il
I
1L

Secure Cryptography
and
Certificate Services Toolkit

Developer’s Guide

Copyright© 1997 International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication,
or disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Copyright© 1997 Intel Corporation. All rights reserved.

Intel Corporation, 5200 N. E. Elam Young Parkway, Hillsboro, OR 97124-6497.

Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.

Table of Contents

CHAPTER L.INTRODUCTION ..o 1
1.1 SCCS TOOLKIT ARCHITECTURE .ttttutiieiiiettttiiseesstesstssseesssssssssssessseesssiessssrssieesress 1
1.2 F A6 5] 1 = N (o= TN 3
1.3 SY STEM REQUIREMENT S, 11tuutiiiiiettttiieeesseeststasssesssessssaatsesssessssaatessseesthaasessseesssaseesssessssanns 3
1.4 CALLING CONVENTIONS . 11t uttiiiiitttttieeeesesststasssesssessbsaaeessssssssaatessstestaasessseesssasseesssessssnnnsns 3
15 (D108 1= N N AT TS = LTS 3
1.6 OTHER REFERENGCES.cttttiiiiiiiitttitiisiessesststsssesstessbsaassessttssssateesstestbasessseesstasssesssessssannsns 4

CHAPTER 2.SECURE CRYPTOGRAPHY AND CERTIFICATE SERVICES FRAMEWORK..... 1
2.1 IMIODULE IMANAGEMENT ..cettttiiieeteeettte s e e e s s seetbbsseeesseesbba s s eaesses s b b s eesssessbbaaseesssessbbaansseessernsses 1

211 Installing and Uninstalling Service Provider Modules............ccocoiiiiiiiiii e, 2
2.1.2 Listing Service Provider Modules and SEIVICESccuueiuiiiiiiinieie i 2
2.1.3 Attaching and Detaching SP MOUIES............oouiiiiiii e 2
214 Managing Calls Between Service Provider Modules.............ccccoviiiiiiiiiniieicec e 3
2.2 IMEMORY IMANAGEMENT ..ctttttiiietieetttte s e esssestbasseeessseabba s s eeesees bbb s eesssessbbaaseesssessbbaanseesserssses 4
2.3 SECURITY CONTEXT MANAGEMENTiiiiiitttiii e e e s eeetbies e e e s s eeabbs s s e sssees bbb s s essssesbbbaseesssessbaaanass 5
2.4 INTEGRITY VERIFICATION ..iittttuuiieeiiiesttuussiessseessssasseesssessssssseessseesssssteesssesssseeessessinean 6

CHAPTER 3.CRYPTOGRAPHIC MODULE MANAGER ... 7
31 SUPPORTING LEGACY COPS... ettt ettt e s e e s e e s s s e e bbb s e e e s s e aabba s 7
3.2 CRYPTOGRAPHIC SERVICES AP ..ottt a e e s e e e 8
3.3 DEPENDENCIESWITH THE KEY RECOVERY MODULE MANAGER.......uciiiiiiiiieiiiiiiieeeeeeesiiins e e e e eeennns 9

CHAPTER 4.KEY RECOVERY MODULE MANAGER ... 11
4.1 INTRODUCTION TO KEY RECOVERY ...cvttttiiiiiiiiiitiiiii e ee sttt s e s s e eetb s e s s s s esab s s e s s sessbbaasneaenes 11

41.1 KBY RECOVEIY TYPES .ttt ettt ettt etttk e ettt e e et e e enb e e e e anbn e e e aneees 11
4.1.2 KEY RECOVEIY PRASES ...ttt ettt et e nneeesnee s 13
4.1.3 Lifetime of Key ReCOVEry FIelds........c.ooiiiiiiiii e 14
4.1.4 KEY RECOVEIY PONICY ...ttt 14
415 Operational Scenarios for K&y RECOVEIYciuiiiiiiiiieieiese e 14
4.2 COMPONENTS OF SCCS KEY RECOVERY OPERATIONS . ..uuuuiiiiiiietiiiiiieeesseestsinsseesssssssssnnssesssesssses 16
4.2.1 OPEratioNal SCENAIIOS.c..uie ittt ettt ettt et e et e e sbae e s e eneeas 16
4.2.2 Key RECOVEIY ProfilES ...t 16
423 KEY RECOVEIY CONLEXLttt ettt e et e e nnbe e e e 17
4.2.4 KEY RECOVEIY PONICY ...ttt 18
4.25 Key Recovery Enablement OPerations............coeioeieiiieiiie et 18
4.2.6 Key Recovery Registration and Request Operations............coccveiveeriieeiiieineeesiee e 19
4.3 RELATIONSHIP OF THE KEY RECOVERY AND CRYPTOGRAPHIC MODULE MANAGERS..........cccevvie. 19
4.4 KEY RECOVERY AP o ittt ettt e e e e e e e e e s s e e s bbb s e e e e s s e et b s eeaseeesaes 20

CHAPTER 5. TRUST POLICY MODULE MANAGER.......ccccoo 21
51 TRUST POLICY APl et e e e s s e e e e e e s e e aa b s 22

CHAPTER 6.CERTIFICATE LIBRARY MODULE MANAGER ... 23
6.1 CERTIFICATE LIBRARY SERVICES AP .. .ttt e eaaae 24

CHAPTER 7.DATA STORAGE LIBRARY MODULE MANAGERcccccocii 25
7.1 DATA STORAGE LIBRARY SERVICES AP ...ttt a b eeaae 26

CHAPTER 8.SERVICE PROVIDER MODULES ... 27

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page iii

8.1 CRYPTOGRAPHIC SERVICE PROVIDER MODULES.......ccvtttiiiiiiiiiietiiie e eertis e e s s s eeabba e e e s e enaaes 27

8.2 KEY RECOVERY SERVICE PROVIDER MODULES.......uuuuuuuuitiiuiiininnnnn e nnnas 28
8.3 TRUST POLICY MODULES ..., 28
8.4 CERTIFICATE LIBRARY IMODULESiiiiiiiieee e e eee et 28
85 DATA STORAGE LIBRARY IMODULESuuuuuuuuuuuinniniinnnnnnnnnnnnnnnnnnnnnnnanannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 28
8.6 SCCS TOOLKIT SERVICE PROVIDER MODULES. ... 29
8.6.1 IBM Software Cryptographic Service Provider, Version 1.0cccooeeiieniinininenineeen 30
8.6.2 IBM PKCS11 Multi-Service Module, VErsion 1.0cccccveveeeiiiiiiiiiieceee et 33
8.6.3 IBM CCA Multi-Service Module, VErsion 1.0.........ccooviiiiiiieiiiiiiiiiiiee e 39
8.6.4 KEYDIOD FOFMAL ...ttt e e 45
8.6.5 KeyData.Data POINTS T0.......eeieieiieieiiiie sttt ettt et esraeesneeas 45
8.6.4 IBM Standard Trust Policy Library, Version 1.0..........ccccoiiiiiiiiniieniie e 47
8.6.5 IBM Extended Trust Policy Library, Version 1.0cccccooiiiiiiniieniie e 49
8.6.6 IBM Certificate Library, VErsion L.0........ccoiiiiiiiiieiie e 51
8.6.7 IBM Data Library, VErsion 1.0 ..o 57
8.6.8 IBM Key Recovery Service Provider, Version 1.0........ccccoiiiiiiiiiiieniie e 61
CHAPTER 9.DEVELOPING SECURITY APPLICATIONS ..ottt 63
9.1 DIFFIE-HELLMAN KEY EXCHANGE SCENARIO.......uuuuuuutuuiiununinns 66
CHAPTER 10. SAMPLE APPLICATION. ..ottt ettt e e e etbrae e e e e e s 67
10.1 PROGRAM EXECUTION.uuuuuiuuiii e nnnnnnnnnn 67
10.1.1 PrOCESSATGUMEINTStiiieitteieeateeee ettt e e atbe e e aste e e e e abte e e e sbbe e e s asbbeaeaabbeeeeanbeeeeaanbneaeabbeaaan 68
0 7 1011 T 1= OSSOSO PP URURRRPPPP 68
10.1.3 AttaChCSPBYAIGOITTNMo 68
10.1.4 AttaChKRSPBYUSEICROICEcciitiiiiiiiiiiie ittt et 69
10.1.5 GenerateKeyRecoveryFieldSANAENCIYPL.......ccuiiiiiiiiiiiiieeciee e 69
APPENDIX A. SOURCE CODE FOR KR_FILE_ENCRYPT ...t 73
APPENDIX B. LIST OF ACRONYMS ...ttt ettt a et 89
(G @ ST A\ A 2 PR RROOOPPPPRRUTRRON 90
LIST OF FIGURES
FIGURE 1. THE SECURE CRYPTOGRAPHY AND CERTIFICATE SERVICES TOOLKIT ARCHITECTURE................... 2
FIGURE 2. APPLICATION USING CRY PTOGRAPHIC SERVICES AND PERSISTENT STORAGE SERVICES OF A CLASS 2,
P CSH L] DEVICE. ..uutututttttteessssseesssesssnnnns 3
FIGURE 3. THE SCCS FRAMEWORK DIRECTS CALLSTO SELECTED SERVICE PROVIDER MODULES. 4
FIGURE 4. INDIRECT CREATION OF A SECURITY CONTEXT. ceiiiiiiieeiieeeeeeeee et 6
FIGURE 5. KEY RECOVERY PHASES ... 13
List of Tables
TABLE 1. COMPARISON OF TYPICAL ESCROW AND ENCAPSULATION SCHEMESuuiiiiiie e 12
TABLE 2. COMPARISON OF KEY RECOVERY SCENARIOSuuuuuuuiuii e nnnnnnan 15
TABLE 3. IBM SOFTWARE CRYPTOGRAPHIC SERVICE PROVIDER SCCS FUNCTIONS......uuiiiienanns 30
TABLE4. IBM PKCS11 MULTI-SERVICE MODULE SCCS FUNCTIONSuuuiiieeecee e 33
TABLES. IBM CCA MULTI-SERVICE MODULE SCCS FUNCTIONS.......uuuic e 40
TABLE 6. IBM STANDARD TRUST POLICY LIBRARY SCCS FUNCTIONSuuueciee e 47
TABLE 7. IBM EXTENDED TRUST POLICY LIBRARY SCCS FUNCTIONS......uuiiiiiccc e 49
TABLE 8. IBM CERTIFICATE LIBRARY SCCS FUNCTIONSuuuui e 52
TABLE 9. IBM DATA LIBRARY SCCS FUNCTIONS.....uuuuuuuuui s anan 57

Page iv Secure Cryptography and Certificate Services Toolkit Version 1.0

Chapter 1. Introduction

Recently cryptography has come into widespread use in meeting multiple security needs, such as
confidentiality, integrity, authentication and non-repudiation. In order to address these requirementsin
the emerging Internet, Intranet, and Extranet application domains, the Secure Cryptography and
Certificate Services (SCCS) Toolkit was developed. The SCCS Toolkit is a comprehensive set of layered
security services suitable for use in operating systems, such as IBM AlX, MVS, 0S/400, and Windows
NT/95, Solaris, HP-UX, as middleware in embedded applications, or provided as a component of
cryptographic security toolkits. The SCCS Toolkit focuses on security in peer-to-peer, store-and-forward,
and archival applications. It is designed to be compliant with industry standards such as OpenGroup, and
is applicable to a broad range of hardware and operating system platforms. SCCSisintended to include
full lifecycle key management and portable credentials. The definition of such a set of layered security
services and an open architecture protects the investment made in implementation of security applications
by facilitating the reuse of core components of the architecture for different products.

The security services available in the SCCS Toolkit are defined by the categories of service provider
modules that the architecture accommodates. These service providers are:

Cryptographic Service Providers

Key Recovery Service Providers

Trust Policy Library Service Providers
Certificate Library Service Providers
Data Storage Library Service Providers

The central component of this architecture is the SCCS Framework, which is alayer of middleware that
lies between application code and the service provider modules. The SCCS Framework is based on Intel’s
Common Security Services Manager (CSSM); however the existing interfaces of CSSM have been
enhanced to include key recovery features. Unlike basic security features such as cryptographic functions,
certificates, and trust policy, key recovery is arelatively new field and is the focus of innovations related to
the SCCS Toolkit.

1.1 SCCS Toolkit Architecture

The Secure Cryptography and Certificate Services (SCCS) Toolkit Architecture consists of a set of layered
security services and associated programming interfaces designed to furnish an integrated set of
information and communication security capabilities. Each layer builds on the more fundamental services
of the layer directly below it.

These layers start with fundamental components such as cryptographic algorithms, random numbers, and
unique identification information in the lower layers, and build up to digital certificates, key management
and recovery mechanisms and secure transaction protocols in higher layers. The SCCS Architectureis
intended to be the multi-platform security architecture that is both horizontally broad and vertically
robust.

Figure 1 shows asimplified view of the layered architecture of an SCCS-based system. There are four

major layersin the SCCS Toolkit Architecture; the application domain layer, the protocol handler layer,
the SCCS Framework, and the service provider layer.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 1

Application - Applications I

Domains

Protocol
Handler

SCCS Security AP

SCCS KRSP TP Module | CL Modulefl DL Module
Framework Manager Manager Manager Manager Manager

Service
Providers

Data store

Figure 1. The Secure Cryptography and Certificate Services Toolkit Architecture

The Application Domain layer implements the application domain services, such as Secure Electronic
Transactions (SET) and E-Wallet, E-mail services, or file archival services. The Protocol Handler layer is
between the application domain layer and the SCCS Framework layer. 1t implements security protocols
that are used by the application domain layer. Software at this layer may implement cryptographic
protocol handlers such as SSL, IPSEC, SMIME and EDI. The protocol handler layer also includes tools
and utilities for installing, configuring, and maintaining the SCCS Framework and service provider
modules.

The Secure Cryptography and Certificate Services (SCCS) Framework is the central component of this
extensible architecture that provides mechanisms to dynamically manage service provider modules. The
SCCS Framework defines a common security API that must be used to access services of service provider
modules. Applications request security services through the SCCS security API or through protocol
handlers implemented over the SCCS API. The service provider modules actually perform the requested
security services. IBM provides a number of SP modules. Additional SP modules may be available from
other independent software and hardware vendors. Applications may direct their requests to modules from
specific vendors or to any module that performs the required services. Both the SCCS Framework and the
service provider interfaces are discussed in detail in this document.

Page 2 Secure Cryptography and Certificate Services Toolkit Version 1.0

1.2 Audience

This document provides an overview of the Secure Cryptography and Certificate Services Toolkit for
Independent Software Vendors (1SVs) who develop their own operating systems or other security products
either as complete applications or as plug-ins to extensible platforms. This document is intended for use

by:

Advanced programmers

Experienced software designers

Security architects who work in high-end cryptography

Sophisticated integrators familiar with numerous forms of network computing

Vendors of customizable service providers (SPs) for cryptographic, trust, and database services

This audience understands the requirements for a ubiquitous security infrastructure upon which they can
build security-aware application products.

1.3 System Requirements
The following software is required in order to develop applications using the SCCS Toolkit:

A C/C++ compiler for developing the applications (e.g., IBM Visual Age, Microsoft Visual C++)

1.4 Calling Conventions

Applications that perform SCCS Toolkit API calls need to follow cdecl calling conventions (i.e. push
parameters on the stack, in reverse order (right to left)). Specifically, the minimum requirement is that
the application’s callback functions which are passed to the SCCS framework (e.g. the memory functions
passed into the CSSM_Init() API call) need to be declared as cdecl functions. However, setting the
default calling convention for all compilations in your development environment to cdecl is strongly
recommended. Please refer to the appropriate manual for your compiler.

1.5 Documentation Set

The Secure Cryptography and Certificate Services Toolkit documentation set consists of the following
manuals. These manuals are provided in electronic format and can be viewed using the Adobe Acrobat
Reader distributed with Secure Cryptography and Certificate Services Toolkit. Both the electronic
manuals and the Adobe Acrobat Reader are located in the SCCS Toolkit doc subdirectory.

Secure Cryptography and Certificate Services Toolkit Developer’s Guide

Document filename: sccs_dev.pdf

This document presents an overview of the Secure Cryptography and Certificate Services (SCCYS)
Toolkit. It explains how to integrate SCCS into applications and contains a sample SCCS
application.

Secure Cryptography and Certificate Services Toolkit Application Programming Interface
Specification

Document filename: sccs_api.pdf

This document defines the interface that applications devel opers employ to access security services
provided by the SCCS Framework and service provider modules.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 3

Secure Cryptography and Certificate Services Toolkit Service Provider Module Structure &
Administration

Document filename: sccs_mod.pdf

This document describes the features common to all SCCS service provider modules. It should be
used in conjunction with the individual SCCS Service Provider Interface Specifications in order to
build a service provider module.

Secure Cryptography and Certificate Services Toolkit Cryptographic Service Provider Interface

Specification

Document filename: sccs_spi.pdf
This document defines the interface to which cryptography service provider modules must conform
in order to be accessible through SCCS.

Key Recovery Service Provider Interface Specification

Document filename: kr_spi.pdf

This document defines the interface to which key recovery service provider modules must conformin
order to be accessible through SCCS.

Secure Cryptography and Certificate Services Toolkit Trust Policy Interface Specification
Document filename: sccs_tp_spi.pdf

This document defines the interface to which policy makers, such as Certificate Authorities (CAS),
Certificate Issuers, and policy-making application devel opers, must conform in order to extend
SCCS with model or application specific policies.

Secure Cryptography and Certificate Services Toolkit Certificate Library Interface Specification
Document filename: sccs_cl_spi.pdf

This document defines the interface to which certificate library developers must conform to provide
format-specific certificate manipulation services to numerous SCCS applications and trust policy

modules.

Secure Cryptography and Certificate Services Toolkit Data Storage Library Interface Specification
Document filename: sccs_dl_spi.pdf

This manual defines the interface to which library developers must conform to provide format-
specific or format-independent persistent storage of certificates.

1.6 Other References

BSAFE*

PKCS*

X.509

Cryptography

Page 4

BSAFE Cryptography Toolkit, RSA Data Security, Inc., Redwood City, CA

The Public-Key Cryptography Standards, RSA Laboratories, Redwood City, CA:
RSA Data Security, Inc.

CCITT. Recommendation X.509: The Directory — Authentication Framework. 1988.
CCITT stands for Comite Consultatif Internationale Telegraphique et Telphonique
(International Telegraph and Telephone Consultative Committee)

Applied Cryptography, Second Edition Protocols, Algorithms, and Source Code in
C, Bruce Schneier: John Wiley & Sons, Inc., 1996

Secure Cryptography and Certificate Services Toolkit Version 1.0

Chapter 2. Secure Cryptography and Certificate
Services Framework

The Secure Cryptography and Certificate Services (SCCS) Framework layer is the central component in
the SCCS architecture; it integrates and manages all the security services. SCCS enables tight integration
of individual services, while alowing those services to be provided by interoperable service provider
modules. The SCCS Framework has arich APl to support the development of secure applications and
system services, and a service provider interface (SPI) that supports service provider modules that
implement building blocks for secure operations.

The primary function of the SCCS Framework layer isto maintain state regarding the connections
between the application layer code and the service providers underneath. Additionally, the SCCS mediates
all interactions between applications and the service provider modules, and implements and enforces the
applicable key recovery policy. Finally, the SCCS Framework allows the seamless integration of the key
recovery functions and the other security functions provided by independent service provider modules.

The SCCS Framework does not prescribe or implement any security services. Application-specific security
services are defined and implemented by service provider modules and layered services. The SCCS
Framework defines acommon API for accessing the services provided by service provider modules. SCCS
re-directs application APl calls to the selected service provider module that will perform the request.

The SCCS API calls can be categorized as service operations or core services. Service operations are
functions that invoke an SP module security operation, such as encrypting data, adding a certificate to a
certificate revocation list, or verifying that a certificate is trusted/authorized to perform some action.
SCCS Module Managers are responsible for carrying out service operations. Core services include
functions that performs the following:

M odule management
Memory management

Security context management

Integrity verification

This chapter discusses the SCCS Framework core services. The individual SCCS Module Managers are
discussed in Chapter 3 through Chapter 7. For information on the IBM service provider modules and the
SPI for the types of modules supported, see Chapter 8.

2.1 Module Management

The SCCS Framework defines a set of API calls that allow application developers to access and use
service provider (SP) modules. These module management functions support the installation of service
provider modules, the dynamic selection and loading of modules, and the querying of module features and
status. System administration utilities use install and uninstall functions to maintain service provider
modules on alocal system.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 1

2.1.1 Installing and Uninstalling Service Provider Modules

SCCS manages a registry that records the logical name of each SP module that is installed on the system,
the information required to locate and dynamically initiate the SP, and some minimal meta-data
describing the algorithms implemented by the SP.

When an SPis loaded, it must register its services with the SCCS Framework using CSSM_Modul el nstall
before its services can be used by an application or another service provider module. The SP, or a proxy
for the SP (such asits Adaptation Layer), registers a set of callback functions with the SCCS Framework.
There is one callback function for each SCCS-defined SPI call. The SP may or may not implement all SPI
calls defined by SCCS. Unimplemented functions must be registered as null. The SP may implement
additional functions outside of the SCCS-defined SPI calls. The SP may register a single callback
function, and instruct applications and modules devel opers (through documentation) to activate these
functions through the message-based, SCCS pass-through function. There is one pass-through function
defined in each SPI. For example, the pass-through function defined for the cryptographic SPI is
CSP_PassThrough.

SP modules may also be uninstalled using the CSSM_ModuleUninstall function. This function removes
the SP name and its associated attributes from the SCCS Framework’s SP registry. Uninstall must be
performed before a new version of the same SP module isinstalled in the SCCS Framework registry.

2.1.2 Listing Service Provider Modules and Services

Before attaching a service module, an application can query the SCCS Framework registry, using the
CSSM_ListModules function, to obtain information on

the modules installed on the system
the capabilities (and functions) implemented by those modules
the GUID associated with a given module

Applications use this information to dynamically select a module for use. A multi-service module has
multiple capability descriptions associated with it,at least one per functional area supported by the module.
Some areas (such as CSP and TP) may have multiple independent capability descriptions for asingle
functional area. There is one SCCS Framework registry entry for a multi-service module, which records
all service typesfor the module. SCCS returns all information about a modul€e' s capabilities when queried
by the application. Each set of capahilities includes atype identifier to distinguish CSPinfo from CLinfo,
etc.

Applications can query about the SCCS Framework itself. One function, CSSM_GetInfo, returns version
information about the running SCCS Framework. Another function, CSSM_Init, verifies whether the
SCCS Framework version the application expects is compatible with the currently-running SCCS
Framework version. The general function to query service provider module information also returns the
modul€' s version information.

2.1.3 Attaching and Detaching SP modules

Applications select the particular security services they will use by selectively attaching service provider
modules. Each module has an assigned, Globally Unique ID (GUID), and a set of descriptive attributes to
assist applications in selecting appropriate modules for their use. A module can implement a range of
services across the SCCS APIs (e.g., cryptographic functions and data storage functions) or a module can
restrict its services to a single SCCS category of service (e.g., certificate library services only). Modules
that span service categories are called Multi-Service modules.

Page 2 Secure Cryptography and Certificate Services Toolkit Version 1.0

Applications use amodule’ s GUID to specify the module to be attached. The attach function,
CSSM_ModuleAttach, returns a handle representing a unique pairing between the caller and the attached
module. This handle must be provided as in input parameter when requesting services from the attached
module. SCCS uses the handle to match the caller with the appropriate service module.

The calling application uses the handle to obtain any and all types of services implemented by the attached
module. Figure 2 shows how the handle for an attached PK CS#11 service provider is used to perform
cryptographic operations and persistent storage of certificates. The single handle value can be used as the
CSPHandle in cryptographic operations and as the DLHandle in data storage operations.

Application:
Hdl = CSSM_ModuleAttach(pkcsll_guid,...)
CSSM_Encrypt(HdI, ...)

CSSM_DL_DataGetFirst(Hdl, ...)

\ SCCS Security API /
N\

TPM CLM KR
Mgr CS@% DLI\% Mgr Mgr

[t] [sp] [oull] [ecu | [kr_]
CSP DL Lib Lib
PKCS#11 Product

Figure 2. Application using cryptographic services and persistent storage services of a class 2, PKCS#11 device.
Multiple calls to attach are viewed as independent requests. Each attach request returns separate,
independent handles that do not share execution state.

SP modules may be detached using the CSSM_ModuleDetach function. However, an application should
not invoke this operation unless all requests to the target SP have been completed.

2.1.4 Managing Calls Between Service Provider Modules

Applications directly or indirectly select the modules that will be used to provide security servicesto the
application. Service provider modules may (and often will) invoke other service provider modules to

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 3

perform necessary operations. SCCS forwards al calls uniformly regardless of their origin. Figure 3
illustrates the process by which the SCCS Framework manages calls between modules.

In Figure 3, the application invokes f uncl in the cryptographic module identified by the handle CSP1.
SCCS forwards the function call to f unc1 in the CSP1 module. The application also invokesf unc7 in
the trust policy module identified by the handle TP2. Again SCCS forwards the function call tof unc7 in
the TP2 module. The implementation of f unc7 in the TP2 module uses functions implemented by a
certificate library module. The TP2 module must invoke the certificate library functions through the
SCCS Framework. To accomplish this, the TP2 modul e attaches the certificate library module, obtaining
the handle CL1, and invokesf unc13 in the certificate library identified by the handle CL1. SCCS
forwards the function call to f unc13 inthe CL1 module.

Application

funcl(CSP1)
func7(TP2)

SCCS API

VAN,

func 1 func 1
> func 2

func 12
func 13

funcl3(CL1)

Figure 3. The SCCS Framework Directs Calls to Selected Service Provider Modules.

Modules must be loaded before they can receive function calls from the SCCS Framework. An error
condition occurs if the invoked function is not implemented by the selected module.

2.2 Memory Management

The SCCS memory management functions are a class of routines for reclaiming memory allocated by
SCCS on behalf of an application from the SCCS memory heap. When SCCS allocates objects from its
own heap and returns them to an application, the application must inform SCCS when it no longer
requires the use of that object. Applications use specific APIs to free SCCS-alocated memory. When an
application invokes an API free function SCCS can choose to retain or free the indicated object depending
on other conditions known only to SCCS. In this way SCCS and applications work together to manage
these objects in the SCCS memory heap.

Page 4 Secure Cryptography and Certificate Services Toolkit Version 1.0

2.3 Security Context Management

Security-context management provides secured run-time caching of user-specific state information and
secrets. Multi-step cryptographic operations, such as staged hashing, require multiple calls to a CSP and
the intermediate operation states must be managed. These intermediate states are stored in run-time data
structures known as security contexts. The SCCS API provides a number of context functions that
applications can use to create, initialize, and cache security contexts. Security contexts provide
mechanisms that:

Allow an application to use multiple CSPs concurrently
Allow an application to concurrently use different parameters for a single CSP algorithm

Support layered implementations in their transparent use of multiple CSPs or different algorithm
parameters for the same CSP

Enable development of re-entrant CSPs, layered services, and applications

Applications retain handles to each security context used during execution. The context handleis a
required input parameter to many security service functions. Most applications instantiate and use
multiple security contexts. Only one context may be passed to a function, but the application is free to
switch among contexts at will, or as required (even per function call).

An application may create multiple contexts directly or indirectly. Indirect creation may occur when
invoking layered services, system utilities, key recovery service providers, trust policy modules, certificate
library modules, or data storage library modules that create and use their own appropriate security context
as part of the service they provide to the invoking application. Figure 4 shows an example of a hidden
security context. An application creates a context specifying the use of sec_cont ext 1. The application
invokesf unc1l in the certificate library using sec_cont ext 1 as a parameter. The certificate library
performs two calls to the cryptographic service provider. For the call to f unc5, the hidden security
context is used. For the call to f unc6, the application’s security context is passed as a parameter to the
CSP.

funcl(CL1, sec_contextl)

SCCS API

func 1

func5(CSP1, sec_context?2)

func6(CSP1, sec_contextl)

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 5

Figure 4. Indirect Creation of a Security Context.

These transparent contexts do not concern the application developer, as they are managed entirely by the
layered service or service provider module that created them. Each process or thread that creates a security
context is responsible for explicitly terminating that context.

SCCS provides a number of API functions to create security contexts. The function used and type of
context created depends on the cryptographic operation being performed. For example, the
CSSM_CSP_CreateSymmetricContext is used in cryptographic operations involving a symmetric key; the
CSSM_CSP_CreateAsymmetricContext is used operations involving an asymmetric key. The
CSSM_DeleteContext function is paired up with the create context functions. These functions are
designed to be used by applications and force notify events to be sent to a service provider module. In
contrast, the CSSM_GetContext and CSSM_FreeContext functions are designed to be used by service
provider modules since they do not generate events.

2.4 Integrity Verification

As a security framework, SCCS provides each application with additional assurance of the integrity of the
SCCS environment in which the application is running. With dynamic link-loading of service modules,
viruses and other forms of impersonation are real threats. SCCS reduces the risk of these threats by
requiring that modules be digitally signed and dynamically checking the identity and integrity of each
module at attach time. The digital signature represents the SP provider’s attestation of ownership and a
guarantee that the SP, with the SP adaptation layer, conforms to the SCCS SPI specification. SCCS
checks the authenticity of every SP that is loaded on the local system. Verification improves the chances
that any modification, whether accidental or malicious, may be detected prior to performing trusted
operations.

Module verification has three aspects:

verification of module identity based on a digitally signed certificate
verification of object code integrity based on a signed hash of the object
tightly binding the verified module identity with the verified set of object code

Page 6 Secure Cryptography and Certificate Services Toolkit Version 1.0

Chapter 3. Cryptographic Module Manager

The Cryptographic Module Manager administers the Cryptographic Service Providers (CSP) modules that
may be installed on the local system, and defines a common API for accessing CSP modules. All
cryptography functions are implemented by the CSPs. Thislocalizes all cryptography into exchangeable
modules. SCCS administers a queryable registry of local CSPs. The registry lists the locally accessible
CSPs and their cryptographic services (and algorithms).

The nature of the cryptographic functions contained in any particular CSP depends on the task the CSP
was designed to perform. For example, a VISA smartcard would be able to digitally sign credit card
transactions on behalf of the card’s owner. A digital employee badge would be able to authenticate a user
for physical or electronic access.

The Cryptographic Module Manager doesn’t assume any particular form for a CSP. CSPs can be
implemented in hardware, software, or both; operationally the distinction must be transparent. The two
visible distinctions between hardware and software implementations are the degree of trust the application
receives by using a given CSP, and the cost of developing that CSP. A hardware implementation should
be more tamper-resistant than a software implementation. Hence a higher level of trust is achieved by the
application.

Software CSPs are the default and are portable. They can be carried as an executable file. The modules
that implement a CSP must be digitally signed (to authenticate their origin and integrity), and they should
be made as tamper-resistant as possible. This requirement extends to software and hardware
implementations. Multiple CSPs may be loaded and active within the SCCS at any time, and asingle
application may use multiple CSPs concurrently. Interpreting the resulting level of trust and security isthe
responsihility of the application or the trust policy module used by the application.

The Cryptographic Module Manager defines a high-level, certificate-based APl for cryptographic services
to support application development. This API is documented in the Secure Cryptography and Certificate
Services Toolkit Application Programming Interface Specification manual. The Cryptographic Module
Manager defines alower-level Service Provider Interface (SPI) that more closaly resembles typical CSP
APIs, and provides CSP developers with a single interface to support. A CSP may or may not support
multi-threaded applications. For information on the SPI interface, see the Secure Cryptography and
Certificate Services Toolkit Cryptography Service Provider Interface Specification manual.

3.1 Supporting Legacy CSPs

CSPs existed prior to the definition of the SCCS Cryptographic API. These legacy CSPs have defined
their own APIs for cryptographic services. These interfaces are CSP-specific, nonstandard, and (in
general) low-level key-based interfaces. They present a considerable development effort to the application
developer attempting to secure an application by using those services.

Acknowledging legacy CSPs, the SCCS defines an optional adaptation layer between the Cryptographic
Module Manager and a CSP. The adaptation layer allows the CSP vendor to implement a shim to map the
SCCS SPI to the CSP' s existing APl and to implement any additional management functions that are
required for the CSP to function as an service provider module in the extensible SCCS. New CSPs may
support the SCCS SPI directly (without the aid of an adaptation layer).

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 7

3.2 Cryptographic Services API

The security services APl defined by the Cryptographic Module Manager are certificate-based. This
contrasts with the approach taken by many CSPs, where low-level concepts such as key type, key size,
hash functions, and byte ordering are the standard granularity of interface options. The Cryptographic
Module Manager hides these behind high-level operations such as:

SignData

VerifyData

DigestData

EncryptData

DecryptData

GenerateKeyPair

GenerateNonce

Security-conscious applications use these high-level concepts to provide authentication, data integrity,
data and communication privacy, and nonrepudiation of messages to the end-users.

A CSP may implement any algorithm. For example, CSPs may provide one or more of the following
algorithms, in one or more modes:

Bulk encryption algorithm: DES, Triple DES, IDEA, RC2, RC4, RC5, Blowfish, CAST

Digital signature algorithm: RSA, DSS

Key negotiation algorithm: Diffie Hellman

Cryptographic hash agorithm: MD4, MD5, SHA

Unique identification number: hard-coded or random generated

Random number generator: attended and unattended

Encrypted storage: symmetric-keys, private-keys

The application’s associated security context defines parameter values for the low-level variables that
control the details of cryptographic operations. Setting input parameters to cryptographic algorithms is not
apolicy decision of the SCCS Framework. Applications use CSPs that provide the services and features
required by the application. For example, an application issuing a request to EncryptData may reference a
security context that defines the following parameters:

The algorithm to be used (such as RC5)

Algorithm-specific parameters (such as key length)

The cryptographic variables (such as the key)
Most applications will use default SCCS contexts that are available through API function calls such as
CSSM_CSP_CreateSignatureContext. Typically a distinct context will be used for encrypting, hashing,

and signing. For a given application, once initialized, these contexts will change little (if at al) during the
application’s execution or between executions. This alows the application developer to implement

Page 8 Secure Cryptography and Certificate Services Toolkit Version 1.0

security by manipulating certificates, using previously defined security contexts, and maintaining a high-
level view of security operations.

Application developers who demand fine-grained control of cryptographic operations can achieve this by
directly and repeatedly updating the security context to direct the CSP for each operation, and by using the
Cryptographic Module Manager API pass-through feature.

3.3 Dependencies with the Key Recovery Module Manager

The Cryptographic Module Manager of the CSSM is responsible for handling the cryptographic functions
of SCCS. In order to introduce the necessary dependencies between the cryptographic operations and the
key recovery enablement operations, the cryptographic module manager of SCCS has been modified.

The cryptographic context data structure of the SCCS has been augmented to include the following key
recovery extension fields:

ausability field for key recovery
aworkfactor field for law enforcement key recovery

The usability field denotes whether a cryptographic context needs to have key recovery enablement
operations (either for law enforcement or enterprise needs) performed before it can be used for
cryptographic operations such as encrypt or decrypt. The workfactor field holds the allowable workfactor
value for law enforcement key recovery. These two additional fields of the cryptographic context are not
available to the API for modification. They are set by the KRMM when the latter makes the key recovery
policy enforcement decision for law enforcement and enterprise policies.

Although the SCCS API has been left intact in the SCCS Toolkit, the behavior of some of the
cryptographic functions has been modified somewhat to accommodate the above-mentioned extensions to
the cryptographic context. The basic changes are as follows:

invoke key recovery policy enforcement functions for cryptographic context creation and update
operations

set the usability field in the cryptographic context to render the context unusable if key recovery
enablement operations are mandated

check the cryptographic context usability field before allowing encrypt/decrypt operations to occur

Whenever a cryptographic context is created or updated using the SCCS API functions, the cryptographic
module manager invokes a KRMM policy enforcement function module; the latter checks the law
enforcement and enterprise policies to determine whether the cryptographic context defines an operation
where key recovery is mandated, If so, the usability field value is set in the cryptographic context data
structure to signify that the context is unusable until key recovery enablement operations are performed on
this context. The usability field is essentially a bitmap that signifies whether key recovery is required by
the law enforcement or enterprise key recovery policies. When the appropriate key recovery enablement
operations are performed on this context, the bits in the usability field is appropriately toggled so that the
cryptographic context becomes usable for the intended operations.

When the encryption /decryption operations of the SCCS are invoked, the cryptographic module manager
checks the key recovery usability field in the cryptographic context to determine whether the context is
usable for encryption / decryption operations. If the context is flagged as unusable, the
encryption/decryption API function returns an error. When the appropriate key recovery enablement
operations are performed on that context, the flag values are reset so that the context may then be usable
for encryption/decryption.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 9

Chapter 4. Key Recovery Module Manager

The Key Recovery Module Manager (KRMM) enables key recovery for cryptographic services obtained
through the SCCS. It mediates all cryptographic services provided by the SCCS and applies the
appropriate key recovery policy on all such operations. The Key Recovery Module Manager contains a
Key Recovery Policy Table (KRPT), which defines the applicable key recovery policy for all cryptographic
products.

KRMM routes the KR-API function calls made by an application to the appropriate KR-SPI functions.
The KRMM also enforces the key recovery policy on all cryptographic operations that are obtained
through the SCCS. It maintains key recovery state in the form of key recovery contexts.

Key Recovery Fields (KRFs) are generated so that they can be used by a Key Recovery Agent (KRA) to
recover the original symmetric key, either because the user who generated the message has lost the key, or
at the warranted request of law enforcement agents. The purpose of a KRSP is to properly generate the
KRFs given a symmetric key and the appropriate Key Recovery Profile information. (See Section 4.2.2 for
information on Key Recovery Profiles.)

Key Recovery Fields are required when a cryptographic context for symmetric encryption is created with a
key length longer than that specified in the Key Recovery Policy Table (KRPT). The KRPT defines both
the minimum key length, as well as an acceptable work factor, given the cryptographic algorithm and
mode of encryption which are to be used. The work factor is the maximum number of key bits that can be
left out when generating KRFs. If aKRF is created with awork factor specified, the Key Recovery Agent
will only be able to recover a portion of the key, and reading the original message will require searching
the remaining key space in order to find the key that will decrypt the message.

4.1 Introduction to Key Recovery

The term key recovery encompasses mechanisms that allow authorized parties to retrieve the
cryptographic keys used for data confidentiality, with the ultimate goal of recovery of encrypted data. This
section discusses the various types of key recovery mechanisms, the phases of key recovery, and the
policies with respect to key recovery.

4.1.1 Key Recovery Types

There are two classes of key recovery mechanisms based on the way keys are held to enable key recovery:
key escrow and key encapsulation. Key escrow techniques are based on the paradigm that the government
or atrusted party called an escrow agent, holds the actual user keys or portions thereof. Key encapsulation
techniques, on the other hand, are based on the paradigm that a cryptographically encapsulated form of
the key is made available to parties that require key recovery; the encapsulation technique ensures that
only certain trusted third parties called recovery agents can perform the unwrap operation to retrieve the
key material buried inside. There may also be hybrid schemes that use some escrow mechanismsin
addition to encapsulation mechanisms.

An orthogonal way to classify key recovery mechanisms is based on the nature of the key that is either
escrowed or encapsulated. Some schemes rely on the escrow or encapsulation of long-term keys, such as
private keys, while other schemes are based on the escrow or encapsulation of ephemeral keys such as
bulk encryption keys. Since escrow schemes involve the actual archival of keys, they typically deal with
long-term keys, in order to avoid the proliferation problem that arises when trying to archive the myriad
ephemeral keys. Key encapsulation techniques, on the other hand, usually operate on the ephemeral keys

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 11

For alarge class of key recovery (escrow as well as encapsulation) schemes, there are a set of key recovery
fields that accompany an enciphered message or file. These key recovery fields may be used by the
appropriate authorized parties to recover the decryption key and or the plaintext. Typically, the key
recovery fields comprise information regarding the key escrow or recovery agent(s) that can perform the
recovery operation; they also contain other pieces of information to enable recovery.

In akey escrow scheme for long-term private keys, the “escrowed” keys are used to recover the ephemeral
data confidentiality keys. In such a scheme, the key recovery fields may comprise the identity of the
escrow agent(s), identifying information for the escrowed key, and the bulk encryption key wrapped in the
recipient’s public key (which is part of an escrowed key pair); thus the key recovery fields include the key
exchange block in this case. In a key escrow scheme where bulk encryption keys are archived, the key
recovery fields may comprise information to identify the escrow agent(s), and the escrowed key for that
enciphered message.

Table 1. Comparison of Typical Escrow and Encapsulation Schemes

Mechanism Advantages Disadvantages
Key Escrow for - Minimal change to exislting - lack of privacy for individuals
y communication protocols _
long-term keys unication p coarse granularity for recoverable

- no latency in using ephemera key keys
latency involved in obtaining and
using long-term key

need for individual to belong to
government approved public key
infrastructure (PK1)

Key Encapsulation | - more privacy for individuals - requires modifications to existing
for ephemera keys | | ¢ine granularity for recoverable keys communications protocols

some latency involved in key
encapsulation for every ephemeral

key

- no latency to obtain and use public keys

- no need for individuas to belong to
government approved public key
infrastructure (PK1)

In atypical key encapsulation scheme for ephemeral bulk encryption keys, the key recovery fields are
distinct from the key exchange block, (if any.) The key recovery fields identify the recovery agent(s), and
contain the bulk encryption key encapsulated using the public keys of the recovery agent(s).

The key recovery fields are generated by the party performing the data encryption, and associated with the
enciphered data. To ensure the integrity of the key recovery fields, and its association with the encrypted
data, it may be required for processing by the party performing the data decryption. The processing
mechanism ensures that successful data decryption cannot occur unless the integrity of the key recovery
fields is maintained at the receiving end. In schemes where the key recovery fields contain the key
exchange block, decryption cannot occur at the receiving end unless the key recovery fields are processed
to obtain the decryption key; thus the integrity of the key recovery fields are automatically verified. In
schemes where the key recovery fields are separate from the key exchange block, additional processing
has to happen to ensure that decryption of the ciphertext occurs only after the integrity of the key recovery
fields are verified.

Page 12 Secure Cryptography and Certificate Services Toolkit Version 1.0

Table 1 illustrates the advantages and disadvantages of typical examples of key escrow and key
encapsulation schemes. With escrow schemes for long terms private keys, a major advantage is that the
cryptographic communication protocol needs minimal adaptation (since the key recovery fields and the
key exchange block are one and the same in most cases); however, the serious disadvantages are the lack
of privacy for individuals (since their private keys are held by a separate entity), and the lack of
granularity with respect to the recoverable keys. Additionally, there is the burden that every individual has
to obtain and use public keys through an approved public key infrastructure in order for the key recovery
scheme to work.

The major advantage to key encapsulation schemes based on ephemeral keys are that there is much
greater privacy for the individuas; they can generate and keep their own private keys. Each ephemeral
key can be recovered independently, so there is maximal granularity with respect to the recoverable keys.
A disadvantage is that the communication protocol between sending and receiving parties needs more
elaborate adaptation to allow the flow of the encapsulated key (which is separate from the key exchange
block.) Another disadvantage is that there is some performance penalty in key encapsulation for each
ephemeral key; however, this may be minimized by caching techniques.

4.1.2 Key Recovery Phases

The process of cryptographic key recovery involves three major phases. First, there is an optional key
recovery registration phase where the parties that desire key recovery perform some initialization
operations with the escrow or recovery agents; these operations include obtaining a user public key
certificate (for an escrowed key pair) from an escrow agent, or obtaining a public key certificate from a
recovery agent. Next, parties that are involved in cryptographic associations have to perform operations to
enable key recovery (such as the generation of key recovery fields, etc.) - thisistypically called the key
recovery enablement phase. Finally, authorized parties that desire to recover the data keys, do so with the
help of arecovery server and one or more escrow agents or recovery agents - thisis the key recovery
request phase.

(a) Key Recovery Registration

ER. arat Registration Key Recovery
egisiration Messages Agent
Application |« >
(b) Key Recovery Enablement
KR-enabled Key_Exch, KR-enabled
Cryptographic K_Rl;lelds, Cryptographic
Application A | Cipher Text »| Application B

(c) Key Recovery Request

Authentication/
Authorization
KR Credentials, Key

Request KRFields »| Recoveny
Application Decryption Key K |_Server \

KR
Agent,

Figure 5. Key Recovery Phases

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 13

Figure 5 illustrates the three phases of key recovery. In Figure 5(a), a key recovery client registers with a
recovery agent prior to engaging in cryptographic communication. In Figure 5(b), two key-recovery-
enabled cryptographic applications are communicating using a key encapsulation mechanism; the key
recovery fields are passed along with the ciphertext and key exchange block, to enable subsequent key
recovery. The key recovery request phaseisillustrated in Figure 5(c), where the key recovery fields are
provided as input to the key recovery server along with the authorization credentials of the client
requesting service. The key recovery server interacts with one or more local or remote key recovery agents
to reconstruct the secret key that can be used to decrypt the ciphertext.

It is envisioned that governments or organizations will operate their own recovery server hosts
independently, and that key recovery servers may support a single or multiple key recovery mechanisms.
There are a number of important issues specific to the implementation and operation of the key recovery
servers, such as vulnerability and liability. The issues with respect to the key recovery server and agents
are beyond the scope of this chapter.

4.1.3 Lifetime of Key Recovery Fields

Cryptographic products fall into one of two fundamental classes: archived-ciphertext products, and
transient-ciphertext products. When the product allows either the generator or the receiver of ciphertext to
archive the ciphertext, the product is classified as an archived-ciphertext product. On the other hand,
when the product does not allow the generator or receiver of ciphertext to archive the ciphertext, it is
classified as a transient-ciphertext product.

It isimportant to note that the lifetime of key recovery fields should never be greater than the lifetime of
the associated ciphertext. Thisis somewhat obvious, since recovery of the key is only meaningful if the
key can be used to recover the plaintext from the ciphertext. Hence, when archived-ciphertext products are
key recovery enabled, the key recovery fields are typically archived as long as the ciphertext. Similarly,
when transient-ciphertext products are key recovery enabled, the key recovery fields are associated with
the ciphertext for the duration of itslifetime. It is not meaningful to archive key recovery fields without
archiving the associated ciphertext.

4.1.4 Key Recovery Policy

Key recovery policies are mandatory policies that are typically derived from jurisdiction-based regulations
on the use of cryptographic products for data confidentiality. Often, the jurisdictions for key recovery
policies coincide with the political boundaries of countries, in order to serve the law enforcement and
intelligence needs of these political jurisdictions. Political jurisdictions may choose to define key recovery
policies for cryptographic products based on export, import, or use controls. Enterprises may define
internal and external jurisdictions, and may mandate key recovery policies on the cryptographic products
within their own jurisdictions.

Key recovery policies come in two flavors: key recovery enablement policies and key recovery inter-
operability policies. Key recovery enablement policies specify the exact cryptographic protocol suites
(algorithms, modes, key lengths etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of the cryptographic key that
may be left out of the key recovery enablement operation; thisis typically referred to as the workfactor.
Key recovery inter-operability policies specify to what degree a key-recovery-enabled cryptographic
product is allowed to inter-operate with other cryptographic products.

415 Operational Scenarios for Key Recovery

There are three basic operational scenarios for key recovery:

Page 14 Secure Cryptography and Certificate Services Toolkit Version 1.0

law enforcement key recovery
enterprise key recovery
individual key recovery

In the law enforcement scenario, key recovery is mandated by the jurisdictional law enforcement
authorities in the interest of national security and law enforcement. For a specific cryptographic product,
the key recovery policies for multiple jurisdictions may apply simultaneously. The policies (if any) of the
jurisdiction(s) of manufacture of the product, as well as the jurisdiction of installation and use, need to be
applied to the product such that the most restrictive combination of the multiple policiesis used. Thus,
law enforcement key recovery is based on mandatory key recovery policies; these policies are logically
bound to the cryptographic product at the time the product is shipped. There may be some mechanism for
vendor-controlled updates of such law enforcement key recovery policies in existing products; however,
organizations and end users of the product are not able to modify this policy at their discretion. The
escrow or recovery agents used for this scenario of key recovery need to be strictly controlled in most
cases, to ensure that these agents meet the eligibility criteria for the relevant political jurisdiction where
the product is being used.

Enterprise key recovery allows enterprises to enforce stricter monitoring of the use of cryptography, and
the recovery of enciphered data when the need arises. Enterprise key recovery is also based on a
mandatory key recovery policy; however, this policy is set (perhaps, through administrative means) by the
organization or enterprise at the time of installation of a recovery enabled cryptographic product. The
enterprise key recovery policy should not be modifiable or circumventable by the individual using the
cryptographic product. Enterprise key recovery mechanisms may use special enterprise authorized escrow
or recovery agents.

Individual key recovery is user-discretionary in nature, and is performed for the purpose of recovery of
enciphered data by the owner of the data, if the cryptographic keys are lost or corrupted. Since thisisa
non-mandatory key recovery scenario, it is not based on any policy that is enforced by the cryptographic
product; rather, the product may allow the user to specify when individual key recovery enablement isto
be performed. There are few restrictions on the use of specific escrow or recovery agents.

In each of these scenarios, key recovery may be desired. However, the detailed aspects or characteristics of

these three scenarios are somewhat varied. Table 2 summarizes the specific characteristics of the different
operational scenarios.

Table 2. Comparison of Key Recovery Scenarios

Properties Law Enforcement | Enterprise | Individual
mandatory key recovery yes yes no
Escrow or Recovery Agents are controlled yes yes no
recovery enablement needs to be yes yes no
noncircumventable

dual sided key recovery enablement maybe maybe no
use of workfactor when generating KRF maybe no no
KRF contains agent identification yes maybe no
user registration needed at escrow or recovery maybe maybe maybe
agents

user authentication information needed within KRF | no no yes
end-user knowledge/cooperation required no no yes

Key recovery enabled cryptographic products must be designed so that the key recovery enablement
operation is mandatory and noncircumventable in the law enforcement and enterprise scenarios, and

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 15

discretionary for the individual scenario. The escrow and recovery agent(s) that are used for law
enforcement and enterprise scenarios must be tightly controlled so that the agents are validated to belong
to a set of authorized or approved agents. In the law enforcement and enterprise scenarios, the key
recovery process typicaly needs to be performed without the knowledge and cooperation of the parties
involved in the cryptographic association.

The components of the key recovery fields also varies somewhat between the three scenarios. In the law
enforcement scenario, the key recovery fields must contain identification information for the escrow or
recovery agent(s) whereas for the enterprise and individual scenarios, the agent identification information
is not so critical, since this information may be available from the context of the recovery enablement
operation. For the individual scenario, there needs to be a strong user authentication component in the key
recovery fields, to allow the owner of the key recovery fields to authenticate themselves to the agents;
however, for the enterprise and law enforcement scenarios, the authorization credentials checked by the
agents may be in the form of legal documents, or enterprise-authorization documents for key recovery,
that may not be tied to any authentication component in the key recovery fields. For the law enforcement
and enterprise scenarios, the key recovery fields may contain recovery information for both the generator
and receiver of the enciphered data; in the individual scenario, only the information of the generator of the
enciphered datais typically included (at the discretion of the generating party.)

4.2 Components of SCCS Key Recovery Operations

The Key Recovery Module Manager is responsible for handling the KR-API functions and invocation of
the appropriate KR-SPI functions. The KRMM enforces the key recovery policy on all cryptographic
operations that are obtained through the SCCS. It maintains key recovery state in the form of key recovery
contexts.

4.2.1 Operational Scenarios

The SCCS architecture supports three distinct operational scenarios for key recovery, namely, key
recovery for law enforcement purposes, enterprise purposes, and individua purposes. The law
enforcement and enterprise scenarios for key recovery are mandatory in nature, thus the SCCS layer code
enforces the key recovery policy with respect to these scenarios through the appropriate sequencing of KR-
API and cryptographic API calls. On the other hand, the individual scenario for key recovery is
completely discretionary and is not enforced by the SCCS layer code. The application/user requests key
recovery operations using the KR-APIs at their discretion.

The three operational scenarios for key recovery enablement drive certain design decisions with respect to
the SCCS. The details of the specific features of the operational scenarios are described in the following
subsections.

4.2.2 Key Recovery Profiles

The KRSPs require certain pieces of information related to the parties involved in a cryptographic
association in order to generate and process key recovery fields. These pieces of information (such as the
public key certificates of the key recovery agents) are contained in key recovery profiles. The profiles
contain all of the parameters for key recovery field generation and processing for that KRSP. The KRSP
GUID specifies the KRSP for which a given key recovery profile record is relevant.

The information contained in the profile comprises the following:

a set of Key Recovery Agent (KRA) certificate chains for law enforcement key recovery

a set of Key Recovery Agent (KRA) certificate chains for enterprise key recovery

Page 16 Secure Cryptography and Certificate Services Toolkit Version 1.0

a set of Key Recovery Agent (KRA) certificate chains for individua key recovery
authentication information for individual key recovery

a set of key recovery flags that fine tune the behavior of a KRSP

apublic key certificate chain for the user

an extension field

The key recovery profiles support alist of KRA certificate chains for each of the law enforcement,
enterprise, and individual key recovery scenarios, respectively. While the profile allows full certificate
chains to be specified for the KRAS, it also supports the specification of leaf certificates; in such instances,
the KRSP and the appropriate TP modules are expected to dynamically discover the intermediate
certificate authority certificates up to the root certificate of trust. One or more of these certificate chains
may be set to NULL, if they are not needed or supported by the KRSP involved.

The user public key certificate chain is also part of aprofile. Thisis a necessary parameter for certain key
escrow and encapsulation schemes. Certain schemes support the notion of a user authentication field for
individual and enterprise key recovery. Thisfield is used by the key recovery server and/or agent(s) to
verify that the individual or enterprise requesting key recovery is the owner of the key recovery fields, and
can authenticate themselves based on the authentication information contained in the key recovery fields.
One or both of these authentication information fields may be set to NULL, if their use is not required or
supported by the KRSP involved.

The key recovery flags are defined values that are pertinent for alarge class of escrow and recovery
schemes. The extension field is for use by the KRSPs to define additional semantics for the key recovery
profile. These extensions may be flag parameters or value parameters. The semantics of these extensions
are defined by a KRSP; the application that uses profile extensions has to be cognizant of the specific
extensions for a particular KRSP. However, it is envisioned that these extensions will be for optional use
only. KRSPs are expected to have reasonable defaults for all such extensions; thisis to ensure that
applications do not need to be aware of specific KRSP profile extensions in order to get basic key recovery
enablement services from a KRSP. Whenever the extensions field is set to NULL, the defaults should be
used by aKRSP.

The profiles for the local and remote parties involved in a cryptographic association are input parameters
to several of the KR-API functions. Thus, application layer code is allowed to specify the profiles for all
KR-API functions where profiles are relevant. These profiles are used by the KRSP to perform its
operations. The KRSP maintains a default for the local as well as the remote profiles that it uses whenever
the profiles received through the KR-API functions are set to NULL or when the profiles contains NULL
values for relevant fields. For example, if the local profile passed through the KR-API has NULL for the
LE KRA list entry, the corresponding values from the KRSP default local profile are used by the KRSP
when generating the LE KRFs. These default profiles are read by the KRSP (at the time it isinitialized)
from a KRSP Configuration File.

4.2.3 Key Recovery Context

All operations performed by the KRSPs are performed within akey recovery context. A key recovery
context is programmatically equivalent to a cryptographic context; however the attributes of a key
recovery context are different from those of other cryptographic contexts. There are three kinds of key
recovery contexts - registration contexts, enablement contexts and recovery request contexts. A key
recovery context contains state information that is necessary to perform key recovery operations. When the
KR-API functions are invoked by application layer code, the KRMM passes the appropriate key recovery
context to the KRSP using the KR-SPI function parameters.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 17

A key recovery registration context contains no special attributes. A key recovery enablement context
maintains information about the identities and profiles of the local and remote parties for a cryptographic
association. When the KR-API function to create a key recovery enablement context is invoked, the
identities and key recovery profiles for the specified communicating peers may be specified by the
application layer code using the API parameters; however, if the profile parameters are set to NULL, the
profiles may be retrieved automatically from the KRPR if a match is found with the specified local and
remote identities. A key recovery request context maintains a set of key recovery fields which are being
used to perform arecovery request operation, and a set of flags that denotes the operational scenario of the
recovery request operation. Since the establishment of a context implies the maintaining of state
information within the SCCS, contexts acquired should be released as soon as their need is over.

4.2.4 Key Recovery Policy

The SCCS enforces the applicable key recovery policy on al cryptographic operations. There are two key
recovery policies enforced by the SCCS, alaw enforcement (LE) key recovery policy, and the enterprise
(ENT) key recovery policy. Since the requirements for these two mandatory key recovery scenarios are
somewhat different, they are implemented by different mechanisms within the SCCS.

The law enforcement key recovery policy is predefined (based on the political jurisdictions of manufacture
and use of the cryptographic product) for a given product. The parameters on which the policy decision is
made are predefined as well. Thus, the LE key recovery policy isimplemented using two key recovery
policy tables, one table corresponding to the policy of the jurisdiction of manufacture, and the second
corresponding to the jurisdiction of use of the product. These two LE policy tables are consulted by the key
recovery policy enforcement function in the SCCS. The LE policy tables are implemented as two separate
physical files for ease of implementation and upgrade (as law enforcement policies evolve over time);
however, these files are protected using the same integrity mechanisms as the SCCS module, and thus has
the same assurance properties.

The ENT key recovery policy, on the other hand, could vary anywhere between being set to NULL, and
being very complex (e.g. based on parameters such as time of day.) Enterprises are allowed total flexibility
with respect to the enterprise key recovery policy. The enterprise policy isimplemented within the SCCS
by invoking a key recovery policy function that is defined by the enterprise administrator. The KR-API
provides afunction that allows an administrator to specify the name of afile that contains the enterprise
key recovery policy function. This API function allows the administrator to establish a passphrase for
subsequent calls on this function. This mechanism assures alevel of access control on the enterprise
policy, once a policy function has been established. It goes without saying that the file containing the
policy function should be protected using the maximal possible protection afforded by the operating
system platform. The actual structure of the policy function file is operating system platform specific.

Every time a cryptographic context handle is returned to application layer code, the SCCS enforces the LE
and ENT key recovery policies. For the LE policy, the SCCS policy enforcement function and the LE
policy tables are used. For the ENT policy, the ENT policy function file is invoked in an operating system
platform specific way. If the policy check determines that key recovery enablement is required for either
LE or ENT scenarios, then the context is flagged as unusable, by setting specific bits of the context
usability field. Otherwise, the context is flagged as usable. An unusable context handle becomes flagged as
usable only after the appropriate key recovery enablement operation is completed using that context
handle. A usable context handle can then be used to perform cryptographic operations.

4.25 Key Recovery Enablement Operations

The SCCS key recovery enablement operations comprise the generation and processing of key recovery
fields. Within a cryptographic association, key recovery field generation is performed by the sending side;
key recovery field processing is performed on the receiving side to ensure that the integrity of the recovery
fields have been maintained in transmission between the sending and receiving sides. These two vital

Page 18 Secure Cryptography and Certificate Services Toolkit Version 1.0

operations are performed viathe CSSM_KR_GenerateRecoveryFields and the
CSSM_KR_ProcessRecoveryFields functions respectively.

The key recovery fields generated by the SCCS potentially comprises three sub-fields, for law
enforcement, enterprise and individual key recovery scenarios, respectively. The law enforcement and
enterprise key recovery sub-fields are generated when the law enforcement and enterprise bits of the
usability field is appropriately set in the cryptographic context used to generate the key recovery fields.
The individual key recovery sub-fields are generated when a certain flag value is set while invocation of
the API function to generate the key recovery fields. The processing of the key recovery fields only applies
to the law enforcement and enterprise key recovery sub-fields; the individual key recovery sub-fields are
ignored by the key recovery fields processing function.

4.2.6 Key Recovery Registration and Request Operations

The SCCS also supports the operations of registration and recovery requests. The KRSP exchanges
messages with the appropriate key recovery agent/server to obtain the results required. If additional inputs
are required for the completion of the operation, the supplied callback may be used by the KRSP. The
recovery request operation can be used to request of batch of recoverable keys. The result of the
registration operation is a key recovery profile data structure, while the results of arecovery request
operation are a set of recovered keys.

4.3 Relationship of the Key Recovery and Cryptographic Module Managers

There is some degree of interdependence between the KRMM and the cryptographic module manager in a
key recovery mechanism-independent way. For example, the cryptographic module manager must invoke
the key recovery policy checking function of the KRMM, which checks the law enforcement and
enterprise policies for key recovery. A cryptographic context maintained by the cryptographic module
manager must be made available to the KRMM so that the relevant key recovery fields may be generated
or processed. The KRMM may modify the extension fields within the cryptographic context on which it is
operating; these extension fields are then checked by the encrypt and decrypt operations of the
cryptographic module manager. All of the above essentially imply that between the cryptographic and key
recovery module managers, there is away to share objects such as cryptographic contexts and/or their
handles.

The primary rationale for this architecture is that it allows the KRSPs and the CSPs to operate oblivious of
one another, thus satisfying the primary goal of this architecture. The interdependencies between the
crypto and key recovery operations are captured completely within the two module managers. It may be
argued that this approach exposes the key recovery APIs to the protocol handler code, and that this may be
undesirable; however the protocol handler code will have to be key recovery aware, whether the KR-API
is exposed to the application or not. There are certain parameters that have to be obtained from the
application level that are essential to performing key recovery enablement operations, the application will
have to be modified to handle these additional parameters for key recovery. For example, in an
implementation of a key recovery enabled SSL, the code would have to handle special cipher suites and
cipher specsin order to negotiate a key recovery mechanism with the receiving party; so exposing the KR-
API to the SSL applications does not appear to be real disadvantage. On the other hand, hiding the
KRMM under the crypto module manager, or incorporating the KR mechanism into a CSP has the
obvious disadvantage that the CSP needs to be modified, and needs to be cognizant of specific KR
mechanisms. Therefore, there does not appear to be any advantage to positioning the KRMM under the
crypto module manager.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 19

4.4 Key Recovery API
SCCS defines a set of APIsthat allow key recovery enablement of cryptographic services provided by the
SCCS. These functions include:

an operation that establishes the filename containing the enterprise-based key recovery policy
function for use by SCCS.

key recovery operations that create key recovery registration, enablement, and request contexts.
an operation that returns the key recovery policy pertaining to a given cryptographic context.
registration operations that generate key recovery profiles.

enablement operations that generate and process key recovery fields.

request operations that initiate key recovery and retrieve recovered keys.

For detailed information on the key recovery functions, see Secure Cryptography and Certificate Services
Toolkit Application Programming Interface.

Page 20 Secure Cryptography and Certificate Services Toolkit Version 1.0

Chapter 5. Trust Policy Module Manager

The Trust Policy Module Manager administers the trust policy modules that may be installed on the local
system and defines a common API for these libraries. The Trust Policy (TP) API alows applications to
request security services that require “policy review and approval” asthe first step in performing the
operation. Operations defined in the TP API include verifying trust in

A certificate for signing or revoking another certificate
A user or user-agent to perform an application-specific action
The issuer of a certificate revocation list

A digital certificate binds an identification in a particular domain to a public key. When a certificate is
issued (created and signed) by a certificate authority (CA), the binding between key and identity is attested
by the digital signature on the certificate. The issuing authority also associates alevel of trust with the
certificate. The actions of the user, whose identity is bound to the certificate, are constrained by the trust
policy governing the certificate’ s usage domain. A digital certificate is intended to be an unforgeable
credential in cyberspace.

The use of digital certificatesis the basis on which the SCCS is designed. The SCCS assumes the concept
of digital certificatesin its broadest sense, that is an identity bound to a public key. Certificates are often
used for identification, authentication, and authorization. The way in which applications interpret and
manipul ate the contents of certificates to achieve these ends is defined by the real world trust model the
application has chosen as its model for trust and security.

The primary purpose of a Trust Policy (TP) service provider is to answer the question “Is this certificate
trusted for this action?” The SCCS Trust Policy APl defines the generic operations that should be defined
for certificate-based trust in every application domain. The specific semantics of each operation is defined
by the

Application domain

Trust model

Policy statement for a domain
Certificate type

The trust model is expressed as an executable policy that is used/invoked by all applications that ascribe to
that policy and the trust model it represents.

As an infrastructure, SCCSis policy neutral; it does not incorporate any single policy. For example, the
verification procedure for a credit card certificate should be defined and implemented by the credit
company issuing the certificate. Employee accessto alab housing a critical project should be defined by
the company whose intellectual property is at risk. Rather than defining policies, SCCS provides the
infrastructure for installing and managing policy-specific modules. This ensures extensibility of
certificate-based trust on every platform hosting SCCS.

Different trust policies define different actions that may be requested by an application. There are also a
few basic actions that should be common to every trust policy. These actions are operations on the basic
objects used by all trust models. The basic objects common to all trust models are certificates and
certificate revocation lists (CRLS). The basic operations on these objects are sign, verify, and revoke.

Application developers and trust domain authorities benefit from the ability to define and implement
policy-based modules. Application developers are freed from the burden of implementing a policy
description and certifying that their implementation conforms. Instead, the application only needs to build
inalist of the authorities and certificate issuersit uses.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 21

Domain authorities also benefit from an infrastructure that supports trust policy modules. Authorities are
sure that applications using their module(s) will adhere to the policies of the domain. In addition, dynamic
download of trust modules (possibly from remote systems) ensures timely and accurate propagation of
policy changes. Individual functions within the module may combine local and remote processing. This
flexibility allows the module devel oper to implement policies based on the ability to communicate with a
remote authority system. This also allows the policy implementation to be decomposed in any convenient
distributed manner.

Implementing atrust policy module may or may not be tightly coupled with one or more certificate library
modules and one or more data storage library modules. The trust policy embodies the semantics of the
domain. The certificate library and the data storage library embody the syntax of a certificate format and
operations on that format. A trust policy can be completely independent of certificate format, or it may be
defined to operate with a small number of certificate formats. A trust policy implementation may invoke a
certificate library module and/or a data storage library module to manipulate certificates.

5.1 Trust Policy API

SCCS provides trust policy operations on certificates and certificate revocation (CRL) lists. These
operations include:
trust policy operations, such as signing, verifying, or revoking, on individua certificates and CRLs

trust policy operations on groups of certificates, such as constructing an ordered group, verifying the
signatures on a group, and removing certificates from a group.

Pass-through operations for unique certificate and CRL operations

For detailed information on each of these functions, see Secure Cryptography and Certificate Services
Toolkit Application Programming Interface.

Page 22 Secure Cryptography and Certificate Services Toolkit Version 1.0

Chapter 6. Certificate Library Module Manager

The Certificate Library Module Manager administers the Certificate Libraries that may be installed on the
local system. It defines acommon API for these libraries. The API allows applications to manipul ate
memory-resident certificates and certificate revocation lists.

Operations defined in the API include create, sign, verify, and extract field values. The certificate
libraries modules implement all certificate operations. Application-invoked calls are dispatched to the
appropriate library module. Each library incorporates knowledge of certificate data formats and how to
manipulate that format. The SCCS Certificate Module Manager administers a queryable registry of local
libraries. Theregistry enumerates the locally accessible libraries and attributes of those libraries, such as
the certificate type manipulated by each registered library.

The primary purpose of a Certificate Library (CL) module isto perform memory-based, syntactic

mani pul ations on the basic objects of trust: certificates and certificate revocation lists (CRLS). The data
format of a certificate will influence (if not determine) the data format of CRLs used to track revoked
certificates. For this reason, these objects should be manipulated by a single, cohesive library. Certificate
library modules incorporate detailed knowledge of data formats. The Certificate Library Module Manager
defines API calls to perform security operations, (such as signing, verifying, revoking, viewing, etc.) on
memory-resident certificates and CRLs. The mechanics of performing these operationsis tightly bound to
the data format of a given certificate. One or more modules may support the same certificate format, such
as X.509 DER encoded certificates, SDSI certificates, and SPKI certificates.

As new standard formats are defined and accepted by the industry, certificate library modules will be
defined and implemented by industry members and used directly and indirectly by many applications.
Certificate library modules encapsul ate certificate and CRL data formats from the semantics of trust
policies, which are implemented in trust policy modules.

Certificate library modules manipul ate memory-based objects only. The persistence of certificates and
CRLsis an independent property of these objects. It is the responsibility of the application and/or the trust
policy module to use data storage modules to make these objects persistent (if appropriate). It must be
possible for the storage mechanism used by a data storage module to be independent of the other modules.
It must also be possible to design a certificate library module that depends on the storage mechanism of a
data storage library module.

Application developers and trust policy module devel opers both benefit from the extensibility of certificate
library modules. Applications are free to use multiple certificate types without requiring the application
developer to write format-specific code to manipulate certificates and CRLs. Without increased
development complexity, multiple certificate formats can be used on one system, within one application
domain, or by one application. CAs who issue certificates also benefit. Dynamically downloading
certificate libraries ensures timely and accurate propagation of data-format changes.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 23

6.1 Certificate Library Services API

The Certificate Library Services API defines numerous operations on memory-resident certificates and
certificate revocation lists (CRLS) as required by every certificate type. These operations include:

Creating new certificates and new CRLsS

Signing existing certificates and existing CRLs

Viewing certificates

Verifying certificates and CRLs

Extracting values (e.g., public keys) from certificates

Importing and exporting certificates of other data formats

Revoking certificates

Reinstating revoked certificates

Searching certificate revocation lists

Pass-through for unique, format-specific certificate and CRL operations

For detailed information on the Certificate Library API functions, see Secure Cryptography and
Certificate Services Toolkit Application Programming Interface.

Page 24 Secure Cryptography and Certificate Services Toolkit Version 1.0

Chapter 7. Data Storage Library Module Manager

The Data Store Library Module Manager defines an API for secure, persistent storage of certificates and
certificate revocation lists (CRLS). The APl alows applications to search and select certificates and CRLS,
and to query meta-data about each data store (such as its name, date of last modification, size of the data
store, etc.) Data storage library modules implement data store operations. These modules may be drivers
or gateways to traditional, full-featured Database Management Systems (DBMS), customized services
layered over afile system, or access to other forms of stable storage. A data storage module may execute
and store its data locally or remotely.

The primary purpose of a Data Storage Library (DL) module is to provide secure, persistent storage,
retrieval, and recovery of certificates and certificate revocation lists (CRLS). The persistence of these
generic trust objects is independent of the memory-based manipulations performed by certificate library
modules. DL modules may be invoked by applications, trust policy modules, or certificate library modules
that make decisions about the persistence of these trust objects.

A single DL module may be tightly tied to a Certificate Library (CL) module or may be independent of all
CL modules. A data storage library that istightly tied to a certificate library module implements a
persistent storage mechanism that is dependent on the data format of the certificate. An independent data
storage library implements a blob-based storage mechanism that stores certificates and CRL s without
regard for their specific format. A single, physical data store managed by such DL modules may even
contain individual certificates of different formats.

Each DL module can manage any number of independent, physical data stores. Each data store must have
alogical name used by callers to refer to the persistent data store. Implementation of the DL module may
use local file system facilities, commercial database management products, and custom stable storage
devices.

A DL moduleisresponsible for the integrity of the records it stores. If the DL module uses an underlying
commercia database management system (DBMYS), it may choose to further secure the data store by
leveraging integrity services provided by the DBMS. DL modules that choose to implement persistence
using the local file system or a custom stable storage device must decide which (if any) integrity
mechanisms to provide.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 25

7.1 Data Storage Library Services API

The Data Storage Library Services API defines the following two categories of operations. For detailed
information on the Data Storage Library API functions, see Secure Cryptography and Certificate Services
Toolkit Application Programming Interface.

Data store management functions

The data store management functions operate on a data store as a single unit. These operations
include opening and closing data stores, creating and deleting data stores, and importing and
exporting data stores. A data store may contain certificates only, certificate revocation records only,
or both. It is unusual for a DL module to manage a data store containing both certificates and
certificate revocation records, but there is nothing in the SCCS or the DL module API that prevents a
DL module from implementing persistence in this manner. Typically, separate physical data stores
are used to store certificates and CRLS.

Persistence operations on certificates and certificate revocation lists
The persistence operations on data stores include:

Adding new certificates and new certificate revocation records
Updating existing certificates

Deleting certificates and certificate revocation records
Retrieving certificates and certificate revocation records

Pass-through for unique, module-specific operations

Page 26 Secure Cryptography and Certificate Services Toolkit Version 1.0

Chapter 8. Service Provider Modules

All cryptographic and key recovery functions, as well as the trust policies, certificates, and data store
functions are performed by service provider (SP) modules. The SCCS framework itself only manages the
interactions between service provider modules and applications that use them. The Secure Cryptography
and Certificate Services Architecture supports the following types of service providers.

Cryptographic Service Providers (CSPs)

Key Recovery Service Providers (KRSPs)

Trust Policy Modules (TPs)

Certificate Library Modules (CLS)

Data Storage Library Modules (DLS)

This chapter presents a brief overview of each type of service provider module. For a detailed discussion of
the SCCS interface the service provider modules must support, see the individual interface specifications
provided with the SCCS Toolkit documentation set. Independent software vendors who develop modules
for use with SCCS must support the interface specifications(s) described in these documents. The modules
may implement all or a subset of these APIs. A single module may also provide servicesin multiple
categories of service. These are called multi-service modules.

Several service provider modules are provided with the SCCS Toolkit. These modules are described in
Section 8.6.

8.1 Cryptographic Service Provider Modules

Cryptographic service providers (CSPs) are modules equipped to perform cryptographic operations and to
securely store private keys. A CSP may implement one or more of the following cryptographic functions:

Bulk encryption algorithm

Digital signature algorithm

Cryptographic hash algorithm

Unique identification number

Random number generator

Secure key storage

Custom facilities unique to the CSP

A CSP may be implemented in software, hardware, or both. All CSPs must enable encrypted storage for
private keys and variables. CSPs must also deliver key management services, including key escrow, if it is
supported. As a minimum, CSPs do not reveal key material unlessit’s been wrapped, but they must
support importing, exporting, and generating keys. The key-generation module of a CSP should be made
tamper resistant.

Every CSP must provide secured storage of private keys. Applications may query the CSP to retrieve
private keys stored within the CSP. The CSP is responsible for controlling access to the private keys it
secures. A callback function implemented by the requester isinvoked by the CSP (or the CSP’ s adaptation
layer) to abtain the identity and authorization of the user or process requesting the private key. Most

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 27

CSPs are capable of importing private keys created by other CSPs and providing secured storage for such
keys.

8.2 Key Recovery Service Provider Modules

Key Recovery Service Providers (KRSPs) are modules that generate and process Key Recovery Fields
(KRFs). The KRF may be used to retrieve the decryption key through the use of a Key Recovery Server
and one or more Key Recovery Agents. KRSP APIs are defined to generate the KRFs prior to performing
encryption, as well asto process the KRFs prior to decryption. This processing step is used to ensure the
integrity of the KRFs prior to decrypting the data.

8.3 Trust Policy Modules

Trust Policy (TP) modules implement policies defined by certification authorities and institutions. Policies
define the level of trust required before certain actions can be performed. Three basic categories or actions
exist for all certificate-based trust domains:

Actions on certificates
Actions on certificate revocation lists

Domain-specific actions (such asissuing a check or writing to afile).

The SCCS Trust Policy Interface Specification document defines the generic operations that should be
supported by every Trust Policy module. Each module may choose to implement the subset of these
operations that are required for its policy. When a Trust Policy function has determined the
trustworthiness of performing an action, the Trust Policy function may invoke functions in the Certificate
Library and Data Storage Library modules to carry out the mechanics of the approved action.

8.4 Certificate Library Modules

Certificate Library (CL) modules implement syntactic manipulation of memory-resident certificates and
certificate revocation lists. The SCCS Certificate API defines the generic operations that should be
supported by every CL module. Each module may choose to implement only those operations required to
manipul ate a specific certificate data format.

The implementation of the CL operations should be free of certificate semantics. Semantic interpretation
of certificate values should be implemented in Trust Policy modules, layered services, and applications.

The SCCS Toolkit makes manipulation of certificates and certificate revocation lists orthogonal to
persistence of those abjects. Hence, it is hot recommended that CL modules invoke the services of data

storage library modules. Trust Policy modules, layered security services, and applications should make
decisions regarding the persistence of certificates.

8.5 Data Storage Library Modules

A Data Storage library (DL) module provides stable storage for certificates and certificate revocation lists
(CRLs). Stable storage could be provided by a

Commercially-available database management system product

Native file system

Page 28 Secure Cryptography and Certificate Services Toolkit Version 1.0

Custom hardware-based storage devices

Each DL module may choose to implement only those operations required to provide persistent storage for
certificates and certificate revocation lists under its selected model of service.

Semantic interpretation of certificate values and CRL valuesis usually assumed to be implemented in
Trust Policy modules. A pass-through function, DL_PassThr ough, is defined in the DL API that allows
each DL service provider to provide additional functions to store and retrieve certificates and CRLS, such
as performance enhancing retrieval functions.

8.6 SCCS Toolkit Service Provider Modules

A number of service provider modules may be provided with the SCCS Toolkit. These modules can be
incorporated into applications to perform cryptographic security operations The following sections
describe the SCCS API functions supported by each service of these provider modules. For detailed
information on the behavior of theindividual APIs, see the SCCS service provider interface documentsin
the scestk\doc subdirectory.

Cryptographic Service Provider Module
There are three cryptographic modules which may be provided with SCCS.

IBM Software Cryptographic Service Provider, Version 1.0
IBM PKCS11 Multi-Service Module, Version 1.0
IBM CCA Multi-Service Module, Version 1.0

Trust Policy Module

There are two trust policy modules which may be provided with SCCS.
IBM Standard Trust Policy, Version 1.0

IBM Extended Trust Policy, Version 1.0

Certificate Library Module

There is one certificate library module which may be provided with SCCS.
IBM Certificate Library, Version 1.0

Data Store Library Module

There is one data store library module which may be provided with SCCS.
IBM Data Library, Version 1.0

Key Recovery Service Provider Module

There is one key recovery service module which may be provided with SCCS

IBM Key Recovery Service Provider, Version 1.0

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 29

8.6.1 IBM Software Cryptographic Service Provider, Version 1.0

Files required:
ibmswesp.dil
ibmswesp.h

The IBM Software Cryptographic Service Provider module provides cryptographic functionality. Table 3
lists the SCCS API functions supported by this module.

All functions that require input/output buffers support only one buffer at atime and not a vector of buffers.
If an application provides a buffer to the CSP module, it must aso specify the buffer length. On return
from an SCCS API function, the length field of an output buffer will be set to the length of returned data.
If an output buffer’s length is set to zero and its data pointer is set to NULL, the CSP will alocate the
needed memory on the application behalf. It is the responsibility of the application to free this memory
when done.

Note that for encrypt/decrypt operations using RC2 the effective bits attribute must be set using
CSSM_UpdateContextAttributes.

Table 3. IBM Software Cryptographic Service Provider SCCS Functions

Function Name Supported Comments

CSSM_QuerySize No

CSSM_SignData Yes Algorithms supported:

CSSM _Si gnDatal nit CSSM_ALGID_MD2WithRSA

CSSM_Si gnDataUpdate CSSM_ALGID_MD5WithRSA

CSSM _Si gnDataFinal CSSM_ALGID_SHA1WIithRSA
B CSSM_ALGID_SHA1WIithDSA

CSSM_VerifyData Yes Algorithms supported:

CSSM_VerifyDatalnit CSSM_ALGID_MD2WithRSA

CSSM_VerifyDataU pdate CSSM_ALGID_MD5WithRSA

CSSM:VerifyDataFi na CSSM_ALGID_SHA1WIithRSA

CSSM_ALGID_SHA1WIithDSA

CSSM_DigestData Yes Algorithms Supported:

CSSM_DigestDatal nit CSSM_ALGID_MD2

CSSM_DigestDataUpdate CSSM_ALGID_MD5

CSSM_DigestDataFinal CSSM_ALGID_SHA1

CSSM_DigestDataClone No

CSSM_GenerateMac No

CSSM__GenerateMacl nit No

CSSM_GenerateMacUpdate No

CSSM__GenerateMacFinal No

CSSM_VerifyMac No

CSSM_VerifyMaclnit No

CSSM_VerifyMacUpdate No

CSSM_VerifyMacFind No

Page 30 Secure Cryptography and Certificate Services Toolkit Version 1.0

CSSM_EncryptData Yes See remarks below

CSSM__EncryptDatal nit

CSSM_EncryptDataUpdate

CSSM_EncryptDataFina

CSSM_DecryptData Yes See remarks below

CSSM_DecryptDatal nit

CSSM_DecryptDataUpdate

CSSM_DecryptDataFinal

CSSM_QueryKeySizelnBits Yes

CSSM_GenerateK ey Yes Algorithms/M odes Supported:

N CSSM_ALGID_DES

CSSM_ALGID_3DES_3KEY
CSSM_ALGID_RC2
CSSM_ALGID_RC4
CSSM_ALGID_RC5

CSSM_GenerateKeyPair Yes See remarks below

CSSM GenerateRandom Yes Algorithms Supported:

- CSSM_ALGID_MD2Random

CSSM_ALGID_MD5Random

CSSM_GenerateAlgorithmParams Yes See remarks below

CSSM_WrapKey No

CSSM_UnwrapKey No

CSSM_DeriveKey Yes See remarks below

CSSM_CSP_PassThrough No

CSSM_CSP_L ogin No

CSSM_CSP_L ogout No

CSSM_CSP_ChangeloginPassword No

CSSM_EncryptData
CSSM_EncryptDatalnit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal

Algorithms/Modes Supported:

Algorithm Mode

CSSM_ALGID_RSA

CSSM_ALGID_RSA_PKCS —

CSSM_ALGID_DES CSSM_ALGMODE_CBCPadIV8
CSSM_ALGID_3DES 3KEY CSSM_ALGMODE_CBCPadIV8
CSSM_ALGID_RC2 CSSM_ALGMODE_CBCPadIV8
CSSM_ALGID_RC4 CSSM_ALGMODE_NONE

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 31

CSSM_ALGID_RC5 CSSM_ALGMODE_CBCPadIV8

CSSM_DecryptData
CSSM_DecryptDatalnit
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal

Algorithms/Modes Supported:

Algorithm Mode

CSSM_ALGID_RSA

CSSM_ALGID_RSA_PKCS —

CSSM_ALGID_DES CSSM_ALGMODE_CBCPadIV8
CSSM_ALGID_3DES 3KEY CSSM_ALGMODE_CBCPadIV8
CSSM_ALGID_RC2 CSSM_ALGMODE_CBCPadIV8
CSSM_ALGID_RC4 CSSM_ALGMODE_NONE

CSSM_ALGID_RC5 CSSM_ALGMODE_CBCPadIV8

CSSM_GenerateKeyPair

Algorithms Supported:

CSSM_ALGID _RSA, CSSM_ALGID_DSA, CSSM_ALGID DSA_BSAFE, CSSM_ALGID _DH

Note: For CSSM_ALGID_DH, the public key contains the public part to be exchanged with the other side.

The private key contains a temporary handle that is valid only during the attach session. The private key
and the other side’s public key will be input to the CSSM_DeriveK ey to derive the agreed upon symmetric

key.

CSSM_GenerateAlgorithmParams

This function must be called with a KEY GEN context with the Params input of the
CSSM_CSP_CreateKeyGenContext set to NULL. The output Param of this function will then be passed to
another CSSM_CSP_CreateK eyGenContext to generate the Diffie Hellman key pair.

Algorithms Supported:

CSSM_ALGID_DH

CSSM_DeriveKey

The BaseKey parameter should be set to the private key returned from the CSSM_GenerateK eyPair
function. Param should be set to the public key received from the other side of the key exchange
operation.

Algorithms Supported:

CSSM_ALGID_DH

Page 32 Secure Cryptography and Certificate Services Toolkit Version 1.0

8.6.2 IBM PKCS11 Multi-Service Module, Version 1.0

Files required:
pkcsmsm.dll
pkcsllmsm.h

PKCS11 MSM isamulti service provider supporting cryptographic and data storage operations on
PKCS11 V1.X tokens. Table 4 lists the SCCS API functions that this module supports. All functions
requiring input/output buffers support only one buffer at atime and not a vector of buffers. All agorithms
specified in the PKCS11 1.X spec are supported. However some algorithms may not be supported by
individual tokens. Note that for encrypt/decrypt operations using:

RC2 the effective bits attribute must be set using CSSM_UpdateContextAttributes.
RC4 the maximum length for input datais 900 bytes.

Table 4. IBM PKCS11 Multi-Service Module SCCS Functions

Cryptographic Library Functions

Function Name Supported | Comments

CSSM_QuerySize No

CSSM_SignData Yes See remarks below

CSSM_SignDatal nit No

CSSM_SignDataUpdate No

CSSM_SignDataFina No

CSSM_VerifyData Yes See remarks below

CSSM_VerifyDatal nit No

CSSM_VerifyDataUpdate No

CSSM_VerifyDataFinal No

CSSM_DigestData Yes Algorithm(s) supported:

CSSM_DigestDatal nit CSSM_ALGID_MD2,

CSSM_DigestDataUpdate CSSM_ALGID_MD5,

CSSM_DigestDataFinal CSSM_ALGID_SHA1

CSSM_DigestDataClone No

CSSM_GenerateMac Yes Algorithm(s) supported:

CSSM_GenerateM acl nit CSSM_ALGID_RC2,

CSSM_GenerateM acUpdate CSSM_ALGID_DES,

CSSM_GenerateMacFinal CSSM_ALGID_3DES 3KEY,
CSSM_ALGID_3DES 2KEY

CSSM_VerifyMac Yes Algorithm(s) supported:

CSSM_VerifyMaclnit CSSM_ALGID_RC2,

CSSM_VerifyMacUpdate CSSM_ALGID_DES,

CSSM_VerifyMacFina CSSM_ALGID_3DES 3KEY,
CSSM_ALGID_3DES 2KEY

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 33

CSSM_EncryptData Yes See remarks below
CSSM__EncryptDatal nit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFina

CSSM_DecryptData Yes See remarks below

CSSM_DecryptDatal nit Yes See remarks below
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal

CSSM_QueryKeySizelnBits Yes

CSSM__GenerateKey Yes See remarks below

CSSM_GenerateKeyPair Yes See remarks below

CSSM_GenerateRandom Yes Algorithm(s) supported:
CSSM_ALGID_PKCS11Random

CSSM_GenerateAlgorithmParams No

CSSM_WrapKey Yes See remarks below

CSSM_UnwrapKey

CSSM_DeriveKey Yes Algorithm(s) supported:
CSSM_ALGID_DH

CSSM_CSP_PassThrough No

CSSM_CSP_L ogin Yes Not recommended. Instead use
CSSM_DL_DbOpen to retrieve the
DB handle needed for all DL
operations.

CSSM_CSP_L ogout Yes Not recommended. Instead use
CSSM_DL_DbClose.

CSSM_CSP_ChangeloginPassword Yes

Data Store Library Functions

Function Name Supported | Comments
CSSM_DL_Authenticate No
CSSM_DL_DbOpen Yes
CSSM_DL_DbClose Yes
CSSM_DL_DbCrezate No
CSSM_DL_DbDelete Yes
CSSM_DL_Dblmport No
CSSM_DL_DbExport No
CSSM_DL_DbSetRecordParsingFunctions No
CSSM_DL_DbGetRecordParsingFunctions No
CSSM_DL_GetDbNames No

Page 34 Secure Cryptography and Certificate Services Toolkit Version 1.0

CSSM_DL_GetDbNameFromHandle No

CSSM_DL_FreeNameL.ist No

CSSM_DL_Datalnsert Yes See remarks below.
CSSM_DL_DataDelete Yes

CSSM_DL_DataGetFirst Yes See remarks below.
CSSM_DL_DataGetNext Yes See remarks below.
CSSM_DL_FreeUniqueRecord No

CSSM_DL_AbortQuery No

CSSM_DL_PassThrough No

CSSM_SignData
Only single staged signing supported with asymmetric/ public key algorithms. Essentially used to sign
digests. Two step signing (digest then sign) not supported with PKCS11 1.X tokens.

Algorithms Supported:
CSSM_ALGID_RSA_PKCS, CSSM_ALGID_RSA_1S09796, CSSM_ALGID_RSA_RAW,
CSSM_ALGID_DSA

CSSM_VerifyData
Only single staged verifying supported with public key algorithms. Essentially used to sign digests. Two
step verifying (digest then verify) is not supported with PKCS11 1.X tokens.

Algorithms Supported:
CSSM_ALGID_RSA_PKCS, CSSM_ALGID_RSA_1S09796, CSSM_ALGID_RSA_RAW,
CSSM_ALGID_DSsA

CSSM_EncryptData

Asymmetric algorithms are supported only in single stage mode. This implies the data has to be less than
the modulus size in bytes minus eleven to be PKCS compliant. Some tokens may not support encryption
with asymmetric algorithms.

Algorithms/Modes Supported:
CSSM_ALGID_RSA_PKCS
CSSM_ALGID_RSA_RAW

Algorithm Mode

CSSM_ALGID_DES CSSM_ALGMODE_ECB, CSSM_ALGMODE_CBC

CSSM_ALGID_3DES 2KEY | CSSM_ALGMODE_ECB, CSSM_ALGMODE_CBC

CSSM_ALGID_3DES 3KEY | CSSM_ALGMODE_ECB, CSSM_ALGMODE_CBC

CSSM_ALGID_RC2 CSSM_ALGMODE_ECB, CSSM_ALGMODE_CBC

CSSM_ALGID_RC4 CSSM_ALGMODE_NONE

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 35

CSSM_EncryptDatalnit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal

Asymmetric algorithms are supported only in single stage mode. This implies the data has to be less than
the modulus size in bytes minus eleven to be PKCS compliant. Some tokens may not support encryption

with asymmetric algorithms.

Algorithms/Modes Supported:

Algorithm

Mode

CSSM_ALGID_DES

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_3DES 2KEY

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_3DES 3KEY

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_RC2

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_RC4

CSSM_ALGMODE_NONE

CSSM_DecryptData

Asymmetric algorithms are supported only in single stage mode. Thisimplies the data has to be equal to
the modulus size in bytes to be PKCS compliant. Some tokens may not support decryption with

asymmetric algorithms.

Algorithms/Mode Supported:

Algorithm

Mode

CSSM_ALGID_RSA_PKCS

CSSM_ALGID_RSA_RAW

CSSM_ALGID_DES

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_3DES 2KEY

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_3DES 3KEY

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_RC2

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_RC4

CSSM_ALGMODE_NONE

Page 36 Secure Cryptography and Certificate Services Toolkit

Version 1.0

CSSM_DecryptDatalnit
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal

Asymmetric algorithms are supported only in single stage mode. Thisimplies the data has to be equal to

the modulus size in bytes to be PKCS compliant. Some tokens may not support decryption with

asymmetric algorithms.

Algorithms/Modes Supported:

Algorithm

Mode

CSSM_ALGID_DES

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_3DES 2KEY

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_3DES 3KEY

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_RC2

CSSM_ALGMODE_ECB,
CSSM_ALGMODE_CBC

CSSM_ALGID_RC4

CSSM_ALGMODE_NONE

CSSM_GenerateKey
CSSM_GenerateKeyPair

The key returned will be of type CSSM_KEYBLOB_REFERENCE and format
CSSM_KEYBLOB_REF FORMAT_INTEGER. The key data contains a handle to the PKCS11 object.
The returned key even when it is permanent is only valid during the module attach session. To use key at
alater time it must be searched for using CSSM_DL_DataGetFirst and a set of attributes such as key 1abel

and key type.

Algorithms Supported (CSSM_Generate Key):

CSSM_ALGID_RC2, CSSM_ALGID_DES, CSSM_ALGID_3DES 3KEY,

CSSM_ALGID_3DES 2KEY

Algorithms Supported (CSSM_GenerateK eyPair):

CSSM_ALGID_RSA_PKCS, CSSM_ALGID_DSA, CSSM_ALGID_DH

Version 1.0 Secure Cryptography and Certificate Services Toolkit

Page 37

CSSM_WrapKey

CSSM_UnwrapKey

Symmetric keys can be wrapped or unwrapped using either another symmetric key or a public key. Some
tokens may not allow wrapping/unwrapping of private keys.

Algorithms/Modes Supported:

Algorithm Mode

CSSM_ALGID_RSA_PKCS —

CSSM_ALGID_RSA_RAW

CSSM_ALGID_DES CSSM_ALGMODE_ECB
CSSM_ALGID_3DES 2KEY CSSM_ALGMODE_ECB
CSSM_ALGID_3DES 3KEY CSSM_ALGMODE_ECB
CSSM_ALGID_RC2 CSSM_ALGMODE_ECB

CSSM_DL_Datalnsert

If the Attributes parameter is not NULL and the Data parameter is NULL this function is used to create a
PKCS11 style abject. If Attributesis NULL and Datais not NULL, Data.Data points to a symmetric key
or public key to be inserted into the token. The inserted key must be of type CSSM_KEYBLOB_RAW and
format CSSM_KEYBLOB_RAW_FORMAT_CDSA. The return unique record will pointsto akey in
PKCS11 format that can be subsequently used in crypto operations.

CSSM_DL._DataGetFirst

CSSM_DL_DataGetNext

If the Query parameter is NULL, this function will return the first object found. And subsequent
CSSM_DL_DataGetNext will return the next object found until there is no object left. The Attributes
parameter will point to alist of all attributes belonging to the object except for any sensitive attributes.
The Data parameter will point to a PKCS11 format key if the object is akey.

If the Query isnot NULL it needs to point to alist of PKCS11 attributes to be search for. Most often the
attributes will be alabel and/or key type to find a key. The QueryFlags indicate whether the return
object/key should be in PKCS11 format to be used in crypto operations or in SCCS format for exporting of
public keys. Symmetric keys and private keys when returned in SCCS format will contain a NULL
KeyData pointer if the keys are marked sensitive.

Page 38 Secure Cryptography and Certificate Services Toolkit Version 1.0

8.6.3 IBM CCA Multi-Service Module, Version 1.0
File required:

libccacsp.a
The IBM CCA MSM provides cryptographic capabilities and cryptographic data storage capabilities to
CDSA applications running on AlX version 4.1.3,4.1.4, 4.1.5, or 4.2. Table5 liststhe SCCS AP
functions that this module supports. The IBM CCA MSM relies on underlying CCA hardware to provide

its services. It currently supports the following capabilities using the IBM 4758 card:

data digesting using MD5 and SHA-1 hashing algorithms (CSSM_ALGID_MDS5 and
CSSM_ALGID_SHA1)

generation of random numbers
DES encryption/decryption algorithm (CSSM_ALGID_DES). The following encryption/decryption
modes (one of which must be explicitly included into the correspondent cryptographic context) are
supported:

CSSM_ALGMODE_CBC.

CSSM_ALGMODE_CBC_1V8.

CSSM_ALGMODE_CBCPadIV8.

NOTE. If CSSM_ALGMODE_CBC or CSSM_ALGMODE_CBC_IV8 is used during encryption,
the length of the data must be an integral multiple of 8 bytes.

storage of DES keys

wrapping of keys (both DES and RSA) using single or double-length DES keys algorithms
(CSSM_ALGID_DES and CSSM_ALGID_3DES-2KEY).

RSA key-pairs up to 1024 bits long for the following operations
signature/verification
DES key exchange
The following RSA family agorithms are supported:
CSSM_ALGID _RSA_PKCS
CSSM_ALGID _RSA_1S09796
storage of RSA key-pairs
deletion of DES keys from the data storage

data encryption/decryption using RSA OAEP algorithm (part of SET protocol) —
CSSM_ALGID_WrapSET_OAEP. Thereis an optional encryption hashing mode supported for this

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 39

algorithm: CSSM_ALGMODE_OAEP_HASH. If the mode is not specified, encryption using default
(non-hashing) mode is performed.

General notes:

Multiple buffers are not supported during encryption and decryption operations (although
encryption/decryption using RSA OAEP algorithm makes use of two buffers, these buffers have a different
significance than that described in the generic APl document — see description of the
CSSM_EncryptData() and CSSM_ DecryptData() functions below).

The labels for the keys being stored are generated by the module and an application does not have any
control over these labels. Therefore the input label parameters are disregarded.

Only one anonymous data base, signified by setting namesto NULL, is supported at all times. Therefore
parameters such as database name, etc. are disregarded.

If afunction expectsa CSSM_DATA structure as a parameter describing the output, and the Length
element is zero and Data element is NULL, then the necessary memory will be allocated by the function.

The DL functions support DB records of CSSM_DB_RECORD_TY PE of

CSSM_DL_DB_RECORD_KEY

CSSM_DL_DB_RECORD_PUBLIC_KEY

CSSM_DL_DB_RECORD_PRIVATE_KEY
The only attribute supported by DL functionsis CSSM_DL_ATTRIBUTE_KEY _TYPE. This attribute
can have one of the following values: CSSM_ATTRIBUTE_KEYTYPE_RSA,
CSSM_KEYTYPE_ATTRIBUTE_DES2, or CSSM_ATTRIBUTE_KEYTYPE_DES.
InaCSSM_DB_UNIQUE_RECORD structure, the Data element of RecordDataValue is presumed to
point to aCSSM_KEY structure. Therefore, an application must ensure that the Data portion of any
supplied CSSM_DB_UNIQUE_RECORD pointsto avalid CSSM_KEY structure. This also implies that
if an application providesa CSSM_DB_UNIQUE_RECORD structure as an output parameter, then at the

end of a DL function execution the Data portion of RecordDataValue element will point to avalid
CSSM_KEY structure.

Table 5. IBM CCA Multi-Service Module SCCS Functions

Cryptographic Library Functions

Function Name Supported | Comments
CSSM_QuerySize Yes See remarks below
CSSM_SignData Yes

CSSM_SignDatal nit Yes

CSSM_SignDataUpdate Yes

CSSM_SignDataFina Yes

CSSM_VerifyData Yes See remarks below

Page 40 Secure Cryptography and Certificate Services Toolkit Version 1.0

CSSM_VerifyDatal nit Yes See remarks below

CSSM_VerifyDataUpdate Yes

CSSM_VerifyDataFinal Yes

CSSM_DigestData Yes Algorithm(s) supported:
CSSM_DigestDatal nit CSSM_ALGID_MD5,
CSSM_DigestDataUpdate CSSM_ALGID_SHA1
CSSM_DigestDataFinal

CSSM_DigestDataClone Yes

CSSM_GenerateMac Yes Algorithm(s) supported:
CSSM_GenerateMacl nit CSSM_ALGID_DES

CSSM_GenerateMacUpdate
CSSM_GenerateMacFina

CSSM_VerifyMac Yes Algorithm(s) supported:
CSSM_VerifyMaclnit CSSM_ALGID_DES
CSSM_VerifyMacUpdate
CSSM_VerifyMacFind

CSSM_EncryptData Yes See remarks below
CSSM_EncryptDatal nit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFina

CSSM_DecryptData Yes See remarks below

CSSM_DecryptDatal nit Yes See remarks below
CSSM_DecryptDataUpdate
CSSM_DecryptDataFina

CSSM_QueryKeySizelnBits Yes

CSSM__GenerateKey Yes See remarks below
CSSM_GenerateKeyPair Yes

CSSM_ GenerateRandom Yes
CSSM_GenerateAlgorithmParams No

CSSM_WrapKey Yes See remarks below
CSSM_UnwrapKey

CSSM_DeriveKey Yes

CSSM_CSP_PassThrough No

CSSM_CSP_Login Yes See remarks below
CSSM_CSP_L ogout Yes
CSSM_CSP_ChangeloginPassword No

Data Store Library Functions

Function Name Supported | Comments

CSSM_DL_ Authenticate Yes See remarks below

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 41

CSSM_DL_DbOpen Yes
CSSM_DL_DbClose Yes
CSSM_DL_DbCrezate Yes
CSSM_DL_DbDelete No
CSSM_DL_Dblmport No
CSSM_DL_DbExport No
CSSM_DL_DbSetRecordParsingFunctions No
CSSM_DL_DbGetRecordParsingFunctions No
CSSM_DL_GetDbNames No
CSSM_DL_GetDbNameFromHandle No
CSSM_DL_FreeNameL.ist No
CSSM_DL_Datal nsert Yes
CSSM_DL_DataDelete Yes
CSSM_DL_DataGetFirst Yes See remarks below.
CSSM_DL_DataGetNext Yes See remarks below.
CSSM_DL_FreeUniqueRecord No
CSSM_DL_AbortQuery Yes
CSSM_DL_PassThrough No

CSSM_CSP_Login

An application is expected to set Param->Data field of the input Password parameter to point to afilled
out CCA_LOGIN_PARAMETERS structure prior to calling this function (please refer to ibmcca.h file).

CSSM_DecryptData

Multiple input/output buffers are not supported in the general sense.

NOTE 1. Asymmetric decryption using RSA OAEP algorithm is supported. The significance of the
parametersin this case is as follows (for more information please see the SET specification):

- The ClearBufCount and CipherBufCount parameters should both equal 2

- Thefirst (index 0) CipherBuf contains the OAEP block

- The second (index 1) CipherBuf contains the encrypted data (NOTE. Output CipherBuf
buffers from CSSM_EncryptData() my be supplied without any modifications as parameters

for CSSM_DecryptData())

- After decryption BC byte will be stored at the offset O of the first (index 0) ClearBuf buffer,
and XDATA will be stored in the same buffer starting at the offset of 1 byte.

Page 42 Secure Cryptography and Certificate Services Toolkit Version 1.0

- Thedecrypted data will be stored in the second (index 1) ClearBuf buffer

(NOTE. Because of the specifics of the SET implementation the length returned for the first (index 0)
ClearBuf is always going to be 95 regardless of the actual size of the XDATA supplied during the
encryption. It is therefore recommended that an application initialized this buffer with zeros before
comparing it with the XDATA supplied as input for CSSM_EncryptData().

(see ad'so CSSM__EncryptData() function description).

NOTE 2. In addition to standard decryption, symmetric decryption using clear single length (8 bytes) DES
key is supported. The DES key has to have been inserted into the decryption context as the
CSSM_ATTRIBUTE_KEY attribute. The BlobType element of the key header needs to be set to
CSSM_KEYBLOB_RAW.

CSSM_DecryptDatalnit
NOTE. Symmetric decryption using clear single length (8 bytes) DES key is supported. The DES key has

to have been inserted into the decryption context asthe CSSM_ATTRIBUTE_KEY attribute. The
BlobType element of the key header needsto be set to CSSM_KEYBLOB_RAW.

CSSM_DecryptDataUpdate
Multiple input and output buffers are not supported.

CSSM_DecryptDataFinal
Multiple input and output buffers are not supported.

CSSM_EncryptData
Multiple input and output buffers are not supported.

NOTE. Asymmetric encryption using RSA OAEP agorithm is supported. The significance of the
parametersin this case is as follows (for more information please see the SET specification):

- The ClearBufCount and CipherBufCount parameters should both equal 2

- Thefirst (index 0) ClearBuf buffer should contain BC byte at the offset 0, and XDATA
starting at the offset of 1.

- Thesecond (index 1) ClearBuf buffer should contain the data to be encrypted.

- The OAEP block will be stored in the first (index 0) CipherBuf

The encrypted data will be stored in the second (index 1) CipherBuf

(see dso CSSM_DecryptData() function description).

NOTE 2. In addition to standard encryption, symmetric encryption using clear single length (8 bytes)
DES key is supported. The DES key has to have been inserted into the encryption context as the
CSSM_ATTRIBUTE_KEY attribute. The BlobType element of the key header needs to be set to
CSSM_KEYBLOB_RAW.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 43

CSSM_EncryptDatalnit

NOTE. In addition to standard encryption, symmetric encryption using clear single length (8 bytes) DES
key is supported. The DES key has to have been inserted into the encryption context as the
CSSM_ATTRIBUTE_KEY attribute. The BlobType element of the key header needs to be set to
CSSM_KEYBLOB_RAW.

CSSM_EncryptDataUpdate
Multiple input and output buffers are not supported.

CSSM_EncryptDataFinal
Multiple input and output buffers are not supported.

CSSM_GenerateKey

In addition to generating regular DES keys (keys with CSSM_KEYUSE_ENCRYPT and
CSSM_KEYUSE_DECRYPT key usage properties), this function can be used to generate keys to be used
as wrapping keys during DES key exchange (keys with CSSM_KEYUSE_WRAP and/or
CSSM_KEYUSE_UNWRAP key usage properties). These options are mutually exclusive, since
simultaneous usage of CSSM_KEYUSE_ENCRY PT or CSSM_KEYUSE_DECRY PT with
CSSM_KEYUSE_WRAP or CSSM_KEYUSE_UNWRAP is not supported.

CSSM_QuerySize

In addition to the conventional usage, this function may be used in order to find out the sizes of the
necessary output buffers for the RSA OAEP encryption/decryption. In order to this, an application must
set the ContextType field of the Context parameter to CSSM_ALGCLASS ASYMMETRIC. The function
will expect the following input parameters:

- DataBlock should be an array of 2 CSSM_QUERY_SIZE _DATA structures

The following values are expected in these structures on input and stored there on output:

if Encrypt parameter equals CSSM_TRUE:

Input Output
block 1 Size of plaintext data size of encrypted data
block 2 Size of XDATA size of OAEP block

if Encrypt parameter equals CSSM_FALSE:

Input Output

Page 44 Secure Cryptography and Certificate Services Toolkit Version 1.0

block 1 Size of encrypted data size of decrypted data

block 2 Size of OAEP block sizeof XDATA

CSSM_UnwrapKey

NOTE 1. In addition to standard semantics, if the key to be unwrapped is a previously wrapped RSA
public key (see CSSM_WrapKey() function description), it isimported into the modul€e' sinternal format
to facilitate RSA public key exchange between cryptographic nodes.

NOTE 2. An application can also import a clear RSA public key or DES single length key into the
modul€e’ s internal format. In order to do this, it needs to create an appropriate CSSM_KEY structure and
supply it as WrappedK ey parameter. The BlobType element of the key header need to be set to
CSSM_KEYBLOB_RAW for both DES and RSA clear keys. Additionally, for clear RSA public keys the
Format element of the key header has to be as shown below:

8.6.4 Keyblob Format 8.6.5 KeyData.Data points to

CSSM_KEYBLOB_RAW_FORMAT CDSA | CSSM_RSA_PUBLIC structure

CSSM_KEYBLOB_RAW_FORMAT_CCA Structure containing an RSA public
key stored in CCA internal format

CSSM_VerifyData

CSSM_VerifyDatalnit

NOTE. In addition to standard verification, verification of a RSA signature using clear RSA key is
supported. The RSA key has to have been inserted into the encryption context as the
CSSM_ATTRIBUTE_KEY attribute. The BlobType element of the key header needs to be set to
CSSM_KEYBLOB_RAW, and the Format element of the key header has to be as shown in
CSSM_UnwrapKey above.

CSSM_WrapKey

In addition to standard semantics, if the key to be wrapped is an RSA public key, it is exported “in the
clear” to facilitate RSA public key exchange between cryptographic nodes. (see also CSSM_UnwrapKey()
function description).

CSSM_DL._Authenticate

NOTE. By the time this function is called, an application is expected to fill the following buffers.
Credential->Data element of UserAuthentication CSSM_USER_AUTHENTICATION parameter is
expected to point to a buffer containing the login CCA password; the password's length should be stored
in Credential->Length element. The user ID needed for login should be stored in the buffer pointed to by
MoreAuthenticationData->Param->Data element of UserAuthentication structure; its length should be
stored in MoreAuthenticationData->Param->Length.

CSSM_DL._DataGetFirst
NOTE. It has been pointed out already that on return from this function the Data portion of
RecordDataValue element of the return CSSM_DB_UNIQUE_RECORD structure will point to avalid

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 45

CSSM_KEY structure. If the retrieval of the RSA public keys has been requested (e.g. the QueryFlags
element of the Query parameter equals CSSM_QUERY _RETURN_DATA) then the KeyData element of
this CSSM_KEY structure will point to a CSSM_RSA_PUBLIC structure.

CSSM_DL_DataGetNext

NOTE. It has been pointed out already that on return from this function the Data portion of
RecordDataValue element of the return CSSM_DB_UNIQUE_RECORD structure will point to avalid
CSSM_KEY structure. If the retrieval of the RSA public keys has been requested (e.g. the QueryFlags
element of the Query parameter supplied at the time of CSSM_DL_DataGetFirst() function call equals
CSSM_QUERY_RETURN_DATA) then the KeyData element of this CSSM_KEY structure will point to
aCSSM_RSA PUBLIC structure.

Page 46 Secure Cryptography and Certificate Services Toolkit Version 1.0

8.6.4 IBM Standard Trust Policy Library, Version 1.0

Files required:
ibmtp.dil
ibmtp.h

The IBM Standard Trust Policy module (IBMTP) provides a simple generic service for verifying chains of
X509 certificates. The current version does not support operations that require DL operations.

This module expects X509v3 signed certificates in DER encoded format. In order to verify agiven

certificate, the application should supply the complete chain. Table 6 lists the functions supported by this
module.

Table 6. IBM Standard Trust Policy Library SCCS Functions

Function Supported | Comments
CSSM_TP_CertSign No

CSSM_TP_CertRevoke No

CSSM_TP_CrlSign No

CSSM_TP_CrlVerify No

CSSM_TP_ApplyCriToDb No
CSSM_TP_CertGroupConstruct No

CSSM_TP_CertGroupPrune No

CSSM_TP_CertGroupVerify Yes See remarks below
CSSM_TP_PassThrough No

CSSM_TP_CertGroupVerify
The application should supply one anchor certificate, and an ordered chain of certificatesin the
CertToBeVerified argument.

The following function arguments are ignored in this version: Evidence, EvidenceSize, Action,
policyldentifers, NumberOfPolicyldentifiers, VerificationAbortOn, VerifyScope, ScopeSize, DBList, Data.

Error codes returned:
CSSM_TP_INVALID_TP_HANDLE: TPHandle argument is 0.
CSSM_TP_INVALID_CL_HANDLE: CLHandle argument is 0.
CSSM_TP_INVALID_CSP_HANDLE: CSPHandle argument is 0.
CSSM_TP_INVALID_DATA_POINTER: CertToBeVerified argument isNULL or invalid. This
argument isinvalid if the length is set to O, or the pointer to datais NULL.
CSSM_TP_INVALID_CC _HANDLE: Thiserror occursif TP is unableto create a cryptographic
context using the supplied CSPHandle and the certificates.
CSSM_TP_ANCHOR_NOT_SELF_SIGNED: The supplied anchor certificate is not self signed
CSSM_TP_ANCHOR_NOT_FOUND: The supplied anchor certificate is not the anchor for any of the
certificates in the supplied chain.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 47

CSSM_TP_CERT_VERIFY_FAIL: The supplied certificate chain can not be verified

Page 48 Secure Cryptography and Certificate Services Toolkit Version 1.0

8.6.5 IBM Extended Trust Policy Library, Version 1.0

Files Required:
ibmtp2.dil
ibmtp2.h

Additional Requirements:
LDAP product
IBM CSP and IBM DL modules

The Extended Trust Policy Library validates X.509v3 certificates and CRLS using two types of trust
policies: Entrust and X.509. The module can accept the complete certificate chain or an incomplete
certificate chain. If the module is passed an incomplete chain, it will attempt to fill-in the missing
certificates by searching the associated data store. Table 7 lists the SCCS API functions that this module
supports.

This module ignores the following argumentsin all TP API.

const CSSM Fl ELD _PTR Scope,
ui nt 32 ScopeSi ze

Table 7. IBM Extended Trust Policy Library SCCS Functions

Function Supported | Comments

CSSM_TP_CertSign Yes The argument pair (SignScope , ScopeSize) is
ignored. This function takes the input
CertToBeSigned as an unsigned X509 certificate
and signsit entirely.

CSSM_TP_CertRevoke Yes The Reason argument is ignored.

CSSM_TP_CrlISign Yes The argument pair (SignScope, ScopeSize) is
ignored. This function takes the input
CrlToBeSigned as an unsigned certificate revocation
list and signsit entirely.

CSSM_TP_CrlVerify Yes

CSSM_TP_ApplyCriToDb Yes
CSSM_TP_CertGroupConstruct No

CSSM_TP_CertGroupPrune No

CSSM_TP_CertGroupVerify Yes See remarks below
CSSM_TP_PassThrough No

CSSM_TP_CertGroupVerify
The parameter values passed to this function must be set as follows.

The argument Policyldentifiers should be given as one of the four policies specified in ibmtp.h or
queried from IBMTP_GUID by CSSM_GetModulelnfo. If zero or more than one policies are given,
default policy (X509 certificate verification policy) is followed.

The argument VerificationAbortOn isignored.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 49

The argument Action isleft for the caller to perform. This function verifies only the certificates.

Page 50 Secure Cryptography and Certificate Services Toolkit Version 1.0

8.6.6 IBM Certificate Library, Version 1.0

Files required:
ibmcl.dll
ibmcl.h

Additional files:
The IBM CL requires the OSS ASN1 runtime libraries (version R4.2.2). The following DLLs should be
installed in the DLL path before IBM CL is attached.

ossapi.dll
ossdmem.dl|
cstrain.dll
soedapi.dll
soedber.dll

This module performs X.509v3 certificate operations. It provides alibrary of functions needed for
creating, signing, verifying and querying a certificate. The current version does not support X.509v3
extensions. The IBM Certificate Library (IBMCL) expects X.509v3 signed certificates in DER encoded
format. It uses a set of Object identifiers (OID) to exchange certificate information with the application.
The list of supported OIDs is defined in file ibmcl.h, which should be included in every application that
uses the services of IBMCL.

The following example demonstrates the purpose and use of OIDs. If an application asks for the version of
agiven certificate, the CL builds the version object that is returned to the application as follows:

CSSM FI ELD_PTR p_version;

/* p_version is a pointer to a generic structure containing FieldOid and
Fieldvalue. FieldO d contains a nunmber that indicates the type of the
field,
e.g. version, serial nunber, etc. FieldValue contains the actual data.
*/

/* allocate menory for p_version.*/
p_version->Fi el dO d. Length = si zeof (ui nt 32);
/* allocate nmenory for O D */

b_versi on->Fi el dO d. Data = | BMCL_O D_VERSI ON;

p_version->Fi el dval ue. Length = Version.length; /* length of Version data */
Copy(Versi on. val ue, p_version->Fiel dVal ue. Data);

All fields are returned as unsigned character arrays, which in turn need to be cast to the appropriate type.
The OID indicates the type of the field and the structure it should be cast to. The following example
shows an instance where OID is used to build the relevant data structure:

CSSM FI ELD_PTR p_field;
X500Name *p_nane;

/* call a CL function to obtain sone field in the Cert */
switch (*p_field->FieldOd.Data) {
case | BMCL_O D_VERSI ON:

br eak;
case | BMCL_QO D_|I SSUER NAME:

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 51

/* cast to the correct structure */

p_nanme = (X500Nanme *) p_field->Fi el dval ue. Dat a;

br eak;
def aul t:

br eak;
}

The IBMCL functions in Table 8 comply with the SCCS API. Most of the functions return error codes
that are specific to this implementation and not defined in the SCCS API. These error codes are defined in
ibmcl.h and described below as part of supported API functions. Also, note that function arguments Scope
and ScopeSize areignored in this version. Moreover, in order to construct an X.500 name-only country
name (_C), organization name (O), organization name unit (OU), and common name (CN) are supported.

Table 8. IBM Certificate Library SCCS Functions

Function Name Supported Comments

CSSM_CL_CertSign Yes See remarks below

CSSM_CL_CertVerify Yes See remarks below

CSSM_CL_CertCreateTemplate Yes See remarks below

CSSM_CL_CertGetFirstFieldvaue | Yes See remarks bel owSeeremarks-below

CSSM_CL_CertGetNextFieldvValue | No

CSSM_CL_CertAbortQuery No

CSSM_CL_CertGetKeylnfo Yes See remarks bel owFhisfunetionreturnsthe DER
eRcee el Ell. Sbl') EE’ E I%IGI. e-key-Fhe encoding eepﬁtan s
2ppheble:

CSSM_CL_CertGetAllFields Yes See remarks below

CSSM_CL_Certlmport No

CSSM_CL_CertExport No

CSSM_CL_ CertDescribeFormat Yes

CSSM_CL_CrICreateTemplate No

CSSM_CL_CrlSetFields No

CSSM_CL_CrlAddCert No

CSSM_CL_ CrlRemoveCert No

CSSM_CL_CrlSign No

CSSM_CL_CrlVerify No

CSSM_CL_IsCertInCirl No

CSSM_CL_CrlGetFirstFieldvalue | No

CSSM_CL_CriGetNextFieldvalue | No

CSSM_CL_CrlAbortQuery No

Page 52 Secure Cryptography and Certificate Services Toolkit Version 1.0

CSSM_CL_ CrIDescribeFormat No

CSSM_CL_PassThrough No

CSSM_CL_CertCreateTemplate
This function accepts the public key field in two formats:

1. If the key algorithm requires any parameters, they can be put in the template with a separate OID. So,
the application can pass in three Ol Ds and the respective values:

IBMCL_OID_SUBJECT _PUB_KEY: the valueis passed in as a string. The key should not be
DER encoded.

IBMCL_OID_PUB_KEY_PARAMETERS: Data should point to the DER encoding of the
parameters.

IBMCL_OID_PUB_KEY_ALGID: Dataindicates what algorithm ID is used for generating the
key, eg. CSSM_ALGID_RSA.

2. Theagorithm ID, parameters and the key can be DER encoded and passed in with OID
IBMCL_OID_SUBJECT_PUB_KEY. There is no need to supply the other two OIDs.

The template requires these fields: signature algorithm 1D, validity, subject name, issuer name, and

subject public key in one of the two formats described above. Validity is specified as an array of two
CSSM_DATE eements. Index 0 should contain the start date and index 1 the end date of certificate
validity.

This function returns the following error codes:

Error Code Description

CSSM_CL_INVALID CL HANDLE CLHandle argument passed in isinvalid
CSSM_CL_INVALID INPUT PTR CertTemplate argument passed inisNULL.
CSSM_CL_INVALID DATA NumberOfFields argument passed in is 0.

CSSM CL SIGN ALGID NOT SUPPORTED | The supplied signature algorithm ID in the template
is not supported by IBM CL.

CSSM _CL _INVALID TEMPLATE The given template is missing or contains an invalid
pointer to one of these mandatory items. serial
number, signature algorithm ID, validity, subject
name, or subject public key. Also, if en extension or
uniqueid is present in the template but the pointers
areinvalid, this error is returned.

CSSM_CL_INVALID_CERT ISSUER NAME | The supplied issuer nameisinvalid.

CSSM CL MISSING CERT ISSUER NAME | Thefield for issuer name is not present in the
template. Thisfield is required for creating avalid
certificate.

CSSM CL KEY ALGID NOT SUPPORTED The supplied algorithm ID for the subject publid key
is not supported.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 53

CSSM_CL_KEY FORMAT UNKNOWN

The supplied subject public key is not in the correct
format.

CSSM_CL_CERT CREATE FAIL

Failed to DER encode the certificate. This error could
be cause by invalid data in the template or memory

problem.

CSSM_CL_CertGetAllFields

This function returns DER encoding of the unsigned part of the certificate, signature algorithm Id and

parameters if applicable, and the signature (length in bytes). To view the specific fields in the certificate
such as version or validity use CSSM_CL _GetFirstFieldValue with the appropriate OID. If the signature
algorithm ID is not recognized by IBM CL, it isset to CSSM_ALGID_NONE. The other fields, however,

are still returned to the application.

This function returns the following error codes:

Error Code

Description

CSSM_CL_INVALID CL_HANDLE

CLHandle argument passed in isinvalid

CSSM_CL_INVALID CERT POINTER

Cert argument passed inis NULL.

CSSM_CL_CERT GET FIELD VALUE FAIL

Unable to decode the certificate correctly.

CSSM_MALLOC FAILED

Failed to allocate memory in the application
space.

CSSM CL CertGetFirstFieldValue

The ResultHandle will aways be set to NULL and the NumberOfMatchedFields will be set to 1 if any

field is found, regardless of how many.

This function returns the following error codes:

Error Code Description

CSSM_CL_INVALID CL HANDLE CLHandle argument passed in isinvalid

CSSM_CL _INVALID _CERT POINTER Cert argument passed inisNULL.

CSSM_CL_INVALID INPUT _PTR CertField or CertField->Data argument passed in is
NULL.

CSSM_MALLOC FAILED Unable to allocate memory in the application space.

CSSM_CL_FIELD NOT_PRESENT The requested field is not in the certificate.

CSSM _CL_KEY_ALGID _NOT SUPPORTED | If the key field is requested, the algorithm ID is not
supported.

Page 54 Secure Cryptography and Certificate Services Toolkit Version 1.0

CSSM CL CertGetKeylnfo

This function returns the DER encoded subject public key. The encoding contains the public key,

agorithm ID and parameters if applicable.

Error Code

Description

CSSM_CL_INVALID CL_HANDLE

CLHandle argument passed in isinvalid

CSSM_CL_INVALID CERT POINTER

Cert argument passed inis NULL.

CSSM_CL_CERT GET KEY INFO FAIL

Failed to decode the cert and obtain the public key.

CSSM_MALLOC FAILED

Failed to allocate memory in the application memory
space.

CSSM_CL_KEY ALGID NOT SUPPORTED

The agorithm id of the subject public key is not

supported.

CSSM CL CertSign
This function returns the following error codes:

Error Code

Description

CSSM_CL_INVALID CL_HANDLE

CLHandle argument passed in isinvalid

CSSM_CL_INVALID CC HANDLE

CCHandle argument passed inisinvalid

CSSM_CL_INVALID CERT POINTER

CertToBeSigned or SignerCert arguments are invalid

CSSM_CL_INVALID CONTEXT

Unable to obtain avalid context using the CCHandle
passed in.

CSSM_CL_GET KEY ATTRIBUTE FAIL

Unable to obtain avalid Key attribute using the

CCHandle passed in.

CSSM_CL_KEY ALGID NOT SUPPORTED

The specified algorithm ID in the signature context is

not supported.

CSSM_CL _CERT SIGN_FAIL

The signature operation failed. This could be caused
by invalid attributes in the signature context.

CSSM_CL_CERT ENCODE FAIL

Failed to DER encode the signed certificate. This
error could be caused by memory problems, or invalid
context attributes.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 55

CSSM CL CertVerify
This function returns the following error codes:

Error Code Description

CSSM_CL_INVALID CL HANDLE CLHandle argument passed in isinvalid

CSSM_CL_INVALID CC HANDLE CCHandle argument passed in is invalid

CSSM_CL_INVALID CERT POINTER Either CertToBeVerified or SignerCert argument is
NULL

CSSM_CL_CERT VERIFY FAIL Failed to verify the signature on the certificate.

CSSM_CL_CERT GET FIELD VALUE FAIL | Failed to decode the CertToBeVerified correctly.

CSSM_MALLOC FAILED Failed to allocate memory.

Page 56 Secure Cryptography and Certificate Services Toolkit Version 1.0

8.6.7 IBM Data Library, Version 1.0

Files required:
ibmdi2.dll
ibmdi2.h

The Data Library provides support for the persistence and retrieval of security-related objects to/from a
flat-file database maintained in the local file system. This module is semantic-free and allows the
application developer to define the database record structure and index. Table 9 lists the SCCS AP
functions that this module supports.

All errors returned by this module are reported as CSSM_DL_PRIVATE_ERROR. If an error occurs
within this module, it is possible to determine the exact cause of the error by enabling exception logging.
The environment variable IBMFILEDL_L OG may be set to afilein which all exceptions are to be logged
by this module. If an error occurs, it is possible to look in the specified file to get a object dump of the
exception which will indicate the file and line number where the error occurred thus allowing the module
developer to determine the exact cause of the failure.

Table 9. IBM Data Library SCCS Functions

Function Name Supported | Comments

CSSM_DL_ Authenticate Yes See remarks below
CSSM_DL_DbOpen Yes See remarks below
CSSM_DL_DbClose Yes The DLHandle parameter must not be

NULL. The DBHandle parameter must
reference an opened data store

CSSM_DL_DbCreate Yes See remarks below
CSSM_DL_DbDelete Yes See remarks below
CSSM_DL_Dblmport No

CSSM_DL_DbExport No

CSSM_DL_DbSetRecordParsingFunctions Yes See remarks below
CSSM_DL_DbGetRecordParsingFunctions Yes The DLHandle parameter must not be

NULL. The DbName specifies the absolute
or relative path name to the file data store
containing the record parsing functions.
This parameter must not be NULL.

CSSM_DL_GetDbNameFromHandle Yes DLHandle parameter must not be NULL.
DBHandle parameter must reference an
opened data store

CSSM_DL_Datalnsert Yes The DLHandle, Attributes, and Data

parameters must not be NULL. The
DBHandle parameter must reference an
opened data store. The write access
permissions flag must be true.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 57

CSSM_DL_DataDelete Yes The DLHandle parameter must not be
NULL. DBHandle must reference an
opened data store. UniqueRecordldentifier
must not be NULL. The write access
permissions flag must be true.

CSSM_DL_DataGetFirst Yes See remarks below

CSSM_DL_DataGetNext Yes See remarks below

CSSM_DL_FreeUniqueRecord Yes The DLHandle parameter must not be
NULL. The DBHandle parameter is
ignored.

CSSM_DL_AbortQuery Yes The DLHandle parameter must not be

NULL. DBHandle must reference an
opened data store. ResultsHandle must
reference avalid query. The read access
permissions flag must be true.

CSSM_DL_PassThrough No

CSSM_DL._Authenticate
The parameter values passed to this function must be set as follows.

DLHandle must not be NULL

DBHandle must reference an opened data store
AccessRequest must not be NULL

UserAuthentication must not be NULL
UserAuthentication->Credential must not be NULL
UserAuthentication->Credential->L ength must not be NULL
UserA uthenti cation->Credential->Data must not be NULL
The password is to be passed in the Credential portion of the user authentication and is applied to the
opened data store only if the password has changed.

The access request flags are applied to the opened data store. Note that only read/write access flags
are used in this module.

CSSM_DL_DbOpen
The parameter values passed to this function must be set as follows.

DLHandle must not be NULL

DbName must not be NULL

AccessRequest must not be NULL

UserAuthentication must not be NULL

UserAuthentication->Credential must not be NULL
UserAuthentication->Credential->L ength must not be NULL

UserA uthenti cation->Credential->Data must not be NULL
UserAuthentication->MoreAuthenticationData is ignored

OpenParameters is ignored.

The DbName specifies the absolute or relative path name to the file data store to be opened
The password is to be passed in the Credential portion of the user authentication

Page 58 Secure Cryptography and Certificate Services Toolkit Version 1.0

CSSM_DL._DbCreate
The parameter values passed to this function must be set as follows.

DLHandle must not be NULL

DbName must not be NULL

DBInfo must not be NULL

AccessRequest must not be NULL

UserAuthentication must not be NULL
UserAuthentication->Credential must not be NULL
UserAuthentication->Credential->L ength must not be NULL
UserA uthenti cation->Credential ->Data must not be NULL
UserAuthentication->MoreAuthenticationData is ignored
OpenParametersis ignored

The DbName specifies the absolute or relative path name to the file data store to be created

The password is to be passed in the Credential portion of the user authentication

CSSM_DL_DbDelete
The parameter values passed to this function must be set as follows.

DLHandle must not be NULL

DbName must not be NULL

UserAuthentication must not be NULL
UserAuthentication->Credential must not be NULL
UserAuthentication->Credential->L ength must not be NULL
UserAuthentication->Credential ->Data must not be NULL
UserAuthentication->MoreAuthenticationData is ignored

The DbName specifies the absolute or relative path name to the file data store to be deleted

The password is to be passed in the Credential portion of the user authentication

CSSM_DL_DbSetRecordParsingFunctions
The parameter values passed to this function must be set as follows.

DLHandle must not be NULL

DbName must not be NULL

FunctionTable must not be NULL
FunctionTable->RecordGetFirstFieldVaue must not be NULL
FunctionTable->RecordGetNextFieldVaue must not be NULL
FunctionT able->RecordAbortQuery must not be NULL

The DbName specifies the absolute or relative path name to the file data store to be have the record

parsing functions manipulated.

CSSM_DL._DataGetFirst
The parameter values passed to this function must be set as follows.

DLHandle must not be NULL

DBHandle must reference an opened data store

Query must not be NULL

Query->Conjunctive must equal CSSM_DB_NONE

Query->NumSel ectionPredicates must be 0 or 1

Query->SelectionPredicate must not be NULL if Query->NumSelectionPredicatesis 1
ResultsHandle must be an allocated pointer

EndOfDataStore must be an allocated pointer

Version 1.0 Secure Cryptography and Certificate Services Toolkit

Page 59

Attributes must be an allocated pointer

Data must be an allocated pointer

The read access permissions flag must be true

Query->NumSel ectionPredicates equals 1 denotes an indexed query for a given record type
Query->NumSel ectionPredicates equals 0 denotes a sequential query for a given record type

CSSM_DL._DataGetNext
The parameter values passed to this function must be set as follows.

DLHandle must not be NULL

DBHandle must reference an opened data store
ResultsHandle must reference avalid query
EndOfDataStore must be an allocated pointer
Attributes must be an allocated pointer

Data must be an allocated pointer

The read access permissions flag must be true

Page 60 Secure Cryptography and Certificate Services Toolkit Version 1.0

8.6.8 IBM Key Recovery Service Provider, Version 1.0
Files required:

ibmskr.dll

ibmskr.h

The IBM Key Recovery Service Provider generates and processes key recovery blocks according to open
group standards.

Table 10. IBM Key Recovery Service Provider Module SCCS Functions

Function Name Supported Comments
CSSM_KR_GetPolicylnfo Yes
CSSM_KR_CreateRecoveryEnablementContext Yes See remarks below
CSSM_KR_CreateRecoveryRegistrationContext | No
CSSM_KR_CreateRecoveryRequestContext No
CSSM_KR_SetEnterpriseRecoveryPolicy Yes
CSSM_KR_RegistrationRequest No
CSSM_KR_RegistrationRetrieve No
CSSM_KR_RecoveryRequest No
CSSM_KR_RecoveryRetrieve No
CSSM_KR_GetRecoveredObject No
CSSM_KR_RecoveryRequestAbort No
CSSM_KR_GenerateRecoveryFields Yes
CSSM_KR_ProcessRecoveryFields Yes
CSSM_KR_FreeKRProfile Yes
CSSM_KR_PassThrough No

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 61

CSSM_KR_CreateRecoveryEnablementContext

IBM KRSP Version 1.0 enables applications to be designed to request generation of key recovery blocks
for three scenarios (Law Enforcement, Enterprise, and Individual). To request generation of key recovery
blocks for any specific scenario, related KR-flags must be set and profile information supplied as outlined

in the following table:

Scenario Flag Profile Information
Individual KR_INDIV Must be provided through API
Enterprise KR_ENT Can be provided through API

If not provided, default profile
information will be used

Law Enforcement

KR_LE |KR_LE_USE |KR_LE_MAN

Not accepted through API --
Must use default profile
information

The profile information, provided through the KRACertChainList APl parameter, must be structured as
follows. The last member of a KRACertChainList must point to an Anchor certificate which must be self-
signed. The member preceding the Anchor certificate must point to the Key Recovery Server Certificate,
and it must be signed by the Anchor. Preceding the KRS certificate will be the required KRA certificates,
each signed by the Anchor. The number parameter in the KRACertChainList must be set to two plus the
required number of KRA'’s.

Page 62

Secure Cryptography and Certificate Services Toolkit Version 1.0

Chapter 9. Developing Security Applications

This chapter presents a high-level overview of the steps involved in modifying an existing application or
protocol handler to incorporate the strong encryption and key recovery services provided by the IBM
SCCS Toolkit and the IBM Key Recovery Service Provider. For an in-depth discussion of the SCCS
Toolkit API calls necessary to perform strong encryption and key recovery, see the sample application
presented in Error! Reference source not found.. The code for this sample application appearsin
Appendix A.

The application example discussed in the following sections shows the SCCS API calls that must be added
to an application in order to enable it for key recovery and strong encryption. The application is assumed
to use a client/server architecture and be statically linked to a BSAFE crypto library. In addition to the
SCCS Toolkit and Key Recovery Service Provider module, both the client and server computers must have
installed key recovery policy modules and configuration files.

The example demonstrates the client's process of creating key recovery fields and performing strong
encryption, followed by the server validation of the key recovery fields and decryption of the message. The
SCCS API callsfor both the client and the server are listed in pseudocode, without proper arguments or
other details. They are meant to give a general overview of the changes needed, rather than show sample
code

The example assumes that the session key has been generated outside of the SCCS Framework, and the

key exchange has already been performed. For the case in which the session key needs to be distributed by
using the SCCS Framework, an example of Diffie-Hellman key exchange is provided in Section 9.1.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 63

Client Application SCCS API calls

SCCS API Function
Application Startup:
CSSM_Init
CSSM_ListModules(CSP)
CSSM_GetModulelnfo

CSSM_Modul eAttach(CSP)

CSSM_ListModules(KRSP)
CSSM_GetModulelnfo
CSSM_ModuleAttach(KRSP)

Strong Encryption:
CSSM_CSP_CreateSymmetricContext

CSSM_KR_GetPolicyInfo

CSSM_ CreateRecoveryEnablementContext

CSSM_GenerateK RFields

CSSM_EncryptData

Transmission Send
(not done through framework)

Clean Up:
CSSM_ModuleDetach(CSP)
CSSM_ModuleDetach(KRSP)

Page 64

Secure Cryptography and Certificate Services Toolkit

Description

Initialize the framework, and pass pointers to memory functions.
Listsall installed cryptographic service providers (CSPs).

For each installed CSP, get information about the services it
provides. Select one with all required services and...

...attach the CSP.

Perform the same steps for the key recovery service providers
(KRSP).

Specify al information relevant to performing symmetric
encryption, including algorithm, mode, key, and initialization
vector.

Inspects the context returned above and tells the application
whether key recovery fields are required because the context
specifies strong crypto. Assume key recovery fields are required.

Specify all information required to create the key recovery fields

Given the symmetric context and the key recovery context, creates
the key recovery fields. Now The application can perform strong

crypto.

Using the parameters specified in the symmetric context, encrypts
the message to the server.

Send the ciphertext and the key recovery fields to the server.
Could be socket transmission, or any other protocol. This need
not change from the way the application previously transmitted
data.

Unload the crypto and key recovery service providers.

Version 1.0

Server Application SCCS API calls

SCCS API Function
App Startup:
Transmission Receive:

(not done through framework)

Strong Decryption:
CSSM_CSP_CreateSymmetricContext
CSSM_KR_GetPolicylnfo

CSSM_ CreateRecoveryEnablementContext
CSSM_KR_PraocessRecoveryFields

CSSM_ DecryptData
Clean Up:

Description

Perform the same Startup steps as the client program.

Receive the ciphertext and key recovery fields from the client
application.

Specify all information for symmetric decryption.

Inspects the context returned above and tells the application
whether key recovery fields are required because the context
specifies strong crypto. Since the server is performing decryption,
it will validate the client-generated key recovery fields. Assume
key recovery fields are required.

Specify all information required to validate the key recovery fields

Given the symmetric context and the key recovery context, as well
asthe client- generated key recovery fields, verifies the integrity
of the key recovery fields sent from the client. Now The
application can perform strong crypto (as decryption) using the
algorithm parameters specified in the symmetric context. If this
step fails, the application is not allowed to proceed.

Decrypts the message from the client.
Perform the usual SCCS cleanup.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 65

9.1 Diffie-Hellman Key Exchange Scenario

This section outlines the procedure for performing Diffie-Hellman key exchange on both the client and the
server machine. These steps are in addition to those described in the preceding section.

Client Application SCCS API calls

SCCS API Function
App Startup:

Key Exchange:
CSSM_GenerateAlgorithmParameters

CSSM_CSP_CreateAsymmetricContext

CSSM_GenerateKeyPair

Transmission Send:
(not performed by framework)

CSSM_CSP_CreateDeriveK eyContext

CSSM_DeriveKey
Strong Encryption:

Server Application SCCS API calls

SCCS API Function
App Startup:

Transmission Receive:
(not performed by framework)

CSSM_CSP_CreateDeriveK eyContext

CSSM_DeriveKey
Strong Decryption:

Page 66 Secure Cryptography and Certificate Services Toolkit

Description

Client performs normal startup procedure.

Specifies that you are generating Diffie-Hellman key
exchange parameters

Using the parameters generated above, create a context for
key pair generation

Create a Diffie-Hellman asymmetric key pair.

Send the public key to the server.

Specify the information required to derive a session key
from the Diffie-Hellman key pair.

Derive the session key.

Client performs encryption and clean-up operations
previously described.

Description

Server performs normal startup procedure

Receive the Diffie-Hellman public key from the client.

Specify the information required to derive a session key
from the Diffie-Hellman key sent by the client.

Derive the session key.

Server performs decryption and clean-up operations
previously described.

Version 1.0

Chapter 10. Sample Application

Thekr_file_encrypt program is a sample program that shows how the SCCS API can be used to generate
key recovery fields and encrypt a clear file. Even if the origina password is logt, the resulting key
recovery fields can be used to recover the key and the encrypted data. The kr_encrypt_file application
demonstrates not only the details involved in generating key recovery fields and encrypting files, it
illustrates the steps necessary to create any SCCS-based application. The steps are:

Initialize the SCCS framework

Attach the necessary service provider modules
Perform the desired security operations

Detach the modules when they are no longer needed

Source code for this program appears in Appendix A. Thekr _fil e_encrypt program iswritten in the
C language and can be run under either Microsoft Windows 95/NT or IBM AlX.

To run this program you must have installed on your system a Key Recovery service provider module and
a Cryptographic service provider module that supports DES. If you have not already done so, you can
install the IBM Key Recovery and Cryptographic modules by running the Setup programs for the SCCS
Toolkit and the IBM Key Recovery Service Provider. You must also have access to a C compiler with the
standard C library set and the Microsoft Visual C++ MSVCRT40.DLL runtime library. Once you have
compiled the application you can run it from the command line by typing

C.\ kr_encrypt_file <Ffilename>

where filename is afile that is 4096 bytesin size or less. kr_file_encrypt will encrypt the input file and
generate two output files; the encrypted file (filename.enc) and a key recovery file (filename.krf).

10.1 Program Execution

This section presents an overview of the program execution. For detailed information on any of the SCCS
API function calls or data structures, see the Secure Cryptographic and Certificate Services Toolkit
Application Programming Interface Specification manual.

Program execution begins in main.c, which makes the following function calls:
ProcessArguments,

Initialize,

AttachCSPByAlgorithm,

AttachK RSPByUserChoice, and

GenerateK eyRecoveryFieldsAndEncrypt.

Each of these function calls is discussed in the following sections.

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 67

10.1.1 ProcessArguments
Located in file: main.c

This routine simply checks the input entered by the end user. If too many or too few parameters were
entered, ProcessArguments displays a message informing the user of the correct command format and
exits. Otherwise, the pointer ClearFilename is set to the input character array and returned to main.

10.1.2 Initialize
Located in file: initialize.c

This function demonstrates how to initialize the SCCS framework. First, the initialize function sets the
Version data structure to the current version level. (CSSM_MAJOR and CSSM_MINOR are defined in
cssmtype.h.)

Next, the MemoryFuncs data structure is initialized to the memory management function wrappers
declared at the beginning of the initialize.c file. Since applications may have their own procedures for
creating, managing, and freeing memory, the MemoryFuncs table is the way these functions can be made
available to SCCS and the service provider modules. Applications register memory functions with SCCS
using CSSM_Init and with the service provider modules using CSSM_Modul eAttach.

Both the Version and the MemoryFuncs data structures are passed to the CSSM_INIT function in the
following statement.

CSSM I ni t (&Ver si on, &MenoryFuncs, NULL)

SCCS ensures the version information matches and stores a pointer to the MemoryFuncs table within the
framework memory heap. This function should be called only once in any application.

10.1.3 AttachCSPByAlgorithm
Located in file: attach.c

There are various levels of detail that applications can use when attaching to modules using the SCCS
API. In the simplest case, an application can hardcode a particular module ID, a GUID, so that it only
works when a particular module isinstalled. A more flexible application can be designed to look into the
installed list of modules and choose one based on some attribute it has, such as capability, vendor name,
hardware/software, etc.

In AttachCSPByAIlgorithm, the list of installed software cryptographic service providers is searched to
find one that supports the required algorithm. The function accepts two input parameters, a pointer to the
CSP handle and an unsigned integer indicating the type cryptographic algorithm desired, in this case
CSSM_ALGID_DES. (The header file, cssmtype.h, defines the supported algorithms.)

The function first determines which cryptographic modules are currently installed by calling
CSSM_ListModules.

pModul eLi st = CSSM Li st Modul es(CSSM_SERVI CE_CSP, CSSM TRUE)

This function generates a data structure of type CSSM_LIST and returns a pointer to that structure,
pModuleList. The CSSM_LIST data structure contains a GUID/name pair for each of the currently
installed modules that match the service mask for cryptographic modules, CSSM_SERVICE_CSP. If
there are no CSP modulesinstalled, the CSSM_LIST.NumberOfltems element contains a zero.

Page 68 Secure Cryptography and Certificate Services Toolkit Version 1.0

When amoduleisinstalled on a system, it must provide certain information about itself. This information
is stored in series of data structures in the operating system registry facility. Module information is made
available to SCCS applications through the CSSM_GetM odulelnfo function call.

pModul el nfo = CSSM_Get Modul el nf o(& pMbdul eLi st->lItens[i]. GU D),
CSSM_SERVI CE_CSP,
0,
CSSM | NFO_LEVEL_ALL_ATTR);

CSSM_GetModulelnfo returns a pointer, pModulelnfo, to a data structure containing the module
information. In the code that follows the CSSM_GetModulelnfo call, the system searches the module
information retrieved for each module (using its GUID) for a match on CSSM_ALGID_DES. Once the
appropriate module is found, CSSM_ModuleAttach is called which returns a handle to that module.

*hCSP = CSSM Mbdul eAtt ach(& pModul eList->Itens[i-1].GU D), /*nmodule GU D*/
& Mbdul el nf o- >Versi on, /*version info*/
&\venor yFuncs, /*MenoryFuncs tabl e*/

0,

0,
NULL,
NULL) ;

SCCS uses module handles to match a calling application with the appropriate service module. Handles
represent a one-to-one pairing between an application and a module. Multiple calls to
CSSM_ModuleAttach are viewed as independent requests. Each attach request returns separate,
independent handles that do not share execution state.

10.1.4 AttachKRSPByUserChoice
Located in file: attach.c

This function is similar to AttachCSPByA lgorithm with one notable exception. In

AttachK RSPByUserChoice, the list of installed key recovery service providers is presented and the user is
asked to select one. This function also calls CSSM_ListModules but displays the resulting list of Key
Recovery modules the user and prompts them to select one.

10.1.5 GenerateKeyRecoveryFieldsAndEncrypt
Located in file: encrypt.c

GenerateK eyRecoveryFieldsAndEncrypt performs several operations. It generates a symmetric key for use
in encrypting the input file, and also generates a context for use in the encryption process. However, since
the kr_file_encrypt application is also performing key recovery, the key recovery fields for the newly
created key are also generated and output as a data blob. Finally, the input file is encrypted and both the
encrypted file and the key recovery fields are written to separate files. These operations are performed in
the following subroutines:

GenerateKey

GenerateSymmetricContext

GenerateK eyRecoveryFieldsForContext

WriteOutputFile

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 69

GenerateKey

GenerateK ey function creates a symmetric key. It does this by creating a security context, generating a
symmetric key using information in the context, and then destroying the context. Security contexts
perform two functions; to provide security for user-specific information and to package information for
easy exchange between functions. Rather than declare, pass, and delete multiple parameters, contexts
allow this information to be assembled into one temporary data structure. The type of context to be created
depends upon the type of operation to be performed. Since the application requires a symmetric key it
must create a key generation context. However, later in the program execution different types of contexts
will be created to perform operations such as key recovery enablement.

GenerateKey first calls CSSM_CSP_CreateK eyGenContext and passes it the parameters to be used when
creating the key and specifies, among other things, a key size of 64 bits and the desired encryption
algorithm — DES.

hKeyGenCont ext = CSSM_CSP_Cr eat eKeyGenCont ext (hCSP,
CSSM ALG D_DES,
NULL,
64,
NULL, NULL, NULL, NULL, NULL) ;

GenerateK ey next initializes the Key data structure, of type CSSM_KEY, to zero using the statement:
nenset (Key, 0, sizeof (CSSM KEY));

By setting the Key.KeyData.Data and Key.KeyData.L ength fields to zero, the user requests SCCS to
allocate the memory necessary to represent the key when CSSM_GenerateKey is called.

CSSM Gener at eKey(hKeyGenCont ext, CSSM KEYUSE_ENCRYPT | CSSM _KEYUSE_DECRYPT,
CSSM _KEYATTR_MODI FI ABLE, NULL, Key)

CSSM_GenerateK ey generates the key and updates the Key data structure accordingly. Once the key has
been generated it is up to the application to delete the security context now that it is no longer needed. It
does this by calling CSSM_ DeleteContext.

CSSM Del et eCont ext (hKeyGenCont ext)
GenerateSymmetricContext

The GenerateSymmetricContext function creates and returns a cryptographic context handle by calling
CSSM_CSP_CreateSymmetricContext. The resulting context is used for the file encryption operations
that use a symmetric key. The function parameters specify the CSP module handle, the desired algorithm
ID (DES) and algorithm mode (cipher block chain mode), the key data, an initialization vector for the
encryption, the type of padding (none), and the number of encryption rounds, in this case O.

*hCrypt oCont ext = CSSM CSP_Cr eat eSymmet ri cCont ext (hCSP,
CSSM ALG D_DES,
CSSM_ALGMODE_CBCPad! V8,
Key,
&DESI VDat a,
CSSM_PADDI NG_NONE,
0);

Note that if the encryption were being performed using an asymmetric key, the application would call
CSSM_CSP_CreateAsymmetricContext instead.

Page 70 Secure Cryptography and Certificate Services Toolkit Version 1.0

GenerateKeyRecoveryFieldsForContext

The steps involved in creating the key recovery fields are similar to those used to generate the symmetric
key. A key recovery enablement context is created by calling:

hKRCont ext = CSSM KR_Cr eat eRecover yEnabl ement Cont ext (hKRSP, NULL, NULL)

CSSM_KR_CreateRecoveryEnablementContext creates a key recovery enablement context based on a
KRSP handle (which determines the key recovery mechanism that isin use), and key recovery profiles for
the local and remote parties involved in a cryptographic exchange. The local and remote key recovery
profiles are CSSM_KRSP_PROFILE data structures, which contain authentication information for the
respective parties. Since the profile values are NULL, SCCS uses the default values for local and remote
profiles.

Next the key recovery fields are created with the function call:

CSSM _KR_Gener at eRecover yFi el ds(hKRCont ext

hCrypt oContext, /*symmetric encryption
cont ext */

NULL, /*session attributes*/

KRFl ags, /* KRFlags = 0 */

pKRFi el ds); /*the key recovery fields
(out put)*/

CSSM_KR_GenerateRecoveryFields generates the key recovery fields for a cryptographic association
given the key recovery context, the session specific key recovery attributes, and the handle to the
cryptographic context containing the key that is to be made recoverable. The session attributes and the
flags are not interpreted at the SCCS layer. The KRFlags parameter may be used to fine tune the contents
of the KRFields produced by this operation. The KRFields are in the form of an uninterpreted data blob.

Lastly, the context is destroyed by calling:

CSSM Del et eCont ext (hKRCont ext)
WriteOutputFile

Thisfunction is called twice, once to write the key recovery fields to afile and again to write the encrypted
file. The actua file encryption is performed in GenerateK eyRecoveryFieldsAndEncrypt using the
CSSM__EncryptData function.

CSSM _Encr ypt Dat a(hCr ypt oCont ext ,
&Cl earData, /*pointer to the input buffer*/
1, /*nunber of input buffers*/
&Encrypt edData, /*pointer to output buffer*/
1, /*nunber of output buffers*/
&Byt esEncrypted, /*size of the encrypted data*/
&RenData); /*buffer for paddi ng encrypted data*/

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 71

Appendix A. Source Code for KR_FILE_ENCRYPT

This appendix contains the source code for the kr_file_encrypt program. The program consists of the
following files.

kr_file_encrypt.h
Thisfiles contains the prototypes of public functions.

main.c

Thisfileisthe main program and command line parser.
initialize.c

Thisfile shows how to initialize the SCCS initialized for use.
attach.c

Thisfile attaches to two service provider modules, a Key Recovery module and a Cryptographic
module. It illustrates two different methods of attaching to service provider modules.

encrypt.c

Thisfile performs actual encryption and associated key recovery field generation and storage. It
generates two output files, one containing the key recovery fields and one containing the encrypted
file.

Al KR_FILE_ENCYPT.H

COVWPONENT_NAME: kr_file_encrypt

(C) COPYRI GHT I nternational Business Machi nes Corp. 1997
Al R ghts Reserved
Li censed Materials - Property of |BM

FILE: kr_file_encrypt.h

This file contains functions to take a clear file and produce its
associ ated encrypted file and key recovery field file. Although
the symmetric encryption algorithm being used here is DES, others
could be easily substituted with mnimal change.

void Initialize(

voi d);

voi d AttachCSPByAl gorithm(

CSSM _CSP_HANDLE *hCSP,
ui nt 32 Al gorithnmRequired);

voi d AttachKRSPByUser Choi ce(

CSSM KRSP_HANDLE *hKRSP) ;

voi d Gener at eKeyRecover yFi el dsAndEncr ypt (

CSSM _CSP_HANDLE hCSP,
CSSM_KRSP_HANDLE hKRSP,
char *I|nput Fil enane);

extern CSSM APl _MEMORY_FUNCS MenoryFuncs;

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 73

A2 MAIN.C

R e e e T T
/1

/1 COVPONENT_NAME: kr_file_encrypt

/1

/1 (C) COPYRI GHT I nternational
/1 Al Rights Reserved
/1 Licensed Materials -

Property of |BM

/!l FILE. main.c

/1 This file contains the nain programof the kr_file_encrypt

Busi ness Machi nes Corp. 1997

program

/1 The command |ine arguments are processed here and other functions
/] are called to perform subtasks such as initializing the CSSM

/] attaching the required service providers,
/1 fields and encrypting.

/1

R e e e T T
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude "cssm h"

#include "kr_file_encrypt.h"

R e e e T T
/1

/1 Function: ProcessArguments

/1

/1 This function checks the comrand |ine argunents and provides syntax

/1

R e e e T T

static void ProcessArgunents(int argc, char *argv[],

/'l Check the nunmber of argunents
if (argc = 2) {

printf("\n");
printf("Usage: kr_file_encrypt <file to encrypt>\n");
printf("\n");
printf(" This utility encrypts the given file and generates\n");
printf(" the associated key recovery fields.
printf(" generated:\n");
printf("\n");
printf(" <filename>.enc - the encrypted file\n");
printf(" <fil ename>. krf
printf("\n");
exit(1);
}
/'l Cet the nane of the clear file
*Cl earFil ename = argv[1];
}
R e I R
/1
/1 Function: nain
/1
R e I R

int nmain(int argc,

{

char *argv[])

/1 Handle to the cryptographic service provider
CSSM_CSP_HANDLE hCSP;

/1 Handle to the key recovery service provider
CSSM_KRSP_HANDLE hKRSP;

char *Cl ear Fi | enane;
ProcessAr gunment s(ar gc,

argv, &C earFil enane);

Initialize();
/1 Set up cryptographic service provider
At t achCSPByAl gori t hm(& CSP, CSSM ALG D _DES);

Page 74

generating key recovery

char **C ear Fi | enane)

These are the files\n");

- the key recovery fields\n");

Secure Cryptography and Certificate Services Toolkit

Version 1.0

/1 Set up key recovery service provider. Strong encryption can only
Il occur if the appropriate key recovery fields have been generated.
At t achKRSPByUser Choi ce(&KRSP) ;

/'l Generate required key recovery fields and then encrypt
Gener at eKeyRecover yFi el dsAndEncrypt (hCSP, hKRSP, d earFil enane);

return O;

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 75

A.3 INITIALIZE.C

#i
#i

#i
#i

/1
/1
/1

COVPONENT_NAME: kr_fil e_encrypt
(C) COPYRI GHT I nternational Business Machi nes Corp. 1997

Al R ghts Reserved
Li censed Materials - Property of |BM

FILE: initialize.c

This file encapsul ates how an application initializes the CSSM Menory
managenent function tables are passed and versions are checked.

nclude <stdlib. h>
ncl ude <stdio. h>

ncl ude "cssm h"
ncl ude "kr_file_encrypt.h"

Menory mangenent function table. See bel ow.

CSSM APl _MEMORY_FUNCS Meror yFuncs;

I
/1 This set of menory managenment funciton w appers are required by CSSM
/1 to manage nenory on behalf of the calling application. Note: since the
/1 calling application is linked separately, it may have its own distinct
/1 inmplenentation of nenory managenent functions.
I
voi d *app_mal | oc(uint32 size, void *ref) { return(malloc(size));
void app_free(void * ptr, void *ref) { free(ptr);
voi d *app_cal l oc(uint32 n, uint32 size, void *ref) { return(calloc(n, size));
void *app_realloc(void *p, uint32 size, void *ref) { return(realloc(p, size));
e e e
I
/1 Function: Initialize
I
/1 This function sets up menory managerment functions and calls CSSM I nit
I
e e e
void Initialize(void)
{
CSSM_ERRCR_PTR pError;
/1 This is the version of the CSSMitself.
CSSM_VERS| ON Version = { CSSM_MAJOR, CSSM M NCR };
I

/1 Initialize the application's nenory nanagenent function table
/1

Menor yFuncs. nal | oc_func
Menor yFuncs. free_func
Menor yFuncs. real | oc_func
Menor yFuncs. cal | oc_func

app_mal | oc;
app_free;
app_real | oc;
app_cal |l oc;

/1

/1 The CSSM Init function nust be called before perform ng any other
/]l CSSM APl calls. The expected CSSM nmj or/ m nor version nunbers

/1 and the menory management function table are passed down.

/1

if (CSSM.Init(&Version, &WenoryFuncs, NULL) != CSSM OK)

printf("Error: could not intialize CSSMn");

Page 76 Secure Cryptography and Certificate Services Toolkit

v e e

Version 1.0

pError = CSSM GetError();
printf("CSSM I nit error code = %d\n", pError->error);
exit(1);

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 77

A4 ATTACH.C

/1 COVPONENT_NAME: kr_file_encrypt

/1 (C) COPYRI GHT International Business Machines Corp. 1997
/1 Al Rights Reserved
/'l Licensed Materials - Property of |BM

/1l FILE: attach.c

/1 There are various levels of detail that applications can use when

/1 attaching to nodul es using the CSSM API. In the sinplest case, an

/1 application can hardcode a particular GU D so that it only works when
/l a particular nmodule is installed. On the other hand, a nore flexible
/1 application can be designed to look into the installed list of nodules
/1 and choose one based on sone attribute it has (capability, vendor

/'l name, hardware/software, etc.).

/1 This file shows two nethods (anpng nmany) that can be used to attach a
/1l module. In AttachCSPByAl gorithn(), the installed list of software

/'l cryptographic service providers is searched to find one that supports
/1 the required algorithm |In AttachKRSPByUser Choice(), the list of

/1 installed key recovery service providers is presented and the user is
/'l asked to select one.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

#i nclude "cssmh"
#include "kr_file_encrypt.h"

/1 Function: AttachCSPByAl gorithm
/1
/1 This function searches the list of all installed nodules for a
/1 CSP that supports the required algorithm
/1
R e I R
voi d AttachCSPByAl gorit hm(
CSSM _CSP_HANDLE *hCSP,
ui nt 32 Al gorithmRequired)

{
CSSM_ERROR_PTR pError; /1 error information
CSSM LI ST_PTR pModul eLi st ; /1 list of nodul es
CSSM_MODULE_I NFO_PTR pModul el nf o; /1 module info
CSSM _CSPSUBSERVI CE_PTR pCspl nf o; /1 CSP nodule info
CSSM_SOFTWARE_CSPSUBSERVI CE_| NFO_PTR plnfo; // software CSP nodul e info
CSSM _CSP_CAPABI LI TY_PTR pCap; /] capabilities list
ui nt 32 Tot al ; /] miscell aneous
CSSM_BOOL Found; /1 bool ean for search
ui nt 32 i; /1 index
ui nt 32 i /1 index
ui nt 32 k; /1 index
ui nt 32 l; /1 index
/1
/!l Retrieve the total list of CSPs installed on the systemat this tinme.
/1

if ((pMbdul eLi st = CSSM Li st Mbdul es(CSSM SERVI CE_CSP, CSSM TRUE)) == NULL)
{

pError = CSSM GetError();
printf("Error: could not list installed nodul es\n");
printf("CSSM Li st Mbdul es error code = %\n", pError->error);
exit(1);

}

i f (pMbdul eLi st->Nunberltenms == 0)

Page 78 Secure Cryptography and Certificate Services Toolkit Version 1.0

printf("Error: no CSPs installed.\n");
exit(1);
}

/1

/1 Search through installed software CSPs for one that supports the
/'l encryption algorithmrequired

/1

Found = CSSM FALSE;
for (i = 0; !Found & i < (int)pMduleList->Nunberltens; i++)

pModul el nfo = CSSM Get Modul el nf o(& pMbdul eLi st->Itens[i].GU D),
CSSM_SERVI CE_CSP,
0,
CSSM | NFO_LEVEL_ALL_ATTR);

for (j = 0; !Found & j < (int) pMdul el nfo->Nunber Of Servi ces; j++)
pCspl nfo = pMdul el nfo->ServiceList[j].CspSubServiceli st;
for (k = 0; !Found && k < pMdul el nfo->ServiceList[j].Nurber Of SubServi ces; k++)

/1

/1 Note: to extend the search to hardware CSPs, a case
/1 could be added to this switch construct.

/1

switch (pCspl nfo->CspType)

{

case CSSM CSP_SOFTWARE:
pl nfo = & pCspl nf o- >Sof t war eCspSubSer vi ce) ;
Total = plnfo->Nunber Of Capabilities;
for (I =0; | < Total; |++)

pCap = &(plnfo->CapabilityList[I]);
if (pCap->AlgorithnType == Al gorithmRequired)

Found = CSSM TRUE;

}

br eak;

defaul t:
br eak;
} /1 switch
} /1 for each subservice
} /1 for each usage type
} /1 for each nodul e

if (!Found)

/1
/1 There were CSPs, but none of them natched
/1
printf("Error: there are no suitable cryptographic service providers installed\n");
exit(1);
}

el se

*hCSP = CSSM Modul eAtt ach(& pMbdul eLi st->Itens[i-1].GU D),
&pMbdul el nf o- >Ver si on,
&MVenor yFuncs,
0,
0,
0,
NULL,
NULL) ;
if (*hCSP == 0)
{
pError = CSSM GetError();
printf("Error: could not attach to suitable cryptographic service provider\n");
printf("CSSM Modul eAttach error code = %\ n", pError->error);
exit(1);

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 79

}
/1 Successfully attached to desired CSP
}
R e R TR
/1
/1 Function: AttachKRSPByUser Choice
/1

/1 This function lists the installed nodul es which are key recovery service
/1 providers and pronpts the user to choose one.
/1
R e e e T T
voi d AttachKRSPByUser Choi ce(
CSSM _KRSP_HANDLE * hKRSP)

{
CSSM_ERROR_PTR pError; /1 error info
CSSM LI ST_PTR pModul eLi st ; /1 list of nodul es
CSSM_MODULE_|I NFO_PTR pModul el nf o; /1 module info
CSSM GUI D Kr spCui d; /1 KRSP nodul e identifier
CSSM_BOOL Choi ceMade; /1 bool ean for nenu
ui nt 32 nunber ; /1 index
ui nt 32 i; /1 index
/1
/!l Retrieve the total list of KRSPs installed on the systemat this tinme.
/1

if ((pMbdul eLi st = CSSM Li st Mvbdul es(CSSM SERVI CE_KR, CSSM TRUE)) == NULL)
{

pError = CSSM GetError();
printf("Error: could not list installed nodul es\n");
printf("CSSM Li st Mbdul es error code = %\n", pError->error);

exit(1);
}
i f (pMbdul eLi st->Nunberltenms == 0)
{
/1
/1 Exit when there are no KRSPs installed
/1
printf("Error: no KRSPs installed! Aborting.\n");
exit(1);
}
el se
{
/1
/1l Present a list of installed KRSPs to choose from
/1

Choi ceMade = CSSM FALSE;
printf("These key recovery service providers are installed:\n\n");

whi | e (! Choi ceMade)

{
printf("\n");

/1 for each nodul e found
for (i = 0; i < pMdul eList->Nunberltens; i++) {

/1 list this nodul e's nane

printf(" [%] %\n", i + 1, pMduleList->ltens[i].Nane);
}

printf("\nPl ease enter the number of the one you wish to attach.\n");

/1 read user's selection

if ((scanf ("%", &nunber) == 1) &&
(nunmber > 0) &&
(nunmber <= pMdul eLi st->Nunberltens)) {
Choi ceMade = CSSM TRUE;

} else {
printf("Error: invalid choice\n\n");

Page 80 Secure Cryptography and Certificate Services Toolkit Version 1.0

}
fflush(stdout);

} /1 while choice not nmade

}

/1
/1 Get the GUI D of the choice nade and attach it to use it
/1

KrspGui d = pMdul eLi st->ltens[nunber - 1].GU D,

pModul el nfo = CSSM _Get Modul el nf o(&Kr spCGui d,
CSSM_SERVI CE_KR,
0,
CSSM | NFO_LEVEL_ALL_ATTR);

*hKRSP = CSSM Mbdul eAtt ach(&Kr spCui d,
&pMbdul el nf o- >Ver si on,

&MVenor yFuncs,
0,
0,
0,
NULL,
NULL) ;
if (*hKRSP == 0)
{
printf("Error: could not attach to the chosen KRSP named \"%s\"\n",
pModul eLi st ->ltens[nunber - 1]. Nane);
pError = CSSM GetError();
printf("CSSM Mdul eAttach error code = %\ n", pError->error);
exit(1);
}

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 81

A5 ENCRYPT.C

/1 COVPONENT_NAME: kr_file_encrypt

/1 (C) COPYRI GHT International Business Machines Corp. 1997
/1 Al Rights Reserved
/'l Licensed Materials - Property of |BM

/1 FILE: encrypt.c

/1 This file contains functions to take a clear file and produce its
/] associated encrypted file and key recovery field file. Although
/1 the symmetric encryption algorithmbeing used here is DES, others
/1 could be easily substituted with mninmal change.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i nclude <fcntl. h>

#i nclude "cssm h"
#include "kr_file_encrypt.h"

/1

/1 Suffixes used for the nanes of generated files

/1

#define KR_FIELDS _FILE_SUFFI X ".krb"

#def i ne ENCRYPTED_FI LE_SUFFI X ".enc"

/1

/1 File maxinuns

/1

#defi ne MAX_CLEAR FI LE_SI ZE 4096 /1 for sinplification
#defi ne PATH_MAX 256 /1 for sinplification
/1

/1 DES al gorithm paraneters

/1

#def i ne DES_PAD_LEN 8

#define DES_| V_LEN 8

static unsigned char
DESI VBuf f er [DES_I V_LEN]

stati c CSSM DATA
DES| VData = { sizeof DESIVBuffer, DESIVBuffer };

/'l Function: GenerateKey

/1

/1 This function generates a key using the given CSP
/1

[= = = e oo

static void GenerateKey(
CSSM _CSP_HANDLE hCSP,
CSSM KEY_PTR Key)

{
CSSM _CC _HANDLE hKeyGenCont ext ; /1 key generation context
CSSM_ERROR_PTR pError; /1 error info
/1

/] Create a key generation context which basically packages all
/1 into a "handl e" for later reference
/1

hKeyGenCont ext =

Page 82 Secure Cryptography and Certificate Services Toolkit

{ 0x03, 0xC4, 0x98, Ox1lE, O0x71, OxFF, O0xA2, 0x23 };

Version 1.0

CSSM _CSP_Cr eat eKeyGenCont ext (hCSP,
CSSM ALG D_DES,
NULL,
64,
NULL, NULL, NULL, NULL, NULL);

if (hKeyGenContext == 0)
printf("Error: could not performkey generation setup.\n");

pError = CSSM GetError();
printf (" CSSM CSP_Creat eKeyGenCont ext error code = %d\n", pError->error);

exit(1);
}
/1
/] Generate a key
/1

menset (Key, 0, sizeof (CSSM KEY));

if (CSSM Gener at eKey(hKeyGenCont ext, CSSM KEYUSE ENCRYPT | CSSM KEYUSE_DECRYPT,
CSSM_KEYATTR_MODI FI ABLE, NULL, Key) != CSSM OK)

{
printf("Error: could not generate a key.\n");
pError = CSSM GetError();
printf("CSSM CSP_GCener ateKey error code = %\ n", pError->error);
exit(1);
}
/1
/1 Delete the unneeded key generation context
/1
i f (CSSM Del et eCont ext (hKeyGenCont ext) != CSSM OK)
{
printf("Error: could not del ete key generation context\n");
pError = CSSM GetError();
printf("CSSM Del et eContext error code = %\ n", pError->error);
exit(1);
}
}
R e I R
/1
/'l Function: GenerateSymretricContext
/1

/1 This function sets the encryption algorithm paranmeters including the key
/] itself, the algorithm node, etc.
/1
R e I R LR
static void GenerateSymetricCont ext (
CSSM _CSP_HANDLE hCSP,
CSSM KEY *Key,
CSSM _CC_HANDLE *hCrypt oCont ext)

{
CSSM_ERROR_PTR pError; /1 error info
/1
/]l Create a symmetric encryption context to package encryption paraneters
/1

*hCrypt oCont ext =
CSSM _CSP_Cr eat eSymmet ri cCont ext (hCSP,

CSSM ALG D_DES,
CSSM_ALGMODE_CBCPadl V8,
Key,
&DES| VDat a,
CSSM_PADDI NG_NONE,
0);

if (hCryptoContext == 0)

printf("Error: could not performsymetric encryption setup\n");
pError = CSSM GetError();

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 83

printf("CSSM CSP_CreateSynmetricContext error code = %\n", pError->error);

exit(1);
}
}
[e i
/1
/1 Function: GCenerateKeyRecoveryFi el dsFor Cont ext
/1

/1 This function generates the key recovery fields associated with a given
/'l symretric context. These key recovery fields can later be used to
/'l recover the encryption key by authorized parties.

static void GenerateKeyRecoveryFi el dsFor Cont ext (
CSSM_KRSP_HANDLE hKRSP,
CSSM_CC_HANDLE hCr ypt oCont ext,
CSSM DATA *pKRFi el ds)

{
CSSM CC HANDLE hKRContext; // context for key recovery field generation
CSSM_RETURN RC, /1 return code
ui nt 32 KRFI ags; /1 key recovery algorithmflags
CSSM_ERROR_PTR pError; /1 error info
/1
/] Create a key recovery enabl ement context to set up for generation
/1 of key recovery fields
/1
hKRCont ext = CSSM KR _Cr eat eRecover yEnabl ement Cont ext (hKRSP, NULL, NULL);
i f (hKRContext == 0)
{
printf("Error: could not performkey recovery generation setup\n");
printf (" CSSM KR_Creat eRecover yEnabl enent Cont ext error code = %\ n",
CSSM Get Error()->error);
exit(1);
/1
/1 Actually generate the key recovery fields that can be used later on
/1 by authorized parties to recover the encryption key
/1
KRFl ags = 0;
RC = CSSM KR_Gener at eRecover yFi el ds(hKRCont ext ,
hCr ypt oCont ext,
NULL,
KRFI ags,
pKRFi el ds) ;
if (RC!= CSSM CK)
{
printf("Error: could not generate key recovery fields\n");
pError = CSSM Get Error();
printf("CSSM KR Gener at eRecoveryFi el ds error code = %\n", pError->error);
exit(1);
}
/1
/1 Cean up
/1
if ((RC = CSSM Del et eCont ext (hKRContext)) != CSSM OK)
printf("Error: could not del ete key recovery enabl enent context\n");
pError = CSSM GetError();
printf("CSSM Del et eContext error code = %\ n", pError->error);
exit(1);
}
}
R e I R
/1

Page 84 Secure Cryptography and Certificate Services Toolkit

Version 1.0

/1 Function: WiteCQutputFile
/1
/1 This function takes a data buffer represented by a CSSM DATA type and
/Il wites it out to newfile. The new file's name is conposed of the base
/1 and suffix strings provided. This function is used to wite out the
/] encrypted data as well as the key recovery field data.
/1
R e R TR
static void WiteQutputFile(

CSSM DATA Dat aToWite,

char *Fil enameBase,

char *Fil enameSuffi x)

char Qut put Fi | enane[PATH_MAX] ;
FI LE *Qut put Fi | e;

int Byt esLeft;

char *Last Byt e;

int CurrentWitten;

int CurrentSi ze;

char *pCurrent;

/1
/1 Compose nane and open output file
/1

strcpy(CQut put Fil ename, Fil enaneBase);
strcat (CQut put Fil ename, Fil enameSuffix);

if ((QutputFile = fopen(QutputFilenane, "wbh")) == NULL)

printf("Error: could not open %\n", CQutputFilenane);
perror ("fopen");
exit(1);

}

/1

/Il Wite data
/1

Last Byt e
Byt esLeft

Dat aToWite. Data + DataToWite.Length - 1;
Dat aToW i te. Lengt h;

pCurrent = DataToWite. Data;
while (BytesLeft > 0)
if (pCurrent + BUFSIZ > LastByte)
CurrentSi ze = LastByte - pCurrent;
el se
Current Si ze = BUFSI Z;
CurrentWitten = fwite(pCurrent, 1, CurrentSize, QutputFile);
if (ferror(QutputFile))
printf("Error: failed to wite to file %\n", QutputFilenane);
perror("fwite");
exit(1);
}

BytesLeft -= CurrentWitten;
}

fclose(QutputFile);

/'l Function: GCenerateKeyRecoveryFi el dsAndEncrypt

/1 This function encrypts a file using strong encryption. It perforns all

/'l the necessary prerequisites such as generation of a key (could be repl aced
/Il by string to key derivation) for the encryption, generation of the

Il necessary key recovery fields, and actual encryption. The encrypted

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 85

/1 file and the key recovery field file will be witten out.
/1
R e R TR
voi d Gener at eKeyRecover yFi el dsAndEncr ypt (
CSSM _CSP_HANDLE hCSP,
CSSM _KRSP_HANDLE hKRSP,
char *InputFi |l enane)

{
FI LE *ClearFile; Il clear file's handle
CSSM_CC_HANDLE hCr ypt oCont ext ; /'l context handle for encryption
CSSM_KEY Key; /1 the symmetric key for encryption
int Byt esRead; /1 byte reading counter
ui nt 32 Byt esEncr ypt ed; /1 byte encrypting counter
unsi gned char Cl ear Buf [MAX_CLEAR FI LE_SI ZE]; // buffer for cleartext
CSSM _DATA Cl ear Dat a; /1 buffer for cleartext
CSSM_DATA Encrypt edDat a; /1 buffer for ciphertext
unsi gned char RenmBuf [DES_PAD LEN];// buffer for padding
CSSM_DATA RenDat a; /1 buffer for padding
CSSM_DATA KRFDat a; /1 buffer for key recovery fields
CSSM_RETURN RC, /1 return code
/1

/1 Normally one would pronpt the user for a string and convert it to
/Il a clear key, but here is an exanple of the key generation APIs

/1

Gener at eKey(hCSP, &Key) ;

Gener at eSymmet ri cCont ext (hCSP, &Key, &hCryptoContext);

Gener at eKeyRecover yFi el dsFor Cont ext (hKRSP, hCrypt oCont ext, &KRFDat a);

Wi teQut put Fi | e(KRFData, |nputFilename, KR FI ELDS FI LE_SUFFI X);

/1

/! Read the clear file in one buffer for sinplification

/1

if ((CearFile = fopen(lnputFilename, "rb")) == NULL)
printf("Error: could not open %\n", InputFilenane);
perror ("fopen");
exit(1);

}

Byt esRead = fread(d earBuf, 1, MAX CLEAR FILE SIZE, CearFile);

Cl ear Dat a. Length = Byt esRead;

Cl earDat a. Data = C ear Buf;

if (BytesRead == 0)

{
printf("Error: did not read any bytes fromfile\n");
exit(1);

}

if (Ifeof(ClearFile))

{

printf("Error: exceeded currently supported maxi mumclear file size\n");

exit(1);
}
fclose(CearFile);
/1
/1 Encrypt the buffer
/1
/1 Initialize the buffer that will hold the final block of the encryption

menset (RemBuf, 0, sizeof (RenBuf));
RenDat a. Lengt h si zeof (RenBuf) ;
RenDat a. Dat a RenBuf ;

/] setup Ci pherBuf with the same I ength as C ear Buf
EncryptedData. Data = (uint8 *) malloc (d earData. Length);
Encrypt edDat a. Length = C ear Dat a. Lengt h;

Page 86 Secure Cryptography and Certificate Services Toolkit Version 1.0

RC = CSSM Encr ypt Dat a(hCr ypt oCont ext ,
&Cl ear Dat a,
1,
&Encr ypt edDat a,

&i3yt esEncrypt ed,
&RenDat a) ;

/1 Move the final block of data to the end of the EncryptedBuf

menmcpy(Encrypt edDat a. Dat a + Byt esEncrypted, RenData. Data, RenData.LlLength);
Encrypt edDat a. Lengt h =Byt esEncrypt ed + RenDat a. Lengt h;

/1

/1 Wite the encrypted file

/1

WiteCQutputFil e(EncryptedData, |nputFilename, ENCRYPTED FlLE_SUFFI X);

Version 1.0 Secure Cryptography and Certificate Services Toolkit Page 87

Appen

APl
CA
CDSA
CLI
CRL
cspP
CSSM
DLI
EDI

KRF
KRSPI
PKI
SET
SCCS

SPI
TPI

Version 1.0

dix B. List of Acronyms

Application Program Interface

Certificate Authority

Common Data Security Architecture
Certificate Library Service Provider Interface
certificate revocation lists

Cryptographic Service Provider

Common Security Services Manger

Data Store Library Service Provider Interface
Electronic Data Interchange

Independent Software Vendor

Key Recovery Field

Key Recovery Service Provider Interface
Public Key Infrastructure

Secure Electronic Transaction

Secure Cryptography and Certificate Services
Secure Socket Layer

Service Provider

Service Provider Interface

Trust Policy Service Provider Interface

Secure Cryptography and Certificate Services Toolkit

Page 89

Glossary

Asymmetric algorithms

Certificate Authority
(CA)

Certificate

Certificate chain

Certificate signing

Certificate validity date

Cryptographic Service
Providers (CSPs)

Cryptographic algorithm

Cryptoki

Cryptographic algorithms where one key is used to encrypt, and a second key is
used to decrypt. They are often called public-key algorithms. One key is called
the public key, and the other is called the private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most commonly used public-key algorithm. It
can be used for encryption and for signing.

An entity that guarantees or sponsors a certificate. For example, a credit card
company signs a cardholder’ s certificate to assure that the cardholder is who he
or she claimsto be. The credit card company is a certificate authority.
Certificate authorities issue, verify, and revoke certificates.

See Digital certificate.

The hierarchical chain of al the other certificates used to sign the current
certificate. This includes the Certificate Authority (CA) who signs the
certificate, the CA who signed that CA's certificate, and so on. Thereisno
limit to the depth of the certificate chain.

The Certificate Authority (CA) can sign certificates it issues or co-sign
certificates issued by another CA. In ageneral signing model, an object signs
an arbitrary set of one or more objects. Hence, any number of signers can attest
to an arbitrary set of abjects. The arbitrary objects could be, for example, pieces
of adocument for libraries of executable code.

A start date and a stop date for the validity of the certificate. If a certificate
expires, the Certificate Authority (CA) may issue a new certificate.

Modules that provide secure key storage and cryptographic functions. The
modules may be software only or hardware with software drivers. The
cryptographic functions provided may include:

Bulk encryption and decryption
Digital signing

Cryptographic hash

Random number generation
Key exchange

A method or defined mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the procedure for encrypting
and decrypting a byte stream, digitally signing an object, computing the hash of
an object, generating a random number, etc. SCCS accommodates DES, RC2,
RC4, IDEA and other encryption algorithms.

Short for cryptographic token interface. See Token.

Page 90 Secure Cryptography and Certificate Services Toolkit Version 1.0

Digital certificate

Digital signature

Hash algorithm

Key Recovery Fields

Key Recovery Service
Providers (KRSPs)

Leaf Certificate

Message digest

Nonce

Version 1.0

The binding of some identification to a public key in a particular domain, as
attested to directly or indirectly by the digital signature of the owner of that
domain. A digital certificate is an unforgeable credential in cyberspace. The
certificate is issued by atrusted authority, covered by that party’s digital
signature. The certificate may attest to the certificate holder’ s identity, or may
authorize certain actions by the certificate holder. A certificate may include
multiple signatures and may attest to multiple objects or multiple actions.

A data block that was created by applying a cryptographic signing algorithm to
some other data using a secret key. Digital signatures may be used to:

Authenticate the source of a message, data, or document

Verify that the contents of a message hasn’'t been modified since it was
signed by the sender

Verify that a public key belongs to a particular person

Typical digital signing algorithms include MD5 with RSA encryption, and
DSS, the proposed Digital Signature Standard defined as part of the U.S.
Government Capstone project.

A cryptographic algorithm used to hash a variable-size input stream into a
unique, fixed-sized output value. Hashing is typically used in digital signing
algorithms. Example hash algorithms include MD and MD2 from RSA Data
Security. MD5, also from RSA Data Security, hashes a variable-size input
stream into a 128 bit output value. SHA, a Secure Hash Algorithm published by
the U.S. Government, produces a 160-bit hash value from a variable-size input
stream.

A block of datawhich is created from a symmetric key and key recovery profile
information. The profile information includes public key certificates for
whichever Key Recovery Agents (KRAS) will be recovery the keysif necessary,
aswell asthe identities of the sending and receiving parties. Thisinformation
is used to cryptographically store the session key in such away that one or all
of the KRAs will be able to retrieve the key from the KRF if they are requested
to do so.

Modules that provide key recovery enablement functions.
The cryptographic functions provided may include:

Key recovery field generation
Key recovery field processing

The certificate in a certificate chain that has not been used to sign another
certificate in that chain. The leaf certificate is signed directly or transitively by
all other certificates in the chain.

The digital fingerprint of an input stream. A cryptographic hash function is
applied to an input message arbitrary length and returns a fixed-size output,
which is called the digest value.

A sequence of random bits.

Secure Cryptography and Certificate Services Toolkit Page 91

Owned certificate

Private key

Public key

Random number
generators

Root certificate

Secret key

Secure Cryptography
and Certificate Services
Architecture (SCCS)

Secure Cryptography
and Certificate Services
Framework (SCCS)

Security Context

Security-relevant event

Page 92

A certificate whose associated secret or private key residesin alocal CSP.
Digital-signing algorithms require using owned certificates when signing data
for purposes of authentication and non-repudiation. A system may use
certificatesit does not own for purposes other than signing.

The cryptographic key used to decipher messages in public-key cryptography.
This key is kept secret by its owner.

The cryptographic key used to encrypt messages in public-key cryptography.
The public key is available to multiple users (i.e., the public).

A function that generates cryptographically strong random numbers that
cannot be easily guessed by an attacker. Random numbers are often used to
generate session keys.

The prime certificate, such as the official certificate of a corporation or
government entity. The root certificate is positioned at the top of the certificate
hierarchy in its domain, and it guarantees the other certificatesin its certificate
chain. Each Certificate Authority has a self-signed root certificate. The root
certificate’ s public key is the foundation of signature verification in its domain.

See Private key.

A set of layered security services that address communications and data
security problems in the emerging PC business space.

defines five key service components:
Cryptographic Module Manager
Key Recovery Maodule Manager
Trust Policy Module Manager
Certificate Library Module Manager
Data Storage Library Module Manager

The SCCS binds together al the security services required by PC applications.
In particular, it facilitates linking digital certificates to cryptographic actions
and trust protocols.

A control structure that retains state information shared between a
cryptographic service provider and the application agent requesting service
from the CSP. Only one context can be active for an application at any given
time, but the application is free to switch among contexts at will, or as required.
A security context specifies CSP and application-specific values, such as
required key length and desired hash functions.

An event where a CSP-provided function is performed, a security module is
loaded, or a breach of system security is detected.

Secure Cryptography and Certificate Services Toolkit Version 1.0

Session key

Signature

Signature chain

Symmetric algorithms

Token

Verification

Web of trust

Version 1.0

A cryptographic key used to encrypt and decrypt data. The key is shared by two
or more communicating parties, who use the key to ensure privacy of the
exchanged data.

See Digital signature.

The hierarchical chain of signers, from the root certificate to the leaf certificate,
in a certificate chain.

Cryptographic algorithms that use a single secret key for encryption and
decryption. Both the sender and receiver must know the secret key. Well-known
symmetric functions include DES (Data Encryption Standard) and IDEA. The
U.S. Government endorsed DES as a standard in 1977. It's an encryption block
cipher that operates on 64-bit blocks with a 56-bit key. It is designed to be
implemented in hardware, and works well for bulk encryption. IDEA
(International Data Encryption Algorithm), one of the best known public
algorithms, uses a 128-bit key.

The logical view of a cryptographic device, as defined by a CSP sinterface. A
token can be hardware, a physical object, or software. A token contains
information about its owner in digital form, and about the services it provides
for electronic-commerce and other communication applications. A tokenisa
secure device. It may provide alimited or a broad range of cryptographic
functions.

Examples of hardware tokens are smartcards and PMCIA cards.

The process of comparing two message digests. One message digest is
generated by the message sender and included in the message. The message
recipient computes the digest again. If the message digests are exactly the
same, it shows or proves there was no tampering of the message contents by a
third party (between the sender and the receiver).

A trust network among people who know and communicate with each other.
Digital certificates are used to represent entities in the web of trust. Any pair of
entities can determine the extent of trust between the two, based on their
relationship in the web. Based on the trust level, secret keys may be shared and
used to encrypt and decrypt all messages exchanged between the two parties.
Encrypted exchanges are private, trusted communications.

Secure Cryptography and Certificate Services Toolkit Page 93

