
IBM KeyWorks Toolkit
Service Provider Module Structure and Administration

Copyright© 1998 International Business Machines Corporation. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication,
or disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N. E. Elam Young Parkway, Hillsboro, OR 97124-6497.

Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.
001.001.003

Version 1.1.1 IBM KeyWorks Toolkit Page iii

Table of Contents

CHAPTER 1.INTRODUCTION ..1
1.1 SERVICE PROVIDER MODULES ...1
1.2 INTENDED AUDIENCE ..2
1.3 DOCUMENTATION SET...2
1.4 REFERENCES ...3

CHAPTER 2.MODULE STRUCTURE AND ADMINISTRATION ..5
2.1 SECURITY SERVICES..5

2.1.1 Module-to-Module Interaction ...5
2.2 MODULE ADMINISTRATION COMPONENTS..6
2.3 INSTALLING A SERVICE PROVIDER MODULE ...6
2.4 ATTACHING A SERVICE PROVIDER MODULE ...7

2.4.1 Module Entry Point ..7
2.4.2 Module Function Table Registration ..7
2.4.3 Memory Management Upcalls ..8

2.5 ERROR HANDLING...8
2.6 INSTALL EXAMPLE ..9

2.6.1 CL Module Install ..9
2.7 ATTACH/DETACH EXAMPLE ..11

2.7.1 AddInAuthenticate..11

CHAPTER 3.SERVICE PROVIDER MODULE INTERFACE FUNCTIONS..................................12
3.1 DATA STRUCTURES ...12

3.1.1 CSSM_HANDLEINFO ...12
3.1.2 CSSM_MODULE_FUNCS ...12
3.1.3 CSSM_REGISTRATION_INFO ..13

3.2 SERVICE PROVIDER MODULE FUNCTIONS ...15
3.2.1 CSSM_DeregisterServices..15
3.2.2 CSSM_GetHandleInfo ..16
3.2.3 CSSM_RegisterServices ...17
3.2.4 EventNotify ..18
3.2.5 FreeModuleInfo ...20
3.2.6 GetModuleInfo ...21
3.2.7 Initialize...23
3.2.8 Terminate...24

CHAPTER 4.RELEVANT CSSM API FUNCTIONS ...25
4.1 DATA STRUCTURES ...25

4.1.1 Basic Data Types ...25
4.1.2 CSSM_ALL_SUBSERVICES...25
4.1.3 CSSM_BOOL ...25
4.1.4 CSSM_CALLBACK ..26
4.1.5 CSSM_CRYPTO_DATA..26
4.1.6 CSSM_DATA..26
4.1.7 CSSM_GUID..27
4.1.8 CSSM_HANDLE ..27
4.1.9 CSSM_INFO_LEVEL ...27
4.1.10 CSSM_MEMORY_FUNCS / CSSM_API_MEMORY_FUNCS ...28
4.1.11 CSSM_MODULE_FLAGS..28
4.1.12 CSSM_MODULE_HANDLE...28
4.1.13 CSSM_MODULE_INFO...29

Version 1.1.1 IBM KeyWorks Toolkit Page iv

4.1.14 CSSM_NOTIFY_CALLBACK ...30
4.1.15 CSSM_RETURN...30
4.1.16 CSSM_SERVICE_FLAGS...30
4.1.17 CSSM_SERVICE_INFO ...31
4.1.18 CSSM_SERVICE_MASK ..32
4.1.19 CSSM_SERVICE_TYPE ...32
4.1.20 CSSM_SPI_FUNC_TBL ...32
4.1.21 CSSM_USER_AUTHENTICATION ..33
4.1.22 CSSM_USER_AUTHENTICATION_MECHANISM ..33
4.1.23 CSSM_VERSION..33

4.2 FUNCTION DEFINITIONS ..34
4.2.1 CSSM_ModuleAttach ...34
4.2.2 CSSM_ModuleDetach ..36
4.2.3 CSSM_FreeModuleInfo ..37
4.2.4 CSSM_GetCSSMRegistryPath ..38
4.2.5 CSSM_GetGUIDUsage ..39
4.2.6 CSSM_GetHandleUsage...40
4.2.7 CSSM_GetModuleGUIDFromHandle...41
4.2.8 CSSM_GetModuleInfo..42
4.2.9 CSSM_GetModuleLocation ..44
4.2.10 CSSM_ListModules ..45
4.2.11 CSSM_ModuleInstall..46
4.2.12 CSSM_SetModuleInfo ..47
4.2.13 CSSM_ModuleUninstall ...48
4.2.14 CSSM_SetModuleInfo ..49
4.2.15 CSSM_FreeModuleInfo ..50
4.2.16 CSSM_GetError...51
4.2.17 CSSM_SetError..52
4.2.18 CSSM_ClearError..53

APPENDIX A. KEYWORKS ERRORS...54

APPENDIX B. LIST OF ACRONYMS ..55

APPENDIX C. GLOSSARY..56

List of Figures

Figure 1. IBM KeyWorks Toolkit Architecture...2

List of Tables

Table 1. Service Access Table ..13
Table 2. Module Event Types ...18
Table 3. Module Event Parameters ...18
Table 4. Notification Reasons...30
Table 5. Invalid Errors ...54

Version 1.1.1 IBM KeyWorks Toolkit Page 1

Chapter 1. Introduction

The IBM KeyWorks Toolkit defines the infrastructure for a complete set of security services. It is an
extensible architecture that provides mechanisms to manage service provider security modules, which use
cryptography as a computational base to build security protocols and security systems. Figure 1 shows the
four basic layers of the IBM KeyWorks Toolkit: Application Domains, System Security Services, IBM
KeyWorks Framework, and Service Providers. The IBM KeyWorks Framework is the core of this
architecture. It provides a means for applications to directly access security services through the
KeyWorks security application programming interface (API), or to indirectly access security services via
layered security services and tools implemented over the KeyWorks API. The IBM KeyWorks Framework
manages the service provider security modules and directs application calls through the KeyWorks API to
the selected service provider module that will service the request. The KeyWorks API defines the
interface for accessing security services. The KeyWorks service provider interface defines the interface
for service providers who develop plug-able security service products.

Service providers perform various aspects of security services, including:

• Cryptographic Services
• Key Recovery Services
• Trust Policy Libraries
• Certificate Libraries
• Data Storage Libraries

Cryptographic Service Providers (CSPs) are service provider modules that perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, (RNG) and key exchange. Key Recovery Service Providers (KRSPs) generate and process Key
Recovery Fields (KRFs) which can be used to retrieve the original session key if it is lost, or if an
authorized party requires access to the decryption key. Trust Policy (TP) modules implement policies
defined by authorities and institutions, such as VeriSign (as a Certificate Authority (CA)) or MasterCard
(as an institution). Each TP module embodies the semantics of a trust model based on using digital
certificates as credentials. Applications may use a digital certificate as an identity credential and/or an
authorization credential. Certificate Library (CL) modules provide format-specific, syntactic
manipulation of memory-resident digital certificates and Certificate Revocation Lists (CRLs). Data
Storage Library (DL) modules provide persistent storage for certificates and CRLs.

1.1 Service Provider Modules

An IBM KeyWorks service provider module is a Dynamically Linked Library (DLL) composed of
functions that implement some or all of the KeyWorks module interfaces. Applications directly or
indirectly select the modules used to provide security services to the application. Independent Software
Vendors (ISVs) and hardware vendors will provide these service providers. The functionality of the
service providers may be extended beyond the services defined by the KeyWorks API, by exporting
additional services to applications using a KeyWorks PassThrough mechanism.

The API calls defined for service provider modules are categorized as service operations, module
management operations, and module-specific operations. Service operations include functions that
perform a security operation such as encrypting data, inserting a CRL into a data source, or verifying that
a certificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through pass through functions whose behavior and use is
defined by the service provider module developer.

Version 1.1.1 IBM KeyWorks Toolkit Page 2

 Application
 Domains

Data store

KeyWorks
Framework

Service
Providers

Applications

KeyWorks Security
API

SPI DLICLITPI

CSP

Manager
TP Module

Manager
CL Module
Manager

DL Module
Manager

Certificate
Library

Cryptographic
Service

Provider

Trust
Policy
Library

Data
Storage

Library

IPSECS/MIMESSL

Key Recovery
Service

Provider

KRSPI

KRSP

Manager

System
SSecurity
Services

 Figure 1. IBM KeyWorks Toolkit Architecture

Each module, regardless of the security services it offers, has the same set of module management
responsibilities. Every module must expose functions that allow KeyWorks to indicate events such as
module attach and detach. In addition, as part of the attach operation, every module must be able to verify
its own integrity, verify the integrity of KeyWorks, and register with KeyWorks.

1.2 Intended Audience

ISVs who want to develop their own TP service provider modules should use this document. These ISVs
can be highly experienced software and security architects, advanced programmers, and sophisticated
users. The intended audience of this document must be familiar with high-end cryptography and digital
certificates. They must also be familiar with local and foreign government regulations on the use of
cryptography and the implication of those regulations for their applications and products. We assume that
this audience is familiar with the basic capabilities and features of the protocols they are considering.

1.3 Documentation Set

The IBM KeyWorks Toolkit documentation set consists of the following manuals. These manuals are
provided in electronic format and can be viewed using the Adobe Acrobat Reader distributed with the
IBM KeyWorks Toolkit. Both the electronic manuals and the Adobe Acrobat Reader are located in the
IBM KeyWorks Toolkit doc subdirectory.

• IBM KeyWorks Toolkit Developer’s Guide
Document filename: kw_dev.pdf
This document presents an overview of the IBM KeyWorks Toolkit. It explains how to integrate IBM
KeyWorks into applications and contains a sample IBM KeyWorks application.

• IBM KeyWorks Toolkit Application Programming Interface Specification
Document filename: kw_api.pdf
This document defines the interface that application developers employ to access security services
provided by IBM KeyWorks and service provider modules.

Version 1.1.1 IBM KeyWorks Toolkit Page 3

• IBM KeyWorks Toolkit Service Provider Module Structure & Administration Specification.
Document filename: kw_mod.pdf
This document describes the features common to all IBM KeyWorks service provider modules. It
should be used in conjunction with the IBM KeyWorks service provider interface specifications in
order to build a security service provider module.

• IBM KeyWorks Toolkit Cryptographic Service Provider Interface Specification
Document filename: kw_spi.pdf
This document defines the interface to which cryptographic service providers must conform in order
to be accessible through IBM KeyWorks.

• Key Recovery Service Provider Interface Specification
Document filename: kr_spi.pdf
This document defines the interface to which key recovery service providers must conform in order to
be accessible through IBM KeyWorks.

• Key Recovery Server Installation and Usage Guide
Document filename: krs_gd.pdf
This document describes how to install and use key recovery solutions using the components in the
IBM Key Recovery Server.

• IBM KeyWorks Toolkit Trust Policy Interface Specification
Document filename: kw_tp_spi.pdf
This document defines the interface to which policy makers, such as certificate authorities, certificate
issuers, and policy-making application developers, must conform in order to extend IBM KeyWorks
with model or application-specific policies.

• IBM KeyWorks Toolkit Certificate Library Interface Specification
Document filename: kw_cl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific certificate manipulation services to numerous IBM KeyWorks applications and trust policy
modules.

• IBM KeyWorks Toolkit Data Storage Library Interface Specification
Document filename: kw_dl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific or format-independent persistent storage of certificates.

1.4 References

Cryptography Applied Cryptography, Schneier, Bruce, 2nd Edition, John Wiley and Sons,
Inc., 1996.

Handbook of Applied Cryptography, Menezes, A., Van Oorschot, P., and
Vanstone, S., CRC Press, Inc., 1997.

SDSI - A Simple Distributed Security Infrastructure, R. Rivest and B.
Lampson, 1996.

Microsoft CryptoAPI, Version 0.9, Microsoft Corporation, January 17, 1996.

CDSA Spec Common Data Security Architecture Specification, Intel Architecture Labs,
1997.

Version 1.1.1 IBM KeyWorks Toolkit Page 4

CSSM API Common Security Services Manager Application Programming Interface
Specification, Intel Architecture Labs, 1997.

Key Escrow A Taxonomy for Key Escrow Encryption Systems, Denning, Dorothy E. and
Branstad, Dennis, Communications of the ACM, Vol. 39, No. 3, March 1996.

PKCS The Public-Key Cryptography Standards, RSA Laboratories, Redwood City,
CA: RSA Data Security, Inc.

IBM KeyWorks CLI Certificate Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks DLI Data Storage Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks KRI Key Recovery Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks SPI Cryptographic Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks TPI Trust Policy Interface Specification, Intel Architecture Labs, 1997.

X.509 CCITT. Recommendation X.509: The Directory – Authentication Framework,
1988. CCITT stands for Comite Consultatif Internationale Telegraphique et
Telephonique (International Telegraph and Telephone Consultative
Committee)

Version 1.1.1 IBM KeyWorks Toolkit Page 5

Chapter 2. Module Structure and Administration

Service provider modules are composed of module administration components and implementation of
security service interfaces in one or more categories of service. Module administration components
include the tasks required during module installation, attach, and detach. The module developer
determines the number, categories, and contents of the service implementation. Both the administration
components and service interfaces are discussed in the following sections.

2.1 Security Services

The primary components of a service provider module are the security services that it offers. A service
provider module may provide one to four categories of service, with each service having one or more
available subservices. The service categories are Cryptographic Service Provider (CSP) services, key
recovery services, Trust Policy (TP) services, Certificate Library (CL) services, and Data Storage Library
(DL) services. A subservice consists of a unique set of capabilities within a certain service. For example,
in a CSP service providing access to hardware tokens, each subservice would represent a slot. A TP
service may have one subservice that supports the Secure Electronic Transfer (SET) Merchant TP and a
second subservice that supports the SET Cardholder TP. A CL service may have different subservices for
different encoding formats. A DL service could use subservices to represent different types of persistent
storage. In all cases, the subservice implements the basic service functions for its category of service.

Each service category contains a number of basic service functions. A library developer may choose to
implement some or all of the functions specified in the service interface. A module developer may also
choose to extend the basic interface functionality by exposing pass through operations. Details of the
functions and their expected behavior can be found in the IBM KeyWorks Toolkit service provider
interface (SPI) documents for the individual service provider modules.

2.1.1 Module-to-Module Interaction

Modules may make use of other IBM KeyWorks service provider modules to implement their
functionality. For example, a module implementing a CL may use the capabilities of a CSP module to
perform the cryptographic operations of sign and verify. In that case, the CL module could package the
certificate or Certificate Revocation List (CRL) fields to be signed or verified, attach to the appropriate
CSP module, and call CSSM_SignData or CSSM_VerifyData to perform the operation.

A second form of module-to-module interaction is subservice collaboration. For example, a Public-Key
Cryptographic Standard (PKCS#11) module may require collaborating CSP and DL subservices.
Collaborating subservices are assumed to share state. A module indicates that two or more subservices
collaborate by assigning them the same subservice ID. When an application attaches one of the
collaborating subservices, it will receive a handle that may be used to access any of the subservices having
the same subservice ID. This mechanism may be used for collaboration across categories of services, but
is not available within a single category of service.

Subservices may make use of other products or services as part of their implementation. For example, an
Open Database Connectivity (ODBC) DL subservice may make use of a commercial database product
such as Microsoft Access. A CL subservice may make use of a Certificate Authority (CA) service, such as
the VeriSign DigitalID Center, for filling certification requests. The encapsulation of these products and
services is exposed to applications in the CSSM_XX_WRAPPEDPRODUCT_INFO data structure, which
is available by querying the KeyWorks registry.

Version 1.1.1 IBM KeyWorks Toolkit Page 6

A module developer may provide additional utility libraries for use by other module developers. Utility
libraries are software components that contain functions that may be useful to several modules. For
example, a utility library that performs DER encoding might be useful to several modules providing CL
services. The utility library developer is responsible for making the definition, interpretation, and usage
of their library available to other module developers.

2.2 Module Administration Components

Every module implementation shares certain administrative tasks that must be performed during module
installation, attach, and detach. As part of module installation, the module developer must register
information about the module’s services with IBM KeyWorks. This information is stored in the
KeyWorks registry and may be queried by applications using the CSSM_GetModuleInfo function.

On attach, the module’s administrative responsibilities include authentication, module registration, and
module initialization. Authentication is a protocol whereby KeyWorks ensures the integrity of the service
provider module prior to attaching into the system. Because service provider modules are dynamic
components in the system, KeyWorks requires the use of a strong verification mechanism to screen all
components as they are added to the KeyWorks environment. This aids in KeyWorks’s detection and
protection against classic forms of attack, such as stealth and man-in-the-middle attacks.

Following authentication, the module registers its functions with KeyWorks and performs any
initialization operations. The module uses CSSM_RegisterServices to register a function table with
KeyWorks for each subservice that it supports. The function tables consist of pointers to the subservice
functions supported by the module. During future function calls from the application, KeyWorks will use
these function pointers to direct calls to the appropriate module subservice. When the module is detached,
it performs any necessary cleanup actions.

2.3 Installing a Service Provider Module

Every module must include functions for module initialization and cleanup. The first time the module is
attached, KeyWorks calls the module’s Initialize function to allow the module to perform any necessary
initialization operations. The last time the module is detached, KeyWorks calls the Terminate function
that allows the module to perform any necessary cleanup actions. KeyWorks will call the module’s
EventNotify function as part of every attach and detach operation.

Before an application can use a module, the module’s name, location, and description must be registered
with KeyWorks by an installation application. The name given to a module includes both a logical name
and a Globally Unique ID (GUID). The logical name is a string chosen by the module developer to
describe the module. The GUID is a structure used to differentiate between service provider modules in
the KeyWorks registry. GUIDs are discussed in more detail later in this section. The location of the
module is required at installation time so the KeyWorks can locate the module and its credentials when an
application requests an attach. The module description indicates to KeyWorks the security services
available within this module. The module description is clarified below.

Each module must have a GUID that the KeyWorks, applications, and the module itself use to uniquely
identify a given module. The GUID is used by the KeyWorks registry to expose service provider module
availability and capabilities to applications. A module uses its GUID to identify itself when it sets an
error. When attaching the library, the application uses the GUID to identify the requested module.

Version 1.1.1 IBM KeyWorks Toolkit Page 7

A GUID is defined below. GUID generators are publicly available for Windows 95, Windows NT, and on
many UNIX-based platforms.

typedef struct cssm_guid {
 uint32 Data1;
 uint16 Data2;
 uint16 Data3;
 uint8 Data4[8];
} CSSM_GUID, *CSSM_GUID_PTR;

At install time, the installation program must inform KeyWorks of the ways in which this module can be
used. The module usage information includes indicators of the overall module capabilities and
descriptions of the security services available from this module. The overall module capabilities include
indicators such as the module’s threading properties or exportability. The security service descriptions
include information on each service, its subservices, and any embedded products or services. For
example, a module description might indicate that this is an exportable module containing a DL service
and a CSP service, where the CSP service provides one subservice to access a software token and a second
subservice to access a hardware token. The module description is made available to applications via
queries to the KeyWorks registry.

2.4 Attaching a Service Provider Module

Before an application can use the functions of a specific module subservice, it must use the
CSSM_ModuleAttach function to request that KeyWorks attach to the module’s subservice. On the first
attach, KeyWorks verifies the integrity of the service provider module prior to loading the module.
Loading the module initiates a call to an operating system (OS-specific) entry point in the module. On
registration, the service provider module registers its tables of service function pointers with KeyWorks
and receives the application’s memory management upcalls. KeyWorks then uses the module function
table to call the module’s Initialize function to confirm version compatibility and calls the module’s
EventNotify function to indicate that an attach operation is occurring. Once these steps have successfully
completed, KeyWorks returns a module handle to the application that uniquely identifies the pairing of
the application thread to the module subservice instance. The application uses this handle to identify the
module subservice in future function calls. The module subservice uses the handle to identify the calling
application. KeyWorks notifies the module of subsequent attach requests from the application by using
the module’s EventNotify function. Subsequent attach operations do not require integrity verification.

2.4.1 Module Entry Point

When KeyWorks first attaches to or last detaches from a module, it initiates an OS-specific entry point.
For the Windows NT OS, DLLMain is the entry point. For AIX, _init and _fini are the entry points. On
attach, this function is responsible for authenticating KeyWorks and then calling CSSM_RegisterServices.
On detach, it is responsible for calling CSSM_DeregisterServices. To avoid OS-related conflicts, any
setup or cleanup operations should be performed in the module’s Initialize and Terminate functions.

2.4.2 Module Function Table Registration

On attach, a module must register its function tables with KeyWorks by calling CSSM_RegisterServices.
Its function tables consist of a table of module management function pointers, plus one table of SPI
function pointers for each (service, subservice) pair contained in the module. The module management
functions include Initialize, EventNotify, and Terminate. The interface functions reflect the KeyWorks
API for each security service. The function prototypes and their descriptions provide the IBM KeyWorks
Toolkit SPI specifications. See Section 1.3 for a complete list of these documents. If a subservice does not

Version 1.1.1 IBM KeyWorks Toolkit Page 8

support a given function in its SPI, the pointer to that function should be set to NULL. These structures
are specified in the KeyWorks header files, cssmspi.h, cssmcspi.h, cssmtpi.h, cssmcli.h, and cssmdli.h.

2.4.3 Memory Management Upcalls

All memory allocation and deallocation for data passed between the application and a module via
KeyWorks is ultimately the responsibility of the calling application. Since a module needs to allocate
memory to return data to the application, the application must provide the module with a means of
allocating memory that the application has the ability to free. It does this by providing the module with
memory management upcalls.

Memory management upcalls are pointers to the memory management functions used by the calling
application. They are provided to a module via KeyWorks as a structure of function pointers and are
passed to the module when it calls the CSSM_RegisterServices function. The functions will be the calling
application’s equivalent of malloc, free, calloc, and re-alloc, and will be expected to have the same
behavior as those functions. The function parameters will consist of the normal parameters for that
function. The function return values should be interpreted in the standard manner. A module is
responsible for making the memory management functions available to all of its internal functions.

2.5 Error Handling

When an error occurs inside a module, the function should call CSSM_SetError. The CSSM_SetError
function takes the module’s GUID and an error number as inputs. The module’s GUID is used to identify
where the error occurred. The error number is used to describe the error.

The error number set by a module subservice should fall into one of two ranges. The first range of error numbers
is predefined by KeyWorks. These are errors that are common to all modules implementing a given subservice
function. They are defined in the header file, cssmerr.h, which is distributed as part of KeyWorks. The second
range of error numbers is used to define module-specific error codes. These module-specific error codes should be
in the range of CSSM_XX_PRIVATE_ERROR to CSSM_XX_END_ERROR, where XX stands for the service
category abbreviation (CSP, KRSP, TP, CL, DL). CSSM_XX_PRIVATE_ERROR and CSSM_XX_END_ERROR
are also defined in the header file cssmerr.h. A module developer is responsible for making the definition and
interpretation of their module-specific error codes available to applications.

When no error has occurred, but the appropriate return value from a function is CSSM_FALSE, that
function should call CSSM_ClearError before returning. When the application receives a CSSM_FALSE
return value, it is responsible for checking whether an error has occurred by calling CSSM_GetError. If
the module function has called CSSM_ClearError, the calling application receives a CSSM_OK response
from the CSSM_GetError function, indicating no error has occurred.

Version 1.1.1 IBM KeyWorks Toolkit Page 9

2.6 Install Example

An installation program is responsible for registering a module’s capabilities with KeyWorks. A sample
code segment for the installation of a CL Module is shown in the example below. This example runs on
Windows-based systems.

2.6.1 CL Module Install

#include “cssm.h”
CSSM_GUID clm_guid =
{ 0x5fc43dc1, 0x732, 0x11d0, { 0xbb, 0x14, 0x0, 0xaa, 0x0, 0x36, 0x67, 0x2d }
};
CSSM_BOOL CLModuleInstall()
{
 CSSM_VERSION cssm_version = { CSSM_MAJOR, CSSM_MINOR };
 CSSM_VERSION cl_version = { CLM_MAJOR_VER, CLM_MINOR_VER };
 CSSM_GUID cl_guid = clm_guid;
 CSSM_CLSUBSERVICE sub_service;
 CSSM_SERVICE_INFO service_info;
 CSSM_MODULE_INFO module_info;
 char SysDir[_MAX_PATH];

 /* fill subservice information */
 sub_service.SubServiceId = 0;
 strcpy(sub_service.Description, "X509v3 SubService");
 sub_service.CertType = CSSM_CERT_X_509v3;
 sub_service.CertEncoding = CSSM_CERT_ENCODING_DER;
 sub_service.AuthenticationMechanism = CSSM_AUTHENTICATION_NONE;
 sub_service.NumberOfTemplateFields = NUMBER_X509_CERT_OIDS;
 sub_service.CertTemplates = X509_CERT_OIDS_ARRAY;
 sub_service.NumberOfTranslationTypes = 0;
 sub_service.CertTranslationTypes = NULL;
 sub_service.WrappedProduct.EmbeddedEncoderProducts = NULL;
 sub_service.WrappedProduct.NumberOfEncoderProducts = 0;
 sub_service.WrappedProduct.AccessibleCAProducts = NULL;
 sub_service.WrappedProduct.NumberOfCAProducts = 0;

 /* fill service information */
 strcpy(service_info.Description, "CL Service");
 service_info.Type = CSSM_SERVICE_CL;
 service_info.Flags = 0;
 service_info.NumberOfSubServices = 1;
 service_info.ClSubServiceList = &sub_service;
 service_info.Reserved = NULL;

 /* fill module information */
 module_info.Version = cl_version;
 module_info.CompatibleCSSMVersion = cssm_version;
 strcpy(module_info.Description, "Vendor Module");
 strcpy(module_info.Vendor, "Vendor Name");
 module_info.Flags = 0;
 module_info.ServiceMask = CSSM_SERVICE_CL;
 module_info.NumberOfServices = 1;
 module_info.ServiceList = &service_info;
 module_info.Reserved = NULL;

 /* get system dir path */
 GetSystemDirectory(SysDir, _MAX_PATH);

Version 1.1.1 IBM KeyWorks Toolkit Page 10

 /* Install the module */
 if (CSSM_ModuleInstall(clm_fullname_string,
 clm_filename_string,
 SysDir,
 &clm_guid,
 &module_info,
 NULL,
 NULL) == CSSM_FAIL)
 {
 return CSSM_FALSE;
 }

 return CSSM_TRUE;
}

Version 1.1.1 IBM KeyWorks Toolkit Page 11

2.7 Attach/Detach Example

A module is responsible for performing certain operations when KeyWorks attaches to and detaches from
it. These operations should be performed in a function called AddInAuthenticate, which must be exported
by the module. The AddInAuthenticate function will be called by the framework when the module is
loaded. The steps shown in Section 2.7.1 must be performed in order for the attach process to work
properly.

In the code example in Section 2.7.1, it is assumed that the CSSM entry points, such as
CSSM_RegisterServices, have been resolved at link time. If not, the module may call GetProcAddress to
resolve the entry points. The module is a CSP in this example, and the functions registered with the
framework are CSP functions, although the unimplemented functions in the function table are initialized
to NULL, and not reassigned.

2.7.1 AddInAuthenticate

#include “cssm.h”

CSSM_SPI_MEMORY_FUNCS CssmMemFuncs;
CSSM_GUID CspGuid =
{ 0x83badc39, 0xfac1, 0x11cf, { 0x81, 0x72, 0x0, 0xaa, 0x0, 0xb1, 0x99, 0xdd }
};

CSSM_RETURN CSSMAPI AddInAuthenticate(char* cssmCredentialPath, char*
cssmSection)
{

CSSM_SPI_CSP_FUNCS CssmCSPFuncs;
CSSM_REGISTRATION_INFO CssmRegInfo;
CSSM_MODULE_FUNCS CssmModuleFuncs[1];
CSSM_RETURN retcode;

// initialize tables
memset(&CssmCSPFuncs, 0, sizeof(CSSM_SPI_CSP_FUNCS));
memset(&CssmRegInfo, 0, sizeof(CSSM_REGISTRATION_INFO));

// Now register services
CssmCSPFuncs.DecryptData = DecryptData;
CssmCSPFuncs.EncryptData = EncryptData;

CssmRegInfo.Initialize = Initialize;
CssmRegInfo.Terminate = Uninitialize;
CssmRegInfo.EventNotify = EventNotify;
CssmRegInfo.ThreadSafe = CSSM_TRUE;
CssmRegInfo.ServiceSummary = CSSM_SERVICE_CSP;
CssmRegInfo.NumberOfServiceTables = 1;
CssmRegInfo.Services = CssmModuleFuncs;

CssmModuleFuncs[0].ServiceType = CSSM_SERVICE_CSP;
CssmModuleFuncs[0].CspFuncs = &CssmCSPFuncs;

retcode = CSSM_RegisterServices(&CspGuid, &CssmRegInfo, &CssmMemFuncs,
NULL);

return retcode;
}

Version 1.1.1 IBM KeyWorks Toolkit Page 12

Chapter 3. Service Provider Module Interface Functions

3.1 Data Structures

This section describes the data structures that may be passed to or returned from a service provider module
function. They will be used by modules to prepare data to be passed to and from the calling application
via the IBM KeyWorks Framework. These data structures are defined in the header file, cssmspi.h, which
is distributed with the IBM KeyWorks Toolkit. Data structures that are specific to a particular type of
service provider module, such as a Cryptographic Service Provider (CSP) or a Key Recovery Service
Provider (KRSP), are described in the individual IBM KeyWorks service provider interface (SPI)
specification documents.

3.1.1 CSSM_HANDLEINFO

This structure is used by service provider modules to obtain information about a CSSM_HANDLE.

typedef struct cssm_handleinfo {
 uint32 SubServiceID;
 uint32 SessionFlags;
 CSSM_NOTIFY_CALLBACK Callback;
 uint32 ApplicationContext;
} CSSM_HANDLEINFO, *CSSM_HANDLEINFO_PTR;

Definitions:
SubServiceID - An identifier for this subservice.

SessionFlags – A bit-mask of service options defined by a particular subservice of the module. Legal
values are described in the module-specific documentation. A default set of flags is specified in the
CSSM_MODULE_INFO structure for use by the caller.

Callback - A callback function registered by the application as part of the module attach operation.
This function should be used to notify the application of certain events.

ApplicationContext - An identifier which should be passed back to the application as part of the
Callback function.

3.1.2 CSSM_MODULE_FUNCS

This structure is used by service provider modules to pass a table of function pointers for a single service
to KeyWorks.

typedef struct cssm_module_funcs {
 CSSM_SERVICE_TYPE ServiceType;
 union {
 void *ServiceFuncs;
 CSSM_SPI_CSP_FUNCS_PTR CspFuncs;
 CSSM_SPI_DL_FUNCS_PTR DlFuncs;
 CSSM_SPI_CL_FUNCS_PTR ClFuncs;
 CSSM_SPI_TP_FUNCS_PTR TpFuncs;
 CSSM_SPI_KRSP_FUNCS_PTR KrspFuncs;
 };
} CSSM_MODULE_FUNCS, *CSSM_MODULE_FUNCS_PTR;

Version 1.1.1 IBM KeyWorks Toolkit Page 13

Definitions:
ServiceType - The type of service provider module services accessible via the XXFuncs function table.

XXFuncs - A pointer to a function table of the type described by ServiceType These function pointers
are used by KeyWorks to direct function calls from an application to the appropriate service in the
service provider module. These function pointer tables are described in the KeyWorks header files
cssmcspi.h, cssmkrspi.h, cssmdli.h, cssmcli.h, and cssmtpi.h. Table 1 provides the service access
tables.

Table 1. Service Access Table

Value Description

CSSM_SPI_CSP_FUNCS_PTR CspFuncs Function pointers to CSP services

CSSM_SPI_KRSP_FUNCS_PTR KrspFuncs Function pointers to KR services

CSSM_SPI_DL_FUNCS_PTR DlFuncs Function pointers to DL services

CSSM_SPI_CL_FUNCS_PTR ClFuncs Function pointers to CL services

CSSM_SPI_TP_FUNCS_PTR TpFuncs Function pointers to TP services

3.1.3 CSSM_REGISTRATION_INFO

This structure is used by service provider modules to pass tables of function pointers and module
information to KeyWorks.

typedef struct cssm_registration_info {
 /* Loading, Unloading and Event Notifications */
 CSSM_RETURN (CSSMAPI *Initialize) (CSSM_MODULE_HANDLE Handle,
 uint32 VerMajor,
 uint32 VerMinor);
 CSSM_RETURN (CSSMAPI *Terminate) (CSSM_MODULE_HANDLE Handle);
 CSSM_RETURN (CSSMAPI *EventNotify)(CSSM_MODULE_HANDLE Handle,
 const CSSM_EVENT_TYPE Event,
 const uint32 Param);
 CSSM_MODULE_INFO_PTR (CSSMAPI *GetModuleInfo)
 (CSSM_MODULE_HANDLE ModuleHandle,
 CSSM_SERVICE_MASK ServiceMask,
 uint32 SubserviceID,
 CSSM_INFO_LEVEL InfoLevel);
 CSSM_RETURN (CSSMAPI *FreeModuleInfo) (CSSM_MODULE_HANDLE ModuleHandle,
 CSSM_MODULE_INFO_PTR ModuleInfo);
 CSSM_BOOL ThreadSafe;
 uint32 ServiceSummary;
 uint32 NumberOfServiceTables;
 CSSM_MODULE_FUNCS_PTR Services;
} CSSM_REGISTRATION_INFO, *CSSM_REGISTRATION_INFO_PTR;

Definitions:
Initialize - Pointer to function that verifies compatibility of the requested module version with the
actual module version, and which performs module setup operations.

Terminate - Pointer to function that performs module cleanup operations.

EventNotify - Pointer to function that accepts event notification from IBM KeyWorks.

Version 1.1.1 IBM KeyWorks Toolkit Page 14

GetModuleInfo- Pointer to function that obtains and returns dynamic information about the module.

FreeModuleInfo - Pointer to function that frees the module information structure.

ThreadSafe - A flag that indicates to KeyWorks whether or not the module is capable of handling
multithreaded access.

ServiceSummary - A bit-mask indicating the types of services offered by this module. It is the
bitwise-OR of the service types described in Table 1.

NumberOfServiceTables - The number of distinct services provided by this module. This is also the
length of the Services array.

Services - An array of CSSM_MODULE_FUNCS structures that provide the mechanism for
accessing the module’s services.

Version 1.1.1 IBM KeyWorks Toolkit Page 15

3.2 Service Provider Module Functions

A service provider module interfaces with KeyWorks using the functions described in this section.

3.2.1 CSSM_DeregisterServices

CSSM_RETURN CSSMAPI CSSM_DeregisterServices (const CSSM_GUID_PTR GUID)

This function is used by a service provider module to deregister its function table with KeyWorks.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the Globally Unique ID (GUID) for this
module.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

See Also
CSSM_RegisterServices

Version 1.1.1 IBM KeyWorks Toolkit Page 16

3.2.2 CSSM_GetHandleInfo

CSSM_HANDLEINFO_PTR CSSMAPI CSSM_GetHandleInfo (CSSM_HANDLE hModule)

This function retrieves a CSSM_HANDLEINFO structure which describes the attributes of the
service provider module referenced by hModule.

Parameters
hModule (input)
Handle of the service provider module.

Return Value
A pointer to a CSSM_HANDLEINFO data structure. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 17

3.2.3 CSSM_RegisterServices

CSSM_RETURN CSSMAPI CSSM_RegisterServices (const CSSM_GUID_PTR GUID,
const CSSM_REGISTRATION_INFO_PTR
FunctionTable,
CSSM_SPI_MEMORY_FUNCS_PTR
UpcallTable,
void *Reserved)

This function is used by a service provider module to register its function table with KeyWorks
and to receive a memory management upcall table from KeyWorks.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the GUID for the calling module.

FunctionTable (input)
A structure containing pointers to the interface functions implemented by this module, organized
by interface type.

UpcallTable (output)
A pointer to the CSSM_SPI_MEMORY_FUNCS structure containing the memory management
function pointers to be used by this module.

Reserved (input)
A reserved input.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use
CSSM_GetError to obtain the error code.

See Also
CSSM_DeregisterServices

Version 1.1.1 IBM KeyWorks Toolkit Page 18

3.2.4 EventNotify

CSSM_RETURN CSSMAPI EventNotify (CSSM_MODULE_HANDLE Handle,
const CSSM_EVENT_TYPE Event,
const uint32 Param)

This function is used by KeyWorks to notify the module of certain events such as module attach
and detach operations.

Parameters
Handle (input)
The handle that identifies the module to application thread pairing.

Event (input)
The event that is occurring. The possible events are described in Table 2.

Table 2. Module Event Types

Event Description

CSSM_EVENT_ATTACH The application has requested an attach operation.

CSSM_EVENT_DETACH The application has requested a detach operation.

CSSM_EVENT_INFOATTACH An application has requested module info and
KeyWorks wants to obtain the module’s dynamic
capabilities. The service provider module cannot
assume that Initialize or Terminate has been
called.

CSSM_EVENT_INFODETACH KeyWorks has finished obtaining the module’s
dynamic capabilities.

CSSM_EVENT_CREATE_CONTEXT A context has been created.

CSSM_EVENT_DELETE_CONTEXT A context has been deleted.

Param (input)
An event-specific parameter (see Table 3).

Table 3. Module Event Parameters

Event Parameter

CSSM_EVENT_ATTACH None

CSSM_EVENT_DETACH None

CSSM_EVENT_INFOATTACH None

CSSM_EVENT_INFODETACH None

CSSM_EVENT_CREATE_CONTEXT Context handle

CSSM_EVENT_DELETE_CONTEXT Context handle

Version 1.1.1 IBM KeyWorks Toolkit Page 19

Return Value
A CSSM_OK return value signifies that the module’s event-specific operations were successfully
performed. When CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain
the error code.

See Also
Initialize, Terminate

Version 1.1.1 IBM KeyWorks Toolkit Page 20

3.2.5 FreeModuleInfo

CSSM_RETURN CSSMAPI FreeModuleInfo (CSSM_MODULE_HANDLE ModuleHandle,
CSSM_MODULE_INFO_PTR ModuleInfo)

This function frees the memory allocated to hold all of the info structures returned by
GetModuleInfo. All substructures within the info structure are freed by this function.

Parameters
ModuleHandle (input)
The handle of the attached service provider module.

ModuleInfo (input)
A pointer to the CSSM_MODULE_INFO structures to be freed.

Return Value
This function returns CSSM_OK if successful, and returns an error code if an error has occurred.

See Also
GetModuleInfo

Version 1.1.1 IBM KeyWorks Toolkit Page 21

3.2.6 GetModuleInfo

CSSM_MODULE_INFO_PTR CSSMAPI GetModuleInfo
(CSSM_MODULE_HANDLE ModuleHandle,
CSSM_SERVICE_MASK ServiceMask,
uint32 SubserviceID,
CSSM_INFO_LEVEL InfoLevel)

This function returns descriptive information about the module identified by the ModuleHandle.
The information returned can include all of the capability information for each subservices, and
for each of the service types implemented by the selected module. The request for information
can be limited to a particular set of services, as specified by the service bit-mask. The request
may be further limited to one or all of the subservices implemented in one or all of the service
categories. Finally, the detail level of the information returned can be controlled by the InfoLevel
input parameter. This is particularly important for the module with dynamic capabilities.
InfoLevel can be used to request static attribute values only or dynamic values.

Parameters
ModuleHandle (input)
The handle of the attached service provider module.

ServiceMask (input)
A bit-mask specifying the module service types used to restrict the capabilities information
returned by this function. An input value of zero specifies all services for the specified module.

SubserviceID (input)
A single subservice ID or the value CSSM_ALL_SUBSERVICES must be provided. If a
subservice ID is provided the get operation is limited to the specified subservice. Note that the
operation may already be limited by a service mask. If so, the subservice ID applies to all service
categories selected by the service mask. If CSSM_ALL_SUBSERVICES is specified,
information for all subservices (as limited by the service mask) is returned by this function.

InfoLevel (input)
Indicates the level of detail returned by this function. Information retrieval can be restricted as
follows:

• CSSM_INFO_LEVEL_MODULE - Returns only the information contained in the
cssm_moduleinfo structure.

• CSSM_INFO_LEVEL_SUBSERVICE - Returns the information returned by
CSSM_INFO_LEVEL_MODULE and the information contained in the cssm_XXsubservice
structure, where XX corresponds to the module type, such as cssm_tpsubservice.

• CSSM_INFO_LEVEL_STATIC_ATTR - Returns the information returned by
CSSM_INFO_LEVEL_SUBSERVICE and the attribute and capability values that are
statically defined for the module.

• CSSM_INFO_LEVEL_ALL_ATTR - Returns the information returned by
CSSM_INFO_LEVEL_SUBSERVICE and the attribute and capability values that are
statically or dynamically defined for the module. Dynamic modules, whose capabilities
change over time, support a query function used by KeyWorks to interrogate the module’s
current capability status.

Version 1.1.1 IBM KeyWorks Toolkit Page 22

Return Value
A pointer to a module info structure containing a pointer to an array of zero or more service
information structures. Each structure contains type information identifying the service
description as representing Certificate Library services (CL), Data Storage Library (DL) services,
etc. The service descriptions are subclassed into subservice descriptions that describe the
attributes and capabilities of a subservice.

See Also
CSSM_SetModuleInfo, CSSM_FreeModuleInfo

Version 1.1.1 IBM KeyWorks Toolkit Page 23

3.2.7 Initialize

CSSM_RETURN CSSMAPI Initialize (CSSM_MODULE_HANDLE Handle,
uint32 VerMajor,
uint32 VerMinor)

This function checks whether the current version of the module is compatible with the input
version, and performs any module-specific setup activities.

Parameters
Handle (input)
The handle that identifies the module to application thread pairing.

VerMajor (input)
The major version number of the module expected by the calling application.

VerMinor (input)
The minor version number of the module expected by the calling application.

Return Value
A CSSM_OK return value signifies that the current version of the module is compatible with the
input version numbers, and all setup operations were successfully performed. When
CSSM_FAIL is returned, either the current module is incompatible with the requested module
version or an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
Terminate, EventNotify

Version 1.1.1 IBM KeyWorks Toolkit Page 24

3.2.8 Terminate

CSSM_RETURN CSSMAPI Terminate (CSSM_MODULE_HANDLE Handle)

This function performs any module-specific cleanup activities.

Parameters
Handle (input)
The handle that identifies the module to application thread pairing.

Return Value
A CSSM_OK return value signifies that all cleanup operations were successfully performed.
When CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error
code.

See Also
Initialize, EventNotify

Version 1.1.1 IBM KeyWorks Toolkit Page 25

Chapter 4. Relevant CSSM API functions

Several API functions are particularly relevant to module developers because they are used either by the
application to access a module, or by a module to access IBM KeyWorks services such as the KeyWorks
registry or the error-handling routines. This subset of API functions is included in this chapter for quick
reference by module developers. For additional information, module developers are encouraged to
reference the IBM KeyWorks Toolkit Application Programming Interface Specification.

4.1 Data Structures

4.1.1 Basic Data Types

typedef unsigned char uint8;
typedef unsigned short uint16;
typedef short sint16;
typedef unsigned int uint32;
typedef int sint32;

The following is used by KeyWorks data structures to represent a character string inside of a fixed-length
buffer. The character string is expected to be NULL-terminated. The string size was chosen to
accommodate current security standards, such as Public-Key Cryptography Standard (PKCS#11).

#define CSSM_MODULE_STRING_SIZE 64
typedef char CSSM_STRING [CSSM_MODULE_STRING_SIZE + 4];

4.1.2 CSSM_ALL_SUBSERVICES

This data type is used to identify that information on all of the subservices is being requested or returned.

#define CSSM_ALL_SUBSERVICES (-1)

4.1.3 CSSM_BOOL

This data type is used to indicate a true or false condition.

typedef uint32 CSSM_BOOL;
#define CSSM_TRUE 1
#define CSSM_FALSE 0

Definitions:
CSSM_TRUE - Indicates a true result or a true value.

CSSM_FALSE - Indicates a false result or a false value.

Version 1.1.1 IBM KeyWorks Toolkit Page 26

4.1.4 CSSM_CALLBACK

An application uses this data type to request that a service provider module call back into the application
for certain cryptographic information.

typedef CSSM_DATA_PTR (CSSMAPI *CSSM_CALLBACK) (void *allocRef, uint32 ID);

Definitions:
allocRef - Memory heap reference specifying which heap to use for memory allocation.

ID - Input data to identify the callback.

4.1.5 CSSM_CRYPTO_DATA

This data structure is used to encapsulate cryptographic information, such as the passphrase to use when
accessing a private key.

typedef struct cssm_crypto_data {
CSSM_DATA_PTR Param;
CSSM_CALLBACK Callback;
uint32 CallbackID;

}CSSM_CRYPTO_DATA, *CSSM_CRYPTO_DATA_PTR

Definitions:
Param - A pointer to the parameter data and its size in bytes.

Callback - An optional callback routine for the service provider modules to obtain the parameter.

CallbackID - A tag that identifies the callback.

4.1.6 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via KeyWorks. Trust Policy (TP) modules and Certificate Libraries (CLs) use this
structure to hold certificates and Certificate Revocation Lists (CRLs). Other service provider modules,
such as Cryptographic Service Providers (CSPs), use this same structure to hold general data buffers.
Data Storage Library (DL) modules use this structure to hold persistent security-related objects.

typedef struct cssm_data{
 uint32 Length;
 uint8 *Data;
} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length - Length of the data buffer in bytes.

Data - Points to the start of an arbitrary length data buffer.

Version 1.1.1 IBM KeyWorks Toolkit Page 27

4.1.7 CSSM_GUID

This structure designates a Globally Unique ID (GUID) that distinguishes one service provider module
from another. All GUID values should be computer-generated to guarantee uniqueness. (The GUID
generator in Microsoft Developer Studio and the RPC UUIDGEN/uuid_gen program can be used on a
number of UNIX-based platforms.)

typedef struct cssm_guid{
 uint32 Data1;
 uint16 Data2;
 uint16 Data3;
 uint8 Data4[8];
} CSSM_GUID, *CSSM_GUID_PTR

Definitions:
Data1 - Specifies the first 8 hexadecimal digits of the GUID.

Data2 - Specifies the first group of 4 hexadecimal digits of the GUID.

Data3 - Specifies the second group of 4 hexadecimal digits of the GUID.

Data4 - Specifies an array of 8 elements that contains the third and final group of 8 hexadecimal
digits of the GUID in elements 0 and 1, and the final 12 hexadecimal digits of the GUID in elements
2 through 7.

4.1.8 CSSM_HANDLE

A unique identifier for an object managed by KeyWorks or by a service provider module.

typedef uint32 CSSM_HANDLE, *CSSM_HANDLE_PTR

4.1.9 CSSM_INFO_LEVEL

This enumerated list defines the levels of information detail that can be retrieved about the services and
capabilities implemented by a particular module. Modules can implement multiple KeyWorks service
types. Each service may provide one or more subservices. Modules also can have dynamically available
services and features.

typedef enum cssm_info_level {
 CSSM_INFO_LEVEL_MODULE= 0,

/* values from CSSM_SERVICE_INFO struct */
 CSSM_INFO_LEVEL_SUBSERVICE = 1,

/* values from CSSM_SERVICE_INFO and XXsubservice struct */
 CSSM_INFO_LEVEL_STATIC_ATTR = 2,

/* values from CSSM_SERVICE_INFO and XXsubservice and
 all static-valued attributes of a subservice */

 CSSM_INFO_LEVEL_ALL_ATTR = 3,
/* values from CSSM_SERVICE_INFO and XXsubservice and
 all attributes, static and dynamic, of a subservice */

} CSSM_INFO_LEVEL;

Version 1.1.1 IBM KeyWorks Toolkit Page 28

4.1.10 CSSM_MEMORY_FUNCS / CSSM_API_MEMORY_FUNCS

This structure is used by applications to supply memory functions for the KeyWorks and the service
provider modules. The functions are used when memory needs to be allocated by the KeyWorks or service
providers for returning data structures to the applications.

typedef struct cssm_memory_funcs {
 void *(*malloc_func) (uint32 Size, void *AllocRef);
 void (*free_func) (void *MemPtr, void *AllocRef);
 void *(*realloc_func)(void *MemPtr, uint32 Size, void *AllocRef);
 void *(*calloc_func) (uint32 Num, uint32 Size, void *AllocRef);
 void *AllocRef;
} CSSM_MEMORY_FUNCS, *CSSM_MEMORY_FUNCS_PTR;

typedef CSSM_MEMORY_FUNCS CSSM_API_MEMORY_FUNCS;
typedef CSSM_API_MEMORY_FUNCS *CSSM_API_MEMORY_FUNCS_PTR;

Definitions:
malloc_func - Pointer to a function that returns a void pointer to the allocated memory block of at
least Size bytes from heap AllocRef.

free_func - Pointer to a function that deallocates a previously allocated memory block (MemPtr)
from heap AllocRef.

realloc_func - Pointer to a function that returns a void pointer to the reallocated memory block
(MemPtr) of at least Size bytes from heap AllocRef.

calloc_func - Pointer to a function that returns a void pointer to an array of Num elements of length
Size initialized to zero from heap AllocRef.

AllocRef - Indicates which memory heap the function operates on.

4.1.11 CSSM_MODULE_FLAGS

This bit-mask is used to identify characteristics of the module, such as whether or not it is threadsafe.

typedef uint32 CSSM_MODULE_FLAGS;

#define CSSM_MODULE_THREADSAFE 0x1 /* Module is threadsafe */
#define CSSM_MODULE_EXPORTABLE 0x2 /* Module can be exported outside the USA */

4.1.12 CSSM_MODULE_HANDLE

A unique identifier for an attached service provider module.

typedef uint32 CSSM_MODULE_HANDLE

Version 1.1.1 IBM KeyWorks Toolkit Page 29

4.1.13 CSSM_MODULE_INFO

This structure aggregates all service descriptions about all service types of a module implementation.

typedef struct cssm_moduleinfo {
 CSSM_VERSION Version;
 CSSM_VERSION CompatibleCSSMVersion;
 CSSM_STRING Description;
 CSSM_STRING Vendor;
 CSSM_MODULE_FLAGS Flags;
 CSSM_SERVICE_MASK ServiceMask;
 uint32 NumberOfServices;
 CSSM_SERVICE_INFO_PTR ServiceList;
 void *Reserved;
} CSSM_MODULE_INFO, *CSSM_MODULE_INFO_PTR;

Definitions:
Version- The major and minor version numbers of this service provider module.

CompatibleCSSMVersion - The version of KeyWorks that this module was written to.

Description - A text description of this module and its functionality.

Vendor- The name and description of the module vendor.

Flags- Characteristics of this module, such as whether or not it is threadsafe.

ServiceMask - A bit-mask identifying the types of services available in this module.

NumberOfServices - The number of services for which information is provided. Multiple descriptions
(as subservices) can be provided for a single service category.

ServiceList - An array of pointers to the service information structures. This array contains
NumberOfServices entries.

Reserved - This field is reserved for future use. It should always be set to NULL.

Version 1.1.1 IBM KeyWorks Toolkit Page 30

4.1.14 CSSM_NOTIFY_CALLBACK

An application uses this data type to request that a service provider module call back into the application
to notify it of certain events.

typedef CSSM_RETURN (CSSMAPI *CSSM_NOTIFY_CALLBACK)(CSSM_MODULE_HANDLE
ModuleHandle,
uint32 Application,
uint32 Reason,
uint32 Param);

Definitions:
ModuleHandle - The handle of the attached service provider module.

Application - Input data to identify the callback.

Reason - The reason for the notification (see Table 4).

Table 4. Notification Reasons

Reason Description

CSSM_NOTIFY_SURRENDER The service provider module is temporarily
surrendering control of the process.

CSSM_NOTIFY_COMPLETE An asynchronous operation has completed.

CSSM_NOTIFY_DEVICE_REMOVED A device, such as a token, has been removed.

CSSM_NOTIFY_DEVICE_INSERTED A device, such as a token, has been inserted.

Param - Any additional information about the event.

4.1.15 CSSM_RETURN

This data type is used to indicate whether a function was successful.

typedef enum cssm_return {
CSSM_OK = 0,
CSSM_FAIL = -1

} CSSM_RETURN

Definitions:
CSSM_OK - Indicates operation was successful

CSSM_FAIL - Indicates operation was unsuccessful.

4.1.16 CSSM_SERVICE_FLAGS

This bit-mask is used to identify characteristics of the service, such as whether it contains any embedded
products.

Version 1.1.1 IBM KeyWorks Toolkit Page 31

typedef uint32 CSSM_SERVICE_FLAGS

#define CSSM_SERVICE_ISWRAPPEDPRODUCT 0x1
 /* On = Contains one or more embedded
products
 Off = Contains no embedded products */

4.1.17 CSSM_SERVICE_INFO

This structure holds a description of a module service. The service described is of the KeyWorks service
type specified by the module type.

typedef struct cssm_serviceinfo {
 CSSM_STRING Description;
 CSSM_SERVICE_TYPE Type;
 CSSM_SERVICE_FLAGS Flags;
 uint32 NumberOfSubServices;
 union {
 void *SubServiceList;
 CSSM_CSPSUBSERVICE_PTR CspSubServiceList;
 CSSM_DLSUBSERVICE_PTR DlSubServiceList;
 CSSM_CLSUBSERVICE_PTR ClSubServiceList;
 CSSM_TPSUBSERVICE_PTR TpSubServiceList;
 CSSM_KRSUBSERVICE_PTR KrSubServiceList;
 };
 void *Reserved;
} CSSM_SERVICE_INFO, *CSSM_SERVICE_INFO_PTR;

Definitions:
Description- A text description of the service.

Type - Specifies exactly one type of service structure, such as CSSM_SERVICE_CSP,
CSSM_SERVICE_CL, etc.

Flags- Characteristics of this service, such as whether it contains any embedded products.

NumberOfSubServices - The number of elements in the module SubServiceList.

SubServiceList - A list of descriptions of the encapsulated subservices (not of the basic service types).

CspSubServiceList - A list of descriptions of the encapsulated CSP subservices.

DlSubServiceList - A list of descriptions of the encapsulated DL subservices.

ClSubServiceList - A list of descriptions of the encapsulated CL subservices.

TpSubServiceList - A list of descriptions of the encapsulated TP subservices.

KrSubServiceList - A list of descriptions of the encapsulated key recovery subservices.

Reserved - This field is reserved for future use. It should always be set to NULL.

Version 1.1.1 IBM KeyWorks Toolkit Page 32

4.1.18 CSSM_SERVICE_MASK

This defines a bit-mask of all the types of KeyWorks services a single module can implement.

typedef uint32 CSSM_SERVICE_MASK;

#define CSSM_SERVICE_CSSM 0x1
#define CSSM_SERVICE_CSP 0x2
#define CSSM_SERVICE_DL 0x4
#define CSSM_SERVICE_CL 0x8
#define CSSM_SERVICE_TP 0x10
#define CSSM_SERVICE_KR 0x20
#define CSSM_SERVICE_LAST CSSM_SERVICE_TP

4.1.19 CSSM_SERVICE_TYPE

This data type is used to identify a single service from the CSSM_SERVICE_MASK options defined
above.

typedef CSSM_SERVICE_MASK CSSM_SERVICE_TYPE

4.1.20 CSSM_SPI_FUNC_TBL

This structure is used by service provider modules to reference an application’s memory management
functions. The functions are used when a service provider module needs to allocate memory for returning
data structures to the application, or needs to deallocate memory for a data structure that is passed to it
from an application.

typedef struct cssm_spi_func_tbl {
 void *(*malloc_func) (CSSM_HANDLE AddInHandle, uint32 Size);
 void (*free_func) (CSSM_HANDLE AddInHandle, void *MemPtr);
 void *(*realloc_func)(CSSM_HANDLE AddInHandle, void *MemPtr, uint32 Size);
 void *(*calloc_func) (CSSM_HANDLE AddInHandle, uint32 Num, uint32 Size);
} CSSM_SPI_MEMORY_FUNCS, *CSSM_SPI_MEMORY_FUNCS_PTR;

Definitions:
malloc_func - Pointer to a function that returns a void pointer to the allocated memory block of at
least Size bytes from the heap of the application associated with AddInHandle.

free_func - Pointer to a function that deallocates a previously allocated memory block (MemPtr)
from the heap of the application associated with AddInHandle.

realloc_func - Pointer to a function that returns a void pointer to the reallocated memory block
(MemPtr) of at least Size bytes from the heap of the application associated with AddInHandle.

calloc_func - Pointer to function that returns a void pointer to an array of Num elements of length
Size initialized to zero from the heap of the application associated with AddInHandle.

Version 1.1.1 IBM KeyWorks Toolkit Page 33

4.1.21 CSSM_USER_AUTHENTICATION

This structure holds the user’s credentials for authenticating to a module. The type of credentials required
is defined by the module and specified as a CSSM_USER_AUTHENTICATION_MECHANISM.

typedef struct cssm_user_authentication {
 CSSM_DATA_PTR Credential;
 CSSM_CRYPTO_DATA_PTR MoreAuthenticationData;
} CSSM_USER_AUTHENTICATION, *CSSM_USER_AUTHENTICATION_PTR;

Definitions:
Credential - A certificate, a shared secret, a magic token, or whatever is required by a service
provider module for user authentication. The required credential type is specified as a
CSSM_USER_AUTHENTICATION_MECHANISM.

MoreAuthenticationData - A passphrase or other data that can be provided as immediate data within
this structure or via a callback function to the user/caller.

4.1.22 CSSM_USER_AUTHENTICATION_MECHANISM

The enumerated list of CSSM_User_Authentication_Mechanism defines different methods a service
provider module can require when authenticating a caller. The module specifies which mechanism the
caller must use for each subservice type provided by the module. KeyWorks-defined authentication
methods include password-based authentication, a login sequence, or a certificate and passphrase. It is
anticipated that new mechanisms will be added to this list as required.

typedef enum cssm_user_authentication_mechanism {
 CSSM_AUTHENTICATION_NONE = 0,
 CSSM_AUTHENTICATION_CUSTOM = 1,
 CSSM_AUTHENTICATION_PASSWORD = 2,
 CSSM_AUTHENTICATION_USERID_AND_PASSWORD = 3,
 CSSM_AUTHENTICATION_CERTIFICATE_AND_PASSPHRASE = 4,
 CSSM_AUTHENTICATION_LOGIN_AND_WRAP = 5,
} CSSM_USER_AUTHENTICATION_MECHANISM;

4.1.23 CSSM_VERSION

This structure is used to represent the version of KeyWorks components.

typedef struct cssm_version {
 uint32 Major;
 uint32 Minor;
} CSSM_VERSION, *CSSM_VERSION_PTR;

Definitions:
Major - The major version number of the component.

Minor - The minor version number of the component.

Version 1.1.1 IBM KeyWorks Toolkit Page 34

4.2 Function Definitions

4.2.1 CSSM_ModuleAttach

CSSM_MODULE_HANDLE CSSMAPI CSSM_ModuleAttach
(const CSSM_GUID_PTR GUID,
const CSSM_VERSION_PTR Version,
const CSSM_API_MEMORY_FUNCS_PTR MemoryFuncs,
uint32 SubserviceID,
uint32 SubserviceFlags,
uint32 Application,
const CSSM_NOTIFY_CALLBACK Notification,
const void * Reserved)

This function attaches the service provider module and verifies that the version of the module
expected by the application is compatible with the version on the system. The module can
implement subservices (as described in the IBM KeyWorks Toolkit SPI documentation in Section
1.3). The caller can specify a specific subservice provided by the module. Subservice flags may
be required to set parameters for the service.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the GUID for the CSP module.

Version (input)
The major and minor version number of the service provider module that the application is
compatible with.

MemoryFuncs (input)
A structure containing pointers to the memory routines.

SubserviceID (input)
The number of a subservice provided by the module. This value should always be taken from the
CSSM_MODULE_INFO structure to ensure that a compatible identifier is used. (Service
provider modules that implement only one service can use zero as the subservice identifier.)

SubserviceFlags (input)
Bit-mask of service options defined by a particular subservice of the module. Legal values are
described in module-specific documentation. A default set of flags is specified in the
CSSM_MODULE_INFO structure for use by the caller.

Application (input/optional)
Nonce passed to the application when its callback is invoked, allowing the application to
determine the proper context of operation.

Notification (input/optional)
Callback provided by the application that is used by the service provider module to notify the
application of certain events. For example, a CSP may use this callback in the following
situations: a parallel operation completes, a token running in serial mode surrenders control to
the application, or the token is removed (hardware-specific).

Version 1.1.1 IBM KeyWorks Toolkit Page 35

Reserved (input)
A reserved input.

Return Value
A handle is returned for the attached service provider module. If the handle is NULL, an error
has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_ModuleDetach

Version 1.1.1 IBM KeyWorks Toolkit Page 36

4.2.2 CSSM_ModuleDetach

CSSM_RETURN CSSMAPI CSSM_ModuleDetach (CSSM_MODULE_HANDLE ModuleHandle)

This function detaches the application from the service provider module.

Parameters
ModuleHandle (input)
The handle that describes the service provider module.

Return Value
A CSSM_OK return value signifies that the application has been detached from the module.
If CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_ModuleAttach

Version 1.1.1 IBM KeyWorks Toolkit Page 37

4.2.3 CSSM_FreeModuleInfo

CSSM_RETURN CSSMAPI CSSM_FreeModuleInfo (CSSM_MODULE_INFO_PTR ModuleInfo)

This function frees the memory allocated by CSSM_GetModuleInfo to hold the module info
structures. All substructures within the info structure are freed by this function.

Parameters
ModuleInfo (input)
A pointer to the CSSM_MODULE_INFO structures to be freed.

Return Value
This function returns CSSM_OK if successful, and returns CSSM_FAIL if an error has occurred.
Use CSSM_GetError to determine the exact error.

See Also
CSSM_GetModuleInfo, CSSM_SetModuleInfo

Version 1.1.1 IBM KeyWorks Toolkit Page 38

4.2.4 CSSM_GetCSSMRegistryPath

CSSM_DATA_PTR CSSMAPI CSSM_GetCSSMRegistryPath (void)

This function gets the directory path of the KeyWorks registry.

Parameters
None

Return Value
A pointer to a CSSM_DATA structure containing the registry path information, or a NULL if an
error occurred in getting the information. Use CSSM_GetError to determine the exact error.

Version 1.1.1 IBM KeyWorks Toolkit Page 39

4.2.5 CSSM_GetGUIDUsage

CSSM_SERVICE_MASK CSSMAPI CSSM_GetGUIDUsage
(const CSSM_GUID_PTR ModuleGUID)

Returns a bit-mask describing the KeyWorks function categories of service provided by the
module identified by GUID.

Parameters
ModuleGUID (input)
GUID for the module of interest.

Return Value
A CSSM_SERVICE_MASK from the info structure describing the services provided by the
module referenced by the GUID.

See Also
CSSM_GetHandleUsage

Version 1.1.1 IBM KeyWorks Toolkit Page 40

4.2.6 CSSM_GetHandleUsage

CSSM_SERVICE_MASK CSSMAPI CSSM_GetHandleUsage
(CSSM_HANDLE ModuleHandle)

Returns a bit-mask describing the KeyWorks function categories of services provided by the
module, and identified by the specified handle for an attached module.

Parameters
ModuleHandle (input)
Handle of the module for which information should be returned.

Return Value
A CSSM_SERVICE_MASK from the info structure describing the services provided by the
module referenced by the handle.

See Also
CSSM_GetGUIDUsage

Version 1.1.1 IBM KeyWorks Toolkit Page 41

4.2.7 CSSM_GetModuleGUIDFromHandle

CSSM_GUID_PTR CSSMAPI CSSM_GetModuleGUIDFromHandle
(CSSM_HANDLE ModuleHandle)

This function determines the GUID associated with a specific module handle.

Parameters
ModuleHandle (input)
The handle that describes the service provider module.

Return Value
A CSSM_GUID_PTR to a data structure containing the GUID associated with ModuleHandle.
If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 42

4.2.8 CSSM_GetModuleInfo

CSSM_MODULE_INFO_PTR CSSMAPI CSSM_GetModuleInfo
(const CSSM_GUID_PTR ModuleGUID,
CSSM_SERVICE_MASK ServiceMask,
uint32 SubserviceID,
CSSM_INFO_LEVEL InfoLevel)

This function returns descriptive information about the module identified by the ModuleGUID.
The information returned can include all of the capability information, information for each
subservice, or information for each of the service types implemented by the selected module.
The request for information can be limited to a particular set of services, as specified by the
ServiceMask bit-mask. The request may be further limited to one or all of the subservices
implemented in one or all of the service categories. Finally, the detail level of the information
returned can be controlled by the InfoLevel input parameter. This is particularly important for
module with dynamic capabilities. InfoLevel can be used to request static attribute values only or
dynamic values.

Parameters
ModuleGUID (input)
A pointer to the CSSM_GUID structure containing the GUID for the service provider module.

ServiceMask (input)
A bit-mask specifying the module service types used to restrict the capabilities information
returned by this function. An input value of zero specifies all services for the specified module.

SubserviceID (input)
A single subservice ID or the value CSSM_ALL_SUBSERVICES must be provided. If a
subservice ID is provided, the get operation is limited to the specified subservice. Note that the
operation may already be limited by a service mask. If so, the subservice ID applies to all service
categories selected by the service mask. If CSSM_ALL_SUBSERVICES is specified,
information for all subservices (as limited by the service mask) is returned by this function.

InfoLevel (input)
Indicates the level of detail returned by this function. Information retrieval can be restricted as
follows. Note that not all service provider modules support all of the following values.

• CSSM_INFO_LEVEL_MODULE - Returns only the information contained in the
cssm_moduleinfo structure.

• CSSM_INFO_LEVEL_SUBSERVICE - Returns the information returned by
CSSM_INFO_LEVEL_MODULE and the information contained in the cssm_XXsubservice
structure, where XX corresponds to the module type, such as cssm_tpsubservice.

• CSSM_INFO_LEVEL_STATIC_ATTR - Returns the information returned by
CSSM_INFO_LEVEL_SUBSERVICE and the attribute and capability values that are
statically defined for the module.

• CSSM_INFO_LEVEL_ALL_ATTR - Returns the information returned by
CSSM_INFO_LEVEL_SUBSERVICE and the attribute and capability values that are
statically or dynamically defined for the module. Dynamic modules, whose capabilities
change over time, support a query function used by KeyWorks to interrogate the module’s
current capability status.

Version 1.1.1 IBM KeyWorks Toolkit Page 43

Return Value
A CSSM_MODULE_INFO_PTR to an array of one or more info structures. Each structure
contains type information identifying the capability description as representing CL capabilities,
DL capabilities, etc. The capability descriptions can also be subclassed into subservices.

See Also
CSSM_GetModuleInfo, CSSM_FreeModuleInfo

Version 1.1.1 IBM KeyWorks Toolkit Page 44

4.2.9 CSSM_GetModuleLocation

CSSM_DATA_PTR CSSMAPI CSSM_GetModuleLocation (const CSSM_GUID_PTR GUID)

This function returns the directory path of the service provider module specified by the GUID
input parameter.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the GUID for the service provider module.

Return Value
A pointer to a CSSM_DATA data structure containing the directory path of the module
associated with GUID. If the pointer is NULL, an error has occurred. Use CSSM_GetError to
obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 45

4.2.10 CSSM_ListModules

CSSM_LIST_PTR CSSMAPI CSSM_ListModules (CSSM_SERVICE_MASK ServiceMask,
CSSM_BOOL MatchAll)

This function returns a list containing the GUID/name pair for each of the currently installed
service provider modules that provide services in any of the KeyWorks functional categories
selected in the service mask.

Parameters
ServiceMask (input)
A bit-mask selecting the KeyWorks functional categories. This information can be used to select
information about potential service provider modules.

MatchAll (input)
A Boolean value defining how the multiple bits in the service mask are interpreted.
CSSM_TRUE means the service modules selected must match all service areas specified by the
service mask. CSSM_FALSE means the service module selected must specify one or more of the
service areas specified by the service mask.

Return Value
A pointer to the CSSM_LIST structure containing the GUID/name pair for each of the modules.
If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_GetModuleInfo, CSSM_FreeModuleInfo

Version 1.1.1 IBM KeyWorks Toolkit Page 46

4.2.11 CSSM_ModuleInstall

CSSM_RETURN CSSMAPI CSSM_ModuleInstall
(const char *ModuleName,
const char *ModuleFileName,
const char *ModulePathName,
const CSSM_GUID_PTR GUID,
const CSSM_MODULE_INFO_PTR ModuleDescription,
const void * Reserved1,
const CSSM_DATA_PTR Reserved2)

This function registers the module with KeyWorks. KeyWorks adds the module’s descriptive
information to its persistent registry. This makes the service module available for use on the
local system. The function accepts as input the name and unique identifier for the module, the
location executable code for the module, and a digitally signed list of capabilities supported by
the module. The module name and description are added to the KeyWorks registry, making the
module available for use by applications.

Parameters
ModuleName (input)
The name of the module.

ModuleFileName (input)
The name of the file that implements the module.

ModulePathName (input)
The path to the file that implements the module.

GUID (input)
A pointer to the CSSM_GUID structure containing the GUID for the module.

ModuleDescription (input)
A pointer to the CSSM_MODULE_INFO structure containing a description of the module.

Reserved1 (input)
Reserve data for the function.

Reserved2 (input)
Reserve data for the function.

Return Value
A CSSM_OK return value signifies that information has been updated. If CSSM_FAIL is
returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_ModuleUninstall

Version 1.1.1 IBM KeyWorks Toolkit Page 47

4.2.12 CSSM_SetModuleInfo

CSSM_RETURN CSSMAPI CSSM_SetModuleInfo
(const CSSM_GUID_PTR ModuleGUID,
const CSSM_MODULE_INFO_PTR ModuleInfo)

This function replaces all of the currently registered descriptive information about the module
identified by GUID with the new specified information. CSSM_SetModuleInfo replaces all
information for all service categories and all subservices.

To retain any of the module information, use the CSSM_GetModuleInfo function to retrieve the
current module information from the KeyWorks registry, make a private copy, and then use the
CSSM_SetModuleInfo function to update the KeyWorks registry.

This function should be used to incrementally update descriptive information that is unspecified
at installation time.

Parameters
ModuleGUID (input)
A pointer to the CSSM_GUID structure containing the GUID for the service provider module.

ModuleInfo (input)
A pointer to the complete structured set of descriptive information about the module.

Return Value
A CSSM_OK return value signifies that the application has been detached from the service
provider module. If CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to
obtain the error code.

See Also
CSSM_GetModuleInfo, CSSM_FreeModuleInfo

Version 1.1.1 IBM KeyWorks Toolkit Page 48

4.2.13 CSSM_ModuleUninstall

CSSM_RETURN CSSMAPI CSSM_ModuleUninstall (const CSSM_GUID_PTR GUID)

This function deletes the persistent KeyWorks internal information about the module and
removes it from the name space of available modules in the KeyWorks system.

Parameters
GUID (input)
A pointer to the CSSM_GUID structure containing the GUID for the module.

Return Value
A CSSM_OK return value means the module has been successfully uninstalled. If CSSM_FAIL
is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CSSM_ModuleInstall

Version 1.1.1 IBM KeyWorks Toolkit Page 49

4.2.14 CSSM_SetModuleInfo

CSSM_RETURN CSSMAPI CSSM_SetModuleInfo
(const CSSM_GUID_PTR ModuleGUID,
const CSSM_MODULE_INFO_PTR ModuleInfo)

This function replaces all of the currently registered descriptive information about the module,
identified by the ModuleGUID, with the newly specified information. The operation is a total
replacement of all information for all service categories and all subservices.

If the caller wants to retain any of the information registered prior to execution of this call, the
caller must use the CSSM_GetModuleInfo function to retrieve the current information, update a
private copy, and then use the CSSM_SetModuleInfo function to return the updated copy back to
the KeyWorks registry.

This function should be used to incrementally update descriptive information that is unspecified
at installation time.

Parameters
ModuleGUID (input)
A pointer to the CSSM_GUID structure containing the GUID for the service provider module.

ModuleInfo (input)
A pointer to the complete structured set of descriptive information about the module.

Return Value
A CSSM_RETURN value indicating pass or fail. CSSM_OK indicates success; otherwise use
CSSM_GetError to determine the type of error that has occurred.

See Also
CSSM_GetModuleInfo, CSSM_FreeModuleInfo

Version 1.1.1 IBM KeyWorks Toolkit Page 50

4.2.15 CSSM_FreeModuleInfo

CSSM_RETURN CSSMAPI CSSM_FreeModuleInfo (CSSM_MODULE_INFO_PTR ModuleInfo)

This function frees the memory allocated to hold all of the info structures returned by
CSSM_GetModuleInfo. All substructures within the info structure are freed by this function.

Parameters
ModuleInfo (input)
A pointer to the CSSM_MODULE_INFO structures to be freed.

Return Value
A KeyWorks return value. This function returns CSSM_OK if successful, and returns an error
code if an error has occurred.

See Also
CSSM_GetModuleInfo, CSSM_SetModuleInfo

Version 1.1.1 IBM KeyWorks Toolkit Page 51

4.2.16 CSSM_GetError

CSSM_ERROR_PTR CSSMAPI CSSM_GetError (void)

This function returns the current error information.

Parameters
 None

Return Value
Returns the current error information. If there is currently no valid error, the error number will
be CSSM_OK. A NULL pointer indicates that the CSSM_InitError was not called by the
KeyWorks Core or that a call to CSSM_DestoryError has been made by the KeyWorks Core. No
error information is available.

See Also
CSSM_ClearError, CSSM_SetError

Version 1.1.1 IBM KeyWorks Toolkit Page 52

4.2.17 CSSM_SetError

CSSM_RETURN CSSMAPI CSSM_SetError (CSSM_GUID_PTR guid,
uint32 error_number)

This function sets the current error information to error_number and guid.

Parameters
guid (input)
Pointer to the GUID of the service provider module.

error_number (input)
An error number. It should fall within one of the valid KeyWorks, CL, TP, DL, or CSP error
ranges.

Return Value
CSSM_OK if error was successfully set. A return value of CSSM_FAIL indicates that the error
number passed is not within a valid range, the GUID passed is invalid, CSSM_InitError was not
called by the KeyWorks Core, or CSSM_DestroyError has been called by the KeyWorks Core.
No error information is available.

See Also
CSSM_ClearError, CSSM_GetError

Version 1.1.1 IBM KeyWorks Toolkit Page 53

4.2.18 CSSM_ClearError

void CSSMAPI CSSM_ClearError (void)

This function sets the current error value to CSSM_OK. This can be called if the current error
value has been handled and therefore is no longer a valid error.

Parameters
 None

See Also
CSSM_SetError, CSSM_GetError

Version 1.1.1 IBM KeyWorks Toolkit Page 54

Appendix A. KeyWorks Errors

A.1 Service Provider Module Structure and Administration Errors

The following table provides Service Provider Module Structure and Administration errors.

Table 5. Invalid Errors

Error Code Error Name

10501 CSSM_INVALID_GUID

10301 CSSM_INVALID_POINTER

10341 CSSM_INVALID_SUBSERVICED

10342 CSSM_INVALID_INFO_LEVEL

10303 CSSM_MEMORY_ERROR

Version 1.1.1 IBM KeyWorks Toolkit Page 55

Appendix B. List of Acronyms

API Application Programming Interface

CA Certificate Authority

CL Certificate Library

CRL Certificate Revocation List

CSP Cryptographic Service Provider

DL Data Storage Library

DLL Dynamically Linked Library

GUID Globally Unique ID

ISV Independent Software Vendor

KRF Key Recovery Field

KRSP Key Recovery Service Provider

ODBC Open Database Connectivity

PKCS Public-Key Cryptographic Standard

RNG Random Number Generation

SET Secure Electronic Transaction

SPI Service Provider Interface

TP Trust Policy

Version 1.1.1 IBM KeyWorks Toolkit Page 56

Appendix C. Glossary

Asymmetric algorithms Cryptographic algorithms, where one key is used to encrypt and a second key is
used to decrypt. They are often called public-key algorithms. One key is called
the public key, and the other is called the private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most commonly used public-key algorithm.
It can be used for encryption and for signing.

Authentication Information that is verified for authentication. For example, a Key
Information Recovery Officer (KRO) selects a password which will be used for

authentication with the Key Recovery Coordinator (KRC). A KRO operator
who has identification information must search the Authentication Information
(AI) database to locate an AI value that corresponds to the individual who
generated the information.

Certificate See Digital certificate.

Certificate Authority An entity that guarantees or sponsors a certificate. For example, a credit card
company signs a cardholder’s certificate to assure that the cardholder is who he
or she claims to be. The credit card company is a Certificate Authority (CA).
CAs issue, verify, and revoke certificates.

Certificate chain The hierarchical chain of all the other certificates used to sign the current
certificate. This includes the CA who signs the certificate, the CA who signed
that CA’s certificate, and so on. There is no limit to the depth of the certificate
chain.

Certificate signing The CA can sign certificates it issues or co-sign certificates issued by another
CA. In a general signing model, an object signs an arbitrary set of one or more
objects. Hence, any number of signers can attest to an arbitrary set of objects.
The arbitrary objects could be, for example, pieces of a document for libraries
of executable code.

Certificate validity date A start date and a stop date for the validity of the certificate. If a certificate
expires, the CA may issue a new certificate.

Cryptographic algorithm A method or defined mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the procedure for encrypting
and decrypting a byte stream, digitally signing an object, computing the hash of
an object, generating a random number, etc. IBM KeyWorks accommodates
Data Encryption Standard (DES), RC2, RC4, International Data Encryption
Algorithm (IDEA), and other encryption algorithms.

Cryptographic Service Cryptographic Service Providers (CSPs) are modules that provide secure key
Provider storage and cryptographic functions. The modules may be software only or

hardware with software drivers. The cryptographic functions provided may
include:

•• Bulk encryption and decryption
•• Digital signing

Version 1.1.1 IBM KeyWorks Toolkit Page 57

•• Cryptographic hash
•• Random number generation
•• Key exchange

Cryptography The science for keeping data secure. Cryptography provides the ability to store
information or to communicate between parties in such a way that prevents
other non-involved parties from understanding the stored information or
accessing and understanding the communication. The encryption process takes
understandable text and transforms it into an unintelligible piece of data (called
ciphertext); the decryption process restores the understandable text from the
unintelligible data. Both involve a mathematical formula or algorithm and a
secret sequence of data called a key. Cryptographic services provide
confidentiality (keeping data secret), integrity (preventing data from being
modified), authentication (proving the identity of a resource or a user), and
non-repudiation (providing proof that a message or transaction was send and/or
received).

There are two types of cryptography:

• In shared/secret key (symmetric) cryptography there is only one key that is
a shared secret between the two communicating parties. The same key is
used for encryption and decryption.

• In public key (asymmetric) cryptography different keys are used for
encryption and decryption. A party has two keys: a public key and a
private key. The two keys are mathematically related, but it is virtually
impossible to derive the private key from the public key. A message that is
encrypted with someone's public key (obtained from some public directory)
can only be decrypted with the associated private key. Alternately, the
private key can be used to "sign" a document; the public key can be used as
verification of the source of the document.

Cryptoki Short for cryptographic token interface. See Token.

Data Encryption In computer security, the National Institute of Standards and Technology
Standard (NIST) Data Encryption Standard (DES), adopted by the U.S. Government as

Federal Information Processing Standard (FIPS) Publication 46, which allows
only hardware implementations of the data encryption algorithm.

Digital certificate The binding of some identification to a public key in a particular domain, as
attested to directly or indirectly by the digital signature of the owner of that
domain. A digital certificate is an unforgettable credential in cyberspace. The
certificate is issued by a trusted authority, covered by that party’s digital
signature. The certificate may attest to the certificate holder’s identity, or may
authorize certain actions by the certificate holder. A certificate may include
multiple signatures and may attest to multiple objects or multiple actions.

Digital signature A data block that was created by applying a cryptographic signing algorithm to
some other data using a secret key. Digital signatures may be used to:

•• Authenticate the source of a message, data, or document

Version 1.1.1 IBM KeyWorks Toolkit Page 58

•• Verify that the contents of a message has not been modified since it was
signed by the sender

•• Verify that a public key belongs to a particular person

Typical digital signing algorithms include MD5 with RSA encryption, and
DSS, the proposed Digital Signature Standard defined as part of the U.S.
Government Capstone project.

Enterprise A company or individual who is authorized to submit on-line requests to the
Key Recovery Officer (KRO). In the enterprise key recovery scenario, a process
at the enterprise called the KRO is responsible for preparing key recovery
requests and communicating them to the KRC. The KRO, acting on behalf of
an enterprise or individual, sends an on-line request to the Key Recovery
Coordinator (KRC) to recover a key from a Key Recovery Block (KRB).

Graphical User A type of display format that enables the user to choose commands, start
Interface programs, and see lists of files and other options by pointing to pictorial

representations (icons) and lists of menu items on the screen. Graphical User
Interfaces (GUIs) are used by the Microsoft Windows program for IBM-
compatible microcomputers and by other systems.

Hash algorithm A cryptographic algorithm used to hash a variable-size input stream into a
unique, fixed-sized output value. Hashing is typically used in digital signing
algorithms. Example hash algorithms include MD and MD2 from RSA Data
Security. MD5, also from RSA Data Security, hashes a variable-size input
stream into a 128-bit output value. SHA, a Secure Hash Algorithm published
by the U.S. Government, produces a 160-bit hash value from a variable-size
input stream.

IBM KeyWorks A set of layered security services that address communications and data
Architecture security problems in the emerging PC business space.

IBM KeyWorks The IBM KeyWorks Framework defines five key service components:
Framework

•• Cryptographic Module Manager
•• Key Recovery Module Manager
•• Trust Policy Module Manager
•• Certificate Library Module Manager
•• Data Storage Library Module Manager

IBM KeyWorks binds together all the security services required by PC
applications. In particular, it facilitates linking digital certificates to
cryptographic actions and trust protocols.

Key Escrow The storing of a key (or parts of a key) with a trusted party or trusted parties in
case of loss or destruction of the key.

Version 1.1.1 IBM KeyWorks Toolkit Page 59

Key Recovery Agent The Key Recovery Agent (KRA) acts as the back end for a key recovery
operation. The KRA can only be accessed through an on-line communication
protocol via the Key Recovery Coordinator (KRC). KRAs are considered
outside parties involved in the key recovery process; they are analogous to the
neighbors who each hold one digit of the combination of the lock box
containing the key. The authorized parties (i.e., enterprise or law enforcement)
have the freedom to choose the number of specific KRAs that they want to use.
The authorized party requests that each KRA decrypt its section of the Key
Recovery Fields (KRFs) that is associated with the transmission. Then those
pieces of information are used in the process that derives the session key. The
KRA will only be able to recover a portion of the key, and reading the original
message will require searching the remaining key space in order to find the key
that will decrypt the message. The number of KRAs on each end of the
communication does not have to be equal.

Key Recovery Block The Key Recovery Block (KRB) is a piece of encrypted information that is
contained within a block. The KRS components (i.e., KRO, KRC, KRA) work
collectively to recover a session key from a provided KRB. In the enterprise
scenario, the KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. This information will be transmitted over the
network to the KRC. In the law enforcement scenario, the KRB is presented on
a 3.5-inch diskette, and the credentials are in the physical form of a legal
warrant. This warrant will specify any information available to the law
enforcement agents which can be used to tie the warrant to the identity of the
user for whom KRBs were generated (i.e., username, hostname, IP address).
The KRC has the ability to check credentials and derive the original encryption
key from the KRB with the help of its KRAs.

Key Recovery The Key Recovery Coordinator (KRC) acts as the front end for the key recovery
Coordinator operation. The KRO, acting on behalf of an enterprise or individual, sends an

on-line request to the KRC to recover a key from a KRB. The KRC receives
the on-line request and services it by interacting with the appropriate set of
KRAs as specified within the KRB. The recovered key is then sent back to the
KRO by the KRC using an on-line protocol. The KRC consists of one main
application which, when started, behaves as a server process. The system,
which serves as the KRC, may be configured to start the KRC application as
part of system services; alternatively, the KRC operator can start up the KRC
application manually. The KRC application performs the following operations:

•• Listens for on-line recovery requests from KRO

•• Can be used to launch an embedded application that allows manual key
recovery for law enforcement

•• Monitors and displays the status of the recovery requests being serviced

Key Recovery Field A Key Recovery Field (KRF) is a block of data that is created from a symmetric
key and key recovery profile information. The Key Recovery Service Provider
(KRSP) is invoked from the IBM KeyWorks framework to create KRFs. There
are two major pieces of the KRFs: block 1 contains information that is
unrelated to the session key of the transmitted message, and encrypted with the
public keys of the selected key recovery agents; block 2 contains information
that is related to the session key of the transmission. The KRSP generates the

Version 1.1.1 IBM KeyWorks Toolkit Page 60

KRFs for the session key. This information is not the key or any portion of the
key, but is information that can be used to recover the key. The KRSP has
access to location-unique jurisdiction policy information that controls and
modifies some of the steps in the generation of the KRFs. Only once the KRFs
are generated, and both the client and server sides have access to them, can the
encrypted message flow begin. KRFs are generated so that they can be used by
a KRA to recover the original symmetric key, either because the user who
generated the message has lost the key, or at the warranted request of law
enforcement agents.

Key Recovery Module The Key Recovery Module Manager enables key recovery for cryptographic
Manager services obtained through IBM KeyWorks. It mediates all cryptographic

services provided by the KeyWorks and applies the appropriate key recovery
policy on all such operations. The Key Recovery Module Manager contains a
Key Recovery Policy Table (KRPT) that defines the applicable key recovery
policy for all cryptographic products. The Key Recovery Module Manager
routes the KR-API function calls made by an application to the appropriate KR-
SPI functions. The Key Recovery Module Manager also enforces the key
recovery policy on all cryptographic operations that are obtained through the
KeyWorks. It maintains key recovery state in the form of key recovery
contexts.

Key Recovery Officer An entity called the Key Recovery Officer (KRO) is the focal point of the key
recovery process. In the enterprise key recovery scenario, the KRO is
responsible for preparing key recovery requests and communicating them to the
KRC. The KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. The KRO is the entity that acts on behalf of an
enterprise to initiate a key recovery request operation. An employee within an
enterprise who desires key recovery will send a request to the KRO with the
KRB that is to be recovered. The actual key recovery phase begins when the
KRO operator uses the KRO application to initiate a key recovery request to the
appropriate KRC. At this time, the operator selects a KRB to be sent for
recovery, enters the Authentication Information (AI) information that can be
used to authenticate the request to the KRC, and submits the request.

Key Recovery Policy Key recovery policies are mandatory policies that are typically derived from
jurisdiction-based regulations on the use of cryptographic products for data
confidentiality. Often, the jurisdictions for key recovery policies coincide with
the political boundaries of countries in order to serve the law enforcement and
intelligence needs of these political jurisdictions. Political jurisdictions may
choose to define key recovery policies for cryptographic products based on
export, import, or use controls. Enterprises may define internal and external
jurisdictions, and may mandate key recovery policies on the cryptographic
products within their own jurisdictions.

Version 1.1.1 IBM KeyWorks Toolkit Page 61

Key recovery policies come in two flavors: key recovery enablement policies
and key recovery interoperability policies. Key recovery enablement policies
specify the exact cryptographic protocol suites (e.g., algorithms, modes, key
lengths, etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of
the cryptographic key that may be left out of the key recovery enablement
operation; this is typically referred to as the workfactor. Key recovery
interoperability policies specify to what degree a key recovery enabled
cryptographic product is allowed to interoperate with other cryptographic
products.

Key Recovery Server The Key Recovery Server (KRS) consists of three major entities: Key Recovery
Coordinator (KRC), Key Recovery Agent (KRA), and Key Recovery Officer
(KRO). The KRS is intended to be used by enterprise employees and security
personnel, law enforcement personnel, and KRSF personnel. The KRS
interacts with one or more local or remote KRAs to reconstruct the secret key
that can be used to decrypt the ciphertext.

Key Recovery Server The Key Recovery Server Facility (KRSF) is a facility room that houses the
Facility KRS component facilities ensuring they operate within a secure environment

that is highly resistant to penetration and compromise. Several physical and
administrative security procedures must be followed at the KRSF such as a
combination keyed lock, limited personnel, standalone system, operating
system with security features (Microsoft NT Workstation 4.0), NTFS (Windows
NT Filesystem), and account and auditing policies.

Key Recovery Service Key Recovery Service Providers (KRSPs) are modules that provide key recovery
Provider enablement functions. The cryptographic functions provided may include:

•• Key recovery field generation
•• Key recovery field processing

Law Enforcement A type of scenario where key recovery is mandated by the jurisdictional law
enforcement authorities in the interest of national security and law
enforcement. In the law enforcement scenario, the KRB is presented on a 3.5-
inch diskette, and the credentials are in the physical form of a legal warrant.
This warrant will specify any information available to the law enforcement
agents which can be used to tie the warrant to the identity of the user for whom
KRBs were generated (i.e., username, hostname, IP address).

Leaf certificate The certificate in a certificate chain that has not been used to sign another
certificate in that chain. The leaf certificate is signed directly or transitively by
all other certificates in the chain.

Message digest The digital fingerprint of an input stream. A cryptographic hash function is
applied to an input message arbitrary length and returns a fixed-size output,
which is called the digest value.

Version 1.1.1 IBM KeyWorks Toolkit Page 62

Owned certificate A certificate whose associated secret or private key resides in a local
Cryptographic Service Provider (CSP). Digital-signing algorithms require
using owned certificates when signing data for purposes of authentication and
non-repudiation. A system may use certificates it does not own for purposes
other than signing.

Private key The cryptographic key is used to decipher messages in public-key cryptography.
This key is kept secret by its owner.

Public key The cryptographic key is used to encrypt messages in public-key cryptography.
The public key is available to multiple users (i.e., the public).

Random number A function that generates cryptographically strong random numbers that
generator cannot be easily guessed by an attacker. Random numbers are often used to

generate session keys.

Root certificate The prime certificate, such as the official certificate of a corporation or
government entity. The root certificate is positioned at the top of the certificate
hierarchy in its domain, and it guarantees the other certificates in its certificate
chain. Each Certificate Authority (CA) has a self-signed root certificate. The
root certificate’s public key is the foundation of signature verification in its
domain.

Secure Electronic A mechanism for securely and automatically routing payment information
Transaction among users, merchants, and their banks. Secure Electronic Transaction (SET)

is a protocol for securing bankcard transactions on the Internet or other open
networks using cryptographic services.

SET is a specification designed to utilize technology for authenticating parties
involved in payment card purchases on any type of on-line network, including
the Internet. SET was developed by Visa and MasterCard, with participation
from leading technology companies, including Microsoft, IBM, Netscape,
SAIC, GTE, RSA, Terisa Systems, and VeriSign. By using sophisticated
cryptographic techniques, SET will make cyberspace a safer place for
conducting business and is expected to boost consumer confidence in electronic
commerce. SET focuses on maintaining confidentiality of information,
ensuring message integrity, and authenticating the parties involved in a
transaction.

Security Context A control structure that retains state information shared between a CSP and the
application agent requesting service from the CSP. Only one context can be
active for an application at any given time, but the application is free to switch
among contexts at will, or as required. A security context specifies CSP and
application-specific values, such as required key length and desired hash
functions.

Security-relevant event An event where a CSP-provided function is performed, a security module is
loaded, or a breach of system security is detected.

Version 1.1.1 IBM KeyWorks Toolkit Page 63

Session key A cryptographic key used to encrypt and decrypt data. The key is shared by two
or more communicating parties, who use the key to ensure privacy of the
exchanged data.

Signature See Digital signature.

Signature chain The hierarchical chain of signers, from the root certificate to the leaf certificate,
in a certificate chain.

Smart Card A device (usually similar in size to a credit card) that contains an embedded
microprocessor that could be used to store information. Smart cards can store
credentials used to authenticate the holder.

S/MIME Secure/Multipurpose Internet Mail Extensions (S/MIME) is a protocol that
adds digital signatures and encryption to Internet MIME messages. MIME is
the official proposed standard format for extended Internet electronic mail.
Internet e-mail messages consist of two parts, the header and the body. The
header forms a collection of field/value pairs structured to provide information
essential for the transmission of the message. The body is normally
unstructured unless the
e-mail is in MIME format. MIME defines how the body of an e-mail message
is structured. The MIME format permits e-mail to include enhanced text,
graphics, audio, and more in a standardized manner via MIME-compliant mail
systems. However, MIME itself does not provide any security services.

The purpose of S/MIME is to define such services, following the syntax given
in PKCS #7 for digital signatures and encryption. The MIME body carries a
PKCS #7 message, which itself is the result of cryptographic processing on
other MIME body parts.

Symmetric algorithms Cryptographic algorithms that use a single secret key for encryption and
decryption. Both the sender and receiver must know the secret key. Well-
known symmetric functions include Data Encryption Standard (DES) and
International Data Encryption Algorithm (IDEA). The U.S. Government
endorsed DES as a standard in 1977. It is an encryption block cipher that
operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA, one of the best known
public algorithms, uses a 128-bit key.

Token The logical view of a cryptographic device, as defined by a CSP’s interface.
A token can be hardware, a physical object, or software. A token contains
information about its owner in digital form, and about the services it provides
for electronic-commerce and other communication applications. A token is a
secure device. It may provide a limited or a broad range of cryptographic
functions. Examples of hardware tokens are smart cards and Personal
Computer Memory Card International Association (PCMCIA) cards.

Version 1.1.1 IBM KeyWorks Toolkit Page 64

Verification The process of comparing two message digests. One message digest is
generated by the message sender and included in the message. The message
recipient computes the digest again. If the message digests are exactly the
same, it shows or proves there was no tampering of the message contents by a
third party (between the sender and the receiver).

Web of trust A trust network among people who know and communicate with each other.
Digital certificates are used to represent entities in the web of trust. Any pair of
entities can determine the extent of trust between the two, based on their
relationship in the web. Based on the trust level, secret keys may be shared and
used to encrypt and decrypt all messages exchanged between the two parties.
Encrypted exchanges are private, trusted communications.

