
IBM KeyWorks Toolkit
Certificate Library Interface (CLI) Specification

Copyright© 1998 International Business Machines Corporation. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication,
or disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Copyright© 1997 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N. E. Elam Young Parkway, Hillsboro, OR 97124-6497.

Other product and corporate names may be trademarks of other companies and are used only
for explanation and to the owner’s benefit, without intent to infringe.
001.001.003

Version 1.1.1 IBM KeyWorks Toolkit Page iii

Table of Contents

CHAPTER 1.INTRODUCTION ..1
1.1 SERVICE PROVIDER MODULES ...1
1.2 INTENDED AUDIENCE ..2
1.3 DOCUMENTATION SET...2
1.4 REFERENCES ...3

CHAPTER 2.CERTIFICATE LIBRARY INTERFACE ..5
2.1 CERTIFICATE LIFE CYCLE..5
2.2 CERTIFICATE LIBRARY INTERFACE SPECIFICATION ...6

2.2.1 Certificate Operations..7
2.2.2 Certificate Revocation List Operations...8
2.2.3 Extensibility Functions...10

2.3 DATA STRUCTURES ...11
2.3.1 CSSM_BOOL ...11
2.3.2 CSSM_CA_SERVICES ...11
2.3.3 CSSM_CERT_ENCODING ..11
2.3.4 CSSM_CERTGROUP...11
2.3.5 CSSM_CERT_TYPE...12
2.3.6 CSSM_CL_CA_CERT_CLASSINFO...12
2.3.7 CSSM_CL_CA_PRODUCTINFO ...12
2.3.8 CSSM_CL_ENCODER_PRODUCTINFO...13
2.3.9 CSSM_CL_HANDLE..14
2.3.10 CSSM_CLSUBSERVICE ..14
2.3.11 CSSM_CL_WRAPPEDPRODUCTINFO...15
2.3.12 CSSM_DATA..15
2.3.13 CSSM_FIELD ..16
2.3.14 CSSM_HEADERVERSION...16
2.3.15 CSSM_KEY ..16
2.3.16 CSSM_KEYHEADER ...16
2.3.17 CSSM_KEY_SIZE...20
2.3.18 CSSM_KEY_TYPE ...20
2.3.19 CSSM_SPI_MEMORY_FUNCS..20
2.3.20 CSSM_OID ..21
2.3.21 CSSM_RETURN...21
2.3.22 CSSM_REVOKE_REASON ..21

2.4 CERTIFICATE OPERATIONS ..22
2.4.1 CL_CertAbortQuery...22
2.4.2 CL_CertCreateTemplate ..23
2.4.3 CL_CertDescribeFormat ..24
2.4.4 CL_CertExport...25
2.4.5 CL_CertGetAllFields..26
2.4.6 CL_CertGetFirstFieldValue ...27
2.4.7 CL_CertGetKeyInfo ...28
2.4.8 CL_CertGetNextFieldValue..29
2.4.9 CL_CertImport...30
2.4.10 CL_CertSign ..31
2.4.11 CL_CertVerify..32

2.5 CERTIFICATE REVOCATION LIST OPERATIONS ..33
2.5.1 CL_CrlAbortQuery...33
2.5.2 CL_CrlAddCert ..34

Version 1.1.1 IBM KeyWorks Toolkit Page iv

2.5.3 CL_CrlCreateTemplate ..35
2.5.4 CL_CrlDescribeFormat..36
2.5.5 CL_CrlGetFirstFieldValue ...37
2.5.6 CL_CrlGetNextFieldValue ...38
2.5.7 CL_CrlRemoveCert ..39
2.5.8 CL_CrlSetFields...40
2.5.9 CL_CrlSign ..41
2.5.10 CL_CrlVerify..42
2.5.11 CL_IsCertInCrl ..43

2.6 EXTENSIBILITY FUNCTIONS ...44
2.6.1 CL_PassThrough..44

CHAPTER 3.CERTIFICATE LIBRARY FUNCTION EXAMPLES ..45
3.1 ATTACH/DETACH EXAMPLE ..45

3.1.1 AddInAuthenticate..45
3.2 CERTIFICATE OPERATIONS EXAMPLES..46

3.2.1 CL_CertCreateTemplate ..46
3.3 CRL OPERATIONS EXAMPLES..48

3.3.1 CL_CrlAddCert ..48
3.4 EXTENSIBILITY FUNCTIONS EXAMPLES ..51

3.4.1 CL_PassThrough..51

APPENDIX A. IBM KEYWORKS ERRORS ..53
A.1. CERTIFICATE LIBRARY MODULE ERRORS ...54

APPENDIX B. LIST OF ACRONYMS ..56

APPENDIX C. GLOSSARY..57

List of Figures

Figure 1. IBM KeyWorks Toolkit Architecture...2
Figure 2. Certificate Life Cycle States and Actions...6

List of Tables

Table 1. Keyblob Type Identifiers...17
Table 2. Keyblob Format Identifiers ...17
Table 3. Key Class Identifiers...18
Table 4. Key Attribute Flags...18
Table 5. Key Usage Flags ...19
Table 6. CL Module Error Numbers ...53
Table 7. Certificate Library Errors..54

Version 1.1.1 IBM KeyWorks Toolkit Page 1

Chapter 1. Introduction

The IBM KeyWorks Toolkit defines the infrastructure for a complete set of security services. It is an
extensible architecture that provides mechanisms to manage service provider security modules, which use
cryptography as a computational base to build security protocols and security systems. Figure 1 shows the
four basic layers of the IBM KeyWorks Toolkit: Application Domains, System Security Services, IBM
KeyWorks Framework, and Service Providers. The IBM KeyWorks Framework is the core of this
architecture. It provides a means for applications to directly access security services through the
KeyWorks security application programming interface (API), or to indirectly access security services via
layered security services and tools implemented over the KeyWorks API. The IBM KeyWorks Framework
manages the service provider security modules and directs application calls through the KeyWorks API to
the selected service provider module that will service the request. The KeyWorks API defines the
interface for accessing security services. The KeyWorks service provider interface (SPI) defines the
interface for service providers who develop plug-able security service products.

Service providers perform various aspects of security services, including:

• Cryptographic Services
• Key Recovery Services
• Trust Policy Libraries
• Certificate Libraries
• Data Storage Libraries

Cryptographic Service Providers (CSPs) are service provider modules that perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, and key exchange. Key Recovery Service Providers (KRSPs) generate and process Key
Recovery Fields (KRFs), which can be used to retrieve the original session key if it is lost, or if an
authorized party requires access to the decryption key. Trust Policy (TP) modules implement policies
defined by authorities and institutions, such as VeriSign (as a Certificate Authority (CA)) or MasterCard
(as an institution). Each TP module embodies the semantics of a trust model based on using digital
certificates as credentials. Applications may use a digital certificate as an identity credential and/or an
authorization credential. Certificate Library (CL) modules provide format-specific, syntactic
manipulation of memory-resident digital certificates and Certificate Revocation Lists (CRLs). Data
Storage Library (DL) modules provide persistent storage for certificates and CRLs.

1.1 Service Provider Modules

An IBM KeyWorks service provider module is a Dynamically Linked Library (DLL) composed of
functions that implement some or all of the KeyWorks module interfaces. Applications directly or
indirectly select the modules used to provide security services to the application. Independent Software
Vendors (ISVs) and hardware vendors will provide these service providers. The functionality of the
service providers may be extended beyond the services defined by the KeyWorks API, by exporting
additional services to applications using a KeyWorks PassThrough mechanism.

The API calls defined for service provider modules are categorized as service operations, module
management operations, and module-specific operations. Service operations include functions that
perform a security operation such as encrypting data, inserting a CRL into a data source, or verifying that
a certificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features. Module-
specific operations are enabled in the API through passthrough functions whose behavior and use is
defined by the service provider module developer.

Version 1.1.1 IBM KeyWorks Toolkit Page 2

 Application
 Domains

Data store

KeyWorks
Framework

Service
Providers

Applications

KeyWorks Security API

SPI DLICLITPI

CSP

Manager
TP Module

Manager
CL Module
Manager

DL Module
Manager

Certificate
Library

Cryptographic
Service

Provider

Trust
Policy
Library

Data
Storage

Library

IPSECS/MIMESSL

Key Recovery
Service

Provider

KRSPI

KRSP

Manager

System
Security
Services

 Figure 1. IBM KeyWorks Toolkit Architecture

Each module, regardless of the security services it offers, has the same set of module management
responsibilities. Every module must expose functions that allow KeyWorks to indicate events such as
module attach and detach. In addition, as part of the attach operation, every module must be able to verify
its own integrity, verify the integrity of KeyWorks, and register with KeyWorks. Detailed information
about service provider module structure, administration, and interfaces can be found in the IBM KeyWorks
Service Provider Module Structure & Administration Specification.

1.2 Intended Audience

ISVs who want to develop their own TP service provider modules should use this document. These ISVs
can be highly experienced software and security architects, advanced programmers, and sophisticated
users. The intended audience of this document must be familiar with high-end cryptography and digital
certificates. They must also be familiar with local and foreign government regulations on the use of
cryptography, and the implication of those regulations for their applications and products. We assume
that this audience is familiar with the basic capabilities and features of the protocols they are considering.

1.3 Documentation Set

The IBM KeyWorks Toolkit documentation set consists of the following manuals. These manuals are
provided in electronic format and can be viewed using the Adobe Acrobat Reader distributed with the
IBM KeyWorks Toolkit. Both the electronic manuals and the Adobe Acrobat Reader are located in the
IBM KeyWorks Toolkit doc subdirectory.

• IBM KeyWorks Toolkit Developer’s Guide
Document filename: kw_dev.pdf
This document presents an overview of the IBM KeyWorks Toolkit. It explains how to integrate IBM
KeyWorks into applications and contains a sample IBM KeyWorks application.

• IBM KeyWorks Toolkit Application Programming Interface Specification
Document filename: kw_api.pdf
his document defines the interface that application developers employ to access security services
provided by IBM KeyWorks and service provider modules.

Version 1.1.1 IBM KeyWorks Toolkit Page 3

• IBM KeyWorks Toolkit Service Provider Module Structure & Administration Specification.
Document filename: kw_mod.pdf
This document describes the features common to all IBM KeyWorks service provider modules. It
should be used in conjunction with the IBM KeyWorks service provider interface specifications in
order to build a security service provider module.

• IBM KeyWorks Toolkit Cryptographic Service Provider Interface Specification
Document filename: kw_spi.pdf
This document defines the interface to which cryptographic service providers must conform in order
to be accessible through IBM KeyWorks.

• Key Recovery Service Provider Interface Specification
Document filename: kr_spi.pdf
This document defines the interface to which key recovery service providers must conform in order to
be accessible through IBM KeyWorks.

• Key Recovery Server Installation and Usage Guide
Document filename: krs_gd.pdf
This document describes how to install and use key recovery solutions using the components in the
IBM Key Recovery Server.

• IBM KeyWorks Toolkit Trust Policy Interface Specification
Document filename: kw_tp_spi.pdf
This document defines the interface to which policy makers, such as certificate authorities, certificate
issuers, and policy-making application developers, must conform in order to extend IBM KeyWorks
with model or application-specific policies.

• IBM KeyWorks Toolkit Certificate Library Interface Specification
Document filename: kw_cl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific certificate manipulation services to numerous IBM KeyWorks applications and trust policy
modules.

• IBM KeyWorks Toolkit Data Storage Library Interface Specification
Document filename: kw_dl_spi.pdf
This document defines the interface to which library developers must conform to provide format-
specific or format-independent persistent storage of certificates.

1.4 References

Cryptography Applied Cryptography, Schneier, Bruce, 2nd Edition, John Wiley and Sons,
Inc., 1996.

Handbook of Applied Cryptography, Menezes, A., Van Oorschot, P., and
Vanstone, S., CRC Press, Inc., 1997.

SDSI - A Simple Distributed Security Infrastructure, R. Rivest and B.
Lampson, 1996.

Microsoft CryptoAPI, Version 0.9, Microsoft Corporation, January 17, 1996.

CDSA Spec Common Data Security Architecture Specification, Intel Architecture Labs,
1997.

Version 1.1.1 IBM KeyWorks Toolkit Page 4

CSSM API Common Security Services Manager Application Programming Interface
Specification, Intel Architecture Labs, 1997.

Key Escrow A Taxonomy for Key Escrow Encryption Systems, Denning, Dorothy E. and
Branstad, Dennis, Communications of the ACM, Vol. 39, No. 3, March 1996.

PKCS The Public-Key Cryptography Standards, RSA Laboratories, Redwood City,
CA: RSA Data Security, Inc.

IBM KeyWorks CLI Certificate Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks DLI Data Storage Library Interface Specification, Intel Architecture Labs, 1997.

IBM KeyWorks KRI Key Recovery Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks SPI Cryptographic Service Provider Interface Specification, Intel Architecture
Labs, 1997.

IBM KeyWorks TPI Trust Policy Interface Specification, Intel Architecture Labs, 1997.

X.509 CCITT. Recommendation X.509: The Directory – Authentication Framework,
1988. CCITT stands for Comite Consultatif Internationale Telegraphique et
Telephonique (International Telegraph and Telephone Consultative
Committee)

Version 1.1.1 IBM KeyWorks Toolkit Page 5

Chapter 2. Certificate Library Interface

The primary purpose of a Certificate Library (CL) module is to perform syntactic operations on a specific
certificate format, and its associated Certificate Revocation List (CRL) format. These manipulations
encapsulate the complete life cycle of a certificate and the key pair associated with that certificate.
Certificate and CRLs are related by the life cycle model and by the data formats used to represent them.
For this reason, a single, cohesive library should manipulate these objects.

The CL encapsulates format-specific knowledge into a library that an application can access through IBM
KeyWorks. These libraries allow applications and service provider modules to interact with Certificate
Authorities (CAs) and to use certificates and CRLs for services such as signing, verification, creation and
revocation without requiring knowledge of the certificate and CRL formats.

CLs manipulate memory-based objects only. The persistence of certificates, CRLs, and other security-
related objects is an independent property of these objects. It is the responsibility of the application and/or
the Trust Policy (TP) module to use data storage service provider modules to make objects persistent (if
appropriate).

2.1 Certificate Life Cycle

The CL provides support for the certificate life cycle and for format-specific certificate or CRL
manipulation, services that an application can access through KeyWorks. These libraries allow
applications and service provider modules to create, sign, verify, and revoke certificates without requiring
knowledge of certificate and CRL format and encoding.

A certificate is a form of credential. Under current certificate models, such as X.509, Simple Distributed
Security Infrastructure (SDSI), Simple Public Key Infrastructure (SPKI), etc., a single certificate
represents the identity of an entity (in the form of a binding between a name and a public key) and
optionally associates authorizations with that entity. When a certificate is issued, the issuer includes a
digital signature on the certificate. Verification of this signature is the mechanism used to establish trust
in the identity and authorizations recorded in the certificate. Certificates can be signed by one or more
other certificates. Root certificates are self-signed. The syntactic process of signing corresponds to
establishing a trust relationship between the entities identified by the certificates.

Figure 2 presents the certificate life cycle. It begins with the registration process. During registration, the
authenticity of a user’s identity is verified. This can be a two-part process beginning with manual
procedures requiring physical presence, followed by backoffice procedures to register results for use by the
automated system. The level of verification associated with the identity of the individual will depend on
the Security Policy and Certificate Management Practice Statements that apply to the individual who will
receive a certificate, and the domain in which that certificate will be issued and used.

After registration, keying material is generated and a certificate is created. Once the private key material
and public key certificate are issued to a user, and backed up if appropriate, the active phase of the
certificate management life cycle begins. The active phase includes:

• Retrieval - Retrieves a certificate from a remote repository such as an X.500 directory.

• Verification - Verifies the validity dates and signatures on a certificate and revocation status.

• Revocation - Asserts that a previously legitimate certificate is no longer a valid certificate.

• Recovery - When an end user can no longer access encryption keys (e.g., forgotten password).

• Update - Issues a new public/private keypair when a legitimate pair has or will expire soon.

Version 1.1.1 IBM KeyWorks Toolkit Page 6

Certificate
Generation

Active Phase

 Key
Update Key

Recovery

 Key
Retrieval

 Key
VerificationKey

Revocation

Registration
of Certificate Bearer Key Generation

(and other CA-provided services)

 Figure 3. Certificate Life Cycle States and Actions

2.2 Certificate Library Interface Specification

The Certificate Library Interface (CLI) specifies the functions that a CL may make available to
applications via KeyWorks in order to support a certificate and a CRL format. These functions mirror the
KeyWorks API for certificates and CRLs. These functions include the basic areas of functionality
expected of a CL, which include certificate operations, CRL operations, extensibility functions, and
module management functions. The CL developer may choose to implement some or all of these CLI
functions. The available functions are made known to KeyWorks at module attach time when it receives
the CL’s function table. In the function table, any unsupported function must have a NULL function
pointer. The CL module developer is responsible for making the certificate format and general
functionality known to application developers.

Certificate operations fall into three general areas, including:

• Cryptographic Operations - These operations include signing a certificate and verifying the
signature on a certificate. It is expected that the CL will determine the certificate fields to be signed
or verified, and will manage the interaction with a Cryptographic Service Provider (CSP) to perform
the signing or verification.

• Certificate Field Management - Fields are added to a certificate when it is created. After the
certificate is signed, the fields cannot be modified in any way. However, they can be queried for their
values using the KeyWorks certificate interface.

• Certificate Format Translation - In the heterogeneous world of multiple certificate formats, CL
modules may want to provide the service of translating between certificate formats. This translation
would involve mapping the fields from one certificate format into another certificate format, while
maintaining the original format for integrity verification purposes. For example, an X.509 Version 1
certificate may be exported to a Simple Distributed Security Infrastructure (SDSI) format or imported
into an X.509 Version 3 certificate, but the original data and signature must somehow be maintained.
The supported import and export types are registered with KeyWorks as part of CL installation.

Version 1.1.1 IBM KeyWorks Toolkit Page 7

To support new certificate types and new uses of certificates, the sign and verify operations in the CLI
support a scope parameter. The scope parameter enables an application to sign a portion of the certificate,
namely, the fields identified by the scope. This provides support for certificate models that permit field
signing. CL modules that support existing certificate formats, such as X.509 Version 1, which sign and
verify a predefined portion of the certificate, will ignore this parameter.

The CL module's certificate format is exposed via its fields. These fields will consist of tag/value pairs,
where the tag is an object identifier (OID). These OIDs reference specific data types or data structures
within the certificate or CRL. OIDs are defined by the CL developer at a granularity appropriate for the
expected usage of the CL.

Operations on CRLs are comprised of cryptographic operations and field management operations on the
CRL, as a whole, and on individual revocation records. The entire CRL can be signed or verified. This
will ensure the integrity of the CRL's contents as it is passed between systems. Individual revocation
records are signed when they are revoked and verified when they are queried. Certificates may be revoked
and unrevoked by adding or removing them from the CRL at any time prior to its being signed. The
contents of the CRL can be queried for all of its revocation records, specific certificates, or individual CRL
fields.

A passthrough function is included in the CLI to allow CLs to expose additional services beyond what is
currently defined in the KeyWorks API. These services should be syntactic in nature, meaning that they
should be dependent on the data format of the certificates and CRLs manipulated by the library.
KeyWorks will pass an operation identifier and input parameters from the application to the appropriate
CL. Within the CL_PassThrough function in the CL, the input parameters will be interpreted and the
appropriate operation performed. The CL developer is responsible for making known to the application
the identity and parameters of the supported passthrough operations.

2.2.1 Certificate Operations

This section provides the detailed functions that compose the certificate operations in the CLI. It gives a
high-level overview of each function's expected operation, its parameter definitions where necessary, and
potential differences among CL module implementations.

CL_CertAbortQuery
This function releases the handle that was assigned by the CL_CertGetFirstFieldValue
function to identify the results of a certificate query. It will only be supported by CL
modules that allow multiple instances of an OID in a single certificate.

CL_CertCreateTemplate
This function creates a certificate in the CL module's native certificate format from the
OID/value pairs provided by the application. The CL module makes its supported OIDs
available to the application via the CertTemplate registered with KeyWorks and via the
CL_CertDescribeFormat function. The CL module is responsible for indicating which
fields are required to create a certificate. The returned certificate will not be a valid
certificate until it has been signed.

CL_CertDescribeFormat
This function returns a list of OIDs corresponding to the data objects that compose the
CL module's native certificate format.

CL_CertExport
This function translates a certificate from the native certificate type manipulated by the
CL module into a foreign certificate type.

Version 1.1.1 IBM KeyWorks Toolkit Page 8

CL_CertGetAllFields
This function returns a list of all the fields in the input certificate, as described by their
OID/value pairs.

CL_CertGetFirstFieldValue
This function returns the first field in the certificate that matches the input OID. If the
certificate contains more than one instance of the requested OID, the CL module will
return a handle to be used to obtain the additional instances, and a count of the total
number of instances of this OID in the certificate. The application obtains the
additional matching instances by repeated calls to the CL_CertGetNextFieldValue
function.

CL_CertGetKeyInfo
This function retrieves the public key information stored in the certificate. In most
certificate formats this includes multiple fields, but it may not include all of the fields
defined by the CSSM_KEY data structure. Each CL module is responsible for making
known which portions of the CSSM_KEY data structure will be returned.

CL_CertGetNextFieldValue
This function returns the next field that matched the OID given in the
CL_CertGetFirstFieldValue function. It will be supported only by CL modules that
allow multiple instances of an OID in a single certificate.

CL_CertImport
This function translates a certificate from a foreign certificate type to the native
certificate type manipulated by the CL module.

CL_CertSign
This function will create a digital signature for the subject certificate by using the
signer's certificate. The cryptographic context handle indicates the algorithm and
parameters to be used for signing. Which field or fields should be signed will depend on
the implementation of the CL module. A CL module that supports X.509 Version 1
certificates will sign all of the certificate fields and will ignore the SignScope parameter.
A CL module that supports field signing would sign the subset of fields specified by the
SignScope parameter.

CL_CertVerify
This function will verify the signer certificate's signature on the subject certificate. The
cryptographic context handle indicates the algorithm and parameters to be used for
verification. If the CL module supports field signing, the VerifyScope parameter may be
used to identify the fields that were signed.

2.2.2 Certificate Revocation List Operations

This section provides a more detailed look at the functions that compose the CRL operations in the CLI.
This section gives a high-level overview of each function's expected operation, its parameter definitions
where necessary, and potential differences between CL module implementations.

CL_CrlAbortQuery
This function releases a handle that was assigned by the CL_CrlGetFirstFieldValue
function to identify the results of a CRL query.

Version 1.1.1 IBM KeyWorks Toolkit Page 9

CL_CrlAddCert
This function revokes the input certificate by adding a record representing the certificate
to the CRL. It then uses the revoker's certificate to sign the new record. The updated
CRL is returned to the calling application.

CL_CrlCreateTemplate
This function creates a CRL in the CL module's native CRL format based on the
OID/value pairs provided by the application. The CL module makes its supported OIDs
available to the application via the CrlTemplate registered with KeyWorks and via the
CL_CrlDescribeFormat function. The CL module is responsible for indicating which
fields are required to create a CRL, or which fields cannot be set using this function.
The returned CRL will not be a valid CRL until it has been signed.

CL_CrlDescribeFormat
This function returns a list of the OIDs that represent the fields in the CRL format
manipulated by the CL module.

CL_CrlGetFirstFieldValue
This function returns the first field in the CRL that matches the input OID. It is likely
that the CRL will support multiple instances of an OID that represents a revoked
certificate record. If an application requests an OID that has multiple instances within
the CRL, a results handle and a count of the number of matching instances will be
returned along with the first instance of the OID. The application uses the results
handle to obtain the additional matching instances by repeated calls to the
CL_CrlGetNextFieldValue function. For example, given the OID for revocation record,
this function would return the first revocation record in the CRL. The remaining
revocation records could be obtained by successive calls to the
CL_CrlGetNextFieldValue function.

CL_CrlGetNextFieldValue
This function returns the next field that matches the OID given in the
CL_CrlGetFirstFieldValue function.

CL_CrlRemoveCert
This function unrevokes the input certificate by removing the record representing the
certificate from the CRL. The updated CRL is returned to the calling application.

CL_CrlSetFields
This function sets the fields of an existing CRL to new values, based on the OID/value
pairs provided by the application. The CL module is responsible for indicating any set
of fields that must be or cannot be set using this function, and for specifying module-
specific behavior such as overwriting existing fields, modifying extensions, or modifying
CRL records. This operation is valid only if the CRL has not been closed by the process
of signing the CRL (i.e., execution of the function CL_CrlSign). Once the CRL has
been signed, fields cannot be changed.

CL_CrlSign
This function will create a digital signature for the entire CRL using the signer's
certificate. The cryptographic context handle indicates the algorithm and parameters to
be used for signing. The field or fields of the CRL that should be signed will depend on
the implementation of the CL module. A CL module may choose to ignore the
SignScope parameter if the fields to be signed are predefined. A CL module that
supports field signing would sign the subset of fields specified by the SignScope
parameter. Typically, this function will be used to sign the entire CRL prior to

Version 1.1.1 IBM KeyWorks Toolkit Page 10

distributing it to other systems. The signature will be used to quickly detect tampering of
the CRL. CRL queries may be performed on both signed and unsigned CRLs.

CL_CrlVerify
This function will check the signer's certificate signature on the subject CRL to
determine whether any record in the CRL has been tampered with and whether the
signer's certificate was actually used to sign the CRL. The cryptographic context handle
indicates the algorithm and parameters to be used for verification. If the CL supports
field signing on a CRL, the VerifyScope parameter may be used to identify the fields
that were signed.

CL_IsCertInCrl
This function searches the CRL for a record corresponding to the input certificate.

2.2.3 Extensibility Functions

CL_PassThrough
This performs the CL module-specific function indicated by the operation ID. The
operation ID specifies an operation that the CL has exported for use by an application or
module. Such operations should be specific to the data format of the certificates and
CRLs manipulated by the CL module.

Version 1.1.1 IBM KeyWorks Toolkit Page 11

2.3 Data Structures

This section describes the data structures that may be passed to or returned from a CL function. They will
be used by applications to prepare data to be passed as input parameters into KeyWorks API function calls
that will be passed without modification to the appropriate CL. The CL is then responsible for
interpreting the data structures and returning the appropriate data structure to the calling application
through the KeyWorks Framework. These data structures are defined in the header file, cssmtype.h,
which is distributed with KeyWorks.

2.3.1 CSSM_BOOL

typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

2.3.2 CSSM_CA_SERVICES

This bit-mask defines the additional certificate-creation-related services that an issuing CA
(CA) can offer. Such services include (but are not limited to) archiving the certificate and keypair,
publishing the certificate to one or more certificate directory services, and sending automatic, out-of-band
notifications of the need to renew a certificate. A CA may offer any subset of these services. Additional
services can be defined over time.

typedef uint32 CSSM_CA_SERVICES;
/* bit masks for additional CA services at cert enroll */
#define CSSM_CA_KEY_ARCHIVE 0x0001 /* archive cert & keys */
#define CSSM_CA_CERT_PUBLISH 0x0002 /* cert in directory service */
#define CSSM_CA_CERT_NOTIFY_RENEW 0x0004 /* notify at renewal time */
#define CSSM_CA_CRL_DISTRIBUTE 0x0010 /* push CRL to everyone */

2.3.3 CSSM_CERT_ENCODING

This variable specifies the certificate-encoding format supported by a CL.

typedef enum cssm_cert_encoding {
 CSSM_CERT_ENCODING_UNKNOWN = 0x00,
 CSSM_CERT_ENCODING_CUSTOM = 0x01,
 CSSM_CERT_ENCODING_BER = 0x02,
 CSSM_CERT_ENCODING_DER = 0x03,
 CSSM_CERT_ENCODING_NDR = 0x04
} CSSM_CERT_ENCODING, *CSSM_CERT_ENCODING_PTR;

2.3.4 CSSM_CERTGROUP

This structure contains a set of certificates. Typically, the certificates are related in some manner, but this
is not required.

typedef struct cssm_certgroup {
 uint32 NumCerts;
 CSSM_DATA_PTR CertList;
 void *reserved;
} CSSM_CERTGROUP, *CSSM_CERTGROUP_PTR;

Version 1.1.1 IBM KeyWorks Toolkit Page 12

Definitions:
NumCerts - Number of certificates in the group.

CertList - List of certificates.

reserved - Reserved for future use.

2.3.5 CSSM_CERT_TYPE

This variable specifies the type of certificate format supported by a CL and the types of certificates understood
for import and export. They are expected to define such well-known certificate formats as X.509 Version 3
and SDSI, as well as custom certificate formats. The list of enumerated values can be extended for new types
by defining a label with an associated value greater than CSSM_CL_CUSTOM_CERT_TYPE.

typedef enum cssm_cert_type {
 CSSM_CERT_UNKNOWN =0x00,
 CSSM_CERT_X_509v1 =0x01,
 CSSM_CERT_X_509v2 =0x02,
 CSSM_CERT_X_509v3 =0x03,
 CSSM_CERT_Fortezza = 0x07,
 CSSM_CERT_PGP =0x04,
 CSSM_CERT_SPKI = 0x05,
 CSSM_CERT_SDSIv1 = 0x06,
 CSSM_CERT_Intel =0x08,
 CSSM_CERT_ATTRIBUTE_BER = 0x09, /* ber encoded X.509 attribute cert */
 CSSM_CERT_X509_CRL = 0x10,
 CSSM_CERT_LAST = 0x7FFF
} CSSM_CERT_TYPE, *CSSM_CERT_TYPE_PTR;

/* Applications wishing to define their own custom certificate
 * type should create a random uint32 whose value is greater than
 * the CSSM_CL_CUSTOM_CERT_TYPE */
 CSSM_CL_CUSTOM_CERT_TYPE 0x08000

2.3.6 CSSM_CL_CA_CERT_CLASSINFO

typedef struct cssm_cl_ca_cert_classinfo {
 CSSM_STRING CertClassName;
 CSSM_DATA CACert;
} CSSM_CL_CA_CERT_CLASSINFO, *CSSM_CL_CA_CERT_CLASSINFO_PTR;

Descriptions:
CertClassName - Name of a certificate class issued by this CA.

CACert - CA certificate for this cert class.

2.3.7 CSSM_CL_CA_PRODUCTINFO

This structure holds product information about a backend CA that is accessible to the CL module. The
CL module vendor is not required to provide this information, but may choose to do so. For example, a
CL module that implements upstream protocols to a particular type of commercial CA can record
information about that CA service in this structure.

typedef struct cssm_cl_ca_productinfo {
 CSSM_VERSION StandardVersion;
 CSSM_STRING StandardDescription;
 CSSM_VERSION ProductVersion;

Version 1.1.1 IBM KeyWorks Toolkit Page 13

 CSSM_STRING ProductDescription;
 CSSM_STRING ProductVendor;
 CSSM_CERT_TYPE CertType;
 CSSM_CA_SERVICES AdditionalServiceFlags;
 uint32 NumberOfCertClasses;
 CSSM_CL_CA_CERT_CLASSINFO CertClassNames;
} CSSM_CL_CA_PRODUCTINFO, *CSSM_CL_CA_PRODUCTINFO_PTR;

Definitions:
StandardVersion - If this product conforms to an industry standard, this is the version number of that
standard.

StandardDescription - If this product conforms to an industry standard, this is a description of that
standard.

ProductVersion - Version number information for the actual product version used in this version of
the CL module.

ProductDescription - A string describing the product.

ProductVendor - The name of the product vendor.

CertType - An enumerated value specifying the certificate and CRL type that the CA manages.

AdditionalServiceFlags - A bit-mask indicating the additional services a caller can request from a CA
(as side effects and in conjunction with other service requests).

NumberOfCertClasses - The number of classes or levels of certificates managed by this CA.

CertClassNames - Names of the certificate classes issued by this CA.

2.3.8 CSSM_CL_ENCODER_PRODUCTINFO

This structure holds product information about embedded products that a CL module uses to provide its
services. The CL module vendor is not required to provide this information, but may choose to do so. For
example, a CL module that manipulates X.509 certificates may embed a third-party tool that parses,
encodes, and decodes those certificates. The CL module vendor can describe such embedded products
using this structure.

typedef struct cssm_cl_encoder_productinfo {
 CSSM_VERSION StandardVersion;
 CSSM_STRING StandardDescription;
 CSSM_VERSION ProductVersion;
 CSSM_STRING ProductDescription;
 CSSM_STRING ProductVendor;
 CSSM_CERT_TYPE CertType;
 uint32 ProductFlags;
} CSSM_CL_ENCODER_PRODUCTINFO, *CSSM_CL_ENCODER_PRODUCTINFO_PTR;

Definitions:
StandardVersion - If this product conforms to an industry standard, this is the version number of that
standard.

StandardDescription - If this product conforms to an industry standard, this is a description of that
standard.

Version 1.1.1 IBM KeyWorks Toolkit Page 14

ProductVersion - Version number information for the actual product version used in this version of
the CL module.

ProductDescription - A string describing the product.

ProductVendor - The name of the product vendor.

CertType - An enumerated value specifying the certificate and CRL type that the CA manages.

ProductFlags - A bit-mask indicating any selectable features of the embedded product that the CL
module selected for use.

2.3.9 CSSM_CL_HANDLE

The CSSM_CL_HANDLE is used to identify the association between an application thread and an
instance of a CL module. CSSM_CL_HANDLE is assigned when an application causes KeyWorks to
attach to a CL. It is freed when an application causes KeyWorks to detach from a CL. The application
uses the CSSM_CL_HANDLE with every CL function call to identify the targeted CL. The CL module
uses the CSSM_CL_HANDLE to identify the appropriate application's memory management routines
when allocating memory on the application's behalf.

typedef uint32 CSSM_CL_HANDLE

2.3.10 CSSM_CLSUBSERVICE

Three structures are used to contain all of the static information that describes a CL module:
cssm_moduleinfo, cssm_serviceinfo, and cssm_clsubservice. This descriptive information is securely
stored in the KeyWorks registry when the CL module is installed with KeyWorks. A CL module may
implement multiple types of services and organize them as subservices. For example, a CL module
supporting X.509 encoded certificates may organize its implementation into three subservices: one for
X.509 Version 1, a second for X.509 Version 2, and a third for X.509 Version 3. Most CL modules will
implement exactly one subservice.

The descriptive information stored in these structures can be queried using the function CSSM_GetModuleInfo
and specifying the CL module Globally Unique ID (GUID).

typedef struct cssm_clsubservice {
 uint32 SubServiceId;
 CSSM_STRING Description;
 CSSM_CERT_TYPE CertType;
 CSSM_CERT_ENCODING CertEncoding;
 CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;
 uint32 NumberOfTemplateFields;
 CSSM_OID_PTR CertTemplates;
 uint32 NumberOfTranslationTypes;
 CSSM_CERT_TYPE_PTR CertTranslationTypes;
 CSSM_CL_WRAPPEDPRODUCT_INFO WrappedProduct;
} CSSM_CLSUBSERVICE, *CSSM_CLSUBSERVICE_PTR;

Definitions:
SubServiceId - A unique, identifying number for the subservice described in this structure.

Description - A string containing a description name or title for this subservice.

CertType - An identifier for the type of certificate. This parameter is also used to determine the
certificate data format.

Version 1.1.1 IBM KeyWorks Toolkit Page 15

CertEncoding - An identifier for the certificate-encoding format.

AuthenticationMechanism - An enumerated value defining the credential format accepted by the CL
module. Authentication credential may be required when requesting certificate creation or other CL
functions. Presented credentials must be of the required format.

NumberOfTemplateFields - The number of certificate fields. This number also indicates the length of
the CertTemplate array.

CertTemplates - A pointer to an array of tag/value pairs which identify the field values of a certificate.

NumberOfTranslationTypes - The number of certificate types that this CL module can import and
export. This number also indicates the length of the CertTranslationTypes array.

CertTranslationTypes - A pointer to an array of certificate types. This array indicates the certificate
types that can be imported into and exported from this CL module's native certificate type.

WrappedProduct - A data structure describing the embedded products and CA service used by the CL
module.

2.3.11 CSSM_CL_WRAPPEDPRODUCTINFO

This structure lists the set of embedded products and the CA service used by the CL module to implement
its services. The CL module is not required to provide any of this information, but may choose to do so.

typedef struct cssm_cl_wrappedproductinfo {
 CSSM_CL_ENCODER_PRODUCTINFO_PTR EmbeddedEncoderProducts;
 uint32 NumberOfEncoderProducts;
 CSSM_CL_CA_PRODUCTINFO_PTR AccessibleCAProducts;
 uint32 NumberOfCAProducts;
} CSSM_CL_WRAPPEDPRODUCTINFO, *CSSM_CL_WRAPPEDPRODUCTINFO_PTR;

Definitions:
EmbeddedEncoderProducts - An array of structures that describe each embedded encoder product
used in this CL module implementation.

NumberOfEncoderProducts - A count of the number of distinct embedded certificate encoder products
used in the CL module implementation.

AccessibleCAProducts - An array of structures that describe each type of CA accessible through this
CL module implementation.

NumberOfCAProducts - A count of the number of distinct CA products described in the array
AccessibleCAProducts.

2.3.12 CSSM_DATA

The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via KeyWorks.

typedef struct cssm_data {
 uint32 Length;
 uint8* Data;
} CSSM_DATA, *CSSM_DATA_PTR

Version 1.1.1 IBM KeyWorks Toolkit Page 16

Definitions:
Length - The length, in bytes, of the memory block pointed to by Data.

Data - A pointer to a contiguous block of memory.

2.3.13 CSSM_FIELD

This structure contains the OID/value pair for any item that can be identified by an OID. A CL module
uses this structure to hold an OID/value pair for a field in a certificate or CRL.

typedef struct cssm_field {
 CSSM_OID FieldOid;
 CSSM_DATA FieldValue;
}CSSM_FIELD, *CSSM_FIELD_PTR

Definitions:
FieldOid - The OID that identifies the certificate or CRL data type or data structure.

FieldValue - A CSSM_DATA type which contains the value of the specified OID in a contiguous
block of memory.

2.3.14 CSSM_HEADERVERSION

This data structure represents the version number of a key header structure. This version number is an
integer that increments with each format revision of CSSM_KEYHEADER. The current revision number
is represented by CSSM_KEYHEADER_VERSION, which equals 2 in this release of KeyWorks.

typedef uint32 CSSM_HEADERVERSION

#define CSSM_KEYHEADER_VERSION (2)

2.3.15 CSSM_KEY

This structure is used to represent keys in KeyWorks.

typedef struct cssm_key{
 CSSM_KEYHEADER KeyHeader;
 CSSM_DATA KeyData;
} CSSM_KEY, *CSSM_KEY_PTR;

typedef CSSM_KEY CSSM_WRAP_KEY, *CSSM_WRAP_KEY_PTR;

Definitions:
KeyHeader - Header describing the key, fixed length.

KeyData - Data representation of the key, variable length.

2.3.16 CSSM_KEYHEADER

The key header contains meta-data about a key. It contains information used by a CSP or application
when using the associated key data. The service provider module is responsible for setting the appropriate
values.

typedef struct cssm_keyheader {
 CSSM_HEADERVERSION HeaderVersion;
 CSSM_GUID CspId;

Version 1.1.1 IBM KeyWorks Toolkit Page 17

 uint32 BlobType;
 uint32 Format;
 uint32 AlgorithmId;
 uint32 KeyClass;
 uint32 KeySizeInBits;
 uint32 KeyAttr;
 uint32 KeyUsage;
 CSSM_DATE StartDate;
 CSSM_DATE EndDate;
 uint32 WrapAlgorithmId;
 uint32 WrapMode;
 uint32 Reserved;
} CSSM_KEYHEADER, *CSSM_KEYHEADER_PTR;

Definitions:
HeaderVersion - This is the version of the keyheader structure.

CspId - If known, the GUID of the CSP that generated the key. This value will not be known if a key
is received from a third party, or extracted from a certificate.

BlobType - Describes the basic format of the key data. It can be any one of the following values in
Table 1.

Table 1. Keyblob Type Identifiers

Keyblob Type Identifier Description

CSSM_KEYBLOB_RAW The blob is a clear, raw key

CSSM_KEYBLOB_RAW_BERDER The blob is a clear key, DER-encoded.

CSSM_KEYBLOB_REFERENCE The blob is a reference to a key.

CSSM_KEYBLOB_WRAPPED The blob is a wrapped RAW key.

CSSM_KEYBLOB_WRAPPED_BERDER The blob is a wrapped DER-encoded key.

CSSM_KEYBLOB_OTHER Other keyblob type.

Format - Describes the detailed format of the key data based on the value of the BlobType field. If the
blob type has a nonreference basic type, then a CSSM_KEYBLOB_RAW_FORMAT identifier must
be used, otherwise a CSSM_KEYBLOB_REF_FORMAT identifier is used. Any of the following
values in Table 2 are valid as format identifiers.

Table 2. Keyblob Format Identifiers

Keyblob Format Identifier Description

CSSM_KEYBLOB_RAW_FORMAT_NONE No further conversion needs to be
done.

CSSM_KEYBLOB_RAW_FORMAT_PKCS1 RSA PKCS1 V1.5

CSSM_KEYBLOB_RAW_FORMAT_PKCS3 RSA PKCS3 V1.5

CSSM_KEYBLOB_RAW_FORMAT_MSCAPI Microsoft CAPI V2.0

CSSM_KEYBLOB_RAW_FORMAT_PGP PGP

CSSM_KEYBLOB_RAW_FORMAT_FIPS186 U.S. Gov. FIPS 186 - DSS V

CSSM_KEYBLOB_RAW_FORMAT_BSAFE RSA BSAFE V3.0

Version 1.1.1 IBM KeyWorks Toolkit Page 18

Keyblob Format Identifier Description

CSSM_KEYBLOB_RAW_FORMAT_PKCS11 RSA PKCS11 V2.0

CSSM_KEYBLOB_RAW_FORMAT_CDSA Intel CDSA

CSSM_KEYBLOB_RAW_FORMAT_OTHER Other, CSP defined.

CSSM_KEYBLOB_REF_FORMAT_INTEGER Reference is a number or handle.

CSSM_KEYBLOB_REF_FORMAT_STRING Reference is a string or name.

CSSM_KEYBLOB_REF_FORMAT_OTHER Other, CSP defined.

AlgorithmId - The algorithm for which the key was generated. This value does not change when the
key is wrapped. Any of the defined KeyWorks algorithm IDs may be used.

KeyClass - Class of key contained in the key blob. Valid key classes are as follows in Table 3.

Table 3. Key Class Identifiers

Key Class Identifier Description

CSSM_KEYCLASS_PUBLIC_KEY Key is a public key.

CSSM_KEYCLASS_PRIVATE_KEY Key is a private key.

CSSM_KEYCLASS_SESSION_KEY Key is a session or symmetric key.

CSSM_KEYCLASS_SECRET_PART Key is part of secret key.

CSSM_KEYCLASS_OTHER Other.

KeySizeInBits - This is the logical size of the key in bits. The logical size is the value referred to
when describing the length of the key. For instance, an RSA key would be described by the size of its
modulus and a Digital Signature Algorithm (DSA) key would be represented by the size of its prime.
Symmetric key sizes describe the actual number of bits in the key. For example, Data Encryption
Standard (DES) keys would be 64 bits and an RC4 key could range from 1 to 128 bits.

KeyAttr - Attributes of the key represented by the data. These attributes are used by CSPs to convey
information about stored or referenced keys. The attributes are represented as a bit-mask (see
Table 4).

Table 4. Key Attribute Flags

Attribute Description

CSSM_KEYATTR_PERMANENT Key is stored persistently in the CSP, i.e.,
PKCS11 token object.

CSSM_KEYATTR_PRIVATE Key is a private object and protected by either
user login, a password, or both.

CSSM_KEYATTR_MODIFIABLE The key or its attributes can be modified.

CSSM_KEYATTR_SENSITIVE Key is sensitive. It may only be extracted from
the CSP in a wrapped state. It will always be
false for raw keys.

CSSM_KEYATTR_ALWAYS_SENSITIVE Key has always been sensitive. It will always be
false for raw keys.

Version 1.1.1 IBM KeyWorks Toolkit Page 19

Attribute Description

CSSM_KEYATTR_EXTRACTABLE Key is extractable from the CSP. If this bit is
not set, the key is either not stored in the CSP or
cannot be extracted from the CSP under any
circumstances. It will always be false for raw
keys.

CSSM_KEYATTR_NEVER_EXTRACTABLE Key has never been extractable. It will always
be false for raw keys.

KeyUsage - A bit-mask representing the valid uses of the key. Any of the following values in Table 5
are valid.

Table 5. Key Usage Flags

Usage Mask Description

CSSM_KEYUSE_ANY Key may be used for any purpose supported by the
algorithm.

CSSM_KEYUSE_ENCRYPT Key may be used for encryption.

CSSM_KEYUSE_DECRYPT Key may be used for decryption.

CSSM_KEYUSE_SIGN Key can be used to generate signatures. For symmetric
keys this represents the ability to generate Message
Authentication Codes (MACs).

CSSM_KEYUSE_VERIFY Key can be used to verify signatures. For symmetric
keys this represents the ability to verify MACs.

CSSM_KEYUSE_SIGN_RECOVER Key can be used to perform signatures with message
recovery. This form of a signature is generated using
the CSSM_EncryptData API with the algorithm mode
set to CSSM_ALGMODE_PRIVATE_KEY. This
attribute is only valid for asymmetric algorithms.

CSSM_KEYUSE_VERIFY_RECOVER Key can be used to verify signatures with message
recovery. This form of a signature verified using the
CSSM_DecryptData API with the algorithm mode set
to CSSM_ALGMODE_PRIVATE_KEY. This
attribute is only valid for asymmetric algorithms.

CSSM_KEYUSE_WRAP Key can be used to wrap another key.

CSSM_KEYUSE_UNWRAP Key can be used to unwrap a key.

CSSM_KEYUSE_DERIVE Key can be used as the source for deriving other keys.

StartDate - Date from which the corresponding key is valid. All fields of the CSSM_DATA structure
will be set to zero if the date is unspecified or unknown. This date is not enforced by the CSP.

EndDate - Data that the key expires and can no longer be used. All fields of the CSSM_DATA
structure will be set to zero if the date is unspecified or unknown. This date is not enforced by the
CSP.

WrapAlgorithmId - If the key data contains a wrapped key, this field contains the algorithm used to
create the wrapped blob. This field will be set to CSSM_ALGID_NONE if the key is not wrapped.

Version 1.1.1 IBM KeyWorks Toolkit Page 20

WrapMode - If the wrapping algorithm supports multiple wrapping modes, this field contains the
mode used to wrap the key. This field is ignored if the WrapAlgorithmId is CSSM_ALGID_NONE.

Reserved - This field is reserved for future use. It should always be set to zero.

2.3.17 CSSM_KEY_SIZE

This structure holds the key size and the effective key size for a given key. The metric used is bits. The
number of effective bits is the number of key bits that can be used in a cryptographic operation compared
with the number of bits that may be present in the key. When the number of effective bits is less than the
number of actual bits, this is known as dumbing down.

typedef struct cssm_key_size {
 uint32 KeySizeInBits;/* Key size in bits */
 uint32 EffectiveKeySizeInBits; /* Effective key size in bits */
} CSSM_KEYSIZE, *CSSM_KEYSIZE_PTR

Definitions:
KeySizeInBits - The actual number of bits in a key.

EffectiveKeySizeInBits - The number of key bits that can be used for cryptographic operations.

2.3.18 CSSM_KEY_TYPE

typedef uint32 CSSM_KEY_TYPE, *CSSM_KEY_TYPE_PTR;

2.3.19 CSSM_SPI_MEMORY_FUNCS

This structure is used by KeyWorks to pass an application's memory function table to the service provider
modules. The functions are used when memory needs to be allocated by the service provider module for
returning data structures to the applications.

typedef struct cssm_spi_func_tbl {
 void *(*malloc_func) (CSSM_HANDLE AddInHandle, uint32 Size);
 void (*free_func) (CSSM_HANDLE AddInHandle, void *MemPtr);
 void *(*realloc_func) (CSSM_HANDLE AddInHandle, void *MemPtr, uint32
Size);
 void *(*calloc_func) (CSSM_HANDLE AddInHandle, uint32 Num, uint32 Size);
} CSSM_SPI_MEMORY_FUNCS, *CSSM_SPI_MEMORY_FUNCS_PTR;

Definitions:
malloc_func - Pointer to function that returns a void pointer to the allocated memory block of at least
size bytes from heap AllocRef.

free_func - Pointer to function that deallocates a previously allocated memory block (memblock) from
heap AllocRef.

realloc_func - Pointer to function that returns a void pointer to the reallocated memory block
(memblock) of at least size bytes from heap AllocRef.

calloc_func - Pointer to function that returns a void pointer to an array of num elements of length size
initialized to zero from heap AllocRef.

AllocRef - – Pointer that can be used at the discretion of the application developer to implement
additional memory management features such as usage counters.

Version 1.1.1 IBM KeyWorks Toolkit Page 21

2.3.20 CSSM_OID

The OID is used to hold an identity for the data types and data structures that comprise the fields of a
certificate or CRL. The underlying representation and meaning of the identifier is defined by the CL
module.

For example, a CL module can choose to represent its identifiers in any of the following forms:

• A character string in a character set native to the platform.

• A DER-encoded X.509 OID that must be parsed.

• An S-expression that must be evaluated.

• An enumerated value that is defined in header files supplied by the CL module.

typedef CSSM_DATA CSSM_OID, *CSSM_OID_PTR;

2.3.21 CSSM_RETURN

typedef enum cssm_return {
 CSSM_OK = 0,
 CSSM_FAIL = -1
} CSSM_RETURN;

2.3.22 CSSM_REVOKE_REASON

This list defines the possible reasons why a certificate may be revoked.

typedef enum cssm_revoke_reason {
 CSSM_REVOKE_CUSTOM,
 CSSM_REVOKE_UNSPECIFIC,
 CSSM_REVOKE_KEYCOMPROMISE,
 CSSM_REVOKE_CACOMPROMISE,
 CSSM_REVOKE_AFFILIATIONCHANGED,
 CSSM_REVOKE_SUPERCEDED,
 CSSM_REVOKE_CESSATIONOFOPERATION,
 CSSM_REVOKE_CERTIFICATEHOLD,
 CSSM_REVOKE_CERTIFICATEHOLDRELEASE,
 CSSM_REVOKE_REMOVEFROMCRL
} CSSM_REVOKE_REASON

Version 1.1.1 IBM KeyWorks Toolkit Page 22

2.4 Certificate Operations

This section describes the function prototypes and error codes expected for the functions in the CLI. The
functions will be exposed to KeyWorks via a function table, so the function names may vary at the
discretion of the CL developer. However, the function parameter list and return type must match the
prototypes given in this section in order to be used by applications.

2.4.1 CL_CertAbortQuery

CSSM_RETURN CSSMAPI CL_CertAbortQuery (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by CL_CertGetFirstFieldValue and allows the CL to
release all intermediate state information associated with the query.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

ResultsHandle (input)
The handle that identifies the results of a certificate query.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred.
Use CSSM_GetError to obtain the error code.

See Also
CL_CertGetFirstFieldValue, CL_CertGetNextFieldValue

Version 1.1.1 IBM KeyWorks Toolkit Page 23

2.4.2 CL_CertCreateTemplate

CSSM_DATA_PTR CSSMAPI CL_CertCreateTemplate (CSSM_CL_HANDLE CLHandle,
const CSSM_FIELD_PTR CertTemplate
uint32 NumberOfFields)

This function allocates and initializes memory for a certificate based on the input OID/value
pairs specified in the CertTemplate. The initialization process includes encoding all certificate
field values according to the format required by the certificate representation. The function
returns the initialized template containing encoded values. The memory is allocated using the
calling application's memory management routines.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CertTemplate (input)
A pointer to an array of OID/value pairs that identify the field values to initialize a new
certificate.

NumberOfFields (input)

The number of certificate field values specified in the CertTemplate.

Return Value
A pointer to the CSSM_DATA structure containing the unsigned certificate template. If the
return pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CertRequest, CL_CertGetFirstFieldValue

Version 1.1.1 IBM KeyWorks Toolkit Page 24

2.4.3 CL_CertDescribeFormat

CSSM_OID_PTR CSSMAPI CL_CertDescribeFormat (CSSM_CL_HANDLE CLHandle,
 uint32 *NumberOfFields)

This function returns a list of the OIDs used to describe the certificate format supported by the
specified CL.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

NumberOfFields (output)
The length of the output OID array.

Return Value
A pointer to the array of CSSM_OID structures which are supported for certificate operations in
the specified CL module. If the return pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

See Also
CL_CertGetFirstFieldValue

Version 1.1.1 IBM KeyWorks Toolkit Page 25

2.4.4 CL_CertExport

CSSM_DATA_PTR CSSMAPI CL_CertExport (CSSM_CL_HANDLE CLHandle,
CSSM_CERT_TYPE TargetCertType,
const CSSM_DATA_PTR NativeCert)

This function exports a certificate from the native format of the specified CL into the specified
target certificate format.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

TargetCertType (input)
A unique value that identifies the target type of the certificate being exported.

NativeCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be exported.

Return Value
A pointer to the CSSM_DATA structure containing the target-type certificate exported from the
native certificate. If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain
the error code.

See Also
CL_CertImport

Version 1.1.1 IBM KeyWorks Toolkit Page 26

2.4.5 CL_CertGetAllFields

CSSM_FIELD_PTR CSSMAPI CL_CertGetAllFields (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
uint32 *NumberOfFields)

This function returns a list of the fields in the input certificate, as described by their OID/value
pairs.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate whose fields will be returned.

NumberOfFields (output)
The length of the output CSSM_FIELD array.

Return Value
A pointer to an array of CSSM_FIELD structures that describe the contents of the certificate
using OID/value pairs. If the return pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

See Also
CL_CertGetFirstFieldValue

Version 1.1.1 IBM KeyWorks Toolkit Page 27

2.4.6 CL_CertGetFirstFieldValue

CSSM_DATA_PTR CSSMAPI CL_CertGetFirstFieldValue (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_OID_PTR CertField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields)

This function returns the value of the designated certificate field. If more than one field matches
the CertField OID, the first matching field will be returned. The number of matching fields is an
output parameter, as is the ResultsHandle to be used to retrieve the remaining matching fields.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate.

CertField (input)
A pointer to an OID that identifies the field value to be extracted from the Cert.

ResultsHandle (output)
A pointer to the CSSM_HANDLE that should be used to obtain any additional matching fields.

NumberOfMatchedFields (output)
The number of fields that match the CertField OID.

Return Value
A pointer to the CSSM_DATA structure containing the value of the requested field. If the
pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CertGetNextFieldValue, CL_CertAbortQuery, CL_CertGetAllFields,
CL_CertDescribeFormat

Version 1.1.1 IBM KeyWorks Toolkit Page 28

2.4.7 CL_CertGetKeyInfo

CSSM_KEY_PTR CSSMAPI CL_CertGetKeyInfo (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert)

This function obtains information about the certificate's public key. Ideally, this information
comprises the key fields the application needs to create a cryptographic context that uses this
certificate's key.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate from which to extract the
public key information.

Return Value
A pointer to the CSSM_KEY structure containing the public key and possibly other key
information. If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the
error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 29

2.4.8 CL_CertGetNextFieldValue

CSSM_DATA_PTR CSSMAPI CL_CertGetNextFieldValue (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next certificate field that matched the OID in a call to
CL_CertGetFirstFieldValue.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

ResultsHandle (input)
The handle that identifies the results of a certificate query.

Return Value
A pointer to the CSSM_DATA structure containing the value of the requested field. If the
pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CertGetFirstFieldValue, CL_CertAbortQuery

Version 1.1.1 IBM KeyWorks Toolkit Page 30

2.4.9 CL_CertImport

CSSM_DATA_PTR CSSMAPI CL_CertImport (CSSM_CL_HANDLE CLHandle,
CSSM_CERT_TYPE ForeignCertType,
const CSSM_DATA_PTR ForeignCert)

This function imports a certificate from the input format into the native format of the specified
CL.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

ForeignCertType (input)
A unique value that identifies the type of the certificate being imported.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be imported into the native
type.

Return Value
A pointer to the CSSM_DATA structure containing the native-type certificate imported from the
foreign certificate. Use CSSM_GetError to obtain the error code.

See Also
CL_CertExport

Version 1.1.1 IBM KeyWorks Toolkit Page 31

2.4.10 CL_CertSign

CSSM_DATA_PTR CSSMAPI CL_CertSign (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function signs the fields of the input certificate as indicated by the SignScope array.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be signed.

SignerCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be used to sign the subject
certificate.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be signed.
A NULL input signs all the fields in the certificate.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed certificate. If the pointer is
NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CertVerify

Version 1.1.1 IBM KeyWorks Toolkit Page 32

2.4.11 CL_CertVerify

CSSM_BOOL CSSMAPI CL_CertVerify (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This function verifies that the signed certificate has not been altered since it was signed by the
designated signer. It does this by verifying the digital signature on the VerifyScope fields.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCert (input)
A pointer to the CSSM_DATA structure containing the signed certificate.

SignerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the subject
certificate.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be verified.
A NULL input verifies all the fields in the certificate.

ScopeSize (input)
The number of entries in the verify scope list.

Return Value
CSSM_TRUE if the certificate verified. CSSM_FALSE if the certificate did not verify or an error
condition occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CertSign

Version 1.1.1 IBM KeyWorks Toolkit Page 33

2.5 Certificate Revocation List Operations

This section describes the function prototypes supported by a CL module for operations on CRLs.
The functions will be exposed to KeyWorks through a function table, so the function names may vary at the discretion of
the CL developer. However, the function parameter list and return type must match the prototypes given in this section in
order to be used by applications.

2.5.1 CL_CrlAbortQuery

CSSM_RETURN CSSMAPI CL_CrlAbortQuery (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function terminates the query initiated by CL_CrlGetFirstFieldValue and allows the CL to
release all intermediate state information associated with the query.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

ResultsHandle (input)
The handle that identifies the results of a CRL query.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred.
Use CSSM_GetError to obtain the error code.

See Also
CL_CrlGetFirtsFieldValue, CL_CrlGetNextFieldValue

Version 1.1.1 IBM KeyWorks Toolkit Page 34

2.5.2 CL_CrlAddCert

CSSM_DATA_PTR CSSMAPI CL_CrlAddCert (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR RevokerCert,
CSSM_REVOKE_REASON RevokeReason,
const CSSM_DATA_PTR OldCrl)

This function revokes the input certificate by adding a record representing the certificate to the
CRL. It uses the revoker's certificate to sign the new record in the CRL. The reason for revoking
the certificate may also be stored in the revocation record.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be revoked.

RevokerCert (input)
A pointer to the CSSM_DATA structure containing the revoker's certificate.

RevokeReason (input)
The reason for revoking the certificate.

OldCrl (input)
A pointer to the CSSM_DATA structure containing the CRL to which the newly revoked
certificate will be added.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CrlRemoveCert

Version 1.1.1 IBM KeyWorks Toolkit Page 35

2.5.3 CL_CrlCreateTemplate

CSSM_DATA_PTR CSSMAPI CL_CrlCreateTemplate (CSSM_CL_HANDLE CLHandle,
const CSSM_FIELD_PRT CrlTemplate,
uint32 NumberOfFields)

This function creates an unsigned, memory-resident CRL. Fields in the CRL are initialized with
the descriptive data specified by the OID/value input pairs. The specified OID/value pairs can
initialize all or a subset of the general attribute fields in the new CRL, though the module
developer may specify a set of fields that must be or cannot be set using this operation.
Subsequent values may be set using the CL_CrlSetFields operation.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CrlTemplate (input)
An array of OID/value pairs specifying the initial values for descriptive data fields of the new
CRL.

NumberOfFields (input)
The number of OID/value pairs specified in the CrlTemplate input parameter.

Return Value
A pointer to the CSSM_DATA structure containing the new CRL. If the pointer is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 36

2.5.4 CL_CrlDescribeFormat

CSSM_OID_PTR CSSMAPI CL_CrlDescribeFormat (CSSM_CL_HANDLE CLHandle,
 uint32 *NumberOfFields)

This function returns a list of the OIDs used to describe the CRL format supported by the
specified CL.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

NumberOfFields (output)
The length of the output array.

Return Value
A pointer to the array of CSSM_OID structures which are supported for CRL operations in the
specified CL module. If the return pointer is NULL, an error has occurred. Use CSSM_GetError
to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 37

2.5.5 CL_CrlGetFirstFieldValue

CSSM_DATA_PTR CSSMAPI CL_CrlGetFirstFieldValue (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Crl,
const CSSM_OID_PTR CrlField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields)

This function returns the value of the designated CRL field. If more than one field matches the
CrlField OID, the first matching field will be returned. The number of matching fields is an
output parameter, as is the ResultsHandle to be used to retrieve the remaining matching fields.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

Crl (input)
A pointer to the CSSM_DATA structure that contains the CRL from which the first revocation
record will be retrieved.

CrlField (input)
A pointer to an OID that identifies the field value to be extracted from the Crl.

ResultsHandle (output)
A pointer to the CSSM_HANDLE, which should be used to obtain any additional matching
fields.

NumberOfMatchedFields (output)
The number of fields that match the CrlField OID.

Return Value
Returns a pointer to a CSSM_DATA structure containing the first field that matched the
CrlField. If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error
code.

See Also
CL_CrlGetNextFieldValue, CL_CrlAbortQuery

Version 1.1.1 IBM KeyWorks Toolkit Page 38

2.5.6 CL_CrlGetNextFieldValue

CSSM_DATA_PTR CSSMAPI CL_CrlGetNextFieldValue (CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE ResultsHandle)

This function returns the next CRL field that matched the OID in a call to
CL_CrlGetFirstFieldValue.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

ResultsHandle (input)
The handle that identifies the results of a CRL query.

Return Value
Returns a pointer to a CSSM_DATA structure containing the next field in the CRL, which
matched the CrlField specified in the CL_CrlGetFirstFieldValue function. If the pointer is
NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CrlGetFirstFieldValue, CL_CrlAbortQuery

Version 1.1.1 IBM KeyWorks Toolkit Page 39

2.5.7 CL_CrlRemoveCert

CSSM_DATA_PTR CSSMAPI CL_CrlRemoveCert (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR OldCrl)

This function unrevokes a certificate by removing it from the input CRL.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be unrevoked.

OldCrl (input)
A pointer to the CSSM_DATA structure containing the CRL from which the certificate will be
removed.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CrlAddCert

Version 1.1.1 IBM KeyWorks Toolkit Page 40

2.5.8 CL_CrlSetFields

CSSM_DATA_PTR CSSMAPI CL_CrlSetFields (CSSM_CL_HANDLE CLHandle,
const CSSM_FIELD_PRT CrlTemplate,
uint32 NumberOfFields,
const CSSM_DATA_PTR OldCrl)

This function will set the fields of the input CRL to the new values specified by the input
OID/value pairs. The module developer may specify a set of fields that must be or cannot be set
using this operation. This operation is valid only if the CRL has not been closed by the process
of signing the CRL (i.e., execution of the function CL_CrlSign). Once the CRL has been signed,
fields cannot be changed.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CrlTemplate (input)
Any array of field OID/value pairs containing the values to initialize the CRL attribute fields.

NumberOfFields (input)
The number of OID/value pairs specified in the CrlTemplate input parameter.

OldCrl (input)
The CRL to be updated with the new attribute values. The CRL must be unsigned and available
for update.

Return Value
A pointer to the modified, unsigned CRL. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 41

2.5.9 CL_CrlSign

CSSM_DATA_PTR CSSMAPI CL_CrlSign (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR UnsignedCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

This function signs, in accordance with the specified cryptographic context, the fields of the CRL
indicated in the SignScope parameter.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

UnsignedCrl (input)
A pointer to the CSSM_DATA structure containing the CRL to be signed.

SignerCert (input)
A pointer to the CSSM_DATA structure containing the certificate to be used to sign the CRL.

SignScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be signed.
A NULL input signs all the fields in the CRL.

ScopeSize (input)
The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed CRL. If the pointer is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

See Also
CL_CrlVerify

Version 1.1.1 IBM KeyWorks Toolkit Page 42

2.5.10 CL_CrlVerify

CSSM_BOOL CSSMAPI CL_CrlVerify (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

This function verifies that the signed CRL has not been altered since it was signed by the
designated signer. It does this by verifying the digital signature on the VerifyScope fields.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CCHandle (input)
The handle that describes the context of this cryptographic operation.

SubjectCrl (input)
A pointer to the CSSM_DATA structure containing the CRL to be verified.

SignerCert (input)
A pointer to the CSSM_DATA structure containing the certificate used to sign the CRL.

VerifyScope (input)
A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be verified.
A NULL input verifies all the fields in the CRL.

ScopeSize (input)
The number of entries in the verify scope list.

Return Value
A CSSM_TRUE return value signifies that the CRL verifies successfully. When CSSM_FALSE
is returned, either the CRL verified unsuccessfully or an error has occurred. Use
CSSM_GetError to obtain the error code.

See Also
CL_CrlSign

Version 1.1.1 IBM KeyWorks Toolkit Page 43

2.5.11 CL_IsCertInCrl

CSSM_BOOL CSSMAPI CL_IsCertInCrl (CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR Crl)

This function searches the CRL for a record corresponding to the certificate.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be located.

Crl (input)
A pointer to the CSSM_DATA structure containing the CRL to be searched.

Return Value
A CSSM_TRUE return value signifies that the certificate is in the CRL. When CSSM_FALSE is
returned, either the certificate is not in the CRL or an error has occurred. Use CSSM_GetError
to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 44

2.6 Extensibility Functions

The CL_PassThrough function is provided to allow CL developers to extend the certificate and CRL
format-specific functionality of the KeyWorks API. Because it is only exposed to KeyWorks as a function
pointer, its name internal to the CL can be assigned at the discretion of the CL module developer.
However, its parameter list and return value must match what is shown below.

2.6.1 CL_PassThrough

void * CSSMAPI CL_PassThrough (CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughId,
const void * InputParams)

This function allows applications to call CL module-specific operations.

Parameters
CLHandle (input)
The handle that describes the service provider CL module used to perform this function.

CCHandle (input)
The handle that describes the context of the cryptographic operation.

PassThroughId (input)
An identifier assigned by the CL module to indicate the function to perform.

InputParams (input)
A pointer to a module, implementation-specific structure containing parameters to be interpreted
in a function-specific manner by the requested CL module. This parameter can be used as a
pointer to an array of void pointers.

Return Value
A pointer to a module, implementation-specific structure containing the output from the
passthrough function. The output data must be interpreted by the calling application based on
externally available information. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Version 1.1.1 IBM KeyWorks Toolkit Page 45

Chapter 3. Certificate Library Function Examples

3.1 Attach/Detach Example

The Certificate Library (CL) module is responsible for performing certain operations when KeyWorks
attaches to and detaches from it. These operations should be performed in a function called
AddInAuthenticate, which must be exported by the module. The AddInAuthenticate function will be
called by the framework when the module is loaded. The steps in Section 3.1.1 must be performed in
order for the attach process to work properly.

In the code example in Section 3.1.1, it is assumed that the CSSM entry points, such as
CSSM_RegisterServices, have been resolved at link time. If not, the module may call GetProcAddress to
resolve the entry points.

3.1.1 AddInAuthenticate

#include “cssm.h”

/* global variables used for registration */
CSSM_REGISTRATION_INFO reg_info;
CSSM_SPI_CL_FUNCS cl_jmp_tbl;
CSSM_SPI_MEMORY_FUNCS upcall_tbl = {NULL, NULL, NULL, NULL};
CSSM_MODULE_FUNCS module_funcs;
CSSM_GUID cl_guid =
{ 0x83badc39, 0xfac1, 0x11da, { 0x81, 0x72, 0x0, 0xaa, 0x0, 0xb1, 0x99, 0xdd }
};

__declspec(dllexport) CSSM_RETURN AddInAuthenticate(char* cssmCredentialPath,
char* cssmSection)
{

CSSM_RETURN ret_code;

memset(&cl_jmp_tbl, 0, sizeof(cl_jmp_tbl));

cl_jmp_tbl.CertSign = CertSign;
cl_jmp_tbl.CertVerify = CertVerify;
cl_jmp_tbl.CertCreateTemplate = CertCreateTemplate;
cl_jmp_tbl.CertGetFirstFieldValue = CertGetFirstFieldValue;
cl_jmp_tbl.CertGetKeyInfo = CertGetKeyInfo;
cl_jmp_tbl.CertGetAllFields = CertGetAllFields;

/* set up the module specific info for CSSM */
memset(&module_funcs, 0, sizeof(module_funcs));
module_funcs.ServiceType = CSSM_SERVICE_CL;
module_funcs.ClFuncs = &cl_jmp_tbl;

/* set up the registration structure for CSSM */
memset(®_info, 0, sizeof(reg_info));
reg_info.Initialize = Initialize;
reg_info.Terminate = Terminate;
reg_info.ThreadSafe = CSSM_FALSE;
reg_info.ServiceSummary = CSSM_SERVICE_CL;
reg_info.NumberOfServiceTables = 1;
reg_info.Services = &module_funcs;

/* Register services with CSSM */
ret_code = CSSM_RegisterServices(&cl_guid, ®_info, &upcall_tbl,

NULL);

Version 1.1.1 IBM KeyWorks Toolkit Page 46

return ret_code;
}

3.2 Certificate Operations Examples

This section contains sample implementations of certificate functions in the CL.

3.2.1 CL_CertCreateTemplate

/*--
-
 * Name: CL_CertCreateTemplate
 *
 * Description:
 * This function allocates and initializes memory for a certificate
 * based on the input tag/values pairs. The returned certificate
 * must be signed using the CSSM_CL_CertSign function.
 *
 * Parameters:
 * CLHandle (input) : A handle to a CL module.
 * CertTemplate (input) : A pointer to an array of tag/value pairs
 * which identify the fields of the new certificate
 * NumberOfFields (input) : The length of the CertTemplate array
 *
 * Return value:
 * The new certificate
 *
 * Error Codes:
 * CSSM_CL_INVALID_CL_HANDLE
 * CSSM_CL_INVALID_FIELD_POINTER
 * CSSM_CL_INVALID_TEMPLATE
 * CSSM_CL_MEMORY_ERROR
 * CSSM_CL_UNSUPPORTED_OPERATION
 * CSSM_CL_CERT_CREATE_FAIL
---/
CSSM_DATA_PTR CSSMAPI CL_CertCreateTemplate (CSSM_CL_HANDLE CLHandle,
 const CSSM_FIELD_PTR
CertTemplate,
 uint32 NumberOfFields)
{
 /* Initializations */
 CSSM_CERTIFICATE_PTR cert_ptr = NULL;
 CSSM_DATA_PTR packed_cert_ptr = NULL;
 CSSM_ERROR_PTR err_ptr = NULL;
 uint32 i=0;

 /* Check inputs */
/* Check that this is a valid CLHandle */

 if (CLHandle == 0)
 {
 CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_CL_HANDLE);
 return NULL;
 }
 /* Check that the NumberOfFields is greater than 0
 and that the CertTemplate pointer is not NULL */
 if (!NumberOfFields || !CertTemplate)
 {
 CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_TEMPLATE);
 return NULL;
 }
 /* Check that CertTemplate is a valid pointer */

Version 1.1.1 IBM KeyWorks Toolkit Page 47

 if (cssm_IsBadReadPtr (CertTemplate, NumberOfFields*sizeof(CSSM_FIELD)) ||
 cssm_IsBadReadPtr(CertTemplate[NumberOfFields-1].FieldValue.Data,
 CertTemplate[NumberOfFields-1].FieldValue.Length) ||
 cssm_IsBadReadPtr(CertTemplate[NumberOfFields-1].FieldOid.Data,
 CertTemplate[NumberOfFields-1].FieldOid.Length))
 {
 CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_TEMPLATE);
 return NULL;
 }

 /* Allocate a new certificate structure */
 cert_ptr = UpcallTable.malloc_func(CLHandle, sizeof(CSSM_CERTIFICATE));
 if (cert_ptr == NULL)
 {
 CSSM_SetError(&my_clm_guid, CSSM_CL_MEMORY_ERROR);
 return NULL;
 }
 memset(cert_ptr, 0, sizeof(CSSM_CERTIFICATE));

 /* Loop through the CertTemplate array */
 for(i=0; i < NumberOfFields; i++)
 {
 /* Check that this field contains a valid data pointer */
 if (!cl_IsBadReadPtr (CertTemplate[i].FieldValue.Data,
 CertTemplate[i].FieldValue.Length))
 {
 /* If so, copy the data into the certificate structure */
 /* Add CL module-specific code here */
 }
 else
 {
 CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_FIELD_POINTER);
 /* Free the certificate structure */
 return NULL;
 }
 }

 /* Add internal, CL-generated certificate information */
 /* Add CL module-specific code here */

 /* If there are signatures on this cert, delete them */
 /* A newly created cert is assumed to be unsigned */
 /* Add CL module-specific code here */

 /* Pack the new certificate */
 /* The pack routine will allocate memory for the new cert using the
 application’s memory allocation routines */
 packed_cert_ptr = cl_PackCertificate(cert_ptr);

 /* Cleanup */
 /* Free the certificate structure */

 /* Return the packed certificate */
 return packed_cert_ptr;
};

Version 1.1.1 IBM KeyWorks Toolkit Page 48

3.3 CRL Operations Examples

This section contains sample implementations of Certificate Revocation List (CRL) functions in the CL.

3.3.1 CL_CrlAddCert

/*--
-
* Name: CL_CrlAddCert
 *
 * Description:
 * This function revokes the input certificate by adding a record representing
 * the certificate to the CRL. It uses the revoker’s certificate to sign the
 * new record in the CRL. The reason for revoking the certificate may also be
 * stored in the revocation record.
 *
 * Parameters:
 * CLHandle (input) : Handle to the CL module
 * CCHandle (input) : Handle to the cryptographic context
 * Cert (input) : A pointer to the CSSM_DATA structure containing
 the certificate to be revoked
 * RevokerCert (input) : A pointer to the CSSM_DATA structure containing
 the revoker’s certificate
 * RevokeReason (input) : The reason for revoking the certificate
 * OldCrl (input) : A pointer to the CSSM_DATA structure containing
 the CRL to which the newly revoked certificate
 will be added
 *
 * Return value:
 * The updated CRL
 *
 * Error Codes:
 * CSSM_CL_INVALID_CL_HANDLE
 * CSSM_CL_INVALID_CC_HANDLE
 * CSSM_CL_INVALID_CERTIFICATE_PTR
 * CSSM_CL_INVALID_CRL
 * CSSM_CL_MEMORY_ERROR
 * CSSM_CL_CRL_ADD_CERT_FAIL
---/
CSSM_DATA_PTR CSSMAPI CL_CrlAddCert (CSSM_CL_HANDLE CLHandle,

 CSSM_CC_HANDLE CCHandle,
 const CSSM_DATA_PTR Cert,
 const CSSM_DATA_PTR RevokerCert,

 CSSM_REVOKE_REASON RevokeReason,
 const CSSM_DATA_PTR OldCrl)

{
CSSM_REVOCATION_LIST_PTR new_crl_ptr = NULL;
CSSM_DATA_PTR new_crl_data_ptr = NULL;
CSSM_DATA_PTR sign_data_ptr = NULL;
CSSM_REVOKED_CERT_PTR new_revoked_cert_ptr = NULL;
CSSM_REVOKED_CERT_PTR temp_revoked_cert_ptr = NULL;
CSSM_REVOKED_CERT_PTR prev_revoked_cert_ptr = NULL;

CSSM_CERTIFICATE_PTR revoker_cert_ptr = NULL;
CSSM_CERTIFICATE_PTR cert_ptr = NULL;
uint32 signature_size;
CSSM_DATA_PTR signature_data_ptr = NULL;
CSSM_CONTEXT_PTR context_ptr = NULL;
CSSM_RETURN ret;

/* Check inputs */

Version 1.1.1 IBM KeyWorks Toolkit Page 49

if(CLHandle == 0)
{

CSSM_SetError(&my_clm_guid,CSSM_CL_INVALID_CL_HANDLE);
return NULL;

}
if(CCHandle == 0)
{

CSSM_SetError(&my_clm_guid,CSSM_CL_INVALID_CC_HANDLE);
return NULL;

}
if(Cert == NULL)
{

CSSM_SetError(&my_clm_guid,CSSM_CL_INVALID_CERT_POINTER);
return NULL;

}
if(Cert != NULL && cssm_IsBadReadPtr(Cert, sizeof(CSSM_DATA)))
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_DATA_POINTER);
return NULL;

}
if(Cert->Length != 0 && cssm_IsBadReadPtr(Cert->Data,Cert->Length))
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_CERT_POINTER);
return NULL;

}

if(RevokerCert == NULL)
{

CSSM_SetError(&my_clm_guid,CSSM_CL_INVALID_REVOKER_CERT_PTR);
return NULL;

}
if(RevokerCert->Length != 0 && cssm_IsBadReadPtr(RevokerCert->Data,RevokerCert-

>Length))
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_REVOKER_CERT_PTR);
return NULL;

}
if(OldCrl == NULL)
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_CRL_PTR);
return NULL;

}
if(cssm_IsBadReadPtr(OldCrl, sizeof(CSSM_DATA)))
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_CRL_PTR);
return NULL;

}
if(OldCrl->Length != 0 && !cssm_IsBadReadPtr(OldCrl->Data, OldCrl-

>Length))
{

/* Unpack the CRL */
new_crl_ptr = cl_UnPackCrl(CLHandle,&MemoryFunctions,OldCrl);
if(new_crl_ptr == NULL)
{

CSSM_SetError(&my_clm_guid, CSSM_CL_MEMORY_ERROR);
return NULL;

}

/* remove the crl signature, if necessary */
/* unpack the revoker’s certificate */
revoker_cert_ptr =

cl_UnpackCertificate(CLHandle,&MemoryFunctions,RevokerCert);
if(revoker_cert_ptr == NULL)

Version 1.1.1 IBM KeyWorks Toolkit Page 50

{
/* Cleanup */
CSSM_SetError(&my_clm_guid, CSSM_CL_MEMORY_ERROR);
return NULL;

}
/* unpack the certificate to be revoked */
cert_ptr = cl_UnpackCertificate(CLHandle,&MemoryFunctions,Cert);;
if(cert_ptr == NULL)
{

/* Cleanup */
CSSM_SetError(&my_clm_guid, CSSM_CL_MEMORY_ERROR);
return NULL;

}

/* Create the revoked certificate structure to be placed in the CRL
*/

/* Add any revocation record specific information,
 such as the time of revocation and the revocation reason */

/* Sign the revoked certificate structure using the revoker’s certificate */
}

/* Add the new revocation record to the CRL */

/* Pack the new CRL */
new_crl_data_ptr = cl_PackCrl(CLHandle,&MemoryFunctions,new_crl_ptr);

/* Cleanup & Return */
return new_crl_data_ptr;

}

Version 1.1.1 IBM KeyWorks Toolkit Page 51

3.4 Extensibility Functions Examples

3.4.1 CL_PassThrough

In this example, the pack and unpack routines that are used internally to the CL module are exposed for
use by applications through the passthrough mechanism.

typedef enum cl_custom_function_id {
 CL_CUSTOMID_PACK_CERTIFICATE = 0,
 CL_CUSTOMID_UNPACK_CERTIFICATE = 1,
} CL_CUSTOM_FUNCTION_ID;

/*--
-
 * Name: CL_PassThrough
 *
 * Description:
 * This function allows applications to call KeyWorks CL module-specific
 * operations. The KeyWorks CL module-specific operations include:
 * cl_PackCertificate
 * cl_UnpackCertificate
 *
 * Parameters:
 * CCHandle (input) : Handle identifying a Cryptographic Context which
 * may be used by the passthrough function
 * PassThroughId (input) : An identifier assigned by the KeyWorks CL module
 * to indicate the exported function to perform.
 * InputParams (input) : Parameters to be interpreted in a
 * function-specific manner by the KeyWorks CL
module.
 *
 * Return value:
 * Output from the passthrough function.
 * The output data must be interpreted by the calling application
 * based on externally available information.
 *
 * Error Codes:
 * CSSM_CL_INVALID_CL_HANDLE
 * CSSM_CL_INVALID_CC_HANDLE
 * CSSM_CL_INVALID_DATA_POINTER
 * CSSM_CL_UNSUPPORTED_OPERATION
 * CSSM_CL_PASS_THROUGH_FAIL
 *---
*/
CSSM_DATA_PTR CSSMAPI CL_PassThrough (CSSM_CL_HANDLE CLHandle,
 CSSM_CC_HANDLE CCHandle,
 uint32 PassThroughId,
 const CSSM_DATA_PTR InputParams)
{
 /* Initializations */
 /* Check inputs */
 /* Check that this is a recognized PassThroughId */
 /* Call the requested function */
 switch (PassThroughId) {

 case CL_CUSTOMID_PACK_CERTIFICATE:
return cl_PackCertificate(InputParams);

 case CL_CUSTOMID_UNPACK_CERTIFICATE:
return cl_UnpackCertificate(InputParams);

 default:

 CSSM_SetError(&my_clm_guid, CSSM_CL_UNSUPPORTED_OPERATION);

Version 1.1.1 IBM KeyWorks Toolkit Page 52

 return NULL;
 }
};

Version 1.1.1 IBM KeyWorks Toolkit Page 53

Appendix A. IBM KeyWorks Errors

The error codes in this section constitute the generic error codes that are defined by KeyWorks for use by all Certificate
Libraries (CLs) in describing common error conditions. A CL may also define and return vendor-specific error codes. The
error codes defined by KeyWorks are considered to be comprehensive and few if any vendor-specific codes should be
required. Applications must consult vendor-supplied documentation for the specification and description of any error codes
defined outside of this specification.

All CL service provider interface (SPI) functions return one of the following:

• CSSM_RETURN - An enumerated type consisting of CSSM_OK and CSSM_FAIL. If it is
CSSM_FAIL, an error code indicating the reason for failure can be obtained by calling
CSSM_GetError.

• CSSM_BOOL - KeyWorks functions returning this data type return either CSSM_TRUE or
CSSM_FALSE. If the function returns CSSM_FALSE, an error code may be available (but not
always) by calling CSSM_GetError.

• A pointer to a data structure, a handle, a file size, or whatever is logical for the function to return.
An error code may be available (but not always) by calling CSSM_GetError.

The information returned from CSSM_GetError includes both the error number and a Globally Unique ID
(GUID) that associates the error with the module that set it. Each module must have a mechanism for
reporting their errors to the calling application. In general, there are two types of errors a module can
return, including:

• Errors defined by KeyWorks that are common to a particular type of service provider module

• Errors reserved for use by individual service provider modules

Since some errors are predefined by KeyWorks, those errors have a set of predefined numeric values that
are reserved by KeyWorks, and cannot be redefined by modules. For errors that are particular to a
module, a different set of predefined values has been reserved for their use. Table 6 lists the range of error
numbers defined by KeyWorks for CL modules and those available for use in individual Cryptographic
Service Provider (CSP) modules.

Table 6. CL Module Error Numbers

Error Number Range Description

3000 – 3999 CL errors defined by KeyWorks

4000 – 4999 CL errors reserved for individual CL modules

The calling application must determine how to handle the error returned by CSSM_GetError. Detailed
descriptions of the error values will be available in the corresponding specification, the cssmerr.h header
file, and the documentation for specific modules. If a routine does not know how to handle the error, it
may choose to pass the error to its caller.

Version 1.1.1 IBM KeyWorks Toolkit Page 54

A.1. Certificate Library Module Errors

Table 7. Certificate Library Errors

Error Code Error Name
3001 CSSM_CL_UNKNOWN_FORMAT
3002 CSSM_CL_UNKNOWN_TAG
3003 CSSM_CL_INVALID_CONTEXT
3004 CSSM_CL_INVALID_CL_HANDLE
3005 CSSM_CL_INVALID_CC_HANDLE
3006 CSSM_CL_INVALID_CERT_POINTER
3007 CSSM_CL_INVALID_FIELD_POINTER
3008 CSSM_CL_INVALID_TEMPLATE
3009 CSSM_CL_INVALID_DATA_POINTER
3010 CSSM_CL_INVALID_SCOPE
3012 CSSM_CL_CERT_CREATE_FAIL
3013 CSSM_CL_CERT_VIEW_FAIL
3014 CSSM_CL_CERT_GET_FIELD_VALUE_FAIL
3015 CSSM_CL_CERT_GET_KEY_INFO_FAIL
3016 CSSM_CL_CERT_IMPORT_FAIL
3017 CSSM_CL_CERT_EXPORT_FAIL
3018 CSSM_CL_PASS_THROUGH_FAIL
3019 CSSM_CL_CERT_DESCRIBE_FORMAT_FAIL
3020 CSSM_CL_UNSUPPORTED_OPERATION
3021 CSSM_CL_MEMORY_ERROR
3022 CSSM_CL_CERT_SIGN_FAIL
3023 CSSM_CL_CERT_UNSIGN_FAIL
3024 CSSM_CL_CERT_VERIFY_FAIL
3025 CSSM_CL_RESULTS_HANDLE
3026 CSSM_CL_INVALID_SIGNER_CERTIFICATE
3027 CSSM_CL_NO_FIELD_VALUES
3028 CSSM_CL_INVALID_CRL_PTR
3029 CSSM_CL_CERT_ABORT_QUERY_FAIL
3030 CSSM_CL_CRL_CREATE_FAIL
3031 CSSM_CL_CRL_SET_FAIL
3032 CSSM_CL_CRL_ADD_CERT_FAIL
3033 CSSM_CL_CRL_REMOVE_CERT_FAIL
3034 CSSM_CL_CRL_SIGN_FAIL
3035 CSSM_CL_CRL_VERIFY_FAIL
3036 CSSM_CL_IS_CERT_IN_CRL_FAIL
3037 CSSM_CL_CRL_GET_FIELD_VALUE_FAIL
3038 CSSM_CL_CRL_ABORT_QUERY_FAIL
3039 CSSM_CL_CRL_DESCRIBE_FORMAT_FAIL
3040 CSSM_CL_INVALID_POINTER
3041 CSSM_CL_INVALID_DATA
3042 CSSM_CL_INITIALIZE_FAIL
3100 CSSM_CL_SIG_NOT_IN_CERT
3101 CSSM_CL_INVALID_REVOKER_CERT_PTR
3102 CSSM_CL_NO_REVOKED_CERTS_IN_CRL
3103 CSSM_CL_CERT_NOT_FOUND_IN_CRL
3104 CSSM_CL_CRL_SIGNSCOPE_NOT_SUPPORTED
3105 CSSM_CL_CRL_VERIFYSCOPE_NOT_SUPPORTED
3106 CSSM_CL_CRL_NOT_SIGNEDBY_SIGNER

Version 1.1.1 IBM KeyWorks Toolkit Page 55

Error Code Error Name
3107 CSSM_CL_CRL_NO_FIELD_OID
3108 CSSM_CL_INVALID_REVOKED_CERT_PTR
3109 CSSM_CL_INVALID_INPUT_PTR
3110 CSSM_CL_KEY_ALGID_NOT_SUPPORTED
3111 CSSM_CL_GET_KEY_ATTRIBUTE_FAIL
3112 CSSM_CL_CERT_ENCODE_FAIL
3113 CSSM_CL_CERT_DECODE_FAIL
3114 CSSM_CL_SIGNATURE_ALGID_NOT_SUPPORTED
3115 CSSM_CL_KEY_FORMAT_UNKNOWN
3116 CSSM_CL_INVALID_CERT_ISSUER_NAME
3117 CSSM_CL_INVALID_CERT_SUBJECT_NAME
3118 CSSM_CL_MISSING_CERT_SUBJECT_NAME
3119 CSSM_CL_MISSING_CERT_ISSUER_NAME
3120 CSSM_CL_MISSING_CERT_VALIDITY
3121 CSSM_CL_MISSING_SUBJECT_PUB_KEY
3122 CSSM_CL_FIELD_NOT_PRESENT

Version 1.1.1 IBM KeyWorks Toolkit Page 56

Appendix B. List of Acronyms

API Application Programming Interface

CA Certificate Authority

CL Certificate Library

CLI Certificate Library Interface

CRL Certificate Revocation List

CSP Cryptographic Service Provider

DES Data Encryption Standard

DL Data Storage Library

DLL Dynamically Linked Library

DSA Digital Signature Algorithm

GUID Globally Unique ID

ISV Independent Software Vendor

KRF Key Recovery Field

KRSP Key Recovery Service Provider

MAC Message Authentication Code

OID Object Identifier

SDSI Simple Distributed Security Infrastructure

SPI Service Provider Interface

TP Trust Policy

Version 1.1.1 IBM KeyWorks Toolkit Page 57

Appendix C. Glossary

Asymmetric algorithms Cryptographic algorithms, where one key is used to encrypt and a second key is
used to decrypt. They are often called public-key algorithms. One key is called
the public key, and the other is called the private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most commonly used public-key algorithm.
It can be used for encryption and for signing.

Authentication Information that is verified for authentication. For example, a Key
Information Recovery Officer (KRO) selects a password which will be used for

authentication with the Key Recovery Coordinator (KRC). A KRO operator
who has identification information must search the Authentication Information
(AI) database to locate an AI value that corresponds to the individual who
generated the information.

Certificate See Digital certificate.

Certificate Authority An entity that guarantees or sponsors a certificate. For example, a credit card
company signs a cardholder’s certificate to assure that the cardholder is who he
or she claims to be. The credit card company is a Certificate Authority (CA).
CAs issue, verify, and revoke certificates.

Certificate chain The hierarchical chain of all the other certificates used to sign the current
certificate. This includes the CA who signs the certificate, the CA who signed
that CA's certificate, and so on. There is no limit to the depth of the certificate
chain.

Certificate signing The CA can sign certificates it issues or co-sign certificates issued by another
CA. In a general signing model, an object signs an arbitrary set of one or more
objects. Hence, any number of signers can attest to an arbitrary set of objects.
The arbitrary objects could be, for example, pieces of a document for libraries
of executable code.

Certificate validity date A start date and a stop date for the validity of the certificate. If a certificate
expires, the CA may issue a new certificate.

Cryptographic algorithm A method or defined mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the procedure for encrypting
and decrypting a byte stream, digitally signing an object, computing the hash of
an object, generating a random number, etc. IBM KeyWorks accommodates
Data Encryption Standard (DES), RC2, RC4, International Data Encryption
Algorithm (IDEA), and other encryption algorithms.

Cryptographic Service Cryptographic Service Providers (CSPs) are modules that provide secure key
Provider storage and cryptographic functions. The modules may be software only or

hardware with software drivers. The cryptographic functions provided may
include:

•• Bulk encryption and decryption
•• Digital signing

Version 1.1.1 IBM KeyWorks Toolkit Page 58

•• Cryptographic hash
•• Random number generation
•• Key exchange

Cryptography The science of keeping data secure. Cryptography provides the ability to store
information or to communicate between parties in such a way that prevents
other non-involved parties from understanding the stored information or
accessing and understanding the communication. The encryption process takes
understandable text and transforms it into an unintelligible piece of data (called
ciphertext); the decryption process restores the understandable text from the
unintelligible data. Both involve a mathematical formula or algorithm and a
secret sequence of data called a key. Cryptographic services provide
confidentiality (keeping data secret), integrity (preventing data from being
modified), authentication (proving the identity of a resource or a user), and
non-repudiation (providing proof that a message or transaction was sent and/or
received).

There are two types of cryptography:

• In shared/secret key (symmetric) cryptography there is only one key that is
a shared secret between the two communicating parties. The same key is
used for encryption and decryption.

• In public key (asymmetric) cryptography different keys are used for
encryption and decryption. A party has two keys: a public key and a
private key. The two keys are mathematically related, but it is virtually
impossible to derive the private key from the public key. A message that is
encrypted with someone's public key (obtained from some public directory)
can be decrypted with the associated private key. Alternately, the private
key can be used to "sign" a document; the public key can be used as
verification of the source of the document.

Cryptoki Short for cryptographic token interface. See Token.

Data Encryption In computer security, the National Institute of Standards and Technology
Standard (NITS) Data Encryption Standard (DES), adopted by the U.S. Government as

Federal Information Processing Standard (FIPS) Publication 46, which allows
only hardware implementations of the data encryption algorithm.

Digital certificate The binding of some identification to a public key in a particular domain, as
attested to directly or indirectly by the digital signature of the owner of that
domain. A digital certificate is an unforgettable credential in cyberspace. The
certificate is issued by a trusted authority, covered by that party’s digital
signature. The certificate may attest to the certificate holder’s identity, or may
authorize certain actions by the certificate holder. A certificate may include
multiple signatures and may attest to multiple objects or multiple actions.

Digital signature A data block that was created by applying a cryptographic signing algorithm to
some other data using a secret key. Digital signatures may be used to:

•• Authenticate the source of a message, data, or document

Version 1.1.1 IBM KeyWorks Toolkit Page 59

•• Verify that the contents of a message has not been modified since it was
signed by the sender

•• Verify that a public key belongs to a particular person

Typical digital signing algorithms include MD5 with RSA encryption, and
DSS, the proposed Digital Signature Standard defined as part of the U.S.
Government Capstone project.

Enterprise A company or individual who is authorized to submit on-line requests to the
Key Recovery Officer (KRO). In the enterprise key recovery scenario, a process
at the enterprise called the KRO is responsible for preparing key recovery
requests and communicating them to the KRC. The KRO, acting on behalf of
an enterprise or individual, sends an on-line request to the Key Recovery
Coordinator (KRC) to recover a key from a Key Recovery Block (KRB).

Graphical User A type of display format that enables the user to choose commands, start
Interface programs, and see lists of files and other options by pointing to pictorial

representations (icons) and lists of menu items on the screen. Graphical User
Interfaces (GUIs) are used by the Microsoft Windows program for IBM-
compatible microcomputers and by other systems.

Hash algorithm A cryptographic algorithm used to hash a variable-size input stream into a
unique, fixed-sized output value. Hashing is typically used in digital signing
algorithms. Example hash algorithms include MD and MD2 from RSA Data
Security. MD5, also from RSA Data Security, hashes a variable-size input
stream into a 128-bit output value. SHA, a Secure Hash Algorithm published
by the U.S. Government, produces a 160-bit hash value from a variable-size
input stream.

IBM KeyWorks A set of layered security services that address communications and data
Architecture security problems in the emerging PC business space.

IBM KeyWorks The IBM KeyWorks Framework defines five key service components:
Framework

•• Cryptographic Module Manager
•• Key Recovery Module Manager
•• Trust Policy Module Manager
•• Certificate Library Module Manager
•• Data Storage Library Module Manager

IBM KeyWorks binds together all the security services required by PC
applications. In particular, it facilitates linking digital certificates to
cryptographic actions and trust protocols.

Key Escrow The storing of a key (or parts of a key) with a trusted party or trusted parties in
case of loss or destruction of the key.

Key Recovery Agent The Key Recovery Agent (KRA) acts as the back end for a key recovery
operation. The KRA can only be accessed through an on-line communication
protocol via the Key Recovery Coordinator (KRC). KRAs are considered
outside parties involved in the key recovery process; they are analogous to the
neighbors who each hold one digit of the combination of the lock box

Version 1.1.1 IBM KeyWorks Toolkit Page 60

containing the key. The authorized parties (i.e., enterprise or law enforcement)
have the freedom to choose the number of specific KRAs that they want to use.
The authorized party requests that each KRA decrypt its section of the Key
Recovery Fields (KRFs) that is associated with the transmission. Then those
pieces of information are used in the process that derives the session key. The
KRA will only be able to recover a portion of the key, and reading the original
message will require searching the remaining key space in order to find the key
that will decrypt the message. The number of KRAs on each end of the
communication does not have to be equal.

Key Recovery Block The Key Recovery Block (KRB) is a piece of encrypted information that is
contained within a block. The KRS components (i.e., KRO, KRC, KRA) work
collectively to recover a session key from a provided KRB. In the enterprise
scenario, the KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. This information will be transmitted over the
network to the KRC. In the law enforcement scenario, the KRB is presented on
a 3.5-inch diskette, and the credentials are in the physical form of a legal
warrant. This warrant will specify any information available to the law
enforcement agents which can be used to tie the warrant to the identity of the
user for whom KRBs were generated (i.e., username, hostname, IP address).
The KRC has the ability to check credentials and derive the original encryption
key from the KRB with the help of its KRAs.

Key Recovery The Key Recovery Coordinator (KRC) acts as the front end for the key recovery
Coordinator operation. The KRO, acting on behalf of an enterprise or individual, sends an

on-line request to the KRC to recover a key from a KRB. The KRC receives
the on-line request and services it by interacting with the appropriate set of
KRAs as specified within the KRB. The recovered key is then sent back to the
KRO by the KRC using an on-line protocol. The KRC consists of one main
application which, when started, behaves as a server process. The system,
which serves as the KRC, may be configured to start the KRC application as
part of system services; alternatively, the KRC operator can start up the KRC
application manually. The KRC application performs the following operations:

•• Listens for on-line recovery requests from KRO

•• Can be used to launch an embedded application that allows manual key
recovery for law enforcement

•• Monitors and displays the status of the recovery requests being serviced

Key Recovery Field A Key Recovery Field (KRF) is a block of data that is created from a symmetric
key and key recovery profile information. The Key Recovery Service Provider
(KRSP) is invoked from the IBM KeyWorks framework to create the KRFs.
There are two major pieces of the KRFs: block 1 contains information that is
unrelated to the session key of the transmitted message, and encrypted with the
public keys of the selected key recovery agents; block 2 contains information
that is related to the session key of the transmission. The KRSP generates the
KRFs for the session key. This information is not the key or any portion of the
key, but is information that can be used to recover the key. The KRSP has
access to location-unique jurisdiction policy information that controls and
modifies some of the steps in the generation of the KRFs. Only once the KRFs
are generated, and both the client and server sides have access to them, can the
encrypted message flow begin. KRFs are generated so that they can be used by
a KRA to recover the original symmetric key, either because the user who

Version 1.1.1 IBM KeyWorks Toolkit Page 61

generated the message has lost the key, or at the warranted request of law
enforcement agents.

Key Recovery Module The Key Recovery Module Manager enables key recovery for cryptographic
Manager services obtained through the IBM KeyWorks. It mediates all cryptographic

services provided by the IBM KeyWorks and applies the appropriate key
recovery policy on all such operations. The Key Recovery Module Manager
contains a Key Recovery Policy Table (KRPT) that defines the applicable key
recovery policy for all cryptographic products. The Key Recovery Module
Manager routes the KR-API function calls made by an application to the
appropriate KR-SPI functions. The Key Recovery Module Manager also
enforces the key recovery policy on all cryptographic operations that are
obtained through the IBM KeyWorks. It maintains key recovery state in the
form of key recovery contexts.

Key Recovery Officer An entity called the Key Recovery Officer (KRO) is the focal point of the key
recovery process. In the enterprise key recovery scenario, the KRO is
responsible for preparing key recovery requests and communicating them to the
KRC. The KRO has both the KRB and the credentials that authenticate it to
receive the recovered key. The KRO is the entity that acts on behalf of an
enterprise to initiate a key recovery request operation. An employee within an
enterprise who desires key recovery will send a request to the KRO with the
KRB that is to be recovered. The actual key recovery phase begins when the
KRO operator uses the KRO application to initiate a key recovery request to the
appropriate KRC. At this time, the operator selects a KRB to be sent for
recovery, enters the Authentication Information (AI) information that can be
used to authenticate the request to the KRC, and submits the request.

Key Recovery Policy Key recovery policies are mandatory policies that are typically derived from
jurisdiction-based regulations on the use of cryptographic products for data
confidentiality. Often, the jurisdictions for key recovery policies coincide with
the political boundaries of countries in order to serve the law enforcement and
intelligence needs of these political jurisdictions. Political jurisdictions may
choose to define key recovery policies for cryptographic products based on
export, import, or use controls. Enterprises may define internal and external
jurisdictions, and may mandate key recovery policies on the cryptographic
products within their own jurisdictions.

Key recovery policies come in two flavors: key recovery enablement policies
and key recovery interoperability policies. Key recovery enablement policies
specify the exact cryptographic protocol suites (e.g., algorithms, modes, key
lengths, etc.) and perhaps usage scenarios, where key recovery enablement is
mandated. Furthermore, these policies may also define the number of bits of
the cryptographic key that may be left out of the key recovery enablement
operation; this is typically referred to as the workfactor. Key recovery
interoperability policies specify to what degree a key recovery enabled
cryptographic product is allowed to interoperate with other cryptographic
products.

Version 1.1.1 IBM KeyWorks Toolkit Page 62

Key Recovery Server The Key Recovery Server (KRS) consists of three major entities: Key Recovery
Coordinator (KRC), Key Recovery Agent (KRA), and Key Recovery Officer
(KRO). The KRS is intended to be used by enterprise employees and security
personnel, law enforcement personnel, and KRSF personnel. The KRS
interacts with one or more local or remote KRAs to reconstruct the secret key
that can be used to decrypt the ciphertext.

Key Recovery Server The Key Recovery Server Facility (KRSF) is a facility room that houses the
Facility KRS component facilities, ensuring they operate within a secure environment

that is highly resistant to penetration and compromise. Several physical and
administrative security procedures must be followed at the KRSF such as a
combination keyed lock, limited personnel, standalone system, operating
system with security features (Microsoft NT Workstation 4.0), NTFS (Windows
NT Filesystem), and account and auditing policies.

Key Recovery Service Key Recovery Service Providers (KRSPs) are modules that provide key recovery
Provider enablement functions. The cryptographic functions provided may include:

•• Key recovery field generation
•• Key recovery field processing

Law Enforcement A type of scenario where key recovery is mandated by the jurisdictional law
enforcement authorities in the interest of national security and law
enforcement. In the law enforcement scenario, the Key Recovery Block (KRB)
is presented on a 3.5-inch diskette, and the credentials are in the physical form
of a legal warrant. This warrant will specify any information available to the
law enforcement agents which can be used to tie the warrant to the identity of
the user for whom KRBs were generated (i.e., username, hostname, IP address).

Leaf certificate The certificate in a certificate chain that has not been used to sign another
certificate in that chain. The leaf certificate is signed directly or transitively by
all other certificates in the chain.

Message digest The digital fingerprint of an input stream. A cryptographic hash function is
applied to an input message arbitrary length and returns a fixed-size output,
which is called the digest value.

Owned certificate A certificate whose associated secret or private key resides in a local CSP.
Digital-signing algorithms require using owned certificates when signing data
for purposes of authentication and non-repudiation. A system may use
certificates it does not own for purposes other than signing.

Private key The cryptographic key is used to decipher messages in public-key cryptography.
This key is kept secret by its owner.

Public key The cryptographic key is used to encrypt messages in public-key cryptography.
The public key is available to multiple users (i.e., the public).

Random number A function that generates cryptographically strong random numbers that
generator cannot be easily guessed by an attacker. Random numbers are often used to

generate session keys.

Version 1.1.1 IBM KeyWorks Toolkit Page 63

Root certificate The prime certificate, such as the official certificate of a corporation or
government entity. The root certificate is positioned at the top of the certificate
hierarchy in its domain, and it guarantees the other certificates in its certificate
chain. Each Certificate Authority (CA) has a self-signed root certificate. The
root certificate’s public key is the foundation of signature verification in its
domain.

Secure Electronic A mechanism for securely and automatically routing payment information
Transaction among users, merchants, and their banks. Secure Electronic Transaction (SET)

is a protocol for securing bankcard transactions on the Internet or other open
networks using cryptographic services.

SET is a specification designed to utilize technology for authenticating parties
involved in payment card purchases on any type of on-line network, including
the Internet. SET was developed by Visa and MasterCard, with participation
from leading technology companies, including Microsoft, IBM, Netscape,
SAIC, GTE, RSA, Terisa Systems, and VeriSign. By using sophisticated
cryptographic techniques, SET will make cyberspace a safer place for
conducting business and is expected to boost consumer confidence in electronic
commerce. SET focuses on maintaining confidentiality of information,
ensuring message integrity, and authenticating the parties involved in a
transaction.

The significance of SET, over existing Internet security protocols, is found in
the use of digital certificates, Digital certificates will be used to authenticate all
the parties involved in a transaction. SET will provide those in the virtual
world with the same level of trust and confidence a consumer has today when
making a purchase at any of the 13 million Visa-acceptance locations in the
physical world.

The SET specification is open and free to anyone who wishes to use it to
develop SET-compliant software for buying or selling in cyberspace.

Security Context A control structure that retains state information shared between a CSP and the
application agent requesting service from the CSP. Only one context can be
active for an application at any given time, but the application is free to switch
among contexts at will, or as required. A security context specifies CSP and
application-specific values, such as required key length and desired hash
functions.

Security-relevant event An event where a CSP-provided function is performed, a security module is
loaded, or a breach of system security is detected.

Session key A cryptographic key used to encrypt and decrypt data. The key is shared by two
or more communicating parties, who use the key to ensure privacy of the
exchanged data.

Signature See Digital signature.

Signature chain The hierarchical chain of signers, from the root certificate to the leaf certificate,
in a certificate chain.

Version 1.1.1 IBM KeyWorks Toolkit Page 64

Smart Card A device (usually similar in size to a credit card) that contains an embedded
microprocessor that could be used to store information. Smart cards can store
credentials used to authenticate the holder.

S/MIME Secure/Multipurpose Internet Mail Extensions (S/MIME) is a protocol that
adds digital signatures and encryption to Internet MIME messages. MIME is
the official proposed standard format for extended Internet electronic mail.
Internet e-mail messages consist of two parts, the header and the body. The
header forms a collection of field/value pairs structured to provide information
essential for the transmission of the message. The body is normally
unstructured unless the
e-mail is in MIME format. MIME defines how the body of an e-mail message
is structured. The MIME format permits e-mail to include enhanced text,
graphics, audio, and more in a standardized manner via MIME-compliant mail
systems. However, MIME itself does not provide any security services.

The purpose of S/MIME is to define such services, following the syntax given
in PKCS #7 for digital signatures and encryption. The MIME body part carries
a PKCS #7 message, which itself is the result of cryptographic processing on
other MIME body parts.

Symmetric algorithms Cryptographic algorithms that use a single secret key for encryption and
decryption. Both the sender and receiver must know the secret key. Well-
known symmetric functions include Data Encryption Standard (DES) and
International Data Encryption Algorithm (IDEA). The U.S. Government
endorsed DES as a standard in 1977. It is an encryption block cipher that
operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA, one of the best known
public algorithms, uses a 128-bit key.

Token The logical view of a cryptographic device, as defined by a CSP’s interface.
A token can be hardware, a physical object, or software. A token contains
information about its owner in digital form, and about the services it provides
for electronic-commerce and other communication applications. A token is a
secure device. It may provide a limited or a broad range of cryptographic
functions. Examples of hardware tokens are smart cards and Personal
Computer Memory Card International Association (PCMCIA) cards.

Verification The process of comparing two message digests. One message digest is
generated by the message sender and included in the message. The message
recipient computes the digest again. If the message digests are exactly the
same, it shows or proves there was no tampering of the message contents by a
third party (between the sender and the receiver).

Web of trust A trust network among people who know and communicate with each other.
Digital certificates are used to represent entities in the web of trust. Any pair of
entities can determine the extent of trust between the two, based on their
relationship in the web. Based on the trust level, secret keys may be shared and
used to encrypt and decrypt all messages exchanged between the two parties.
Encrypted exchanges are private, trusted communications.

