
1

An Operational View of IBM Keyworks Product1

Version 12
Saturday, February 27, 19993

Shabnam Erfani, Michael E. Muresan, Sekar Chandersekaran4
5
6

1. Introduction7

8
This paper examines the IBM Keyworks framework from an operational point of view while9
assuming that the reader is already familiar with Common Data Security Architecture (CDSA)10
terminology. The Keyworks product is based on the CDSA standard from The Open Group and11
provides complex cryptographic, certificate services and intricate policy enforcement functions12
transparent to the exploiting application. These functions are motivated by various requirements13
imposed by architectural issues and import/export regulations for strong encryption. This paper14
presents a description of these requirements followed by an overview of the architectural15
decisions in IBM Keyworks product to satisfy these requirements. The first few sections provide16
some background material and motivation for the later discussions in the paper. The important17
features in the Keyworks product are key recovery policy enforcement, integrity verification and18
privilege model that in conjunction address the needs of the market. In addition, to place the19
discussed features in an appropriate context, the life cycle of a simple encryption application is20
discussed. The life cycle of a simple encryption application is composed of all the internal events21
that occur internally at different stages of operation such as framework initialization, CSP module22
attach, CSP module operation and finally CSP module detach. Each stage of the life cycle is23
expanded further to discuss the internal details of how various functions are achieved in the24
framework and how they satisfy the specified requirements in terms of key recovery.25

26

2. Overview of Keyworks Architecture and Requirements27

28
The Keyworks product implementation is based on Common Data Security Architecture (CDSA)29
standard from The Open Group. The Keyworks Architecture consists of a set of layered security30
services and associated programming interfaces designed to furnish an integrated set of security31
capabilities for PKI applications. Each layer builds on the more fundamental services of the layer32
directly below it.33

34
These layers start with fundamental components such as cryptographic algorithms, random35
numbers, and unique identification information in the lower layers, and build up to digital36
certificates, key management and recovery mechanisms, and secure transaction protocols in37
higher layers. The Keyworks architecture is intended to be a multi-platform security architecture38
that is both horizontally broad and vertically robust. Figure 1 below shows a simplified view of39
the layered architecture of a system built on top of Keyworks. There are four major layers in the40
architecture: Application Domains, System Security Services, Keyworks Framework and Service41
Providers.42

43

2

 Application
 Domains

Data store

Keyworks
Framework

Service
Providers

Applications

Keyworks API

CSPI DLICLITPI

CSP Mod

Manager
TP Module

Manager
CL Module
Manager

DL Module
Manager

Certificate
Library

Cryptographic

Service
Provider

Trust
Policy
Library

Data
Storage

Library

IPSECS/MIMESSL

Key Recovery

Service
Provider

KRSPI

KR Mod
Manager

System
SSecurity
Services

44
45
46

Figure 1. Keyworks based application architecture47
48
49

The Application Domains layer implements the application domain services, such as Secure50
Electronic Transaction (SET) and E-Wallet, E-mail, or file archival services. The System51
Security Services layer is between the Application Domains layer and the Keyworks Framework52
layer. It implements security protocols that are used by the Application Domains layer. Software53
at this layer may implement cryptographic system security services such as Secure Sockets Layer54
(SSL), Internet Protocol Security (IPSEC), Secure/Multipurpose Internet Mail Extensions55
(S/MIME) and Electronic Data Interchange (EDI). The System Security Services layer also56
includes tools and utilities for installing, configuring, and maintaining the Keyworks Framework57
and service provider modules. This layer plays an important role in providing secure policy58
enforcement for different protocols, in particular key recovery. If this layer and the layer59
underneath it (Keyworks) ensure that key recovery protocol is properly enforced and executed60
and the key recovery blocks are delivered to their intended destination through some channel, the61
applications can treat them as trusted protocol handlers. As a result, the application is free from62
the responsibility of providing key recovery. Furthermore, the functionality can be reused under63
many applications with little code impact, as this layer can be plugged in underneath the64
application layer.65

66
The framework component in Keyworks product is a central component of this extensible67
architecture that provides mechanisms to dynamically manage service provider modules. The68
framework defines a common security application-programming interface (API) that must be69
used by the applications to access services of service provider modules. Applications request70
security services through the API or through system security services implemented over the API.71
The framework also defines a service provider interface (SPI) through which API calls are72
dispatched to the service providers that perform the requested function. The framework embodies73
a number of module managers that perform function call dispatch, module management and74
policy enforcement functionality for each category of services as shown in Figure 1. In particular,75
the role of Key Recovery Module Manager (KRMM) and CSP Module Manager (CMM) will be76
discussed in detail later in the paper.77

78

3

There are many advantages to using a framework-based architecture for providing security79
services such as cryptography. One important advantage is the decoupling of applications from80
the Cryptographic Service Providers. The introduction of the framework layer allows different81
CSPs to be plugged underneath the framework while complying with a common interface, hence82
shielding the application from specific CSP dependencies. In addition, the framework layer83
provides a medium for policy enforcement and tight control of application privileges. This aspect84
was used to architect a solution that satisfies the requirements needed by strong encryption85
export/import regulations while maintaining modularity and encapsulation in the architecture. As86
a result, the Keyworks product can offer a strong cryptography solution that is easy to export and87
import, customizable for different jurisdictions and does not require the application or service88
providers to be changed for policy enforcement.89

90
The Bureau of Export Administrations (BXA) which is part of the US Department of Commerce91
defines the U.S. requirements for the export of strong encryption products. The US government92
has defined strong encryption based on the number of bits used as the key for various encryption93
algorithms as shown in Table 1.94

95
96

Algorithm U.S. Key Size Greater than: France Key Size Greater than:
DES 56 40
Triple-DES 56 40
RC2 56 40
RC4 56 40
RC5 56 /12 rounds 40/12 rounds
RSA 512 --

Table 1. U.S and France Strong Encryption Requirements97
98

Products offering strong encryption developed inside the US can not be exported without99
supporting some form of data recoverability, either using key recovery or other means, for law100
enforcement organizations. The complete list of US export requirements for these products is as101
follows:102

103
1. The key needed to decrypt a ciphertext shall be accessible through a key recovery method via104

Key Recovery Agents (KRA) acceptable to the Department of Commerce105
2. Strong cryptographic functions shall be inoperable till the key is recoverable.106
3. The key shall be accompanied with the identity of the Key Recovery Agent (KRA) that is107

able to recover the key, and should be sent over the wire reasonably frequently.108
4. The key recovery feature should allow access to the key regardless of whether ciphertext was109

generated or received.110
5. Key Recovery function shall be allowed during a period of authorized access without111

repeated presentations to the KRA.112
6. Key recovery enabled products shall not interoperate with products that have been tampered113

with, bypassed or disabled for key recovery.114
7. Key recovery enabled products can interoperate with a non-key recovery enabled product by115

providing access to keys used for strong encryption.116
8. The product shall be resistant to tampering, disablement or circumvention of the KR feature117

118
In addition, countries that use or import the strong encryption products have requirements or119
definition of strong encryption, which are different from what is mandated by the U.S.120
government as shown in Table 1 for France. The countries where the product is used also need121
the flexibility to define their own key recovery policies and criteria and possibly be more122

4

restrictive than the exporting country’s requirements. Therefore, a product that is offering strong123
encryption shall satisfy not only the US exports requirements for key recovery but also the usage124
requirements of the importing countries. Since a country typically designates a geographical125
location that may not be applicable to legal matters, we use the term jurisdiction in the rest of this126
paper to designate areas where a set of legal regulations is enforced. The manufacturing127
jurisdiction designates the country where the product is manufactured, and the usage jurisdiction128
is where the product is being used.129

130
Furthermore, in some jurisdictions classes of applications are exempt from key recovery or131
equivalent requirements. For example, financial applications are exempt from the US export132
regulations. In other words financial applications can exploit strong encryption without133
generating key recovery blocks. The solution is required to cater to both manufacture and usage134
jurisdiction policies and requirements, as well as allow exempt applications to bypass the policy135
enforcement in a safe manner.136

137
The architectural requirement on the solution mandates that it shall provide a flexible,138
configurable mechanism for key recovery that complies with both manufacturing and jurisdiction139
policies. The policy configuration and enforcement mechanism should be independent from both140
the application and the cryptographic service provider to minimize the code impact if the policies141
change. Moreover, the solution should be such that all existing CSPs can be approved for142
export/import with minimal change. All components that embed the key recovery functions shall143
be trusted based on strong integrity checking. These components shall interact with each other144
only after bilateral integrity verification and authentication.145

146
In the following sections of the paper, the components of the Keyworks product architecture that147
address the above requirements are discussed in detail.148

149

3. IBM Keyworks Installation150

151
The IBM Keyworks product comes in three separate packages. The first package contains all the152
components needed for installation of the framework and the service provider modules in the153
product, which collectively are refereed to as the Keyworks toolkit. The second package contains154
the installation components of the IBM SKR Key Recovery Service Provider (KRSP) and the155
corresponding configuration files. The third package provides an installation image for the Key156
Recovery Server, which is not discussed in this paper. A policy customization disk also157
accompanies the export Keyworks toolkit package. These components are installed in the158
following order:159

160

• The Keyworks toolkit image is installed first161

• The customization disk is used to install the local key recovery policies in the system. The162
framework will not be functional till policy files are properly installed in the system.163

• If desired, the KRSP image can be installed in the system.164
165

Each installation package contains the DLLs for the corresponding components. All the DLLs are166
accompanied by a set of self-protecting credentials generated when the module is signed. The167
installation procedure is the process of copying the modules from the install package to the168
desired directory on disk and registering the paths and other relevant information in the system169
registry, or equivalent of system registry on non-Windows platforms. By default, the product is170
installed in C:\sccstk directory on Windows and special directories are created for include files,171

5

libraries, samples and documents relative to the package installation directory. For example, if the172
default installation directory (c:\sccstk) is used, the included files will be in c:\sscstk\inc. The173
installed modules (DLL’s) are located in the \DLL directory, and their credentials are copied to a174
subdirectory called meta-inf. The installation path is entered in the system registry and by default,175
all signed modules access their credentials by appending meta-inf to their registered path. After176
installation on Windows the following directory structure shall be present on disk:177

178
179
180
181
182
183
184
185
186
187
188
189
190
191

The installation package also copies cssm32.dll (the main DLL that contains the framework code)192
and the policy modules cssmmanp.dll (manufacturing jurisdiction policy module) and193
cssmusep.dll (usage jurisdiction policy module) to the windows\system directory, so they can be194
found by the operating system at start of the application. The corresponding meta-inf (credentials)195
directory is also copied. At this point, the copying is done and all the paths for various196
components are updated in the registry.197

198
The IBM Key Recovery Service Provider also needs to have a set of configuration files and the199
corresponding credentials to be installed in the system. These configuration files contain200
approved anchor certificates as recommended by the key recovery jurisdictions and KRA201
certificates as well as mandatory jurisdiction types for key recovery that are needed for generation202
of key recovery blocks as described in Appendix 2. By default, the configuration files and their203
credentials will be installed under \skrcfg and skrcfg\meta-inf directories relative to the package204
installation directory on disk. This path however can be reconfigured in the registry with a205
manual installation.206

207

4. Key Recovery Management and Configuration208

209
The key recovery (KR) feature in the IBM Keyworks is implemented based on the API/SPI210
definitions in the CDSA standard. The API functions for KR allow the application to request211
generation and configuration of key recovery blocks (KRB) by the KRSP. The framework acts as212
a controller that ensures proper generation of KRBs before strong encryption according to two213
policies: manufacturing jurisdiction law enforcement (LE_MAN) policy, and usage jurisdiction214
law enforcement (LE_USE) policy. In other words, the framework ensures that if either of these215
policies requires KR, application access to strong encryption is disabled till the appropriate KRB216
is generated successfully. The key recovery policies also mandate what fields should be present in217
the key recovery block. Normally, if KR is needed, law enforcement organizations of218
manufacturing and usage jurisdictions always can have the ability to recover the key from the219
KRB through the Key Recovery Server (KRS). However, the usage jurisdiction can effectively220

C:\SCCSTK

LIBSAMPLESDLLINC DOC

META-INF

6

prevent manufacturing jurisdiction’s access to key recovery by manipulating KRSP configuration221
files as described in Appendix 2. The usage jurisdiction can supply KRA certificates for both222
manufacturing and usage jurisdiction, hence preventing the LE_MAN from key recovery without223
cooperation of LE_USE. Based on the configuration of the KRSP, the KRB can be generated as224
to provide access to the key for the enterprise that uses the software as well. This functionality is225
achieved based on the algorithm used in the KRSP. The KRSP that accompanies IBM Keyworks226
implements the IBM SKR algorithm and is described in Appendix 2. In this section we mainly227
focus on how key recovery policies are created, installed, and enforced within the framework228
while treating the internals of KRSP and KRB generation abstractly.229

230
 The IBM Keyworks toolkit implements a customizable set of key recovery policies based on the231
requirements of the legal jurisdictions which apply to the software and the requirements of any232
enterprise in which the software is used as illustrated in figure 2. The key recovery policy has233
three primary components, LE_MAN, the law enforcement requirements for the jurisdiction of234
manufacture, LE_USE, the law enforcement requirements for the jurisdiction of usage, and ENT,235
the requirements for the enterprise. Depending on the usage jurisdiction preferences, LE_MAN236
and LE_USE can have different policy modules. On the other hand, it is possible for LE_USE to237
follow the LE_MAN policy and vice versa with prior agreements between the two jurisdictions.238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

Figure 2. Key Recovery Policy Tables in the framework254
255
256

Key recovery policies are implemented as DLLs containing a series of rules that define exactly257
what key lengths and algorithm parameter combinations are considered strong encryption for258
each jurisdiction. During framework initialization, the framework Key Recovery Module259
Manager (KRMM) loads at least the LE_MAN and LE_USE DLL’s and their credentials into a260
framework internal policy table called the Key Recovery Policy Table (KRPT). Based on the261
particular requirements of the enterprise using the product, the enterprise policy module can also262
be loaded into the KRPT at the same time. The framework queries the system registry for the path263
to where the enterprise policy module is installed. If the path is present, the enterprise policy264
module DLL is loaded; otherwise the framework implicitly assumes that there is no policy265
module for enterprise. The KRMM needs to ensure that the policy modules are not modified and266
tampered with and signed by the IBM code signing anchor key. The discussion of how the267
integrity and trustworthiness of the policy modules are established is postponed to the next268
section, where the topic is addressed in depth.269

270

Keyworks Framework

Key
Recovery
Module
Manager

Crypto
Module
Manager

LE_MAN
KR Policy

Module

LE_USE
KR Policy

Module

ENT
KR Policy

Module

7

Each policy DLL exports a single function called by the framework during its initialization. The271
exported function is called CSSM_Man_Krpt and CSSM_Use_Krpt respectively for LE_MAN272
and LE_USE modules and is defined as:273

274
275

CSSM_RETURN CSSM_Man_Krpt (KRPOLICYADDFUNC cssm_kr_policy_add,276
char *policy_type);277

278
279

The first parameter, cssm_kr_policy_add, is a function which allows the KR policy module to280
add rules to the framework’s KRPT. The second parameter, policy_type is a string to hold the281
name of the current KR policy module, such as “us_domestic” for the United States policy for282
domestic usage, or “fr_export” for the French policy for exported software.283

284
The KRPOLICYADDFUNC type is defined as a function pointer by the framework, and has the285
following form:286

287
typedef CSSM_RETURN(CSSMAPI *KRPOLICYADDFUNC)(uint32 AlgorithmId,288

uint32 Mode,289
uint32 MaxKeyLength,290
uint32 MaxRounds,291
uint8 WorkFactor,292
uint8 PolicyFlags,293
uint32 AlgClass);294

295
The parameters thus provide all of the information necessary to create single rules to define the296
limits of strong encryption for each jurisdiction. The parameters are by the framework as297
follows:298

299

• AlgorithmId: The encryption algorithm to which the rule applies, defined by specifying the300
CSSM algorithm identifier, e.g. CSSM_ALGID_DES.301

302

• Mode: The mode to which the rule applies, defined either by specifying a CSSM mode303
identifier such as CSSM_ALGMODE_CBC or by specifying the wildcard mode identifier304
CSSM_ALGMODE_WILDCARD which means that the rule applies to all applicable modes305
of the given algorithm.306

307

• MaxKeyLength: This is the maximum key length to be considered as weak encryption. In308
other words, specifying 56 for MaxKeyLength would mean that key lengths of 0-56 bits309
would be permitted as weak encryption, and key lengths greater than this number are310
considered strong encryption, hence requiring key recovery.311

312
313

• MaxRounds: This is the maximum number of rounds permitted for an algorithm to be314
considered weak encryption. This is only applicable to algorithms which have rounds as a315
parameter such as RC5. If a given rule defines both MaxKeyLength and MaxRounds, a316
cryptographic operation exceeding either one of the limits will be considered strong317
encryption. For example, suppose a rule for RC5 specifies a MaxKeyLength of 56 and a318
MaxRounds of 12. In that case, encryption with RC5 is only allowed for operations with a319
key length of 0-56 and a number or rounds of 0-12. Key size of 64 or rounds of 15 would320
make the operation into a strong encryption that would require key recovery.321

322

8

• PolicyFlags: Defined as either KR_LE_MAN or KR_LE_USE, this tells which policy it was323
which provided this particular rule. This is useful because if a cryptographic operation is324
defined as strong encryption by the LE_MAN policy, but only by the LE_USE policy, then325
key recovery blocks must be generated which meet the requirements of the jurisdiction of326
manufacture, but not the jurisdiction of usage.327

328

• AlgClass: This parameter specifies whether the algorithm to which the rule pertains is329
symmetric or asymmetric and is set to a CSSM algorithm class identifier such as330
CSSM_ALGCLASS_SYMMETRIC or CSSM_ALGCLASS_ASYMMETRIC.331

332
333

The following is an example of code which implements the key recovery policy currently334
required by the US government to meet export approval as shown in table 1:335

336
CSSM_RETURN CSSM_Man_Krpt (KRPOLICYADDFUNC cssm_kr_policy_add,337

char *policy_type)338
{339

/* set the policy type */340
strcpy(policy_type, “us_export”);341

342
/* the US export policy */343
/* KR is required for DES with key length greater than 56, all applicable modes */344
cssm_kr_policy_add(CSSM_ALGID_DES,345

CSSM_ALGMODE_WILDCARD, 56, 0, 0,346
KR_LE_MAN, CSSM_ALGCLASS_SYMMETRIC);347

348
/* KR is required for triple DES with key length greater than 56, all applicable349
modes */350
cssm_kr_policy_add(CSSM_ALGID_3DES_3KEY,351

CSSM_ALGMODE_WILDCARD, 56, 0, 0,352
KR_LE_MAN, CSSM_ALGCLASS_SYMMETRIC);353

354
/* KR is required for RC2 with key length greater than 56, all applicable modes */355
cssm_kr_policy_add(CSSM_ALGID_RC2,356

CSSM_ALGMODE_WILDCARD, 56, 0, 0,357
KR_LE_MAN, CSSM_ALGCLASS_SYMMETRIC);358

359
/* KR is required for RC4 with key length greater than 56, all applicable modes */360
cssm_kr_policy_add(CSSM_ALGID_RC4,361

CSSM_ALGMODE_WILDCARD, 56, 0, 0,362
KR_LE_MAN, CSSM_ALGCLASS_SYMMETRIC);363

364
/* KR is required for RC5 with key length greater than 56, all applicable modes365
and number of rounds greater than 12 */366
cssm_kr_policy_add(CSSM_ALGID_RC5,367

CSSM_ALGMODE_WILDCARD, 56, 12, 0,368
KR_LE_MAN, CSSM_ALGCLASS_SYMMETRIC);369

370
/* KR is required for RSA with key length greater than 512 */371
cssm_kr_policy_add(CSSM_ALGID_RSA,372

CSSM_ALGMODE_WILDCARD, 512, 0, 0,373
KR_LE_MAN, CSSM_ALGCLASS_ASYMMETRIC);374

375
 return CSSM_OK;376

}377
378
379

9

In the case of new algorithms that will appear in the future, as support is added to the framework380
the policy files need to be modified to define a rule for the treatment of the new algorithm.381

382
As mentioned before, depending on the requirements of the enterprise that uses the software,383
there could be an enterprise policy module containing the rules under which the enterprise desires384
key recovery block generation. The enterprise KR policy is implemented as a DLL whose path385
and filename are stored in the system registry (or an equivalent system utility that keeps track of386
various installations in the system). If this DLL exists, it is loaded during the initialization of the387
framework, and is kept loaded for the duration of the framework’s operation. The DLL exports a388
single function called EnterpriseRecoveryPolicy. The function definition is as follows:389

390
CSSM_BOOL EnterpriseRecoveryPolicy(CSSM_CONTEXT_PTR Context);391

392
The function takes as its argument a copy of the cryptographic context, and based on whatever393
rules the enterprise chooses to implement, determines whether key recovery is required for that394
context or not. If KR fields are required, the function is to return CSSM_TRUE. If the395
cryptographic operation can proceed as is, the function returns CSSM_FALSE.396

397
It is worthwhile to mention that an individual using the product can also request generation of key398
recovery block. The current implementation does not require a policy module for individuals, as399
the KRB generation can also be requested using the API options for Individual and the other three400
jurisdiction types.401

402
The KR policy files are signed and stored along with their credentials on disk. The framework403
will pass the initialization stage only if the policy files and credentials for LE_MAN and LE_USE404
are present and the signature in the credentials is trusted and verified by the framework, otherwise405
the framework will not be functional. The ENT policy file may or may not be present; however,406
if present it should also be accompanied by credentials that are verifiable.407

408
So far, we have discussed how the key recovery policy is defined, loaded and configured in the409
framework. Once the applicable policies are determined and loaded into KRPT at initialization,410
for each cryptographic operation the KRPT is consulted to find out whether KR is required or not411
at run-time. The rest of this section discusses the policy enforcement mechanism used by the412
framework to ensure proper generation of key recovery blocks.413

414
415

Key Recovery Policy Enforcement416
417

The responsibility of enforcing the key recovery policies in the framework is divided between the418
Key Recovery Module Manager (KRMM) and the Cryptographic Module Manager (CMM)419
within the framework. KRMM encapsulates the KRPT and provides internal query functions for420
accessing the contents of the KRPT which are treated as read-only. The CMM on the other hand421
uses these query functions to determine whether it should allow the current cryptographic422
operation proceed.423

424
In the Keyworks design all cryptographic operations need a cryptographic context. The context425
contains all the necessary parameters for completion of a given operation such as the key (or a426
reference to the key), algorithm identifier, mode, rounds, etc. For example, to perform a427
symmetric encryption, the application needs to first generate or retrieve the key from a secure428
storage, create a symmetric context, use the context to encrypt the data and finally delete the429
context. The context actually is created by the framework context management code and is430

10

accessible to the application solely via a handle. Subsequently, the application uses this handle as431
an argument to the rest of the API function calls and does not have direct write access to the432
context anymore. The attributes of the contexts can be updated only through API functions that433
control policy application to the context. This design forms the basis for the key recovery434
enforcement. The decision to enforce key recovery can be made using the contents of the435
contexts, and since the context can not be modified directly after creation, it can be marked for436
key recovery policy enforcement.437

438
The cryptographic context created for encryption/decryption operations in the framework439
contains all the information necessary to determine whether KR is necessary for the current440
encryption operation. When the application calls the API function441
CSSM_CSP_CreateSymmetricContext(), the context management module in the framework442
creates a structure for the context. Then a KRMM function is called that applies the LE_MAN,443
LE_USE and ENT (if present) policies to the context. If it is determined that these policies444
mandate key recovery for this context, the context is annotated. This annotation explicitly signals445
the CMM that the encryption operation can not proceed by setting two values in the context446
structure: Usability field for key recovery and Work factor for law enforcement key recovery.447
These two fields are not available for modification outside the framework since the context is448
available to the application only through a handle. The framework strictly controls all449
modifications and updates to the context structure, so the key recovery annotations are protected.450
Once the annotation is performed successfully, the context manager returns the handle of the451
newly generated context to the application. If the application tries to encrypt its data using this452
context handle, CSP Module Manager (CMM) first checks to see whether the corresponding453
context is annotated. If so, the API function call returns with an appropriate error code, otherwise454
the call is dispatched to the CSP. This mechanism effectively disables access to strong encryption455
until a key recovery block is generated successfully by the application.456

457
Once the application finds out that it needs to generate key recovery blocks before performing the458
encryption operation, it places calls to KR API functions that generate the key recovery block459
with the appropriate fields. Note that similar to an encryption operation, the KRSP needs to be460
attached first, a key recovery enablement context created and then the call to the KRB generation461
API placed. The actual call where key recovery block generation is complete takes the462
cryptographic context handle as an argument from the application. Therefore, it can internally463
access the context and clear the KR annotation in the context. As a result, the next time the464
application tries to encrypt data using that context, the CMM allows the operation to proceed465
since the KRMM has cleared the annotations after ensuring that the KRB is generated466
successfully. Figure 2 illustrates the algorithm used for the KR policy enforcement. The KRMM467
also provides an API call that the application can use directly to find out if it needs to generate the468
KRB before encryption.469

470
471
472
473
474
475
476
477
478
479

11

480
481

Application CSSM Framework482
Space Space483

484
485
486
487
488

(1)Create Context489
Check Context490

(2)KR Required?491
(3)Handle Yes: Annotate Context492

493
(4)Encrypt Data (ContextHandle)494
Allowed on this context?495

No!496
(5)FAIL (KRB Required)497

498
(6)Generate KRB.499
 Clear Context Annotation500
(7)KRB(OK)501

502
503

(8)Encrypt Data (ContextHandle)504
 Allowed on this context?505

(9)Yes, no annotation506
(10)Encrypted Data507

508
509
510

Figure 2. KR Enforcement protocol511
512

A possible way for the application to bypass the key recovery policy checks is to perform513
multiple encryption using weak keys. If the application chains several weak encryption operations514
together with different keys, it can increase the effective key size to what is considered strong515
encryption. This idea indeed is used to strengthen DES into triple-DES algorithm, where516
encryption and decryption operation are chained together with different keys to produce a much517
stronger encryption than DES. To prevent multiple encryption, the framework has implemented a518
mechanism that detects encryption requests for previously encrypted data, and prevents the519
request from proceeding. This mechanism disables multiple encryption attempts that potentially520
could bypass key recovery enforcement.521

522
Now that we have developed an understanding of the key recovery policy configuration and523
enforcement in the Keyworks framework, we can look back at the requirements in section 2 and524
discuss how the current design satisfies them. The method used for policy configuration in525
Keyworks provides ample flexibility for both usage and manufacturing jurisdictions to enforce526
local policies. Once the policy files are set in place, the key recovery blocks are generated by the527
application, otherwise the framework effectively disables the encryption operation for the528
application. The design is such that once KR is enforced, KRB is generated regardless of the529
success of the encryption operation and there is no intervention from the KRA each time (refer to530

CMM KRMMApplication

12

Appendix 2 for more details). The design also takes advantage of an integrity and authentication531
mechanism, which will be described in section 5. Moreover, the framework provides a general-532
purpose privilege model that can be customized for applications that can be granted special533
privileges such as key recovery block generation. The implemented key recovery mechanism534
satisfies the entire list of specified export requirements, as well as requirements mandated by535
importing jurisdictions.536

537
538

5. The Keyworks Privilege Model539

540
Application modules may have special privileges that they can use to obtain special framework541
services above and beyond other non-privileged applications. The Keyworks framework provides542
a method for such applications to request special privileges for each thread of execution. An543
example would be an application that is exempt from key recovery policy enforcement. In this544
case, the privileged application can place a request to the framework to be exempt from key545
recovery policy enforcement. The privilege is granted if the following two conditions are546
satisfied:547

• The application credentials are successfully validated by framework548

• The application credentials carry a vector of privileges that are equivalent or a superset of549
the requested privilege550

551
When the applications request the Keyworks framework for a given privilege (with the552
CSSM_RequrestCssmExemption API), their credentials are verified and the maximum allowed553
exemptions are determined. As we will describe in Section 6, each application module is signed554
and given a privilege vector in its credentials. The framework verifies the application credentials555
and depending on that privilege vector, decides whether the requested privilege can be granted.556

557
The types of privileges available to applications currently are mainly exemptions from various558
policy checks. Therefore in this paper exemptions and privileges are used interchangeably to559
describe the Keyworks product design. The current exemptions are defined as:560

561
#define CSSM_EXEMPT_NONE 0x00000000562
#define CSSM_EXEMPT_MULTI_ENCRYPT_CHECK 0x00000001563
#define CSSM_STRONG_CRYPTO_WITH_KR 0x00000002564
#define CSSM_EXEMPT_LE_KR 0x00000004565
#define CSSM_EXEMPT_ENT_KR 0x00000008566

567
The semantics of these privilege types are defined as follows:568

569
• CSSM_EXEMPT_NONE: No privilege can be granted as for exemption from any policy.570

571
• CSSM_EXEMPT_MULTI_ENCRYPT_CHECK: Normally the framework prohibits the572

multiple encryption of the same data (i.e. encrypting again the result of a previous encryption573
operation.) This privilege grants exemption from multiple encryption prevention. The policy574
against multiple encryption is enforced due to the fact that it could potentially increase the575
effective key size, hence converting weak encryption to strong encryption. For example,576
chaining three encryption operations with key size of 40 bits and using three different keys577
practically converts the weak encryption to a much strong encryption with an effective key578
size much larger than 40. Therefore, multiple encryption can be considered a method of579

13

circumventing strong encryption controls and key recovery enforcement and should be580
prevented.581

582
• CSSM_STRONG_CRYPTO_WITH_KR: This privilege enables the application to gain access583

to strong cryptographic operations provided key recovery blocks have been generated prior to584
the encryption. Lack of this privilege in the application module’s credentials prevents usage of585
strong encryption altogether. The rational behind this exemption is to ensure that applications586
developed outside the US not only generate the key recovery blocks, but also handle them in587
an appropriate way. For example, a typical application can generate a KRB and use strong588
encryption, but simply discard the KRB instead of handling it according to the law589
enforcement requirements. In the export version of the toolkit, an application can not have590
access to strong encryption unless it is signed with this privilege. Through a review process, it591
is determined that the application handles the KRB appropriately, and only in that case it is592
singed with this privilege, hence given access to strong encryption.593

594
• CSSM_EXEMPT_LE_KR: When this exemption is requested, the law enforcement rules that595

define what strong encryption policies are completely ignored.596
597
598

• CSSM_EXEMPT_ENT_KR: When this exemption is requested, the enterprise key recovery599
policy module is no longer consulted to determine whether an operation requires key recovery600
fields for enterprise in the KRB.601

602
Note that the privilege mechanism in the framework is not necessarily confined to key recovery603
policy exemption. Other kinds of privileges for the applications can be defined and controlled604
through the privilege mechanism, for example where a specific service provider would require605
applications to have special privileges to access them. Each thread of execution should request its606
privileges from the framework at least once. The framework then associates the appropriate607
privilege vector obtained from the credentials with the thread identifier. The privileges are608
subsequently checked every time the thread requests the special operation. If the thread possesses609
the correct privilege, it will be exempt from the corresponding policy enforcement within the610
framework. The privileges of a thread do not propagate to its parent, siblings or children.611

612
613

6. Integrity and Bilateral Authentication614

615
One of the important architectural requirements for a key recovery solution is to provide a616
mechanism to prevent bypass or tampering of the policy enforcement module and to avoid617
interoperation with modules that have been tampered with before performing trusted operations.618
The integrity verification and bilateral authentication mechanism in Keyworks is designed to619
address these requirements. As an added benefit, this feature has enabled implementation of other620
features such as the privilege model as discussed in the previous section.621

622
The idea behind the Keyworks integrity model is to form a chain of trust where an application623
trusts the framework, while the framework trusts a service provider and vice versa, hence624
different components can interoperate to perform secure operations while ensuring the integrity of625
one another. Furthermore, once different service providers and the framework mutually perform626
authentication and verification, the service providers can safely cooperate with each other as well.627
The design takes advantage of code signing techniques where the root of trust is embedded inside628

14

the code and can not be tampered with. Since it is very hard to define a universal root of trust for629
code signing, each software organization can define the set of public keys it trusts for code630
signing, which is what IBM has done. Each module can be signed using a known and trusted631
private key that is vouched for (certified) by the chosen IBM root. After code signing in632
Keyworks, the module is accompanied with the credentials that contain the DSS signature and the633
certificate chain (with IBM root as the anchor certificate) that can be used to verify this signature634
on the module. The module itself can verify the credentials to perform a self-check, or pass its635
credentials to another module for bilateral authentication. In this section, we describe how the636
framework performs self-check and then bilateral authentication with the service providers. First,637
we also briefly describe how the Keyworks modules are signed.638

639
The integrity model in Keyworks heavily relies on the credentials after the object is signed. The640
object in this context can be a set of files such as KRSP configuration files, or a set of DLLs such641
as various service provider and policy modules. IBM facilitates the process of signing using a642
signing facility that allows developers sign their code and have their signing keys certified. The643
signing facility is a GUI based program that allows DSA Key generation, DSS code signing644
according to the CDSA standard specifications, and generation of X.509v3 DSA certificates that645
can be used for signature verification. The hierarchy of the keys used by the Keyworks for code646
signing is shown in the figure below. Arrow indicates signing relationship in the figure below.647

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

The IBM root key pair is the trusted root of the hierarchy in Keyworks. The root private key signs665
three other public key certificates whose private key is used to sign Keyworks modules. These666
three keys are: framework signing key that signs the framework and policy module DLLs, IBM667
Add-ins key that signs the IBM service provider Add-in modules in the Keyworks product, IBM668
configuration signing key which is used for signing KRSP configuration files (see Appendix 2 for669
details). Third parties that develop their own service provider modules can also have their signing670
key certified by the IBM root key using the signing center.671

672
When a module is signed, a set of credentials is generated for that module and should accompany673
the object whenever it is loaded and verified. These credentials are composed of three files that674
reside on disk: two manifest files, and a signature file. The manifest files contain the hash of the675
object and information about the signature format and algorithm. The signature file contains a676
signature of the manifest files, and the X.509v3 DSA certificate chain that can be used to verify677
this signature. The structure of the credential files and their relationship are depicted the Figure 3678
below for cssm32.dll, which is the shared library for the framework on Windows platform. The679

IBM Root
Key

Framework
Signing key

IBM Add-
ins signing
key

IBM config
signing key

Third party
Add-in

signing key

Privileged
apps

signing key

15

relationship between the manifest and signature files is such that not only the hash of object is680
protected, but also the related information such as algorithm identifier and version are preserved.681
This way the risk of malicious attackers changing the object hash is minimized.682

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Figure 3. Module Credentials715
716
717
718

When the framework DLL loads, it first performs a self-check to ensure that it has not been719
tampered with. To do this, the framework uses the Embedded Integrity Services Library (EISL)720
that is statically linked in. The EISL embodies all the functions needed to load and verify module721
credentials and is statically linked in to provide a tamper-proof integrity verification kernel722
trusted to perform signature verification.723

724
The EISL Self-Check in the CSSM framework is accomplished by calling the EISL API function725
ISL_VerifyAndLoadModuleAndCredentials, which performs the following two steps:726

727
− Credential Verification and Identity Establishment: The EISL code contains the IBM root728

public key that can be used to verify the anchor certificate in the certificate chain in the729
signature file cssm32.dsa. The assumption is that the leaf certificate in the chain contains the730
public key that is used to sign the manifest files. This ensures that the signature and the731
signing certificate chain in the credentials have not been swapped with a fake one. If the732
certificate chain verification fails, the module is not loaded. Next, the EISL uses the leaf733

Cssm32.mf:

Version: 1.0
SectionName: cssm32
Name: executable: cssm32.dll
Digest-Algorithm: SHA-1
SHA-1 Digest: Rb8MZN/z3AsuJno2k0

Cssm32.sf:

Signature-version: 1.0
SectionName: cssm32
Name:executable: cssm32.dll
Digest-Algorithm: SHA-1
SHA-1Digest: L/BnaCA8dq6bv71fvr9

Cssm32.dsa: (ASN.1 encoded)

Manifest files

Signature file

Cssm32.dll

H

H

DSA Signature of Object.sf

Certificate Chain to Verify
DSA Signature

16

certificate to verify the signature on cssm32.sf. If the signature verifies correctly, a hash of734
cssm32.mf is computed and compared to the one contained in cssm32.sf. If they match,735
credential verification is complete and it is established that IBM vouches for the signer of the736
object, hence the signature can be trusted by the framework.737

738
− Module Integrity Verification: The EISL computes a hash of the cssm32.dll in memory and739

compares it to the value in the cssm32.mf file. If the two values match, the self-check passes740
and module load is successful.741

742
The EISL uses the same mechanism to verify any module that is accompanied with its743
credentials. Some of the other modules that are verified in the framework using the EISL include744
key recovery policy files as we discussed in Section 3, service provider modules, and privileged745
applications.746

747
The next step that occurs after the framework successfully is initialized is to attach a service748
provider such as a CSP. At attach time, the CSP and the framework perform bilateral749
authentication to avoid rogue applications taking advantage of the CSP services. The service750
provider also needs to be linked in with the EISL to be able to perform self-check. Bilateral751
authentication is composed of the following steps:752

753

• Framework has performed a self-check at initialization as we described at the beginning754
of this section. Therefore it can be treated as a trusted entity.755

• Framework reads the installation path of the CSP modules and credentials from system756
registry loads the module and verifies the credentials and integrity of the CSP just as it757
would perform a self-check. If the verification is successful the authentication procedure758
can proceed, otherwise the attach fails.759

• Every Add-in module contains a function called “Add-inAuthenticate” that encapsulates760
the EISL functions that the Add-in needs to perform. The framework finds the address of761
this function, ensures that is lies within the module boundaries in memory to ensure that762
it is not a fake call. The framework calls the Add-inAuthenticate function.763

• The CSP Add-inAuthenticate performs credential verification and integrity check on the764
framework module in memory. Note that the CSP does not perform a self-check since the765
framework has already performed that. If the CSP verified independently that the766
framework is trustworthy, it can also trust that fact that no one has tampered with the767
CSP module itself.768

• If the framework passes the CSP’s integrity check, the framework provides its function769
table to the CSP. In other words, the framework avails itself to interoperate with the CSP770
since mutual trust between CSP and framework has been established.771

• The CSP provides its own function table to the framework so CSP services can be772
exploited773

774
Note that this approach works since the CSP does not export any of its entry points. The CSP775
publicizes its call table (entry points) to the framework only after successful bilateral776
authentication. As a result, rogue applications fail to obtain the entry points that provide service777
in the CSP and all calls can only go through the framework.778

779
As mentioned in the previous section, all key recovery policy modules are verified before they are780
loaded into the KRPT. The policy modules are also accompanied by their credentials which are781
verified by the framework when the modules are loaded, however, there is no need to perform782
bilateral authentication between the framework and the policy modules. The policy modules can783

17

publicize their information, since they are designed to be read-only. Performing signature784
verification on the policy modules suffices to ensure that the contents have not been tampered785
with.786

787
Similar to Keyworks modules, the applications that use Keyworks can also be signed and788
accompanied with credentials. The generated credentials are used to carry the assigned privileges789
to the application, and provide a means of trust establishment. The framework honors the790
privileges only if the root of trust signs the credentials, which in case of Keyworks is the IBM791
root public key.792

793
Other files that are protected via the integrity mechanism are the configuration files for the IBM794
key recovery service provider (KRSP module). These configuration files contains important795
information that is needed for correct key recovery block generation such as KRA certificates.796
The information is not private; however, it should be protected from tampering. In this case, the797
responsibility of verifying the integrity of the configuration files lies with the KRSP. The798
mechanism stays the same. The KRSP uses the embedded root key in EISL to first verify the799
certificate chain in the credentials, then it checks the integrity of the configuration files using the800
installed credentials. Finally after loading the files it checks the trustworthiness of the contained801
data independently as is discussed in Appendix 2.802

18

803

7. Operational View of the Framework804

805
So far we have discussed different aspects of the framework architecture that enable key recovery806
while satisfying all the requirements. In order to put what we have discussed in context, in this807
section we present a simple encryption with key recovery example and illustrate how the services808
we have described so far are activated during the life cycle of our simple encryption example.809
The actual C program for this example can be found in Appendix 1. We define the lifecycle of a810
simple encryption application as shown in the figure below:811

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

Each stage in the life cycle is denoted by a call to an API function that triggers a number of842
events inside the framework. Note that the call to CSSM_KR_CreateKREnablementContext is843
placed only if key recovery is required. The stages of the life cycle and the corresponding internal844
events that occur at that point are described below:845

846
1. CSSM_Init: The loading of the framework DLLs and application call to CSSM_Init()847

function start the initialization process of the framework as listed:848
849

a) Internal CSSM initialization (context management, module management, thread safety,850
etc.)851

b) CSSM self check is performed as described in Section 6.852

Program Start

CSSM_Init

ModuleAttach
(CSP and KRSP)

CreateSymmetricContext

EncryptData

ModuleDetach
(CSP and KRSP)

Program Terminate

DeleteContext

GenerateKRFields

CreatKREnablement
Context

19

c) KR policy modules are loaded verified and added to the key recovery policy table as853
described in Section 4. The policy tables are cached in and can not be modified till the854
next time the framework is loaded.855

d) All exemptions for the current thread are cleared. These exemptions are instated when the856
application calls the API function CSSM_RequestCSSMExemption while presenting its857
credentials. The thread retains these exemptions till its termination or if a new set of858
exemptions is requested using the same API function call.859

860
2. CSSM_ModuleAttach(): Before using the services of the CSP and the KRSP, the application861

needs to attach the module first. The module attach process is composed of the following862
steps:863

864
a) Set up internal module management structures865
b) Load and verify module credentials for the CSP and verify the signature on the CSP866
c) Call AddinAuthenticate in the CSP library to perform add-in self-check and bilateral867

authentication between the CSP and the framework as described in Section 6.868
d) Load and Initialize the CSP Add-in module and return a module handle to the application869
e) Load and verify module credentials for KRSP and verify the signature on KRSP. The870

KRSP however does not verify the framework as the CSP does.871
872

3. CSSM_CSP_CreateSymmetricContext(): For every cryptographic operation an appropriate873
context need to be created. In case of encryption, a symmetric context is created as follows:874

875
a) Set up context management structure for the new context in the framework876
b) Ask KRMM to apply the relevant KR policies and mark the context if KR is required for877

the requested operation878
c) Return a handle for the context to the application879

880
4. CSSM_KR_RecoveryEnablementContex(): Similar to an encryption operation, a context is881

needed to convey the required parameters to KRSP. The RecoveryEnablementContext882
contains user profiles for correct key recovery block generation. For more details please refer883
to Appendix 2. Note that this step is only executed if key recovery block generation is884
required. The application can call API functions such as CSSM_KR_GetPolicyInfo() on a885
given context to find out whether key recovery is needed.886

887
5. CSSM_KR_GenerateRecoveryFields(): A call to this API function starts the key recovery888

block generation in the KRSP. The KRSP uses the contents of the enablement context and the889
symmetric context to create the key recovery block (KRB) using the IBM SKR algorithm.890
For details of this process please refer to Appendix 2. If the KRB generation is successful, the891
annotation of the symmetric context is cleared by KRMM and the KRB data is returned to the892
application. If the KRB could not be generate successfully, the annotations are not cleared,893
and the application can not proceed with the encryption operation.894

895
6. CSSM_EncryptData(): This API function takes the handle to the context created in the896

previous step as an argument along with a few other arguments relevant to the operation. The897
most important event during this call is:898

899
a) Placing a call to KRMM to check if the requested operation is allowed enforces KR900

policy. The KRMM performs the following to make the decision:901

20

i) The requesting thread privileges are considered to see if the calling thread possesses902
KR exemptions. If so, the operation can proceed. Otherwise, proceed to the next903
check.904

ii) Check for KR annotations on the context. If the context is still annotated, the905
encryption request is not allowed.906

b) Check for multiple encryption attempts. If the call is to perform encryption on data that is907
already encrypted, reject the call. The framework maintains a cache of all previously908
encrypted data, and if the input data match any of those entries, it is considered a multiple909
encryption attempt, which potentially can bypass the KR enforcement mechanisms and910
should be disallowed.911

912
7. CSSM_DeleteContext(): The context corresponding to the supplied handle is removed from913

the internal context management data structures914
915

8. CSSM_ModuleDetach(): Upon module detach all the corresponding internal module916
management structures are cleaned inside the framework, given that no other reference to the917
module exists.918

919
920

8. Conclusion921

922
In this paper we presented an overview of key recovery requirements that are motivated by export923
and import regulations of different jurisdiction with respect to strong encryption. We further924
discussed the motivation and design of features in the Keyworks product that cooperate to address925
the requirements and facilitate key recovery in a secure fashion. Using a simple example we926
provided a context where the role of each feature was illustrated from an operational point of927
view.928

929
IBM Keyworks product provides a key recovery solution that enforces configurable930
manufacturing and usage policies for law enforcement (LE_MAN and LE_USE), enterprise931
(ENT) and individuals (INDIV). The policy configuration mechanism is flexible enough to allow932
several variations of policy establishment. The LE_MAN and LE_USE can have different933
policies, or upon jurisdictional agreement reuse each other’s policy. LE_USE also can override934
the LE_MAN access to the key recovery fields. Furthermore, access to strong encryption is935
effectively disabled till the key recovery block is generated properly, and no intervention from the936
designated KRA's is required to complete the KRB generation. In addition, the framework937
embodies a mechanism for integrity self-check and bilateral authentication with the service938
provider modules that prevents tampering and bypass of key recovery enforcement mechanisms939
and interoperation with non-trusted or tampered modules. The collection of all the above940
mentioned features cooperate to satisfy all the requirements mandated by jurisdictions where the941
Keyworks product is used, and the manufacturing jurisdiction in a satisfactory fashion.942

943
944

21

945

Appendix 1: Sample Encryption Program946

947
The following C program provides an example of how applications can perform an encryption948
operation. In this example, we attempt to perform an encryption operation that does not need key949
recovery. We also provide an example where key recovery if performed.950

951
952

/* sample encryption program without key recovery */953
CSSM_RETURN encryptdata_example(void)954
{955

/* context information */956
CSSM_CC_HANDLE ContextHandle;957

958
CSSM_CRYPTO_DATA PassPhrase;959
CSSM_DATA PassBuf;960
char PassData[] = "Your Secret pass phrase";961

962
/* key used for encryption */963
CSSM_KEY EncryptionKey;964

965
/* buffer used for encryption */966
uint32 bytesEncrypted;967

968
CSSM_DATA ClearBuf;969
CSSM_DATA CipherBuf;970
CSSM_DATA RemBuf;971
CSSM_DATA InitVector972
unsigned char ClearData[256];973
unsigned char CipherData[256];974
unsigned char RemData[256];975
unsigned char DecryptData[256];976
/* dummy IV data */977
unsigned char ivData[8] = {0,0,0,0,0,0,0,0};978

979
/* key generation parameters */980
uint32 KeyUsage = CSSM_KEYUSE_ANY;981
uint32 KeyAttr = CSSM_KEYATTR_SENSITIVE;982

983
CSSM_RETURN ReturnValue = CSSM_OK;984
int keylen;985
CSSM_RETURN test_rval;986
CSSM_ERROR_PTR ErrorPtr;987

988
Char *DataString = "This is the data to be encrypted";989

990
CSSM_MODULE_HANDLE CSPHandle;991
CSSM_GUID CSPGUID = IBMSWCSP_GUID;992
CSSM_VERSION CSPVersion;993
CSSM_API_MEMORY_FUNCS MemoryFuncs;994
uint32 SubserviceID = 0;995
uint32 SubserviceFlags = CSSM_SERVICE_CSP;996
uint32 Application = 0;997
const CSSM_NOTIFY_CALLBACK Notification = 0;998
const void * Reserved = NULL;999

1000
/* set up the structures needed for CSSM_Init */1001
CSPVersion.Major = IBMSWCSP_MAJOR_VERSION;1002
CSPVersion.Minor = IBMSWCSP_MINOR_VERSION;1003

22

1004
/* pass the pointers to memory functions that can be used to allocate buffers for the application */1005
MemoryFuncs.malloc_func = app_malloc;1006
MemoryFuncs.free_func = app_free;1007

1008
MemoryFuncs.realloc_func = app_realloc;1009
MemoryFuncs.calloc_func = app_calloc;1010

1011
CSPHandle = CSSM_ModuleAttach(&CSPGUID,1012

&CSPVersion,1013
&MemoryFuncs,1014
SubserviceID,1015
SubserviceFlags,1016
Application, Notification, Reserved);1017

1018
1019
1020

PassPhrase.Param = &PassBuf;1021
PassBuf.Length = sizeof(PassData);1022
PassBuf.Data = PassData;1023
PassPhrase.Callback = NULL;1024

1025
keylen = 56;1026

1027
1028

ContextHandle =CSSM_CSP_CreateKeyGenContext(CSPHandle, 1029
CSSM_ALGID_DES,1030
&PassPhrase, keylen,1031
NULL, NULL, NULL,1032
NULL, NULL);1033

1034
1035
1036

if (ContextHandle == 0)1037
{1038

return CSSM_FAIL;1039
}1040

1041
1042

memset (&EncyrptionKey, 0, sizeof(EncryptionKey));1043
1044

ReturnValue = CSSM_GenerateKey(ContextHandle,1045
 KeyUsage,1046
 KeyAttr,1047
 NULL,1048
 &EncryptionKey);1049

if (ReturnValue != CSSM_OK)1050
{1051

return CSSM_FAIL;1052
}1053

1054
ReturnValue = CSSM_DeleteContext(ContextHandle);1055
if (ReturnValue != CSSM_OK)1056
{1057

return ReturnValue;1058
}1059

1060
InitVector.Length = sizeof(ivData);1061
InitVector.Data = ivData;1062

1063
ContextHandle = CSSM_CSP_CreateSymmetricContext(CSPHandle, CSSM_ALGID_DES,1064

CSSM_ALGMODE_CBCPadIV8,1065

23

&EncryptionKey, &InitVector, CSSM_PADDING_NONE, 0);1066
1067

if (ContextHandle == 0)1068
{1069

return CSSM_FAIL;1070
}1071

1072
/* setup the cleartext to be encrypted */1073
strcpy(ClearData, DataString);1074

1075
ClearBuf.Length = strlen(ClearData);1076
ClearBuf.Data = ClearData;1077

1078
/* set up the buffer for the ciphertext */1079
memset(CipherData, 0x00, sizeof(CipherData));1080
CipherBuf.Length = sizeof(CipherData);1081
CipherBuf.Data = CipherData;1082

1083
BytesEncrypted = 0;1084

1085
memset(RemData, 0x00, sizeof(RemData));1086
RemBuf.Length = sizeof(RemData);1087
RemBuf.Data = RemData;1088

1089
ReturnValue = CSSM_EncryptData(ContextHandle, &ClearBuf, 1, &CipherBuf, 1,1090

 &bytesEncrypted, &RemBuf);1091
1092

if (ReturnValue != CSSM_OK)1093
{1094

return CSSM_FAIL;1095
}1096

1097
1098

ReturnValue = CSSM_DeleteContext(ContextHandle);1099
if (ReturnValue != CSSM_OK)1100
{1101

return ReturnValue;1102
}1103

1104
ReturnValue = CSSM_ModuleDetach(CSPHandle);1105

1106
return CSSM_OK;1107

}1108
1109
1110
1111

24

1112
Encryption Example with Key Recovery Block generation:1113

1114
/* This example encrypts a given file while generating the key recovery block. For illustration1115
purposes only. */1116
int main(int argc, char *argv[])1117
{1118
 // Handle to the cryptographic service provider1119
 CSSM_CSP_HANDLE hCSP;1120
 // Handle to the key recovery service provider1121
 CSSM_KRSP_HANDLE hKRSP;1122
 char *ClearFilename;1123

1124
 ProcessArguments(argc, argv, &ClearFilename);1125

1126
 Initialize();1127

1128
 // Set up cryptographic service provider1129
 AttachCSPByAlgorithm(&hCSP, CSSM_ALGID_DES);1130

1131
 // Set up key recovery service provider. Strong encryption can only1132
 // occur if the appropriate key recovery fields have been generated.1133
 AttachKRSPByUserChoice(&hKRSP);1134

1135
 // Generate required key recovery fields and then encrypt1136
 GenerateKeyRecoveryFieldsAndEncrypt(hCSP, hKRSP, ClearFilename);1137

1138
 return 0;1139
}1140

1141
//---1142
//1143
// Function: AttachCSPByAlgorithm1144
//1145
// This function searches the list of all installed modules for a1146
// CSP that supports the required algorithm.1147
//1148
//---1149
void AttachCSPByAlgorithm(1150
 CSSM_CSP_HANDLE *hCSP,1151
 uint32 AlgorithmRequired)1152
{1153
 CSSM_ERROR_PTR pError; // error information1154
 CSSM_LIST_PTR pModuleList; // list of modules1155
 CSSM_MODULE_INFO_PTR pModuleInfo; // module info1156
 CSSM_CSPSUBSERVICE_PTR pCspInfo; // CSP module info1157
 CSSM_SOFTWARE_CSPSUBSERVICE_INFO_PTR pInfo; // software CSP module info1158
 CSSM_CSP_CAPABILITY_PTR pCap; // capabilities list1159
 uint32 Total; // miscellaneous1160
 CSSM_BOOL Found; // boolean for search1161
 uint32 i; // index1162

25

 uint32 j; // index1163
 uint32 k; // index1164
 uint32 l; // index1165

1166
 //1167
 // Retrieve the total list of CSPs installed on the system at this time.1168
 //1169

1170
 if ((pModuleList = CSSM_ListModules(CSSM_SERVICE_CSP, CSSM_TRUE)) == NULL)1171
 {1172
 pError = CSSM_GetError();1173
 printf("Error: could not list installed modules\n");1174
 printf("CSSM_ListModules error code = %d\n", pError->error);1175
 exit(1);1176
 }1177

1178
 if (pModuleList->NumberItems == 0)1179
 {1180
 printf("Error: no CSPs installed.\n");1181
 exit(1);1182
 }1183

1184
 //1185
 // Search through installed software CSPs for one that supports the1186
 // encryption algorithm required1187
 //1188

1189
 Found = CSSM_FALSE;1190

1191
 for (i = 0; !Found && i < (int)pModuleList->NumberItems; i++)1192
 {1193
 pModuleInfo = CSSM_GetModuleInfo(&(pModuleList->Items[i].GUID),1194
 CSSM_SERVICE_CSP,1195
 0,1196
 CSSM_INFO_LEVEL_ALL_ATTR);1197

1198
 for (j = 0; !Found && j < (int) pModuleInfo->NumberOfServices; j++)1199
 {1200
 pCspInfo = pModuleInfo->ServiceList[j].CspSubServiceList;1201

1202
 for (k = 0; !Found && k < pModuleInfo->ServiceList[j].NumberOfSubServices; k++)1203
 {1204
 //1205
 // Note: to extend the search to hardware CSPs, a case1206
 // could be added to this switch construct.1207
 //1208
 switch (pCspInfo->CspType)1209
 {1210
 case CSSM_CSP_SOFTWARE:1211
 pInfo = &(pCspInfo->SoftwareCspSubService);1212
 Total = pInfo->NumberOfCapabilities;1213

26

 for (l = 0; l < Total; l++)1214
 {1215
 pCap = &(pInfo->CapabilityList[l]);1216
 if (pCap->AlgorithmType == AlgorithmRequired)1217
 {1218
 Found = CSSM_TRUE;1219
 }1220
 }1221
 break;1222

1223
 default:1224
 break;1225
 } // switch1226
 } // for each subservice1227
 } // for each usage type1228
 } // for each module1229

1230
 if (!Found)1231
 {1232
 //1233
 // There were CSPs, but none of them matched1234
 //1235
 printf("Error: there are no suitable cryptographic service providers installed\n");1236
 exit(1);1237
 }1238
 else1239
 {1240
 *hCSP = CSSM_ModuleAttach(&(pModuleList->Items[i-1].GUID),1241
 &pModuleInfo->Version,1242
 &MemoryFuncs,1243
 0,1244
 0,1245
 0,1246
 NULL,1247
 NULL);1248
 if (*hCSP == 0)1249
 {1250
 pError = CSSM_GetError();1251
 printf("Error: could not attach to suitable cryptographic service provider\n");1252
 printf("CSSM_ModuleAttach error code = %d\n", pError->error);1253
 exit(1);1254
 }1255

1256
 }1257

1258
 // Successfully attached to desired CSP1259
}1260

1261
1262
1263
1264

27

//---1265
//1266
// Function: AttachKRSPByUserChoice1267
//1268
// This function lists the installed modules which are key recovery service1269
// providers and prompts the user to choose one.1270
//1271
//---1272
void AttachKRSPByUserChoice(1273
 CSSM_KRSP_HANDLE *hKRSP)1274
{1275
 CSSM_ERROR_PTR pError; // error info1276
 CSSM_LIST_PTR pModuleList; // list of modules1277
 CSSM_MODULE_INFO_PTR pModuleInfo; // module info1278
 CSSM_GUID KrspGuid; // KRSP module identifier1279
 CSSM_BOOL ChoiceMade; // boolean for menu1280
 uint32 number; // index1281
 uint32 i; // index1282

1283
 //1284
 // Retrieve the total list of KRSPs installed on the system at this time.1285
 //1286

1287
 if ((pModuleList = CSSM_ListModules(CSSM_SERVICE_KR, CSSM_TRUE)) == NULL)1288
 {1289
 pError = CSSM_GetError();1290
 printf("Error: could not list installed modules\n");1291
 printf("CSSM_ListModules error code = %d\n", pError->error);1292
 exit(1);1293
 }1294

1295
 if (pModuleList->NumberItems == 0)1296
 {1297
 //1298
 // Exit when there are no KRSPs installed1299
 //1300
 printf("Error: no KRSPs installed! Aborting.\n");1301
 exit(1);1302
 }1303
 else1304
 {1305
 //1306
 // Present a list of installed KRSPs to choose from1307
 //1308

1309
 ChoiceMade = CSSM_FALSE;1310

1311
 printf("These key recovery service providers are installed:\n\n");1312

1313
 while (!ChoiceMade)1314
 {1315

28

 printf("\n");1316
1317

 // for each module found1318
 for (i = 0; i < pModuleList->NumberItems; i++) {1319
 // list this module's name1320
 printf(" [%d] %s\n", i + 1, pModuleList->Items[i].Name);1321
 }1322

1323
 printf("\nPlease enter the number of the one you wish to attach.\n");1324

1325
 // read user's selection1326
 if ((scanf ("%d", &number) == 1) &&1327
 (number > 0) &&1328
 (number <= pModuleList->NumberItems)) {1329
 ChoiceMade = CSSM_TRUE;1330
 } else {1331
 printf("Error: invalid choice\n\n");1332
 }1333

1334
 fflush(stdout);1335

1336
 } // while choice not made1337

1338
 }1339

1340
 //1341
 // Get the GUID of the choice made and attach it to use it1342
 //1343

1344
 KrspGuid = pModuleList->Items[number - 1].GUID;1345

1346
 pModuleInfo = CSSM_GetModuleInfo(&KrspGuid,1347
 CSSM_SERVICE_KR,1348
 0,1349
 CSSM_INFO_LEVEL_ALL_ATTR);1350

1351
 *hKRSP = CSSM_ModuleAttach(&KrspGuid,1352
 &pModuleInfo->Version,1353
 &MemoryFuncs,1354
 0,1355
 0,1356
 0,1357
 NULL,1358
 NULL);1359

1360
 if (*hKRSP == 0)1361
 {1362
 printf("Error: could not attach to the chosen KRSP named \"%s\"\n",1363
 pModuleList->Items[number - 1].Name);1364
 pError = CSSM_GetError();1365
 printf("CSSM_ModuleAttach error code = %d\n", pError->error);1366

29

 exit(1);1367
 }1368
}1369

1370
//---1371
//1372
// Function: GenerateKeyRecoveryFieldsAndEncrypt1373
//1374
// This function encrypts a file using strong encryption. It performs all1375
// the necessary prerequisites such as generation of a key (could be replaced1376
// by string to key derivation) for the encryption, generation of the1377
// necessary key recovery fields, and actual encryption. The encrypted1378
// file and the key recovery field file will be written out.1379
//1380
//---1381
void GenerateKeyRecoveryFieldsAndEncrypt(1382
 CSSM_CSP_HANDLE hCSP,1383
 CSSM_KRSP_HANDLE hKRSP,1384
 char *InputFilename)1385
{1386
 FILE *ClearFile; // clear file's handle1387
 CSSM_CC_HANDLE hCryptoContext; // context handle for encryption1388
 CSSM_KEY Key; // the symmetric key for encryption1389
 int BytesRead; // byte reading counter1390
 uint32 BytesEncrypted; // byte encrypting counter1391
 unsigned char ClearBuf[MAX_CLEAR_FILE_SIZE]; // buffer for cleartext1392
 CSSM_DATA ClearData; // buffer for cleartext1393
 CSSM_DATA EncryptedData; // buffer for ciphertext1394
 unsigned char RemBuf[DES_PAD_LEN];// buffer for padding1395
 CSSM_DATA RemData; // buffer for padding1396
 CSSM_DATA KRFData; // buffer for key recovery fields1397
 CSSM_RETURN RC; // return code1398

1399
 //1400
 // Normally one would prompt the user for a string and convert it to1401
 // a clear key, but here is an example of the key generation APIs1402
 //1403

1404
 GenerateKey(hCSP, &Key);1405

1406
 GenerateSymmetricContext(hCSP, &Key, &hCryptoContext);1407

1408
 GenerateKeyRecoveryFieldsForContext(hKRSP, hCryptoContext, &KRFData);1409

1410
 WriteOutputFile(KRFData, InputFilename, KR_FIELDS_FILE_SUFFIX);1411

1412
 //1413
 // Read the clear file in one buffer for simplification1414
 //1415

1416
 if ((ClearFile = fopen(InputFilename, "rb")) == NULL)1417

30

 {1418
 printf("Error: could not open %s\n", InputFilename);1419
 perror("fopen");1420
 exit(1);1421
 }1422

1423
 BytesRead = fread(ClearBuf, 1, MAX_CLEAR_FILE_SIZE, ClearFile);1424
 ClearData.Length = BytesRead;1425
 ClearData.Data = ClearBuf;1426

1427
 if (BytesRead == 0)1428
 {1429
 printf("Error: did not read any bytes from file\n");1430
 exit(1);1431
 }1432

1433
 if (!feof(ClearFile))1434
 {1435
 printf("Error: exceeded currently supported maximum clear file size\n");1436
 exit(1);1437
 }1438

1439
 fclose(ClearFile);1440

1441
 //1442
 // Encrypt the buffer1443
 //1444

1445
 // Initialize the buffer that will hold the final block of the encryption1446
 memset(RemBuf, 0, sizeof(RemBuf));1447
 RemData.Length = sizeof(RemBuf);1448
 RemData.Data = RemBuf;1449

1450
 // set up CipherBuf with the same length as ClearBuf1451
 EncryptedData.Data = (uint8 *) malloc (ClearData.Length);1452
 EncryptedData.Length = ClearData.Length;1453

1454
 RC = CSSM_EncryptData(hCryptoContext,1455
 &ClearData,1456
 1,1457
 &EncryptedData,1458
 1,1459
 &BytesEncrypted,1460
 &RemData);1461

1462
 // Move the final block of data to the end of the EncryptedBuf1463
 memcpy(EncryptedData.Data + BytesEncrypted, RemData.Data, RemData.Length);1464
 EncryptedData.Length =BytesEncrypted + RemData.Length;1465

1466
 //1467
 // Write the encrypted file1468

31

 //1469
1470

 WriteOutputFile(EncryptedData, InputFilename, ENCRYPTED_FILE_SUFFIX);1471
1472

}1473
1474

//---1475
//1476
// Function: GenerateSymmetricContext1477
//1478
// This function sets the encryption algorithm parameters including the key1479
// itself, the algorithm mode, etc.1480
//1481
//---1482
static void GenerateSymmetricContext(1483
 CSSM_CSP_HANDLE hCSP,1484
 CSSM_KEY *Key,1485
 CSSM_CC_HANDLE *hCryptoContext)1486
{1487
 CSSM_ERROR_PTR pError; // error info1488

1489
 //1490
 // Create a symmetric encryption context to package encryption parameters1491
 //1492

1493
 *hCryptoContext =1494
 CSSM_CSP_CreateSymmetricContext(hCSP,1495
 CSSM_ALGID_DES,1496

1497
CSSM_ALGMODE_CBCPadIV8,1498

 Key,1499
 &DESIVData,1500
 CSSM_PADDING_NONE,1501
 0);1502

1503
 if (hCryptoContext == 0)1504
 {1505
 printf("Error: could not perform symmetric encryption setup\n");1506
 pError = CSSM_GetError();1507
 printf("CSSM_CSP_CreateSymmetricContext error code = %d\n", pError->error);1508
 exit(1);1509
 }1510
}1511

1512
//---1513
//1514
// Function: GenerateKeyRecoveryFieldsForContext1515
//1516
// This function generates the key recovery fields associated with a given1517
// symmetric context. These key recovery fields can later be used to1518
// reocover the encryption key by authorized parties.1519

32

//1520
//---1521
static void GenerateKeyRecoveryFieldsForContext(1522
 CSSM_KRSP_HANDLE hKRSP,1523
 CSSM_CC_HANDLE hCryptoContext,1524
 CSSM_DATA *pKRFields)1525
{1526
 CSSM_CC_HANDLE hKRContext; // context for key recovery field generation1527
 CSSM_RETURN RC; // return code1528
 uint32 KRFlags; // key recovery algorithm flags1529
 CSSM_ERROR_PTR pError; // error info1530

1531
 //1532
 // Create a key recovery enablement context to set up for generation1533
 // of key recovery fields1534
 //1535

1536
 hKRContext = CSSM_KR_CreateRecoveryEnablementContext(hKRSP, NULL, NULL);1537

1538
 if (hKRContext == 0)1539
 {1540
 printf("Error: could not perform key recovery generation setup\n");1541
 printf("CSSM_KR_CreateRecoveryEnablementContext error code = %d\n",1542
CSSM_GetError()->error);1543
 exit(1);1544
 }1545

1546
 //1547
 // Actually generate the key recovery fields that can be used later on1548
 // by authorized parties to recover the encryption key1549
 //1550

1551
 KRFlags = KR_LE_MAN | KR_LE_USE | KR_ENT;1552

1553
1554

 RC = CSSM_KR_GenerateRecoveryFields(hKRContext,1555
 hCryptoContext,1556
 NULL,1557
 KRFlags,1558
 pKRFields);1559

1560
 if (RC != CSSM_OK)1561
 {1562
 printf("Error: could not generate key recovery fields\n");1563
 pError = CSSM_GetError();1564
 printf("CSSM_KR_GenerateRecoveryFields error code = %d\n", pError->error);1565
 exit(1);1566
 }1567

1568
 //1569
 // Clean up1570

33

 //1571
1572

 if ((RC = CSSM_DeleteContext(hKRContext)) != CSSM_OK)1573
 {1574
 printf("Error: could not delete key recovery enablement context\n");1575
 pError = CSSM_GetError();1576
 printf("CSSM_DeleteContext error code = %d\n", pError->error);1577
 exit(1);1578
 }1579
}1580

34

1581

Appendix 2: IBM Secureway Key Recovery Algorithm and Key1582

Recovery Service Provider (KRSP)1583

1584
This appendix presents an overview of the implementation and operation of the KRSP. The1585
assumption is that the reader is already familiar with the IBM SKR algorithm and terminology as1586
presented in the paper “Two-Phase Cryptographic Key Recovery System” by R.Gennaro, P.1587
Karger, et al. First, two essential operational attributes of the KRSP are discussed: the KRSP1588
configuration, and the key recovery block format and how it correlates to various key recovery1589
operational scenarios. We conclude the discussion by presenting a simple KRB generation1590
example where we show how the contents of the configuration files are used to generate the1591
requested key recovery blocks.1592

KRSP Configuration1593

1594
In order to operate correctly, the KRSP needs a set of self-protecting configuration files that1595
contain the necessary information for creation of key recovery blocks. Depending on the key1596
recovery policy, the key recovery block can have multiple parts catering key recovery to different1597
entities. For example, a key recovery block can have a part that allows key recovery for1598
LE_MAN and another that is set up for LE_USE key recovery. In order to set up each field, the1599
KRSP requires identities and public key certificates of the key recovery agents (KRA), and the1600
key recovery center (KRC) to execute the IBM SKR algorithm. Furthermore, the KRSP needs to1601
know what fields are absolutely mandatory in the key recovery block. The collection of all this1602
information constitutes the contents of the KRSP configuration files.1603

1604
The basic set of files needed for KRSP configuration define the jurisdiction types that need to be1605
present in the KRB and provide the required certificates in ASN.1 encoded format. These files1606
are:1607

• Jur-type.cfg: This file is the master configuration file and contains the jurisdictions that must1608
be present in the KRB every time a KRB generation API is called. In other words, regardless1609
of the information received from the API, the jurisdictions specified in this file will be able to1610
recover the key from the KRB. In the current implementation this file contains at least two1611
jurisdictions: LE_MAN and LE_USE.1612

1613

• Enabler.cfg: This file contains a self-signed X.509v3 certificate that is used for the boot-up of1614
KRSP. During initialization, KRSP looks for the enabler certificate and validates the1615
signature and validity date. If any of these steps fail, KRSP fails to initialize.1616

1617

• LE-man.cfg and LE-Use.cfg: These two files contain an ASN.1 encoding of a structure that1618
contains the certificate chains for the corresponding KRA and KRC entities. The law1619
enforcement of each jurisdiction designate entities to act as key recovery center for them and1620
the public key certificate of the approved entities are used to create the LE-*.cfg file. The1621
certificate hierarchy contained in these files is shown in the figure below. Note that the1622
number of KRA's is not limited to two, and the arrow in the figure shows a signing1623
relationship.1624

1625
1626
1627

35

1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

Every jurisdiction entity can choose a root of trust authority to act as the anchor certificate.1642
The chosen anchor certificate then can sign the KRA and KRC certificates used for KRB1643
generation in IBM KRSP. All of these certificates are X.509v3 certificates containing 10241644
bit RSA public keys of the trusted Anchor, KRA's and the KRC. LE_MAN and LE_USE can1645
have totally different anchor certificates, or upon prior agreement use the other entity’s1646
anchor certificate.1647

1648

• Ent.cfg: Optionally, the ent.cfg can also be present in the set of configuration files. In this1649
case, the ENT entry should also be present in the jur-type.cfg. The contents of ent.cfg are1650
similar to that of law enforcement configuration files except that the enterprise anchor1651
certificate is different from those of law enforcement and KRA's and the KRC are approved1652
by the enterprise.1653

1654

• Ent-authinfo-hash.cfg: If the enterprise desires key recovery, and the ent.cfg file is present1655
there is a need for internal authentication for the enterprise. This file contains a SHA-1 hash1656
of a secret known by the enterprise administrator (key recovery officer) only. This hash is1657
incorporated in to the key recovery field of the KRB, and unless it matches the hash of the1658
acting administrator’s password key recovery is not allowed. This process is to safeguard1659
against malicious key recovery within the enterprise, since with this measure in place only the1660
designated key recovery officer can start the key recovery process in the enterprise key1661
recovery server.1662

1663
1664

Once the KRSP configuration files are generated, they are signed with the same key that is used1665
to sign the KRSP module. The generated credentials have the same format as discussed in1666
Section 6 and are placed in the meta-inf directory under the directory where the configuration1667
files are installed.1668

1669
When the application attaches the KRSP module by placing a call to CSSM_ModuleAttach() and1670
supplying the IBM KRSP GUID as an argument, the KRSP starts its initialization. As part of this1671
initialization, the configuration files are verified using their credentials, ASN.1 decoded and1672
cached into memory till the KRSP is detached. Therefore the configuration files can not be1673
changed at run-time. Furthermore, the KRSP also verifies the certificate chains in the1674
configuration files before using them following the normal X.509v3 certificate verification1675
procedures.1676

1677

LE-Man
anchor

Certificate

LE-Man KRA1
Certificate

LE-Man KRA2
certificate

LE-Man KRC
certificate

36

The law enforcement certificates in the current implementation are always retrieved from the1678
configuration files LE-MAN.CFG and LE-USE.CFG. For enterprise, however, there is an option1679
to get the certificates from the API data structures, as we will discuss later in the appendix. The1680
ent.cfg files provides the default certificates, but are overridden if a different set of valid1681
certificates are passed to the KRSP through the API. For individuals who desire key recovery,1682
the only option is to obtain the certificates through the API call. There are no configuration files1683
for individuals.1684

1685
1686

KRB Format1687

1688
The key recovery block contains the protected key that can be recovered by different jurisdictions1689
such as LE_MAN, LE_USE, Enterprise, and individual. The key recovery block format used in1690
the KRSP is an implementation of the Common Key Recovery Block (CKRB) draft standard1691
from the Open Group. This format as implemented by IBM is shown below:1692

1693
1694

CKRB Version # = 1.0 (2 bytes) CKRB Length (4 bytes)

CKRB OID Length (2 bytes) CKRB OID Value(8 bytes)
IBM = 0x19970910

Opaque KRF Length (4 bytes)

Opaque KRF Value- ASN.1 Encoded (Variable Length)

Integrity Type Selected From CKRB (2 bytes)
IBM = SHA-1 keyed hash

KRF Integrity Type Length (2 bytes)

Opaque KRF Integrity Value

1695
Notes:1696

1. All length values are represented in network byte order.1697
1698

The IBM implementation is similar to the CKRB definition, except that due to lack of standard1699
values for version number and OID fields IBM SKR implementation has defined its own values.1700
The CKRB fields are defined as follows:1701

1702

• CKRB Version: Indicates the version (major and minor) number of the KRB1703

• CKRB Length: contains the length of the KRB in bytes1704

• CKRB OID Length: contains the length of an object identifier that defines the type of key1705
recovery method used.1706

• CKRB OID: contains the object identifier for the opaque key recovery field1707

37

• Opaque KRF Length: the length of the opaque KRF which is actually the SKR key recovery1708
block1709

• Opaque KRF: a stream of bytes that actually contain the SKR key recovery block in an1710
ASN.1 encoded format1711

• KRF Integrity type: the type of integrity protection used to protect the KRB, which in this1712
case is a keyed hash of the Opaque KRF1713

• KRF Integrity Length: the length of the keyed hash value, which is 20 since we are using1714
SHA-1 hash algorithm1715

• KRF Integrity value: keyed hash of the Opaque KRF and the session key. This value1716
effectively ties the generated key recovery block to the session key. This is so the receiving1717
end can verify that this key recovery block indeed corresponds to the curent session key.1718

1719
1720

The CKRB is a container for the actual key recovery block data. The opaque KRF can be handled1721
according to the type indicated by the OID field. In the case of IBM KRSP, the KRF contains an1722
ASN.1 encoding of the IBM SKR key recovery block, which itself is composed of two blocks: B11723
and B2. The IBM SKR sub-block formats are shown below:1724

1725
1726

B1

Header Sender
Info

Recvr
Info

LE Use Set LE Man Set Ent Set Indiv Set

Version #
Time
Stamp

Sender
Name

None KRC Info
− KRA Name
− Public key
− Auth Info:

PKEncrypted
[UserName,
Host Name,
Host
Address]

KRA Info
− Public Key
− Auth Info:

PKEncrypted
[UserName,
HostName,
Host Addres]

− Wrapped
KGInfo

KRC Info
− KRA Name
− Public key
− Auth Info:

PKEncrypted
[UserName,
Host Name,
Host
Address]

KRA Info
− Public Key
− Auth Info:

PKEncrypted
[UserName,
HostName,
Host Addres]

− Wrapped
KGInfo

KRC Info
− Public key
− Auth Info:

Hash[Ent
domain auth
info]

KRA Info
− Public Key
− Auth Info:

Hash [Ent
Domain auth
info]

− Wrapped
KGInfo

KRC Info
− Public key
− Auth Info:

Hash[Indiv
auth info]

KRA Info
− Public Key
− Auth Info:

Hash [Indiv
auth info]

− Wrapped
KGInfo

1727
1728
1729
1730
1731
1732
1733

38

1734
1735

B2

Header LE Use Set Info LEManSetInfo EntSetInfo IndSetInfo

Session key
header

Nested Wrapped
Session Key

Nested Wrapped
Session Key

Nested Wrapped
Session Key

Nested Wrapped
Session Key

1736
1737

The B1 and B2 blocks are appropriately filled in by the KRSP and encoded to generate the KRF1738
field in the CKRB. Both blocks provide containers for all supported four jurisdictions, and the1739
KRSP fills in the relevant container according to the contents of jur-type.cfg file.1740

1741
The B1 block is used to transport all authentication and identification information in the key1742
recovery block. This information includes KRA names and public keys for each jurisdiction,1743
authentication information indicating the source of the KRB, and similar information for KRC.1744
The B2 block contains the nested wrapped session key, which is basically the session key1745
encrypted with public keys of jurisdiction KRAs and KRCs, as described in IBM SKR paper1746
referenced in the beginning of this appendix.1747

1748
In order to provide key interoperability between distributed components of the key recovery1749
system, i.e. KRSP, and the key recovery center, we have defined a portable key format. This1750
format contains the cryptographic material of the key as well as all other attributes and1751
parameters needed for correct decryption operation once the key is recovered. The nested1752
wrapped session key in B2 fields is in the portable key format, therefore, after recovery it can1753
easily be used to recover the cleartext.1754

1755
1756

KRSP Operational View1757

The KRSP operation similar to any other service provider module starts when the module is1758
attached by the application calling CSSM_ModuleAttach(). This call triggers the initialization1759
process inside the KRSP that includes loading and validation of the configuration files as well as1760
verification of certificate chains in the configuration files. If the validation is successful, the1761
certificates are cached in the KRSP for later use.1762

1763
The KRB generation for IBM SKR KRSP requires creation of a key recovery enablement context1764
by the application. Similar to cryptographic operations, KRB generation requires a set of1765
parameters and attributes from the application. The KR enablement context acts as a container1766
that groups the required parameters together for the benefit of the KRSP. The API function for1767
creating the context is:1768

1769
CSSM_CC_HANDLE CSSMAPI CSSM_KR_CreateRecoveryEnablementContext(1770
 CSSM_KRSP_HANDLE KRSPHandle,1771
 CSSM_KR_PROFILE_PTR LocalProfile,1772
 CSSM_KR_PROFILE_PTR RemoteProfile);1773

1774

39

The local profile and remote profile arguments to this function contain fields that indicate the1775
types of desired key recovery fields (LE_MAN, LE_USE, enterprise, individual), KRA certificate1776
chain for each type, and user name and public key certificate. The LocalProfile provides the1777
locally accepted information, whereas RemoteProfile can contain the preferred attributes for the1778
receiving end. The certificate chains in the profile can override or supplement those in the KRSP1779
configuration files.1780

1781
When the key recovery enablement context creation is complete, the application calls1782
CSSM_KR_GenerateRecoveryFields API function to have KRSP generate key recovery blocks.1783
The KRSP takes the following steps to generate the KRB:1784

1785

• Input validation: The application supplies the KRSP with a context handle pointing to the KR1786
enablement context. The KRSP performs certificate verification on the certificate chains1787
provided in the context before using them. Specifically, the application can provide profiles1788
for enterprise and individual through the KR enablement context.1789

• Generate SKR KRF: In this step, KRSP calculates all the values that are needed to populate1790
B1 and B2 blocks in the SKR KRB. The structures for B1 and B2 are filled in according to1791
the contents of the master configuration file (jur-type.cfg) and the flags passed in as the1792
argument of the API function. KRSP then proceeds to ASN.1 encode the blocks to generate1793
the KRF.1794

• Encode Open Group CKRB: The next step is to create the CKRB. The result of the previous1795
step – encoded B1 and B2— is put into the CKRB structure as the KRF and correct values for1796
version, and type are filled in. The KRSP also needs to tie the KRB with the encapsulated1797
session key, so a keyed hash of the KRF and the session key is calculated and added to1798
CKRB, and the CKRB structure is AN.1 encoded. At this point, key recovery block1799
generation is complete and the encoded CKRB is returned to the calling application.1800

