
Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 1

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

1

IBM Software Group

®

Essentials of Visual Modeling with UML 2.0
Module 2: Principles of Visual Modeling

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 2

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

2

Objectives

Describe the importance of visual modeling
and the role of Model Driven Architecture.
Define the four principles of visual
modeling.
Explain what the Unified Modeling
Language (UML) represents.
Define the type of process that best relates
to the UML.

Introduce the objectives for
this module.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 3

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

3

Where Are We?

What is modeling?
Four principles of visual
modeling
The UML
Process and visual modeling

Explore the student’s
knowledge of modeling.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 4

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

4

What Is a Model?

A model is a simplification of reality.

According to Grady Booch, IBM Fellow, a model provides the blueprints
of a system. Models may encompass detailed plans, as well as more
general plans that give a 30,000-foot view of the system under
construction. A good model includes those elements that are not
relevant to the given level of abstraction. Every system may be described
from different aspects using different models, and each model is
therefore a semantically closed abstraction of the system. A model may
be structural, emphasizing the organization of the system, or it may be
behavioral, emphasizing the dynamics of the system.

Define what is meant by the
term “model.”

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 5

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

5

Why Model?

Modeling achieves four aims:
Helps you to visualize a system as you want it to be.
Permits you to specify the structure or behavior of a
system.
Gives you a template that guides you in constructing a
system.
Documents the decisions you have made.

You build models of complex systems because
you cannot comprehend such a system in its
entirety.
You build models to better understand the system
you are developing.

According to Booch in The Unified Modeling Language User Guide,
modeling achieves four aims:
1. Models help you to visualize a system, as you want it to be. A model
helps the software team communicate the vision for the system being
developed. It is difficult for a software team to have a unified vision of a
system that is described only in specification and requirement
documents. Models bring about understanding of the system.
2. Models permit you to specify the structure of behavior of a system. A
model allows how to document system behavior and structure before
coding the system.
3. Models give a template that guide you in constructing a system. A
model is an invaluable tool during construction. It serves as a road map
for a developer. Have you experienced a situation where a developer
coded incorrect behavior because he or she was confused over the
wording in a requirements document? Modeling helps alleviate that
situation.
4. Models document the decisions you’ve made. Models are valuable
tools in the long term because they give “hard” information on design
decisions. You don’t need to rely on someone’s memory.

Sell the students on the value
of visual modeling.

Clarify that you are
discussing formal modeling,
not modeling written on a
white board or on the back
of a napkin at lunch.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 6

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

6

The Importance of Modeling

Paper Airplane Fighter Jet

Less Important More Important

You can take a piece of paper and a paper clip, and, in a few minutes,
have a paper airplane that entertains your kids. If it isn’t built just right,
you can always start over and build another airplane.
Would it be smart for you to build a fighter jet in the same way? That is,
start with some steel, nuts, bolts, and wiring and go right to work. Of
course not. You’re building an airplane that costs millions of dollars, and
the cost of failure is high. You’re also be part of a much larger team,
needing blueprints and models to effectively communicate with one
another. (The Unified Modeling Language User Guide, Booch, 1999.)

Emphasize that complex
projects outside of the
software industry require
models.

It’s inconceivable that a
defense contractor would
build an airplane as
complex as a fighter jet
without modeling the
airplane first. Why?
Because unlike building
paper airplanes, the cost of
failure is significant.
As a general rule, modeling
becomes more important
as the complexity and
expense rises.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 7

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

7

Software Teams Often Do Not Model

Many software teams build applications
approaching the problem like they were building
paper airplanes

Start coding from project requirements
Work longer hours and create more code
Lacks any planned architecture
Doomed to failure

Modeling is a common thread to successful
projects

Point out that a major
problem with software
development is that we
often fail to model complex
systems before
construction.

Software engineering is an
engineering discipline.
Why is it that so many of
our projects don’t use
models like other
engineering disciplines
such as electrical, civil, and
so on?
Would anyone work in a
high rise that was put
together without the
benefit of a well thought-
out design?
Would you drive an
automobile that had not
been modeled first?
Ask the class why they
think that software teams
don’t always model.
Note these ideas and
address them through the
course.

If defense contractors want to build fighter jets for the government, they
need to achieve a certain balance between the desires of the military
with the realities of aerospace engineering. They also want to treat their
employees professionally, never placing them at risk or driving them so
hard that they burn out.
Curiously, many software development organizations begin wanting to
build complex software systems, but approach the problem as though
they were building a paper airplane.
With the increasing demand to build more complex software in shorter
time, development teams often retreat to the only thing they know how
to do well - pound out lines of code. Developers start working longer
hours and frequently produce code with a requirements document as
their only source of input. However, there eventually comes a time
when the application collapses due to the lack of a well thought-out
architecture. Consequently, many of these software projects result in
failure.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 8

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

8

Model Driven Architecture (MDA)

An approach to using models in software
development

Separate the specification of the operation of a
system from the details of the way that system
uses the capabilities of its platform.
• specifying a system independently of the

platform that supports it
• specifying platforms

• choosing a particular platform for the system
• transforming the system specification into one

for a particular platform

This is a good point to
introduce students to the
DEV325 Essentials of Model
Driven Architecture course.

The MDA framework was
adopted by the Object
Management Group (OMG)
in 2001. Visit www.omg.org
for additional information.

The Model-Driven Architecture prescribes certain kinds of models to be
used, how those models may be prepared, and the relationships of these
different models.
It’s termed model-driven because this provides a means for using models
to guide the understanding, design, construction, deployment,
operation, maintenance and modification.
The architecture of a system is the specification of the parts and
connectors of the system and the rules for the interactions of the parts
using the connectors.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 9

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

9

MDA Viewpoints

Computational Independent Model (CIM)
Focus is on environment of the system and
requirements for the system

Platform Independent Model (PIM)
Focus is on system operation, independent of
platform

Platform Specific Model (PSM)
Focus is on detailed usage of system on specific
platform

The computation
independent viewpoint
focuses on the environment
of the system, and the
requirements for the system;
the details of the structure
and processing of the system
are hidden or as yet
undetermined.

The platform independent
viewpoint focuses on the
operation of a system while
hiding the details necessary
for a particular platform. A
platform independent view
shows that part of the
complete specification that
does not change from one
platform to another. A
platform independent view
may use a general purpose
modeling language, or a
language specific to the area
in which the system will be
used.

The platform specific
viewpoint combines the
platform independent
viewpoint with an additional
focus on the detail of the use
of a specific platform by a
system.

A viewpoint on a system is the process of suppressing selected detail to
establish a simplified model, in order to focus on particular concerns
within that system.

A CIM does not show details of the structure of systems and is
sometimes called a domain model. The vocabulary used in its
specification is familiar to the practitioners of the domain in question.
The CIM plays an important role in bridging the gap between those that
are experts in the domain and its requirements, and those that are
experts in the design and construction of the artifacts that together satisfy
the requirements.

A PIM exhibits a specified degree of platform independence so as to be
suitable for use with a number of different platforms. A very common
technique for achieving this independence is to target a system model
for a technology-neutral virtual machine. A virtual machine is defined as
a set of parts and services (communications, scheduling, naming, etc.),
which are defined independently of any specific platform and which are
realized in platform-specific ways on different platforms.

A PSM combines the specifications in the PIM with the details that
specify how that system uses a particular type of platform.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 10

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

10

What is modeling?
Four principles of visual
modeling
The UML
Process and visual modeling

Where Are We?

Transition to the next subject.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 11

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

11

Four Principles of Modeling

The model you create influences how the
problem is attacked.
Every model may be expressed at different
levels of precision.
The best models are connected to reality.
No single model is sufficient.

Modeling has a rich history in all the engineering disciplines.
The four basic principles of modeling are derived from this history.
1. The models you create profoundly influence how a problem is

attacked and how a solution is shaped.
2. Every model may be expressed at different levels of precision.
3. The best models are connected to reality.
4. No single model is sufficient. Every non-trivial system is best

approached through a small set of nearly independent models.

Demonstrate that there are
guiding principles for visual
modeling. It is not chaotic
activity.

The four modeling principles
are described in detail on the
next four slides.
See the “UML User Guide”
for a more detailed
discussion on these four
principles.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 12

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

12

Design ModelProcess Model

Principle 1: The Choice of Model is Important

The models you create profoundly
influence how a problem is attacked
and how a solution is shaped.

In software, the models you choose
greatly affect your world view.
Each world view leads to a different
kind of system.

Deployment Model

The right models illuminate the most difficult development problems,
offering insight that you could not gain otherwise. The wrong models
mislead you, causing you to focus on irrelevant issues.
In software, the models you choose can greatly affect your world view. If
you build a system through the eyes of a database developer, you’ll
likely end up with entity-relationship models that push behavior into
stored procedures and triggers. If you build a system through the eyes of
an object-oriented developer, you’ll end up with a system that has its
architecture centered around many classes and patterns of interaction
that direct how those classes work together.
Each world view leads to a different kind of system with different costs
and benefits. (The Unified Modeling Language User Guide, Booch,
1999.)

Remind students that each model
should reflect the problem that
they are trying to solve.

The model of a system comprises
many different views of that
system.
Refer students to the
“Architectural Blueprints -The
4+1 View of Software
Architecture” by Phillipe
Kruchten. You can find the white
paper at http://www-
306.ibm.com/software/rational/i
nfo/literature/design.jsp.
Discuss the views later in this
module.
Supplement this slide with the
following example. To build a
home, you would use different
models to resolve structural and
electrical problems.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 13

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

13

Principle 2: Levels of Precision May Differ

Every model may be expressed at different
levels of precision.

The best kinds of models let you choose your
degree of detail, depending on:
• Who is viewing the model.
• Why they need to view it.

View for DesignersView for Customers

If you are building computer chips, sometimes you need a 30,000-foot
view. For example, you need your investors to visualize the end
product. Other times, you need to get down to the level of the circuits.
When developing a GUI system, a quick and dirty executable model of
the user interface may be all you need to communicate your intentions.
Other times, when you are dealing with cross-system interfaces of
network bottlenecks, you need to model down to the bit level. In either
case, the best models are those that let you choose your degree of
detail, depending on who is doing the viewing and why they need to
view it. (The Unified Modeling Language User Guide, Booch, 1999.)

Remember, there are many
different ways to view a
model of a solution.

Again, point out that there is
no one mega-model that
displays everything about a
system.
Additional examples from
building a home may include
examples that the
homebuyer may be
interested only in the
elevation and the floor plan.
Obviously, the construction
foreman is going to need a
more detailed view of the
home.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 14

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

14

Principle 3: The Best Models Are Connected to Reality

All models simplify reality.
A good model reflects potentially fatal
characteristics.

A physical model of a building that doesn’t respond the same way as the
real materials has limited value. It’s best to have models that have a clear
connection to reality. Where that connection is weak, you need to know
exactly how those models are divorced from the real world.
All models simplify reality. The trick is to be sure that your simplifications
don’t mask any important details. A good model reveals any potentially
fatal flaws in design. (The Unified Modeling Language User Guide,
Booch, 1999.)

A model should accurately
reflect the real world.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 15

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

15

Principle 4: No Single Model Is Sufficient

No single model is sufficient. Every non-trivial
system is best approached through a small set of
nearly independent models.

Create models that can be built and studied separately,
but are still interrelated.

Process View Deployment View

Logical View

Use-Case View

Implementation View

End-user
Functionality

Programmers
Software management

Performance, scalability, throughput
System integrators System topology, delivery,

installation, communication

System engineering

Analysts/Designers
Structure

The key phrase is “nearly independent,” meaning that models can be
built and studied separately, but are still interrelated.
To understand the architecture of object-oriented systems, you need
several complementary and interlocking views. An architectural view can
be defined as a simplified description (an abstraction) of a system from a
particular perspective or vantage point, covering particular concerns,
and omitting entities that are not relevant to this perspective. Views are
“slices” of models.
Each of the views below may have structural and behavioral aspects.
Together, they represent the blueprints of a software system.

• Use-case view exposing the requirements of the system
• Logical view capturing the vocabulary of the problem space and

the solution space
• Process view modeling the distribution of the system’s processes

and threads
• Implementation view addressing the physical realization of the

system
• Deployment view focusing on system engineering issues

To address these different needs, Rational has defined the “4+1 view”
architecture model.
Remember that not all systems require all views. The number of views is
dependent on the system you’re building. For example, a single
processor does not require a deployment view or a small program does
not require an implementation view and so on.

Many interrelated models
are needed to accurately
describe a system.

Introduce the 4+1 views
of architecture first.
It’s important that they
understand from the
beginning that the models
created/read represent a
specific view of the system.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 16

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

16

What is modeling?
Four principles of visual
modeling
The UML
Process and visual modeling

Where Are We?

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 17

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

17

What Is the UML?

The UML is a language for
• Visualizing
• Specifying
• Constructing
• Documenting

the artifacts of a software-intensive system.

The software systems that you develop today are more complex than the
human mind can comprehend. This is why you model systems. Your
model selection profoundly influences how you attack the problem and
shape the solution.
No single model is sufficient. Every complex system is best approached
through a small set of nearly independent models.
Therefore, to increase comprehension, a common language like the
Unified Modeling Language (UML) is used to express models.
A modeling language is a language whose vocabulary and rules focus on
the conceptual and physical representation of a system. A modeling
language like the UML is a standard language for software blueprints.

Introduce the UML.
Remember many of your
students have no idea what
the UML really is.

The next four slides explain
how the UML is a language
for visualizing, specifying,
constructing and
documenting.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 18

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

18

The UML Is a Language for Visualizing

Communicating conceptual
models to others is prone to
error unless everyone involved
speaks the same language.
There are things about a
software system you can’t
understand unless you build
models.
An explicit model facilitates
communication.

Typically, projects and organizations develop their own language for
modeling systems, making it difficult for outsiders and new team
members to understand what is going on.
Communicating these conceptual models to others is prone to error
unless everyone involved speaks the same language. The UML offers a
set of symbols that represents well-defined semantics. One developer
can write a model in the UML, and another developer can interpret that
model unambiguously.
There are things about a software system you can’t understand unless
you build models that transcend the textual programming language. For
example, the meaning of a class hierarchy can be inferred, but not
directly grasped, by staring at the code for all the classes in the
hierarchy. The UML is a graphical language that addresses this problem.
If the developer who cut the code never wrote down the models, the
information would be lost forever. At best, the information would only
be partially recoverable from the implementation after the developer has
moved on. Writing models in the UML addresses this issue. An explicit
model facilitates communication. (The Unified Modeling Language User
Guide, Booch, 1999.)

Stress how the UML is
designed to promote
communication using
pictures rather than text.

Using the UML allows the
“light bulb” to go on in the
minds of many people.
Rather than trying to
interpret a textual
description of a system
design, the UML offers a
graphical representation of
that same description.
In this case, a picture is truly
worth a thousand words.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 19

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

19

The UML Is a Language for Specifying

The UML builds models that are precise,
unambiguous, and complete.

In this context, specifying means to build models that are precise,
unambiguous, and complete. In particular, the UML addresses the
specification of all the important analysis, design, and implementation
decisions that must be made to develop and deploy software-intensive
systems. (The Unified Modeling Language User Guide, Booch, 1999.)

The UML can be used to
specify detailed or general
models.

Anyone who has worked on
a project where
miscommunication occurred
appreciates this feature of
the UML.
The UML allows the modeler
to specify their intentions in
a clear, unmistakable
manner.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 20

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

20

The UML Is a Language for Constructing

UML models can be directly connected to a
variety of programming languages.

Maps to Java, C++, Visual Basic, and so on
Tables in a RDBMS or persistent store in an
OODBMS
Permits forward engineering
Permits reverse engineering

The UML is not a visual programming language. However, models using
the UML can be directly connected to a variety of programming
languages, making it possible to map from a model in the UML to a
programming language or even to a database.
If it is best expressed graphically, it is done graphically in the UML. If it is
best expressed textually, it is done in the programming language.
This mapping permits forward engineering: the generation of code
from a UML model to a programming language. Reverse engineering is
also possible: the reconstruction of a model from implementation back
into the UML.

The UML was designed
with forward and reverse
engineering in mind.

Rational has partners who
provide round-trip
engineering for other
languages.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 21

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

21

The UML Is a Language for Documenting

Use Case Diagram

Actor A

Use Case 1

Use Case 2

Use Case 3

Actor B

Class Diagram

GrpFile

read()

open()

create()

fillFile()

rep

Repository

name : char * = 0

readDoc()

readFile()

(from Persistence)

FileMgr

fetchDoc()

sortByName()

DocumentList

add()

delete()

Document

name : int

docid : int

numField : int

get()

open()

close()

read()

sortFileList()

create()

fillDocument()

fList

1

FileList

add()

delete()

1

File

read()

read() fill the

code..

Sequence Diagram

user

mainWnd fileMgr :

File Mgr

repositorydocument :

Document

gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName()

Æ¯ Á¤¹®¼-¿¡ ´ëÇÑ º̧±â ¦̧

»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

È-ÀÏ°ü¸®ÀÚẤ ÀÐ¾î¿Â

¹®¼-ÀÇ Á¤º̧ ¦̧ ÇØ ḉ ¹®¼-
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

È-̧ é °´Ã¼´Â ÀÐ¾îµéÀÎ

°´Ã¼µé¿¡ ´ëÇØ ÀÌ¸§º°·Î

Á¤·ÄÀ» ½ÃÄÑ È-̧ é¿¡

º̧ ¿©ÁØ´Ù.

The UML addresses documentation of system architecture,
requirements, tests, project planning, and release
management.

Deployment Diagram

Window95

¹®¼-°ü¸®

Å¬¶óÀÌ¾ðÆ®.EXE

Windows

NT

¹®¼-°ü¸® ¿£Áø.EXE

Windows

NT

Windows95

Solaris

ÀÀ¿ë¼-¹ö.EXE

Alpha

UNIX

IBM

Mainframe

µ¥ÀÌÅ º̧£ÀÌ½º¼-¹ö

Windows95

¹®¼-°ü¸® ¾ÖÇÃ¸́

ºÐ»ê È °̄æÀÇ ÇÏµå¿þ¾î¹× ³×Æ®¿÷À ·̧ÎÀÇ Á¤º̧ ½Ã½ºÅÛ ¿¬°á ð̧µ¨

- À©µµ¿ì 95 : Å¬¶óÀÌ¾ðÆ®

- À©µµ¿ì NT: ÀÀ¿ë¼-¹ö

- À¯ ´Ð½º ¸Ó½Å: ÀÀ¿ë ¼-¹ö ¹× µ¥ÀÌÅ ̧¼-¹ö, Åë½Å ¼-¹ö

- IBM ¸ÞÀÎÇÁ·¹ÀÓ: µ¥ÀÌÅ ̧¼-¹ö, Åë½Å ¼-¹ö

Project artifacts are critical in controlling, measuring, and
communicating about a system during its development and after its
deployment.
The UML addresses the documentation of a system’s architecture and all
of its details. The UML also provides a language for expressing
requirements and for tests. Finally, the UML provides a language for
modeling the activities of project planning and release management.
(The Unified Modeling Language User Guide, Booch, 1999.)
This slide does not represent all the diagrams defined in the UML
specification. For example, there is no graphic presented here for a
composite structure diagram or a timing diagram. Composite structure is
a more advanced modeling concept that is not covered in this course.
The timing diagram is new to UML2 and will be introduced in a later
module.

UML diagrams should be
treated as formal project
artifacts.

Each diagram created by a
project team should be
treated as an artifact.
The UML can help
alleviate some of the paper
crunch that many software
teams experience.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 22

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

22

History of the UML

UML
Partners’
Expertise

UML 1.0
(Jan. ‘97)

UML 1.1
(Sept. ‘97)

UML 1.5
(March, ‘03)

UML 2.0
(2004)

Other
Methods

Booch ‘91 OMT - 1OOSE

Booch ’93 OMT - 2

Public
FeedbackUnified Method 0.8

(OOPSLA ’95)

UML 0.9
(June ‘96)

UML 0.91
(Oct. ‘96)

and

The UML 2.0 is defined by two complementary specifications, the
Infrastructure and the Superstructure. The UML infrastructure defines
foundational concepts that can be used in part or entirely by other
specifications. The UML superstructure defines the complete UML. The
superstructure specification is self contained and you won’t have to read
the infrastructure specification unless you are concerned about
configuring other specifications in parallel to UML.
The UML metamodel (a description of a model) is divided into two main
packages, structure and behavior with two supporting packages,
auxiliary elements and profiles.
• The structure package defines the static structure of the UML.
• The behavior package defines the dynamic structure of the UML.
Each package is described by a chapter in the superstructure
specification document.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 23

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

23

Inputs to the UML

Fusion
Operation descriptions,
message numbering

Before and after
conditions

Meyer

Harel
State charts

Wirfs-Brock
Responsibilities

Embley
Singleton classes,
High-level view

Odell
ClassificationObject lifecycles

Shlaer- Mellor

Gamma, et.al
Frameworks, patterns,
notes

BoochRumbaugh Jacobson

Selic, Gullekson, Ward
ROOM (Real-Time
Object-Oriented Modeling)

UML development included incorporating ideas from numerous other
methodologists. The main challenge was to construct an approach that
was simple, yet allowed the modeling of a broad range of systems. The
conceptual framework was established quickly, but the notational
semantics took more time.
Active collaboration with other industry leaders has brought unique
expertise and experience into the UML effort. The UML effort was
supported by a cross-section of the industry. Partners in the UML effort
included HP, ICON Computing, IBM, I-Logix, Intellicorp, MCI
Systemhouse, Microsoft, ObjecTime, Oracle, Platinum Technology,
Ptech, Reich Technologies, Softeam, Sterling Software, Taskon, and
Unisys. These partners provided contributors, reviewers, and advocates
for the standardization efforts.
In the end, a modeling language was created that has already withstood
the test of widespread use in the industry and the scrutiny of
international standardization efforts.

Demonstrate that UML was
developed as an industry
standard with many
influences. The UML is not
owned and written by
Rational.

Do not spend a lot of time
on this slide. Simply point
out one or two contributors
of special interest to your
audience.
For example, for a telephony
audience, you might point
out Harel and his state
charts.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 24

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

24

What is modeling?
Four principles of visual
modeling
The UML
Process and visual modeling

Where Are We?

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 25

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

25

A Language Is Not Enough to Build a System

Modeling
Language

Unified
Process

Team- Based
Development

The UML provides a standard for the artifacts of development (semantic
models, syntactic notation, and diagrams) that must be controlled and
exchanged. But the UML is not a standard for the development process.
Despite all its value, you cannot achieve successful development of
today’s complex systems solely by using the UML. Successful
development also requires employing an equally robust development
process.

Emphasize here that the UML
was not designed to stand
alone, a process is also
needed.
This slide establishes the
need for more than the
UML.
Some students may think
that, if they know the UML,
they’re done. They don’t
need a process.
Establish that the UML, while
a good and necessary first
step, is not enough.
Just knowing the UML would
be analogous to learning
English by using a dictionary.
Sure, all the words are there,
but you still need to
understand how the English
language is structured before
one can effectively speak.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 26

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

26

What Type of Process Most Benefits the UML?

The UML is largely process independent. A
process fully benefits from the UML when
the process is:

Use-case driven
Architecture centric
Iterative and incremental

UML designers had a specific
type of process in mind when
the UML was first built.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 27

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

27

A Use-Case Driven Process

Use cases defined for a system are the
basis for the entire development process.
Benefits of use cases:

Concise, simple, and understandable by a wide
range of stakeholders.
Help synchronize the content of different
models.

Withdraw Money

Customer

Check Balance

Use cases are one recommended method for organizing your
requirements. Instead of a bulleted list of requirements, you organize
them in a way that shows how someone can use the system. By doing
so, a requirement is more complete and consistent. You can also better
understand the importance of a requirement from a user perspective.
It’s often difficult to tell how a system does what it is supposed to do
from a traditional object-oriented system model. This stems from the
lack of a "thread" through the system when it performs certain tasks. Use
cases are that thread because they define the behavior performed by a
system.
Use cases are not part of "traditional" object orientation, but their
importance has become more and more apparent, further emphasized
that use cases are part of the UML.

Use cases are the
cornerstone of the type of
process that works best with
UML. UML diagrams can be
used to model a use case.

Use cases are defined later in
the course.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 28

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

28

An Architecture-Centric Process

A system’s architecture is used as a
primary artifact for conceptualizing,
constructing, managing, and evolving the
system under development.
Benefits:

Intellectual control over a project to manage its
complexity and to maintain system integrity.
Effective basis for large-scale reuse.
A basis for project management.
Assistance in component-based development.

Use cases drive the process end-to-end over the entire lifecycle. The
design activities are centered around architecture-centric architecture, or
for software-intensive systems, software architecture. The main focus of
the early iterations of a architecture-centric process is to produce and
validate a software architecture, which in the initial development cycle
takes the form of an executable architectural prototype that gradually
evolves to become the final system in later iterations.
A complex system is more than the sum of its parts, more than a
succession of small independent tactical decisions. It must have some
unifying, coherent structure to organize those parts systematically, and
provide precise rules on how to grow the system without having its
complexity “explode” beyond human understanding. Architecture
provides this structure and these rules.
By clearly articulating the major components and the critical interfaces
among them, architecture lets you reason about reuse, both internal
reuse (the identification of common parts), and external reuse (the
incorporation of ready-made, off-the-shelf components). Architecture
can also help reuse on a larger scale. That is, the reuse of the
architecture itself in the context of a product line that addresses different
functionality in a common domain.

Architecture should drive the
design rather than the other
way around. UML diagrams
allow you to reflect this.

The “DEV475 Mastering
Object-Oriented Analysis
and Design with UML 2.0”
course explores this topic in
detail.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 29

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

29

An Iterative and Incremental Process

Critical risks are resolved before making
large investments.
Initial iterations enable early user feedback.
Testing and integration are continuous.
Objective milestones focus on the short
term.
Progress is measured by assessing
implementations.
Partial implementations can be deployed.

An iterative approach allows users to be involved in a meaningful way
throughout the project life cycle. Since each iteration produces an
executable release, users can observe the partially executing system and
provide meaningful feedback to their level of satisfaction. This ensures
that the final system delivered to users is acceptable.
Continuous testing and integration ensures that, at every iteration, the
pieces all fit together and that the system-level requirements (for
example, performance and capacity) are being met.
The short-term focus of an iteration is an objective measure of
“doneness.” Either a class is included in the build or it’s not. It can’t be
90 percent done. Either a test is executed successfully or it’s not. There
is very little room for subjective estimates.
In spite of the best efforts of the development team, not all system
features may be complete on the original delivery date. With a waterfall
approach, this would usually mean that nothing was ready to be
delivered (everything is 90 percent done).
With an iterative approach, most of the system is already fully tested and
operational. In many cases, there is value in delivering the partial system
on the promised date with the remaining features incorporated at a later
time. This can be important when a user has a critical need for some of
the new functionality provided by the system or it may help the training
and installation process to proceed on schedule. An iterative approach
can avoid inconvenient re-planning and re-assignment of resources.

Design the system in small
digestible pieces. UML
diagrams can enable one to
design in an iterative fashion.

Developing iteratively means
developing in small pieces
that we call use-case
realizations.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 30

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

30

Iterative Development

Earliest iterations address greatest risks.
Each iteration produces an executable
release, an additional increment of the
system.
Each iteration includes integration and test.

T I M E

Iteration 1 Iteration 2 Iteration 3

I
C

D
R

T
I

C
D

R

T
I

C
D

R

T

In the diagram above, the following abbreviations are used.
•R Requirements analysis
•D Design
•C Coding, unit testing
•I Implementation
•T Subsystem and system test

Iterative processes were developed in response to these waterfall
characteristics. With an iterative process, apply the waterfall steps
iteratively. Instead of developing the whole system at once, select and
develop an increment (a subset of system functionality), then another
increment, and so on.
Develop the first increment based on risk, with the highest priority risks
to be developed first.
To address the selected risk(s), choose a subset of use cases.
Develop the smallest number of use cases that allow objective
verification (like a set of executable tests) of the risks that you’ve chosen.
Select the next increment to address the next highest risk, and so on.
Thus, you apply the waterfall within each iteration and the system
evolves incrementally.

Define iterative development
for the students. It is not
necessary to go into great
detail at this time. The
Mastering Object-Oriented
Analysis and Design with
UML class discusses this
topic.

In the iterative approach, the
waterfall is applied to a single
increment of the system at a
time. Each iteration produces
an executable.
Verify that the waterfall
concept is understood by the
students.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 31

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

31

Review

What is a model?
What are the viewpoints of MDA?
Describe each one.
What are the four principles of
modeling? Describe each one.
What is the UML? Describe each
of its four benefits.
What process characteristics best
fit the UML? Describe each
characteristic.
What is an iteration?

Check to see if the students
comprehended the material.
A. A model is a simplification
of reality.
B. The three viewpoints of
MDA are: (1) CIM – focus is
on environment and
requirements; (2) PIM –
focus is on system operation,
independent of the
platform; (3) PSM – focus is
on detailed usage on specific
platform.
C. The four principles of
modeling are: (1) The
models you create
profoundly influence how a
problem is attacked and how
a solution is shaped; (2)
Every model may be
expressed at different levels
of precision; (3) The best
models are connected to
reality; (4) No single model is
sufficient.

D. The UML is a language
for visualizing, specifying,
constructing, and
documenting the artifacts of
a software-intensive system.
E. The UML is largely process
independent but consider a
process that is: use-case
driven, architecture-centric,
and iterative and
incremental.
F. An iteration encompasses
the development activities
that lead to a product
release - a stable, executable
versions of product, together
with any other peripheral
elements necessary to use
this release.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

2 - 32

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 2 - Principles of Visual Modeling

32

