1l
I
1L

IBM KeyWorks Toolkit

Cryptographic Service Provider Interface (SPI)
Specification

Copyright© 1998 International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication, or
disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N. E. Elam Young Parkway, Hillsboro, OR 97124-6497.

Other product and corporate names may be trademarks of other companies and are used only for

explanation and to the owner’s benefit, without intent to infringe.
001.001.003

CHAPTER LIINTRODUCTION ... 1
1.1 SERVICE PROVIDER MODULES. ...t iiiiiitttiei e ee et eettb s e e e s e estbs s e e s s s sesbba s s essssesbbbaa s eessssesbbanseeaanes 1
1.2 INTENDED AUDIENCE.....ctuuutiiiiiiiettttiieeesttestssseesstesssiseesttesttaeestetsthtessterrt s 2
1.3 DOCUMENTATION SET 1uttuiiiiiiiitttiii i i ee st eett ettt e e s s e eet b s e eessee s b b s eeasees s b b s eeessees bbb eeesseessbbaasses 2
1.4 L= = = N[0 =L 3

CHAPTER 2.SERVICE PROVIDER INTERFACE ... 5
2.1 CRYPTOGRAPHIC OPERATIONS ...t iiiietttitsseeesseestsi s eesssessssaaseessseessbaaaessssesssaaseesssesssssnseessnes 5
2.2 CRYPTOGRAPHIC LOGON AND SESSIONSuuiiiiiettiiiiieeiiestssnieesssessssaiessssssssieesssssssneeane 8
2.3 EXTENSIBILITY FUNCTIONS. ...ccittttiiiiiii ittt e e e e e eet s s e e s s e e bbb s e e e s s s e eab b s s e s s seaabbb e e esseesabbanaaes 8
2.4 DATA STRUCTURES ...cttttiiiieiiiettiies s ee e e s e et s e e s s s eab bt e e s e see s b bt eeessee s bbb s eeesseas bbb e eesseensbbaassss 8

2.4.1 ORI\ I =1 1 SRS SPPRR 8
2.4.2 CSSIM _CALLBACK ..ottt ettt e e et e e s et e e e s tb e e e s ta e e e e aatr e e e e snteeaeanrens 8
2.4.3 CSSIM _CONTEXT ..iiii ettt ettt ettt e e st e e e et e e e e eata e e e s tbe e e e stbe e e e sntreaesanenaeeanrens 9
2.4.4 CSSM_CONTEXT _ATTRIBUTE ...ttt ettt e enane e e 14
2.45 CSSM_CONTEXTINFO.....ciii ittt sttt a e s tae e e et e e e s e e e s antaeaeannes 16
2.4.6 CSSM _CRYPTO _DATA . ettt et e e et ae e e et e e e s tae e e s artaeaeaeees 16
2.4.7 CSSM_CSP_CAPABILITY Lottt sttt ettt e e st e e e stre e e s aneneaeannes 16
2.4.8 CSSIM _CSP _FLAGS ...ttt et e et e e et e e e st e e e s artaeaearnes 16
2.4.9 CSSM_CSP_HANDLE.......oii ittt ettt a e et re e e s arane e e arees 16
2.4.10 CSSM_CSPSUBSERVICEcciiiiiie ittt ettt s e et e e s tan e e snene s 17
2401 CSSM _CSPTYPE. .. oottt e e et e e e et e e e s tte e e e atae e e e aatneaas 18
24.12 CSSM_CSP_WRAPPEDPRODUCTINFO.......ccoiiiiii ittt 18
R O 11 Y I L [NP RP PR 19
R O 1 Y I 0 A I PRSP 19
24.15 CSSM_HARDWARECSPSUBSERVICEINFO.......cccccoiiiiieiiiiie et 20
2.4.16 CSSM_HEADERVERSIONcoiiitiii ittt ettt tre e e st e e e tae e e snene s 22
o O 151 Y I - = PRSP 22
2.4.18 CSSM_KEYHEADERoio ittt ettt st a e e st a e st e e e e tae e e s snnnee s 23
2.4.19 CSSM _KEY _SIZE.... ...ttt ettt et e e e et e e e st e e e e tae e e e antaea s 26
2.4.20 CSSM_KEY TYPE .ottt sttt et a e e et e e e s tta e e e atae e e e aatneaas 26
2.4.21 CSSM_NOTIFY_CALLBACK ...ttt ettt sttt e e e et e s e s tae e e antne s 26
2.4.22 CSSM _PADDINGocoiiii ettt e e et e e et e e e st a e e e et re e e e aaraea s 27
2.4.23 CSSM_QUERY _SIZE DATA ..ottt ettt e e st e e s s e e e e antreeas 27
2.4.24 CSSM _RANGEoii it e e et e e e st e e e e tae e e e aarae s 27
2.4.25 CSSM_SOFTWARECSPSUBSERVICEINFO.......cccoiiiiiiieiciec ettt 28
2.4.26 CSSM_SPI FUNC TBL ..iiiiiiiii ettt ettt ettt e st e e s st e e e s stta e e e atan e e s snnneaas 28
2.5 CRYPTOGRAPHIC OPERATIONS ...t iiiiitttiieieeesseettbissseesssessbssseesssessbaassesssessbassseessesssransaeesses 29
251 CSP_DECIYPEDALAeeeeeiieie ittt ettt ettt e et e e nbb e e et ae e e anbne e e eees 29
25.2 CSP_DeCryptDataFiNGlccouieiiiiiiiieii ettt 31
25.3 CSP_DECTYPIDAAINIT.cueieiiiieiiie ettt sr e eneeas 32
254 CSP_DeCryptDataUpPaLeceiiieiiiieiiie ettt 33
255 CSP_DEIIVEKEY ...ttt ettt ettt ettt e st et et e e be e e sbbeesabeeeneeas 34
2.5.6 (O8] o B ITo = 1D 7 L N PRSPPI 35
2.5.7 CSP_DigeStDAtaCIONEooiiieiiieiiie ettt 36
2.5.8 CSP_DigestDataFiNalcouiiiiiiiiieiei et 37
259 CSP_DigeStDAtAINIT........eeiieieiiie ettt sr e eneeas 38
2.5.10 CSP_DigestDataUPAALecoiiuiiiiiieiiiie ettt 39
2501 CSP_ENCIYPIDALAcciuieiieiiiiie ettt ettt et e st e et e e et ae e e nnene s 40
2.5.12 CSP_ENCryptDataFiNalcoiiiiiiiieiiiie ettt 42
2.5.13 CSP_ENCIYPIDALAINIT.cuuiiiiiiiiiieieie ettt 43

Version 1.1.1

Table of Contents

IBM KeyWorks Toolkit Page iii

2.5.14 CSP_ENCryptDataUPAALEcoiiiiiiiieiieie ittt e e 44

2.5.15 CSP_GenerateAlgorithmParams............c.ooiiiiiiiiiii et 45
2516 CSP_GENEIAIEKEYcci ittt ettt ettt et b e e e e et bt e e e bt e e e e abae e e e anreeaas 46
2.5.17 CSP_GENErateKeYPAITcoiiiiiiiiiieie sttt ettt et eaaee e 47
2.5.18 CSP_GENEIAIEIMACieeiiiiiiiiiti ettt e e e e sttt e e e s e s bbb r et aa e e s e asbbaaaaaaeasaanes 49
2.5.19 CSP_GenerateMaCFiNal............cociiiiiiiiii et s 50
2.5.20 CSP_GenerateMaCINil..........cviiiiiiiiie i 51
2521 CSP_GEeNerateMaCUPUALEcoiuiiiiiieiitie ittt ettt e st e aee e 52
2.5.22 CSP_GENerateRANUOMcuiiiiiiiiie sttt e s s e e st re e e s st e e e s tea e e e ataeeeeanrneaas 53
2.5.23 CSP_QUEIYKEYSIZEINBILSeeiiiiiiiiieeieie ettt e 54

2.5. 24 CSP_QUEIYSIZE ..ottt ettt ettt ettt bttt et ettt e et bt e snbe e anbe e tea e 55
2.5.25 CSP_SIGNDALA.cuteieiieie ittt ettt bbbttt et b eabe e rea e 56
2.5.26 CSP_SIgNDataFinalcuoiiuiiiiiiiiie et 57
2.5.27 CSP_SIgNDAtalNiteiiiiiiiiieiii ettt ettt 58
2.5.28 CSP_SIigNDataUPUALecoiuieiiiiiiiie ittt sae e e 59
2.5.29 CSP_UNWIAPKEY.....cciiiiiiieiiiii ettt ettt e e e et bt e e e asb et e e e bbe e e e anbae e e s aneeeeas 60
2.5.30 CSP_VEIITYDALAceeitiieiiiie ittt ettt ettt ettt a e st e snbe e anbe e ntea e 61
2.5.31 CSP_VerifyDataFinal..........cociiiiiiiiieii e 62
2.5.32 CSP_VerifyDatalNit........ccuiiiiiiiiiieieie sttt ettt et e e e eee e 63
2.5.33 CSP_VerifyDataUPUAte...........oeiiiiiieieiiiie ettt sttt eaeee e 64
2.5.34 CSP_VEIITYIMAC ... ettt sttt ettt et et e tee e 65
2.5.35 CSP_VerifyMAaCFINGL..........ccouiiiiiiiiiie ettt 66
2.5.36 CSP_VerifYMAaCINIL........oiiiieiiiiiie ettt e iee e 67
2.5.37 CSP_VerifyMaCUPAALE.ccueiiiiiiiiieiiiie ittt e i 68
2.5.38 CSP_WIAPKEY....ciiieieeiei ettt ettt bttt ettt b e bt et earea e 69

2.6 CRYPTOGRAPHIC SESSIONS AND LOGONuutiiieiiiiie ettt e s 70
2.6.1 CSP_ChangeLogiNPassWOITcoouuiiiuiaiiie it aiieeeiee ettt e bee et et e e sraeesieeeeneeas 70
2.6.2 (O] o oo [RO P TR OUPRPPRO 71
2.6.3 (O] o oo o 11| PP OUPR PP 72

2.7 EXTENSIBILITY FUNCTIONS. ...ceutttieiittiteeiatieeeesteeeessibee e e s ssbe e e e sseeeassabeeeesanseeasssseeasannseeesannnnesanns 73
2.7.1 CSP_PaSSTRIOUGN ...ttt ettt ettt et e sta e s e aneeas 73
CHAPTER 3.CRYPTOGRAPHIC SERVICE PROVIDER FUNCTION EXAMPLES.................... 74
31 ATTACH/DETACH EXAMPLE. ... ettt ittt ettt ettt ettt st et e et e e sbe e sbbe e sabe e smbe e sbeeeees 74
3.11 AJAINAUINENTICALE ...ttt sttt et et e e sabe e snbe e beeens 75

3.2 EXTENSIBILITY FUNCTIONS EXAMPLES......ctitiiiiieieitieae sttt e e sttt e e s steee s s ssbee e s ssneeassnnneeessnneeaeanns 76
321 CSP_PaSSTRIOUGN ...ttt sttt et e et e e ra e snaeeaneeas 76
APPENDIX A. IBM KEYWORKS ERRORS.........uiiiiiit et 79
Al CRYPTOGRAPHIC SERVICE PROVIDER MODULE ERRORS.....ccciitiiiiiiiiieieiiieea et e st e s 80
APPENDIX B. LIST OF ACRONYMS.....ciiiiiiii ittt ettt ettt enes 86
APPENDIX C. GLOSSARY ...ttt ittt ettt ettt ettt et e e s ba e e ebat e eabeeanbe e e nbeeenraeenees 87

Version 1.1.1 IBM KeyWorks Toolkit Page iv

Figure 1.

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.

List of Figures

IBM KeyWorks TOOIKit AFCIITECIUIEooiueieiiieiiee ettt 2
List of Tables
L0101 (R Y = O PP PP UUPTTOUPR 9
Algorithms for @ SESSION COMLEXLcciitiiiiiieiie ettt e sbe e e saee e sabe e b e eees 10
MOAES OF AlGOITTNMIS ...t e sb et e e e be e e ees 12
ATTTDULE TYPES ..ttt ettt ettt ettt e ettt e b et e sat e e sabe e st e e e be e e ebee e sabeesmbeesnneeenees 14
CSOM SESSIONS.teeuteeteeste et ettt ettt ettt b e bt bt e bt e bt e bt e bt e b e e bt e bt e ane e b e ebeeareeneereenre s 16
LO1S F=o TR 17
CSP Information Type Identifiers and Associated Structure TYPES. ...ccoveeerieeeieeeriee e esiee e 18
PKCSHLL CSP REAAES FIAOSeoveeiieiieieite ettt 21
PKCSHLL CSP TOKEN FlAGS ...ttt 21
Key BlOD TYPE IABNLITIONS ... ettt bbb 23
Key Blob FOrmat IAeNtifiersS.eee ettt 24
KEY Class IHBNTIIEIS. ...ttt ettt et et e e ebe e e saee s 24
KEY AITDULE FIAOS. ..ottt ettt e sae e e nbe e s beeeees 25
KBY USAgE FLAOSttt ettt ettt b e bt et e st e e b e e e eate e smbe e smbeeeees 25
CSSM_NOTIFY REBSON VAIUBS.......coiuiiiiiiiiiiiiiiiie ittt 27
CSP ModUIE ErTOr NUMDEIS.cuiiiiiiieiiie ittt 79
General CSP MESSAgES AN EFTOIS......ciiiiiiiiie e eiee ettt ettt seee e sbe e e be e s sane e snneans 80
CSP MEMOIY ETTOIS..... ettt ettt ettt ekt e e e s bt e e e s aabee e e s anb e e e e snbe e e e anreeeeanres 80
[INVEIIA CSP PAraMELENS.......ccueeitieitieiteeitee sttt re e b e sr e sr e nr e e sreenreenreens 80
=T D@ = o £SO P R UP PP OPRPPRO 81
CSP CryptographiC EITOIS........co ettt ettt sttt sbe e sbee e smbe e sre e e sbeeesaaeesaneaaas 81
Missing or INValid CSP Par@mMELENS.........ccocuiiiiiiaiie ettt saee e sbe e e 82
PASSWOIT EFTONS ...ttt sttt ettt sb b bt e s b e sb e sbe e sbe e nbe e s be e nneesneenne e e 82
Key Management Messages and EITOrScooeiiiii ittt 82
Random Number Generation (RNG) Messages and EFTors.........c.oovveeieeiieeenie e 83
Unique ID Generation Messages and EITOrS........oo.uieiiiaiieiiiee et 83
Key Generation MeSSageS aNd EFTOIScoueiiiiiiiiiieiiee ettt 83
ENCryption/DeCryption IMESSAgESceiuveeiieeiiet ettt et et e st saee e ssbe e sbe e sbe e e saee e snbeesnbeeeees 83
SIgN/Verify MESSAES @N0 EFTOIS........oiiiiiiiiiie ittt ettt sbee e be e e e be e sane e sanean 84
DigeSt FUNCHION EITOISeiiiiiiitii ettt ettt e e rbe e sate e snbe e sbeeeees 84
MAC FUNCLION EITOIS......ciitiiitieitee ittt ettt nneas 84
S Y (e g g To o g o PSRRI 84
PasSThrough CUSIOM EITOFSeiiiiieiiee ettt ettt ettt e e sbe e saee e snbe e sbeeeees 84
WIBP/UNWEGP EFTOIS..... ittt ettt ettt sb et s he et e st e et e e e ebe e e smbe e smbe e sbeeeabaeesnneas 85
HEIrAWEIE CSP EITOIS..... ettt 85
QUENY SIZE ETTOIS. ...ttt ettt ettt ettt ettt eh e be e bt e et e e e sbee e sabeesmbeeebeeesbaeasnneans 85

Version 1.1.1 IBM KeyWorks Toolkit Page v

Chapter 1. Introduction

The IBM KeyWorks Toolkit defines the infrastructure for a complete set of security services. Itisan
extensible architecture that provides mechanisms to manage service provider security modules, which use
cryptography as a computational base to build security protocols and security systems. Figure 1 shows the
four basic layers of the IBM KeyWorks Toolkit: Application Domains, System Security Services,
KeyWorks Framework, and Service Providers. The KeyWorks Framework is the core of this architecture.
It provides a means for applications to directly access security services through the KeyWorks security
application programming interface (API), or to indirectly access security services vialayered security
services and tools implemented over the KeyWorks API. The IBM KeyWorks Framework manages the
service provider security modules and directs application calls through the KeyWorks API to the selected
service provider module that will service the request. The KeyWorks API defines the interface for
accessing security services. The KeyWorks service provider interface (SPI) defines the interface for
service providers who develop plug-able security service products.

Service providers perform various aspects of security services, including:

Cryptographic Services
Key Recovery Services
Trust Policy Libraries
Certificate Libraries
Data Storage Libraries

Cryptographic Service Providers (CSPs) are service provider modules that perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, and key exchange. Key Recovery Service Providers (KRSPs) generate and process Key
Recovery Fields (KRFs) which can be used to retrieve the original session key if itislost, or if an
authorized party requires access to the decryption key. Trust Policy (TP) modules implement policies
defined by authorities and institutions, such as VeriSign (as a Certificate Authority (CA)) or MasterCard
(asaninstitution). Each TP module embodies the semantics of a trust model based on using digital
certificates as credentials. Applications may use adigital certificate as an identity credential and/or an
authorization credential. Certificate Library (CL) modules provide format-specific, syntactic manipulation
of memory-resident digital certificates and Certificate Revocation Lists (CRLs). Data Storage Library
(DL) modules provide persistent storage for certificates and CRLS.

1.1 Service Provider Modules

An IBM KeyWorks service provider module is a Dynamically Linked Library (DLL) composed of
functions that implement some or all of the KeyWorks module interfaces. Applications directly or
indirectly select the modules used to provide security services to the application. These service providers
will be provided by Independent Software VVendors (1SVs) and hardware vendors. The functionality of the
service providers may be extended beyond the services defined by the KeyWorks API, by exporting
additional services to applications using an KeyWorks PassThrough mechanism.

The AP calls defined for service provider modules are categorized as service operations, module
management operations, and module-specific operations. Service operations include functions that perform
a security operation such as encrypting data, inserting a CRL into a data source, or verifying that a
certificate istrusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through passthrough functions whose behavior and use is defined
by the service provider module devel oper.

Version 1.1.1 IBM KeyWorks Toolkit Page 1

Application — Applications I

Domains

System

Security

Services = m oo - mm - m e m e e e e e e ——— e e ———————m - - - - - - - - - - -
KeyWorks Security API

KeyWorks KRSP CSP | TP Module | CL Modulel§ DL Module
Framework Manager Manager Manager Manager Manager
KRsPl || spt || TP || cu | | bu |

s

Data store

Service
Providers

Figure 1. IBM KeyWorks Toolkit Architecture

Each module, regardless of the security servicesit offers, has the same set of module management
responsibilities. Every module must expose functions that allow KeyWorks to indicate events such as
modul e attach and detach. In addition, as part of the attach operation, every module must be able to verify
its own integrity, verify the integrity of KeyWorks, and register with KeyWorks. Detailed information
about service provider module structure, administration, and interfaces can be found in the IBM KeyWorks
Service Provider Module Structure & Administration Specification.

1.2 Intended Audience

This document should be used by 1SV swho want to develop their own TP service provider modules.
These ISV's can be highly experienced software and security architects, advanced programmers, and
sophisticated users. The intended audience of this document must be familiar with high-end cryptography
and digital certificates. They must also be familiar with local and foreign government regulations on the
use of cryptography and the implication of those regulations for their applications and products. We
assume that this audience is familiar with the basic capabilities and features of the protocols they are
considering.

1.3 Documentation Set

The IBM KeyWorks Toolkit documentation set consists of the following manuals. These manuals are
provided in electronic format and can be viewed using the Adobe Acrobat Reader distributed with the IBM
KeyWorks Toolkit. Both the electronic manuals and the Adobe Acrobat Reader are located in the IBM
KeyWorks Toolkit doc subdirectory.

IBM KeyWorks Toolkit Developer’s Guide

Document filename: kw_dev.pdf

This document presents an overview of the IBM KeyWorks Toolkit. 1t explains how to integrate IBM
KeyWorks into applications and contains a sample IBM KeyWorks application.

IBM KeyWorks Toolkit Application Programming Interface Specification

Document filename: kw_api.pdf

This document defines the interface that application developers employ to access security services
provided by IBM KeyWorks and service provider modules.

Version 1.1.1 IBM KeyWorks Toolkit Page 2

IBM KeyWorks Toolkit Service Provider Module Structure & Administration Specification.
Document filename: kw_maod.pdf

This document describes the features common to al IBM KeyWorks service provider modules. It
should be used in conjunction with the IBM KeyWorks service provider interface specificationsin
order to build a security service provider module.

IBM KeyWorks Toolkit Cryptographic Service Provider Interface Specification

Document filename: kw_spi.pdf

This document defines the interface to which cryptographic service providers must conform in order to
be accessible through IBM KeyWorks.

Key Recovery Service Provider Interface Specification

Document filename: kr_spi.pdf

This document defines the interface to which key recovery service providers must conform in order to
be accessible through IBM KeyWorks.

Key Recovery Server Installation and Usage Guide

Document filename: krs_gd.pdf

This document describes how to install and use key recovery solutions using the components in the
IBM Key Recovery Server.

IBM KeyWorks Toolkit Trust Policy Interface Specification

Document filename: kw_tp_spi.pdf

This document defines the interface to which policy makers, such as certificate authorities, certificate
issuers, and policy-making application developers, must conform in order to extend IBM KeyWorks
with model or application-specific policies.

IBM KeyWorks Toolkit Certificate Library Interface Specification

Document filename: kw_cl_spi.pdf

This document defines the interface to which library developers must conform to provide format-
specific certificate manipulation services to numerous IBM KeyWorks applications and trust policy
modules.

IBM KeyWorks Toolkit Data Storage Library Interface Specification

Document filename: kw_dl_spi.pdf

This document defines the interface to which library developers must conform to provide format-
specific or format-independent persistent storage of certificates.

1.4 References

Cryptography Applied Cryptography, Schneier, Bruce, 2nd Edition, John Wiley and Sons,
Inc., 1996.

Handbook of Applied Cryptography, Menezes, A., Van Oorschot, P., and
Vanstone, S., CRC Press, Inc., 1997.

SDSI - A Simple Distributed Security Infrastructure, R. Rivest and B.
Lampson, 1996.

Microsoft CryptoAPI, Version 0.9, Microsoft Corporation, January 17, 1996.

CDSA Spec Common Data Security Architecture Specification, Intel Architecture Labs,
1997.

Version 1.1.1 IBM KeyWorks Toolkit Page 3

CSSM API Common Security Services Manager Application Programming Interface
Specification, Intel Architecture Labs, 1997.

Key Escrow A Taxonomy for Key Escrow Encryption Systems, Denning, Dorothy E. and
Branstad, Dennis, Communications of the ACM, Vol. 39, No. 3, March 1996.
PKCS The Public-Key Cryptography Standards, RSA Laboratories, Redwood City,

CA: RSA Data Security, Inc.

IBM KeyWorks CLI Certificate Library Interface Specification, Intel Architecture Labs, 1997.
IBM KeyWorks DLI Data Storage Library Interface Specification, Intel Architecture Labs, 1997.
IBM KeyWorks KRI Key Recovery Service Provider Interface Specification, Intel Architecture

Labs, 1997.

IBM KeyWorks SPI Cryptographic Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks TPI Trust Policy Interface Specification, Intel Architecture Labs, 1997.

X.509 CCITT. Recommendation X.509: The Directory — Authentication

Framework, 1988. CCITT stands for Comite Consultatif Internationale
Telegraphique et Telephonique (International Telegraph and Telephone
Consultative Committee)

Version 1.1.1 IBM KeyWorks Toolkit Page 4

Chapter 2. Service Provider Interface

Cryptographic Service Providers (CSPs) are add-in modules which perform cryptographic operations
including encryption, decryption, digital signing, key pair generation, random number generation, message
digest, and key exchange. Besides the traditional cryptographic functions, CSPs may provide other vendor-
specific services.

The range and types of services a CSP supports are at the discretion of the vendor. A registry and query
mechanism is available through the IBM KeyWorks for CSPs to disclose the services and details about the
services. All cryptographic services requested by applications will be channeled to one of the CSPs viathe
KeyWorks. CSP vendors only need target their modules to KeyWorks for al security-conscious
applications to have accessto their product.

Calls made to a CSP to perform cryptographic operations occur within a framework called a session, which
is established and terminated by the application. The session context (sSsmply referred to as the context) is
created prior to starting CSP operations and is deleted as soon as possible upon completion of the
operation. Context information is not persistent; it is not saved permanently in afile or database.

Before an application calls a CSP to perform a cryptographic operation, the application uses the query
services function to determine what CSPs are installed and what services they provide. Based on this
information, the application then can determine which CSP to use for subsequent operations; the
application creates a session with this CSP and performs the operation.

Depending on the class of cryptographic operations, individualized attributes are available for the
cryptographic context. Besides specifying an algorithm when creating the context, the application may also
initialize a session key, pass an initialization vector and/or pass padding information to complete the
description of the session. A successful return value from the Create function indicates the desired CSP is
available. Functions also are provided to manage the created context.

When a context is no longer required, the application calls CSSMDeleteContext. Resources that were
allocated for that context can be reclaimed by the operating system.

Cryptographic operations are available in two types: asingle call to perform an operation, and a staged
method of performing the operation. For the single call method, only one call is needed to obtain the result.
For the staged method, there is an initialization call followed by one or more update calls, and ending with
acompletion (final) call. Theresult isavailable after the final function completes its execution for most
cryptographic operations. Staged encryption/decryption are an exception in that each update call generates
aportion of the result.

2.1 Cryptographic Operations

CSSM_RETURN CSP_QuerySize
Accepts as input a handle to a cryptographic context describing the sign, digest, message
authentication code, encryption, or decryption operation. This function returns pointers
to variables indicating the input size (encryption and decryption only) and output size for
the specified algorithm.

Version 1.1.1 IBM KeyWorks Toolkit Page 5

CSSM_RETURN CSP_SignData

CSSM_RETURN CSP_SignDatalnit

CSSM_RETURN CSP_SignDataUpdate

CSSM_RETURN CSP_SignDataFinal
Accepts as input a handle to a cryptographic context describing the sign operation and the
datato operate on. The result of the completed sign operation isreturned in a
CSSM_DATA structure.

CSSM_BOOL CSP_VerifyData

CSSM_RETURN CSP_VerifyDatalnit

CSSM_RETURN CSP_VerifyDataUpdate

CSSM_BOOL CSP_VerifyDataFinal
Accepts as input a handle to a cryptographic context describing the verify operation and
the data to operate on. The result of the completed verify operationisa CSSM_TRUE or
CSSM_FALSE.

CSSM_RETURN CSP_DigestData

CSSM_RETURN CSP_DigestDatalnit

CSSM_RETURN CSP_DigestDataUpdate

CSSM_RETURN CSP_DigestDataFinal
Accepts as input a handle to a cryptographic context describing the digest operation and
the data to operate on. The result of the completed digest operation is returned in a
CSSM_DATA structure.

CSSM_RETURN CSP_DigestDataClone
Accepts as input a handle to a cryptographic context describing the digest operation. A
handle to another cryptographic context is created with similar information and
intermediate result as described by the first context.

CSSM_RETURN CSP_GenerateMac

CSSM_RETURN CSP_GenerateMaclInit

CSSM_RETURN CSP_GenerateMacUpdate

CSSM_RETURN CSP_GenerateMacFinal
Accepts as input a handle to a cryptographic context describing the Message
Authentication Code (MAC) operation and the data to operate on. The result of the
completed MAC operation is returned in aCSSM_DATA structure.

CSSM_RETURN CSP_VerifyMac
CSSM_RETURN CSP_VerifyMaclnit
CSSM_RETURN CSP_VerifyMacUpdate
CSSM_RETURN CSP_VerifyMacFinal

Accepts as input a handle to a cryptographic context describing the MAC operation and the
data to operate on. The result of the completed verify operationisa CSSM_RETURN value.

Version 1.1.1 IBM KeyWorks Toolkit Page 6

CSSM_RETURN CSP_EncryptData

CSSM_RETURN CSP_EncryptDatalnit

CSSM_RETURN CSP_EncryptDataUpdate

CSSM_RETURN CSP_EncryptDataFinal
Accepts as input a handle to a cryptographic context describing the encryption operation
and the data to operate on. The encrypted datais returned in CSSM_DATA structures.

CSSM_RETURN CSP_DecryptData

CSSM_RETURN CSP_DecryptDatalnit

CSSM_RETURN CSP_DecryptDataUpdate

CSSM_RETURN CSP_DecryptDataFinal
Accepts as input a handle to a cryptographic context describing the decryption operation
and the data to operate on. The decrypted dataisreturned in CSSM_DATA structures.

CSSM_RETURN CSP_QueryKeySizelnBits
Accepts as input a handle to a cryptographic context and the key. This function returns a pointer to
a data structure containing the keysize and effective keysize in bits.

CSSM_RETURN CSP_GenerateKey
Accepts as input a handle to a cryptographic context describing the generate key
operation. Thekey isreturnedin aCSSM_KEY structure.

CSSM_RETURN CSSM_GenerateKeyPair
Accepts as input a handle to a cryptographic context describing the generate key pair
operation. The keysreturned arein CSSM_KEY structures.

CSSM_RETURN CSP_GenerateRandom
Accepts as input a handle to a cryptographic context describing the generate random
operation. Therandom dataisreturned inaCSSM_DATA structure.

CSSM_RETURN CSP_GenerateAlgorithmParams

Accepts as input a handle to a cryptographic context describing an algorithm and returns a set of
algorithm parameters appropriate for that algorithm.

CSSM_RETURN CSP_WrapKey
Accepts as input a handle to a symmetric/asymmetric cryptographic context describing the wrap
key operation and the wrapping key to be used in the operation, the key to be wrapped, and a
passphrase (if required by the CSP) that permits access to the private key to be wrapped.

CSSM_RETURN CSP_UnwrapKey
Accepts as input a handle to a cryptographic context describing the key unwrap operation, the
wrapped key to be unwrapped, and a passphrase (if required by the CSP) that will be used to
control access to the private key that will be unwrapped.

Version 1.1.1 IBM KeyWorks Toolkit Page 7

CSSM_RETURN CSP_DeriveKey
Accepts as input a handle to a cryptographic context describing the derive key operation and the
base key that will be used to derive new keys.

2.2 Cryptographic Logon and Sessions

CSSM_RETURN CSP_Login
Accepts asinput alogin password and aflag indicating the persistent or nonpersistent status of
keys and other objects created during the login session. CSPs are not required to support alogin
model. If alogin model is supported, the CSP may request additional passwords at any time
during the period of service.

CSSM_RETURN CSP_Logout
The caller islogged out of the current login session with the designated CSP.

CSSM_RETURN CSP_ChangelLoginPassword
Accepts asinput a handle to a CSP, the caller’s old login password for that CSP, and the caller’'s
new login password. The old password is replaced with the new password. The caller’s current
login is terminated and another login session is created using the new password.

2.3 Extensibility Functions
void * CSP_PassThrough
Performs the CSP module-specific function indicated by the operation ID. The operation
ID specifies an operation, which the CSP has exported for use by an application or

module. Such operations should be specific to the key format of the private keys stored
in the CSP module.

2.4 Data Structures

This section describes the data structures that may be passed to or returned from a CSP function. They will
be used by applications to prepare data to be passed as input parameters into KeyWorks API function calls,
which will be passed without modification to the appropriate CSP. The CSP is then responsible for
interpreting them and returning the appropriate data structure to the calling application through KeyWorks.

These data structures are defined in the header file, cssmtype.h, which is distributed with the IBM
KeyWorks Toolkit.

241 CSSM_BOOL
t ypedef ui nt32 CSSM BOOL;

#define CSSM TRUE 1
#define CSSM FALSE 0

242 CSSM_CALLBACK

t ypedef CSSM DATA PTR (CSSMAPI *CSSM CALLBACK) (void *allocRef, uint32 ID);

Version 1.1.1 IBM KeyWorks Toolkit Page 8

243

Definitions:

allocRef - Memory heap reference specifying which heap to use for memory allocation.

ID - Input data to identify the callback.

CSSM_CONTEXT

typedef struct cssmcontext {

ui nt 32 Cont ext Type;

ui nt 32 Al gori t hnType;

ui nt 32 Reserve;

ui nt 32 Nunber Of Attri but es;

CSSM_CONTEXT_ATTRI BUTE_PTR Cont ext Attri but es;
CSSM BOOL Pri vi | eged;

ui nt 32 Encrypti onProhi bit ed;

ui nt 32 Wor kFact or;

} CSSM CONTEXT, *CSSM CONTEXT PTR

Definitions:

ContextType - An identifier describing the type of services for this context. Table 1 providesthe

context types.

Table 1. Context Types

Value Description

CSSM_ALGCLASS NONE Null Context type

CSSM_ALGCLASS CUSTOM Custom algorithms

CSSM_ALGCLASS KEYXCH Key Exchange algorithms

CSSM_ALGCLASS _SIGNATURE Signature agorithms

CSSM_ALGCLASS SYMMETRIC Symmetric Encryption
algorithms

CSSM_ALGCLASS _DIGEST

Message Digest algorithms

CSSM_ALGCLASS RANDOMGEN

Random Number Generation
algorithms

CSSM_ALGCLASS_UNIQUEGEN

Unique ID Generation

algorithms
CSSM_ALGCLASS MAC Message Authentication Code
algorithms
CSSM_ALGCLASS ASYMMETRIC Asymmetric Encryption
algorithms

CSSM_ALGCLASS_KEYGEN

Key Generation algorithms

CSSM_ALGCLASS_DERIVEKEY

Key Derivation agorithms

CSSM_ALGCLASS KEY_RECOVERY_ENABLEMENT

Key Recovery Enablement
algorithms

CSSM_ALGCLASS _KEY_RECOVERY_REGISTRATION

Key Recovery Registration
algorithms

CSSM_ALGCLASS KEY RECOVERY REQUEST

Key Recovery Request
algorithms

Version 1.1.1

IBM KeyWorks Toolkit

Page 9

AlgorithmType - An 1D number describing the algorithm to be used. Table 2 provides the algorithms

for a session context.

Table 2. Algorithms for a Session Context

Value Description
CSSM_ALGID_NONE Null algorithm
CSSM_ALGID_CUSTOM Custom algorithm

CSSM_ALGID_DH

Diffie-Hellman key exchange algorithm

CSSM_ALGID_PH

Pohlig Hellman key exchange agorithm

CSSM_ALGID_KEA

Key Exchange algorithm

CSSM_ALGID_MD2 MD2hash agorithm
CSSM_ALGID_MD4 MD4hash agorithm
CSSM_ALGID_MD5 MD5hash agorithm
CSSM_ALGID_SHA1 Secure Hash algorithm

CSSM_ALGID_NHASH

N-Hash algorithm

CSSM_ALGID_HAVAL

HAVAL hash algorithm (MD5 variant)

CSSM_ALGID_RIPEMD

RIPE-MD hash algorithm (MD4 variant - devel oped
for the European Community’ s RIPE project)

CSSM_ALGID_IBCHASH

IBC-Hash (keyed hash agorithm or MAC)

CSSM_ALGID_RIPEMAC

RIPE-MAC

CSSM_ALGID_DES

Data Encryption Standard block cipher

CSSM_ALGID_DESX

DESX block cipher (DES variant from RSA)

CSSM_ALGID_RDES

RDES block cipher (DES variant)

CSSM_ALGID_3DES 3KEY

Triple-DES block cipher (with 3 keys)

CSSM_ALGID_3DES 2KEY

Triple-DES block cipher (with 2 keys)

CSSM_ALGID_3DES_1KEY

Triple-DES block cipher (with 1 key)

CSSM_ALGID_IDEA

International Data Encryption Algorithm (IDEA) block
cipher

CSSM_ALGID_RC2 RC2 block cipher
CSSM_ALGID_RC5 RCS5 block cipher
CSSM_ALGID _RC4 RC4 stream cipher
CSSM_ALGID_SEAL SEAL stream cipher
CSSM_ALGID_CAST CAST block cipher
CSSM_ALGID_BLOWFISH BLOWEFISH block cipher
CSSM_ALGID_SKIPJACK Skipjack block cipher

CSSM_ALGID_LUCIFER

Lucifer block cipher

CSSM_ALGID_MADRY GA

Madryga block cipher

CSSM_ALGID_FEAL

FEAL block cipher

Version 1.1.1 IBM KeyWorks Toolkit Page 10

Value Description
CSSM_ALGID_REDOC REDOC 2 block cipher
CSSM_ALGID_REDOC3 REDOC 3 block cipher

CSSM_ALGID_LOKI

LOKI block cipher

CSSM_ALGID_KHUFU

KHUFU block cipher

CSSM_ALGID_KHAFRE

KHAFRE block cipher

CSSM_ALGID_MMB

MMB block cipher (IDEA variant)

CSSM_ALGID_GOST

GOST block cipher

CSSM_ALGID_SAFER

SAFER K-40, K-64, K-128 block cipher

CSSM_ALGID_CRAB

CRAB block cipher

CSSM_ALGID_RSA

RSA public key cipher

CSSM_ALGID_DSA

Digital Signature Algorithm (DSA)

CSSM_ALGID_MD5WithRSA

MD5/RSA signature algorithm

CSSM_ALGID_MD2WithRSA

MD2/RSA signature algorithm

CSSM_ALGID_ElGamal

ElGamal signature algorithm

CSSM_ALGID_MD2Random

M D2-based random numbers

CSSM_ALGID_MD5Random

M D5-based random numbers

CSSM_ALGID_SHARandom

SHA-based random numbers

CSSM_ALGID_DESRandom

DES-based random numbers

CSSM_ALGID_SHA1WithRSA

SHA-1/RSA signature algorithm

CSSM_ALGID_RSA_PKCS

RSA as specified in Public-Key Cryptographic
Standard (PKCS#11)

CSSM_ALGID_RSA_1S09796

RSA as specified in 1SO 9796

CSSM_ALGID_RSA_RAW

Raw RSA as assumed in X.509

CSSM_ALGID_CDMF

CDMF block cipher

CSSM_ALGID_CAST3

Entrust’s CAST3 block cipher

CSSM_ALGID_CAST5

Entrust’s CAST5 block cipher

CSSM_ALGID_GenericSecret

Generic secret operations

CSSM_ALGID_ConcatBaseAndK ey

Concatenate two keys, base key first

CSSM_ALGID_ConcatkKeyAndBase

Concatenate two keys, base key last

CSSM_ALGID_ConcatBaseAndData

Concatenate base key and random data, key first

CSSM_ALGID_ConcatDataAndBase

Concatenate base key and data, data first

CSSM_ALGID_XORBaseAndData

XOR abyte string with the base key

CSSM_ALGID_ExtractFromKey

Extract a key from base key, starting at arbitrary bit

position

CSSM_ALGID_SSL 3PreMasterGen

Generate a 48-byte Secure Sockets Layer (SSL)
3 premaster key

Version 1.1.1

IBM KeyWorks Toolkit

Page 11

Value

Description

CSSM_ALGID_SSL3MasterDerive

Derive an SSL 3 key from a premaster key

CSSM_ALGID_SSL3KeyAndMacDerive

Derive the keys and MACing keys for the SSL cipher
suite

CSSM_ALGID_SSL3MD5_ MAC

Performs SSL 3 MD5 MACing

CSSM_ALGID_SSL3SHA1 MAC

Performs SSL 3 SHA-1 MACing

CSSM_ALGID_MD5Derive

Generate key by MD5 hashing a base key

CSSM_ALGID_MD2Derive

Generate key by MD2 hashing a base key

CSSM_ALGID_SHA1Derive

Generate key by SHA-1 hashing a base key

CSSM_ALGID_WrapLynks

Spyrus LY NKS DES-based wrapping scheme
w/checksum

CSSM_ALGID_WrapSET_OAEP

Secure Electronic Transaction (SET) key wrapping

CSSM_ALGID_BATON

FortezzaBATON cipher

CSSM_ALGID_ECDSA

Elliptic Curve DSA

CSSM_ALGID_MAYFLY

FortezzaMAYFLY cipher

CSSM_ALGID_JUNIPER

Fortezza JUNIPER cipher

CSSM_ALGID_FASTHASH Fortezza FASTHASH
CSSM_ALGID_3DES Generic 3DES
CSSM_ALGID_SSL3MD5 SSL3MD5
CSSM_ALGID_SSL3SHA1 SSL3SHAL

CSSM_ALGID_FortezzaTimestamp

FortezzaTimestamp

CSSM_ALGID_SHA1WIithDSA SHAIWIithDSA
CSSM_ALGID_SHA1WIthECDSA SHAIWIthECDSA
CSSM_ALGID_DSA_BSAFE BSAFE Key format

Some of the algorithms above in Table 2 operate in avariety of modes. The desired mode is specified
using an attribute of type CSSM_ATTRIBUTE_MODE. The valid values for the mode attribute are as

followsin Table 3.

Table 3. Modes of Algorithms

Value

Description

CSSM_ALGMODE_NONE

Null Algorithm mode

CSSM_ALGMODE_CUSTOM Custom mode
CSSM_ALGMODE_ECB Electronic Code Book (ECB)
CSSM_ALGMODE_ECBPad ECB with padding

CSSM_ALGMODE_CBC

Cipher Block Chaining

CSSM_ALGMODE_CBC_|V8

CBC with Initialization Vector of 8 bytes

CSSM_ALGMODE_CBCPadIV8

CBC with padding and Initialization Vector of 8 bytes

Version 1.1.1

IBM KeyWorks Toolkit

Page 12

Value

Description

CSSM_ALGMODE_CFB

Cipher FeedBack

CSSM_ALGMODE_CFB_|V8

CFB with Initialization Vector of 8 bytes

CSSM_ALGMODE_CFBPadIV8

CFB with Initialization Vector of 8 bytes and padding

CSSM_ALGMODE_OFB

Output FeedBack

CSSM_ALGMODE_OFB_IV8

OFB with Initialization Vector of 8 bytes

CSSM_ALGMODE_OFBPadIV8

OFB with Initialization Vector of 8 bytes and padding

CSSM_ALGMODE_COUNTER

Counter

CSSM_ALGMODE_BC

Block Chaining

CSSM_ALGMODE_PCBC

Propagating CBC

CSSM_ALGMODE_CBCC

CBC with Checksum

CSSM_ALGMODE_OFBNLF

OFB with NonLinear Function

CSSM_ALGMODE_PBC

Plaintext Block Chaining

CSSM_ALGMODE_PFB

Plaintext FeedBack

CSSM_ALGMODE_CBCPD

CBC of Plaintext Difference

CSSM_ALGMODE_PUBLIC_KEY

Use the public key

CSSM_ALGMODE_PRIVATE_KEY

Use the private key

CSSM_ALGMODE_SHUFFLE

Fortezza shuffle mode

CSSM_ALGMODE_ECB64

Electronic Code Book (64 bits)

CSSM_ALGMODE_CBC64

Cipher Block Chaining (64 bits)

CSSM_ALGMODE_OFB64

Output FeedBack (64 bits)

CSSM_ALGMODE_CFB64

Cipher FeedBack (64 bits)

CSSM_ALGMODE_CFB32

Cipher FeedBack (32 bits)

CSSM_ALGMODE_CFB16

Cipher FeedBack (16 bits)

CSSM_ALGMODE_CFB8

Cipher FeedBack (8 bits)

CSSM_ALGMODE_WRAP

SKIPJACK Wrap mechanism

CSSM_ALGMODE_PRIVATE_WRAP

SKIPJACK Private Wrap mechanism

CSSM_ALGMODE_RELAYX

SKIPJACK RELAY X mechanism

CSSM_ALGMODE_ECB128

Electronic Code Book (128 hits)

CSSM_ALGMODE_ECB96

Electronic Code Book (96 bits)

CSSM_ALGMODE_CBC128

Cipher Block Chaining (128 bits)

CSSM_ALGMODE_OAEP_HASH

Optimal Asymmetric Encryption Padding (OAEP) for
RSA

Version 1.1.1

IBM KeyWorks Toolkit

Page 13

NumberOfAttributes - Number of attributes associated with this service.

ContextAttributes - Pointer to data that describes the attributes. To retrieve the next attribute, advance
the attribute pointer.

Privileged - When thisflag is CSSM_TRUE, the context can perform cryptographic operations without
being forced to follow the key recovery policy.

EncryptionProhibited - An integer indicating whether encryptionis allowed. If encryption is allowed,
thisfield is zero. Otherwise, the flags indicate which policy disallowed encryption.

WorkFactor - WorkFactor is the maximum number of bits that can be left out of Key Recovery Fields
(KRFs) when they are generated. The recoverer of the key must then search this number of bits to
recover the key.

244 CSSM_CONTEXT_ATTRIBUTE

typedef struct cssmcontext_attribute{
uint32 AttributeType;
uint 32 AttributelLength;
uni on {
char *String;
ui nt 32 Ui nt 32;
CSSM _CRYPTO _DATA PTR G ypt o;
CSSM KEY_PTR Key;
CSSM DATA PTR Dat a;
CSSM DATE_PTR Dat e;
CSSM _RANGE_PTR Range;
CSSM VERSI ON_PTR Ver si on;
CSSM KR _PROFI LE_PTR KRProfi | e;
} Attribute;
} CSSM CONTEXT_ATTRI BUTE, *CSSM CONTEXT _ATTR BUTE_PTR;

Definitions:
AttributeType - An identifier describing the type of attribute. Valid attribute types are as follows in

Version 1.1.1

Table 4.

Table 4. Attribute Types

Value Description Data Type
CSSM_ATTRIBUTE_NONE No attribute None
CSSM_ATTRIBUTE_CUSTOM Custom data Opague pointer
CSSM_ATTRIBUTE_DESCRIPTION Description of String

attribute
CSSM_ATTRIBUTE_KEY Key Data CSSM_KEY
CSSM_ATTRIBUTE_INIT_VECTOR Initialization vector CSSM_DATA
CSSM_ATTRIBUTE_SALT Salt CSSM_DATA
CSSM_ATTRIBUTE_PADDING Padding information | uint32
CSSM_ATTRIBUTE_RANDOM Random data CSSM_DATA
CSSM_ATTRIBUTE_SEED Seed CSSM_CRYPTO_DATA

IBM KeyWorks Toolkit

Page 14

Value

Description

Data Type

CSSM_ATTRIBUTE_PASSPHRASE

Passphrase

CSSM_CRYPTO_DATA

CSSM_ATTRIBUTE_KEY_LENGTH

Key length specified
in bits

uint32

CSSM_ATTRIBUTE_KEY_LENGTH_RANGE | Key length range CSSM_RANGE

specified in bits
CSSM_ATTRIBUTE_BLOCK_SIZE Block size uint32
CSSM_ATTRIBUTE_OUTPUT_SIZE Output size uint32
CSSM_ATTRIBUTE_ROUNDS Number of runs or uint32

rounds
CSSM_ATTRIBUTE_IV_SIZE Sizeof initialization | uint32

vector
CSSM_ATTRIBUTE_ALG_PARAMS Algorithm parameters | CSSM_DATA
CSSM_ATTRIBUTE_LABEL Label placed on an CSSM_DATA

object whenitis

created
CSSM_ATTRIBUTE_KEY_TYPE Type of key to uint32

generate or derive
CSSM_ATTRIBUTE_MODE Algorithm modeto uint32

use for encryption
CSSM_ATTRIBUTE_EFFECTIVE BITS Number of effective | uint32

bits used in the RC2

cipher
CSSM_ATTRIBUTE_START_DATE Starting date for an CSSM_DATE

object’ s validity
CSSM_ATTRIBUTE_END_DATE Ending date for an CSSM_DATE

object’ s validity
CSSM_ATTRIBUTE_KEYUSAGE Key usage uint32
CSSM_ATTRIBUTE_KEYATTR Key attributes uint32
CSSM_ATTRIBUTE_VERSION Object version CSSM_VERSION
CSSM_ATTRIBUTE_ALG_ID Algorithm ID uint32
CSSM_ATTRIBUTE_ITERATION_COUNT Number of iterations | uint32
CSSM_ATTRIBUTE_ROUNDS RANGE Minimum and CSSM_RANGE

maximum number of
rounds

CSSM_ATTRIBUTE_KRPROFILE_LOCAL

Key Recovery Profile
for the local user

CSSM_KR_PROFILE

CSSM_ATTRIBUTE_KRPROFILE_REMOTE

Key Recovery Profile
for the remote user

CSSM_KR_PROFILE

The data referenced by a CSSM_ATTRIBUTE_CUSTOM attribute must be a single continuous
memory block. This allows the KeyWorks to appropriately release all dynamically allocated memory

resources.

Version 1.1.1

IBM KeyWorks Toolkit

Page 15

AttributeLength - Length of the attribute data.

Attribute - Union representing the attribute data. The union member used is named after the type of
data contained in the attribute. See Table 4 for the data types associated with each attribute type.

245 CSSM_CONTEXTINFO

typedef CSSM CONTEXT CSSM CONTEXTI NFQ

246 CSSM_CRYPTO_DATA
typedef struct cssmcrypto_data {
CSSM _DATA _PTR Par am
CSSM _CALLBACK Cal | back;
ui nt 32 Cal | backl D;
} CSSM _CRYPTO DATA, *CSSM CRYPTO DATA PTR

Definitions:
Param - A pointer to the parameter data and its size in bytes.

Callback - An optional callback routine for the service provider modules to obtain the parameter.

ID - A tag that identifies the callback.

247 CSSM_CSP_CAPABILITY

typedef CSSM CONTEXT CSSM CSP_CAPABI LI TY, *CSSM CSP_CAPABI LI TY_PTR

248 CSSM_CSP_FLAGS

t ypedef ui nt 32 CSSM CSP_FLAGS;

249 CSSM_CSP_HANDLE

The CSSM_CSP_HANDLE is used to identify the association between an application thread and an
instance of a CSP module. It is assigned when an application causes KeyWorks to attach to aCSP. Itis
freed when an application causes KeyWorks to detach from a CSP. The application usesthe
CSSM_CSP_HANDLE with every CSP function call to identify the targeted CSP. The CSP uses the
CSSM_CSP_HANDLE to identify the appropriate application’s memory management routines when
allocating memory on the application’s behalf (see Table 5).

t ypedef uint32 CSSM CSP_HANDLE /* Cryptographic Service Provider Handl e */

Table 5. CSSM Sessions

CSSM_CSP_Session Values Description

CSSM_CSP_SESSION_EXCLUSIVE 0x0001 | Single user CSP.

CSSM_CSP_SESSION_ READWRITE 0x0002 | Caller can read and write objects such as keysin
the CSP.

CSSM_CSP_SESSION_SERIAL 0x0004 | Multiuser, reentrant CSP that requires serial access.

Version 1.1.1 IBM KeyWorks Toolkit Page 16

2.4.10 CSSM_CSPSUBSERVICE

Three structures are used to contain al of the static information that describes a CSP module: the
cssm_moduleinfo, cssm_serviceinfo, and cssm_cspsubservice structure. This descriptive information is
securely stored in the KeyWorks registry when the CSP module isinstalled with CSSM. A CSP module
may implement multiple types of services and organize them as subservices.

The descriptive information stored in these structures can be queried using the function CSSM_GetM odulelnfo
and specifying the cryptographic service provider module GUID.

typedef struct cssm cspsubservice {
ui nt 32 SubServi cel d;
CSSM _STRI NG Descri pti on;
CSSM CSP_FLAGS CspFl ags;
ui nt 32 CspCust onFl ags;
ui nt 32 AccessFl ags;
CSSM _CSPTYPE CspType;
uni on {
CSSM_SOFTWARE_CSPSUBSERVI CE_| NFO Sof t war eCspSubSer vi ce;
CSSM_HARDWARE CSPSUBSERVI CE_| NFO Har dwar eCspSubSer vi ce;
b
CSSM_CSP_WRAPPEDPRODUCT _| NFO W appedPr oduct ;
} CSSM CSPSUBSERVI CE, * CSSM CSPSUBSERVI CE_PTR,

Definitions:
SubServiceld - The subservice ID required for an attach call to connect a CSP to an individual
subservice within a CSP.

Description - A NULL-terminated character string containing a text description of the subservice.

CspFlags - A bit-mask containing general flags defined by KeyWorks for CSPs. The mask may
contain a combination of the following in Table 6.

Table 6. CSP Flags

CSSM_CSP_FLAGS Values Description
CSSM_CSP_STORES PRIVATE_KEYS | CSP can store private keys.
CSSM_CSP_STORES PUBLIC_KEYS | CSP can store public keys.
CSSM_CSP_STORES _SESSION_KEYS | CSP can store session/secret keys.

CspCustomFlags - Flags defined by the vendor. Consult the individual CSP documentation for the list
of valid flags.

AccessFlags - Flags that are required to be provided by the application during an attach call when
specifying the subservice ID given in SubServiceld.

CspType - Identifier that determines the type of CSP information structure referenced by Csplnfo.

Thefollowing valuesin Table 7 and their corresponding CSP information structures are currently
defined.

Version 1.1.1 IBM KeyWorks Toolkit Page 17

Table 7. CSP Information Type Identifiers and Associated Structure Types

CSP Information Structure Identifier | Structure Type
CSSM_CSP_TYPE_SOFTWARE CSSM_CSP_TYPE_SOFTWARE_INFO
CSSM_CSP_TYPE_PKCS11 CSSM_CSP_TYPE_PKCS11 INFO

SoftwareCspSubService/HardwareCspSubService - A CSP information structure of the type specified
by CspType.

WrappedProduct - Pointer to a CSSM_CSP_WRAPPEDPRODUCTINFO structure describing a
product that is wrapped by the CSP.

2.4.11 CSSM_CSPTYPE

t ypedef ui nt 32 CSSM CSPTYPE;
#defi ne CSSM CSP_SOFTWARE 1
#defi ne CSSM_CSP_HARDWARE 2

2.4.12 CSSM_CSP_WRAPPEDPRODUCTINFO

typedef struct cssmcsp_w appedproductinfo {
CSSM VERSI ON St andar dVer si on;
CSSM _STRI NG St andar dDescri pti on;
CSSM _VERSI ON Pr oduct Ver si on;
CSSM _STRI NG Pr oduct Descri pti on;
CSSM _STRI NG Pr oduct Vendor ;
ui nt 32 Product Fl ags;
} CSSM CSP_WRAPPEDPRCDUCT | NFO, * CSSM CSP_WRAPPEDPRCDUCT | NFO PTR;

Definitions:
StandardVersion - Version of the standard to which the wrapped product complies.

StandardDescription - A NULL-terminated character string containing a text description of the
standard to which the wrapped product complies.

ProductVersion - Version of the product wrapped by the CSP.

ProductDescription - A NULL-terminated character string containing a text description of the product
wrapped by the CSP.

ProductVendor - A NULL-terminated character string containing the name of the wrapped product’s
vendor.

ProductFlags - This version of KeyWorks has no flags defined. Thisfield must be set to zero.

Version 1.1.1 IBM KeyWorks Toolkit Page 18

2.4.13 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by

the calling application via KeyWorks.

typedef struct cssm dat af
uint32 Length; /* in bytes */
ui nt 8 *Dat a;

} CSSM DATA, *CSSM DATA PTR

Definitions:
Length - Length of the data buffer in bytes.

Data - Pointer to a data buffer.

2.4.14 CSSM_DATE

typedef struct cssmdate {
uint8 Year[4];
uint8 Mont h[2] ;
ui nt 8 Day[2];

} CSSM DATE, *CSSM DATE_PTR

Definitions:

Year - Four-digit ASCII representation of the year.

Month - Two-digit representation of the month.

Day - Two-digit representation of the day.

Version 1.1.1 IBM KeyWorks Toolkit

Page 19

2.4.15 CSSM_HARDWARECSPSUBSERVICEINFO

typedef struct cssm hardwarecspsubserviceinfo {
ui nt 32 Nunber O Capabi liti es;
CSSM _CSP_CAPABI LI TY_PTR Capabi | i tyLi st;
void * Reserved;

/* Reader/Slot Info */

CSSM _STRI NG Reader Descri pti on;
CSSM _STRI NG Reader Vendor ;

CSSM _STRI NG Reader Ser i al Nunber ;
CSSM VERSI ON Reader Har dwar eVer si on;
CSSM VERSI ON Reader Fi r nwar eVer si on;
ui nt 32 Reader Fl ags;

ui nt 32 Reader Cust onFl ags;

CSSM _STRI NG TokenDescri pti on;
CSSM _STRI NG TokenVendor ;

CSSM _STRI NG TokenSer i al Nunber ;
CSSM VERSI ON TokenHar dwar eVer si on;
CSSM VERSI ON TokenFi r nwar eVer si on;

ui nt 32 TokenFl ags;

ui nt 32 TokenCust onFl ags;

ui nt 32 TokenMaxSessi onCount ;

ui nt 32 TokenQpenedSessi onCount ;
ui nt 32 TokenMaxRWBessi onCount ;
ui nt 32 TokenQpenedRWsessi onCount ;
ui nt 32 TokenTot al Publ i cMem

ui nt 32 TokenFr eePubl i cMem

ui nt 32 TokenTot al Pri vat eMem

ui nt 32 TokenFr eePri vat eMem

ui nt 32 TokenMaxPi nLen;

ui nt 32 TokenM nPi nLen;

char TokenUTCTi ne[16] ;

char *User Label ;
CSSM DATA User CACertti fi cat e;
} CSSM HARDWARE CSPSUBSERVI CE_| NFO, * CSSM HARDWARE CSPSUBSERVI CE_| NFO PTR;

Definitions:
NumberOfCapabilities - Number of capabilitiesin list.

CapabilityList - A context list that specifies the capabilities of the CSP.
Reserved - Thisfield is reserved for future use and must always be set to NULL.

ReaderDescription - A NULL-terminated character string that contains a text description of the device
reader.

ReaderVendor - A NULL-terminated string that contains the name of the reader vendor.
ReaderSerialNumber - A NULL-terminated string that contains the serial number of the reader.
ReaderHardwareVersion - Hardware version of the reader.

ReaderFirmwareVersion - Firmware version of the reader.

Version 1.1.1 IBM KeyWorks Toolkit Page 20

ReaderFlags - Bit-mask containing information about the reader. The flags specified in the mask are
asfollowsin Table 8.

Table 8. PKCS#11 CSP Reader Flags

Reader Flag Description
CSSM_CSP_RDR_TOKENPRESENT | Tokenispresent in the reader.
CSSM_CSP_RDR_REMOVABLE Reader supports removable tokens.
CSSM_CSP_RDR_HW Reader is a hardware device.

ReaderCustomFlags - Flags defined by the vendor. Consult the individual CSP documentation for the
list of valid flags.

The following fields may not be valid if the CSSM_CSP_RDR_TOKENPRESENT flag isnot set in
the ReaderFlags field. Unknown string and CSSM_DATA fields will be set to NULL, integer and
date fields will be set to zero, and flag fields will have all flags set to false.

TokenDescription - A NULL-terminated character string that contains a text description of the token.
This value may be NULL or equal to ReaderDescription if the token is not removable.

TokenVendor - A NULL-terminated string that contains the name of the token vendor. This value may
be NULL or equal to ReaderVendor if the token is not removable.

TokenSerialNumber - A NULL-terminated string that contains the serial number of the token. This
value may be NULL or equal to ReaderSerialNumber if the token is not removable.

TokenHardwareVersion - Hardware version of the token.

TokenFirmwareVersion - Firmware version of the token.

TokenFlags - Bit-mask containing information about the token. The flags specified in the mask are as
followsin Table 9.

Table 9. PKCS#11 CSP Token Flags

Token Flags Description

CSSM_CSP TOK_RNG Token has random number generator.
CSSM_CSP_TOK_WRITE_PROTECTED Token iswrite-protected.

CSSM_CSP TOK_LOGIN_REQUIRED User must login to access private objects.
CSSM_CSP_TOK_USER_PIN_INITIALIZED User's PIN has been initialized.

CSSM_CSP TOK_EXCLUSIVE_SESSION An exclusive session currently exists.
CSSM_CSP_TOK_CLOCK_EXISTS Token has built-in clock.
CSSM_CSP_TOK_ASYNC_SESSION Token supports asynchronous operations.
CSSM_CSP_TOK_PROT_AUTHENTICATION | Token has protected authentication path.
CSSM_CSP_TOK_DUAL_CRYPTO_OPS Token supports dua cryptographic operations.

TokenCustomFlags - Flags defined by the vendor. Consult the individual CSP documentation for the
list of valid flags.

TokenMaxSessionCount - Maximum number of CSP handles referencing the token that may exist
simultaneously.

Version 1.1.1 IBM KeyWorks Toolkit Page 21

TokenOpenedSessionCount - Number of CSP handles referencing the token that currently exists.

TokenTotalPublicMem - Amount of public storage space in the CSP. This vaue will be set to
CSSM_VALUE_NOT_AVAILABLE if the CSP does not want to expose this information.

TokenFreePublicMem - Amount of public storage space available for use in the CSP. This value will
be set to CSSM_VALUE_NOT_AVAILABLE (-1) if the CSP does not want to expose this
information.

TokenTotalPrivateMem - Amount of private storage space in the CSP. This value will be set to
CSSM_VALUE_NOT_AVAILABLE (-1) if the CSP does not want to expose this information.

TokenFreePrivateMem - Amount of private storage space available for usein the CSP. This value will
be set to CSSM_VALUE_NOT_AVAILABLE if the CSP does not want to expose this information.
TokenMaxPinLen - Maximum length of passwords that can be used for authentication to the CSP.
TokenMinPinLen - Minimum length of passwords that can be used for authentication to the CSP.
TokenUTCTime - Character array containing the current Coordinated Universal Time (UTC) valuein
the CSP. Thevalueisvalidif the CSSM_CSP_TOK_CLOCK_EXISTSflagistrue. Thetimeis
represented in the format YYYYMMDDhhmmssxx (4 characters for the year; 2 characters each for the
month, day, hour, minute, and second; and 2 additional reserved ‘O’ characters).

UserLabel - A NULL-terminated string containing the label of the token.

UserCACertificate - Certificate of the Certificate Authority (CA).

2.4.16 CSSM_HEADERVERSION

This data structure represents the version number of a key header structure. This version number is an
integer that increments with each format revision of CSSM_KEYHEADER. The current revision number
isrepresented by CSSM_KEYHEADER_VERSION, which equals 2 in this release of KeyWorks.

t ypedef ui nt 32 CSSM_HEADERVERSI ON

#def i ne CSSM KEYHEADER VERSI ON (2)

2417 CSSM_KEY

This structure is used to represent keysin KeyWorks.
typedef struct cssm key{
CSSM _KEYHEADER KeyHeader ;
CSSM _DATA KeyDat a;
} CSSM KEY, *CSSM KEY_PTR;

typedef CSSM KEY CSSM WRAP_KEY, *CSSM WRAP_KEY_PTR;
Definitions:
KeyHeader - Header describing the key, fixed length.

KeyData — Data representation of the key, variable length.

Version 1.1.1 IBM KeyWorks Toolkit Page 22

2.4.18 CSSM_KEYHEADER

The key header contains meta-data about akey. It containsinformation used by a CSP or application when
using the associated key data. The service provider module is responsible for setting the appropriate

values.

typedef struct cssm keyheader {
CSSM_HEADERVERSI ON Header Ver si on;
CSSM _@UI D Cspl d;

ui
ui
ui
ui
ui
ui
ui

nt 32
nt 32
nt 32
nt 32
nt 32
nt 32
nt 32

Bl obType;

For nat ;

Al gorithm d;
Keyd ass;
KeySi zel nBi t s;
KeyAttr;
KeyUsage;

CSSM DATE St art Dat e;
CSSM DATE EndDat €;
ui nt 32 WapAl gorithmd;
ui nt 32 W aphMode;
ui nt 32 Reserved;
} CSSM KEYHEADER, * CSSM KEYHEADER PTR

Definitions:
HeaderVersion - Thisisthe version of the key header structure.

Cspld - If known, the Globally Unique ID (GUID) of the CSP that generated the key. This value will
not be known if akey is received from athird party or extracted from a certificate.

BlobType - Describes the basic format of the key data. It can be any one of the following valuesin

Table 10.

Table 10. Key Blob Type Identifiers

Key Blob Type Identifier Description

CSSM_KEYBLOB_RAW

Theblob isaclear, raw key.

CSSM_KEYBLOB_RAW_ BERDER The blob is a clear key, DER encoded.

CSSM_KEYBLOB_REFERENCE

Theblob is areference to akey.

CSSM_KEYBLOB_WRAPPED

The blob isawrapped RAW key.

CSSM_KEYBLOB_WRAPPED BERDER | The blob isawrapped DER-encoded key.

CSSM_KEYBLOB_OTHER

The blab is awrapped DER-encoded key.

Format - Describes the detailed format of the key data based on the value of the BlobType field. If the
blob type has a honreference basic type, then aCSSM_KEYBLOB_RAW_FORMAT identifier must
be used, otherwise a CSSM_KEYBLOB_REF FORMAT identifier is used. Any of the following
valuesin Table 11 are valid as format identifiers.

Version 1.1.1

IBM KeyWorks Toolkit

Page 23

Table 11. Key Blob Format Identifiers

Key Blob Format Identifier Description
CSSM_KEYBLOB RAW_FORMAT_NONE No further conversion needs to
be done.

CSSM_KEYBLOB_RAW_FORMAT_PKCS1 RSA PKCS1V15
CSSM_KEYBLOB_RAW_FORMAT_PKCS3 RSA PKCS3V15
CSSM_KEYBLOB_RAW_FORMAT_MSCAPI Microsoft CAPI V2.0
CSSM_KEYBLOB_RAW_FORMAT PGP PGP
CSSM_KEYBLOB_RAW_FORMAT_FIPS186 U.S. Gov. FIPS 186 - DSSV
CSSM_KEYBLOB_RAW_FORMAT_BSAFE RSA BSAFE V3.0
CSSM_KEYBLOB_RAW_FORMAT_PKCS11 RSA PKCS11 V2.0
CSSM_KEYBLOB_RAW_FORMAT_CDSA Intel CDSA
CSSM_KEYBLOB_RAW_FORMAT_OTHER Other, CSP defined
CSSM_KEYBLOB_REF FORMAT INTEGER | Referenceisanumber or handle.
CSSM_KEYBLOB_REF FORMAT_STRING Referenceis a string or name.
CSSM_KEYBLOB_REF FORMAT_OTHER Other, CSP defined

Algorithmld - The algorithm for which the key was generated. This value does not change when the
key iswrapped. Any of the defined KeyWorks algorithm IDs may be used.

KeyClass - Class of key contained in the key blob. Valid key classes are asfollows in Table 12.

Table 12. Key Class Identifiers

Key Class Identifier Description

CSSM_KEYCLASS PUBLIC _KEY Key isapublic key.
CSSM_KEYCLASS PRIVATE_KEY | Key isaprivate key.
CSSM_KEYCLASS SESSION_KEY | Key isasession or symmetric key.
CSSM_KEYCLASS SECRET_PART | Key ispart of secret key.
CSSM_KEYCLASS OTHER Other.

KeySizelnBits - Thisisthe logical size of thekey in bits. Thelogica size isthe value referred to when
describing the length of the key. For instance, an RSA key would be described by the size of its
modulus and a DSA key would be represented by the size of its prime. Symmetric key sizes describe
the actual number of bitsin the key. For example, Data Encryption Standard (DES) keys would be 64
bits and an RC4 key could range from 1 to 128 hits.

KeyAttr - Attributes of the key represented by the data. These attributes are used by CSPs to convey
information about stored or referenced keys. The attributes are represented as a bit-mask (see Table 13).

Version 1.1.1 IBM KeyWorks Toolkit Page 24

Version 1.1.1

Table 13. Key Attribute Flags

Attribute

Description

CSSM_KEYATTR_PERMANENT

Key isstored persistently in the CSP, i.e.,
PKCS11 token object.

CSSM_KEYATTR_PRIVATE

Key isaprivate object and protected by either
user login, a password, or both.

CSSM_KEYATTR_MODIFIABLE

Key or its attributes can be modified.

CSSM_KEYATTR_SENSITIVE

Key issensitive. It may only be extracted from
the CSP in awrapped state. It will always be
false for raw keys.

CSSM_KEYATTR_ALWAYS _SENSITIVE

Key has always been sensitive. 1t will always be
false for raw keys.

CSSM_KEYATTR_EXTRACTABLE

Key is extractable from the CSP. If thisbit is not
set, the key is either not stored in the CSP or
cannot be extracted from the CSP under any
circumstances. It will aways be false for raw

keys.

CSSM_KEYATTR_NEVER_EXTRACTABLE

Key has never been extractable. It will always be
false for raw keys.

KeyUsage - A bit-mask representing the valid uses of the key. Any of the following values are valid in

Table 14.

Table 14. Key Usage Flags

Usage Mask

Description

CSSM_KEYUSE_ANY

Key may be used for any purpose supported by the
algorithm.

CSSM_KEYUSE_ENCRYPT

Key may be used for encryption.

CSSM_KEYUSE_DECRYPT

Key may be used for decryption.

CSSM_KEYUSE_SIGN

Key can be used to generate signatures. For symmetric
keys, this represents the ability to generate MACs.

CSSM_KEYUSE_VERIFY

Key can be used to verify signatures. For symmetric
keys, this represents the ability to verify MACs.

CSSM_KEYUSE_SIGN_RECOVER

Key can be used to perform signatures with message
recovery. Thisform of asignatureis generated using the
CSSM_EncryptData API with the algorithm mode set to
CSSM_ALGMODE_PRIVATE_KEY. Thisattributeis
only valid for asymmetric algorithms.

CSSM_KEYUSE_VERIFY_RECOVER

Key can be used to verify signatures with message
recovery. Thisform of asignature verified using the
CSSM_DecryptData API with the algorithm mode set to
CSSM_ALGMODE_PRIVATE_KEY. Thisattributeis
only valid for asymmetric algorithms.

CSSM_KEYUSE_WRAP

Key can be used to wrap another key.

CSSM_KEYUSE_UNWRAP

Key can be used to unwrap akey.

CSSM_KEYUSE_DERIVE

Key can be used as the source for deriving other keys.

IBM KeyWorks Toolkit

Page 25

StartDate - Date from which the corresponding key isvalid. All fields of the CSSM_DATA structure
will be set to zero if the date is unspecified or unknown. This date is not enforced by the CSP.

EndDate - Data that the key expires and can no longer be used. All fields of the CSSM_DATA
structure will be set to zero if the date is unspecified or unknown. This date is not enforced by the
CSP.

WrapAlgorithmld - If the key data contains a wrapped key, this field contains the algorithm used to
create the wrapped blob. Thisfield will be set to CSSM_ALGID_NONE if the key is not wrapped.

WrapMode - If the wrapping algorithm supports multiple wrapping modes, this field contains the mode
used to wrap the key. Thisfield isignored if the WrapAlgorithmld isCSSM_ALGID_NONE.

Reserved - Thisfield is reserved for future use. It should always be set to zero.

2.4.19 CSSM_KEY_SIZE

This structure holds the key size and the effective key size for agiven key. The metric used is bits. The
number of effective bits is the number of key bits that can be used in a cryptographic operation compared
with the number of bits that may be present in the key. When the number of effective bitsis less than the
number of actual bits, thisis known as dumbing down.

typedef struct cssmkey_size {
uint 32 KeySi zelnBits; /* Key size in bits */

uint32 EffectiveKeySizelnBits; /* Effective key size in bits */
} CSSM KEYZI ZE, *CSSM KEYSI ZE_PTR,

Definitions:
KeySizelnBits - The actual number of bitsin akey.

EffectiveKeySizelnBits - The number of key bits that can be used for cryptographic operations.

2420 CSSM_KEY_TYPE

typedef uint32 CSSM KEY TYPE, *CSSM KEY TYPE PTR

2.4.21 CSSM_NOTIFY_CALLBACK

This data structure defines a pointer to a function that applications can use to invoke an application-
supplied function.

t ypedef CSSM RETURN (CSSMAPI * CSSM NOTI FY_CALLBACK)
(CSSM_MCDULE_HANDLE Mbdul eHandl e,
ui nt 32 Application,
ui nt 32 Reason,
void * Paranm

Definitions:
ModuleHandle - Handle of the module to which the notification applies.

Application - Application-specific context indicator. This value is specified when a service provider
module is attached.

Reason - One of the values specified below in Table 15.

Version 1.1.1 IBM KeyWorks Toolkit Page 26

Table 15. CSSM_NOTIFY Reason Values

Reason Value
CSSM NOTI FY_SURRENDER 0
CSSM _NOTI FY_COVPLETE 1
CSSM _NOTI FY_DEVI CE_REMOVED 2
CSSM NOTI FY_DEVI CE_| NSERTED 3

Param - Used by the modul e that triggers the notification to pass relevant information about the

notification to the application.

2.4.22 CSSM_PADDING

t ypedef enum cssm paddi ng {
CSSM PADDI NG_NONE
CSSM _PADDI NG _CUSTOM
CSSM PADDI NG ZERO
CSSM PADDI NG_ONE
CSSM PADDI NG ALTERNATE
CSSM PADDI NG FF
CSSM PADDI NG _PKCS5
CSSM PADDI NG _PKCS7
CSSM _PADDI NG _G pher St eal i ng
CSSM _PADDI NG_RANDOM

} CSSM PADDI NG

0,

2.4.23 CSSM_QUERY_SIZE DATA
typedef struct cssmquery_size data {
ui nt 32 Si zel nput Bl ock;
ui nt 32 Si zeCQut put Bl ock;
} CSSM QUERY_SI ZE _DATA, *CSSM QUERY_SI ZE_DATA PTR

Definitions:
SizelnputBlock - The size of the input block in bytes.

SizeOutputBlock - The size of the output block in bytes.

2.4.24 CSSM_RANGE

typedef struct cssmrange {

uint32 Mn;/* inclusive mnimumval ue */
ui nt 32 Max;/* inclusive maxi mum val ue */
} CSSM RANGE, *CSSM RANGE_PTR

Definitions:
Min - Minimum value in the range.

Max - Maximum value in the range.

Version 1.1.1 IBM KeyWorks Toolkit

CSSM PADDI NG NONE+1,
CSSM PADDI NG_NONE+2,
CSSM PADDI NG_NONE+3,
CSSM PADDI NG NONE+4,
CSSM PADDI NG_NONE+5,
CSSM _PADDI NG_NONE+6,
CSSM PADDI NG_NONE+7,
CSSM PADDI NG_NONE+8,
CSSM _PADDI NG_NONE+9

Page 27

2.4.25 CSSM_SOFTWARECSPSUBSERVICEINFO

typedef struct cssm softwarecspsubserviceinfo {
ui nt 32 Nunber O Capabi liti es;
CSSM _CSP_CAPABI LI TY_PTR Capabi | i tyLi st;
voi d* Reserved;
} CSSM SOFTWARE_CSPSUBSERVI CE_| NFO, * CSSM _SOFTWARE_CSPSUBSERVI CE_| NFO PTR;

Definitions:
NumberOfCapabilities - Number of capabilities available from the CSP.

CapabilityList - Pointer to an array of CSSM_CSP_CAPABILITY structures that represent the
capabilities available from the CSP.

Reserved - Reserved for future use.

2.4.26 CSSM_SPI_FUNC_TBL

This data structure contains function pointers to the calling application’ s memory management routines.
These routines will be used by the module to allocate and free any memory , which belongsto or will
belong to the application.

typedef struct cssmspi_func_thbl {
void *(*nmall oc_func) (CSSM HANDLE Addl nHandl e, uint32 Size);
void (*free_func) (CSSM HANDLE Addl nHandl e, void *MenPtr);
void *(*realloc_func) (CSSM HANDLE Addl nHandl e, void *MenPtr, uint32 Size);
void *(*calloc_func) (CSSM HANDLE Addl nHandl e, uint32 Num uint32 Size);
} CSSM SPI _MEMORY_FUNCS, *CSSM SPI_MEMORY_FUNCS PTR;

Version 1.1.1 IBM KeyWorks Toolkit Page 28

2.5 Cryptographic Operations

251 CSP_DecryptData

CSSM_RETURN CSP_DecryptData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBuf Count,
uint32 * bytesDecrypted,
CSSM_DATA_PTR RemData)

This function decrypts the supplied encrypted data. The CSP_QuerySize function can be used to
estimate the output buffer size required.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

CipherBufs (input)
A pointer to one or more CSSM_DATA structures containing the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

ClearBufs (output)
A pointer to one or more CSSM_DATA structures for the decrypted data.

ClearBufCount (input)
The number of ClearBufs.

bytesDecrypted (output)
A pointer to uint32 for the size of the decrypted datain bytes.

RemData (output)
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER isreturned. In-place decryption can be done by
supplying the same input and output buffer.

Version 1.1.1 IBM KeyWorks Toolkit Page 29

See Also
CSP_QuerySize, CSP_EncryptData, CSP_DecryptDatalnit, CSP_DecryptDataUpdate,
CSP_DecryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 30

2.5.2 CSP_DecryptDataFinal

CSSM_RETURN CSP_DecryptDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RemData)

This function finalizes the staged decrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER isreturned. In-place decryption can be done by
supplying the same input and output buffers.

See Also
CSP_DecryptData, CSP_DecryptDatal nit, CSP_DecryptDatalUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 31

2.5.3 CSP_DecryptDatalnit

CSSM_RETURN CSSM_CSP_DecryptDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged decrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_DecryptData, CSP_DecryptDataUpdate, CSP_DecryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 32

2.5.4 CSP_DecryptDataUpdate

CSSM_RETURN CSP_DecryptDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBuf Count,
uint32 * bytesDecrypted)

This function updates the staged decrypt function. The CSP_QuerySize function can be used to
estimate the output buffer size required for each update call. There may be algorithm-specific and
token-specific rules restricting the lengths of datain CSP_DecryptUpdate calls.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

CipherBufs (input)
A pointer to one or more CSSM_DATA structures containing the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

ClearBufs (output)

A pointer to one or more CSSM_DATA structures for the decrypted data. The output can be
obtained by either filling the caller-supplied buffer or using the application’s memory allocation
functions to allocate spaces. The application has to free the memory in this case. If thisisNULL,
an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

ClearBufCount (input)
The number of ClearBufs.

bytesDecrypted (output)
A pointer to uint32 for the size of the decrypted datain bytes.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER isreturned. In-place decryption can be done by
supplying the same input and output buffers.

See Also
CSP_QuerySize, CSP_DecryptData, CSP_DecryptDatal nit, CSP_DecryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 33

25,5 CSP_DeriveKey

CSSM_RETURN CSP_DeriveKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_KEY_PTR BaseKey,
void * Param,
uint32 KeyUsage,
uint32 KeyAttr,
const CSSM_DATA_PTR KeyL abdl,
CSSM_KEY_PTR DerivedKey)

This function derives a new asymmetric key using the context and information from the base key.

Parameters

CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

BaseKey (input)
The base key used to derive the new key. The base key may be a public key, a private key, or a symmetric
key.

Param (input/output)

This parameter varies depending on the derivation mechanism. Password-based derivation agorithms use
this parameter to return a cipher block chaining initialization vector. Concatenation algorithms will use this
parameter to get the second item to concatenate.

KeyUsage (input)
A bit-mask representing the valid uses of the key.

KeyAttr (input)
A bit-mask representing the attributes of the key represented by the data.

KeyLabel (input/optional)
Pointer to a byte string that will be used as the label for the derived key.

DerivedKey (output)
A pointer toaCSSM_KEY structure that returns the derived key.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 34

2.5.6 CSP_DigestData

CSSM_RETURN CSP_DigestData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Digest)

This function computes a message digest for the supplied data.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Digest (output)
A pointer to the CSSM_DATA structure for the message digest.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in thiscase. If
the output buffer pointer thisis NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_DigestDatal nit, CSP_DigestDatalUpdate, CSP_DigestDataFinal, CSP_DigestDataClone

Version 1.1.1 IBM KeyWorks Toolkit Page 35

2.5.7 CSP_DigestDataClone

CSSM_RETURN CSP_DigestDataClone (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE oldCCHandle,
CSSM_CC_HANDLE newCCHandle)

This function clones a given staged message digest context with its cryptographic attributes and
intermediate result.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

oldCCHandle (input)
The old handle that describes the context of a staged message digest operation.

newCCHandle (output)
The new handle that describes the cloned context of a staged message digest operation.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
When adigest context is cloned, anew context is created with data associated with the parent
context. Changes made to the parent context after calling this function will not be reflected in the
cloned context. The cloned context could be used with the CSP_DigestDataUpdate and
CSP_DigestDataFinal functions.

See Also
CSP _DigestData, CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 36

2.5.8 CSP_DigestDataFinal

CSSM_RETURN CSP_DigestDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Digest)

This function finalizes the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Digest (output)
A pointer to the CSSM_DATA structure for the message digest.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_DigestData, CSP_DigestDatal nit, CSP_DigestDataUpdate, CSP_DigestDataClone

Version 1.1.1 IBM KeyWorks Toolkit Page 37

2.5.9 CSP_DigestDatalnit

CSSM_RETURN CSP_DigestDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_DigestData, CSP_DigestDatalUpdate, CSP_DigestDataClone, CSP_DigestDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 38

2.5.10 CSP_DigestDataUpdate

CSSM_RETURN CSP_DigestDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Return Value
A KeyWorksreturn value. This function returns CSSM_OK if successful and returns an error
codeif an error has occurred.

See Also
CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataClone, CSP_DigestDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 39

2.5.11 CSP_EncryptData

CSSM_RETURN CSP_EncryptData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 * bytesEncrypted,
CSSM_DATA_PTR RemData)

This function encrypts the supplied data using information in the context. The CSP_QuerySize
function can be used to estimate the output buffer size required.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

ClearBufs (input)
A pointer to one or more CSSM_DATA structures containing the clear data.

ClearBufCount (input)
The number of ClearBufs.

CipherBufs (output)
A pointer to one or more CSSM_DATA structures for the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

bytesEncrypted (output)
A pointer to uint32 for the size of the encrypted datain bytes.

RemData (output)
A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER isreturned. In-place encryption can be done by
supplying the same input and output buffers.

Version 1.1.1 IBM KeyWorks Toolkit Page 40

See Also
CSP_QuerySize, CSP_DecryptData, CSP_EncryptDatal nit, CSP_EncryptDataUpdate,
CSP_EncryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 41

2.5.12 CSP_EncryptDataFinal

CSSM_RETURN CSP_EncryptDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RemData)

This function finalizes the staged encrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER isreturned. In-place encryption can be done by
supplying the same input and output buffers.

See Also
CSP_EncryptData, CSP_EncryptDatal nit, CSP_EncryptDatalUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 42

2.5.13 CSP_EncryptDatalnit

CSSM_RETURN CSP_EncryptDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged encrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_EncryptData, CSP_EncryptDataUpdate, CSP_EncryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 43

2.5.14 CSP_EncryptDataUpdate

CSSM_RETURN CSP_EncryptDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 * bytesEncrypted)

This function updates the staged encrypt function. The CSP_QuerySize function can be used to
estimate the output buffer size required for each update call. There may be algorithm-specific and
token-specific rules restricting the lengths of datain CSP_EncryptUpdate calls.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

ClearBufs (input)
A pointer to one or more CSSM_DATA structures containing the clear data.

ClearBufCount (input)
The number of ClearBufs.

CipherBufs (output)
A pointer to one or more CSSM_DATA structures for the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

bytesEncrypted (output)
A pointer to uint32 for the size of the encrypted datain bytes.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER isreturned. In-place encryption can be done by
supplying the same input and output buffer.

See Also
CSP_QuerySize, CSP_EncryptData, CSP_EncryptDatal nit, CSP_EncryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 44

2.5.15 CSP_GenerateAlgorithmParams

CSSM_RETURN CSP_GenerateAlgorithmParams (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 ParamBits,

CSSM_DATA_PTR Param)

This function generates algorithm parameters for the specified context. These parameters include
Diffie-Hellman key agreement parameters and DSA key generation parameters.

Parameters
CSPHandle (input)

The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

ParamBits (input)
Used to generate parameters for the algorithm (for example, Diffie-Hellman).

Param (output)
Pointer to CSSM_DATA structure used to obtain the key exchange parameter and the size of the key
exchange parameter in bytes.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Version 1.1.1 IBM KeyWorks Toolkit Page 45

2.5.16 CSP_GenerateKey

CSSM_RETURN CSP_GenerateKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 KeyUsage,
uint32 KeyAttr,
const CSSM_DATA_PTR KeyLabel,
CSSM_KEY_PTR Key)

This function generates a symmetric key.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

KeyUsage (input)
A bit-mask representing the valid uses of the key.

KeyAttr (input)
A bit-mask representing the attributes of the key represented by the data.

KeyLabel (input)
Pointer to a byte string that will be used as the label for the key.

Key (output)
Pointer to CSSM__ KEY structure used to obtain the key.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_GenerateRandom, CSSM_GenerateK eyPair

Version 1.1.1 IBM KeyWorks Toolkit Page 46

2.5.17 CSP_GenerateKeyPair

CSSM_RETURN CSP_GenerateKeyPair (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 PublicKeyUsage,
uint32 PublicK eyAttr,
const CSSM_DATA_PTR PublicKeyLabd,
CSSM_KEY_PTR PublicKey,
uint32 PrivateK eyUsage,
uint32 PrivateK eyAdttr,
const CSSM_DATA_PTR PrivateKeyL abdl,
CSSM_KEY_PTR PrivateKey)

This function generates an asymmetric key pair.

Parameters

CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

PublicKeyUsage (input)
A bit-mask representing the valid uses of the public key.

PublicKeyAttr (input)
A bit-mask representing the attributes of the public key represented by the data. These attributes
can be used to convey information about stored or referenced keys.

PublicKeyLabel(input)
Pointer to a byte string that will be used as the label for the public key.

PublicKey (output)
Pointer to CSSM_KEY structure used to obtain the public key.

PrivateKeyUsage (input)
A bit-mask representing the valid uses of the private key.

PrivateKeyAttr (input)
A bit-mask representing the attributes of the private key represented by the data. These attributes
can be used to convey information about stored or referenced keys.

PrivateKeyLabel(input)
Pointer to a byte string that will be used as the label for the private key.

PrivateKey (output)
Pointer to CSSM__ KEY structure used to obtain the private key.

Version 1.1.1 IBM KeyWorks Toolkit Page 47

Return Value

A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSSM__GenerateRandom, CSSM_ GenerateK ey

Version 1.1.1 IBM KeyWorks Toolkit Page 48

2.5.18 CSP_GenerateMac

CSSM_RETURN CSP_GenerateMac (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Mac)

This function generates a message authentication code for the supplied data.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Mac (output)
A pointer to the CSSM_DATA structure for the message authentication code.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_GenerateMaclnit, CSP_GenerateMacUpdate, CSP_GenerateM acFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 49

2.5.19 CSP_GenerateMacFinal

CSSM_RETURN CSP_GenerateMacFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Mac)

This function finalizes the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Mac (output)
A pointer to the CSSM_DATA structure for the message authentication code.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_GenerateMac, CSP_GenerateM aclnit, CSP_GenerateM acUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 50

2.5.20 CSP_GenerateMaclnit

CSSM_RETURN CSP_GenerateMaclnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_GenerateMac, CSP_GenerateMacUpdate, CSP_GenerateMacFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 51

2.5.21 CSP_GenerateMacUpdate

CSSM_RETURN CSP_GenerateMacUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_GenerateMac, CSP_GenerateMaclnit, CSP_GenerateM acFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 52

2.5.22 CSP_GenerateRandom

CSSM_RETURN CSP_GenerateRandom (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
CSSM_DATA_PTR RandomNumber)

This function generates random data.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

RandomNumber (output)
Pointer to CSSM_DATA structure used to obtain the random number and the size of the random
number in bytes.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Version 1.1.1 IBM KeyWorks Toolkit Page 53

2.5.23 CSP_QueryKeySizelnBits

CSSM_RETURN CSP_QueryKeySizelnBits (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_KEY_SIZE_PTR KeySize)

This function queries a CSP for the effective and real size of akey in bits.

Parameters
CSPHandle (input)

The handle that describes the add-in CSP module used to perform this function. If aNULL handleis
specified, KeyWorks returns error.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

KeySize (output)
Pointer to a CSSM_KEY SIZE data structure to receive the size of the key in bits.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 54

2.5.24 CSP_QuerySize

CSSM_RETURN CSP_QuerySize (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
CSSM_BOOL Encrypt,
uint32 QuerySizeCount,
CSSM_QUERY_SIZE_DATA_PTR DataBlock)

This function queries for the size of the output data for Signature, Message Digest, and Message
Authentication Code context types, and queries for the algorithm block size or the size of the
output data for encryption and decryption context types. For encryption, the total size of all output
buffers must always be a multiple of the output block size. This function aso can be used to
guery the output size requirements for the intermediate steps of a staged cryptographic operation
(for example, CSP_EncryptDataUpdate and CSP_DecryptDataUpdate). There may be algorithm-
specific and token-specific rules restricting the lengths of data following data update calls.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes associated with this context.

Encrypt (input)
This parameter describes whether the SizelnputBlock in DataBlock is for encryption
(CSSM_TRUE) or decryption (CSSM_FALSE).

QuerySizeCount (input)
This parameter describes the number of DataBlocks.

DataBlock (input/output)

Pointer to a CSSM_QUERY _SIZE_DATA structure which contains one Sizel nputBlock and one
SizeOutputBlock. The function returns the size of the output in bytesin SizeOutputBlock for the size of the
input.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also

CSP_EncryptData, CSP_EncryptDatalUpdate, CSP_DecryptData, CSP_DecryptDataUpdate,
CSP_SignData, CSP_VerifyData, CSP_DigestData, CSP_GenerateMac

Version 1.1.1 IBM KeyWorks Toolkit Page 55

2.5.25 CSP_SignData

CSSM_RETURN CSP_SignData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Signature)

This function signs data using the private key associated with the public key specified in the
context.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be signed.

DataBufCount (input)
The number of DataBufs to be signed.

Signature (output)
A pointer to the CSSM_DATA structure for the signature.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_VerifyData, CSP_SignDatalnit, CSP_SignDatalUpdate, CSP_SignDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 56

2.5.26 CSP_SignDataFinal

CSSM_RETURN CSP_SignDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Signature)

This function completes the final stage of the sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Signature (output)
A pointer to the CSSM_DATA structure for the signature.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

Comments
The output can be abtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to alocate space. The application hasto free the memory in this
case. If the output buffer pointer isNULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_SignData, CSP_SignDatalnit, CSP_SignDataUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 57

2.5.27 CSP_SignDatalnit

CSSM_RETURN CSP_SignDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_SignData, CSP_SignDataUpdate, CSP_SignDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 58

2.5.28 CSP_SignDataUpdate

CSSM_RETURN CSP_SignDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the data for the staged sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be signed.

DataBufCount (input)
The number of DataBufs to be signed.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_SignData, CSP_SignDatal nit, CSP_SignDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 59

2.5.29 CSP_UnwrapKey

CSSM_RETURN CSP_UnwrapKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_CRYPTO_DATA_PTR NewPassPhrase,
const CSSM_WRAP_KEY_PTR WrappedK ey,
uint32 StorageMask,
const CSSM_DATA_PTR KeyLabel,
CSSM_KEY_PTR UnwrappedKey)

This function unwraps the data using the context.

Parameters
CSPHandle (input)

The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory

functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

NewPassPhrase (input)

The passphrase or a callback function to be used to obtain the passphrase. 1f the unwrapped key is aprivate
key and the persistent object mode is true, then the private key is unwrapped and securely stored by the CSP.

The NewPassPhrase is used to secure the private key after it is unwrapped. It is assumed that a known

public key is associated with the private key.

WrappedKey (input)
A pointer to the wrapped key. The wrapped key may be a symmetric key or the private key of a

public/private keypair. The unwrapping method is specified as meta-data within the wrapped key, and is not

specified outside of the wrapped key.

StorageMask (input)

A storage mask that is used by the CSP to determine how to store the unwrapped key and how to return that

key to the application.

KeyLabel (input/optional)
Pointer to a byte string that will be used as the label for the unwrapped key.

UnwrappedKey (output)
A pointer to aCSSM_KEY structure that returns the unwrapped key.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL

isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_WrapKey

Version 1.1.1 IBM KeyWorks Toolkit

Page 60

2.5.30 CSP_VerifyData

CSSM_BOOL CSP_VerifyData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
const CSSM_DATA_PTR Signature)

This function verifies the input data against the provided signature.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be verified.

DataBufCount (input)
The number of DataBufs to be verified.

Signature (input)
A pointer to aCSSM_DATA structure which contains the signature and the size of the signature.

Return Value
A CSSM_TRUE return value signifies the signature was successfully verified. When
CSSM_FAL SE isreturned, either the signature was not successfully verified or an error has
occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_SignData, CSP_VerifyDatalnit, CSP_VerifyDataUpdate, CSP_VerifyDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 61

2.5.31 CSP_VerifyDataFinal

CSSM_BOOL CSP_VerifyDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle
const CSSM_DATA_PTR Signature)

This function finalizes the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Signature (input)
A pointer to aCSSM_DATA structure that contains the starting address for the signature to verify
against and the length of the signature in bytes.

Return Value
A CSSM_TRUE return value signifies the signature successfully verified. When CSSM_FALSE
isreturned, either the signature was not successfully verified or an error has occurred. The use
CSSM_ GetError to obtain the error code.

See Also
CSP_VerifyData, CSP_VerifyDatalnit, CSP_VerifyDataUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 62

2.5.32 CSP_VerifyDatalnit

CSSM_RETURN CSP_VerifyDatalnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_VerifyDataUpdate, CSP_VerifyDataFinal, CSP_VerifyData

Version 1.1.1 IBM KeyWorks Toolkit Page 63

2.5.33 CSP_VerifyDataUpdate

CSSM_RETURN CSP_VerifyDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the data to the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be verified.

DataBufCount (input)
The number of DataBufs to be verified.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_VerifyData, CSP_VerifyDatalnit, CSP_VerifyDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 64

2.5.34 CSP_VerifyMac

CSSM_RETURN CSP_VerifyMac (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Mac)

This function verifies a message authentication code for the supplied data.

Parameters
CSPHandle (input)

The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufs.

Mac (input)
A pointer to the CSSM_DATA structure containing the MAC to verify.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSSM_VerifyMaclnit, CSSM_V erifyMacUpdate, CSSM_VerifyMacFina

Version 1.1.1 IBM KeyWorks Toolkit Page 65

2.5.35 CSP_VerifyMacFinal

CSSM_RETURN CSP_VerifyMacFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Mac)

This function finalizes the staged message authentication code verification function.

Parameters

CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Mac (input)
A pointer to the CSSM_DATA structure containing the MAC to verify.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSSM_VerifyMac, CSSM_VerifyMaclnit, CSSM_VerifyMacUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 66

2.5.36 CSP_VerifyMaclnit

CSSM_RETURN CSP_VerifyMaclnit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged message authentication code verification function.

Parameters
CSPHandle (input)

The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSSM_VerifyMac, CSSM_VerifyMacUpdate, CSSM_V erifyMacFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 67

2.5.37 CSP_VerifyMacUpdate

CSSM_RETURN CSP_VerifyMacUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the staged message authentication code verification function.

Parameters
CSPHandle (input)

The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

DataBufs (input)
A pointer to avector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufs.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSSM_VerifyMac, CSSM_ VerifyMaclnit, CSSM_VerifyMacFina

Version 1.1.1 IBM KeyWorks Toolkit Page 68

2.5.38 CSP_WrapKey

CSSM_RETURN CSP_WrapKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
const CSSM_KEY_PTR Key,
CSSM_WRAP_KEY_PTR WrappedK ey)

This function wraps the supplied key using the context. The key may be a symmetric key or the
public key of a public/private key pair. If asymmetric key is specified it iswrapped. If apublic
key is specified, the passphrase is used to unlock the corresponding private key, which is then
wrapped.

Parameters
CSPHandle (input)

The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle to the context that describes this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

PassPhrase (input)
The passphrase or a callback function to be used to obtain the passphrase that can be used by the CSP to
unlock the private key before it iswrapped. Thisinput isignored when wrapping a symmetric, secret key.

Key (input)
A pointer to the target key to be wrapped. If aprivate key is to be wrapped, the target key is the public key
associated with the private key. If asymmetric key isto be wrapped, the target key is that symmetric key.

WrappedKey (output)
A pointer to aCSSM_KEY structure that returns the wrapped key.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
isreturned, an error has occurred. Use CSSM_ GetError to obtain the error code.

See Also
CSP_UnwrapKey

Version 1.1.1 IBM KeyWorks Toolkit Page 69

2.6 Cryptographic Sessions and Logon

2.6.1 CSP_ChangelLoginPassword

CSSM_RETURN CSP_ChangeLoginPassword (CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR OldPassword,
const CSSM_CRYPTO_DATA_PTR NewPassword)

Changes the login password of the current login session from the old password to the new
password. The requesting user must have alogin session in process.

Parameters
CSPHandle (input)
Handle of the CSP supporting the current login session.

OldPassword (input)
Current password used to log into the token.

NewPassword (input)
New password to be used for future logins by this user to this token.

Return Value
CSSM_OK if login is successful, CSSM_FAIL if login fails. Use CSSM_GetError to determine
the exact error.

See Also
CSP_Login, CSP_L ogout

Version 1.1.1 IBM KeyWorks Toolkit Page 70

2.6.2 CSP_Login

CSSM_RETURN CSP_Login (CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR Password,
const CSSM_DATA_PTR Reserved)

Logs the user into the CSP, allowing for multiple login types and parallel operation notification.
Parameters

CSPHandle (input)

Handle of the CSP to log in.

Password (input)
Password used to log into the token.

Reserved (input)
Thisfield isreserved for future use. The value NULL should always be given.

Return Value
CSSM_OK if login is successful, CSSM_FAIL if login fails. Use CSSM_GetError to determine
the exact error.

See Also
CSP_ChangeloginPassword, CSP_L ogout

Version 1.1.1 IBM KeyWorks Toolkit Page 71

2.6.3 CSP_Logout
CSSM_RETURN CSP_Logout (CSSM_CSP_HANDLE CSPHandle)
Terminates the login session associated with the specified CSP Handle.
Parameters
CSPHandle (input)
Handle for the target CSP.
Return Value
CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_ GetError to determine

the exact error.

See Also
CSP_Login, CSP_ChangePassword

Version 1.1.1 IBM KeyWorks Toolkit Page 72

2.7 Extensibility Functions

The CSP_PassThrough function is provided to allow CSP devel opers to extend the cryptographic
functionality of the KeyWorks API. Becauseit isonly exposed to KeyWorks as a function pointer, its
name internal to the CSP can be assigned at the discretion of the CSP module developer. However, its
parameter list and return value must match what is shown below in Section 2.7.1.

2.7.1 CSP_PassThrough

void * CSP_PassThrough (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 PassThroughld,
const void * InData)

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes associated with this context.

PassThroughld (input)
An identifier specifying the custom function to be performed.

InData (input)

A pointer to a module, implementation-specific structure containing parameters to be interpreted
in a function-specific manner by the requested CSP module. This parameter can be used asa
pointer to an array of void pointers.

Return Value
A pointer to a module, implementation-specific structure containing the output from the
passthrough function. The output data must be interpreted by the calling application based on
externally available information. If the pointer isNULL, an error has occurred. Use
CSSM_ GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 73

Chapter 3. Cryptographic Service Provider Function
Examples

3.1 Attach/Detach Example

The CSP module is responsible for performing certain operations when KeyWorks attaches to and detaches
fromit. These operations should be performed in afunction called AddinAuthenticate, which must be
exported by the CSP module. The AddinAuthenticate function will be called by the framework when the
module isloaded. The steps shown in Section 3.1.1 must be performed in order for the attach processto
work properly.

In the code example in Section 3.1.1, it is assumed that the CSSM entry points, such as
CSSM_RegisterServices, have been resolved at link time. 1f not, the module may call GetProcAddress to
resolve the entry points. Also, this AddinAuthenticate indicates a CSP module which implements only the
DecryptData and EncryptData functions. The unimplemented functions in the function table are initialized
to NULL, and not reassigned.

Version 1.1.1 IBM KeyWorks Toolkit Page 74

3.1.1 AddInAuthenticate

#i ncl ude “cssmh”

CSSM _SPI _ MEMCRY_FUNCS Cssmiventuncs;

CSSM QU D CspQuid =

{ Ox83badc39, Oxfacl, Ox1llcf, { 0x81, 0x72, O0x0, Oxaa, 0x0, Oxbl, 0x99, 0Oxdd } };

CSSM RETURN CSSMVAPI Addl nAut hent i cat e(char* cssnCredenti al Path, char*
cssnBecti on)

{
CSSM _SPI _CSP_FUNCS CssntCSPFuncs;
CSSM_REG STRATI ON_I NFO CssnRegl nf o;
CSSM_MODULE_FUNCS Cssmvbdul eFuncs[1] ;
CSSM_RETURN r et code;
// initialize tables
nenset (&CssnCSPFuncs, 0, sizeof (CSSM _SPI_CSP_FUNCS)) ;
nenset (&CssnRegl nfo, 0, sizeof (CSSM _REG STRATI ON_| NFO)) ;
/1 Now register services
CssnCSPFuncs. Decr ypt Dat a = Decrypt Dat a;
CssnCSPFuncs. Encr ypt Dat a = Encrypt Dat a;
CssnReglnfo.Initialize = |lnitialize;
CssnRegl nf o. Term nat e = Uninitialize;
CssnRegl nf 0. Event Not i fy = EventNotify;
CssnRegl nf 0. Thr eadSaf e = CSSM _TRUE;
CssnRegl nf 0. Servi ceSunmary = CSSM_SERVI CE_CSP;
CssnRegl nf 0. Nunber O Ser vi ceTabl es = 1;
CssnRegl nf 0. Servi ces = Cssnmivbdul eFuncs;
Cssmivbdul eFuncs[0] . Servi ceType = CSSM SERVI CE_CSP;
Cssmvbdul eFuncs[0] . CspFuncs = &CssnCSPFuncs;
retcode = CSSM Regi st er Servi ces(& spQui d, &CssnRegl nfo, &Cssmiventuncs,
NULL) ;
return retcode;

}

Version 1.1.1 IBM KeyWorks Toolkit Page 75

3.2 Extensibility Functions Examples
This section contains a sample implementation of the passthrough function in the CSP library.

3.2.1 CSP_PassThrough

Some CSP vendors may need to provide functionality that is not part of the KeyWorks API. These functions are called
private functions. Applications access the CSP private functions by using the CSSM_PassThrough API. The
following is an example CSP_PrivateFunctions function.

Version 1.1.1 IBM KeyWorks Toolkit Page 76

/* PassThrough | Ds */

typedef enum csp_custom function_id {
CSP_CUSTOM D_CHANGE_PASSWORD = 0,
CSP_CUSTOM D_| MPORT_PRI KEY = 1,
CSP_CUSTOM D_EXPORT_PRI KEY = 2,

} CSP_CUSTOM FUNCTI ON | D;

* Name: CSP_PassThrough

*

* Description:

* This function allows applications to call KeyWrks CSP nodul e-specific
operati ons.

* Exanpl es of KeyWirks CSP nodul e-specific operations include:
csp_ChangePasswor d

csp_Il nmport Pri vat eKey

csp_Export Pri vat eKey

Par anet ers:

CSPHandl e (i nput) : The handl e that describes the add-in CSP nodul e used by
t he passt hrough function.

CCHandl e (i nput) : Handl e identifying a Oyptographic Context which
may be used by the passthrough function

Cont ext : Pointer to CSSM CONTEXT structure that describes

the attributes associated with this context.
PassThroughld (input) : An identifier assigned by the KeyWrks CSP nodul e
to indicate the exported function to perform
I nData (i nput) . Paraneters to be interpreted in a
function-specific manner by the KeyWrks CSP nodul e.

Ret urn val ue:

Qut put fromthe passthrough function.

The output data nust be interpreted by the calling application
based on externally avail abl e information.

Error Codes:

CSSM CSP_| NVALI D_CSP_HANDLE

CSSM CSP_| NVALI D_CC_HANDLE

CSSM CSP_| NVALI D_DATA PO NTER

CSSM CSP_| NVALI D_PASSTHROUGH | D
CSSM CSP_| NVALI D_PASSTHROUGH PARAVS
CSSM _CSP_UNSUPPORTED CPERATI ON
CSSM CSP_PASS THROUGH FAI L

void * CSSMAPI CSP_PassThrough (CSSM CSP_HANDLE CSPHandl e,
CSSM _CC _HANDLE CCHandl e,
const CSSM CONTEXT_PTR Cont ext ,
ui nt 32 PassThr oughl d,
void * | nDat a)

/* Initializations */
/* Check inputs */
/* Check that this is a recogni zed PassThroughld */

/* Call the requested function */

switch (PassThroughld) {
case CSP_CUSTOM D_CHANGE PASSWORD:

Version 1.1.1 IBM KeyWorks Toolkit Page 77

return csp_ChangePassword(I nData);
case CSP_CUSTOM D_| MPORT_PRI KEY:
return csp_l nportPrivateKey(InData);
case CSP_CUSTOM D_EXPORT_PRI KEY:
return csp_ExportPrivateKey(InData);
defaul t:
CSSM Set Error (&my_csp_gui d, CSSM _CSP_UNSUPPORTED_COPERATI ON) ;
return NULL;

}
return NULL;

}s

Version 1.1.1 IBM KeyWorks Toolkit Page 78

Appendix A. IBM KeyWorks Errors

This section describes the error handling features in KeyWorks that provide a consistent mechanism across
all layers of KeyWorks for returning errorsto the caller. All Cryptographic Service Provider (CSP) service
provider interface (SPI) functions return variables of the following types:

CSSM_RETURN - An enumerated type consisting of CSSM_OK and CSSM_FAIL. Ifitis
CSSM_FAIL, an error code indicating the reason for failure can be obtained by calling
CSSM_ GetError.

CSSM_BOOL - KeyWorks functions returning this data type return either CSSM_TRUE or
CSSM_FALSE. If the function returns CSSM_FAL SE, an error code may be available (but not
always) by calling CSSM_GetEtrror.

A pointer to adata structure, ahandle, afile size, or whatever islogical for the function to return. An
error code may be available (but not always) by calling CSSM_GetEtrror.

The information returned from CSSM_ GetError includes both the error number and a Globally Unique ID
(GUID) that associates the error with the module that set it. Each module must have a mechanism for
reporting their errors to the calling application. In general, there are two types of errors amodule can
return:

Errors defined by KeyWorks that are common to a particular type of service provider module
Errors reserved for use by individual service provider modules

Since some errors are predefined by KeyWorks, those errors have a set of predefined numeric values that
are reserved by KeyWorks, and cannot be redefined by modules. For errors that are particular to a module,
adifferent set of predefined values has been reserved for their use. Table 16 lists the range of error
numbers defined by KeyWorks for CSP modules and those available for use with individual CSP modules.

Table 16. CSP Module Error Numbers

Error Number Range Description
1000 — 1999 CSP errors defined by KeyWorks
2000 - 2999 CSP errors reserved for individual CSP modules

The calling application must determine how to handle the error returned by CSSM_GetError. Detailed
descriptions of the KeyWorks error values are documented in the IBM KeyWorks Toolkit Application
Programming Interface Specification and the cssmerr.h header file. Errors specific to individual CSP
modules are defined in the CSP' s documentation. If aroutine does not know how to handle the error, it
may choose to pass the error to its caller.

Version 1.1.1 IBM KeyWorks Toolkit Page 79

A.1 Cryptographic Service Provider Module Errors

Table 17. General CSP Messages and Errors

Error Code | Error Name

1001 CSSM_CSP UNKNOWN_ERROR

1002 CSSM_CSP REGISTER ERROR

1003 CSSM_CSP VERSION ERROR

1004 CSSM_CSP CONVERSION ERROR

1005 CSSM_CSP NO TOKENINFO

1006 CSSM_CSP INTERNAL ERROR

1007 CSSM_CSP SERIAL REQUIRED

1008 CSSM_CSP NOT IMPLEMENTED
Table 18. CSP Memory Errors

Error Code | Error Name

1010 CSSM_CSP MEMORY ERROR

1011 CSSM_CSP NOT _ENOUGH BUFFER

1012 CSSM_CSP ERR OUTBUF LENGTH

1013 CSSM_CSP NO OUTBUF

1014 CSSM CSP ERR INBUF LENGTH

1015 CSSM CSP ERR KEYBUF LENGTH

1016 CSSM _CSP NO SLOT

Table 19. Invalid CSP Parameters

Error Code | Error Name

1020 CSSM_CSP INVALID CSP HANDLE

1021 CSSM_CSP INVALID POINTER

1022 CSSM_CSP INVALID CERTIFICATE

1023 CSSM_CSP INVALID ALGORITHM

1024 CSSM_CSP INVALID WINDOW HANDLE

1025 CSSM_CSP INVALID CALLBACK

1026 CSSM _CSP INVALID CONTEXT

1027 CSSM_CSP INVALID CONTEXT HANDLE

1028 CSSM_CSP INVALID CONTEXT POINTER

1029 CSSM_CSP INVALID DATA_POINTER

1030 CSSM_CSP INVALID DATA_ COUNT

1031 CSSM_CSP INVALID KEY LENGTH

1032 CSSM_CSP INVALID KEY

1033 CSSM_CSP INVALID _KEY POINTER

1034 CSSM_CSP INVALID ALGORITHM MODE

1035 CSSM_CSP INVALID PADDING

1036 CSSM_CSP INVALID KEY ATTRIBUTE

1037 CSSM_CSP INVALID PARAM LENGTH

1038 CSSM_CSP INVALID IV _SIZE

1039 CSSM_CSP INVALID _SIGNATURE

1040 CSSM_CSP INVALID DEVICE ID

1041 CSSM_CSP INVALID KEYCLASS

1042 CSSM_CSP INVALID MODULE HANDLE

1043 CSSM _CSP INVALID KEY TYPE

1044 CSSM_CSP INVALID ITERATION COUNT
Version 1.1.1 IBM KeyWorks Toolkit

Page 80

Table 20. File 1/O Errors

Error Code | Error Name

1050 CSSM_CSP FILE NOT EXISTS
1051 CSSM_CSP FILE NOT OPEN

1052 CSSM_CSP FILE OPEN_FAILED
1053 CSSM _CSP FILE CREATE FAILED
1054 CSSM CSP FILE READ FAILED
1055 CSSM _CSP FILE WRITE FAILED
1056 CSSM CSP FILE CLOSE FAILED
1057 CSSM CSP FILE COPY_FAILED
1058 CSSM_CSP FILE DELETE FAILED
1059 CSSM CSP FILE FORMAT ERROR

Table 21. CSP Cryptographic Errors

Error Code | Error Name
1065 CSSM_CSP PUBKEY GET ERROR
1066 CSSM_CSP QUERY_ SIZE FAILED
1067 CSSM_CSP_ UNKNOWN_ALGORITHM
1068 CSSM_CSP OPERATION UNSUPPORTED
1069 CSSM_CSP VECTOROFBUFS UNSUPPORTED
1070 CSSM CSP STAGED OPERATION UNSUPPORTED
1071 CSSM_CSP KEY MODULUS UNSUPPORTED
1072 CSSM _CSP KEY LENGTH UNSUPPORTED
1073 CSSM_CSP PADDING UNSUPPORTED
1074 CSSM_CSP IV_SIZE UNSUPPORTED
1075 CSSM_CSP GET APIMEMFUNC ERROR
1076 CSSM_CSP INPUT LENGTH OVERSIZE
1077 CSSM_CSP INPUT LENGTH ERROR
1078 CSSM_CSP INPUT DATA ERROR
1079 CSSM_CSP UNSUPPORTED STORAGE MASK
1080 CSSM_CSP OPERATION IN PROGRESS
1081 CSSM_CSP NO WRITE PERMISSIONS
1082 CSSM_CSP EXCLUSIVE UNAVAILABLE
1083 CSSM_CSP UPDATE WITHOUT INIT
1084 CSSM_CSP LOGIN FAILED
1085 CSSM CSP ALREADY LOGGED IN
1086 CSSM_CSP NOT LOGGED IN
1087 CSSM_CSP KEY PROTECTED
1088 CSSM CSP CALLBACK FAILED
1089 CSSM_CSP ROUNDS UNSUPPORTED
1090 CSSM_CSP _EFFECTIVE BITS UNSUPPORTED
1091 CSSM_CSP INCOMPATIBLE VERSION
1092 CSSM_CSP INCOMPATIBLE KEY_VERSION
1093 CSSM_CSP_ ALGORITHM_UNSUPPORTED
1094 CSSM_CSP _OPERATION_FAILED

Version 1.1.1 IBM KeyWorks Toolkit

Page 81

Table 22. Missing or Invalid CSP Parameters

Error Code | Error Name

1100 CSSM _CSP PARAM NO PARAM

1101 CSSM_CSP PARAM NO PASSWORD
1102 CSSM_CSP PARAM_ NO SEED

1103 CSSM CSP PARAM NO KEY

1104 CSSM CSP PARAM NO SALT

1105 CSSM_CSP PARAM_NO MODULUS
1106 CSSM_CSP PARAM _NO OUTPUT SIZE
1108 CSSM CSP PARAM NO KEY LENGTH
1109 CSSM_CSP PARAM NO MODE

1110 CSSM_CSP PARAM NO DATA

1111 CSSM_CSP PARAM_NO INIT VECTOR
1112 CSSM CSP PARAM_NO PADDING
1113 CSSM_CSP PARAM NO ROUNDS

1114 CSSM_CSP PARAM NO RANDOM
1115 CSSM_CSP PARAM NO REMAINDATA
1116 CSSM_CSP PARAM NO ALG PARAMS
1117 CSSM_CSP PARAM INVALID VALUE
1118 CSSM_CSP PARAM_ NO EFFECTIVE BITS
1119 CSSM_CSP PARAM_NO PRIME

1120 CSSM_CSP PARAM_NO BASE

1121 CSSM_CSP PARAM NO SUBPRIME
1122 CSSM CSP PARAM _NO ALG ID

1123 CSSM_CSP PARAM NO KEY TYPE
1124 CSSM_CSP PARAM_ NO ITERATION COUNT

Table 23. Password Errors

Error Code | Error Name

1130 CSSM_CSP PASSWORD_ INCORRECT
1131 CSSM_CSP PASSWORD SAME

1132 CSSM_CSP PASSWORD LENGTH ERROR
1133 CSSM_CSP PASSWORD INVALID

Table 24. Key Management Messages and Errors

Error Code | Error Name

1140 CSSM CSP PRIKEY LOAD ERROR

1141 CSSM_CSP PRIKEY NOT FOUND

1142 CSSM_CSP PRIKEY ALREADY_ EXIST

1143 CSSM CSP PRIKEY GET ERROR

1144 CSSM CSP PRIKEY PUBKEY INCONSISTENT

1150 CSSM _CSP KEY DUPLICATE

1151 CSSM CSP KEY BAD KEY

1152 CSSM _CSP KEY BAD LENGTH

1153 CSSM CSP KEY NO PARAM

1154 CSSM CSP KEY _ALGID NOTMATCH

1155 CSSM CSP KEY BLOBTYPE INCORRECT

1156 CSSM CSP KEY CLASS INCORRECT

1157 CSSM CSP KEY DELETE FAILED

1158 CSSM CSP KEY USAGE INCORRECT
Version 1.1.1 IBM KeyWorks Toolkit

Page 82

Error Code

Error Name

1159

CSSM_CSP_KEY_NOT_PROTECTED

1160

CSSM_CSP_KEY_FORMAT_INCORRECT

Table 25. Random Number Generation (RNG) Messages and Errors

Error Code | Error Name

1200 CSSM_CSP RNG FAILED

1201 CSSM CSP RNG UNKNOWN_ ALGORITHM
1202 CSSM_CSP RNG NO METHOD

Table 26. Unique ID Generation Messages and Errors

Error Code | Error Name

1220 CSSM_CSP UIDG _FAILED

1221 CSSM_CSP UIDG UNKNOWN_ ALGORITHM
1222 CSSM_CSP UIDG NO METHOD

Table 27. Key Generation Messages and Errors

Error Code | Error Name

1210 CSSM CSP KEYGEN FAILED

1211 CSSM_CSP KEYGEN UNKNOWN_ALGORITHM
1212 CSSM CSP KEYGEN NO METHOD

Table 28. Encryption/Decryption Messages

Error Code | Error Name

1230 CSSM_CSP ENC UNKNOWN_ ALGORITHM

1231 CSSM_CSP ENC NO METHOD

1232 CSSM_CSP ENC FAILED

1233 CSSM _CSP ENC INIT _FAILED

1234 CSSM_CSP ENC UPDATE FAILED

1235 CSSM_CSP ENC FINAL FAILED

1236 CSSM _CSP ENC BAD IV _LENGTH

1237 CSSM CSP ENC IV_ERROR

1238 CSSM CSP ENC BAD KEY LENGTH

1239 CSSM_CSP ENC UNKNOWN_ MODE

1250 CSSM_CSP DEC UNKNOWN_ ALGORITHM

1251 CSSM_CSP DEC NO METHOD

1253 CSSM_CSP DEC FAILED

1254 CSSM _CSP DEC INIT _FAILED

1255 CSSM_CSP DEC UPDATE FAILED

1256 CSSM_CSP DEC FINAL FAILED

1257 CSSM_CSP DEC BAD IV _LENGTH

1258 CSSM_CSP DEC IV_ERROR

1259 CSSM _CSP DEC BAD KEY LENGTH

1260 CSSM_CSP DEC UNKNOWN MODE
Version 1.1.1 IBM KeyWorks Toolkit

Page 83

Table 29. Sign/Verify Messages and Errors

Error Code | Error Name

1350 CSSM_CSP SIGN. UNKNOWN_ALGORITHM
1351 CSSM _CSP SIGN_ NO METHOD

1352 CSSM _CSP SIGN_FAILED

1353 CSSM_CSP SIGN _INIT_FAILED

1354 CSSM_CSP SIGN _UPDATE FAILED

1355 CSSM _CSP SIGN_FINAL _FAILED

1360 CSSM_CSP VERIFY FAILED

1361 CSSM_CSP VERIFY INIT_FAILED

1362 CSSM_CSP VERIFY UPDATE FAILED
1363 CSSM_CSP VERIFY FINAL FAILED

1365 CSSM_CSP VERIFY UNKNOWN_ ALGORITHM
1366 CSSM_CSP VERIFY _NO METHOD

Table 30. Digest Function Errors

Error Code | Error Name

1380 CSSM_CSP DIGEST UNKNOWN_ALGORITHM
1382 CSSM_CSP DIGEST NO METHOD

1383 CSSM_CSP DIGEST FAILED

1384 CSSM_CSP DIGEST INIT FAILED

1385 CSSM_CSP DIGEST UPDATE FAILED

1386 CSSM_CSP DIGEST CLONE FAILED

1387 CSSM_CSP DIGEST FINAL FAILED

Table 31. MAC Function Errors

Error Code | Error Name

1390 CSSM_CSP MAC UNKNOWN_ALGORITHM
1392 CSSM_CSP MAC NO METHOD

1393 CSSM_CSP MAC FAILED

1394 CSSM_CSP MAC INIT FAILED

1395 CSSM_CSP MAC UPDATE FAILED

1396 CSSM_CSP MAC CLONE FAILED

1397 CSSM_CSP MAC FINAL_FAILED

Table 32. Key Exchange Errors

Error Code | Error Name

1410 CSSM_CSP KEYEXCH GENPARAM FAILED
1411 CSSM_CSP KEYEXCH_PHASE1 FAILED

1412 CSSM_CSP KEYEXCH PHASE2 FAILED

1413 CSSM CSP KEYEXCH UNKNOWN ALGORITHM
1414 CSSM CSP KEYEXCH _NO METHOD

Table 33. PassThrough Custom Errors

Error Code | Error Name
1420 CSSM_CSP INVALID PASSTHROUGH ID
1421 CSSM_CSP INVALID PASSTHROUGH PARAMS

Version 1.1.1 IBM KeyWorks Toolkit Page 84

Table 34. Wrap/Unwrap Errors

Error Code | Error Name

1450 CSSM_CSP WRAP_UNKNOWN_ALGORITHM
1451 CSSM_CSP WRAP NO METHOD

1452 CSSM_CSP WRAP FAILED

1456 CSSM_CSP UNWRAP UNKNOWN_ ALGORITHM
1457 CSSM_CSP UNWRAP NO METHOD

1458 CSSM_CSP UNWRAP FAILED

Table 35. Hardware CSP Errors

Error Code | Error Name

1470 CSSM_CSP DEVICE ERROR

1471 CSSM_CSP DEVICE MEMORY_ ERROR

1472 CSSM_CSP DEVICE REMOVED

1473 CSSM_CSP DEVICE NOT PRESENT

1474 CSSM CSP DEVICE UNKNOWN

1490 CSSM_CSP PERMISSIONS READ ONLY
1491 CSSM_CSP PERMISSIONS WRITE PROTECT
1492 CSSM_CSP PERMISSIONS NOT_EXCLUSIVE

Table 36. Query Size Errors

Error Code

Error Name

1500

CSSM_CSP_QUERY_SIZE_UNKNOWN

1501

CSSM_CSP_QUERY_KEYSIZEINBITS UNKNOWN

Version 1.1.1

IBM KeyWorks Toolkit

Page 85

Appendix B. List of Acronyms

AP Application Programming Interface

CA Certificate Authority

CL Certificate Library

CRL Certificate Revocation List

csP Cryptographic Service Provider

DES Data Encryption Standard

DL Data Storage Library

DLL Dynamic Link Library

DSA Digital Signature Algorithm

ECB Electronic Code Book

GUID Globally Unique ID

IDEA International Data Encryption Algorithm
ISO International Organization for Standardization
(YY) Independent Software Vendor

KRF Key Recovery Field

KRSP Key Recovery Service Provider

MAC Message Authentication Code

OAEP Optimal Asymmetric Encryption Padding
PKCS Public-Key Cryptographic Standard
SET Secure Electronic Transaction

SPI Service Provider Interface

SSL Secure Sockets Layer

TP Trust Policy

UTC Coordinated Universal Time

Version 1.1.1

IBM KeyWorks Toolkit

Page 86

Appendix C.

Asymmetric algorithms

Authentication
Information

Certificate

Certificate Authority

Certificate chain

Certificate signing

Certificate validity date

Cryptographic algorithm

Cryptographic Service
Provider

Version 1.1.1

Glossary

Cryptographic algorithms, where one key is used to encrypt and a second key is
used to decrypt. They are often called public-key algorithms. Onekey is called
the public key, and the other is called the private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most commonly used public-key a gorithm.

It can be used for encryption and for signing.

Information that is verified for authentication. For example, aKey

Recovery Officer (KRO) selects a password which will be used for
authentication with the Key Recovery Coordinator (KRC). A KRO operator
who has identification information must search the Authentication Information
(Al) database to locate an Al value that corresponds to the individual who
generated the information.

See Digitd certificate.

An entity that guarantees or sponsors a certificate. For example, a credit card
company signs a cardholder’ s certificate to assure that the cardholder is who he
or she claimsto be. The credit card company is a Certificate Authority (CA).
CAsissue, verify, and revoke certificates.

The hierarchical chain of al the other certificates used to sign the current
certificate. Thisincludesthe CA who signs the certificate, the CA who signed
that CA’s certificate, and so on. Thereisno limit to the depth of the certificate
chain.

The CA can sign certificates it issues or co-sign certificates issued by another
CA. Inagenera signing model, an object signs an arbitrary set of one or more
objects. Hence, any number of signers can attest to an arbitrary set of objects.
The arbitrary objects could be, for example, pieces of a document for libraries of
executable code.

A start date and a stop date for the validity of the certificate. If acertificate
expires, the CA may issue a new certificate.

A method or defined mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the procedure for encrypting
and decrypting a byte stream, digitally signing an object, computing the hash of
an object, generating arandom number, etc. IBM KeyWorks accommodates
Data Encryption Standard (DES), RC2, RC4, International Data Encryption
Algorithm (IDEA), and other encryption algorithms.

Cryptographic Service Providers (CSPs) are modules that provide secure key
storage and cryptographic functions. The modules may be software only or
hardware with software drivers. The cryptographic functions provided may
include:

Bulk encryption and decryption
Digital signing
Cryptographic hash

IBM KeyWorks Toolkit Page 87

Random number generation
Key exchange

Cryptography The science for keeping data secure. Cryptography provides the ability to store
information or to communicate between parties in such away that prevents other
non-involved parties from understanding the stored information or accessing and
understanding the communication. The encryption process takes understandable
test and transforms it into an unintelligible piece of data (called ciphertext); the
decryption process restores the understandable text from the unintelligible data.
Both involve a mathematical formula or algorithm and a secret sequence of data
called akey. Cryptographic services provide confidentiality (keeping data
secret), integrity (preventing data from being modified), authentication (proving
the identity of aresource or a user), and non-repudiation (providing proof that a
message or transaction was sent and/or received).

There are two types of cryptography:

In shared/secret key (symmetric) cryptography there is only one key that is
shared secret between the two communicating parties. The samekey is
used for encryption and decryption.

In public key (asymmetric) cryptography different keys are used for
encryption and decryption. A party has two keys: a public key and a private
key. Thetwo keys are mathematically related, but it is virtually impossible
to derive the private key from the public key. A message that is encrypted
with someone's public key (obtained from some public directory) can only
be decrypted with the associated private key. Alternately, the private key
can be used to "sign” a document; the public key can be used as verification
of the source of the document.

Cryptoki Short for cryptographic token interface. See Token.
Data Encryption In computer security, the National Institute of Standards and Technology
Standard (NIST) Data Encryption Standard (DES), adopted by the U.S. Government as

Federal Information Processing Standard (FIPS) Publication 46, which allows
only hardware implementations of the data encryption algorithm.

Digital certificate The binding of some identification to a public key in a particular domain, as
attested to directly or indirectly by the digital signature of the owner of that
domain. A digital certificate is an unforgettable credential in cyberspace. The
certificate isissued by atrusted authority, covered by that party’ s digital
signature. The certificate may attest to the certificate holder’ s identity, or may
authorize certain actions by the certificate holder. A certificate may include
multiple signatures and may attest to multiple objects or multiple actions.

Digital signature A data block that was created by applying a cryptographic signing algorithm to
some other data using a secret key. Digital signatures may be used to:
Authenticate the source of a message, data, or document

Verify that the contents of a message has not been modified since it was
signed by the sender

Verify that a public key belongs to a particular person

Version 1.1.1 IBM KeyWorks Toolkit Page 88

Enterprise

Graphical User
Interface

Hash algorithm

IBM KeyWorks
Architecture

IBM KeyWorks
Framework

Key Escrow

Key Recovery Agent

Version 1.1.1

Typical digital signing algorithms include MD5 with RSA encryption, and DSS,
the proposed Digital Signature Standard defined as part of the U.S. Government
Capstone project.

A company or individua who is authorized to submit on-line requests to the
Key Recovery Officer (KRO). In the enterprise key recovery scenario, a process
at the enterprise called the KRO is responsible for preparing key recovery
requests and communicating them to the KRC. The KRO, acting on behalf of an
enterprise or individual, sends an on-line request to the Key Recovery
Coordinator (KRC) to recover akey from a Key Recovery Block (KRB).

A type of display format that enables the user to choose commands, start
programs, and see lists of files and other options by pointing to pictorial
representations (icons) and lists of menu items on the screen. Graphical User
Interfaces (GUIs) are used by the Microsoft Windows program for IBM-
compatible microcomputers and by other systems.

A cryptographic agorithm used to hash a variable-size input stream into a
unique, fixed-sized output value. Hashing istypically used in digital signing
algorithms. Example hash algorithmsinclude MD and MD2 from RSA Data
Security. MD5, also from RSA Data Security, hashes a variable-size input
stream into a 128-hit output value. SHA, a Secure Hash Algorithm published by
the U.S. Government, produces a 160-bit hash value from a variable-size input
stream.

A set of layered security services that address communications and data
security problems in the emerging PC business space.

The IBM KeyWorks Framework defines five key service components:

Cryptographic Module Manager

Key Recovery Module Manager

Trust Policy Module Manager
Certificate Library Module Manager
Data Storage Library Module Manager

IBM KeyWorks binds together all the security services required by PC
applications. In particular, it facilitates linking digital certificates to
cryptographic actions and trust protocols.

The storing of akey (or parts of akey) with atrusted party or trusted partiesin
case of loss or destruction of the key.

The Key Recovery Agent (KRA) acts as the back end for a key recovery
operation. The KRA can only be accessed through an on-line communication
protacol viathe Key Recovery Coordinator (KRC). KRAs are considered
outside parties involved in the key recovery process; they are analogous to the
neighbors who each hold one digit of the combination of the lock box containing
the key. The authorized parties (i.e., enterprise or law enforcement) have the
freedom to choose the number of specific KRAs that they want to use. The
authorized party reguests that each KRA decrypt its section of the Key Recovery
Fields (KRFs) that is associated with the transmission. Then those pieces of
information are used in the process that derives the session key. The KRA will
only be able to recover a portion of the key, and reading the original message

IBM KeyWorks Toolkit Page 89

Key Recovery Block

Key Recovery
Coordinator

Key Recovery Field

Version 1.1.1

will require searching the remaining key space in order to find the key that will
decrypt the message. The number of KRASs on each end of the communication
does not have to be equal.

The Key Recovery Block (KRB) is a piece of encrypted information that is
contained within ablock. The KRS components (i.e., KRO, KRC, KRA) work
collectively to recover a session key from a provided KRB. In the enterprise
scenario, the KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. Thisinformation will be transmitted over the
network to the KRC. In the law enforcement scenario, the KRB is presented on
a 3.5-inch diskette, and the credentials are in the physical form of alega
warrant. Thiswarrant will specify any information available to the law
enforcement agents which can be used to tie the warrant to the identity of the
user for whom

KRBswere generated (i.e., username, hosthname, 1P address). The KRC has the
ability to check credentials and derive the original encryption key from the KRB
with the help of its KRAS.

The Key Recovery Coordinator (KRC) acts as the front end for the key recovery
operation. The KRO, acting on behalf of an enterprise or individual, sends an
on-line request to the KRC to recover akey from aKRB. The KRC receivesthe
on-line request and servicesit by interacting with the appropriate set of KRAs as
specified within the KRB. The recovered key is then sent back to the KRO by
the KRC using an on-line protocol. The KRC consists of one main application
which, when started, behaves as a server process. The system, which serves as
the KRC, may be configured to start the KRC application as part of system
services; aternatively, the KRC operator can start up the KRC application
manually. The KRC application performs the following operations:

Listens for on-line recovery requests from KRO

Can be used to launch an embedded application that allows manual key
recovery for law enforcement

Monitors and displays the status of the recovery requests being serviced

A Key Recovery Field (KRF) isablock of datathat is created from a symmetric
key and key recovery profile information. The Key Recovery Service Provider
(KRSP) isinvoked from the IBM KeyWorks framework to create KRFs. There
are two major pieces of the KRFs: block 1 contains information that is unrelated
to the session key of the transmitted message, and encrypted with the public
keys of the selected key recovery agents; block 2 contains information that is
related to the session key of the transmission. The KRSP generates the KRFs
for the session key. Thisinformation is not the key or any portion of the key,
but isinformation that can be used to recover the key. The KRSP has access to
location-unique jurisdiction policy information that controls and modifies some
of the steps in the generation of the KRFs. Only once the KRFs are generated,
and both the client and server sides have access to them, can the encrypted
message flow begin. KRFs are generated so that they can be used by a KRA to
recover the original symmetric key, either because the user who generated the
message has lost the key, or at the warranted request of law enforcement agents.

IBM KeyWorks Toolkit Page 90

Key Recovery Module
Manager

Key Recovery Officer

Key Recovery Policy

Key Recovery Server

Version 1.1.1

The Key Recovery Module Manager enables key recovery for

cryptographic services obtained through the KeyWorks. It mediates all
cryptographic services provided by the KeyWorks and applies the appropriate
key recovery policy on all such operations. The Key Recovery Module
Manager contains a Key Recovery Policy Table (KRPT) that defines the
applicable key recovery policy for all cryptographic products. The Key
Recovery Module Manager routes the KR-API function calls made by an
application to the appropriate KR-SPI functions. The Key Recovery Module
Manager also enforces the key recovery policy on all cryptographic operations
that are obtained through the KeyWorks. It maintains key recovery statein the
form of key recovery contexts.

An entity called the Key Recovery Officer (KRO) isthe focal point of the key
recovery process. In the enterprise key recovery scenario, the KRO is
responsible for preparing key recovery requests and communicating them to the
KRC. The KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. The KRO is the entity that acts on behalf of an
enterprise to initiate a key recovery regquest operation. An employee within an
enterprise who desires key recovery will send a request to the KRO with the
KRB that isto be recovered. The actua key recovery phase begins when the
KRO operator uses the KRO application to initiate a key recovery request to the
appropriate KRC. At thistime, the operator selects a KRB to be sent for
recovery, enters the Authentication Information (Al) information that can be
used to authenticate the request to the KRC, and submits the request.

Key recovery policies are mandatory policies that are typically derived from
jurisdiction-based regulations on the use of cryptographic products for data
confidentiality. Often, the jurisdictions for key recovery policies coincide with
the political boundaries of countriesin order to serve the law enforcement and
intelligence needs of these political jurisdictions. Political jurisdictions may
choose to define key recovery policies for cryptographic products based on
export, import, or use controls. Enterprises may define internal and external
jurisdictions, and may mandate key recovery policies on the cryptographic
products within their own jurisdictions.

Key recovery policies comein two flavors: key recovery enablement policies
and key recovery interoperability policies. Key recovery enablement policies
specify the exact cryptographic protocol suites (e.g., algorithms, modes, key
lengths, etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of the
cryptographic key that may be left out of the key recovery enablement
operation; thisistypically referred to as the workfactor. Key recovery
interoperability policies specify to what degree a key recovery enabled
cryptographic product is allowed to interoperate with other cryptographic
products.

The Key Recovery Server (KRS) consists of three major entities: Key Recovery
Coordinator (KRC), Key Recovery Agent (KRA), and Key Recovery Officer
(KRO). The KRS isintended to be used by enterprise employees and security
personnel, law enforcement personnel, and KRSF personnel. The KRS interacts
with one or more local or remote KRAS to reconstruct the secret key that can be
used to decrypt the ciphertext.

IBM KeyWorks Toolkit Page 91

Key Recovery Server
Facility

Key Recovery Service
Provider

Law Enforcement

Leaf certificate

Message digest

Owned certificate

Private key

Public key

Random number
generator

Root certificate

Version 1.1.1

The Key Recovery Server Facility (KRSF) is afacility room that houses the
KRS component facilities ensuring they operate within a secure environment
that is highly resistant to penetration and compromise. Several physical and
administrative security procedures must be followed at the KRSF such asa
combination keyed lock, limited personnel, standalone system, operating system
with security features (Microsoft NT Workstation 4.0), NTFS (Windows NT
Filesystem), and account and auditing policies.

Key Recovery Service Providers (KRSPs) are modules that provide key ecovery
enablement functions. The cryptographic functions provided may include:

Key recovery field generation
Key recovery field processing

A type of scenario where key recovery is mandated by the jurisdictional law
enforcement authoritiesin the interest of national security and law enforcement.
In the law enforcement scenario, the KRB is presented on a 3.5-inch diskette,
and the credentials are in the physical form of alegal warrant. Thiswarrant will
specify any information available to the law enforcement agents which can be
used to tie the warrant to the identity of the user for whom KRBs were generated
(i.e., username, hostname, |1P address).

The certificate in a certificate chain that has not been used to sign another
certificate in that chain. The leaf certificateis signed directly or transitively by
all other certificates in the chain.

The digital fingerprint of an input stream. A cryptographic hash function is
applied to an input message arbitrary length and returns a fixed-size output,
which is called the digest value.

A certificate whose associated secret or private key residesin alocal
Cryptographic Service Provider (CSP). Digital-signing algorithms require using
owned certificates when signing data for purposes of authentication and non-
repudiation. A system may use certificates it does not own for purposes other
than signing.

The cryptographic key is used to decipher messages in public-key cryptography.
Thiskey is kept secret by its owner.

The cryptographic key is used to encrypt messages in public-key cryptography.
The public key is available to multiple users (i.e., the public).

A function that generates cryptographically strong random numbers that
cannot be easily guessed by an attacker. Random numbers are often used to
generate session keys.

The prime certificate, such as the official certificate of a corporation or
government entity. The root certificate is positioned at the top of the certificate
hierarchy in its domain, and it guarantees the other certificatesin its certificate
chain. Each Certificate Authority (CA) has a self-signed root certificate. The
root certificate’s public key is the foundation of signature verification in its
domain.

IBM KeyWorks Toolkit Page 92

Secure Electronic
Transaction

Security Context

Security-relevant event

Session key

Signature

Signature chain

Smart Card

Version 1.1.1

A mechanism for securely and automatically routing payment information
among users, merchants, and their banks. Secure Electronic Transaction (SET)
isaprotocol for securing bankcard transactions on the Internet or other open
networks using cryptographic services.

SET is aspecification designed to utilize technology for authenticating parties
involved in payment card purchases on any type of on-line network, including
the Internet. SET was developed by Visa and MasterCard, with participation
from leading technology companies, including Microsoft, IBM, Netscape,
SAIC, GTE, RSA, Terisa Systems, and VeriSign. By using sophisticated
cryptographic techniques, SET will make cyberspace a safer place for
conducting business and is expected to boost consumer confidence in electronic
commerce. SET focuses on maintaining confidentiality of information, ensuring
message integrity, and authenticating the parties involved in a transaction.

The significance of SET, over existing Internet security protocols, isfound in
the use of digital certificates. Digital certificates will be used to authenticate all
the partiesinvolved in atransaction. SET will provide those in a virtual world
with the same level of trust and confidence a consumer has today when making
apurchase at any of the 13 million Visa-acceptance locationsin the physical
world.

The SET specification is open and free to anyone who wishes to use it to
develop SET-compliant software for buying or selling in cyberspace.

A control structure that retains state information shared between a CSP and the
application agent requesting service from the CSP. Only one context can be
active for an application at any given time, but the application is free to switch
among contexts at will, or as required. A security context specifies CSP and
application-specific values, such as required key length and desired hash
functions.

An event where a CSP-provided function is performed, a security module is
loaded, or a breach of system security is detected.

A cryptographic key used to encrypt and decrypt data. The key is shared by two
or more communicating parties, who use the key to ensure privacy of the
exchanged data.

See Digital signature.

The hierarchical chain of signers, from the root certificate to the leaf certificate,
in a certificate chain.

A device (usualy similar in size to a credit card) that contains an embedded
microprocessor that could be used to store information. Smart cards can store
credentials used to authenticate the holder.

IBM KeyWorks Toolkit Page 93

SMIME

Symmetric algorithms

Token

Verification

Web of trust

Version 1.1.1

Secure/Multipurpose Internet Mail Extensions (S'MIME) is a protocol that adds
digital signatures and encryption to Internet MIME messages. MIME isthe
official proposed standard format for extended Internet electronic mail. Internet
e-mail messages consist of two parts, the header and the body. The header
forms a collection of field/value pairs structured to provide information essential
for the transmission of the message. The body is normally unstructured unless
the email isin MIME format. MIME defines how the body of an e-mail
message is structured. The MIME format permits e-mail to include enhanced
text, graphics, audio, and more in a standardized manner via MIME-compliant
mail systems. However, MIME itself does not provide any security services.

The purpose of SMIME isto define such services, following the syntax givenin
PKCS #7 for digital signatures and encryption. The MIME body part carries a
PKCS #7 message, which itself is the result of cryptographic processing on
other MIME body parts.

Cryptographic algorithms that use a single secret key for encryption and
decryption. Both the sender and receiver must know the secret key. Well-
known symmetric functions include Data Encryption Standard (DES) and
International Data Encryption Algorithm (IDEA). The U.S. Government
endorsed DES as a standard in 1977. It is an encryption block cipher that
operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA, one of the best known
public algorithms, uses a 128-bit key.

Thelogical view of acryptographic device, as defined by a CSP' sinterface.

A token can be hardware, a physical object, or software. A token contains
information about its owner in digital form, and about the services it provides
for electronic-commerce and other communication applications. A tokenisa
secure device. It may provide alimited or a broad range of cryptographic
functions. Examples of hardware tokens are smart cards and Personal Computer
Memory Card International Association (PCMCIA) cards.

The process of comparing two message digests. One message digest is
generated by the message sender and included in the message. The message
recipient computes the digest again. If the message digests are exactly the same,
it shows or proves there was no tampering of the message contents by athird
party (between the sender and the receiver).

A trust network among people who know and communicate with each other.
Digital certificates are used to represent entities in the web of trust. Any pair of
entities can determine the extent of trust between the two, based on their
relationship in the web. Based on the trust level, secret keys may be shared and
used to encrypt and decrypt all messages exchanged between the two parties.
Encrypted exchanges are private, trusted communications.

IBM KeyWorks Toolkit Page 94

