
► ► ► Module 6
Class Diagrams

1

IBM Software Group

®

Essentials of Visual Modeling with UML 2.0
Module 6: Class Diagrams

Topics

What Is a Class Diagram?.. 6-4
What Is an Association? .. 6-10
What Is an Aggregation? ... 6-16
Review: What Is Generalization? .. 6-19

© Copyright IBM Corp. 2004 6 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

Objectives

2

Objectives

Describe the static view of the system and
show how to capture it in a model.
Demonstrate how to read and interpret a
class diagram.
Model an association and aggregation and
show how to model it in a class diagram.
Model generalization on a class diagram.

6 - 2 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Where Are We?

3

Where Are We?

Class diagrams
Class relationships

Association
Aggregation
Generalization

© Copyright IBM Corp. 2004 6 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

What Is a Class Diagram?

4

What Is a Class Diagram?

Static view of a system
CloseRegistrationForm

+ open()
+ close registration()

Student

+ get tuition()
+ add schedule()
+ get schedule()
+ delete schedule()
+ has pre-requisites()

Schedule
- semester

+ commit()
+ select alternate()
+ remove offering()
+ level()
+ cancel()
+ get cost()
+ delete()
+ submit()
+ save()
+ any conflicts?()
+ create with offerings()
+ update with new selections()

Professor
- name
- employeeID : UniqueId
- hireDate
- status
- discipline
- maxLoad

+ submitFinalGrade()
+ acceptCourseOffering()
+ setMaxLoad()
+ takeSabbatical()
+ teachClass()

CloseRegistrationController

+ is registration open?()
+ close registration()

A class diagram shows the existence of classes and their relationships in the logical
design of a system. A class diagram may represent all or part of the class structure of a
system.

Class diagrams show the static structure of the model, in particular, the things that
exist such as classes, their internal structure, and their relationships to other classes.
Class diagrams do not show temporal information.

The static view of a system primarily supports the functional requirements of a
system.

6 - 4 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Class Diagram Usage

5

Class Diagram Usage

When modeling the static view of a system,
class diagrams are typically used in one of
three ways, to model:

The vocabulary of a system
Collaborations
A logical database schema

Class diagrams allow you to model the vocabulary of your system when you
determine the abstractions that are part of, or outside of, the boundaries of your
system. Class diagrams specify these abstractions and their responsibilities.

A collaboration is a grouping of classes and other elements that work together to
provide a solution that is bigger than the sum of the elements in the collaboration. No
class stands alone, but works in collaboration with other elements to carry out some
sort of solution. Class diagrams are one way to model these collaborations.

A database schema is similar to the blueprints for the conceptual design of a
database. Many of the systems that you’ll design have persistent objects, which means
that they have to be stored in a database for later retrieval. You can model schemas
for these databases using class diagrams. The UML’s class diagrams are a superset of
entity-relationship (E-R) diagrams. However, where typical E-R diagrams focus only
on data, class diagrams take it one step further and allow the modeling of behavior,
too. Behavior, modeled as operations, are generally turned into triggers or stored
procedures on the database.

© Copyright IBM Corp. 2004 6 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

Example: Class Diagram

6

Example: Class Diagram

Is there a better way to organize class
diagrams?

CloseRegistrationForm

LoginForm

Professor

BillingSystem

CloseRegistrationController

RegisterForCoursesForm

Course

CourseCatalogSystem

Student

RegistrationController

CourseOffering

Schedule

It’s not unusual for a system under development to contain hundreds, even
thousands of different classes. Managing such large numbers generates its own
problems. How can you organize classes and not lose the organization of the model?

6 - 6 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Review: What Is a Package?

7

A general purpose mechanism for
organizing elements into groups.
A model element that can contain other
model elements.
A package can be used:

To organize the model under development
As a unit of configuration management

Review: What Is a Package?

University
Artifacts

A Package can be defined as:

A general purpose mechanism for organizing elements into groups. (The Unified
Modeling Language User Guide, Booch, 1999.)

• Models can have hundreds, even thousands, of model elements. The sheer
number of these elements can quickly become overwhelming. It’s critical to
group model elements into logical collections to keep the model manageable and
readable.

• Packages are a generic mechanism for grouping elements into semantically
related groups. A package contains classes that are needed by a number of
different packages, but are treated as a “behavioral unit.”

• A package is simply a grouping mechanism. No semantics are defined for its
instances. Thus, packages do not necessarily have a representation in
implementation (except perhaps to represent a directory).

• In the UML, a package is represented as a tabbed folder.
• Package diagrams depict dependencies between packages and are now

formalized in UML 2.

© Copyright IBM Corp. 2004 6 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

Example: Registration Package

8

Example: Registration Package

Registration

CloseRegistrationForm CloseRegistrationController

RegisterForCoursesForm RegistrationController

These four classes - CloseRegistrationForm, RegisterForCoursesForm,
CloseRegistrationController, and RegistrationController - have all been assigned to the
Registration package because they are highly cohesive.

6 - 8 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Where Are We?

9

Class diagrams
Class relationships

Association
Aggregation
Generalization

Where Are We?

© Copyright IBM Corp. 2004 6 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

What Is an Association?

10

What Is an Association?

The semantic relationship between two or
more classifiers that specifies connections
among their instances.
A structural relationship specifying that
objects of one thing are connected to objects
of another thing.

CourseStudent Schedule

An Association can be defined as:

The semantic relationship between two or more classifiers that specifies
connections among their instances. In other words, an association is a structural
relationship that specifies that objects (instances of classes) of one thing are
connected to objects of another thing.

• The way that you show these structural relationships between classes is through
the use of associations. Associations are represented on class diagrams by a line
connecting the associating classes. Data may flow in either direction or both
directions across a link.

• Most associations are simple. That is, they exist between exactly two classes.
They are drawn as solid paths connecting pairs of class symbols. Ternary
relationships are also possible.

• Sometimes, a class has an association to itself. This does not always mean that an
instance of that class has an association to itself. More often, it means that one
instance of the class has associations to other instances of the same class.

• This example shows that a student object is related to a schedule object. The
second example demonstrates how a course object can be related to another
course object.

6 - 10 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Example: What Associations Can You Find?

11

Example: What Associations Can You Find?

: CourseOffering

: RegistrationController

: Schedule

: Student

: PrimaryScheduleOfferingInfo

8: any conflicts?()

: RegisterForCoursesForm

2: submit schedule()

4: submit()
3: save()

7: still open?()
9: add student(Schedule)

5: is selected?()
10: mark as enrolled in()

6: has pre-requisites(CourseOffering)

1: submit schedule()

: Student

Using the information that you just learned, what do you think the class diagram
representing this communication diagram looks like?

© Copyright IBM Corp. 2004 6 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

What Is Multiplicity?

12

What Is Multiplicity?

Multiplicity is the number of instances one class
relates to ONE instance of another class.
For each association, there are two multiplicity
decisions to make, one for each end of the
association.

For each instance of Professor, many Course Offerings
may be taught.
For each instance of Course Offering, there may be
either one or zero Professor as the instructor.

Professor CourseOffering
0..1 0..*0..1 0..*

instructor

Multiplicity can be defined as:

The number of instances one class relates to one instance of another class.

• For each role, you can specify the multiplicity of its class and how many objects
of the class can be associated with one object of the other class.

• Multiplicity is indicated by a text expression on the role. The expression is a
comma-separated list of integer ranges.

• It is important to remember that multiplicity is referring to instances of classes
(objects) and their relationships. In this example, a Course Offering object may
have either zero or one Professor object related to it. Conversely, a Professor
object may have zero or more Course Offering objects related to it.

• Multiplicity must be defined on both ends of the association.

6 - 12 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Multiplicity Indicators

13

Multiplicity Indicators

2..4

0..1

1..*

0..*

1

*

2, 4..6

Unspecified

Exactly One

Zero or More

Zero or More

Zero or One (optional value)

One or More

Specified Range

Multiple, Disjoint Ranges

• Multiplicity is indicated by a text expression on the role.
• The expression is a comma-separated list of integer ranges.
• A range is indicated by an integer (the lower value), two dots, and an integer (the

upper value).
• A single integer is a valid range, and the symbol “*” indicates "many.” That is, an

asterisk “*” indicates an unlimited number of objects.
• The symbol “*”by itself is equivalent to “0..*” That is, it represents any number

including none. This is the default value.
• Optional value has the multiplicity 0..1.

© Copyright IBM Corp. 2004 6 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

Example: Multiplicity

14

Example: Multiplicity

RegisterForCoursesForm

CourseOfferingSchedule
0..4

0..*Student
0..*

1

RegistrationController1

1

1

1

0..1

0..1

0..1

1. Describe the following relationships between: RegisterForCoursesForm

and RegistrationController; Schedule to CourseOffering; and
CourseOffering to Schedule. What is the lower and upper bounds for
these relationships?

2. Which relationships are mandatory? What do the mandatory relationships tell
you about the different classes?

3. How many course offerings can appear on a Schedule?
4. How many students are assigned to each Schedule?
5. Can a Schedule exist without a student?
6. How many schedules can be open on a RegisterForCoursesForm?

6 - 14 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Where Are We?

15

Class diagrams
Class relationships

Association
Aggregation
Generalization

Where Are We?

© Copyright IBM Corp. 2004 6 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

What Is an Aggregation?

16

What Is an Aggregation?

A special form of association that models a
whole-part relationship between the
aggregate (the whole) and its parts.

An aggregation is an “is a part-of” relationship.
Multiplicity is represented like other
associations.

PartWhole

0..1

1

An Aggregation can be defined as:

A special form of association that models a whole-part relationship between an
aggregate (the whole) and its parts.

• Aggregation is used to model a whole-part relationship between model elements.
There are many examples of whole-part relationships: a Library contains Books,
Departments are made up of Employees, a Computer is composed of a number
of Devices. To model an aggregation, the aggregate (Department) has an
aggregation association to its constituent parts (Employee).

• A hollow diamond is attached to the end of an association path on the side of the
aggregate (the whole) to indicate aggregation.

• An aggregation relationship that has a multiplicity greater than one for the
aggregate is called shared. Destroying the aggregate does not necessarily destroy
the parts. By implication, a shared aggregation forms a graph or a tree with many
roots. Shared aggregations are used when one instance is a part of two other
instances. So, the same instance can participate in two different aggregations.

6 - 16 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Example: Aggregation

17

Example: Aggregation

RegisterForCoursesForm

CourseOfferingSchedule
0..4

0..*Student
0..*

1

RegistrationController1

1

1

1

0..1

0..1

0..1

1. Which relationship is an aggregation?
2. How would you read this aggregate relationship?
3. Why is this relationship an aggregate?

© Copyright IBM Corp. 2004 6 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

Where Are We?

18

Class diagrams
Class relationships

Association
Aggregation
Generalization

Where Are We?

6 - 18 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Review: What Is Generalization?

19

Review: What Is Generalization?

A relationship among classes where one
class shares the structure and/or behavior
of one or more classes.
Defines a hierarchy of abstractions where a
subclass inherits from one or more
superclasses.

Single inheritance
Multiple inheritance

Is an “is a kind of” relationship.

Generalization can be defined as:

A specialization/generalization relationship, in which objects of the specialized
element (the child) are substitutable for objects of the generalized element (the
parent). (The Unified Modeling Language User Guide, Booch, 1999.)

• The subclass may be used where the superclass is used, but not vice versa. The
child inherits from the parent.

• Generalization is transitive. You can always test your generalization by applying
the “is a kind of” rule. You should always be able to say that your specialized
class “is a kind of” the parent class.

• The terms “generalization” and “inheritance” are generally interchangeable, but
if you need to distinguish, generalization is the name of the relationship.
Inheritance is the mechanism that the generalization relationship
represents/models.

Inheritance can be defined as:

The mechanism by which more-specific elements incorporate the structure and
behavior of more-general elements. (The Unified Modeling Language User Guide,
Booch, 1999.)

• Single inheritance: The subclass inherits from only one superclass (has only one
parent).

• Multiple inheritance: The subclass inherits from more than one superclass (has
multiple parents).

© Copyright IBM Corp. 2004 6 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

Example: Single Inheritance

20

Example: Single Inheritance

One class inherits from another.

CheckingSavings

Superclass
(parent)

Subclasses
(children)

Generalization
Relationship

Descendents

Ancestor
Account

- balance
- name
- number

+ withdraw()
+ createStatement()

The generalization is drawn from the subclass class to the superclass/parent class.

The terms “ancestor” and “descendent” may be used instead of “superclass” and
“subclass.”

6 - 20 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Example: Multiple Inheritance

21

Example: Multiple Inheritance

A class can inherit from several other
classes.

Use multiple inheritance only when needed and
always with caution!

FlyingThing Animal

HorseWolfBirdHelicopterAirplane

Multiple Inheritance

Multiple inheritance means that a class can inherit from several other classes. For
example, Bird inherits from both FlyingThing and Animal.

Multiple inheritance is conceptually straight forward and may be needed to model
the real world accurately. However, there are potential implementation problems
when you use multiple inheritance, and not all implementation languages support it.
Thus, be judicious with your use of multiple inheritance. Use it only where it
accurately describes the concept you are trying to model and reduces the complexity
of your model. Be aware, however, that this representation probably needs to be
adjusted in design and implementation.

Generally, a class inherits from only one class.

© Copyright IBM Corp. 2004 6 - 21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

Review

22

What does a class diagram
represent?
What benefits do packages provide
to the model?
Define association, aggregation, and
generalization.
How do you find associations?
What is multiplicity? What
information does multiplicity
provide the modeler?

Review

6 - 22 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

 Module 6 - Class Diagrams

Exercise

23

Exercise

Given:
A set of classes and their relationships

Draw:
A class diagram

Document a class diagram using the following information:

• A class diagram containing the following classes: Personal Planner Profile,
Personal Planner Controller, Customer Profile, and Buyer Record.

• Associations drawn using the following information:
1. Each Personal Planner Profile object can be associated with up to one

Personal Planner Controller object.
2. Each Personal Planner Controller object must be related to one Personal

Planner Profile.
3. A Personal Planner Controller object can be associated with up to one Buyer

Record and Customer Profile object.
4. An instance of the Buyer Record class can be related to zero or one Personal

Planner Controller.
5. Zero or one Personal Planner Controller objects are associated with each

Customer Profile instance.

© Copyright IBM Corp. 2004 6 - 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Essentials of Visual Modeling with UML 2.0

6 - 24 © Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

	? ??Module 6�Class Diagrams
	Topics
	Objectives
	Where Are We?

	What Is a Class Diagram?
	Class Diagram Usage
	Example: Class Diagram
	Review: What Is a Package?
	Example: Registration Package
	Where Are We?

	What Is an Association?
	Example: What Associations Can You Find?
	What Is Multiplicity?
	Multiplicity Indicators
	Example: Multiplicity
	Where Are We?

	What Is an Aggregation?
	Example: Aggregation
	Where Are We?

	Review: What Is Generalization?
	Example: Single Inheritance
	Example: Multiple Inheritance
	Review
	Exercise

