
IBM KeyWorks Toolkit
Cryptographic Service Provider Interface (SPI)

Specification

Copyright© 1998 International Business Machines Corporation. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication, or
disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N. E. Elam Young Parkway, Hillsboro, OR 97124-6497.

Other product and corporate names may be trademarks of other companies and are used only for
explanation and to the owner’s benefit, without intent to infringe.
001.001.003

Version 1.1.1 IBM KeyWorks Toolkit Page iii

Table of Contents

CHAPTER 1.INTRODUCTION ... 1

1.1 SERVICE PROVIDER MODULES.. 1
1.2 INTENDED AUDIENCE... 2
1.3 DOCUMENTATION SET ... 2
1.4 REFERENCES ... 3

CHAPTER 2.SERVICE PROVIDER INTERFACE .. 5

2.1 CRYPTOGRAPHIC OPERATIONS ... 5
2.2 CRYPTOGRAPHIC LOGON AND SESSIONS ... 8
2.3 EXTENSIBILITY FUNCTIONS.. 8
2.4 DATA STRUCTURES ... 8

2.4.1 CSSM_BOOL .. 8
2.4.2 CSSM_CALLBACK ... 8
2.4.3 CSSM_CONTEXT ... 9
2.4.4 CSSM_CONTEXT_ATTRIBUTE.. 14
2.4.5 CSSM_CONTEXTINFO... 16
2.4.6 CSSM_CRYPTO_DATA... 16
2.4.7 CSSM_CSP_CAPABILITY... 16
2.4.8 CSSM_CSP_FLAGS .. 16
2.4.9 CSSM_CSP_HANDLE... 16
2.4.10 CSSM_CSPSUBSERVICE ... 17
2.4.11 CSSM_CSPTYPE... 18
2.4.12 CSSM_CSP_WRAPPEDPRODUCTINFO.. 18
2.4.13 CSSM_DATA... 19
2.4.14 CSSM_DATE... 19
2.4.15 CSSM_HARDWARECSPSUBSERVICEINFO... 20
2.4.16 CSSM_HEADERVERSION.. 22
2.4.17 CSSM_KEY ... 22
2.4.18 CSSM_KEYHEADER .. 23
2.4.19 CSSM_KEY_SIZE.. 26
2.4.20 CSSM_KEY_TYPE .. 26
2.4.21 CSSM_NOTIFY_CALLBACK .. 26
2.4.22 CSSM_PADDING ... 27
2.4.23 CSSM_QUERY_SIZE_DATA ... 27
2.4.24 CSSM_RANGE.. 27
2.4.25 CSSM_SOFTWARECSPSUBSERVICEINFO.. 28
2.4.26 CSSM_SPI_FUNC_TBL .. 28

2.5 CRYPTOGRAPHIC OPERATIONS ... 29
2.5.1 CSP_DecryptData ... 29
2.5.2 CSP_DecryptDataFinal... 31
2.5.3 CSP_DecryptDataInit.. 32
2.5.4 CSP_DecryptDataUpdate.. 33
2.5.5 CSP_DeriveKey... 34
2.5.6 CSP_DigestData ... 35
2.5.7 CSP_DigestDataClone .. 36
2.5.8 CSP_DigestDataFinal ... 37
2.5.9 CSP_DigestDataInit .. 38
2.5.10 CSP_DigestDataUpdate .. 39
2.5.11 CSP_EncryptData ... 40
2.5.12 CSP_EncryptDataFinal ... 42
2.5.13 CSP_EncryptDataInit .. 43

Version 1.1.1 IBM KeyWorks Toolkit Page iv

2.5.14 CSP_EncryptDataUpdate .. 44
2.5.15 CSP_GenerateAlgorithmParams.. 45
2.5.16 CSP_GenerateKey... 46
2.5.17 CSP_GenerateKeyPair .. 47
2.5.18 CSP_GenerateMac .. 49
2.5.19 CSP_GenerateMacFinal.. 50
2.5.20 CSP_GenerateMacInit... 51
2.5.21 CSP_GenerateMacUpdate... 52
2.5.22 CSP_GenerateRandom .. 53
2.5.23 CSP_QueryKeySizeInBits .. 54
2.5.24 CSP_QuerySize ... 55
2.5.25 CSP_SignData... 56
2.5.26 CSP_SignDataFinal .. 57
2.5.27 CSP_SignDataInit ... 58
2.5.28 CSP_SignDataUpdate ... 59
2.5.29 CSP_UnwrapKey... 60
2.5.30 CSP_VerifyData .. 61
2.5.31 CSP_VerifyDataFinal.. 62
2.5.32 CSP_VerifyDataInit... 63
2.5.33 CSP_VerifyDataUpdate... 64
2.5.34 CSP_VerifyMac... 65
2.5.35 CSP_VerifyMacFinal... 66
2.5.36 CSP_VerifyMacInit.. 67
2.5.37 CSP_VerifyMacUpdate.. 68
2.5.38 CSP_WrapKey... 69

2.6 CRYPTOGRAPHIC SESSIONS AND LOGON ... 70
2.6.1 CSP_ChangeLoginPassword ... 70
2.6.2 CSP_Login .. 71
2.6.3 CSP_Logout .. 72

2.7 EXTENSIBILITY FUNCTIONS.. 73
2.7.1 CSP_PassThrough... 73

CHAPTER 3.CRYPTOGRAPHIC SERVICE PROVIDER FUNCTION EXAMPLES.................... 74

3.1 ATTACH/DETACH EXAMPLE... 74
3.1.1 AddInAuthenticate ... 75

3.2 EXTENSIBILITY FUNCTIONS EXAMPLES... 76
3.2.1 CSP_PassThrough... 76

APPENDIX A. IBM KEYWORKS ERRORS.. 79

A.1 CRYPTOGRAPHIC SERVICE PROVIDER MODULE ERRORS.. 80

APPENDIX B. LIST OF ACRONYMS.. 86

APPENDIX C. GLOSSARY... 87

Version 1.1.1 IBM KeyWorks Toolkit Page v

List of Figures

Figure 1. IBM KeyWorks Toolkit Architecture .. 2

List of Tables

Table 1. Context Types.. 9
Table 2. Algorithms for a Session Context ... 10
Table 3. Modes of Algorithms ... 12
Table 4. Attribute Types .. 14
Table 5. CSSM Sessions.. 16
Table 6. CSP Flags .. 17
Table 7. CSP Information Type Identifiers and Associated Structure Types .. 18
Table 8. PKCS#11 CSP Reader Flags .. 21
Table 9. PKCS#11 CSP Token Flags ... 21
Table 10. Key Blob Type Identifiers .. 23
Table 11. Key Blob Format Identifiers ... 24
Table 12. Key Class Identifiers .. 24
Table 13. Key Attribute Flags.. 25
Table 14. Key Usage Flags .. 25
Table 15. CSSM_NOTIFY Reason Values... 27
Table 16. CSP Module Error Numbers... 79
Table 17. General CSP Messages and Errors.. 80
Table 18. CSP Memory Errors... 80
Table 19. Invalid CSP Parameters.. 80
Table 20. File I/O Errors.. 81
Table 21. CSP Cryptographic Errors .. 81
Table 22. Missing or Invalid CSP Parameters... 82
Table 23. Password Errors ... 82
Table 24. Key Management Messages and Errors .. 82
Table 25. Random Number Generation (RNG) Messages and Errors .. 83
Table 26. Unique ID Generation Messages and Errors.. 83
Table 27. Key Generation Messages and Errors ... 83
Table 28. Encryption/Decryption Messages ... 83
Table 29. Sign/Verify Messages and Errors.. 84
Table 30. Digest Function Errors ... 84
Table 31. MAC Function Errors... 84
Table 32. Key Exchange Errors ... 84
Table 33. PassThrough Custom Errors ... 84
Table 34. Wrap/Unwrap Errors.. 85
Table 35. Hardware CSP Errors ... 85
Table 36. Query Size Errors... 85

Version 1.1.1 IBM KeyWorks Toolkit Page 1

Chapter 1. Introduction

The IBM KeyWorks Toolkit defines the infrastructure for a complete set of security services. It is an
extensible architecture that provides mechanisms to manage service provider security modules, which use
cryptography as a computational base to build security protocols and security systems. Figure 1 shows the
four basic layers of the IBM KeyWorks Toolkit: Application Domains, System Security Services,
KeyWorks Framework, and Service Providers. The KeyWorks Framework is the core of this architecture.
It provides a means for applications to directly access security services through the KeyWorks security
application programming interface (API), or to indirectly access security services via layered security
services and tools implemented over the KeyWorks API. The IBM KeyWorks Framework manages the
service provider security modules and directs application calls through the KeyWorks API to the selected
service provider module that will service the request. The KeyWorks API defines the interface for
accessing security services. The KeyWorks service provider interface (SPI) defines the interface for
service providers who develop plug-able security service products.

Service providers perform various aspects of security services, including:

• Cryptographic Services
• Key Recovery Services
• Trust Policy Libraries
• Certificate Libraries
• Data Storage Libraries

Cryptographic Service Providers (CSPs) are service provider modules that perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, and key exchange. Key Recovery Service Providers (KRSPs) generate and process Key
Recovery Fields (KRFs) which can be used to retrieve the original session key if it is lost, or if an
authorized party requires access to the decryption key. Trust Policy (TP) modules implement policies
defined by authorities and institutions, such as VeriSign (as a Certificate Authority (CA)) or MasterCard
(as an institution). Each TP module embodies the semantics of a trust model based on using digital
certificates as credentials. Applications may use a digital certificate as an identity credential and/or an
authorization credential. Certificate Library (CL) modules provide format-specific, syntactic manipulation
of memory-resident digital certificates and Certificate Revocation Lists (CRLs). Data Storage Library
(DL) modules provide persistent storage for certificates and CRLs.

1.1 Service Provider Modules

An IBM KeyWorks service provider module is a Dynamically Linked Library (DLL) composed of
functions that implement some or all of the KeyWorks module interfaces. Applications directly or
indirectly select the modules used to provide security services to the application. These service providers
will be provided by Independent Software Vendors (ISVs) and hardware vendors. The functionality of the
service providers may be extended beyond the services defined by the KeyWorks API, by exporting
additional services to applications using an KeyWorks PassThrough mechanism.

The API calls defined for service provider modules are categorized as service operations, module
management operations, and module-specific operations. Service operations include functions that perform
a security operation such as encrypting data, inserting a CRL into a data source, or verifying that a
certificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through passthrough functions whose behavior and use is defined
by the service provider module developer.

Version 1.1.1 IBM KeyWorks Toolkit Page 2

 Application
 Domains

Data store

KeyWorks
Framework

Service
Providers

Applications

KeyWorks Security API

SPI DLICLITPI

CSP

Manager
TP Module

Manager
CL Module
Manager

DL Module
Manager

Certificate
Library

Cryptographic

Service
Provider

Trust
Policy
Library

Data
Storage

Library

IPSECS/MIMESSL

Key Recovery

Service
Provider

KRSPI

KRSP

Manager

System
Security
Services

Figure 1. IBM KeyWorks Toolkit Architecture

Each module, regardless of the security services it offers, has the same set of module management
responsibilities. Every module must expose functions that allow KeyWorks to indicate events such as
module attach and detach. In addition, as part of the attach operation, every module must be able to verify
its own integrity, verify the integrity of KeyWorks, and register with KeyWorks. Detailed information
about service provider module structure, administration, and interfaces can be found in the IBM KeyWorks
Service Provider Module Structure & Administration Specification.

1.2 Intended Audience

This document should be used by ISVs who want to develop their own TP service provider modules.
These ISVs can be highly experienced software and security architects, advanced programmers, and
sophisticated users. The intended audience of this document must be familiar with high-end cryptography
and digital certificates. They must also be familiar with local and foreign government regulations on the
use of cryptography and the implication of those regulations for their applications and products. We
assume that this audience is familiar with the basic capabilities and features of the protocols they are
considering.

1.3 Documentation Set

The IBM KeyWorks Toolkit documentation set consists of the following manuals. These manuals are
provided in electronic format and can be viewed using the Adobe Acrobat Reader distributed with the IBM
KeyWorks Toolkit. Both the electronic manuals and the Adobe Acrobat Reader are located in the IBM
KeyWorks Toolkit doc subdirectory.

• IBM KeyWorks Toolkit Developer’s Guide
Document filename: kw_dev.pdf
This document presents an overview of the IBM KeyWorks Toolkit. It explains how to integrate IBM
KeyWorks into applications and contains a sample IBM KeyWorks application.

• IBM KeyWorks Toolkit Application Programming Interface Specification
Document filename: kw_api.pdf
This document defines the interface that application developers employ to access security services
provided by IBM KeyWorks and service provider modules.

Version 1.1.1 IBM KeyWorks Toolkit Page 3

• IBM KeyWorks Toolkit Service Provider Module Structure & Administration Specification.
Document filename: kw_mod.pdf
This document describes the features common to all IBM KeyWorks service provider modules. It
should be used in conjunction with the IBM KeyWorks service provider interface specifications in
order to build a security service provider module.

• IBM KeyWorks Toolkit Cryptographic Service Provider Interface Specification
Document filename: kw_spi.pdf
This document defines the interface to which cryptographic service providers must conform in order to
be accessible through IBM KeyWorks.

• Key Recovery Service Provider Interface Specification
Document filename: kr_spi.pdf
This document defines the interface to which key recovery service providers must conform in order to
be accessible through IBM KeyWorks.

• Key Recovery Server Installation and Usage Guide
Document filename: krs_gd.pdf
This document describes how to install and use key recovery solutions using the components in the
IBM Key Recovery Server.

• IBM KeyWorks Toolkit Trust Policy Interface Specification
Document filename: kw_tp_spi.pdf
This document defines the interface to which policy makers, such as certificate authorities, certificate
issuers, and policy-making application developers, must conform in order to extend IBM KeyWorks
with model or application-specific policies.

• IBM KeyWorks Toolkit Certificate Library Interface Specification
Document filename: kw_cl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific certificate manipulation services to numerous IBM KeyWorks applications and trust policy
modules.

• IBM KeyWorks Toolkit Data Storage Library Interface Specification
Document filename: kw_dl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific or format-independent persistent storage of certificates.

1.4 References

Cryptography Applied Cryptography, Schneier, Bruce, 2nd Edition, John Wiley and Sons,
Inc., 1996.

Handbook of Applied Cryptography, Menezes, A., Van Oorschot, P., and
Vanstone, S., CRC Press, Inc., 1997.

SDSI - A Simple Distributed Security Infrastructure, R. Rivest and B.
Lampson, 1996.

Microsoft CryptoAPI, Version 0.9, Microsoft Corporation, January 17, 1996.

CDSA Spec Common Data Security Architecture Specification, Intel Architecture Labs,
1997.

Version 1.1.1 IBM KeyWorks Toolkit Page 4

CSSM API Common Security Services Manager Application Programming Interface
Specification, Intel Architecture Labs, 1997.

Key Escrow A Taxonomy for Key Escrow Encryption Systems, Denning, Dorothy E. and
Branstad, Dennis, Communications of the ACM, Vol. 39, No. 3, March 1996.

PKCS The Public-Key Cryptography Standards, RSA Laboratories, Redwood City,
CA: RSA Data Security, Inc.

IBM KeyWorks CLI Certificate Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks DLI Data Storage Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks KRI Key Recovery Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks SPI Cryptographic Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks TPI Trust Policy Interface Specification, Intel Architecture Labs, 1997.

X.509 CCITT. Recommendation X.509: The Directory – Authentication
Framework, 1988. CCITT stands for Comite Consultatif Internationale
Telegraphique et Telephonique (International Telegraph and Telephone
Consultative Committee)

Version 1.1.1 IBM KeyWorks Toolkit Page 5

Chapter 2. Service Provider Interface

Cryptographic Service Providers (CSPs) are add-in modules which perform cryptographic operations
including encryption, decryption, digital signing, key pair generation, random number generation, message
digest, and key exchange. Besides the traditional cryptographic functions, CSPs may provide other vendor-
specific services.

The range and types of services a CSP supports are at the discretion of the vendor. A registry and query
mechanism is available through the IBM KeyWorks for CSPs to disclose the services and details about the
services. All cryptographic services requested by applications will be channeled to one of the CSPs via the
KeyWorks. CSP vendors only need target their modules to KeyWorks for all security-conscious
applications to have access to their product.

Calls made to a CSP to perform cryptographic operations occur within a framework called a session, which
is established and terminated by the application. The session context (simply referred to as the context) is
created prior to starting CSP operations and is deleted as soon as possible upon completion of the
operation. Context information is not persistent; it is not saved permanently in a file or database.

Before an application calls a CSP to perform a cryptographic operation, the application uses the query
services function to determine what CSPs are installed and what services they provide. Based on this
information, the application then can determine which CSP to use for subsequent operations; the
application creates a session with this CSP and performs the operation.

Depending on the class of cryptographic operations, individualized attributes are available for the
cryptographic context. Besides specifying an algorithm when creating the context, the application may also
initialize a session key, pass an initialization vector and/or pass padding information to complete the
description of the session. A successful return value from the Create function indicates the desired CSP is
available. Functions also are provided to manage the created context.

When a context is no longer required, the application calls CSSMDeleteContext. Resources that were
allocated for that context can be reclaimed by the operating system.

Cryptographic operations are available in two types: a single call to perform an operation, and a staged
method of performing the operation. For the single call method, only one call is needed to obtain the result.
For the staged method, there is an initialization call followed by one or more update calls, and ending with
a completion (final) call. The result is available after the final function completes its execution for most
cryptographic operations. Staged encryption/decryption are an exception in that each update call generates
a portion of the result.

2.1 Cryptographic Operations

CSSM_RETURN CSP_QuerySize
Accepts as input a handle to a cryptographic context describing the sign, digest, message
authentication code, encryption, or decryption operation. This function returns pointers
to variables indicating the input size (encryption and decryption only) and output size for
the specified algorithm.

Version 1.1.1 IBM KeyWorks Toolkit Page 6

CSSM_RETURN CSP_SignData
CSSM_RETURN CSP_SignDataInit
CSSM_RETURN CSP_SignDataUpdate
CSSM_RETURN CSP_SignDataFinal

Accepts as input a handle to a cryptographic context describing the sign operation and the
data to operate on. The result of the completed sign operation is returned in a
CSSM_DATA structure.

CSSM_BOOL CSP_VerifyData
CSSM_RETURN CSP_VerifyDataInit
CSSM_RETURN CSP_VerifyDataUpdate
CSSM_BOOL CSP_VerifyDataFinal

Accepts as input a handle to a cryptographic context describing the verify operation and
the data to operate on. The result of the completed verify operation is a CSSM_TRUE or
CSSM_FALSE.

CSSM_RETURN CSP_DigestData
CSSM_RETURN CSP_DigestDataInit
CSSM_RETURN CSP_DigestDataUpdate
CSSM_RETURN CSP_DigestDataFinal

Accepts as input a handle to a cryptographic context describing the digest operation and
the data to operate on. The result of the completed digest operation is returned in a
CSSM_DATA structure.

CSSM_RETURN CSP_DigestDataClone
Accepts as input a handle to a cryptographic context describing the digest operation. A
handle to another cryptographic context is created with similar information and
intermediate result as described by the first context.

CSSM_RETURN CSP_GenerateMac
CSSM_RETURN CSP_GenerateMacInit
CSSM_RETURN CSP_GenerateMacUpdate
CSSM_RETURN CSP_GenerateMacFinal

Accepts as input a handle to a cryptographic context describing the Message
Authentication Code (MAC) operation and the data to operate on. The result of the
completed MAC operation is returned in a CSSM_DATA structure.

CSSM_RETURN CSP_VerifyMac
CSSM_RETURN CSP_VerifyMacInit
CSSM_RETURN CSP_VerifyMacUpdate
CSSM_RETURN CSP_VerifyMacFinal

Accepts as input a handle to a cryptographic context describing the MAC operation and the
data to operate on. The result of the completed verify operation is a CSSM_RETURN value.

Version 1.1.1 IBM KeyWorks Toolkit Page 7

CSSM_RETURN CSP_EncryptData
CSSM_RETURN CSP_EncryptDataInit
CSSM_RETURN CSP_EncryptDataUpdate
CSSM_RETURN CSP_EncryptDataFinal

Accepts as input a handle to a cryptographic context describing the encryption operation
and the data to operate on. The encrypted data is returned in CSSM_DATA structures.

CSSM_RETURN CSP_DecryptData
CSSM_RETURN CSP_DecryptDataInit
CSSM_RETURN CSP_DecryptDataUpdate
CSSM_RETURN CSP_DecryptDataFinal

Accepts as input a handle to a cryptographic context describing the decryption operation
and the data to operate on. The decrypted data is returned in CSSM_DATA structures.

CSSM_RETURN CSP_QueryKeySizeInBits
Accepts as input a handle to a cryptographic context and the key. This function returns a pointer to
a data structure containing the keysize and effective keysize in bits.

CSSM_RETURN CSP_GenerateKey
Accepts as input a handle to a cryptographic context describing the generate key
operation. The key is returned in a CSSM_KEY structure.

CSSM_RETURN CSSM_GenerateKeyPair
Accepts as input a handle to a cryptographic context describing the generate key pair
operation. The keys returned are in CSSM_KEY structures.

CSSM_RETURN CSP_GenerateRandom
Accepts as input a handle to a cryptographic context describing the generate random
operation. The random data is returned in a CSSM_DATA structure.

CSSM_RETURN CSP_GenerateAlgorithmParams
Accepts as input a handle to a cryptographic context describing an algorithm and returns a set of
algorithm parameters appropriate for that algorithm.

CSSM_RETURN CSP_WrapKey
Accepts as input a handle to a symmetric/asymmetric cryptographic context describing the wrap
key operation and the wrapping key to be used in the operation, the key to be wrapped, and a
passphrase (if required by the CSP) that permits access to the private key to be wrapped.

CSSM_RETURN CSP_UnwrapKey
Accepts as input a handle to a cryptographic context describing the key unwrap operation, the
wrapped key to be unwrapped, and a passphrase (if required by the CSP) that will be used to
control access to the private key that will be unwrapped.

Version 1.1.1 IBM KeyWorks Toolkit Page 8

CSSM_RETURN CSP_DeriveKey
Accepts as input a handle to a cryptographic context describing the derive key operation and the
base key that will be used to derive new keys.

2.2 Cryptographic Logon and Sessions

CSSM_RETURN CSP_Login
Accepts as input a login password and a flag indicating the persistent or nonpersistent status of
keys and other objects created during the login session. CSPs are not required to support a login
model. If a login model is supported, the CSP may request additional passwords at any time
during the period of service.

CSSM_RETURN CSP_Logout
The caller is logged out of the current login session with the designated CSP.

CSSM_RETURN CSP_ChangeLoginPassword
Accepts as input a handle to a CSP, the caller’s old login password for that CSP, and the caller’s
new login password. The old password is replaced with the new password. The caller’s current
login is terminated and another login session is created using the new password.

2.3 Extensibility Functions

void * CSP_PassThrough
Performs the CSP module-specific function indicated by the operation ID. The operation
ID specifies an operation, which the CSP has exported for use by an application or
module. Such operations should be specific to the key format of the private keys stored
in the CSP module.

2.4 Data Structures

This section describes the data structures that may be passed to or returned from a CSP function. They will
be used by applications to prepare data to be passed as input parameters into KeyWorks API function calls,
which will be passed without modification to the appropriate CSP. The CSP is then responsible for
interpreting them and returning the appropriate data structure to the calling application through KeyWorks.
These data structures are defined in the header file, cssmtype.h, which is distributed with the IBM
KeyWorks Toolkit.

2.4.1 CSSM_BOOL

typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

2.4.2 CSSM_CALLBACK

typedef CSSM_DATA_PTR (CSSMAPI *CSSM_CALLBACK) (void *allocRef, uint32 ID);

Version 1.1.1 IBM KeyWorks Toolkit Page 9

Definitions:
allocRef - Memory heap reference specifying which heap to use for memory allocation.

ID - Input data to identify the callback.

2.4.3 CSSM_CONTEXT

typedef struct cssm_context {
 uint32 ContextType;
 uint32 AlgorithmType;
 uint32 Reserve;
 uint32 NumberOfAttributes;
 CSSM_CONTEXT_ATTRIBUTE_PTR ContextAttributes;
 CSSM_BOOL Privileged;
 uint32 EncryptionProhibited;
 uint32 WorkFactor;
} CSSM_CONTEXT, *CSSM_CONTEXT_PTR

Definitions:
ContextType - An identifier describing the type of services for this context. Table 1 provides the
context types.

Table 1. Context Types

Value Description

CSSM_ALGCLASS_NONE Null Context type

CSSM_ALGCLASS_CUSTOM Custom algorithms

CSSM_ALGCLASS_KEYXCH Key Exchange algorithms

CSSM_ALGCLASS_SIGNATURE Signature algorithms

CSSM_ALGCLASS_SYMMETRIC Symmetric Encryption
algorithms

CSSM_ALGCLASS_DIGEST Message Digest algorithms

CSSM_ALGCLASS_RANDOMGEN Random Number Generation
algorithms

CSSM_ALGCLASS_UNIQUEGEN Unique ID Generation
algorithms

CSSM_ALGCLASS_MAC Message Authentication Code
algorithms

CSSM_ALGCLASS_ASYMMETRIC Asymmetric Encryption
algorithms

CSSM_ALGCLASS_KEYGEN Key Generation algorithms

CSSM_ALGCLASS_DERIVEKEY Key Derivation algorithms

CSSM_ALGCLASS_KEY_RECOVERY_ENABLEMENT Key Recovery Enablement
algorithms

CSSM_ALGCLASS_KEY_RECOVERY_REGISTRATION Key Recovery Registration
algorithms

CSSM_ALGCLASS_KEY_RECOVERY_REQUEST Key Recovery Request
algorithms

Version 1.1.1 IBM KeyWorks Toolkit Page 10

AlgorithmType - An ID number describing the algorithm to be used. Table 2 provides the algorithms
for a session context.

Table 2. Algorithms for a Session Context

Value Description

CSSM_ALGID_NONE Null algorithm

CSSM_ALGID_CUSTOM Custom algorithm

CSSM_ALGID_DH Diffie-Hellman key exchange algorithm

CSSM_ALGID_PH Pohlig Hellman key exchange algorithm

CSSM_ALGID_KEA Key Exchange algorithm

CSSM_ALGID_MD2 MD2hash algorithm

CSSM_ALGID_MD4 MD4hash algorithm

CSSM_ALGID_MD5 MD5hash algorithm

CSSM_ALGID_SHA1 Secure Hash algorithm

CSSM_ALGID_NHASH N-Hash algorithm

CSSM_ALGID_HAVAL HAVAL hash algorithm (MD5 variant)

CSSM_ALGID_RIPEMD RIPE-MD hash algorithm (MD4 variant - developed
for the European Community’s RIPE project)

CSSM_ALGID_IBCHASH IBC-Hash (keyed hash algorithm or MAC)

CSSM_ALGID_RIPEMAC RIPE-MAC

CSSM_ALGID_DES Data Encryption Standard block cipher

CSSM_ALGID_DESX DESX block cipher (DES variant from RSA)

CSSM_ALGID_RDES RDES block cipher (DES variant)

CSSM_ALGID_3DES_3KEY Triple-DES block cipher (with 3 keys)

CSSM_ALGID_3DES_2KEY Triple-DES block cipher (with 2 keys)

CSSM_ALGID_3DES_1KEY Triple-DES block cipher (with 1 key)

CSSM_ALGID_IDEA International Data Encryption Algorithm (IDEA) block
cipher

CSSM_ALGID_RC2 RC2 block cipher

CSSM_ALGID_RC5 RC5 block cipher

CSSM_ALGID_RC4 RC4 stream cipher

CSSM_ALGID_SEAL SEAL stream cipher

CSSM_ALGID_CAST CAST block cipher

CSSM_ALGID_BLOWFISH BLOWFISH block cipher

CSSM_ALGID_SKIPJACK Skipjack block cipher

CSSM_ALGID_LUCIFER Lucifer block cipher

CSSM_ALGID_MADRYGA Madryga block cipher

CSSM_ALGID_FEAL FEAL block cipher

Version 1.1.1 IBM KeyWorks Toolkit Page 11

Value Description

CSSM_ALGID_REDOC REDOC 2 block cipher

CSSM_ALGID_REDOC3 REDOC 3 block cipher

CSSM_ALGID_LOKI LOKI block cipher

CSSM_ALGID_KHUFU KHUFU block cipher

CSSM_ALGID_KHAFRE KHAFRE block cipher

CSSM_ALGID_MMB MMB block cipher (IDEA variant)

CSSM_ALGID_GOST GOST block cipher

CSSM_ALGID_SAFER SAFER K-40, K-64, K-128 block cipher

CSSM_ALGID_CRAB CRAB block cipher

CSSM_ALGID_RSA RSA public key cipher

CSSM_ALGID_DSA Digital Signature Algorithm (DSA)

CSSM_ALGID_MD5WithRSA MD5/RSA signature algorithm

CSSM_ALGID_MD2WithRSA MD2/RSA signature algorithm

CSSM_ALGID_ElGamal ElGamal signature algorithm

CSSM_ALGID_MD2Random MD2-based random numbers

CSSM_ALGID_MD5Random MD5-based random numbers

CSSM_ALGID_SHARandom SHA-based random numbers

CSSM_ALGID_DESRandom DES-based random numbers

CSSM_ALGID_SHA1WithRSA SHA-1/RSA signature algorithm

CSSM_ALGID_RSA_PKCS RSA as specified in Public-Key Cryptographic
Standard (PKCS#11)

CSSM_ALGID_RSA_ISO9796 RSA as specified in ISO 9796

CSSM_ALGID_RSA_RAW Raw RSA as assumed in X.509

CSSM_ALGID_CDMF CDMF block cipher

CSSM_ALGID_CAST3 Entrust’s CAST3 block cipher

CSSM_ALGID_CAST5 Entrust’s CAST5 block cipher

CSSM_ALGID_GenericSecret Generic secret operations

CSSM_ALGID_ConcatBaseAndKey Concatenate two keys, base key first

CSSM_ALGID_ConcatKeyAndBase Concatenate two keys, base key last

CSSM_ALGID_ConcatBaseAndData Concatenate base key and random data, key first

CSSM_ALGID_ConcatDataAndBase Concatenate base key and data, data first

CSSM_ALGID_XORBaseAndData XOR a byte string with the base key

CSSM_ALGID_ExtractFromKey Extract a key from base key, starting at arbitrary bit
position

CSSM_ALGID_SSL3PreMasterGen Generate a 48-byte Secure Sockets Layer (SSL)
3 premaster key

Version 1.1.1 IBM KeyWorks Toolkit Page 12

Value Description

CSSM_ALGID_SSL3MasterDerive Derive an SSL 3 key from a premaster key

CSSM_ALGID_SSL3KeyAndMacDerive Derive the keys and MACing keys for the SSL cipher
suite

CSSM_ALGID_SSL3MD5_MAC Performs SSL 3 MD5 MACing

CSSM_ALGID_SSL3SHA1_MAC Performs SSL 3 SHA-1 MACing

CSSM_ALGID_MD5Derive Generate key by MD5 hashing a base key

CSSM_ALGID_MD2Derive Generate key by MD2 hashing a base key

CSSM_ALGID_SHA1Derive Generate key by SHA-1 hashing a base key

CSSM_ALGID_WrapLynks Spyrus LYNKS DES-based wrapping scheme
w/checksum

CSSM_ALGID_WrapSET_OAEP Secure Electronic Transaction (SET) key wrapping

CSSM_ALGID_BATON Fortezza BATON cipher

CSSM_ALGID_ECDSA Elliptic Curve DSA

CSSM_ALGID_MAYFLY Fortezza MAYFLY cipher

CSSM_ALGID_JUNIPER Fortezza JUNIPER cipher

CSSM_ALGID_FASTHASH Fortezza FASTHASH

CSSM_ALGID_3DES Generic 3DES

CSSM_ALGID_SSL3MD5 SSL3MD5

CSSM_ALGID_SSL3SHA1 SSL3SHA1

CSSM_ALGID_FortezzaTimestamp FortezzaTimestamp

CSSM_ALGID_SHA1WithDSA SHA1WithDSA

CSSM_ALGID_SHA1WithECDSA SHA1WithECDSA

CSSM_ALGID_DSA_BSAFE BSAFE Key format

Some of the algorithms above in Table 2 operate in a variety of modes. The desired mode is specified
using an attribute of type CSSM_ATTRIBUTE_MODE. The valid values for the mode attribute are as
follows in Table 3.

Table 3. Modes of Algorithms

Value Description

CSSM_ALGMODE_NONE Null Algorithm mode

CSSM_ALGMODE_CUSTOM Custom mode

CSSM_ALGMODE_ECB Electronic Code Book (ECB)

CSSM_ALGMODE_ECBPad ECB with padding

CSSM_ALGMODE_CBC Cipher Block Chaining

CSSM_ALGMODE_CBC_IV8 CBC with Initialization Vector of 8 bytes

CSSM_ALGMODE_CBCPadIV8 CBC with padding and Initialization Vector of 8 bytes

Version 1.1.1 IBM KeyWorks Toolkit Page 13

Value Description

CSSM_ALGMODE_CFB Cipher FeedBack

CSSM_ALGMODE_CFB_IV8 CFB with Initialization Vector of 8 bytes

CSSM_ALGMODE_CFBPadIV8 CFB with Initialization Vector of 8 bytes and padding

CSSM_ALGMODE_OFB Output FeedBack

CSSM_ALGMODE_OFB_IV8 OFB with Initialization Vector of 8 bytes

CSSM_ALGMODE_OFBPadIV8 OFB with Initialization Vector of 8 bytes and padding

CSSM_ALGMODE_COUNTER Counter

CSSM_ALGMODE_BC Block Chaining

CSSM_ALGMODE_PCBC Propagating CBC

CSSM_ALGMODE_CBCC CBC with Checksum

CSSM_ALGMODE_OFBNLF OFB with NonLinear Function

CSSM_ALGMODE_PBC Plaintext Block Chaining

CSSM_ALGMODE_PFB Plaintext FeedBack

CSSM_ALGMODE_CBCPD CBC of Plaintext Difference

CSSM_ALGMODE_PUBLIC_KEY Use the public key

CSSM_ALGMODE_PRIVATE_KEY Use the private key

CSSM_ALGMODE_SHUFFLE Fortezza shuffle mode

CSSM_ALGMODE_ECB64 Electronic Code Book (64 bits)

CSSM_ALGMODE_CBC64 Cipher Block Chaining (64 bits)

CSSM_ALGMODE_OFB64 Output FeedBack (64 bits)

CSSM_ALGMODE_CFB64 Cipher FeedBack (64 bits)

CSSM_ALGMODE_CFB32 Cipher FeedBack (32 bits)

CSSM_ALGMODE_CFB16 Cipher FeedBack (16 bits)

CSSM_ALGMODE_CFB8 Cipher FeedBack (8 bits)

CSSM_ALGMODE_WRAP SKIPJACK Wrap mechanism

CSSM_ALGMODE_PRIVATE_WRAP SKIPJACK Private Wrap mechanism

CSSM_ALGMODE_RELAYX SKIPJACK RELAYX mechanism

CSSM_ALGMODE_ECB128 Electronic Code Book (128 bits)

CSSM_ALGMODE_ECB96 Electronic Code Book (96 bits)

CSSM_ALGMODE_CBC128 Cipher Block Chaining (128 bits)

CSSM_ALGMODE_OAEP_HASH Optimal Asymmetric Encryption Padding (OAEP) for
RSA

Version 1.1.1 IBM KeyWorks Toolkit Page 14

NumberOfAttributes - Number of attributes associated with this service.

ContextAttributes - Pointer to data that describes the attributes. To retrieve the next attribute, advance
the attribute pointer.

Privileged - When this flag is CSSM_TRUE, the context can perform cryptographic operations without
being forced to follow the key recovery policy.

EncryptionProhibited - An integer indicating whether encryption is allowed. If encryption is allowed,
this field is zero. Otherwise, the flags indicate which policy disallowed encryption.

WorkFactor - WorkFactor is the maximum number of bits that can be left out of Key Recovery Fields
(KRFs) when they are generated. The recoverer of the key must then search this number of bits to
recover the key.

2.4.4 CSSM_CONTEXT_ATTRIBUTE

typedef struct cssm_context_attribute{
 uint32 AttributeType;
 uint32 AttributeLength;
 union {
 char *String;
 uint32 Uint32;
 CSSM_CRYPTO_DATA_PTR Crypto;
 CSSM_KEY_PTR Key;
 CSSM_DATA_PTR Data;
 CSSM_DATE_PTR Date;
 CSSM_RANGE_PTR Range;
 CSSM_VERSION_PTR Version;
 CSSM_KR_PROFILE_PTR KRProfile;
 } Attribute;
} CSSM_CONTEXT_ATTRIBUTE, *CSSM_CONTEXT_ATTRIBUTE_PTR;

Definitions:
AttributeType - An identifier describing the type of attribute. Valid attribute types are as follows in
Table 4.

Table 4. Attribute Types

Value Description Data Type

CSSM_ATTRIBUTE_NONE No attribute None

CSSM_ATTRIBUTE_CUSTOM Custom data Opaque pointer

CSSM_ATTRIBUTE_DESCRIPTION Description of
attribute

String

CSSM_ATTRIBUTE_KEY Key Data CSSM_KEY

CSSM_ATTRIBUTE_INIT_VECTOR Initialization vector CSSM_DATA

CSSM_ATTRIBUTE_SALT Salt CSSM_DATA

CSSM_ATTRIBUTE_PADDING Padding information uint32

CSSM_ATTRIBUTE_RANDOM Random data CSSM_DATA

CSSM_ATTRIBUTE_SEED Seed CSSM_CRYPTO_DATA

Version 1.1.1 IBM KeyWorks Toolkit Page 15

Value Description Data Type

CSSM_ATTRIBUTE_PASSPHRASE Passphrase CSSM_CRYPTO_DATA

CSSM_ATTRIBUTE_KEY_LENGTH Key length specified
in bits

uint32

CSSM_ATTRIBUTE_KEY_LENGTH_RANGE Key length range
specified in bits

CSSM_RANGE

CSSM_ATTRIBUTE_BLOCK_SIZE Block size uint32

CSSM_ATTRIBUTE_OUTPUT_SIZE Output size uint32

CSSM_ATTRIBUTE_ROUNDS Number of runs or
rounds

uint32

CSSM_ATTRIBUTE_IV_SIZE Size of initialization
vector

uint32

CSSM_ATTRIBUTE_ALG_PARAMS Algorithm parameters CSSM_DATA

CSSM_ATTRIBUTE_LABEL Label placed on an
object when it is
created

CSSM_DATA

CSSM_ATTRIBUTE_KEY_TYPE Type of key to
generate or derive

uint32

CSSM_ATTRIBUTE_MODE Algorithm mode to
use for encryption

uint32

CSSM_ATTRIBUTE_EFFECTIVE_BITS Number of effective
bits used in the RC2
cipher

uint32

CSSM_ATTRIBUTE_START_DATE Starting date for an
object’s validity

CSSM_DATE

CSSM_ATTRIBUTE_END_DATE Ending date for an
object’s validity

CSSM_DATE

CSSM_ATTRIBUTE_KEYUSAGE Key usage uint32

CSSM_ATTRIBUTE_KEYATTR Key attributes uint32

CSSM_ATTRIBUTE_VERSION Object version CSSM_VERSION

CSSM_ATTRIBUTE_ALG_ID Algorithm ID uint32

CSSM_ATTRIBUTE_ITERATION_COUNT Number of iterations uint32

CSSM_ATTRIBUTE_ROUNDS_RANGE Minimum and
maximum number of
rounds

CSSM_RANGE

CSSM_ATTRIBUTE_KRPROFILE_LOCAL Key Recovery Profile
for the local user

CSSM_KR_PROFILE

CSSM_ATTRIBUTE_KRPROFILE_REMOTE Key Recovery Profile
for the remote user

CSSM_KR_PROFILE

The data referenced by a CSSM_ATTRIBUTE_CUSTOM attribute must be a single continuous
memory block. This allows the KeyWorks to appropriately release all dynamically allocated memory
resources.

Version 1.1.1 IBM KeyWorks Toolkit Page 16

AttributeLength - Length of the attribute data.

Attribute - Union representing the attribute data. The union member used is named after the type of
data contained in the attribute. See Table 4 for the data types associated with each attribute type.

2.4.5 CSSM_CONTEXTINFO

typedef CSSM_CONTEXT CSSM_CONTEXTINFO;

2.4.6 CSSM_CRYPTO_DATA

typedef struct cssm_crypto_data {
CSSM_DATA_PTR Param;
CSSM_CALLBACK Callback;
uint32 CallbackID;

}CSSM_CRYPTO_DATA, *CSSM_CRYPTO_DATA_PTR

Definitions:
Param - A pointer to the parameter data and its size in bytes.

Callback - An optional callback routine for the service provider modules to obtain the parameter.

ID - A tag that identifies the callback.

2.4.7 CSSM_CSP_CAPABILITY

typedef CSSM_CONTEXT CSSM_CSP_CAPABILITY, *CSSM_CSP_CAPABILITY_PTR;

2.4.8 CSSM_CSP_FLAGS

typedef uint32 CSSM_CSP_FLAGS;

2.4.9 CSSM_CSP_HANDLE

The CSSM_CSP_HANDLE is used to identify the association between an application thread and an
instance of a CSP module. It is assigned when an application causes KeyWorks to attach to a CSP. It is
freed when an application causes KeyWorks to detach from a CSP. The application uses the
CSSM_CSP_HANDLE with every CSP function call to identify the targeted CSP. The CSP uses the
CSSM_CSP_HANDLE to identify the appropriate application’s memory management routines when
allocating memory on the application’s behalf (see Table 5).

typedef uint32 CSSM_CSP_HANDLE /* Cryptographic Service Provider Handle */

Table 5. CSSM Sessions

CSSM_CSP_Session Values Description

CSSM_CSP_SESSION_EXCLUSIVE 0x0001 Single user CSP.

CSSM_CSP_SESSION_READWRITE 0x0002 Caller can read and write objects such as keys in
the CSP.

CSSM_CSP_SESSION_SERIAL 0x0004 Multiuser, reentrant CSP that requires serial access.

Version 1.1.1 IBM KeyWorks Toolkit Page 17

2.4.10 CSSM_CSPSUBSERVICE

Three structures are used to contain all of the static information that describes a CSP module: the
cssm_moduleinfo, cssm_serviceinfo, and cssm_cspsubservice structure. This descriptive information is
securely stored in the KeyWorks registry when the CSP module is installed with CSSM. A CSP module
may implement multiple types of services and organize them as subservices.

The descriptive information stored in these structures can be queried using the function CSSM_GetModuleInfo
and specifying the cryptographic service provider module GUID.

typedef struct cssm_cspsubservice {
 uint32 SubServiceId;
 CSSM_STRING Description;
 CSSM_CSP_FLAGS CspFlags;
 uint32 CspCustomFlags;
 uint32 AccessFlags;
 CSSM_CSPTYPE CspType;
 union {
 CSSM_SOFTWARE_CSPSUBSERVICE_INFO SoftwareCspSubService;
 CSSM_HARDWARE_CSPSUBSERVICE_INFO HardwareCspSubService;
 };
 CSSM_CSP_WRAPPEDPRODUCT_INFO WrappedProduct;
} CSSM_CSPSUBSERVICE, *CSSM_CSPSUBSERVICE_PTR;

Definitions:
SubServiceId - The subservice ID required for an attach call to connect a CSP to an individual
subservice within a CSP.

Description - A NULL-terminated character string containing a text description of the subservice.

CspFlags - A bit-mask containing general flags defined by KeyWorks for CSPs. The mask may
contain a combination of the following in Table 6.

Table 6. CSP Flags

CSSM_CSP_FLAGS Values Description

CSSM_CSP_STORES_PRIVATE_KEYS CSP can store private keys.

CSSM_CSP_STORES_PUBLIC_KEYS CSP can store public keys.

CSSM_CSP_STORES_SESSION_KEYS CSP can store session/secret keys.

CspCustomFlags - Flags defined by the vendor. Consult the individual CSP documentation for the list
of valid flags.

AccessFlags - Flags that are required to be provided by the application during an attach call when
specifying the subservice ID given in SubServiceId.

CspType - Identifier that determines the type of CSP information structure referenced by CspInfo.
The following values in Table 7 and their corresponding CSP information structures are currently
defined.

Version 1.1.1 IBM KeyWorks Toolkit Page 18

Table 7. CSP Information Type Identifiers and Associated Structure Types

CSP Information Structure Identifier Structure Type

CSSM_CSP_TYPE_SOFTWARE CSSM_CSP_TYPE_SOFTWARE_INFO

CSSM_CSP_TYPE_PKCS11 CSSM_CSP_TYPE_PKCS11_INFO

SoftwareCspSubService/HardwareCspSubService - A CSP information structure of the type specified
by CspType.

WrappedProduct - Pointer to a CSSM_CSP_WRAPPEDPRODUCTINFO structure describing a
product that is wrapped by the CSP.

2.4.11 CSSM_CSPTYPE

typedef uint32 CSSM_CSPTYPE;
#define CSSM_CSP_SOFTWARE 1
#define CSSM_CSP_HARDWARE 2

2.4.12 CSSM_CSP_WRAPPEDPRODUCTINFO

typedef struct cssm_csp_wrappedproductinfo {
 CSSM_VERSION StandardVersion;
 CSSM_STRING StandardDescription;
 CSSM_VERSION ProductVersion;
 CSSM_STRING ProductDescription;
 CSSM_STRING ProductVendor;
 uint32 ProductFlags;
} CSSM_CSP_WRAPPEDPRODUCT_INFO, *CSSM_CSP_WRAPPEDPRODUCT_INFO_PTR;

Definitions:
StandardVersion - Version of the standard to which the wrapped product complies.

StandardDescription - A NULL-terminated character string containing a text description of the
standard to which the wrapped product complies.

ProductVersion - Version of the product wrapped by the CSP.

ProductDescription - A NULL-terminated character string containing a text description of the product
wrapped by the CSP.

ProductVendor - A NULL-terminated character string containing the name of the wrapped product’s
vendor.

ProductFlags - This version of KeyWorks has no flags defined. This field must be set to zero.

Version 1.1.1 IBM KeyWorks Toolkit Page 19

2.4.13 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via KeyWorks.

typedef struct cssm_data{
 uint32 Length; /* in bytes */
 uint8 *Data;
} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length - Length of the data buffer in bytes.

Data - Pointer to a data buffer.

2.4.14 CSSM_DATE

typedef struct cssm_date {
 uint8 Year[4];
 uint8 Month[2];
 uint8 Day[2];
} CSSM_DATE, *CSSM_DATE_PTR;

Definitions:
Year - Four-digit ASCII representation of the year.

Month - Two-digit representation of the month.

Day - Two-digit representation of the day.

Version 1.1.1 IBM KeyWorks Toolkit Page 20

2.4.15 CSSM_HARDWARECSPSUBSERVICEINFO

typedef struct cssm_hardwarecspsubserviceinfo {
 uint32 NumberOfCapabilities;
 CSSM_CSP_CAPABILITY_PTR CapabilityList;
 void * Reserved;

 /* Reader/Slot Info */
 CSSM_STRING ReaderDescription;
 CSSM_STRING ReaderVendor;
 CSSM_STRING ReaderSerialNumber;
 CSSM_VERSION ReaderHardwareVersion;
 CSSM_VERSION ReaderFirmwareVersion;
 uint32 ReaderFlags;
 uint32 ReaderCustomFlags;

 CSSM_STRING TokenDescription;
 CSSM_STRING TokenVendor;
 CSSM_STRING TokenSerialNumber;
 CSSM_VERSION TokenHardwareVersion;
 CSSM_VERSION TokenFirmwareVersion;

 uint32 TokenFlags;
 uint32 TokenCustomFlags;
 uint32 TokenMaxSessionCount;
 uint32 TokenOpenedSessionCount;
 uint32 TokenMaxRWSessionCount;
 uint32 TokenOpenedRWSessionCount;
 uint32 TokenTotalPublicMem;
 uint32 TokenFreePublicMem;
 uint32 TokenTotalPrivateMem;
 uint32 TokenFreePrivateMem;
 uint32 TokenMaxPinLen;
 uint32 TokenMinPinLen;
 char TokenUTCTime[16];

 char *UserLabel;
 CSSM_DATA UserCACertificate;
} CSSM_HARDWARE_CSPSUBSERVICE_INFO, *CSSM_HARDWARE_CSPSUBSERVICE_INFO_PTR;

Definitions:
NumberOfCapabilities - Number of capabilities in list.

CapabilityList - A context list that specifies the capabilities of the CSP.

Reserved - This field is reserved for future use and must always be set to NULL.

ReaderDescription - A NULL-terminated character string that contains a text description of the device
reader.

ReaderVendor - A NULL-terminated string that contains the name of the reader vendor.

ReaderSerialNumber - A NULL-terminated string that contains the serial number of the reader.

ReaderHardwareVersion - Hardware version of the reader.

ReaderFirmwareVersion - Firmware version of the reader.

Version 1.1.1 IBM KeyWorks Toolkit Page 21

ReaderFlags - Bit-mask containing information about the reader. The flags specified in the mask are
as follows in Table 8.

Table 8. PKCS#11 CSP Reader Flags

Reader Flag Description

CSSM_CSP_RDR_TOKENPRESENT Token is present in the reader.

CSSM_CSP_RDR_REMOVABLE Reader supports removable tokens.

CSSM_CSP_RDR_HW Reader is a hardware device.

ReaderCustomFlags - Flags defined by the vendor. Consult the individual CSP documentation for the
list of valid flags.

The following fields may not be valid if the CSSM_CSP_RDR_TOKENPRESENT flag is not set in
the ReaderFlags field. Unknown string and CSSM_DATA fields will be set to NULL, integer and
date fields will be set to zero, and flag fields will have all flags set to false.

TokenDescription - A NULL-terminated character string that contains a text description of the token.
This value may be NULL or equal to ReaderDescription if the token is not removable.

TokenVendor - A NULL-terminated string that contains the name of the token vendor. This value may
be NULL or equal to ReaderVendor if the token is not removable.

TokenSerialNumber - A NULL-terminated string that contains the serial number of the token. This
value may be NULL or equal to ReaderSerialNumber if the token is not removable.

TokenHardwareVersion - Hardware version of the token.

TokenFirmwareVersion - Firmware version of the token.

TokenFlags - Bit-mask containing information about the token. The flags specified in the mask are as
follows in Table 9.

Table 9. PKCS#11 CSP Token Flags

Token Flags Description

CSSM_CSP_TOK_RNG Token has random number generator.

CSSM_CSP_TOK_WRITE_PROTECTED Token is write-protected.

CSSM_CSP_TOK_LOGIN_REQUIRED User must login to access private objects.

CSSM_CSP_TOK_USER_PIN_INITIALIZED User’s PIN has been initialized.

CSSM_CSP_TOK_EXCLUSIVE_SESSION An exclusive session currently exists.

CSSM_CSP_TOK_CLOCK_EXISTS Token has built-in clock.

CSSM_CSP_TOK_ASYNC_SESSION Token supports asynchronous operations.

CSSM_CSP_TOK_PROT_AUTHENTICATION Token has protected authentication path.

CSSM_CSP_TOK_DUAL_CRYPTO_OPS Token supports dual cryptographic operations.

TokenCustomFlags - Flags defined by the vendor. Consult the individual CSP documentation for the
list of valid flags.

TokenMaxSessionCount - Maximum number of CSP handles referencing the token that may exist
simultaneously.

Version 1.1.1 IBM KeyWorks Toolkit Page 22

TokenOpenedSessionCount - Number of CSP handles referencing the token that currently exists.

TokenTotalPublicMem - Amount of public storage space in the CSP. This value will be set to
CSSM_VALUE_NOT_AVAILABLE if the CSP does not want to expose this information.

TokenFreePublicMem - Amount of public storage space available for use in the CSP. This value will
be set to CSSM_VALUE_NOT_AVAILABLE (-1) if the CSP does not want to expose this
information.

TokenTotalPrivateMem - Amount of private storage space in the CSP. This value will be set to
CSSM_VALUE_NOT_AVAILABLE (-1) if the CSP does not want to expose this information.

TokenFreePrivateMem - Amount of private storage space available for use in the CSP. This value will
be set to CSSM_VALUE_NOT_AVAILABLE if the CSP does not want to expose this information.
TokenMaxPinLen - Maximum length of passwords that can be used for authentication to the CSP.

TokenMinPinLen - Minimum length of passwords that can be used for authentication to the CSP.

TokenUTCTime - Character array containing the current Coordinated Universal Time (UTC) value in
the CSP. The value is valid if the CSSM_CSP_TOK_CLOCK_EXISTS flag is true. The time is
represented in the format YYYYMMDDhhmmssxx (4 characters for the year; 2 characters each for the
month, day, hour, minute, and second; and 2 additional reserved ‘0’characters).

UserLabel - A NULL-terminated string containing the label of the token.

UserCACertificate - Certificate of the Certificate Authority (CA).

2.4.16 CSSM_HEADERVERSION

This data structure represents the version number of a key header structure. This version number is an
integer that increments with each format revision of CSSM_KEYHEADER. The current revision number
is represented by CSSM_KEYHEADER_VERSION, which equals 2 in this release of KeyWorks.
typedef uint32 CSSM_HEADERVERSION

#define CSSM_KEYHEADER_VERSION (2)

2.4.17 CSSM_KEY

This structure is used to represent keys in KeyWorks.

typedef struct cssm_key{
 CSSM_KEYHEADER KeyHeader;
 CSSM_DATA KeyData;
} CSSM_KEY, *CSSM_KEY_PTR;

typedef CSSM_KEY CSSM_WRAP_KEY, *CSSM_WRAP_KEY_PTR;

Definitions:
KeyHeader - Header describing the key, fixed length.

KeyData – Data representation of the key, variable length.

Version 1.1.1 IBM KeyWorks Toolkit Page 23

2.4.18 CSSM_KEYHEADER

The key header contains meta-data about a key. It contains information used by a CSP or application when
using the associated key data. The service provider module is responsible for setting the appropriate
values.

typedef struct cssm_keyheader {
 CSSM_HEADERVERSION HeaderVersion;
 CSSM_GUID CspId;
 uint32 BlobType;
 uint32 Format;
 uint32 AlgorithmId;
 uint32 KeyClass;
 uint32 KeySizeInBits;
 uint32 KeyAttr;
 uint32 KeyUsage;
 CSSM_DATE StartDate;
 CSSM_DATE EndDate;
 uint32 WrapAlgorithmId;
 uint32 WrapMode;
 uint32 Reserved;
} CSSM_KEYHEADER, *CSSM_KEYHEADER_PTR;

Definitions:
HeaderVersion - This is the version of the key header structure.

CspId - If known, the Globally Unique ID (GUID) of the CSP that generated the key. This value will
not be known if a key is received from a third party or extracted from a certificate.

BlobType - Describes the basic format of the key data. It can be any one of the following values in
Table 10.

Table 10. Key Blob Type Identifiers

Key Blob Type Identifier Description

CSSM_KEYBLOB_RAW The blob is a clear, raw key.

CSSM_KEYBLOB_RAW_BERDER The blob is a clear key, DER encoded.

CSSM_KEYBLOB_REFERENCE The blob is a reference to a key.

CSSM_KEYBLOB_WRAPPED The blob is a wrapped RAW key.

CSSM_KEYBLOB_WRAPPED_BERDER The blob is a wrapped DER-encoded key.

CSSM_KEYBLOB_OTHER The blob is a wrapped DER-encoded key.

Format - Describes the detailed format of the key data based on the value of the BlobType field. If the
blob type has a nonreference basic type, then a CSSM_KEYBLOB_RAW_FORMAT identifier must
be used, otherwise a CSSM_KEYBLOB_REF_FORMAT identifier is used. Any of the following
values in Table 11 are valid as format identifiers.

Version 1.1.1 IBM KeyWorks Toolkit Page 24

Table 11. Key Blob Format Identifiers

Key Blob Format Identifier Description

CSSM_KEYBLOB_RAW_FORMAT_NONE No further conversion needs to
be done.

CSSM_KEYBLOB_RAW_FORMAT_PKCS1 RSA PKCS1 V1.5

CSSM_KEYBLOB_RAW_FORMAT_PKCS3 RSA PKCS3 V1.5

CSSM_KEYBLOB_RAW_FORMAT_MSCAPI Microsoft CAPI V2.0

CSSM_KEYBLOB_RAW_FORMAT_PGP PGP

CSSM_KEYBLOB_RAW_FORMAT_FIPS186 U.S. Gov. FIPS 186 - DSS V

CSSM_KEYBLOB_RAW_FORMAT_BSAFE RSA BSAFE V3.0

CSSM_KEYBLOB_RAW_FORMAT_PKCS11 RSA PKCS11 V2.0

CSSM_KEYBLOB_RAW_FORMAT_CDSA Intel CDSA

CSSM_KEYBLOB_RAW_FORMAT_OTHER Other, CSP defined

CSSM_KEYBLOB_REF_FORMAT_INTEGER Reference is a number or handle.

CSSM_KEYBLOB_REF_FORMAT_STRING Reference is a string or name.

CSSM_KEYBLOB_REF_FORMAT_OTHER Other, CSP defined

AlgorithmId - The algorithm for which the key was generated. This value does not change when the
key is wrapped. Any of the defined KeyWorks algorithm IDs may be used.

KeyClass - Class of key contained in the key blob. Valid key classes are as follows in Table 12.

Table 12. Key Class Identifiers

Key Class Identifier Description

CSSM_KEYCLASS_PUBLIC_KEY Key is a public key.

CSSM_KEYCLASS_PRIVATE_KEY Key is a private key.

CSSM_KEYCLASS_SESSION_KEY Key is a session or symmetric key.

CSSM_KEYCLASS_SECRET_PART Key is part of secret key.

CSSM_KEYCLASS_OTHER Other.

KeySizeInBits - This is the logical size of the key in bits. The logical size is the value referred to when
describing the length of the key. For instance, an RSA key would be described by the size of its
modulus and a DSA key would be represented by the size of its prime. Symmetric key sizes describe
the actual number of bits in the key. For example, Data Encryption Standard (DES) keys would be 64
bits and an RC4 key could range from 1 to 128 bits.

KeyAttr - Attributes of the key represented by the data. These attributes are used by CSPs to convey
information about stored or referenced keys. The attributes are represented as a bit-mask (see Table 13).

Version 1.1.1 IBM KeyWorks Toolkit Page 25

Table 13. Key Attribute Flags

Attribute Description

CSSM_KEYATTR_PERMANENT Key is stored persistently in the CSP, i.e.,
PKCS11 token object.

CSSM_KEYATTR_PRIVATE Key is a private object and protected by either
user login, a password, or both.

CSSM_KEYATTR_MODIFIABLE Key or its attributes can be modified.

CSSM_KEYATTR_SENSITIVE Key is sensitive. It may only be extracted from
the CSP in a wrapped state. It will always be
false for raw keys.

CSSM_KEYATTR_ALWAYS_SENSITIVE Key has always been sensitive. It will always be
false for raw keys.

CSSM_KEYATTR_EXTRACTABLE Key is extractable from the CSP. If this bit is not
set, the key is either not stored in the CSP or
cannot be extracted from the CSP under any
circumstances. It will always be false for raw
keys.

CSSM_KEYATTR_NEVER_EXTRACTABLE Key has never been extractable. It will always be
false for raw keys.

KeyUsage - A bit-mask representing the valid uses of the key. Any of the following values are valid in
Table 14.

Table 14. Key Usage Flags

Usage Mask Description

CSSM_KEYUSE_ANY Key may be used for any purpose supported by the
algorithm.

CSSM_KEYUSE_ENCRYPT Key may be used for encryption.

CSSM_KEYUSE_DECRYPT Key may be used for decryption.

CSSM_KEYUSE_SIGN Key can be used to generate signatures. For symmetric
keys, this represents the ability to generate MACs.

CSSM_KEYUSE_VERIFY Key can be used to verify signatures. For symmetric
keys, this represents the ability to verify MACs.

CSSM_KEYUSE_SIGN_RECOVER Key can be used to perform signatures with message
recovery. This form of a signature is generated using the
CSSM_EncryptData API with the algorithm mode set to
CSSM_ALGMODE_PRIVATE_KEY. This attribute is
only valid for asymmetric algorithms.

CSSM_KEYUSE_VERIFY_RECOVER Key can be used to verify signatures with message
recovery. This form of a signature verified using the
CSSM_DecryptData API with the algorithm mode set to
CSSM_ALGMODE_PRIVATE_KEY. This attribute is
only valid for asymmetric algorithms.

CSSM_KEYUSE_WRAP Key can be used to wrap another key.

CSSM_KEYUSE_UNWRAP Key can be used to unwrap a key.

CSSM_KEYUSE_DERIVE Key can be used as the source for deriving other keys.

Version 1.1.1 IBM KeyWorks Toolkit Page 26

StartDate - Date from which the corresponding key is valid. All fields of the CSSM_DATA structure
will be set to zero if the date is unspecified or unknown. This date is not enforced by the CSP.

EndDate - Data that the key expires and can no longer be used. All fields of the CSSM_DATA
structure will be set to zero if the date is unspecified or unknown. This date is not enforced by the
CSP.

WrapAlgorithmId - If the key data contains a wrapped key, this field contains the algorithm used to
create the wrapped blob. This field will be set to CSSM_ALGID_NONE if the key is not wrapped.

WrapMode - If the wrapping algorithm supports multiple wrapping modes, this field contains the mode
used to wrap the key. This field is ignored if the WrapAlgorithmId is CSSM_ALGID_NONE.

Reserved - This field is reserved for future use. It should always be set to zero.

2.4.19 CSSM_KEY_SIZE

This structure holds the key size and the effective key size for a given key. The metric used is bits. The
number of effective bits is the number of key bits that can be used in a cryptographic operation compared
with the number of bits that may be present in the key. When the number of effective bits is less than the
number of actual bits, this is known as dumbing down.

typedef struct cssm_key_size {
 uint32 KeySizeInBits; /* Key size in bits */
 uint32 EffectiveKeySizeInBits; /* Effective key size in bits */
} CSSM_KEYZIZE, *CSSM_KEYSIZE_PTR;

Definitions:
KeySizeInBits - The actual number of bits in a key.

EffectiveKeySizeInBits - The number of key bits that can be used for cryptographic operations.

2.4.20 CSSM_KEY_TYPE

typedef uint32 CSSM_KEY_TYPE, *CSSM_KEY_TYPE_PTR;

2.4.21 CSSM_NOTIFY_CALLBACK

This data structure defines a pointer to a function that applications can use to invoke an application-
supplied function.

typedef CSSM_RETURN (CSSMAPI *CSSM_NOTIFY_CALLBACK)
 (CSSM_MODULE_HANDLE ModuleHandle,
 uint32 Application,
 uint32 Reason,
 void * Param)

Definitions:
ModuleHandle - Handle of the module to which the notification applies.

Application - Application-specific context indicator. This value is specified when a service provider
module is attached.

Reason - One of the values specified below in Table 15.

Version 1.1.1 IBM KeyWorks Toolkit Page 27

Table 15. CSSM_NOTIFY Reason Values

Reason Value

CSSM_NOTIFY_SURRENDER 0

CSSM_NOTIFY_COMPLETE 1

CSSM_NOTIFY_DEVICE_REMOVED 2

CSSM_NOTIFY_DEVICE_INSERTED 3

Param - Used by the module that triggers the notification to pass relevant information about the
notification to the application.

2.4.22 CSSM_PADDING

typedef enum cssm_padding {
 CSSM_PADDING_NONE = 0,
 CSSM_PADDING_CUSTOM = CSSM_PADDING_NONE+1,
 CSSM_PADDING_ZERO = CSSM_PADDING_NONE+2,
 CSSM_PADDING_ONE = CSSM_PADDING_NONE+3,
 CSSM_PADDING_ALTERNATE = CSSM_PADDING_NONE+4,
 CSSM_PADDING_FF = CSSM_PADDING_NONE+5,
 CSSM_PADDING_PKCS5 = CSSM_PADDING_NONE+6,
 CSSM_PADDING_PKCS7 = CSSM_PADDING_NONE+7,
 CSSM_PADDING_CipherStealing = CSSM_PADDING_NONE+8,
 CSSM_PADDING_RANDOM = CSSM_PADDING_NONE+9
} CSSM_PADDING;

2.4.23 CSSM_QUERY_SIZE_DATA

typedef struct cssm_query_size_data {
 uint32 SizeInputBlock;
 uint32 SizeOutputBlock;
} CSSM_QUERY_SIZE_DATA, *CSSM_QUERY_SIZE_DATA_PTR

Definitions:
SizeInputBlock - The size of the input block in bytes.

SizeOutputBlock - The size of the output block in bytes.

2.4.24 CSSM_RANGE

typedef struct cssm_range {
uint32 Min;/* inclusive minimium value */
uint32 Max;/* inclusive maximium value */
} CSSM_RANGE, *CSSM_RANGE_PTR

Definitions:
Min - Minimum value in the range.

Max - Maximum value in the range.

Version 1.1.1 IBM KeyWorks Toolkit Page 28

2.4.25 CSSM_SOFTWARECSPSUBSERVICEINFO

typedef struct cssm_softwarecspsubserviceinfo {
 uint32 NumberOfCapabilities;
 CSSM_CSP_CAPABILITY_PTR CapabilityList;
 void* Reserved;
} CSSM_SOFTWARE_CSPSUBSERVICE_INFO, *CSSM_SOFTWARE_CSPSUBSERVICE_INFO_PTR;

Definitions:
NumberOfCapabilities - Number of capabilities available from the CSP.

CapabilityList - Pointer to an array of CSSM_CSP_CAPABILITY structures that represent the
capabilities available from the CSP.

Reserved - Reserved for future use.

2.4.26 CSSM_SPI_FUNC_TBL

This data structure contains function pointers to the calling application’s memory management routines.
These routines will be used by the module to allocate and free any memory , which belongs to or will
belong to the application.

typedef struct cssm_spi_func_tbl {
 void *(*malloc_func) (CSSM_HANDLE AddInHandle, uint32 Size);
 void (*free_func) (CSSM_HANDLE AddInHandle, void *MemPtr);
 void *(*realloc_func) (CSSM_HANDLE AddInHandle, void *MemPtr, uint32 Size);
 void *(*calloc_func) (CSSM_HANDLE AddInHandle, uint32 Num, uint32 Size);
} CSSM_SPI_MEMORY_FUNCS, *CSSM_SPI_MEMORY_FUNCS_PTR;

Version 1.1.1 IBM KeyWorks Toolkit Page 29

2.5 Cryptographic Operations

2.5.1 CSP_DecryptData

CSSM_RETURN CSP_DecryptData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
uint32 *bytesDecrypted,
CSSM_DATA_PTR RemData)

This function decrypts the supplied encrypted data. The CSP_QuerySize function can be used to
estimate the output buffer size required.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

CipherBufs (input)
A pointer to one or more CSSM_DATA structures containing the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

ClearBufs (output)
A pointer to one or more CSSM_DATA structures for the decrypted data.

ClearBufCount (input)
The number of ClearBufs.

bytesDecrypted (output)
A pointer to uint32 for the size of the decrypted data in bytes.

RemData (output)
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be done by
supplying the same input and output buffer.

Version 1.1.1 IBM KeyWorks Toolkit Page 30

See Also
CSP_QuerySize, CSP_EncryptData, CSP_DecryptDataInit, CSP_DecryptDataUpdate,
CSP_DecryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 31

2.5.2 CSP_DecryptDataFinal

CSSM_RETURN CSP_DecryptDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RemData)

This function finalizes the staged decrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be done by
supplying the same input and output buffers.

See Also
CSP_DecryptData, CSP_DecryptDataInit, CSP_DecryptDataUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 32

2.5.3 CSP_DecryptDataInit

CSSM_RETURN CSSM_CSP_DecryptDataInit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged decrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_DecryptData, CSP_DecryptDataUpdate, CSP_DecryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 33

2.5.4 CSP_DecryptDataUpdate

CSSM_RETURN CSP_DecryptDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
uint32 *bytesDecrypted)

This function updates the staged decrypt function. The CSP_QuerySize function can be used to
estimate the output buffer size required for each update call. There may be algorithm-specific and
token-specific rules restricting the lengths of data in CSP_DecryptUpdate calls.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

CipherBufs (input)
A pointer to one or more CSSM_DATA structures containing the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

ClearBufs (output)
A pointer to one or more CSSM_DATA structures for the decrypted data. The output can be
obtained by either filling the caller-supplied buffer or using the application’s memory allocation
functions to allocate spaces. The application has to free the memory in this case. If this is NULL,
an error code CSSM_CSP_INVALID_DATA_POINTER is returned.

ClearBufCount (input)
The number of ClearBufs.

bytesDecrypted (output)
A pointer to uint32 for the size of the decrypted data in bytes.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be done by
supplying the same input and output buffers.

See Also
CSP_QuerySize, CSP_DecryptData, CSP_DecryptDataInit, CSP_DecryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 34

2.5.5 CSP_DeriveKey

CSSM_RETURN CSP_DeriveKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_KEY_PTR BaseKey,
void * Param,
uint32 KeyUsage,
uint32 KeyAttr,
const CSSM_DATA_PTR KeyLabel,
CSSM_KEY_PTR DerivedKey)

This function derives a new asymmetric key using the context and information from the base key.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

BaseKey (input)
The base key used to derive the new key. The base key may be a public key, a private key, or a symmetric
key.

Param (input/output)
This parameter varies depending on the derivation mechanism. Password-based derivation algorithms use
this parameter to return a cipher block chaining initialization vector. Concatenation algorithms will use this
parameter to get the second item to concatenate.

KeyUsage (input)
A bit-mask representing the valid uses of the key.

KeyAttr (input)
A bit-mask representing the attributes of the key represented by the data.

KeyLabel (input/optional)
Pointer to a byte string that will be used as the label for the derived key.

DerivedKey (output)
A pointer to a CSSM_KEY structure that returns the derived key.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 35

2.5.6 CSP_DigestData

CSSM_RETURN CSP_DigestData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Digest)

This function computes a message digest for the supplied data.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Digest (output)
A pointer to the CSSM_DATA structure for the message digest.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this case. If
the output buffer pointer this is NULL, an error code CSSM_CSP_INVALID_DATA_POINTER is
returned.

See Also
CSP_DigestDataInit, CSP_DigestDataUpdate, CSP_DigestDataFinal, CSP_DigestDataClone

Version 1.1.1 IBM KeyWorks Toolkit Page 36

2.5.7 CSP_DigestDataClone

CSSM_RETURN CSP_DigestDataClone (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE oldCCHandle,
CSSM_CC_HANDLE newCCHandle)

This function clones a given staged message digest context with its cryptographic attributes and
intermediate result.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

oldCCHandle (input)
The old handle that describes the context of a staged message digest operation.

newCCHandle (output)
The new handle that describes the cloned context of a staged message digest operation.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
When a digest context is cloned, a new context is created with data associated with the parent
context. Changes made to the parent context after calling this function will not be reflected in the
cloned context. The cloned context could be used with the CSP_DigestDataUpdate and
CSP_DigestDataFinal functions.

See Also
CSP_DigestData, CSP_DigestDataInit, CSP_DigestDataUpdate, CSP_DigestDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 37

2.5.8 CSP_DigestDataFinal

CSSM_RETURN CSP_DigestDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Digest)

This function finalizes the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Digest (output)
A pointer to the CSSM_DATA structure for the message digest.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_DigestData, CSP_DigestDataInit, CSP_DigestDataUpdate, CSP_DigestDataClone

Version 1.1.1 IBM KeyWorks Toolkit Page 38

2.5.9 CSP_DigestDataInit

CSSM_RETURN CSP_DigestDataInit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_DigestData, CSP_DigestDataUpdate, CSP_DigestDataClone, CSP_DigestDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 39

2.5.10 CSP_DigestDataUpdate

CSSM_RETURN CSP_DigestDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the staged message digest function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Return Value
A KeyWorks return value. This function returns CSSM_OK if successful and returns an error
code if an error has occurred.

See Also
CSP_DigestData, CSP_DigestDataInit, CSP_DigestDataClone, CSP_DigestDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 40

2.5.11 CSP_EncryptData

CSSM_RETURN CSP_EncryptData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 *bytesEncrypted,
CSSM_DATA_PTR RemData)

This function encrypts the supplied data using information in the context. The CSP_QuerySize
function can be used to estimate the output buffer size required.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

ClearBufs (input)
A pointer to one or more CSSM_DATA structures containing the clear data.

ClearBufCount (input)
The number of ClearBufs.

CipherBufs (output)
A pointer to one or more CSSM_DATA structures for the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

bytesEncrypted (output)
A pointer to uint32 for the size of the encrypted data in bytes.

RemData (output)
A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be done by
supplying the same input and output buffers.

Version 1.1.1 IBM KeyWorks Toolkit Page 41

See Also
CSP_QuerySize, CSP_DecryptData, CSP_EncryptDataInit, CSP_EncryptDataUpdate,
CSP_EncryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 42

2.5.12 CSP_EncryptDataFinal

CSSM_RETURN CSP_EncryptDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR RemData)

This function finalizes the staged encrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last encrypted block containing padded data.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be done by
supplying the same input and output buffers.

See Also
CSP_EncryptData, CSP_EncryptDataInit, CSP_EncryptDataUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 43

2.5.13 CSP_EncryptDataInit

CSSM_RETURN CSP_EncryptDataInit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged encrypt function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_EncryptData, CSP_EncryptDataUpdate, CSP_EncryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 44

2.5.14 CSP_EncryptDataUpdate

CSSM_RETURN CSP_EncryptDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 *bytesEncrypted)

This function updates the staged encrypt function. The CSP_QuerySize function can be used to
estimate the output buffer size required for each update call. There may be algorithm-specific and
token-specific rules restricting the lengths of data in CSP_EncryptUpdate calls.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

ClearBufs (input)
A pointer to one or more CSSM_DATA structures containing the clear data.

ClearBufCount (input)
The number of ClearBufs.

CipherBufs (output)
A pointer to one or more CSSM_DATA structures for the encrypted data.

CipherBufCount (input)
The number of CipherBufs.

bytesEncrypted (output)
A pointer to uint32 for the size of the encrypted data in bytes.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be done by
supplying the same input and output buffer.

See Also
CSP_QuerySize, CSP_EncryptData, CSP_EncryptDataInit, CSP_EncryptDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 45

2.5.15 CSP_GenerateAlgorithmParams

CSSM_RETURN CSP_GenerateAlgorithmParams (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 ParamBits,
CSSM_DATA_PTR Param)

This function generates algorithm parameters for the specified context. These parameters include
Diffie-Hellman key agreement parameters and DSA key generation parameters.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

ParamBits (input)
Used to generate parameters for the algorithm (for example, Diffie-Hellman).

Param (output)
Pointer to CSSM_DATA structure used to obtain the key exchange parameter and the size of the key
exchange parameter in bytes.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Version 1.1.1 IBM KeyWorks Toolkit Page 46

2.5.16 CSP_GenerateKey

CSSM_RETURN CSP_GenerateKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 KeyUsage,
uint32 KeyAttr,
const CSSM_DATA_PTR KeyLabel,
CSSM_KEY_PTR Key)

This function generates a symmetric key.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

KeyUsage (input)
A bit-mask representing the valid uses of the key.

KeyAttr (input)
A bit-mask representing the attributes of the key represented by the data.

KeyLabel (input)
Pointer to a byte string that will be used as the label for the key.

Key (output)
Pointer to CSSM_ KEY structure used to obtain the key.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_GenerateRandom, CSSM_GenerateKeyPair

Version 1.1.1 IBM KeyWorks Toolkit Page 47

2.5.17 CSP_GenerateKeyPair

CSSM_RETURN CSP_GenerateKeyPair (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 PublicKeyUsage,
uint32 PublicKeyAttr,
const CSSM_DATA_PTR PublicKeyLabel,
CSSM_KEY_PTR PublicKey,
uint32 PrivateKeyUsage,
uint32 PrivateKeyAttr,
const CSSM_DATA_PTR PrivateKeyLabel,
CSSM_KEY_PTR PrivateKey)

This function generates an asymmetric key pair.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

PublicKeyUsage (input)
A bit-mask representing the valid uses of the public key.

PublicKeyAttr (input)
A bit-mask representing the attributes of the public key represented by the data. These attributes
can be used to convey information about stored or referenced keys.

PublicKeyLabel(input)
Pointer to a byte string that will be used as the label for the public key.

PublicKey (output)
Pointer to CSSM_KEY structure used to obtain the public key.

PrivateKeyUsage (input)
A bit-mask representing the valid uses of the private key.

PrivateKeyAttr (input)
A bit-mask representing the attributes of the private key represented by the data. These attributes
can be used to convey information about stored or referenced keys.

PrivateKeyLabel(input)
Pointer to a byte string that will be used as the label for the private key.

PrivateKey (output)
Pointer to CSSM_ KEY structure used to obtain the private key.

Version 1.1.1 IBM KeyWorks Toolkit Page 48

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSSM_GenerateRandom, CSSM_GenerateKey

Version 1.1.1 IBM KeyWorks Toolkit Page 49

2.5.18 CSP_GenerateMac

CSSM_RETURN CSP_GenerateMac (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Mac)

This function generates a message authentication code for the supplied data.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Mac (output)
A pointer to the CSSM_DATA structure for the message authentication code.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_GenerateMacInit, CSP_GenerateMacUpdate, CSP_GenerateMacFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 50

2.5.19 CSP_GenerateMacFinal

CSSM_RETURN CSP_GenerateMacFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Mac)

This function finalizes the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Mac (output)
A pointer to the CSSM_DATA structure for the message authentication code.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_GenerateMac, CSP_GenerateMacInit, CSP_GenerateMacUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 51

2.5.20 CSP_GenerateMacInit

CSSM_RETURN CSP_GenerateMacInit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_GenerateMac, CSP_GenerateMacUpdate, CSP_GenerateMacFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 52

2.5.21 CSP_GenerateMacUpdate

CSSM_RETURN CSP_GenerateMacUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the staged message authentication code function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the supplied data.

DataBufCount (input)
The number of DataBufs.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_GenerateMac, CSP_GenerateMacInit, CSP_GenerateMacFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 53

2.5.22 CSP_GenerateRandom

CSSM_RETURN CSP_GenerateRandom (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
CSSM_DATA_PTR RandomNumber)

This function generates random data.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

RandomNumber (output)
Pointer to CSSM_DATA structure used to obtain the random number and the size of the random
number in bytes.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Version 1.1.1 IBM KeyWorks Toolkit Page 54

2.5.23 CSP_QueryKeySizeInBits

CSSM_RETURN CSP_QueryKeySizeInBits (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_KEY_SIZE_PTR KeySize)

This function queries a CSP for the effective and real size of a key in bits.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform this function. If a NULL handle is
specified, KeyWorks returns error.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

KeySize (output)
Pointer to a CSSM_KEYSIZE data structure to receive the size of the key in bits.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 55

2.5.24 CSP_QuerySize

CSSM_RETURN CSP_QuerySize (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
CSSM_BOOL Encrypt,
uint32 QuerySizeCount,
CSSM_QUERY_SIZE_DATA_PTR DataBlock)

This function queries for the size of the output data for Signature, Message Digest, and Message
Authentication Code context types, and queries for the algorithm block size or the size of the
output data for encryption and decryption context types. For encryption, the total size of all output
buffers must always be a multiple of the output block size. This function also can be used to
query the output size requirements for the intermediate steps of a staged cryptographic operation
(for example, CSP_EncryptDataUpdate and CSP_DecryptDataUpdate). There may be algorithm-
specific and token-specific rules restricting the lengths of data following data update calls.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes associated with this context.

Encrypt (input)
This parameter describes whether the SizeInputBlock in DataBlock is for encryption
(CSSM_TRUE) or decryption (CSSM_FALSE).

QuerySizeCount (input)
This parameter describes the number of DataBlocks.

DataBlock (input/output)
Pointer to a CSSM_QUERY_SIZE_DATA structure which contains one SizeInputBlock and one
SizeOutputBlock. The function returns the size of the output in bytes in SizeOutputBlock for the size of the
input.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_EncryptData, CSP_EncryptDataUpdate, CSP_DecryptData, CSP_DecryptDataUpdate,
CSP_SignData, CSP_VerifyData, CSP_DigestData, CSP_GenerateMac

Version 1.1.1 IBM KeyWorks Toolkit Page 56

2.5.25 CSP_SignData

CSSM_RETURN CSP_SignData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Signature)

This function signs data using the private key associated with the public key specified in the
context.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be signed.

DataBufCount (input)
The number of DataBufs to be signed.

Signature (output)
A pointer to the CSSM_DATA structure for the signature.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_VerifyData, CSP_SignDataInit, CSP_SignDataUpdate, CSP_SignDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 57

2.5.26 CSP_SignDataFinal

CSSM_RETURN CSP_SignDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Signature)

This function completes the final stage of the sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Signature (output)
A pointer to the CSSM_DATA structure for the signature.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Comments
The output can be obtained by either filling the caller-supplied buffer or using the application’s
memory allocation functions to allocate space. The application has to free the memory in this
case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

See Also
CSP_SignData, CSP_SignDataInit, CSP_SignDataUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 58

2.5.27 CSP_SignDataInit

CSSM_RETURN CSP_SignDataInit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_SignData, CSP_SignDataUpdate, CSP_SignDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 59

2.5.28 CSP_SignDataUpdate

CSSM_RETURN CSP_SignDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the data for the staged sign data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be signed.

DataBufCount (input)
The number of DataBufs to be signed.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_SignData, CSP_SignDataInit, CSP_SignDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 60

2.5.29 CSP_UnwrapKey

CSSM_RETURN CSP_UnwrapKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_CRYPTO_DATA_PTR NewPassPhrase,
const CSSM_WRAP_KEY_PTR WrappedKey,
uint32 StorageMask,
const CSSM_DATA_PTR KeyLabel,
CSSM_KEY_PTR UnwrappedKey)

This function unwraps the data using the context.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

NewPassPhrase (input)
The passphrase or a callback function to be used to obtain the passphrase. If the unwrapped key is a private
key and the persistent object mode is true, then the private key is unwrapped and securely stored by the CSP.
The NewPassPhrase is used to secure the private key after it is unwrapped. It is assumed that a known
public key is associated with the private key.

WrappedKey (input)
A pointer to the wrapped key. The wrapped key may be a symmetric key or the private key of a
public/private keypair. The unwrapping method is specified as meta-data within the wrapped key, and is not
specified outside of the wrapped key.

StorageMask (input)
A storage mask that is used by the CSP to determine how to store the unwrapped key and how to return that
key to the application.

KeyLabel (input/optional)
Pointer to a byte string that will be used as the label for the unwrapped key.

UnwrappedKey (output)
A pointer to a CSSM_KEY structure that returns the unwrapped key.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_WrapKey

Version 1.1.1 IBM KeyWorks Toolkit Page 61

2.5.30 CSP_VerifyData

CSSM_BOOL CSP_VerifyData (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
const CSSM_DATA_PTR Signature)

This function verifies the input data against the provided signature.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be verified.

DataBufCount (input)
The number of DataBufs to be verified.

Signature (input)
A pointer to a CSSM_DATA structure which contains the signature and the size of the signature.

Return Value
A CSSM_TRUE return value signifies the signature was successfully verified. When
CSSM_FALSE is returned, either the signature was not successfully verified or an error has
occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_SignData, CSP_VerifyDataInit, CSP_VerifyDataUpdate, CSP_VerifyDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 62

2.5.31 CSP_VerifyDataFinal

CSSM_BOOL CSP_VerifyDataFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle
const CSSM_DATA_PTR Signature)

This function finalizes the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Signature (input)
A pointer to a CSSM_DATA structure that contains the starting address for the signature to verify
against and the length of the signature in bytes.

Return Value
A CSSM_TRUE return value signifies the signature successfully verified. When CSSM_FALSE
is returned, either the signature was not successfully verified or an error has occurred. The use
CSSM_GetError to obtain the error code.

See Also
CSP_VerifyData, CSP_VerifyDataInit, CSP_VerifyDataUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 63

2.5.32 CSP_VerifyDataInit

CSSM_RETURN CSP_VerifyDataInit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_VerifyDataUpdate, CSP_VerifyDataFinal, CSP_VerifyData

Version 1.1.1 IBM KeyWorks Toolkit Page 64

2.5.33 CSP_VerifyDataUpdate

CSSM_RETURN CSP_VerifyDataUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the data to the staged verify data function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the
memory functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-
managed information.

DataBufs (input)
A pointer to one or more CSSM_DATA structures containing the data to be verified.

DataBufCount (input)
The number of DataBufs to be verified.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_VerifyData, CSP_VerifyDataInit, CSP_VerifyDataFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 65

2.5.34 CSP_VerifyMac

CSSM_RETURN CSP_VerifyMac (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Mac)

This function verifies a message authentication code for the supplied data.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DataBufs (input)
A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufs.

Mac (input)
A pointer to the CSSM_DATA structure containing the MAC to verify.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_VerifyMacInit, CSSM_VerifyMacUpdate, CSSM_VerifyMacFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 66

2.5.35 CSP_VerifyMacFinal

CSSM_RETURN CSP_VerifyMacFinal (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_DATA_PTR Mac)

This function finalizes the staged message authentication code verification function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Mac (input)
A pointer to the CSSM_DATA structure containing the MAC to verify.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_VerifyMac, CSSM_VerifyMacInit, CSSM_VerifyMacUpdate

Version 1.1.1 IBM KeyWorks Toolkit Page 67

2.5.36 CSP_VerifyMacInit

CSSM_RETURN CSP_VerifyMacInit (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context)

This function initializes the staged message authentication code verification function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_VerifyMac, CSSM_VerifyMacUpdate, CSSM_VerifyMacFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 68

2.5.37 CSP_VerifyMacUpdate

CSSM_RETURN CSP_VerifyMacUpdate (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

This function updates the staged message authentication code verification function.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle that describes the context of this cryptographic operation used to link to the CSP-managed
information.

DataBufs (input)
A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.

DataBufCount (input)
The number of DataBufs.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_VerifyMac, CSSM_VerifyMacInit, CSSM_VerifyMacFinal

Version 1.1.1 IBM KeyWorks Toolkit Page 69

2.5.38 CSP_WrapKey

CSSM_RETURN CSP_WrapKey (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
const CSSM_KEY_PTR Key,
CSSM_WRAP_KEY_PTR WrappedKey)

This function wraps the supplied key using the context. The key may be a symmetric key or the
public key of a public/private key pair. If a symmetric key is specified it is wrapped. If a public
key is specified, the passphrase is used to unlock the corresponding private key, which is then
wrapped.

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform upcalls to KeyWorks for the memory
functions managed by KeyWorks.

CCHandle (input)
The handle to the context that describes this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

PassPhrase (input)
The passphrase or a callback function to be used to obtain the passphrase that can be used by the CSP to
unlock the private key before it is wrapped. This input is ignored when wrapping a symmetric, secret key.

Key (input)
A pointer to the target key to be wrapped. If a private key is to be wrapped, the target key is the public key
associated with the private key. If a symmetric key is to be wrapped, the target key is that symmetric key.

WrappedKey (output)
A pointer to a CSSM_KEY structure that returns the wrapped key.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSP_UnwrapKey

Version 1.1.1 IBM KeyWorks Toolkit Page 70

2.6 Cryptographic Sessions and Logon

2.6.1 CSP_ChangeLoginPassword

CSSM_RETURN CSP_ChangeLoginPassword (CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR OldPassword,
const CSSM_CRYPTO_DATA_PTR NewPassword)

Changes the login password of the current login session from the old password to the new
password. The requesting user must have a login session in process.

Parameters
CSPHandle (input)
Handle of the CSP supporting the current login session.

OldPassword (input)
Current password used to log into the token.

NewPassword (input)
New password to be used for future logins by this user to this token.

Return Value
CSSM_OK if login is successful, CSSM_FAIL if login fails. Use CSSM_GetError to determine
the exact error.

See Also
CSP_Login, CSP_Logout

Version 1.1.1 IBM KeyWorks Toolkit Page 71

2.6.2 CSP_Login

CSSM_RETURN CSP_Login (CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR Password,
const CSSM_DATA_PTR Reserved)

Logs the user into the CSP, allowing for multiple login types and parallel operation notification.

Parameters
CSPHandle (input)
Handle of the CSP to log in.

Password (input)
Password used to log into the token.

Reserved (input)
This field is reserved for future use. The value NULL should always be given.

Return Value
CSSM_OK if login is successful, CSSM_FAIL if login fails. Use CSSM_GetError to determine
the exact error.

See Also
CSP_ChangeLoginPassword, CSP_Logout

Version 1.1.1 IBM KeyWorks Toolkit Page 72

2.6.3 CSP_Logout

CSSM_RETURN CSP_Logout (CSSM_CSP_HANDLE CSPHandle)

Terminates the login session associated with the specified CSP Handle.

Parameters
CSPHandle (input)
Handle for the target CSP.

Return Value
CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to determine
the exact error.

See Also
CSP_Login, CSP_ChangePassword

Version 1.1.1 IBM KeyWorks Toolkit Page 73

2.7 Extensibility Functions

The CSP_PassThrough function is provided to allow CSP developers to extend the cryptographic
functionality of the KeyWorks API. Because it is only exposed to KeyWorks as a function pointer, its
name internal to the CSP can be assigned at the discretion of the CSP module developer. However, its
parameter list and return value must match what is shown below in Section 2.7.1.

2.7.1 CSP_PassThrough

void * CSP_PassThrough (CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT_PTR Context,
uint32 PassThroughId,
const void * InData)

Parameters
CSPHandle (input)
The handle that describes the add-in CSP module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes associated with this context.

PassThroughId (input)
An identifier specifying the custom function to be performed.

InData (input)
A pointer to a module, implementation-specific structure containing parameters to be interpreted
in a function-specific manner by the requested CSP module. This parameter can be used as a
pointer to an array of void pointers.

Return Value
A pointer to a module, implementation-specific structure containing the output from the
passthrough function. The output data must be interpreted by the calling application based on
externally available information. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 74

Chapter 3. Cryptographic Service Provider Function
Examples

3.1 Attach/Detach Example

The CSP module is responsible for performing certain operations when KeyWorks attaches to and detaches
from it. These operations should be performed in a function called AddInAuthenticate, which must be
exported by the CSP module. The AddInAuthenticate function will be called by the framework when the
module is loaded. The steps shown in Section 3.1.1 must be performed in order for the attach process to
work properly.

In the code example in Section 3.1.1, it is assumed that the CSSM entry points, such as
CSSM_RegisterServices, have been resolved at link time. If not, the module may call GetProcAddress to
resolve the entry points. Also, this AddInAuthenticate indicates a CSP module which implements only the
DecryptData and EncryptData functions. The unimplemented functions in the function table are initialized
to NULL, and not reassigned.

Version 1.1.1 IBM KeyWorks Toolkit Page 75

3.1.1 AddInAuthenticate

#include “cssm.h”

CSSM_SPI_MEMORY_FUNCS CssmMemFuncs;
CSSM_GUID CspGuid =
{ 0x83badc39, 0xfac1, 0x11cf, { 0x81, 0x72, 0x0, 0xaa, 0x0, 0xb1, 0x99, 0xdd } };

CSSM_RETURN CSSMAPI AddInAuthenticate(char* cssmCredentialPath, char*
cssmSection)
{

CSSM_SPI_CSP_FUNCS CssmCSPFuncs;
CSSM_REGISTRATION_INFO CssmRegInfo;
CSSM_MODULE_FUNCS CssmModuleFuncs[1];
CSSM_RETURN retcode;

// initialize tables
memset(&CssmCSPFuncs, 0, sizeof(CSSM_SPI_CSP_FUNCS));
memset(&CssmRegInfo, 0, sizeof(CSSM_REGISTRATION_INFO));

// Now register services
CssmCSPFuncs.DecryptData = DecryptData;
CssmCSPFuncs.EncryptData = EncryptData;

CssmRegInfo.Initialize = Initialize;
CssmRegInfo.Terminate = Uninitialize;
CssmRegInfo.EventNotify = EventNotify;
CssmRegInfo.ThreadSafe = CSSM_TRUE;
CssmRegInfo.ServiceSummary = CSSM_SERVICE_CSP;
CssmRegInfo.NumberOfServiceTables = 1;
CssmRegInfo.Services = CssmModuleFuncs;

CssmModuleFuncs[0].ServiceType = CSSM_SERVICE_CSP;
CssmModuleFuncs[0].CspFuncs = &CssmCSPFuncs;

retcode = CSSM_RegisterServices(&CspGuid, &CssmRegInfo, &CssmMemFuncs,
NULL);

return retcode;
}

Version 1.1.1 IBM KeyWorks Toolkit Page 76

3.2 Extensibility Functions Examples

This section contains a sample implementation of the passthrough function in the CSP library.

3.2.1 CSP_PassThrough

Some CSP vendors may need to provide functionality that is not part of the KeyWorks API. These functions are called
private functions. Applications access the CSP private functions by using the CSSM_PassThrough API. The
following is an example CSP_PrivateFunctions function.

Version 1.1.1 IBM KeyWorks Toolkit Page 77

/* PassThrough IDs */
typedef enum csp_custom_function_id {
 CSP_CUSTOMID_CHANGE_PASSWORD = 0,
 CSP_CUSTOMID_IMPORT_PRIKEY = 1,
 CSP_CUSTOMID_EXPORT_PRIKEY = 2,
} CSP_CUSTOM_FUNCTION_ID;

/*---
* Name: CSP_PassThrough
*
* Description:
* This function allows applications to call KeyWorks CSP module-specific
operations.
* Examples of KeyWorks CSP module-specific operations include:
* csp_ChangePassword
* csp_ImportPrivateKey
* csp_ExportPrivateKey
*
* Parameters:
* CSPHandle (input) : The handle that describes the add-in CSP module used by
* the passthrough function.
* CCHandle (input) : Handle identifying a Cryptographic Context which
* may be used by the passthrough function
* Context : Pointer to CSSM_CONTEXT structure that describes
* the attributes associated with this context.
* PassThroughId (input) : An identifier assigned by the KeyWorks CSP module
* to indicate the exported function to perform.
* InData (input) : Parameters to be interpreted in a
* function-specific manner by the KeyWorks CSP module.
*
* Return value:
* Output from the passthrough function.
* The output data must be interpreted by the calling application
* based on externally available information.
*
* Error Codes:
* CSSM_CSP_INVALID_CSP_HANDLE
* CSSM_CSP_INVALID_CC_HANDLE
* CSSM_CSP_INVALID_DATA_POINTER
* CSSM_CSP_INVALID_PASSTHROUGH_ID
* CSSM_CSP_INVALID_PASSTHROUGH_PARAMS
* CSSM_CSP_UNSUPPORTED_OPERATION
* CSSM_CSP_PASS_THROUGH_FAIL
---/
void * CSSMAPI CSP_PassThrough (CSSM_CSP_HANDLE CSPHandle,
 CSSM_CC_HANDLE CCHandle,
 const CSSM_CONTEXT_PTR Context,
 uint32 PassThroughId,
 void * InData)
{
 /* Initializations */
 /* Check inputs */
 /* Check that this is a recognized PassThroughId */

/* Call the requested function */
switch (PassThroughId) {
case CSP_CUSTOMID_CHANGE_PASSWORD:

Version 1.1.1 IBM KeyWorks Toolkit Page 78

 return csp_ChangePassword(InData);
case CSP_CUSTOMID_IMPORT_PRIKEY:
 return csp_ImportPrivateKey(InData);
case CSP_CUSTOMID_EXPORT_PRIKEY:
 return csp_ExportPrivateKey(InData);
default:
 CSSM_SetError(&my_csp_guid, CSSM_CSP_UNSUPPORTED_OPERATION);
return NULL;
}
return NULL;
};

Version 1.1.1 IBM KeyWorks Toolkit Page 79

Appendix A. IBM KeyWorks Errors

This section describes the error handling features in KeyWorks that provide a consistent mechanism across
all layers of KeyWorks for returning errors to the caller. All Cryptographic Service Provider (CSP) service
provider interface (SPI) functions return variables of the following types:

• CSSM_RETURN - An enumerated type consisting of CSSM_OK and CSSM_FAIL. If it is
CSSM_FAIL, an error code indicating the reason for failure can be obtained by calling
CSSM_GetError.

• CSSM_BOOL - KeyWorks functions returning this data type return either CSSM_TRUE or
CSSM_FALSE. If the function returns CSSM_FALSE, an error code may be available (but not
always) by calling CSSM_GetError.

• A pointer to a data structure, a handle, a file size, or whatever is logical for the function to return. An
error code may be available (but not always) by calling CSSM_GetError.

The information returned from CSSM_GetError includes both the error number and a Globally Unique ID
(GUID) that associates the error with the module that set it. Each module must have a mechanism for
reporting their errors to the calling application. In general, there are two types of errors a module can
return:

• Errors defined by KeyWorks that are common to a particular type of service provider module

• Errors reserved for use by individual service provider modules

Since some errors are predefined by KeyWorks, those errors have a set of predefined numeric values that
are reserved by KeyWorks, and cannot be redefined by modules. For errors that are particular to a module,
a different set of predefined values has been reserved for their use. Table 16 lists the range of error
numbers defined by KeyWorks for CSP modules and those available for use with individual CSP modules.

Table 16. CSP Module Error Numbers

Error Number Range Description

1000 – 1999 CSP errors defined by KeyWorks

2000 - 2999 CSP errors reserved for individual CSP modules

The calling application must determine how to handle the error returned by CSSM_GetError. Detailed
descriptions of the KeyWorks error values are documented in the IBM KeyWorks Toolkit Application
Programming Interface Specification and the cssmerr.h header file. Errors specific to individual CSP
modules are defined in the CSP’s documentation. If a routine does not know how to handle the error, it
may choose to pass the error to its caller.

Version 1.1.1 IBM KeyWorks Toolkit Page 80

A.1 Cryptographic Service Provider Module Errors

Table 17. General CSP Messages and Errors

Error Code Error Name
1001 CSSM_CSP_UNKNOWN_ERROR
1002 CSSM_CSP_REGISTER_ERROR
1003 CSSM_CSP_VERSION_ERROR
1004 CSSM_CSP_CONVERSION_ERROR
1005 CSSM_CSP_NO_TOKENINFO
1006 CSSM_CSP_INTERNAL_ERROR
1007 CSSM_CSP_SERIAL_REQUIRED
1008 CSSM_CSP_NOT_IMPLEMENTED

Table 18. CSP Memory Errors

Error Code Error Name
1010 CSSM_CSP_MEMORY_ERROR
1011 CSSM_CSP_NOT_ENOUGH_BUFFER
1012 CSSM_CSP_ERR_OUTBUF_LENGTH
1013 CSSM_CSP_NO_OUTBUF
1014 CSSM_CSP_ERR_INBUF_LENGTH
1015 CSSM_CSP_ERR_KEYBUF_LENGTH
1016 CSSM_CSP_NO_SLOT

Table 19. Invalid CSP Parameters

Error Code Error Name
1020 CSSM_CSP_INVALID_CSP_HANDLE
1021 CSSM_CSP_INVALID_POINTER
1022 CSSM_CSP_INVALID_CERTIFICATE
1023 CSSM_CSP_INVALID_ALGORITHM
1024 CSSM_CSP_INVALID_WINDOW_HANDLE
1025 CSSM_CSP_INVALID_CALLBACK
1026 CSSM_CSP_INVALID_CONTEXT
1027 CSSM_CSP_INVALID_CONTEXT_HANDLE
1028 CSSM_CSP_INVALID_CONTEXT_POINTER
1029 CSSM_CSP_INVALID_DATA_POINTER
1030 CSSM_CSP_INVALID_DATA_COUNT
1031 CSSM_CSP_INVALID_KEY_LENGTH
1032 CSSM_CSP_INVALID_KEY
1033 CSSM_CSP_INVALID_KEY_POINTER
1034 CSSM_CSP_INVALID_ALGORITHM_MODE
1035 CSSM_CSP_INVALID_PADDING
1036 CSSM_CSP_INVALID_KEY_ATTRIBUTE
1037 CSSM_CSP_INVALID_PARAM_LENGTH
1038 CSSM_CSP_INVALID_IV_SIZE
1039 CSSM_CSP_INVALID_SIGNATURE
1040 CSSM_CSP_INVALID_DEVICE_ID
1041 CSSM_CSP_INVALID_KEYCLASS
1042 CSSM_CSP_INVALID_MODULE_HANDLE
1043 CSSM_CSP_INVALID_KEY_TYPE
1044 CSSM_CSP_INVALID_ITERATION_COUNT

Version 1.1.1 IBM KeyWorks Toolkit Page 81

Table 20. File I/O Errors

Error Code Error Name
1050 CSSM_CSP_FILE_NOT_EXISTS
1051 CSSM_CSP_FILE_NOT_OPEN
1052 CSSM_CSP_FILE_OPEN_FAILED
1053 CSSM_CSP_FILE_CREATE_FAILED
1054 CSSM_CSP_FILE_READ_FAILED
1055 CSSM_CSP_FILE_WRITE_FAILED
1056 CSSM_CSP_FILE_CLOSE_FAILED
1057 CSSM_CSP_FILE_COPY_FAILED
1058 CSSM_CSP_FILE_DELETE_FAILED
1059 CSSM_CSP_FILE_FORMAT_ERROR

Table 21. CSP Cryptographic Errors

Error Code Error Name
1065 CSSM_CSP_PUBKEY_GET_ERROR
1066 CSSM_CSP_QUERY_SIZE_FAILED
1067 CSSM_CSP_UNKNOWN_ALGORITHM
1068 CSSM_CSP_OPERATION_UNSUPPORTED
1069 CSSM_CSP_VECTOROFBUFS_UNSUPPORTED
1070 CSSM_CSP_STAGED_OPERATION_UNSUPPORTED
1071 CSSM_CSP_KEY_MODULUS_UNSUPPORTED
1072 CSSM_CSP_KEY_LENGTH_UNSUPPORTED
1073 CSSM_CSP_PADDING_UNSUPPORTED
1074 CSSM_CSP_IV_SIZE_UNSUPPORTED
1075 CSSM_CSP_GET_APIMEMFUNC_ERROR
1076 CSSM_CSP_INPUT_LENGTH_OVERSIZE
1077 CSSM_CSP_INPUT_LENGTH_ERROR
1078 CSSM_CSP_INPUT_DATA_ERROR
1079 CSSM_CSP_UNSUPPORTED_STORAGE_MASK
1080 CSSM_CSP_OPERATION_IN_PROGRESS
1081 CSSM_CSP_NO_WRITE_PERMISSIONS
1082 CSSM_CSP_EXCLUSIVE_UNAVAILABLE
1083 CSSM_CSP_UPDATE_WITHOUT_INIT
1084 CSSM_CSP_LOGIN_FAILED
1085 CSSM_CSP_ALREADY_LOGGED_IN
1086 CSSM_CSP_NOT_LOGGED_IN
1087 CSSM_CSP_KEY_PROTECTED
1088 CSSM_CSP_CALLBACK_FAILED
1089 CSSM_CSP_ROUNDS_UNSUPPORTED
1090 CSSM_CSP_EFFECTIVE_BITS_UNSUPPORTED
1091 CSSM_CSP_INCOMPATIBLE_VERSION
1092 CSSM_CSP_INCOMPATIBLE_KEY_VERSION
1093 CSSM_CSP_ALGORITHM_UNSUPPORTED
1094 CSSM_CSP_OPERATION_FAILED

Version 1.1.1 IBM KeyWorks Toolkit Page 82

Table 22. Missing or Invalid CSP Parameters

Error Code Error Name
1100 CSSM_CSP_PARAM_NO_PARAM
1101 CSSM_CSP_PARAM_NO_PASSWORD
1102 CSSM_CSP_PARAM_NO_SEED
1103 CSSM_CSP_PARAM_NO_KEY
1104 CSSM_CSP_PARAM_NO_SALT
1105 CSSM_CSP_PARAM_NO_MODULUS
1106 CSSM_CSP_PARAM_NO_OUTPUT_SIZE
1108 CSSM_CSP_PARAM_NO_KEY_LENGTH
1109 CSSM_CSP_PARAM_NO_MODE
1110 CSSM_CSP_PARAM_NO_DATA
1111 CSSM_CSP_PARAM_NO_INIT_VECTOR
1112 CSSM_CSP_PARAM_NO_PADDING
1113 CSSM_CSP_PARAM_NO_ROUNDS
1114 CSSM_CSP_PARAM_NO_RANDOM
1115 CSSM_CSP_PARAM_NO_REMAINDATA
1116 CSSM_CSP_PARAM_NO_ALG_PARAMS
1117 CSSM_CSP_PARAM_INVALID_VALUE
1118 CSSM_CSP_PARAM_NO_EFFECTIVE_BITS
1119 CSSM_CSP_PARAM_NO_PRIME
1120 CSSM_CSP_PARAM_NO_BASE
1121 CSSM_CSP_PARAM_NO_SUBPRIME
1122 CSSM_CSP_PARAM_NO_ALG_ID
1123 CSSM_CSP_PARAM_NO_KEY_TYPE
1124 CSSM_CSP_PARAM_NO_ITERATION_COUNT

Table 23. Password Errors

Error Code Error Name
1130 CSSM_CSP_PASSWORD_INCORRECT
1131 CSSM_CSP_PASSWORD_SAME
1132 CSSM_CSP_PASSWORD_LENGTH_ERROR
1133 CSSM_CSP_PASSWORD_INVALID

Table 24. Key Management Messages and Errors

Error Code Error Name
1140 CSSM_CSP_PRIKEY_LOAD_ERROR
1141 CSSM_CSP_PRIKEY_NOT_FOUND
1142 CSSM_CSP_PRIKEY_ALREADY_EXIST
1143 CSSM_CSP_PRIKEY_GET_ERROR
1144 CSSM_CSP_PRIKEY_PUBKEY_INCONSISTENT
1150 CSSM_CSP_KEY_DUPLICATE
1151 CSSM_CSP_KEY_BAD_KEY
1152 CSSM_CSP_KEY_BAD_LENGTH
1153 CSSM_CSP_KEY_NO_PARAM
1154 CSSM_CSP_KEY_ALGID_NOTMATCH
1155 CSSM_CSP_KEY_BLOBTYPE_INCORRECT
1156 CSSM_CSP_KEY_CLASS_INCORRECT
1157 CSSM_CSP_KEY_DELETE_FAILED
1158 CSSM_CSP_KEY_USAGE_INCORRECT

Version 1.1.1 IBM KeyWorks Toolkit Page 83

Error Code Error Name
1159 CSSM_CSP_KEY_NOT_PROTECTED
1160 CSSM_CSP_KEY_FORMAT_INCORRECT

Table 25. Random Number Generation (RNG) Messages and Errors

Error Code Error Name
1200 CSSM_CSP_RNG_FAILED
1201 CSSM_CSP_RNG_UNKNOWN_ALGORITHM
1202 CSSM_CSP_RNG_NO_METHOD

Table 26. Unique ID Generation Messages and Errors

Error Code Error Name
1220 CSSM_CSP_UIDG_FAILED
1221 CSSM_CSP_UIDG_UNKNOWN_ALGORITHM
1222 CSSM_CSP_UIDG_NO_METHOD

Table 27. Key Generation Messages and Errors

Error Code Error Name
1210 CSSM_CSP_KEYGEN_FAILED
1211 CSSM_CSP_KEYGEN_UNKNOWN_ALGORITHM
1212 CSSM_CSP_KEYGEN_NO_METHOD

Table 28. Encryption/Decryption Messages

Error Code Error Name
1230 CSSM_CSP_ENC_UNKNOWN_ALGORITHM
1231 CSSM_CSP_ENC_NO_METHOD
1232 CSSM_CSP_ENC_FAILED
1233 CSSM_CSP_ENC_INIT_FAILED
1234 CSSM_CSP_ENC_UPDATE_FAILED
1235 CSSM_CSP_ENC_FINAL_FAILED
1236 CSSM_CSP_ENC_BAD_IV_LENGTH
1237 CSSM_CSP_ENC_IV_ERROR
1238 CSSM_CSP_ENC_BAD_KEY_LENGTH
1239 CSSM_CSP_ENC_UNKNOWN_MODE
1250 CSSM_CSP_DEC_UNKNOWN_ALGORITHM
1251 CSSM_CSP_DEC_NO_METHOD
1253 CSSM_CSP_DEC_FAILED
1254 CSSM_CSP_DEC_INIT_FAILED
1255 CSSM_CSP_DEC_UPDATE_FAILED
1256 CSSM_CSP_DEC_FINAL_FAILED
1257 CSSM_CSP_DEC_BAD_IV_LENGTH
1258 CSSM_CSP_DEC_IV_ERROR
1259 CSSM_CSP_DEC_BAD_KEY_LENGTH
1260 CSSM_CSP_DEC_UNKNOWN_MODE

Version 1.1.1 IBM KeyWorks Toolkit Page 84

Table 29. Sign/Verify Messages and Errors

Error Code Error Name
1350 CSSM_CSP_SIGN_UNKNOWN_ALGORITHM
1351 CSSM_CSP_SIGN_NO_METHOD
1352 CSSM_CSP_SIGN_FAILED
1353 CSSM_CSP_SIGN_INIT_FAILED
1354 CSSM_CSP_SIGN_UPDATE_FAILED
1355 CSSM_CSP_SIGN_FINAL_FAILED
1360 CSSM_CSP_VERIFY_FAILED
1361 CSSM_CSP_VERIFY_INIT_FAILED
1362 CSSM_CSP_VERIFY_UPDATE_FAILED
1363 CSSM_CSP_VERIFY_FINAL_FAILED
1365 CSSM_CSP_VERIFY_UNKNOWN_ALGORITHM
1366 CSSM_CSP_VERIFY_NO_METHOD

Table 30. Digest Function Errors

Error Code Error Name
1380 CSSM_CSP_DIGEST_UNKNOWN_ALGORITHM
1382 CSSM_CSP_DIGEST_NO_METHOD
1383 CSSM_CSP_DIGEST_FAILED
1384 CSSM_CSP_DIGEST_INIT_FAILED
1385 CSSM_CSP_DIGEST_UPDATE_FAILED
1386 CSSM_CSP_DIGEST_CLONE_FAILED
1387 CSSM_CSP_DIGEST_FINAL_FAILED

Table 31. MAC Function Errors

Error Code Error Name
1390 CSSM_CSP_MAC_UNKNOWN_ALGORITHM
1392 CSSM_CSP_MAC_NO_METHOD
1393 CSSM_CSP_MAC_FAILED
1394 CSSM_CSP_MAC_INIT_FAILED
1395 CSSM_CSP_MAC_UPDATE_FAILED
1396 CSSM_CSP_MAC_CLONE_FAILED
1397 CSSM_CSP_MAC_FINAL_FAILED

Table 32. Key Exchange Errors

Error Code Error Name
1410 CSSM_CSP_KEYEXCH_GENPARAM_FAILED
1411 CSSM_CSP_KEYEXCH_PHASE1_FAILED

1412 CSSM_CSP_KEYEXCH_PHASE2_FAILED
1413 CSSM_CSP_KEYEXCH_UNKNOWN_ALGORITHM
1414 CSSM_CSP_KEYEXCH_NO_METHOD

Table 33. PassThrough Custom Errors

Error Code Error Name
1420 CSSM_CSP_INVALID_PASSTHROUGH_ID
1421 CSSM_CSP_INVALID_PASSTHROUGH_PARAMS

Version 1.1.1 IBM KeyWorks Toolkit Page 85

Table 34. Wrap/Unwrap Errors

Error Code Error Name
1450 CSSM_CSP_WRAP_UNKNOWN_ALGORITHM
1451 CSSM_CSP_WRAP_NO_METHOD
1452 CSSM_CSP_WRAP_FAILED
1456 CSSM_CSP_UNWRAP_UNKNOWN_ALGORITHM
1457 CSSM_CSP_UNWRAP_NO_METHOD
1458 CSSM_CSP_UNWRAP_FAILED

Table 35. Hardware CSP Errors

Error Code Error Name
1470 CSSM_CSP_DEVICE_ERROR
1471 CSSM_CSP_DEVICE_MEMORY_ERROR
1472 CSSM_CSP_DEVICE_REMOVED
1473 CSSM_CSP_DEVICE_NOT_PRESENT
1474 CSSM_CSP_DEVICE_UNKNOWN
1490 CSSM_CSP_PERMISSIONS_READ_ONLY
1491 CSSM_CSP_PERMISSIONS_WRITE_PROTECT
1492 CSSM_CSP_PERMISSIONS_NOT_EXCLUSIVE

Table 36. Query Size Errors

Error Code Error Name
1500 CSSM_CSP_QUERY_SIZE_UNKNOWN
1501 CSSM_CSP_QUERY_KEYSIZEINBITS_UNKNOWN

Version 1.1.1 IBM KeyWorks Toolkit Page 86

Appendix B. List of Acronyms

API Application Programming Interface

CA Certificate Authority

CL Certificate Library

CRL Certificate Revocation List

CSP Cryptographic Service Provider

DES Data Encryption Standard

DL Data Storage Library

DLL Dynamic Link Library

DSA Digital Signature Algorithm

ECB Electronic Code Book

GUID Globally Unique ID

IDEA International Data Encryption Algorithm

ISO International Organization for Standardization

ISV Independent Software Vendor

KRF Key Recovery Field

KRSP Key Recovery Service Provider

MAC Message Authentication Code

OAEP Optimal Asymmetric Encryption Padding

PKCS Public-Key Cryptographic Standard

SET Secure Electronic Transaction

SPI Service Provider Interface

SSL Secure Sockets Layer

TP Trust Policy

UTC Coordinated Universal Time

Version 1.1.1 IBM KeyWorks Toolkit Page 87

Appendix C. Glossary

Asymmetric algorithms Cryptographic algorithms, where one key is used to encrypt and a second key is
used to decrypt. They are often called public-key algorithms. One key is called
the public key, and the other is called the private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most commonly used public-key algorithm.
It can be used for encryption and for signing.

Authentication Information that is verified for authentication. For example, a Key
Information Recovery Officer (KRO) selects a password which will be used for

authentication with the Key Recovery Coordinator (KRC). A KRO operator
who has identification information must search the Authentication Information
(AI) database to locate an AI value that corresponds to the individual who
generated the information.

Certificate See Digital certificate.

Certificate Authority An entity that guarantees or sponsors a certificate. For example, a credit card
company signs a cardholder’s certificate to assure that the cardholder is who he
or she claims to be. The credit card company is a Certificate Authority (CA).
CAs issue, verify, and revoke certificates.

Certificate chain The hierarchical chain of all the other certificates used to sign the current
certificate. This includes the CA who signs the certificate, the CA who signed
that CA’s certificate, and so on. There is no limit to the depth of the certificate
chain.

Certificate signing The CA can sign certificates it issues or co-sign certificates issued by another
CA. In a general signing model, an object signs an arbitrary set of one or more
objects. Hence, any number of signers can attest to an arbitrary set of objects.
The arbitrary objects could be, for example, pieces of a document for libraries of
executable code.

Certificate validity date A start date and a stop date for the validity of the certificate. If a certificate
expires, the CA may issue a new certificate.

Cryptographic algorithm A method or defined mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the procedure for encrypting
and decrypting a byte stream, digitally signing an object, computing the hash of
an object, generating a random number, etc. IBM KeyWorks accommodates
Data Encryption Standard (DES), RC2, RC4, International Data Encryption
Algorithm (IDEA), and other encryption algorithms.

Cryptographic Service Cryptographic Service Providers (CSPs) are modules that provide secure key
Provider storage and cryptographic functions. The modules may be software only or

hardware with software drivers. The cryptographic functions provided may
include:

• Bulk encryption and decryption
• Digital signing
• Cryptographic hash

Version 1.1.1 IBM KeyWorks Toolkit Page 88

• Random number generation
• Key exchange

Cryptography The science for keeping data secure. Cryptography provides the ability to store
information or to communicate between parties in such a way that prevents other
non-involved parties from understanding the stored information or accessing and
understanding the communication. The encryption process takes understandable
test and transforms it into an unintelligible piece of data (called ciphertext); the
decryption process restores the understandable text from the unintelligible data.
Both involve a mathematical formula or algorithm and a secret sequence of data
called a key. Cryptographic services provide confidentiality (keeping data
secret), integrity (preventing data from being modified), authentication (proving
the identity of a resource or a user), and non-repudiation (providing proof that a
message or transaction was sent and/or received).

There are two types of cryptography:

• In shared/secret key (symmetric) cryptography there is only one key that is
shared secret between the two communicating parties. The same key is
used for encryption and decryption.

• In public key (asymmetric) cryptography different keys are used for
encryption and decryption. A party has two keys: a public key and a private
key. The two keys are mathematically related, but it is virtually impossible
to derive the private key from the public key. A message that is encrypted
with someone's public key (obtained from some public directory) can only
be decrypted with the associated private key. Alternately, the private key
can be used to "sign" a document; the public key can be used as verification
of the source of the document.

Cryptoki Short for cryptographic token interface. See Token.

Data Encryption In computer security, the National Institute of Standards and Technology
Standard (NIST) Data Encryption Standard (DES), adopted by the U.S. Government as

Federal Information Processing Standard (FIPS) Publication 46, which allows
only hardware implementations of the data encryption algorithm.

Digital certificate The binding of some identification to a public key in a particular domain, as
attested to directly or indirectly by the digital signature of the owner of that
domain. A digital certificate is an unforgettable credential in cyberspace. The
certificate is issued by a trusted authority, covered by that party’s digital
signature. The certificate may attest to the certificate holder’s identity, or may
authorize certain actions by the certificate holder. A certificate may include
multiple signatures and may attest to multiple objects or multiple actions.

Digital signature A data block that was created by applying a cryptographic signing algorithm to
some other data using a secret key. Digital signatures may be used to:

• Authenticate the source of a message, data, or document

• Verify that the contents of a message has not been modified since it was
signed by the sender

• Verify that a public key belongs to a particular person

Version 1.1.1 IBM KeyWorks Toolkit Page 89

Typical digital signing algorithms include MD5 with RSA encryption, and DSS,
the proposed Digital Signature Standard defined as part of the U.S. Government
Capstone project.

Enterprise A company or individual who is authorized to submit on-line requests to the
Key Recovery Officer (KRO). In the enterprise key recovery scenario, a process
at the enterprise called the KRO is responsible for preparing key recovery
requests and communicating them to the KRC. The KRO, acting on behalf of an
enterprise or individual, sends an on-line request to the Key Recovery
Coordinator (KRC) to recover a key from a Key Recovery Block (KRB).

Graphical User A type of display format that enables the user to choose commands, start
Interface programs, and see lists of files and other options by pointing to pictorial

representations (icons) and lists of menu items on the screen. Graphical User
Interfaces (GUIs) are used by the Microsoft Windows program for IBM-
compatible microcomputers and by other systems.

Hash algorithm A cryptographic algorithm used to hash a variable-size input stream into a
unique, fixed-sized output value. Hashing is typically used in digital signing
algorithms. Example hash algorithms include MD and MD2 from RSA Data
Security. MD5, also from RSA Data Security, hashes a variable-size input
stream into a 128-bit output value. SHA, a Secure Hash Algorithm published by
the U.S. Government, produces a 160-bit hash value from a variable-size input
stream.

IBM KeyWorks A set of layered security services that address communications and data
Architecture security problems in the emerging PC business space.

IBM KeyWorks The IBM KeyWorks Framework defines five key service components:
Framework

• Cryptographic Module Manager
• Key Recovery Module Manager
• Trust Policy Module Manager
• Certificate Library Module Manager
• Data Storage Library Module Manager

IBM KeyWorks binds together all the security services required by PC
applications. In particular, it facilitates linking digital certificates to
cryptographic actions and trust protocols.

Key Escrow The storing of a key (or parts of a key) with a trusted party or trusted parties in
case of loss or destruction of the key.

Key Recovery Agent The Key Recovery Agent (KRA) acts as the back end for a key recovery
operation. The KRA can only be accessed through an on-line communication
protocol via the Key Recovery Coordinator (KRC). KRAs are considered
outside parties involved in the key recovery process; they are analogous to the
neighbors who each hold one digit of the combination of the lock box containing
the key. The authorized parties (i.e., enterprise or law enforcement) have the
freedom to choose the number of specific KRAs that they want to use. The
authorized party requests that each KRA decrypt its section of the Key Recovery
Fields (KRFs) that is associated with the transmission. Then those pieces of
information are used in the process that derives the session key. The KRA will
only be able to recover a portion of the key, and reading the original message

Version 1.1.1 IBM KeyWorks Toolkit Page 90

will require searching the remaining key space in order to find the key that will
decrypt the message. The number of KRAs on each end of the communication
does not have to be equal.

Key Recovery Block The Key Recovery Block (KRB) is a piece of encrypted information that is
contained within a block. The KRS components (i.e., KRO, KRC, KRA) work
collectively to recover a session key from a provided KRB. In the enterprise
scenario, the KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. This information will be transmitted over the
network to the KRC. In the law enforcement scenario, the KRB is presented on
a 3.5-inch diskette, and the credentials are in the physical form of a legal
warrant. This warrant will specify any information available to the law
enforcement agents which can be used to tie the warrant to the identity of the
user for whom

KRBs were generated (i.e., username, hostname, IP address). The KRC has the
ability to check credentials and derive the original encryption key from the KRB
with the help of its KRAs.

Key Recovery The Key Recovery Coordinator (KRC) acts as the front end for the key recovery
Coordinator operation. The KRO, acting on behalf of an enterprise or individual, sends an

on-line request to the KRC to recover a key from a KRB. The KRC receives the
on-line request and services it by interacting with the appropriate set of KRAs as
specified within the KRB. The recovered key is then sent back to the KRO by
the KRC using an on-line protocol. The KRC consists of one main application
which, when started, behaves as a server process. The system, which serves as
the KRC, may be configured to start the KRC application as part of system
services; alternatively, the KRC operator can start up the KRC application
manually. The KRC application performs the following operations:

• Listens for on-line recovery requests from KRO

• Can be used to launch an embedded application that allows manual key
recovery for law enforcement

• Monitors and displays the status of the recovery requests being serviced

Key Recovery Field A Key Recovery Field (KRF) is a block of data that is created from a symmetric
key and key recovery profile information. The Key Recovery Service Provider
(KRSP) is invoked from the IBM KeyWorks framework to create KRFs. There
are two major pieces of the KRFs: block 1 contains information that is unrelated
to the session key of the transmitted message, and encrypted with the public
keys of the selected key recovery agents; block 2 contains information that is
related to the session key of the transmission. The KRSP generates the KRFs
for the session key. This information is not the key or any portion of the key,
but is information that can be used to recover the key. The KRSP has access to
location-unique jurisdiction policy information that controls and modifies some
of the steps in the generation of the KRFs. Only once the KRFs are generated,
and both the client and server sides have access to them, can the encrypted
message flow begin. KRFs are generated so that they can be used by a KRA to
recover the original symmetric key, either because the user who generated the
message has lost the key, or at the warranted request of law enforcement agents.

Version 1.1.1 IBM KeyWorks Toolkit Page 91

Key Recovery Module The Key Recovery Module Manager enables key recovery for
Manager cryptographic services obtained through the KeyWorks. It mediates all

cryptographic services provided by the KeyWorks and applies the appropriate
key recovery policy on all such operations. The Key Recovery Module
Manager contains a Key Recovery Policy Table (KRPT) that defines the
applicable key recovery policy for all cryptographic products. The Key
Recovery Module Manager routes the KR-API function calls made by an
application to the appropriate KR-SPI functions. The Key Recovery Module
Manager also enforces the key recovery policy on all cryptographic operations
that are obtained through the KeyWorks. It maintains key recovery state in the
form of key recovery contexts.

Key Recovery Officer An entity called the Key Recovery Officer (KRO) is the focal point of the key
recovery process. In the enterprise key recovery scenario, the KRO is
responsible for preparing key recovery requests and communicating them to the
KRC. The KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. The KRO is the entity that acts on behalf of an
enterprise to initiate a key recovery request operation. An employee within an
enterprise who desires key recovery will send a request to the KRO with the
KRB that is to be recovered. The actual key recovery phase begins when the
KRO operator uses the KRO application to initiate a key recovery request to the
appropriate KRC. At this time, the operator selects a KRB to be sent for
recovery, enters the Authentication Information (AI) information that can be
used to authenticate the request to the KRC, and submits the request.

Key Recovery Policy Key recovery policies are mandatory policies that are typically derived from
jurisdiction-based regulations on the use of cryptographic products for data
confidentiality. Often, the jurisdictions for key recovery policies coincide with
the political boundaries of countries in order to serve the law enforcement and
intelligence needs of these political jurisdictions. Political jurisdictions may
choose to define key recovery policies for cryptographic products based on
export, import, or use controls. Enterprises may define internal and external
jurisdictions, and may mandate key recovery policies on the cryptographic
products within their own jurisdictions.

Key recovery policies come in two flavors: key recovery enablement policies
and key recovery interoperability policies. Key recovery enablement policies
specify the exact cryptographic protocol suites (e.g., algorithms, modes, key
lengths, etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of the
cryptographic key that may be left out of the key recovery enablement
operation; this is typically referred to as the workfactor. Key recovery
interoperability policies specify to what degree a key recovery enabled
cryptographic product is allowed to interoperate with other cryptographic
products.

Key Recovery Server The Key Recovery Server (KRS) consists of three major entities: Key Recovery
Coordinator (KRC), Key Recovery Agent (KRA), and Key Recovery Officer
(KRO). The KRS is intended to be used by enterprise employees and security
personnel, law enforcement personnel, and KRSF personnel. The KRS interacts
with one or more local or remote KRAs to reconstruct the secret key that can be
used to decrypt the ciphertext.

Version 1.1.1 IBM KeyWorks Toolkit Page 92

Key Recovery Server The Key Recovery Server Facility (KRSF) is a facility room that houses the
Facility KRS component facilities ensuring they operate within a secure environment

that is highly resistant to penetration and compromise. Several physical and
administrative security procedures must be followed at the KRSF such as a
combination keyed lock, limited personnel, standalone system, operating system
with security features (Microsoft NT Workstation 4.0), NTFS (Windows NT
Filesystem), and account and auditing policies.

Key Recovery Service Key Recovery Service Providers (KRSPs) are modules that provide key ecovery
Provider enablement functions. The cryptographic functions provided may include:

• Key recovery field generation
• Key recovery field processing

Law Enforcement A type of scenario where key recovery is mandated by the jurisdictional law
enforcement authorities in the interest of national security and law enforcement.
In the law enforcement scenario, the KRB is presented on a 3.5-inch diskette,
and the credentials are in the physical form of a legal warrant. This warrant will
specify any information available to the law enforcement agents which can be
used to tie the warrant to the identity of the user for whom KRBs were generated
(i.e., username, hostname, IP address).

Leaf certificate The certificate in a certificate chain that has not been used to sign another
certificate in that chain. The leaf certificate is signed directly or transitively by
all other certificates in the chain.

Message digest The digital fingerprint of an input stream. A cryptographic hash function is
applied to an input message arbitrary length and returns a fixed-size output,
which is called the digest value.

Owned certificate A certificate whose associated secret or private key resides in a local
Cryptographic Service Provider (CSP). Digital-signing algorithms require using
owned certificates when signing data for purposes of authentication and non-
repudiation. A system may use certificates it does not own for purposes other
than signing.

Private key The cryptographic key is used to decipher messages in public-key cryptography.
This key is kept secret by its owner.

Public key The cryptographic key is used to encrypt messages in public-key cryptography.
The public key is available to multiple users (i.e., the public).

Random number A function that generates cryptographically strong random numbers that
generator cannot be easily guessed by an attacker. Random numbers are often used to

generate session keys.

Root certificate The prime certificate, such as the official certificate of a corporation or
government entity. The root certificate is positioned at the top of the certificate
hierarchy in its domain, and it guarantees the other certificates in its certificate
chain. Each Certificate Authority (CA) has a self-signed root certificate. The
root certificate’s public key is the foundation of signature verification in its
domain.

Version 1.1.1 IBM KeyWorks Toolkit Page 93

Secure Electronic A mechanism for securely and automatically routing payment information
Transaction among users, merchants, and their banks. Secure Electronic Transaction (SET)

is a protocol for securing bankcard transactions on the Internet or other open
networks using cryptographic services.

SET is a specification designed to utilize technology for authenticating parties
involved in payment card purchases on any type of on-line network, including
the Internet. SET was developed by Visa and MasterCard, with participation
from leading technology companies, including Microsoft, IBM, Netscape,
SAIC, GTE, RSA, Terisa Systems, and VeriSign. By using sophisticated
cryptographic techniques, SET will make cyberspace a safer place for
conducting business and is expected to boost consumer confidence in electronic
commerce. SET focuses on maintaining confidentiality of information, ensuring
message integrity, and authenticating the parties involved in a transaction.

The significance of SET, over existing Internet security protocols, is found in
the use of digital certificates. Digital certificates will be used to authenticate all
the parties involved in a transaction. SET will provide those in a virtual world
with the same level of trust and confidence a consumer has today when making
a purchase at any of the 13 million Visa-acceptance locations in the physical
world.

The SET specification is open and free to anyone who wishes to use it to
develop SET-compliant software for buying or selling in cyberspace.

Security Context A control structure that retains state information shared between a CSP and the
application agent requesting service from the CSP. Only one context can be
active for an application at any given time, but the application is free to switch
among contexts at will, or as required. A security context specifies CSP and
application-specific values, such as required key length and desired hash
functions.

Security-relevant event An event where a CSP-provided function is performed, a security module is
loaded, or a breach of system security is detected.

Session key A cryptographic key used to encrypt and decrypt data. The key is shared by two
or more communicating parties, who use the key to ensure privacy of the
exchanged data.

Signature See Digital signature.

Signature chain The hierarchical chain of signers, from the root certificate to the leaf certificate,
in a certificate chain.

Smart Card A device (usually similar in size to a credit card) that contains an embedded
microprocessor that could be used to store information. Smart cards can store
credentials used to authenticate the holder.

Version 1.1.1 IBM KeyWorks Toolkit Page 94

S/MIME Secure/Multipurpose Internet Mail Extensions (S/MIME) is a protocol that adds
digital signatures and encryption to Internet MIME messages. MIME is the
official proposed standard format for extended Internet electronic mail. Internet
e-mail messages consist of two parts, the header and the body. The header
forms a collection of field/value pairs structured to provide information essential
for the transmission of the message. The body is normally unstructured unless
the e-mail is in MIME format. MIME defines how the body of an e-mail
message is structured. The MIME format permits e-mail to include enhanced
text, graphics, audio, and more in a standardized manner via MIME-compliant
mail systems. However, MIME itself does not provide any security services.

The purpose of S/MIME is to define such services, following the syntax given in
PKCS #7 for digital signatures and encryption. The MIME body part carries a
PKCS #7 message, which itself is the result of cryptographic processing on
other MIME body parts.

Symmetric algorithms Cryptographic algorithms that use a single secret key for encryption and
decryption. Both the sender and receiver must know the secret key. Well-
known symmetric functions include Data Encryption Standard (DES) and
International Data Encryption Algorithm (IDEA). The U.S. Government
endorsed DES as a standard in 1977. It is an encryption block cipher that
operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA, one of the best known
public algorithms, uses a 128-bit key.

Token The logical view of a cryptographic device, as defined by a CSP’s interface.
A token can be hardware, a physical object, or software. A token contains
information about its owner in digital form, and about the services it provides
for electronic-commerce and other communication applications. A token is a
secure device. It may provide a limited or a broad range of cryptographic
functions. Examples of hardware tokens are smart cards and Personal Computer
Memory Card International Association (PCMCIA) cards.

Verification The process of comparing two message digests. One message digest is
generated by the message sender and included in the message. The message
recipient computes the digest again. If the message digests are exactly the same,
it shows or proves there was no tampering of the message contents by a third
party (between the sender and the receiver).

Web of trust A trust network among people who know and communicate with each other.
Digital certificates are used to represent entities in the web of trust. Any pair of
entities can determine the extent of trust between the two, based on their
relationship in the web. Based on the trust level, secret keys may be shared and
used to encrypt and decrypt all messages exchanged between the two parties.
Encrypted exchanges are private, trusted communications.

