
IBM Security Identity Manager
Version 6.0.0.18

Reference Topics

IBM

IBM Security Identity Manager
Version 6.0.0.18

Reference Topics

IBM

ii IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table of contents

Table list vii

Chapter 1. Application extensions . . . 1
WorkflowApplication interface 1
Application extension methods 1
Registering extensions 2

Chapter 2. Application programming
interfaces 5
Applications API 5

Self registration API 6
Access control information list (ACI) API 6
IBM Security Identity Manager group API . . . 6
Provisioning policy API. 7
Recertification policy API 7
Reconciliation API 7

Authentication API 8
Data services API 8
IBM Directory Integration API 8
JavaScript API 8
Mail API. 9
Password rules API 9
Policy analysis API 9
Service provider API. 9
Single sign-on API 10
Web services API 10

Updates to the web services application interface
programming (API). 13

Workflow API 14

Chapter 3. Dictionary for a password
policy 15

Chapter 4. Dataservices attributes for
recertification 17

Chapter 5. Date range customization 19

Chapter 6. Workflow extensions 21
Policy enforcement extension 21
Recertification extensions 21
Wait extension 25

Chapter 7. REST APIs 27
REST API code samples 27
Invoking REST APIs in a domain different from the
originating web page 27
Configuring REST APIs for OAuth authentication 28
Filter configuration for REST search services . . . 29

Chapter 8. Dynamic tags in mail
templates 33
Mail templates 38

Manual service default messages 38
Recertification default messages 40
Workflow default messages 46

Chapter 9. JavaScript extensions
overview 57
Packaged extensions 58

AttributesExtension. 58
DelegateExtension 59
EmailContextExtension 59
EnroleExtension 59
IdentityPolicyExtension 59
LoopCountExtension 60
Model extensions package 60
PersonPlacementRulesExtension 62
PostOfficeExtension. 62
ProvisioningPolicyExtension 62
ReminderExtension 62
ServiceExtension. 63
SubjectExtension. 63
WorkflowExtension 63

Registering JavaScript extensions 64
Configuring scriptframework.properties 66
Migration of custom FESI extensions to the IBM
JSEngine 67

Best practice in handling function returns . . . 67
Plain Old Java Object (POJO) example 67
Conversion to a script extension 69
Creation of a constructor 70

Download of fesi.jar from a non-IBM source
(deprecated) 71

Chapter 10. JavaScript extension
reference. 73
How to read the reference pages 74
Account 76

Account.getAndDecryptPassword() 76
Account.setAndEncryptPassword() 77

AccountSearch 77
AccountSearch.searchByOwner() 78
AccountSearch.searchByUid() 78
AccountSearch.searchByUidAndService() . . . 79
AccountSearch.searchByURI() 79

Activity. 80
Activity.auditEvent() 81
Activity.description 82
Activity.duedate 82
Activity.getSubProcesses() 82
Activity.guid 83
Activity.id 83
Activity.index. 83
Activity.name. 83
Activity.participant 84
Activity.resultDetail. 84
Activity.resultSummary 84

iii

Activity.setResult() 84
Activity.started 85
Activity.state 85
Activity.subtype 86
Activity.type 86

AttributeChangeOperation 86
AttributeChangeOperation.attr 87
AttributeChangeOperation.op 87
AttributeChangeOperation.values[] 87

ContainerSearch 88
ContainerSearch.searchByFilter() 88
ContainerSearch.searchByURI() 89

Context 89
Context.getAccountParameter() 91
Context.getActivityResult() 91
Context.getActivityResultById(). 91
Context.getLoopCount() 92
Context.getLoopCountByID() 92
Context.getProcessType() 92
Context.getRequestee() 93
Context.getService() 93
Context.isAccountDataChanged() 93

Credential 94
Credential.getAccessMode() 95
Credential.getCheckoutDuration() 95
Credential.getNotifyOption() 95
Credential.getNotificationRecipient() 96
Credential.isCheckoutSearchEnable() 96
Credential.isNotifyOnly() 96
Credential.isPasswordViewable() 97
Credential.isResetPasswordAtCheckin() 97

Delegate 98
DirectoryObject 98

DirectoryObject.addProperty() 99
DirectoryObject.dn 100
DirectoryObject.getChanges() 100
DirectoryObject.getProperty() 101
DirectoryObject.getPropertyAsDate() 102
DirectoryObject.getPropertyAsString() 102
DirectoryObject.getPropertyNames() 103
DirectoryObject.name. 103
DirectoryObject.profileName 103
DirectoryObject.removeProperty(name) 104
DirectoryObject.removeProperty(name,value) 104
DirectoryObject.setProperty() 105

EmailContext 105
Enrole 108

Enrole.generatePassword() 109
Enrole.getAttributeValue() 109
Enrole.getAttributeValues() 110
Enrole.localize() 110
Enrole.log() 110
Enrole.logError() 111
Enrole.logInfo() 112
Enrole.logWarning() 112
Enrole.toGeneralizedTime() 113
Enrole.toMilliseconds() 113
Enrole.traceMax() 114
Enrole.traceMid() 114
Enrole.traceMin() 115

Error 115

Error.setMessage() 116
Error.getMessage() 116
Error.setErrorCode() 117
Error.getErrorCode() 117

ExtendedPerson 117
ExtendedPerson.getOwnershipType() 118
ExtendedPerson.setOwnershipType() 119

IdentityPolicy 119
IdentityPolicy.getNextCount() 119
IdentityPolicy.userIDExists() 120

PackagedApprovalDocument 120
PackagedApprovalItem 122
Participant 123

Participant.implementation 125
Participant.name 125
Participant.type. 125
ParticipantType. 125

Person. 127
Person.getAllAssignmentAttributes() 129
Person.getAndDecryptSynchPassword() . . . 129
Person.getAndDecryptPersonPassword() . . . 130
Person.getRoleAssignmentData() 130
Person.getRoleAssignmentData(String
roleAssignedDN) 131
Person.getRoles() 132
Person.getNewRoles() 132
Person.getRemovedRoles() 133
Person.isInRole() 133
Person.removeRole() 133
Person.removeRoleAssignmentData() 134
Person.updateRoleAssignmentData() 134

PersonSearch 135
PersonSearch.searchByFilter() 135
PersonSearch.searchByURI() 136

PostOffice 137
PostOffice.getAllEmailMessages() 137
PostOffice.getEmailAddress() 137
PostOffice.getPersonByEmailAddress() 138
PostOffice.getTopic() 138

Process 138
Process.auditEvent() 140
Process.comment 141
Process.description 141
Process.getActivity() 141
Process.getParent() 142
Process.getRootProcess() 142
Process.getRootRequesterName() 142
Process.guid 143
Process.getSubProcesses() 143
Process.id 143
Process.name 144
Process.parentId 144
Process.requesteeDN 144
Process.requestorDN 144
Process.requesteeName 145
Process.requestorName 145
Process.requestorType 145
Process.resultDetail 146
Process.resultSummary 146
Process.setRequesteeData() 146
Process.setResult() 147

iv IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Process.setSubjectData() 147
Process.started 147
Process.state 148
Process.subject 148
Process.type 148
ProcessData 149
ProcessData.get() 149
ProcessData.set() 150

RecertificationWorkflow 150
Reminder. 151
Role 151

Role.getAscendantRoles() 152
Role.getAssignmentAttributes() 153
Role.getChildRoles() 153
Role.getDescendantRoles() 154
Role.getOwner() 154
Role.getParentRoles() 155
Role.setAssignmentAttributes() 155

RoleAssignmentAttribute 156
RoleAssignmentAttribute.getName(). 156
RoleAssignmentAttribute.getRoleName() . . . 157
RoleAssignmentAttribute.getRoleDN 157

RoleAssignmentObject 158
RoleAssignmentObject.getAssignedRoleDN() 159
RoleAssignmentObject.getDefinedRoleDN() . . 159
RoleAssignmentObject.addProperty() 160
RoleAssignmentObject.getChanges() 160
RoleAssignmentObject.getProperty() 161
RoleAssignmentObject.getPropertyNames() . . 161
RoleAssignmentObject.removeProperty() . . . 162
RoleAssignmentObject.setProperty() 162

RoleSearch 162
RoleSearch.searchByName() 163
RoleSearch.searchByURI() 163

SeparationOfDutyRuleViolation 164
Service 164
ServiceSearch 165

ServiceSearch.searchByFilter() 165
ServiceSearch.searchByName(). 166
ServiceSearch.searchByURI() 167
ServiceSearch.searchForClosestToPerson() . . . 167

UserAccess 168
AccessRequestBatch 168

AccessRequestBatch.getSubmittedAccessProvisioningList()169
AccessRequestBatch.getSubmittedAccessDeprovisioningList()169
AccessRequestBatch.getSubmittedAccessUpdateList()170
AccessRequestBatch.getAccessProvisioningStatusList()171
AccessRequestBatch.getAccessDeprovisioningStatusList()171
AccessRequestBatch.getAccessUpdateStatusList() 172

Chapter 11. Provisioning policy
parameter usage scenarios 173

Chapter 12. Provisioning policy
entitlement parameters 175
Provisioning policy constant 175
Provisioning policy Null types 175
Provisioning policy JavaScript functions 175
Provisioning policy regular expressions. 178

Chapter 13. Service selection policy
JavaScript. 179
Service selection policy JavaScript objects 179
Service selection policy script example 179

Chapter 14. SubForm control type . . 181
SubForm contextual parameters 181
HTTP request parameter naming convention . . . 182
Process to write a SubForm. 183

Chapter 15. Supplemental property
files 185
Properties files 185
Modifiable property files 185
Non-modifiable properties files 187
adhocreporting.properties 189
CustomLabels.properties 196
DataBaseFunctions.conf 197
enroleAuditing.properties 197
enRoleAuthentication.properties 200
enRoleDatabase.properties 202
enRoleLDAPConnection.properties 205
enRoleLogging.properties 208
enRoleMail.properties 219
enrolepolicies.properties 222
enroleStartup.properties 227
enroleworkflow.properties 228
fesiextensions.properties (deprecated) 229
helpmappings.properties 231
reportingLabels.properties 231
reporttabledeny.properties 231
rest.properties 232
scriptframework.properties (Suggested). 234
SelfServiceHelp.properties 236
SelfServiceHomePage.properties 236
SelfServiceScreenText.properties 237
SelfServiceUI.properties 237
ui.properties. 239
UIConfig.properties 247

Chapter 16. System property
configuration in enRole.properties . . 251
Properties files 251
WebSphere Application Server properties 251
Remote services properties 254
Web services properties 255
Application server properties 256
Organization properties 258
LDAP server properties 259
Search and LDAP control properties 260
Person profile properties 262
Profile and schema cache properties 263
Messaging properties 264
Scheduling properties 265
Password transaction monitor properties 266
XML and DTD properties 267
LDAP connection pool properties. 267
Password encryption properties 269
Challenge response encoding properties 271

Table of contents v

System listening port properties 271
Mail properties 272
Workflow properties 272
Reconciliation properties 279
Shared secret properties 283
Lifecycle rule properties 283
Product name properties 284
Application client request properties 284
Reverse password synchronization properties . . 284
Post office properties 285
Database resource bundle properties. 286

Database cleanup properties 286
Create password check box properties 287
Access catalog properties 287
Identity feed properties 288
Upgrade properties 289
Multiple password-synch agent properties. . . . 289
Concurrency properties 290
Required field properties 290

Index 293

vi IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table list

1. Filters and their supported values 29
2. Syntax and example of using JavaScript code

to replace message content. 33
3. Syntax and examples of using a RE tag to

replace message content. 34
4. Syntax and example of using tags to replace

message content. 35
5. Syntax and examples of ITIMURL. 35
6. Escape characters 36
7. Host components and script extensions 57
8. Script class keys 66
9. Script extensions 73

10. Provisioning policy examples 173
11. Sample provisioning policies 173
12. SubForm parameters 181
13. SubForm parameters 182
14. Properties files 185
15. Non-modifiable properties files 187
16. adhocreporting.properties properties 189
17. DataBaseFunctions.conf 197
18. enroleAuditing.properties properties 198
19. enRoleAuthentication.properties properties 201
20. enRoleDatabase.properties properties 202
21. enRoleLDAPConnection.properties properties 205
22. enRoleLogging.properties properties 208
23. enRoleMail.properties file properties 219
24. enrolepolicies.properties properties 222
25. enroleStartup.properties properties 227
26. enroleworkflow.properties properties 228
27. fesiextensions.properties properties

(deprecated) 230
28. helpmappings.properties properties 231
29. reporttabledeny.properties 231
30. rest. properties 232
31. SelfServiceHelp properties 236
32. SelfServiceUI. properties 237
33. ui.properties properties 239

34. UIConfig.properties 247
35. WebSphere application server properties 251
36. Remote services properties 255
37. Web services properties 255
38. Application server properties 257
39. Organization properties 258
40. LDAP server properties 259
41. Search and LDAP control properties 260
42. Person profile property 262
43. Profile and schema cache properties 263
44. Messaging properties 264
45. Scheduling properties 266
46. Password transaction monitor properties 266
47. XML and DTD properties 267
48. LDAP connection pool properties 267
49. Encryption properties 269
50. Challenge response encoding properties 271
51. System configuration properties 271
52. Mail services properties 272
53. Workflow configuration properties 273
54. Reconciliation properties 279
55. Shared secret hashing properties 283
56. Lifecycle rule properties 283
57. Product property 284
58. Application client request properties 284
59. Reverse password synchronization properties 285
60. Post office properties 285
61. Database resource bundle properties 286
62. Database cleanup properties 287
63. Create password check box default properties 287
64. Access catalog properties 287
65. Default identity feed properties 288
66. Default upgrade properties 289
67. Multiple password-synch agent properties 289
68. Account concurrency properties 290
69. Required field properties. 290

vii

viii IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 1. Application extensions

Application extensions can be defined in Java™ class files and run from a
workflow.

Application extensions are typically defined in one or more Java class files. They
are used when a set of functions needs to be run from a workflow. The functions
can be implemented to receive input parameters from a workflow and return
parameters back to the workflow.

WorkflowApplication interface
Application extensions that require access to the current workflow context
information must implement the WorkflowApplication interface.

If the extension does not require any workflow context information, implementing
this interface is not required. The following example is a code snippet for
implementing the WorkflowApplication interface. For a complete example, see the
information in the extensions directory.
public class CustomEmail implements WorkflowApplication {
public CustomEmail() {
}

When you implement the WorkflowApplication interface you must define a
setContext method that accepts a WorkflowExecutionContext object. Store this
object in a member variable in the implementing class.
// The context of the workflow. Passed in from the workflow engine
protected WorkflowExecutionContext ctx;
/**
* Passes the workflow execution context to the application.
*
* @param context WorklowExecutionContext holding information about the
* currently executing activity.
*/
public void setContext(WorkflowExecutionContext ctx) {
this.ctx = ctx;
}

Application extension methods
The application can contain whatever processing is required to accomplish the task.
An extension can contain any number of methods that can be exposed to the
workflow.

The following example is a code snippet of a method that is available in the
workflow for the extension node. For a complete example, see the information in
the extensions.zip file.
/**
* Method sendMailByProperty.
* This method is called to send an e-mail to an e-mail address specified by
the
* "recipient" property in the specified property file.
* @param person - the requestee’s person object
* @param mailTag - the mailtag for this message. Used to look up properties
* @param propertyFileName - the name of the property file that contains

1

* this message’s data
* @param attrList - an optional list of tag/value pairs
* @return ActivityResult - a workflow activity result object
*/
public ActivityResult sendMailByProperty(Person person,
String mailTag,
String propertyFileName,
String attrs) {
String recipient_email = "";
try {
processSendMail(person,mailTag,propertyFileName,recipient_email,
attrs);
return new ActivityResult(ActivityResult.STATUS_COMPLETE,
ActivityResult.SUCCESS,
"Sent Mail",
null);
} catch (CustomEMailDataException e) {
return new ActivityResult(ActivityResult.STATUS_COMPLETE,
ActivityResult.FAILED,
e.getMessage(),
null);
}
}

Application Extension methods can receive inputs from the workflow. The inputs
defined in the workflow extension window maps to the method arguments (ensure
that the types match). The sendMailByProperty method returns an ActivityResult
object. This method allows the application to communicate back to the caller a
status and a return value, if necessary. The ActivityResult object has member
variables for status (int), summary, (String), detail (List), and description (String).
Return values are in the detail list. The order of the values in the list must
correspond to the order of the output parameters as defined in the extension
window. See the IBM® Security Identity Manager API documentation for a
complete description of the ActivityResult class.

Registering extensions
For the workflow to make the extension available with the extension node, it must
first be registered in the ISIM_HOME/data/workflowextensions.xml file.

Each method requires an activity entry in the XML file. The activity entry includes
these aspects:

Activity ID
An activity ID is required and must be unique in the workflow. This name
is in the extension window activity type menu.

Implementation type
The implementation type contains the class name and the method name
that is started by this extension.

Parameters sections
The parameters sections list the input and out parameters and their data
types. These parameters are in the extension window Input/Out
Parameters.

Transition restriction
The transition restriction defines the join type. Split type can also be
defined. For more information, see the information in the extensions
directory.

2 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

<ACTIVITY ACTIVITYID="SendMailByProperty" LIMIT="600000">
<IMPLEMENTATION_TYPE>

<APPLICATION
CLASS_NAME="com.ibm.itim.CustomWorkflowExtensions.CustomEmail"
METHOD_NAME="sendMailByProperty"/>

</IMPLEMENTATION_TYPE>
<PARAMETERS>

<IN_PARAMETERS PARAM_ID="inperson" TYPE="Person"/>
<IN_PARAMETERS PARAM_ID="mailtag" TYPE="String"/>
<IN_PARAMETERS PARAM_ID="propertyfilename" TYPE="String"/>
<IN_PARAMETERS PARAM_ID="attributelist" TYPE="String"/>

</PARAMETERS>
<TRANSITION_RESTRICTION JOIN="XOR"/>

</ACTIVITY>

The Application Extension class file must be in a JAR file, which must be in the
IBM Security Identity Manager class path. After these changes are completed, you
must restart the server before the extensions are available in the workflow.

Chapter 1. Application extensions 3

4 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 2. Application programming interfaces

Application programming interfaces (APIs) are part of a plug-in model that you
can use to add applications without disrupting existing applications.

Remote application programs run outside of the IBM Security Identity Manager
server Java virtual machine (JVM). Classes outside of the application packages are
not intended to be started by a remote application. Classes in remote applications
are documented under the IBM Security Identity Manager application packages.
Server extensions, which run in the IBM Security Identity Manager server JVM, can
use any of the classes listed in the published API documentation (Javadoc). They
are Java classes that run in the same JVM of the caller. These APIs are used to
develop IBM Security Identity Manager customization and extensions that can plug
into IBM Security Identity Manager.

Several application APIs can be started by a remote application. A few server
extension APIs in the dataservices package are included also. The following
application APIs are intended to be started by a remote application:

Provisioning Policy API
Can search, add, modify, and delete provisioning policies in IBM Security
Identity Manager from a remote application.

Group API
Can search, add, modify, and delete anIBM Security Identity Manager
group.

ACI API
Can search, add, modify, and delete an access control information list
(access right), but it does not verify authorization.

Reconciliation API
Can get, add, modify, and delete a reconciliation schedule for a particular
service and triggers reconciliation.

The following server extension APIs are included:
v com.ibm.itim.common.ComplexAttributeValue

v com.ibm.itim.dataservices.model.ComplexAttributeHandler

v com.ibm.itim.dataservices.model.domain.access.Access

v com.ibm.itim.dataservices.model.domain.access.ProvisioningConfiguration

v com.ibm.itim.dataservices.model.domain.access.NotificationOption

Applications API
Use the applications API to create customized or alternative user interfaces. This
API provides an interface to the IBM Security Identity Manager provisioning
platform.

The applications API provides a set of Java classes that abstract the more
frequently used functions of the provisioning platform. Examples are identity
management, password management, and account management. The classes that
make up this API are the same classes that IBM Security Identity Manager uses for
its user interface.

5

For more information, see the documentation provided with the Applications API
in the ISIM_HOME/extensions/version number/doc/applications directory. For
sample codes, see the ISIM_HOME/extensions/version number/examples/apps
directory.

Version number represents the version of IBM Security Identity Manager. For
example:
ISIM_HOME/extensions/6.0/doc/applications
ISIM_HOME/extensions/6.0/examples/apps

Self registration API
Part of the applications API, the self registration API provides an interface to create
a person in the provisioning platform without a user context.

The self registration API can be called without a user context. It is set up to start
without accessing the system with an IBM Security Identity Manager account login
and password. The Self Registration API is part of a customizable process. The
process provides an example JavaServer Pages (JSP) page as a product extension
based on the default inetOrgPerson class. The JSP calls the Self Registration API to
create a user.

Access control information list (ACI) API
The ACI API provides an interface for managing the IBM Security Identity
Manager access control list, container-by-container.

A remote client can use basic add, list, modify, and delete operations for managing
the access control list. However, the ACI API cannot verify authorization to the
user.

This API exists in the com.ibm.itim.apps.acl.AccessControlListManager class.

IBM Security Identity Manager group API
The IBM Security Identity Manager group API provides system group management
capabilities, namely APIs to manage groups on the IBM Security Identity Manager
service and groups on managed services. The APIs also provide search capabilities
for these groups.

The IBM Security Identity Manager group API provides an interface for managing
the groups on either the IBM Security Identity Manager service or on other
managed services. You can search, add, modify, or delete these groups. You can
also add and remove users in a group on either the IBM Security Identity Manager
service or on a managed service.

For groups on the IBM Security Identity Manager service, the API exists in the
following classes:

v com.ibm.itim.apps.system.SystemRoleManager

v com.ibm.itim.apps.system.SystemRoleMO

v com.ibm.itim.apps.system.SystemUserMO

For groups on a managed service, the API exists in the following classes:

v com.ibm.itim.apps.provisioning.GroupManager

v com.ibm.itim.apps.provisioning.GroupMO

6 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Provisioning policy API
The IBM Security Identity Manager provisioning policy API provides an interface
to manage provisioning policies that are defined in IBM Security Identity Manager.

This API can search, add, modify, and delete provisioning policy. The API exists in
the following classes:
v com.ibm.itim.apps.policy.ProvisioningPolicyManager

v com.ibm.itim.apps.policy.ProvisioningPolicyMO

Recertification policy API
The IBM Security Identity Manager recertification policy API provides an interface
to manage recertification policies that are defined in Security Identity Manager.

This API provides capabilities to search, add, modify, delete, and run recertification
policies.

The following classes or interfaces are exposed to provide recertification policy
management capabilities through APIs.
1. Core classes:
v com.ibm.itim.apps.policy.RecertificationPolicyManager
v com.ibm.itim.apps.policy.RecertificationPolicyMO
v com.ibm.itim.dataservices.model.policy.recert.RecertificationPolicy

2. Dependent classes:
v com.ibm.itim.dataservices.model.policy.recert.RecertificationParticipant
v com.ibm.itim.dataservices.model.policy.RoleTarget
v com.ibm.itim.dataservices.model.policy.GroupTarget
v com.ibm.itim.dataservices.model.policy.ServiceTarget
v com.ibm.itim.scheduling.RecurringTimeSchedule

3. Abstract classes extended by recertification policy directly or indirectly:
v com.ibm.itim.dataservices.model.policy.DirectoryPolicy
v com.ibm.itim.dataservices.model.policy.ScopedPolicy
v com.ibm.itim.dataservices.model.policy.ServicePolicy

4. Interface implemented by recertification policy or dependent classes directly
or indirectly:
v com.ibm.itim.dataservices.model.policy.Policy
v com.ibm.itim.dataservices.model.policy.IPolicyTarget
v com.ibm.itim.scheduling.Schedulable

Reconciliation API
The reconciliation API can create and query reconciliations and reconciliation
parameters.

The Reconciliation API provides an interface to manage reconciliation schedules of
services. You can:
v Get and set reconciliation schedules to a service.
v Modify the reconciliation schedules collection, which includes additions and

deletions.
v Set the new collection.
v Trigger a specific reconciliation schedule to run.

The API exists in the following classes:
v com.ibm.itim.apps.recon.ReconManager

Chapter 2. Application programming interfaces 7

v com.ibm.itim.apps.recon.ReconUnitData

Authentication API
Use the authentication API for working with different trusted identity stores such
as identity information. This information can be stored on a Windows domain
server or an LDAP directory. It includes the use of different types of keys, typically
passwords, to unlock the application for a user.

The authentication API contains the authentication client API, which makes
authentication requests, and the authentication provider API, which implements
authentication requests.

Data services API
The data services API provides an interface to the IBM Security Identity Manager
data model.

This API abstracts the more commonly used data model entities such as identities,
accounts, access, and services in the provisioning process. It includes a generic
interface to handle complex attributes. Data synchronization depends on Data
Services APIs. Furthermore, the data services API provides the data model that the
Applications API uses.

Although the ability to change the data model is provided in this API, this ability
is not its focus. The Data Services API is low level. It abstracts the physical layout
of the data store (directory structure). It does not provide the business logic that
the provisioning applications with the platform provide.

IBM Directory Integration API
With this API, IBM Security Directory Integrator can import identity information
into IBM Security Identity Manager. It manages accounts in the IBM Security
Identity Manager data store on external resources that use IBM Security Directory
Integrator.

The following features are included in this API:

Note: Directory Service Markup Language version 2 (DSMLv2) was deprecated.
v A Directory Service Markup Language version 2 (DSMLv2) ServiceProvider. You

can use it to import data. IBM Security Identity Manager acts as a DSMLv2 client.
IBM Security Directory Integrator acts as a DSMLv2 server.

v A DSMLv2 event handler. You can use it to import data into IBM Security Identity
Manager. IBM Security Identity Manager acts as a DSMLv2 server. IBM Security
Directory Integrator acts as a DSMLv2 client.

v Ready-to-use schema support for communicating with IBM Security Directory
Integrator. You can use IBM Security Directory Integrator as an endpoint and
define it as a service instance in the IBM Security Identity Manager user
interface for identity feed.

JavaScript API
The JavaScript API extends the scripting components that are specific to the
scripting language that is configured with the product.

8 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

IBM Security Identity Manager provides a method to register new JavaScript
extensions with the server. You can use the JavaScript API to add additional objects
and functions to the interpreter’s glossary. A client can create and register
additional objects and functions with the interpreter to run at run time.

The JavaScript API provides information about access participants, such as
participant type, workflow participants, group access management, and access
notification context.

Mail API
Use the mail API to customize mail content, format, and notification recipients.

Clients who use this API can make notification requests and extend construction of
notification messages. The Mail API contains the Mail Client API, which makes
notification requests, and the Mail Provider API, which implements notification
requests.

The mail API also contains a function that is called Post Office that prevents
workflow participants from receiving multiple email notifications that have similar
content. Similar emails are stored, combined into a single email notification, and
forwarded to a user.

Password rules API
The password rules API provides an interface to customize the standard password
rule set and random password generation process.

You can use the password rules framework to customize the mechanism of
generating passwords by the IBM Security Identity Manager server. Use one of the
following ways to add custom logic to the password framework:
v A custom rule
v A custom generator
v Custom rules and a custom generator

Policy analysis API
The policy analysis API provides an interface to information about policies that are
defined in the IBM Security Identity Manager Server. It is an interface to the access
granted to a specific individual.

The API contains a set of Java classes that retrieve and abstract the provisioning
policy information that controls access to managed resources. The Provisioning
Policy API reports the provisioning policy enforcement in the system, but it does
not support client modification of the policy. A client can use the policy
information for auditing or deciding about potential policy enforcement changes.

Service provider API
The service provider API provides custom connectors. The connectors can be used
from the IBM Security Identity Manager provisioning platform or any other
Java-based provisioning platform that supports the same interface.

Service provider APIs define the interface that the IBM Security Identity Manager
adapter needs to implement and communicate to remote adapter agents. The

Chapter 2. Application programming interfaces 9

adapter agent implementation does not rely on IBM Security Identity Manager
APIs except for the set of asynchronous notification APIs provided under Service
Provider APIs.

The following operations are included in the interface between the provisioning
platform and the connector:
v Add
v Change password
v Delete
v Modify
v Restore
v Search
v Suspend
v Test

The provisioning platform performs all of the operations needed to determine the
actions and their parameters that are to be run against resources. The connector
runs those operations on the resource within requirements that are related to the
resource.

Single sign-on API
The single sign-on API provides a single sign-on interface to accessible resources.

Some IBM Security Identity Manager installations might require integration with
third party, single sign-on providers. Typically, such single sign-on providers
protect a set of web-based resources with an authentication data store that is
managed separately from IBM Security Identity Manager. The first time a client
attempts to access any protected resource, the single sign-on provider provides
authentication. If access is granted, the provider passes a token that indicates the
identity of the authenticated user to all resources that are accessed later.

Web services API
This API consists of multiple web services, which are grouped by function. The
services are listed alphabetically except the WSSessionService. This service is listed
first since it is the first service that is called by any application. The session object
that is returned by its login method is used as a parameter in all subsequent
services.

WSSessionService

The WSSessionService web service provides authentication, session creation, and
password challenge authentication. A client calls WSSessionService before you start
any other web services. WSSessionService returns a session (handle) object that
must be passed to the other web service calls to maintain a threaded conversation.
The service provides the following operations:
v Login.
v Logout.

You can also use the WSUnauthService web service for other operations.

10 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

WSAccessService

The WSAccessService web service provides the following operations:
v Create a user access.
v Retrieve existing user access of a person.
v Remove user access.
v Search access entitlements available to a person.

The service provides following operations:
v Create and modify accesses.
v Do access searches.

WSAccountService

The WSAccountService web service provides the following operations to do
account-related tasks:
v Create, modify, and other simple account operations.
v Retrieve default account attributes for a new account as specified by the

provisioning policy.
v Retrieve the account profile name for a service.

WSExtensionService

The WSExtensionService web service provides a framework to extend the existing
web services that are used by users. The service provides the users to create an
operation to show a new Security Identity Manager API. The detailed steps to
create an extension service are specified in the ITIMWS.odt file, which is in the
ISIM_INSTALL_DIR/extensions/6.0/doc/ws directory. ISIM_INSTALL_DIR is the
directory where Security Identity Manager is installed.

WSGroupService

The WSGroupService web service provides group management functions. The
service provides the following operations:
v Create and remove groups.
v Search groups.
v Manage group membership.

WSOrganizationalContainerService

The WSOrganizationalContainerService web service provides Security Identity
Manager organization tree traversal and retrieval methods.

WSPasswordService

The WSPasswordService web service provides password management functions.
The service provides the following operations:
v Validates the password as per the password policy rules.
v Enables change or generate password.

Chapter 2. Application programming interfaces 11

WSPersonService

The WSPersonService web service provides person-object related methods. The
service provides the following operations:
v Create, modify, suspend, restore, delete, and other simple person operations.
v Retrieve the services to which a person is entitled in Security Identity Manager

or accounts.
v Do person searches.
v Retrieve the person object of the Principal.

WSProvisioningPolicyService

The WSProvisioningPolicyService web service deals with the provisioning policy.
The service provides the following operations:
v Search provisioning policies.
v Create, modify, and delete provisioning policies.

WSRequestService

The WSRequestService web service provides the Security Identity Manager request
related functions. The service provides the following operations:
v Search for completed requests.
v Retrieve pending requests.
v Retrieve the request object that is based on the process ID or request ID.

WSRoleService

The WSRoleService web service provides role-based capabilities in the Security
Identity Manager. The service provides the following operations:
v Create and modify roles.
v Do role searches.
v Manage role hierarchy.

WSSearchDataService

The WSSearchDataService web service provides functions to search various Security
Identity Manager directory objects. The search method does not enforce the
Security Identity Manager ACIs, but a valid Security Identity Manager session is
required to call these methods. The service provides the following operations:
v Search for persons from root container.
v Search for persons that are having an Security Identity Manager account.
v Search for the possible delegates within Security Identity Manager for the

logged-in user.
v Retrieve the searchable attributes of an entity in Security Identity Manager.
v Retrieve common searchable attributes for the Security Identity Manager entity.

WSServiceService

The WSServiceService web service provides Security Identity Manager-based
managed services (end-point configuration) functions. The service provides the
following operations:

12 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

v Retrieve support data. For example, group data for UNIX, Linux, or Microsoft
Windows services.

v Determine whether a password is required when provisioning on a service.
v Retrieve services that are configured on Security Identity Manager.

WSSharedAccessService

The WSSharedAccessService web service provides many functions for the shared
access module that is introduced in Security Identity Manager Version 6.0Version
7.0. The web service clients must call the login method before it calls any other
web services. The service provides the following operations:
v Retrieve authorized shared accesses.
v Retrieve the credentials.
v Check in or checkout credentials.

Note: You must install and enable the shared access module in order to use the
WSSharedAccessService API.
For more information, see Shared access web services API.

WSSystemUserService

The WSSystemUserService web service provides the functions that are related to
system users. The service provides the following operations:
v Manage delegates, that is, add, modify, or delete delegates.
v Retrieve all the system roles.
v Configure challenge response.
v Search for system users who have an Security Identity Manager account.

WSToDoService

The WSToDoService web service provides the functions to manage the different
activities available in Security Identity Manager. The service provides the following
operations:
v Approve or reject activities.
v Retrieve or Submit Request for information activity details.
v Retrieve the pending activities of the logged-in user.

WSUnauthService

The WSUnauthService web service provides an interface for all the web service APIs
that do not require the Security Identity Manager authentication. The service
provides the following operations:
v Version information.
v Reset password by using the challenge responses.
v Password policies.

Updates to the web services application interface
programming (API)

There are updates available for IBM Security Identity Manager web services APIs
in any fix pack that is later than IBM Security Identity Manager 6.0.0.6.

Chapter 2. Application programming interfaces 13

http://www.ibm.com/support/knowledgecenter/SSRQBP_2.0.0/com.ibm.ispim.doc_2.0/reference/cpt/apis_sa_websvc.html

Web services APIs for the person search, which belongs to the WSPersonService
and WSSearchDataService services are updated to enable the search person
functionality for any person category, such as Person, BPPerson, or Custom person.

The new web service WSRoleService deletes an organizational role.

Note: For detailed information about web services APIs, go to
ITIM_HOME/extensions/doc/ws/ITIMWS.odt. For information about migrating
existing APIs to IBM Security Identity Manager web services, go to
ITIM_HOME/extensions/doc/ws/migration/
OPALWebServicesMigrationGuidelines.doc.

Workflow API
Use the workflow API for custom code that can be called from a workflow process
as a custom Java application or a JavaScript function. This custom code can then
do special business logic, query external data stores, or provide integration with
other workflow engines.

The Workflow API consists of a set of Java classes. The classes abstract the more
commonly used concepts of the workflow environment, such as processes,
activities, and relevant data.

The Workflow API supports new access request types. The access owner is a
participant type.

The Workflow API provides methods for updating the recertification state and
provides audit information for recertification. Audit records contain information
about the recertification configuration and the who, what, and when of recertification
tasks. These audits provide more useful reports about recertification compliance of
users, accounts, and accesses. Consumers of the recertification policies can also
have their recertification process audited in a reportable way.

14 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 3. Dictionary for a password policy

You can create a dictionary for a password policy rule that rejects certain terms as
passwords.

To use a dictionary for a password policy rule, you must first create and load a
dictionary.ldif file to the IBM Security Identity Manager Server. To create a
dictionary for a password policy rule:
1. Using an ASCII or other plain text editor, create a dictionary that contains the

list of terms in an LDAP Data Interchange Format (LDIF) file.
For example, create a file similar to this dictionary.ldif file, which specifies
the domain as dc=com:
dn: erword=test,erdictionaryname=password, ou=itim, dc=com
erWord: test
objectclass: top
objectclass: erDictionaryItem

dn: erword=secret,erdictionaryname=password, ou=itim, dc=com
erWord: secret
objectclass: top
objectclass: erDictionaryItem

dn: erword=password,erdictionaryname=password, ou=itim, dc=com
erWord: password
objectclass: top
objectclass: erDictionaryItem

2. Load the dictionary.ldif file on to the IBM Security Directory Server with one
of these procedures:
v Use an LDAP browser to import the dictionary.ldif file.
v On the command prompt of the LDAP server, enter this command on one

line.
ITDS_HOME/bin/ldapadd.exe -h hostname -D cn=adminuser
-w adminpwd -V 3 -f dictionary.ldif

-h hostname
Specifies the host name of the computer on which the LDAP server
is running.

-D cn=adminuser
Specifies the administrator's distinguished name to bind to the LDAP
directory.

-w adminpwd
Specifies the administrator's distinguished name password, for
simple authentication.

-V ldap_version
Specifies the version of the LDAP protocol to use. The default value
is 3, for the LDAP v3 protocol. A value of 2 uses the LDAP v2
protocol.

-f file Reads the entry modification information from a file such as
dictionary.ldif, instead of from standard input.

The dictionary file can now be used in the password strength rule.

15

16 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 4. Dataservices attributes for recertification

IBM Security Identity Manager provides optional attributes in the erAccountItem
object class to represent different values for recertification.

Overview

The dataservices attributes for recertification are relevant only if recertification is
enabled for specific accounts or accesses.

The following optional attributes are provided:
v erLastCertifiedDate

v erRecertificationLastAction

v erAccessLastCertifiedDate

v erAccessRecertificationLastAction

erLastCertifiedDate

The erLastCertifiedDate attribute is updated by the account recertification process
only, but not for accesses. An optional attribute for the timestamp of the last time
the account was marked as recertified. This attribute is updated on approved
recertifications regardless of recertification policy schedule type, whether rolling or
calendar style.

This attribute is updated for both approvals during normal recertification cycle and
through the recertificationOverride option outside of the normal recertification
policy run. The absence of a value means that recertification was never approved
for this account. The Account data services object from the
com.ibm.itim.dataservices.model.domain package defines the
setLastCertifiedDate() and getLastCertifiedDate() methods for accessing this
attribute. When an account is certified, this attribute must be updated along with
reRecertificationLastAction.

erRecertificationLastAction

The erRecertificationLastAction attribute is updated by the account
recertification process only, but not for accesses. This attribute requires a getter and
setter method defined on the Account data services object class
com.ibm.itim.dataservices.model.domain package:
public void setRecertificationLastAction(String recertificationAction)
public String getRecertficiationLastAction()

This optional attribute describes the action taken the last time recertification was
run. The following values are valid:
v com.ibm.itim.dataservices.model.domain.Account.CERTIFIED = 'CERTIFIED'

v com.ibm.itim.dataservices.model.domain.Account.CERTIFIED_ADMIN =
'CERTIFIED_ADMIN'

v com.ibm.itim.dataservices.model.domain.Account.REJECTED_MARK =
'REJECTED_MARK'

v com.ibm.itim.dataservices.model.domain.Account.REJECTED_SUSPEND =
'REJECTED_SUSPEND'

17

erAccessLastCertifiedDate

The erAccessLastCertifiedDate attribute is specific to accesses that are defined on
an account. This multivalued attribute holds the access group definition
distinguished name and timestamp that shows when that access was last certified
as a delimited string.

Example
eraccesslastcertifieddate: erntlocalname=users,
erglobalid=7281584268561021074,ou=services,
erglobalid=00000000000000000000,ou=hawk,o=ibm,
c=us;;200711202115Z

This example shows the last recertification date for the access that is associated
with the access defined for the group specified by the distinguished name. Only
one value for this attribute per access is defined for the account.

erAccessRecertificationLastAction

The erAccessRecertificationLastAction attribute is specific to recertification state
of accesses that are defined on an account. This multivalued attribute holds the
access group definition distinguished name and recertification last action taken as a
delimited string. It serves the same purpose for accesses as
erRecertificationLastAction does for accounts.

Example
eraccessrecertificationlastaction: erntlocalname=users,
erglobalid=7281584268561021074,
ou=services,erglobalid=00000000000000000000,
ou=hawk,o=ibm,c=us;;CERTIFIED

This example shows the last recertification action for the access that is associated
with the group definition distinguished name. The values for the action are the
same as described for the erRecertificationLastAction attribute. Only one value
for this attribute per access is defined for the account.

18 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 5. Date range customization

IBM Security Identity Manager provides additional date range customization,
which is not available through the standard Form Designer applet.

With these options, you can control the years available to users when they
customize a date. The following options must be configured manually on the
following form template that is stored in the directory server:
erformname=inetOrgPerson,ou=formTemplates,ou=itim,ou=tivsys,dc=com

You can specify options that define the range of years to be displayed. You also
can specify the standard range of years, a special extended max year such as 9999,
or special minimum value such as 1900. You have options to display all years
between the standard range and extended dates.

The options are:

minYear
Minimum year to display.

spanMinYearRange
When set to a value of false, displays all years between minYear and
minRangeYear.

minRangeYear
Starting year for the standard range of years. The default is 1990.

maxRangeYear
Ending year for the standard range of years. The default is 2010.

spanYearRange
When the value is false, displays all years between maxRangeYear and
maxYear.

maxYear
Maximum year to display.

19

20 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 6. Workflow extensions

Workflow extensions provide a means to alter or extend workflow functions.

Policy enforcement extension
The policy enforcement extension assesses the accounts that are associated with a
Person or BPPerson and enforces the policies in place for that person.

Overview

A policy enforcement extension is code that can be called directly from a workflow.
Workflows that change a person object typically use this extension.

The extension is implemented in
com.ibm.itim.workflowextensions.PersonExtensions.

The following extensions are provided:
v enforcePolicyForPerson(Person, skipNonEntitledAccountsEvaluation)

v enforcePolicyForPerson(BPPerson, skipNonEntitledAccountsEvaluation)

The extensions work identically on the specified Person or BPPersion.

skipNonEntitledAccountsEvaluation is a string, either true or false.
v If false, then all accounts applicable to the person are evaluated. All accounts

that the person owns are considered when the extension enforces provisioning
polices.

v If true, then policy enforcement proceeds as follows:
1. Identify all services applicable for the person store them in a collection.
2. Check for removed roles in the change list of the specified person.
3. Merge the list of services that are identified in step 1 and step 2.

This process specifies that only accounts calculated from the person's role
change are considered for policy enforcement. No other accounts are
considered.
Therefore, some accounts are not considered: accounts where the person's
role is removed, and accounts that are already provisioned for those roles.

For examples of how the extensions are used, see the Add, Modify, and Transfer
operations in Operations management.

Recertification extensions
The recertification extensions track the recertification state in a workflow.

Overview

A recertification extension is code that can be called directly from a workflow. An
extension defined for accounts also handles the recertification state for accesses,
and uses dataservices to update attributes stored on the account object in data

21

services. These extension methods are integrated into the AccountExtensions class
from the com.ibm.itim.workflowextensions package.

Because the recertification extensions provided are considered activities by the
workflow engine, any failure in those extensions is returned as a failure when the
activity completes. This result causes the recertification workflow to fail, and its
failure is audited in the RECERTIFICATIONLOG audit table as well.

The following extensions are provided:
v constructApprovalDocument

v recertificationMark

v recertificationMarkAccess

v recertificationSuspend

v recertificationCertify

v recertificationCertifyAccess

v recertificationAdminCertify

v recertificationAdminCertifyAccess

v remediateAccountsAndGroups

v remediateRoleMemberships

v updateRecertificationStatusAllApproved

v updateRecertificationStatusEmptyDocument

recertificationMark

The public ProcessResult recertificationMark(Account) extension updates
erLastRecertificationAction for the target type, updating the
erLastRecertificationAction attribute to:
com.ibm.itim.dataservices.model.domain.Account.REJECTED_MARK = 'REJECTED_MARK'

The recertification action is audited in RECERTIFICATIONLOG table for use by reports.

constructApprovalDocument

The public ProcessResult constructApprovalDocument(Person,
RecertificationPolicy) extension constructs the PackagedApprovalDocument that is
required for user-based recertification. This document contains all of the static
roles, accounts, and groups for the specified person.

If there are no recertification targets for the person, this method returns a
ProcessResult with a WARNING summary and an embedded message. In this
case, it contains an output parameter list with an empty document. Otherwise, if
successful, the ProcessResult contains a populated document for this particular
person.

recertificationMarkAccess

The public ProcessResult recertificationMark(UserAccessAccount) extension
has the same function for accesses as recertificationMark() has for users and
accounts. It updates the erAccessLastRecertificationAction attribute specific to
the UserAccess passed in to:
com.ibm.itim.dataservices.model.domain.Account.REJECTED_MARK = 'REJECTED_MARK'

The recertification action is audited in RECERTIFICATIONLOG table for use by reports.

22 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Note: This method is for suspending accounts only. No method for suspending
access is provided.

recertificationSuspend

The public ProcessResult recertificationSuspend(Account) extension updates
erLastRecertificationAction for the account. It updates the
erLastRecertificationAction attribute to:
com.ibm.itim.dataservices.model.domain.Account.REJECTED_SUSPEND = 'REJECTED_SUSPEND'

The recertification action is audited in RECERTIFICATIONLOG table for use by reports.

Note: This method is for suspending accounts only. No method for suspending
access is provided.

recertificationCertify

The public ProcessResult recertificationCertify(Account) extension updates
erLastRecertificationAction for the target type. It updates the
erLastRecertificationAction attribute to:
com.ibm.itim.dataservices.model.domain.Account.CERTIFIED = 'CERTIFIED'

The recertification action is audited in RECERTIFICATIONLOG table for use by reports.
This extension also updates the erLastCertifiedDate attribute with the current
timestamp.

recertificationCertifyAccess

The public ProcessResult recertificationCertify(UserAccessAccount) extension
updates erLastAccessRecertificationAction for the access. It updates the
erLastRecertificationAction attribute for the specified UserAccess to:
com.ibm.itim.dataservices.model.domain.Account.CERTIFIED = 'CERTIFIED'

The recertification action is audited in RECERTIFICATIONLOG table for use by reports.
This extension also updates the erAccessLastCertifiedDate attribute for the
accessAttribute with the current timestamp.

Note: This method is the access version of recertificationCertify for users and
accounts.

recertificationAdminCertify

The public ProcessResult recertificationAdminCertify(Account) extension
updates erLastRecertificationAction for the target type. It updates the
erLastRecertificationAction attribute to:
com.ibm.itim.dataservices.model.domain.Account.CERTIFIED_ADMIN = 'CERTIFIED_ADMIN'

The recertification action is audited in RECERTIFICATIONLOG table for use by reports.
This extension also updates the erLastCertifiedDate attribute with the current
timestamp.

Chapter 6. Workflow extensions 23

recertificationAdminCertifyAccess

The public ProcessResult recertificationAdminCertify(UserAccessAccount)
extension updates erLastRecertificationAction for the access. It updates the
erAccessLastRecertificationAction attribute for the UserAccess passed in to:
com.ibm.itim.dataservices.model.domain.Account.CERTIFIED_ADMIN = 'CERTIFIED_ADMIN'

The recertification action is audited in RECERTIFICATIONLOG table for use by reports.
This extension also updates the erAccessLastCertifiedDate attribute for the
accessAttribute with the current timestamp.

Note: This method is the access version of recertificationAdminCertify for users
and accounts.

remediateAccountsAndGroups

The public ProcessResult
remediateAccountsAndGroups(PackagedApprovalDocument, Person,
RecertificationPolicy, String) extension runs user recertification remediation on
all of the accounts, groups, and accesses in the approval document. Each entry is
processed based on the responses in the document and the enforcement action of
the policy. Any recertification status updates are performed directly through data
services. Any removals of accounts, groups, or accesses are handled by launching
the appropriate workflow operation as a subprocess.

remediateRoleMemberships

The public ProcessResult remediateRoleMemberships(PackagedApprovalDocument,
Person, RecertificationPolicy, String) extension runs user recertification
remediation on all role memberships in the approval document. Each entry is
processed based on the responses in the document and the enforcement action of
the policy. If any roles are removed, this extension launches the person modify
operation to process the removal and corresponding policy enforcement actions. If
no role are removed, this activity directly invokes policy enforcement to make sure
that the recertification is performed on every person.

updateRecertificationStatusAllApproved

The public ProcessResult
updateRecertificationStatusAllApproved(PackagedApprovalDocument, Person,
RecertificationPolicy) extension processes the approval document, and updates
the recertification status of each entry. The entries include accounts, groups, and
role memberships. This extension is only invoked when all choices in the
document are approved. Different extensions are used for remediation. Any
recertification status updates are performed directly through data services.

updateRecertificationStatusEmptyDocument

The public ProcessResult
updateRecertificationStatusEmptyDocument(PackagedApprovalDocument, Person,
RecertificationPolicy) extension updates the required recertification status on
the person being recertified. It is the only action required in the case that the
document does not contain any resources. The recertification status updates are
performed directly through data services.

24 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Wait extension
The wait extension pauses the workflow until a specified time.

Overview

A wait extension is code that can be called directly from a workflow. It is
implemented in the WaitExtension class in the com.ibm.itim.workflowextensions
package.

The following extension is provided:
v scheduleTimeout

scheduleTimeout

The public ProcessResult scheduleTimeout(Date) extension suspends the
workflow until the time specified by Date, which is the standard Date object in
JavaScript. When the specified time is reached, the extension activity is complete
and the workflow continues.

Embed the wait extension in a loop in the workflow if you want the workflow to
check a condition and continue only when the condition is no longer met. The loop
requires the following logic:
v Check the condition.
v Calculate the target date for the wait extension from the current date. Use

JavaScript.
v Run the wait extension. Use the calculated target date for

scheduleTimeout(Date).

For more information about Date, see a JavaScript reference like the following:
JavaScript Date Reference. Another possible reference is the ECMAScript(r)
Language Specification, published by ECMA International, which now administers
the standards that are the basis for JavaScript and other scripting languages.

Examples
v A workflow loop checks CPU load and continues only when CPU load falls

below the desired level.
1. Check CPU load.

– If CPU load is below the desired threshold: Exit the loop.
– If CPU load is above the desired threshold: Calculate the target DATE and

then run the wait extension.
2. When the wait extension is complete, loop to check CPU load again.

v Enforce dynamically calculated timeouts for long-running workflow activities.
For example, implement an approval that is pending for two working days.
1. Calculate the target DATE. Use JavaScript. The calculation needs to account for

workflows that are triggered near a weekend. For example, consider the
desired period of two working days. If the workflow is triggered on a Friday,
the target date is Tuesday (four elapsed days). If the workflow is triggered
on a Monday, then the target date is Wednesday (two elapsed days).

2. Branch workflow execution that uses a fork type of AND. Put the approval on
one branch and the wait extension with the target DATE on the other branch.

3. Merge the two branches with a join type of OR.

Chapter 6. Workflow extensions 25

http://www.w3schools.com/jsref/jsref_obj_date.asp
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

The workflow continues when either branch is complete: an approval is
submitted or the wait extension times out.

26 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 7. REST APIs

You can develop custom applications by using the REST application programming
interfaces (APIs) that come with the IBM Security Identity Manager. The REST
APIs are available so that you can administer the tasks outside of the IBM Security
Identity Manager user interface. The topic provides information about the
functions that REST APIs support.

Note: The REST API documentation is available in the following location:

ISIM_HOME/extensions/6.0/doc/rest/index.html

The REST APIs are segregated into a set of functional components of IBM Security
Identity Manager that are listed in the following section.

Person Management
View or edit user profiles.

System User Management
Search capability for the IBM Security Identity Manager system users
based on unique identifiers.

Password Management
Change or reset the password, and recover the forgotten password.

Access Management
Request, view, edit, or delete the access.

Activity Management
View and act on your activities.

Delegation Management
Delegate activities, view, edit, and delete the delegation schedule.

Generic Search APIs
Assorted set of search capabilities that are provided by the REST APIs.

REST API code samples
The REST API code samples are annotated. The annotations provide information
about how to use the samples in your test environment.

The REST API annotated code samples are available in ISIM_HOME/extensions/6.0/
examples.

Invoking REST APIs in a domain different from the originating web
page

IBM Security Identity Manager REST APIs support cross-origin resource sharing
(CORS). CORS describes a mechanism for supporting requests that a web page
sends to a server that is not in the same domain as the originating web page. You
can configure CORS to control which origins can work with the IBM Security
Identity Manager REST APIs.

27

About this task

You can modify a list of trusted domains that can access Identity Service Center
REST APIs. Complete the steps.

Procedure
1. Open the ISIM_HOME/data/rest.properties file.
2. In the ui.CORSOrigin property, set the trusted domains. You can add multiple

domains that are separated by white space.

Results

The domains that are listed in the ui.CORSOrigin property can only access the IBM
Security Identity Manager REST APIs.

Configuring REST APIs for OAuth authentication
IBM Security Identity Manager REST APIs support OAuth authentication. OAuth
provides a method for client applications to access server resources on behalf of a
resource owner. A resource owner might be a different client or a user. It specifies
a process for resource owners to authorize third-party access to their server
resources without sharing their credentials.

Before you begin

Complete the OAuth configuration. See http://www.ibm.com/support/
knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/
cwbs_oauthintroduction.html?cp=SSEQTP_8.5.5%2F1-8-2-31-3-9. You can also refer
to the developer works article as an example for the OAuth configuration at
http://www.ibm.com/developerworks/websphere/techjournal/1305_odonnell1/
1305_odonnell1.html.

About this task

The OAuth third-party client uses the user credentials to request an access token
from the WebSphere® Application Server. It is one time activity. The access token is
placed in the client repository. The third-party client can access the IBM Security
Identity Manager REST APIs by providing the access token as a credential to REST
APIs.

After you complete the OAuth configuration, you must enable OAuth Trust
Association Interceptor (TAI) and start the components for IBM Security Identity
Manager.

Procedure
1. Enable OAuth TAI for the IBM Security Identity Manager domain that is

already configured in WebSphere Application Server.
a. In the WebSphere Application Server administrative console, click Security

> Global Security > Security Domains > ISIMSecurity Domain.
b. Under Security Attributes, expand Trust Association.
c. Select the option Customize for this domain.
d. Select Enable trust association.
e. Click Interceptors.
f. Click New.

28 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/cwbs_oauthintroduction.html?cp=SSEQTP_8.5.5%2F1-8-2-31-3-9
http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/cwbs_oauthintroduction.html?cp=SSEQTP_8.5.5%2F1-8-2-31-3-9
http://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.doc/ae/cwbs_oauthintroduction.html?cp=SSEQTP_8.5.5%2F1-8-2-31-3-9
http://www.ibm.com/developerworks/websphere/techjournal/1305_odonnell1/1305_odonnell1.html
http://www.ibm.com/developerworks/websphere/techjournal/1305_odonnell1/1305_odonnell1.html

g. Create the interceptor with an interceptor class name of
com.ibm.ws.security.oauth20.tai.OAuthTAI.

2. Start the components to enable OAuth.
a. In the WebSphere Application Server administrative console, click Servers >

Server Types > Websphere Application Servers, add your server name.
b. Under Configuration tab, select Start components as needed.
c. Restart the WebSphere Application Server.

Results

After you enable OAuth in WebSphere Application Server successfully, a token is
generated for the Identity Service Center user. You can use the generated token
and do not require to authenticate to access REST APIs.

Filter configuration for REST search services
Use the following information to learn how the IBM Security Identity Manager
REST search services create the search filter expression.

You can configure the filters and the HTTP request URL query parameters to
control the data that the REST search services return.

Note:

To use a specific filter configuration for a request, the REST client can supply
’filterId’ as a URL query parameter and its value must be the filter identifier
that is configured in the custom/rest/searchfilter.json file. See “Examples” on
page 30.

For more information about how to define the filter identifier, see Defining the
filter identifier for REST search service. The REST service uses the corresponding
filter configuration in the following table to create the filter expression.

Table 1. Filters and their supported values

Filters Description

"filterTemplate" A template string for the filter expression. For example,

v "(&(&(date>=${fromDate})(date<=${toDate}))${filterExpression})".
fromDate and toDate are the URL parameter names and their values are
placed in the template.

v ${filterExpression} is replaced with the expression that is created
with remaining URL parameters as described in the table.

Note: filterTemplate is an optional configuration for a filter. If the
filterTemplate is not specified, then it is equivalent to
"filterTemplate": "${filterExpression}".

"joinOperator" An operator that is applied to join the logical expressions. Supported
values are & and |.

"multivalueJoinOperator" An operator that is applied to join the logical expressions that are created
for the multiple value URL parameters. Supported values are & and |.

"comparisonOperator" An operator that is applied for an attribute and its value comparison.
Supported values are =, !=, ~=, >=, <=, >, <.

Chapter 7. REST APIs 29

Table 1. Filters and their supported values (continued)

Filters Description

"baseFilter" You can substitute attributes of the current Identity Service Center
account or the owner of the account into the base search filter. These
attributes are used when the filter is evaluated. The notation ${xxxx} is
used to specify where the substitution is made, and xxxx specifies what
attribute value is to be substituted. The special string systemUser
represents the user account of the current Identity Service Center user.
You can qualify systemUser to specify an account attribute, such as
${systemUser.eruid}. You can also reference attributes of the owner of
the account, such as ${systemUser.owner.cn}. Only attributes of the
current account or the owner of the account can be used as substitutions
into the base search filter. If a substitution cannot be evaluated or is
evaluated to an empty string, a substitution value of _undefined_ is used
instead.

For example,

"baseFilter": "(!(uid=${systemUser.owner.uid}))"

"allowWildcard" Specifies whether to use * as wildcard in the final filter expression or
escape it. Supported values are true and false.

Rules that apply to populate the filterTemplate
v If a parameter in the template is not supplied as URL query parameter in the

HTTP request, it is removed from the expression. For example,
The filterTemplate is "(&(cn=xyz)(sn=${sn}))" and
the request URL is "/rest/people"

The resultant expression is (cn=xyz).
v String ${filterExpression} in the filterTemplate is replaced by the filter

expression that is created by using the filter configuration and URL parameters
that are not provided in the filter template. For example,

The filterTemplate is "(&(cn=xyz)(sn=${sn})${filterExpression})" and
the request URL is "/rest/people?sn=abc&email=pqr@site.com"

The resultant expression is (&(cn=xyz)(sn=abc)(email=pqr@site.com)). In this
example, sn, email are two URL query parameters but email is used to create
$filterExpression because sn is already used in the template.

Conditions in the filterExpression for joinOperator,
multivalueJoinOperator, comparisonOperator, allowWildcard
v If a URL parameter contains multiple values, then the template expression for

that parameter is constructed by using multivalueJoinOperator.
The filterTemplate is "(&(cn=pqr)(sn=${sn}))" and
the request url is "/rest/people?sn=abc&sn=xyz" and
the multivalueJoinOperator is |

The resultant expression is (&(cn=pqr)(|(sn=abc)(sn=xyz))).
v If a URL parameter contains single value, then that value is placed in the

template.
The filterTemplate is (&(cn=abc)(sn=${sn}))" and
the request url is "/rest/people?sn=xyz"

The resultant expression is (&(cn=abc)(sn=xyz)).

Examples

30 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Example 1 - Person search without using the filter identifier

The PERSON_SEARCH is the REST service endpoint key for the person search
capability. You must set a value for the PERSON_SEARCH that you can use as a filter
identifier for person search capability when you create a request URL. You might
not know the REST service endpoint keys for all the supported functions. You can
use the dictionary service to know about all the supported REST service endpoint
keys. Access http://hostname:port/itim/rest/dictionary to find the REST service
endpoint keys.

You want to search for a person. Example 1 explains how to use the REST service,
without providing any explicit filter identifier. Complete the following steps:
1. Set the value for the PERSON_SEARCH in the isim/data/

rest.propertiesrest.properties file. For example,
PERSON_SEARCH=customPersonSearch.

2. Define the customPersonSearch filter in the custom/rest/searchfilter.json file.
For example,
"customPersonSearch": {

"joinOperator": "&",
"multivalueJoinOperator": "|",
"comparisonOperator": "=",
"baseFilter": "(!(uid=${systemUser.owner.uid}))",
"allowWildcard": "false"

}

If the request URL is:
/itim/rest/people?cn=abc&sn=pqr&sn=xyz*

and you log in as a user user1

Then, the filter expression is:
(&(&(cn=abc)(|(sn=pqr)(sn=xyz\2a)))(!(uid=user1)))

Example 2 - Request search by using the filter identifier

You want to search for the requests. Example 2 explains how to use the REST
service with the filter identifier. Complete the following steps.
1. Assume that the filter identifier requestSearch is already defined for the

request search REST service endpoint key.
2. Define the requestSearch filter in the custom/rest/searchfilter.json file. For

example,
"requestSearch": {

"filterTemplate":
"(&(&(date>=${fromDate})(date<=${toDate}))${filterExpression})",
"comparisonOperator": "=",
"joinOperator": "|",
"multivalueJoinOperator": "|",
"allowWildcard": "true"

}

If the request URL is:
/itim/rest/requests/quicksearches?filterId=requestSearch&fromDate=1425061800000
&toDate=1427826513600&accessName=*finance*&justification=*payroll*&limit=5

Then, the filter expression is:
(&(&(date>=1425061800000)(date<=1427826513600))(|(justification=*payroll*)(accessName=*finance*)))

Chapter 7. REST APIs 31

32 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 8. Dynamic tags in mail templates

IBM Security Identity Manager mail templates allow dynamic retrieval,
substitution, and decision making in creating a message.

Dynamic content tags and examples

Security Identity Manager provides dynamic content tags to allow text substitution
and enable translation. The tags are used for the emails that are generated by these
tasks:
v Designing workflows
v Specifying mail activity
v Manual service notification
v Recertification notification
v Post office
v Reminder template
v Default system notifications
v Delegation notifications

These tags are associated with dynamic content:

JavaScript code
Handles JavaScript and runs the JavaScript content that is contained
between the open and close tags. This tag contains child tags unless they
return a string. JavaScript code is called in <JS>MyJavaScriptCode</JS>
delimiters.

Table 2. Syntax and example of using JavaScript code to replace message content.

Syntax Example

<JS>text or JavaScript tag</JS> Enter each <JS></JS> statement as a single line:

An account request has been initiated for
<JS>process.requesteeName;</JS>
<JS>if (var x=process.getParent() !=null)
return x
</JS>

<JS escapeentities="false">text or JavaScript tag</JS> When specified as "false", any text that is
returned by the JavaScript execution does not
have its HTML entity tags escaped. For instance,
the < character does not return as <. This
option might be useful when the execution of the
JavaScript code returns XML. For example,
embedding XHTML body notifications inside the
XHTML body of the post office template.

The default for this attribute is "true", so not
specifying the tag escapes the characters.

33

Table 2. Syntax and example of using JavaScript code to replace message content. (continued)

Syntax Example

<JS removexhtmlheader="false">text or JavaScript tag</JS> If removexhtmlheader="true" is in the JS tag, any
text that is returned from the JavaScript does not
have the DTD statement in the XHTML content.
The text that is returned from the JavaScript has
the DTD statement in the XHTML content when
either of the following conditions exist:

v removexhtmlheader="false".

v It is not placed in the JS tag.

The default value of this attribute is false. Not
specifying the flag in the tag puts the DTD
statement in the XHTML content.

Replace tag
Formats the message that is represented by the key to allow string
replacement. The formatted string can have zero or more parameters.
Parameters can contain strings, activity IDs, or JavaScript. The string inside
the key must exist in the CustomLabels.properties file. Strings are sourced
from a CustomLabels.properties resource bundle file or from the
Labels.properties file.

The key of the string replacement can be specified with the key attribute or
by adding a KEY tag between RE tags. Specifying a key that uses both the
attribute and tag at the same time results in an exception.

The tag has these parameters:

Key Represents the resource bundle key for a RE tag. For example:
<RE key="key">
</RE>

PARM Represents the parameters for a RE tag. For example:
<RE key="key">
<PARM>with plain text</PARM>
</RE>

Table 3. Syntax and examples of using a RE tag to replace message content.

Syntax Example

<RE key="message key">
<PARM>text or JavaScript tag</PARM>
</RE>

or enter each <KEY></KEY> statement as a
single line:

<RE><KEY>message key or
JavaScript tag to return a key
</KEY>
<PARM>text or JavaScript tag</PARM>
</RE>

The KEY can be specified by either an attribute
on the RE tag, or as a subelement of the RE tag
by using the tag KEY.

<RE key="message key">
<PARM>with plain text</PARM>
<PARM><JS>process.requesteeName;
</JS></PARM></RE>

Output:

This is a formatted string replacement
example with plain text and
JavaScript code for requestee name
John Smith.

34 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 3. Syntax and examples of using a RE tag to replace message content. (continued)

Syntax Example

To enable string replacement for translation,
specify a custom label in a
CustomLabels.properties file to overwrite a
Labels.properties key.

For example, the Labels.properties file
contains this key/value pair.

readOnlyDateFormat=MMM dd, yyy hh:mm:ss z

To override this format, add the same key to
the CustomLabels.properties file.

<RE key="readOnlyDateFormat">
<PARM><JS>if (process.scheduled !=null)
return process.scheduled.getTime();

else
return "";</JS></PARM></RE>

Output:

Apr 18, 2005 05:20:52 EDT

Non-compliant message tag
Represents a message that describes the noncompliant attributes of an
account. For example:
<CAMessage/>

Dynamic content message tags
Tags are delimited in <TAG/> syntax, such as the following examples:

Table 4. Syntax and example of using tags to replace message content.

Syntax Example

<TagName/> <CAMessage/>

Returns a string that describes the non-compliant attributes of
an account.

<ManualServiceAddAccount/>

Returns a string that contains the text body for manual service
email notification.

<rfiActivityHasBeenSubmitted/>

Returns a string that contains the text body of an RFI activity
that was submitted in an account request workflow.

ID tag Represents the activity ID in the form: Process.ActivityId. For example:
<ID/>

ITIMURL tag
Based on group membership of the person. It represents the URL of the
IBM Security Identity Manager Server. A forced URL can be applied by
using the forcedurl attribute of the tag. This attribute contains constant
values such as the value console, enduser, or ISC.

Table 5. Syntax and examples of ITIMURL.

Syntax Example

<ITIMURL/> Based on group membership of the person. It
represents the URL of the IBM Security Identity
Manager Server.

Chapter 8. Dynamic tags in mail templates 35

Table 5. Syntax and examples of ITIMURL. (continued)

Syntax Example

<ITIMURL forcedurl="enduser"/> Represents the URL of the graphical user
interface on the IBM Security Identity Manager
Server. If the forcedurl attribute is used, the URL
is not generated based on the group membership
of the person.

These values are associated with this attribute:

enduser
The URL points at the self-service
graphical user interface.

console
The URL points at the administrator
graphical user interface.

servicecenter
The URL points at the service center
graphical user interface.

<ITIMURL forcedurl="console"/>

<ITIMURL forcedurl="servicecenter"/>

Properties file values

To change templates, you can add the key=value statements in the
CustomLabels.properties file or create your own properties and values.

Required escape characters and JavaScript

The following characters must be escaped by using the appropriate HTML entity
form that has the format &entity;. This action ensures that the notification
template XML is well-formed.

Table 6. Escape characters

Escape character Character

< Less Than (<)

> Greater Than (>)

"e; Quotation (")

' Apostrophe (')

& Ampersand (&)

For example, to use the following JavaScript
if (i<4) return "less than four";

the dynamic content tag is
<JS> if (i<4) return "e;less than four"e;;</JS>

Common formatting patterns in the XHTML body

Default messages are formatted with a common pattern in the XHTML body and
also contain message-unique statements.

36 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

For example, the XHTML for the to-do reminder template calls a common style
sheet (the imperatives.css file) and logos. Message-unique statements are similar
to the following ones:
<!-- Start of notification body -->

<textBody/>
<RE key="escalation_note"/> <escalationTime/>

</td>
</tr>

<!-- End of notification body -->

The following example shows a complete set of statements in an XHTML body:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>$TITLE</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<link type="text/css" title="Styles" rel="stylesheet"
href="$BASE_URL/console/css/imperative.css" />
</head>

<!-- Put Next statement on one line -->

<body topmargin="0" marginheight="0" leftmargin="0" marginwidth="0"
bgcolor="ffffff">

<!-- Block for the Template Header part -->
<table width="100%" border="0" cellpadding="0" cellspacing="0">
<tbody>
<tr>
<!-- Security logo -->
<td width="186" background="$BASE_URL/console/html/images/mid-part-1.gif">
</td>
<!-- Middle part -->
<td background="$BASE_URL/console/html/images/mid-part-1.gif" width="692"></td>
<!-- IBM logo -->
<td background="$BASE_URL/console/html/images/ibm_banner.gif" width="96"></td>
</tr>
</tbody>
</table>

<!-- Title Bar -->
<table width="100%" border="0" cellpadding="0" cellspacing="0">
<tbody>

<tr>
<td background="$BASE_URL/console/html/images/titlebar_middle.gif"
height="23" width="8">
<img border="0" src="$BASE_URL/console/html/images/titlebar_left.gif"
width="10" height="23" /></td>
<!-- ISIM Notification Lable -->

<td background="$BASE_URL/console/html/images/titlebar_middle.gif"
height="23" classpath="portfolio-header" width="979">$TITLE</td>
<td background="$BASE_URL/console/html/images/titlebar_middle.gif"
height="23" width="5"><img
border="0" src="$BASE_URL/console/html/images/titlebar_right.gif"
width="5" height="23" /></td>

</tr>
</tbody>
</table>

<table width="100%" border="0" cellpadding="0" cellspacing="0">
<tbody>

Chapter 8. Dynamic tags in mail templates 37

<tr>
<!-- Backgroud for the template body -->
<td background="$BASE_URL/console/html/images/portfolio_background.gif"
height="148">
<table border="0" cellspacing="0" cellpadding="0" width="100%">

<tr>
<td align="left" class="text-description" height="65">
<!-- Start of notification body -->

<textBody/>
<RE key="escalation_note"/> <escalationTime/>

</td>
</tr>

<!-- End of notification body --> </table>
</td>

</tr>
</tbody>
</table>
<!-- Copy Right Table -->
<table width="100%" border="0" cellpadding="0" cellspacing="0">
<tbody>
<tr bgcolor="#9d9d9d" align="center" valign="middle">
<td class="text-description">IBM Copyright 2007</td>

</tr>
</tbody>
</table>
</body>
</html>

Mail templates
You define mail templates to deliver customized message notifications. The
templates use several customization functions.

Templates have these main parts:

Subject
Describes an activity to a recipient of the notification. The subject can
consist of plain text and dynamic content tags. If no subject is specified for
manual service activities, no email is sent.

Text body
Describes the outcome of an activity, such as an account approval. The
content can consist of plain text, dynamic content tags, and JavaScript
code.

XHTML body
Provides the content of the email as an HTML message.

Dynamic content can include dynamic content message tags, JavaScript code, and
tags that replace variables with other values or reference a property that allows
translation with the CustomLabels.properties file.

Manual service default messages
IBM Security Identity Manager provides default notification templates for
messages that participants that are service owners receive when changes occur to
accounts or passwords for manual services that they own.

Default notification templates

IBM Security Identity Manager provides these default notification templates:

38 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

<ManualServiceAddAccount/>
Provides default text sent to a participant when an account is added for
the user of a manual service.

<ManualServiceModifyAccount/>
Provides default text sent to a participant when an account is modified for
the user of a manual service.

<ManualServiceDeleteAccount/>
Provides default text sent to a participant when an account is deleted for
the user of a manual service.

<ManualServiceRestoreAccount/>
Provides default text sent to a participant when an account is restored for
the user of a manual service.

<ManualServiceSuspendAccount/>
Provides default text sent to a participant when an account is suspended
for the user of a manual service.

<ManualServiceChangePassword/>
Provides default text sent to a participant when a password change occurs
for the user of a manual service.

Properties used for translation

If the properties exist in the CustomLabels.properties file, their value is used.
Otherwise, the values of the properties in Labels.properties file are used. These
properties contain the translated versions of the messages (with parameter
substitution) that make up the dynamic tags. Change their values in the
CustomLabels.properties file if you want different text. Do not change the defaults
in the Labels.properties file.

The properties include these items:
manualServiceWorkOrderAddOperationMessage
manualServiceAttributeName
manualServiceAttributeValue
manualServiceAttributeAction
manualServiceAddAction
manualServiceRemoveAction
manualServiceReplaceAction
manualServiceWorkOrderChangePwdOperationMessage
manualServiceWorkOrderPwdValueMessage
manualServiceWorkOrderDeleteOperationMessage
manualServiceWorkOrderModifyOperationMessage
manualServiceWorkOrderRestoreOperationMessage
manualServiceWorkOrderSuspendOperationMessage
manualServiceUnknownPerson

Notification script example

A default notification script for a manual service provides a message that is sent to
a participant. For example, the ManualServiceAddAccount notification output is
similar to this example:
Attribute Name: Attribute Value
myattr: TT
Password: secret
Owner: Auditor
User ID: auditor1

Chapter 8. Dynamic tags in mail templates 39

Description: manual service operation
Requestee: Auditor
Subject: auditor1
Request Initiated: Jun 28, 2007 05:11:05 IST

Requested by process:
Process Name: Account Add
Description: Account Add Process
Requester: System Administrator
Requestee: Auditor
Subject: auditor1

Output example

The <ManualServiceAddAccount/> template provides a message that uses some of
the values in the Labels.properties file:
manualServiceWorkOrderAddOperationMessage
manualServiceAttributeName : manualServiceAttributeValue
{insert real attribute names here} : {insert real attribute values here}

The <ManualServiceModifyAccount/> tag generates:
manualServiceWorkOrderModifyOperationMessage
{Place the following attributes on one line:}
manualServiceAttributeName : manualServiceAttributeValue

: manualServiceAttributeAction
{insert real attribute names here} : {insert real attribute values here} :
{depending on what needs to be done, one of the following: }
{Place the following attributes on one line:}
{manualServiceAddAction,manualServiceReplaceAction,

manualServiceRemoveAction}

Recertification default messages
IBM Security Identity Manager provides default message templates for
recertification messages.

Default recertification templates

IBM Security Identity Manager provides default message templates for
recertification messages. You cannot change the following templates:

Suspend Account
Provides default text that requests a participant to recertify use of an
account. Declining the request suspends the account.

For example, the participant receives this message:
Recertification required for account myaccount on service shortword-linux

You have received a recertificaton request for account myaccount on service
shortword-linux owned by firstname lastname.

Rejection of this recertification request will result in the suspension of
account myaccount on shortword-linux.

Activity:Recertification of Account/Access
Date submitted:Apr 26, 2007 10:34:51 IST
Request type:Recertification
Requested for:firstname lastname
Requested by:SYSTEM

40 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Access/Account:myaccount
Description:

Due date:Apr 27, 2007 10:34:57 IST

Delete Account
Provides default text that requests a participant to recertify use of an
account. Declining the request deletes the account.

For example, the participant receives this message:
Recertification required for account myaccount on service shortword-linux

You have received a recertificaton request for account myaccount
on service shortword-linux owned by firstname lastname.

Rejection of this recertification request will result in the deletion
of account myaccount on shortword-linux.

Activity:Recertification of Account/Access
Date submitted:Apr 26, 2007 10:34:51 IST
Request type:Recertification
Requested for:firstname lastname
Requested by:SYSTEM
Access/Account:myaccount
Description:
Due date:Apr 27, 2007 10:34:57 IST

Mark Account
Provides default text that is sent to a participant to recertify use of an
account. Declining the request marks the account for a subsequent action
on the account.

For example, the participant receives this message:
Recertification required for account myaccount on
service shortword-linux.

You have received a recertificaton request for account myaccount on service
shortword-linux owned by firstname lastname.

Rejection of this recertification request will result in
account myaccount on shortword-linux being marked as rejected
for recertification.

Activity:Recertification of Account/Access
Date submitted:Apr 26, 2007 10:34:51 IST
Request type:Recertification
Requested for:firstname lastname
Requested by:SYSTEM
Access/Account:myaccount
Description:
Due date:Apr 27, 2007 10:34:57 IST

Mark Access
Provides default text that is sent to a participant to recertify use of an
account on an access. Declining the request marks the access for a
subsequent action on the account.

For example, the participant receives this message:
Recertification required for account myaccount on access myaccess.

You have received a recertificaton request for account myaccount on
access myaccess owned by firstname lastname.

Rejection of this recertification request will result in
access myaccess being marked as rejected for recertification.

Chapter 8. Dynamic tags in mail templates 41

Activity:
Date submitted:Apr 26, 2007 10:34:51 IST /* Need to fill this data */
Request type:
Requested for:
Requested by:
Access/Account:
Description:
Due date:Apr 27, 2007 10:34:57 IST

Delete Access
Provides default text that requests a participant to recertify use of an
account on an access. Declining the request deletes the account on the
access.

For example, the participant receives this message:
Recertification required for account myaccount on access myaccess.

You have received a recertificaton request for account myaccount on
access myaccess owned by firstname lastname.

Rejection of this recertification request will result in the deletion
of access myaccess.

Activity:
Date submitted:Apr 26, 2007 10:34:51 IST /* Need to fill this data */
Request type:
Requested for:
Requested by:
Access/Account:
Description:
Due date:Apr 27, 2007 10:34:57 IST

Account Suspended
Provides default text that is sent to a participant, confirming suspension of
an account, after a participant declines a recertification request.

For example, the participant receives this message:
Account myaccount on service shortword-linux has been suspended due

to rejection of a recertification request

The account myaccount on service shortword-linux owned by
firstname lastname has been suspended due to rejection of
a recertification request.

Activity:Recertification of Account/Access
Date submitted:Apr 26, 2007 10:34:51 IST
Request type:Recertification
Requested for:firstname lastname
Requested by:SYSTEM
Access/Account:myaccount
Description:

Account Deleted
Provides default text that is sent to a participant, confirming deletion of an
account, after a participant declines a recertification request.

For example, the participant receives this message:
Account myaccount on service shortword-linux has been deleted due to
rejection of a recertification request

The account myaccount on service shortword-linux owned by
firstname lastname has been deleted due to rejection
of a recertification request.

Activity:Recertification of Account/Access
Date submitted:Apr 26, 2007 10:34:51 IST

42 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Request type:Recertification
Requested for:firstname lastname
Requested by:SYSTEM
Access/Account:myaccount
Description:
Due date:Apr 27, 2007 10:34:57 IST

Account Marked
Provides default text that is sent to a participant, confirming that an
account is marked for suspension, after a participant declines a
recertification request.

For example, the participant receives this message:
Account myaccount on service shrotword-linux has been marked as rejected
for recertification due to rejection of a recertification request

The account myaccount on service shortword-linux owned by
firstname lastname has been marked as rejected for recertification
due to rejection of a recertification request.

Activity:Recertification of Account/Access
Date submitted:Apr 26, 2007 10:34:51 IST
Request type:Recertification
Requested for:firstname lastname
Requested by:SYSTEM
Access/Account:myaccount
Description:
Due date:Apr 27, 2007 10:34:57 IS

Access Marked
Provides default text that is sent to a participant. It confirms that an
account on an access is marked for subsequent action after a participant
declines a recertification request.

The template contains these statements:
Account myaccount on access myaccess has been deleted
due to rejection of a recertification request.

The account myaccount on access myaccess owned by firstname lastname
has been marked as rejected for recertification due to rejection of
a recertification request.

Activity:
Date submitted:Apr 26, 2007 10:34:51 IST
Request type:
Requested for:
Requested by:
Access/Account:
Description:
Due date:Apr 27, 2007 10:34:57 IST

Access Removed
Provides default text that is sent to a participant, confirming deletion of an
account on an access, after a participant declines a recertification request.

For example, the participant receives this message:
Account myaccount on access myaccess has been deleted due to
rejection of a recertification request.

The account myaccount on access myaccess owned by firsname
lastname has been deleted due to rejection of a recertification request.

Activity:
Date submitted:Apr 26, 2007 10:34:51 IST
Request type:
Requested for:

Chapter 8. Dynamic tags in mail templates 43

Requested by:
Access/Account:
Description:
Due date:Apr 27, 2007 10:34:57 IST

User Recertification Pending
Provides default text that is sent to a participant, confirming that a user
recertification is pending, after a recertification request is initiated.

For example, the participant receives this message:
You have received a recertification request for user firstname lastname.
The recertification includes their membership in X role(s) and ownership
of Y account(s). Please indicate whether the user still requires these
resources:

The account myaccount on access myaccess owned by firsname
lastname has been deleted due to rejection of a recertification request.

Activity: Recertification of Account/Access/User
Date submitted: Sep 08, 2008 04:10:32 EDT
Request type: Recertification
Requested for: firstname lastname
Requested by: System
Due date: Sep 18, 2008 04:10:34 EDT

User Recertification Rejected
Provides default text that is sent to a participant, confirming that one or
more resources were declined in a user recertification request.

For example, the participant receives this message:
One or more resources for user firstname lastname have been rejected
during recertification.

The account myaccount on access myaccess owned by firsname
lastname has been deleted due to rejection of a recertification request.

Activity: Recertification of Account/Access/User
Date submitted: Sep 08, 2008 06:30:07 EDT
Request type: Recertification
Requested for: firstname lastname
Requested by: System

The following roles were rejected:
rolename

The following accounts were rejected, along with all groups associated
with the accounts:
Account "uid" on service "servicename"

The following groups were rejected, but the account was accepted:
Group "groupname" for account "uid" on service "servicename"

Properties file values

To change templates, you can use all of the key=value statements in the
CustomLabels.properties file, or create your own properties and values.

The properties include these items on one line:
recertOn={0} on {1}
recertTemplateSubject=Recertification required
for account {0} on service {1}
recertTemplateAccessSubject=Recertification required
for account {0} on access {1}
recertTemplateBody=You have received a recertificaton request
for account {0} on service {1} owned by {2}.

44 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

recertTemplateAccessBody=You have received a recertificaton request
for account {0} on access {1} owned by {2}.
recertDeclineSuspendsBody=Rejection of this recertification request
will result in the suspension of account {0} on {1}.
recertDeclineDeletesBody=Rejection of this recertification request
will result in the deletion of account {0} on {1}.
recertDeclineMarksBody=Rejection of this recertification request
will result in account {0} on {1} being marked as rejected for recertification.
recertDeclineDeletesAccessBody=Rejection of this recertification request
will result in the deletion of access {0}.
recertDeclineMarksAccessBody=Rejection of this recertification request
will result in access {0} being marked as rejected for recertification.
recertDeclinedAcctSuspendedSubj=Account {0} on service {1} has
been suspended due to rejection of a recertification request
recertDeclinedAcctDeletedSubj=Account {0} on service {1} has
been deleted due to rejection of a recertification request
recertDeclinedAcctMarkedSubj=Account {0} on service {1} has
been marked as rejected for recertification due to rejection
of a recertification request
recertDeclinedAccessDeletedSubj=Account {0} on access {1} has
been deleted due to rejection of a recertification request
recertDeclinedAccessMarkedSubj=Account {0} on access {1} has
been marked as rejected for recertification due to rejection
of a recertification request
recertDeclinedAcctSuspendedBody=The account {0} on
service {1} owned by {2} has been suspended due to rejection
of a recertification request.
recertDeclinedAcctDeletedBody=The account {0} on service {1}
owned by {2} has been deleted due to rejection of a recertification request.
recertDeclinedAcctMarkedBody=The account {0} on service {1}
owned by {2} has been marked as rejected for recertification
due to rejection of a recertification request.
recertDeclinedAccessDeletedBody=The account {0} on access {1}
owned by {2} has been deleted due to rejection of a recertification request.
recertDeclinedAccessMarkedBody=The account {0} on access {1}
owned by {2} has been marked as rejected for recertification
due to rejection of a recertification request.
userRecertTemplateSubject=Recertification required for user {0}
userRecertTemplateBody=You have received a recertificaton request

for user {0}. The recertification includes their membership in {1} role(s)
and ownership of {2} account(s). Please indicate whether the user still
requires these resources.

userRecertDeclinedSubj=Recertification request rejected for user {0}
userRecertDeclinedBody=One or more resources for user {0} have been

rejected during recertification.
userRecertRolesRejectedLabel=The following roles were rejected:
userRecertAccountsRejectedLabel=The following accounts were rejected,

along with all groups associated with the accounts:
userRecertGroupsRejectedLabel=The following groups were rejected,

but the account was accepted:
userRecertAcctLabel=Account "{0}" on service "{1}"
userRecertGroupLabel=Group "{0}" for account "{1}" on service "{2}"

Recertification template key definitions

Recertification templates use the following key definitions:
name=Activity
timeScheduled=Date submitted
recertRequestType=Request type
recertRequestedFor=Requested for
recertRequestedBy=Requested by
recertAccountAccess=Access/Account
recertDueDate=Due date
recertRequestTypeName=Recertification
readOnlyDateFormat=MMM dd, yyyy hh:mm:ss z

Chapter 8. Dynamic tags in mail templates 45

Workflow default messages
IBM Security Identity Manager provides default workflow messages.

Default workflow templates

All the workflow notice templates can be customized. IBM Security Identity
Manager provides these default workflow notice templates:

Activity Timeout Template
Provides information that the workflow activity is timed out and
terminated. By default, this template is enabled.

For example, the template provides this message:
Workflow activity is being timed out and will be terminated
by the workflow system.

The following activity has timed out.The activity will be terminated
by the workflow system and the result set to Terminated.

Activity Information

View Changes: http://localhost:9090/itim/console
Activity ID: ADApproval
Activity: AD Account Approval
Time Started: Jun 09, 2007 12:28:45 IST
Time Completed:
Result Summary: Escalated
State: Running
Activity Type: Manual Approval/Reject

Process Information

Process ID: 1099575082113388748
Activity: Default AD Account Approval Workflow
Description:
State:Running
Date submitted: Jun 09, 2007 12:23:41 IST
Time Completed:
Result Summary:
Requester: 1099572462907357646
Requestee: firstname lastname
Subject:
Comment:
Detail:

The subject statement is:
<RE key="activity_timeout_subject" />

The plain text is:
<RE key="activity_timeout_message" />

<RE key="activity_timeout_detail" />

<RE key="activityInformation" />
<ITIMURL/>
<RE key="activityID"/>: <JS>activity.id;</JS>
<RE key="name"/>: <JS>activity.name;</JS>
<RE key="timeStarted"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (activity.started != null)
return activity.started.getTime();
else return ’’;</JS></PARM></RE>
<RE key="timeCompleted"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (activity.completed != null)
return activity.completed.getTime();
else return ’’;</JS></PARM></RE>
<RE key="resultSummary"/>: <RE><KEY>
<JS>process.STATE_PREFIX + activity.resultSummary;
</JS></KEY></RE>
<RE key="state"/>: <RE><KEY><JS>process.STATE_PREFIX+activity.state;
</JS></KEY></RE>

46 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

<RE key="activityType"/>: <RE><KEY>
<JS>activity.TYPE_PREFIX + activity.type;</JS>
</KEY></RE>
<RE><KEY><JS>activity.TYPE_PREFIX + activity.subtype;</JS></KEY></RE>

<RE key="processInformation" />

<RE key="processID"/>: <JS>process.id;</JS>
<RE key="name"/>: <RE><KEY><JS>process.name;</JS></KEY></RE>
<RE key="description"/>: <RE><KEY>
<JS>process.description;</JS></KEY></RE>
<RE key="state"/>: <RE><KEY><JS>process.STATE_PREFIX + process.state;
</JS></KEY></RE>
<RE key="timeScheduled"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (process.scheduled != null) return process.scheduled.getTime();
else return ’’;</JS></PARM></RE>
<RE key="timeCompleted"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (process.completed != null) return process.completed.getTime();
else return ’’;</JS></PARM></RE>
<RE key="resultSummary"/>: <RE><KEY>
<JS>process.STATE_PREFIX + process.resultSummary;
</JS></KEY></RE>
<RE key="requester"/>: <JS>process.requestorName;</JS>
<RE key="requestedFor"/>: <JS>process.requesteeName;</JS>
<RE key="subject"/>: <JS>process.subject;</JS>
<RE key="comment"/>: <JS>process.comment;</JS>
<RE key="detail"/>: <JS>process.resultDetail;</JS>

Change Account Template
Provides information that the workflow activity has modified account
information. By default, this template is disabled.

For example, the template provides this message:
Modified Account Information from IBM Security Identity Manager

The following ITIM Service [ITIM] account has been modified:

View Changes: http://localhost:9090/itim/console
Process Reference: 875016861865594505
Account ID: myaccount
Owner Name: firstname lastname
Time Completed: Jun 08, 2007 09:52:24 IST

The subject statement is:
<RE key="change_account_subject"/>

The plain text is:
<RE key="account_changed"><PARM>
<RE key="service_name_with_profile_name"><PARM>
<JS>EmailContext.getAccountServiceName();</JS></PARM>
<PARM><RE><KEY><JS>EmailContext.getAccountServiceProfileName();
</JS></KEY></RE></PARM></RE></PARM></RE>
<ITIMURL/>
<RE key="processRef"/>: <JS>process.id;</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="TRANSACTION_ID_LABEL"/>: ’ + EmailContext.getTransactionId(); }
</JS>
<RE key="accountID"/>: <JS>EmailContext.getAccountUserId();</JS>
<RE key="accountOwnerName"/>: <JS>EmailContext.getAccountOwnerName();</JS>
<RE key="timeCompleted"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>(new Date()).getTime();</JS></PARM></RE>
<JS>if (EmailContext.hasNewAccess()) { ’<RE key="accountNewAccess"/>:
<JS>EmailContext.getAccountNewAccessAsString();</JS>\n’; }</JS>
<JS>if (EmailContext.hasRemovedAccess()) { ’<RE key="accountRemovedAccess"/>:
<JS>EmailContext.getAccountRemovedAccessAsString();</JS>\n’; }</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="RETRIEVE_PASSWORD_TITLE"/>: ’ +
EmailContext.getPasswordRetrievalUrl(); }
</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="passwordExpireLabel"/>:
<JS>if (EmailContext.getPasswordExpirePeriod() == 0)
{ ’<RE key="passwordneverexpire"/>’; }
else { EmailContext.getPasswordExpirePeriod(); }</JS>’; }</JS>

Chapter 8. Dynamic tags in mail templates 47

<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<JS>if (EmailContext.getPasswordExpirePeriod() == 0)
{ ’<RE key="additionalMsgForPwdRetrieval"/>’; }</JS>’; }</JS>

Compliance Template
Provides information that an account is not compliant with a provisioning
policy. By default, this template is enabled.

For example, the template provides this message:
Compliance Alert for winlocal
Account [helpdesk35] is not compliant with the provisioning policy.
The value [Performance Log Users] of attribute [Local Groups]
should be [removed].
View Changes: http://99.99.999.99:80/itim/console

The subject statement is:
<RE key="compliance_alert_subject" >
<PARM><JS>var service = context.getService();
return service.getProperty("erservicename")[0];</JS>
</PARM>
</RE>

The plain text is:
<CAMessage/>
<RE key="itimUrl"/>:<ITIMURL/>

Delegation Template
Provides the default template for delegation, which includes the new
delegation information. By default, this template is enabled and cannot be
disabled. If any exception is thrown while evaluating JavaScript in the
notification template or parsing the notification template, then the default
delegation notification is sent.

For example, the template provides this message:
You have been selected to be the delegate:

For: John Doe

From: Tue Jul 03 08:00:13 IST 2012

To: Fri Jul 06 20:00:13 IST 2012

The subject statement is:
<RE key="delegationMailSubject"/>

The plain text is:
<RE key="delegationMailContent"/>

<RE key="delegationMailDelegator"/>:<JS>Delegate.getDelegator().name;</JS>

<RE key="delegationMailFrom"/>:<JS>Delegate.getStartDate();</JS>

<RE key="delegationMailTo"/>:<JS>Delegate.getEndDate();</JS>

Deprovision Account Template
Provides information that the workflow activity has removed an account.
By default, this template is enabled.

For example, the template provides this message:
Your account has been removed by IBM Security Identity Manager.

The following Odessa Service [ADProfile] account has been deprovisioned.

View Changes: http://host:9080/itim/self
Process Reference: 5870349043636872731
Account ID: myaccount
Owner Name: myname
Reason: Policy Enforcement
Time completed: May 03, 2007 03:54:22 IST

48 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

The subject statement is:
<RE key="remove_account_subject" />

The plain text is:
<RE key="account_deprovisioned">
<PARM><RE key="service_name_with_profile_name">
<PARM><JS>EmailContext.getAccountServiceName();</JS></PARM>
<PARM><RE><KEY><JS>EmailContext.getAccountServiceProfileName();
</JS></KEY></RE></PARM></RE></PARM></RE>
<ITIMURL/>
<RE key="processRef"/>: <JS>process.id;</JS>
<RE key="accountID"/>: <JS>EmailContext.getAccountUserId();</JS>
<RE key="accountOwnerName"/>: <JS>EmailContext.getAccountOwnerName();</JS>
<RE key="reason"/>: <JS>EmailContext.getReason();</JS>
<RE key="deprovisionCompleted"/>: <RE key="readOnlyDateFormat">
<PARM><JS>(new Date()).getTime();</JS></PARM></RE>

Manual Activity Approval Template
Provides information that the user should provide information for a
request. By default, this template is enabled.

For example, the template provides this message:
Pending workflow action: Case 884088984804067042.884090864796694775

You have been requested to submit information for the following request

View Changes: http://localhost:9090/itim/console
Description:
Requestee: firstname lastname
Subject: subject
Request Initiated: Jun 08, 2007 10:27:29 IST
Process Reference: 884088984804067042

Requested by process:
Process ID: 884066904196868932
Process Name: Provision Account
Description: Provisioning Account Process
Requester: System Administrator
Requestee: firstname lastname
Subject: subject

The subject statement is:
<RE key="pending_workitem_subject"><PARM><ID /></PARM></RE>

The plain text is:
<RE key="wiApproval_message" />
<ITIMURL/>
<RE key="description"/>: <RE><KEY><JS>process.description;</JS></KEY></RE>
<RE key="requestedFor"/>: <JS>process.requesteeName;</JS>
<RE key="subject"/>: <JS>process.subject;</JS>
<JS>if (process.subjectAccess!=null) if (process.subjectAccess.length>0)
{ ’<RE key="accessName"/>: <JS>process.subjectAccess;</JS>\n’; }</JS>
<RE key="requestInit"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (process.started != null) return process.started.getTime();
else return ’’;</JS></PARM></RE>
<RE key="processRef"/>: <JS>process.id;</JS>
<JS>if (process.parentId == ’0’) { ’<RE key="requestedBy"/>:
<JS>process.requestorName;</JS>’; }</JS>

<JS>if (process.parentId != ’0’) { ’<RE key="parent_process"/>’; }</JS>
<JS>if (process.parentId != ’0’)

{ ’<RE key="processID"/>: ’ + process.parentId; }</JS>
<JS>if (process.parentId != ’0’) { ’<RE key="processName"/>:

<RE><KEY><JS>if (process.parentId != ’0’) { process.getParent().name; }
</JS></KEY></RE>’; }</JS>
<JS>if (process.parentId != ’0’) { ’<RE key="description"/>:

<RE><KEY><JS>if (process.parentId != ’0’)
{ process.getParent().description; } </JS></KEY></RE>’; }</JS>
<JS>if (process.parentId != ’0’)

{ ’<RE key="requester"/>: ’ + process.getParent().requestorName; }
</JS>
<JS>if (process.parentId != ’0’)

Chapter 8. Dynamic tags in mail templates 49

{ ’<RE key="requestedFor"/>: ’ + process.getParent().requesteeName; }
</JS>

<JS>if (process.parentId != ’0’)
{ ’<RE key="subject"/>: ’ + process.getParent().subject; }</JS>

Manual Activity RFI Template
Provides the default template for request for information workflow
activities. By default, this template is enabled

For example, the template provides this message:
You have been requested to submit information for the following request
http://localhost:9080/itim/self/ReviewActivities.do?
activity=3053543743245419023
Description:
Requestee: Shoe Flower
Subject: shoe1
Request Initiated: Aug 03, 2007 11:48:52 IST
Process Reference: 3053543339468639238

Requested by process:
Process ID: 3053541330639294422
Process Name: Provision Account
Description: Provision Account Process
Requester: System Administrator
Requestee: Shoe Flower
Subject: shoe1

The subject statement is:
<RE key="pending_workitem_subject"><PARM><ID /></PARM></RE>

The plain text is:
<RE key="wiRFI_message" />
<ITIMURL/>
<RE key="description"/>: <RE><KEY>
<JS>process.description;</JS></KEY></RE>
<RE key="requestedFor"/>: <JS>process.requesteeName;</JS>
<RE key="subject"/>: <JS>process.subject;</JS>
<JS>if (process.subjectAccess!=null)
if (process.subjectAccess.length>0)
{ ’<RE key="accessName"/>:
<JS>process.subjectAccess;</JS>\n’; }</JS>
<RE key="requestInit"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (process.started != null) return process.started.getTime();
else return ’’;</JS></PARM></RE>
<RE key="processRef"/>: <JS>process.id;</JS>
<JS>if (process.parentId == ’0’) { ’<RE key="requestedBy"/>:
<JS>process.requestorName;</JS>’; }</JS>

<JS>if (process.parentId != ’0’) { ’<RE key="parent_process"/>’; }
</JS>

<JS>if (process.parentId != ’0’)
{ ’<RE key="processID"/>: ’ + process.parentId; }</JS>

<JS>if (process.parentId != ’0’) { ’<RE key="processName"/>:
<RE><KEY><JS>if (process.parentId != ’0’) { process.getParent().name; }
</JS></KEY></RE>’; }</JS>

<JS>if (process.parentId != ’0’) { ’<RE key="description"/>:
<RE><KEY><JS>if (process.parentId != ’0’)
{ process.getParent().description; }
</JS></KEY></RE>’; }</JS>
<JS>if (process.parentId != ’0’)

{ ’<RE key="requester"/>: ’ + process.getParent().requestorName; }
</JS>
<JS>if (process.parentId != ’0’)

{ ’<RE key="requestedFor"/>: ’ + process.getParent().requesteeName; }
</JS>
<JS>if (process.parentId != ’0’)

{ ’<RE key="subject"/>: ’ + process.getParent().subject; }</JS>

Manual Activity Work Order Template
Provides default template for the work order workflow manual activity. By
default, this template is enabled.

For example, the template provides this message:

50 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Pending workflow action:
Case 1401993364658803275.1402011582339065124

You have received a Work Order request

The subject statement is:
<RE key="pending_workitem_subject"><PARM><ID /></PARM></RE>

The plain text is:
<RE key="wiWorkOrder_message" />

New Account Template
Provides information that the workflow activity has created a new account.
By default, this template is enabled.

For example, the template provides this message:
New Account Information from IBM Security Identity Manager

The following new ITIM Service [ITIM] account has been created for you:

View Changes: http://localhost:80/itim/console
Process Reference: 8498649245880216244
Password: bAMI#gai
Account ID: myaccount
Owner Name: firstname lastname
Time of service provision: Jun 29, 2007 10:55:58 IST

The subject statement is:
<RE key="new_account_subject"/>

The plain text is:
<RE key="account_created"><PARM>
<RE key="service_name_with_profile_name">
<PARM><JS>EmailContext.getAccountServiceName();</JS></PARM>
<PARM><RE><KEY><JS>EmailContext.getAccountServiceProfileName();
</JS></KEY></RE></PARM></RE></PARM></RE>
<ITIMURL/>
<RE key="processRef"/>: <JS>process.id;</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="TRANSACTION_ID_LABEL"/>: ’
+ EmailContext.getTransactionId(); } </JS>
<RE key="password"/>: <JS>EmailContext.getAccountPassword();</JS>
<RE key="accountID"/>: <JS>EmailContext.getAccountUserId();</JS>
<RE key="accountOwnerName"/>:
<JS>EmailContext.getAccountOwnerName();</JS>
<RE key="timeofprovision"/>: <RE key="readOnlyDateFormat">
<PARM><JS>(new Date()).getTime();</JS></PARM></RE>
<JS>if (EmailContext.hasNewAccess()) { ’<RE key="accountNewAccess"/>:
<JS>EmailContext.getAccountNewAccessAsString();</JS>\n’; }</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="RETRIEVE_PASSWORD_TITLE"/>: ’
+ EmailContext.getPasswordRetrievalUrl(); }</JS>

<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="passwordExpireLabel"/>:
<JS>if (EmailContext.getPasswordExpirePeriod() == 0)
{ ’<RE key="passwordneverexpire"/>’; }
else { EmailContext.getPasswordExpirePeriod(); }</JS>’; }</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<JS>if (EmailContext.getPasswordExpirePeriod() == 0)
{ ’<RE key="additionalMsgForPwdRetrieval"/>’; }</JS>’; }</JS>

New Password Template
Provides information that there is a new password for an account. By
default, this template is enabled.

For example, the template provides this message:
Account new password information

The following is your new password for account myaccount:

Chapter 8. Dynamic tags in mail templates 51

View Changes: http://localhost:9090/itim/console
Process Reference: 2855285841498421007
New Password: secret
Account ID: myaccount
Account Service: ITIM Service
Account Service Profile: ITIM
Owner Name: firstname lastname
Time of service provision: Apr 25, 2007 12:54:05 IST

The subject statement is:
<RE key="password_change_subject"/>

The plain text is:
<RE><KEY><JS>if (EmailContext.getTransactionId() == ’0’)
{ ’newAccountPassword’ } else { ’newAccountPasswordPickUp’; }
</JS></KEY>
<PARM><JS>process.subject;</JS></PARM></RE>
<ITIMURL/>
<RE key="processRef"/>: <JS>process.id;</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="TRANSACTION_ID_LABEL"/>: ’ +
EmailContext.getTransactionId(); }
</JS>
<RE key="newPassword"/>: <JS>EmailContext.getAccountPassword();</JS>
<RE key="accountID"/>: <JS>EmailContext.getAccountUserId();</JS>
<RE key="accountService"/>:
<JS>EmailContext.getAccountServiceName();</JS>
<RE key="accountServiceProfile"/>: <RE><KEY>
<JS>EmailContext.getAccountServiceProfileName();</JS></KEY></RE>
<RE key="accountOwnerName"/>:
<JS>EmailContext.getAccountOwnerName();</JS>
<RE key="timeofprovision"/>: <RE key="readOnlyDateFormat">
<PARM><JS>(new Date()).getTime();</JS></PARM></RE>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="RETRIEVE_PASSWORD_TITLE"/>: ’
+ EmailContext.getPasswordRetrievalUrl(); }</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="passwordExpireLabel"/>:
<JS>if (EmailContext.getPasswordExpirePeriod() == 0)
{ ’<RE key="passwordneverexpire"/>’; }
else { EmailContext.getPasswordExpirePeriod(); }</JS>’; }</JS>

<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<JS>if (EmailContext.getPasswordExpirePeriod() == 0)
{ ’<RE key="additionalMsgForPwdRetrieval"/>’; }</JS>’; }</JS>

Process Completion Template
Provides information that the workflow activity has completed. By default,
this template is enabled.

For example, the template provides this message when an activity is
completed without being canceled:
A workflow process, 1416721862784240178, has completed.
Result Summary: Success
The following process has completed

Process Information

View Changes: http://localhost:9090/itim/console
Process ID: 1416721862784240178
Activity:
Description: Modify Provisioning Policy Process
State: Completed
Date submitted: May 16, 2007 12:22:58 IST
Time Completed: May 16, 2007 01:44:17 IST
Result Summary: Success
Requester: System Administrator
Requestee:
Subject: Default Provisioning Policy for service Win Local Profile
Comment:
Detail:

52 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

For example, the template provides this message when an activity is
canceled:
Subject: A workflow process, 6690130336188564930, has completed.
Result Summary: Failed
The following process has completed

Process Information

View Changes: http://localhost:80/itim/console
Process ID: 6690130336188564930
Activity: Person Add
Description: Person Add Process
State: Canceled
Date submitted: Jan 30, 2014 01:13:59 CST
Time Completed: Jan 29, 2014 01:13:22 CST
Result Summary: Failed
Requester: System Administrator
Requestee: firstname lastname
Subject:
Comment:
Detail:
Canceled By: System Administrator
Date Canceled: Jan 29, 2014 01:13:22 CST
Canceled Justification: No longer needed

The subject statement is:
<RE key="processCompletedSubject"><PARM><JS>process.id;</JS></PARM>
<PARM><RE key="resultSummaryValue"><PARM><RE><KEY>
<JS>process.STATE_PREFIX + process.resultSummary;
</JS></KEY></RE></PARM></RE></PARM></RE>

The plain text is:
<RE key="process_completed_message" />

<RE key="processInformation" />
<ITIMURL/>
<RE key="processID"/>: <JS>process.id;</JS>
<RE key="name"/>: <RE><KEY><JS>process.name;</JS></KEY></RE>
<RE key="description"/>: <RE><KEY><JS>process.description;</JS>
</KEY></RE>
<RE key="state"/>: <RE><KEY>
<JS>process.STATE_PREFIX + process.state;</JS></KEY></RE>
<RE key="timeScheduled"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (process.scheduled != null)
return process.scheduled.getTime();
else return ’’;</JS></PARM></RE>
<RE key="timeCompleted"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (process.completed != null)
return process.completed.getTime();
else return ’’;</JS></PARM></RE>
<RE key="resultSummary"/>: <RE><KEY>
<JS>process.STATE_PREFIX + process.resultSummary;</JS>
</KEY></RE>
<RE key="requester"/>: <JS>process.requestorName;</JS>
<RE key="requestedFor"/>: <JS>process.requesteeName;</JS>
<RE key="subject"/>: <JS>process.subject;</JS>
<RE key="comment"/>: <JS>process.comment;</JS>

<RE key="detail"/>: <JS>process.resultDetail;</JS>
<JS>if (process.cancelor_name != null)
{ ’<RE key="CanceledBy"/>: ’ + process.cancelor_name; }</JS>

<JS>if (process.cancelor_name != null)
{ ’<RE key="DateCanceled"/>: ’; }</JS>

<RE key="readOnlyDateFormat"><PARM>
<JS>if (process.canceled_date != null) return process.canceled_date.getTime();
else return ’’;</JS>

</PARM></RE>
<JS>if (process.cancelor_name != null) { ’<RE key="CanceledReason"/>:
<JS>if (process.canceled_justification == null) { return ’ ’; }
else { return process.canceled_justification;}

</JS>’; }</JS>

Chapter 8. Dynamic tags in mail templates 53

Process Timeout Template
Provides information that the workflow process has timed out. By default,
this template is enabled.

For example, the template provides this message:
Workflow activity is being timed out and will be
terminated by the workflow system

Activity Information
View Changes: http://localhost:9080/itim/console
Activity ID: RECERTAPPROVAL
Activity: $ITIM_RECERTIFY
Time Started: Aug 02, 2007 03:18:54 IST
Time Completed:
Result Summary: Pending
State: Running
Activity Type: Manual Approval/Reject

Process Information

Process ID: 8566433417513336819
Activity: Recertification of Account/Access
Description: Recertification of Account/Access
State: Running
Date submitted: Aug 02, 2007 03:18:54 IST
Time Completed:
Result Summary:
Requester: org
Requestee: Person B
Subject: personb
Comment:
Detail:

The subject statement is:
<RE key="process_timeout_subject" />

The plain text is:
<RE key="process_timeout_message" />

<RE key="processInformation" />
<ITIMURL/>
<RE key="processID"/>: <JS>process.id;</JS>
<RE key="name"/>: <RE><KEY><JS>process.name;</JS></KEY></RE>
<RE key="description"/>: <RE><KEY><JS>process.description;</JS></KEY></RE>
<RE key="state"/>: <RE><KEY>
<JS>process.STATE_PREFIX + process.TIMEOUT;</JS></KEY></RE>
<RE key="timeScheduled"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (process.scheduled != null) return process.scheduled.getTime();
else return ’’;</JS></PARM></RE>
<RE key="timeCompleted"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>if (process.completed != null) return process.completed.getTime();
else return ’’;</JS></PARM></RE>
<RE key="resultSummary"/>: <RE><KEY>
<JS>process.STATE_PREFIX + process.resultSummary;</JS></KEY></RE>
<RE key="requester"/>: <JS>process.requestorName;</JS>
<RE key="requestedFor"/>: <JS>process.requesteeName;</JS>
<RE key="subject"/>: <JS>process.subject;</JS>
<RE key="comment"/>: <JS>process.comment;</JS>

<RE key="detail"/>: <JS>process.resultDetail;</JS>

Restore Account Template
Provides information that an account has been restored. By default, this
template is enabled.

For example, the template provides this message:
Restored Account Information from IBM Security Identity Manager

The following ITIM Service [ITIM] account has been restored:

View Changes: http://localhost:9090/itim/console
Process Reference: 2857890686820910405

54 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

New Password: secret
Account ID: myaccount
Owner Name: firstname lastname
Time Completed: Apr 25, 2007 01:04:08 IST

The subject statement is:
<RE key="restore_account_subject"/>

The plain text is:
<RE key="restore_account"><PARM>
<RE key="service_name_with_profile_name"><PARM>
<JS>EmailContext.getAccountServiceName();</JS></PARM>
<PARM><RE><KEY>
<JS>EmailContext.getAccountServiceProfileName();
</JS></KEY></RE></PARM></RE></PARM></RE>
<ITIMURL/>
<RE key="processRef"/>: <JS>process.id;</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="TRANSACTION_ID_LABEL"/>: ’
+ EmailContext.getTransactionId(); } </JS>
<RE key="newPassword"/>: <JS>EmailContext.getAccountPassword();</JS>
<RE key="accountID"/>: <JS>EmailContext.getAccountUserId();</JS>
<RE key="accountOwnerName"/>:
<JS>EmailContext.getAccountOwnerName();</JS>
<RE key="timeCompleted"/>: <RE key="readOnlyDateFormat">
<PARM>
<JS>(new Date()).getTime();</JS></PARM></RE>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="RETRIEVE_PASSWORD_TITLE"/>: ’
+ EmailContext.getPasswordRetrievalUrl(); }</JS>
<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<RE key="passwordExpireLabel"/>:
<JS>if (EmailContext.getPasswordExpirePeriod() == 0)
{ ’<RE key="passwordneverexpire"/>’; }
else { EmailContext.getPasswordExpirePeriod(); }</JS>’; }
</JS>

<JS>if (EmailContext.getTransactionId() != ’0’)
{ ’<JS>if (EmailContext.getPasswordExpirePeriod() == 0)
{ ’<RE key="additionalMsgForPwdRetrieval"/>’; }</JS>’; }</JS>

Suspend Account Template
Provides information that an account is suspended. By default, this
template is enabled.

For example, the template provides this message:
Your account has been suspended by IBM Security Identity Manager

The following AD Service (RFI) [ADProfile] account has been suspended:

View Changes: http://localhost:9090/itim/console
Process Reference: 2857497715286893521
Account ID: myaccount
Owner Name: firstname lastname
Time Completed: Apr 25, 2007 01:02:43 IST

The subject statement is:
<RE key="suspend_account_subject" />

The plain text is:
<RE key="account_suspended"><PARM>
<RE key="service_name_with_profile_name">
<PARM><JS>EmailContext.getAccountServiceName();</JS></PARM>
<PARM><RE><KEY><JS>EmailContext.getAccountServiceProfileName();
</JS></KEY></RE></PARM></RE></PARM></RE>
<ITIMURL/>
<RE key="processRef"/>: <JS>process.id;</JS>
<RE key="accountID"/>: <JS>EmailContext.getAccountUserId();</JS>
<RE key="accountOwnerName"/>:
<JS>EmailContext.getAccountOwnerName();</JS>
<RE key="timeCompleted"/>: <RE key="readOnlyDateFormat"><PARM>
<JS>(new Date()).getTime();</JS></PARM></RE>

Chapter 8. Dynamic tags in mail templates 55

To-Do Reminder Template
Provides the default template for workflow reminders, which are email
messages that remind users about pending activities to which they not
responded. By default, this template is disabled.

For example, the template provides this message:
Subject: Pending workflow action:
Case 6167063972298972180.6167064647650050990

The following request has been submitted for your approval
View Changes: http://localhost:9080/itim/console
Description: ApprovalWorkflow
Requestee: firstname lastname
Subject: subject
Request Initiated: Sep 05, 2007 05:42:18 IST
Process Reference: 6167063972298972180

Requested by process:
Process ID: 6167052766519381908
Process Name: Provision Account
Description: Provision Account Process
Requester: System Administrator
Requestee: firstname lastname
Subject: subject

This WorkItem will be escalated on: Saturday, September 8, 2007.

The subject statement is:
<originalSubject/>

The plain text is:
<textBody/>

<RE key="escalation_note"/> <escalationTime/>

56 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 9. JavaScript extensions overview

JavaScript is used in IBM Security Identity Manager to specify identity policies,
provisioning policy parameters, service selection policies, placement rules for
identity feeds, and orphan account adoption.

In addition, JavaScript is used in workflows to specify transition conditions, loop
conditions, JavaScript activities, activity postscripts, and workflow notification.
Various scripting extensions are provided by IBM Security Identity Manager to
expose useful data and services to each of these scripts. In addition to these
extensions, system administrators can configure IBM Security Identity Manager to
load custom JavaScript extensions. For more information about custom JavaScript
extensions, see the ISIM_HOME/data/scriptframework.properties file.

IBM Security Identity Manager supports two Java Script interpreters: IBM JSEngine
and Free EcmaScript Interpreter (FESI, now deprecated). Both of these interpreters
support the third edition (December 1999) of the ECMA-262 specification.

Table 7 lists the supported host components and script extensions.

Table 7. Host components and script extensions

Host Component Supported Script Extension Description

AccountTemplate ProvisioningPolicyExtension Extensions registered with this key are
loaded by Account Default Template
parameters.

ServiceExtension

SubjectExtension

Delegate DelegateExtension Extensions registered with this key are
loaded by Delegation notifications.Model Extensions Package

HostSelection ServiceModelExtension Extensions registered with this key are
loaded by Service Selection Policies.SubjectExtension

IdentityPolicy IdentityPolicyExtension Extensions registered with this key are
loaded by Identity Policies.AttributesExtension

ServiceExtension

SubjectExtension

OrphanAdoption Model Extensions Package Extensions registered with this key are
loaded by adoption scripts.ServiceExtension

SubjectExtension

PersonPlacementRules PersonPlacementRulesExtension Extensions registered with this key are
loaded by placement rules during
identity feeds.

ServiceExtension

AttributesExtension

PostOffice PostOfficeExtension Extensions registered with this key are
loaded by Post Office templates.

57

Table 7. Host components and script extensions (continued)

Host Component Supported Script Extension Description

ProvisioningPolicy ProvisioningPolicyExtension Extensions registered with this key are
loaded by Provisioning Policy
parameters.

Model Extensions Package

ServiceExtension

SubjectExtension

AttributesExtension (deprecated)

Reminder ReminderExtension Extensions registered with this key are
loaded by email reminder templates.SubjectExtension

Workflow WorkflowExtension Extensions registered with this key are
loaded by workflow scripts that include
Workflow TODO Notifications.

Model Extensions Package

LoopCountExtension

Workflow Notification WorkflowExtension The extensions loaded are hardcoded
and all supported extensions are
loaded.

EmailContextExtension

PersonModelExtension

TODO Notification
(Approval/RFI/ComplianceAlert/
WorkOrder)

WorkflowExtension The extensions loaded are the same as
Workflow.Model Extensions Package

LoopCountExtension

Packaged extensions
The section describes the scripting extensions provided by IBM Security Identity
Manager, the JavaScript objects they expose, and the scripts to which these
extensions are applicable.

Do not remove these extensions from the properties file that you configure,
because they are necessary for standard product operation. All of the extensions
are configured for new installations.

AttributesExtension
The full extension name is com.ibm.itim.script.extensions.AttributesExtension.

This extension is responsible for making the ATTRIBUTES object available to scripts.
ATTRIBUTES is a Map type object and is used internally to implement the
deprecated Enrole.getAttributeValue() and Enrole.getAttributeValues()
methods.

AttributesExtension and the ATTRIBUTES script object are deprecated. Do not use
them in any new scripts.

Availability
IdentityPolicy
PersonPlacementRules
ProvisioningPolicy

JavaScript Objects
ATTRIBUTES

58 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

DelegateExtension
The full extension name is com.ibm.itim.script.extensions.DelegateExtension.

This extension is responsible for making the Delegate object available to delegation
notification scripts.

Availability
Delegation Notification

JavaScript Objects
Delegate

EmailContextExtension
The full extension name is com.ibm.itim.workflow.script.EmailContextExtension.

The EmailContextExtension provides the EmailContext object that provides
information about the workflow activity and process that is making the
notification. EmailContext is of type WorkflowRuntimeContext, although it might be
a more specific subtype, depending on what type of change triggered the
notification.

Availability

Notification

JavaScript Objects

EmailContext

EnroleExtension
The full extension name is com.ibm.itim.script.extensions.EnroleExtension.

This extension is automatically loaded for all scripts. It is not in the
scriptframework.properties file.

This extension exposes the Enrole object to scripts. This object provides the
following miscellaneous functions:
v Converting to and from the generalized time format.
v Logging and tracing facilities to write to the Security Identity Manager logs.

Availability

All scripts

JavaScript Objects
Enrole
Error

IdentityPolicyExtension
The full extension name is com.ibm.itim.policy.script.IdentityPolicyExtension.

This extension exposes the IdentityPolicy object to identity policy scripts. This
object provides a method to test for the existence of a user ID.

Availability

Identity Policy

JavaScript Objects

Chapter 9. JavaScript extensions overview 59

IdentityPolicy

LoopCountExtension
The full extension name is com.ibm.itim.workflow.script.LoopCountExtension.

This extension provides the loopcount script object. The object is an integer that
tells a script how many times a loop ran.

Availability

Workflow

JavaScript Objects

loopcount

Model extensions package
The model extensions expose JavaScript objects that can be used to search for
people, accounts, services, and organizational units such as organizations, business
units, and locations.

Important: The objects exposed by these extensions allow access to identity and
service data without regard to specified access control rules for these data. The
objects are considered privileged. Define access control items that manage access to
IBM Security Identity Manager scripts.

All of the model extensions have the same availability and can be used with the
following extension points:
v AccountTemplate

v ProvisioningPolicy

v HostSelection

v OrphanAdoption

v Workflow

v Notification

AccountModelExtension
The full extension name is
com.ibm.itim.script.extensions.model.AccountModelExtension.

This extension exposes the Account constructor and AccountSearch constructor to
applicable scripts. After it is constructed, an Account object represents an Account
Directory Object in scripts. The AccountSearch object provides methods to search
for existing accounts based on several parameters, which include uid, owner, and
service.

JavaScript Objects

v AccountSearch

v Account

CredentialModelExtension
The full extension name is
com.ibm.itim.script.extensions.model.CredentialModelExtension.

This extension exposes the Credential constructor to applicable scripts when
Shared Access Module is activated. When it is constructed, a Credential object
represents a Credential Directory Object in scripts.

60 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Note: You must install and enable the shared access module in order to use
com.ibm.itim.script.extensions.model.CredentialModelExtension.

JavaScript Objects
Credential

PersonModelExtension
The full extension name is
com.ibm.itim.script.extensions.model.PersonModelExtension.

This extension exposes the Person constructor, PersonSearch constructor, and
ExtendedPerson constructor to applicable scripts. After it is constructed, a Person
object represents a Person Directory Object in script. A ExtendedPerson object
extends Person with ownership type information. The PersonSearch object
provides methods to search for existing people based on a provided LDAP filter.

JavaScript Objects

v PersonSearch

v Person

v ExtendedPerson

OrganizationModelExtension
The full extension name is
com.ibm.itim.script.extensions.model.OrganizationModelExtension.

This extension exposes the ContainerSearch constructor to applicable scripts. The
ContainerSearch object provides methods to search of Organizational containers
based on LDAP filters.

JavaScript Objects

ContainerSearch

RoleModelExtension
The full extension name is
com.ibm.itim.script.extensions.model.RoleModelExtension.

This extension exposes the Role constructor and RoleSearch constructor to
applicable scripts. After it is constructed, the Role object represents a Role
Directory Object in scripts. The RoleSearch object provides a method to search for
Roles based on role name.

JavaScript Objects

v RoleSearch

v Role

ServiceModelExtension
The full extension name is
com.ibm.itim.script.extensions.model.ServiceModelExtension.

This extension exposes the Service constructor and ServiceSearch constructor to
applicable scripts. After it is constructed the Service object represents a Service
Directory Object in scripts. The ServiceSearch object provides methods to search
for Service based on several parameters, which include LDAP filter and service
name.

JavaScript Objects

v ServiceSearch

Chapter 9. JavaScript extensions overview 61

v Service

PersonPlacementRulesExtension
The full extension name is
com.ibm.itim.remoteservices.script.PersonPlacementRulesExtension.

This extension provides the entry object to the scripting environment. The entry
object is of type Map and contains the attribute values for the Person that is placed.

Availability

PersonPlacementRules

JavaScript Objects

entry

PostOfficeExtension
The full extension name is
com.ibm.itim.mail.postoffice.script.PostOfficeExtension.

The Post Office capability reduces the number of email messages received by
workflow participants by combining similar notifications into a single email. The
emails are combined with a template specified in the system configuration pages.
This extension exposes a JavaScript object, PostOffice, to JavaScript snippets in
these templates. This object provides methods for accessing all the distinct emails,
the email address of the recipient, the email topic, and the recipient data.

Availability
Post Office Template

JavaScript Objects
PostOffice

ProvisioningPolicyExtension
The full extension name
iscom.ibm.itim.policy.script.ProvisioningPolicyExtension.

This extension provides the scripting objects reason and parameters to the scripting
environment. The reason object is an integer that informs a script of the reason the
evaluation is happening: 0 if a new account or 1 if an existing account. The
parameters object is a map that contains the information about the account that is
being evaluated. Currently, only the uid field is supported.

Availability

AccountTemplate
ProvisioningPolicy

JavaScript Objects

parameters
reason

ReminderExtension
The full extension name is com.ibm.itim.script.extensions.ReminderExtension.

62 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

This extension exposes the reminderCtx object to JavaScript snippets contained in
email reminders. This object provides methods for accessing the original email text
and subject. It also provides the due date and time for the associated to-do item.

Availability
E-mail reminders

JavaScript Objects
reminderCtx

ServiceExtension
The full extension name is com.ibm.itim.script.extensions.ServiceExtension.

This extension exports the service object to the scripting environment. The service
object is a DirectoryObject type and represents the Service associated with a
provisioning operation.

Availability
IdentityPolicy
OrphanAdoption
PersonPlacementRules
AccountTemplate
ProvisioningPolicy

JavaScript Objects
service

SubjectExtension
The full extension name is com.ibm.itim.script.extensions.SubjectExtension.

This extension provides the subject scripting object. In all of the scripting contexts
except for OrphanAdoption, subject is a DirectoryObject. In the OprhanAdoption
context, subject is a Map of the attributes returned by a reconciliation.

Availability

HostSelection
IdentityPolicy
OrphanAdoption
Reminder
AccountTemplate
ProvisioningPolicy

JavaScript Objects

subject

WorkflowExtension
The full extension name is com.ibm.itim.workflow.script.WorkflowExtension.

This extension exposes JavaScript objects that can be used to access data from a
workflow process in progress. In addition, it exposes objects that can be used to
get or set the status, state, and result of a workflow process or activity.

Availability
Workflows

JavaScript Objects

v process

Chapter 9. JavaScript extensions overview 63

v activity

v participant

v Relevant Data

Note: Relevant Data are objects defined by the workflow designer.
Check with system administrator to find the names of specific Relevant
Data objects.

Relevant data JavaScript objects
Each process has a set of relevant data, or process specific parameters, which can
be read or changed from in a workflow script.

The name and syntax of these parameters, or relevant data items, are defined in
the workflow designer and are typically specific to the workflow process purpose.
For example when you add a user, an object that holds all the attributes of the new
user can be a relevant data item. However, when you delete a user, the only
required relevant data item can be the distinguished name of the user to delete.

Each relevant data item is represented in the workflow script as a variable with the
same relevant data ID as defined in the workflow designer. These relevant data
items all have the following functions:

get() This function returns a JavaScript object that represents the value of the
relevant data item. There is a variable present for each relevant data item
in the context of the script. For performance reasons, however, the values
are not retrieved from the workflow engine until the script specifically
requests it with this call. The returned JavaScript object is in the same
syntax as defined in the workflow designer.

Usage:
dn = subjectDN.get();

where subjectDN is defined as a relevant data item for the current process.

set(Object value)
The set(Object value) function changes the value of the relevant data
item. It not only updates the relevant data item in the script, but also in
the workflow engine. The new value is a parameter to the function. The
new value must be compatible with the syntax of the relevant data item as
defined in the workflow designer. For example, if the relevant data item is
an integer, the value cat is not a valid parameter to this function.

Usage:
ou.set("engineering");

where ou is defined as a relevant data item for the current process.

Registering JavaScript extensions
JavaScript extensions might not be useful or applicable to every scriptable function
that IBM Security Identity Manager provides. For example, an extension used by
Post Office templates might not be applicable to provisioning policy parameters.
An extension designed for one class of script might not load or behave
appropriately when loaded into another class of script.

64 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Security Identity Manager has the classes of script that are listed in Table 8 on page
66. JavaScript extensions might be registered to load and run with any combination
of these script classes.

JavaScript extensions are configured in these files:

scriptframework.properties (suggested)
For all new extensions. Use this file to configure script extensions and
other scripting functions.

JavaScript extensions are registered in the ISIM_HOME/data/
scriptframework.properties file. This file is formatted with the standard
Java Properties key[.subkey]=value format.
v The key is the name assigned to the target script class, described in

Table 8 on page 66.
v The value is the full class name of the ScriptExtension interface.
v (Optional) The subkey is used when more than one extension is

registered for a script class.

Use the Update Property page from the Appliance Dashboard of the IBM
Security Identity Manager virtual appliance console. See Managing the
server properties.

Note:

1. Security Identity Manager is installed with a set of extensions for each
script class already registered in the scriptframework.properties file.
Do not remove these extensions from the file as they are necessary for
the product to function correctly.

2. To prevent the possibility of a code injection attack, do not use the
JavaScript function eval().

3. By default, only the set of extensions registered in the
scriptframework.properties file is available for the particular script.
You can configure any supported extension for the script by registering
JavaScript extensions in the scriptframework.properties file. For
information about supported script extensions, see Table 7 on page 57.
For information about the properties and methods available for each
JavaScript extension object, see Chapter 10, “JavaScript extension
reference,” on page 73.

fesiextensions.properties (deprecated)
Provides support for Free ECMAScript Interpreter (FESI) JavaScript
extensions before Version 5.0 of IBM Tivoli® Identity Manager. Do not
author new extensions with this deprecated architecture.

If you continue to use the deprecated fesiextensions.properties file, save
the fesi.jar library in the ITIM_HOME/lib directory before you upgrade
Tivoli Identity Manager to Version 5.0 or later versions. Replace the newly
installed file with the custom fesi.jar file after the upgrade completes.

The following line registers a single extension for use in Security Identity Manager
scripts:

ITIM.extension.IdentityPolicy=com.ibm.itim.policy.script.IdentityPolicyExtension

These example lines register multiple extensions for use in Security Identity
Manager scripts:

ITIM.extension.IdentityPolicy.1=com.ibm.itim.policy.script.IdentityPolicyExtension
ITIM.extension.IdentityPolicy.2=com.yourcompany.script.YourCustomExtension

Chapter 9. JavaScript extensions overview 65

Table 8. Script class keys

Host Component Script Class Key

AccountTemplate ITIM.extension.AccountTemplate

Delegate ITIM.extension.Delegate

HostSelection ITIM.extension.HostSelection

IdentityPolicy ITIM.extension.IdentityPolicy

OrphanAdoption ITIM.extension.OrphanAdoption

PersonPlacementRules ITIM.extension.PersonPlacementRules

PostOffice ITIM.extension.PostOffice

ProvisioningPolicy ITIM.extension.ProvisioningPolicy

Reminder ITIM.extension.Reminder

Workflow ITIM.extension.Workflow

Workflow Notification ITIM.extension.Notification

TODO Notification (Approval/RFI/
ComplianceAlert/WorkOrder)

ITIM.extension.Notification

Configuring scriptframework.properties
Use the ISIM_HOME/data/scriptframework.properties file, which provides
extended documentation for these tasks, to configure major scripting functions.

Following are the major scripting functions:

Extensions
Specifies which extensions to load for each host component. To load more
than a single extension for any host component, add a suffix to the
properties key (each key must be unique). For example:

ITIM.extension.IdentityPolicy=com.ibm.itim.policy.script.IdentityPolicyExtension
ITIM.extension.IdentityPolicy.service=com.ibm.itim.script.extensions.ServiceExtension

Interpreters
Configures the interpreter to use for each host component. The default is
the IBM JSEngine.

The other option is FESI, which can be used only if the fesi.jar file exists
in ISIM_HOME/lib/. It is only to be used by customers of IBM Tivoli
Identity Manager Version 4.6 and earlier who wrote their own custom FESI
extensions.

Wrappers
All objects available to scripts are really Java objects that are used by IBM
Security Identity Manager. To prevent security issues, IBM Security Identity
Manager wraps these objects in wrappers. Use this area of the
scriptframework.properties file to change the default wrappers that are
used by IBM Security Identity Manager. Default scripts that are provided
by IBM Security Identity Manager assume the use of default wrappers. If
you change the scripts, functions might stop working. This area is for
advanced use only.

Miscellaneous
Determines whether profiling information is collected and included in the
trace log and whether plain text passwords can be accessed from Person
and Account objects.

66 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Migration of custom FESI extensions to the IBM JSEngine
Migration of a custom FESI extension to a script extension makes your code
shorter, easier to read, and easier to understand.

Note: Support for FESI is deprecated in IBM Security Identity Manager Version
6.0.

For detailed information and examples about how to write new extensions, see the
documentation in ISIM_HOME/extensions/doc/javascript/javascript.html.

The following example illustrates the migration steps.

Best practice in handling function returns
You can minimize problems that might occur due to differences in how FESI and
IBM JSEngine handle JavaScript. The differences involve implicit return values
from functions.

For example, given these statements:
function sumValue() {

var a = 3;
var b = 2;
a + b;

}

With FESI, the function sumValue() returns 5 because 5 is the result of the last
statement run in the function. Using IBM JSEngine, the expression sumValue()
returns null because there is no explicit return. The correct code for IBM JSEngine
includes an explicit return statement:
function sumValue() {

var a = 3;
var b = 2;
return a + b;

}

To keep JavaScript code consistent, always use an explicit return value in functions.
In the previous release, some of the service selection script examples did not use
an explicit return value. Update any JavaScript code that is based on these
examples to have an explicit return value, to ensure that the code continues to
work after an upgrade to use IBM JSEngine.

Plain Old Java Object (POJO) example
Start with a Plain Old Java Object (POJO, in this example) that contains all of the
business logic for your extension.

For example:
public class Extension {

public static void log(String msg) {
System.out.println(msg);

}
}

In this case, the POJO contains a single method. Your typical extension contains
more logic. For example:
static class FESIExtension implements JSExtension {

public void initializeExtension(JSGlobalObject go) throws JSException {
// Create the prototype

Chapter 9. JavaScript extensions overview 67

final JSObject prototype = go.makeJSObject();

prototype.setMember("log", new JSFunctionAdapter() {
public Object doCall(JSObject thisObject, Object[] args)

throws JSException {
if (args.length >= 1) {

Extension.log(args[0].toString());
}

return null;
}

});

final JSObject obj = go.makeJSObject(prototype);

// This is the name of the object to be used in JavaScript Code
go.setMember("CustomExtension", obj);

go.setMember("log", new JSFunctionAdapter() {
public Object doCall(JSObject thisObject, Object[] args)

throws JSException {
if (args.length >= 1) {

Extension.log(args[0].toString());
}

return null;
}

});

go.setMember("Logger", new JSFunctionAdapter() {
public Object doNew(JSObject thisObject, Object[] args)

throws JSException {
JSGlobalObject go = thisObject.getGlobalObject();
JSObject proto = go.makeJSObject();

proto.setMember("log", new JSFunctionAdapter() {
public Object doCall(JSObject thisObject, Object[] args)

throws JSException {
if (args.length >= 1) {

Extension.log(args[0].toString());
}

return null;
}

});
final JSObject obj = go.makeJSObject(proto);
return obj;

}
});

}
}

This FESI extension has three main parts:
1. First, the extension makes a JSObject named prototype and adds the method

“log” to prototype:
final JSObject prototype = go.makeJSObject();

prototype.setMember("log", new JSFunctionAdapter() {
public Object doCall(JSObject thisObject, Object[] args)

throws JSException {
if (args.length >= 1) {

Extension.log(args[0].toString());
}

return null;

68 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

}
});

go.setMember("CustomExtension", obj);

The prototype JSObject is then added to the JSGlobalObject with the name
CustomExtension. This addition allows scripts to call:
CustomExtension.log("message");

2. The second part of the extension creates a global function named log.
go.setMember("log", new JSFunctionAdapter() {

public Object doCall(JSObject thisObject, Object[] args)
throws JSException {

if (args.length >= 1) {
Extension.log(args[0].toString());

}

return null;
}

});

Now, a script can call:
log("message");

3. The third part of the extension creates a constructor that can be called from
scripts. For example:
go.setMember("Logger", new JSFunctionAdapter() {

public Object doNew(JSObject thisObject, Object[] args)
throws JSException {

JSGlobalObject go = thisObject.getGlobalObject();
JSObject proto = go.makeJSObject();

proto.setMember("log", new JSFunctionAdapter() {
public Object doCall(JSObject thisObject, Object[] args)

throws JSException {
if (args.length >= 1) {

Extension.log(args[0].toString());
}

return null;
}

});
final JSObject obj = go.makeJSObject(proto);
return obj;

}
});

With this constructor, scripts can do the following:
var logger = new Logger();
logger.log("message");

Conversion to a script extension
When you convert a FESI extension to a script extension, the root of a script
extension is the ScriptExtension interface.

You must implement this interface to create script extension.
public class ITIMExtension implements ScriptExtension {

public List getContextItems() {
}

public void initialize(ScriptInterface si, ScriptContextDAO dao)
throws ScriptException, IllegalArgumentException {

}
}

Chapter 9. JavaScript extensions overview 69

To create object that can be used in scripts, create a POJO class that contains all of
the business logic, and implements the marker interface ExtensionBean. A marker
interface means that ExtensionBean does not require you to implement any
methods and it does add any new data to your class. A POJO that implements
ExtensionBean is treated specially by the IBM Security Identity Manager scripting
components.

If your class does not implement ExtensionBean, then scripts cannot use the
methods provided by the POJO. For example:
public class Extension implements ExtensionBean {

public static void log(String msg) {
System.out.println(msg);

}
}

In the initialize method of your extension, create ContextItem that contains an
instance of your extension and add that ContextItem to a List.
ContextItem custom = ContextItem.createItem("CustomExtension",

new Extension());
items.add(custom);

To create global function, use ContextItem, but this time call
createGlobalFunction. For example:
ContextItem func = ContextItem.createGlobalFunction("log",

new GlobalFunction() {
public Object call(Object[] parameters)

throws ScriptEvaluationException {
if (parameters.length >= 1) {

Extension.log(parameters[0].toString());
}
return null;

}
});

items.add(func);

The second argument to createGlobalFunction is a GlobalFunction object.
GlobalFunction has a single method that you must implement and call. It is similar
to the doCall method from the FESI JSFunctionAdapter. GlobalFunctions are not
suggested because, like the doCall method, they pass an array of parameters. You
must check that all of the parameters exist and are the right types, which can be
difficult to maintain over the life of your extension.

Creation of a constructor
To create a constructor, use ContextItem and the createConstructor method.

For example:
ContextItem logger = ContextItem.createConstructor("Logger",

Extension.class);
items.add(logger);

The second parameter to createConstructor is the Class object for the object that
you want to construct. It is usually a POJO that implements ExtensionBean.

In each of these examples, you add the ContextItem to a List. In the
getContextItems method of ScriptExtension, you return that List. For example,
the full code is:

70 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

public class ITIMExtension implements ScriptExtension {

private List<ContextItem> items;

public List getContextItems() {
return items;

}

public void initialize(ScriptInterface si, ScriptContextDAO dao)
throws ScriptException, IllegalArgumentException {

items = new ArrayList<ContextItem>();

ContextItem custom = ContextItem.createItem("CustomExtension",
new Extension());

items.add(custom);

ContextItem func = ContextItem.createGlobalFunction("log",
new GlobalFunction() {

public Object call(Object[] parameters)
throws ScriptEvaluationException {

if (parameters.length >= 1) {
Extension.log(parameters[0].toString());

}
return null;

}
});

items.add(func);

ContextItem logger = ContextItem.createConstructor("Logger",
Extension.class);

items.add(logger);
}

}

Download of fesi.jar from a non-IBM source (deprecated)
If you want to use FESI, but do not have the required libraries, you can download
and enable the libraries.

Note: Support for FESI is deprecated in IBM Security Identity Manager Version
6.0.

If you upgrade from IBM Tivoli Identity Manager Version 4.6, do not follow these
steps. The correct version of the FESI library is maintained during the upgrade.
1. Download FESI version 1.1.8 from http://www.lugrin.ch/fesi/. At the time of

this writing, 1.1.8 is the latest version
a. Follow the link to download the current version, which displays the license

page.
b. Accept the license to continue.
c. Access a download page.
d. Download the install-fesi-1.1.8.jar file.

2. After the file downloads successfully, start the installer by typing this command
from the command line:
java –jar install-fesi-1.1.8.jar

a. Follow the remaining steps that the installer provides to install FESI.

Note: Because IBM Security Identity Manager needs only a JAR file from
the installation, you can install FESI to a temporary location that you can
delete later.

Chapter 9. JavaScript extensions overview 71

b. After the installation completes, go to $FESI_INSTALL_DIR/lib and locate the
fesi.jar file.

c. Copy the fesi.jar file to the ISIM_HOME/lib directory.
3. Specify where IBM Security Identity Manager accesses fesi.jar.

a. Log on to the WebSphere Application Server administrative console, which
is typically at http://hostname:9060/ibm/console, where hostname is specific
to your computer.

b. Go to Environment > Shared Libraries > ITIM_LIB.
c. At the bottom of the Classpath text box, add the line ${ISIM_HOME}/lib/

fesi.jar.
4. Restart the WebSphere Application Server to put the changes into effect.
5. Edit the scriptframework.properties file to use the FESI interpreter.

When you are using FESI, the script framework looks for the
fesiextensions.properties file to determine which FESI extensions to load. If
this file does not exist, a message is written to the trace.log file for every
script that is run by FESI.

72 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 10. JavaScript extension reference

The reference section is arranged alphabetically.

There are a number of IBM Security Identity Manager specific objects available for
use. IBM Security Identity Manager uses JavaScript extensions to package
JavaScript objects and APIs. An extension can also be a package of other extensions
(for example, ModelExtension).

After an extension is defined, it can be registered in the ISIM_HOME/data/
scriptframework.properties file to be used in a specific JavaScript context. In
some cases, an environment needs to be created for an extension.

Table 9 shows these script extensions.

Table 9. Script extensions

Script Extension Object Name Object Type

AttributesExtension
(deprecated)

ATTRIBUTES Map

EmailContextExtension EmailContext EmailContext

EnroleExtension Enrole

error

Enrole
Error

IdentityPolicyExtension IdentityPolicy IdentityPolicy

LoopCountExtension loopcount int

PersonPlacementRulesExtension entry Map

PostOfficeExtension PostOffice PostOffice

ProvisioningPolicyExtension parameters
reason

Map
int (0: New Account, 1: Existing Account)

AccountModelExtension Account constructor
AccountSearch constructor

Account
AccountSearch

CredentialModelExtension Credential Credential

OrganizationModelExtension ContainerSearch constructor ContainerSearch

PersonModelExtension Person constructor
ExtendedPerson constructor
PersonSearch constructor

Person
ExtendedPerson
PersonSearch

RoleModelExtension Role constructor
RoleSearch constructor

Role
RoleSearch

ServiceModelExtension Service constructor
ServiceSearch

Service
ServiceSearch

ReminderExtension reminderCtx Reminder

ServiceExtension service DirectoryObject

73

Table 9. Script extensions (continued)

Script Extension Object Name Object Type

SubjectExtension subject Person
Note: For Orphan Adoption Rule JavaScript,
the subject is a Map, which contains the
account attributes returned from
reconciliation. The entries in the map are
referred by the name of the account
attributes, which might vary based on the
service type.

WorkflowExtension process
activity
Participant constructor
ParticipantType
$RelevantDataName

Activity
Participant
ParticipantType
ProcessDataProcess

Finding methods and properties for a specific JavaScript object

This example demonstrates how to find methods and properties for a specific
JavaScript object.

If you are writing a workflow script, look in the scriptframework.properties file
to see which extensions are available. By default, workflow loads the model
extensions, the WorkflowExtension, and the LoopCountExtension.

Table 9 on page 73shows that WorkflowExtension defines scripting objects that
include process, activity, a Participant constructor, an object named
ParticipantType, and a series of workflow-specific pieces of data.

In another column in the table, notice that the process object is of type Process.
Now, locate Process in this reference to see that Process type has a property called
name, and a method called getParent().

To understand how to use maps, notice that objects, such as parameters from
ProvisioningPolicyExtension, have a type of Map. A Map, also known as a
dictionary, is a named JavaScript object that can hold many other objects which can
be accessed by name. The parameters object holds another object named uid. To
access uid, you can type parameters.uid[0]. (In this case uid is an array, so you
must type [0] to get the first element of the array.) The values that a map holds
will vary between each map. For more information, locate the specific map in the
JavaScript reference.

How to read the reference pages
This section explains the structure of each reference item.

Title and Description
Every reference entry begins with a title and a one line description. The
entries are alphabetized by title. The one-line description gives a quick
summary of the item documented in the entry.

Availability
The IBM Security Identity Manager JavaScript extensions change over time.
Unless otherwise noted, anything available in one version of the IBM
Security Identity Manager extensions is also available in later versions.
This section also specifies whether an existing item was enhanced with a

74 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

later version of the extensions and when an item is deprecated. Deprecated
items are no longer supported and can be removed from future versions of
the IBM Security Identity Manager extensions. Do not use deprecated items
in new IBM Security Identity Manager JavaScript code.

Provided by
At installation, IBM Security Identity Manager provides this initial set of
registered extensions:
v EnroleExtension

v ProvisioningPolicyExtension

v PostOfficeExtension

v IdentityPolicyExtension

v PersonPlacementRulesExtension

v WorkflowExtension

v ReminderExtension

v ServiceExtension

v SubjectExtension

v AttributesExtension

v LoopCountExtension

v EmailContextExtension

v Model extensions package

Inherits From
JavaScript classes can inherit properties and methods from other classes.
When it occurs, an Inherits From section appears in the reference entry.
The inherited fields and methods are in the listed superclasses. For
example, the subject object inherits all of its fields and properties from the
DirectoryObject class.

Synopsis
This section is a synopsis of how to use the object, method, property, or
function.

Arguments
If the reference page describes a function or method that has
arguments, the Synopsis is followed by an Arguments subsection
that describes the arguments to the function or method. For some
objects, the Synopsis section is replaced by a Constructor section
which is also followed by an Arguments subsection.

Returns
If a function or a method has a return value, the Arguments
subsection is followed by a Returns subsection that explains the
return value of the function, method or constructor.

Properties
If the reference page documents an object, the Properties section lists the
properties the object supports and provides short explanations of each.

Methods
The reference page for an object that defines methods includes a Methods
section.

Description
Most reference entities contain a Description section, which is a basic
description of whatever is documented. For some simple methods, the

Chapter 10. JavaScript extension reference 75

Arguments and Returns sections document the method sufficiently by
themselves, so the Description section is omitted.

Usage This section describes common techniques for using the item, or it contains
cautionary information.

Account
Represents an account that is associated with a provisioning operation.

Availability
IBM Tivoli Identity Manager 4.x.

Inherits From
DirectoryObject

Provided by
com.ibm.itim.script.extensions.model.AccountModelExtension

Constructor
new Account(dn)

Returns
The newly created Account object that represents the account with
the specified DN, which is a String.

Methods
getAndDecryptPassword()

Decrypts and returns
The decrypted password of the account entity in plain text.

Note: This method is available in the scripting context of Security
Identity Manager only if the javascript.password.access.enabled
property is set to true in the <ISIM_HOME>/data/
scriptframework.properties file.

setAndEncryptPassword()

Encrypts
The given plaintext password and sets it on the account object.

Note: This method is available in the scripting context of Security
Identity Manager only if the javascript.password.access.enabled
property is set to true in the <ISIM_HOME>/data/
scriptframework.properties file.

Account.getAndDecryptPassword()
The method decrypts and returns the decrypted password of the account entity in
plain text.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
account.getAndDecryptPassword()

Returns
String representing plain text password set in the account object.

Description

76 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

This method can be used in the scripting context of Security Identity
Manager if the javascript.password.access.enabled property is set to true in
the <ISIM_HOME>/data/scriptframework.properties file. It decrypts and
returns the decrypted password set in the account object. This function will
return null if the password is not present.

Note: This method does not decrypt the password of the Security Identity
Manager account, which is hashed and stored in LDAP.

Usage
var password = account.getAndDecryptPassword();
</page_ Account.getAndDecryptPassword()>

Account.setAndEncryptPassword()
The method encrypts the given plaintext password and sets it on account object.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
account.setAndEncryptPassword(String password)

Arguments

password
Plain text password string.

Description

This method can be used in the scripting context to set a given plain text
password to an account object if the javascript.password.access.enabled
property is set to true in the <ISIM_HOME>/data/
scriptframework.properties file. Internally, the function encrypts the
password and sets the same on the account entity.

Usage
account.setAndEncryptPassword(“secret”);
</page_ Account.setAndEncryptPassword()>

AccountSearch
You can search for an account with the AccountSerach object.

Availability
IBM Tivoli Identity Manager 4.x.

Provided by
com.ibm.itim.script.extensions.model.AccountModelExtension

Constructor
new AccountSearch()

Returns
The newly created and initialized account search object.

Methods

searchByOwner()
Search for an account by owner.

searchByUid()
Search for an account by user ID.

Chapter 10. JavaScript extension reference 77

searchByUidAndService()
Search for an account by user ID and service.

searchByURI()
Search for an account by URI within an organizational container.

Description
The entity implements the IBM Security Identity Manager Account
Search class.

AccountSearch.searchByOwner()
The method finds an account entity by the distinguished name of the owner.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
AccountSearch.searchByOwner(personDN)

Arguments

personDN
String representing the distinguished name of the account
owner.

Description
Given the distinguished name of the person, find the account entities
owned by that person. This function will return null if the person is not
found.

Usage
var account = (new AccountSearch()).searchByOwner(person.dn);
if (account!=null) {
Enrole.log("script", "Found " + account.length + " accounts");}

AccountSearch.searchByUid()
The method finds an account entity by user ID and distinguished name of a
service.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
AccountSearch.searchByUid(uid, serviceDN)

Arguments

uid String representing the user ID of the account.

serviceDN
String representing the distinguished name of the account.

Description
Given the user ID of the account and the distinguished name of the
service, find the account entity. This function returns null if there is not
exactly one matching account, or if the service is not found.

Usage
var account = (new AccountSearch()).searchByUid("pallen",
service.dn);
if (account!=null) {
Enrole.log("script", "Found account pallen");
}

78 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

AccountSearch.searchByUidAndService()
The method finds an account entity by user ID, service name, and service profile
name.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
AccountSearch.searchByUidAndService(uid, serviceName)

Arguments

uid String representing the user ID of the account.

serviceName
String representing the name of the service.

Description
Given the user ID of the account and the name of the service that has the
same service profile as the script context service profile, find the account
entity. This function returns null if:
v More than one matching account exists.
v The service is not found.
v More than one service with the given name exists.

Usage
var account = (new AccountSearch()).searchByUidAndService
("pallen", "Domain Controller");
if (account!=null) {
Enrole.log("script", "Found account pallen"); }

Synopsis
AccountSearch.searchByUidAndService(uid, serviceName,
serviceProfileName)

Arguments

uid String representing the user ID of the account.

serviceName
String representing the name of the service.

serviceProfileName
String representing the name of the service profile of the
serviceName service.

AccountSearch.searchByURI()
The method finds an account by URI in an organizational container.

Availability
IBM Security Identity Manager 6.0

Synopsis
AccountSearch.searchByURI(containerDN, uri)

Arguments

Container DN
String representing the distinguished name of the
organizational container.

uri String representing the URI of the account.

Chapter 10. JavaScript extension reference 79

Returns
An Account object.

Description
Given the distinguished name of an organizational container and the
account URI, this method finds the account. If the account is not found,
this function returns null. If more than one account is found, this function
throws a scripting exception.

Usage
var account = (new AccountSearch()).searchByURI(container.dn, uri);
if (account != null) {
Enrole.log("script", "Found " + account.getProperty("eruid"));}

Activity
Activity is used to reference any activity in a IBM Security Identity Manager
workflow.

Availability
IBM Tivoli Identity Manager 4.x

Provided by
The activity JavaScript object in the WorkflowExtension returns an Activity
object that represents the current workflow activity. The workflow activity
can be used in the context of a workflow activity PostScript, or in a
transition script, to reference the current activity. For a transition script, this
object represents the activity whose completion has lead to the evaluation
of the transition script.

Process.getActivity() can return any Activity object in the context of a
workflow process. For more information, see the description of this
method.

Activity Result Summary Code

APPROVED
Approved process summary code. Result code is AA.

ESCALATED
Escalated process summary code. Result code is ES.

FAILED
Failed process summary code. Result code is SF.

PARTICIPANT_RESOLVE_FAILED
Participant resolved failure process summary code. Result code is
PF.

PENDING
Pending process summary code. Result code is PE.

REJECTED
Rejected process summary code. Result code is AR.

SUBMITTED
Submitted process summary code. Result code is RS.

SUCCESS
Success process summary code. Result code is SS.

TIMEOUT
Time out process summary code. Result code is ST.

80 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

WARNING
Warning process summary code. Result code is SW.

Properties

description
Describes the purpose of the activity given when defined in the
workflow designer.

duedate
Indicates the time in milliseconds by when the activity is due.

id Assigned by the workflow designer to uniquely identify the
workflow activity within the workflow engine.

index Index of the instance of the activity.

name Label given this activity when defined in the workflow designer.

participant
The activity participant, as defined in the workflow designer.

resultDetail
An application-specific string that provides more detail about the
result of the activity.

resultSummary
An application-specific string that represents the summary result of
the activity.

started
Indicates when the activity started.

state Code that represents the current state of the activity.

subtype
Code that further categorizes the activity beyond the type of the
activity, such as approval or request for information.

type Code that categorizes the activity given when defined in the
workflow designer, such as manual or application.

Methods

auditEvent()
Create an event in the audit trail specific to the activity.

setResult()
Change the result member of the activity in the current activity.

Description
This entity represents the current workflow activity that is being run.
Within the context of a workflow transition script, this entity represents the
activity whose completion has lead to the evaluation of the transition
script. No constructor is available to create this object in any IBM Security
Identity Manager context.

Activity.auditEvent()
The method creates an event in the audit trail.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.auditEvent(event)

Chapter 10. JavaScript extension reference 81

Arguments

event String representing the event to be audited.

Description
This method creates an event in the audit trail specific to the activity. The
function takes in one parameter that can be any JavaScript object that can
be translated into a String for storage. In the audit trail, the event is
automatically time stamped.

Usage activity.auditEvent("Task completed");

Activity.description
The field provides information about the purpose of the activity.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
activity.description

Description
This read-only field is a String that describes the purpose of the activity
given when defined in the workflow designer.

Usage x = activity.description;

Activity.duedate
The field represents the time in milliseconds by when the activity is due.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.duedate

Description
This read-only field is a long number of milliseconds by when this activity
is due.

Usage
x = activity.duedate;

Activity.getSubProcesses()
The method returns the subordinate processes (if any) of the activity.

Availability

IBM Security Identity Manager 6.0.0.3.

Synopsis

activity.getSubProcesses()

Returns

The subordinate processes. If there are no subordinate processes, an empty array is
returned.

82 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Description

This method returns the subordinate processes (if any) of this activity.

Usage
var out = "subprocesses of the activity: \n";

var subProcesses = activity.getSubProcesses();
for (var i = 0; i < subProcesses.length; i++) {
out += subProcesses[i].id + " type: " + subProcesses[i].type + " resultSummary: " + subProcesses[i].resultSummary + "\n";

}

activity.auditEvent(out);

Activity.guid
The generated unique identifier assigned to the activity at runtime.

Availability
IBM Tivoli Identity Manager 5.x

Synopsis
activity.guid

Description
This read-only field is a String of the generated unique identifier for the
workflow activity within the workflow engine.

Usage x = activity.guid;

Activity.id
The field is the unique identifier assigned to the activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.id

Description
This read-only field is a String assigned by the workflow designer to
uniquely identify the workflow activity within the workflow engine.

Usage x = activity.id;

Activity.index
The field is an index of the instance of the activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.index

Description
This field is a read-only and a number. If there is more than one instance
of this activity, such as in the case where the activity of the ID is called
multiple times in a loop in the workflow process, the value starts at one. If
there is only one instance of this activity, the index value is zero.

Usage x = activity.index;

Activity.name
The field is the label that is assigned to the activity.

Chapter 10. JavaScript extension reference 83

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
activity.name

Description
This read-only field is a String assigned by the workflow designer to label
this activity.

Usage x = activity.name;

Activity.participant
The field represents the activity participant.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
activity.participant

Description
This read-only field is a Participant that represents the activity participant.
Not all activities have a participant. If there is no participant associated
with the activity, this member is empty.

Usage x = activity.participant;

Activity.resultDetail
You can get the details about the result of the activity with this field.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.resultDetail

Description
This read-only field is an application-specific string that provides more
detail about the result of the activity.

Usage x = activity.resultDetail;

Activity.resultSummary
The field helps you view the summary of the result of the activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.resultSummary

Summary
This read-only field is an application-specific string that provides a
summary of the result of the activity. It can represent a success or failure.

Usage x = activity.resultSummary;

Activity.setResult()
The method changes the result member of the activity.

84 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.setResult(summary)

activity.setResult(summary, detail)

Arguments

summary
String code that represents the result summary.

detail String representing the result details.

Description
This method changes the result member of the activity in the current
activity. It is supported for current activities in the current workflow
process. The result is composed by an application-specific summary code,
and optional more detailed application-specific description. The summary
code can indicate a success or failure. This summary code is stored as the
resultSummary member locally and updated in the relevant data in the
workflow engine. The detail is stored as the resultDetail member locally
and updated in the relevant data in the workflow engine.

Usage
activity.setResult(activity.FAILED);

activity.setResult(activity.FAILED, "Unable to connect to resource");

Activity.started
The field represents the date that indicates when the activity started.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.started

Description
This read-only field is a string that represents the date that indicates when
the activity started.

Usage
x = activity.started;

Activity.state
The field represents the current state of the activity.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
activity.state

Description
This read-only field is a code string that represents the current state of the
activity. The state can have the following values:
v R for running
v I for not started
v T for terminated
v A for aborted

Chapter 10. JavaScript extension reference 85

v S for suspended
v C for completed
v B for bypassed

Usage
if (activity.state == "S") {

...
}

Activity.subtype
The field represents the subtype of the activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.subtype

Description
This read-only field is a code string that further categorizes the activity
beyond the type of the activity, such as approval or request for
information. This is defined in the workflow designer. Not all activities
have a subtype. If there is no subtype associated with the activity, this
member is empty. The currently supported subtypes are:
v AP for approval
v RI for request for input
v WO for work order

Usage x = activity.subtype;

Activity.type
The field represents the type of the activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
activity.type

Description
This read-only field is code string that categorizes the activity given when
defined in the workflow designer, such as manual or application. The
currently supported types are:
v S for subprocess
v L for loop
v A for application
v R for route
v M for manual
v O for operation

Usage x = activity.type;

AttributeChangeOperation
The object represents an entity about the attribute change operation.

86 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Availability
IBM Tivoli Identity Manager 4.x.

Provided by
AttributeChangeOperation objects are returned from the method
DirectoryObject.getChanges() and are therefore not provided by any
specific extension.

Properties

attr Name of the attribute that is being changed.

op An integer that identifies the type of change that is being made.

values[]
An array of objects that must be either added, removed, or
replaced.

Description
This entity represents the changes made to a IBM Security Identity
Manager object.

AttributeChangeOperation.attr
Represents the name of an attribute that is being changed.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
attributeChangeOperation.attr

Description
Value is the attribute that is being changed.

Usage x = attributeChangeOperation.attr;

AttributeChangeOperation.op
The field represents the type of change that is being made.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
attributeChangeOperation.op

Description
This read-only field is a number that identifies the type of change that is
being made. The values are:
v 1 for add
v 2 for replace
v 3 for remove

Usage x = attributeChangeOperation.op;

AttributeChangeOperation.values[]
The field represents the name of attribute that is being changed.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
attributeChangeOperation.values[]

Chapter 10. JavaScript extension reference 87

Description
This read-only field is an array of objects that must be added, removed, or
replaced.

Usage x = attributeChangeOperation.values[1];

ContainerSearch
The object represents the search for an organizational container.

Availability

IBM Tivoli Identity Manager 4.x.

Provided by
com.ibm.itim.script.extensions.model.OrganizationModelExtension

Constructor
new ContainerSearch()

Returns
The newly created and initialized container search object.

Methods

searchByFilter()
Search for a container with a filter.

searchByURI()
Search for an organizational container by URI within a parent
organizational container.

Description
Implements the IBM Security Identity Manager
OrganizationalContainerSearch class.

ContainerSearch.searchByFilter()
The method represents the search for a container with a filter.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
containerSearch.searchByFilter(profileName, filter, scope)

Arguments

profileName
The String name of the organizational container profile to
use.

filter LDAP search filter String that defines the criteria for
returned containers to meet. The filter must be in the
format defined by RFC2254.

scope Optional Int search scope. Use 1 for One Level Scope and 2
for SubTree Scope. One Level Scope is the default scope.

Returns
An array of DirectoryObjects representing the results of the
search.

Description
This method searches for a container with a filter.

88 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Usage
var locationContainer = new ContainerSearch();
// use subtree scope
var thisLocation = locationContainer.searchByFilter(“Location”,
“(l=Raleigh)”, 2);

// use default one level scope
var otherLocation = locationContainer.searchByFilter(“Location”,
“(l=Raleigh)”);

ContainerSearch.searchByURI()
The method finds an organizational container by URI in a parent organizational
container.

Availability
IBM Security Identity Manager 6.0.

Synopsis
ContainerSearch.searchByURI(containerDN, uri)

Arguments

Container DN
String representing the distinguished name of the parent
organizational container.

uri String representing the URI of the organizational container.

Returns
A DirectoryObject representing the container.

Description
Given the distinguished name of the parent organizational container and
the container URI, this method finds the container. If the container is not
found, this function returns null. If more than one container is found, this
function throws a scripting exception.

Usage
var container = (new ContainerSearch()).searchByURI(parentContainer.dn,

uri);
if (container != null) {
Enrole.log("script", "Found " + container.getProperty("ou"));}

Context
The object represents the context of the currently running workflow process (for
example, requestor or subject). Only used for entitlement workflows.

Note: This object type is deprecated. Use workflow JavaScript objects, such as
Process, Activity, and Relevant Data.

Some account-specific functions of the context JavaScript extension, including
getService(), isAccountDataChanged(), and getAccountParameter() cannot be
applicable to operation workflows that are not account related. The context
JavaScript extension is not suggested for custom workflows.

Availability
IBM Tivoli Identity Manager 4.x.

Provided by
com.ibm.itim.workflow.script.WorkflowExtension

Context Constants

Chapter 10. JavaScript extension reference 89

APPROVED
This constant is used to describe the result of an activity. The
member applies only to Approval types of activities.

Usage
if (context.getActivityResult() == context.APPROVED) {...

REJECTED
This constant is used to describe the result of an activity. This
member applies only to Approval types of activities.

Usage
if (context.getActivityResult() == context.REJECTED) {...

NEWACCOUNT
This constant is used to identify the type of request that triggers
the custom workflow run time.

Usage
if (context.getProcessType() ==
context.NEWACCOUNT) {...

ACCOUNTDATACHANGE
This constant is used to identify the type of request that triggers
the custom workflow in run time.

Usage
if (context.getProcessType() ==
context.ACCOUNTDATACHANGE) {...

Methods

getAccountParameter()
Returns the value of an account attribute.

getActivityResult()
Returns the activity result for the current activity.

getActivityResultByID()
Returns the activity result for a specific activity.

getLoopCount()
Returns the loop count for the current loop activity.

getLoopCountByID()
Returns the current loop count for a specific loop activity.

getProcessType()
Returns the type of the request that triggers the custom workflow
process.

getRequestee()
Returns the requestee associated with the request as a Person
object.

getService()
Returns the target service as a Service entity object.

isAccountDataChanged()
Identifies whether a specific account attribute was changed in the
request that triggers the custom workflow process.

Description
The context of the currently running workflow process (for example,
requestor or subject) is represented within the JavaScript as an object
named context.

90 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Context.getAccountParameter()
The method returns the value of an account attribute.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
context.getAccountParameter(String attributeName)

Arguments

attributeName
String representing the attribute name.

Returns
String value of an account attribute.

Description
This member function returns the value of an account attribute as a string.

Usage parameter=context.getAccountParameter("group");

Context.getActivityResult()
The method returns the activity result for the current activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
context.getActivityResult()

Returns
String

Description
This member function returns the activity result for the current activity.
The function returns APPROVED or REJECTED. If this function is used to
specify a transition condition, the function refers to the activity from which
the transition is coming.

Usage if (context.getActivityResult() == context.APPROVED) {...

Context.getActivityResultById()
The method returns the activity result for a specific activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
context.getActivityResultById(String activityDefinitionID)

Arguments

activityDefinitionID
String ID of the activity definition.

Returns
String

Description
This member function returns the activity result for a specific activity. The
function returns APPROVED or REJECTED.

Chapter 10. JavaScript extension reference 91

Usage if (context.getActivityResultByID("1234567890") == context.APPROVED)
{...

Context.getLoopCount()
The method returns the loop count for the current loop activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
getLoopCount()

Returns
Integer of loop count.

Description
This member function returns the loop count for the current loop activity.
If this function is called before a loop is started, the loop count is 0. If this
activity is called while the loop activity is in process, the loop count is the
number of times the loop ran. If this function is called after the loop is
completed, the loop count is the total number of times the loop is defined
to run.

Usage currentiteration = context.getLoopCount();

Context.getLoopCountByID()
The method returns the current loop count for a specific loop activity.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
context.getLoopCountByID(String activityDefinitionID)

Arguments

activityDefinitionID
ID of the activity definition.

Returns
Integer

Description
This member function returns the current loop count for a specific loop
activity. If this function is called before the loop is started, the loop count is
0. If this function is called while the loop activity is in process, the loop
count is the number of times the loop ran. If this function is called after
the loop is completed, the loop count is the total number of times the loop
is defined to run.

Usage currentiteration = context.getLoopCount("1234567890");

Context.getProcessType()
The method returns the type of the request that triggers the custom workflow
process.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
context.getProcessType()

92 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Returns
String

Description
This member function returns the type of the request that triggers the
custom workflow process. The function returns NEWACCOUNT or
ACCOUNTDATACHANGE.

Usage if (context.getProcessType() == context.NEWACCOUNT) {...

Context.getRequestee()
The method returns the requestee associated with the request as a person object.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
context.getRequestee();

Returns
A DirectoryObject that represents a Person.

Description
This member function returns the requestee associated with the request as
a Person object. The requestee is the user who owns the associated,
provisioned account.

Usage requestee = context.getRequestee();

Context.getService()
The method returns the target service as a service entity object.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
context.getService()

Returns
DirectoryObject

Description
This member function returns the target service as a Service entity object.
The service entity is the service associated with the provisioned account.

Usage service = context.getService();

Context.isAccountDataChanged()
The method identifies whether a specific account attribute was changed in the
request that triggers the custom workflow process.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
isAccountDataChanged(String attributeName)

Description
This member function identifies whether a specific account attribute was
changed in the request that triggers the custom workflow process. If the
request that triggers the custom workflow is NEWACCOUNT and the attribute
is in the new account parameters, this function returns TRUE. Otherwise,

Chapter 10. JavaScript extension reference 93

this function returns FALSE. If the request that triggers the custom
workflow is ACCOUNTDATACHANGE and the specified attribute is changed, this
function returns TRUE. Otherwise, this function returns FALSE.

Usage if (context.isAccountDataChanged("group")) {...

Credential
Credentials are associated with a shared access module operation, such as
addCredentialToVault, checkin, or checkout.

Availability
Security Identity Manager 6.0

Inherits from
DirectoryObject

Provided by
com.ibm.itim.script.extensions.model.CredentialModelExtension

Access mode

EXCLUSIVE
Indicates that an authorized user must access the credential
through the checkout process.

NON_EXCLUSIVE
Indicates that an authorized user can access the credential without
the checkout process.

NON_SHARED
Indicates that the credential is not intended for sharing.

Notification option

NOTIFY_ONLY
When the credential lease expires, a notification email is sent.

NOTIFY_AND_CHECKIN
When the credential lease expires, the credential is checked in
automatically, and a notification email is sent.

Constructor
new Credential(dn)

Returns
The newly created Credential object that represents the credential
with the specified DN, which is a String.

Methods

getAccessMode()
Returns an integer constant to represent the access mode, which
can be EXCLUSIVE, NON_EXCLUSIVE, or NON_SHARED.

getCheckoutDuration()
Returns the maximum checkout time in hours.

getNotificationRecipient()
Returns the Participant object.

getNotifyOption()
Returns integer constant NOTIFY_ONLY, or NOTIFY_AND_CHECKIN.

94 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

isCheckoutSearchEnable
Returns true if the credential is enabled for search during checkout;
returns false, otherwise.

isNotifyOnly()
Returns true if the system is configured to send only a notification
when a lease is expired; returns false, otherwise.

isPasswordViewable()
Returns true if the credential password can be displayed to an
authorized user; returns false, otherwise.

isResetPasswordAtCheckin()
Returns true if the credential password needs to be reset during
the checkin process; returns false, otherwise.

Credential.getAccessMode()
The method returns the access mode of the credential.

Availability
IBM Security Identity Manager 6.0

Synopsis
Credential.getAccessMode()

Returns
Integer

Description
This function returns EXCLUSIVE, NON_EXCLUSIVE, or NON_SHARED.

Usage
var accessMode = credential.getAccessMode();
if (accessMode == Credential.EXCLUSIVE) {
...;
}

Credential.getCheckoutDuration()
The method returns the maximum checkout time for the credential in hours.

Availability
IBM Security Identity Manager 6.0

Synopsis
Credential.getCheckoutDuration()

Returns
Integer

Description
This function returns an integer value in hours.

Usage var checkoutDuration = credential.getCheckoutDuration();

Credential.getNotifyOption()
The method returns the notification option when a credential lease is expired.

Availability
IBM Security Identity Manager 6.0

Synopsis
Credential.getNotifyOption()

Chapter 10. JavaScript extension reference 95

Returns
Integer

Description
This function returns NOTIFY_ONLY or NOTIFY_AND_CHECKIN.

Usage
var notifyOption = credential.getNotifyOption();
if (notifyOption == Credential.NOTIFY_ONLY) {
...;
}

Credential.getNotificationRecipient()
The method returns the notification recipient when a credential lease is expired.

Availability
IBM Security Identity Manager 6.0

Synopsis
Credential.getNotificationRecipient()

Returns
Participant

Description
This function returns Participant object to whom the lease expiration email
is sent.

Note: The person who checked out the credential always gets a
notification when the lease is expired.

Usage var participant = credential.getNotificationRecipient();

Credential.isCheckoutSearchEnable()
The method returns whether the credential is enabled for a checkout search.

Availability
IBM Security Identity Manager 6.0

Synopsis
Credential.isCheckoutSearchEnable()

Returns
Boolean

Description
This function returns true if the credential is enabled for a checkout search;
returns false otherwise.

Usage
var isSearchable = credential.isCheckoutSearchEnable();
if (isSearchable) {
...;
}

Credential.isNotifyOnly()
The method returns whether the system must send only a notification email when
a credential lease is expired or not.

Availability
IBM Security Identity Manager 6.0

96 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Synopsis
Credential.isNotifyOnly()

Returns
Boolean

Description
This function returns true if the notification option is NOTIFY_ONLY; returns
false if the notification option is NOTIFY_AND_CHECKIN.

Usage
var isNotifyOnly = credential.isNotifyOnly();
if (isNotifyOnly) {
...;
}

Credential.isPasswordViewable()
The method returns whether the credential password can be displayed to an
authorized user or not.

Availability
IBM Security Identity Manager 6.0

Synopsis
Credential.isPasswordViewable()

Returns
Boolean

Description
This function returns true if the credential password can be displayed to an
authorized user; returns false, otherwise.

Usage
var isDisplayPwd = credential.isPasswordViewable();
if (isDisplayPwd) {
...;
}

Credential.isResetPasswordAtCheckin()
The method returns whether to reset the credential password during the checkin
process or not.

Availability
IBM Security Identity Manager 6.0

Synopsis
Credential.isResetPasswordAtCheckin()

Returns
Boolean

Description
This function returns true if the credential password needs to be reset
during the checkin process; returns false, otherwise.

Usage
var isResetPwd = credential.isResetPasswordAtCheckin();
if (isResetPwd) {
...;
}

Chapter 10. JavaScript extension reference 97

Delegate
The object provides the Delegate JavaScript object for use in the JavaScript
environment of delegation notification. The Delegate JavaScript object and their
use is described in this section.

Delegate
The Delegate object contains all the information associated with the current
delegation operation.

Availability
IBM Tivoli Identity Manager 5.1.0.11

Delegation Notification context

Provided by
com.ibm.itim.script.extensions.DelegateExtension

Methods

Delegate.getDelegator()
Returns the DirectoryObject that represents a system user such as
the IBM Security Identity Manager account, whose activities are
delegated.

Delegate.getDelegatee()
Returns the DirectoryObject that represents a system user such as
the IBM Security Identity Manager account, who is selected to be
the delegate for the activities of the delegator.

Delegate.getStartDate()
Returns a Date that contains the date and time when the delegation
starts.

Delegate.getEndDate()
Returns a Date that contains the date and time when the delegation
ends.

Delegate.getRequester()
Returns the DirectoryObject that represents a system user such as
the IBM Security Identity Manager account, who initiated the
delegation.

Description
The Delegate object is available in the context of a delegation notification.
The object retrieves the delegation information in the delegation
notification template. The model script extensions are also available in the
delegation notification context.

DirectoryObject
The object represents any IBM Security Identity Manager directory object or entity.

Availability
IBM Tivoli Identity Manager 4.x

Constructor
There is no specific constructor for this object. Specific constructors for
Account, Person, Role, and Service return DirectoryObject.

For example, new Service() returns a DirectoryObject.

Properties

98 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

dn String representing the distinguished name of the entity.

name String representing the logical name of the entity.

profileName
String representing the profile name of the entity.

Methods

addProperty()
Changes the value of the specified property, or adds the specified
property if it does not exist. For multivalued objects,
addProperty() adds the values to the specified property in the
directory object and does not replace them.

getChanges()
Returns the changes made to the entity.

getProperty()
Returns the values of the property specified by the given name.

getPropertyNames()
Returns a list of properties (attributes and relationships).

removeProperty()
Removes the specified property.

setProperty()
Changes the value of the specified property, or adds the specified
property if it does not exist.

getPropertyAsDate()
Returns the value of the specified property as a Date.

getPropertyAsString()
Returns the value of the specified property as a String.

Description
This Object represents a Security Identity Manager entity in the JavaScript
environment. Each Security Identity Manager entity is wrapped in one of
these object classes.

DirectoryObject.addProperty()
The method adds or updates the value for the specified property.

Availability
IBM Tivoli Identity Manager 5.x

Synopsis
directoryObject.addProperty(name, value)

Arguments

name String representing the name of the property to be created
or modified.

value The value to add to the property.

Description
This method changes the value of the specified property or adds the
specified property if it does not exist. This change is made locally to the
script environment, not to the data store. The value can be a single value
object or an array of objects. For multivalued objects, addProperty() adds
the values to the specified property in the directory object and does not

Chapter 10. JavaScript extension reference 99

replace them. The value type (syntax) of object must be compatible with
the syntax of the specified property. This method is available for the
following data types:
v void addProperty(String name, Collection value);

v void addProperty(String name, Date value);

v void addProperty(String name, Map value);

v void addProperty(String name, boolean value);

v void addProperty(String name, byte value);

v void addProperty(String name, String value);

v void addProperty(String name, number value);

v void addProperty(String name, char value);

Usage
directoryObject.addProperty("eruid", "jdoe");

The getProperty method returns a Java array of objects that is stored in a
JavaScript JavaArray object. Unlike a standard JavaScript array, JavaArray
objects are used to access members of a Java array. Because Java arrays
cannot be resized, the size of a JavaArray object cannot be changed. Also,
JavaArray objects are typed. Setting a JavaArray element to the wrong type
throws a JavaScript error.

In Security Identity Manager, a JavaArray object cannot be passed directly
back into a addProperty method. The JavaArray array might be converted
into a standard JavaScript array as follows:
jsAliases = new Array();
myPerson = person.get();
aliases = myPerson.getProperty("eraliases");
for (i=0; i < aliases.length; i++) {
jsAliases[i] = aliases[i];
}
jsAliases[aliases.length] = "myNewAlias";
myPerson.addProperty("eraliases", jsAliases);
person.set(myPerson);

DirectoryObject.dn
The field represents the distinguished name of the object.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
directoryObject.dn

Description
This read-only field is a string that provides the distinguished name of the
object. If the object holds information that was not created, there is no
value.

Usage x = directoryObject.dn;

DirectoryObject.getChanges()
The method returns the changes made to the entity.

Availability
IBM Tivoli Identity Manager 4.x.

100 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Synopsis
directoryObject.getChanges()

Returns
An array of change objects. If there are no changes, an empty array
is returned. Each element in the array is an
AttributeChangeOperation.

Description
This method returns the changes made to the entity. These changes are
represented by change objects with the following members:

attr String name of the attribute that is being changed.

op An integer that identifies the type of change that is being made.
The enumerated values are 1 for add, 2 for replace, and 3 for
remove.

values An array of objects that must be either added, removed, or
replaced.

The changes are returned as an array of these change objects. If
there are no changes, an empty array is returned.

Usage
changes = directoryObject.getChanges();
for (i = 0; i < changes.length; i++) {

name = changes[i].attr;
if (changes[i].op == 1) {

...
} else if (changes[i].op == 2) {

...
} else {

...
}

};

DirectoryObject.getProperty()
The method returns the values of the property specified by the given name.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
directoryObject.getProperty(name)

Arguments

name String representing the name of the property to return.

Returns
Either a String or a DirectoryObject. The type of object returned
depends on the property obtained. If the specified property does
not exist, an empty array is returned.

Description
This method returns the values of the property specified by the given
name. The type of object returned depends on the property obtained. If the
specified property does not exist, an empty array is returned.

The property name can be either an attribute name or a relationship name.
For an attribute name, the return is a String[]; for a relationship name, an
array of DirectoryObjects is returned. If an attribute and a relationship

Chapter 10. JavaScript extension reference 101

have the same name, then the attribute is returned. For example, an
Account entity has both an owner attribute and an owner relationship.

Usage When operating on an account, for example, the user ID property can
return a String, where the owner property can return another entity
(DirectoryObject). The owner entity can then be operated on with the
getProperty() member to obtain information about it.
userids = directoryObject.getProperty("eruid");
if (userids.length > 0)

userid = userids[0];
owner = directoryObject.getProperty("owner");
if (owner.length > 0)

ownerName = owner.getProperty("name")[0];

Note: These statements assume there is at least one value returned. If no
values are returned, an array indexing violation occurs.

The getProperty method returns a Java array of objects that is stored in a
JavaScript JavaArray object. Unlike a standard JavaScript array, JavaArray
objects are used to access members of a Java array. Since Java arrays
cannot be resized, the size of a JavaArray object cannot be changed. Also,
JavaArray objects are typed. Setting a JavaArray element to the wrong type
throws a JavaScript error.

DirectoryObject.getPropertyAsDate()
The method returns the value of the property specified by the given name as a
date object.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
directoryObject.getPropertyAsDate(name)

Arguments

name String representing the name of the property to return.

Returns
A Date object. If the specified property does not exist, current date is
returned.

Description
This method returns the value of the property specified by the given name
as a date object. If the specified property does not exist, current date is
returned.

Usage
var createDate = directotyObject. getPropertyAsDate("ercreatedate");

DirectoryObject.getPropertyAsString()
The method returns the value of the property specified by the given name as a
string.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
directoryObject.getPropertyAsString(name)

Arguments

102 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

name String representing the name of the property to return.

Returns
A String object. If the specified property does not exist, empty is returned.
If the specified property has multiple values, only the first value is
returned.

Description
This method returns the value of the property specified by the given name
as a String object. If the specified property does not exist, empty string is
returned. If the specified property has multiple values, only the first value
is returned.

Usage
var name = directotyObject.getPropertyAsString("erservicename");

DirectoryObject.getPropertyNames()
The method returns a list of properties, such as attributes and relationships.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
directoryObject.getPropertyNames()

Returns
An array of Strings.

Description
This method returns a list of properties as an array of Strings. A property
can be either an attribute or a relationship.

Usage properties = directoryObject.getPropertyNames();

DirectoryObject.name
The field represents the logical name of the object.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
directoryObject.name

Description
This read-only field is a string that provides the logical name of the object,
represented as a String. The physical attribute used as the name can be
different for each type of object.

Usage x = directoryObject.name;

DirectoryObject.profileName
The field returns the object profile name.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
directoryObject.profileName()

Description
This read-only field is a string that provides the profile name of the object,
represented as a String.

Chapter 10. JavaScript extension reference 103

Usage
x = directoryObject.profileName;

DirectoryObject.removeProperty(name)
The method removes the property specified by the given name.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
directoryObject.removeProperty(name)

Arguments

name String representing the name of the property to remove.

Description
This method removes the specified property. This change is made locally to
the script environment, not to the data store. The property name can be
either an attribute name or a relationship name.

Usage directoryObject.removeProperty("eruid");

DirectoryObject.removeProperty(name,value)
The method removes the value from the specified property.

Availability
IBM Security Identity Manager 6.0.0.3

Synopsis
directoryObject.removeProperty(name,value)

Arguments

name String representing the name of the property to be
modified.

value The value to remove from the property.

Description
This method removes the specified value from property if it exists. This
change is made locally to the script environment, not to the data store. The
value can be a single value object or an array of objects. For multivalued
objects, removeProperty(name,value) removes the values from the specified
property in the directory object. The object type of the value (syntax) must
be compatible with the syntax of the specified property. This method is
available for the following data types:
v void removeProperty(String name, Collection value);
v void removeProperty(String name, Date value);
v void removeProperty(String name, Map value);
v void removeProperty(String name, boolean value);
v void removeProperty(String name, byte value);
v void removeProperty(String name, String value);
v void removeProperty(String name, Number value);

Usage
var directoryObject = Entity.get();
directoryObject.removeProperty("eraliases", "jdoe");
Entity.set(directoryObject);

104 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

DirectoryObject.setProperty()
The method sets the value of the specified property.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
directoryObject.setProperty(name, value)

Arguments

name String representing the name of the property to be created
or modified.

value The value to set the property to.

Description
This method changes the value of the specified property, or adds the
specified property if it does not exist. This change is made locally to the
script environment, not to the data store. The value can be a single value
object or an array of objects. The value type (syntax) of object must be
compatible with the syntax of the specified property. This method is
available for the following data types:
v void setProperty(String name, Collection value);

v void setProperty(String name, Date value);

v void setProperty(String name, Map value);

v void setProperty(String name, boolean value);

v void setProperty(String name, byte value);

v void setProperty(String name, String value);

v void setProperty(String name, number value);

v void setProperty(String name, char value);

Usage directoryObject.setProperty("eruid", "jdoe");

The getProperty method returns a Java array of objects that is stored in a
JavaScript JavaArray object. Unlike a standard JavaScript array, JavaArray
objects are used to access members of a Java array. Since Java arrays
cannot be resized, the size of a JavaArray object cannot be changed. Also,
JavaArray objects are typed. Setting a JavaArray element to the wrong type
throws a JavaScript error.

In IBM Security Identity Manager, a JavaArray object cannot be passed
directly back into a setProperty method. The JavaArray array into a
standard JavaScript array as follows:
jsAliases = new Array();
myPerson = person.get();
aliases = myPerson.getProperty("eraliases");
for (i=0; i < aliases.length; i++) {

jsAliases[i] = aliases[i];
}
jsAliases[aliases.length] = "myNewAlias";

myPerson.setProperty("eraliases", jsAliases);
person.set(myPerson);

EmailContext
The object provides access to contextual information specific to a type of
notification that is sent.

Chapter 10. JavaScript extension reference 105

Some methods for accessing information change are based upon the listed
notification types. (The Reminder/Approval/RFI/WorkOrder/ComplianceAlert
Notification does not support this.)
v Activity Timeout Template
v Change Account Template
v Compliance Template
v New Account Template
v New Password Template
v Process Completion Template
v Process Timeout Template
v Restore Account Template
v Suspend Account Template

Availability

IBM Tivoli Identity Manager 4.6

Provided by
com.ibm.itim.workflow.script.EmailContextExtension

Synopsis
Call methods documented in this section as an EmailContext object. For
example:
notificationActivity=EmailContext.getActivity();
owner=EmailContext.getAccountOwnerName()

Common methods
These methods are available for all types of notifications:

getActivity()
Returns information about the most recent running activity.
(Returns the ActivityInfoOC Java Object. To get the activity
information in JavaScript object, use the object, ‘activity'.

getActivity(java.lang.String actDefID)
Returns information about the activity with the specified definition
ID. (Returns the ActivityInfoOC Java Object.) This obtains
information by using the Process.$dataName.get()workflow
process. To get the activity information in JavaScript object, use
‘process.getActivity(java.lang.String actDefID)'.

getParentProcess()
Returns information about the parent process of the currently
running process. (Returns the ProcessInfoOC Java object.) To get
the process information of the parent process in JavaScript object,
use ‘process.getParent()'.

getProcess()
Returns the information about the currently running process.
(Returns the ProcessInfoOC Java object.) To get the process
information of the parent process in JavaScript object, use the
object, ‘process'.

getRootProcess()
Returns information about the root process of the current running
process. (Returns the ProcessInfoOC Java object.) To get the process
information of the parent process in JavaScript object, use
'process.getRootProcess ()’).

106 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Account notification methods
These methods are available for all types of account notifications:

getAccountOwnerName()
Returns the account owner name for the account.

getAccountServiceName()
Returns the account service name for the account.

getAccountServiceProfileName()
Returns the account service profile name for the account.

getAccountUserId()
Returns the account user ID for the account.

hasNewAccess()
Returns true if the account has new access and false otherwise.

hasRemovedAccess()
Returns true if the account removed access and false otherwise.

getAccountNewAccessAsString()
Returns String that contains list of new access separated by
commas.

getAccountNewAccessList()
Returns Array of String that contains the new access.

getAccountRemovedAccessAsString()
Returns a string that contains the list of removed access separated
by commas.

getAccountRemovedAccessList()
Returns Array of String that contains the list of removed access.

Account Suspend/Deprovisioning Notification Methods:
These methods are only available for all types of account
suspend/deprovision notifications:

getAction()
Returns the action taken against the service (resource) itself.

getReason()
Returns a descriptive reason for the deprovision.

Account New/Modify/Restore Notification Methods:
These methods are only available for all types of notifications for new,
modified, and restored accounts:

showPassword()
Returns whether to display the password when the user is notified
of their new account.

getAccountPassword()
Returns the account password for the account. .

getPasswordExpirePeriod()
Returns the password delivery expiration period.

getPasswordRetrievalUrl()
Returns the password delivery URL in order to retrieve the
password with the accounts shared secret.

Chapter 10. JavaScript extension reference 107

getTransactionId()
Returns the password delivery transaction ID for picking up the
password created for this account.

Account Password Change Notification Methods:
These methods are available for all types of account password change
notifications:

getAccountPassword()
Returns the account password for the account.

getPasswordExpirePeriod()
Returns the password delivery expiration period.

getPasswordRetrievalUrl()
Returns the password delivery URL in order to retrieve the
password with the accounts shared secret.

getTransactionId()
Returns the password delivery transaction ID for picking up the
password created for this account.

Enrole
The object contains the general methods.

Availability

v All JavaScript contexts
v IBM Security Identity Manager Version 6.0
v IBM Tivoli Identity Manager Version 4.x

Provided by
com.ibm.itim.script.extensions.EnroleExtension

Methods

generatePassword()
Generates a password for a specific service.

getAttributeValue()
Get a single value attribute value.

getAttributeValues()
Get a multi-valued attribute value.

localize()
Localized message specified in <Message> XML format.

log() Logs a message to the IBM Security Identity Manager log at ERROR
level.

logError()
Logs the specified text to the IBM Security Identity Manager
message log (msg.log) at ERROR level.

logInfo()
Logs the specified text to the IBM Security Identity Manager
message log (msg.log) at INFO level.

logWarning()
Logs the specified text to the IBM Security Identity Manager
message log (msg.log) at WARN level.

108 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

toGeneralizedTime()
Converts a time or date to generalized time format.

toMilleseconds()
Converts a String in generalized time format to an integer value in
milliseconds.

traceMax()
Logs the specified text to the IBM Security Identity Manager trace
log (trace.log) at DEBUG_MAX level.

traceMid()
Logs the specified text to the IBM Security Identity Manager trace
log (trace.log) at DEBUG_MID level.

traceMin()
Logs the specified text to the IBM Security Identity Manager trace
log (trace.log) at DEBUG_MIN level.

Description
Provides some common utilities for use in many different scripting
contexts.

Enrole.generatePassword()
The method generates a new valid password for an account.

Availability
generatePassword() requires a service to work, so generatePassword() is
only available when the ServiceExtension is used.

Synopsis
Enrole.generatePassword()

Returns
A String that is a valid password for the Service DirectoryObject
stored in the "service" variable.

Description
This method generates a new valid password for a service.

Enrole.getAttributeValue()
The method retrieves the attribute's value.

Availability
Deprecated as of IBM Tivoli Identity Manager 4.3. Replace with
DirectoryObject.getProperty()

Synopsis
Enrole.getAttributeValue(name, defaultValue)

Arguments

name String representing the name of the property to return.

defaultValue
Default value to return if there is no value to return.

Returns
An Object. The type of object returned depends on the property
obtained. If the specified property does not exist, the default value
is returned.

Chapter 10. JavaScript extension reference 109

Description
This method retrieves the value of the specified property.

Enrole.getAttributeValues()
The method retrieves a multi-valued attribute value.

Availability
Deprecated as of IBM Tivoli Identity Manager 4.3. Replace with
DirectoryObject.getProperty()

Synopsis
Enrole.getAttributeValues(name)

Arguments

name String representing the name of the property to return.

Returns
An array of objects. The type of object returned depends on the
property obtained. If the specified property does not exist, an
empty array is returned.

Description
This method retrieves the value of the specified property.

Enrole.localize()
The method localizes a message specified in <Message> XML format.

Availability
IBM Tivoli Identity Manager 5.0

Synopsis
Enrole.localize(String xmlMsg, String localStr)

Arguments

xmlMsg
A message specified in XML.

localStr
A String that represents the locale to be used for
globalization.

Returns
AA localized message.

Description
This method globalizes an XML message to the specified locale.

Enrole.log()
The method logs messages to the IBM Security Identity Manager message log
(msg.log).

Availability
IBM Tivoli Identity Manager 4.6

Synopsis
Enrole.log(category, message);

Arguments

category
The category of the log entry, entered as a String. The

110 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

category argument can be used or it can be left empty, but
the argument must not be null.

message
The message to be logged, entered as a String.

Description
Logs a message to the IBM Security Identity Manager log at error level.

Usage
var roleDN = ..;(DN of role)
var role = new Role(roleDN);

// Put next statement on one line

Enrole.log("script", "The role name is
"+ role.getProperty("errolename")[0]);

Use the following new methods in IBM Security Identity Manager Version 6.0 to
provide greater adaptability, control, or flexibility over the Enrole.log() method:
v logError()
v logInfo()
v logWarning()
v traceMax()
v traceMid()
v traceMin()

Enrole.logError()
The method logs text messages to the IBM Security Identity Manager message log
(msg.log) with a message severity level of ERROR.

Availability
IBM Security Identity Manager Version 6.0

Synopsis
Enrole.logError((component, method, message);

Arguments

component
The component of the log entry, entered as a String. The
component can be any string. Logging can be controlled
for components by setting specific log levels in the
enRoleLogging.properties file.

method
The string to display in the “Method” record of the
message log. Useful to point where in the script the
message originated.

message
The string to represent the contents of the message log to
be written to the log file.

Description
Writes an error message to the IBM Security Identity Manager message log
(msg.log).

Chapter 10. JavaScript extension reference 111

Usage An example to write a msg.log message at ERROR level with the component
name com.ibm.myExtension and the method name
postScriptOfAccountCreate:
var userName = "Joe";
// below is a single line
Enrole.logError("com.ibm.myExtension","postScriptOfAccountCreate",
"Recording error message after unsuccessful account creation for user "

+ userName + ".");

Enrole.logInfo()
The method logs text messages to the IBM Security Identity Manager message log
(msg.log) with a message severity level of INFO.

Availability
IBM Security Identity Manager Version 6.0

Synopsis
Enrole.logInfo((component, method, message);

Arguments

component
The component of the log entry, entered as a String. The
component can be any string. Logging can be controlled
for components by setting specific log levels in the
enRoleLogging.properties file.

method
The string to display in the “Method” record of the
message log. Useful to point where in the script the
message originated.

message
The string to represent the contents of the message log to
be written to the log file.

Description
Writes an error message to the IBM Security Identity Manager message log
(msg.log).

Usage An example to write a msg.log message at INFO level with the component
name com.ibm.myExtension and the method name
postScriptOfAccountCreate:
var userName = "Joe";
// below is a single line
Enrole.logInfo("com.ibm.myExtension","postScriptOfAccountCreate",
"Recording information message after account creation for user " + userName + ".");

Enrole.logWarning()
The method logs text messages to the IBM Security Identity Manager message log
(msg.log) with a message severity level of WARN.

Availability
IBM Security Identity Manager Version 6.0

Synopsis
Enrole.logWarning((component, method, message);

Arguments

component
The component of the log entry, entered as a String. The
component can be any string. Logging can be controlled

112 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

for components by setting specific log levels in the
enRoleLogging.properties file.

method
The string to display in the “Method” record of the
message log. Useful to point where in the script the
message originated.

message
The string to represent the contents of the message log to
be written to the log file.

Description
Writes a warning message to the IBM Security Identity Manager message
log (msg.log).

Usage An example to write a msg.log message at WARN level with the component
name com.ibm.myExtension and the method name
postScriptOfAccountCreate:
var userName = "Joe";
// below is a single line
Enrole.logWarning("com.ibm.myExtension","postScriptOfAccountCreate",
"Recording warning message after account creation for user " + userName + ".");

Enrole.toGeneralizedTime()
The method converts a time or date to generalized time format.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
Enrole.toGeneralizedTime(time)

Arguments

time Integer time in milliseconds or a Date object.

Description
This method converts a time or date to generalized time format. Can be
used in either Identity Policies or in default entitlements.

Usage genTime = Enrole.toGeneralizedTime(seconds);

Enrole.toMilliseconds()
The method converts a string in generalized time format to an integer value in
milliseconds.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
Enrole.toMilliseconds(genTime)

Arguments

genTime
String in generalized time format.

Description
This method converts a String in generalized time format to an integer
value in milliseconds.

Usage seconds = Enrole.toMilliseconds(genTime);

Chapter 10. JavaScript extension reference 113

Enrole.traceMax()
The method logs text messages to the IBM Security Identity Manager trace log
(trace.log) with a message severity level of DEBUG_MAX.

Availability
IBM Security Identity Manager Version 6.0

Synopsis
Enrole.traceMax((component, method, message);

Arguments

component
The component of the log entry, entered as a String. The
component can be any string. Logging can be controlled
for components by setting specific log levels in the
enRoleLogging.properties file.

method
The string to display in the “Method” record of the
message log. Useful to point where in the script the
message originated.

message
The string to represent the contents of the trace message to
be written to the log file.

Description
Writes a DEBUG_MAX message to the IBM Security Identity Manager trace log
(trace.log).

Usage An example to write a trace.log message at DEBUG_MAX level with the
component name com.ibm.myExtension and the method name
postScriptOfAccountCreate:
var userName = "Joe";
// below is a single line
Enrole.traceMax("com.ibm.myExtension","postScriptOfAccountCreate",
"Recording DEBUG_MAX trace message after account creation for user " + userName + ".");

Enrole.traceMid()
Logs text messages to the IBM Security Identity Manager trace log (trace.log)
with a message severity level of DEBUG_MID.

Availability
IBM Security Identity Manager Version 6.0

Synopsis
Enrole.traceMid((component, method, message);

Arguments

component
The component of the log entry, entered as a String. The
component can be any string. Logging can be controlled
for components by setting specific log levels in the
enRoleLogging.properties file.

method
The string to display in the “Method” record of the
message log. Useful to point where in the script the
message originated.

114 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

message
The string to represent the contents of the trace message to
be written to the log file.

Description
Writes a DEBUG_MID message to the IBM Security Identity Manager trace log
(trace.log).

Usage An example to write a trace.log message at DEBUG_MID level with the
component name com.ibm.myExtension and the method name
postScriptOfAccountCreate:
var userName = "Joe";
// below is a single line
Enrole.traceMid("com.ibm.myExtension","postScriptOfAccountCreate",
"Recording DEBUG_MID trace message after account creation for user " + userName + ".");

Enrole.traceMin()
The method logs text messages to the IBM Security Identity Manager trace log
(trace.log) with a message severity level of DEBUG_MIN.

Availability
IBM Security Identity Manager Version 6.0

Synopsis
Enrole.traceMin((component, method, message);

Arguments

component
The component of the log entry, entered as a String. The
component can be any string. Logging can be controlled
for components by setting specific log levels in the
enRoleLogging.properties file.

method
The string to display in the “Method” record of the
message log. Useful to point where in the script the
message originated.

message
The string to represent the contents of the trace message to
be written to the log file.

Description
Writes a DEBUG_MIN message to the IBM Security Identity Manager trace log
(trace.log).

Usage An example to write a trace.log message at DEBUG_MIN level with the
component name com.ibm.myExtension and the method name
postScriptOfAccountCreate:
var userName = "Joe";
// below is a single line
Enrole.traceMin("com.ibm.myExtension","postScriptOfAccountCreate",
"Recording DEBUG_MIN trace message after account creation for user " + userName + ".");

Error
This object contains a script error description to notify the calling code of an
exceptional runtime condition.

When an error is returned from a script evaluation, it is converted to a Java
exception and thrown from the script evaluator class.

Chapter 10. JavaScript extension reference 115

Availability
IBM Tivoli Identity Manager 4.6.x

Provided by
com.ibm.itim.script.extensions.EnroleExtension

Methods

setMessage()
Sets the message for the error.

getMessage()
Retrieves the error message for the error.

setErrorCode()
Sets the error code for the error.

getErrorCode()
Retrieves the error code for the error.

Usage
var sn = subject.getProperty("sn");
if(sn == null || sn.length == 0) {

error.setMessage("sn was missing");
return error;

} else {
return sn[0];

}

Error.setMessage()
The method sets the message for the error.

Availability
IBM Tivoli Identity Manager 4.6.x

Synopsis
error.setMessage(String msg)

Arguments

msg String representing the message to be set.

Description
This method sets the text for an error message. The function takes in one
String parameter.

Usage error.setMessage("sn was missing");

Error.getMessage()
The method retrieves the message set for an error.

Availability
IBM Tivoli Identity Manager 4.6.x.

Synopsis
error.getMessage()

Returns
String message for an error.

Description
This method retrieves the text of an error message.

Usage messageValue = error.getMessage();

116 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Error.setErrorCode()
The method sets the error code for the error.

Availability
IBM Tivoli Identity Manager 4.6.x.

Synopsis
error.setErrorCode(int code)

Arguments

code Integer representing the error code.

Description
This method sets the error code for an error message. The function takes in
one Int parameter.

Usage error.setErrorCode(1);

Error.getErrorCode()
The method retrieves the error code set for an error.

Availability
IBM Tivoli Identity Manager 4.6.x.

Synopsis
error.getErrorCode()

Returns
Integer value for an error code.

Description
This method retrieves the error code of an error message.

Usage errorCodeValue = error.getErrorCode();

ExtendedPerson
This object extends the Person object with the ownership type information for
account adoption.

Availability
IBM Security Identity Manager Version 6.0.

Inherited from
Person.

Provided by
com.ibm.itim.script.extensions.model.PersonModelExtension

Ownership type
INDIVIDUAL

String constant represents the default ownership type.

Constructor
new ExtendedPerson(dn)

Arguments

DN DN string of a specific person entity.

Returns
The new ExtendedPerson object that represents a person with the
DN and INDIVIDUAL ownership type.

Chapter 10. JavaScript extension reference 117

new ExtendedPerson(dn, ownershipType)

Arguments

DN DN string of a specific person entity.

ownershipType
String representing one of the ownership types configured
in IBM Security Identity Manager.

Returns
The new ExtendedPerson object that represents a person with the
DN and ownership type. If the ownership type is invalid, it throws
ScriptException.

new ExtendedPerson(person)

Arguments

person
Person object.

Returns
The new ExtendedPerson object that represents the person with the
INDIVIDUAL ownership type.

new ExtendedPerson(person, ownershipType)

Arguments

person
Person object.

ownershipType
String representing one of the ownership types configured
in IBM Security Identity Manager.

Returns
The new ExtendedPerson object that represents the person with the
ownership type. If the ownership type is invalid, it throws
ScriptException.

Methods

getOwnershipType()
Returns the ownership type.

setOwnershipType()
Sets the ownership type.

ExtendedPerson.getOwnershipType()
The method return the ownership type as a string.

Availability
IBM Security Identity Manager Version 6.0.

Synopsis
ExtendedPerson.getOwnershipType()

Returns
String.

Description
This method returns the ownership type.

Usage
var ownershipType = extendedPerson.getOwnershipType();

118 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

ExtendedPerson.setOwnershipType()
The method sets the value of the ownership type.

Availability
IBM Security Identity Manager Version 6.0.

Synopsis
ExtendedPerson.setOwnershipType(value)

Arguments

value A string represents one of the ownership types configured in IBM
Security Identity Manager.

Description
This method updates the ownership type. If the ownership type is invalid,
it throws ScriptException.

Usage
var extendedPerson.setOwnershipType("System");

IdentityPolicy
The object represents the identity policy entity.

Availability

IBM Tivoli Identity Manager 4.x
Identity Policy context

Provided by
com.ibm.itim.policy.script.IdentityPolicyExtension

Methods

getNextCount()
Returns a number that can be appended to the end of a user name
to make that user name unique.

userIDExists()
Checks if requested UID is already in use.

Description
This object represents a IBM Security Identity Manager Policy entity.

IdentityPolicy.getNextCount()
The method gets a number that can be appended to the end of a user name to
make that user name unique. ServiceExtension must be loaded for getNextCount()
to work.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
IdentityPolicy.getNextCount(baseId)

Arguments

baseId
The base user name.

Chapter 10. JavaScript extension reference 119

Returns
A number that can be appended to the end of a user name to make
the user name unique. Returns -1 if the user name is already
unique and -2 if an error occurs.

Description
This method checks whether requested UID is already in use.

Usage
num = IdentityPolicy.getNextCount(baseId);
return baseId + num;

IdentityPolicy.userIDExists()
The method checks if the requested UID is in use.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
IdentityPolicy.userIDExists(uid, checkAllServices, checkRecycleBin)

Arguments

uid User identity.

checkAllServices
If set to true, all service instances are checked to see
whether the uid is used on an account of any service type.
If set to false, only the target service instance is checked.
This argument is optional. Default value is false.

checkRecycleBin
If set to true, the recycle bin is checked for any deleted
accounts. This parameter is intended to work in
conjunction with the checkAllServices parameter. Set this
parameter true only when the checkAllServices parameter
is also set to true. This argument is optional. Default value
is false.

Returns
True if the user ID exists, false otherwise.

Description
This method checks whether the requested UID is in use.

Usage
// To create a user ID without checking for it in the recycle bin but
// checking it against all services.
tf = IdentityPolicy.userIDExists("jason_jones", true, false);

PackagedApprovalDocument
A relevant data object used in multi-item approval, used exclusively in user
recertification workflows. This object is made up of multiple PackagedApprovalItem
objects from the user recertification approval and allows for searching and
retrieving recertification items.

Availability
IBM Tivoli Identity Manager 5.1.

Constructor
new PackagedApprovalDocument()

120 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Constructs an empty approval document object. Instances might also be
obtained in user recertification workflow and notifications by accessing the
relevant data item "ApprovalDocument." For example,
ApprovalDocument.get() returns a PackagedApprovalDocument in a user
recertification workflow.

Properties

TYPE_ACCOUNT
A constant for approval items that are accounts.

TYPE_GROUP
A constant for approval items that are groups on other services but
are not defined as an access.

TYPE_GROUP_ACCESS
A constant for approval items that are groups and also defined as
accesses.

TYPE_ITIM_GROUP
A constant for approval items that are groups on services of type
ITIM Service.

TYPE_ROLE
A constant for approval items that are roles.

Methods

addItem(PackagedApprovalItem item)
Returns a Boolean flag that indicates that a PackagedApprovalItem
item is added in this approval document.

containsDecisionCode(decisionCode)
Returns a Boolean flag that indicates whether any of the items in
this document that allow for decisions contain the specified
decision code string. Valid decision codes are activity.APPROVED
and activity.REJECTED.

getDecisionItemCountByType(type)
Returns the number of items in this document that support
decisions and have the specified type. The types are defined as
constants on this object, such as TYPE_ROLE or TYPE_ACCOUNT. This
method considers all approval items in the document that supports
decisions, including children of top-level items.

getDecisionItemCountByType(type, includeChildren)
Returns the number of items in this document that support
decisions and have the specified type. The types are defined as
constants on this object, such as TYPE_ROLE or TYPE_ACCOUNT.
Depending on the value the includeChildren flag, this method
might also count all items in this document, including any items
that are children of the top-level items.

getItemCountByType(type)
Returns the number of items in this document that are of the
specified type. The types are defined as constants on this object,
such as TYPE_ROLE or TYPE_ACCOUNT. This method considers all
approval items in the document, including children of top-level
items.

getItemCountByType(type, includeChildren)
Returns the number of items in this document that are of the

Chapter 10. JavaScript extension reference 121

specified type. The types are defined as constants on this object,
such as TYPE_ROLE or TYPE_ACCOUNT. Depending on the value of the
includeChildren flag, this method might also count all items in
this document, including any items that are children of the
top-level items.

getItemCountByTypeAndDecision(type, decisionCode)
Returns the number of items in this document that are of the
specified type and that allow for decisions and contain the
specified decision code string. The types are defined as constants
on this object, such as TYPE_ROLE or TYPE_ACCOUNT. Valid decision
codes are activity.APPROVED and activity.REJECTED. This method
considers only top-level approval items and does not count the
children of those items.

getItemsByType(type)
Returns the top-level items in this approval document that have
the specified type as an array of PackagedApprovalItem objects. The
types are defined as constants on this object, such as TYPE_ROLE or
TYPE_ACCOUNT.

getItemsByTypeAndDecision(type, decisionCode)
Returns the top-level items in this approval document that have
the specified type. If decisions are allowed, it contains the specified
decision code string as an array of PackagedApprovalItem objects.
The types are defined as constants on this object, such as TYPE_ROLE
or TYPE_ACCOUNT. Valid decision codes are activity.APPROVED and
activity.REJECTED.

removeItem(String identifier)
Returns a Boolean flag that indicates that a PackagedApprovalItem
that corresponds to the identifier is removed from this approval
document.

setDecisionCodeForAllItems(decisionCode)
Sets the specified decisionCode on all items in this document,
including any children of top-level items. Any items that do not
support decisions are skipped. Valid decision codes are
activity.APPROVED and activity.REJECTED.

Description
The object represents the multi-item approval document in the JavaScript
environment.

PackagedApprovalItem
A relevant data object used in IBM Security Identity Manager multi-item approval,
used exclusively in user recertification workflows. This object represents the
individual roles, accounts, and groups that are presented to the user during the
recertification process. Some items might contain a decision code that indicates the
choice of the approvers for that item. Each item also contains a list of children that
is used to represent relationships between accounts and groups.

Availability
IBM Tivoli Identity Manager 5.1.

Constructor
new PackagedApprovalItem(itemType, value)

122 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Constructs a PackagedApprovalItem object that does not support decisions
and is read-only during the recertification approval activity. The
parameters are an item type constant and value, where the value is a
DirectoryObject that matches the type, such as Role or Account.

new PackagedApprovalItem(itemType, value, decisionCode)

Constructs a PackagedApprovalItem object that supports decisions. The
decisionCode parameter is either activity.APPROVED, activity.REJECTED,
or null, where null indicates that a decision is required but not yet
specified.

For example:
new PackagedApprovalItem(PackagedApprovalDocument.TYPE_ACCOUNT, acctObj)

new PackagedApprovalItem(PackagedApprovalDocument.TYPE_ROLE, roleObj, activity.APPROVED)

Properties

DECISION_NOT_APPLICABLE
A constant for approval items that do not support decisions and
are read-only during the recertification.

Methods

getItemTypeString()
Returns the type of the item, where the constant values are defined
on the PackagedApprovalDocument object (TYPE_ROLE, TYPE_ACCOUNT,
TYPE_GROUP, TYPE_GROUP_ACCESS).

getDecisionCode()
Returns the decision code for this item, where the possible values
are activity.APPROVED and activity.REJECTED. This method might
also return PackagedApprovalItem.DECISION_NOT_APPLICABLE if this
item is for informational purposes only, or null if the decision is
not yet specified.

getValue()
Returns a DirectoryObject for the role, account, or group of this
item.

getChildItems()
Returns an array of PackagedApprovalItem objects that are the
children of this item. For example, account items can have groups
as their children.

getChildItemsByDecision(decisionCode))
Returns an array of PackagedApprovalItem objects that are the
children of this item and have the specified decision code, such as
activity.APPROVED or activity.REJECTED.

Description
The Object represents the Security Identity Manager multi-item
approval element in the JavaScript environment.

Participant
Workflow participant entity, which specifies an activity participant. In a mail node,
this entity specifies the mail recipient.

Participant applies only to manual activity types, including Approval, RFI,
WorkOrder, and Mail.

Chapter 10. JavaScript extension reference 123

The participant of an activity can be specified during workflow design as Custom
Defined Participant. In this case, the Participant JavaScript object can be used to
construct the appropriate participant based on the process context.

Availability
IBM Tivoli Identity Manager 4.x

Provided by
com.ibm.itim.workflow.script.WorkflowExtension

Constructor
new Participant(type, dn)

Arguments

type Code that categorizes the participant type.

dn Optional DN of a specific entity.

Returns
The newly created and initialized participant object.

Constructor for custom self approval
new Participant(type, boolean)

Arguments

type Type is either REQUESTEE or REQUESTOR.

boolean
Self approval values. true enables the custom self
approval workflow. false disables the custom self
approval workflow.

Returns
The newly created and initialized participant
object.

Properties

implementation
This property contains JavaScript that returns participant when the
participant type is Custom.

name Identifies the participant.

type Code that categorizes the participant type.

Description
The participant specifies an activity participant. Participant applies only to
manual activity types, including Approval, RFI, Work Order and Mail
activities. The participant of an activity or recipient of a mail activity can
be specified during workflow design as Custom Defined Participant. In
this case, the Participant JavaScript object can be used to construct the
appropriate participant based on the process context.

Usage
//assume person is one of the relevant data in the workflow
//process for the target user involved
if(person.get().getProperty(“title”)[0]==”Manager”)

return new Participant(ParticipantType.SYSTEM_ADMIN);
else

return new Participant(ParticipantType.SUPERVISOR);

//assume person is one of the relevant data in the workflow

124 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

//process for the target user involved
if(person.get().getProperty(“title”)[0]==”Manager”)

return new Participant(ParticipantType.USER, person.get().dn);
else

...

Participant.implementation
The field represents the custom defined participant.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
participant.implementation

Description
This read-only field is a string that provides the custom-defined
participant, which contains the JavaScript code to return the participant.

Usage x = participant.implementation;

Participant.name
The field represents the DN of the participant.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
participant.name

Description
This read-only field is a Distinguished Name that identifies the participant.
It is only applicable to participant types of ROLE and USER.

Usage x = participant.name;

Participant.type
the field represents the code that categorizes the participant type.

Availability
IBM Tivoli Identity Manager 4.x.

Synopsis
participant.type

Description
This read-only field is a string that represents a code that categorizes the
participant type.

Usage x = participant.type;

ParticipantType
An entity that represents the workflow participant type constants.

Availability
IBM Tivoli Identity Manager 4.x.

Provided by
com.ibm.itim.workflow.script.WorkflowExtension

Properties

Chapter 10. JavaScript extension reference 125

DOMAIN_ADMIN
Participant type for the domain administrator of the organizational
container. It is associated with the Subject account service (as
specified by the Subject context in the workflow properties
window).
participant = new Participant(ParticipantType.DOMAIN_ADMIN);

REQUESTOR

Participant type for the person that initiated the request. If a
person initiates a change request for a person that triggers policy
enforcement, the participant is the person that requests the change.
For data loads, the participant is the system user. By setting the
following property in $ISIM_HOME/data/enRole.properties to true,
an approval request that has the requester as the participant is
automatically approved by the system:
participant = new Participant(ParticipantType.REQUESTOR);

Enables the self approval by requester for specific workflow even
though the global configuration is set to disable the self approval.
By setting the value of boolean to true, self approval for specific
workflow is enabled.
participant = new Participant(ParticipantType.REQUESTOR, boolean);

REQUESTEE
Participant type for the person designated as the requestee in the
owner field of the relevant data.
participant = new Participant(ParticipantType.REQUESTEE);

Enables the self approval by requestee for specific workflow even
though the global configuration is set to disable the self approval.
By setting the value of boolean to true, self approval for specific
workflow is enabled.
participant = new Participant(ParticipantType.REQUESTEE, boolean);

ROLE Participant type for a specific organizational role. All user members
of the role and its child roles are notified and are eligible to
respond, the first response triggers the workflow to continue. In
other words, specifying a role cannot be used to require multiple
participants to approve the request.
participant = new Participant(ParticipantType.ROLE, roleDN);

ROLE_OWNER
Participant type for the owner of the role (if specified). The Role is
resolved based on the owners specified in the OrgRole listed as an
input parameter for the operational workflow operation. If there is
no OrgRole specified as an input parameter in the workflow, the
participant is not resolved.
participant = new Participant(ParticipantType.ROLE_OWNER);

SERVICE_OWNER
Participant type for the owner of the service (if specified). The
Service is resolved based on the account object from the workflow
relevant data that is marked as "Subject" in the properties window.
participant = new Participant(ParticipantType.SERVICE_OWNER);

SOD_POLICY_OWNER
Participant type for the owners of the separation of duty policy (if
specified). The owners are resolved based on the

126 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

SeparationOfDutyRuleViolation object from the workflow relevant
data that is marked as "Subject" in the properties window. If there
is no SeparationOfDutyRuleViolation specified as the Subject of
the workflow, the participant is not resolved.

The SOD_POLICY_OWNER participant type is used only in the
approveSoDViolation global operation.
participant = new Participant(ParticipantType.SOD_POLICY_OWNER);

SPONSOR
Participant type for the person designated as the sponsor with the
sponsor relationship for the requestee (as marked in relevant data).
participant = new Participant(ParticipantType.SPONSOR);

SUPERVISOR
Participant type for the supervisor or manager of the requestee. If
none is specified for the requestee, then the supervisor designated
on the organizational container of the requestee becomes the
participant. If no supervisor is specified for the organizational
container of the requestee, then the next level up is checked for a
supervisor. The search continues up the tree until the top of the
organization is reached. If no supervisor is found, the participant is
unresolved.
participant = new Participant(ParticipantType.SUPERVISOR);

SYSTEM_ADMIN
Participant type for a member of the Security Identity Manager
System Administrator group.
participant = new Participant(ParticipantType.SYSTEM_ADMIN);

USER Participant type for a specific person to respond to the request. The
person must have a Security Identity Manager account.
participant = new Participant(ParticipantType.USER, userDN);

ITIM GROUP
Participant type for a specific ITIM group. Though all members of
the group are notified, and all are eligible to respond, the first
response triggers the workflow to continue. Specifying a group
cannot be used to require multiple participants to approve the
request.
participant = new Participant(ParticipantType.GROUP, groupDN);

Description
This entity represents the workflow participant type constants.

Person
The object represents the person entity.

Availability
IBM Tivoli Identity Manager 4.x.

Provided by
com.ibm.itim.script.extensions.model.PersonModelExtension

Inherits From
DirectoryObject

Constructors

Chapter 10. JavaScript extension reference 127

new Person(String dn)
Arguments:

dn The distinguished name of a specific person entry in the
directory server.

Returns: A new Person object that represents the person with the
given DN.

new Person(DirectoryObject directoryObject)
Arguments:

directoryObject
DirectoryObject to be contained in the person

new Person(DirectoryObjectEntity directoryObjectEntity)
Arguments:

directoryObjectEntity
DirectoryObjectEntity to be contained in the person

Methods

getAllAssignmentAttributes()
Returns an array of the RoleAssignmentAttribute objects that are
defined in all of authorized roles for this person. The authorized
roles consist of both the direct roles for this person and also all of
the parent roles of the direct roles.

getAndDecryptSynchPassword()
Decrypts and returns the decrypted synch password of the person
entity in plain text.

Note: This method is available in the scripting context of IBM
Security Identity Manager only if the
javascript.password.access.enabled property is set to true in the
ISIM_HOME/data/scriptframework.properties file.

getAndDecryptPersonPassword()
Decrypts and returns the decrypted person password of the person
entity in plain text.

Note: This method is available in the scripting context of Security
Identity Manager only if the javascript.password.access.enabled
property is set to true in the ISIM_HOME/data/
scriptframework.properties file.

getRoleAssignmentData()
Returns all role assignment data for the person.

getRoleAssignmentData(String roleAssignedDN)
Returns all role assignment data for the person for the specified
role.

getRoles()
Returns an array of DirectoryObjects, each representing a role.

getNewRoles()
Returns an array of newly added roles for the person.

getRemovedRoles()
Returns an array of removed roles for the person.

128 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

isInRole(String roleName)
Determines whether the person belongs to the role. Returns
Boolean.

removeRole()
Removes the person from the specified role.

removeRoleAssignmentData(String roleAssignedDN)
Removes all role assignment data for the person from the specified
role.

updateRoleAssignmentData(RoleAssignmentObject[]
roleAssignmentObject)

Updates a person with the role assignment attribute value changes
that are defined in the set of RoleAssignmentObjects.

Person.getAllAssignmentAttributes()
The method returns an array of the RoleAssignmentAttribute objects that are
defined for all of authorized roles for this person. The authorized roles consist of
both the direct roles for this person and also all the parent roles of the direct roles.

Availability
IBM Security Identity Manager 6.0

Synopsis
person.getAllAssignmentAttributes()

Arguments
None

Description
This method is defined on the Person object. It returns an array of the
RoleAssignmentAttribute objects that are defined in all of authorized roles
for this person. The authorized roles consist of both the direct roles for this
person and also all the parent roles of the direct roles. The method returns
an empty array if no assignment attribute exists. RoleAssignmentAttribute
objects contains role assignment attribute name, role name, and role DN.

Usage
//The script is used in a workflow, in which Entity is a person object.
var person = Entity.get();

//get assignment attributes of the person
var attributeList = person.getAllAssignmentAttributes();
if (attributeList.length == 0) {

Enrole.log("script", "No assignment attribute for this role: "
+ role.name);

return;
}

// print out the role assignment attribute name.
for (var i=0; i < attributeList.length; i++) {

var roleAtr = attributeList[i];
Enrole.log("script","attribute name-----: "+ roleAtr.getName());

}

Person.getAndDecryptSynchPassword()
The method decrypts and returns the decrypted sync password of the person
entity in plain text.

Availability
IBM Tivoli Identity Manager 5.0.

Chapter 10. JavaScript extension reference 129

Synopsis
person.getAndDecryptSynchPassword()

Arguments
None

Description
This method is defined on the Person object. It returns a string that
represents the plain text sync password for the person that is used for
synchronization. It decrypts and returns the decrypted sync password set
in the person object. This function returns null if the sync password is not
present. This method can be used in IBM Security Identity Manager
scripting context if the javascript.password.access.enabled property is
set to true in the ISIM_HOME/data/scriptframework.properties file.

Usage
//The script is used in a workflow, in which Entity is a person object.
var person = Entity.get();
//get sync password set on the person
var synchPassword = person.getAndDecryptSynchPassword();

Person.getAndDecryptPersonPassword()
The method decrypts and returns the decrypted password of the person entity in
plain text.

Availability
IBM Tivoli Identity Manager 5.0.

Synopsis
person.getAndDecryptPersonPassword()

Arguments
None

Description
This method is defined on the Person object. It returns a string that
represents the plain text password for the person. It decrypts and returns
the decrypted password set in the person object. This function returns null
if the password is not present. This method can be used in IBM Security
Identity Manager scripting context if the
javascript.password.access.enabled property is set to true in the
ISIM_HOME/data/scriptframework.properties file.

Usage
//The script is used in a workflow, in which Entity is a person object.
var person = Entity.get();
//get person password set on the person
var personPassword = person.getAndDecryptPersonPassword();

Person.getRoleAssignmentData()
The method returns all the role assignment data for the person, as an array of
RoleAssignmentObject objects that contain the role assignment values, defined Role
DN and assigned Role DN.

Availability
IBM Security Identity Manager 6.0

Synopsis
person.getRoleAssignmentData()

130 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Arguments
none

Description
This method is defined on the Person object. It returns an array of
RoleAssignmentObject objects, containing the role assignment values,
defined Role DN, and assigned Role DN. The method returns an empty
array if no assignment data exists.

Usage
//The script is used in a workflow, in which Entity is a person object.
var person = Entity.get();
var assignmentObjects = person.getRoleAssignmentData();
if (assignmentObjects.length == 0) {
Enrole.log("script", "There is no assignment values for " + person.name);
return;
}
var str = "The number of role assignment objects returned from

person.getRoleAssignmentData(): " +
assignmentObjects.length + "\n";

for(var i=0; i<assignmentObjects.length; i++) {
var obj = assignmentObjects[i];
str += obj.toString() + "\n";
}
Enrole.log("script", "The assignment attribute data for person:"+

person.name+" is:"+ str);

Person.getRoleAssignmentData(String roleAssignedDN)
The method returns all the role assignment data for the person. The data is an
array of RoleAssignmentObject objects that contain the role assignment values,
defined Role DN, and assigned Role DN for the specified assigned role.

Availability
IBM Security Identity Manager 6.0

Synopsis
person.getRoleAssignmentData(String roleAssignedDN)

Arguments

roleAssignedDN
The distinguished name of the assigned role

Description
This method is defined on the Person object. It returns an array of
RoleAssignmentObject objects, containing the role assignment values,
defined Role DN, and assigned Role DN for a specified assigned role. The
method returns an empty array if no assignment data exists.

Usage
//The script is used in a workflow, in which Entity is a person object.
var person = Entity.get();
var roleDNs = person.getProperty("erroles");
if(roleDNs.length == 0) {
Enrole.log("script", person.name + " does not have any role");
return;
}
// Get role assignment data for the first role.
var roleDN = roleDNs[0];
var role = new Role(roleDN);
var assignmentObjects = person.getRoleAssignmentData(roleDNs[0]);
if (assignmentObjects.length == 0) {
Enrole.log("script", person.name + " does not have any assignment
objects for role: + role.name);

Chapter 10. JavaScript extension reference 131

return;
}
var str = "The number of role assignment objects returned from

person.getRoleAssignmentData() for "
+ role.name + " :" + assignmentObjects.length + "\n";

for(var i=0; i<assignmentObjects.length; i++) {
var obj = assignmentObjects[i];
str += obj.toString() + "\n";
}
Enrole.log("script", str);

Person.getRoles()
The method returns roles assigned to a Person.

Availability
IBM Tivoli Identity Manager 4.6

Synopsis
person.getRoles()

Description
This method defined on the Person object returns an array of roles that the
person belongs to. The return type is an array of entities, which are
instances of role directory entity objects. The properties available on the
Entity Objects are name and description.

Usage
// logs the names of all roles that a person belongs to
var per = person.get();
var rolesArray = per.getRoles();
if(rolesArray.length>0){

Enrole.log("script", per.getProperty("cn")[0] +
" belongs to following roles: ");

for(var i=0; i<rolesArray.length;i++) {
Enrole.log("script",

rolesArray[i].getProperty("errolename")[0]);
}

} else {
Enrole.log("script", per.getProperty("cn")[0] +

"does not belong to any roles");
}

Person.getNewRoles()
The method returns an array of newly added static roles for a Person.

Availability
IBM Tivoli Identity Manager 5.0

Synopsis
person.getNewRoles()

Description
This method defined on the person object returns an array of new static
roles associated with the person. The return type is an array of
DirectoryObjects,

Note: The person object is often a runtime object in memory, and these
new static roles were not added to the directory.

Usage
var newRoles = per.getNewRoles();

132 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Person.getRemovedRoles()
The method returns an array of removed static roles for the Person.

Availability
IBM Tivoli Identity Manager 5.0

Synopsis
person.getRemovedRoles()

Description
This method defined on the person object returns an array of static roles
from which the person was removed. The return type is an array of
DirectoryObjects.

Note: The person object is often a runtime object in memory, and these
static roles were not removed from the directory.

Usage
var removedRoles = per.getRemovedRoles();

Person.isInRole()
The method evaluates whether a Person belongs to a role.

Availability
IBM Tivoli Identity Manager 4.6

Synopsis
person.isInRole(roleName)

Arguments

roleName
The name of the role to check.

Description
Given a person object and the name of the role, determine whether the
person belongs to the role. If the role is not uniquely determined by the
roleName parameter or if the person cannot be found, then return an error
object.

Usage
// Check whether the person is in the role Manager and log a
// message
var per=person.get();
if(!per.isInRole("Manager")) {

Enrole.log("script",per.getProperty("cn")[0] +
"does not belong to role Manager");

} else {
Enrole.log("script",per.getProperty("cn")[0] +

"belong to role Manager");
}

Person.removeRole()
The method removes the person from the specified role.

Availability
IBM Tivoli Identity Manager 5.0

Synopsis
person.removeRole(role)

Arguments

Chapter 10. JavaScript extension reference 133

role Role object that represents the role from which the person
is removed.

Description
Removes the person from the role.

Note: This operation removes only the role from the Person object in run
time, and it does not remove the role from the directory.

Usage
//Remove the first role in the Person object
var roles = person.getRoles();
if (roles.length > 0) {

person.removeRole(roles[0]);
}

Person.removeRoleAssignmentData()
The method removes all role assignment data of the person for an array of
assigned Roles. It does not directly change data in the data source, but removes
from memory the data inside the person object.

Availability
IBM Security Identity Manager 6.0

Synopsis
person.removeRoleAssignmentData(String [] roleAssignedDNs)

Arguments

roleAssignedDNs
An array of distinguished names of the assigned role.

Description
This method is defined on the Person object. It removes all role assignment
data of the person for an array of assigned roles.

Usage
//The script is used in a workflow, in which Entity is a person object.
var person = Entity.get();
var roleDNs = person.getProperty("erroles");
if(roleDNs.length == 0) {
Enrole.log("script", person.name + " does not have any roles");
return;
}

//remove the role assignment attribute.
person.removeRoleAssignmentData(roleDNs);

Person.updateRoleAssignmentData()
The method updates a person with the role assignment attribute value changes
that are defined in the set of RoleAssignmentObjects. It does not directly change
data in the data source, but updates (in memory) the data inside the person object.

Availability
IBM Security Identity Manager 6.0

Synopsis
person.updateRoleAssignmentData(RoleAssignmentObject []
roleAssignmentObject)

Arguments

134 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

roleAssignmentObject
A list of roleAssignmentObjects that contains the role
assignment attribute value change set to be applied.

Description
This method is defined on the Person object. It updates a person with the
role assignment attribute value changes that are defined in the set of
RoleAssignmentObjects.

Usage
//The script is used in a workflow, in which Entity is a person object.
var person = Entity.get();
var roleDNs = person.getProperty("erroles");
if(roleDNs.length == 0) {
Enrole.log("script", person.name + " does not have any role");
return;
}

//construct a new RoleAssignmentObject
var assignmentObj = new RoleAssignmentObject(roleDNs[0], roleDNs[0]);
assignmentObj.addProperty("attr_3", ["newv1", "newv2"]);
person.updateRoleAssignmentData([assignmentObj]);

PersonSearch
The object searches for a person.

Availability

IBM Tivoli Identity Manager 4.x
Provisioning Policy context
Service Selection Policy context

Provided by
com.ibm.itim.script.extensions.model.PersonModelExtension

Constructor
new PersonSearch()

Returns
The newly created and initialized person search object.

Methods

searchByFilter()
Search for a person by a filter.

searchByURI()
Search for a person by URI in an organizational container.

Description
The entity implements the IBM Security Identity Manager
PersonSearch class. The API Javadoc for this class is in the
following directory:
$ISIM_HOME/extensions/version_number/api/com/ibm/itim/dataservices/model/domain/

PersonSearch.searchByFilter()
The method searches for a person by a filter.

Availability
IBM Tivoli Identity Manager 4.x

Chapter 10. JavaScript extension reference 135

Synopsis
personSearch.searchByFilter(profileName, filter, scope)

Arguments

profileName
The name of the person profile to use.

filter LDAP search filter that defines the criteria for returned
containers to meet. The filter must be in the format defined
by RFC2254.

scope Optional search scope. Use 1 for One Level Scope and 2 for
SubTree Scope. One Level Scope is the default scope.

Returns
An array of DirectoryObjects representing the results of the
search.

Description
This method searches for a person by a filter.

Usage
var personSearch = new PersonSearch();
var searchResult1 = personSearch.searchByFilter("Person",

"(sn=Smith)", 2);

// use default one level scope
var searchResult2 = personSearch.searchByFilter("Person",

"(sn=Smith)");

PersonSearch.searchByURI()
The method finds a person by URI within an organizational container.

Availability
IBM Security Identity Manager 6.0

Synopsis
PersonSearch.searchByURI(containerDN, uri)

Arguments

Container DN
String representing the distinguished name of the parent
organizational container.

uri String representing the URI of the person.

Returns
A Person object.

Description
Given the distinguished name of the parent organizational container and
the person URI, this method finds the person. If the person is not found,
this function returns null. If more than one persons found, this function
throws a scripting exception.

Usage
var person= (new PersonSearch()).searchByURI(container.dn, uri);
if (person != null) {
Enrole.log("script", "Found " + person.getProperty("cn"));}

136 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

PostOffice
The object post office object that consolidates notifications.

Availability
IBM Tivoli Identity Manager 4.6.x

Provided by
com.ibm.itim.mail.postoffice.script.PostOfficeExtension

Methods

getAllEmailMessages()
Obtains the Subject, Text Body, and HTML Body of each individual
message contained in an aggregate message.

getEmailAddress()
Contains the email address that is the destination of the aggregate
email message.

getPersonByEmailAddress()
Returns the Person that corresponds to the email address specified.

getTopic()
Returns the topic of the aggregated email message.

The getAllEmailMessages() extension allows access to the NotificationMessage
object. Do not call the getHtmlMessage() method from a template. This call returns
an XHTML version of the notification text. It is not possible to embed XML
documents, so a call to this method results in a template execution failure. Use the
text body of the original notifications by calling getMessage() instead.

PostOffice.getAllEmailMessages()
The message returns an array of NotificationMessage objects.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
PostOffice.getAllEmailMessages()

Description
This JavaScript extension returns an array of NotificationMessage objects
for obtaining the Subject, Text Body, and HTML Body of each message in
an aggregate message.

Usage An example of how to iterate through the returned array in JavaScript is as
follows:
Here are the email text bodies fetched using the JavaScript extension:
<JS>

var msgListIterator =
PostOffice.getAllEmailMessages().iterator();

var returnString = "
";
while (msgListIterator.hasNext()) {

returnString = returnString +
msgListIterator.next().getMessage() + "
";

}
return returnString;

</JS>

PostOffice.getEmailAddress()
The method returns email address of aggregate email destination.

Chapter 10. JavaScript extension reference 137

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
PostOffice.getEmailAddress()

Description
This JavaScript extension returns a String containing the email address that
is the destination of the aggregate email message.

Usage destinationAddress = PostOffice.getEmailAddress();

PostOffice.getPersonByEmailAddress()
The method returns the Person object that corresponds to this email address.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
PostOffice.getPersonByEmailAddress(String email)

Description
This JavaScript extension returns the Person object that corresponds to the
email address specified.

Usage targetPerson = PostOffice.getPersonByEmailAddress()

Examples:
targetPerson = PostOffice.getPersonByEmailAddress("user@itim.com");
targetPerson =
PostOffice.getPersonByEmailAddress(PostOffice.getEmailAddress());

PostOffice.getTopic()
The method returns the topic string of the aggregate email.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
PostOffice.getTopic()

Description
This JavaScript extension returns a string containing the topic of the
aggregated email message.

Usage topicString = PostOffice.getTopic();

Process
Represents the IBM Security Identity Manager workflow process.

Availability
IBM Tivoli Identity Manager 4.x

Provided by
The Process JavaScript Object in the WorkflowExtension returns a Process
object. The object represents the current workflow process. The parent
processes of the current workflow can be returned by calling
Process.getParent() recursively, and the parent process is also a Process
object.

Properties

138 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Note: Custom result codes are supported in the workflow designer for
approval activities.

APPROVED
Approved process summary code. Result code is AA.

ESCALATED
Escalated process summary code. Result code is ES.

FAILED
Failed process summary code. Result code is SF.

PARTICIPANT_RESOLVE_FAILED
Participant resolved failure process summary code. Result code is
PF.

PENDING
Pending process summary code. Result code is PE.

REJECTED
Rejected process summary code. Result code is AR.

SUBMITTED
Submitted process summary code. Result code is RS.

SUCCESS
Success process summary code. Result code is SS.

TIMEOUT
Time out process summary code. Result code is ST.

WARNING
Warning process summary code. Result code is SW.

comment
Provides additional information about the process given when
defined in the workflow designer.

description
Describes the purpose of the process given when defined in the
workflow designer.

id Assigned by the workflow designer to uniquely identify the
workflow process within the workflow engine.

name Label given this activity when defined in the workflow designer.

parentId
Uniquely identifies the parent process (if any) that started this
process.

requesteeDN
Uniquely identifies the requestee if the requestee is a user in the
IBM Security Identity Manager data store.

requesteeName
Name of the process requestee.

requestorName
The name of the process requestor if the requestor is a user.

requestorType
Categorize the requestor

Chapter 10. JavaScript extension reference 139

resultDetail
An application-specific string that provides more detail about the
result of the process.

resultSummary
An application-specific string that represents the summary result of
the process.

started
Indicates when the process started.

state Code that represents the current state of the process.

subject
Describes the object that is the focal point of the workflow process.

type Code that categorizes the process given when defined in the
workflow designer.

Methods

auditEvent()
Create an event in the audit trail specific to the activity.

getActivity()
Returns an activity with the ID and index.

getParent()
Get the parent process (if any) that started this process.

getRootProcess()
Returns the JavaScript Process object that contains information
about the root process.

getRootRequesterName()
Returns String of requester name of the root process.

setRequesteeData()
Change the requestee data for the current process.

setResult()
Change the result member of the activity in the current activity.

setSubjectData()
Change the subject data for the current process.

Description
This entity represents the current workflow process is running.

Process.auditEvent()
The method creates an event in the audit trail.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.auditEvent(event)

Arguments

event String representing the event to be audited.

Description
This method creates an event in the audit trail specific to the process. The

140 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

function takes in one parameter that can be any JavaScript object that can
be translated into a string for storage. In the audit trail, the event is
automatically time stamped.

Usage process.auditEvent("Task completed");

Process.comment
The field provides additional information about the process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.comment

Description
This read-only field is a string that provides additional information about
the process given when defined in the workflow designer.

Usage x = process.comment;

Process.description
The field represents the purpose of the process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.description

Description
This read-only field is a string that describes the purpose of the process
when defined in the workflow designer.

Usage x = process.description;

Process.getActivity()
The method returns an activity with the ID and index.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.getActivity(id, index)

Arguments

id Activity ID assigned by the workflow designer.

index Optionally identifies specific activity if there is more than
one activity with the ID.

Returns
The associated Activity.

Description
This method returns an activity with the ID and index in the event that
there is more than one activity with the ID. This might occur if the activity
of the given ID is called multiple times in a loop in the workflow process.
If there is no activity with the ID and index, this function returns null. If
the optional index is not specified and if there is more than one activity
with the ID, the first activity with the ID is returned.

Chapter 10. JavaScript extension reference 141

Usage
theFirstActivity = process.getActivity("id1", 3);
theActivityName = theFirstActivity.name;

theSecondActivity = process.getActivity("id2");
theActivityName = theSecondActivity.name;

Process.getParent()
The method returns the parent process (if any) that started this process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.getParent()

Returns
The parent Process. If there is no parent, a null is returned.

Description
This method returns the parent process (if any) that started this process.

Usage
parent = process.getParent();
parentName = parent.name;

Process.getRootProcess()
The method returns the root process (if any) that started this process.

Availability

IBM Tivoli Identity Manager 5.0

Synopsis

process.getRootProcess()

Returns

The root process. If there is no root process, a null is returned.

Description

This method returns the root process (if any) of this process.

Usage
root = process.getRootProcess();
rootName = root.name;

Process.getRootRequesterName()
The method returns the root requester name.

Availability
IBM Tivoli Identity Manager 4.6

Synopsis
process.getRootRequesterName()

142 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Description
This method returns the root requester name of the workflow process
initiator.

Usage rootRequester = process.getRootRequesterName();

Process.guid
The generated unique identifier assigned to the process at runtime.

Availability
IBM Tivoli Identity Manager 5.x

Synopsis
process.guid

Description
This read-only field is a String of the generated unique identifier for the
workflow process in the workflow engine.

Usage x = process.guid;

Process.getSubProcesses()
The method returns the subordinate processes (if any) of the process.

Availability

IBM Security Identity Manager 6.0.0.3

Synopsis

process.getSubProcesses()

Returns

The subordinate processes. If there are no subordinate processes, an empty array is
returned.

Description

This method returns the subordinate processes (if any) of this process.

Usage
var out = "subprocesses of the process: \n";

function traverse(p, prefix) {
var subProcesses = p.getSubProcesses();
prefix += "/" + p.name;
out += prefix + ": " + p.id + " type: " + p.type + " resultSummary: " + p.resultSummary + "\n";
for (var i = 0; i < subProcesses.length; i++) {

traverse(subProcesses[i], prefix);
}

}

traverse(process, "");
activity.auditEvent(out);

Process.id
The generated unique identifier assigned to the process at runtime.

Availability
IBM Tivoli Identity Manager 4.x

Chapter 10. JavaScript extension reference 143

Synopsis
process.id

Description
This read-only field is a string of the generated unique identifier for the
workflow process in the workflow engine.

Usage x = process.id;

Process.name
The label assigned to the process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.name

Description
This read-only field is a string assigned by the workflow designer to label
this process.

Usage x = process.name;

Process.parentId
The field uniquely identifies the parent process that started this process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.parentId

Description
This read-only field is a string representation of the long integer that
uniquely identifies the parent process (if any) that started this process.

Usage x = process.parentId;

Process.requesteeDN
The field uniquely identifies the requestee if the requestee is a user in the IBM
Security Identity Manager data store.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.requesteeDN

Description
This read-only field is a string that uniquely identifies the requestee if the
requestee is a user in the IBM Security Identity Manager data store. Not all
requestees are users (that is, the process can act on a policy, not a user
directly), so this member can be empty.

Usage x = process.requesteeDN;

Process.requestorDN
The field specifies the distinguished name of the process requester, if the requester
is a user in the IBM Security Identity Manager data store.

144 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.requestorDN

Description
This read-only field is a string that represents the distinguished name of
the process requester. This string is displayed only if the requester is a user
in the IBM Security Identity Manager data store. Not all requesters are
users (that is, the process can act on a policy, not a user directly), so this
member can be empty.

Usage
if (process.requestorType == "U")
x = process.requestorDN;

Process.requesteeName
The field represents the name of the process requestee as a string.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.requesteeName

Description
This read-only field is a string that provides the name the requestee if the
requestee is a user in the IBM Security Identity Manager data store. Not all
requestees are users (that is, the process can act on a policy, not a user
directly), so this member can be empty.

Usage x = process.requesteeName;

Process.requestorName
The field represents the name of the process requester if the requester is a user.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.requestorName

Description
This read-only field is a string that represents the name of the process
requester if the requester is a user.

Usage
if (process.requestorType == "U")

x = process.requestorName;

Process.requestorType
The field categorize the requestor.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.requestorType

Chapter 10. JavaScript extension reference 145

Description
This read-only field is a string that categorizes the requestor. The potential
categories, or types, are:
v U for user
v S for the workflow engine
v P for the system

Usage
x = process.requestorType;
if (x == "U")

...
else if (x == "S")

...
else if (x == "P")

...

Process.resultDetail
The field details about the result of the process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.resultDetail

Description
This read-only field is an application-specific string that provides more
detail about the result of the process.

Usage x = process.resultDetail;

Process.resultSummary
The field represents the summary of the result of the process.

Availability
IBM Tivoli Identity Manager 4.x

Description
This read-only field is an application-specific string that provides a
summary of the result of the process.

Usage x = process.resultSummary;

Process.setRequesteeData()
The method changes the requestee data for the current process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.setRequesteeData(person)

Arguments

person
DirectoryObject representing the new requestee.

Description
This method changes the requestee data for the current process. It is not
supported for a process that is not the current process. It not only updates
the current process in the script, but also in the workflow engine. The

146 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

requesteeData argument contains a person distinguished name or a
collection of strings from which the requestee data can be extracted.

Usage process.setRequesteeData(person);

Process.setResult()
The method changes the result member of the process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.setResult(summary, detail)

Arguments

summary
String code that represents the result summary.

detail String representing the result details.

Description
This method changes the result member of the process in the current
process. It is supported for current activities in the current workflow
process. The result is composed by an application-specific summary code,
and optional more detailed application-specific description. The summary
code can indicate a success or failure. This summary code is stored as the
resultSummary member locally and updated in the relevant data in the
workflow engine. The detail is stored as the resultDetail member locally
and updated in the relevant data in the workflow engine.

Usage
process.setResult(process.FAILED, "Unable to connect to resource");

Process.setSubjectData()
The method changes the subject data for the current process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.setSubjectData(person)

Arguments

person
DirectoryObject representing the new subject.

Description
This method changes the subject data for the current process. It is not
supported for a process that is not the current process. It not only updates
the current process in the script, but also in the workflow engine. The
subjectData argument contains a person distinguished name or a
collection of strings from which the subject data can be extracted.

Usage process.setSubjectData(person);

Process.started
The field represents the JavaScript date that indicates when the process started.

Availability
IBM Tivoli Identity Manager 4.x

Chapter 10. JavaScript extension reference 147

Synopsis
process.started

Description
This read-only field is code string that represents the JavaScript Date that
indicates when the process started.

Usage
x = process.started;

Process.state
The field represents the current state of the process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.state

Description
This read-only field is code string that represents the current state of the
process. The state can have the following values:
v R for running
v I for not started
v T for terminated
v A for aborted
v S for suspended
v C for completed
v B for bypassed

Usage
if (process.state == "S") {

...
}

Process.subject
The field represents the object that is the focal point of the workflow process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.subject

Description
This read-only field is code string that describes the object that is the focal
point of the workflow process. This string can be an identity in the system,
an account, a policy, or another object.

Usage x = process.subject;

Process.type
The field represents the type of process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
process.type

148 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Description
This read-only field is code string that categorizes the process when
defined in the workflow designer.

Usage x = process.type;

ProcessData
The object represents the workflow process data entity.

Availability

IBM Tivoli Identity Manager 4.x
Workflow context

Provided by
com.ibm.itim.workflow.script.WorkflowExtension

Methods

get() Returns a JavaScript object that represents the value of the relevant
data item.

set() Changes the value of the relevant data item.

Description
Each workflow process has a set of relevant data, or process specific
parameters, which can be read or changed from within a workflow script.
The name and syntax of these parameters, or relevant data items, are
defined in the workflow designer, and are typically specific to the
workflow process purpose. For example, when adding a user, an object
that holds all the attributes of the new user can be a relevant data item.
However, when deleting a user, the only needed relevant data item can be
the distinguished name of the user to delete.

Each relevant data item will be represented in the workflow script as a
variable with the same relevant data ID as defined in the workflow
designer.

ProcessData.get()
The method changes the subject data for the current process.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
processData.get()

Returns
Returns a JavaScript object that represents the value of the relevant
data item.

Description
This method returns a JavaScript object that represents the value of the
relevant data item. There is a variable present for each relevant data item
in the context of script. For performance reasons, the values are not
retrieved from the workflow engine until the script specifically requests the
values with this call. The returned JavaScript object is in the same syntax
as defined in the workflow designer.

Usage dn = subjectDN.get();

Chapter 10. JavaScript extension reference 149

ProcessData.set()
The method changes the value of the relevant data item.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
processData.set(value)

Arguments

value Value to use to update the relevant data item.

Description
This method changes the value of the relevant data item. It not only
updates the relevant data item in the script, but also in the workflow
engine. The new value is a parameter to the function. The new value must
be compatible with the syntax of the relevant data item as defined in the
workflow designer. For example, if the relevant data item is an integer, the
value cat would not be a valid parameter to this function.

Usage processData.set("engineering");

RecertificationWorkflow
Provides extended capabilities to user recertification workflows, including audit
support for the reporting and view requests functions.

Availability
IBM Tivoli Identity Manager 5.1.

Methods

auditCompletion(person, recertPolicy, approvalDoc)
Performs a full audit of the decisions made during a user
recertification packaged approval activity, including data for
reporting and view requests.

auditTimeout(person, recertPolicy, approvalDoc)
Perform full audit of the decisions set during a user recertification
packaged approval activity timeout, including data for reporting
and view requests.

auditCompletion(person, recertPolicy, approvalDoc, auditForReports,
auditForViewRequests)

Performs an audit of the decisions made during a user
recertification packaged approval activity. The value of the Boolean
flag auditForReports determines whether an audit entry is created
for reporting. The value of the Boolean flag auditForViewRequests
determines whether an audit entry is created for view requests.

RecertificationWorkflow.auditTimeout(person, recertPolicy, approvalDoc,
auditForReports, auditForViewRequests)

Performs an audit of the decisions set during a user recertification
packaged approval activity timeout. The value of the Boolean flag
auditForReports determines whether an audit entry is created for
reporting. The value of the Boolean flag auditForViewRequests
determines whether an audit entry is created for view requests.

Usage RecertificationWorkflow.auditCompletion(Entity.get(), Policy.get(),
ApprovalDocument.get())

150 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

RecertificationWorkflow.auditTimeout(Entity.get(), Policy.get(),
ApprovalDocument.get(), false, true)

Reminder
An activity to-do item reminder informs the participant that the IBM Security
Identity Manager requires user action.

Availability

IBM Tivoli Identity Manager 4.x
Reminder context

Provided by
com.ibm.itim.script.extensions.ReminderExtension

Methods

Reminder.getOriginalSubject()
This method returns the subject of the original notification sent
when the work item was first assigned.

Reminder.getXhtmlBody()
This method returns the XHTML body of the original notification
sent when the work item was first assigned.

Reminder.getTextBody()
This method returns the text body of the original notification sent
when the work item was first assigned.

Reminder.getRemindersSent()
This method returns the number of reminders previously sent.

Reminder.getEscalationTime()
This method returns a string that contains the date and time when
the work item is escalated unless acted upon.

Reminder.getEscalationDate()
This method returns a Date containing the date and time when the
work item is escalated unless acted upon.

Description
An activity to-do item reminder informs the participant that IBM Security
Identity Manager requires user action.

Role
The object represents the role associated with a provisioning operation.

Availability
IBM Tivoli Identity Manager 4.x

Provided by
com.ibm.itim.script.extensions.model.RoleModelExtension

Constructor
new Role(dn)

Returns
A new Role object that represents the Role with the given DN.

Methods

Chapter 10. JavaScript extension reference 151

getAssignmentAttributes()
Returns an array of assignment attribute names. Returns an empty
array if no assignment attribute exists.

getAllAssignmentAttributes()
Returns an array of RoleAssignmentAttribute objects containing
assignment attribute name, role name, and role DN. Returns an
empty array if no assignment attribute exists. Returns the role
assignment attributes of the whole role hierarchy.

getOwner()
Returns an array of DirectoryObjects that represent any Person
that has an Owner relationship with this role.

getChildRoles()
Returns an array of roles. The array contains the immediate
member roles, that is, child roles of the role. The method returns
an empty array if no child role exists.

getParentRoles()
Returns an array of roles. The array contains the immediate parent
roles of the role. The method returns an empty array if no parent
role exists.

getAscendantRoles()
Returns an array of roles. The array contains all ancestor roles of
the role, transitively. The method returns an empty array if no
ascendant role exists.

getDecendantRoles()
Returns an array of roles. The array contains all member roles of
the role, transitively, based on the role hierarchy. The method
returns an empty array if no member role exists.

setAssignmentAttributes()
Sets role assignment attributes of the role.

Inherits from
DirectoryObject

Synopsis
role.dn;

Description
The role object is available in the context of a provisioning policy.

Note: For more information on role assignment attributes, see Defining
assignment attributes when creating a role.

Role.getAscendantRoles()
This method returns all the ascendant roles, transitively. Ascendant roles are
ancestors, that is, parent roles, grandparent roles, and more remote ancestor roles.

Availability
IBM Security Identity Manager 6.0.

Synopsis
Role.getAnscendantRoles()

Arguments
None

152 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Description
This method is defined on the Role object and returns an array of roles.
The array contains all ancestor roles of the role, transitively. The method
returns an empty array if no ascendant role exists.

Usage
var role = new Role(roleDN);
//get ascendant roles
var roleList = role.getAscendantRoles();
if (roleList.length == 0) {

Enrole.log("script", "There are no ascendant roles of role: " + role.name);
return;

}

// print out role names.
for (var i=0; i < roleList.length; i++) {

var r = roleList[i];
Enrole.log("script","role name: "+ r.name);

}

Role.getAssignmentAttributes()
The method returns an array of assignment attribute names. Returns an empty
array if no assignment attribute exists.

Availability
IBM Security Identity Manager 6.0.

Synopsis
Role.getAssignmentAttributes()

Arguments
None

Description
This method is defined on the Role object and returns an array of
assignment attribute names. The method returns an empty array if no
assignment attribute exists.

Usage
var role = new Role(roleDN);

//get assignment attributes of the role
var attributeList = role.getAssignmentAttributes();
if (attributeList.length == 0) {

Enrole.log("script", "No assignment attribute for this role: "
+ role.name);

return;
}

// print out role assignment attribute name.
for (var i=0; i < attributeList.length; i++) {

var attrName = attributeList[i];
Enrole.log("script","attribute name-----: "+ attrName);

}

Role.getChildRoles()
The method returns all the immediate member roles.

Availability
IBM Security Identity Manager 6.0.

Synopsis
Role.getChildRoles()

Chapter 10. JavaScript extension reference 153

Arguments
None

Description
This method is defined on the Role object and returns an array of roles.
The array contains the immediate member roles, that is, child roles of the
role. The method returns an empty array if no child role exists.

Usage
var role = new Role(roleDN);
//get child roles
var roleList = role.getChildRoles();
if (roleList.length == 0) {

Enrole.log("script", "There are no child roles of role: " + role.name);
return;

}

// print out role names.
for (var i=0; i < roleList.length; i++) {

var r = roleList[i];
Enrole.log("script","role name: "+ r.name);

}

Role.getDescendantRoles()
This method returns all the member roles, transitively.

Availability
IBM Security Identity Manager 6.0.

Synopsis
Role.getDescendantRoles()

Arguments
None

Description
This method is defined on the Role object and returns an array of roles.
The array contains all member roles of the role, transitively, based on the
role hierarchy. The method returns an empty array if no member role
exists.

Usage
var role = new Role(roleDN);
//get child roles
var roleList = role.getDescendantRoles();
if (roleList.length == 0) {

Enrole.log("script", "There are no descendant roles of role: " + role.name);
return;

}

// print out role names.
for (var i=0; i < roleList.length; i++) {

var r = roleList[i];
Enrole.log("script","role name: "+ r.name);

}}

Role.getOwner()
The method returns an array of DirectoryObjects that represents any Person that
has an Owner relationship with this role.

Availability
IBM Tivoli Identity Manager 5.0

154 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Synopsis
Role.getOwner()

Returns
Array of DirectoryObjects that represents the owners of this Role
or null if there are no owners.

Usage var owners = role.getOwner();

Role.getParentRoles()
The method returns all the immediate parent roles.

Availability
IBM Security Identity Manager 6.0.

Synopsis
Role.getParentRoles()

Arguments
None

Description
This method is defined on the Role object and returns an array of roles.
The array contains the immediate parent roles of the role. The method
returns an empty array if no parent role exists.

Usage
var role = new Role(roleDN);
//get parent roles
var roleList = role.getParentRoles();
if (roleList.length == 0) {

Enrole.log("script", "There is no parent role of role: " + role.name);
return;

}

// print out role names.
for (var i=0; i < roleList.length; i++) {

var r = roleList[i];
Enrole.log("script","role name: "+ r.name);

}

Role.setAssignmentAttributes()
The method sets role assignment attributes of the role.

Availability
IBM Security Identity Manager 6.0.

Synopsis
Role.setAssignmentAttributes(String[] attributeNames)

Arguments

attributeNames
The array of assignment attribute names of the role. If an
empty array is specified, all assignment attributes for the
role are removed.

Description
This method is defined on the Role object and sets the role assignment
attributes for a role.

Chapter 10. JavaScript extension reference 155

Usage
var roleDN = roles[0];
var role = new Role(roleDN);
var roleAtr = new Array();
roleAtr[0] = "creditlimit";
//set assignment attribute names
role.setAssignmentAttributes(roleAtr);

RoleAssignmentAttribute
The object represents the role assignment attribute associated with a role.

Availability
IBM Security Identity Manager 6.0.

Methods

getName()
Returns the attribute name associated with the role assignment
attribute object.

getRoleName()
Returns the name of the role. Returns an empty string if there is
no name associated with the role assignment attribute object.

getRoleDN()
Returns the DN of the role. Returns an empty string if there is no
DN associated with the role assignment attribute object.

Description
The RoleAssignmentAttribute object associated with the role assignment
attribute.

RoleAssignmentAttribute.getName()
The method returns the name of the assignment attribute.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentAttribute.getName()

Arguments
None

Returns
The name of the assignment attribute.

Description
Returns the name of the assignment attribute that is defined on the role.

Usage
var role = new Role(roleDN);

//get assignment attributes of the role
var attributeList = role.getAllAssignmentAttributes();
if (attributeList.length == 0) {

Enrole.log("script", "No assignment attribute for this role: "
+ role.name);

return;
}

// print out role assignment attribute name.

156 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

for (var i=0; i < attributeList.length; i++) {
var roleAtr = attributeList[i];
Enrole.log("script","attribute name-----: "+ roleAtr.getName());

}

RoleAssignmentAttribute.getRoleName()
The method returns the name of the role that has the assignment attribute defined.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentAttribute.getRoleName()

Arguments
None

Returns
The name of the role that has the assignment attribute defined.

Description
Returns the name of the role that has the assignment attribute defined.

Usage
var role = new Role(roleDN);

//get assignment attributes of the role
var attributeList = role.getAllAssignmentAttributes();
if (attributeList.length == 0) {

Enrole.log("script", "No assignment attribute for this role: "
+ role.name);

return;
}

// print out all role names.
for (var i=0; i < attributeList.length; i++) {

var roleAtr = attributeList[i];
Enrole.log("script","role name-----: "+ roleAtr.getRoleName());

}

RoleAssignmentAttribute.getRoleDN
The method returns the distinguished name of the role that defines the assignment
attributes.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentAttribute.getRoleDN()

Arguments
None

Returns
The distinguished name of the role that defines the assignment
attributes.

Description
Returns the distinguished name of the role that defines the assignment
attributes.

Usage
var role = new Role(roleDN);

//get assignment attributes of the role
var attributeList = role.getAllAssignmentAttributes();

Chapter 10. JavaScript extension reference 157

if (attributeList.length == 0) {
Enrole.log("script", "No assignment attribute for this role: "

+ role.name);
return;

}

// print out the distinguished name of the role that defines
// assignment attributes.
for (var i=0; i < attributeList.length; i++) {

var roleAtr = attributeList[i];
Enrole.log("script","define role DN-----: "+ roleAtr.getRoleDN());

}

RoleAssignmentObject
The RoleAssignmentObject class is a DataObject class for role assignment data.

This class holds the assignment data that are associated with the defined role and
the assigned role. The defined role is the role that holds a list of assignment
attributes. The assigned role is the role to which the person is assigned.

Availability
IBM Security Identity Manager 6.0

Provided by
com.ibm.itim.script.extensions.model.RAObjectModelExtension

Constructors

new RoleAssignmentObject(RoleAssignmentObject assignmentObject)
Arguments:

assignmentObject
RoleAssignmentObject that is wrapped inside the
RoleAssignmentObject.

new RoleAssignmentObject(String assignedRoleDN, String
definedRoleDN)

Arguments:

assignedRoleDN
The String format of the distinguished name for the
assigned role.

definedRoleDN
The String format of the distinguished name for the
defined role.

Methods

addProperty()
Adds the values for specified assignment attribute.

getAssignedRoleDN()
Returns the distinguished name string for the role to which the
person is assigned.

getDefinedRoleDN()
Returns the distinguished name string for the role in which the
assignment attribute is defined.

getChanges()
Returns the changes made to this RoleAssignmentObject.

158 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

getProperty()
Returns the values of the property specified by the assignment
attribute name.

getPropertyNames()
Returns a list of role assignment attribute names.

removeProperty()
Removes the values for the specified assignment attribute name.

setProperty()
Sets the values for a specified assignment attribute.

Description
RoleAssignmentObject contains the role assignment data, including the
assigned role DN, the defined role DN and attribute values.

RoleAssignmentObject.getAssignedRoleDN()
The method returns the distinguished name string for the role to which a person is
assigned.

Availability
IBM Security Identity Manager 6.0.

Synopsis
roleAssignmentObject.getAssignedRoleDN()

Arguments
None

Returns
The distinguished name string for the role to which a person is
assigned.

Description
This method returns the distinguished name string for the role to which a
person is assigned.

Usage
var assignedRoleDN = "globalid=111";
var definedRoleDN = "globalid=222";
var assignmentObj = new RoleAssignmentObject(assignedRoleDN, definedRoleDN);

var assignedRoleDN2 = assignmentObj.getAssignedRoleDN();

RoleAssignmentObject.getDefinedRoleDN()
The method returns the distinguished name string for the role in which the
assignment attribute is defined.

Availability
IBM Security Identity Manager 6.0.

Synopsis
roleAssignmentObject.getDefinedRoleDN()

Arguments
None

Returns
Returns the distinguished name string for the role in which the
assignment attribute is defined.

Chapter 10. JavaScript extension reference 159

Description
This method returns the distinguished name string for the role to which
the person is assigned.

Usage
var assignedRoleDN = "globalid=111";
var definedRoleDN = "globalid=222";
var assignmentObj = new RoleAssignmentObject(assignedRoleDN, definedRoleDN);

var definedRoleDN2 = assignmentObj.getDefinedRoleDN();

RoleAssignmentObject.addProperty()
Use this method to add the values for specified assignment attribute.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentObject.addProperty(name, value)

Arguments

name String representing the name of the assignment attribute to
be added.

value The value to be added.

Description
This method changes the value of the specified assignment attribute or
adds the specified assignment attribute if it does not exist. This change is
made locally to the script environment, not to the data store.

Usage
// Create assignment object with assigned role dn and defined role dn.
var assignmentObj = new RoleAssignmentObject("eruid=1111,dc=com",

"eruid=2222,dc=com");
// Add some assignment attribute with values.
assignmentObj.addProperty("attr1", ["attr1val1","attr2val1"]);
assignmentObj.addProperty("attr2", ["attr2val1"]);
assignmentObj.addProperty("attr2", ["attr2val2"]);

RoleAssignmentObject.getChanges()
The method returns the changes made to an entity.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentObject.getChanges()

Returns
An array of change objects. If there are no changes, an empty array
is returned. Each element in the array is an
AttributeChangeOperation.

Description
This method returns the changes made to the entity. These changes are
represented by change objects with the following members:

attr String name of the attribute that is being changed.

op An integer that identifies the type of change that is being made.
The enumerated values are 1 for add, 2 for replace, and 3 for
remove.

160 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

values An array of objects that can be either added, removed, or replaced.

The changes are returned as an array of these change objects. If
there are no changes, an empty array is returned.

Usage
changes = assignmentObject.getChanges();
for (i = 0; i < changes.length; i++) {

name = changes[i].attr;
if (changes[i].op == 1) {

...
} else if (changes[i].op == 2) {

...
} else {

...
}

};

RoleAssignmentObject.getProperty()
The method returns the values of the assignment attribute specified by the given
name.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentObject.getProperty(name)

Arguments

name String representing the name of the assignment attribute to
return.

Returns
The array of strings that represents the values for an assignment
attribute. If the specified assignment attribute does not exist, an
empty array is returned.

Description
This method returns the values of the assignment attribute specified by the
given name. If the specified assignment attribute does not exist, an empty
array is returned.

Usage
// create assignment object with assigned role dn and defined role dn.
var assignmentObj = new RoleAssignmentObject("eruid=1111,dc=com",

"eruid=2222,dc=com");
assignmentObj.addProperty("attr1", ["attr1val1", "attr1val2"]);

// get assignment attribute values for attr1.
var attrValues = assignmentObj.getProperty("attr1");
var attrValuesStr = "";
for (var j=0; j<attrValues.length; j++) {

attrValuesStr += attrValues[j] + ", ";
Enrole.log("script", "The values for attr1:" + attrValuesStr);

RoleAssignmentObject.getPropertyNames()
The method returns a list of assignment attributes.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentObject.getPropertyNames()

Chapter 10. JavaScript extension reference 161

Returns
An array of strings.

Description
This method returns a list of assignment attributes as an array of strings.

Usage properties = RoleAssignmentObject.getPropertyNames();

RoleAssignmentObject.removeProperty()
The method removes the assignment attribute specified by the given name.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentObject.removeProperty(name)

Arguments

name String representing the name of the assignment attribute to
remove.

Description
This method removes the specified assignment attribute. This change is
made locally to the script environment, not to the data store.

Usage RoleAssignmentObject.removeProperty("assignmentAttr1");

RoleAssignmentObject.setProperty()
The method sets the value of the specified assignment attribute.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleAssignmentObject.setProperty(name, value)

Arguments

name String representing the name of the assignment attribute to
be created or modified.

value Specifies the value to which the assignment attribute is set.

Description
This method changes the value of the specified assignment attribute, or
adds the specified assignment attribute if it does not exist. This change is
made locally to the script environment, not to the data store.

Usage RoleAssignmentObject.setProperty("attr1",["val1","val2"]);

RoleSearch
The object searches for a role.

Availability
IBM Tivoli Identity Manager 4.x

Provided by
com.ibm.itim.script.extensions.model.RoleModelExtension

Constructor
new RoleSearch()

162 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Returns
The newly created and initialized role search object.

Methods

searchByName()
Search for a role by name.

searchByURI()
Search for a role by URI within an organizational container.

RoleSearch.searchByName()
The method searches for a role by a name.

Availability
IBM Tivoli Identity Manager 4.6

Synopsis
RoleSearch.searchByName(name)

Arguments

name The role name to use as the basis for the search.

Returns
Array of DirectoryObjects that represents a role.

Description
Given the name of a role, locate the Role entity. Will return null if there is
not exactly one matching role.

Usage
// Given the name of a role, see if it exists and log its
// description
var roles = (new RoleSearch()).searchByName("testRole");
if (roles.length >= 1) {

if (roles[0].getProperty("errolename")[0] == "testRole") {
Enrole.log("script", "The Role "+ roles[0].getProperty("errolename")[0] +
"has Description :" + roles[0].getProperty("description")[0]);

}
}

RoleSearch.searchByURI()
The method finds a role by URI in an organizational container.

Availability
IBM Security Identity Manager 6.0.

Synopsis
RoleSearch.searchByURI(containerDN, uri)

Arguments

Container DN
String representing the distinguished name of the
organizational container.

uri String representing the URI of the role.

Returns
A Role object

Description
Given the distinguished name of the organizational container and the role

Chapter 10. JavaScript extension reference 163

URI, this method finds the container. If the role is not found, this function
returns null. If more than one role is found, this function throws a
scripting exception.

Usage
var role = (new RoleSearch()).searchByURI(container.dn, uri);
if (role != null) {
Enrole.log("script", "Found " + role.getProperty("errolename"));}

SeparationOfDutyRuleViolation
Object that provides information about a specific separation of duty rule violation.
Use this object to get specific information about a separation of duty policy
violation. This object cannot be created for use by the user. The user can work only
with SeparationOfDutyRuleViolation objects that the system has generated as part
of the approveSoDViolation workflow.

Availability
IBM Tivoli Identity Manager 5.1.

Provided by
com.ibm.itim.script.wrappers.generic.IRuleResultWrapper

Methods

getName()
Returns the name of the separation of duty policy rule to which
this violation corresponds.

getViolationString()
Provides a string that represents the list of roles in violation. It
describes the roles the person has that are in violation and which
role in a separation of duty rule they correspond to. The role lists
might be different due to role hierarchy.

getViolationStringHTMLTable()
Returns a string version of the roles in violation for use in an
HTML table or email template.

getPolicyName()
Returns the name of the separation of duty policy which contains
the rule in violation.

getPolicyDescription()
Returns a description of the separation of duty policy.

getPolicyOwnerDNs()
Returns a collection of the distinguished names of one or more
separation of duty policy owners.

getCardinality()
Returns string that represents the number of allowed roles in the
separation of duty policy rule in violation.

Service
The object represents the service associated with a provisioning operation.

Availability

IBM Tivoli Identity Manager 4.x

164 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Provided by
com.ibm.itim.script.extensions.model.ServiceModelExtension

Constructor
new Service(dn)

Returns
A new Service object that represents the Service with the DN.

Inherits From
DirectoryObject

Synopsis
service.dn;

Description
The service object is available in the context of a Provisioning Policy and
Service Selection Policy.

ServiceSearch
Use the object to provide searching capability for IBM Security Identity Manager
services.

Availability

IBM Tivoli Identity Manager 4.x
Provisioning Policy context
Service Selection Policy context

Provided by
com.ibm.itim.script.extensions.model.ServiceModelExtension

Methods

searchByFilter()
Search for a service by a filter.

searchByName()
Search for a service by a name.

searchByURI()
Search for a service by URI in an organizational container.

searchForClosestToPerson()
Search for the closest Service to a person.

Description
This object is used to provide searching capability for IBM Security
Identity Manager services.

ServiceSearch.searchByFilter()
The method searches for a service by a filter.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
ServiceSearch.searchByFilter(filter, scope)

Arguments

Chapter 10. JavaScript extension reference 165

filter LDAP search filter that defines the criteria for returned
containers to meet. The filter must be in the format defined
by RFC2254.

scope Optional search scope. Use 1 for One Level Scope and 2 for
SubTree Scope. One Level Scope is the default scope.

Returns
An array of DirectoryObjects representing the results of the
search.

Description
This method searches for a service by a filter.

Usage
searchResult1 =
ServiceSearch.searchByFilter("(erntlocalservername=*srv)", 2);

// use default one level scope, put statement on one line

searchResult2 =
ServiceSearch.searchByFilter("(erntlocalservername=*srv)");

ServiceSearch.searchByName()
The method searches for a service by name.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
ServiceSearch.searchByName(name, profileName, scope)

Arguments

name The service name, provided as a string, to use as the basis
for the search.

profileName
Optional profile name, provided as a string. The profile
name of the service to use as the basis for the search.

scope Optional search scope, provided as an int. Use 1 for One
Level Scope and 2 for Scope. One Level Scope is the
default scope. When you use this method in workflow
JavaScripts, set the scope parameter to SubTree because the
logical search context is limited to the tenant above the
default organization. In this context, setting the scope to
One Level Scope returns empty results during a search
because there are no services at the tenant level.

Returns
An array of DirectoryObjects representing the results of the
search.

Description
This method searches for a service by a name.

Usage
searchResult1 = ServiceSearch.searchByName("US Service", 2);

// use default one level scope
searchResult2 = ServiceSearch.searchByName("US Service");

166 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

ServiceSearch.searchByURI()
The method finds a service by URI in an organizational container.

Availability
IBM Security Identity Manager 6.0.

Synopsis
ServiceSearch.searchByURI(containerDN, uri)

Arguments

Container DN
String representing the distinguished name of the
organizational container.

uri String representing the URI of the service.

Returns
A Service object

Description
Given the distinguished name of the organizational container and the
service URI, this method finds the service. If the service is not found, this
function returns null. If more than one service is found, this function
throws a scripting exception.

Usage
var service = (new ServiceSearch()).searchByURI(container.dn, uri);
if (service != null) {
Enrole.log("script", "Found " + service.getProperty("erservicename"));}

ServiceSearch.searchForClosestToPerson()
The method searches for a service closest to a person.

Availability
IBM Tivoli Identity Manager 4.x

Synopsis
ServiceSearch.searchForClosestToPerson(person, profileName)

Arguments

person
The DirectoryObject representing a person to use as the
basis for the search.

profileName
Optional service profile name.

Returns
An array of DirectoryObjects representing the results of the
search.

Description
This method searches for a service closest to a person.

Usage
//Search for AIX service closest to the person.
searchResult1 = ServiceSearch.searchForClosestToPerson(subject,

"PosixAixProfile");

//Search for any service closest to the person.
searchResult2 = ServiceSearch.searchForClosestToPerson(subject);

Chapter 10. JavaScript extension reference 167

UserAccess
The object extends the Account object and contains the data for a new account or
changes to an existing account to provision the access, along with further
information for the access.

Availability
IBM Security Identity Manager 6.0.

Inherits From
Account

Methods

getApprovalProcessID()
Returns the distinguished name of the approval process for gaining
the access that was requested.

isNew()
Returns whether a new account is to be created by this access
request, or an existing one is to be modified.

getAccessId()
Returns the identifier of the access that was requested.

getAccessName()
Returns the name of the access that was requested.

getAccessDescription()
Returns the description of the access that was requested.

getAccessOwner()
Returns the distinguished name of the owner of the access that
was requested.

AccessRequestBatch
The object provides the AccessRequestBatch JavaScript object for use in the
JavaScript environment of the access request batch notification templates.

The JavaScript object can be used in the ready-for-immediate-use notification
templates - Access Batch Processing Start Template and Access Batch
Processing Complete Template. The AccessRequestBatch object is a relevant data
item in the processAccessBatch workflow definition. The workflow is not available
for customization in workflow designer. To get the AccessRequestBatch JavaScript
object, invoke get() on the relevant data ID accessRequestBatch.

Availability
IBM Security Identity Manager 6.0.0.17 and 7.0.1.6.

Provided by
com.ibm.itim.workflow.script.WorkflowExtension

Usage var accessRequest = accessRequestBatch.get();

Methods

getSubmittedAccessProvisioningList()
Returns the names of the accesses that were requested to be
provisioned.

168 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

getSubmittedAccessDeprovisioningList()
Returns the names of the accesses that were requested to be
deleted.

getSubmittedAccessUpdateList()
Returns the names of the accesses that were requested to be
updated.

getAccessProvisioningStatusList()
Returns the access names and fulfillment status for the access
provisioning requests that were made.

getAccessDeprovisioningStatusList()
Returns the access names and fulfillment status for the access
deprovisioning requests that were made.

getAccessUpdateStatusList()
Returns the access names and fulfillment status for access update
request made.

AccessRequestBatch.getSubmittedAccessProvisioningList()
This method returns the names of the accesses that were requested to be
provisioned for a user. This method applies for access batch requests submitted
from Identity Service Center only.

Availability
IBM Security Identity Manager 6.0.0.17 and 7.0.1.6.

Synopsis
AccessRequestBatch.getSubmittedAccessProvisioningList()

Returns
An array of access names that were requested to be provisioned for a user.

Description
This method returns the names of the accesses that were requested to be
provisioned for a user. This method applies for access batch requests
submitted from Identity Service Center only.

Usage The following JavaScript is added in Access Batch Processing Start
Template.
<RE key="Access Provisioning Request Submitted"/>:
<JS>
var result = ’’;
var accessList = accessRequestBatch.get().getSubmittedAccessProvisioningList();
for (var i = 0; i < accessList.length; i++)
{

var accessName = accessList[i];
if (i == (accessList.length - 1)){

result += accessName;
}else{

result += accessName + ’, ’;
}

}
return result;
</JS>

AccessRequestBatch.getSubmittedAccessDeprovisioningList()
This method returns the names of the accesses that were requested to be deleted
for a user. This method applies for access batch requests submitted from Identity
Service Center only.

Chapter 10. JavaScript extension reference 169

Availability
IBM Security Identity Manager 6.0.0.17 and 7.0.1.6.

Synopsis
AccessRequestBatch.getSubmittedAccessDeprovisioningList()

Returns
An array of access names that were requested to be deleted for a user.

Description
This method returns the names of the accesses that were requested to be
deleted for a user. This method applies for access batch requests submitted
from Identity Service Center only.

Usage The following JavaScript is added in Access Batch Processing Start
Template.
<JS>
var result = ’’;
var accessList = accessRequestBatch.get().getSubmittedAccessDeprovisioningList();
for (var i = 0; i < accessList.length; i++)
{

var accessName = accessList[i];
if (i == (accessList.length - 1)){

result += accessName;
}else{

result += accessName + ’, ’;
}

}
return result;
</JS>

AccessRequestBatch.getSubmittedAccessUpdateList()
This method returns the names of the accesses that were requested to be updated
for a user. This method applies for access batch requests submitted from Identity
Service Center only.

Availability
IBM Security Identity Manager 6.0.0.17 and 7.0.1.6.

Synopsis
AccessRequestBatch.getSubmittedAccessUpdateList()

Returns
An array of access names that were requested to be updated for a user.

Description
This method returns the names of the accesses that were requested to be
updated for a user. This method applies for access batch requests
submitted from Identity Service Center only.

Usage The following JavaScript is added in Access Batch Processing Start
Template.
<JS>
var result = ’’;
var accessList = accessRequestBatch.get().getSubmittedAccessUpdateList();
for (var i = 0; i < accessList.length; i++)
{

var accessName = accessList[i];
if (i == (accessList.length - 1)){

result += accessName;
}else{

result += accessName + ’, ’;

170 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

}
}
return result;
</JS>

AccessRequestBatch.getAccessProvisioningStatusList()
This method returns an array of access names and the fulfillment status for access
provisioning requests. The status can be Fulfilled, Not Fulfilled, Pending, or
Unknown.

Availability
IBM Security Identity Manager 6.0.0.17 and 7.0.1.6.

Synopsis
AccessRequestBatch.getAccessProvisioningStatusList(String processId)

Arguments
The process ID of the access batch request process.

Returns
An array of access names and their statuses in the following format.
access name-access status

Description
This method returns an array of access names and the fulfillment status for
access provisioning requests. The status can be Fulfilled, Not Fulfilled,
Pending, or Unknown.

Usage The following JavaScript is added in Access Batch Processing Complete
Template.
</JS>
<RE key="Access Provisioning Status"/>: <JS>
var result = ’’;
var accessStatusList = accessRequestBatch.get().getAccessProvisioningStatusList(process.id);
for (var i = 0; i < accessStatusList.length; i++)
{

var accessNameStatus = accessStatusList[i];
if (i == (accessStatusList.length - 1)){
result += accessNameStatus;

}else{
result += accessNameStatus + ’, \n ’;

}
}
return result;
</JS>

AccessRequestBatch.getAccessDeprovisioningStatusList()
This method returns an array of access names and the fulfillment status for access
removal requests. The status can be Fulfilled, Not Fulfilled, Pending, or Unknown.

Availability
IBM Security Identity Manager 6.0.0.17 and 7.0.1.6.

Synopsis
AccessRequestBatch.getAccessDeprovisioningStatusList(String
processId)

Arguments
The process ID of the access batch request process.

Returns
An array of access names and their statuses in the following format.
access name-access status

Chapter 10. JavaScript extension reference 171

Description
This method returns an array of access names and the fulfillment status for
access removal requests. The status can be Fulfilled, Not Fulfilled,
Pending, or Unknown.

Usage The following JavaScript is added in Access Batch Processing Complete
Template.
<JS>
var result = ’’;
var accessStatusList = accessRequestBatch.get().getAccessDeprovisioningStatusList(process.id);
for (var i = 0; i < accessStatusList.length; i++)
{

var accessNameStatus = accessStatusList[i];
if (i == (accessStatusList.length - 1)){
result += accessNameStatus;

}else{
result += accessNameStatus + ’, \n ’;

}
}
return result;
</JS>

AccessRequestBatch.getAccessUpdateStatusList()
This method returns an array of access names and the fulfillment status for access
update requests. The status can be Fulfilled, Not Fulfilled, Pending, or Unknown.

Availability
IBM Security Identity Manager 6.0.0.17 and 7.0.1.6.

Synopsis
AccessRequestBatch.getAccessUpdateStatusList(String processId)

Arguments
The process ID of the access batch request process.

Returns
An array of access names and their statuses in the following format.
access name-access status

Description
This method returns an array of access names and the fulfillment status for
access update requests. The status can be Fulfilled, Not Fulfilled,
Pending, or Unknown.

Usage The following JavaScript is added in Access Batch Processing Complete
Template.
<JS>
var result = ’’;
var accessStatusList = accessRequestBatch.get().getAccessUpdateStatusList(process.id);
for (var i = 0; i < accessStatusList.length; i++)
{

var accessNameStatus = accessStatusList[i];
if (i == (accessStatusList.length - 1)){

result += accessNameStatus;
}else{

result += accessNameStatus + ’, \n ’;
}

}
return result;
</JS>

172 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 11. Provisioning policy parameter usage scenarios

The following scenarios illustrate usage of provisioning policy parameters.

Scenario 1: No attributes defined

If no parameter values are selected for a multi-valued attribute, all values are valid
for this attribute.

If a parameter is added for a multi-valued attribute with the parameter type as
Allowed (valid), all other values for this attribute are implicitly excluded for this
policy.

If an attribute value is added to a policy as valid, all other values are implicitly
excluded for that parameter for the policy.

For multiple applicable entitlements, a valid attribute value is determined by the
join directive for the attribute. See the following scenarios.

Scenario 2: Priority-based provisioning policy join directive

The following table identifies two examples of provisioning policies:

Table 10. Provisioning policy examples

Policy Description

Policy 1 Priority = 1 Attribute: erdivision = divisionA, enforcement = DEFAULT

Policy 2 Priority = 2 Attribute: erdivision = divisionB, enforcement = MANDATORY

Because Policy 1 has a higher priority, only Policy 1's definition for the erdivision
attribute is used. Policy 2's definition for the erdivision attribute is ignored.

During policy validation, including reconciliation with policy check option turned
on, divisionA might exist on the erdivision attribute. All other values are valid,
because the only policy that is being considered in a priority join is Policy 1, which
has DEFAULT enforcement on erdivision. DEFAULT enforcement by itself is
interpreted as valid for all values, but the default value is the value specified on
the new account.

Note: A priority join directive is the default join directive for all single-valued and
string-typed attributes.

Scenario 3: Union-based provisioning policy join directive

The following table identifies two example provisioning policies:

Table 11. Sample provisioning policies

Policy Description

Policy 1 Priority = 1 Attribute: localgroup = groupA, enforcement = DEFAULT

Policy 2 Priority = 2 Attribute: localgroup = groupB, enforcement = MANDATORY

173

Because the join directive is defined as UNION, the resulting policy uses the
following definitions for the policies:
v During account creation, localgroup is defined as groupA and groupB.
v During reconciliations, localgroup is defined as groupB if the attribute is

undefined or incorrectly defined.

Note: A union join directive is the default join directive for multi-valued attributes.

174 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 12. Provisioning policy entitlement parameters

Provisioning policy parameters help system administrators define the attribute
values that are required and the values that are allowed.

The following parameter types are valid:
v Constant value
v Null
v JavaScript
v Regular expression

The provisioning parameters in an entitlement can be statically or dynamically
defined. Parameters are defined statically by selecting the constant parameter type
and specifying literal values, such as strings or integers. For example, an attribute
can be defined as Domain Users or Power® Users. A dynamically defined
parameter value can be based on a JavaScript function. A range of values can be
defined that use a regular expression.

Parameters can also be specified as Null, indicating that the parameter does not
have a value. This situation is equivalent to having a JavaScript parameter type
with a value of return null;

Provisioning parameters for single-valued attributes can be based only on
JavaScript code or a constant. The provisioning parameters of a multi-valued
attribute can use a constant, JavaScript code, or regular expression for their values.

However, a regular expression can be used only for provisioning parameter
enforcement of the Allowed or Excluded type.

Provisioning policy constant
A static, constant value can be assigned to an entitlement parameter for a single or
multivalued attribute with the provisioning policy Constant parameter type. You
can define a provisioning parameter with a literal static value. You can enter the
value or select a value based on the field widget.

Provisioning policy Null types

The null parameter type can be used to specify a null value for an account
attribute. If the value of a parameter is specified as null with mandatory
enforcement, no value is valid for that attribute. You can specifically define null
value for the provisioning parameter, which is equivalent to specifying empty for
the value.

Provisioning policy JavaScript functions
You can use a script to define provisioning parameters.

The provisioning parameters of an entitlement within a provisioning policy can be
defined by a script. The context of the script is
v The person for whom the entitlement is being enforced.

175

v The service the entitlement is protecting.
v The eruid attribute of the target account.

The context of the script includes the following elements:

Subject
Owner of the account.

Service
Service on which the account exists or to be created.

uid User ID of the account.

Context
Information about the parameter evaluation, which can be validation of a
new account or validation of existing account.

A special object named parameters is available for eruid to evaluate the script in the
context of provisioning policy parameters. To obtain its value, use the following
syntax:
parameters.eruid[0]

The value of zero in this syntax returns the first value of the array object.

A JavaScript object named subject represents a user for whom the entitlement is
being enforced. The service is represented by another JavaScript data model entity
named service. The script author uses both the subject and service object to access
attributes of these objects.

The values of attributes of objects that are part of the evaluation context can also
be retrieved with the IBM Security Identity Manager custom JavaScript functions.

To use JavaScript to define the value of an attribute, the JavaScript parameter type
must be selected. Select JavaScript/Constant in the Expression Type field.

The following examples demonstrate the use of IBM Security Identity Manager
custom JavaScript functions within provisioning policies. For a complete reference
to all custom JavaScript functions, see the JavaScript Extension Reference.

Person attributes

Syntax:
subject.getProperty(String rowAttrName)

Example:
subject.getProperty("sn")[0];

Example:
Concatenates user's given name and family name with space in between.
Resulting string value may be used to on account attribute such as
Description.
{subject.getProperty("givenname")[0] + " " + subject.getProperty("sn")[0];}

Example:
Set a user's Password attribute to the user's Shared Secret Attribute
(if the account is automatically provisioned)

{

176 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

function passInit()
{var password = subject.getProperty("ersharedsecret");
if (password.length > 0){

return password[0];
} else {

return ""
}

}return
passInit();

}

Search for person

Syntax:
PersonSearch.searchByFilter(String profileName, String filter, [int scope])

where scope =1 is a single level search and scope =2 is a subtree search.

Example:
PersonSearch.searchByFilter("Person", "(sn=Smith)", 1);

Search for service

Syntax:
ServiceSearch.searchByFilter(String filter, [int scope])

where scope=1 is a single level search and scope=2 is a subtree search.

Example:
ServiceSearch.searchByFilter("(erntlocalservername=*srv)", 1);

Service closest to the person

Syntax:
ServiceSearch.searchForClosestToPerson(Person person, [int scope])

where scope=1 is a single level search and scope=2 is a subtree search.

Example:
ServiceSearch.searchForClosestToPerson(subject);

Name of the business unit in which the person is located

Syntax:
subject.getProperty(String propertyName)

Example:
subject.getProperty("Parent")[0].name;

Specifying the current account Uid

Syntax:
uid = parameters.eruid[0];

Example:
var accountId = parameters.eruid[0];

Chapter 12. Provisioning policy entitlement parameters 177

Enrole.toGeneralizedTime statement

Syntax:
Enrole.toGeneralizedTime(Date date)

Examples:

Using the function to return today's date string:
var gt = Enrole.toGeneralizedTime(new Date());

Using the function to return today's date string as a default attribute:
{Enrole.toGeneralizedTime(new Date())}

Enrole.toMilliseconds statement

Syntax:
Enrole.toMilliseconds(String generalizedTime)

Examples:
var millis = Enrole.toMilliseconds("200101012004Z");
var date = new Date(millis);

Provisioning policy regular expressions
Regular expressions are used to define a matching pattern that is checked against
given text. Within IBM Security Identity Manager, regular expressions define
allowed and excluded parameter values.

Within IBM Security Identity Manager, regular expressions define allowed and
excluded parameter values. Parameter values with regular expressions are used
against existing attribute values to determine which ones are valid.

To use a regular expression for a provisioning parameter value, select Regular
Expression in the Expression Type menu.

Note: Regular Expression can be used only with excluded or allowed attributes.
See the regexp Java library for a syntax reference.

178 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 13. Service selection policy JavaScript

A service selection policy identifies the service type for the service returned, and
the JavaScript specifies the service. For example, the service definition can be based
on attributes of an account owner.

Service selection policy JavaScript objects
The service selection policy JavaScript returns an object that represents a IBM
Security Identity Manager service entity.

The “subject” JavaScript object is a Person object that represents the account owner.
Attributes of the Person can be used to construct filters to search and return the
service. The ServiceModelExtension is available for Service Selection policy by
default.

The following list includes APIs for the ServiceSearch JavaScript object that can be
used to return the service:
v ServiceSearch.searchByName

v ServiceSearch.searchByFilter

v ServiceSearth.searchForClosestToPerson

See a JavaScript API reference guide for detailed information for these APIs.

Service selection policy script example
This section includes examples of Service Selection policy scripts.

Service selection based on family name

The following script returns a service instance based on the family name of the
account owner. Other person attributes such as job title and location can be used to
select service, as in this example.
function selectService() {

var sn = subject.getProperty("sn")[0];
var serviceInstance = null;
if(sn=="Jones") {
serviceInstanceArr = ServiceSearch.searchByFilter(

"(erservicename=NT40X)", 1);

if (serviceInstanceArr != null && serviceInstanceArr.length > 0)
serviceInstance = serviceInstanceArr[0];

} else {
serviceInstanceArr = ServiceSearch.searchByFilter(

"(erservicename=NT40Y)", 1);

if (serviceInstanceArr != null && serviceInstanceArr.length > 0)
serviceInstance = serviceInstanceArr[0];

}
return serviceInstance;

}
return selectService();

179

Searching for the closest service to the person

The following example searches for the service closest to the level of the person,
based on the organization tree structure.
function selectService() {

var services = ServiceSearch.searchForClosestToPerson(subject);

if (services != null && services.length > 0) {
return services[0];

}
}
return selectService();

180 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 14. SubForm control type

The SubForm control type provides a means to use custom user interfaces for
complex multi-valued attributes.

This control type is used infrequently by some IBM Security Identity Manager
adapters.

SubForm is a special control type used to start a servlet, JSP, or static HTML page
from a window that opens from a custom IBM Security Identity Manager form.
Use subforms to submit an arbitrary number of parameter names and values to a
custom servlet or JSP. They are used to create custom user interfaces for complex
multi-valued attributes.

Table 12. SubForm parameters

Parameter Description Value

customServletURI The URI to the servlet, JSP, or static HTML
page to be started from the main form. If a
servlet is implemented and deployed in the
default web application for IBM Security
Identity Manager, the value for this
parameter is the same as the URL-pattern
value defined byweb.xml in the
servlet-mapping tag, without the slash (/).
If a JSP is implemented, the value for this
parameter is the JSP file name that
includes the jsp file extension. This
parameter is required on all subforms.

Servlet name or JSP file
name such as sample.jsp

Parameter Name Arbitrary parameter name and value that
is included in the HTTP request that starts
the resource at customServletURI. For
example:

objectClass=erracfgrp

Parameter Value

For more information, see the subform example and other information in the
ISIM_HOME/extensions/examples/ subdirectory that IBM Security Identity Manager
provides.

SubForm contextual parameters
As a child element of a main form, a SubForm is passed contextual parameters that
help identify the context from which it is started.

These contextual parameters are included in the HTTP Request that brings up the
SubForm:

181

Table 13. SubForm parameters

HTTP
(contextual)
Parameter
Name Person Create Person Modify Account Create Account Modify

target_dn empty DN of Person DN of account
owner

DN of the
account

container_dn DN of the
organization tree
container where
the Person is
created.

DN of the
organization tree
container where
the person is
located.

DN of account
owner

DN of the
account owner

search_base empty empty DN of service DN of the service
instance on
which an account
is provisioned

To assign the target_dn HTTP parameter value to a String declared inside a
servlet:
String targetDN = request.getParameter("target_dn");

Account Modify example

For example, for Account Modify, the value of contextual parameters are:

target_dn
Is the DN of the entity whose attributes are displayed on the main form. If
the SubForm is placed on a RACF® account form, this parameter value is
the DistinguishedName of the RACF account.

container_dn
Is the entity container or parent. For example, if the SubForm is placed on
a Person form, this parameter value is the DistinguishedName of the parent
or container of the person. The container can be an organization,
organizational unit, admin domain, or location.

search_base
For example, if the SubForm is placed on a RACF account form, this
parameter value is the DistinguishedName for the RACF service instance on
which the account is provisioned.

HTTP request parameter naming convention
A naming convention used on SubForm parameters prevents collisions with other
parameters (such as contextual parameters).

The naming convention for SubForm parameters is:
[prefix].[attributename].[parametername]

where:

prefix property.data

attributename
Name of the attribute on which the SubForm is placed on the main form.

182 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

parametername
Name used in the SubForm Editor dialog. For example, an HTTP
parameter named property.erracfconnectgroup.objectClass would
contain the value defined in the SubForm editor dialog assigned to
objectClass.

To assign this value to a string declared inside a servlet:
String objectClass =
request.getParameter("property.data.erracfconnectgroup.objectClass");

Process to write a SubForm
To write a custom SubForm, create a servlet that generates the HTML user
interface to manage the value of the attribute.

To save the value, create an instance of com.ibm.itim.common.AttributeValue and
bind it to a user's HttpSession with the key defined in
com.ibm.itim.webclient.util.FormData (on one line):
AttributeValue av = new AttributeValue("attributename", "customValue");
HttpSession session = request.getSession(false);
session.setAttribute("subFormAttrValue", av);

This ensures that the value gets picked up and added to the form data collected
from the fields when the main form is submitted.

Chapter 14. SubForm control type 183

184 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 15. Supplemental property files

The following section provides detailed information about the property keys and
values contained in the IBM Security Identity Manager supplemental property files.

Properties files
Java properties files define attributes that allow customizing and control of the
Java software.

Standard system properties files and custom properties files are used to configure
user preferences and user customization. A Java properties file defines the values
of named resources that can specify program options such as database access
information, environment settings, and special features and functions.

A properties file defines named resources with a property key and value pair
format:
property-key-name=value

The property-key-name is an identifier for the resource. The value is usually the name
of the actual Java object that provides the resource, or a String representing the
value of the property key, such as database.name=itimdb. The statement syntax
allows spaces before and after the equal (=) sign, and can span multiple lines if
you place a line continuation character \ (a backslash) at the end of the line. For
more information about statement syntax, see Java language references.

IBM Security Identity Manager uses a number of properties files to control the
program and to allow user customization of special features.

Modifiable property files
This table lists the IBM Security Identity Manager properties files that you can
modify.

Table 14 lists the IBM Security Identity Manager properties files. Most files are in
the ISIM_HOME\data\ directory.

Additional properties files are not configurable. Do not modify them.

Table 14. Properties files

Property file name Description

adhocreporting The adhocreporting.properties file supports the custom
reporting module.

CustomLabels The property key and value pairs in the
CustomLabels.properties file are used by the Security
Identity Manager user interface to display the label text for
forms.

DataBaseFunctions.conf The custom reporting feature of Security Identity Manager
allows you to use database functions when designing
custom report templates.

185

Table 14. Properties files (continued)

Property file name Description

enRole The enRole.properties system configuration file contains
many of the properties that are used to configure IBM
Security Identity Manager.

enroleAuditing The property key and value pairs in the
enroleAuditing.properties file are used to enable or
disable the tracking of changes made by a Security Identity
Manager user to business objects such as person, location,
service, and other objects, or configuration of the system.

enRoleAuthentication The enRoleAuthentication.properties file specifies the
type of method that is used by the Security Identity
Manager Server to authenticate users and identifies the Java
object that provides the specified authentication mechanism.

enRoleDatabase The enRoleDatabase.properties file specifies attributes that
support the relational database used by Security Identity
Manager.

enRoleLDAPConnection The enRoleLDAPConnections.properties file provides
standard configuration settings that allow successful
communication between Security Identity Manager and the
LDAP directory server.

enRoleLogging The enRoleLogging.properties file specifies attributes that
govern the operation of the jlog logging and tracing API
that is bundled with Security Identity Manager.

enRoleMail The enRoleMail.properties file contains attributes that
specify the mail transport protocol that is used by the
JavaMail API and other Security Identity Manager
application-specific properties. You must provide the values
for the application-specific properties.

enrolepolicies The enrolepolicies.properties file provides standard and
custom settings that support the functions of the
provisioning policy.

enroleStartup The enroleStartup file is used to specify startup activities
in the WebSphere Application Server environment.

enroleworkflow The enroleworkflow.properties file specifies the XML file
mappings for system-defined workflows.

fesiextensions The fesiextensions.properties file (deprecated) provides
support for Free EcmaScript Interpreter (FESI) JavaScript
extensions before Version 5.0 of Security Identity Manager.
Do not author new extensions using this deprecated
architecture.

helpmappings The helpmappings.properties file allows a customer to
replace the installed Security Identity Manager help system
with an alternative help system.

reportingLabels This properties file is like other labels-related properties
files such as labels.properties, or
customLabels.properties, and holds labels that are used by
Reports.

reporttabledeny By default, this property holds a list of Security Identity
Manager tables that are used by various Security Identity
Manager components to store internal or configuration data
that is inappropriate for a report.

186 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 14. Properties files (continued)

Property file name Description

scriptframework For all new JavaScript extensions, use the
scriptframework.properties file to configure script
extensions and other scripting functions.

SelfServiceHelp The SelfServiceHelp.properties file can be used to
redirect help to a custom location for customers who want
to have their own help content for the self-service user
interface.

SelfServiceHomePage The SelfServiceHomePage.properties file is used to
configure the sections of the initially installed home page
for the self-service user interface. You can add or remove
tasks, and update icon URLs and labels of the home page
from this file.

SelfServiceScreenText The SelfServiceScreenText.properties file is a resource
bundle containing the labels for the self-service user
interface.

SelfServiceUI The SelfServiceUI.properties file controls miscellaneous
properties of the self-service user interface.

ui The ui.properties file specifies attributes that affect the
operation and display of the Security Identity Manager
graphical user interface.

Non-modifiable properties files
Some property files are not configurable. Do not modify them.

Table 15 lists the remaining property files that are used by IBM Security Identity
Manager. In all cases, these files are not configurable. Do not modify them.

Table 15. Non-modifiable properties files

Property file name Description

ConfigErrorMessages This file is used by the runConfig utility and contains
configuration error messages in English. Do not modify.

ConfigLabels This file is used by the runConfig utility and contains
IBM Security Identity Manager Console display labels in
English. Do not modify.

ConfigMessages This file is used by the runConfig utility and contains
configuration instructions and normal messages in
English. Do not modify.

CustomForms This file is used for form generation, form display, and
form design. Do not modify.

CustomThemes Do not modify. This file has custom themes used by
applets to support accessibility.

dataSynchronization This file is used by the IBM Security Identity Manager
Data Services component to define data replication for
runtime execution optimization purpose. Do not modify.

Dsml2RootDSE This file is used for searching a root DSE (LDAP) to
return a collection of attributes about the IBM Security
Identity Manager server. Do not modify.

Chapter 15. Supplemental property files 187

Table 15. Non-modifiable properties files (continued)

Property file name Description

Dsml2Schema This file is used for searching a schema (LDAP) to return
object classes and attributes specified in this file. Do not
modify.

encryptionKey This file is used to store the encryption password
information in the IBM Security Identity Manager
Console. Do not modify.

enRole2ldif This file is now deprecated and was used for migration
from enRole 3.x to 4.4. Do not modify.

enRoleEntityHiddenAttributes This file is used to filter out LDAP attributes for each
entity type available for mapping. For example,
Organization, BPOrganization, Person, BPPerson. Do not
modify.

enRoleFonts This file specifies font names for locale languages. Do
not modify.

enRoleHelp This file contains a list of operations that are not in the
workflow designer. Do not modify.

enRoleHiddenAttributes This file contains the attributes of each object class (for
example, person, service, account, organization unit) that
are invisible to the IBM Security Identity Manager
Console. This hidden attribute list contains mostly
attributes used by the system. Do not modify.

enRoleHiddenOperations Do not modify.

enRoleHiddenSearchAttributes Attributes listed in this file are not in search activities or
in any pending and completed request details. This file
is used to filter out process data attributes that must not
be displayed in the user interface.

Do not remove the existing entries in this file, otherwise
the search function on these attributes fails. Do not
modify.

enRoleUnchangedAttributes This file is used by the directory server upgrade utility.
Do not modify.

enRoleValidateAttributes This file is used internally by the IBM Tivoli Identity
Manager Express® Server for entity schema attribute
mapping. Do not modify.

entitlementHiddenAttributes This file is used by the Tivoli Identity Manager Express
Server for filtering out system managed attributes from
displaying on the available entitlement parameter
selection. Do not modify.

expressHiddenAttributes This file was used by the Tivoli Identity Manager
Express Server at Version 4.6.x. Do not modify.

HighContrastBigFontTheme This file is used to specify the appearance of a high
contrast, large font for applet accessibility. Do not
modify.

HighContrastTheme This file is used to specify high contrast display values
for applet accessibility. Do not modify.

ibmSchemaSyntax This file is used by LDAP configuration during IBM
Security Identity Manager installation. Do not modify.

iplanetSchemaSyntax This file is used by LDAP configuration during IBM
Security Identity Manager installation. Do not modify.

188 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 15. Non-modifiable properties files (continued)

Property file name Description

itiminstaller This file is during IBM Security Identity Manager
installation. Do not modify.

Labels This file contains English labels for the UI display. Do
not modify.

Messages This file contains all normal messages that IBM Security
Identity Manager uses to communicate with users. Do
not modify.

passwordrules This file is used to specify the custom class for
generating passwords. IBM Security Identity Manager
provides a default password generator.

In the sample passwordrules.properties, the first line
contains the class name. The second line defines the
input requires by the class defined in line 1. Your site
might require additional rules for use in production. Do
not modify.

pimDataSync This file is used by the IBM Security Identity Manager
Data Services component to define shared access data
replication for shared access runtime execution
optimization purpose. Do not modify.

pimWorkflowDataSyntax This files defines workflow data syntax for the Shared
Access Module. Do not modify.

pimWorkflowextensions This files defines workflow extensions for Shared Access
Module. Do not modify.

platformcontext This file specifies provisioning platform context
information. Do not modify.

Properties This file is the top-level properties file that indicates the
actual properties file path. Do not modify.

subform This file is used by the IBM Security Identity Manager
server for subforms. Do not modify.

tenant This file used for the creation of a new tenant. Do not
modify.

tmsMessages This file contains all error messages. Do not modify.

TungstenTheme This file sets display values for applet accessibility. Do
not modify.

adhocreporting.properties
The adhocreporting.properties file supports the custom reporting module.

Table 16 defines the properties used to configure reporting.

Table 16. adhocreporting.properties properties

Report Generation

reportPageSize

Chapter 15. Supplemental property files 189

Table 16. adhocreporting.properties properties (continued)

Indicates the number of rows that are displayed on each page of a PDF report. The
maximum number of rows on a page must not exceed 45.

Example (default):

reportPageSize=45

reportColWidth

Indicates the width, in centimeters (cm), of the report column in a PDF report
output. You can adjust the size of all columns by modifying this value.

Note: 2.54 cm equals 1 inch.

Example (default):

reportColWidth=20

Access Control Item Enforcement on Report Data Generated

availableForNonAdministrators

Specifies whether to synchronize access control item-related information during data
synchronization.

Set this value to true to enable non-administrators to run reports.

Set this value to false to disable all functions related to non-administrator execution
of reports, such as access control item data synchronization and setting report access
control items on reports.

Example:

availableForNonAdministrators=true

Incremental schema Enforcement
using Incremental Data Synchronizer

enableDeltaSchemaEnforcer

Specifies whether to synchronize any schema changes in reporting.

Schema changes include new mappings that were created or existing mappings that
were removed with the Schema Designer.

When set to true, the Incremental Data Synchronizer manages the attributes that are
mapped (changed) in the Schema Designer since the last full data synchronization
was run.

When set to false, the Incremental Data Synchronizer does not synchronize the
attributes which are mapped (changed) since the last full data synchronization was
run.

Example (default):

enableDeltaSchemaEnforcer=false

Data Synchronization

changelogEnabled

190 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 16. adhocreporting.properties properties (continued)

Specifies whether the Incremental Data Synchronizer is used. Values include:

v true – Incremental Data Synchronizer is configured

v false – Incremental Data Synchronizer is not configured

Example (default):

changelogEnabled=false

changelogBaseDN

Specifies the DN in the directory where the change log is configured.

Example (default):

changelogBaseDN=cn=changelog

changeLogFetchSize

Specifies the number of change logs to be fetched at one time from the directory
server.

A value of 0, or a negative value, results in no fetch restriction. Fetch restriction is
useful when the directory server cannot be heavily loaded for a time. For example,
retrieving 100,000 change log entries at a time can delay the directory server
response time for a few minutes.

Example (default):

changeLogFetchSize=200

maximumChangeLogsToSynchronize

Specifies the maximum number of change logs to be synchronized in a single use of
the Incremental Data Synchronizer.

Consider the available system memory and CPU utilization that is required for
other processes in the system when you set this property. If the value is set to zero
or a negative value, the Incremental Data Synchronizer synchronizes all change log
entries.

Example (default):

maximumChangeLogsToSynchronize=10000

changeLogsToAnalyzeBeforeSynchronization

Chapter 15. Supplemental property files 191

Table 16. adhocreporting.properties properties (continued)

Specifies the number of fetched change log entries to be analyzed before all
analyzed entries are synchronized to the database.

For example, consider the following values:

changeLogFetchSize=500
changeLogsToAnalyzeBeforeSynchronization=20000
maximumChangeLogsToSynchronize=100000

500 change log entries are considered one batch. After 20,000 change log entries (40
batches) are analyzed, data synchronization occurs. This process repeats until
100,000 entries are analyzed (5 synchronizations).

Setting this value to 0 or a negative value results in synchronization of all fetched
change log entries.

Example (default):

changeLogsToAnalyzeBeforeSynchronization=5000

enableChangelogPruning

Specifies whether changelog entries need to be pruned after they are successfully
synchronized. This property takes effect only for the SunOne Version 5.2 directory
server. For the IBM Security Directory Server, see its documentation about pruning
changelog entries.

Example (default):

enableChangelogPruning=false

itimAdminID

Specifies the administrator ID required to run the Incremental Data Synchronizer in
a z/OS® environment.

For example:

itimAdminID=myadminid

itimAdminCredential

Specifies the Security Identity Manager password required to run the Incremental
Data Synchronizer in a z/OS environment.

For example:

itimAdminCredential=myadmincredential

createIndex

Specifies whether to create database indexes for frequently used database columns.
If this property is set to true, reports are generated more quickly.

Valid values for this property are:

v true – Creates indexes for columns that are used by reporting. Enabling this value
might increase the data synchronization time.

v false – Does not create indexes during data synchronization. Disabling this value
might increase the time that is needed to generate reports.

Example (default):

createIndex=true

192 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 16. adhocreporting.properties properties (continued)

reportIndexes

Specifies a set of a set of <ENTITY:(ATTR1 ORDER1, ATTR2 ORDER2, ...)> values on
which indexes are created.

Both single and compound indexes can be created with this property. If you are
creating a single index, use the name of entity that you see in the report designer or
schema mapping.

If you are defining a compound index, specify the exact table name, such as Account
or Person_cn, instead of the entity name. You can specify an optional order asc or
desc for an index. Observe the usage of a semi-colon as the delimiter between
indexes. You must maintain the syntax of this property correctly, or indexes might
not get created successfully.

If you add additional indexes, follow the syntax for these default indexes:

reportIndexes=Person:cn asc;Account:eraccountcompliance;
Account:(eraccountstatus asc);Account:erlastaccessdate asc;
Account:eruid asc;Service:(servicetype asc);
Service:erservicename asc;ProvisioningPolicy:erpolicyitemname asc;
ProvisioningPolicy:erpolicytarget asc;
ProvisioningPolicy:erpolicymembership asc;Role:errolename asc;
Account:(eraccountstatus asc, erservice asc);
Person_cn:(dn, cn);Account_owner:(dn asc, owner asc)

sqlBatchSize

Indicates the size of batch updates that are processed during data synchronization.
To improve performance, set this value to a larger number. This value is affected by
the specific database settings for the transaction log file size, a database property.
Setting the value too high might cause data synchronization to fail. Always use the
default value of 50 to avoid data synchronization failure.

A value of 0, or a negative value, causes all SQL updates to be processed as a single
batch.

Example (default):

sqlBatchSize=50

attribsSkippedInSchema

These attributes contain XMLs as data. The reporting engine currently does not
support reporting on these attributes.

Example (on one line):

attribsSkippedInSchema=erEntitlements erAcl erHistoricalPassword
erJavascript erLostPasswordAnswer erPassword erPlacementRule
erxforms erXML

reportsAllowedAttributes

A set of attributes on which reporting engine does not enforce attribute-level access
control.

Example (default):

reportsAllowedAttributes=servicetype

reportsAllowedEntities

Chapter 15. Supplemental property files 193

Table 16. adhocreporting.properties properties (continued)

A set of entities on which reporting engine does not enforce attribute-level access
control.

Example (default):

reportsAllowedEntities=RecertificationPolicy,Group

reservedWords

Database reserved words. These words are not used as table/column names during
Schema Mapping and Data Synchronization.

Example (on one line):

reservedWords=ALL ADD ALTER BACKUP BEGIN BY BULK CASCADE CHECK
CHECKPOINT CLUSTORED COLUMN CREATE CURRENT DUMMY DOMAIN DELETE
DEFAULT DISTINCT DROP FORIGN FROM GROUP IDENTITY IDENTITY_INSERT
IDENTITYCOL INSERT IN LIKE SET SELECT TABLE VALUES ORDER UID WHERE

disallowedChars

Characters that are not part of Table/Column name in database. If the
entity/attribute name contains one or more of these characters, the characters are
removed from the table or column name. In the following example, the double
backslashes (\\) are used as escape characters.

Example (default):

disallowedChars=~!@#%^&*()+{}|:\"<>? -=[]\\;’,./

disallowedCharsForStart

Characters are not used as the starting character of table or column name. In the
following example, the double backslashes (\\) are used as escape characters.

Example (default):

disallowedCharsForStart=~!@#$%^&*()_+{}|:\"<>? -=[]\\;’,./0123456789

maxTableNameLength

Default maximum length for a table name.

Example (default):

maxTableNameLength=30

maxColumnNameLength

Default maximum length for a column name.

Example (default):

maxColumnNameLength=30

maxTableNameLength_DB2

Maximum name length for a table name in DB2®.

Example (default):

maxTableNameLength_DB2=128

maxColumnNameLength_DB2

194 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 16. adhocreporting.properties properties (continued)

Maximum name length for a column name in DB2.

Example (default):

maxColumnNameLength_DB2=30

maxTableNameLength_ZDB2

Maximum name length for a table name in DB2 z/OS.

Example (default):

maxTableNameLength_ZDB2=128

maxColumnNameLength_ZDB2

Maximum name length for a column name in DB2 z/OS.

Example (default):

maxColumnNameLength_ZDB2=30

maxTableNameLength_ORACLE=30

Maximum name length for a table name in Oracle.

Example (default):

maxTableNameLength_ORACLE=30

maxColumnNameLength_ORACLE

Maximum name length for a column name in Oracle.

Example (default):

maxColumnNameLength_ORACLE=30

maxTableNameLength_MS_SQL_SERVER

Maximum name length for a table name in Microsoft SQL Server.

Example (default):

maxTableNameLength_MS_SQL_SERVER=128

maxColumnNameLength_MS_SQL_SERVER

Maximum name length for a column name in Microsoft SQL Server.

Example (default):

maxColumnNameLength_MS_SQL_SERVER=128

populateGroupMembers

Chapter 15. Supplemental property files 195

Table 16. adhocreporting.properties properties (continued)

Specifies whether Service group membership changes need to be synchronized
during incremental synchronization. Service group membership information is
stored in the GROUPMEMBERS table.

Valid values for this property are:

v true – Synchronizes membership changes to service groups and accesses (for
example, because of a new access request).

v false – Does not synchronize group membership changes, since this type of
synchronization is performance intensive.

Example (default):

populateGroupMembers=false

CustomLabels.properties
The property key and value pairs in the CustomLabels.properties file are used by
the IBM Security Identity Manager user interface to display the label text for
forms.

The key name must be entirely lowercase in each property key and value pair.

A separate CustomLabels.properties file exists for each individual language
supported by IBM Security Identity Manager.

This file is used to provide localized versions of graphical user interface elements
when IBM Security Identity Manager is installed in international environments.

Add the property key and value pairs in the CustomLabels.properties properties
file to display any labels.

For example, to display a two word access type - Business Applications,
1. Specify the access key as businessApplications. The access type key cannot

contain a space.
2. Specify the value as Business Applications.

The entry in the CustomLabels.properties file to have "Business Applications"
displayed in the user interface as the access type is
businessApplications=Business Applications.

Access types that are part of a hierarchy of types have a special notation that you
must use in the CustomLabels.properties file. Each node of the hierarchy must be
in the key and separated by a period (.). For example, an access type that is called
Applications has a child businessApplications. You want businessApplications
to display as "Business Applications". The entry that you define in the
CustomLabels.properties file is Applications.businessApplications=Business
Applications.

A file name extension identifies the specific language. For example:

English
CustomLabels_en.properties

Japanese
CustomLabels_ja.properties

196 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

DataBaseFunctions.conf
The custom reporting feature of Security Identity Manager allows you to use
database functions when designing custom report templates.

This file is in the ISIM_HOME/data directory.

You can use the database functions with the Report Designer component of IBM
Security Identity Manager by defining the functions in the DataBaseFunctions.conf
file.

Pre-defined database function properties use the following format in the
DataBaseFunctions.conf file:
<function_name> - <number_of_arguments>

Database users can also create and define functions for their custom use. Custom
functions are called user-defined functions in Microsoft SQL and IBM DB2.
Functions created as stored procedures in DB2 can also be used for reporting.
Functions must be created with the database utilities that are provided by the
respective database vendor.

User-defined database function properties use the following format in the
DataBaseFunctions.conf file:
user:<function_name> - <number_of_arguments>

Only functions with a single argument are supported in the IBM Security Identity
Manager Report Designer.

Table 17. DataBaseFunctions.conf

Upper

Converts the argument to uppercase.

Example:

Upper - 1

Lower

Converts the argument to lowercase.

Example:

Lower - 1

enroleAuditing.properties
The property key and value pairs in the enroleAuditing.properties file are used
to enable or disable the tracking of changes made by a Security Identity Manager
user to business objects such as person, location, service, and other objects, or
configuration of the system.

Any user request to change the IBM Security Identity Manager directory store or
database can be audited and published in a report.

The following is a comprehensive list of events audited:

Chapter 15. Supplemental property files 197

v ACI Management (Add, Add Authorization Owner, Delete, Delete
Authorization Owner, Modify)

v Account Management (Add, Adopt, Change Password, Delete, Modify,
Orphan, Password Pickup, Restore, Suspend, Synchronize Password)

v Access Management (Add, Remove)
v Access Configuration (Add, Remove, Modify)
v Authentication (Authenticate ITIM user)
v Container Management (Add, Delete, Modify)
v Delegate Authority (Add, Delete, Modify)
v Entitlement Workflow Management (Add, Delete, Modify)
v Entity Operation Management (Add, Delete, Modify)
v IBM Security Identity Manager Configuration (Add, Delete, Enforce, Install

Profile, Modify, Uninstall Profile)
v Group Management (Add, Add Member, Delete, Modify, Remove Member)
v Migration (Agent Profile Install, Start Export, Start Import, Stop Export, Stop

Import)
v Role Management (Add, Add Member, Delete, Modify, Remove Member)
v Person Management (Add, Delete, Modify, Restore, Self Register, Suspend,

Transfer)
v Policy Management (Add, Commit Draft, Delete, Enforce Entire Policy,

Modify, Save as Draft, Add Account Template, Change Account Template,
Remove Account Template)

v Reconciliation (Run Recon, Set Recon Unit, Set Service Recon Parameters)
v Runtime Events (Start IBM Security Identity Manager, Stop IBM Security

Identity Manager)
v Self Password Change (Change Password, Reset Password)
v Service Management (Add, Add Adoption Rule, Delete, Delete Adoption Rule,

Modify, ModifyAdoption Rule)
v Service Policy Enforcement (Correct Non-Compliant, Mark Non-Compliant,

Suspend Non-Compliant, Use Global Setting, Use Workflow For
Non-Compliant)

Audited information specifically includes:
v The identity of the user who takes the action.
v The time the action was taken.
v The type of action taken.
v The data effected by the action.

Table 18 defines the properties used to configure how the auditing feature behaves.

Table 18. enroleAuditing.properties properties

IBM Security Identity Manager audit configuration settings

itim.auditing

198 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 18. enroleAuditing.properties properties (continued)

Specifies whether to enable or disable auditing for IBM Security Identity Manager
events.

Valid values include:

v true – IBM Security Identity Manager events are audited

v false – IBM Security Identity Manager events are not audited, regardless of the
settings of individual events or categories

Example (default):

itim.auditing=true

itim.auditing.retrycount

The number of times auditing is tried again in case of failure.

Valid values include any integer.

Example (default):

itim.auditing.retrycount=1

itim.auditing.retrydelay

The wait time in milliseconds before trying again.

Example (default):

itim.auditing.retrydelay=5000

enrole.auditing.errorpopup.enabled

Enables or disables the process failure display.

Example (default):

enrole.auditing.errorpopup.enabled=false

enrole.auditing.errorpopup.fields

The process failure display always contains these attributes and their values:

{name, subject, type, result_summary}

You can additionally specify one or more of these attributes:

{subject, comments, name, type, requester_type, requester_name,
description, scheduled, started, completed, lastmodified,
submitted, state, notify, requestee_name, subject_profile,
subject_service, result_summary, result_detail}

Example:

enrole.auditing.errorpopup.fields=subject, comments

enrole.auditing.errorpopup.textwrap

Specifies whether the text wraps at the end of the display.

Example (default):

enrole.auditing.errorpopup.textwrap=false

enrole.auditing.pageSize

Chapter 15. Supplemental property files 199

Table 18. enroleAuditing.properties properties (continued)

Specifies the page size in lines that displaying unsuccessful processes or activities on
the failed activity popup.

Example (default):

enrole.auditing.pageSize=10

enrole.auditing.pageLinkMax

Specifies the number of page links for multi-page result sets on the failed activity.

Example (default):

enrole.auditing.pageLinkMax=10

enrole.auditing.viewRequests.skipServiceLookup.customProcessTypes

Do not change this property key and value unless you are a qualified administrator.

Specifies the custom process type that does not have a service or an account as
subject data in the input parameters of its corresponding workflow operation. To
use this property, add it to the $ISIM_HOME/data/enroleAuditing.properties file
with a custom process type value.

Valid values: A comma-separated custom process type value.

Example (default):

enrole.auditing.viewRequests.skipServiceLookup.customProcessTypes=CP

enRoleAuthentication.properties
The enRoleAuthentication.properties file specifies the type of method that is
used by the Security Identity Manager Server to authenticate users and identifies
the Java object that provides the specified authentication mechanism.

Additionally, the file specifies objects that support IBM Security Access Manager
WebSEAL single sign-on and administration of IBM Security Identity Manager to
managed remote services.

Authentication properties are specified with a property key and value pair format:
property-key-name=value

The property-key-name is an identifier for the authentication mechanism or resource.
The value is the name of the Java object that provides the authentication service,
expressed also as a key and value pair.
factory=value

The factory key name represents a special category for authentication support
within the IBM Security Identity Manager software. The value is the actual name of
the Java object.

For example (entered on one line):
enrole.authentication.provider.service=

factory=com.ibm.enrole.authentication.service.
ServiceAuthenticationProviderFactory

200 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 19 defines the properties used to configure IBM Security Identity Manager
authentication.

Table 19. enRoleAuthentication.properties properties

Authentication method

enrole.authentication.requiredCredentials={simple}

Specifies the required authentication method for users who log in to the IBM
Security Identity Manager Server.

The valid value for this property is:

v simple - User name and password.

Example (default):

enrole.authentication.requiredCredentials=simple

Authentication providers (factories)

enrole.authentication.provider.simple

Specifies the Java object that handles authentication with user name and password.
Custom authentication providers are not supported in the IBM Security Identity
Manager Server virtual appliance.

Example (entered on a single line):

enrole.authentication.provider.simple=\
factory=com.ibm.itim.authentication.simple.
SimpleAuthenticationProviderFactory

Authentication service provider

enrole.authentication.provider.service

Specifies the Java object that transparently handles IBM Security Identity Manager
access to managed remote services and to manage changes in the accounts to these
remote services.

These changes include addition, deletion, suspension, restoration, and modification
of accounts on the remote service. When you log in to IBM Security Identity
Manager, you can change the login and password information for an account on the
managed remote service.

The ServiceAuthenticationProviderFactory mechanism works with the agent for a
given remote service and processes the changed information.

Example (entered on a single line):

enrole.authentication.provider.service=\
factory=com.ibm.itim.authentication.service.
ServiceAuthenticationProviderFactory

WebSEAL single sign-on

enrole.authentication.provider.webseal

Chapter 15. Supplemental property files 201

Table 19. enRoleAuthentication.properties properties (continued)

Specifies the Java object that allows single sign-on in a WebSEAL environment.

Example (entered on a single line):

enrole.authentication.provider.webseal=\
factory=com.ibm.itim.authentication.webseal.WebsealProviderFactory

enrole.authentication.idsEqual

Indicates the appropriate algorithm for mapping the IBM Security Access Manager
user ID to an IBM Security Identity Manager user ID. An internal identity mapping
algorithm is used to ensure the success of the single sign-on operation.

Valid values for this property are:

v true – The Security Access Manager user ID is the same as the IBM Security
Identity Manager user ID.

v false – The Security Access Manager user ID is not the same as the IBM Security
Identity Manager user ID.

Example:

enrole.authentication.idsEqual=true

enRoleDatabase.properties
The enRoleDatabase.properties file specifies attributes that support the relational
database used by Security Identity Manager.

The property key values contained in this file are synchronized with values in the
appropriate application server configuration file. Most values in this file are
supplied during initial installation of IBM Security Identity Manager and the
configuration of the database. You can make subsequent changes to some values.
However, you must use the runConfig utility to synchronize the property file
values with the values in the application server configuration file.

IBM Security Identity Manager uses Java Database Connectivity (JDBC) to access
the relational database. With the JDBC API, you can access virtually any tabular
data source from the Java programming language.

Table 20 defines the properties used to configure database properties.

Table 20. enRoleDatabase.properties properties

Database information

database.db.type

Do not modify this property key. The value is supplied during the initial installation
of IBM Security Identity Manager.

Specifies the database type that is used by IBM Security Identity Manager.

Example:

database.db.type=DB2

database.db.server

202 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 20. enRoleDatabase.properties properties (continued)

This value is supplied during the installation of IBM Security Identity Managerand
the configuration of the database.

Specifies the name or local alias name of the remote database.

To change this value for a new database, use the database configuration utility to set
up the database. The database configuration utility supplies the new database name
to this properties file.

To change this value for another existing database, use the runConfig utility to
supply the new database name to this properties file.

The value for database.db.server is stored in following format:
db_host_name:port:database_name

Examples:

v DB2

10.77.214.35:50000:itimdb

v Oracle

tivsun13:1521:itimdb

v Microsoft SQL

tivsun13:1433:itimdb

database.db.owner

Do not modify this property key. The value is built in to the system.

Specifies the name of the database schema owner for IBM Security Identity
Manager.

Example (default):

database.db.owner=itimuser

database.db.user

Do not modify this property key. The value is built in to the system.

Specifies a default database user for IBM Security Identity Manager.

Example (default):

database.db.user=itimuser

database.db.password

Do not modify this property key. The value is supplied during database
configuration.

Specifies the password for the database user.

Encryption of this value is specified by the enrole.password.database.encrypted
property in enRole.properties.

The password value is encrypted by default unless the encryption setting was
deactivated with the runConfig utility.

Example:

database.db.password=secret

Chapter 15. Supplemental property files 203

Table 20. enRoleDatabase.properties properties (continued)

Connection pool properties

database.jdbc.connectionPool.initialCapacity

Do not manually edit this file to modify this property key value. Use the runConfig
utility to change this value.

Specifies the initial number of physical database connections to create for the
connection pool. This value must be less than or equal to the
database.jdbc.connectionPool.maxCapacity value.

Example:

database.jdbc.connectionPool.initialCapacity=5

database.jdbc.connectionPool.maxCapacity

Do not manually edit this file to modify this property key value. Use the runConfig
utility to change this value.

Specifies the maximum number of physical database connections that can be
created. This value is used to manage system performance tuning.

Example (default):

database.jdbc.connectionPool.maxCapacity=50

JDBC driver

database.jdbc.driverurl

Do not remove or modify this property key and value.

Specifies the URL of the JDBC driver. The default value is jdbc:db2://
db_host_name:port/database_name.

Examples:

v DB2

jdbc:db2://10.77.214.31:50000/itimdb

v Oracle

jdbc:oracle:thin:@host_name:1521:itimdb

v Microsoft SQL Server

jdbc:sqlserver://;server=9.72.121.180;port=1433;database=itimdb

database.jdbc.driver

204 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 20. enRoleDatabase.properties properties (continued)

Do not remove or modify this property key and value.

Specifies the JDBC driver name.

Examples:

v DB2

database.jdbc.driver=com.ibm.db2.jcc.DB2Driver

v Oracle

database.jdbc.driver=oracle.jdbc.driver.OracleDriver

v Microsoft SQL Server

com.microsoft.sqlserver.jdbc.SQLServerDriver

enRoleLDAPConnection.properties
The enRoleLDAPConnections.properties file provides standard configuration
settings that allow successful communication between Security Identity Manager
and the LDAP directory server.

Table 21 defines the properties used to configure LDAP directory server properties.

Table 21. enRoleLDAPConnection.properties properties

java.naming.factory.initial

Do not modify this property key and value.

Specifies the built-in Java class file that provides the communication interface
between IBM Security Identity Manager and the LDAP directory server. The Java
Naming and Directory Interface (JNDI) protocol is used.

Example:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

LDAP context: Context.INITIAL_CONTEXT_FACTORY

java.naming.provider.url

Specifies the URL of the LDAP directory server. The LDAP server is on:

v The local IBM Security Identity Manager Server. In this case, use localhost.

v A remote computer. In this case, use the short or fully qualified host name or the
IP address.

The value for this property is initially configured during IBM Security Identity
Manager installation. You can also provide this value with the ldapconfig utility or
runConfig utility.

Example:

java.naming.provider.URL=ldap://localhost:389

LDAP context: Context.PROVIDER_URL

java.naming.security.principal

Chapter 15. Supplemental property files 205

Table 21. enRoleLDAPConnection.properties properties (continued)

Specifies the distinguished name (DN) of the LDAP administration account on the
LDAP directory server.

The value for this key is initially configured during IBM Security Identity Manager
installation. You can also provide this value with the ldapconfig utility or runConfig
utility.

Example:

java.naming.security.principal=cn=root

Example for Sun Open Net Environment (ONE) Directory Server:

java.naming.security.principal=cn=directory manager

LDAP context: Context.SECURITY_PRINCIPAL

java.naming.security.credentials

Specifies the password for the LDAP administration account on the LDAP directory
server.

The value for this key is initially configured during IBM Security Identity Manager
installation. You can also provide this value with the ldapconfig utility or runConfig
utility.

Encryption of this value is specified by the enrole.password.ldap.encypted
property in the enRole.properties file.

The encryption type is initially configured during IBM Security Identity Manager
installation.

Example:

java.naming.security.credentials=ibmldap

LDAP context: Context.SECURITY_CREDENTIALS

java.naming.security.protocol

By default, this property is commented out.

Specifies the protocol that is used for communication between IBM Security Identity
Manager and the LDAP directory server. For example, to enable SSL, uncomment
the line and change it to java.naming.security.protocol=ssl.

LDAP context: Context.SECURITY_PROTOCOL

java.naming.security.authentication

Do not modify this property key and value.

Specifies the authentication type that is used by the LDAP directory server. Valid
types include:

v none - The anonymous: user becomes a member of an unauthenticated group.

v simple - The user supplies a user name and password.

v strong - A stronger authentication mechanism that you provide.

Example:

java.naming.security.authentication=simple

LDAP context: Context.SECURITY_AUTHENTICATION

206 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 21. enRoleLDAPConnection.properties properties (continued)

java.naming.referral

Do not modify this property key and value.

If multiple LDAP directory servers are linked in the IBM Security Identity Manager
environment, this property specifies whether to use links when a referral is needed
to complete a request for LDAP information.

Valid values include:

v follow —- Use links to complete an LDAP information request.

v ignore —- Do not use links to complete an LDAP information request.

v throw —- Do not use links to complete an LDAP information request. and return
an error message.

Example:

java.naming.referral=follow

LDAP context: Context.REFERRAL

java.naming.batchsize

Do not modify this property key and value.

A JNDI property that specifies the number of data elements returned at one time
during a request (query) to the LDAP directory server. A larger number reduces the
number of LDAP fetches, which might improve performance.

A value of 0 blocks any control by the client (IBM Security Identity Manager) until
all requested elements are returned.

Example:

java.naming.batchsize=100

LDAP context: Context.BATCHSIZE

java.naming.ldap.derefAliases

Specifies that look up for an object by using the alias dereferences the alias so that
what is returned is the object pointed to by the DN of the.alias

Valid values include:

v never —- Do not dereference an alias during object lookup.

v always —- Dereference an alias during object lookup.

v finding —- Dereference an alias during object lookup (only during name
resolution).

v searching —- Dereference an alias during object lookup (only after name
resolution).

Example:

java.naming.ldap.derefAliases=never

java.naming.ldap.attributes.binary

Chapter 15. Supplemental property files 207

Table 21. enRoleLDAPConnection.properties properties (continued)

Do not modify this property key and value.

Specifies IBM Security Identity Manager attributes that are treated as binary data
type. Multiple attribute values are separated by a single space.

Example (on a single line):

java.naming.ldap.attributes.binary=erPassword
erHistoricalPassword erSynchPassword erServicePassword erPersonPassword

LDAP context: attribute.binary

com.sun.jndi.ldap.connect.pool

Activates the LDAP connection pool.

Valid values include:

v true - Use the LDAP connection pool.

v false - Do not use the LDAP connection pool.

Example (default):

com.sun.jndi.ldap.connect.pool=true

com.sun.jndi.ldap.connect.timeout

Specifies the number of milliseconds that a client waits for a pooled connection to
become available. If the property is not specified, the client waits indefinitely.

Example:

#com.sun.jndi.ldap.connect.timeout=

enRoleLogging.properties
The enRoleLogging.properties file specifies attributes that govern the operation of
the jlog logging and tracing API that is bundled with Security Identity Manager.

jlog is a logging package for Java. With this package, you can log messages by
message type and priority. At run time, you also can control how these messages
are formatted and where they are reported.

Table 22 defines the properties used to configure IBM Security Identity Manager
logging properties.

Table 22. enRoleLogging.properties properties

General settings

logger.refreshInterval

Specifies the refresh interval [in milliseconds] of the logging properties.

Example:

logger.refreshInterval=300000

logger.msg.com.ibm.itim.security.logChoice

208 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 22. enRoleLogging.properties properties (continued)

Specifies the type of authentication attempts to log.

Valid values are:

v failure —- Log authentication failures.

v success —- Log authentication successes.

v both —- Log both authentication failures and successes.

Example:

logger.msg.com.ibm.itim.security.logChoice=failure

logger.msg.com.ibm.itim.security.logging

Specifies whether authentication attempts are logged or not.

Valid values are:

v true —- Log authentication attempts.

v false —- Do not log authentication attempts.

Example:

logger.msg.com.ibm.itim.security.logging=true

handler.file.security.maxFiles

Specifies the maximum number of security log files.

Example:

handler.file.security.maxFiles=10

logger.msg.level

Specifies the logging level for messages.

Valid values are:

v INFO

v WARN

v ERROR

Example:

logger.msg.level=INFO

handler.file.msg.maxFiles

Specifies the maximum number of message log files.

Example:

handler.file.msg.maxFiles=5

logger.trace.level

Chapter 15. Supplemental property files 209

Table 22. enRoleLogging.properties properties (continued)

Specifies the tracing level.

The supported trace levels are:

v DEBUG_MIN

v DEBUG_MID

v DEBUG_MAX

DEBUG_MAX is the most verbose trace level and can effect system performance. When
you debug a problem, avoid setting DEBUG_MAX at logger.trace. Set the DEBUG_MAX at
the effected components or packages.

Example:

logger.trace.level=DEBUG_MIN

handler.file.trace.maxFiles

Specifies the maximum number of trace log files.

Example:

handler.file.trace.maxFiles=10

handler.file.maxFileSize

Specifies the maximum log file size in kilobytes

Example:

handler.file.maxFileSize=1024

Logger root properties

jlog.noLogCmd

Do not modify this property key and value.

Disables the log command server.

Example:

jlog.noLogCmd=true

logger.className

Do not modify this property key and value.

Specifies the class name of the logger.

Example:

logger.className=com.ibm.log.PDLogger

logger.description

Specifies the description of the logger.

Example:

logger.description=TIM PD Logger

logger.product

210 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 22. enRoleLogging.properties properties (continued)

Do not modify this property key and value.

Specifies the product name.

Example:

logger.product=CTGIM

logger.productInstance

Do not modify this property key and value.

Specifies the server instance name. The value is supplied during the installation of
Security Identity Manager.

Example:

logger.productInstance=myserver

Message logger properties

logger.msg.description

Specifies the description of the message logger.

Example:

logger.msg.description=TIM PD Message Logger

logger.msg.logging

Turns logging on or off for messages.

Valid values are:

v true —- Turns logging on.

v false —- Turns logging off.

Example:

logger.msg.logging=true

logger.msg.messageFile

Do not modify this property key and value.

Specifies the resource bundle name of localizable messages.

Example:

logger.msg.messageFile=tmsMessages

logger.msg.com.ibm.itim.ui.messageFile

Do not modify this property key and value.

Specifies the resource bundle name of localizable messages.

Example: (on a single line)

logger.msg.com.ibm.itim.ui.messageFile=
com.ibm.itim.ui.resources.UIMessageResources

logger.msg.listenerNames

Chapter 15. Supplemental property files 211

Table 22. enRoleLogging.properties properties (continued)

Do not modify this property key and value.

Specifies the listener names attached to the message logger.

Example:

logger.msg.listenerNames=handler.file.msg handler.ffdc.fileCopy

Security logger properties

logger.msg.com.ibm.itim.security.listenerNames

Do not modify this property key and value.

Specifies the listener names attached to the security logger.

Example:

logger.msg.com.ibm.itim.security.listenerNames=handler.file.security

Trace logger properties

logger.trace.description

Specifies the description of the trace logger.

Example:

logger.trace.description=TIM PD Trace Logger

logger.trace.logging

Turns trace logging on or off.

Valid values are:

v true —- Turns logging on.

v false —- Turns logging off.

Example:

logger.trace.logging=true

logger.trace.listenerNames

Do not modify this property key and value.

Specifies the listener names attached to the trace logger.

Example:

logger.trace.listenerNames=handler.file.trace

logger.trace.com.ibm

212 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 22. enRoleLogging.properties properties (continued)

Edit the level of these component loggers to adjust the amount of tracing
information written to the trace log.

The supported trace levels are:

v DEBUG_MIN

v DEBUG_MID

v DEBUG_MAX

Component loggers are:
Note: The logger.trace.com.ibm.itim.script.level component logger is
equivalent to logger.trace.com.ibm.itim.fesiextensions.level (deprecated).

logger.trace.com.ibm.itim.adhocreport.level
logger.trace.com.ibm.itim.adhocreport.changelog.level
logger.trace.com.ibm.itim.apps.level
logger.trace.com.ibm.itim.apps.ejb.adhocreport.level
logger.trace.com.ibm.itim.authentication.level
logger.trace.com.ibm.itim.authorization.level
logger.trace.com.ibm.itim.common.level
logger.trace.com.ibm.itim.fesiextensions.level
logger.trace.com.ibm.itim.script.level
logger.trace.com.ibm.itim.mail.level
logger.trace.com.ibm.itim.messaging.level
logger.trace.com.ibm.itim.dataservices.model.level
logger.trace.com.ibm.itim.passworddelivery.level
logger.trace.com.ibm.itim.policy.level
logger.trace.com.ibm.itim.remoteservices.level
logger.trace.com.ibm.itim.remoteservices.installation.level
logger.trace.com.ibm.itim.report.level
logger.trace.com.ibm.itim.security.level
logger.trace.com.ibm.itim.scheduling.level
logger.trace.com.ibm.itim.script.level
logger.trace.com.ibm.itim.systemConfig.level
logger.trace.com.ibm.itim.util.level
logger.trace.com.ibm.itim.webclient.level
logger.trace.com.ibm.itim.workflow.level
logger.trace.com.ibm.daml.level
logger.trace.com.ibm.erma.level

Applet tracing properties

logger.trace.com.ibm.itim.applet.logging

Enables or disables applet trace logging.

Example:

logger.trace.com.ibm.itim.applet.logging=true

logger.trace.com.ibm.itim.applet.level

Specifies the applet tracing level.

The supported trace levels are:

v DEBUG_MIN

v DEBUG_MID

v DEBUG_MAX

Example:

logger.trace.com.ibm.itim.applet.level=DEBUG_MIN

Chapter 15. Supplemental property files 213

Table 22. enRoleLogging.properties properties (continued)

File handler properties

handler.file.className

Do not modify this property key and value.

Specifies the class name of the file handler.

Example:

handler.file.className=com.ibm.log.FileHandler

handler.file.description

Specifies the description of the file handler.

Example:

handler.file.description=TIM File Handler

handler.file.fileDir

Do not modify this property key and value.

Specifies the base directory of the file handler. This value is supplied during
installation.

Example:

handler.file.fileDir=c:/tivoli_comm_dir/CTGIM/logs

handler.file.formatterName

Do not modify this property key and value.

Specifies the formatter of the file handler.

Example:

handler.file.formatterName=formatter.PDXML

Message logging file handler properties

handler.file.msg.fileName

Specifies the message log file.

Example:

handler.file.msg.fileName=msg.log

handler.file.msg.formatterName

Do not modify this property key and value.

Specifies the formatter of the message file handler.

Example:

handler.file.msg.formatterName=formatter.PDXML.msg

Security logging file handler properties

214 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 22. enRoleLogging.properties properties (continued)

handler.file.security.fileDir

Specifies the security log directory.

Example:

handler.file.security.fileDir=c:/tivoli_comm_dir/CTGIM/logs

handler.file.security.fileName

Specifies the security log file.

Example:

handler.file.security.fileName=access.log

handler.file.security.formatterName

Do not modify this property key and value.

Specifies the formatter of the security file handler.

Example:

handler.file.security.formatterName=formatter.PDXML.security

Trace file handler properties

handler.file.trace.fileName

Specifies the trace file name.

Example:

handler.file.trace.fileName=trace.log

handler.file.trace.formatterName

Do not modify this property key and value.

Specifies the formatter of the trace file handler.

Example:

handler.file.trace.formatterName=formatter.PDXML.trace

FFDC (First-Failure Data Capture) file copy handler properties

handler.ffdc.baseDir

Do not modify this property key and value.

Specifies the ffdc base directory.

Example:

handler.ffdc.baseDir=c:/tivoli_comm_dir/CTGIM/ffdc

handler.ffdc.triggerRepeatTime

Chapter 15. Supplemental property files 215

Table 22. enRoleLogging.properties properties (continued)

Specifies the minimum time [in milliseconds] after an initial triggering that the
handler responds to subsequent triggering events.

Example:

handler.ffdc.triggerRepeatTime=300000

handler.ffdc.fileCopy.className

Do not modify this property key and value.

Specifies the handler class name.

Example:

handler.ffdc.fileCopy.className=com.tivoli.log.FileCopyHandler

handler.ffdc.fileCopy.triggerFilter

Specifies the filter to control which events trigger an FFDC action.

Example:

handler.ffdc.fileCopy.triggerFilter=filter.msgId

handler.ffdc.fileCopy.fileTimestampFormat

Do not modify this property key and value.

Specifies the time stamp format which is appended to the FFDC folder name and
file names.

Example:

handler.ffdc.fileCopy.fileTimestampFormat=yyyy.MM.dd-HH.mm.ss

handler.ffdc.fileCopy.filesToCopy

Specifies the files to be copied to the FFDC directory when the FFDC is triggered.

Example (on a single line):

handler.ffdc.fileCopy.filesToCopy=
"c:/tivoli_comm_dir/CTGIM/logs/trace.log"
"c:/tivoli_comm_dir/CTGIM/logs/msg.log"

FFDC message id filter properties

filter.msgId.className

Do not modify this property key and value.

Specifies the class name of the message ID filter.

Example:

filter.msgId.className=com.tivoli.log.MsgIdFilter

filter.msgId.description

216 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 22. enRoleLogging.properties properties (continued)

Specifies the description of the message ID filter.

Example:

filter.msgId.description=IBM Security Identity Manager FFDC Message Id Filter

filter.msgId.msgIds

Specifies the TMS message IDs that trigger the FFDC action. The listed message IDs
represent the most severe system errors.

Example (on a single line):

filter.msgId.msgIds=CTGIMA401E CTGIMA438W CTGIME013E CTGIME035E
CTGIME203E CTGIMF003E CTGIMF011E CTGIMF012E CTGIMF013E CTGIMF014E

filter.msgId.mode

Do not modify this property key and value.

Specifies the filter mode.

Example:

filter.msgId.mode=PASSTHRU

filter.msgId.msgIdRepeatTime

Specifies the minimum time in milliseconds to wait after a log event is passed with
a TMS message ID before it passes another one with the same ID.

Example:

filter.msgId.msgIdRepeatTime=300000

Formatter properties

formatter.className

Do not modify this property key and value.

Specifies the class name of the formatter.

Example:

formatter.className=com.ibm.log.Formatter

formatter.description

Specifies the description of the formatter.

Example:

formatter.description=formatter

formatter.dateFormat

Specifies the Java SimpleDateFormat pattern to format event dates.

Example:

formatter.dateFormat=yyyy.MM.dd

formatter.timeFormat

Chapter 15. Supplemental property files 217

Table 22. enRoleLogging.properties properties (continued)

Specifies the Java SimpleDateFormat pattern to format event time.

Example:

formatter.timeFormat=HH:mm:ss.SSS

PDXML formatter properties

formatter.PDXML.className

Do not modify this property key and value.

Specifies the formatter class name which formatting log event in LOG XML format.

Example:

formatter.PDXML.className=com.ibm.itim.logging.LogXMLFormatter

formatter.PDXML.description

Specifies the description of the formatter.

Example:

formatter.PDXML.description=TIM Log XML Formatter

formatter.PDXML.msg.forceAsMessage

Force the message formatter to format all output as message events, regardless of
their contents.

Example:

formatter.PDXML.msg.forceAsMessage=true

Enabling tracing for the Security Identity Manager user interface

You must set the level to FINEST in WebSphere Application Server to get the user
interface trace working.

Enabling tracing for the Security Identity Manager user interface is a two-step
process:
v Set the appropriate component loggers in the enRoleLogging.properties file.
v Enable WebSphere tracing by logging in to the WebSphere Application Server

administrative console.

To enable the tracing level for the WebSphere Application Server administrative
console, complete these steps:
1. Log in to the WebSphere Application Server administrative console.
2. Select Troubleshooting -> Logs and Trace.
3. Click the appropriate server (for example, Server1).
4. Select Change log detail levels under General Properties.
v To make a static change to the configuration, click the Configuration tab.

A list of well-known components, packages, and groups is displayed.
v To change the configuration dynamically, click the Runtime tab.

218 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

The list of components, packages, and groups displays all the components
that are currently registered on the running server.

5. Expand the node for com.ibm.itim.* under *[All Components].
6. Click the node labeled com.ibm.itim.ui.*and select All Messages and Traces.
7. Click Apply.
8. Click OK.
9. Stop and then restart the WebSphere Application Server to set the static

configuration changes.

You must enable the debug level for the user interface package in the following
section of the enRoleLogging.properties file:
UI-tier tracing
logger.trace.com.ibm.itim.ui.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.common.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.controller.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.customizer.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.help.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.impl.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.listener.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.tasklauncher.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.validator.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.view.level=DEBUG_MIN
logger.trace.com.ibm.itim.ui.viewmodel.level=DEBUG_MIN

For more information about setting the trace level, see http://www.ibm.com/
support/knowledgecenter/SSBJCK_7.0.0/com.ibm.btools.modeler.basic.inst.doc/
configuring/settingloggingpreferences.html.

enRoleMail.properties
The enRoleMail.properties file contains attributes that specify the mail transport
protocol that is used by the JavaMail API and other Security Identity Manager
application-specific properties. You must provide the values for the
application-specific properties.

Default values are provided for the JavaMail specific properties. They include the
default mail provider and protocol. If you change the default values for the specific
JavaMail properties, you must provide your own testing and verification of custom
protocol and implementation.

Go to the following URL for more usage and provider information:

http://java.sun.com/products/javamail/

Table 23 defines the properties that configure IBM Security Identity Manager mail.

Table 23. enRoleMail.properties file properties

Mail attributes specific to the IBM Security Identity Manager application

mail.baseurl

Chapter 15. Supplemental property files 219

http://www.ibm.com/support/knowledgecenter/SSBJCK_7.0.0/com.ibm.btools.modeler.basic.inst.doc/configuring/settingloggingpreferences.html
http://www.ibm.com/support/knowledgecenter/SSBJCK_7.0.0/com.ibm.btools.modeler.basic.inst.doc/configuring/settingloggingpreferences.html
http://www.ibm.com/support/knowledgecenter/SSBJCK_7.0.0/com.ibm.btools.modeler.basic.inst.doc/configuring/settingloggingpreferences.html

Table 23. enRoleMail.properties file properties (continued)

Specifies the base URL for constructing the login URL in email notifications sent to
new IBM Security Identity Manager users. The default value before you run the
runConfig utility for the first time is http://localhost:80.

This value is provided during IBM Security Identity Manager installation. You can
also provide the value with the runConfig utility.

This property is mandatory.

Example

mail.baseurl=http://localhost:80

mail.itim.context

Specifies the root context for IBM Security Identity Manager.

Example

mail.itim.context=/itim

mail.context.console

Specifies the root context for IBM Security Identity Manager console.

This property is mandatory.

Example

mail.context.console=/itim/console

mail.context.enduser

Specifies the root context for IBM Security Identity Manager self-service console.

This property is mandatory.

Example

mail.context.enduser=/itim/self

mail.context.servicecenter

Specifies the root context for IBM Security Identity Manager Service Center.

This property is mandatory.

Example

mail.context.servicecenter=/itim/ui

mail.from

Specifies the return email address of the current user.

This value is initially provided during IBM Security Identity Manager installation.
You can also provide the value with the runConfig utility.

This property is mandatory.

Example

mail.from=admin@us.ibm.com

mail.transport.protocol

220 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 23. enRoleMail.properties file properties (continued)

Specifies the default transport protocol. The default is the Sun SMTP transport
protocol.

This property is mandatory.

Example for the default value.

mail.transport.protocol=SMTP

mail.title

This property is not used to specify the title banner of email notification in IBM
Tivoli Identity Manager Version 5.0.

The mail.title property of Labels.properties specifies title banner of email
notification. You must edit this properties file directly to provide the value to this
property.

This property was previously mandatory.

Example for the default value at previous releases.

mail.title=ITIM notification

Mail attributes specific to the built-in JavaMail service

mail.host

Specifies the IP address of the computer where the mail server is located.

This value is initially provided during IBM Security Identity Manager installation.
You can also provide this value with the runConfig utility.

This property is mandatory.

Example

mail.host=111.222.333.444

mail.protocol.host

Specifies the IP address of the protocol-specific default mail server. This property
key overrides the mail.host property key.

By default, this property is not mandatory and no value is provided.

mail.protocol.user

Specifies the protocol-specific default user name for connecting to the Mail server.
This property key overrides the mail.user property key.

By default, this property is not mandatory and no value is provided.

mail.protocol.class

Specifies the Java class implementation of the mail protocol.

Example for the default value.

mail.SMTP.class=com.sun.mail.smtp.SMTPTransport

mail.store.protocol

Specifies the default message access protocol.

By default, this property is not mandatory and no value is provided.

mail.user

Chapter 15. Supplemental property files 221

Table 23. enRoleMail.properties file properties (continued)

Specifies a user name that is used during authentication when you connect to a mail
server.

By default, this property is not mandatory and no value is provided. In the IBM
Security Identity Manager environment, the mail server is located within firewall
boundaries, rendering this level of authentication unnecessary.

mail.protocol.user

Specifies the protocol-specific user name that is used during authentication when
you connect to a mail server. This property key overrides the mail.user property
key.

By default, this property is not mandatory and no value is provided.

enrolepolicies.properties
The enrolepolicies.properties file provides standard and custom settings that
support the functions of the provisioning policy.

Functions supported by this properties file includes:
v Specifying Java classes to process provisioning policy conflicts with join

directives
v Specifying default and non-default join directive caching timeouts
v Declaring policy attributes to be ignored during policy compliance validation

A join directive is a set of rules that is used to determine how attributes are
handled when a provisioning policy conflicts with another. Join directives use
logical constructs to resolve conflicts. Examples include combining all policy
attributes (union), with only common attributes (intersection), and resolving
conflicts with Boolean AND or OR logic.

There are 12 types of join directives that you can use. Provisioning policy join
directives take effect when more than one provisioning policy is defined for the
same user (or group of users) for the same target service, service instance, or
service type.

Custom join directives can be defined by writing a custom Java class, adding it to
your class path, and then providing the fully qualified Java class name in the
policy configuration GUI. If you extend or replace one of the existing join directive
classes, you must add the custom property key and value to the
enrolepolicies.properties file. For example if you developed a new class
(com.abc.TextualEx) to replace the existing class for textual joins, the registration
line is as follows:
provisioning.policy.join.Textual= com.abc.TextualEx

Table 24 defines the properties used to configure IBM Security Identity Manager
policies.

Table 24. enrolepolicies.properties properties

Join directive classes

222 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 24. enrolepolicies.properties properties (continued)

provisioning.policy.join.PrecedenceSequence=com.ibm.itim.policy.join.
PrecedenceSequence

provisioning.policy.join.Boolean=com.ibm.itim.policy.join.Boolean
provisioning.policy.join.Bitwise=com.ibm.itim.policy.join.Bitwise
provisioning.policy.join.Numeric=com.ibm.itim.policy.join.Numeric
provisioning.policy.join.Textual=com.ibm.itim.policy.join.Textual
provisioning.policy.join.Textual.AppendSeparator=<<<>>>
provisioning.policy.join.Multivalued=com.ibm.itim.policy.join.Multivalued

Do not modify these property keys and values.

Each property key specifies a Java class. It can be used to process the logic of a join
directive that is required to resolve a provisioning policy conflict.

Append separator characters

provisioning.policy.join.Textual.AppendSeparator

Specifies the character that is used by the textual join directive Java class to separate
individual values of a multi-value attribute.

Example:

provisioning.policy.join.Textual.AppendSeparator=<<<>>>

Join directive cache timeouts

provisioning.policy.join.defaultCacheTimeout

Specifies the timeout interval [in seconds] between refreshes of the cache that stores
default join directive cache values.

The default is 86400 seconds, which is 24 hours.

Example (default):

provisioning.policy.join.defaultCacheTimeout=86400

provisioning.policy.join.overridingCacheTimeout

Specifies the timeout interval [in seconds] between refreshes of the cache that stores
non-default join directive values.

The default is 300 seconds, which is 5 minutes.

Example:

provisioning.policy.join.overridingCacheTimeout=300

Account attributes ignored by policy compliance validation

Excluded generic attributes (default value=1):

Chapter 15. Supplemental property files 223

Table 24. enrolepolicies.properties properties (continued)

nonvalidateable.attribute.eraccountcompliance
nonvalidateable.attribute.eracl
nonvalidateable.attribute.eraccountstatus
nonvalidateable.attribute.erauthorizationowner
nonvalidateable.attribute.erglobalid
nonvalidateable.attribute.erhistoricalpassword
nonvalidateable.attribute.erisdeleted
nonvalidateable.attribute.erlastmodifiedtime
nonvalidateable.attribute.erlogontimes
nonvalidateable.attribute.ernumlogons
nonvalidateable.attribute.erparent
nonvalidateable.attribute.erpassword
nonvalidateable.attribute.erservice
#nonvalidateable.attribute.eruid
nonvalidateable.attribute.objectclass
nonvalidateable.attribute.owner
nonvalidateable.attribute.ercreatedate
nonvalidateable.attribute.erlaststatuschangedate
nonvalidateable.attribute.erpswdlastchanged
nonvalidateable.attribute.erlastaccessdate
nonvalidateable.attribute.ernumlogonattempt

Excluded Windows Server attributes:

nonvalidateable.attribute.erntpasswordexpired
nonvalidateable.attribute.erntuserbadpwdcount
nonvalidateable.attribute.erntlockedout

Declares account attributes that are to be ignored during policy compliance
validation. This exclusion list reduces overhead during compliance validation. It also
reduces the risk of system failure that can be caused by attributes that cannot
logically be resolved during validation.

Partition size

policy.partition.size

To analyze many persons during a policy change event without incurring
transaction timeouts, you must break apart or partition the total number of affected
persons. It is done, not for starting the concurrent policy analysis, but strictly to
avoid waiting in a single database transaction for all persons to be processed.
Creating multiple transactions or quickly partitioning the total number of users
diminishes the chance of any (smaller) transactions to exceed the transaction
timeout value. When a WebSphere Application Server cluster is used with IBM
Security Identity Manager, it is helpful to note that partitioning operation itself is
not clustered. It is done on the same WebSphere Application Server node which
receives the policy change request.

Specifies the number of persons or accounts to be evaluated in each thread during
high volume policy analysis. High volume policy analysis occurs when a policy
change or a service enforcement level change affects a large group of persons or
accounts. A larger partition size results in fewer threads. A smaller partition size
results in more executed threads in parallel, which requires more memory.

Example (default):

policy.partition.size=2500

policy.message.size

224 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 24. enrolepolicies.properties properties (continued)

Specifies the number of persons that are analyzed as part of policy change within a
single JMS message. Since WebSphere Application Server polled and reuses threads,
the JMS mechanism queues the individual units of analysis work for all assigned
WebSphere Application Server threads or message consumers. It is likely that during
large policy changes that affect large numbers of people, all JMS consumer threads
are busy processing policy analysis and enforcement; the queue for each thread is
saturated with more messages to process.

Example (default):

policy.message.size=25

Additional properties

policy.analysisservicebatch.size

Specifies the maximum number of services to be analyzed in each policy analysis
message. This property is useful during policy/person analysis when a person has
many accounts. To prevent system from running into OOM or hung threads this
property can be tuned.

By default, the property is commented out and an internal hardcoded value of 100
is applied. This default 100 service per batch is found to be optimal for
environments that has users who own up to 50 K accounts across multiple
platforms.

Example (default):

policy.analysisservicebatch.size=100

policy.service.selection.maxsearch.size

This property is used to return the specified number of Persons that are affected by
the policy. It also checks whether the policy references any Person of given user
class in any one of its memberships.

The number is for person search, which is per policy, and thus additive based on
the policies involved. It prevents an accidental explosion of the server's JVM with an
OOM. By default, the property has an internal hardcoded value of 10000. This
property is used while evaluating a collection of service move operations for
persons that are affected by adding a host selection policy. It is also used while
evaluating a service selection script.

Example (default):

policy.service.selection.maxsearch.size=10000

policy.cleanup.commitFrequency

Chapter 15. Supplemental property files 225

Table 24. enrolepolicies.properties properties (continued)

Specifies the number of rows that are to be deleted as a batch from database tables
while the policy analysis data is cleaned up..

The value of this property if set to 0, commits database updates only at the end
when the entire cleanup activity is completed.

If this property value is set to any number greater than 0, the commit is done when
the number of uncommitted database updates are equal to this set value. If negative
or non-integer value is specified, then default value of 0 is used. The default value
of the property is 0 and suggested values are multiples of 1000 (Ex: 25000).

Example (default):

policy.cleanup.commitFrequency=0

During a provisioning policy preview operation, IBM Security Identity Manager evaluates
and joins other dependent provisioning policies that are applicable to a user. Performing a
lookup for the policy and its dependent data in directory server and parsing it for each
user can hamper performance. IBM Security Identity Manager caches the already parsed
policies for better performance.

Following caches are created:

v Policy Cache: Maintains a mapping of provisioning policy DNs and policy objects in
cache with policy DN as the key.

v RoleDN Cache: Maintains a mapping of Organizational Role DN and a set of
provisioning policy DNs in cache with Organizational Role DN as the key.

v ServiceDN Cache: Maintains a mapping of Service DN and a set of provisioning policy
DNs in cache with Service DN as the key.

The greater number of data objects in the cache, the greater is the consumption of memory.
The following three properties help to tune the caches by defining the maximum number
of policies, service DNs, and role DNs to be cached.

Provisioning policy cache size

policy.policiescache.size

Specifies the number of provisioning policies to be cached in Policy cache for each
provisioning policy preview request. For better performance, the size can be set to
number of policies in the Organization.

Example (default):

policy.policiescache.size=100

Organizational Role DN cache size

policy.roledncache.size

Specifies the number of role DNs to be cached in RoleDN cache for each
provisioning policy preview request. For better performance, the size can be set to
number of roles in the Organization.

Example (default):

policy.roledncache.size=100

226 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 24. enrolepolicies.properties properties (continued)

Service DN cache size

policy.servicedncache.size

Specifies the number of Service DNs to be cached in ServiceDN cache for each
provisioning policy preview request. For better performance, the size can be set to
number of services in the Organization.

Example (default):

policy.servicedncache.size=100

enroleStartup.properties
The enroleStartup file is used to specify startup activities in the WebSphere
Application Server environment.

Table 25 defines the properties used to configure IBM Security Identity Manager
policies.

Table 25. enroleStartup.properties properties

enrole.startup.names

Lists the background services that are started during IBM Security Identity Manager
startup. Do not modify this property.

enrole.startup.shutdownTrigger.name

The registered class used during shutdown of processes. Do not modify this
property.

enrole.startup.WAS50J2EEShutdownTrigger.attributes

Additional parameters to be passed in to the registered shutdown class. Do not
modify this property.

These properties define the background services startup. Do not modify these properties.

enrole.startup.Scheduler.attributes
enrole.startup.PasswordExpiration.attributes
enrole.startup.DataServices.attributes
enrole.startup.PostOffice.attributes
enrole.startup.RemotePending.attributes
enrole.startup.PolicyAnalysis.attributes
enrole.startup.ReconcilerCleanup.attributes
enrole.startup.PasswordSynchStore.attributes
enrole.startup.Monitoring.attributes
enrole.startup.WebServices.attributes

enrole.startup.MessageListeners.attributes

The JMS queue endpoint listeners can be deactivated during startup for a node in a
cluster with disaster recovery configuration. Do not modify this attribute in a single
server setup. Deactivating endpoint listeners can cause JMS queue errors if none of
the messages is being processed.

Chapter 15. Supplemental property files 227

Table 25. enroleStartup.properties properties (continued)

enrole.appServer.standby

Defines whether the node that is participating in a cluster setup should be a
standby node. A standby node does not participate in background shared workload.
Available for cluster setup. Do not modify this attribute in a single server setup.

enrole.appServer.standby.inactiveMessageListeners

Provides an override to the list of message endpoint listeners to be deactivated in a
standby mode. Effective only when enrole.appServer.standby is true.

enrole.appServer.standby.inactiveStartupInitializer

Provides an override to the list of background services to be deactivated in a
standby mode. Effective only when enrole.appServer.standby is true.

enroleworkflow.properties
The enroleworkflow.properties file specifies the XML file mappings for
system-defined workflows.

A workflow is a process that specifies the flow of operations that involve business
operations and human interactions. A workflow design defines the manner in
which a particular business logic is processed. The XML files specified in the
enroleworkflow.properties file implement workflow designs.

The system workflow is identified by a unique type ID and an associated XML file.
The XML workflow files are in the following directory:
ISIM_HOME\data\workflow_systemprocess

Do not remove or modify the default system workflow type IDs and XML file
values in the enroleworkflow.properties file.

The updating of the following XML files is not supported.

Table 26 defines the properties used to configure IBM Security Identity Manager
workflows.

Table 26. enroleworkflow.properties properties

Policy enforcement workflow

enrole.workflow.PS=enforcepolicyforservice.xml

Account fulfillment for noncompliant accounts workflow

enrole.workflow.EN=fulfillpolicyforaccount.xml

Service selection management workflow

enrole.workflow.SA=addserviceselectionpolicy.xml
enrole.workflow.SC=changeserviceselectionpolicy.xml
enrole.workflow.SD=removeserviceselectionpolicy.xml

Provisioning policy management workflow

228 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 26. enroleworkflow.properties properties (continued)

#Add policy
enrole.workflow.PA=addpolicy.xml
#Modify policy
enrole.workflow.PC=changepolicy.xml
#Delete policy
enrole.workflow.PD=removepolicy.xml
#User BU change
enrole.workflow.UO=userbuchange.xml

Reconciliation workflow

enrole.workflow.RC=reconciliation.xml
enrole.workflow.HR=hrfeed.xml

Dynamic role workflow

#Add dynamic role
enrole.workflow.DA=adddynamicrole.xml
#Modify dynamic role
enrole.workflow.DC=changedynamicrole.xml
#Delete dynamic role
enrole.workflow.DD=removedynamicrole.xml
#Import Policy Enforcement
enrole.workflow.PE=importpolicyenforcement.xml
#Process Lifecycle Rule
enrole.workflow.LC=lifecyclerule.xml

fesiextensions.properties (deprecated)
The fesiextensions.properties file (deprecated) provides support for Free
EcmaScript Interpreter (FESI) JavaScript extensions before Version 5.0 of Security
Identity Manager. Do not author new extensions using this deprecated architecture.

The fesiextensions.properties file defines built-in and custom FESI extensions
required by IBM Security Identity Manager. FESI is the Free EcmaScript Interpreter,
a JavaScript interpreter written in Java. The FESI interpreter reads this properties
file during IBM Security Identity Manager initialization to set extensions for
required Java classes.

The FESI extensions represent regions, or hooks, in IBM Security Identity Manager
where the use of JavaScript code is allowed to introduce built-in or custom
business logic. FESI extensions are specified with a property key and value pair
format:
property-key-name=value

The value is a fully qualified Java class file name. The property-key-name includes a
standard prefix (fesi.extension), a context, and (for custom classes) an identifier
name (ID) representing the fully qualified Java class file. Typically the shorter
unqualified class name is used as the identifier name (ID).
fesi.extension.context.class-ID=fully-qualified-class-name

The FESI system extensions that are used by IBM Security Identity Manager
include a global context and three specific contexts.

Global context identifier:

Chapter 15. Supplemental property files 229

Enrole

Specific context identifiers:
IdentityPolicy
HostSelection
Workflow

Although you must not modify the built-in system FESI extensions, you can add
custom FESI extensions that might be required for any custom programs. When
you add a custom FESI extension to this properties file, you must use one of the
established global or specific contexts.

Indicate the fully qualified custom Java class file name as the value and provide a
unique property key identifier name (ID) for the custom class. Examples:
fesi.extension.IdentityPolicy.custom-class-ID=custom-fully-qualified-class-name
fesi.extension.HostSelection.custom-class-ID=custom-fully-qualified-class-name

Table 27 defines the deprecated properties used to configure FESI extensions (on a
single line).

Table 27. fesiextensions.properties properties (deprecated)

System FESI extensions

fesi.extension.Enrole=com.ibm.itim.fesiextensions.Enrole
fesi.extension.IdentityPolicy=com.ibm.itim.fesiextensions.IdentityPolicy
fesi.extension.HostSelection=com.ibm.itim.fesiextensions.ModelExtension
fesi.extension.OrphanAdoption.Model=com.ibm.itim.fesiextensions.ModelExtension
fesi.extension.PersonPlacementRules.Model=com.ibm.itim.
fesiextensions.ModelExtension

fesi.extension.Workflow=com.ibm.itim.workflow.fesiextensions.WorkflowExtension
fesi.extension.Workflow.Model=com.ibm.itim.fesiextensions.ModelExtension
(next extension statement intended as one line)
fesi.extension.PostOffice=com.ibm.itim.mail.postoffice.fesiextensions.
PostOfficeExtension

fesi.extension.Reminder=com.ibm.itim.fesiextensions.ReminderExtension

The value for each system property key is a fully qualified Java class file that IBM
Security Identity Manager provides.

Do not remove or modify information in this section

Custom FESI extensions

Example:

fesi.extension.enRole.custom-class-ID=custom-fully-qualified-class-name

You can modify the fesiextensions.properties files to include additional FESI
extensions for required custom objects and methods.

The value for each custom property key is a fully qualified custom Java class file.

All property key names must be unique.

JavaScript password access

javascript.password.access.enabled

230 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 27. fesiextensions.properties properties (deprecated) (continued)

Determines whether plaintext passwords can be accessed from Person and Account
objects. Values include:

v true — Password access is enabled.

v false — Passwords cannot be accessed with javascript.

Example (default):

javascript.password.access.enabled=true

helpmappings.properties
The helpmappings.properties file allows a customer to replace the installed
Security Identity Manager help system with an alternative help system.

The helpmappings.properties file contains the following properties:

Table 28. helpmappings.properties properties

url.contexthelp

Specifies an external URL for help. The default is blank, which uses the URL of the
IBM Security Identity Manager help system. The URL will also add the resolved
locale based on the IBM Security Identity Manager language packs that are installed.
For example, http://www.example.com/help/en/ui_login.html

Example:

url.contexthelp=www.example.com/help

Clicking on the help icon ('?') in the IBM Security Identity Manager graphical user
interface will load the html file from the key mapping (http://www.example.com/
help/customerfilename.html). For a login page, the value of customerfilename might be
ui_login.html, and the full address might be http://www.example.com/help/
ui_login.html.

reportingLabels.properties
This properties file is like other labels-related properties files such as
labels.properties, or customLabels.properties, and holds labels that are used by
Reports.

reporttabledeny.properties
By default, this property holds a list of Security Identity Manager tables that are
used by various Security Identity Manager components to store internal or
configuration data that is inappropriate for a report.

This file is used by IBM Security Identity Manager Server for Reporting Engine
purposes.

The following table defines the properties that determine which information is not
exposed in reports.

Table 29. reporttabledeny.properties

tables

Chapter 15. Supplemental property files 231

Table 29. reporttabledeny.properties (continued)

Holds a comma-separated list of all IBM Security Identity Manager database tables
that are excluded from report production.

If a table is part of this property, the table and its columns are not in the Report
Designer; a report cannot be designed on columns of this table. A user who wants
to deny a specific database table from being used by the Report Designer can
choose to add the table against the tables property.

Example:

tables=JMSState, JMSStore, entity_column, column_report, report,
synchronization_history, synchronization_lock, changelog,
resources_synchronizations, NextValue, ListData,
AUTH_KEY, ATTR_CHANGE, ACCT_CHANGE, LCR_INPROGRESS_TABLE, WORKFLOW_CALLBACK,
POLICY_ANALYSIS, POLICY_ANALYSIS_ERROR, PO_TOPIC_TABLE,
PO_NOTIFICATION_TABLE, BULK_DATA_SERVICE, MIGRATION_STATUS, SYNCH_POINT,
COMPLIANCE_ALERT, PO_NOTIFICATION_HTMLBODY_TABLE, BULK_DATA_STORE,
BULK_DATA_INDEX, MANUAL_SERVICE_RECON_ACCOUNTS, SCRIPT, ACTIVITY_LOCK

allowedRestrictedColumns

Allows IBM Security Identity Manager administrators to explicitly allow columns of
restricted data types, to be used for designing and running custom reports. Such
reports however work for IBM Security Identity Manager Administrators only. If a
non-administrator attempts to run such reports, the user receives an
AuthorizationException.

By default, columns of the following restricted data types are not available when
you design or run custom reports:

BLOB, CLOB, BINARY, VARBINARY, LONGVARBINARY and LONGVARCHAR

The value of the property is a comma-separated list of <TABLE_NAME>.<COLUMN_NAME>.
If this property is undefined, then none of the columns of the restricted data type is
available for reporting.

Example (on a single line):

allowedRestrictedColumns=ACTIVITY.RESULT_DETAIL, PROCESS.RESULT_DETAIL,
PROCESSLOG.NEW_DATA

rest.properties
The properties of the rest.properties file control the behavior of the REST
interfaces that are included in IBM Security Identity Manager. As an administrator,
you can update the properties in the rest.properties file to modify the behavior
of certain aspects of the REST interfaces.

Note: To avoid performance issues, any changes that you make to the parameters
in rest.properties must be thoroughly tested before you apply them to a
production environment.

Table 30. rest. properties

baseUri

232 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 30. rest. properties (continued)

Specifies the base for the URIs that are returned from the REST interfaces.

If the property is not specified, the REST interfaces use the base URIs from the
HTTP request.

Example:

baseUri=https://server/itim/rest

search.limit

Specifies the maximum number of items that are returned by the REST search APIs.
The REST search APIs attempt to retrieve no more than the specified number of
items plus one. Specifying a value of 0 indicates that there is no limit.

Example:

search.limit=1000

Note: The limit of accesses that are returned by a search is determined by a
separate property search.limit.access.

search.limit.access

Specifies the maximum number of accesses that are returned by the REST access
search API. The REST access search API attempts to retrieve no more than the
specified number of accesses plus one. Specifying a value of 0 indicates that there is
no limit.

Example:

search.limit.access=100

search.limit.activities

Specifies the maximum number of activities that are returned by the REST activity
search API. The REST activity search API attempts to retrieve no more than the
specified number of activities plus one. Specifying a value of 0 indicates that there is
no limit.

Example:

search.limit.activities=100

participant.limit

Specifies the maximum number of participants that are assigned to the activity that
are returned by a search or a retrieval of activities. Specifying a value of 0 indicates
that there is no limit.

Example:

participant.limit=0

search.pagesize

Specifies the maximum number of items that are included in each page when the
REST search APIs perform paged searching. Specifying a value of 0 indicates that
REST search APIs do not perform paged searching.

Example:

search.pagesize=100

Chapter 15. Supplemental property files 233

Table 30. rest. properties (continued)

search.cache.enabled

Specifies whether the REST search APIs cache search results to satisfy subsequent
request that specify the same search criteria.

Example:

search.cache.enabled=true

search.cache.limit

Specifies the maximum number of searches for which results are cached for each
client. Specifying a value of 0 indicates that there is no limit. This parameter is
ignored if search.cache.enabled=false is specified.

Example:

search.cache.limit=100

search.cache.timeout

Specifies the number of seconds that search results remain cached for each client
since the last time the client issued a request with the same search criteria.
Specifying a value of 0 indicates that the search results remain cached until the
client's HTTP session times out. This parameter is ignored if
search.cache.enabled=false is specified.

Example:

search.cache.timeout=600

activity.duedate.threshold

Specifies the time in hours. If the due date is approaching within this threshold
limit, it is flagged in the activity summary and detail pages. The activity card and
activity due date are flagged.

Example:

activity.duedate.threshold=24

scriptframework.properties (Suggested)
For all new JavaScript extensions, use the scriptframework.properties file to
configure script extensions and other scripting functions.

JavaScript is used in IBM Security Identity Manager to specify identity policies,
provisioning policy parameters, service selection policies, placement rules for
identity feeds, and orphan account adoption.

In addition, JavaScript is used in workflows to specify transition conditions, loop
conditions, JavaScript activities, activity postscripts, and workflow notification.
Various scripting extensions are provided by IBM Security Identity Manager to
expose useful data and services to each of these scripts. In addition to these
extensions, system administrators can configure IBM Security Identity Manager to
load custom JavaScript extensions.

The file scriptframework.properties is used to configure all parts of scripting
support in IBM Security Identity Manager. It includes which script extensions to
use, which script interpreter to use, and other properties that relate to scripting.

234 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

The major parts of the scriptframework.properties are divided by these host
components: PostOffice, ProvisioningPolicy, AccountTemplate, HostSelection,
PersonPlacementRules, Workflow, Reminder, IdentityPolicy, Notification, and
OrphanAdoption.

The most heavily used section of the property file is for configuring which
extensions to load for each host component. To have the script framework load an
extension, add a key-value line to the scriptframework.propertiesfile that is
similar to this example:
ITIM.extension.{Host Component}=com.ibm.itim.class_name

where ITIM.extension.{Host Component}is the key and com.ibm.itim.class_name
is the value. The value of {Host Component}can be any of the previously listed
components. If you want to load more than a single extension for a host
component, you can add a suffix to host component, such as:
ITIM.extension.{Host Component}.suffix=com.ibm.itim.class_name

The only rule is that each key must be unique in the file.

The scriptframework.properties file comes pre-configured to load the extensions
necessary to use IBM Security Identity Manager with its default scripts. Do not
remove any lines in scriptframework.properties because removal might cause
IBM Security Identity Manager to stop functioning properly.

The next section of the scriptframework.properties file configures which script
interpreter to use for each host component. IBM Security Identity Manager
currently supports two different script interpreters, the IBM JSEngine and the FESI
JavaScript Interpreter.

To configure which interpreter to use for each host component, there is a line in
the file that looks like:
ITIM.interpreter.{Host Component}={Engine}

The value of {Host Component}can be any of the previously listed components. The
value of {Engine}can be either IBMJS or FESI. The {Engine}variable is not
case-sensitive, so typing fesi works as well as typing FESI. IBMJS is the default
scripting engine, so any value for {Engine} other than IBMJS or FESI, or no value,
uses the IBMJS engine. The FESI engine is deprecated. Use it only if you upgraded
from IBM Security Identity Manager Version 4.6 or earlier and have custom FESI
extensions.

The next section in the configuration file enables configuring custom JavaScript
wrappers. For security reasons, IBM Security Identity Manager does not expose all
objects to the scripting environment. Instead, most objects are wrapped in a more
restrictive wrapper class that exposes only certain methods. IBM Security Identity
Manager has a default wrapper configuration that you can override or extend in
this section. This feature is for an advanced user; in most cases do not use it. For
more details on how to configure custom wrappers, see the comments in the
scriptframework.properties file.

In the next section, you can configure direct Java access from scripts run by the
IBM JSEngine interpreter. Direct Java access is powerful, but scripts can bypass
some of the security built into the script framework. Consider carefully before you
do so. See the comments in the scriptframework.properties file for more
information about how to enable direct Java access.

Chapter 15. Supplemental property files 235

The final section of the configuration file configures specific properties that might
be useful. Each specific property is explained in comments in the
scriptframework.properties file, including default and allowed values.

SelfServiceHelp.properties
The SelfServiceHelp.properties file can be used to redirect help to a custom
location for customers who want to have their own help content for the self-service
user interface.

Table 31 defines the properties used to redirect help to a custom location.

Table 31. SelfServiceHelp properties

IBM Security Identity Manager SelfServiceHelp settings

helpBaseUrl

Specifies the base url to send help requests to. A blank value indicates that help
goes to the URL for Self Service application help.

Valid values include the URL of the Self Service application help.

Example:

helpBaseUrl=http://myserver:80

Help Id mappings include:

helpId = relative page URL

The help mappings section maps ids from specific pages to a relative URL sent to
the help server.

For example:

helpBaseUrl=http://myserver:80
locale = en_US
loginId/relativeURL = login_help_url=ui/ui_eui_login.html
Final URL = http://myserver:80/en_US/ui/ui_eui_login.html

Locale is determined by resolving the SelfServiceScreenText.properties resource
bundle for the current logged in user and with the associated locale.

SelfServiceHomePage.properties
The SelfServiceHomePage.properties file is used to configure the sections of the
initially installed home page for the self-service user interface. You can add or
remove tasks, and update icon URLs and labels of the home page from this file.

The file has these types of entries:
v Sections=ActionNeeded, Password, sectionConfigName ...

Defines the section configuration names in the order in which they are
displayed.

v Section definition
Defines the label keys, icons, and other objects for the home page section.

v Task definitions
Defines the NLS key and link for the URL, the NLS key for the task description,
and other attributes that enable displaying the task.

For more information about these properties, see documentation in the properties
file.

236 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

SelfServiceScreenText.properties
The SelfServiceScreenText.properties file is a resource bundle containing the
labels for the self-service user interface.

Versions of the file might be available for the installed languages. For example:
SelfServiceScreenText_en.properties and SelfServiceScreenText_es.properties,
which are editable by users.

SelfServiceUI.properties
The SelfServiceUI.properties file controls miscellaneous properties of the
self-service user interface.

Table 32 defines the properties used to configure the self-service user interface.

Table 32. SelfServiceUI. properties

enrole.ui.pageSize

Specifies the page size for displaying lists.

Example:

enrole.ui.pageSize=10

enrole.ui.pageLinkMax

Specifies the number of page links to be shown for multi-page result sets.

Example:

enrole.ui.pageLinkMax=100

enrole.ui.maxSearchResults

Specifies the maximum number of items returned from a search. The results that are
returned can be less than, but not larger than the values specified in ui.properties.

Example:

enrole.ui.maxSearchResults=1000

enrole.ui.maxSearchResults.users

Specifies the maximum displayable search results for the task Delegate Activities -
Search for User.

Example:

enrole.ui.maxSearchResults.users=100

enrole.ui.maxNrOfIteration

Specifies the maximum number of wait iterations for RequestInfo status.

Example:

enrole.ui.maxNrOfIteration=20

enrole.ui.waitTime

Specifies the time to wait until the request is asked for next status. The product of
(maxNrOfIteration * waitTime) is a maximum of 60 seconds. The value is
interpreted in milliseconds.

Example:

enrole.ui.waitTime=3000

enrole.ui.logoffURL

Chapter 15. Supplemental property files 237

Table 32. SelfServiceUI. properties (continued)

Specifies the URL to forward the browser to when the user logs off.

Example:

enrole.ui.logoffURL=myLogoffURL

enrole.ui.timeoutURL

Specifies the URL to which forward the browser on timeout.

Example:

enrole.ui.timeoutURL=myTimeoutURL

ui.layout.showBanner

Specifies a change to the values of ui.layout properties to show or hide the banner
of the self-service user interface.

Example:

ui.layout.showBanner=true

ui.layout.showFooter

Specifies a change to the values of ui.layout properties to show or hide the footer
of the self-service user interface.

Example:

ui.layout.showFooter=true

ui.layout.showToolbar

Specifies a change to the values of ui.layout properties to show or hide the toolbar
of the self-service user interface.

Example:

ui.layout.showToolbar=true

ui.layout.showNav

Specifies a change to the values of ui.layout properties to show or hide the page
navigation of the self-service user interface.

Example:

ui.layout.showNav=false

ui.usersearch.attr.cn

Specifies the attribute that is listed in the searchBy field for a user search. The
attribute is prefixed with ui.usersearch.attr. For more information about mapping
and syntax, see the documentation in the SelfServiceUI.properties file.

Example:

ui.usersearch.attr.cn=cn

ui.usersearch.attr.sn

Specifies the attribute that is listed in the searchBy field for a user search. The
attribute is prefixed with ui.usersearch.attr. For more information about mapping
and syntax, see the documentation in the SelfServiceUI.properties file.

Example:

ui.usersearch.attr.sn=sn

ui.usersearch.attr.telephonenumber

238 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 32. SelfServiceUI. properties (continued)

Specifies the attribute that is listed in the searchBy field for a user search. The
attribute is prefixed with ui.usersearch.attr. For more information about mapping
and syntax, see the documentation in the SelfServiceUI.properties file.

Example:

ui.usersearch.attr.telephonenumber=telephonenumber

ui.usersearch.attr.mail

Specifies the attribute that is listed in the searchBy field for a user search. The
attribute is prefixed with ui.usersearch.attr. For more information about mapping
and syntax, see the documentation in the SelfServiceUI.properties file.

Example:

ui.usersearch.attr.mail=mail

ui.view.accounts.expandedbydefault

Specifies whether the accounts affected twistie state on the change password page
are expanded or collapsed (true|false) by default. Valid values are:

v true – Expand the accounts affected twistie state on the change password page by
default

v false – Do not expand the accounts affected twistie state on the change password
page by default

Example (default):

ui.view.accounts.expandedbydefault=false

ui.select.all.accounts

Specifies whether all the accounts under the account twistie are to be selected by
default. Valid values are:

v all – To select all the accounts under the account twistie

v none – To select none of the accounts under the account twistie

v default – To retain the default behavior

Example (default):

ui.select.all.accounts=default

ui.properties
The ui.properties file specifies attributes that affect the operation and display of
the Security Identity Manager graphical user interface.

The following table defines the properties for configuring the IBM Security Identity
Manager graphical user interface.

Table 33. ui.properties properties

IBM Security Identity Manager GUI configuration settings

enrole.ui.customerLogo.image

Chapter 15. Supplemental property files 239

Table 33. ui.properties properties (continued)

Specifies the file name of the graphic that is displayed on the right side of the IBM
Security Identity Manager title banner. The graphic is usually a company logo. For
display over the web in a browser, the format of the file must be type that the
browser supports. The actual graphics file must be stored in the following location:

WebSphere Application Server:

WebSphere/AppServer/installedApps/domain-name/ITIM.ear/
itim_console.war/html/images/

You can also specify a path under the console webapp, /itim/console/custom/
banner.gif or specify the full URL as http://yourhost.com/banner.gif.

Example:

enrole.ui.customerLogo.image=ibm_banner.gif

enrole.ui.customerLogo.url

Specifies the URL link that is activated when you click the custom graphic image
(company logo) on the right side of the IBM Security Identity Manager banner.

Example:

enrole.ui.customerLogo.url=www.ibm.com

enrole.ui.pageSize

Specifies the number of list items that is initially displayed on the screen. If there
are more items in the list, links are at the bottom of the list view that activate
continuations of the list. For example, Page 2, Page 3, Page 4.

Example:

enrole.ui.pageSize=50

enrole.ui.maxSearchResults

Specifies the maximum number of items that are returned for a search. This
property limits the number of items that are returned when a search is done on the
directory server. The evaluation of the ACIs is done later on these returned items.
The number of items in the directory server is greater than the value specified for
this property. So, the number of items that are displayed on the IBM Security
Identity Manager Console might be less than the value specified.

The value for this property can control possible system performance degradation
when a large return of items is encountered. If you modify the value for this
property, you must restart the application server.

Example:

enrole.ui.maxSearchResults=1000

ui.banner.showForLogin

Specifies whether to show the console banner on the login page, rather than the
default login banner. Any customization to the console banner is also on the login
page when this property is in effect.

yes Show the console banner in the login page.

no Show the default login banner. An empty value assumes no.

Example (default):

ui.banner.showForLogin=no

ui.footer.URL

240 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 33. ui.properties properties (continued)

Specifies the URL for the IBM Security Identity Manager Console. Specify either the
full address (http://yourhost.com/footer.html) or an address from the IBM
Security Identity Manager web server (/itim/console/custom/footer.html). A blank
value uses the default address of the IBM Security Identity Manager footer.

Example:

ui.footer.URL=http://itim99.mylab.raleigh.ibm.com:9080/itim/console/main

ui.footer.height

Specifies the height in pixels of the footer on the IBM Security Identity Manager
Console.

Example (default):

ui.footer.height=50

ui.footer.isVisible

Shows or hides the footer of the IBM Security Identity Manager Console.

Valid values are as follows:

yes (or blank)
Shows the footer.

no Hides the footer.

Example (default):

ui.footer.isVisible=yes

ui.banner.URL

Specifies the URL for the banner on the IBM Security Identity Manager Console.

Specify either the full address (http://yourhost.com/banner.html) or a path from
the IBM Security Identity Manager web server (/itim/console/custom/
banner.html). A blank value uses the default address of the IBM Security Identity
Manager banner.

Example:

ui.banner.URL=http://itim99.mylab.raleigh.ibm.com:9080/itim/console/main

ui.banner.height

Specifies the height in pixels of the banner on the IBM Security Identity Manager
Console.

Example (default):

ui.banner.height=48

ui.homepage.path

IBM Security Identity Manager Console home page location. Specify a relative path
from the IBM Security Identity Manager Console context root (/itim/console).

For example, if the full path to the home page was http://yourhost:9080/itim/
console/custom/home.html, then the following value is ui.homepage.path=custom/
home.html.

The custom home page must be in the IBM Security Identity Manager web
application. For example: path/ITIM.ear/itim_console.war/custom/home.html). A
blank value uses the default address of the IBM Security Identity Manager home
page.

Example:

ui.homepage.path=custom/home.html

Chapter 15. Supplemental property files 241

Table 33. ui.properties properties (continued)

ui.titlebar.text

Specifies the text in the title bar of the browser for the IBM Security Identity
Manager Console. A blank value uses the default name of the IBM Security Identity
Manager product.

Example:

ui.titlebar.text=Our Home Page

ui.userManagement.includeAccounts

Specifies the default behavior for including accounts when you suspend, restore, or
delete users. Valid values are as follows:

true Accounts are included.

false Accounts are excluded.

Example (default):

ui.userManagement.includeAccounts=true

ui.userManagement.search.attributes

Adds a search attribute to the default list for the Manage Users page in the IBM
Security Identity Manager Console.

Provide one or more attribute names in the ui.userManagement.search.attributes
property value that is separated by a comma. Make sure to provide valid and
non-repetitive attributes. Do not specify attributes that cannot be searched by using
plain text. For example, audio, photo, and other similar items.

Example:

ui.userManagement.search.attributes=homepostaladdress,employeenumber

By default, this property value is empty.

The property adds user attributes that display in the Search By list on the Manage
Users page for the person search filter.

ui.challengeResponse.showAnswers

Specifies whether the answers to challenge response questions is treated as
passwords or as clear text in the IBM Security Identity Manager Console of the
following pages:

v Forgot Password page

v Challenge response question and answer definition page

Valid values are as follows:

true Answers to challenge response questions is clear text.

false Answers to challenge response questions is treated as passwords.

Example (default):

ui.challengeResponse.showAnswers=true

ui.challengeResponse.bypassChallengeResponse

242 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 33. ui.properties properties (continued)

Specifies whether the challenge response questions can be bypassed when the user
first logs on to the IBM Security Identity Manager Console, the self service web user
interface, or the Identity Service Center. Valid values:

true When true, the user can cancel and not answer the challenge questions.

false When false, the user cannot cancel. The user is forced to respond to the
challenge questions.

Default value: true

Example:

ui.challengeResponse.bypassChallengeResponse=true

ui.viewAllRequests.loadDefaultQueryResult

Specifies whether the View All Requests page loads the default query result.

true Loads the View All Requests page with default query result.

false Does not load the View All Requests page with default query result.

Default value: false

Example:

ui.viewAllRequests.loadDefaultQueryResult=false

ui.allowLaunchingNewTaskWithoutWarningForActiveTask

Specifies whether to start selected task or not, if the same task is already active in
the IBM Security Identity Manager Console. The examples of the tasks are as
follows: Create Service, Change Service, Create User, Change User.

true When you try to start an already active task, the existing task is closed.
Starts the new task without displaying any warning message.

false When you try to start an already active task, a warning message is
displayed. Does not start the new task.

Default value: false

Example:

ui.allowLaunchingNewTaskWithoutWarningForActiveTask=false

ui.policyManagement.manageProvisioningPolicies.create.defaultMemberType

Controls default selection of policy membership. This property allows default
member type to be selected while you create a provisioning policy. Allowed values
are as follows:

users All users in the organization.

roles Roles that are specified later.

others All other users who are not granted to the entitlements that are defined by
this provisioning policy by way of other policies.

Default value: users

Example:

ui.policyManagement.manageProvisioningPolicies.create.defaultMemberType=
users

ui.manageServices.reconcileNow.defaultSelectQuery

Chapter 15. Supplemental property files 243

Table 33. ui.properties properties (continued)

Specifies the default reconciliation query option. Allowed values are as follows:

none None.

use_query
Use query from existing schedule.

define_query
Define query.

Default value: none

Example:

ui.manageServices.reconcileNow.defaultSelectQuery=none

ui.passwordManagement.defaultSelection.typePassword

Specifies Allow me to type a password as default over the current Generate a
password for me option. Allowed values are as follows:

true Selects the Allow me to type a password option and additionally none of
the accounts get selected by default.

false Selects the Generate a password for me option if this property is set to
false or not present.

Default value: false

Example:

ui.passwordManagement.defaultSelection.typePassword=false

ui.advancedUserSearch.AllTypes.defaultSearchAttribute.names
ui.advancedUserSearch.AllTypes.defaultSearchAttribute.labels

When you select User type as All types in the Select User Type page, the
properties add the default search attributes and its labels on the Advanced Search
page for users in the IBM Security Identity Manager Console. If the
ui.advancedUserSearch.AllTypes.defaultSearchAttribute.names property is
removed or if no value is specified, then IBM Security Identity Manager does not
display any default search attribute field.

Provide one or more attribute names in the
ui.advancedUserSearch.AllTypes.defaultSearchAttribute.names property value,
and corresponding attribute labels in the
ui.advancedUserSearch.AllTypes.defaultSearchAttribute.labels property value.

Make sure to provide valid, non-repetitive, and comma-separated values. Do not
specify attributes that cannot be searched by using plain text. For example, audio,
photo, and other similar items.

Example (default):

ui.advancedUserSearch.AllTypes.defaultSearchAttribute.names=cn
ui.advancedUserSearch.AllTypes.defaultSearchAttribute.labels=$cn

The property adds the default search attributes and its labels on the Advanced
Search page for users when you select User type as All types in the Select User
Type page.

WfDesigner and FormDesigner applet properties

244 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 33. ui.properties properties (continued)

enrole.build.version
enrole.java.plugin
enrole.java.plugin.classid
enrole.java.pluginspage
enrole.java.plugin.jpi-version
enrole.java.plugin.version
enrole.java.entWflowHeightIE
enrole.java.entWflowWidthIE
enrole.java.entWflowHeightMZ
enrole.java.entWflowWidthMZ
enrole.java.opWflowHeightIE
enrole.java.opWflowWidthIE
enrole.java.opWflowHeightMZ
enrole.java.opWflowWidthMZ
enrole.java.joinDirHeightIE
enrole.java.joinDirWidthIE
enrole.java.joinDirHeightMZ
enrole.java.joinDirWidthMZ
enrole.java.formDesignHeightIE
enrole.java.formDesignWidthIE
enrole.java.formDesignHeightMZ
enrole.java.formDesignWidthMZ
express.java.formDesignHeightIE
express.java.formDesignWidthIE
express.java.formDesignHeightMZ
express.java.formDesignWidthMZ
#enrole.ui.logoffURL (default is commented out)
#enrole.ui.timeoutURL (default is commented out)

You must not modify or remove any information for these properties in the
property file.

These property key and value pairs provide the necessary Java applet support
required by the Java Web Start that runs the IBM Security Identity Manager
Console.

Report menu properties

enrole.ui.report.maxRecordsInReport

Displays the number of records that can be displayed in a PDF report without
encountering an “Out of Memory” error. The number does not ensure that PDF
report generation is successful. If the report contains more records than specified by
this property, PDF report generation is not attempted.

Example:

enrole.ui.report.maxRecordsInReport=5000

Enable or disable WebSEAL single sign-on (SSO)

enrole.ui.ssoEnabled

Chapter 15. Supplemental property files 245

Table 33. ui.properties properties (continued)

The property key and value pairs do not pertain to the IBM Security Identity
Manager Console.

Enable or disables WebSEAL single sign-on.

More configuration is required for WebSEAL single sign-on. Valid values are as
follows:

true WebSEAL single sign-on is enabled.

false WebSEAL single sign-on is disabled.

Example (default):

enrole.ui.ssoEnabled=false

enrole.ui.ssoEncoding

Specifies the encoding that is used to decode user credentials with WebSEAL single
sign-on.

Example (default):

enrole.ui.ssoEncoding=UTF-8

Refresh properties

enrole.ui.httpRefreshSecs

Defines, in seconds, the refresh rate for pages within the IBM Security Identity
Manager Console. This property is used during policy previews.

Example (default):

enrole.ui.httpRefreshSecs=10

Search class mapping for ObjectProfileCategory

The property key and value pairs do not pertain to the IBM Security Identity
Manager Console and must not be modified or removed.

Justification field configuration properties

ui.displayJustification

Specifies whether the Justification field is displayed in the user interface. By
default, the Justification field is not displayed.

Use in conjunction with the enrole.justificationRequired property in the
enRole.properties file.

Example (default):

ui.displayJustification=false

Identity Service Center as the default user interface configuration property

ui.defaultui.redirectSelfToISC

246 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 33. ui.properties properties (continued)

Specifies whether the Identity Service Center user interface is set as the default user
interface. If a user is already authenticated to the IBM Security Identity Manager,
and starts the self-service user interface, no redirection happens.

true If the Identity Service Center is deployed and if a user starts the
self-service user interface, then the self-service user interface redirects the
user to the Identity Service Center.

false When a user starts the self-service user interface, it does not redirect a user
to theIdentity Service Center. The self-service user interface starts.

Example (default):

ui.defaultui.redirectSelfToISC=false

Generate password configuration property

ui.passwordManagement.generatePassword

Specifies which change password options to enable on the Identity Service Center
user interface. This property is applicable only when the Enable password editing
is selected in the administrative console. The valid values are:

true Enables both the Generate a password for me and Allow me to type a
password options.

The ui.passwordManagement.defaultSelection.typePassword property is
applicable only if the property ui.passwordManagement.generatePassword is
set to true.

false Enables the Generate a password for me option and disables the Allow
me to type a password option.

Example (default):

ui.passwordManagement.generatePassword=true

Challenge response answers display configuration property

ui.challengeResponse.showAnswers

Shows or hides the challenge response answers that a user types in the text box.
The valid values are:

true Shows what a user types.

false Hides what a user types.

Example (default):

ui.challengeResponse.showAnswers=true

UIConfig.properties
The config/UIconfig.properties file contains the several properties that affect the
Identity Service Center interface.

Table 34. UIConfig.properties

password.change.pollingTime

Chapter 15. Supplemental property files 247

Table 34. UIConfig.properties (continued)

Specifies in milliseconds the time to wait before checking whether the expired
password change request is processed. A value that is less than 0 is invalid.

Example (default):

password.change.pollingTime=1000

password.change.pollingIterations

Specifies the maximum number of times that the server checks whether the
password change is processed. A value that is less than 1 is invalid.

Example (default):

password.change.pollingIterations=5

isim.ui.rtlLocales

A comma-separated list of right-to-left locales. The default values are ARABIC(ar)
and HEBREW(iw).

Example (default):

isim.ui.rtlLocales=ar,iw

property.refresh.interval.seconds

Defines how frequently the Identity Service Center server refreshes the value of
properties by reading the UIConfig.properties file to pick up new values for the
changed properties. A user can change this property even while the Identity Service
Center server is running. A user does not need to restart the server to pick up the
changes.

Example (default):

property.refresh.interval.seconds=300

LOGO_IMAGE

Specifies the file name in custom/ui/images directory that displays the company
logo image.

Example:

LOGO_IMAGE=companyLogo.png

HEADER_LOGO_IMAGE

Specifies the file name in custom/ui/images directory that displays the page header
logo image.

Example:

HEADER_LOGO_IMAGE=headerLogo.png

access.selection.maximum.number

Specifies the maximum number of accesses that can be selected in the manage
access flow. For example, in the Request Access wizard, and Edit and Delete Access
wizard.

Example (default):

access.selection.maximum.number=25

248 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 34. UIConfig.properties (continued)

timeout.notify

Specifies the seconds left before the session end that the expiration notification
message is sent.

Example (default):

timeout.notify=20

timeouturl

Specifies the URL to which IBM Security Identity Manager redirects on session
timeout

Example:

timeouturl=myTimeoutURL

ui.ssoEnabled

The property key and value pair pertain to the Identity Service Center.

The property indicates whether WebSEAL single sign-on is enabled or disabled.

To complete the configuration for WebSEAL single sign-on for Identity Service
Center, set this property value to true.

The valid values are:

true WebSEAL single sign-on is enabled.

false WebSEAL single sign-on is disabled.

By default, this property is set to false.

ui.userPicker.defaultSelfSelect

This property used to specify whether the current logged in user is selected
automatically for the Request Access flow and the Edit and Delete Access flow.

The valid values are:

true The current logged in user is selected automatically.

false No user is selected.

By default, this property is set to false.

Chapter 15. Supplemental property files 249

250 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Chapter 16. System property configuration in
enRole.properties

This section provides detailed information about the property keys and values
contained in the ISIM_HOME\data\enRole.properties system configuration file.

The enRole.properties system configuration file contains many of the properties
used to configure IBM Security Identity Manager. The file properties control the
program functions and enable user customization of special features.

Properties files
Java properties files define attributes that allow customizing and control of the
Java software. Standard system properties files and custom properties files are
used to configure user preferences and user customization.

A Java properties file defines the values of named resources. It can specify
program options such as database access information, environment settings, and
special features and functions.

A properties file defines named resources with a property key and value pair
format:
property-key-name=value

The property-key-name is an identifier for the resource. The value is typically the
name of the actual Java object. It provides the resource or a String representing the
value of the property key, such as database.name=itimdb. The statement syntax
allows spaces before and after the equal (=) sign. It can span multiple lines if you
place a line continuation character \ (a backslash) at the end of the line. For more
information about statement syntax, see the Java language references.

WebSphere Application Server properties
WebSphere Application Server properties define values that are specific to
integrating IBM Security Identity Manager with the WebSphere Application Server.

Table 35 lists these WebSphere Application Server properties.

Table 35. WebSphere application server properties

Platform Context Factory Name

enrole.platform.contextFactory

Do not modify this property key and value.

Specifies the Java class for the platform context factory that defines the integration
point for IBM Security Identity Manager with the WebSphere Application Server.

Example (default, entered as a single line):

enrole.platform.contextFactory=com.ibm.itim.apps.impl.websphere.
WebSpherePlatformContextFactory

251

Table 35. WebSphere application server properties (continued)

Application server

enrole.appServer.contextFactory

Do not modify this property key and value.

Specifies the Java class that determines which JNDI factory to use with the
WebSphere Application Server.

Example (default):

enrole.appServer.contextFactory=com.ibm.websphere.naming.
WsnInitialContextFactory

enrole.appServer.url

This property key and value can be changed only by a qualified administrator.

Specifies the location of the application server naming service. This value is
obtained during IBM Security Identity Manager installation.

Example:

enrole.appServer.url=iiop://localhost:2809

enrole.appServer.usertransaction.jndiname

Do not modify this property key and value.

Specifies the JNDI name of the JTA (Java Transaction API) User Transaction object.

Example (default):

enrole.appServer.usertransaction.jndiname=jta/usertransaction

enrole.appServer.systemUser

This property key and value can be changed only by a qualified administrator.
Modify with the runConfig utility only.

Specifies the name of the administrator for the WebSphere Application Server when
security is enabled. In a WebSphere Application Server environment, this value is
required only when global security is enabled. The value is not set if security is not
enabled.

The value is used to start, stop, and configure the IBM Security Identity Manager
Server. The value is also used by IBM Security Identity Manager installation and
configuration routines to authenticate to the WebSphere Application Server.

Example:

enrole.appServer.systemUser=system

enrole.appServer.systemUser.credentials

This property key and value can be changed only by a qualified administrator.
Modify with the runConfig utility only. This value is stored in an encrypted format
that depends on the option selected with the runConfig utility.

Specifies the password for the systemUser.

Example:

enrole.appServer.systemUser.credentials=password

252 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 35. WebSphere application server properties (continued)

enrole.appServer.ejbuser.principal

This property key and value can be changed only by a qualified administrator.
Modify with the runConfig utility only.

Specifies the name used by IBM Security Identity Manager to authenticate when it
makes calls on Java beans.

Example:

enrole.appServer.ejbuser.principal=rasweb

enrole.appServer.ejbuser.credentials

This property key and value can be changed only by a qualified administrator.
Modify with the runConfig utility only.

Specifies the password for the principal specified.

Encryption of this value is specified by the enrole.password.appServer.encrypted
property in enRole.properties.

Example:

enrole.appServer.ejbuser.credentials=password

enrole.appServer.realm

This property key and value can be changed only by a qualified administrator.

Specifies the target server security realm name if IBM Security Identity Manager is
running on a different WebSphere Application Server instance that is configured to
run with different security realm.

Example (on a single line):

enrole.appServer.realm=itimCustomRealm

The default value is itimCustomRealm; it can be updated during the installation of
IBM Security Identity Manager.

enrole.appServer.registry

Do not modify this property key and value.

Describes the registry to which IBM Security Identity Manager is configured.

Example (default):

enrole.appServer.registry=ITIM_Custom_registry

enrole.appServer.security.domain

Do not modify this property key and value.

Specifies the name of the Security domain created for IBM Security Identity
Manager.

Example (default):

enrole.appServer.security.domain=ISIMSecurityDomain

enrole.appServer.alwayssetisolevelrc

Chapter 16. System property configuration in enRole.properties 253

Table 35. WebSphere application server properties (continued)

Do not modify this property key and value.

This property specifies that IBM Security Identity Manager must always set the
transaction isolation level to Read-Committed when it acquires database
connections.

Because the WebSphere Application Server has internal support for setting the
isolation level, this property must be set to false.

Example (default):

enrole.appServer.alwayssetisolevelrc=false

Login helper

enrole.appServer.loginHelper.class

Do not modify this property key and value.

Specifies the Java class that is used to log each thread in to J2EE Security.

Example (default):

enrole.appServer.loginHelper.class=com.ibm.itim.util.was.WAS40LoginHelper

Application server servlet path separator

enrole.servlet.path.separator

Do not modify this property key and value.

Specifies the separator character used to specify path names to required resources.

Example (default):

enrole.servlet.path.separator=.

Event notification system login

SystemLoginContextFactory

Do not modify this property key and value.

Specifies the Java factory class for event notification system login appropriate for
WebSphere Application Server.

Example (default, entered as a single line):

SystemLoginContextFactory=com.ibm.itim.remoteservices.provider.itim.
websphere.WSSystemLogonContextFactory

Remote services properties
The enrole.remoteservices.assemblyline.encodeusingUTF8 property is referred
whenever IBM Security Identity Manager sends the assembly line to IBM Security
Directory Integrator dispatcher before running any operation. Use the UTF-8
encoding when the assembly line contains special characters such as German
umlaut characters.

254 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

The value of the enrole.remoteservices.assemblyline.encodeusingUTF8 property
determines whether the assembly line sent to IBM Security Directory Integrator is
encoded with the UTF-8 format or not.

Table 36. Remote services properties

enrole.remoteservices.assemblyline.encodeusingUTF8

Do not change this property key and value unless you are a qualified administrator.

Specifies whether the UTF-8 encoding is used or not.

Values include:

v true – Only the UTF-8 encoding is used.

v false – The platform default encoding is used.

Example (default):

enrole.remoteservices.assemblyline.encodeusingUTF8=false

Web services properties
The web services properties define the properties that are used by IBM Security
Identity Manager to manage the web services API.

Table 37 determines the web services properties.

Table 37. Web services properties

enrole.webServices.version

Do not change this property key.

Specifies the web services version. The value is returned by the
WSUnAuthService.getWebServicesVersion web services API.

Values include the version of the web services.

Example (default):

enrole.webServices.version=1.0

enrole.webseal.ltpa.cookie.name

Do not change this property key and value unless you are a qualified administrator.

Specifies the property to identify the name of the HTTP header, which carries the
LTPA token. Use this property in SSO mode only.

The default value is LtpaToken2. Do not change this property unless the HTTP
header name that carries the LTPA token is other than the default specified.

Example (default):

enrole.webseal.ltpa.cookie.name=LtpaToken2

enrole.webServices.session.cache.maxRetry

Chapter 16. System property configuration in enRole.properties 255

Table 37. Web services properties (continued)

Do not change this property key and value unless you are a qualified administrator.

Use this property key in cluster environment, and when the
enrole.webServices.session.mgmt.clientSide property is set to false.

Values must be a valid integer.

Example (default):

enrole.webServices.session.cache.maxRetry=5

enrole.webServices.session.mgmt.clientSide

Do not change this property key and value unless you are a qualified administrator.

Specifies whether the session management is client side or server side.

Values include:

v true – indicates that client side management is enabled.

v false – indicates that a server-side management is expected.

Example (default):

enrole.webServices.session.mgmt.clientSide=true

authTokenTimeout

Do not change this property key and value unless you are a qualified administrator.

Specifies the time in hours for how long a session can be valid. For example, even if
you keep a session active by continuously using it, the session expires every two
days, and you must log in again.

Use this property key when the enrole.webServices.session.mgmt.clientSide
property is set to false.

Values include:

Example (default):

authTokenTimeout=48

sessionInactivityTime

Do not change this property key and value unless you are a qualified administrator.

Specifies the time in minutes for how long an unused session is active.

Use this property key when the enrole.webServices.session.mgmt.clientSide
property is set to false.

Values include:

Example (default):

sessionInactivityTime=15

Application server properties
Application server properties define properties that are specific to the application
server, such as a user-selected locale.

256 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 38 defines the properties that are specific to the application server.

Table 38. Application server properties

User-selected locale

locale

Specifies the locale setting for the IBM Security Identity Manager environment.

Example (default):

locale=en

Context factory name

enrole.appServer.name

Specifies the unique name of the application server.

In a cluster environment, it is important that this name is unique for each member
within a node in the cluster. Cluster members on different nodes can have same
names.

Example (default):

enrole.appServer.name=myserver

enrole.password.database.encrypted

Use the runConfig utility to modify this property.

Specifies whether the password for the database connection (specified by the
database.db.password property in the enroleDatabase.properties file) is encrypted.
Valid values are:

v true – Password is encrypted.

v false – Password is not encrypted.

Example (default):

enrole.password.database.encrypted=true

enrole.password.ldap.encrypted

Use the runConfig utility to modify this property.

Specifies whether the LDAP password (specified by the
java.naming.security.credentials property in the enRoleLDAPConnection.properties
file) is encrypted. Valid values are:

v true – Password is encrypted.

v false – Password is not encrypted.

Example (default):

enrole.password.ldap.encrypted=true

enrole.password.appServer.encrypted

Chapter 16. System property configuration in enRole.properties 257

Table 38. Application server properties (continued)

Use the runConfig utility to modify this property.

Specifies whether the application server password (specified by the
enrole.appServer.ejbuser.credentials property in the enRole.properties file) is
encrypted. Valid values are:

v true – Password is encrypted.

v false – Password is not encrypted.

Example (default):

enrole.password.appServer.encrypted=true

Organization properties
Organization properties define the organization name that is used by the directory
server.

Table 39 defines the properties for the organization name that is used by the
directory server.

Table 39. Organization properties

enrole.defaulttenant.id

Use the ldapConfig utility to modify this property.

Specifies the short format of the organization name that is used by the directory
server.

This value is specified during installation of IBM Security Identity Manager or by
running the ldapConfig utility.

Example (default):

enrole.defaulttenant.id=org

In LDAP, this value is expressed as:

ou=org

enrole.organization.name

Use the ldapConfig utility to modify this property.

Specifies the long format of the organization name that is used by the directory
server.

This value is specified during installation of IBM Security Identity Manager or by
running the ldapConfig utility.

Example (default):

enrole.organization.name=Organization

258 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

LDAP server properties
LDAP server properties define the properties that are used by the directory server
in which IBM Security Identity Manager stores data.

Table 40 defines the properties that are used the directory server.

Table 40. LDAP server properties

enrole.ldapserver.root

Specifies the top-level entry node of the directory server data structure (dc=domain
control). Use the ldapConfig utility to modify this value.

This value is specified during installation of IBM Security Identity Manager.

Example (default):

enrole.ldapserver.root=dc=com

enrole.ldapserver.home

Do not modify this property key and value.

Specifies the location of the system configuration information in the directory server.

Example (default):

enrole.ldapserver.home=ou=itim

enrole.ldapserver.agelimit

Do not change this property key and value unless you are a qualified administrator.
Use therunConfig utility to modify this value.

Specifies the number of days that an object remains in the recycle bin before it can
be deleted when the cleanup script is started. The recycle bin age limit protects
objects in the recycle bin from cleanup scripts for the specified length of time.

Cleanup scripts can remove only those objects that are older than the age limit
setting. If the age limit setting is 62 days (default), only objects in the recycle bin for
more than 62 days can be deleted by starting the cleanup script.

Example (default):

enrole.ldapserver.agelimit=62

enrole.ldapserver.ditlayout

Do not modify this property key and value.

Specifies the Java class that defines the structure of the data that is stored in the
directory server.

Example (default, flat structure):

enrole.ldapserver.ditlayout=com.ibm.itim.dataservices.dit.itim.
FlatHashedLayout

enrole.ldap.provider

Example (default):

enrole.ldap.provider=IBM

Chapter 16. System property configuration in enRole.properties 259

Search and LDAP control properties
Search and LDAP control properties are used to configure search strategy and
LDAP control.

For more information about setting these parameters for your environment, see the
tuning guide that is provided for IBM Security Identity Manager.

Table 41 defines the properties used to configure search strategy and LDAP control.

Table 41. Search and LDAP control properties

enrole.search.sss.enable

Do not modify this property key and value.

Specifies whether Server Side Sorting is used for searches of the directory server.
Enabling server-side sorting with this property can have a large negative impact
when you view large organizational units. It is suggested that you disable this
option in most environments.

Example (default):

enrole.search.sss.enable=false

enrole.search.vlv.enable

Do not modify this property key and value.

Specifies whether Virtual List View (VLV) is used for all return data from the
directory server. This property can be enabled only when supported by the directory
server. This option reduces the memory load on the application server but places a
significant load on the LDAP server.

Example (default):

enrole.search.vlv.enable=false

enrole.search.paging.enable

Do not modify this property key and value.

Specifies whether Paged Sorting is used for searches of the directory server. This
option reduces the memory load on the application server. Enabling it is not
suggested because the directory server might place a limit on the number of
outstanding paged searches.

Example (default):

enrole.search.paging.enable=false

enrole.search.paging.pagesize

Do not modify this property key and value.

Specifies the page size used for paged LDAP searches when
enrole.search.paging.enable=true.

Example (default):

enrole.search.paging.pagesize=128

enrole.search.cache.enable

260 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 41. Search and LDAP control properties (continued)

Do not modify this property key and value.

Specifies the use of cached searching to speed up LDAP searches.

Example (default):

enrole.search.cache.enable=true

enrole.search.cache.secondary.enable

Do not modify this property key and value.

Specifies the use of secondary cached searching to speed up LDAP searches.

Example (default):

enrole.search.cache.secondary.enable=true

enrole.search.cache.secondary.filter.1

Do not modify this property key and value.

Use a filter fragment for people to prevent LDAP search filters from getting cached.
Filtered out LDAP search filters are cached in the secondary cache, if enabled.

Example (default):

enrole.search.cache.secondary.filter.1=ou=people

enrole.search.cache.secondary.filter.2

Do not modify this property key and value.

Use a filter fragment for accounts to prevent LDAP search filters from getting
cached. Filtered out LDAP search filters are cached in the secondary cache, if
enabled.

Example (default):

enrole.search.cache.secondary.filter.2=ou=accounts

enrole.search.cache.secondary.filter.3

Do not modify this property key and value.

Use a filter fragment for the systemuser to prevent LDAP search filters from getting
cached. Filtered out LDAP search filters are cached in the secondary cache, if
enabled.

Example (default):

enrole.search.cache.secondary.filter.3=ou=systemuser

enrole.search.cache.secondary.filter.4

Do not modify this property key and value.

Use a filter fragment for orphan accounts to prevent LDAP search filters from
getting cached. Filtered out LDAP search filters are cached in the secondary cache, if
enabled.

Example (default):

enrole.search.cache.secondary.filter.4=ou=orphans

Chapter 16. System property configuration in enRole.properties 261

Table 41. Search and LDAP control properties (continued)

enrole.search.clientside.filtering.enable

Do not modify this property key and value.

Specifies the use of client-side filtering as a performance alternative on complex
LDAP searches.

Example (default):

enrole.search.clientside.filtering.enable=true

enrole.search.strategy

Do not modify this property key and value.

Specifies the Java class that defines the search strategy to process the return data
from the directory server.

Strategy values include:

v com.ibm.itim.apps.ejb.search.EnumeratedSearch (process data on demand)

Avoids the use of collections, if possible. Maintains a cache of the number of
search links multiplied by the page size. The underlying connection is closed
when the page cache is filled. Access control items are applied as results are
retrieved.

v com.ibm.itim.apps.ejb.search.CollectedSearch (process all data)

This is the previous search mechanism, which converts the search results into a
collection and sort it. Applying access control items on the collection as pages are
retrieved. The underlying LDAP connection is freed as soon as the results are
transformed into a collection.

Example (default):

enrole.search.strategy=com.ibm.itim.apps.ejb.search.EnumeratedSearch

enrole.recyclebin.enable

Disable use of the recycle bin for a majority of objects to improve search times.

Example (default for new installations):

enrole.recyclebin.enable=false

Person profile properties
Person profile properties identify a person profile.

Table 42 defines the property used to identify a person profile. This property
selects the profile by default when you create people or do advanced person
searches in the administrative console.

Table 42. Person profile property

enrole.personProfile

262 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 42. Person profile property (continued)

Searches in IBM Security Identity Manager use the default person profile Person. If
you want to use custom person schemas, set this property to your profile.

Example (default):

enrole.personProfile=Person

Example:

enrole.personProfile=your_profile

Profile and schema cache properties
Profile and schema cache properties define system cache performance.

Table 43 defines the properties used to configure system cache performance.

Table 43. Profile and schema cache properties

enrole.profile.timeout

This property key and value affects performance tuning for IBM Security Identity
Manager. Do not change it unless you are a qualified administrator.

Specifies the timeout value in minutes for information in the profile section of the
cache. Information exceeding this timeout value is removed from the cache.

Example (default):

enrole.profile.timeout=10

enrole.schema.timeout

This property key and value affects performance tuning for IBM Security Identity
Manager. Do not change it unless you are a qualified administrator.

Specifies the timeout value in minutes for information in the schema section of the
cache. Information exceeding this timeout value is removed from the cache.

Example (default):

enrole.schema.timeout=10

password.attributes

Specifies which attribute is encrypted by the dataservices component.

Example (default, on a single line):

password.attributes=ersynchpassword erServicePassword erServicePwd1
erServicePwd2 erServicePwd3 erServicePwd4 erADDomainPassword
erPersonPassword erNotesPasswdAddCert eritamcred erep6umds

enrole.reminder.timeout

Do not change this property key and value unless you are a qualified administrator.

Specifies the cache interval (in minutes) for a workflow reminder.

Example:

enrole.reminder.timeout=10

Chapter 16. System property configuration in enRole.properties 263

Table 43. Profile and schema cache properties (continued)

signedObjectsCacheTimeout

Do not change this property key and value unless you are a qualified administrator.

Specifies the cache interval (in hours) for a signed objects.

Example:

signedObjectsCacheTimeout=8

Messaging properties
Messaging properties configure the internal communication between components
of the Java Message Service (JMS) used by IBM Security Identity Manager.

Table 44 defines the properties used to configure the internal communication
between components of the Java Message Service (JMS) used by IBM Security
Identity Manager.

The adjustment of these property values is important to accurate performance
tuning and scalability of the IBM Security Identity Manager product. Do not
change property values in this section unless you are a qualified administrator.

Table 44. Messaging properties

Message timeout configuration

enrole.messaging.ttl

This property key and value affects performance tuning for JMS. Do not change the
value unless you are a qualified administrator.

Specifies the lifetime in minutes of a message in the queue. A value of zero specifies
an unlimited lifetime.

Example (default):

enrole.messaging.ttl=0

Messaging queue configuration

enrole.messaging.managers= \
enrole.messaging.adhocSyncQueue \
enrole.messaging.workflowQueue \
enrole.messaging.sharedWorkflowQueue \
enrole.messaging.partitioningServiceQueue \
enrole.messaging.remoteServicesQueue \
enrole.messaging.remotePendingQueue \
enrole.messaging.mailServicesQueue \
enrole.messaging.policyAnalysisQueue \
enrole.messaging.policySimulationQueue \
enrole.messaging.importExportQueue

Do not modify these property keys and values.

Specifies the key names of supported IBM Security Identity Manager queues.

264 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 44. Messaging properties (continued)

enrole.messaging.adhocSyncQueue=adhocSyncQueue
enrole.messaging.workflowQueue=workflowQueue
enrole.messaging.sharedWorkflowQueue=sharedWorkflowQueue
enrole.messaging.partioningServiceQueue=partitioningServiceQueue
enrole.messaging.remoteServicesQueue=remoteServicesQueue
enrole.messaging.remotePendingQueue=remotePendingQueue
enrole.messaging.mailServicesQueue=mailServicesQueue
enrole.messaging.policyAnalysisQueue=policyAnalysisQueue
enrole.messaging.policySimulationQueue=policySimulationQueue
enrole.messaging.importExportQueue=importExportQueue

Do not modify these property keys and values.

Specifies the actual queue name as referenced by the application server.

Queue attribute configuration

v SHARED

A Boolean value that indicates whether the queue is shared across a clustered
deployment. In a cluster, a shared queue can be read and written to by all cluster
members.

Do not modify this property.

Example (on a single line):

enrole.messaging.sharedWorkflowQueue.attributes=SHARED=true
enrole.messaging.policyAnalysisQueue.attributes=SHARED=true
enrole.messaging.policySimulationQueue.attributes=SHARED=true

Message processing errors detected by the messaging system cause individual
messages to be redelivered and additional attempts to handle the message.
Following the first indication of process failure, a retry is scheduled immediately. If
the first attempt fails, another is scheduled with a delay that matches the value of
the FIRST_RETRY_DELAY property. If the second attempt fails, another is scheduled
with a delay that matches the value of the RETRY_DELAY property. Subsequent retries
are attempted with the value of the RETRY_DELAY property until the MAX_RETRY_TIME
threshold is reached.

Set the following properties to manage how the system handles the retry attempts.

v FIRST_RETRY_DELAY

The amount of time in milliseconds to delay before retrying after the initial
immediate retry. Default value is 900000 (15 minutes).

v RETRY_DELAY

The amount of time [in milliseconds] to delay before retrying after the immediate
and first attempts fail. Default value is 3600000 (60 minutes).

v MAX_RETRY_TIME

The maximum amount of time allowed for attempts, beginning with the first
failure. Default value is 86400000 (24 hours)

Example (on a single line):

enrole.messaging.workflowQueue.attributes=SHARED=false
FIRST_RETRY_DELAY=300000 RETRY_DELAY=900000 MAX_RETRY_TIME=3600000

Scheduling properties
The scheduling properties are used to configure the internal scheduler that runs
calendar-based and scheduled events.

Chapter 16. System property configuration in enRole.properties 265

Table 45 defines the properties used to configure the internal scheduler responsible
for running calendar-based scheduled events. Events and their schedules are stored
in a database table.

Table 45. Scheduling properties

enrole.scheduling.heartbeat

This property key and value affects performance tuning for IBM Security Identity
Manager. Do not change it unless you are a qualified administrator.

Specifies the interval [in seconds] that the event monitor checks the database table
for scheduled events.

Example (default):

enrole.scheduling.heartbeat=30

enrole.scheduling.timeout

This property key and value affects performance tuning for IBM Security Identity
Manager. Do not change it unless you are a qualified administrator.

Specifies the timeout value [in minutes] for the event processor.

Example (default):

enrole.scheduling.timeout=10

enrole.scheduling.fetchsize

This property key and value affects performance tuning for IBM Security Identity
Manager. Do not change it unless you are a qualified administrator.

Specifies the number of messages to retrieve at a time when in batch mode.

Example (default):

enrole.scheduling.fetchsize=50

Password transaction monitor properties
Password transaction monitor properties checks responses to password
transactions. It expires those transactions when the user fails to respond in the
specified interval.

When a password for a user is changed or automatically generated, an email
notification is sent to a user. The email contains either the actual password or a
link that the user can follow to obtain the new password. This activity is called a
password transaction. The user must respond to the email and incorporate the new
password within a specified amount of time. If the user fails to respond within the
allowed time period, the password transaction expires.

The password transaction monitor is responsible for checking responses to
password transactions. It expires those transactions when the user fails to respond
to the email.

Table 46. Password transaction monitor properties

enrole.passwordtransactionmonitor.heartbeat

266 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 46. Password transaction monitor properties (continued)

Specifies how often [in hours] the password transaction monitor checks for expired
password transactions.

Example (default):

enrole.passwordtransactionmonitor.heartbeat=1

XML and DTD properties
XML and DTD properties are no longer used.

These properties are no longer used.

Table 47. XML and DTD properties

enrole.dtd.uri

Not used.

LDAP connection pool properties
LDAP connection pool properties are used to configure cache connection requests
to the directory server.

Table 48 defines the properties used to configure the values that affect cache
connection requests to the IBM Security Identity Manager directory server.

Table 48. LDAP connection pool properties

enrole.connectionpool.incrementcount

This property key and value affect performance tuning for IBM Security Identity
Manager. They must be changed only by a qualified administrator.

Specifies the number of connections that are created any time the LDAP connection
pool is incremented to accommodate an increasing demand.

Example (default):

enrole.connectionpool.incrementcount=3

enrole.connectionpool.authentication

This property key and value affect performance tuning for IBM Security Identity
Manager. They must be changed only by a qualified administrator.

Specifies a list of space-separated authentication types of connections that can be
pooled.

Valid types are:

v none - No authentication is required.

v simple

v DIGEST-MD5 -

Example (default):

enrole.connectionpool.authentication=none simple

Chapter 16. System property configuration in enRole.properties 267

Table 48. LDAP connection pool properties (continued)

enrole.connectionpool.debug

This property key and value specify the level of debug output. Valid values are
"fine" (trace connection creation and removal) and "all" (all debugging information).

Valid values are:

v fine - Trace connection creation and removal.

v all - All debugging information.

Example (default, commented out):

#enrole.connectionpool.debug=fine

enrole.connectionpool.initialpoolsize

This property key and value affect performance tuning for IBM Security Identity
Manager. They must be changed only by a qualified administrator.

Specifies the initial number of physical LDAP connections to create for the LDAP
connection pool. This value must be less than or equal to the value of the
maxpoolsize property.

Example (default):

enrole.connectionpool.initialpoolsize=50

enrole.connectionpool.maxpoolsize

This property key and value affect performance tuning for IBM Security Identity
Manager. They must be changed only by a qualified administrator.

Specifies the maximum number of physical LDAP connections that can be created.

Example (default):

enrole.connectionpool.maxpoolsize=100

enrole.connectionpool.prefsize

This property key and value affect performance tuning for IBM Security Identity
Manager. They must be changed only by a qualified administrator.

Specifies the preferred number of physical LDAP connections that must be
maintained concurrently. This number includes both in-use and idle connections. A
size of zero or no value means that there is no preferred size. In that case, a request
for a pooled connection results in a newly created connection if no idle ones are
available.

Example (no value):

enrole.connectionpool.prefsize=

enrole.connectionpool.protocol

268 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 48. LDAP connection pool properties (continued)

This property key and value affect performance tuning for IBM Security Identity
Manager. They must be changed only by a qualified administrator.

Specifies a list of space-separated protocol types of connections that can be pooled.

Valid values are:

v plain

v ssl

v plain ssl

Example (default):

enrole.connectionpool.protocol=plain ssl

enrole.connectionpool.timeout

This property key and value affect performance tuning for IBM Security Identity
Manager. They must be changed only by a qualified administrator.

Specifies the number of milliseconds that an idle connection can remain in the pool
without being closed and removed from the pool.

Example (default, commented out):

#enrole.connectionpool.timeout=10000

Password encryption properties
Password encryption properties are used to configure password encryption.

Table 49 defines the properties used to configure password encryption.

Table 49. Encryption properties

enrole.encryption.algorithm

Do not modify this property key and value.

Specifies the cipher suite to use for encryption. For example, AES or
PBEWithMD5AndDES.

Example (default):

enrole.encryption.algorithm=AES

enrole.encryption.password

Chapter 16. System property configuration in enRole.properties 269

Table 49. Encryption properties (continued)

Do not modify this property key and value. This value is specified during IBM
Security Identity Manager installation.

The value of the enrole.encryption.password property is moved into the
encryptionKey property file. The value is encoded by default and is stored in the
encryptionKey property file.

For Password-Based Encryption (PBE) encryption algorithms (used for upgraded
IBM Tivoli Identity Manager Version 4.6 installations), specifies the encrypted
password used as an input parameter for Password-Based Encryption (PBE). PBE is
a method of encrypting and decrypting data with a secret key based on a
user-supplied password. For example, encrypted data includes shared secrets,
service passwords, and some protected account attributes.

Specifies the keystore password, in encrypted format, when AES is the encryption
algorithm. For non-PBE based encryption algorithms (used for new IBM Tivoli
Identity Manager Version 5.0 installations), the password is used to encrypt the
keystore that stores the private key. For more information about this property, see
the enrole.encryption.keystore property.

This value is specified during IBM Security Identity Manager installation.

enrole.encryption.passwordDigest

Do not modify this property key and value.

Specifies the type of password digest used for an IBM Security Identity Manager
password. Upgrading Tivoli Identity Manager from Version 4.6 continues to use the
original hash algorithm until users change their passwords. This original algorithm
is defined by the property enrole.pre50.encryption.passwordDigest. Valid values
are:

v SHA-256 – Federal Information Processing Standards (FIPS)-approved hashing
algorithm used by IBM Tivoli Identity Manager Version 5.0 for passwords. A
random salt value is added to the data before it is hashed.

v SHA-384 – Federal Information Processing Standards (FIPS)-approved hashing
algorithm, providing 384 bits of security (by truncating the output of the SHA-512
algorithm). A random salt value is added to the data before it is hashed.

v SHA-512 – Federal Information Processing Standards (FIPS)-approved hashing
algorithm, providing 512 bits of security. A random salt value is added to the data
before it is hashed.

Example (default):

enrole.encryption.passwordDigest=SHA-256

enrole.pre50.encryption.passwordDigest

Do not modify this property key and value. Upgrading IBM Tivoli Identity Manager
from Version 4.6 adds this property dynamically to this properties file.

Specifies the type of password digest used for IBM Security Identity Manager
password data from IBM Tivoli Identity Manager versions before 5.0. The lack of a
":" in an encrypted IBM Security Identity Manager password value is used to
identify such migrated data.
Note: All new passwords, including changed migrated passwords, are stored with
the enrole.encryption.passwordDigest algorithm.

Example (default for migrated installations, not present for new installations):

enrole.pre50.encryption.passwordDigest=MD5

270 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 49. Encryption properties (continued)

enrole.encryption.keystore

Do not modify this property key and value.

Specifies the keystore file name used to contain the randomly generated secret key
for non-PBE based encryption algorithms, such as AES. This keystore file is
protected with the enrole.encryption.password value. This file is in the
ISIM_HOME\data\keystore directory.

Example (default):

enrole.encryption.keystore=itimKeystore.jceks

Challenge response encoding properties
Challenge response encoding properties determine whether a response is encoded
as case sensitive or insensitive.

Table 50 defines the properties used to encode a response as case sensitive or
insensitive.

Table 50. Challenge response encoding properties

enrole.challengeresponse.responseConvertCase

Do not change this property key and value unless you are a qualified administrator.

Specifies how CR responses are encoded before they are stored in the directory.
Valid values are:

v lower – Encode the CR as lowercase.

v upper – Encode the CR as uppercase.

v none – Do not encode the CR. Retain the case-sensitive response as is.

Example (default):

enrole.challengeresponse.responseConvertCase=lower

System listening port properties
System listening port properties are used to configure the listening port settings for
the IBM Security Identity Manager Server.

Table 51 defines the properties used to configure the listening port settings for the
IBM Security Identity Manager Server.

Table 51. System configuration properties

enrole.system.listenPort

Do not modify this property key and value.

Specifies the TCP (non-secure communication) listening port value.

This value is set during IBM Security Identity Manager installation.

Example (default):

enrole.system.listenPort=80

Chapter 16. System property configuration in enRole.properties 271

Table 51. System configuration properties (continued)

enrole.system.SSLlistenPort

Do not modify this property key and value.

Specifies the Secure Sockets Layer (SSL) listening port value.

This value is set during IBM Security Identity Manager installation.

Example (default):

enrole.system.SSLlistenPort=443

Mail properties
Mail properties are used to configure internal mail notification.

Table 52 defines the properties used to configure internal mail notification.

Table 52. Mail services properties

enrole.mail.notify

Specifies whether the sending of workflow internal email is synchronized or not.

Values include:

v SYNC - Synchronized.

v ASYNC - Asynchronized.

Example (default):

enrole.mail.notify=ASYNC

Workflow properties
Workflow properties are used to configure the core IBM Security Identity Manager
workflow engine.

Table 53 on page 273 defines the properties used to configure the core IBM Security
Identity Manager workflow engine.

Note: If you begin your upgrade to Version 5.0 from Tivoli Identity Manager
Version 4.5.x, and then to Version 4.6, the workflow notification properties are not
modified during the upgrade. To have notification template customization
available in IBM Tivoli Identity Manager Version 4.6 following an upgrade, you
must modify the values of these properties. You must modify them to the new
Template notification factories (prefixed with Template).

For example, the enrole.workflow.notification.activitytimeout property for
Tivoli Identity Manager Version 4.5.x is shown in the following example (on a
single line).
enrole.workflow.notification.activitytimeout=

com.ibm.itim.workflow.notification.ActivityTimeoutNotification

If you upgrade Tivoli Identity Manager Version 4.6 to Version 5.0, the change
occurs automatically. It assumes either of the following conditions:
v Version 4.6 was the starting point for upgrade

272 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

v You made the manual change to the
enrole.workflow.notification.activitytimeout property before you upgrade
from Version 4.5.x

Table 53. Workflow configuration properties

Workflow configuration

enrole.workflow.lrucache.size

Specifies the size of the cache used to temporarily use and access workflow objects.
Do not change it unless directed by IBM support. Making this value too large can
result in out of memory conditions oIBM Security Identity Manager Server.

Example (default, commented out):

enrole.workflow.lrucache.size=number_of_entries

where the default value of number_of_entries is 2000.

enrole.workflow.notifyoption

Do not change this property key and value unless you are a qualified administrator.

Specifies the behavior of workflow email notifications. Values are:

v 0 (NOTIFY_NONE) – Security Identity Manager does not send email notifications
when the workflow process completes.

v 1 (NOTIFY_REQUESTER) – A process completion notification is sent to the requester
when the workflow process completes. Account email notifications are then sent
to the requestee for the following account requests:

New Account

New Password

Change Account

Deprovision Account

Suspend Account

Restore Account

For example, when the workflow process completes for a new account request, a
process completion notification is sent to the requester. A new account notification
is then sent to the requestee.

Example (default):

enrole.workflow.notifyoption=1

enrole.workflow.notifypassword

Do not change this property key and value unless you are a qualified administrator.

Specifies the type of email notification in a password transaction (caused when a
user password is changed or automatically generated). Values are:

v true – email notification of a password change can be sent to a user. The actual
notification mechanism and whether to include the actual password in the email
is dictated by the configuration of the
enrole.workflow.notification.newpassword property value.

v false – email notification of a password change is sent to a user. The email
contains a URL where the user can obtain the password. The URL prompts the
user for the shared secret.

Example (default):

enrole.workflow.notifypassword=true

Chapter 16. System property configuration in enRole.properties 273

Table 53. Workflow configuration properties (continued)

enrole.workflow.notifyaccountsonwarning

Specifies whether account email notifications are sent when the account operation
results in a warning. Values are:

v true – Sends account email notifications.

v false – Does not send account email notifications.

Example (default):

enrole.workflow.notifyaccountsonwarning=false

enrole.workflow.maxretry

Do not change this property key and value unless you are a qualified administrator.

Specifies the number of times an attempt is made to start a workflow that initially
failed. See also enrole.workflow.retrydelay.

Example (default):

enrole.workflow.maxretry=2

enrole.workflow.retrydelay

Do not change this property key and value unless you are a qualified administrator.

Specifies the time delay [in milliseconds] between successive attempts to start a
workflow application that initially failed. See also enrole.workflow.maxretry.

Example (default):

enrole.workflow.retrydelay=60000

enrole.workflow.skipapprovalforrequester

Do not change this property key and value unless you are a qualified administrator.

For a workflow activity that requires approval, this property specifies whether to
skip the approval for other approvers if the requester is also an approver. Values
are:

v true – Skips approval for other approvers if the requester is also an approver.

v false – Forces an approval check from other required approvers of the activity,
except the requester (if the requester is also an approver). If the requester is a
single approver as a result of participant resolution, then the approval is skipped
even when value is set to false.

Example (default):

enrole.workflow.skipapprovalforrequester=false

enrole.workflow.disablerequesteeapproval

274 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 53. Workflow configuration properties (continued)

Do not change this property key and value unless you are a qualified administrator.

For a workflow activity that requires approval, this property specifies whether to
disable the requestee approval if the requestee is also an approver. Values are:

v true – Disables the requestee approval if the requestee is also an approver.

v false – Sends an approval check to the requestee and other resolved participants
if the requestee is also an approver.

The default value is false.

Example (default):

enrole.workflow.disablerequesteeapproval=false

For more information, see Planning > Workflow planning > Workflow participants >
Disable requestee or requester approval on the IBM Security Identity Manager
documentation.

enrole.workflow.disablerequesterapproval

Do not change this property key and value unless you are a qualified administrator.

IBM Security Identity Manager considers this property value only when the
enrole.workflow.skipapprovalforrequester property value is set to false.

For a workflow activity that requires approval, this property specifies whether to
disable the requester approval if the requester is an approver. Values are:

v true – A value set to false for the enrole.workflow.skipapprovalforrequester
property disables automatic approval if the requester is a lone approver.

v false – Works according to the value that you set for the
enrole.workflow.skipapprovalforrequester property.

Example (default):

enrole.workflow.disablerequesterapproval=false

For more information, see Planning > Workflow planning > Workflow participants >
Disable requestee or requester approval on the IBM Security Identity Manager
documentation.

enrole.workflow.skipfornoncompliantaccount

Do not change this property key and value unless you are a qualified administrator.

Specifies whether to engage the entitlement workflow that is associated with the
account. Specifies when a system account modification is triggered as a result of a
policy enforcement action. Values are:

v true – Skips this action.

v false – Does not skip this action.

Example (default):

enrole.workflow.skipfornoncompliantaccount=true

enrole.workflow.distribution

Chapter 16. System property configuration in enRole.properties 275

Table 53. Workflow configuration properties (continued)

Do not change this property key and value unless you are a qualified administrator.

Specifies whether workflow requests use the IBM Security Identity Manager shared
queues, which allow for workload distribution. Values are:

v true – Workflow requests are eligible for distribution.

v false – Workflow requests are not eligible for distribution.

Example (default):

enrole.workflow.distribution=true

enrole.workflow.async_completion_enabled

Do not change this property key and value unless you are a qualified administrator.

Specifies whether the system uses asynchronous completion checking for some
system workflows, which can decrease database lock contention and improve
performance. Values are:

v true – Uses asynchronous completion checking.

v false – Does not use asynchronous completion checking.

Example (default):

enrole.workflow.async_completion_enabled=true

enrole.workflow.async_completion_interval_sec

Do not change this property key and value unless you are a qualified administrator.

Specifies the interval in seconds that the system checks to see whether certain
system workflows are complete. Only applicable when
enrole.workflow.async_completion_enabled=true.

Example (default):

enrole.workflow.async_completion_interval_sec=30

enrole.workflow.notification.activitytimeout

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates the workflow activity timeout
notification.

Example (default, entered as a single line):

enrole.workflow.notification.activitytimeout=
com.ibm.itim.workflow.notification.TemplateActivityTimeoutNotification

enrole.workflow.notification.processtimeout

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates the workflow process timeout
notification.

Example (default, entered as a single line):

enrole.workflow.notification.processtimeout=com.ibm.itim.workflow.
notification.TemplateProcessTimeoutNotification

enrole.workflow.notification.processcomplete

276 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 53. Workflow configuration properties (continued)

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates the notification for when a workflow
process is completed.

Example (default, entered as a single line):

enrole.workflow.notification.processcomplete=com.ibm.itim.workflow.
notification.TemplateProcessCompleteNotification

enrole.workflow.notification.pendingwork

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates the notification for when a workflow
process is completed for manual activities (Approvals and Requests for
Information).

Example (default, entered as a single line):

enrole.workflow.notification.pendingwork=com.ibm.itim.workflow.
notification.TemplatePendingWorkNotification

enrole.workflow.notification.newaccount

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates the notification for when a workflow
process is completed for a new account.

Example (default, entered as a single line):

enrole.workflow.notification.newaccount=com.ibm.itim.workflow.
notification.TemplateNewAccountNotification

enrole.workflow.notification.newpassword

Chapter 16. System property configuration in enRole.properties 277

Table 53. Workflow configuration properties (continued)

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates a notification when a user changes a
password. This property is used only when the value for the property is true.

enrole.workflow.notifypassword=true

This property responds to the following three-password change scenarios:

v When a user changes the password for the account

v When the administrator forces a password change on the account

v When a user is successfully identified through the password challenge/response
feature, and challenge/response is configured.

Valid classes include:

v NewPasswordNotification

Email notification that includes the password (in ASCII text) is sent to a user
(default).

v EmptyNotificationFactory

Suppresses email notification. The preferred method for suppressing any
notification is through the Workflow Notification GUI.

v PasswordChangeNotificationFactory

Email notification that does not include the password is sent to a user. Message
body says: "Process completed".

The EmptyNotificationFactory and PasswordChangeNotificationFactory classes are
in the examples.jar package in the examples directory.

Example (default, entered as a single line):

enrole.workflow.notification.newpassword=com.ibm.itim.workflow.
notification.TemplateNewPasswordNotification

enrole.workflow.notification.deprovision

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates deprovisioning notification.

Example (default, entered as a single line):

enrole.workflow.notification.deprovision=com.ibm.itim.workflow.
notification.TemplateDeprovisionNotification

enrole.workflow.notification.workorder

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates work order notifications.

Example (default, entered as a single line):

enrole.workflow.notification.workorder=com.ibm.itim.workflow.
notification.TemplateWorkOrderNotification

enrole.workflow.notification.changeaccount

278 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 53. Workflow configuration properties (continued)

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates account change notifications.

Example (default, as a single line):

enrole.workflow.notification.changeaccount=
com.ibm.itim.workflow.notification.TemplateChangeAccountNotification

enrole.workflow.notification.restoreaccount

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates account restoration notifications.

Example (as a single line):

enrole.workflow.notification.restoreaccount=
com.ibm.itim.workflow.notification.TempateRestoreAccountNotification

enrole.workflow.notification.suspendaccount

Do not change this property key and value unless you are a qualified administrator.

Specifies the default Java class that generates account suspension notifications.

Example (as a single line):

enrole.workflow.notification.suspendaccount=
com.ibm.itim.workflow.notification.TemplateSuspendAccountNotification

Reconciliation properties
Reconciliation properties are used to configure the reconciliation process where
data retrieved from agents is synchronized in the IBM Security Identity Manager
database.

Table 54 defines the properties used to configure the values that affect the
reconciliation process where data retrieved from agents is synchronized in the IBM
Security Identity Manager database.

Table 54. Reconciliation properties

Reconciliation configuration

enrole.reconciliation.accountcachesize

Do not change this property key and value unless you are a qualified administrator.

Specifies the maximum size of the cache for existing accounts cache that is used for
the reconciliation process. Setting a value larger than the default might cause
processing of reconciliations to fail.

Example (default):

enrole.reconciliation.accountcachesize=2000

enrole.reconciliation.threadcount

Chapter 16. System property configuration in enRole.properties 279

Table 54. Reconciliation properties (continued)

Do not change this property key and value unless you are a qualified administrator.

Specifies the number of threads that are used to handle reconciled entries. This
number of threads is created for each reconciliation process.

Example (default):

enrole.reconciliation.threadcount=8

enrole.reconciliation.failurethreshold

Do not change this property key and value unless you are a qualified administrator.

Specifies the maximum number of local accounts to delete at the end of
reconciliation. If the value is exceeded, then no local account or supporting data
entries are deleted. If the value is followed by a percent sign (%), specifies the
maximum as percentage compared with total of (local accounts at reconciliation
start plus the new accounts returned by reconciliation). A value of 100% specifies
that there is no limit.

Example (default, commented out):

#enrole.reconciliation.failurethreshold=100%

enrole.reconciliation.logTimeInterval

Do not change this property key and value unless you are a qualified administrator.

Specifies the time interval in seconds for reconciliation progress trace log messages.
A value of zero disables this time interval.

Example (default, commented out):

#enrole.reconciliation.logTimeInterval=600

enrole.reconciliation.logEveryNResults

Do not change this property key and value unless you are a qualified administrator.

Specifies the count for reconciliation progress trace log messages. A value of zero
disables this count.

Example (default, commented out):

#enrole.reconciliation.logEveryNResults=5000

Unsolicited notification events

account.EventProcessorFactory

Do not modify this property key and value.

Specifies the built-in Java class for the account event processor factory.

Example (default, entered as a single line):

account.EventProcessorFactory=com.ibm.itim.remoteservices.ejb.
reconciliation.AccountEventProcessorFactory

person.EventProcessorFactory

280 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 54. Reconciliation properties (continued)

Do not modify this property key and value.

Specifies the built-in Java class for the person event processor factory.

Example (default, entered as a single line):

person.EventProcessorFactory=com.ibm.itim.remoteservices.ejb.
reconciliation.PersonEventProcessorFactory

Reconciliation processing

account.ReconEntryHandlerFactory

Do not modify this property key and value.

Specifies the built-in Java class for the account entry handler factory.

Example (default, entered as a single line):

account.ReconEntryHandlerFactory=com.ibm.itim.remoteservices.ejb.
mediation.AccountEntryHandlerFactory

person.ReconEntryHandlerFactory

Do not modify this property key and value.

Specifies the built-in Java class for the person entry handler factory.

Example (default, entered as a single line):

person.ReconEntryHandlerFactory=com.ibm.itim.remoteservices.ejb.
mediation.PersonEntryHandlerFactory

enrole.reconciliation.accountChangeFormatter

Do not change this property key and value unless you are a qualified administrator.

When specified, this property allows you to customize how local attribute changes
that are detected during reconciliation are formatted and stored. The default
behavior can be overridden by specifying the fully qualified Java class name of an
alternative implementation.

Example (assuming Java class com.example.custom.AccountChangeFormatter is a
custom implementation of interface
com.ibm.itim.remoteservices.ejb.mediation.IAccountChangeFormatter). The
example is entered as a single line:

enrole.reconciliation.accountChangeFormatter=com.example.
custom.AccountChangeFormatter

Deferring requests for failed remote resources

com.ibm.itim.remoteservices.ResourceProperties.DEFER_FAILED_RESOURCE

Chapter 16. System property configuration in enRole.properties 281

Table 54. Reconciliation properties (continued)

Do not modify this property key and value.

Specifies whether to defer requests to failed resources and wait for resource to
restart before it sends them. Valid values are:

v true – Defers requests to failed resources and waits for the resource to restart.

v false – If the resource fails, requests follows the configured workflow retry
mechanism before it terminates as failed. See enrole.workflow.maxretry and
enrole.workflow.retrydelay.

Example (default):

com.ibm.itim.remoteservices.ResourceProperties.DEFER_FAILED_RESOURCE=true

remoteservices.remotepending.interval

Do not modify this property key and value.

Specifies the interval in seconds (120 minimum to 3600 maximum) to check whether
failed resources restart.

Example (default):

remoteservices.remotepending.interval=600

com.ibm.itim.remoteservices.ResourceProperties.MAX_REQUEST_TIME

Do not modify this property key and value.

Specifies the maximum time in seconds that a request to a resource can be
outstanding. It includes time in pending state for asynchronous requests, or deferred
requests due to a service failure or request backlog. Valid values are:

v -1 – Unlimited

v 60 + (value of remoteservices.remotepending.interval) – Minimum time interval
for outstanding requests.

Example (default):

com.ibm.itim.remoteservices.ResourceProperties.MAX_REQUEST_TIME=-1

remoteservices.remotepending.restart.retry

Do not modify this property key and value.

Specifies the time interval in minutes that pending requests generated from the
restart of a failed service are given to complete. When the time interval ends, the
server retries the requests.

Example (default):

remoteservices.remotepending.restart.retry=1440

com.ibm.itim.remoteservices.DSML2ServiceProvider.modifyAsREPLACE

282 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 54. Reconciliation properties (continued)

Do not change this property key and value unless you are a qualified administrator.

For remote services, specifies the DSMLv2 (deprecated) provider mode of sending a
modify request for attributes.

Values include:

v true – Use the REPLACE operation.

v false – Use the ADD and DELETE operations.

Example (default):

com.ibm.itim.remoteservices.DSML2ServiceProvider.modifyAsREPLACE=true

Shared secret properties
Shared secret properties are used to configure the level of protection of the shared
secret code.

Table 55 defines the properties used to configure the level of protection of the
shared secret code.

The shared secret is used by an account owner to retrieve a new or changed
password for an account when the system is configured to not email passwords in
the clear (that is, the value of enrole.workflow.notifypassword=false). This
property determines whether the stored shared secret is hashed for additional
protection.

Table 55. Shared secret hashing properties

enrole.sharedsecret.hashed

Do not change this property key and value unless you are a qualified administrator.

Specifies whether the shared secret code is hashed (secure) or not hashed (not
secure).

Values include:

v true – Store the shared secret as hashed.

v false – Store the shared secret as not hashed.

Example (default):

enrole.sharedsecret.hashed=false

Lifecycle rule properties
Lifecycle rule properties define values such as the partition size used for lifecycle
rules.

Table 56 defines the properties used to configure lifecycle rules.

Table 56. Lifecycle rule properties

enrole.lifecyclerule.partition.size

Chapter 16. System property configuration in enRole.properties 283

Table 56. Lifecycle rule properties (continued)

Do not change this value unless requested by IBM support. Specifies the size of the
data partitions for processing lifecycle rules. This parameter determines how much
data is processed in a single step.

Example (default):

enrole.lifecyclerule.partition.size=100

Product name properties
Product name properties identify this product.

Table 57 defines the property used to identify the product.

Table 57. Product property

enrole.product.name

Do not change this name. This property key identifies the product name as IBM
Security Identity Manager.

Example (default):

enrole.product.name=ITIM Enterprise

Application client request properties
Application client request properties define the properties used to configure the
lifetime, or timeout, value for the authentication token used to allow third-party
communication with IBM Security Identity Manager Server.

Table 58 defines the properties used to configure the lifetime, or timeout, value for
the authentication token used by the IBM Security Identity Manager application
API to allow third-party applications to communicate with the IBM Security
Identity Manager Server.

Table 58. Application client request properties

authTokenTimeout

Specifies timeout value in hours for the authentication token that is used for
communication between third-party applications (with the IBM Security Identity
Manager application API) and the IBM Security Identity Manager Server.

A value of -1 indicates that there is no timeout for the authentication token.

Example (default):

authTokenTimeout=48

Reverse password synchronization properties
Reverse password synchronization properties are used to configure reverse
password synchronization.

Table 59 on page 285 defines the properties used to configure reverse password
synchronization.

284 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 59. Reverse password synchronization properties

reversePasswordSynch.bypassPwdValidationOnOrphanAccount

Specifies whether to bypass the password validation on the orphan account when
the request is submitted from the agent. Valid values are:

v true – Bypass password validation.

v false – Validate passwords.

Example (default):

reversePasswordSynch.bypassPwdValidationOnOrphanAccount=false

enrole.passwordsynch.module.sendMail

Specifies whether to enable or disable email notifications when password
synchronization is triggered by the reverse password synchronization agent, not
from the IBM Security Identity Manager graphical user interface. Valid values are:

v true – Enable email notifications.

v false – Disable email notifications.

Example (default):

enrole.passwordsynch.module.sendMail=false

Post office properties
Post office properties are used to configure the post office for email collection.

Table 60 defines the properties for testing post office configuration.

Table 60. Post office properties

enrole.postoffice.test.subject1
enrole.postoffice.test.textbody1
enrole.postoffice.test.xhtmlbody1

Specifies the contents of the emails that are used when you test the post office
configuration. It is one of three emails to which the template is applied.

Example (default):

enrole.postoffice.test.subject1=This is subject 1
enrole.postoffice.test.textbody1=This is the text body 1
enrole.postoffice.test.xhtmlbody1=This is the xhtml body 1

enrole.postoffice.test.subject2
enrole.postoffice.test.textbody2
enrole.postoffice.test.xhtmlbody2

Specifies the contents of the emails that are used when you test the post office
configuration. It is one of three emails to which the template is applied.

Example (default):

enrole.postoffice.test.subject2=This is subject 2
enrole.postoffice.test.textbody2=This is the text body 2
enrole.postoffice.test.xhtmlbody2=This is the xhtml body 2

enrole.postoffice.test.subject3
enrole.postoffice.test.textbody3
enrole.postoffice.test.xhtmlbody3

Chapter 16. System property configuration in enRole.properties 285

Table 60. Post office properties (continued)

Specifies the contents of the emails that are used when you test the post office
configuration. It is one of three emails to which the template is applied.

Example (default):

enrole.postoffice.test.subject3=This is subject 3
enrole.postoffice.test.textbody3=This is the text body 3
enrole.postoffice.test.xhtmlbody3=This is the xhtml body 3

enrole.postoffice.test.topic

Specifies the topic of the email that is used when you test the post office
configuration. The three test emails, whose content is defined by the preceding
properties, all have this topic. The post office function gathers and stores emails by
topic and locale, It then aggregates and sends them as one email on a configured
interval, such as once a day or once a week. This method prevents flooding the
recipient with many individual emails for a type of event. The topic data usually
indicates the type of event. It is also made available to the programming
environment that is activated when the gathered emails are aggregated into one
summarizing email. In this way, the topic under which all of these emails were
gathered can be prominently displayed in the aggregate email that is sent.

Example (default):

enrole.postoffice.test.topic=topic1

enrole.postoffice.test.locale

Specifies the locale for the language that is used in an email.

Example (default):

enrole.postoffice.test.locale=en_US

Database resource bundle properties
Database resource bundle properties determine the refresh interval for the database
resource bundle.

Table 61 defines the properties used to determine the refresh interval for the
database resource bundle.

Table 61. Database resource bundle properties

enrole.databaseresourcebundle.refreshInterval

Specifies how many minutes to wait before DatabaseResourceBundle is checked for
changes and reloaded.

Example (default):

enrole.databaseresourcebundle.refreshInterval=5

Database cleanup properties
Database cleanup properties define the parameters to clean up session information
in the database.

286 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 62 defines the parameters for the policy analysis scavenger thread to clean up
session information in the database.

Table 62. Database cleanup properties

provisioning.policy.preview.cleanup.interval

Specifies the interval in minutes that the scavenger thread scans the database.

Example:

provisioning.policy.preview.cleanup.interval=30

provisioning.policy.analysis.idle.timeout

Represents the expired time setting for a policy analysis session. The scavenger
thread cleans up the staged data of a policy analysis session if the session ends at
an interval that is greater than the timeout value. The timeout value might be 120
minutes.

Example:

provisioning.policy.analysis.idle.timeout=120

Create password check box properties
Create password check box properties define the default check box properties to
create a password.

Table 63 defines the default create password check box properties.

Table 63. Create password check box default properties

enrole.CreatePassword

Specifies whether a password is created automatically. Valid values are:

v true – Create a password.

v false – Do not create a password. The user must type in the password.

Example (default):

enrole.CreatePassword=true

Access catalog properties
The com.ibm.itim.accesscatalog.groupIntersectionJoin.enabled enables support
for searching group access when requesting access in the Identity Service Center
when Intersection Join directive is used for the group attribute. The
com.ibm.itim.accesscatalog.customJoin.enabled enables support for searching
group access when requesting access in the Identity Service Center when Custom
Join directive is used for the group attribute.

Table 64. Access catalog properties

com.ibm.itim.accesscatalog.groupIntersectionJoin.enabled

Chapter 16. System property configuration in enRole.properties 287

Table 64. Access catalog properties (continued)

Do not change this property value unless you are a qualified administrator.

Enables support for searching group access when requesting access in the Identity
Service Center in the case where Intersection Join directive is used for the
group attribute.

Values include:

v true

v false

The default is false.

Example (default):

com.ibm.itim.accesscatalog.groupIntersectionJoin.enabled=false

com.ibm.itim.accesscatalog.customJoin.enabled

Do not change this property value unless you are a qualified administrator.

Enables support for searching group access when requesting access in the Identity
Service Center in the case where Custom Join directive is used for the group
attribute.

Values include:

v true

v false

The default is false.

Example (default):

com.ibm.itim.accesscatalog.customJoin.enabled=false

Identity feed properties
Identity feed properties define a default identity feed action, such as whether to
suspend an account.

Table 65 defines the default identity feed properties.

Table 65. Default identity feed properties

enrole.suspend.accounts.identity.feed

Specifies whether all of a user's accounts are suspended when the person is
suspended during an identity feed. Valid values are:

v true – Suspend all accounts of a suspended user.

v false – Do not suspend all accounts of a suspended user.

Example (default):

enrole.suspend.accounts.identity.feed=true

288 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Upgrade properties
Upgrade properties define values for the upgrade of a specific release of IBM
Security Identity Manager.

Table 66 defines the product upgrade properties.

Table 66. Default upgrade properties

minUpgradeVersion

Specifies the minimum version that the upgrade supports for a specific release of
IBM Security Identity Manager.

Example (default):

minUpgradeVersion=5.0

file.merge.list

Specifies which properties files are merged during the upgrade of IBM Security
Identity Manager.

Example (default):

file.merge.list=enRole \
enRoleLDAPConnection \
enRoleDatabase \
enRoleLogging \
enRoleMail \
ui \
CustomLabels \
CustomLabels_en \
enRoleAuthentication \
adhocreporting \
enroleworkflow \
enroleAuditing \
SelfServiceScreenText \
SelfServiceScreenText_en \
SelfServiceHelp \
SelfServiceUI \
SelfServiceHomePage\
scriptframework\
encryptionKey\
KMIPServer

Back up these files with backupPropertyFiles.sh or backupPropertyFiles.cmd.

Multiple password-synch agent properties
Multiple password-synch agent properties are used to configure the IBM Security
Identity Manager Server to support multiple password-synchronization agents.

Table 67 defines the properties used to configure the support for multiple
password-synch agents.

Table 67. Multiple password-synch agent properties

enrole.passwordsynch.enabledonresource

Chapter 16. System property configuration in enRole.properties 289

Table 67. Multiple password-synch agent properties (continued)

Specifies whether to enable or disable the support for multiple password-synch
agents. Valid values are:

v true – Enable the support for multiple password-synch agents

v false – Disable the support for multiple password-synch agents

Example (default):

enrole.passwordsynch.enabledonresource=false

enrole.passwordsynch.toleranceperiod

Specifies the maximum time duration, in seconds, between a password change
request sent from the IBM Security Identity Manager Server to the password synch
resource, and receiving a reverse password synch request from the plug-in installed
on the password synch resource.

Example (default):

enrole.passwordsynch.toleranceperiod=60

enrole.PasswordSynchStoreMonitor.heartbeat

Specifies the password synch transaction monitor heartbeat, in hours.

Example (default):

enrole.PasswordSynchStoreMonitor.heartbeat=1

Concurrency properties
Account concurrency properties determine how to resolve multiple provisioning
requests for the same account ID.

Table 68. Account concurrency properties

account.provision.concurrency.resolution

Specifies which conflict resolution method is used when a concurrency issue occurs.

Select from the following values:

v 0 - Change the concurrent account add operations to account modify operations.

v 1 - Add the account with a newly generated account user ID

v 2 - No operation override. Fail the account provisioning.

Example (default):

account.provision.concurrency.resolution=0

Required field properties
These properties are used to configure whether fields in the user interface are
required to be completed by the user.

Table 69 defines the properties that are used to determine whether a field in the
user interface is a required field.

Table 69. Required field properties

enrole.justificationRequired

290 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Table 69. Required field properties (continued)

Specifies whether the Justification field is a required field.

By default, the Justification field is not displayed in the user interface. Setting this
property to true causes the Justification property to be displayed. It also sets the
field as required to be completed by the user.

Example (default):

enrole.justificationRequired=false

Chapter 16. System property configuration in enRole.properties 291

292 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

Index

A
access control

API 6
AccessRequestBatch object, JavaScript

extension 168
AccessRequestBatch.getAccessDeprovisioningStatusList

object, JavaScript extension 171
AccessRequestBatch.getAccessProvisioningStatusList

object, JavaScript extension 171
AccessRequestBatch.getAccessUpdateStatusList

object, JavaScript extension 172
AccessRequestBatch.getSubmittedAccessDeprovisioningList

object, JavaScript extension 170
AccessRequestBatch.getSubmittedAccessProvisioningList

object, JavaScript extension 169
AccessRequestBatch.getSubmittedAccessUpdateList

object, JavaScript extension 170
account

object, JavaScript extension 76
Account.getAndDecryptPassword object

JavaScript extension 76
Account.setAndEncryptPassword object

JavaScript extension 77
AccountModelExtension, JavaScript

extensions 60
AccountSearch object, JavaScript

extension 77
AccountSearch.searchByOwner object

JavaScript extension 78
AccountSearch.searchByUid object,

JavaScript extension 78
AccountSearch.searchByURI object,

JavaScript extension 79
activity object, JavaScript extension 80
Activity.auditEvent object, JavaScript

extension 81
Activity.description object, JavaScript

extension 82
Activity.duedate object, JavaScript

extension 82
Activity.getSubProcesses(), JavaScript

extension 82
Activity.guid object, JavaScript

extension 83
Activity.id object, JavaScript

extension 83
Activity.index object, JavaScript

extension 83
Activity.name object, JavaScript

extension 84
Activity.participant object, JavaScript

extension 84
Activity.resultDetail object, JavaScript

extension 84
Activity.resultSummary object, JavaScript

extension 84
Activity.setResult object, JavaScript

extension 85
Activity.started object, JavaScript

extension 85

Activity.state object, JavaScript
extension 85

Activity.subtype object, JavaScript
extension 86

Activity.type object, JavaScript
extension 86

adhocreporting.properties 189
APIs

access control 6
authentication 8
data services 5, 8
group 6
IBM Directory Integration API 8
JavaScript 9
mail 9
overview 5
password rules 9
policy analysis 9
reconciliation 7
self registration 6
service provider 9
single sign-on 10
web services API 10
workflow 14

APIsgroup
recertification policy 7

application client request
configuration 284

application extension methods 1
application server information 257
AttributeChangeOperation object,

JavaScript extension 87
AttributeChangeOperation.attr object,

JavaScript extension 87
AttributeChangeOperation.op object,

JavaScript extension 87
AttributeChangeOperation.values,

JavaScript extension 87
AttributesExtension, JavaScript

extensions 58
authentication

API 8
authentication properties

enRoleAuthentication.properties 200

C
cache information 263
challenge response encoding

information 271
concurrency

enrole properties 290
ConfigErrorMessages.properties, not

configurable 187
ConfigLabels.properties, not

configurable 187
ConfigMessages.properties, not

configurable 187
constructor

JavaScript migration, example 70

ContainerSearch object, JavaScript
extension 88

ContainerSearch.searchByFilter object,
JavaScript extension 88

ContainerSearch.searchByURI object,
JavaScript extension 89

content tags
dynamic tags 33
examples 33

Context object, JavaScript extension 89
Context.getAccountParameter object,

JavaScript extension 91
Context.getActivityResult object,

JavaScript extension 91
Context.getActivityResultById object,

JavaScript extension 91
Context.getLoopCount object, JavaScript

extension 92
Context.getLoopCountByID object,

JavaScript extension 92
Context.getProcessType object, JavaScript

extension 92
Context.getRequestee object, JavaScript

extension 93
Context.getService object, JavaScript

extension 93
control type

SubForm 181
contextual parameters 181
parameter names 182
writing 183

create password checkbox
information 287

credential
shared access module 94

Credential.getAccessMode() 95
Credential.isNotifyOnly() object,

JavaScript extension 96
Credential.isPasswordViewable() object,

JavaScript extension 97
Credential.isResetPasswordAtCheckin()

object, JavaScript extension 97
CustomForms.properties, not

configurable 187
customization

date range 19
CustomLabels.properties

supplemental properties 196

D
data services

API 5
database cleanup information 287
database resource bundle 286
DataBaseFunctions.conf 197
dataservices attributes

recertification 17
date range

customization 19

293

default notification templates
manual service 38

default recertification templates
recertification default messages 40

default workflow templates
workflow default messages 46

DelegateExtension, JavaScript
extensions 59

dictionary
password policy 15

DirectoryObject object, JavaScript
extension 98

DirectoryObject.addProperty object,
JavaScript extension 99

DirectoryObject.dn object, JavaScript
extension 100

DirectoryObject.getChanges object,
JavaScript extension 100

DirectoryObject.getProperty object,
JavaScript extension 101

DirectoryObject.getPropertyAsDate
object 102

DirectoryObject.getPropertyAsString
object 102

DirectoryObject.getPropertyNames object,
JavaScript extension 103

DirectoryObject.name object, JavaScript
extension 103

DirectoryObject.profileName object,
JavaScript extension 103

DirectoryObject.setProperty, JavaScript
extension

object 105
Dsml2RootDSE.properties, not

configurable 187
Dsml2Schema.properties, not

configurable 187
dynamic tags

content tags
examples 33

E
EmailContext object, JavaScript

extension 106
EmailContextExtension, JavaScript

extensions 59
encryption information 269
enrole

concurrency 290
Enrole object, JavaScript extension 108
Enrole.generatePassword object,

JavaScript extension 109
Enrole.getAttributeValue object,

JavaScript extension 109
Enrole.getAttributeValues object,

JavaScript extension 110
Enrole.localize object, JavaScript

extension 110
Enrole.log object, JavaScript

extension 110
Enrole.logError object, JavaScript

extension 111
Enrole.loginfo object, JavaScript

extension 112
Enrole.logWarning object, JavaScript

extension 112

enRole.properties file 251
application client request

configuration 284
application server information 257
cache information 263
challenge response encoding

information 271
create password checkbox 287
database cleanup 287
database resource bundle 286
encryption information 269
identity feed 288
LDAP connection pool

information 267
LDAP server information 259
life cycle rule 283
mail services configuration 272
messaging information 264
organization name 258
password synchronization 289
password transaction monitor

settings 266
person profile 262
post office 285
product name 284
reconciliation information 279
required fields 290
reverse password

synchronization 284
scheduling information 266
search strategy and LDAP control

configuration 260
shared secret hashing 283
system configuration program 271
tenant information, default 258
upgrade 289
WebSphere-specific configuration 251
workflow configuration

information 272
XML and DTD information 267

Enrole.toGeneralizedTime object,
JavaScript extension 113

Enrole.toMilliseconds object, JavaScript
extension 113

Enrole.traceMax object, JavaScript
extension 114

Enrole.traceMid object, JavaScript
extension 114

Enrole.traceMin object, JavaScript
extension 115

enRole2ldif.properties, deprecated 187
enroleAuditing.properties 197
enRoleAuthentication.properties

authentication properties 200
enRoleDatabase.properties 202
enRoleEntityHiddenAttributes, do not

modify 187
EnroleExtension, JavaScript

extensions 59
enRoleFonts.properties, not

configurable 187
enRoleHelp.properties, not

configurable 187
enRoleHiddenAttributes.properties, not

configurable 187
enRoleHiddenSearchAttributes.

properties, not configurable 187

enRoleLDAPConnection. properties 205
enRoleLogging.properties 208
enRoleMail.properties 219
enrolepolicies.properties 222
enroleStartup.properties 227
enroleStartup.properties, not

configurable 187
enRoleUnchangedAttributes.properties,

not configurable 187
enRoleValidateAttributes.properties, not

configurable 187
enroleworkflow.properties 228
entitlement parameters 175
entitlementHiddenAttributes.properties,

not configurable 187
Error object, JavaScript extension 115
Error.getErrorCode object, JavaScript

extension 117
Error.getMessage object, JavaScript

extension 116
Error.setErrorCode object, JavaScript

extension 117
Error.setMessage object, JavaScript

extension 116
examples

mail templates 38
expressHiddenAttributes.properties, not

configurable 187
ExtendedPerson.getOwnershipType(),

JavaScript extension 118
ExtendedPerson.setOwnershipType(),

JavaScript extension 119
extensions

JavaScript
AccountModelExtension 60
AttributesExtension 58
DelegateExtension 59
EmailContextExtension 59
EnroleExtension 59
IdentityPolicyExtension 59
LoopCountExtension 60
Model 60
OrganizationModelExtension 61
PersonModelExtension 61
PersonPlacementRules

Extension 62
PostOfficeExtension 62
ProvisioningPolicyExtension 62
registering 65
ReminderExtension 63
RoleModelExtension 61
ServiceExtension 63
ServiceModelExtension 61
SubjectExtension 63
WorkflowExtension 63

migrating
constructor 70
example 67
FESI 67
script conversion 69

scriptframework.properties 66

F
FESI

fesi.jar 71

294 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

FESI (continued)
migrating

example 67
fesi.jar

FESI 71
fesiextensions.properties 65, 229
function differences, FESI and IBM

JSEngine
JavaScript extensions 67

G
getRoleName()

RoleAssignmentAttribute 157

H
helpmappings.properties 231
HighContrastBigFontTheme.properties,

not configurable 187
HighContrastTheme.properties, not

configurable 187

I
ibmSchemaSyntax.properties, not

configurable 187
identity feed information 288
IdentityPolicy object, JavaScript

extension 119
IdentityPolicy.getNextCount object,

JavaScript extension 119
IdentityPolicy.userIDExists object,

JavaScript extension 120
IdentityPolicyExtension, JavaScript

extensions 59
iplanetSchemaSyntax.properties, not

configurable 187
itiminstaller.properties, not

configurable 187

J
Javascript extension

RoleAssignmentAttribute.getName() 156
RoleAssignmentAttribute.getRoleDN 157
RoleAssignmentObject.getAssignedRoleDN() 159

JavaScript extension
object

AccessRequestBatch 168
AccessRequestBatch.getAccessDeprovisioningStatusList 171
AccessRequestBatch.getAccessProvisioningStatusList 171
AccessRequestBatch.getAccessUpdateStatusList 172
AccessRequestBatch.getSubmittedAccessDeprovisioningList 170
AccessRequestBatch.getSubmittedAccessProvisioningList 169
AccessRequestBatch.getSubmittedAccessUpdateList 170
account 76
AccountSearch 77
AccountSearch.searchByUid 78
AccountSearch.searchByURI 79
activity 80
Activity.auditEvent 81
Activity.description 82
Activity.duedate 82
Activity.getSubProcesses() 82

JavaScript extension (continued)
object (continued)

Activity.guid 83
Activity.id 83
Activity.index 83
Activity.name 84
Activity.participant 84
Activity.resultDetail 84
Activity.resultSummary 84
Activity.setResult 85
Activity.started 85
Activity.state 85
Activity.subtype 86
Activity.type 86
AttributeChangeOperation 87
AttributeChangeOperation.attr 87
AttributeChangeOperation.op 87
ContainerSearch 88
ContainerSearch.searchByFilter 88
ContainerSearch.searchByURI 89
Context 89
Context.getAccountParameter 91
Context.getActivityResult 91
Context.getActivityResultById 91
Context.getLoopCount 92
Context.getLoopCountByID 92
Context.getProcessType 92
Context.getRequestee 93
Context.getService 93
Credential.getCheckoutDuration() 95
Credential.getNotificationRecipient() 96
Credential.getNotifyOption() 95
Credential.isCheckoutSearchEnable() 96
Credential.isNotifyOnly() 96
Credential.isPasswordViewable() 97
Credential.isResetPasswordAtCheckin() 97
DirectoryObject 98
DirectoryObject.

getPropertyNames 103
DirectoryObject.addProperty 99
DirectoryObject.dn 100
DirectoryObject.getChanges 100
DirectoryObject.getProperty 101
DirectoryObject.name 103
DirectoryObject.profileName 103
EmailContext 106
Enrole 108
Enrole.generatePassword 109
Enrole.getAttributeValue 109
Enrole.getAttributeValues 110
Enrole.localize 110
Enrole.log 110
Enrole.logError 111
Enrole.loginfo 112
Enrole.logWarning 112
Enrole.toGeneralizedTime 113
Enrole.toMilliseconds 113
Enrole.traceMax 114
Enrole.traceMid 114
Enrole.traceMin 115
Error 115
Error.getErrorCode 117
Error.getMessage 116
Error.setErrorCode 117
Error.setMessage 116
ExtendedPerson.getOwnershipType() 118
ExtendedPerson.setOwnershipType() 119

JavaScript extension (continued)
object (continued)

IdentityPolicy 119
IdentityPolicy.getNextCount 119
IdentityPolicy.userIDExists 120
PackagedApprovalDocument 120
PackagedApprovalItem 122
Participant 123
Participant.implementation 125
Participant.name 125
Participant.type 125
ParticipantType 125
Person 127
Person.getAllAssignmentAttributes() 129
Person.getAndDecryptPersonPassword() 130
Person.getAndDecryptSynchPassword() 129
Person.getNewRoles 132
Person.getRemovedRoles 133
Person.getRoleAssignmentData 131
Person.getRoleAssignmentData() 130
Person.getRoles 132
Person.isInRole 133
Person.removeRole 133
Person.removeRoleAssignmentData() 134
Person.updateRoleAssignmentData() 134
PersonSearch 135
PersonSearch.searchByFilter 135
PersonSearch.searchByURI 136
PostOffice 137
PostOffice.getAllEmailMessages() 137
PostOffice.getEmailAddress 138
PostOffice.getPerson

ByEmailAddress 138
PostOffice.getTopic 138
Process 138
Process.auditEvent 140
Process.comment 141
Process.description 141
Process.getActivity 141
Process.getParent 142
Process.getRootProcess() 142
Process.getRootRequesterName() 142
Process.getSubProcesses() 143
Process.guid 143
Process.id 143
Process.name 144
Process.parentId 144
Process.requesteeDN 144
Process.requesteeName 145
Process.requestorDN 145
Process.requestorName 145
Process.requestorType 145
Process.resultDetail 146
Process.resultSummary 146
Process.setRequesteeData 146
Process.setResult 147
Process.setSubjectData 147
Process.started 147
Process.state 148
Process.subject 148
Process.type 148
ProcessData 149
ProcessData.get 149
ProcessData.set 150
RecertificationWorkflow 150
Reminder 151
Role 151

Index 295

JavaScript extension (continued)
object (continued)

Role.getAscendantRoles 152
Role.getAssignmentAttributes 153
Role.getChildRoles 153
Role.getDecendantRoles 154
Role.getOwner 154
Role.getParentRoles 155
Role.setAssignmentAttributes 155
RoleSearch 162
RoleSearch.searchByName 163
RoleSearch.searchByURI 163
service 164
ServiceSearch 165
useraccess 168

objects 73
RoleAssignment.addProperty

object 160
RoleAssignmentAttribute 156
RoleAssignmentObject.getChanges() 160
RoleAssignmentObject.getDefinedRoleDN() 159
RoleAssignmentObject.getProperty

object 161
RoleAssignmentObject.getPropertyNames

object 161
RoleAssignmentObject.removeProperty

object 162
RoleAssignmentObject.setProperty

object 162
SeparationOfDutyRuleViolation

object 164
ServiceSearch.searchByFilter

object 165
ServiceSearch.searchByName

object 166
ServiceSearch.searchByURI

object 167
ServiceSearch.searchForClosestToPerson

object 167
JavaScript extensions

AttributesExtension 58
DelegateExtension 59
EmailContextExtension 59
EnroleExtension 59
fesiextensions.properties 65
function differences, FESI and IBM

JSEngine 67
IdentityPolicyExtension 59
LoopCountExtension 60
migrating

FESI 67
Model 60

AccountModelExtension 60
OrganizationModelExtension 61
PersonModelExtension 61
RoleModelExtension 61
ServiceModelExtension 61

overview 57
packaged extensions 58
PersonPlacementRulesExtension 62
PostOfficeExtension 62
ProvisioningPolicyExtension 62
registering 65
ReminderExtension 63
scriptframework.properties 65, 66
ServiceExtension 63
SubjectExtension 63

JavaScript extensions (continued)
WorkflowExtension 63

JavaScript functions 175
JavaScript objects

relevant data 64
service selection policy 179

L
Labels.properties, not configurable 187
LDAP connection pool information 267
LDAP server information 259
life cycle rule 283
Log4j 208
LoopCountExtension, JavaScript

extensions 60

M
mail services configuration 272
mail templates

examples 38
manual service

default notification templates 38
Messages.properties, not

configurable 187
messaging information 264
methods

RoleAssignmentObject 158
migrating

JavaScript
constructor example 70
FESI 67
FESI example 67
script example 69

Model, JavaScript extensions 60
modifiable property files

property files 185

N
null types 175

O
object 87, 95

Context.isAccountDataChanged object,
JavaScript extension 93

delegate JavaScript extension 98
DirectoryObject.getPropertyAsDate 102
DirectoryObject.getPropertyAsString 102
DirectoryObject.removeProperty ,

JavaScript extension 104
DirectoryObject.removeProperty(name,value)

, JavaScript extension 104
DirectoryObject.setProperty object,

JavaScript extension 105
JavaScript extension

AccessRequestBatch 168
AccessRequestBatch.getAccessdeProvisioningStatusList 171
AccessRequestBatch.getAccessProvisioningStatusList 171
AccessRequestBatch.getAccessUpdateStatusList 172
AccessRequestBatch.getSubmittedAccessDeprovisioningList 170
AccessRequestBatch.getSubmittedAccessProvisioningList 169
AccessRequestBatch.getSubmittedAccessUpdateList 170

object (continued)
JavaScript extension (continued)

account 76
AccountSearch 77
AccountSearch.searchByUid 78
AccountSearch.searchByURI 79
activity 80
Activity.auditEvent 81
Activity.description 82
Activity.duedate 82
Activity.getSubProcesses() 82
Activity.guid 83
Activity.id 83
Activity.index 83
Activity.name 84
Activity.participant 84
Activity.resultDetail 84
Activity.resultSummary 84
Activity.setResult 85
Activity.started 85
Activity.state 85
Activity.subtype 86
Activity.type 86
AttributeChangeOperation 87
AttributeChangeOperation.attr 87
AttributeChangeOperation.op 87
ContainerSearch 88
ContainerSearch.searchByFilter 88
ContainerSearch.searchByURI 89
Context 89
Context.getAccountParameter 91
Context.getActivityResult 91
Context.getActivityResultById 91
Context.getLoopCount 92
Context.getLoopCountByID 92
Context.getProcessType 92
Context.getRequestee 93
Context.getService 93
Credential.getCheckoutDuration() 95
Credential.getNotificationRecipient() 96
Credential.getNotifyOption() 95
Credential.isCheckoutSearchEnable() 96
Credential.isNotifyOnly() 96
Credential.isPasswordViewable() 97
Credential.isResetPasswordAtCheckin() 97
DirectoryObject 98
DirectoryObject.

getPropertyNames 103
DirectoryObject.addProperty 99
DirectoryObject.dn 100
DirectoryObject.getChanges 100
DirectoryObject.getProperty 101
DirectoryObject.name 103
DirectoryObject.profileName 103
EmailContext 106
Enrole 108
Enrole.generatePassword 109
Enrole.getAttributeValue 109
Enrole.getAttributeValues 110
Enrole.localize 110
Enrole.log 110
Enrole.logError 111
Enrole.loginfo 112
Enrole.logWarning 112
Enrole.toGeneralizedTime 113
Enrole.toMilliseconds 113
Enrole.traceMax 114

296 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

object (continued)
JavaScript extension (continued)

Enrole.traceMid 114
Enrole.traceMin 115
Error 115
Error.getErrorCode 117
Error.getMessage 116
Error.setErrorCode 117
Error.setMessage 116
ExtendedPerson.getOwnershipType() 118
ExtendedPerson.setOwnershipType() 119
IdentityPolicy 119
IdentityPolicy.getNextCount 119
IdentityPolicy.userIDExists 120
Oerson.isInRole 133
PackagedApprovalDocument 120
PackagedApprovalItem 122
Participant 123
Participant.implementation 125
Participant.name 125
Participant.type 125
ParticipantType 125
Person 127
Person.getAllAssignmentAttributes() 129
Person.getAndDecryptPersonPassword() 130
Person.getAndDecryptSynchPassword() 129
Person.getNewRoles 132
Person.getRemovedRoles 133
Person.getRoleAssignmentData 131
Person.getRoleAssignmentData() 130
Person.getRoles 132
Person.removeRole 133
Person.removeRoleAssignmentData() 134
Person.updateRoleAssignmentData() 134
PersonSearch 135
PersonSearch.searchByFilter 135
PersonSearch.searchByURI 136
PostOffice 137
PostOffice.getAllEmailMessages() 137
PostOffice.getEmailAddress 138
PostOffice.getPerson

ByEmailAddress 138
PostOffice.getTopic 138
Process 138
Process.auditEvent 140
Process.comment 141
Process.description 141
Process.getActivity 141
Process.getParent 142
Process.getRootProcess() 142
Process.getRootRequesterName() 142
Process.getSubProcesses() 143
Process.guid 143
Process.id 143
Process.name 144
Process.parentId 144
Process.requesteeDN 144
Process.requesteeName 145
Process.requestorDN 145
Process.requestorName 145
Process.requestorType 145
Process.resultDetail 146
Process.resultSummary 146
Process.setRequesteeData 146
Process.setResult 147
Process.setSubjectData 147
Process.started 147

object (continued)
JavaScript extension (continued)

Process.state 148
Process.subject 148
Process.type 148
ProcessData 149
ProcessData.get 149
ProcessData.set 150
RecertificationWorkflow 150
Reminder 151
Role 151
Role.getAscendantRoles 152
Role.getAssignmentAttributes 153
Role.getChildRoles 153
Role.getDecendantRoles 154
Role.getOwner 154
Role.getParentRoles 155
Role.setAssignmentAttributes 155
RoleSearch 162
RoleSearch.searchByName 163
RoleSearch.searchByURI 163
service 164
ServiceSearch 165
useraccess 168

Objects
AccountSearch.searchByUidAndService

object
JavaScript extension 79

OrganizationModelExtension, JavaScript
extensions 61

overview
JavaScript extensions 57

P
packaged extensions

JavaScript extensions 58
PackagedApprovalDocument, JavaScript

extension 120
PackagedApprovalItem, JavaScript

extension 122
Participant object, JavaScript

extension 123
Participant.implementation object,

JavaScript extension 125
Participant.name object, JavaScript

extension 125
Participant.type object, JavaScript

extension 125
ParticipantType object, JavaScript

extension 125
password policy

dictionary 15
password transaction monitor

settings 266
passwordrules.properties, not

configurable 187
Person object, JavaScript extension 127
person profile 262
Person.getAllAssignmentAttributes(),

JavaScript extension 129, 130
Person.getAndDecryptPersonPassword(),

JavaScript extension 130
Person.getAndDecryptSynchPassword(),

JavaScript extension 129
Person.getNewRoles object, JavaScript

extension 132

Person.getRemovedRoles object,
JavaScript extension 133

Person.getRoleAssignmentData,
JavaScript extension 131

Person.getRoles object, JavaScript
extension 132

Person.isInRole object, JavaScript
extension 133

Person.removeRoleAssignmentData(),
JavaScript extension 134

Person.removeRoles object, JavaScript
extension 133

Person.updateRoleAssignmentData(),
JavaScript extension 134

PersonModelExtension, JavaScript
extensions 61

PersonPlacementRulesExtension,
JavaScript extensions 62

PersonSearch object, JavaScript
extension 135

PersonSearch.searchByFilter object,
JavaScript extension 135

PersonSearch.searchByURI object,
JavaScript extension 136

platformcontext.properties, not
configurable 187

post office information 285
PostOffice object, JavaScript

extension 137
PostOffice.getAllEmailMessages(),

JavaScript extension 137
PostOffice.getEmailAddress object,

JavaScript extension 138
PostOffice.getPersonByEmailAddress

object, JavaScript extension 138
PostOffice.getTopic object, JavaScript

extension 138
PostOfficeExtension, JavaScript

extensions 62
Process object, JavaScript extension 138
Process.auditEvent object, JavaScript

extension 140
Process.comment object, JavaScript

extension 141
Process.description object, JavaScript

extension 141
Process.getActivity object, JavaScript

extension 141
Process.getParent object, JavaScript

extension 142
Process.getRootProcess(), JavaScript

extension 142
Process.getRootRequesterName(),

JavaScript extension 142
Process.getSubProcesses(), JavaScript

extension 143
Process.guid object, JavaScript

extension 143
Process.id object, JavaScript

extension 143
Process.name object, JavaScript

extension 144
Process.parentId object, JavaScript

extension 144
Process.requesteeDN object, JavaScript

extension 144

Index 297

Process.requesteeName object, JavaScript
extension 145

Process.requestorDN object, JavaScript
extension 145

Process.requestorName object, JavaScript
extension 145

Process.requestorType object, JavaScript
extension 145

Process.resultDetail object, JavaScript
extension 146

Process.resultSummary object, JavaScript
extension 146

Process.setRequesteeData object,
JavaScript extension 146

Process.setResult object, JavaScript
extension 147

Process.setSubjectData object, JavaScript
extension 147

Process.started object, JavaScript
extension 147

Process.state object, JavaScript
extension 148

Process.subject object, JavaScript
extension 148

Process.type object, JavaScript
extension 148

ProcessData object, JavaScript
extension 149

ProcessData.get object, JavaScript
extension 149

ProcessData.set object, JavaScript
extension 150

product name 284
properties files

additional, not configurable 187
adhocreporting.properties 189
DataBaseFunctions.conf 197
enroleAuditing.properties 197
enRoleDatabase.properties 202
enRoleLDAPConnection.

properties 205
enRoleLogging.properties 208
enRoleMail.properties 219
enrolepolicies.properties 222
enroleStartup.properties 227
enroleworkflow.properties 228
fesiextensions.properties 229
helpmappings.properties 231
reportingLabels.properties 231
reporttabledeny.properties 231
rest.properties 232
scriptframework.properties 234
SelfServiceHelp.properties 236
SelfServiceHomePage 236
SelfServiceScreenText 237
SelfServiceUI.properties 237
supplemental properties 185
system properties 185
ui.properties 239

Properties.properties, not
configurable 187

property files
modifiable property files 185

provisioning policies
constant 175
JavaScript 175
null types 175

provisioning policies (continued)
parameter

scenarios 173
parameters 175
regular expressions 178

provisioning policy
group 7

ProvisioningPolicyExtension, JavaScript
extensions 62

R
recertification default messages

default recertification templates 40
RecertificationWorkflow object, JavaScript

extension 150
reconciliation information 279
registering application extensions 2
registering, JavaScript extensions 65
regular expressions 178
relevant data JavaScript objects 64
Reminder object, JavaScript

extension 151
ReminderExtension, JavaScript

extensions 63
reportingLabels.properties 231
reporttabledeny.properties 231
required fields

configuring 290
rest.properties 232
reverse password synchronization 284
Role object, JavaScript extension 151
Role.getAscendantRoles object, JavaScript

extension 152
Role.getAssignmentAttributes object,

JavaScript extension 153
Role.getChildRoles object, JavaScript

extension 153
Role.getDecendantRoles object, JavaScript

extension 154
Role.getOwner object, JavaScript

extension 154
Role.getParentRoles object, JavaScript

extension 155
Role.setAssignmentAttributes object,

JavaScript extension 155
RoleAssignment.addProperty object

JavaScript extension 160
RoleAssignmentAttribute

getRoleName() 157
RoleAssignmentAttribute object,

JavaScript extension 156
RoleAssignmentAttribute.getName()

Javascript extension 156
RoleAssignmentAttribute.getRoleDN

Javascript extension 157
RoleAssignmentObject

methods 158
RoleAssignmentObject.getAssignedRoleDN()

Javascript extension 159
RoleAssignmentObject.getChanges()

JavaScript extension 160
RoleAssignmentObject.getDefinedRoleDN()

JavaScript extension 159
RoleAssignmentObject.getProperty object

JavaScript extension 161

RoleAssignmentObject.getPropertyNames
object

JavaScript extension 161
RoleAssignmentObject.removeProperty

object
JavaScript extension 162

RoleAssignmentObject.setProperty object
JavaScript extension 162

RoleModelExtension, JavaScript
extensions 61

RoleSearch object, JavaScript
extension 162

RoleSearch.searchByName object,
JavaScript extension 163

RoleSearch.searchByURI object, JavaScript
extension 163

S
scheduling information 266
script

service selection policy 179
scriptframework.properties 65, 234

JavaScript
configuring 66

search strategy and LDAP control
configuration 260

SelfServiceHelp.properties 236
SelfServiceHomePage.properties 236
SelfServiceScreenText.properties 237
SelfServiceUI.properties 237
SeparationOfDutyRuleViolation object

JavaScript extension 164
service

service selection policy
Javascript 179

service object, JavaScript extension 164
service selection policy

JavaScript objects 179
script 179

ServiceExtension, JavaScript
extensions 63

ServiceModelExtension, JavaScript
extensions 61

ServiceSearch object, JavaScript
extension 165

ServiceSearch.searchByFilter object
JavaScript extension 165

ServiceSearch.searchByName object
JavaScript extension 166

ServiceSearch.searchByURI object
JavaScript extension 167

ServiceSearch.searchForClosestToPerson
object

JavaScript extension 167
shared access module

credential 94
shared secret hashing 283
SubForm control type 181

contextual parameters 181
parameter names 182
writing 183

subform.properties, not configurable 187
SubjectExtension, JavaScript

extensions 63
supplemental properties

additional, not configurable 187

298 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

supplemental properties (continued)
ConfigLabels.properties 187
CustomForms.properties 187
Dsml2RootDSE.properties 187
Dsml2Schema.properties 187
enRole2ldif.properties 187
enRoleFonts.properties 187
enRoleHelp.properties 187
itiminstaller.properties 187
Labels.properties 187
Messages.properties 187
passwordrules.properties 187
platformcontext.properties 187
Properties.properties 187
subform.properties 187
tenant.properties 187
tmsMessages.properties 187

adhocreporting.properties 189
CustomLabels.properties 196
DataBaseFunctions.conf 197
enroleAuditing.properties 197
enRoleDatabase.properties 202
enRoleLDAPConnection.

properties 205
enRoleLogging.properties 208
enRoleMail.properties 219
enrolepolicies.properties 222
enroleStartup.properties 227
enroleworkflow.properties 228
fesiextensions.properties 229
helpmappings.properties 231
properties files 185
reportingLabels.properties 231
reporttabledeny.properties 231
rest.properties 232
scriptframework.properties 234
SelfServiceHelp.properties 236
SelfServiceHomePage 236
SelfServiceScreenText 237
SelfServiceUI.properties 237
ui.properties 239

system configuration program 271
system properties

access catalog properties files 287
application client request

configuration 284
application server information 257
cache information 263
challenge response encoding

information 271
create password checkbox 287
database cleanup 287
database resource bundle 286
encryption information 269
enRole.properties file 251
identity feed 288
LDAP connection pool

information 267
LDAP server information 259
life cycle rule 283
mail services configuration 272
messaging information 264
organization name 258
password synchronization 289
password transaction monitor

settings 266
person profile 262

system properties (continued)
post office 285
product name 284
properties files 185
reconciliation information 279
remote services properties files 255
required fields 290
reverse password

synchronization 284
scheduling information 266
search strategy and LDAP control

configuration 260
shared secret hashing 283
system configuration program 271
tenant information, default 258
understanding properties files 251
upgrade 289
web services properties files 255
WebSphere-specific configuration 251
workflow configuration

information 272
XML and DTD information 267

T
tenant information, default 258
tenant.properties, not configurable 187
tmsMessages.properties, not

configurable 187
TungstenTheme.properties, not

configurable 187

U
ui.properties 239
UIConfig.properties

descriptions 247
properties 247

upgrade information 289
useraccess object, JavaScript

extension 168

W
WebSphere-specific configuration 251
workflow

application extensions 1
workflowApplication interface 1

workflow configuration information 272
workflow default messages

default workflow templates 46
workflow extensions

intro 21
policy enforcement 21
recertification 21
wait 25

WorkflowExtension, JavaScript
extensions 63

workflows
application extension

methods 1
registering 2

JavaScript objects
relevant data 64

X
XML and DTD information 267

Index 299

300 IBM Security Identity Manager Version 6.0.0.18: Reference Topics

IBM®

Printed in USA

	Table of contents
	Table list
	Chapter 1. Application extensions
	WorkflowApplication interface
	Application extension methods
	Registering extensions

	Chapter 2. Application programming interfaces
	Applications API
	Self registration API
	Access control information list (ACI) API
	IBM Security Identity Manager group API
	Provisioning policy API
	Recertification policy API
	Reconciliation API

	Authentication API
	Data services API
	IBM Directory Integration API
	JavaScript API
	Mail API
	Password rules API
	Policy analysis API
	Service provider API
	Single sign-on API
	Web services API
	Updates to the web services application interface programming (API)

	Workflow API

	Chapter 3. Dictionary for a password policy
	Chapter 4. Dataservices attributes for recertification
	Chapter 5. Date range customization
	Chapter 6. Workflow extensions
	Policy enforcement extension
	Recertification extensions
	Wait extension

	Chapter 7. REST APIs
	REST API code samples
	Invoking REST APIs in a domain different from the originating web page
	Configuring REST APIs for OAuth authentication
	Filter configuration for REST search services

	Chapter 8. Dynamic tags in mail templates
	Mail templates
	Manual service default messages
	Recertification default messages
	Workflow default messages

	Chapter 9. JavaScript extensions overview
	Packaged extensions
	AttributesExtension
	DelegateExtension
	EmailContextExtension
	EnroleExtension
	IdentityPolicyExtension
	LoopCountExtension
	Model extensions package
	AccountModelExtension
	CredentialModelExtension
	PersonModelExtension
	OrganizationModelExtension
	RoleModelExtension
	ServiceModelExtension

	PersonPlacementRulesExtension
	PostOfficeExtension
	ProvisioningPolicyExtension
	ReminderExtension
	ServiceExtension
	SubjectExtension
	WorkflowExtension
	Relevant data JavaScript objects

	Registering JavaScript extensions
	Configuring scriptframework.properties
	Migration of custom FESI extensions to the IBM JSEngine
	Best practice in handling function returns
	Plain Old Java Object (POJO) example
	Conversion to a script extension
	Creation of a constructor

	Download of fesi.jar from a non-IBM source (deprecated)

	Chapter 10. JavaScript extension reference
	How to read the reference pages
	Account
	Account.getAndDecryptPassword()
	Account.setAndEncryptPassword()

	AccountSearch
	AccountSearch.searchByOwner()
	AccountSearch.searchByUid()
	AccountSearch.searchByUidAndService()
	AccountSearch.searchByURI()

	Activity
	Activity.auditEvent()
	Activity.description
	Activity.duedate
	Activity.getSubProcesses()
	Activity.guid
	Activity.id
	Activity.index
	Activity.name
	Activity.participant
	Activity.resultDetail
	Activity.resultSummary
	Activity.setResult()
	Activity.started
	Activity.state
	Activity.subtype
	Activity.type

	AttributeChangeOperation
	AttributeChangeOperation.attr
	AttributeChangeOperation.op
	AttributeChangeOperation.values[]

	ContainerSearch
	ContainerSearch.searchByFilter()
	ContainerSearch.searchByURI()

	Context
	Context.getAccountParameter()
	Context.getActivityResult()
	Context.getActivityResultById()
	Context.getLoopCount()
	Context.getLoopCountByID()
	Context.getProcessType()
	Context.getRequestee()
	Context.getService()
	Context.isAccountDataChanged()

	Credential
	Credential.getAccessMode()
	Credential.getCheckoutDuration()
	Credential.getNotifyOption()
	Credential.getNotificationRecipient()
	Credential.isCheckoutSearchEnable()
	Credential.isNotifyOnly()
	Credential.isPasswordViewable()
	Credential.isResetPasswordAtCheckin()

	Delegate
	DirectoryObject
	DirectoryObject.addProperty()
	DirectoryObject.dn
	DirectoryObject.getChanges()
	DirectoryObject.getProperty()
	DirectoryObject.getPropertyAsDate()
	DirectoryObject.getPropertyAsString()
	DirectoryObject.getPropertyNames()
	DirectoryObject.name
	DirectoryObject.profileName
	DirectoryObject.removeProperty(name)
	DirectoryObject.removeProperty(name,value)
	DirectoryObject.setProperty()

	EmailContext
	Enrole
	Enrole.generatePassword()
	Enrole.getAttributeValue()
	Enrole.getAttributeValues()
	Enrole.localize()
	Enrole.log()
	Enrole.logError()
	Enrole.logInfo()
	Enrole.logWarning()
	Enrole.toGeneralizedTime()
	Enrole.toMilliseconds()
	Enrole.traceMax()
	Enrole.traceMid()
	Enrole.traceMin()

	Error
	Error.setMessage()
	Error.getMessage()
	Error.setErrorCode()
	Error.getErrorCode()

	ExtendedPerson
	ExtendedPerson.getOwnershipType()
	ExtendedPerson.setOwnershipType()

	IdentityPolicy
	IdentityPolicy.getNextCount()
	IdentityPolicy.userIDExists()

	PackagedApprovalDocument
	PackagedApprovalItem
	Participant
	Participant.implementation
	Participant.name
	Participant.type
	ParticipantType

	Person
	Person.getAllAssignmentAttributes()
	Person.getAndDecryptSynchPassword()
	Person.getAndDecryptPersonPassword()
	Person.getRoleAssignmentData()
	Person.getRoleAssignmentData(String roleAssignedDN)
	Person.getRoles()
	Person.getNewRoles()
	Person.getRemovedRoles()
	Person.isInRole()
	Person.removeRole()
	Person.removeRoleAssignmentData()
	Person.updateRoleAssignmentData()

	PersonSearch
	PersonSearch.searchByFilter()
	PersonSearch.searchByURI()

	PostOffice
	PostOffice.getAllEmailMessages()
	PostOffice.getEmailAddress()
	PostOffice.getPersonByEmailAddress()
	PostOffice.getTopic()

	Process
	Process.auditEvent()
	Process.comment
	Process.description
	Process.getActivity()
	Process.getParent()
	Process.getRootProcess()
	Process.getRootRequesterName()
	Process.guid
	Process.getSubProcesses()
	Process.id
	Process.name
	Process.parentId
	Process.requesteeDN
	Process.requestorDN
	Process.requesteeName
	Process.requestorName
	Process.requestorType
	Process.resultDetail
	Process.resultSummary
	Process.setRequesteeData()
	Process.setResult()
	Process.setSubjectData()
	Process.started
	Process.state
	Process.subject
	Process.type
	ProcessData
	ProcessData.get()
	ProcessData.set()

	RecertificationWorkflow
	Reminder
	Role
	Role.getAscendantRoles()
	Role.getAssignmentAttributes()
	Role.getChildRoles()
	Role.getDescendantRoles()
	Role.getOwner()
	Role.getParentRoles()
	Role.setAssignmentAttributes()

	RoleAssignmentAttribute
	RoleAssignmentAttribute.getName()
	RoleAssignmentAttribute.getRoleName()
	RoleAssignmentAttribute.getRoleDN

	RoleAssignmentObject
	RoleAssignmentObject.getAssignedRoleDN()
	RoleAssignmentObject.getDefinedRoleDN()
	RoleAssignmentObject.addProperty()
	RoleAssignmentObject.getChanges()
	RoleAssignmentObject.getProperty()
	RoleAssignmentObject.getPropertyNames()
	RoleAssignmentObject.removeProperty()
	RoleAssignmentObject.setProperty()

	RoleSearch
	RoleSearch.searchByName()
	RoleSearch.searchByURI()

	SeparationOfDutyRuleViolation
	Service
	ServiceSearch
	ServiceSearch.searchByFilter()
	ServiceSearch.searchByName()
	ServiceSearch.searchByURI()
	ServiceSearch.searchForClosestToPerson()

	UserAccess
	AccessRequestBatch
	AccessRequestBatch.getSubmittedAccessProvisioningList()
	AccessRequestBatch.getSubmittedAccessDeprovisioningList()
	AccessRequestBatch.getSubmittedAccessUpdateList()
	AccessRequestBatch.getAccessProvisioningStatusList()
	AccessRequestBatch.getAccessDeprovisioningStatusList()
	AccessRequestBatch.getAccessUpdateStatusList()

	Chapter 11. Provisioning policy parameter usage scenarios
	Chapter 12. Provisioning policy entitlement parameters
	Provisioning policy constant
	Provisioning policy Null types
	Provisioning policy JavaScript functions
	Provisioning policy regular expressions

	Chapter 13. Service selection policy JavaScript
	Service selection policy JavaScript objects
	Service selection policy script example

	Chapter 14. SubForm control type
	SubForm contextual parameters
	HTTP request parameter naming convention
	Process to write a SubForm

	Chapter 15. Supplemental property files
	Properties files
	Modifiable property files
	Non-modifiable properties files
	adhocreporting.properties
	CustomLabels.properties
	DataBaseFunctions.conf
	enroleAuditing.properties
	enRoleAuthentication.properties
	enRoleDatabase.properties
	enRoleLDAPConnection.properties
	enRoleLogging.properties
	enRoleMail.properties
	enrolepolicies.properties
	enroleStartup.properties
	enroleworkflow.properties
	fesiextensions.properties (deprecated)
	helpmappings.properties
	reportingLabels.properties
	reporttabledeny.properties
	rest.properties
	scriptframework.properties (Suggested)
	SelfServiceHelp.properties
	SelfServiceHomePage.properties
	SelfServiceScreenText.properties
	SelfServiceUI.properties
	ui.properties
	UIConfig.properties

	Chapter 16. System property configuration in enRole.properties
	Properties files
	WebSphere Application Server properties
	Remote services properties
	Web services properties
	Application server properties
	Organization properties
	LDAP server properties
	Search and LDAP control properties
	Person profile properties
	Profile and schema cache properties
	Messaging properties
	Scheduling properties
	Password transaction monitor properties
	XML and DTD properties
	LDAP connection pool properties
	Password encryption properties
	Challenge response encoding properties
	System listening port properties
	Mail properties
	Workflow properties
	Reconciliation properties
	Shared secret properties
	Lifecycle rule properties
	Product name properties
	Application client request properties
	Reverse password synchronization properties
	Post office properties
	Database resource bundle properties
	Database cleanup properties
	Create password check box properties
	Access catalog properties
	Identity feed properties
	Upgrade properties
	Multiple password-synch agent properties
	Concurrency properties
	Required field properties

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

