
RZ 3076 (#93122) 23/11/1998
Computer Science/Mathematics 25 pages

Research Report

Why Chosen Ciphertext Security Matters

Victor Shoup

IBM Research Division
Zurich Research Laboratory
8803 R�uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted
if accepted for publication. It has been issued as a Research Report for early dissemination of its contents.
In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to
publication should be limited to peer communications and speci�c requests. After outside publication,
requests should be �lled only by reprints or legally obtained copies of the article (e.g., payment of
royalties).

IBM
Research Division

Almaden � Austin � Beijing � Haifa � T.J. Watson � Tokyo � Zurich

Why Chosen Ciphertext Security Matters

Victor Shoup

IBM Research Division, Zurich Research Laboratory, 8803 R�uschlikon,

Switzerland

Abstract

This article motivates the importance of public-key cryptosystems that are
secure against chosen ciphertext attack, and of rigorous security proofs. It
also discusses the new cryptosystem developed by Cramer and Shoup, and
its relevance in this regard.

1 Introduction

Security engineers often think of encryptions as a kind of \secure enve-
lope," which only the proper addressee can open. This is a very compelling
metaphor, and it is the inspiration for the design of numerous cryptographic
protocols.

Like philosophers, those who work in the area of mathematical cryptog-
raphy ask the question: so what do we really mean by a \secure envelope,"
and do such things really exist?

As one might expect, the engineers usually have no time or patience for
the slow, and seemingly esoteric ponderings of the mathematicians. Some-
times, this is of course justi�ed, but at other times, this attitude can lead to
trouble. It was perhaps just such an attitude that led to the design
aws in
the widely-used internet security protocol SSL that left it open to the attack
discovered earlier this year by Daniel Bleichenbacher [7].

There have been, of course, many other attacks on networked comput-
ers, but typically, these attacks go after what are usually \weak links" that
have nothing to do with cryptography, e.g., bugs in the operating system or
communications software. But Bleichenbacher's attack is a direct attack on
what is supposed to be the \strongest link": the security protocol and the
underlying encryption function, a particular variant of RSA. In fact, Ble-
ichenbacher's attack demonstrates that these encryptions do not behave at

all like \secure envelopes."
In this article, we review some basic concepts from the theory of cryp-

tography, relating to the security of cryptosystems as used in SSL. We will
motivate this theory, and show why it is actually very important for real-
world security concerns.

In particular, we will try to make some sense out of the notion of a \secure
envelope." This notion is really an ideal that we cannot hope to implement
completely. However, as we will see, we can isolate the essential characteris-
tic of a secure envelope that can (in principle, at least) be implemented and
which is necessary and su�cient for the design and analysis of higher-level
protocols that use encryptions as \secure envelopes." This essential char-
acteristic is called security against chosen ciphertext attack (or equivalently,
non-malleability). As we shall see, even achieving this is not at all easy to
do.

In this regard, we will also discuss the new cryptosystem of Cramer and
Shoup [11]; namely, it it the �rst practical cryptosystem that o�ers a math-

1

ematical guarantee of security against chosen ciphertext attack.

Our main goal here is to convince the reader that security against chosen
ciphertext attack is important, as is a mathematical proof of such security.
Sometimes these issues are not taken seriously, apparently for two main rea-
sons:

� chosen ciphertext attacks that break a system in any meaningful way
are too hard for an attacker to mount;

� protecting against chosen ciphertext attack, especially in a mathemat-
ically provable sense, is too expensive.

In short, the cure is worse than the disease. We hope to demonstrate that
this is not so|that the \disease" is indeed quite serious, and the the \cure"
is not so bad.

Organization

The rest of this paper is organized as follows. In x2, we recall the basic
concepts of public key cryptography, and discuss the analogy of encryptions
with idealized \secure envelopes." In x3, we discuss the plain-old RSA cryp-
tosystem, and illustrate why it fails to approximate the ideal of a \secure
envelope." In x4 we discuss several \�xes" to plain-old RSA, and their short-
comings, including a high-level description of Bleichenbacher's attack. In
x5, we discuss formal, mathematical de�nitions of secure encryption that ap-
proximate the ideal of a \secure envelope." In x6, we discuss methods for
rigorously analyzing the security of cryptosystems, and explain the meaning
of the phrase \provably secure," as used by mathematical cryptographers.
In preparation to the discussion of the Cramer-Shoup cryptosystem in x8,
we discuss the simpler ElGamal cryptosystem in x7. In x9 we end with some
brief concluding remarks.

2 Public Key Cryptography

We focus here only on public key cryptography. A person or computer \Bob"
has a public key, which is known to the world, and a private key, which is
known only to Bob. These two keys are usually generated by some random

2

process, or algorithm, and although the two keys are correlated in some way,
it should be di�cult to compute the private key from the public key.

Now, a person/computer \Alice" wants to send a message m to Bob over
the Internet, say. She encrypts the message, scrambling it in a certain way,
producing a ciphertext �. The computation of � uses Bob's public key, which
everyone knows, including Alice. Alice then sends � over the Internet to
Bob. After receiving �, Bob can decrypt, or unscramble �, recovering Alice's
message m. Bob does this using his secret key. Since only Bob knows this
secret key, only Bob can unscramble the message (or so the theory goes).

Note that it is the receiver, Bob, who has a key: the sender, Alice, does
not require a key.

As mentioned in the introduction, these ciphertexts, or encryptions, are
often thought of as \secure envelopes": Alice \locks" a message in an en-
velope, sends the envelope to Bob, and Bob opens it, reading the message.
Because the envelope is \secure," only Bob can open the envelope with his
key.

This is a very compelling and convenient metaphor, and security engi-
neers often use this metaphor as a design principle when designing high-level
protocols.1

However, an encryption scheme can at best only approximate a secure
envelope. This is fundamentally because ciphertexts are bit strings (elec-
tronically represented) and not physical envelopes made out of bits of paper.
This is of course obvious and trivial, but there are several quite serious prob-
lems that can potentially arise because of this.

� First, the bit string representing a ciphertext can be observed by an
eavesdropper. An ideal \secure envelope" leaks no information about
the message it contains. For example, if Alice sends two messages
to Bob using \secure envelopes," then an eavesdropper can not tell if
these two messages are equal or not. The same should hold, then, for an
encryption scheme. This requirement already rules out any encryption
scheme that is deterministic, i. e., always encrypts the same message
the same way.

� Second, ciphertexts can easily be replicated, whereas a physical enve-
lope cannot be easily replicated. There is really nothing we can do

1Arguably, a better metaphor might be a \locked box," since real-world envelopes are
not too di�cult to open. Nevertheless, we follow tradition, and use the phrase \secure
envelope," imagining that these are very strong and di�cult to open.

3

about this, and higher level protocols that use encryptions must deal
with the fact that this can happen.

� Third, ciphertexts can be easily modi�ed, creating other ciphertexts.
Since a ciphertext is just a bit string, we can do many things to it,
like
ip some bits from `1' to `0', or vice versa. For example, there
are encryption schemes that leak no information about a message, but

ipping a bit of the ciphertext e�ectively
ips a bit of the message.
Such a scheme is called \malleable," and cannot be tolerated in many
applications. This undesirable property has no counterpart in the world
of ideal \secure envelopes."

� Fourth, any bit string is potentially the encryption of some message.
This fact can be exploited by an attacker that mounts an \active at-
tack" in which the attacker does more than just eavesdrop, but actively
participates in a protocol, sending its own messages to other parties.
For example, an attacker could send arbitrary bit strings to Bob, and
Bob would try to decrypt them, thinking that these bit strings are ci-
phertexts. Bob may react in a number of di�erent ways when it tries
to decrypt such a \ciphertext," and to the extent that the attacker can
observe these reactions, it can gain information that could conceivably
help it \crack" the cryptosystem. Such an attack is called a chosen

ciphertext attack, and also has no counterpart in the ideal world of
\secure envelopes."

This type of attack may at �rst seem somewhat esoteric, but it was
precisely with such an attack that Bleichenbacher broke SSL.

It turns out that (when properly formulated) security against chosen ci-
phertext attack and non-malleability are equivalent. It also turns out that
this is the essential characteristic of secure envelopes that is necessary and
su�cient in the design and analysis of protocols that treat encryptions like
\secure envelopes."

We will illustrate these di�culties with \plain-old RSA," which su�ers
from all of the above-mentioned di�culties: it leaks partial information, it is
malleable, and it is vulnerable to chosen ciphertext attack.

4

3 Plain-old RSA

In this section, we illustrate the di�culties of building a secure envelope
by showing how a particular cryptosystem, while apparently o�ering some
degree of privacy, does not act in any way like a secure envelope.

The cryptosystem we examine is \plain-old RSA"; that is, RSA as it was
more or less originally proposed by Rivest, Shamir, and Adleman [22].

In the RSA scheme, the public key consists of a large integer n and an
integer e. The integer n is the product of two large, randomly chosen primes,
p and q. Typically, p and q have about 150 decimal digits or so, and so n has
around 300 decimal digits. It turns out that generating these random primes
and multiplying them together is relatively easy to do (for a computer, that
is). But if we should throw p and q away, and keep only n, then there is no
practical way to �nd p and q again. That is, there is no practical computer
program that takes n as input, and factors it, computing p and q.

The secret key for the RSA scheme is an integer d such that e � d � 1
is a multiple of (p � 1) � (q � 1). It turns out that such a d can be com-
puted e�ciently knowing p and q, and conversely, this d cannot be computed
e�ciently without factoring n.

The RSA encryption algorithm works with numbers in the set

Zn = f0; : : : ; n� 1g;

and performs multiplication on these numbers \mod n." This means that to
multiply two numbers a and b in Zn, we form their ordinary product c = a �b,
and then \reduce" c mod n, which means we subtract a suitable multiple of
n from c so that we end up with a number r that is back in Zn. This
number r is called the product of a and b mod n, and can be computed quite
e�ciently. Besides modular multiplication, we can also e�ciently perform
modular addition, subtraction, and division.

We can also e�ciently exponentiate mod n. If we want to compute xe

mod n, we could obviously do this with about e multiplications mod n. But
in fact, this can be done much faster, with the number of multiplications
being proportional to the number of digits in e|a much smaller number.

The point of using modular arithmetic is twofold: �rst, numbers don't
get too big, because they are always reduced, and second, it is di�cult to
\undo" certain modular operations. For example, it turns out that although
it is easy to square a number mod n, it is hard to take a square root mod n,
without knowing p and q.

5

As mentioned above, for any x in Zn, we can e�ciently compute xe in
Zn. The mystery of d is now explained: it turns out that for every x in Zn,
(xe)d = x; that is, exponentiation by d \undoes" exponentiation by e.

Now, Bob's public key consists n and e, and his secret key is d. If Alice
has a message m to send to Bob, we assume that m can viewed as an element
of Zn; after all, m is just some string of bits or characters that can also be
interpreted as a number. Then the encryption of m is

� = me mod n:

Upon receiving �, Bob decrypts it by computing

�d mod n = (me)d mod n = m:

We should make one further remark on the values of e and d. The value
e is fairly arbitrary. In fact, it is sometimes advocated to choose e = 3 for
e�ciency reasons. Regardless of the value of e, the value d in general is about
the same size as n.

Given our current knowledge of algorithms, it seems a safe bet that if an
eavesdropper sees a ciphertext � corresponding to a random message m, then
it will be e�ectively impossible for that eavesdropper to �gure out what m is.
Note that there may be other ways to recover m from its encryption besides
factoring n; however, at the moment the only way known how to recover m
is to factor n. It is a widely held and reasonable belief that recovering m
from its encryption is di�cult|this belief is known as the RSA assumption.

However, as we will now illustrate, even if the RSA assumption is true,
plain-old RSA cannot possibly qualify as a \secure envelope." In particular,
we will illustrate that plain-old RSA

� does not hide partial information,

� is \malleable,"

� is insecure against chosen ciphertext attack.

As these examples will illustrate, just the assumption that factoring is
hard, or even the assumption that decrypting random encryptions is hard, is
not enough to justify the use of plain-old RSA as a \secure envelope."

6

3.1 Plain-old RSA does not hide partial information

Suppose Alice wants to send orders to her stock broker Bob. An eavesdropper
would like to know Alice's order. Furthermore, suppose the eavesdropper has
good reason to believe that m is one of the three messages:

� m1 = \buy IBM"

� m2 = \sell IBM"

� m3 = \hold IBM"

The eavesdropper can compute the encryptions �1; �2; �3 of these three
messages for himself, and when Alice sends an encryption of one of these
three messages, say it is �2, the eavesdropper will know that Alice's message
is m2.

This example illustrates that plain-old RSA leaks partial information
about messages, and and a \secure envelope" should not allow this.

3.2 Plain-old RSA is malleable

Suppose Alice wants to submit a number m, representing a bid, to Bob. Bob
is accepting many bids, and will choose the lowest bid.

Suppose Alice's competitor want to underbid Alice by 10%. Here is how
he can do this. We need to make the reasonable assumption that Alice bids
in round amounts|multiples of 10. Alice's competitor intercepts Alice's
encrypted bid �, and computes

�0 = � � (9=10)e mod n:

The decryption of �0 is the number

m0 = 0:9m:

In this way, Alice's competitor can underbid Alice by 10%, without knowing
anything about the actual value of Alice's bid!

This type of weakness is an example of \malleability," and is a weakness
that a \secure envelope" should not have.

7

3.3 Plain-old RSA is insecure against chosen cipher-

text attack

Plain-old RSA is also insecure against chosen ciphertext attack, which is a
vulnerability that a \secure envelope" should not have.

In this type of an attack, the attacker wants to decrypt a \target" cipher-
text �. However, Bob|for some presumably good reason|will not give this
decryption to the attacker. However, the attacker may be able to trick Bob
into decrypting other ciphertexts. In particular, the attacker can generate a
ciphertext

�0 = � � xe mod n

for some number x, and if he can get Bob to decrypt this for him, obtaining
m0, then Bob can compute

m = m0=x mod n:

4 Can plain-old RSA be �xed?

We've identi�ed several weaknesses in plain-old RSA that show that it does
not even come close to the ideal of a \secure envelope." At this point, the
reader may very well be thinking: haven't we just set up a straw man?
Indeed, plain-old RSA is never used in practice, precisely because of these
well-known weaknesses. Instead, what people actually use is plain-old RSA
with a few modi�cations that attempt to �x these problems. We examine
here some of the popular \�xes," and indicate their shortcomings.

4.1 Random Encoding

One idea that is often advocated to improve the security of plain-old RSA is
to use a randomized \encoding" or \padding" scheme. That is, we encrypt
m as

� = f(m; r)e mod n;

where f(m; r) encodes the message m using some random bits r. We stress
that f is not a cryptographic encoding: it is easy for anyone to compute m
from f(m; r).

8

The hope is that this enhancement improves the security of RSA. How-
ever, as we shall see, if one is not extremely careful, one may actually decrease
the security of RSA.

One simple way to de�ne f(m; r) is just to concatenate the two bit strings
m and r. This is a popular idea. RSA, Inc. has a very popular encryption
function, called PKCS #1, which|up until very recently|did essentially
this. This encryption function is used by SSL, the security protocol that is
widely used on the Internet. Bleichenbacher's attack on SSL, mentioned in
the Introduction, is actually a chosen-ciphertext attack on RSA's PKCS #1.

At a high level, this attack works as follows. Suppose the attacker wants
to decrypt �. Then the attacker sends many ciphertexts of the form

�0 = � � xe mod n;

for randomly chosen numbers x in Zn to Bob, who is now a server, say, on
the Internet. Upon receiving �0, Bob will compute, as usual,

a = (�0)d mod n:

Now Bob tries to apply the decoding function to a; that is, Bob tries to �nd
m0 such that f(m0; r) = a for some r. It will sometimes be the case that a is
a proper encoding of a message, and sometimes not. All the attacker needs
is this \error code" for a large, but reasonable, number of ciphertexts. Given
just these error codes, Bleichenbacher shows how a very clever program can
then recover the decryption of � itself.

How feasible is Bleichenbacher's attack? In his paper, Bleichenbacher
reports on experiments that suggest that between 300,000 and two million
chosen ciphertexts must be sent to a server to decrypt a single message.
That may seem like a lot, but it is still quite feasible. Although there are
a number of minor changes that can be made to the SSL protocol to foil
Bleichenbacher's attack, that is not the point: one would have to already
suspect a weakness in the encryption scheme before bothering to implement
such second-level defenses.

Bleichenbacher's attack is not the only known attack on such random
encoding schemes. Along di�erent lines, Coppersmith [10] showed in 1996
that a slightly di�erent, but natural, randomized encoding scheme would
leave RSA (with e = 3) open to the following attack: given two di�erent
encryptions of the same message, the attacker can compute the message.

9

The attacker here is completely passive|he only needs to eavesdrop and
obtain the two di�erent encryptions of the same message.

The above attacks show that random encoding is no panacea.
In 1994, Bellare and Rogaway [6] introduced a new encoding scheme for

RSA, called OAEP (Optimal Asymmetric Encryption Padding), that uses a
cryptographic hash function (like MD5 or SHA-1). This seems like a very ro-
bust encoding scheme, and there are no known attacks against it. Moreover,
Bellare and Rogaway give a heuristic argument that this scheme is secure
in a formal sense (see x5). While this argument is somewhat compelling, it
is not fool-proof: there could still be unforeseen attacks on OAEP that are
more e�cient than factoring n.

The heuristic argument given by Bellare and Rogaway relies on \magical"
properties of the hash functions: these properties are so magical that in fact
no hash function could actually have these properties. Although their \magic
hash function" argument is not entirely satisfying, it is still a big step in the
right direction. In response to Bleichenbacher's attack, RSA's PKCS #1
is quickly being converted over to OAEP, although this could have|and
probably should have|been done long ago.

4.2 Hybrid Schemes

Another approach to strengthening the security of RSA is to use a so-called
\hybrid scheme." In such a scheme, the basic RSA function is used to encrypt
a key that is then used in a symmetric key cryptosystem to encrypt the actual
message. In addition, we can also add some redundancy to the ciphertext so
as to ensure some kind of data integrity.

Here is a fairly concrete example of a hybrid construction. We use a
reasonable public-key encryption function E (e.g., some form of RSA with
random encoding), along with a private-key encryption algorithm F (e.g.,
DES in CBC mode) and a keyed cryptographic checksum C (e.g., HMAC
[3]). Then the encryption of a message m is the triple (�; �;
), where

� = E(k1; k2); � = Fk1(m);
 = Ck2(�):

To decrypt, we �rst decrypt �, obtaining (k1; k2). Then we compute
0 =
Ck2(�). If
0 =
, then we output F�1

k1
(�); otherwise, we output an error

message.
Although hybrid schemes were initially introduced to improve e�ciency,

it was also noticed that they seem to have the added bene�t of making it

10

harder to mount chosen ciphertext attacks. Many other practical variations
on the basic hybrid construction discussed above have also been proposed,
including variations involving di�erent kinds of hash functions and signature
schemes (see, e.g., [5] and [25]). None has been rigorously analyzed, so there
may still be unforeseen attacks. One partial exception to this is the work of
[5] which analyzes a particular hybrid scheme using magic hash functions.
Also, schemes that use signature schemes, where the sender requires a sign-
ing key, su�er from the added drawback of an additional, and sometimes
unacceptable, \public key infrastructure" requirement.

Although these practical hybrid schemes have not been rigorously an-
alyzed, the idea of adding redundancy to the ciphertext to thwart chosen
ciphertext attacks is a basically sound idea. In fact, this basic idea lies at
the heart of all schemes that have been proposed to defend against chosen
ciphertext attack: heuristic, rigorous, practical and impractical. In particu-
lar, we shall later see that the new scheme of Cramer and Shoup uses this
same idea, but in a very careful way that allows for a rigorous analysis and
an e�cient implementation.

5 What is a secure cryptosystem?

We've seen several ways in which plain-old RSA fails to be a secure envelope.
We've also seen that several attempts to \�x" plain-old RSA do not work.
And we've seen several \�xes" that seem to work better|at least, they have
not yet been broken.

Given this somewhat unsettling state of a�airs, it would be nice to have
a cryptosystem that could be guaranteed to be secure, at least assuming the
underlying mathematical problem (i.e., factoring large numbers) is indeed
hard. This can indeed be done, but to do so, we need to have a good de�nition
of security.

A signi�cant amount of work has gone into just �nding the \right" de�ni-
tion of security for a public-key cryptosystem. What makes a de�nition the
\right" one? Well, there is no de�nitive answer to this question, but there
are a number of important criteria by which a de�nition can be judged:

� it seems to capture our intuition;

� it rules out all known forms of attacks;

11

� it is robust, i.e., it can be formulated in a number of natural and equiv-
alent ways;

� it is useful, i.e., the de�nition is adequate to be applied in proving the
security of many high-level protocols that use encryption as a \primi-
tive."

Of all these criteria, perhaps the last one is the most important.

5.1 De�nition of semantic security

In the presence of a passive, or eavesdropping adversary, the \right" de�nition
is known as semantic security. Intuitively, this just means that an eavesdrop-
per can get no partial information about an encryption. In the extreme case,
even if an adversary knows that Alice is sending an encryption of one of just
two possible messages (\buy IBM" or \sell IBM"), then an analysis of the
ciphertext will not yield any information about which of the two was actually
sent.

We can reasonably paraphrase the formal de�nition of semantic security
as follows. It is de�ned in terms of a game which a \bad guy"|or adversary|
plays against the \good guy."

� First, the good guy generates a public key in the prescribed manner,
and gives this to the bad guy.

� Second, the bad guy computes two messages m0; m1 and gives these to
the good guy.

� Third, the good guy
ips a coin: if it is \heads," he encrypts of m0;
otherwise, he encrypts m1. The good guy then gives this encryption to
the bad guy. Note that the good guy
ips the coin in secret, and does
not directly reveal the outcome of the coin
ip.

� Fourth, upon seeing this encryption, the bad guy outputs his guess as
to the outcome of coin toss above.

Of course, by just guessing, the bad guy is correct with probability 1=2.
Semantic security means: no e�cient bad guy can guess correctly with prob-
ability signi�cantly greater than 1=2. Here, e�cient and signi�cantly are
actually technical terms that require further de�nition, but we won't get
into that here.

12

The precise mathematical de�nition of this concept was �rst formulated
and published by Goldwasser and Micali [17] in 1984, and is broadly accepted
as the \right" de�nition of security in the presence of a passive adversary.

Nevertheless, it was known that in order to approximate the ideal of a
\secure envelope," one has to deal with stronger, active adversaries: not just
adversaries who can listen to messages sent by others over the network, but
that can play an active role, sending their own messages to others. Bleichen-
bacher's attack on RSA is an example of such an \active attack."

5.2 De�nition of chosen ciphertext security

The \right" formal, mathematical de�nition of security against active attacks
evolved in a sequence of papers by Naor and Yung [20], Racko� and Simon
[21], and Dolev, Dwork and Naor [14]. The notion is called chosen ciphertext

security (or equivalently, non-malleability).
The intuitive thrust of this de�nition is that even if an adversary can get

arbitrary ciphertexts of his choice decrypted, he still gets no partial informa-
tion about other encrypted messages.

As with semantic security, we can paraphrase the formal de�nition of
security against chosen ciphertext attack as a game between a bad guy and
the good guy.

� First, the good guy generates a public key in the prescribed manner,
and gives this to the bad guy.

� Second, the bad guy asks the good guy to decrypt a number of cipher-
texts; he is allowed to submit any ciphertext � and see its decryption.

� Third, the bad guy computes two messages m0; m1 and gives these to
the good guy.

� Fourth, the good guy
ips a coin: if it is \heads," he encrypts of m0;
otherwise, he encrypts m1. The good guy then gives this encryption,
call it �0, to the bad guy.

� Fifth, the bad guy is again allowed to submit a number of arbitrary
ciphertexts � to the good guy for decryption, as above, subject only to
the (obviously necessary) restriction that � 6= �0.

13

� Finally, the bad guy outputs his guess as to the outcome of coin toss
above.

Chosen ciphertext security means: no e�cient bad guy can guess correctly
with probability signi�cantly greater than 1=2.

This is a very strong notion of security; so strong in fact, it might seem like
overkill. However, it is in fact generally agreed to be the \right" de�nition.
It seems that chosen-ciphertext security is the best approximation we have
to ideal \secure envelopes." Also, it is very useful in the design and analy-
sis of protocols: one can usually design a high-level protocol using \secure
envelopes," and then instantiate these envelopes with a chosen-ciphertext
secure cryptosystem, and the result is a secure protocol. See, for example,
the protocols in [4] for key exchange, and the protocols in [1] for escrow and
fair exchange of digital signatures. It seems likely that in the future, as more
people understand the concept of chosen ciphertext security, more high-level
protocols will be designed and rigorously analyzed assuming this property
about the underlying cryptosystem.

5.3 An example

Perhaps a simple example application will illustrate the power of this def-
inition of security against chosen ciphertext attack. Suppose you want to
escrow a secret of some kind by encrypting the secret under a trusted third
party's public key, and storing this encryption is some publicly accessible
place. Now, there are certain conditions under which another party should
be able to obtain your secret; for example, perhaps they have to present a
certain set of credentials. One can implement this idea using a chosen ci-
phertext secure encryption scheme as follows. You take your secret s and a
description d of the proper set of credentials that will authorize release of your
secret, and you encrypt the pair (s; d) under the trusted third party's public
key. When decrypting, the trusted third party will ensure that credentials
matching d are presented before releasing s.

Now suppose you have created an encryption � in this way, and somebody
wants to cheat, i.e., obtain your secret s by presenting di�erent credentials
that do not match d. We argue that this cannot happen, as follows. On the
one hand, if the would-be cheater presents � to the trusted third party, then he
must present credentials matching d; otherwise, the trusted third party will
not release s. On the other hand, if the would-be cheater presents any other

14

�0 6= � to the trusted third party, then by the de�nition of chosen ciphertext
security, no information about s is leaked, regardless of the credentials the
would-be cheater happens to present.

6 How do we know that a cryptosystem is

secure?

So now we have formal mathematical de�nitions of security. And we have
seen that many variations of RSA are actual insecure, even though the prob-
lems of factoring n or computing eth roots mod n remain di�cult.

So how can we design a cryptosystem and know that it is indeed secure?

6.1 The ad hoc approach

Throw in some random padding here, some hash functions there, until one
starts to feel good about it. See if it withstands a few obvious attacks. Then
deploy the system, wait for it to get broken, and add some more padding
and hashes. Repeat.

Clearly, this approach leaves much to be desired, as the above attacks on
RSA clearly demonstrate. Even if the cryptosystem is built out of \crypto-
graphically strong" components (good hash functions, hard-to-factor num-
bers, etc.), these components may interact in some hard-to-predict ways that
allow an attacker to break the cryptosystem.

6.2 The reductionist approach

This is the preferred approach of modern, mathematical cryptography. Here,
one shows with mathematical rigor that any attacker that can break the cryp-
tosystem can be transformed into an e�cient program to solve the underlying
well-studied problem (e.g., factoring large numbers) that is widely believed
to be very hard. Turning this logic around: if the \hardness assumption" is
correct as presumed, the cryptosystem is secure.

This approach is about the best we can do. If we can prove security in
this way, then we essentially rule out all possible shortcuts, even ones we

have not yet even imagined. The only way to attack the cryptosystem is a
full-frontal attack on the underlying hard problem. Period.

15

6.3 Magic hash functions

Not surprisingly, designing cryptosystems and proving them secure in this
way is no easy task, especially if one wants to have a practical cryptosystem.

To make this task more manageable, Bellare and Rogaway use the notion
of a \magic hash function," as discussed above (see [5] for a more complete
discussion). The result of this approach is a reductionist proof in the above
sense, but the proof is only valid in a \parallel universe" where \magic hash
functions" exist|they do not exist in the \real world" of computation (see
[9]). We stress that the existence of \magic hash functions" is not a \hardness
assumption," like factoring large numbers; they simply do not exist. Rather,
they are a rough-and-ready heuristic, much like assuming the earth is
at,
and that there is no wind resistance.

To analyze a protocol using magic hash functions2 one replaces a real-
world cryptographic hash function by a black box that when queried outputs
a random bit string, subject to the restriction that it always outputs the same
value on the same input. Having made this replacement, one then gives a
reductionist security argument as above. Replacing a hash function by a
black box somehow captures our intuition that the output of a hash function
is just some \random junk" that an adversary cannot make any sense out of.

Perhaps the right way to view a proof of security in the magic hash
function model is as a proof of security against a restricted class of adversaries
that don't care if the hash function really is a black box. One can easily
imagine that there could be attacks of this type, and such a proof would rule
out all such attacks.

Of course, there may be other types of attacks that somehow exploit the
speci�c characteristics of the actual hash function, and these are not ruled
out by a magic hash function proof of security.

6.4 Practical vs. provably secure

When Dolev, Dwork, and Naor formulated the notion of chosen-ciphertext
security in 1991, they also gave a \proof of concept"; that is, they presented
a particular cryptosystem and proved it secure under a standard hardness as-
sumption. Unfortunately, their scheme is completely impractical.3 A back-of

2The o�cial term is random oracle model.
3Their scheme is \polynomial time," which is a mathematician's de�nition of \practi-

cal," but it has little relevance to \real world" practicality.

16

the-envelope calculation indicates that an encryption of a single, short mes-
sage would be giga-bytes in length, and would require trillions of operations
on long numbers. Perhaps their scheme can be optimized somewhat, but it
seems likely that it will remain hopelessly impractical.

Besides Bellare and Rogaway's OAEP, there have been several other pro-
posals for practical cryptosystems that attempt to provide security against
chosen ciphertext attack [12, 25, 18, 23]. However, none of these schemes
have been proven secure, and some have been broken [16].

Thus, an obvious goal is to �nd a practical cryptosystem that is provably
secure against chosen ciphertext attack. This goal was �rst achieved with
the Cramer-Shoup cryptosystem.

We will describe this system shortly, but to set the stage, we discuss a sim-
pler cryptosystem proposed by ElGamal [15] on which the new cryptosystem
is based.

7 The ElGamal Cryptosystem

We now describe the ElGamal cryptosystem, on which the newer system of
Cramer and Shoup is based. There are many variations of this scheme, and
we choose one that is easy to describe, but certainly not the most e�cient in
a computational sense.

We have to set the stage, which is a bit technical.
This scheme works with a large prime p, and as with RSA, works with

the set
Zp = f0; : : : ; p� 1g;

performing arithmetic operations \mod p", just as RSA did \mod n." For
technical reasons, p should be of the form

p = 2q + 1;

where q is also a prime. Such primes can be easily constructed.
For a given number a not divisible by p, its order mod p is de�ned to be

the smallest positive integer x such that ax = 1 mod p. Such an x always
exists, and in fact, because of the special form of p = 2q+ 1, x is either 1, 2,
q, or 2q.

To de�ne the ElGamal encryption scheme, we need to select a number g
in Zp whose order is q. That is, g

q = 1 mod p, and this holds for no smaller

17

power. Having done so (which is computationally easy), it turns out that
the sequence of numbers

1; g; g2; : : : ; gq�1;

reduced mod p, contains no duplicates. So we de�ne G to be this set of
numbers.

G has several nice properties.
First, whenever we multiply or divide elements in G (mod p), we get back

another element in G. Technically speaking, G is a group.
Second, whenever we want to compute ax mod p for a in G, we can always

reduce xmod q, and get the same result. This is very nice, because if we want
to compute axy mod p, we can �rst reduce the product xy mod q, obtaining
a much smaller number to work with.

Third, computational experience indicates that it is very di�cult to
\undo" the exponentiation process in G. That is, given gx mod p, it seems
very di�cult to compute x. This problem is known as the discrete logarithm
problem, and despite intensive study for a number of years, there is no good
algorithm to solve it e�ciently. Interestingly, the best algorithms for com-
puting discrete logarithms are roughly as e�cient as the best algorithms for
factoring|which is to say, they are not e�cient at all.

There are a couple of problems related to the discrete logarithm problem.
There is the so-called Di�e-Hellman problem, which arose in connection

with Di�e and Hellman's key exchange protocol [13]. The problem is this:
given gx and gy, compute gxy. Clearly, if we could solve the discrete loga-
rithm problem e�ciently, then we could also solve the Di�e-Hellman problem
e�ciently: compute x, compute y, and then compute gxy. This problem is
potentially easier to solve than the discrete logarithm problem, but currently,
all evidence suggests this is not the case.

Then there is the decisional version of the Di�e-Hellman problem. The
problem is this: given gx, gy, and gz, determine if gz = gxy. Clearly, if
we could solve the discrete logarithm problem or the Di�e-Hellman problem
e�ciently, we could solve this problem e�ciently as well. This problem is also
potentially easier than the discrete logarithm and Di�e-Hellman problems,
but currently, all evidence suggests that this is not the case.

The decisional Di�e-Hellman problem underlies many cryptographic
protocols|including the original Di�e-Hellman key exchange protocol.4

4It is often, and incorrectly, asserted that \breaking" the Di�e-Hellman key exchange
protocol is equivalent to solving the Di�e-Hellman problem. This is not true under any

18

Other places where the decisional Di�e-Hellman assumption is used in-
clude [2, 4, 8, 19, 23, 24].

With this background, we can present ElGamal's encryption scheme. In
this scheme, we assume that messages can be encoded as elements in G,
which is easy to do, in fact.

Secret Key: random z in Zq

Public Key:

h = gz

Encryption of m 2 G: (u; e), where

u = gr, e = hrm, r in Zq is random.

Decryption of (u; e):

m = e=uz.

ElGamal encryption is semantically secure assuming the decisional Di�e-
Hellman problem is hard. However, it is not secure against chosen-ciphertext
attack. In particular, it is trivially malleable: If (u; e) encrypts m, then
(u; ea) encrypts ma.

8 The Cramer-Shoup Cryptosystem

The Cramer-Shoup Cryptosystem is an extension of ElGamal. In the pre-
sentation we give here, we need a hash function H whose output can be
interpreted as a number in Zq. It should be hard to �nd collisions in H.
One reasonable implementation of H is to use the SHA-1 hash function. In
fact, with a fairly minor increase in cost and complexity, we can eliminate H
altogether.

reasonable de�nition of \break." This point is a bit subtle, and even seems to ba�e
some \card-carrying members" of the IACR (International Association for Cryptologic
Research). It is true, however, that the hardness of the decisional Di�e-Hellman problem
implies that breaking the Di�e-Hellman key exchange protocol is hard. There may be
other hardness assumptions that imply the security of Di�e-Hellman key exchange, but
it seems that the decisional Di�e-Hellman assumption is the most natural.

19

Secret Key: random x1; x2; y1; y2; z in Zq

Public Key:

g1; g2 in G (but not 1)

c = gx11 gx22 , d = gy11 gy22

h = gz1

Encryption of m 2 G: (u1; u2; e; v), where

u1 = gr1, u2 = gr2, e = hrm, v = crdr�, r in Zq is random, and
� = H(u1; u2; e).

Decryption of (u1; u2; e; v):

If v = ux1+�y1
1 ux2+�y2

2 , where � = H(u1; u2; e)

then m = e=uz1
else \reject"

That's it! It looks a bit strange, and it was indeed concocted just so that
one could prove a theorem about it; namely, that it is secure against chosen
ciphertext attack, assuming that the decisional Di�e-Hellman problem is
hard, and that it is hard to �nd collisions in H. We repeat that one can get
rid of H at a minor cost.

We won't go into the detailed mathematics of the proof here, but we can
make a few comments about the intuition behind the scheme.

Notice that (u1; e) is essentially an ElGamal encryption. The extra in-
formation, u2 and v, is essentially a very special kind of \error detecting
code." For properly constructed ciphertext, it always holds that if u1 = gr11
and u2 = gr22 , then r1 = r2. Let's call such ciphertexts \legitimate." Now,
there is nothing stopping an attacker, while performing a chosen ciphertext
attack, to request the decryption of a ciphertext that is illegitimate, i.e., with
r1 6= r2. This is the point of the test

v
?
= ux1+�y1

1 ux2+�y2
2

in the decryption algorithm. This test will essentially ensure that all illegiti-
mate ciphertexts are rejected. The group element v in the encryption acts as
a \proof of legitimacy" that can be veri�ed by the decryption algorithm. The

20

point of the hash � = H(u1; u2; e) in the computation is to prevent proofs of
legitimacy from other, legitimate ciphertexts from being \hijacked."

It turns out that by rejecting all such illegitimate ciphertexts, no infor-
mation about the secret key is leaked, which e�ectively \neutralizes" the
chosen ciphertext attack. Moreover, the \error code" information itself does
not leak any useful information, as it did in Bleichenbacher's attack on RSA.

All the known constructions for chosen ciphertext secure cryptosystems
(provably secure or not) are based on a similar idea of using a \legitimacy
test" of some some kind. The real surprise in the Cramer-Shoup scheme was
to show that such a test could be constructed quite cheaply, without giving
up \provability."

How e�cient is the Cramer-Shoup scheme? It is approximately twice as
expensive as ElGamal, both in terms of computing time, and in terms of the
size of the encryptions.

What about the cost compared to RSA? The size of the encryption and
the time needed to encrypt a message are signi�cantly more than in RSA.
However, with a very careful implementation, the time to decrypt is roughly
the same as for RSA. This is important since usually it is an overloaded server
we are concerned about, and in many protocols, the server is mostly doing
decryptions, not encryptions. So in that important scenario, the Cramer-
Shoup scheme is quite competitive with RSA.

And in any case, the Cramer-Shoup system o�ers something that neither
RSA nor any other practical cryptosystem does: a provable guarantee of
security against chosen ciphertext attack.

We remark that there are many variations on the basic Cramer-Shoup
scheme, allowing many possible security/e�ciency tradeo�s. The group G
could be any \cryptographically strong" group; in particular, elliptic curves
could be an attractive choice.

8.1 Security of OAEP vs. Cramer-Shoup

We discuss brie
y the security of OAEP versus that of the Cramer-Shoup
system.

To argue in favor of OAEP, one would claim that (1) RSA is a more
believable assumption than decisional Di�e-Hellman, and (2) no attacks on
OAEP outside the magic hash function model are possible.

It seems quite di�cult to judge claim (1): there is simply no evidence to

21

support either claim (1) or the opposite claim that decisional Di�e-Hellman
is more believable. One could argue that RSA has received somewhat more
attention than decisional Di�e-Hellman, but nevertheless, all evidence to
date suggests that both problems are more-or-less equally hard. Moreover,
if elliptic curves are used, then the decisional Di�e-Hellman problem in fact
seems substantially harder.

Although claim (2) is not entirely unreasonable, it is almost entirely un-
examined: this is basically a claim about the hardness of a very peculiar
problem that has not really been studied at all, unlike RSA or decisional
Di�e-Hellman, which have already received considerable attention.

The argument in favor of Cramer-Shoup is, of course, that its security
rests only on a fairly well-studied problem, and one need not worry about
peculiar, almost completely unexamined problems, such as in claim (2) above.

9 Conclusion

We have tried to motivate the need for security against chosen ciphertext
attack. This is the best approximation we have to the ideal of a \secure
envelope," and is essential in designing secure protocols.

We have also tried to motivate the need for rigorous proofs of security.
The alternative is to design systems in an ad hoc manner, and to simply
hope for the best. As we have seen, this approach often ends in disaster, or
at least, an embarrassing mess.

Practical cryptosystems that are provably secure are available, and there
is very little excuse for not using them. The Cramer-Shoup cryptosystem
arguably has the best security guarantee, and is reasonably practical. How-
ever, in some applications, there may be such severe engineering constraints
that bar its use, in which case OAEP is arguably the next best choice.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of
digital signatures. In Advances in Cryptology{Eurocrypt '98, 1998.

[2] D. Beaver. Plug and play cryptography. In Advances in Cryptology{

Crypto '97, 1997.

22

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. In Advances in Cryptology|Crypto '96, 1996.

[4] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In
30th Annual ACM Symposium on Theory of Computing, 1998.

[5] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm
for designing e�cient protocols. In First ACM Conference on Computer

and Communications Security, pages 62{73, 1993.

[6] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Ad-

vances in Cryptology|Crypto '94, pages 92{111, 1994.

[7] D. Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1. In Advances in Cryptology{

Crypto '98, pages 1{12, 1998.

[8] R. Canetti. Toward realizing random oracles: hash functions that hide
all partial information. In Advances in Cryptology{Crypto '97, pages
445{469, 1997.

[9] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model,
revisted. In 30th Annual ACM Symposium on Theory of Computing,
1998.

[10] D. Coppersmith. Finding a small root of a univariate modular equation.
In Advances in Cryptology{Eurocrypt '98, pages 155{165, 1998.

[11] R. Cramer and V. Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Advances in

Cryptology{Crypto '98, pages 13{25, 1998.

[12] I. Damgard. Towards practical public key cryptosystems secure against
chosen ciphertext attacks. In Advances in Cryptology{Crypto '91, pages
445{456, 1991.

[13] W. Di�e and M. E. Hellman. New directions in cryptography. IEEE

Trans. Info. Theory, 22:644{654, 1976.

23

[14] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In
23rd Annual ACM Symposium on Theory of Computing, pages 542{552,
1991.

[15] T. El Gamal. A public key cryptosystem and signature scheme based
on discrete logarithms. IEEE Trans. Inform. Theory, 31:469{472, 1985.

[16] Y. Frankel and M. Yung. Cryptanalysis of immunized LL public key
systems. In Advances in Cryptology{Crypto '95, pages 287{296, 1995.

[17] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-

puter and System Sciences, 28:270{299, 1984.

[18] C. H. Lim and P. J. Lee. Another method for attaining security against
adaptively chosen ciphertext attacks. In Advances in Cryptology{Crypto

'93, pages 420{434, 1993.

[19] M. Naor and O. Reingold. Number-theoretic constructions of e�cient
pseudo-random functions. In 38th Annual Symposium on Foundations

of Computer Science, 1997.

[20] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd Annual ACM Symposium on Theory

of Computing, pages 427{437, 1990.

[21] C. Racko� and D. Simon. Noninteractive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In Advances in Cryptology{Crypto

'91, pages 433{444, 1991.

[22] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the

ACM, pages 120{126, 1978.

[23] V. Shoup and R. Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack. In Advances in Cryptology{Eurocrypt '98,
1998.

[24] M. Stadler. Publicly veri�able secrete sharing. In Advances in

Cryptology{Eurocrypt '96, pages 190{199, 1996.

24

[25] Y. Zheng and J. Seberry. Practical approaches to attaining secu-
rity against adaptively chosen ciphertext attacks. In Advances in

Cryptology{Crypto '92, pages 292{304, 1992.

25

