch.rpm

2.1.2.2 Installing the IBM SDK for Linux on Power RPMs using the IBM Linux on
Power Tools Repository
After the IBM Linux on Power Tools Repository is installed, you can download the IBM SDK for Linux
on Power RPMs to the server.

About this task

Install the SDK packages with the appropriate command for your distribution:

Procedure
v For Red Hat Enterprise Linux:

yum install ibm-sdk-lop

v For SUSE Linux Enterprise Server:
zypper install ibm-sdk-lop

v For Fedora:
dnf install ibm-sdk-lop

Note: The IBM Linux on Power Tools Repository is not available for Ubuntu.

Results

The ibm-sdk-lop package is installed, along with other dependent packages, such as the IBM Advance
Toolchain. Depending on the packages you installed with your Linux distribution, additional dependent
packages from the distribution repository might also be installed. See “Other required packages from the
distribution” on page 2 for a list of possible packages.

What to do next

After completing the installation of the SDK, consider installing recommended and optional packages on
the Power Systems server. See 2.2, “Recommended and optional packages,” on page 9.

2.1.3 Automatically downloading and installing the IBM SDK for Linux
on Power on Ubuntu
You can download and install the packages for the SDK on Power Systems server by using the apt
repository available for the SDK.

About this task

Install the SDK packages on Ubuntu, either on 14.04 (trusty) or 16.40 (xenial).

Procedure
1. Download and import the GPG public key using the following commands:

$ wget ftp://public.dhe.ibm.com/
software/server/iplsdk/v1.10.0/packages/deb/repo/dists/<trusty or xenial>/B346CA20.gpg.key

8 Linux: Developing software using the IBM Software Development Kit for Linux on Power

$ sudo apt-key add B346CA20.gpg.key

2. Add the following line to /etc/apt/sources.list file:
On amd64:
deb [arch=amd64] ftp://public.dhe.ibm.com/
software/server/iplsdk/v1.10.0/packages/deb/repo <trusty or xenial> sdk

On ppc64el:
deb ftp://public.dhe.ibm.com/
software/server/iplsdk/v1.10.0/packages/deb/repo <trusty or xenial> sdk

3. Run update: $ sudo apt-get update
4. Install the IBM SDK for Linux on Power: $ sudo apt-get install ibm-sdk-lop

Results

The IBM SDK for Linux on Power is installed on your system.

Note: After installing the SDK, be sure to log off to ensure that the group rights are applied correctly.

What to do next

After you complete the installation of the SDK, consider installing recommended and optional packages
on the Power Systems server. See 2.2, “Recommended and optional packages.”

2.2 Recommended and optional packages
Depending on your intended use of the SDK, you might want to install recommended and optional
packages.

2.2.1 Downloading and installing the IBM XL C/C++ Community Edition
Compiler
XL C/C++ Community Edition is a free-of-charge product (unlimited license for production use) and
does not include official IBM support.

You can automatically download and install the XL C/C++ Community Edition using the Remote Setup
Wizard plugin or you can download and install it manually.

2.2.1.1 Manually installing the IBM XL C/C++ Compiler
Use these instructions to manually download and install the IBM XL C/C++ compiler on your remote
system.

About this task

Install the IBM XL C/C++ Community Edition Compiler on Power Systems Servers.

Procedure

Select your distribution:
v For Ubuntu:

Configure the correct repository by using the following commands:
wget -q http://public.dhe.ibm.com/software/server/POWER/Linux/xl-compiler/eval/ppc64le/ubuntu/public.gpg
-O- | sudo apt-key add -
echo "deb http://public.dhe.ibm.com/software/server/POWER/Linux/xl-compiler/eval/ppc64le/ubuntu/

trusty main" | sudo tee /etc/apt/sources.list.d/ibm-xl-compiler-eval.list
sudo apt-get update

Install IBM XL C/C++ Community Edition for Linux, V13.1.4 by using the following commands:

2 Setting up the ppc64 or ppc64le version of the IBM SDK for Linux on Power 9

sudo apt-get install xlc.13.1.4 xlc-license-community.13.1.4
sudo /opt/ibm/xlC/13.1.4/bin/xlc_configure

v For Fedora and Red Hat Enterprise Linux and CentOS:
Configure the correct repository by using the following commands:
wget http://public.dhe.ibm.com/software/server/POWER/Linux/xl-compiler/eval/ppc64le/rhel7/repodata/
repomd.xml.key
sudo rpm --import repomd.xml.key
wget http://public.dhe.ibm.com/software/server/POWER/Linux/xl-compiler/eval/ppc64le/rhel7/ibm-xl-compiler

-eval.repo
sudo cp ibm-xl-compiler-eval.repo /etc/yum.repos.d/

Install IBM XL C/C++ Community Edition for Linux, V13.1.4, by using the following commands:
sudo yum install xlc.13.1.4 xlc-license-community.13.1.4 --exclude xlc-license-eval.13.1.4
sudo /opt/ibm/xlC/13.1.4/bin/xlc_configure

v For SLES:
Configure the correct repository by using the following commands:
sudo zypper addrepo -c http://public.dhe.ibm.com/software/server/POWER/Linux/xl-compiler/eval/ppc64le/sles12/
ibm-xl-compiler-eval
sudo zypper refresh

Install IBM XL C/C++ Community Edition for Linux, V13.1.4, by using the following commands:
sudo zypper install xlc.13.1.4 xlc-license-community.13.1.4
sudo /opt/ibm/xlC/13.1.4/bin/xlc_configure

Results

IBM XL C/C++ Community Edition Compiler is installed in the remote system.

2.2.1.2 Automatically installing with the Remote Setup Wizard plugin
Use these instructions to automatically download and install the IBM XL C/C++ on your remote system
with the Remote Setup Wizard plugin.

About this task

Complete the following steps:

Procedure
1. After installing the IBM SDK for Linux on Power on your workstation, go to Help > Setup Remote

Machine.
2. Click Setup Machine to manage an existing remote connection (see (reference) to add a new one);
3. In the dialog box, select IBM XL C/C++ Community Edition from the Available IBM XL Compiler

versions field.
a. Select the SDK packages to install
b. Select at least one Advance Toolchain version (even if already installed).

4. Click Install and accept the licenses.

Results

IBM XL C/C++ Community Edition Compiler is installed in the remote system along with the other
packages you selected in the Remote Setup Wizard dialog box.

10 Linux: Developing software using the IBM Software Development Kit for Linux on Power

2.2.2 Installing the Advance Toolchain for Linux on Power

About this task

The Advance Toolchain for Linux on Power packages are stored in an ftp repository of the University of
Campinas, a public university in the state of São Paulo, Brazil. For information about installing Advance
Toolchain for Linux on Power, see the IBM developerWorks® page(http://ibm.co/AdvanceToolchain).

Procedure

Install the Advance Toolchain for Linux on Power on the Power Systems server. This table lists the
required and recommended prerequisite packages for Advance Toolchain for Linux on Power.

Table 4. Advance Toolchain for Linux on Power required and recommended prerequisites

Advance Toolchain for Linux on Power required
prerequisites

Advance Toolchain for Linux on Power recommended
prerequisites

v advance-toolchain-at9.0-runtime-9.0-5 or greater

v advance-toolchain-at9.0-devel-9.0-5 or greater

v advance-toolchain-at9.0-perf-9.0-5 or greater

v advance-toolchain-at9.0-mcore-libs-9.0-5 or greater

v advance-toolchain-at10.0-runtime-10.0-0 or greater

v advance-toolchain-at10.0-devel-10.0-0 or greater

v advance-toolchain-at10.0-perf-10.0-0 or greater

v advance-toolchain-at10.0-mcore-libs-10.0-0 or greater

2.3 Starting the IBM SDK for Linux on Power
You can start the SDK on the Power Systems server, and access it from your workstation.

About this task

To start the SDK, complete the following steps.

Procedure
1. On your workstation, begin either X11 forwarding or Virtual Network Computing (VNC) to connect

to the remote Power Systems server.
X11 forwarding provides the most seamless integration between the workstation and the server.
However, if your connection is not fast, you might experience network latency. In that case, VNC
might be a better option.
VNC works with either Linux or Microsoft Windows clients. In addition, when using VNC, you can
disconnect from the session while the IBM SDK for Linux on Power continues to run on the server.
v To use X11 forwarding, ensure that you have a running X Window System server as well as a

terminal emulator for the X Window System, such as GNOME Terminal, on your workstation, and
the xauth utility and X server font package installed on the server. To connect to the server, open a
terminal session and enter the ssh command with the -X option.

v To use VNC, ensure that you have a VNC server package installed on the Power Systems server, as
well as a terminal emulator for the X Window System, such as GNOME Terminal. You also need a
VNC client on your workstation. To start VNC, complete the following steps:
a. Log in to the server console and start a new VNC server by entering the vncserver command.
b. When prompted, choose and type a password. You will use this password later to connect to

the session.
When the command completes, it displays an address you will use to connect.

c. On the workstation, use the VNC client to connect. Specify the address that was displayed and
the password that you chose.

2 Setting up the ppc64 or ppc64le version of the IBM SDK for Linux on Power 11

2. Once connected to the Power Systems server, choose one of the following options to start IBM SDK
for Linux on Power.
v Open a console and enter the following command:

ibm-sdk-lop

v If your VNC client provides you access to the System menus, select Applications > Programming >
IBM SDK for Linux on Power.

Note: Depending on the desktop environment you are using, the hierarchy of the System menus
might differ.

Results

Note: The first time it is started, the IBM SDK for Linux on Power might take several minutes to launch.
The operating system might consider the application unresponsive due to the intensive input/output
operations necessary to create the initial workspace. If you are prompted to wait or to end the
application, select Wait. The user interface loads within a few seconds. If prompted, select the location on
the Power Systems server that you will use to store the project files.

2.4 Creating a project
With the SDK, you can create projects or import existing ones. You can leverage the integration with the
Advance Toolchain to set specific flags for Power Systems.

For more information about remote projects, see 3.3, “Creating and using synchronized projects on
x86_64/amd64 clients,” on page 22

2.4.1 Creating a C/C++ project directly on a Power Systems server
using Advance Toolchain
You can create a C/C++ project that uses Advance Toolchain for Linux on Power.

About this task

Complete the following steps in the SDK user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Advance Toolchain C/C++. Select either Advance Toolchain C Project

or Advance Toolchain C++ Project, as appropriate. Click Next.
3. In the Project window, type a name for the project in the Project name field.

Tip: At the bottom of the window, verify that the Show projects type and toolchains only if they
are supported on the platform check box is selected.

4. Optional: The project will be created in a directory structure in the file system. The default file
system location is displayed in the Location field. If you do not want to save the project in the
default location, clear the Use default location check box, and specify or browse for a new location.

5. In the Project type pane, expand one of the following, as appropriate:
v Executable

v Shared Library

v Static Library

12 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Then, select Advance Toolchain C Project or Advance Toolchain C++ Project, as appropriate. If you
do not see Advance Toolchain for Linux on Power in the Toolchains list, ensure that you have
installed a supported version of Advance Toolchain. For more information, see 1.1, “IBM SDK for
Linux on Power requirements,” on page 2.

6. In the Toolchains pane, click the Advance Toolchain version option corresponding to your Advance
Toolchain for Linux on Power version. Click Next.

7. In the Compiler tuning window, select the appropriate options for tuning your application or library.
a. Environment: Select from - use default -, 64-bit, or 32-bit.
b. Generate POWER-series code that is compatible with: Select from - use default - or the listed

POWERn technology options.
c. Tune the instruction scheduling for: Select from - use default - or the listed POWERn

technology options. Click Next.
8. Optionally in the Templates window, you can select a project template for a specific version. In the

Library list, select from the following options:
v Do not use any library template. This is the default option.
v SPHDE (Shared Persistent Heap Data Environment). SPHDE is composed of two major software

layers: The Shared Address Space (SAS) layer provides the basic services for a shared address
space and transparent, persistent storage. The Shared Persistent Heap (SPH) layer organizes blocks
of SAS storage into useful functions for storing and retrieving data.

v AUXV (Auxiliary Vector). The AUX vector contains information about the system's platform and
hardware capabilities.

9. Optional: To allow optimizations for Power Systems servers when you are building the application
or library, complete these steps:
a. In the Select configurations window, click Advanced settings.
b. In the next window, expand C/C++ Build and click Settings.
c. On the Tool Settings tab, click POWER-specific optimizations. Then, select the appropriate

optimization options for your workload and application or library characteristics, and target
processor. You can change the default build settings to tune for POWER® processor capabilities
and the IBM SDK for Linux on Power analysis tools. See 4.1, “Setting flags,” on page 35 for
information about the recommended build settings, and instructions for setting them. When
finished, click OK.

10. Click Finish.

Results

The new project is shown in the Project Explorer pane and will be built using the Advance Toolchain for
Linux on Power, with any Power-specific optimizations that you have chosen.

2.4.2 Creating a local C/C++ project direct on a Power Systems server
using the IBM XL C/C++ Community Edition Compiler
You can create a C/C++ project that uses the IBM XL C/C++ Community Edition Compiler.

About this task

Complete the following steps in the SDK user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand IBM XL C/C++ Community Edition. Select either IBM XL Community

Edition C Project or IBM XL Community Edition C++ Project, as appropriate. Click Next.
3. In the Project window, type a name for the project in the Project name field.

2 Setting up the ppc64 or ppc64le version of the IBM SDK for Linux on Power 13

Tip: At the bottom of the window, verify that the Show projects type and toolchains only if they are
supported on the platform check box is selected.

4. Optional: The project will be created in a directory structure in the file system. The default file system
location is displayed in the Location field. If you do not want to save the project in the default
location, clear the Use default location check box, and specify or browse for a new location.

5. In the Project type pane, expand one of the following, as appropriate:
v Executable

v Shared Library

v Static Library

Then, select IBM XL Community Edition C Project or IBM XL Community Edition C++ Project, as
appropriate. If you do not see IBM XL C/C++ Community Edition Compiler in the Toolchains list,
ensure that you have installed it. For more information, see 2.2.1, “Downloading and installing the
IBM XL C/C++ Community Edition Compiler,” on page 9.

2.4.3 Importing an existing Makefile project
You can import an existing Makefile project into the IBM Software Development Kit for Linux on Power
to be used with Advance Toolchain for Linux on Power.

Before you begin

Ensure that the Makefile project already exists on or has been saved to the Power Systems server.

About this task

To import a Makefile project, complete the following steps in the SDK user interface.

Procedure
1. Before importing the project, you should disable the option to build projects automatically. This

prevents the SDK from building a project that might not be ready after importing. Click Project and
clear the Build Automatically check box if it is selected.

2. Import the project by clicking File > Import.
3. In the Import window, expand C/C++, then click Existing Code as Makefile Project. Click Next.
4. In the Import Existing Code window, do the following.

a. Click Browse next to the Existing Code Location field. The project must exist on the Power
Systems server.

b. Optional: Type a name for the project in the Project Name field.
c. Successively click the displayed directories to locate the directory that contains the project to be

imported.
d. When you locate the directory, click OK.
e. Back in the Import Existing Code window, under Toolchain for Indexer Settings, click the Advance

Toolchain version option corresponding to your Advance Toolchain for Linux on Power version.
version is the version number of Advance Toolchain for Linux on Power.

f. Click Finish.

The project is imported as an Makefile project and is shown in the Project Explorer pane.
5. You must export the environment variables CC or GCC to ensure that the make command builds using

the correct Advance Toolchain for Linux on Power version. Choose one of the following methods.
v Use the user interface options to change the settings of the environment variables.

a. View the project by clicking the project name in the Project Explorer pane.
b. Right-click the project name and click Properties.

14 Linux: Developing software using the IBM Software Development Kit for Linux on Power

c. Expand C/C++ Build and click Environment.
d. Click Export and type CC="/opt/atversion/bin/gcc".where version is the version number of

Advance Toolchain for Linux on Power.
e. Click OK when finished.

v Change the environment variables manually by editing the Makefile. You edit the Makefile by
double-clicking on the project in the Project Explorer pane.

6. Optional: You can change the default build settings to tune for POWER processor capabilities and the
IBM SDK for Linux on Power analysis tools. See 4.1, “Setting flags,” on page 35 for information about
the recommended build settings, and instructions for setting them.
To change build settings such as CFLAGS, CPPFLAGS, and LDFLAGS, choose one of the following
methods.
v Use the user interface options to change the settings of the environment variables.

a. View the project by clicking the project name in the Project Explorer pane.
b. Right-click the project name and click Properties.
c. Expand C/C++ Build and click Environment.
d. Click Add to add environment variables, or click Select to select and change the value of an

existing environment variable. For example, a typical set of parameters for POWER8® targets is
CC=/opt/at10.0/bin/gcc CFLAGS=’-m64 -g -O3 -mcpu=power8’ CXXFLAGS=’-m64
-g -O3 -mcpu=power8’ LDFLAGS=’-m64 -Wl,-q’.

e. Click OK when finished.
v Change the build settings manually by editing the Makefile. You edit the Makefile by

double-clicking on the project in the Project Explorer pane.

2.4.4 Importing an existing Autotools project
You can import an existing project that uses Autotools into the IBM Software Development Kit for Linux
on Power to be used with Advance Toolchain for Linux on Power.

Before you begin

Ensure that the Autotools project already exists on or has been saved to the Power Systems server.

About this task

To import an Autotools project, complete the following steps in the SDK user interface.

Procedure
1. Before importing the project, you should disable the option to build projects automatically. This

prevents the SDK from building a project that might not be ready after importing. Click Project and
clear the Build Automatically check box if it is selected.

2. Import the project by clicking File > Import.
3. In the Import window, expand C/C++, then click Existing Code as Autotools Project. Click Next.
4. In the Import Existing Code window, do the following.

a. Click Browse next to the Existing Code Location field. The project must exist on the Power
Systems server.

b. Optional: Type a name for the project in the Project Name field.
c. Successively click the displayed directories to locate the directory that contains the project to be

imported.
d. When you locate the directory, click OK.
e. Click Finish.

The project is imported as an Autotools project and is shown in the Project Explorer pane.

2 Setting up the ppc64 or ppc64le version of the IBM SDK for Linux on Power 15

2.4.4.1 Configuring the imported project
About this task

After the project is imported, the SDK automatically indexes the source code for the project. The source
files then appear with the project in the Project Explorer pane.

Procedure
1. To view the project, click the project name in the Project Explorer pane. You can explore it and make

configuration updates.
v Use the Project Explorer pane to expand and explore the project.
v Double-click a project file to open it in the editor. The outline pane shows macro references and

program control statements.
v Open the autoconf configuration file (configure.ac) or the makefile configuration file

(makefile.am). This allows the SDK to index the file and provide proper syntax highlighting.
v You can set autoconf configuration script options in the project properties.

– Click Project > Properties.
– In the Properties window, expand Autotools and click Configure Settings.
– Under Configure, click Advanced.
– You can specify additional options in the Additional command-line options field. To use

Advance Toolchain for Linux on Power with Autotools projects, type CC="/opt/atversion/bin/
gcc", where version is the version number of Advance Toolchain for Linux on Power. For
example: /opt/at10.0/bin/gcc. On this field, you can also set other flags for your project. For
example, a typical set of parameters for POWER8 targets is
CC=/opt/at10.0/bin/gcc CFLAGS=’-m64 -g -O3 -mcpu=power8’ CXXFLAGS=’-m64
-g -O3 -mcpu=power8’ LDFLAGS=’-m64 -Wl,-q’.

– Click OK.
2. After you have made the configuration updates, reconfigure the project.
3. Right-click the project name, and select Reconfigure Project.
4. While the project is being configured, you can click the Console tab to monitor progress.

2.4.4.2 Building the imported project
About this task

After the project reconfiguration is complete, you can build the project.

Procedure
1. Return to the project view by clicking the project name in the Project Explorer pane.
2. Click Project > Build Project to build the project.
3. While the project is building, you can click the Console tab to monitor progress.
Related information:

An Introduction to the Autotools

2.4.5 Creating an empty Autotools project
You can use the SDK to create an empty Autotools project.

About this task

Complete the following steps in the SDK user interface.

16 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://www.gnu.org/savannah-checkouts/gnu/automake/manual/html_node/Autotools-Introduction.html#Autotools-Introduction

Procedure
1. Click File > New > Other.
2. In the New window, expand Advance Toolchain C/C++. Select either Advance Toolchain C Project or

Advance Toolchain C++ Project, as appropriate. Click Next.
3. In the Project type pane, expand GNU Autotools and select Empty Project.
4. In the Project window, type a name for the project in the Project name field.
5. The project will be created in a directory structure in the file system. The default file system location

is displayed in the Location field. If you do not want to save the project in the default location, clear
the Use default location check box, and specify or browse for a new location.

6. Click Finish.

Results

The new project is shown in the Project Explorer pane.

2.4.6 Creating a “Hello World” Autotools project
You can use the SDK to create a “Hello World” Autotools project.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Advance Toolchain C/C++. Select either Advance Toolchain C Project or

Advance Toolchain C++ Project, as appropriate. Click Next.
3. In the Project type pane, expand GNU Autotools and select Hello World ANSI C Autotools Project.
4. In the Project window, type a name for the project in the Project name field.
5. The project will be created in a directory structure in the file system. The default file system location

is displayed in the Location field. If you do not want to save the project in the default location, clear
the Use default location check box, and specify or browse for a new location.

6. Click Finish.

Results

The new project is shown in the Project Explorer pane.

2.4.7 Changing the Advance Toolchain version
After you have created a C/C++ Development Toolkit managed C/C++ project that uses the Advance
Toolchain for Linux on Power, you can switch between installed Advance Toolchain for Linux on Power
versions as needed.

About this task

Complete the following steps in the SDK user interface.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Right-click the project name and click Properties.
3. Expand C/C++ Build and click Tool Chain Editor.

2 Setting up the ppc64 or ppc64le version of the IBM SDK for Linux on Power 17

4. In the Tool Chain Editor window, in the Current toolchain field, click the arrows to select the
Advance Toolchain for Linux on Power version you want to use.

5. Optional: You can verify the version of Advance Toolchain for Linux on Power being used by doing
the following:
a. Right-click the project name and click Properties.
b. Expand C/C++ Build and click Settings.

6. Switch the Linux tools path according to the Advance Toolchain for Linux on Power version, to
ensure that the analysis and profiling tools use the correct Advance Toolchain for Linux on Power
binary files. Complete the following steps:
a. Right-click the project name and click Properties.
b. Click Linux Tools Path.
c. Ensure that Prepend string to PATH is selected.
d. Select the appropriate Advance Toolchain for Linux on Power version.

2.4.8 Running an executable program in a project
This topic provides instructions for running executable programs in local projects.

About this task

To run an executable program, complete the following steps in the SDK user interface.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Run as > Run configurations.
2. In the open space under C/C++ Application, double-click to create a new configuration.
3. In the New Run Configuration window, beside the C/C++ Application field, click Search Project to

select the executable program that you want to run.
4. On the Arguments tab, specify any arguments.
5. Click Run.

2.4.9 Debugging a project with Advance Toolchain for Linux on Power
or IBM XL C/C++ Community Edition Compiler
This topic provides instructions for debugging a local project using the debugger provided by Advance
Toolchain for Linux on Power or IBM XL C/C++ Community Edition Compiler.

About this task

The C/C++ Development User Guide (http://help.eclipse.org/neon/topic/org.eclipse.cdt.doc.user/
concepts/cdt_o_home.htm) in the Eclipse platform help information contains additional general and
advanced information about debugging projects.

To begin debugging a project, complete the following steps in the SDK user interface.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Click Debug as > Debug Configurations.
3. In the Debug Configurations window, click C/C++ Application in the left pane, and then click the

new launch configuration icon near the upper left of the window.
4. On the Main tab, beside the C/C++ Application field, click Search Project to select the binary file

that you want to debug.
5. If necessary, click the arrows in the Build configuration field and select Debug.

18 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://help.eclipse.org/neon/topic/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm

6. On the Arguments tab, specify any arguments.
7. Optional: The GDB debugger path was set when the project was created. However, you can check

the path as follows. On the Debugger tab, on the Main tab within the Debugger Options area, in the
GDB debugger field, verify the path for the location of the debugger to be used,
/opt/atversion/bin/gdb, where version is the version number of Advance Toolchain for Linux on
Power. For example: /opt/at10.0/bin/gdb. If you are debugging a project built with IBM XL C/C++
Community Edition Compiler ensure that the path of the debugger contains only gdb.

8. Click Apply, then click Debug to begin debugging.
9. You might be prompted to open the Debug perspective. If so, click Yes to open the Debug

perspective.
10. In the Debug perspective, you can use the displayed icons to step through the execution, inspect

variables, and set breakpoints.

2 Setting up the ppc64 or ppc64le version of the IBM SDK for Linux on Power 19

20 Linux: Developing software using the IBM Software Development Kit for Linux on Power

3 Setting up the x86_64/amd64 version of the IBM SDK for
Linux on Power

You can start the IBM SDK for Linux on Power x86_64/amd64 client on a workstation and then connect
to a remote Power System to build, execute, debug, and analyze programs. You can also develop and
build your application locally using the Advance Toolchain for Linux on Power cross-compiler.

For remote development, you must install the required dependencies on the remote Power System. The
ibm-sdk-lop-remote-dependencies package ensures that all required dependencies are installed on the
remote Power Systems.

3.1 Downloading and installing the x86_64/amd64 client
This topic gives instructions for downloading the and installing the x86_64 version of the SDK.

About this task

Install the x86_64/amd64 version of the SDK.

Procedure
1. Install the Advance Toolchain cross-compiler on the x86_64/amd64 system, if needed

Table 5. Advance Toolchain for Linux on Power required and recommended prerequisites

Advance Toolchain for Linux on Power required
prerequisites

Advance Toolchain for Linux on Power recommended
prerequisites

v advance-toolchain-at9.0-cross-common-9.0-5

v advance-toolchain-at9.0-cross-arch-9.0-5

Where arch can be either ppc64 or ppc64le.

v advance-toolchain-at9.0-cross-arch-mcore-libs-9.0-5

v advance-toolchain-at9.0-cross-arch-runtime-extras-9.0-5

v advance-toolchain-at10.0-cross-common-10.0-0

v advance-toolchain-at10.0-cross-arch-10.0-0

v advance-toolchain-at10.0-cross-arch-mcore-libs-10.0-0

v advance-toolchain-at10.0-cross-arch-runtime-extras-
10.0-0

Where arch can be either ppc64 or ppc64le.

For more details about installing the Advance Toolchain for Linux on Power, see 2.2.2, “Installing the
Advance Toolchain for Linux on Power,” on page 11.

2. For automatic installation, refer to 2.1, “Downloading and installing the SDK,” on page 7 or go to the
IBM Software Development Kit for Linux on Power website at http://www-304.ibm.com/webapp/
set2/sas/f/lopdiags/sdkdownload.html#2..

3. Select from the following choices to download the x86_64/amd64 version of the SDK.
v For Red Hat Enterprise Linux, SUSE Linux Enterprise, Fedora, and CentOS in the Download

individual packages for IBM SDK section of the page, download ibm-sdk-lop-version.x86_64.rpm.
v For Ubuntu, in the Download the ISO image or the DEB image section of the page, download the

DEB image for the x86_64/amd64 client, ibm-sdk-lop_version_amd64.deb.

version is the version number of the package.
4. Install the IBM SDK for Linux on Power and its dependencies on the x86_64/amd64 host:
v For Red Hat Enterprise Linux and CentOS:

yum install ibm-sdk-lop-version.x86_64.rpm

v For SUSE Linux Enterprise Server:
zypper install ibm-sdk-lop-version.x86_64.rpm

© Copyright IBM Corp. 2012, 2016 21

http://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdkdownload.html#2
http://www-304.ibm.com/webapp/set2/sas/f/lopdiags/sdkdownload.html#2

v For Ubuntu:
sudo dpkg -i ibm-sdk-lop_version_amd64.deb

v For Fedora:
dnf install ibm-sdk-lop-version.x86_64.rpm

If the installer warns you about missing dependencies on Ubuntu, run the following command to
automatically download and install them:
sudo apt-get -f install

What to do next

Note: After installing the SDK, be sure to log off to ensure that the group rights are applied correctly.

3.2 Setting up remote Power Systems server
The Remote Setup Wizard available on the x86_64/amd64 of the SDK allows users to install the SDK
packages and their dependencies on a remote Power Systems server.

About this task

Complete the following steps to install the SDK with the Remote Setup Wizard:

Procedure
1. Click Help in the toolbar and select Setup Remote Machine.
2. If no systems are listed in table, complete the following steps:

a. Click New Machine.
b. In the Remote Services field, select SSH and click Add.
c. In the New Connection window, complete the fields: New Connection Name, Host, User, and

Password. Then, select Finish.
d. In the Preferences window, click OK.

3. Select one of the systems that are listed in the table and click Setup Machine.
4. In the new window, select the SDK packages and the Advance Toolchain version to be installed. If

you want to install IBM XL C/C++ Community Edition Compiler, select that option. Click Install.

Note: To proceed with installation, you need to agree with the license terms.
5. All the necessary packages will be downloaded. When the download process is completed, a

confirmation message is displayed, informing which packages will be installed. Select Yes to install
those packages.

6. During the installation process, you are prompted to enter your password. Type your user password
and select OK.

Note: You need administrative privileges to install the packages.
7. When the installation is completed, a message is displayed, informing you that all the packages were

successfully installed. Select OK to complete the process.

3.3 Creating and using synchronized projects on x86_64/amd64 clients
If you have installed the x86_64/amd64 version of the SDK on you workstation and the dependencies
package on a Power Systems server, you can create synchronized projects on the remote server from the
client.

22 Linux: Developing software using the IBM Software Development Kit for Linux on Power

See 3.2, “Setting up remote Power Systems server,” on page 22 for instructions if you have not already
installed the packages.

3.3.1 Creating a synchronized C/C++ project
Synchronized projects are mirrored on the local system and the remote system. You can edit locally, and
your changes are synchronized with the remote system. This topic details how to create a synchronized
project that uses Advance Toolchain for Linux on Power.

Before you begin

If you plan to use synchronized projects, you must first install the git package on the remote server. See
“Packages required by IBM SDK for Linux on Power ” on page 2.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Remote Advance Toolchain and click to select Synchronized Advance

Toolchain C/C++ Project. Click Next.
3. In the New Advance Toolchain Synchronized Project window, type a name for the project in the

Project name field.
4. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 9.3, “Setting
up SSH credentials,” on page 93.

5. For the location, click Browse to select the remote location where the project source is stored.
6. In the Project type pane, expand and select a project type for one of the following categories:
v Remote Advance Toolchain Executable
v Remote Advance Toolchain Shared Library
v Remote Advance Toolchain Static Library

In the project type, select Empty Project.
7. In the Toolchain pane, select an available Remote Advance Toolchain. Do not select “Local Toolchain”.
8. Click Next or Finish.

Results

The new project is shown in the Project Explorer pane and will be built using the Advance Toolchain for
Linux on Power, with any Power-specific optimizations that you have chosen. The project folder is
created on the remote Power Systems server, and a local cached copy is maintained. IBM SDK for Linux
on Power operations such as building, running, and profiling can be performed remotely.

3.3.2 Creating a synchronized project by importing an existing Makefile
project
You can import an existing Makefile project into the SDK as a synchronized project to be used with
Advance Toolchain for Linux on Power.

3 Setting up the x86_64/amd64 version of the IBM SDK for Linux on Power 23

Before you begin

If you plan to use synchronized projects, ensure that the Makefile project already exists on or has been
saved to the Power Systems server.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Remote Advance Toolchain and click to select Advance Toolchain

Synchronized C/C++ Project. Click Next.
3. In the New Advance Toolchain Synchronized Project window, type a name for the project in the

Project name field.
4. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 9.3, “Setting
up SSH credentials,” on page 93.

5. For the location, click Browse to select the remote location where the project source is stored.
6. In the Project type pane, expand Makefile Project and select Empty Project .
7. In the Remote Toolchain pane, select the desired Remote Linux Advance Toolchain. Do not select

“Local Toolchain”.
8. Click Finish.

3.3.3 Creating a synchronized project by importing an existing
Autotools project
You can import an existing project that uses Autotools into the SDK to be used remotely with Advance
Toolchain for Linux on Power.

Before you begin

Ensure that the Autotools project already exists on or has been saved to the Power Systems server.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Before importing the project, you should disable the option to build projects automatically. This

prevents the SDK from building a project that might not be ready after importing. Click Project and
clear the Build Automatically check box if it is selected.

2. Click File > New > Other.
3. In the New window, expand Remote Advance Toolchain and click to select Synchronized Advance

Toolchain C/C++ Project. Click Next.
4. In the New Advance Toolchain Synchronized Project window, type a name for the project in the

Project name field.
5. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

24 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 9.3, “Setting
up SSH credentials,” on page 93.

6. For the location, click Browse to select the remote location where the project source is stored.
7. In the Project type pane, expand GNU Autotools, and select Empty project.
8. In the Remote Toolchain pane, select GNU Autotools Toolchain.
9. Click Finish.

Results

The project is imported as an Autotools project and is shown in the Project Explorer pane.

What to do next

Configuring the imported project.

3.3.3.1 Configuring the imported project
About this task

After the project is imported, the SDK automatically indexes the source code for the project. The source
files then appear with the project in the Project Explorer pane.

Procedure
1. To view the project, click the project name in the Project Explorer pane. You can explore it and make

configuration updates.
v Use the Project Explorer pane to expand and explore the project.
v Double-click a project file to open it in the editor. The outline pane shows macro references and

program control statements.
v Open the autoconf configuration file (configure.ac) or the makefile configuration file

(makefile.am). This allows the SDK to index the file and provide proper syntax highlighting.
v You can set autoconf configuration script options in the project properties.

– Click Project > Properties.
– In the Properties window, expand Autotools and click Configure Settings.
– Under Configure, click Advanced.
– You can specify additional options in the Additional command-line options field. To use

Advance Toolchain for Linux on Power with Autotools projects, type CC="/opt/atversion/bin/
gcc", where version is the version number of Advance Toolchain for Linux on Power. For
example: /opt/at10.0/bin/gcc. On this field, you can also set other flags for your project. For
example, a typical set of parameters for POWER8 targets is
CC=/opt/at10.0/bin/gcc CFLAGS=’-m64 -g -O3 -mcpu=power8’ CXXFLAGS=’-m64
-g -O3 -mcpu=power8’ LDFLAGS=’-m64 -Wl,-q’.

– Click OK.
2. After you have made the configuration updates, reconfigure the project.
3. Right-click the project name, and select Reconfigure Project.
4. While the project is being configured, you can click the Console tab to monitor progress.

3.3.3.2 Building the imported project
About this task

After the project reconfiguration is complete, you can build the project.

3 Setting up the x86_64/amd64 version of the IBM SDK for Linux on Power 25

Procedure
1. Return to the project view by clicking the project name in the Project Explorer pane.
2. Click Project > Build Project to build the project.
3. While the project is building, you can click the Console tab to monitor progress.
Related information:

An Introduction to the Autotools

3.3.4 Creating a synchronized empty Autotools project
You can use theIBM SDK for Linux on Power to create an empty synchronized Autotools project.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Remote Advance Toolchain and click to select Synchronized Advance

Toolchain C/C++ Project. Click Next.
3. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 9.3, “Setting
up SSH credentials,” on page 93.

4. Click Browse to find the location where the project is to be stored on the remote server.
5. In the Project type pane, expand GNU Autotools and select Empty Project.
6. In the Project window, type a name for the project in the Project name field.
7. Click Finish.

Results

The new project is shown in the Project Explorer pane.

Note: Running Autotools in a remote project will fail if there are environment variables with no value
assigned in the local system (for example, VARIABLE=).

3.3.5 Creating a synchronized “Hello World” Autotools project
You can use IBM SDK for Linux on Power to create a “Hello World” synchronized Autotools project.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Remote Advance Toolchain and click to select Synchronized Advance

Toolchain C/C++ Project. Click Next.
3. In the Connection Name field, click the arrows to select a connection to the remote server, or click

New to create a connection.

Tip: If you are creating a connection, use your ssh credentials instead of public key. See 9.3, “Setting
up SSH credentials,” on page 93.

26 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://www.gnu.org/savannah-checkouts/gnu/automake/manual/html_node/Autotools-Introduction.html#Autotools-Introduction

4. In the Project type pane, expand GNU Autotools and select Hello World ANSI C Autotools Project.
5. In the Project window, type a name for the project in the Project name field.
6. Click Finish.

Results

The new project is shown in the Project Explorer pane.

Note: Running Autotools in a remote project will fail if there are environment variables with no value
assigned in the local system (for example, VARIABLE=).

3.3.6 Running an executable program in a synchronized project
This topic provides instructions for running an executable program on a remote server.

About this task

To run a remote executable program, complete the following steps in the IBM SDK for Linux on Power
user interface.

Procedure
1. In the Project Explorer pane, right-click the remote project name. Click Run as > Run configurations.

Double-click Parallel Application.
2. On the Resources tab, complete the following steps.

a. In the Target System Configuration field, click the arrows to select IBM SDK Remote
Connection.

b. In the Remote service provider field, select Remote tools.
c. In the Please select a connection box, click the arrows to select the connection to the remote

server, or click New to create a connection.
3. On the Application tab, in the Application program field, click Browse to select the executable

program that you want to run.
4. Click Run.

3.3.7 Debugging a synchronized project
This topic provides instructions for debugging a synchronized project using the IBM SDK for Linux on
Power.

Before you begin

To debug a project on a remote Power Systems server, ensure that all required dependencies are installed
by installing the ibm-sdk-lop-remote-dependencies.

About this task

To debug a synchronized project, complete the following steps.

Procedure
1. In the Project Explorer pane, right-click the synchronized project name. Click Debug as > Debug

configurations. Double-click Parallel Application.
2. On the Resources tab, complete the following steps.

a. In the Target System Configuration field, click the arrows to select IBM SDK Remote
Connection.

3 Setting up the x86_64/amd64 version of the IBM SDK for Linux on Power 27

b. In the Please select a connection box, click the arrows to select the connection to the remote
server, or click New to create a connection.

3. On the Application tab, in the Application program field, click Browse to select the binary file that
you want to debug.

4. Click Debug. The Parallel Debug perspective opens automatically. You can then debug the
application.

5. In the Parallel Debug perspective, you can use the displayed icons to step through the execution,
inspect variables, and set breakpoints.

3.4 Creating and using cross-compiled projects

3.4.1 Creating a cross-compiled C/C++ project
You can create a C/C++ project that uses the Advance Toolchain for Linux on Power.

About this task

Complete the following steps in the SDK for Linux on Power user interface.

Procedure
1. Click File > New > Other.
2. In the New window, expand Advance Toolchain C/C++. Select either Advance Toolchain C Project

or Advance Toolchain C++ Project, as appropriate. Click Next.
3. In the Project window, type a name for the project in the Project name field.

Tip: At the bottom of the window, verify that the Show projects type and toolchains only if they
are supported on the platform check box is selected.

4. Optional: The project will be created in a directory structure in the file system. The default file
system location is displayed in the Location field. If you do not want to save the project in the
default location, clear the Use default location check box, and specify or browse for a new location.

5. In the Project type pane, expand one of the following, as appropriate:
v Executable

v Shared Library

v Static Library

Then select Advance Toolchain cross-compiler C Project or Advance Toolchain cross-compiler C++
Project, as appropriate.

6. In the Toolchains pane, select the option corresponding to your Advance Toolchain for Linux on
Power cross-compiler. Click Next.

7. In the Compiler tuning window, select the appropriate options for tuning your application or library.
a. Environment: Select from - use default -, 64-bit, or 32-bit.
b. Generate POWER-series code that is compatible with: Select from - use default - or the listed

POWERn technology options.
c. Tune the instruction scheduling for: Select from - use default - or the listed POWERn

technology options. Click Next.
8. Optional: To allow optimizations for Power Systems servers when you are building the application

or library, complete these steps:
a. In the Select configurations window, click Advanced settings.
b. In the next window, expand C/C++ Build and click Settings.
c. On the Tool Settings tab, click POWER-specific optimizations. Then, select the appropriate

optimization options for your workload and application or library characteristics, and target

28 Linux: Developing software using the IBM Software Development Kit for Linux on Power

processor. You can change the default build settings to tune for POWER processor capabilities
and the IBM SDK for Linux on Power analysis tools. See 4.1, “Setting flags,” on page 35 for
information about the recommended build settings, and instructions for setting them. When
finished, click OK.

9. Click Finish.
10. If prompted to open the C/C++ perspective, select Yes.

Results

The new project is shown in the Project Explorer pane and will be built using the Advance Toolchain for
Linux on Power, with any Power-specific optimizations that you have chosen.

3.4.2 Executing a cross-compiled project
This topic provides instructions for running an executable program remotely using the cross-compiler
development mode.

About this task

To run a cross-compiled executable program, complete the following steps in the IBM SDK for Linux on
Power user interface.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK. The

cross-compiled project should be displayed under the Project Explorer view.
2. In the Project Explorer pane, right-click the cross-compiled project name. Click Run as > Run

configurations. Double-click Parallel Application.
3. On the Resources tab, complete the following steps.

a. In the Target System Configuration field, click the arrows to select IBM SDK Remote
Connection.

b. In the Please select a connection box, click the arrows to select the connection to the remote
server, or click New to create a connection.

4. On the Application tab, complete the following steps.
a. In the Application program field, type a name for the application to be created on the remote

server.
b. Select the Copy executable from local filesystem check box.
c. In the Path to local executable field, click Browse to select the executable program that was

generated when the project was built.
d. Optional: If you want to see the output from the running application, ensure that the Display

output from all processes in a console view check box is selected.
5. Click Run.

3.4.3 Debugging a cross-compiled project
This topic provides instructions for debugging a cross-compiled project using the SDK.

Before you begin

To debug a project on a remote Power Systems server, the ibm-sdk-lop-server-version package must be
installed on the remote server.

About this task

To debug a cross-compiled project, complete the following steps.

3 Setting up the x86_64/amd64 version of the IBM SDK for Linux on Power 29

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK. The

cross-compiled project should be displayed under the Project Explorer view.
2. In the Project Explorer pane, right-click the cross-compiled project name. Click Debug as > Debug

configurations. Select the parallel application that was created previously when you ran the compiled
program. The application has the same name as your project.

3. On the Resources tab, complete the following steps.
a. In the Target System Configuration field, click the arrows to select IBM SDK Remote

Connection.

b. In the Please select a connection box, click the arrows to select the connection to the remote
server, or click New to create a connection.

4. On the Application tab, in the Application program field, click Browse to select the binary file that
you want to debug.

5. Click Debug. The Parallel Debug perspective opens automatically. You can then debug the
application.

6. In the Parallel Debug perspective, you can use the displayed icons to step through the execution,
inspect variables, and set breakpoints.

3.5 Installing and using QEMU user-mode emulation
The SDK provides integration with QEMU user-mode emulation. In this mode, QEMU can launch
processes compiled for one CPU on another CPU, allowing easy cross-compilation and cross-debugging.

Before you begin

Before you begin using QEMU user-mode emulation, ensure that you have the following prerequisites
installed on your system:
v The Advance Toolchain for Linux on Power cross-compiler package, as detailed in 2.2.2, “Installing the

Advance Toolchain for Linux on Power,” on page 11.
v IBM Software Development Kit for Linux on Power

About this task

At the CPU level, user-mode emulation is a subset of the full system emulation. No memory
management unit (MMU) simulation is done because QEMU supposes the user memory mappings are
handled by the host operating system. QEMU includes a generic Linux system call converter to handle
endianness issues and 32/64 bit conversions. Because QEMU supports exceptions, it emulates the target
signals exactly. Each target thread is run in one host thread.

Procedure
1. If you have installed the IBM Power Repository or configured the apt repository as listed in 2.1,

“Downloading and installing the SDK,” on page 7, you can install the package as following:
v For RHEL and CentOS: yum install QEMU-user-space-emulator
v For SLES: zypper install QEMU-user-space-emulator
v For Ubuntu: apt-get install QEMU-user-space-emulator

If you prefer, you can download and install the latest packages for your operating system from the
Unicamp FTP site (ftp://ftp.unicamp.br/pub/linuxpatch/sdk/qemu/).

2. Install the packages using the command appropriate for your Linux distribution.
v For Red Hat Enterprise Linux and CentOS:

yum install -y QEMU-user-space-emulator-<version>.x86_64.rpm

v For SUSE Linux Enterprise Server:

30 Linux: Developing software using the IBM Software Development Kit for Linux on Power

ftp://ftp.unicamp.br/pub/linuxpatch/sdk/qemu/

zypper install -y QEMU-user-space-emulator-<version>.x86_64.rpm

v For Ubuntu:
sudo dpkg -i QEMU-user-space-emulator_<version>_amd64.deb

v For Fedora:
dnf install -y QEMU-user-space-emulator-<version>.x86_64.rpm

3.5.1 Running a cross-compiled application with QEMU user-mode
emulation
Follow these steps to run a cross-compiled application with QEMU user-mode emulation.

Before you begin

Before using QEMU to run your application, you must create (or import) and build a cross-compiled
project. See 3.4.1, “Creating a cross-compiled C/C++ project,” on page 28 for details.

About this task

In order to run your cross-compiled application using QEMU user-mode, follow these steps.

Procedure
1. Select the target project, then Run > Run As > QEMU. If this is the first time you are using QEMU,

the launcher configuration opens.
2. From the Application options menu, select Browse. A new window appears.
3. Select the application binary. If the Advance Toolchain version cannot be detected, you are prompted

to select the toolchain used to build the project. After you select the binary and identify the toolchain
version, the remaining fields are automatically populated.

4. Optional: Set arguments for your application from Applications > Parameters.
5. Select from the QEMU options. Descriptions for each options display as you move your cursor over

the option name.
6. By default, the Libraries Paths fields contains the paths for the Advance Toolchain libraries. If you

need to use any other library available on your system, select Browse and enter the location of the
library.

7. Press Run.

3.6 Installing and executing the IBM POWER Functional Simulator
The IBM Software Development Kit for Linux on Power provides integration with the IBM POWER
Functional Simulator, a POWER8 and POWER9 simulator that can be installed in any x86_64/amd64
system. The simulator instantiates a Power virtual machine to which the x86_64/amd64 version of SDK
can connect. Once connected, you can compile and run ppc64le programs, all in the x86_64/amd64
machine.

3.6.1 Installing and setting up the POWER Functional Simulator
Follow these steps to install, set up, and run the POWER Functional Simulator on your x86_64/amd64
client.

About this task

During the installation process, you will install the simulator and a disk image to boot the virtual
machine. You must install the simulator on the same physical system where the x86_64/amd64 version of
the SDK is installed.

3 Setting up the x86_64/amd64 version of the IBM SDK for Linux on Power 31

The SDK supports a Debian ppc64le image. The image contains the root file system of the standard
version of Debian, including system libraries and basic system binaries.

3.6.2 Installing the IBM POWER Functional Simulator
If your x86_64/amd64 machine has Internet access, you can install the IBM POWER Functional Simulator
automatically.

About this task

You can install and configure the IBM POWER Functional Simulator.

Procedure
1. In the SDK UI, select Power Simulator > Start. The required files are downloaded and extracted in a

directory sdk-systemsim.
2. When the download and package extraction is complete, go to /home/<USER>/sdk-systemsim and run

the following command.
setupsimulator -i

The simulator and its dependencies are downloaded and configured automatically.

Results

After the installation completes, you can boot the simulator either through the SDK or through the
command line.

3.7 Running the IBM POWER Functional Simulator
You can run the simulator either in the IBM Software Development Kit for Linux on Power or in the
command line.

3.7.1 Running the IBM POWER Functional Simulator from within the
SDK
You can run the IBM POWER Functional Simulator from within the IBM Software Development Kit for
Linux on Power (SDK).

About this task

You can run the IBM POWER Functional Simulator by using the SDK.

Procedure
1. Select POWER Simulator > Start in the SDK user interface.
2. Select the simulator version that you would like to start, and then set your user name and password.

The password is required to set the iptables rules that allow the simulator to connect to the internet.

Note: Your password is encrypted and securely stored within the SDK.

Results

After these steps are complete, the simulator starts. An SSH connection to the running instance of the
simulator is created and you are automatically connected to its terminal.

32 Linux: Developing software using the IBM Software Development Kit for Linux on Power

3.7.1.1 Running the IBM POWER Functional Simulator from within the command
line
You can run the IBM POWER Functional Simulator from within the command line.

About this task

You can run the IBM POWER Functional Simulator by using the command line.

Procedure
1. Locate the system_execution directory. The default location for this directory is the user's home

location.
2. In this directory, run startsimulator using -p8 or -p9, according to the required version of the

simulator you want to start.

Note: You must have administrator rights and then run this command. You will be prompted to enter
the password throughout the process.

Results

When the simulator starts, an Xterm is opened in which you can interact with the simulator. The default
credentials to access the simulator are: user=root; password=mambo. The default IP address of the
simulator is 172.19.0.109

3.8 Simulator networking
The communication between the host and the simulator is carried out through a network interface tap0.

About this task

Check that the network interface is working.

Procedure
1. Run the following command to check that the interface exists and is working:

ifconfig tap0

2. To establish communication between the host and the simulator, rules are added to iptables. Run the
following command to check whether those rules are added:
sudo iptables --list

The output of the previous command must contain the following:
Chain FORWARD (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere 172.19.0.0/16
ACCEPT all -- 172.19.0.0/16 anywhere
ACCEPT all -- anywhere 172.19.0.0/16
ACCEPT all -- 172.19.0.0/16 anywhere

3. If the iptables rules do not exist, run the following commands to create them:
sudo tunctl -u <YOUR_USER> -t tap0
sudo ifconfig tap0 172.19.98.108 netmask 255.255.255.254
sudo iptables -t nat -A POSTROUTING -j MASQUERADE
sudo iptables -I FORWARD -s 172.19.0.0/16 -i tap0 -j ACCEPT
sudo iptables -I FORWARD -d 172.19.0.0/16 -o tap0 -j ACCEPT
sudo sysctl -w net.ipv4.ip_forward=1 $2>&1

3 Setting up the x86_64/amd64 version of the IBM SDK for Linux on Power 33

34 Linux: Developing software using the IBM Software Development Kit for Linux on Power

4 Managing projects

You can use the IBM Software Development Kit for Linux on Power to create C/C++ projects, or to
import existing Makefile or Autotools projects. With the SDK, you can edit the application source code, as
well as run and debug the executable program.

The C/C++ Development User Guide (http://help.eclipse.org/neon/topic/org.eclipse.cdt.doc.user/
concepts/cdt_o_home.htm) in the Eclipse platform help information contains information about creating
Eclipse projects, importing Makefile or Autotools projects, and editing, running, and debugging. Much of
this information applies to IBM SDK for Linux on Power projects.

4.1 Setting flags
Some of the tools included with the SDK require that certain flags be set. This can be done when you
create the project, or by editing the project before you run the tools.

4.1.1 Recommended debug, compiler, and linker settings for Power
processor tuning
This topic provides recommendations for debug, compiler, and linker settings to use POWER processor
capabilities and the IBM Software Development Kit for Linux on Power analysis tools. These
recommendations should be considered along with the workload and characteristics of applications that
are being built.

Compiler and linker flags are normally passed along all build stages to avoid failures. The flags are
passed by setting environment variables such as CFLAGS, CXXFLAGS, CPPFLAGS, and LDFLAGS for
Makefile or Autotools projects in the IBM SDK for Linux on Power. See the following websites for details
about the environment variables.
v GCC, the GNU Compiler Collection website (http://gcc.gnu.org)
v GNU Operating System - Make website (http://www.gnu.org/software/make/)
v GNU Operating System - Autoconf website (http://www.gnu.org/software/autoconf/)

Recommendations for debug flags

Many analysis and debug tools in the SDK rely on debugging information that is produced when the -g
flag is enabled. Therefore, it is highly recommended that you set that option by using the CFLAGS or
CXXFLAGS environment variables.
v Source Code Analyzer and FDPR

Source Code Analyzer and FDPR tools use information that is produced by the -Wl,-q option, which
leaves relocation sections and contents in fully linked executable programs. These tools are also able to
analyze the post-linked executable program (or library) and to make modifications to improve
application performance.

v Gprof
Gprof requires the -pg compiler option. This option instruments the resulting binary file to produce
profiling information, in the gmon.out file, when the executable file or shared library runs.

v Gcov
Gcov requires the -ftest-coverage and -fprofile-arcs compiler options. These options produce a text
file that the gcov utility uses to show program coverage, and create a program flow graph for each
function of your program and a spanning tree for the graph .

© Copyright IBM Corp. 2012, 2016 35

http://help.eclipse.org/neon/topic/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm
http://gcc.gnu.org
http://www.gnu.org/software/make/
http://www.gnu.org/software/autoconf/

See 4.1.2, “Setting debug flags for Autotools-based projects,” on page 40 for instructions for setting debug
flags.

Recommendations for optimization level options

Optimization level -O0 is appropriate only for low-level debugging, where every source line must appear
to execute sequentially. Other debugging can use optimization levels of -O1 or -O2. Production builds
should use a -O3 optimization level.

If you have installed Advance Toolchain for Linux on Power 9.0 or later, you can use optimization level
-Ofast. -Ofast sets optimization level -O3 and compiler flag -ffast-math.

See Options That Control Optimization(https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/Optimize-
Options.html) in the GNU GCC documentation for details about the optimization level options.

See 4.1.3, “Setting optimization level flags for Autotools-based projects,” on page 41 for instructions for
setting optimization levels.

Recommendations for compiler flags

Several different compiler flags are recommended for improving performance in applications that are
running on Power Systems servers. These compiler flags can be set using the CFLAGS or CXXFLAGS
environment variables.

See IBM RS/6000 and PowerPC Options (https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/RS_002f6000-
and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options) in the GNU GCC documentation for
details about these and other Power specific compiler flags.

Table 6. Recommended compiler flags

Flag Short description Extended description Values

-ffast-math Enables faster, but
non-IEEE 754
compliant math
results

Sets -fno-math-errno, -funsafe-math-optimizations,
-ffinite-math-only, -fno-rounding-math,
-fno-signaling-nans, and -fcx-limited-range options.
This option causes the preprocessor macro
“__FAST_MATH__” to be defined.

This option is not enabled by any -O option, because it
might result in incorrect output for programs that
depend on an exact implementation of IEEE or ISO
specifications for math functions. It might, however,
yield faster code for programs that do not require the
guarantees of these specifications.

-ffp-contract Generates code that
does or does not use
floating point
multiply and
accumulate
instructions

Available with IBM Advance Toolchain for Linux on
Power 8.0 and later.

fast: Generates code that uses floating point multiply
and accumulate instructions. Equivalent to
-mfused-madd.

off: Generates code that does not use floating point
multiply and accumulate instructions. Equivalent to
-mno-fused-madd.

fast, off, or
on

-fpeel-loops Simplifies loops or
splits them into
multiple loops to
eliminate
dependencies

Loop peeling is a special case of loop splitting, which
splits any problematic first (or last) few iterations from
the loop and performs them outside of the loop body.

36 Linux: Developing software using the IBM Software Development Kit for Linux on Power

https://gcc.gnu.org/onlinedocs/gcc-4.9.3/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/RS_002f6000-and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options

Table 6. Recommended compiler flags (continued)

Flag Short description Extended description Values

-fPIC Specifies to emit
position-independent
code (PIC) suitable for
use in a shared
library

Specifies to emit position-independent code (PIC)
suitable for use in a shared library. Also, this option
avoids any limit on the size of the global offset table.
Note: At present, -fPIC applies only for 32-bit shared
libraries. It does not apply for 64-bit.

-funroll-loops Unrolls loops, and
replicates the body of
the loop N times to
reduce loop system
use and improve
scheduling
opportunities.

Unrolls loops for which the number of iterations can be
determined at compile time or upon entry to the loop.
This option makes code larger, and might or might not
make it run faster.

-m32 Generates code for a
32-bit environment.

Generates code for a 32-bit environment.

-m64 Generates code for a
64-bit environment.

Generates code for a 64-bit environment.

-maltivec Generates code that
uses AltiVec
instructions.

Generates code that uses AltiVec instructions, and also
enables the use of built-in functions that allow more
direct access to the AltiVec instruction set. You might
also need to set -mabi=altivec (using Other
POWER-specific flags) to adjust the current ABI with
AltiVec ABI enhancements.

Setting -mcpu=power8 is preferred because it sets -mvsx,
-maltivec, and -mabi=altivec.

-mno-altivec Generates code that
does not use AltiVec
instructions.

Generates code that does not use AltiVec instructions.

-mavoid-indexed-
addresses

Generates code that
avoids indexed
load/store
instructions.

Generates code that tries to avoid the use of indexed
load or store instructions. These instructions can incur a
performance penalty on POWER6® processors in certain
situations, such as when a program is stepping through
large arrays that cross a 16M boundary. This option is
enabled by default when a program is targeting
POWER6, and disabled otherwise.

-mno-avoid-indexed-
addresses

Generates code that
does not avoid
indexed load/store
instructions

Generates code that does not try to avoid the use of
indexed load or store instructions. These instructions
can incur a performance penalty on POWER6
processors in certain situations, such as when a
program is stepping through large arrays that cross a
16M boundary. This option is enabled by default when
a program is targeting POWER6, and disabled
otherwise.

4 Managing projects 37

Table 6. Recommended compiler flags (continued)

Flag Short description Extended description Values

-mcmodel=model Sets code model small: Generates PowerPC® 64-bit code for the small
model. The TOC is limited to 64 K in size.

medium: Generates PowerPC 64-bit code for the
medium model. The TOC and other static data is
limited to 4G in size.

large: Generates PowerPC 64-bit code for the large
model. The TOC is limited to 4G in size. Other data
and code is limited only by the 64-bit address space.

Note:

v Most applications should use -mcmodel=medium.

v If you are using -mcmodel=medium or -mcmodel=large,
you should also remove the -mminimal-toc flag, if it
is set.

small,
medium,
or large

-mcpu=cpu_type Sets machine type
parameters

Sets architecture type, register usage, choice of
mnemonics, and instruction scheduling parameters for
machine type cpu_type.

power8 or
any Power
CPU type

-mrecip=option Controls which type
of reciprocal estimate
instructions can be
used

Controls which reciprocal estimate instructions can be
used. option is a comma-separated list of options, which
can be preceded by a “!” to invert the option.

all enable all estimate instructions

default enable the default instructions, equivalent
to-m-recip

none disable all estimate instructions, equivalent to
-mno-recip

div enable the reciprocal approximation
instructions for both single and double
precision

divf enable the single precision reciprocal
approximation instructions

divd enable the double precision reciprocal
approximation instructions

rsqrt enable the reciprocal square root
approximation instructions for both single and
double precision

rsqrtf enable the single precision reciprocal square
root approximation instructions

rsqrtd enable the double precision reciprocal square
root approximation instructions

For example,-mrecip=all,!rsqrtd enables all reciprocal
estimate instructions except for FRSQRTE,
XSRSQRTEDP, and XVRSQRTEDP instructions, which
handle the double precision reciprocal square root
calculations. -ffast-math must be enabled to use this
option.

all, default,
none, div,
divf, divd,
rsqrt,
rsqrtf, or
rsqrtd

38 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 6. Recommended compiler flags (continued)

Flag Short description Extended description Values

-mrecip-precision Specifies to assume
that the reciprocal
estimate instructions
have higher precision
than needed by the
ABI

Specifies to assume that the reciprocal estimate
instructions provide higher precision estimates than is
mandated by the POWERPC ABI. Selecting
-mcpu=power8 automatically selects -m-recip-precision.
The double precision square root estimate instructions
are not generated by default on low precision
machines, because they do not provide an estimate that
converges after three steps. -ffast-math must be
enabled to use this option.

-mno-recip-precision Specifies to not
assume that the
reciprocal estimate
instructions have
higher precision than
needed by the ABI

Specifies to not assume that the reciprocal estimate
instructions provide higher precision estimates than is
mandated by the POWERPC ABI. -ffast-math must be
enabled to use this option.

-mtune=cpu_type Sets machine tuning
parameters

Sets the instruction scheduling parameters for machine
type cpu_type, but does not set the architecture type,
register usage, or choice of mnemonics as
-mcpu=cpu_type would. The same values for cpu_type are
used for -mtune as for -mcpu. If both are specified, the
code that is generated uses the architecture, registers,
and mnemonics that are set by -mcpu, but the
scheduling parameters that are set by -mtune.

power8 or
any Power
CPU type

-mupdate Generates code that
updates the base
register

Generates code that uses the load or store instructions
that update the base register to the address of the
calculated memory location. These instructions are
generated by default.

-mno-update Generates code that
does not update the
base register

Generates code that does not use the load or store
instructions that update the base register to the address
of the calculated memory location. These instructions
are generated by default.

-mveclibabi=MASS Specifies type of ABI
to use for the
vectorizing intrinsics

Specifies the ABI type to use for vectorizing intrinsics
by using an external library. The only type supported
currently is MASS, which specifies to use IBM
Mathematical Acceleration Subsystem (MASS) libraries
for vectorizing intrinsics by using external libraries
when generating code for POWER7®.

Flags -ftree-vectorize, -funsafe-math-optimizations,
and -ffast-math must be enabled. The MASS libraries
must be specified at link time.

-mvsx Generates code that
uses the vector/scalar
instructions

Generates code that uses vector/scalar (VSX)
instructions, and also enables the use of built-in
functions that allow more direct access to the VSX
instruction set.

Setting -mcpu=power8 is preferred because it sets -mvsx,
-maltivec, and -mabi=altivec.

-mno-vsx Generates code that
does not use the
vector/scalar
instructions

Generates code that does not use the vector/scalar
(VSX) instructions.

4 Managing projects 39

Table 6. Recommended compiler flags (continued)

Flag Short description Extended description Values

-mpower8-fusion Specifies to fuse an
integer load with a
preceding addis
instruction and to
fuse a vector load
with a preceding addi
instruction.

Specifies to fuse an integer load with a preceding addis
instruction and to fuse a vector load with a preceding
addi instruction. Setting -mtune=power8 specifies this
also.

-mpower8-vector Enables POWER8
vector instructions.

Enables POWER8 vector instructions. This option
requires that -mvsx also are set.

-mcrypto Enables POWER8
cryptographic built-in
functions.

Enables POWER8 cryptographic built-in functions. This
option requires that -maltivec also are set.

-mdirect-move Enables POWER8
moves between
general purpose
registers and vector
registers.

Enables POWER8 moves between general purpose
registers and vector registers. This option requires that
-mvsx also are set.

-mquad-memory Enables quadword
memory instructions,
including quadword
atomic instructions.

Enables quadword memory instructions, including
quadword atomic instructions. This option requires that
-m64 also are set.

Recommendations for linker flags

The -Bsymbolic flag enables the linker to bind global symbol references to local definitions within the
shared library. Normally this binding is deferred until program load time. At load time, global symbol
references are bound to the definitions that are loaded first, starting with the main program. Early
binding to local definitions reduces processor usage during calls, but also disables symbol overrides using
preloaded libraries.

The -m32 and -m64 flags enable the linker to generate code for 32-bit and 64-bit environments. In most
Makefile and Autotools projects, these flags can be passed along all build stages by setting them using
the LDFLAGS environment variable.

4.1.2 Setting debug flags for Autotools-based projects
This topic details the steps for setting debug flags to use POWER processor capabilities and the IBM
Software Development Kit for Linux on Power analysis tools, Source Code Analyzer and FDPR, gprof,
and gcov in Autotools-based projects.

Before you begin

Note: If your project was created by importing a Makefile project, you must manually edit the Makefile
file to export build control variables such as CFLAGS and LDFLAGS with debug flags.

See “Recommendations for debug flags” on page 35 for details on the recommended settings.

About this task

To set debug flags for projects that were created by importing Autotools projects, complete the following
steps in the IBM SDK for Linux on Power user interface.

40 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Right-click the project name and click Properties.
3. Expand Autotools and click Configure Settings.
4. Click Advanced.
5. Choose from the following steps to set debug flags for particular tools.
v For gcov and gprof, complete the following steps:

a. In the right pane, select the Debug (-g) check box.
b. In the right pane, select the Gprof support (-pg) or Gcov support (-fprofile-arcs-ftest-coverage)

check box, as appropriate.
v For Source Code Analyzer and FDPR, complete the following steps:

a. In the right pane, ensure that the Debug (-g), Gprof support (-pg), and Gcov support
(-fprofile-arcs-ftest-coverage) check boxes are not selected. If the source code is compiled with
these options, Source Code Analyzer and FDPR cannot work properly.

b. In the Additional command-line options field, set the value of CFLAGS (C) or CXXFLAGS
(C++) to -g -Wl,-q. For example, type the following in the field:
CFLAGS="-g -Wl,-q"

6. Click Apply.

4.1.3 Setting optimization level flags for Autotools-based projects
This topic details the steps for setting optimization levels for debugging with IBM Software Development
Kit for Linux on Power in Autotools-based projects.

Before you begin

Note: If your project was created by importing a Makefile project, you must manually edit the Makefile
file to export build control variables such as CFLAGS and LDFLAGS with debug flags.

See “Recommendations for optimization level options” on page 36 for details on the recommended
settings.

About this task

Complete the following steps in the IBM SDK for Linux on Power user interface.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Right-click the project name and click Properties.
3. Expand Autotools and click Configure Settings.
4. Click Advanced.
5. In the right pane, ensure that the Debug (-g), Gprof support (-pg), and Gcov support

(-fprofile-arcs-ftest-coverage) check boxes are not selected. If you need any of these flags to be set at
build time, you must re-export them together with optimization level flags as described in the next
step.

6. In the Additional command-line options field, set the value of CFLAGS (C) or CXXFLAGS (C++)
with the appropriate optimization level, such as -03 or -0fast. For example, type the following in the
field:
CFLAGS="-g -O3"

7. Click Apply.

4 Managing projects 41

4.2 Editing a project
After you have imported or created a project, you can use the IBM Software Development Kit for Linux
on Power graphical user interface to edit project preferences, build options, and application source code
for the project.

The C/C++ Development User Guide (http://help.eclipse.org/neon/topic/org.eclipse.cdt.doc.user/
concepts/cdt_o_home.htm) in the Eclipse platform help information contains the information you need to
edit projects using IBM SDK for Linux on Power.

Most project preferences and build options you might want to customize are documented in the C/C++
Development User Guide. See 4.1.1, “Recommended debug, compiler, and linker settings for Power
processor tuning,” on page 35 for information about setting options for Power Systems.

4.2.1 Setting the Linux tools path
A customization that is unique to IBM SDK for Linux on Power is setting the Linux tools path. The Linux
tools path is set automatically when creating a project, but you can change it. See 2.4.7, “Changing the
Advance Toolchain version,” on page 17 for information about this customization.

4.2.2 Using the coding assistant
IBM SDK for Linux on Power provides a coding assistant that helps with code completion, function
templates, and context-sensitive information for libauxv and libsphde libraries and the altivec API when
using the C/C++ editor. While you are editing your code, you can use the following methods to display
information:
v Move your mouse over a function.
v Type the initial letters, press Ctrl+Spacebar, and select a listed function.

4.3 Building a project
After a project is created or imported, you can select to build it or perform a clean build.

The C/C++ Development User Guide (http://help.eclipse.org/mars/topic/org.eclipse.cdt.doc.user/
concepts/cdt_o_home.htm) in the Eclipse platform help information contains additional information
about building projects.

4.3.1 Building a project
This topic describes a basic project build.

About this task

To build, or compile, a project, complete the following steps.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Click Project > Build Project to build the project.
3. While the project is building, you can click the Console tab to monitor progress.

4.3.2 Building a project with clean build
A clean build discards previous build status information and problem markers, and causes the project to
be rebuilt from the beginning.

42 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://help.eclipse.org/neon/topic/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm
http://help.eclipse.org/mars/topic/org.eclipse.cdt.doc.user/concepts/cdt_o_home.htm

About this task

Complete the following steps.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Click Project > Clean.
3. In the Clean window, click the Clean projects specified below radio button.
4. Select the check box for the project you want to clean. Click OK.
5. While the project is building, you can click the Console tab to monitor progress.

4.3.3 Adding and using a Make target
For Makefile and Autotools projects, you can add Make targets, for transforming the source file to a
specific target result. Example Make targets include “clean”, “check”, and “install”.

About this task

Note: Adding Make targets is intended for advanced users.

Complete the following steps.

Procedure
1. View the project by clicking the project name in the Project Explorer pane.
2. Right-click the project name and select one of the following, as appropriate:
v Make Target > Create to add a new Make target to your project. Click OK after specifying the

information for the new target.
v Make Target > Build > Target name to select a specific Make target. Click Build build the selected

target.

4 Managing projects 43

44 Linux: Developing software using the IBM Software Development Kit for Linux on Power

5 Migrating an application to Power Systems servers using
Migration Advisor

The IBM Software Development Kit for Linux on Power includes the Migration Advisor to help in
moving Linux applications to Power Systems servers. The Migration Advisor uses the Eclipse CDT
(C/C++ Development Tools) code analysis tool (CODAN). The code analysis tool locates potential
migration problems within a project, such as source code that might produce different results when run
on Power Systems servers.

5.1 Running Migration Advisor
You can use the IBM Software Development Kit for Linux on Power Migration Advisor to help you
migrating your application to a Power Systems server.

About this task

To run Migration Advisor, click a C/C++ project in the Project Explorer pane, right-click the project
name, and select Run Migration Advisor. The Migration Advisor Wizard displays. See 5.2, “Using the
Migration Wizard to configure the Migration Advisor” for information on how to configure the Migration
Advisor by using the wizard.

When the migration process is complete, the Migration Advisor View opens and all potential migration
issues are displayed as warnings.

The following are actions you can take using Migration Advisor and the Migration Advisor View.

Procedure
v To display the code that has a reported potential issue, double-click the warning and the correct file is

loaded in the editor view.
v You can continue to type in the editor window while the Migration Advisor is running. Because

Migration Advisor is a live tool, the warnings are updated automatically as you edit.
v To ignore an issue, right-click the warning and select the Ignore Warning option. The warning no

longer displayed.
v To display ignored warnings again, click the menu arrow in the upper right of the Migration Advisor

View, and select one of the following options.
– Click Disable Ignored Warnings to display all ignored warnings. This option displays the ignored

warnings, but it still retains the information that they are ignored.
– Click Enable Ignored Warnings to hide all ignored warnings.
– Click Forget All Ignored Warnings to stop ignoring all warnings.

Note: You cannot undo this option, so ensure that you want to stop ignoring all warnings before
you select it.

5.2 Using the Migration Wizard to configure the Migration Advisor
You can use the automated wizard to configure the Migration Advisor.

About this task

To migrate your source code, you must provide some details about the origins of your C/C++ Linux
application and the target system you want to migrate.

© Copyright IBM Corp. 2012, 2016 45

Migration Advisor supports two different target systems (ppc64be and ppc64le) and four source systems
(x86, AMD64, ppc32be and ppc32le). Depending on the origin of your source code and what the target
processor is, Migration Advisor optimizes its configuration to achieve the best migration result.

Every time you run the Migration Advisor in a new project, the Migration Wizard is shown.

To configure Migration Advisor, complete the following steps.

Procedure
1. Click Next to open the configuration screen.
2. Select an appropriate migrating setup. See 5.2.1, “Basic Migration Advisor configuration” and 5.2.2,

“Advanced Migration Advisor configuration” to help you decide the best configuration for your
application.

3. On the configuration screen, click Next to review the setup. The review screen shows all selected
checkers, providing a fine grained adjustment. On this screen, you can disable or enable a checker
manually and see what each checker does. If you select the Always use this configuration for project
<your_project> option every time you press Run Migration Advisor in the Project Explorer, the
Migration Advisor runs automatically.

4. Click Finish.

5.2.1 Basic Migration Advisor configuration
This topic describes the basic configuration options for the IBM Software Development Kit for Linux on
Power Migration Advisor.

The following basic configuration options are available in the Migration Advisor.

Select your project
If you run the Migration Advisor by selecting a project in the Project Explorer pane, this field is
automatically configured. Otherwise, select a valid C/C++ project in the list.

Your Linux application was designed to run on
In the Migration Advisor, you must select the machine architecture that your application is
coming from. Select one of the supported source systems: x86, AMD64, PPC32BE, or PPC32LE. If
you are not sure, hover over the button to view more information.

You want to migrate your Linux application to
Select the target system for the migration. Select PPC64LE to migrate to a little endian Linux
system, or PPC64BE to migrate to a big endian Linux system.

5.2.2 Advanced Migration Advisor configuration
This topic describes the advanced configuration options for the IBM Software Development Kit for Linux
on Power Migration Advisor.

The following advanced configuration options are available in the Migration Advisor.

Apply basic fixes automatically
Select this option if you want the Migration Advisor to migrate your application automatically.
Selecting this option applies fixes during the code analysis step, reducing the effort to apply them
manually. If this option is activated, the Migration Advisor also generates a log with all changes
in the project so that the developer can review the fixes.

Enable POWER8 optimization support
This feature enables target specific optimizations. Select this option if you are migrating your
application to a POWER8 processor.

46 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Enable checkers in blocks inactivated by the preprocessor and macro definitions
If you select this option, Migration Advisor analyzes inactive blocks. For example, if this option is
not selected, Migration Advisor would not look for problems in this sample code:
1. #if 0
2. //Code with problems
3. #endif

Note: If this option is enabled, the Migration Advisor might suggest fixes based on a code that is
different from the compiled version.

Report problems in statements that come from macro expansion
This option enables Migration Advisor to flag problems in macro expansions. For example,
Migration Advisor displays a warning for the macro definition, which is shown in line 1 of the
following sample code only if this option is not selected. Conversely, Migration Advisor would
display a warning on line 2 of the following code if this option is selected.
1. #define MACRO asm("asm_with_errors");
2. MACRO

Enable Scalability mode in Migration Advisor
Inactive blocks in large files might not be analyzed if this option is enabled. If this option is
disabled, blocks from large files are analyzed and a large amount of memory is used.

5.3 Migration Advisor checkers
These topics describe the checkers used by the Migration Advisor.

Note: By using the code examples, you agree to the terms of the 10, “Code license and disclaimer
information,” on page 95.

x86-specific compiler built-in checker

Some x86 compiler built-ins are not available for 32-bit POWER or 64-bit POWER architectures. This
checker finds all occurrences of x86-specific built-ins.

Example
void foo() {

__builtin_infq(); //x86-specific built-in
}

x86-specific assembly checker

Inline assembly code usually cannot be migrated without problems. Therefore, warnings are displayed for
inline assembly code.

Example
void foo() {

asm("mov %ax, 0"); //assembly code
__asm__("mov %ax, 0"); //assembly code

}

Struct with bitfields checker

x86 and POWER architectures have different endianness, which refers to the ordering of separately
addressable components. Because of this, the order of bit fields in a struct is different in a Power Systems
server, which can result in migration issues. It is important to ensure that bit fields are used correctly to
avoid problems.

5 Migrating an application to Power Systems 47

It is also a good idea to see where the struct is referenced to check whether there are endianness issues.
To do this, you can navigate in struct declarations and references.
v To navigate in struct references in your project, select the object name, right-click, and select References

> Project. All references display in the Search View. Double-click the file names in the Search View to
open them in the Editor View.

v To navigate in struct declarations, select the struct name, right-click, and select Declarations > Project.
The results also display in the Search View.

v Declarations can contain typedefs. Be sure to also check all references of the typedefs.

Examples

The following example would also be flagged by the cast with endianness issues checker.
#include <stdio.h>
struct _my_struct {
int a:4;
int b:4;
} my_struct;

void foo() {
char my_char;
my_struct.a = 0xFF;
my_struct.b = 0x00;
my_char = *(char *)&my_struct;
//This prints 0x0f in x86 (or x86_64) machines and 0xf0 in ppc (or ppc64) machines.
printf("%x\n", my_char);

}

The following example would also cause endianness problems if it is changed to use the network instead
of a file to read and write data.
#include
#include
#include

void foo() {
int file;
char my_char;
struct _my_struct {

int a:4;
int b:4;

} my_struct;

//initial values
my_struct.a = 0x1;
my_struct.b = 0x2;

//Writing to a file
file = open("my_file", O_CREAT | O_WRONLY);
write(file, &my_struct, 1);
close(file);

//Reading from a file
file = open("my_file", O_RDONLY);
read(file, &my_char, 1);
close(file);
printf("%x\n", my_char);

}

48 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Cast with endianness issues checker

Casting can create endianness problems in C or C++ code. This happens when casting pointers for types
with different sizes. The cast with endianness issues checker analyzes all casts in the code and flags the
casts that can cause an endianness problem.

Example
void foo() {

short int val = 0xFF00;
char *char_pointer = (char *) &val;
//This prints 0 in x86 (or x86_64) machines and ff in ppc (or ppc64) machines.
printf("%x\n", *char_pointer);

}

Union with endianness issues checker

Using the several fields from a union in the same object can cause endianness issues. The union with
endianness issues checker analyzes all unions in the code and flags the unions that can cause endianness
problems.

It is a good idea to see where the struct is referenced to check whether there are endianness issues. To do
this, you can navigate in union declarations and references.
v To navigate in union references in your project, select the object name, right-click, and select

References > Project. All references display in the Search View. Double-click the file names in the
Search View to open them in the Editor View.

v To navigate in union declarations, select the union name, right-click, and select Declarations > Project.
The results also display in the Search View.

v Declarations can contain typedefs. Be sure to also check all references of the typedefs.

Example
void foo() {

union {
short int val1;
char val2;

} u;
u.val1 = 0xFF00;
//This prints 0 in x86 (or x86_64) machines and ff in POWER 32-bit (or 64-bit) machines.
printf("%x\n", u.val2);

}

Long double usage checker

The use of long double might be a migration problem because of the differences in size and format
between x86 and POWER architecture.With current GCC compilers, long double is 128 bits (AIX® double
double format) for POWER architecture. Therefore, long double for POWER architecture is in a different
format than long double for x86 ILP32 (96 bits) or x86 ILP64 (binary 128).

Performance degradation checker

It is usual to see performance improvements made for one specific architecture in an area of the code.
This is mainly done using a preprocessor #if statement to check the current architecture. The
performance degradation checker looks for #if and #ifdef statements that contain preprocessor
definitions belonging to x86 or x86_64 architectures, but do not contain preprocessor definitions for
POWER architectures. This is a sign that the code might not be optimized for POWER processors.

5 Migrating an application to Power Systems 49

The performance degradation will also try to make the best attempt to convert the code inside the x86
block to PPC. If the code has a specific x86 built-in, the conversion, in some cases will be automatically.
For example:
#ifdef _x86_
__m128 ra = _mm_load_ps(&a + i);
__m128 rb = _mm_load_ps(&b + i);
_mm_store_ps(%c + i, _mm_add_ps(ra,rb));
#else
c[i] = a[i] + b[i];
c[i + 1] = a[i + 1] + b[i + 1];
c[i + 2] = a[i + 2] + b[i + 2];
c[i + 3] = a[i + 3] + b[i + 3];
#endif

The previous code example has an x86 block. The MA will migrate all Intel built-ins to PPC. After the fix,
the code will look similar to the following version:
#ifdef _x86_
__m128 ra = _mm_load_ps(a + i);
__m128 rb = _mm_load_ps(b + i);
_mm_store_ps(c + i, _mm_add_ps(ra,rb));
#elif defined __PPC__
// TODO: write an optimized code for Power
__vector float ra = *(__vector float*) (a + i);
__vector float rb = *(__vector float*) (b + i);
(__vector float) (c + i) = vec_add(ra, rb);
#else
c[i] = a[i] + b[i];
c[i + 1] = a[i + 1] + b[i + 1];
c[i + 2] = a[i + 2] + b[i + 2];
c[i + 3] = a[i + 3] + b[i + 3];
#endif

You can change the preprocessor definitions used by the performance degradation checker. For
information, see 5.3.4, “Customizing the performance degradation checker,” on page 54.

Example
#if defined(__x86__)
//code specific for x86 architectures
#else
//code that will work for all architectures, but it isn’t optimized.
#endif

Syscall not available for Linux on Power checker

Almost all x86 and x86_64 Linux system calls (syscalls) are available for POWER architecture. Using an
x86-specific system call causes problems when migrating your code to POWER architecture. The syscall
not available for Linux on Power checker analyzes all system calls in your code and displays a warning
for system calls that are not available for 32-bit or 64-bit POWER architectures. The warning message
states whether the system call is unavailable only for 32-bit POWER, only for 64-bit POWER, or
unavailable for both architectures.

You can specify that this checker look for only those system calls that are not available for 32-bit or 64-bit
POWER architectures. For information, see 5.3.5, “Customizing the syscall not available for Linux on
Power checker,” on page 55.

Example
int main() {

int rc;
struct stat64 s;
char *file = "test_file.txt";

50 Linux: Developing software using the IBM Software Development Kit for Linux on Power

if ((rc = syscall(SYS_stat64, file, &s)) == -1) {
printf("Failed to execute syscall with rc = %d (%s)", errno, strerror(errno));
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

Linux/x86-specific API checker

The Intel-specific API checker looks for usage of functions from the following libraries:
v Intel Integrated Performance Primitives 7.0
v Intel Math Kernel Library 10.3
v Message Passing Interface Library 2.2
v Decimal Floating-Point Math Library 2.0

You can customize the Linux/x86-specific API checker by selecting which library APIs the checker looks
for. In addition, you can add, edit, and remove APIs from the checker. For information, see 5.3.6,
“Customizing the Linux/x86-specific API checker,” on page 55.

Hardware Transaction Memory checker

This checker finds occurrences of x86 hardware transaction memory usage, which is not supported for
POWER architectures. Transactional Synchronization Extensions (TSX), an x86 instruction set extension,
enables hardware transaction memory support to speed up the execution of multithreaded programs.
#include <rtmintrin.h>

void foo(unsigned int a, unsigned int b){
while(1){
unsigned status = _xbegin();

if(status == XBEGIN_STARTED) {
trans_func(a, b);

_xend();
break;

}
else{

_xabort();
}

}
}

Non-portable Pthreads implementation checker

Some Pthreads functions and data types are not supported on POWER architectures. This checker finds
occurrences of non-portable Pthreads API usage.
#include <pthread.h>
void foo(){

pthread_id_np_t tid;
tid = pthread_getthreadid_np();

}

5.3.1 Linux/x86 to Linux/Power application migration checker
This topic describes the Linux/x86 to Linux/Power application migration checker.

Char usage checker

The use of char might be a problem when assigning a numeric value to a variable of type char. By
default, the char type is signed in x86 but it is unsigned in POWER architecture. The safe mode to use a
char that receives a numeric value is to declare it as signed or unsigned.

5 Migrating an application to Power Systems 51

Example
void foo() {

char c = -1;
int x = (int) c;
// This prints -1 in x86 machines and 255 in ppc machines.
printf("x = %d\n", x);

}

5.3.2 Linux/Power application optimization checker
This topic describes the Linux/Power application optimization checker.

Sync built-in to C11 standard atomic built-in checker

Sync built-ins are defined for IA64 and adopted for general use by GCC. However, it does not have a
good performance for POWER architecture. Instead of using Sync, use the Atomics built-ins that are
intended to replace the legacy Sync built-ins.

Note: The Atomic built-ins assume that programs conform to the C++11 memory model.

Example
void foo() {
int x = 20;
int y = 80;
int result = 0;
result = __sync_fetch_and_add(&x, y);
}

5.3.3 Linux/Power 32bit to Linux/Power 64bit application migration
checkers
These topics describe the checkers used for Linux/Power 32bit to Linux/Power 64bit application
migration.

Long usage checker

When you are migrating an application from ILP32 to LP64, you must take care about the difference in
size of some types. The long type for example, has 32 bit in ILP32 and 64 in LP64. Therefore, this checker
searches for long declarations and warns you about possible problems.

Example - unsafe code
long x = 0xFFFFFFFF;

cout << x << endl;

Example - fixed code
int x = 0xFFFFFFFF;

cout << x << endl;

Implicit Cast Checker

This checker performs a deep static analysis of the code, searching for patterns where an implicit cast
could cause an invalid result depending on the value generated by a variable or expression.

Example - unsafe code

For example, a downcast from unsigned int type to long type can generate a different result in LP64
power computer.

52 Linux: Developing software using the IBM Software Development Kit for Linux on Power

unsigned int a = 0;
long b = --a;
cout << b << endl;

// Output ppc32 -> -1
// Output ppc64 -> 4294967295

Example - fixed code
unsigned int a = 0;

int b = --a;
cout << b << endl;

Example - unsafe code

Moreover, some libraries might have a different type declaration depending on the system environment.
Therefore, this checker is designed to also detect cast between types declared in libraries and macros.
#include <stdint.h>
intptr_t a = -1;
uintptr_t b = a; // dangerous implicit cast.

Example - fixed code
#include <stdint.h>
int a = -1;
unsigned int b = a;

Pointer Cast Checker

This checker is an extension of the implicit cast checker and also performs a static analysis, searching for
problems related to explicit casts. Moreover, it reports cast between pointers with different sizes. For
example, if you declare a pointer and force a cast to another pointer of a different type, it might result in
an unexpected behavior.

Example - unsafe code
const char *a = "abcdefghj";

long *b = (long *) a;
cout << *b << endl;

Example - fixed code
const char *a = "abcdefghj";

int *b = (int *) a;
cout << *b << endl;

Heterogeneous Type checker

This checker searches for structs, unions, and classes and warns you about incompatible declarations
inside those data types. For example, if you declare a long variable inside a heterogeneous data structure,
you can face a variety of problems such as, different result due to a memory overlap, different data
alignment, endianness incompatibility or difference in size. The code below shows a memory overlap
problem:

Example - unsafe code
union Pixel {

unsigned long color;
unsigned char rgba[4];

};

5 Migrating an application to Power Systems 53

Example - fixed code
union Pixel {

unsigned int color; // on uint32_t color;
unsigned char rgba[4];

};

Format Specifiers Checker

A format specifier is a symbol used in ANSI C/C++ to format input/output strings. The table below
summarizes all valid C/C++ combinations. For more information, see PRINTF.
| | d or i | u, o, x or X | f, F, e, E, g, G,| c | s | p | n |

a or A
-	int	unsigned int	double	unsigned char	char*	void*	int*
h	short	unsigned short	double				short*
hh	char	unsigned char	double				char*
l	long	unsigned long	double	wint_t	wchar_t*		long*
ll	long long	unsigned long long	double				long long*
j	intmax_t	uintmax_t	double				intmax_t*
z	size_t	size_t	double				size_t*
t	ptrdiff_t	ptrdiff_t	double				ptrdiff_t*
L	long	unsigned long	long double		char		

The format specifier usage is a common problem because, C/C++ performs type promotion and
downcast depending on the type passed as parameter. Therefore, this checker searches for variables that
are not compatible with the format specifier. It also reports the usage of types that changes its size in an
LP64 programming model.

Example - unsafe code
int x;
scanf("%ld",&x);

Example - fixed code
int x;
scanf("%d",&x);

5.3.4 Customizing the performance degradation checker
You can change the preprocessor definitions used by the performance degradation checker.

About this task

To change the definitions, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ and click Code Analysis. The Code Analysis window displays all the

installed Migration Advisor checkers.
3. Locate the group of checkers provided by the SDK: Linux/x86 to Linux on Power, Linux/Power 32

bits to Linux/Power 64 bits application migration, or Linux/Power application optimization in the
window, by scrolling if needed. Expand this group.

4. Select the Performance Degradation checker and click Customize > Customize Selected.
5. Edit preferences as needed.
v Add or remove the predefined macros for Power and non-Power architectures.
v Select or clear the check box for Case sensitive when comparing preprocessor definitions.

Click OK when finished.

54 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://man7.org/linux/man-pages/man3/printf.3.html

5.3.5 Customizing the syscall not available for Linux on Power checker
You can specify that this checker look for only those system calls that are not available for 32-bit or 64-bit
POWER architectures.

About this task

To select this option, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ and click Code Analysis. The Code Analysis window displays all the

installed Migration Advisor checkers.
3. Locate the group of checkers provided by the SDK: Linux/x86 to Linux on Power, Linux/Power 32

bits to Linux/Power 64 bits application migration, or Linux/Power application optimization in the
window, by scrolling if needed. Expand this group.

4. Select the Syscall not available for Linux on Power checker and click Customize > Customize
Selected.

5. Edit the preferences to select the check box for Check for syscalls only unavailable for 32-bit Power
architecture, Check for syscalls only unavailable for 64-bit Power architecture, or both. Click OK
when finished.

6. Click Apply.

5.3.6 Customizing the Linux/x86-specific API checker
You can customize the Linux/x86-specific API checker by selecting which library APIs the checker looks
for. In addition, you can add, edit, and remove APIs from the checker.

About this task

To customize the checker, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ > Code Analysis > Migration Advisor.
3. In the Migration Advisor window, click Customize the API Checker. The API customization window

is displayed.
4. In the API customization window, choose from the following options:
v Select the check box for each API that you want the API checker to look for. Clear the check box for

each API that you do not want the checker to look for.
v To add an API to the checker, click Add API. Type the name, optionally type a description, and

click OK.
v To edit an API, click the API name to select it, then click Edit API. Type a different name or

description, and click OK.
v To add a function to an API, click the API name to select it, then click Add function. Type the

function name, and click OK. To display the new function name if it is not already displayed,
expand the API name in the API customization window. You can add multiple functions to an API.

v To add a type to an API, click the API name to select it, then click Add type. Type the type name,
and click OK. To display the new type name if it is not already displayed, expand the API name in
the API customization window. You can add multiple types to an API.

v To add a function from a file, click the API name to select it, then click Add function from a file.
Type the file name or click Browse to locate and select it.

5 Migrating an application to Power Systems 55

Note: The file must contain only the function names, with one name per line.
After you specify the file, click OK. All the functions that are listed in the specified file are added
and displayed.

v To add a type from a file, click the API name to select it, then click Add type from a file. Type the
file name or click Browse to locate and select it.

Note: The file must contain only the type names, with only one name per line.
After you specify the file, click OK. All the types that are listed in the specified file are added and
displayed.

v To remove an API from the checker, click the API name to select it, then click Remove. When
prompted, click OK to confirm.

v To export an API and any functions or types that it contains to an XML file to be imported later,
click the API name to select it. Then, click Export to a XML file. Type the file name, including file
type xml, or click Browse to locate and select it. Then, click OK.

v To import an API and any functions or types that it contains from an existing XML file, click the
API name to select it, then click Import a XML file. Type the file name, including file type xml, or
click Browse to locate and select it. Then, click OK.

v To restore the API checker to the default list of APIs included in the Migration Advisor, click
Restore Defaults.

Note: All customization changes will be lost.
5. When finished customizing, click OK to save your changes.

5.4 Configuring Migration Advisor checkers manually
The Migration Advisor contains several checkers that look for code in the project that might produce a
different result in Power Systems servers. Warnings are displayed showing the kind of problem found.

About this task

To enable Migration Advisor checkers manually, complete the following steps.

Procedure
1. Click Window > Preferences.
2. In the left pane, expand C/C++ and click Code Analysis. The Code Analysis window displays all the

installed Migration Advisor checkers.
3. Locate the group of checkers that are provided by the SDK. Expand this group.
v Linux/x86 to Linux on Power
v Linux/Power 32-bits to Linux/Power 64-bits application migration
v Linux/Power application optimization

4. Select the check box beside the name of the group to select all the checkers, or click the check boxes
for the specific checkers that you want to select.

5. Click Apply.

5.5 Using Migration Advisor quick fixes
Quick fixes can help you resolve migration problems found by running the Migration Advisor. Quick
fixes are suggestions or tips that might help correct identified migration issues.

56 Linux: Developing software using the IBM Software Development Kit for Linux on Power

About this task

Migration Advisor quick fixes are available only for the following checkers:
v x86-specific compiler built-in checker. See “x86-specific compiler built-in checker” on page 47.
v Struct with bitfields checker. See “Struct with bitfields checker” on page 47.
v Performance degradation checker. See “Performance degradation checker” on page 49.
v Decimal Floating-Point Math Library as part of Linux/x86-specific API checker. See “Linux/x86-specific

API checker” on page 51.
v Hardware Transaction Memory checker. See “Hardware Transaction Memory checker” on page 51.
v Long usage checker. See “Long usage checker” on page 52.
v Char usage checker. See “Char usage checker” on page 51.
v Implicit cast checker. See “Implicit Cast Checker” on page 52.
v Pointer cast checker. See “Pointer Cast Checker” on page 53.
v Heterogeneous type checker. See “Heterogeneous Type checker” on page 53.
v Sync built-in to C11 standard atomic built-in checker. See “Sync built-in to C11 standard atomic built-in

checker” on page 52.
v Syscall not available for Linux on Power checker. See “Syscall not available for Linux on Power

checker” on page 50.

5 Migrating an application to Power Systems 57

58 Linux: Developing software using the IBM Software Development Kit for Linux on Power

6 Analyzing application performance on Power Systems
servers

IBM Software Development Kit for Linux on Power provides many performance analysis tools.

6.1 Analyzing performance with the CPI breakdown plug-in
The CPI breakdown plug-in profiles C/C++ applications with the CPI (cycles per instruction) breakdown
model for POWER8 and POWER7 systems.

If you want to use the CPI Breakdown plug-in, you must download and install Perf as described in 2.2,
“Recommended and optional packages,” on page 9.

6.1.1 CPI analysis overview
CPI (cycles per instruction) analysis can be used to improve application performance.

CPI refers to how many processor cycles are needed to complete an instruction. An instruction can be a
read/write from memory operation, an arithmetic calculation, or bit-wise operation. The more cycles the
processor takes to complete an instruction, the poorer the performance of the application in the processor.

Application performance can be improved by decreasing the number of cycles that are needed for the
processor to complete instructions. In the CPI breakdown model, a set of processor events is broken
down into components. Processor performance counters calculate metrics for the event components. This
approach provides a complete view of how the application behaves concerning processor performance.

Because each processor architecture has different performance counters, POWER and Intel have different
CPI breakdown models. Even within Power Systems servers, differences exist between each version of the
processor.

Processor performance can be measured by profiling the application with tools such as OProfile or Perf.
The CPI breakdown plug-in automates this process, enabling you to access the CPI breakdown model of
any C/C++ application without manually tracking the events and calculating the metrics.

6.1.2 CPI events and metrics for POWER7
The CPI breakdown plug-in collects several required events, and then calculates metrics for the CPI
breakdown model. These are the CPI events and metrics collected for POWER7.

The ocount command collects the following POWER7 events:
v PM_RUN_CYC: Run cycles.
v PM_1PLUS_PPC_CMPL: 1 or more ppc instructions finished.
v PM_CMPLU_STALL: No groups completed, GCT not empty.
v PM_CMPLU_STALL_BRU: Completion stall due to BRU.
v PM_CMPLU_STALL_DCACHE_MISS: Completion stall caused by D cache miss.
v PM_CMPLU_STALL_DFU: Completion stall caused by Decimal Floating Point Unit.
v PM_CMPLU_STALL_DIV: Completion stall caused by DIV instruction.
v PM_CMPLU_STALL_ERAT_MISS: Completion stall caused by ERAT miss.
v PM_CMPLU_STALL_FXU: Completion stall caused by FXU instruction.
v PM_CMPLU_STALL_IFU: Completion stall due to IFU.
v PM_CMPLU_STALL_LSU: Completion stall caused by LSU instruction.

© Copyright IBM Corp. 2012, 2016 59

v PM_CMPLU_STALL_REJECT: Completion stall caused by reject.
v PM_CMPLU_STALL_SCALAR: Completion stall caused by FPU instruction.
v PM_CMPLU_STALL_SCALAR_LONG: Completion stall caused by long latency scalar instruction.
v PM_CMPLU_STALL_STORE: Completion stall due to store instruction.
v PM_CMPLU_STALL_THRD: Completion stall due to thread conflict. Group ready to complete but it

was another thread's turn.
v PM_CMPLU_STALL_VECTOR: Completion stall caused by Vector instruction.
v PM_CMPLU_STALL_VECTOR_LONG: Completion stall due to long latency vector instruction.
v PM_GCT_NOSLOT_BR_MPRED: GCT empty by branch misprediction.
v PM_GCT_NOSLOT_BR_MPRED_IC_MISS: GCT empty by branch misprediction + IC miss.
v PM_GCT_NOSLOT_CYC: No itags assigned.
v PM_GCT_NOSLOT_IC_MISS GCT: empty by I-cache miss.
v PM_GRP_CMPL: Group completed

After collecting the events, the ocount command calculates the necessary metrics for the CPI breakdown
model.

Table 7. CPI breakdown metrics for POWER7

Metric Formula

BASE_COMPLETION_CPI: Base Completion Cycles PM_1PLUS_PPC_CMPL/PM_RUN_INST_CMPL

COMPLETION_CPI: Cycles in which a Group Completed PM_GRP_CMPL/PM_RUN_INST_CMPL

EXPANSION_OVERHEAD_CPI: Cycles due to go
overhead of expansion

COMPLETION_CPI - BASE_COMPLETION_CPI

FXU_STALL_CPI Cycles: stalled by Fixed-point Unit PM_CMPLU_STALL_FXU/PM_RUN_INST_CMPL

FXU_MULTI_CYC_CPI: Cycles stalled by FXU
Multi-Cycle Instructions

PM_CMPLU_STALL_DIV/PM_RUN_INST_CMPL

FXU_STALL_OTHER_CPI: Other cycles stalled by FXU FXU_STALL_CPI - FXU_MULTI_CYC_CPI

GCT_EMPTY_CPI GCT: empty cycles PM_GCT_NOSLOT_CYC/PM_RUN_INST_CMPL

GCT_EMPTY_IC_MISS_CPI: Cycles GCT empty due to
I-Cache Misses

PM_GCT_NOSLOT_IC_MISS/PM_RUN_INST_CMPL

GCT_EMPTY_BR_MPRED_CPI: Cycles GCT empty due
to Branch Mispredicts

PM_GCT_NOSLOT_BR_MPRED/PM_RUN_INST_CMPL

GCT_EMPTY_BR_MPRED_IC_MISS_CPI: Cycles GCT
empty due to Branch Mispredicts and I-cache Misses

PM_GCT_NOSLOT_BR_MPRED_IC_MISS/
PM_RUN_INST_CMPL

GCT_EMPTY_OTHER_CPI: Other GCT empty cycles (PM_GCT_NOSLOT_CYC-
PM_GCT_NOSLOT_IC_MISSPM_
GCT_NOSLOT_BR_MPREDPM_
GCT_NOSLOT_BR_MPRED_IC_MISS) /
PM_RUN_INST_CMPL

IFU_STALL_CPI: Cycles stalled due to Instruction Fetch
Unit

PM_CMPLU_STALL_IFU/PM_RUN_INST_CMPL

IFU_STALL_BRU_CPI: Cycles stalled by branches PM_CMPLU_STALL_BRU/PM_RUN_INST_CMPL

IFU_STALL_OTHER_CPI: Cycles stalled by other IFU
operations

IFU_STALL_CPI - IFU_STALL_BRU_CPI

LSU_STALL_CPI: Cycles stalled by Load/Store Unit PM_CMPLU_STALL_LSU/PM_RUN_INST_CMPL

LSU_STALL_REJECT_CPI: Cycles stalled by LSU Rejects PM_CMPLU_STALL_REJECT/PM_RUN_INST_CMPL

LSU_STALL_ERAT_MISS_CPI: Cycles stalled by ERAT
Translations

PM_CMPLU_STALL_ERAT_MISS/
PM_RUN_INST_CMPL

60 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 7. CPI breakdown metrics for POWER7 (continued)

Metric Formula

LSU_STALL_REJECT_OTHER_CPI: Cycles stalled by
Other LSU Rejects

LSU_STALL_REJECT_CPI -
LSU_STALL_ERAT_MISS_CPI

LSU_STALL_DCACHE_MISS_CPI: Cycles stalled by Data
Cache (L1) Misses

PM_CMPLU_STALL_DCACHE_MISS/
PM_RUN_INST_CMPL

LSU_STALL_STORE_CPI: Cycles stalled by Data Store
(L1) Misses

PM_CMPLU_STALL_STORE/PM_RUN_INST_CMPL

LSU_STALL_OTHER_CPI: Cycles stalled by Other LSU
Operations

LSU_STALL_CPI - LSU_STALL_REJECT_CPI -
LSU_STALL_DCACHE_MISS_CPI -
LSU_STALL_STORE_CPI

OTHER_STALL_CPI: Other stall cycles STALL_CPI - FXU_STALL_CPI - VSU_STALL_CPI -
LSU_STALL_CPI - IFU_STALL_CPI - SMT_STALL_CPI

RUN_CPI: Total cycles PM_RUN_CYC/PM_RUN_INST_CMPL

SMT_STALL_CPI: Cycles stalled due to Symmetric
Multithreading

PM_CMPLU_STALL_THRD/PM_RUN_INST_CMPL

STALL_CPI: Completion Stall Cycles PM_CMPLU_STALL/PM_RUN_INST_CMPL

VSU_STALL_CPI: Cycles stalled by Vector-and-Scalar
Unit

(PM_CMPLU_STALL_SCALAR +
PM_CMPLU_STALL_VECTOR +
PM_CMPLU_STALL_DFU)/PM_RUN_INST_CMPL

VSU_STALL_DFU_CPI: Cycles stalled by Decimal
Floating-point Unit

PM_CMPLU_STALL_DFU/PM_RUN_INST_CMPL

VSU_STALL_SCALAR_CPI: Cycles stalled by VSU Scalar
Operations

PM_CMPLU_STALL_SCALAR/PM_RUN_INST_CMPL

VSU_STALL_SCALAR_LONG_CPI: Cycles stalled by
VSU Scalar Long Operations

PM_CMPLU_STALL_SCALAR_LONG/
PM_RUN_INST_CMPL

VSU_STALL_SCALAR_OTHER_CPI: Cycles stalled by
Other VSU Scalar Operations

VSU_STALL_SCALAR_CPI -
VSU_STALL_SCALAR_LONG_CPI

VSU_STALL_VECTOR_CPI: Cycles stalled by VSU Vector
Operations

PM_CMPLU_STALL_VECTOR/PM_RUN_INST_CMPL

VSU_STALL_VECTOR_LONG_CPI: Cycles stalled by
VSU Vector Long Operations

PM_CMPLU_STALL_VECTOR_LONG/
PM_RUN_INST_CMPL

VSU_STALL_VECTOR_OTHER_CPI: Cycles stalled by
VSU Vector Other

VSU_STALL_VECTOR_CPI -
VSU_STALL_VECTOR_LONG_CPI

The CPI breakdown model flow defined for POWER7 Systems servers is depicted in the following table.
The sum of the events in a column is the same for each column across the table.

6 Analyzing application performance on Power Systems servers 61

Table 8. CPI breakdown model flow for POWER7

Cycles Breakdown 1 Breakdown 2 Breakdown 3 Breakdown 4

PM_RUN_CYC PM_CMPLU_STALL PM_CMPLU_STALL
_FXU

PM_CMPLU_STALL_DIV

PM_CMPLU_STALL_FXU_OTHER

PM_CMPLU_STALL
_VSU

PM_CMPLU_STALL
_SCALAR

PM_CMPLU_STALL
_SCALAR_LONG

PM_CMPLU_STALL
_SCALAR_OTHER

PM_CMPLU_STALL
_VECTOR

PM_CMPLU_STALL
_VECTOR_LONG

PM_CMPLU_STALL
_VECTOR_OTHER

PM_CMPLU_STALL_DFP

PM_CMPLU_STALL
_LSU

PM_CMPLU_STALL
_REJECT

PM_CMPLU _STALL
_ERAT_MISS

PM_CMPLU_STALL
_REJECT_OTHER

PM_CMPLU_STALL_DCACHE_MISS

PM_CMPLU_STALL_STORE

PM_CMPLU_STALL_LSU_OTHER

PM_CMPLU_STALL_THRD

PM_CMPLU_STALL
_IFU

PM_CMPLU_STALL_BRU

PM_CMPLU_STALL_IFU_OTHER

PM_CMPLU_STALL_OTHER

PM_GCT_NOSLOT
_CYC

PM_GCT_NOSLOT_IC_MISS

PM_GCT_NOSLOT_BR_MPRED

PM_GCT_NOSLOT_BR_MPRED_IC_MISS

PM_GCT_NOSLOT_EMPTY_OTHER

PM_GRP_CMPL PM_1PLUS_PPC_CMPL

Overhead of Expansion (PM_GRP_CMPL - PM_1PLUS_PPC_CMPL)

6.1.3 CPI events and metrics for POWER8
The CPI breakdown plug-in collects several required events, and then calculates metrics for the CPI
breakdown model. These are the CPI events and metrics collected for POWER8.

The ocount command collects the following POWER8 events:
v PM_RUN_CYC: Processor Cycles gated by the run latch. Operating systems use the run latch to

indicate when they are doing useful work. The run latch is typically cleared in the OS idle loop. Gating
by the run latch filters out the idle loop.

v PM_CMPLU_STALL: Cycles where a thread was not completing any groups, when the group
completion table had entries for that thread.

v PM_GCT_NOSLOT_CYC: Cycles when the Global Completion Table has no slots from this thread.
v PM_GRP_CMPL: A group completed. Microcoded instructions that span multiple groups will generate

this event once per group.
v PM_CMPLU_STALL_LSU: Following a completion stall (any period when no groups completed, while

group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Load store Unit.

v PM_CMPLU_STALL_VSU: Cycles stalled by Vector-and-Scalar Unit (PM_CMPLU_STALL_VECTOR,
PM_CMPLU_STALL_SCALAR and PM_CMPLU_STALL_DFP).

62 Linux: Developing software using the IBM Software Development Kit for Linux on Power

v PM_CMPLU_STALL_FXU: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Fixed Point Unit.

v PM_CMPLU_STALL_SCALAR: Following a completion stall (any period when no groups completed,
while group completion table was not empty for that thread) the last instruction to finish before
completion resumes was a scalar floating point instruction.

v PM_CMPLU_STALL_VECTOR: Following a completion stall (any period when no groups completed,
while group completion table was not empty for that thread) the last instruction to finish before
completion resumes was a vector instruction.

v PM_CMPLU_STALL_REJECT: Following a completion stall (any period when no groups completed,
while group completion table was not empty for that thread) the last instruction to finish before
completion resumes suffered a load/store reject.

v PM_CMPLU_STALL_DIV: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was a fixed-point divide instruction.

v PM_CMPLU_STALL_SCALAR_LONG: Following a completion stall (any period when no groups
completed, while group completion table was not empty for that thread) the last instruction to finish
before completion resumes was a floating point divide or square root instruction.

v PM_CMPLU_STALL_VECTOR_LONG: Following a completion stall (any period when no groups
completed, while group completion table was not empty for that thread) the last instruction to finish
before completion resumes was a long latency vector instruction.

v PM_CMPLU_STALL_DFU: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Decimal Floating Point Unit.

v PM_CMPLU_STALL_ERAT_MISS: Following a completion stall (any period when no groups
completed, while group completion table was not empty for that thread) the last instruction to finish
before completion resumes suffered an ERAT miss.

v PM_CMPLU_STALL_DCACHE_MISS: Cycles stalled by Data Cache (L1) misses.
v PM_CMPLU_STALL_STORE: Following a completion stall (any period when no groups completed,

while group completion table was not empty for that thread) the last instruction to finish before
completion resumes was a store. This generally happens when we run out of real SRQ entries, which
prevents stores from issuing.

v PM_CMPLU_STALL_THRD: Following a completion stall (any period when no groups completed,
while group completion table was not empty for that thread) the thread could not complete a group
because the completion port its sharing was being used by another thread. In SMT4 mode Thread0 and
Thread2 share a completion port and Thread1 and Thread3 share another completion port.

v PM_CMPLU_STALL_IFU: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Instruction fetch unit (either Branch Unit or CR unit).

v PM_CMPLU_STALL_BRU: Following a completion stall (any period when no groups completed, while
group completion table was not empty for that thread) the last instruction to finish before completion
resumes was from the Branch Unit. This mostly occurs where the branch has dependencies on a long
latency instruction such as a load.

v PM_GCT_NOSLOT_IC_MISS: Cycles when the Global Completion Table has no slots from this thread
because of an Instruction Cache miss.

v PM_GCT_NOSLOT_BR_MPRED: Cycles when the Global Completion Table has no slots from this
thread because of a branch misprediction.

v PM_GCT_NOSLOT_BR_MPRED_IC_MISS: Cycles when the Global Completion Table has no slots from
this thread because of a branch misprediction and Instruction cache miss.

v PM_1PLUS_PPC_CMPL: A group containing at least one PowerPC instruction completed. For
microcoded instructions that span multiple groups, this will only occur once.

6 Analyzing application performance on Power Systems servers 63

v PM_1PLUS_PPC_DISP: Cycles at least one Instr Dispatched.
v PM_CMPLU_STALL_VECTOR_LONG: Completion stall due to long latency vector instruction
v PM_CYC: Processor Cycles.
v PM_CMPLU_STALL_BRU_CRU: Completion stall due to IFU.
v PM_CMPLU_STALL_FXLONG: Completion stall due to a long latency fixed point instruction.
v PM_CMPLU_STALL_DMISS_L2L3: Completion stall by Dcache miss which resolved in L2/L3.
v PM_CMPLU_STALL_DMISS_L2L3_CONFLICT: Completion stall due to cache miss due to L2 L3

conflict.
v PM_CMPLU_STALL_DMISS_L3MISS: Completion stall due to cache miss resolving missed the L3.
v PM_CMPLU_STALL_DMISS_LMEM: Completion stall due to data cache miss that resolved in local

memory.
v PM_CMPLU_STALL_DMISS_L21_L31: Completion stall by Dcache miss which resolved on chip

(excluding local L2/L3).
v PM_CMPLU_STALL_DMISS_REMOTE: Completion stall by Dcache miss which resolved from remote

chip (cache or memory).
v PM_CMPLU_STALL_REJECT_LHS: Completion stall due to reject (Load Hit Store).
v PM_CMPLU_STALL_ERAT_MISS: Completion stall due to LSU reject ERAT miss.
v PM_CMPLU_STALL_REJ_LMQ_FULL: Completion stall due to LSU reject LMQ full.
v PM_CMPLU_STALL_LOAD_FINISH: Completion stall due to a Load finish.
v PM_CMPLU_STALL_ST_FWD: Completion stall due to store forward.
v PM_CMPLU_STALL_NTCG_FLUSH: Completion stall due to NTCG flush.
v PM_NTCG_ALL_FIN: Cycles in which all instructions in the group have finished but completion is still

pending.
v PM_CMPLU_STALL_LWSYNC: Completion stall due to ISYNC/LWSYNC.
v PM_CMPLU_STALL_HWSYNC: Completion stall due to HWSYNC.
v PM_CMPLU_STALL_MEM_ECC_DELAY: Completion stall due to mem ECC delay.
v PM_CMPLU_STALL_FLUSH: Completion stall due to flush by own thread.
v PM_CMPLU_STALL_COQ_FULL: Completion stall due to CO q full.
v PM_GCT_NOSLOT_IC_L3MISS: GCT empty for this thread due to Icache L3 miss.
v PM_GCT_NOSLOT_BR_MPRED_ICMISS: GCT empty for this thread due to Icache Miss and branch

mispred.
v PM_GCT_NOSLOT_DISP_HELD_MAP: GCT empty for this thread due to dispatch hold on this thread

due to Mapper full.
v PM_GCT_NOSLOT_DISP_HELD_SRQ: GCT empty for this thread due to dispatch hold on this thread

due to SRQ full.
v PM_GCT_NOSLOT_DISP_HELD_ISSQ: GCT empty for this thread due to dispatch hold on this thread

due to Issue q full.
v PM_CMPLU_STALL_DMISS_DISTANT: Cycles stalled by L1 reloads from distant interventions and

distant memory.

After collecting the events, the ocount command calculates the necessary metrics for the CPI breakdown
model.

Table 9. CPI breakdown metrics for POWER8

Metric Formula

PM_CMPLU_STALL_CRU PM_CMPLU_STALL_BRU_CRU -
PM_CMPLU_STALL_BRU

64 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 9. CPI breakdown metrics for POWER8 (continued)

Metric Formula

PM_CMPLU_STALL_FXU_OTHER PM_CMPLU_STALL_FXU -
PM_CMPLU_STALL_FXLONG

PM_CMPLU_STALL_VECTOR_OTHER PM_CMPLU_STALL_VECTOR -
PM_CMPLU_STALL_VECTOR_LONG

PM_CMPLU_STALL_SCALAR_OTHER PM_CMPLU_STALL_SCALAR -
PM_CMPLU_STALL_SCALAR_LONG

PM_CMPLU_STALL_VSU_OTHER PM_CMPLU_STALL_VSU -
PM_CMPLU_STALL_VECTOR -
PM_CMPLU_STALL_SCALAR_LONG

PM_CMPLU_STALL_DMISS_L2L3_NO_CONFLICT PM_CMPLU_STALL_DMISS_L2L3 -
PM_CMPLU_STALL_DMISS_L2L3_CONFLICT

PM_CMPLU_STALL_DMISS_DISTANT (PM_CMPLU_STALL_DMISS_L3MISS -
(PM_CMPLU_STALL_DMISS_LMEM +
PM_CMPLU_STALL_DMISS_L21_L31 +
PM_CMPLU_STALL_DMISS_REMOTE))

PM_CMPLU_STALL_REJECT_OTHER (PM_CMPLU_STALL_REJECT -
(PM_CMPLU_STALL_REJECT_LHS +
PM_CMPLU_STALL_ERAT_MISS +
PM_CMPLU_STALL_REJ_LMQ_FULL))

PM_CMPLU_STALL_LSU_OTHER (PM_CMPLU_STALL_LSU -
(PM_CMPLU_STALL_DCACHE_MISS +
PM_CMPLU_STALL_REJECT +
PM_CMPLU_STALL_STORE +
PM_CMPLU_STALL_LOAD_FINISH +
PM_CMPLU_STALL_ST_FWD))

PM_CMPLU_STALL_OTHER PM_CMPLU_STALL - PM_CMPLU_STALL_BRU_CRU -
PM_CMPLU_STALL_FXU - PM_CMPLU_STALL_VSU -
PM_CMPLU_STALL_LSU -
PM_CMPLU_STALL_NTCG_FLUSH

PM_CMPLU_STALL_BLOCK_OTHER (PM_CMPLU_STALL_THRD -
(PM_CMPLU_STALL_LWSYNC +
PM_CMPLU_STALL_HWSYNC +
PM_CMPLU_STALL_MEM_ECC_DELAY +
PM_CMPLU_STALL_FLUSH +
PM_CMPLU_STALL_COQ_FULL))

PM_GCT_NOSLOT_IC_L2L3 PM_GCT_NOSLOT_IC_MISS -
PM_GCT_NOSLOT_IC_L3MISS

PM_GCT_NOSLOT_DISP_HELD PM_GCT_NOSLOT_DISP_HELD_MAP +
PM_GCT_NOSLOT_DISP_HELD_SRQ +
PM_GCT_NOSLOT_DISP_HELD_ISSQ +
PM_GCT_NOSLOT_DISP_HELD_OTHER

PM_GCT_EMPTY_OTHER PM_GCT_NOSLOT_CYC - PM_GCT_NOSLOT_IC_MISS
- PM_GCT_NOSLOT_BR_MPRED -
PM_GCT_NOSLOT_BR_MPRED_IC_MISS -
PM_GCT_NOSLOT_DISP_HELD_MAP -
PM_GCT_NOSLOT_DISP_HELD_SRQ -
PM_GCT_NOSLOT_DISP_HELD_ISSQ -
PM_GCT_NOSLOT_DISP_HELD_OTHER

OTHER_CPI PM_RUN_CYC - PM_CMPLU_STALL -
PM_NTCG_ALL_FIN - PM_CMPLU_STALL_THRD -
PM_GCT_NOSLOT_CYC - PM_GRP_CMPL

6 Analyzing application performance on Power Systems servers 65

Table 9. CPI breakdown metrics for POWER8 (continued)

Metric Formula

STALL_CPI PM_CMPLU_STALL / PM_RUN_INST_CMPL

RUN_CPI PM_RUN_CYC / PM_RUN_INST_CMPL

The CPI breakdown model flow that is defined for POWER8 technology enablement is depicted in the
following table. The sum of the events in a column is the same for each column across the table.

66 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Table 10. CPI breakdown model flow for POWER8

Cycles Breakdown 1 Breakdown 2 Breakdown 3 Breakdown 4 Breakdown 5

PM_RUN
_CYC

PM_CMPLU
_STALL

PM_CMPLU
_STALL_BRU_CRU

PM_CMPLU_STALL_BRU

PM_CMPLU_STALL_CRU

PM_CMPLU
_STALL_FXU

PM_CMPLU_STALL_FXLONG

PM_CMPLU_STALL_FXU_OTHER

PM_CMPLU
_STALL_VSU

PM_CMPLU
_STALL_VECTOR

PM_CMPLU_STALL_VECTOR_LONG

PM_CMPLU_STALL_VECTOR_OTHER

PM_CMPLU
_STALL_SCALAR

PM_CMPLU_STALL_SCALAR_LONG

PM_CMPLU_STALL_SCALAR_OTHER

PM_CMPLU_STALL_VSU_OTHER

PM_CMPLU
_STALL_LSU

PM_CMPLU
_STALL_DCACHE
_MISS

PM_CMPLU
_STALL_DMISS
_L2L3

PM_CMPLU_STALL_DMISS
_L2L3_CONFLICT

PM_CMPLU_STALL_DMISS
_L2L3_NO_CONFLICT

PM_CMPLU
_STALL_DMISS
_L3MISS

PM_CMPLU_STALL_DMISS_LMEM

PM_CMPLU_STALL_DMISS_L21_L31

PM_CMPLU_STALL_DMISS_REMOTE

PM_CMPLU_STALL_DMISS_DISTANT

PM_CMPLU
_STALL_REJECT

PM_CMPLU_STALL_REJECT_LHS

PM_CMPLU_STALL_ERAT_MISS

PM_CMPLU_STALL_REJ_LMQ_FULL

PM_CMPLU_STALL_REJECT_OTHER

PM_CMPLU_STALL_STORE

PM_CMPLU_STALL_LOAD_FINISH

PM_CMPLU_STALL_ST_FWD

PM_CMPLU_STALL_LSU_OTHER

PM_CMPLU_STALL_NTCG_FLUSH

PM_CMPLU_STALL_OTHER

PM_NCTG_ALL_FIN

PM_CMPLU
_STALL
_THRD

PM_CMPLU_STALL_LWSYNC

PM_CMPLU_STALL_HWSYNC

PM_CMPLU_STALL_MEM_ECC_DELAY

PM_CMPLU_STALL_FLUSH

PM_CMPLU_STALL_COQ_FULL

PM_CMPLU_STALL_BLOCK_OTHER

PM_GCT
_NOSLOT
_CYC

PM_GCT_NOSLOT
_IC_MISS

PM_GCT_NOSLOT_IC_L3MISS

PM_GCT_NOSLOT_IC_L2L3

PM_GCT_NOSLOT_BR_MPRED

PM_GCT_NOSLOT_BR_MPRED_ICMISS

PM_GCT_NOSLOT
_DISP_HELD

PM_GCT_NOSLOT_DISP_HELD_MAP

PM_GCT_NOSLOT_DISP_HELD_SRQ

PM_GCT_NOSLOT_DISP_HELD_ISSQ

PM_GCT_NOSLOT_DISP_HELD_OTHER

PM_GCT _EMPTY_OTHER

PM_GRP_CMPL

OTHER_CPI

6 Analyzing application performance on Power Systems servers 67

6.1.4 Profiling a binary application with CPI from the command line
You can use a simplified version of the CPI breakdown plug-in in the command line, outside the IDE.

About this task

Complete these steps to profile a binary application with CPI from the command line:

Procedure
1. On your Power Systems server, navigate to the /opt/ibm/ibm-sdk-lop/bin folder.
2. Locate the cpi_profile.sh script
3. Run the script.

Note: Run the script without parameters to see the usage instructions.

6.1.5 Profiling a project with the CPI breakdown plug-in
You can use the CPI breakdown plug-in to analyze your project for performance improvement through
the CPI breakdown model.

Before you begin

Ensure that you have compiled the binary files. Right-click on the project name and select Build Project.

About this task

Complete these steps to profile a project on the local system using the CPI breakdown plug-in.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profiling Tools > Profiling Tools

Configuration.
2. In the Profiling Tools Configuration window, click Profile with CPI in the left pane, and then select

the New launch configuration icon near the upper left of the window.
3. On the Main tab, beside the C/C++ executable field, select the binary file that you want to profile.
4. Optional: On the Main tab, click Browse from the Working directory field to select the folder to be

used by the profiling tool.
5. Optional: On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
6. Optional: On the CPI Options tab, select option Select Source Disassembly View.
7. Click Profile to begin the profiling. After the profiling completes, a CPI Breakdown perspective opens,

with the CPI breakdown model (CBM) view shown. The CPI Breakdown Model view shows all the
metrics, events, and their values. Red boxes represent hot spot events.
In addition, the following views open in the other tabs:
v The Events view shows all the events that were gathered using the ocount tool. Use the search field

to quickly find a specific event.
v The Metrics view shows all the metrics that were calculated. Use the search field to quickly find a

specific metric.
v The Radar Chart View provides a graphical visualization of the profiling, allowing you to compare

several rounds of execution.
To compare rounds, locate the files with *.cpi extension at the project explorer view and proceed as
following:
a. Load a CPI-Breakdown round: Right click on the *.cpi file and select CPI Analyzes > Load events.
b. Compare CPI-Breakdown rounds: Select at least two *.cpi files, and right click to select CPI

Analyzes > Events Compare.

68 Linux: Developing software using the IBM Software Development Kit for Linux on Power

c. Average of CPI-Breakdown rounds: Select one or more *.cpi files, and right click to select CPI
Analyzes > Events Average.

8. You can drill down through the profiling results to the source code.
a. In the CPI breakdown model view, double-click any colorized (red, soft red, orange) box that

represents a hot spot. The Drilldown view opens in a new tab. The Drilldown view lists the source
code elements that caused the event you selected.

b. In the Drilldown view, double-click a source code element. This action displays the source code, at
the line that corresponds to the selected event, in the source code view on the lower pane. The
source code view lists the source file name as the tab name.

6.2 Analyzing performance with OProfile
OProfile is a system-wide profiler for Linux systems that allows for the analysis of system performance
and the identification of code hot spots. It also contains support for hardware performance counters. IBM
Software Development Kit for Linux on Power provides integration with OProfile to allow you to profile
running applications while conserving system resources.

OProfile profiles hardware and software interrupt handlers, kernel modules, the kernel, shared libraries,
and applications. OProfile provides commands, or utilities, for controlling profiling.

Legacy OProfile consists of the opcontrol shell script for configuring, starting, and stopping a profiling
session. To this purpose, a kernel driver is used for collecting samples, which are recorded into sample
files. A disadvantage of this mode is the necessity of elevated user privileges to run opcontrol.

Operf was designed to be used in place of opcontrol for profiling. It uses the Linux Performance Events
Subsystem, and therefore, does not require the use of the opcontrol daemon or any elevated privileges.

You can use either method, opcontrol or operf, to profile with OProfile and IBM SDK for Linux on
Power.

6.2.1 Profiling a project with OProfile
You can use OProfile to profile your project to analyze system performance while running applications.

Before you begin

Ensure that you have completed the following:
1. OProfile available on your system.
2. Building the project.
3. Verifying that the Linux tools path specifies the version of Advance Toolchain for Linux on Power you

want to use during profiling. See 2.4.7, “Changing the Advance Toolchain version,” on page 17 for
information.

About this task

Complete these steps to profile a project using OProfile.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK.
2. View the project by clicking the project name in the Project Explorer pane.
3. Click Profiling Tools > Profiling Tools Configurations.
4. In the Profiling Tools Configurations window, click Profile with OProfile in the left pane, and then

click the New launch configuration icon near the upper left of the window.

6 Analyzing application performance on Power Systems servers 69

5. On the Main tab, beside the C/C++ Application field, click Search Project to select the binary file
that you want to profile.

6. If necessary, click the arrows in the Build configuration field and select Default.
7. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
8. On the Global tab, click the arrow in the Profile with field to select which profiling method,

opcontrol or operf, to use. If you select opcontrol, you can also select from the following options:
v Specify a kernel image file. This option collects more detailed information about the operation of

a program in the Linux kernel. Type the file name or click Browse to locate and select it.

Note: When you select this option, you must also select the Include dependent kernel modules
option.

v Include dependent shared libraries. Select this option to include samples from shared libraries
that are used by the profiled program. These samples are then aggregated in the profile results.

9. Optional: On the Events tab, you can clear the Use default event check box to select a different
event to be monitored. You can also select multiple events within the same group. The number of
events varies by system, but typically you can select up to six events.

10. Click Profile to begin the profiling. After the profiling completes, an OProfile tab opens and displays
the event types that were profiled.

11. You can expand the events to view the binary image, function, and line numbers where the profiling
collected most of the events that were profiled. The results are sorted with the functions that the
program spent the most time executing shown first. You can click on an item to open the source
code.

Related information:

Taking advantage of OProfile

6.2.2 Profiling a synchronized project with OProfile
You can use OProfile to profile a synchronized project to analyze system performance while running
applications.

Before you begin

Ensure that you have completed the following:
1. OProfile available on your system.
2. Building the project.
3. Verifying that the Linux tools path specifies the version of Advance Toolchain for Linux on Power you

want to use during profiling. See 2.4.7, “Changing the Advance Toolchain version,” on page 17 for
information.

About this task

Complete these steps to profile a synchronized project using OProfile.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profiling Tools > Profiling Tools

Configurations.
2. In the Profiling Tools Configurations window, click Profile with OProfile (Remote) in the left pane,

and then click the New launch configuration icon near the upper left of the window.
3. On the Main tab, below C/C++ Executable, click Browse to select the binary file that you want to

profile.
4. If necessary, click the arrows in the Build configuration field and select Default.
5. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.

70 Linux: Developing software using the IBM Software Development Kit for Linux on Power

http://www.ibm.com/developerworks/wikis/display/LinuxP/Taking+advantage+of+oprofile

6. Optional: On the Events tab, you can clear the Use default event check box to select a different event
to be monitored. You can also select multiple events within the same group. The number of events
varies by system, but typically you can select up to six events.

7. On the Global tab, click the arrow in the Profile with field to select which profiling method,
opcontrol or operf, to use. If you select opcontrol, you can also select from the following options:
v Specify a kernel image file. This option collects more detailed information about the operation of a

program in the Linux kernel. Type the file name or click Browse to locate and select it.

Note: When you select this option, you must also select the Include dependent kernel modules
option.

v Include dependent shared libraries. Select this option to include samples from shared libraries that
are used by the profiled program. These samples are then aggregated in the profile results.

8. Click Profile to begin the profiling. After the profiling completes, an OProfile tab opens and displays
the event types that were profiled.

9. You can expand the events to view the binary image, function, and line numbers where the profiling
collected most of the events that were profiled. The results are sorted with the functions that the
program spent the most time executing shown first. You can click on an item to open the source code.

Related information:

Taking advantage of OProfile

6.3 Analyzing performance with Perf
You can use Perf to profile your project and analyze its performance. Perf uses information produced by
the Linux kernel perf events subsystem to profile a running application. Perf analyzes software,
hardware, and tracepoint events.

Perf is an optional but recommended package. If you want to use Perf, you must download and install it
as described in 2.2, “Recommended and optional packages,” on page 9.

6.3.1 Profiling a project with Perf
You can use Perf to profile your project to analyze its performance.

Before you begin

Before you can use Perf, you must ensure that you have downloaded and installed it as described in 2.2,
“Recommended and optional packages,” on page 9.

About this task

Complete these steps to profile a project using Perf.

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK.
2. View the project by clicking the project name in the Project Explorer pane.
3. Click Profiling Tools > Profiling Tools Configurations.
4. In the Profiling Tools Configurations window, click Profile with Perf in the left pane, and then click

the New launch configuration icon near the upper left of the window.
5. On the Main tab, beside the C/C++ Application field, click Search Project to select the binary file

that you want to profile.
6. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
7. Optional: On the Perf Options tab, you can change default profiling settings.

6 Analyzing application performance on Power Systems servers 71

http://www.ibm.com/developerworks/wikis/display/LinuxP/Taking+advantage+of+oprofile

8. Optional: On the Perf Events tab, you can clear the Default Event check box to select a different
event to be monitored. You can also select multiple events.

9. Click Profile to begin the profiling. After the profiling completes, a Perf tab opens and displays the
event types that were profiled.

10. You can expand the events to view the binary image, function, and line numbers where the profiling
collected most of the events that were profiled. The results are sorted with the functions that the
program spent the most time executing shown first. You can click on an item to open the source
code.

6.3.2 Profiling a synchronized project with Perf
You can use Perf to profile a synchronized project to analyze its performance.

Before you begin

Before you can use Perf, you must ensure that you have downloaded and installed it as described in 2.2,
“Recommended and optional packages,” on page 9.

About this task

Complete these steps to profile a synchronized project using Perf.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profiling Tools > Profiling Tools

Configurations.
2. In the Profiling Tools Configurations window, click Profile with Remote Perf in the left pane, and

then click the New launch configuration icon near the upper left of the window.
3. On the Main tab, below C/C++ Executable, click Browse to select the binary file that you want to

profile.
4. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
5. Optional: On the Perf Options tab, you can change default profiling settings.
6. Optional: On the Perf Events tab, you can clear the Default Event check box to select a different event

to be monitored. You can also select multiple events.
7. Click Profile to begin the profiling. After the profiling completes, a Perf tab opens and displays the

event types that were profiled.
8. You can expand the events to view the binary image, function, and line numbers where the profiling

collected most of the events that were profiled. The results are sorted with the functions that the
program spent the most time executing shown first. You can click on an item to open the source code.

6.4 Profiling a project with gprof
The GNU profiler, or gprof, is a performance analysis tool that creates an execution profile of your C or
C++ program. Gprof uses static instrumentation to calculate the amount of time expended in a function
of the program, and the number of times the function is called.

Before you begin

You must compile the binary files with the -pg option. This option produces profiling information
required for analysis by gprof. See “Recommendations for debug flags” on page 35 and 4.1.2, “Setting
debug flags for Autotools-based projects,” on page 40 for details and instructions for setting the flags.

About this task

Complete these steps to profile a project with gprof.

72 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Procedure
1. Run the application. See 2.4.8, “Running an executable program in a project,” on page 18. Profiling

information is output to the gmon.out file in the same folder location as the application binary file.
2. Refresh the view by right-clicking the project name and clicking Refresh.
3. Double-click the gmon.out file.
4. In the Binary File selection window, click Workspace or File System to select the binary file that

produced the profile data. Click OK. A gprof view tab appears. The view enables you to visualize
profiling information.

5. Optional: Use the controls in the upper right of the view to change information visualization.

6.5 Analyzing application behavior using Valgrind
Valgrind is an open source programming tool used for detecting memory leaks, memory debugging, and
performing detailed profiling to find blockages in programs. Supported Valgrind tools include Memcheck
memory error detector, Helgrind thread error detector, Massif memory usage profiler, and Cachegrind
cache and branch-prediction profiler.

Memcheck detects memory management problems, reporting these errors as they occur. Memcheck gives
the source line number at which the error occurred, and a stack trace of the functions called up to that
line. Problems detected by Memcheck include the following:
v Illegal read and write operations
v Use of unitialized values
v Use of uninitialized or unaddressable values in system calls
v Illegal freeing of memory
v Memory freed with inappropriate deallocation functions
v Overlapping of source and destination blocks on memory copy functions
v Memory leaks

Helgrind is a POSIX thread (Pthreads) debugger that finds data races in multithreaded programs as well
as other Pthread-related problems. Problems detected by Helgrind include the following:
v Misuses of the Pthreads API
v Deadlock caused by lock ordering
v Data race conditions

Massif is a memory profiler that analyzes heap and stack usage.

Cachegrind is a cache and branch-prediction profiler. Cachegrind identifies the number of cache misses,
memory references, and instructions executed for each line of source code.

6.5.1 Profiling a project using Valgrind
You can use Valgrind to profile your project to detect memory leaks, debug memory issues, and perform
detailed profiling.

Before you begin

Before you profile a project, ensure that the project has been built.

About this task

Complete these steps to profile a project using Valgrind.

6 Analyzing application performance on Power Systems servers 73

Procedure
1. Switch to the C/C++ perspective by clicking Window > Open Perspective > C/C++. Click OK.
2. In the Project Explorer pane, right-click the project name. Click Profiling Tools > Profiling Tools

Configurations.
3. In the Profiling Tools Configurations window, click Profile with Valgrind in the left pane, and then

click the New launch configuration icon near the upper left of the window.
4. On the Main tab, beside the C/C++ Application field, click Search Project to select the binary file that

you want to profile.
5. If necessary, click the arrows in the Build configuration field and select Default.
6. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
7. On the Valgrind Options tab, select the tool to run and select the options that best fit your profiling

needs.
8. Click Profile to begin the profiling.

Results

The source code is displayed. Lines that have errors that were detected by Valgrind are highlighted with
an “X”. See 6.5.3, “Applying quick fixes for Valgrind-reported errors,” on page 75 for information about
how to resolve them.

6.5.2 Profiling a synchronized project using Valgrind
You can use Valgrind to profile your synchronized project to detect memory leaks, debug memory issues,
and perform detailed profiling.

Before you begin

Before you profile a project, ensure that the project has been built.

About this task

Complete these steps to profile a synchronized project using Valgrind.

Procedure
1. Switch to the remote C/C++ perspective by clicking Window > Open Perspective > Other > Remote

C/C++. Click OK. The synchronized project should be displayed under the Project Explorer view.
2. In the Project Explorer pane, right-click the project name. Click Profiling Tools > Profiling Tools

Configurations.
3. In the Profiling Tools Configurations window, click Profile with Valgrind (Remote) in the left pane,

and then click the New launch configuration icon near the upper left of the window.
4. On the Main tab, beside the C/C++ Application field, click Browse to select the binary file that you

want to profile.
5. If necessary, click the arrows in the Build configuration field and select Default.
6. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
7. On the Valgrind Options tab, select the tool to run and select the options that best fit your profiling

needs.
8. Click Profile to begin the profiling.

74 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Results

The source code is displayed. Lines that have errors that were detected by Valgrind are highlighted with
an “X”. See 6.5.3, “Applying quick fixes for Valgrind-reported errors” for information about how to
resolve them.

6.5.3 Applying quick fixes for Valgrind-reported errors
IBM SDK for Linux on Power provides quick fixes for errors found by Valgrind. Quick fixes are
suggestions or tips that might help correct identified errors.

Before you begin

Ensure that you have profiled your project with Valgrind, as described in 6.5.1, “Profiling a project using
Valgrind,” on page 73 and 6.5.2, “Profiling a synchronized project using Valgrind,” on page 74.

About this task

After you run Valgrind, the source code is displayed, and the lines that have errors are highlighted with
an “X”. Complete these steps to fix problems that are found with Valgrind.

Procedure
1. Right-click the line with the error, and select Quick Fix. If there are any quick fixes available, they are

displayed in a list.
2. Select the appropriate quick fix. The fix is applied and the program source changed automatically to

fix the source.

6.6 Analyzing POSIX Threads using Trace Analyzer
The IBM Software Development Kit for Linux on Power includes Trace Analyzer, a plug-in for graphical
and numerical analysis of performance traces.

6.6.1 Trace Analyzer overview
Trace Analyzer allows graphic visualization and analysis of POSIX Threads (Pthreads) concurrency.

Concurrency information is generated by a Pthread monitoring tool running on Pthread-based
applications. The monitoring tool can be invoked from within the visualizer or from the command line.
The concurrency information includes synchronization using mutexes, spinlocks, and conditional variable
signaling.

With the Trace Analyzer, you can perform the following analysis tasks:
v Collect the Pthreads profile and view the resulting trace.
v View the active threads and the blocking operations.
v View the active locks and spinlocks, threads waiting on locks, threads holding locks, and queue sizes.
v View conditional variables, threads waiting for them, and the contention for the associated mutexes.
v Collect a trace of blocking I/O requests, and view the trace together with the synchronization data.

6.6.2 Profiling a project with Trace Analyzer
You can profile a project with Trace Analyzer to analyze Pthreads concurrency.

Before you begin

Before you profile a project, ensure that it has been built.

6 Analyzing application performance on Power Systems servers 75

Procedure
1. In the Project Explorer pane, right-click the project name and select Profile Tools > Profile

Configurations.
2. In the Profile Configurations window, select Profile with Trace Analyzer for Pthreads in the left pane,

and then select the New launch configuration icon near the upper left of the window.
3. On the Main tab, click Browse from the C/C++ executable to select the binary to be profiled.
4. On the Main tab, click Browse from the Working directory to select the folder to be used by the

profiling tool.
5. On the Arguments tab, specify the necessary arguments to run the application.
6. Click Profile.
7. Optional: To enable operating system I/O monitoring using SystemTap along with data collection,

complete this step. On the Trace Analyzer Options tab in the Operating system monitoring section,
select the I/O option from the list of available options. The default is no I/O monitoring. If I/O
monitoring is enabled, the I/O monitoring traces read and write system calls. The system call times
are shown with application times.

8. Optional: To adjust the depth of stack trace information to be collected in the traces, complete this
step. On the Trace Analyzer Options tab in the Number of frames to back trace section, select the
number of frames from the list of available options. Available values are 0 - 9; the default is 2.

6.6.3 Collecting a trace by setting variables from the command line
You can set variables from the command line to affect how a trace is collected.

About this task

Select from the following options.

Procedure
v Set the SASSTOREPATH variable to point to a directory for temporary log files. Ensure that you have

write permission and enough disk space in the directory. 32-bit and 64-bit applications must use
different directories. Different profiling runs can use the same directory if they use different tags.
– If the application under monitoring terminates abnormally, clean the data directory by setting the

SASSTOREPATH variable as follows:
SASSTOREPATH=directory <$PMHOME>/pthreadmon/ bin/sasutil

Specify the same directory as in the monitoring run for directory. Running this command displays a
list of options; select 6 to remove the data.

v Set the MONITOREDAPPTAG variable to be the identifier of the monitored execution. Allowed characters are
a to z, A to Z, and 0 to 9. Usually the tag contains the application name, settings description, and date
and time of the run. The tag cannot be longer than 100 characters.

v Optional: Set the BT_LEVEL variable to be the depth of the call stack to be recorded with monitored
events. Allowed values are 0 - 4; the default is 2.

v Optional: Set the OSMONITOR variable to describe the operating system data to collect. The only
supported value is io, which triggers logging of read/write system calls. It is supported only for 64-bit
programs and might not work with large logs.

Results

The log files are written to ($MONITOREDAPPTAG)_logfile_number.pthreads files in the current directory. If
the monitored data is large, the log is split into multiple files, for example:
($MONITOREDAPPTAG)_log0.pthreads, ($MONITOREDAPPTAG)_log1.pthreads,
($MONITOREDAPPTAG)_log2.pthreads, and so on.

76 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Note: If there is not enough space to hold all of the events, the logger might drop events in the
beginning of the trace.

Example

Note: By using the code examples, you agree to the terms of the 10, “Code license and disclaimer
information,” on page 95.
[pmhome/pthread-mon/test]# SASSTOREPATH=/tmp/sasdata64
MONITOREDAPPTAG=appTag BT_LEVEL=2 ../scripts/pthread-mon ./app64
<... snip ...>
Hello world!

[pmhome/pthread-mon/test]# cat appTag_log0.pthreadss
0 1350069905206059 27241 0x10010c90
1 1350069905216439 27241 0 4398060282400
2 1350069905216827 27241 4398060282400 0x10000758 0x4000014276c
99 0x10000758 ../app/app ./app.c:20
99 0x4000014276c /lib64/power5/libc.so.6 ??:0
3 1350069905296762 27241 0

6.6.4 Record Details view
The Record Details view shows name/value pairs for all the fields defined for the selected record.

The call-stack information in the Record Details view can be used to match specific blocking events to
source code lines. For example, BacktraceExec0 is the executable program, and BacktraceLine0 is the line
in that executable program from which the blocking function is called.

The Record Details view includes the following tabs: Overview, Waits by thread, Hot locks, Hot spins,
and Hot Cond Var. In each tab of the view, the x axis is the time, increasing from left to right. Each
Pthread view has options available in the Properties view for toggling the display of each metric.

Overview tab

The Overview tab view gives an overview of all threads synchronization actions . The threads are shown
as gray blocks spanning the entire thread lifetime. Synchronization events are shown above the thread
block, and operating system events (if available) are shown below it.

Start Indicates when the thread is created.

End Indicates when the thread is ended.

Join Indicates that the thread is waiting to join another thread.

Mutex_lock
Indicates that the thread is blocking because it is trying to acquire a mutex.

Condvar_wait
Indicates that the thread is blocking because it is waiting on a conditional variable.

IO Indicates that the thread was blocked in I/O (operating system event).

Waits by thread tab

The Waits by thread tab view displays the Pthread locks for each thread that is blocked, waiting to
acquire a specific mutex. The display includes colors to differentiate between the different mutexes. The
list of displayed threads can be edited through the Properties view.

Hot locks tab

The Hot locks tab view shows the number of Pthreads that are blocked, waiting to acquire each mutex.

6 Analyzing application performance on Power Systems servers 77

Blocking before lock
Shows the number of threads blocking as a result of calling pthread_mutex_lock. The color
displayed is determined by the last thread in the queue.

Hold Shows the lock lifetime and the intervals for which the lock was held. The colors displayed for
lock lifetime match those in the Waits by thread view. The color displayed for the intervals is
determined by the holding thread.

Blocking after wait
Shows the number of threads blocking while trying to reacquire a mutex that was lost while
waiting on a conditional variable. The color displayed is determined by the last thread in the
queue.

Hot spins tab

The Hot spins tab view shows the thread holding the spin lock and number of threads waiting on that
spin lock over time.

Wait Shows the number of threads blocking as a result of calling pthread_spin_lock. The color
displayed is determined by the oldest thread in the queue.

Hold Shows the spin lock lifetime and the intervals in which it was held. The colors displayed for lock
lifetime match those in the Waits by thread view. The color displayed for the intervals is
determined by the holding thread.

Hot Cond Var tab

The Hot Cond Var tab view shows the number of Pthreads waiting for each conditional variable. In
addition, the view shows how many threads are blocking, waiting to acquire this mutex, for each mutex
guarding the conditional variable. As in the Hot locks tab, the view on this tab contains two graphs for
each mutex.

Blocking before lock
Shows the number of threads blocking as a result of calling pthread_mutex_lock. The color
displayed is determined by the last thread in the queue.

Hold Shows the lock lifetime and the intervals for which the lock was held. The colors displayed for
lock lifetime match those in the Waits by thread view. The color displayed for the intervals is
determined by the holding thread.

Blocking after wait
Shows the number of threads blocking while trying to reacquire a mutex that was lost while
waiting on a conditional variable. The color displayed is determined by the last thread in the
queue.

The list of displayed conditional variables can be edited through the Properties view.

6.7 Analyzing coverage with gcov
The GNU test coverage program, or gcov, is a tool that uses static instrumentation to generate test
coverage information.

Before you begin

Ensure that the following steps have been completed before you use gcov.
1. Compile the binary files with the -ftest-coverage and -fprofile-arcs options.

78 Linux: Developing software using the IBM Software Development Kit for Linux on Power

-ftest-coverage produces a text file that gcov uses to show program coverage. -fprofile-arcs
instruments the resulting binary flow arcs. See “Recommendations for debug flags” on page 35 and
4.1.2, “Setting debug flags for Autotools-based projects,” on page 40 for details and instructions for
setting the flags.

2. Link the binary files to the gcov library. Complete the following steps.
a. Expand C/C++ Build > Settings.
b. Expand GCC C++ Linker > Libraries.
c. In the Libraries window, click +, the “Add...” icon.
d. In the Libraries field in the Enter Value window, type gcov.

About this task

Complete these steps to profile a project with gcov.

Procedure
1. Run the application. See 2.4.8, “Running an executable program in a project,” on page 18. Coverage

data is saved to object_name.gcda files, one for each object.
2. Refresh the view by right-clicking the project name and clicking Refresh.
3. Double-click the object_name.gcda file.
4. In the Binary File selection window, click Workspace or File System to select the binary file that

produced the coverage data. Click OK. A gcov view tab appears. The view enables you to visualize
profiling information. Double-click any row in the report to display source code with coverage
highlighted.

5. Optional: Use the controls in the upper right of the view to change information visualization.

6.8 Analyzing performance with IBM Power System Performance
Advisor
The IBM Power Systems Performance Advisor (PPA) plug-in allow users to profile C/C++ applications
selecting a set of metrics based on the chosen target processor. PPA leverages Ocount tool; an OProfile
tool used to count native hardware events, to gather the processor performance data and calculate the
metrics.

About this task

Complete those steps to profile a local or a synchronized project that uses PPA plug-in.

Procedure
1. Switch to the C/C++ perspective by selecting Window > Open Perspective > C/C++. Click OK.
2. Right-click the project in the Project Explorer pane.
3. Select Profile Tools > Profile Configurations.
4. In the Profiling Configurations window, select Profile with PPA in the left pane, and then select the

New launch configuration icon near the upper left of the window.
5. On the Metrics tab, complete the following fields:

POWER CPU version in CPU Model field
Metric analysis type in the Analysis type field
Metrics in the Metrics groupfield

Note: To change the Ocount that is used during the profile, select Change path from the Counter
Tool group.

6 Analyzing application performance on Power Systems servers 79

6. On the Main tab, click Browse from the C/C++ executable field to select the binary file to be
profiled.

7. On the Main tab, click Browse from the Working directory field to select the folder to be used by
the profiling tool.

8. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
9. Click Profile to begin the profiling. After the profiling completes, a PPA view opens and displays

each metrics value with the corresponding events. For some metrics, a chart is displayed, which
shows comparisons between metrics values and in some cases events values.

10. It is possible to drill down through the events that are part of metrics to the source code.
a. In the PPA view, double-click any drill-down button in front of events. The Drilldown view

opens and displays the source code elements that caused the selected event.
b. In the view, the results are sorted with the functions that the program spent the most time

running. You can double-click an item to open the source code at the specific file and line.

6.9 Analyzing projects built with the Build Advisor
The Build Advisor plug-in allows users to receive advice on the set of flags that can be tuned for Power
during the build process in order to improve the application performance. It parses the build output,
analyzes the set flags that are used, and based on that analysis, provides advice on the flags that can
make the application perform better.

6.9.1 Enabling the Build Advisor
By default, the Build Advisor is disabled for new projects.

About this task

Use the following steps to activate it:

Procedure
1. Right-click the project in the Project Explorer pane and select Properties.
2. In the Properties window, expand C/C++ Build and select Settings.
3. In Settings window, change to Error Parsers tab and mark the option Build Advisor Output Parser.
4. Press OK

Results

The Build Advisor is now successfully enabled. By default, the Build Advisor gives advice for Advance
Toolchain compiler flags.

6.9.2 Enabling extra advice from Build Advisor
There are some advice provided by Build Advisor that are not activate by default because they might
change the binary behavior. For example, some flags can increase the binary size or reduce the floating
point operation precision in order to gain performance.

About this task

Follow the steps below to activate those extra advice:

Procedure
1. Right-click the project in the Project Explorer pane and select Properties.
2. In the Properties window, select Build Advisor.

80 Linux: Developing software using the IBM Software Development Kit for Linux on Power

3. In the Select Compiler option, select the compiler being used in the project. By default, Advance
Toolchain is selected.

4. Under the option Enable extra advice, enable the extra advice that will be used during the analysis.
5. Press OK.

Results

The Build Advisor is now successfully activated.

6.9.3 Using the Build Advisor

About this task

Complete the steps below to use Build Advisor.

Note: It is important to ensure that the Build Advisor is enabled.

Procedure
1. Right-click the project in the Project Explorer pane and select Build Project.
2. After the project build, the advice will be shown in the Build Advisor view.

6 Analyzing application performance on Power Systems servers 81

82 Linux: Developing software using the IBM Software Development Kit for Linux on Power

7 Analyzing performance with Source Code Advisor and
FDPR

The IBM Software Development Kit for Linux on Power provides two related tools, Source Code Advisor
(SCA) and the Feedback Directed Program Restructuring tool (FDPR), that implement feedback-directed,
post-link program analysis and optimization technology. SCA finds and visualizes performance problems
in the application source code, using journaling information produced by using FDPR. SCA alerts you to
problems, and provides you with tips for restructuring source code and modifying compiler flags.

7.1 Source Code Advisor and FDPR overview
Source Code Advisor (SCA) and Feedback-Directed Program Restructuring (FDPR) work together to
allow you to analyze and optimize your applications.

FDPR works similarly to a compiler: it reads a linked executable program and produces an optimized
version of it. Both regular executable and shared library forms are supported. The optimization uses an
execution profile, collected by running an instrumented version of the input.

During the code optimization process, FDPR produces a journal of the optimizations performed. The
Source Code Advisor uses this journal, produced as an XML file, to highlight potential problems in your
source code and to offer suggested solutions. The journal explains each optimization site, including the
source location, execution count, the performance problem found, and the user action required to resolve
the problem. It is important to select a representative workload for both SCA and for FDPR so that the
optimization step is effective.

Because SCA uses information gathered by FDPR, knowledge of this tool is important. To understand the
main requirements and principles, review the FDPR Getting Started document, available in the IBM SDK
for Linux on Power online help. (You can access this document from the user interface by clicking Help >
Help Contents. Then expand FDPR Optimization Tools Documentation > Getting Started.)

The combination of SCA and FDPR provide you with two major approaches to performance analysis and
optimization:
v Find and visualize performance problems in the source program using feedback-directed analysis.
v Perform feedback-directed optimization of an executable program (or a shared library).

Performance problem visualization using Source Code Advisor

The SCA configuration allows you to specify the workload needed to collect the profile of the program.
When running this configuration, the program is built, if necessary, using the standard project build
process. Once the executable is available, FDPR creates an instrumented version and runs it using the
specified workload. FDPR then performs a pseudo optimization step producing a journal of the
performance problems found. The result is an XML-formatted file that lists the specific problems found,
their exact location in the source, and so on. With the XML journal available, the Source Code Advisor
view is displayed to visualize the set of problems, allowing you to navigate through the problems and
the corresponding places in the source where they were found. The view provides a recommended course
of action for each problem at various abstraction levels (source change, compiler switches, and so on.)

Feedback-directed optimization using FDPR

FDPR optimization is begun through the FDPR configuration. As with the SCA configuration, you specify
a workload, typically the same workload. You can also specify the set of optimizations to be used.
Running the FDPR configuration includes optional instrumentation and profiling steps. These steps are

© Copyright IBM Corp. 2012, 2016 83

needed if the original program has changed, if no profile exists yet, or if you specifically requested to
re-create it. Following that, the optimization step is performed, producing the optimized version.

7.2 Running the Source Code Advisor on a project
You can run SCA on a project to begin the process of performance problem visualization.

Before you begin

Ensure that you compile the binary files with the -Wl and -q flags. See “Recommendations for debug
flags” on page 35 and 4.1.2, “Setting debug flags for Autotools-based projects,” on page 40 for details and
instructions for setting the flags.

About this task

Complete the following steps.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Profile Tools > Profile

Configurations.
2. In the Profile Configurations window, expand Profile with Source Code Advisor in the left pane and

select the New launch configuration icon near the upper left of the window.
3. On the FDPR Options tab, select appropriate options. See 7.6, “Optimizing executable code using

FDPR,” on page 86 for more details on specifying FDPR options.
4. On the Main tab, click Browse from the C/C++ Application field to select the binary file to be

profiled.
5. On the Main tab, click Browse from the Working directory field to select the folder to be used by the

profiling tool.
6. On the Arguments tab, specify any arguments to pass to the binary file to be profiled.
7. Click Profile.

Results

SCA provides quick fixes for some events that are reported. Quick fixes are suggestions that might help
to correct the identified performance problems. For the events where a quick fix is available, a yellow
warning is created in the source code at the specific reported line. To apply a quick fix, complete the
following steps:
1. Move the cursor to the highlighted source code line warning and press Ctrl + 1.
2. Select the appropriate quick fix and press Enter. The fix is applied and the source is changed

automatically.

SCA first builds the program, if necessary, using the standard project build process. After the executable
file is available, an instrumented version is created by FDPR and run using the specified workload. FDPR
then performs a pseudo-optimization step, producing a journal of the performance problems found and
fixed. The journal is an XML formatted file that lists the specific problems found and their exact location
in the source. The journal corresponds to a specific workload, as specified on the Arguments tab in the
profile configuration.

When the journal is available, the SCA results are displayed automatically in the Source Code Advisor
view. See 7.4, “Reviewing the Source Code Advisor results,” on page 85 for information about using the
SCA view.

84 Linux: Developing software using the IBM Software Development Kit for Linux on Power

7.3 Viewing Source Code Advisor on an existing journal
You can open SCA on a journal that has already been collected.

About this task

Complete the following steps.

Procedure
1. If the SCA view is not already open, complete the following steps to open the SCA view.

a. Click Window > Show View > Other.
b. In the Show View window, expand FDPR and click Source Code Advisor. Click OK.

2. In the Project Explorer pane, select the journal file to be viewed. The journal file name begins with the
name of the program and ends with -jour.xml. See 7.4, “Reviewing the Source Code Advisor results”
for information about using the SCA view.

3. If you reprofile the program with SCA, the profile will be replaced. If you want to keep the journal
file but collect a journal for a different workload, you can save it with a different name. To save the
file, copy and paste it with a different name. Ensure that the new name ends with -jour.xml.

7.4 Reviewing the Source Code Advisor results
After you run SCA, you can review the results including the specific performance problems.

About this task

The SCA results are shown in the Source Code Advisor view. This view consists of the following panes:
v A performance event pane, in an expandable tree format, on the left.
v A problem/solution pane on the right.

At the top level, the performance event tree shows each of the performance event types, such as FIX
LOAD-HIT-STORE, UNROLL LOOP, and INLINE FUNCTION. The right pane shows the problem and
solution for the selected event. Refer to 7.5, “Source Code Advisor events” for information about the
performance events and the various levels (source code, compiler, and linker).

The performance event tree provides detailed information about the actual instances of the performance
events in the user program.

Procedure
v To display the functions where a performance event occurred, expand an event type at the root level .

The function entries are sorted by frequency of occurrence when the instrumented program was run.
v To display site-specific parameters for the event, expand a line entry for the event. For example, select

a parameter the represents a site in the program such as a line number or function. This displays the
corresponding source code in the editor.

7.5 Source Code Advisor events
Events flagged by the Source Code Advisor are journal entries produced by FDPR. Each journal entry
includes information about the performance problem and a general approach for solving it. It also
includes suggested changes for compiler or linker command-line flags, and suggested source code
changes.

The Source Code Advisor supports the following FDPR journal entries.

7 Analyzing performance with SCA and FDPR 85

Table 11. SCA events

Event Problem description

INLINE FUNCTION High overhead for frequent calls to a small function

UNROLL LOOP High branch penalty in a small loop

DIRECT TOC ACCESS Data cache pressure is caused by TOC-load instructions

REDUCE FOR EARLY EXIT High overhead for function which very frequently
returns quickly (for example, saving registers that are not
changed before returning)

MOVE HOT CODE TO COLD AREA Invariant or infrequently executed code found within a
loop

FIX LOAD-HIT-STORE A data store operation followed closely by a load from
the same address causes the load to take extra time to
complete

DE-VIRTUALIZE FUNCTION CALL Indirect function calls (virtual functions or by function
pointers) have higher overhead than direct function calls

SHORTCUT PLT CALL Call-through-PLT to local procedure has high call
overhead. A call to a function that is contained in the
same object is routed indirectly through the Procedure
Linkage Table (PLT). This is normal, to allow for symbols
being overridden within the process. However, it is more
expensive than a direct call.

EXTSW INSTRUCTION A frequently encountered conversion of a signed 32-bit
integer type (int) to a signed 64-bit integer type (long),
possibly implicitly, requires an extra "sign extension"
instruction that can also delay subsequent dependent
instructions

FMRTOXXLOR High latency of the FMR/FPR instruction

XSCPSGNDPXXLOR High latency of the Xscpsgndp instruction

TARGET TO SOURCE DEPENDENT INSTRUCTIONS Sequence of dependent instructions is not optimal

INT TO FLOAT CONVERSION High penalty for int to float conversion

LOADING FROM A CONST AREA High penalty for loading from a const area

BRANCH PREDICTION High penalty for wrong branch prediction

KILLED REGISTERS High penalty for stores and restores of registers that are
killed (overwritten) after frequently executed function
calls

LINK REGISTER OPTIMIZATION High penalty for saves and restores of the link register in
frequently executed functions

TOC STORE IN LOOP OPTIMIZATION High penalty for TOC store in loop operation

7.6 Optimizing executable code using FDPR
Feedback Directed Program Restructuring (FDPR) allows you to perform feedback-directed optimization
of an executable or shared library. Also known as the post-link optimization tool, FDPR optimizes the
executable image of a program based on a typical profile.

FDPR optimization is performed in three distinct steps:
v Instrumentation: FDPR analyzes the input program and creates an instrumented version and an empty

profile.
v Profiling: The instrumented program is run with some representative input. During this run, the profile

is filled with various counts, such as how many times each branch was executed.

86 Linux: Developing software using the IBM Software Development Kit for Linux on Power

v Optimization: FDPR processes the input program together with the now filled profile. It performs
various optimizations based on this profile, such as code restructuring, making the program run more
efficiently.

The IBM Software Development Kit for Linux on Power allows you to run FDPR through the FDPR
plug-in.

7.6.1 Specifying FDPR optimization for a project
You can specify workload and optimization flags for FDPR for a project.

About this task

To specify workload and optimization flags for FDPR, complete the following steps.

Procedure
1. In the Project Explorer pane, right-click the project name. Click Run as > Run Configurations.
2. In the Profile Configurations window, right click in FDPR and click New to create a configuration

profile.
3. On the Main tab, click Browse from the C/C++ Application field to select the binary file to be

profiled.
4. On the Main tab, click Browse from the Working directory field to select the folder to be used by the

profiling tool.
5. On the Arguments tab, specify the workload to be used to form the execution profile. It is important

to select a representative workload so that the following optimization step is effective. Typically the
same workload should be used for both SCA and for FDPR.

6. On the FDPR Options tab, select appropriate options.
v The Optimized binary section specifies the component of the application that is being optimized.

Select the main executable program or a shared library.
v The Optimization level section allows you to specify the optimization flags used by FDPR. Select

from options such as O, O2, O3, and O4. Or you can specify Other to specify specific options.
v The Architecture field controls architecture-specific optimizations, like code alignment. Select a

specific architecture, such as power8 or power7.
v The Info output section lists options to control the informational output. Select the maximum level

of warnings printed to the console and whether to print progress messages to the console.
v The Start/continue profile and program section lists options for profiling or optimizing a running

server application. This section includes three radio button groups to control the way the profile
and program are started or continued.
– Start program (default) or Continue program: Start program causes the program to be restarted.

The program is kept running if Continue program is selected.
– Start with empty profile (default) or Continue with last profile: By default, the profile is

cleared before actual profiling begins. If Continue with last profile is selected, the last profile
collected is used to initialize the profile.

– Profile until completion (default) or Profile for ___ seconds: By default, the profile is collected
until the program completes. If the other option is selected, a number of seconds must be
specified. The profile is collected only for that amount of time, and the program continues to
run.

For example, some typical cases might include the following:
a. Start the program with an empty profile and profile until the program terminates.
b. Start the program with an empty profile. Profile for a specified number of seconds, and leave

the program running.

7 Analyzing performance with SCA and FDPR 87

c. Begin with the previous case to start the program or server, and collect an initial profile. Then,
continue the program with the existing profile and profile for a specified number of seconds.
This case can be repeated multiple times, accumulating profile information across several time
periods.

7. On the Environment tab, you can specify the following environment variables:

FDPR_BINDIR
The directory where FDPR binary files were installed. Default: /opt/ibm/fdprpro/bin.

FDPR_LIBDIR
The directory where FDPR libraries were installed. Default: /opt/ibm/fdprpro/lib.

FDPR_PROF_COMMAND
A user-provided script used to profile the program. The script is invoked as script prog arg
..., where prog is the instrumented program or, when profiling a shared library, the original
program. The default is to directly execute the program with the specified arguments.

8. Click Run.
Related information:

Feedback Directed Program Restructuring (FDPR)

88 Linux: Developing software using the IBM Software Development Kit for Linux on Power

https://www.research.ibm.com/haifa/projects/systems/cot/fdpr/

8 Automatic updates

The SDK provides an update site that allows consuming updates automatically.

By activating the automatic updates the SDK will periodically look for updates at the IBM public FTP
located at ftp://public.dhe.ibm.com/software/server/iplsdk/<SDK_Version>/repository. The SDK will
not collect or share any information about your environment and will not install anything without your
authorization. Once an update is found you will be asked on how to proceed. You can review your
decision at Window > Preferences > Install/Update > Automatic Updates.

Note: When installing the SDK, a group called ibmsdklop is created and the users whom have access to
the graphical interface will be automatic added to it. Only the members of this group can perform the
automatic updates of the SDK components.

Adding a new user to the ibmsdklop group

To add a user to the ibmsdklop group, run #usermod -aG ibmsdklop <USER>.

Granting access to the updates installed to all users

When an user installs an update for the SDK, the permissions of the files that are installed are assigned
to that specific user. All other users are not able to access the newest installed resources. In order to make
these resources available to all users, you must restore the correct permissions. Follow the instructions
below:
#chgrp -R ibmsdklop /opt/ibm/ibm-sdk-lop
#chmod -R 775 /opt/ibm/ibm-sdk-lop

© Copyright IBM Corp. 2012, 2016 89

90 Linux: Developing software using the IBM Software Development Kit for Linux on Power

9 Support for IBM SDK for Linux on Power

This section provides information about troubleshooting problems with using IBM Software Development
Kit for Linux on Power.

9.1 Getting customer support
The IBM Software Development Kit for Linux on Power is provided as is only. Customers are not entitled
to IBM Software Support. However, you can get help from the Linux on Power Community.

Getting product updates

The IBM SDK for Linux on Power latest ISO image, related packages, and this user guide can be found at
the IBM SDK for Linux on Power page (http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/
installtools/home.html).

Getting help from the Linux on Power Community

You can submit questions and review technical information about the IBM SDK for Linux on Power in
the IBM developerWorks Linux on Power Community. You can go directly to the Linux on Power
Community page (http://ibm.biz/BdxXrC2), or go to IBM developerWorks (https://www.ibm.com/
developerworks/mydeveloperworks/) and search for the “PowerLinux™ community group”.

You can also use IBM SDK for Linux on Power integrated bug reporting, which allows you to create a
report that contains source code, error markers, and logs to be posted in the IBMdeveloperWorks Linux
on Power Community message board. See 9.2, “Using integrated bug reporting” for information.

9.2 Using integrated bug reporting
The IBM SDK for Linux on Power includes integrated bug reporting, which allows you to create a report
that contains source code, error markers, and logs to be posted in the IBM developerWorks Linux on
Power Community message board. You can include specifics about your question or problem.

9.2.1 Creating a report
You can create a report that contains source code, error markers, and logs to be posted in the IBM
developerWorks Linux on Power Community message board. The report also includes information about
your system. You can include specifics about your question or problem.

About this task

You can create a report in three different ways. Choose from the following options.

Procedure
v Create a report about a code excerpt in your C/C++ project on which you have a question. Complete

the following steps:
1. Within your C/C++ project, select the code excerpt on which you have a question.
2. Right-click the code excerpt and click Ask for help in Linux on Power Community. The Code

Reports view is displayed.
3. In the Code Reports view, expand Code to see the code report you created.
4. To edit the report, double-click the report name. In the Report Editor window, type a name for the

report and other details that you want to include in the report. Click File > Save or press Ctrl+S.

© Copyright IBM Corp. 2012, 2016 91

https://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/sdklop.html
http://ibm.biz/BdxXrC
http://ibm.biz/BdxXrC
https://www.ibm.com/developerworks/mydeveloperworks/

v Create a report about a problem that was flagged by IBM SDK for Linux on Power in the Problems
view. Complete the following steps:
1. Within the Problems view, select the problem for which you want to create a report.
2. Right-click the problem and click Ask for help in Linux on Power Community. The Code Reports

view is displayed.
3. In the Code Reports view, expand Problems to see the problem report you created.
4. To edit the report, double-click the report name. In the Report Editor window, type a name for the

report and other details that you want to include in the report. Click File > Save or press Ctrl+S.
v Create an empty report to which you can add your own content. Complete the following steps.

1. Open the Code Reports view, if it is not already open. To open the Code Reports view, click
Window > Show View > Reports. The remaining steps take place in the Code Reports view.

2. Optional: You can create the report in an existing report category, or in a new report category. To
create a report category, click + (Create a new Category). Type a name for the category and click
OK. The Code Reports view is updated to show the new category.

3. Right-click the category and click New Item. The Report Editor window is displayed.
4. In the Report Editor window, type a name for the report and other details that you want to include

in the report. Click File > Save or press Ctrl+S.

9.2.2 Submitting a report to the Linux on Power Community
After you have created a report, you can use integrated bug reporting to submit the report to the IBM
developerWorks Linux on Power Community message board.

Before you begin

Ensure that you have an IBM ID and have joined the Linux on Power Community.
v To get an IBM ID, go to developerWorks registration.
v To join the Linux on Power Community, go to The Linux on Power Community, sign in, and click Join

this Group.

About this task

To submit a bug report that you have created, complete the following steps.

Procedure
1. Open the Code Reports view, if it is not already open. To open the Code Reports view, click Window

> Show View > Reports.
2. Expand the report category to see the report you want to submit.
3. Right-click the report and click Ask for Help. A warning is displayed to let you know that a report

will be created including system data. Click OK.
Your default browser opens with a new window to the Linux on Power Community message board.

4. If prompted, sign in with your IBM ID.
5. To submit the report, you must create a topic to contain the report. On the Linux on Power

Community message board page, click Start a topic.
6. In the New Topic window, add your report as follows:

a. Type a topic name that describes your report.
b. In the content area, right-click and click Paste to add your report to the topic.
c. Click OK.

7. To subscribe to comments that are made by other Linux on Power Community members on your
submission, use one of the Feed options at the bottom of the page.

92 Linux: Developing software using the IBM Software Development Kit for Linux on Power

https://www.ibm.com/developerworks/dwwi/jsp/Register.jsp
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=fe313521-2e95-46f2-817d-44a4f27eba32

9.3 Setting up SSH credentials
You can set up SSH credentials so that you can create a connection without a password.

About this task

This method allows you to set up SSH with DSA public key authentication.

Procedure
1. On your workstation, generate a DSA Key Pair. Log into the workstation and enter the following

command:
ssh-keygen -t dsa

a. When prompted to enter a file in which to save the key, press Enter.
b. When prompted, specify a password, and then confirm it.

The private key is saved to /home/user_name/.ssh/id_dsa
2. Ensure that you have permissions for the .ssh directory. Enter the following commands:

cd
chmod 755 .ssh

3. Copy the public key file from your workstation to the remote server as ~/.ssh/authorized_keys.
Enter the following command:
scp ~/.ssh/id_dsa.pub user@remote_server_name:.ssh/authorized_keys

4. On the remote server, ensure that you have permissions for the .ssh/authorized_keys file. Log into
the remote server and enter the following command:
chmod 600 ~/.ssh/authorized_keys

9.3.1 Logging in from workstation to remote server with DSA key
About this task

You can use scp or ssh from the workstation to log in to the remote server. These methods still require
you to enter the password you created.

Procedure
v ssh user@remote_server_name

v ssh user@remote-server.com

v scp file user@remote_server_name:/tmp

9.3.2 Logging in with DSA key but no password
About this task

You can use a shell prompt to specify your password, and not be prompted to specify it again when
using ssh or scp.

Procedure
1. At a shell prompt, enter the following commands:

exec /usr/bin/ssh-agent $SHELL
ssh-add

2. When you are prompted, enter your password. This sets your identity and allows you to avoid being
prompted for passwords when using ssh or scp.

9 Troubleshooting and support 93

94 Linux: Developing software using the IBM Software Development Kit for Linux on Power

10 Code license and disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

© Copyright IBM Corp. 2012, 2016 95

96 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 903
11501 Burnet Road
Austin, TX 78758-3400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

© Copyright IBM Corp. 2012, 2016 97

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® and ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A
current list of IBM trademarks is available on the Web at Copyright and trademark information at
www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

98 Linux: Developing software using the IBM Software Development Kit for Linux on Power

Notices 99

IBM®

Printed in USA

	Contents
	Developing software using the IBM Software Development Kit for Linux on Power
	1 Introducing IBM Software Development Kit for Linux on Power
	1.1 IBM SDK for Linux on Power requirements
	1.2 IBM SDK for Linux on Power supported Linux distributions
	1.3 IBM SDK for Linux on Power user interface

	2 Setting up the ppc64 or ppc64le version of the IBM SDK for Linux on Power
	2.1 Downloading and installing the SDK
	2.1.1 Using the installation script to download and install the IBM Software Development Kit for Linux on Power
	2.1.2 Automatically downloading and installing using the IBM Linux on Power Tools Repository
	2.1.2.1 Downloading and installing the IBM Linux on Power Tools Repository initialization package
	2.1.2.2 Installing the IBM SDK for Linux on Power RPMs using the IBM Linux on Power Tools Repository

	2.1.3 Automatically downloading and installing the IBM SDK for Linux on Power on Ubuntu

	2.2 Recommended and optional packages
	2.2.1 Downloading and installing the IBM XL C/C++ Community Edition Compiler
	2.2.1.1 Manually installing the IBM XL C/C++ Compiler
	2.2.1.2 Automatically installing with the Remote Setup Wizard plugin

	2.2.2 Installing the Advance Toolchain for Linux on Power

	2.3 Starting the IBM SDK for Linux on Power
	2.4 Creating a project
	2.4.1 Creating a C/C++ project directly on a Power Systems server using Advance Toolchain
	2.4.2 Creating a local C/C++ project direct on a Power Systems server using the IBM XL C/C++ Community Edition Compiler
	2.4.3 Importing an existing Makefile project
	2.4.4 Importing an existing Autotools project
	2.4.4.1 Configuring the imported project
	2.4.4.2 Building the imported project

	2.4.5 Creating an empty Autotools project
	2.4.6 Creating a “Hello World” Autotools project
	2.4.7 Changing the Advance Toolchain version
	2.4.8 Running an executable program in a project
	2.4.9 Debugging a project with Advance Toolchain for Linux on Power or IBM XL C/C++ Community Edition Compiler

	3 Setting up the x86_64/amd64 version of the IBM SDK for Linux on Power
	3.1 Downloading and installing the x86_64/amd64 client
	3.2 Setting up remote Power Systems server
	3.3 Creating and using synchronized projects on x86_64/amd64 clients
	3.3.1 Creating a synchronized C/C++ project
	3.3.2 Creating a synchronized project by importing an existing Makefile project
	3.3.3 Creating a synchronized project by importing an existing Autotools project
	3.3.3.1 Configuring the imported project
	3.3.3.2 Building the imported project

	3.3.4 Creating a synchronized empty Autotools project
	3.3.5 Creating a synchronized “Hello World” Autotools project
	3.3.6 Running an executable program in a synchronized project
	3.3.7 Debugging a synchronized project

	3.4 Creating and using cross-compiled projects
	3.4.1 Creating a cross-compiled C/C++ project
	3.4.2 Executing a cross-compiled project
	3.4.3 Debugging a cross-compiled project

	3.5 Installing and using QEMU user-mode emulation
	3.5.1 Running a cross-compiled application with QEMU user-mode emulation

	3.6 Installing and executing the IBM POWER Functional Simulator
	3.6.1 Installing and setting up the POWER Functional Simulator
	3.6.2 Installing the IBM POWER Functional Simulator

	3.7 Running the IBM POWER Functional Simulator
	3.7.1 Running the IBM POWER Functional Simulator from within the SDK
	3.7.1.1 Running the IBM POWER Functional Simulator from within the command line

	3.8 Simulator networking

	4 Managing projects
	4.1 Setting flags
	4.1.1 Recommended debug, compiler, and linker settings for Power processor tuning
	4.1.2 Setting debug flags for Autotools-based projects
	4.1.3 Setting optimization level flags for Autotools-based projects

	4.2 Editing a project
	4.2.1 Setting the Linux tools path
	4.2.2 Using the coding assistant

	4.3 Building a project
	4.3.1 Building a project
	4.3.2 Building a project with clean build
	4.3.3 Adding and using a Make target

	5 Migrating an application to Power Systems servers using Migration Advisor
	5.1 Running Migration Advisor
	5.2 Using the Migration Wizard to configure the Migration Advisor
	5.2.1 Basic Migration Advisor configuration
	5.2.2 Advanced Migration Advisor configuration

	5.3 Migration Advisor checkers
	5.3.1 Linux/x86 to Linux/Power application migration checker
	5.3.2 Linux/Power application optimization checker
	5.3.3 Linux/Power 32bit to Linux/Power 64bit application migration checkers
	5.3.4 Customizing the performance degradation checker
	5.3.5 Customizing the syscall not available for Linux on Power checker
	5.3.6 Customizing the Linux/x86-specific API checker

	5.4 Configuring Migration Advisor checkers manually
	5.5 Using Migration Advisor quick fixes

	6 Analyzing application performance on Power Systems servers
	6.1 Analyzing performance with the CPI breakdown plug-in
	6.1.1 CPI analysis overview
	6.1.2 CPI events and metrics for POWER7
	6.1.3 CPI events and metrics for POWER8
	6.1.4 Profiling a binary application with CPI from the command line
	6.1.5 Profiling a project with the CPI breakdown plug-in

	6.2 Analyzing performance with OProfile
	6.2.1 Profiling a project with OProfile
	6.2.2 Profiling a synchronized project with OProfile

	6.3 Analyzing performance with Perf
	6.3.1 Profiling a project with Perf
	6.3.2 Profiling a synchronized project with Perf

	6.4 Profiling a project with gprof
	6.5 Analyzing application behavior using Valgrind
	6.5.1 Profiling a project using Valgrind
	6.5.2 Profiling a synchronized project using Valgrind
	6.5.3 Applying quick fixes for Valgrind-reported errors

	6.6 Analyzing POSIX Threads using Trace Analyzer
	6.6.1 Trace Analyzer overview
	6.6.2 Profiling a project with Trace Analyzer
	6.6.3 Collecting a trace by setting variables from the command line
	6.6.4 Record Details view

	6.7 Analyzing coverage with gcov
	6.8 Analyzing performance with IBM Power System Performance Advisor
	6.9 Analyzing projects built with the Build Advisor
	6.9.1 Enabling the Build Advisor
	6.9.2 Enabling extra advice from Build Advisor
	6.9.3 Using the Build Advisor

	7 Analyzing performance with Source Code Advisor and FDPR
	7.1 Source Code Advisor and FDPR overview
	7.2 Running the Source Code Advisor on a project
	7.3 Viewing Source Code Advisor on an existing journal
	7.4 Reviewing the Source Code Advisor results
	7.5 Source Code Advisor events
	7.6 Optimizing executable code using FDPR
	7.6.1 Specifying FDPR optimization for a project

	8 Automatic updates
	9 Support for IBM SDK for Linux on Power
	9.1 Getting customer support
	9.2 Using integrated bug reporting
	9.2.1 Creating a report
	9.2.2 Submitting a report to the Linux on Power Community

	9.3 Setting up SSH credentials
	9.3.1 Logging in from workstation to remote server with DSA key
	9.3.2 Logging in with DSA key but no password

	Notices
	Trademarks

