

IBM / Rational software

Glossary

Version 2004.06.00

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

Revision History
Date Version Description Author

June, 1999 V4.2 Initial creation Shawn Siemers

November, 2001 V2002 Final release Shawn Siemers

December, 2002 V2003.06.00 Final release Alex Kutsick

June, 2004 V2004.06.00 Final release Alex Kutsick

 © Copyright IBM Corp. 2004 Page 2 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

Table of Contents
1. Introduction 6

2. Definitions 6
2.1 Abstract Class 6
2.2 Abstraction 6
2.3 Action 6
2.4 Active Class 6
2.5 Activity 6
2.6 Activity Diagram 6
2.7 Activity State 7
2.8 Actor 7
2.9 Aggregation 7
2.10 Analysis 7
2.11 Analysis Class 7
2.12 Analysis Mechanism 7
2.13 Architectural Mechanism 7
2.14 Architecture 7
2.15 Assembly Connector 8
2.16 Association 8
2.17 Association Class 8
2.18 Attribute 8
2.19 Ball 8
2.20 Behavior 8
2.21 Boundary Class 8
2.22 Choice 8
2.23 Class 8
2.24 Class Diagram 8
2.25 Classifier 9
2.26 Collaboration 9
2.27 Combined Fragment 9
2.28 Communication Diagram 9
2.29 Component 9
2.30 Component Diagram 9
2.31 Composite Structure Diagram 9
2.32 Composition 10
2.33 Concrete Class 10
2.34 Concurrency 10
2.35 Connector 10
2.36 Control Class 10
2.37 Delegation Connector 10
2.38 Dependency 10
2.39 Deployment 10
2.40 Deployment Diagram 10
2.41 Deployment Specification 10
2.42 Deployment View 10
2.43 Derived Attribute 11
2.44 Design 11
2.45 Design Model 11
2.46 Design Mechanism 11
2.47 Device 11

 © Copyright IBM Corp. 2004 Page 3 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.48 Encapsulation 11
2.49 Entity Class 11
2.50 Event 11
2.51 Event Occurrence 11
2.52 Execution Environment 12
2.53 Execution Occurrence 12
2.54 Forward Engineering 12
2.55 Frame 12
2.56 Framework 12
2.57 Gate 12
2.58 Generalization 12
2.59 General Ordering 13
2.60 Guard Condition 13
2.61 Hierarchy 13
2.62 Implementation Mechanism 13
2.63 Implementation View 13
2.64 Inheritance 13
2.65 Instance 13
2.66 Interaction 13
2.67 Interaction Diagram 14
2.68 Interaction Fragment 14
2.69 Interaction Occurrence 14
2.70 Interaction Operand 14
2.71 Interaction Overview Diagram 14
2.72 Interface 14
2.73 Iteration 15
2.74 Iteration Expression 15
2.75 Lifeline 15
2.76 Link 15
2.77 Logical View 15
2.78 Manifestation 15
2.79 Message 15
2.80 Method 15
2.81 Modularity 15
2.82 Multiple Inheritance 15
2.83 Multiplicity 15
2.84 Navigability 16
2.85 Node 16
2.86 Object 16
2.87 Object Diagram 16
2.88 Object Lifeline 16
2.89 Object-Orientation (OO) 16
2.90 Object Technology 16
2.91 Operation 16
2.92 Operation Signature 16
2.93 Package 16
2.94 Package Diagram 17
2.95 Package Import 17
2.96 Partitions 17
2.97 Pattern 17
2.98 Polymorphism 17
2.99 Port 18
2.100 Process 18

 © Copyright IBM Corp. 2004 Page 4 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.101 Process View 18
2.102 Property 18
2.103 Provided Interface 18
2.104 Realization 18
2.105 Relationship 18
2.106 Required Interface 18
2.107 Responsibility 18
2.108 Reverse Engineering 19
2.109 Role 19
2.110 Scenario 19
2.111 Sequence Diagram 19
2.112 Single Inheritance 19
2.113 Socket 19
2.114 State 19
2.115 State Machine 19
2.116 State Machine Diagram 20
2.117 Stereotype 20
2.118 Stored Procedures 20
2.119 Structured Class 20
2.120 Structure Diagram 20
2.121 Structured Part 20
2.122 Subsystem 20
2.123 Thread 20
2.124 Time Constraint 20
2.125 Timing Diagram 20
2.126 Transaction 20
2.127 Transition 21
2.128 Unified Modeling Language (UML) 21
2.129 Use Case 21
2.130 Use-Case Diagram 21
2.131 Use-Case Model 21
2.132 Use-Case Realization 21
2.133 Use-Case View 21
2.134 Utility Class 21
2.135 Visibility 21
2.136 Visual Modeling 21

 © Copyright IBM Corp. 2004 Page 5 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

Glossary

1. Introduction
This document contains definitions for terms used in the Essentials of Visual Modeling and Mastering Object-
Oriented Analysis and Design with UML courses. Many of the definitions are from the Rational Unified Process
and some are from the Unified Modeling Language Reference Manual, 2nd edition, by James Rumbaugh, Ivar
Jacobson, Grady Booch, Addison-Wesley, Boston, 2005. Other information was taken directly from the course
materials or paraphrased from the UML User's Guide. Graphics were included where they helped to explain the
definition.

2. Definitions

2.1 Abstract Class
An abstract class is a class that cannot be instantiated—that is, it may not have direct instances. It is the
opposite of a concrete class.

2.2 Abstraction
The essential characteristics of an entity that distinguish it from all other kind of entities and thus provide
crisply-defined boundaries relative to the perspective of the viewer.

2.3 Action
An action is an operation that is associated with a transition. Actions conceptually take an insignificant
amount of time to complete, and are considered non-interruptible. Action names are shown on the transition
arrow preceded by a slash.

StateA

StateB StateC

entry/ action

event(condition) / action

2.4 Active Class
An active class is a class that “owns” it’s own thread of execution and can initiate control activity,
contrasted with passive classes that can only be acted upon. Active classes may execute in parallel (that is,
concurrently) with other active classes.

2.5 Activity
A unit of work a worker may be asked to perform.

2.6 Activity Diagram
An activity diagram shows the decomposition of an activity into its constituents.

 © Copyright IBM Corp. 2004 Page 6 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.7 Activity State

The performance of an activity or step within the workflow.

2.8 Actor
Someone or something outside the system or business that interacts with the system or business.

Actor

(f rom Use Case View)

2.9 Aggregation
An association that models a whole-part relationship between an aggregate (the whole) and its parts. It is
shown by a hollow diamond at the end of the path attached to the aggregate class.

Whole Part

2.10 Analysis
The part of the software development process whose primary purpose is to formulate a model of the
problem domain. Analysis focuses on what to do; design focuses on how to do it.

2.11 Analysis Class
Analysis classes handle primarily functional requirements, and model objects from the "problem" domain.

2.12 Analysis Mechanism
An architectural mechanism used early in the design process, during the period of discovery when key
classes and subsystems are being identified. Typically analysis mechanisms capture the key aspects of a
solution in a way that is implementation independent. Analysis mechanisms are usually unrelated to the
problem domain, but instead are "computer science" concepts. They provide specific behaviors to a
domain-related class or component, or correspond to the implementation of cooperation between classes
and/or components. They may be implemented as a framework. Examples include mechanisms to handle
persistence, inter-process communication, error or fault handling, notification, and messaging, to name a
few.

2.13 Architectural Mechanism
An architectural mechanism represents a common solution to a frequently encountered problem. They may
be patterns of structure, patterns of behavior, or both.

2.14 Architecture
The highest-level concept of a system in its environment. The architecture of a software system (at a given
point in time) is its organization or structure of significant components interacting through interfaces, those
components being composed of successively smaller components and interfaces.

 © Copyright IBM Corp. 2004 Page 7 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.15 Assembly Connector

A connector between two elements (parts or ports) in the internal implementation specification of a
structured classifier or component.

2.16 Association
A relationship that models a bi-directional semantic connection among instances.

2.17 Association Class
An association class is a class that is connected to an association. It is a full-fledged class and can contain
attributes, operations and other associations. Association classes allow you to store information about the
relationship itself. Such information is not appropriate, or does not belong, within the classes at either end
of the relationship.

AssociationClass

0..* 0..*

ClassB ClassA

0..* 0..*

2.18 Attribute
An attribute defined by a class represents a named property of the class or its objects. An attribute has a
type that defines the type of its instances.

2.19 Ball
A provided interface relationship shown by a small circle, or a ball, attached to a classifier by a line.

2.20 Behavior
The observable effects of an event that includes results.

2.21 Boundary Class
A class used to model communication between the system's environments and its inner workings.

2.22 Choice
A node in a state machine at which dynamic evaluations of subsequent guard conditions is made.

2.23 Class
A class is a description of a set of objects that share the same responsibilities, relationships, operations,
attributes, and semantics.

ClassA

2.24 Class Diagram
A diagram that shows a set of classes, interfaces, and collaborations and their relationships; class diagrams
address the static design view of a system; a diagram that shows a collection of declarative (static)
elements.

 © Copyright IBM Corp. 2004 Page 8 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.25 Classifier

A model element that describes behavioral and structural features. Kinds of classifiers include actor,
association, class, collaboration, component, data type, interface, node, signal, subsystem, and use case.

2.26 Collaboration
A society of roles and other elements that work together to provide some cooperative behavior that’s bigger
than the sum of all its parts; the specification of how an element, such as a use case or an operation, is
realized by a set of classifiers and associations playing specific roles and used in a specific way.

2.27 Combined Fragment
A construct within an interaction that comprises an operator keyword and one or more interaction operands,
each of which is a fragment of an interaction. It is shown as a nested region within a sequence diagram. If
the fragment has more than one subfragment, horizontal dashed lines separate them.

2.28 Communication Diagram
A communication diagram describes a pattern of interaction among objects; it shows the objects
participating in the interaction by their links to each other and the messages they send to each other.

 : Actor

 :
ClassA

3: Message3
2: Message2

1: Message1

 :
ClassB

2.29 Component
A modular part of a system that hides its implementation behind a set of external interfaces. Within a
system, components satisfying the same interfaces may be substituted freely.

2.30 Component Diagram
A diagram that shows the definition, internal structure, and dependencies of component types. There is no
sharp line between component diagrams and general class diagrams.

2.31 Composite Structure Diagram
A composite structure diagram shows the internal structure (including parts and connectors) of a structured
classifier or collaboration. It defines the parts of a system and the communication relationships between
them.

 © Copyright IBM Corp. 2004 Page 9 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.32 Composition

A composition is a stronger form of association in which the composite has sole responsibility for
managing its parts— such as their allocation and deallocation. A filled diamond on the composite end
shows it. An object at most may belong to one composition.

PartWhole

2.33 Concrete Class
A generalizable element (such as a class) that can be directly instantiated. Of necessity, its implementation
must be fully specified. For a class, all its operations must be implemented (by the class or an ancestor).

2.34 Concurrency
Concurrency is the tendency for things to happen at the same time in a system.

2.35 Connector
The connection of two structured parts within a structured classifier or a collaboration; a specification of an
contextual association that applies only in a certain context, such as the objects within a classifier or objects
satisfying a collaboration.

2.36 Control Class
A class used to model behavior specific to one, or a several use cases.

2.37 Delegation Connector
A connector between an external port of a structured class or component and an internal part. Connections
to the external port are treated as going to the element at the other end of the delegation connector.

2.38 Dependency
A semantic relationship between two things in which a change to one thing (the independent thing) may
affect the semantics of the other thing (dependent thing).

2.39 Deployment
The assignment of software artifacts to physical nodes during execution.

2.40 Deployment Diagram
A diagram that shows the configuration of run-time processing nodes and the artifacts that live on them. A
deployment diagram may be at the class level or the instance level.

Work
station

Server

2.41 Deployment Specification
A detailed specification of the parameters of the deployment of an artifact to a node. A deployment
specification is shown as a rectangle symbol with the keyword «deploymentSpec».

2.42 Deployment View
A view that shows the nodes in a distributed system, the artifacts that are stored on each node, and the
components and other elements that the artifacts manifest.

 © Copyright IBM Corp. 2004 Page 10 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.43 Derived Attribute

An attribute whose value may be calculated based on the value of other attribute(s).

2.44 Design
The part of the software development process whose primary purpose is to decide how the system will be
implemented. During design, strategic and tactical decisions are made to meet the required functional and
quality requirements of a system.

2.45 Design Model
An object model describing the realization of use cases; serves as an abstraction of the implementation
model and its source code.

2.46 Design Mechanism
An architectural mechanism used during the design process, during the period in which the details of the
design are being worked-out. They are related to associated analysis mechanisms, of which they are
additional refinements. A design mechanism assumes some details of the implementation environment, but
it is not tied to a specific implementation (as is an implementation mechanism). For example, the analysis
mechanism for inter-process communication may be refined by several design mechanisms for interprocess
communication (IPC): shared memory, function-call-like IPC, semaphore-based IPC, and so on. Each
design mechanism has certain strengths and weaknesses; the choice of a particular design mechanism is
determined by the characteristics of the objects using the mechanism.

2.47 Device
A physical computational resource with processing capability upon which artifacts may be deployed for
execution. A node annotated with the stereotype <<device>> notates a device.

2.48 Encapsulation
The physical localization of features (for example, properties, behaviors) into a single black box abstraction
that hides their implementation (and associated design decisions) behind a public interface. Encapsulation
is also referred to as information hiding.

2.49 Entity Class
A class used to model information that has been stored by the system, and the associated behavior. A
generic class reused in many use cases, often with persistent characteristics. An entity class defines a set of
entity objects, which participate in several use cases and typically survive those use cases.

2.50 Event
An event is an occurrence that happens at some point in time. In a state machine, an event is an occurrence
of a stimulus that can trigger a state transition.

Event / TargetObject.event

do/ TargetObject.Event

NewState2

entry/ Action

NewState

2.51 Event Occurrence
The occurrence of an event during the execution of a system, e.g., call event, signal event, time event,
change event. An event occurrence is not explicitly shown as a separate concept. It is usually shown by the
intersection of a message arrow and a lifeline.

 © Copyright IBM Corp. 2004 Page 11 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.52 Execution Environment

A kind of deployment node that represents a particular kind of execution platform, such as an operating
system, a workstation engine, a database management system, and so on. Also (and more commonly) used
informally to describe the context within which execution of a model occurs. A node annotated with the
stereotype <<ExecutionEnvironment>> notates an execution environment.

2.53 Execution Occurrence
The execution of an activity, operation, or other behavior unit within an interaction. An execution
represents the period during which an object performs a behavior either directly or through a subordinate
behavior.

2.54 Forward Engineering
The process of transforming a model into code through a mapping to a specific implementation language.

2.55 Frame
A diagram is presented as a frame containing graphical contents. The frame names the diagram and
establishes its extent. It is drawn as a rectangle with a small pentagon (called the name tag) in the upper
left corner.

e

2.56 Fram
A mic

2.57 Gate
A con
outsid

2.58 Gene
A taxo
eleme
of the

Fram

ework
ro-architecture that provides an incomplete template for applications within a specific domain

nection point in an interaction or interaction fragment for a message that comes from or goes to
e the interaction or fragment.

ralization
nomic relationship between a more general element and a more specific element. The more specific

nt is fully consistent with the more general element and contains additional information. An instance
 more specific element can be used where the more general element is allowed.

ClassBClassA

ClassParent

© Copyright IBM Corp. 2004 Page 12 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.59 General Ordering
A constraint in an interaction where the time of one event occurrence precedes the time of another event
occurrence.

2.60 Guard Condition
The guard is expressed as a Boolean constraint on values available to test at the time of messaging, i.e., the
guard determines whether a transition may fire.

2.61 Hierarchy
Any ranking or ordering of abstractions into a tree-like structure. Kinds: aggregation hierarchy, class
hierarchy, containment hierarchy, inheritance hierarchy, partition hierarchy, specialization hierarchy, type
hierarchy. (Dictionary of Object Technology, Firesmith, Eykholt, 1995.)

2.62 Implementation Mechanism
An architectural mechanism used during the implementation process. They are refinements of design
mechanisms, and specify the exact implementation of the mechanism. For example, one particular
implementation of the inter-process communication analysis mechanism is a shared memory design
mechanism utilizing a particular operating system’s shared memory function calls. Concurrency conflicts
(inappropriate simultaneous access to shared memory) may be prevented using semaphores, or using a
latching mechanism, which in turn rest upon other implementation mechanisms.

2.63 Implementation View
An architectural view that describes the organization of the static software elements (code, data, and other
accompanying artifacts) on the development environment, in terms of both packaging, layering, and
configuration management (ownership, release strategy, and so on). In the Unified Process it is a view on
the implementation model.

2.64 Inheritance
The mechanism that makes generalization possible; a mechanism for creating full class descriptions out of
individual class segments.

2.65 Instance
A concrete manifestation of an abstraction; an entity to which a set of operations can be applied and that
has a state that stores the effects of the operations.

2.66 Interaction
A specification of how messages are exchanged between objects or other instances over time to perform a
task. An interaction is defined in a context, which may be a classifier, a collaboration, or some other
grouping of connected parts.

 © Copyright IBM Corp. 2004 Page 13 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.67 Interaction Diagram

A diagram that shows an interaction, consisting of a set of objects and their relationships, including the
messages that may be dispatched among them; interaction diagrams address the dynamic view of a system;
a generic term that applies to several types of diagrams that emphasize object interactions, including
communication diagrams, sequence diagrams, timing diagrams and the interaction overview diagrams. The
Interaction Diagram is a generic term for focusing on messaging [interaction] between objects. As such,
there is no one graphic for an Interaction Diagram.

2.68 Interaction Fragment
A structural piece of an interaction.

2.69 Interaction Occurrence
A reference to an interaction within the definition of another interaction.

2.70 Interaction Operand
A structural piece of a combined fragment; a subfragment.

2.71 Interaction Overview Diagram
A diagram that depicts interactions through a variant of activity diagrams in such a way to promote an
overview of the control flow. It focuses on the overview of the flow of control where each node can be an
interaction diagram.

2.72 Interface
A declaration of a coherent set of public features and obligations; a contract between providers and
consumers of services.

Interface

<<Interface>>
Subsystem

<<subsystem>>

Subsystem
<<subsystem>>

 Interface

 © Copyright IBM Corp. 2004 Page 14 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.73 Iteration

A distinct set of activities with a baseline plan and evaluation criteria that results in a release, either internal
or external.

2.74 Iteration Expression
A specification of the range of number of iterations of a loop.

2.75 Lifeline
The lifeline represents the existence of the object at a particular time.
You can use a lifeline to model both class and object behavior. Usually, a lifeline represents all objects of a
certain class.

2.76 Link
A semantic connection among objects; an instance of an association.

2.77 Logical View
An architectural view that describes the main classes in the design of the system: major business-related
classes, and the classes that define key behavioral and structural mechanisms (persistency, communication,
fault-tolerance, user-interface). In the Unified Process, the logical view is a view of the design model.

2.78 Manifestation
The physical implementation of a model element as an artifact. A manifestation is shown as a dependency
arrow from an artifact to a model element. The keyword «manifest» is placed on the arrow.

2.79 Message
The conveyance of information from one object (or other instance) to another as part of an interaction
within a context. A message may be a signal or the call of an operation. The sending and the receipt of a
message are event occurrences.

2.80 Method
(1) A regular and systematic way of accomplishing something; the detailed, logically ordered plans or
procedures followed to accomplish a task or attain a goal. (2) UML 1.1: The implementation of an
operation, the algorithm, or the procedure that effects the results of an operation.

2.81 Modularity
The logical and physical decomposition of things (for example, responsibilities and software) into small,
simple groupings (for example, requirements and classes, respectively), which increase the achievements of
software-engineering goals.

2.82 Multiple Inheritance
A semantic variation of generalization in which an object may belong directly to more than one class.

2.83 Multiplicity
A specification of the range of allowable cardinalities that a set may assume.

ClassA ClassB

0..1 0..2, 5

 © Copyright IBM Corp. 2004 Page 15 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.84 Navigability

The navigability property on a role indicates that it is possible to navigate from a associating class to the
target class using the association.

2.85 Node
A run-time physical object that represents a computational resource, generally having at least memory and
often processing capability. Run-time artifacts may be deployed on nodes.

Work
station

2.86 Object
An entity with a well-defined boundary and identity that encapsulates state and behavior. State is
represented by attributes and relationships, behavior is represented by operations and methods. An object is
an instance of a class.

2.87 Object Diagram
A diagram that encompasses objects and their relationships at a given point in time. An object diagram
may be considered a special case of a class diagram or a communication diagram.

2.88 Object Lifeline
A line in a sequence diagram that represents the existence of an object over a period of time.

2.89 Object-Orientation (OO)
The Rational Unified Process supports object-oriented techniques. Each model is object-oriented. Rational
Unified Process models are based on the concepts of objects and classes and the relationships among them,
as they use the UML as its common notation.

2.90 Object Technology
A set of principles (abstraction, encapsulation, polymorphism) guiding software construction, together with
languages, databases, and other tools that support those principles. (Object Technology - A Manager’s
Guide, Taylor, 1997.)

2.91 Operation
A service that can be requested from an object to effect behavior.

2.92 Operation Signature
The name and parameters of an operation.

2.93 Package
A general-purpose mechanism for organizing elements into groups, establishing ownership of elements,
and providing unique names for referencing elements.

PackageA

 © Copyright IBM Corp. 2004 Page 16 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.94 Package Diagram
A diagram that depicts how model elements are organized into packages and the dependencies among
them, including package imports and package extensions.

2.95 Package Import
A directed relationship that adds the names of elements to a namespace.

2.96 Partitions
The organization of activities into distinct regions. Organize activities in a model according to their
responsibility—for example, group all the activities handled by one business organization. Partitions are
separated by lines in the diagram.

2.97 Pattern
A scheme for describing design fragments or collections of class templates so that they can be configured
and reused.

2.98 Polymorphism
Polymorphism is the ability to define a single interface with multiple implementations.

 © Copyright IBM Corp. 2004 Page 17 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.99 Port

A structural feature of a classifier that encapsulates interaction between the contents of the classifier and its
environment. A port is shown as a small square straddling the boundary of a classifier rectangle. The name
of the port is placed near the square.

2.100 Process
(1) Any thread of control that can logically execute concurrently with other processes. (2) A set of

partially ordered steps intended to reach a goal; in software engineering the goal is to build a software
product or to enhance an existing one; in process engineering, the goal is to develop or enhance a
process model; corresponds to a business use case in business engineering.

2.101 Process View
An architectural view that describes the concurrent aspect of the system: tasks (processes) and their
interactions.

2.102 Property
A named value denoting a characteristic of an element.

2.103 Provided Interface
An interface that declares the services that a classifier offers to provide to anonymous requestors. A
provided interface relationship is shown by a small circle, or a ball, attached to a classifier by a line.
Alternately, a provided interface can be shown using realization notation.

2.104 Realization
A semantic relationship between classifiers, in which one classifier specifies a contract that another
classifier guarantees to carry out.

2.105 Relationship
An abstract concept that specifies some kind of connection between elements. Examples of relationships
include associations and generalizations.

2.106 Required Interface
A required interface is the complementary relationship of a provided interface where a classifier requires
the services described in the interface. A required interface relationship is shown by a small half circle, or
a socket, attached to a classifier by a line. Alternately, a required interface can be shown using dependency
notation.

2.107 Responsibility
A contract or obligation of a type or class.

 © Copyright IBM Corp. 2004 Page 18 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.108 Reverse Engineering

The process of transforming code into a model through a mapping from a specific implementation
language.

2.109 Role
The behavior of an entity participating in a particular context. Role names are not underlined when only a
role name is needed and no instance reference is implied.

 Department Employee
+Department Head

 10..*

2.110 Scenario
A described use-case instance, a subset of a use case.

2.111 Sequence Diagram
A diagram that describes a pattern of interaction among objects, arranged in a chronological order; it shows
the objects participating in the interaction by their "lifelines" and the messages that they send to each other.

 : Actor
 : Employee : Department

1: Message1

2: Message2

3: Message3

2.112 Single Inheritance
A semantic variation of generalization in which a child may have only one parent.

2.113 Socket
A required interface relationship is shown by a small half circle, or a socket, attached to a classifier by a
line.

2.114 State
A condition or situation during the life of an object during which it satisfies some condition, performs some
activity, or waits for some event.

2.115 State Machine
A specification of the sequences of states that an object or an interaction goes through in response to events
during its life, together with its responsive effects (action and activity). A state machine is attached to a
source class, collaboration, or method and specifies the behavior of the instances of the source element.

 © Copyright IBM Corp. 2004 Page 19 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.116 State Machine Diagram

A state machine diagram shows a state machine, that is, a behavior that specifies the sequences of states
that an object goes through during its life in response to events, together with its responses and actions.

 Event /TargetObject.event

entry/ Action

NewState

do/ TargetObject.Event

NewState2

2.117 Stereotype
A meta-classification of an element. Stereotypes have semantic implications which can be specified for
every specific stereotype value.

2.118 Stored Procedures
A stored procedure is executable code that runs under the RDBMS. Stored procedures provide the ability
to perform database-related actions on the server without having to transfer data across a network.

2.119 Structured Class
A class containing parts or roles that form its structure and realize its behavior.

2.120 Structure Diagram
A form of diagram that depicts the elements in a specification that is irrespective of time. Class diagrams
and component diagrams are examples of structure diagrams.

2.121 Structured Part
Within a structured classifier, an element that represents an object or set of objects within a contextual
relationship.

2.122 Subsystem
A large unit of decomposition for a system. It is modeled as a stereotype of component with the keyword
<<subsystem>>.

2.123 Thread
An independent computation executing within an the execution environment and address space defined by
an enclosing operating system process.

2.124 Time Constraint
Expressed as a time interval, it can refer to a single event occurrence or to the time interval between two
occurrences.

2.125 Timing Diagram
An interaction diagram that shows the change in state or condition of a lifeline over linear time. The most
common usage is to show the change in state of an object over time in response to accepted events or
stimuli. It is an optional diagram designed to specify the time constraints on messages sent and received in
the course of an interaction.

2.126 Transaction
Transactions define a set of operation invocations that are atomic: either all or none of them are performed.

 © Copyright IBM Corp. 2004 Page 20 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

2.127 Transition

A transition is a change from an originating state to a successor state as a result of some stimulus.

2.128 Unified Modeling Language (UML)
A language for visualizing, specifying, constructing, and documenting the artifacts of a software-intensive
system.

2.129 Use Case
A use case defines a set of use-case instances, where each instance is a sequence of actions a system
performs that yields an observable result of value to a particular actor. A use-case class contains all main,
alternate flows of events related to producing the 'observable result of value'. Technically, a use-case is a
class whose instances are scenarios.

2.130 Use-Case Diagram
A diagram that shows the relationships among actors and use cases within a system.

2.131 Use-Case Model
A model of what the system is supposed to do and the system environment.

2.132 Use-Case Realization
A use-case realization describes how a particular use case is realized within the design model, in terms of
collaborating objects.

2.133 Use-Case View
An architectural view that describes how critical use cases are performed in the system, focusing mostly on
architecturally significant components (objects, tasks, nodes). In the Unified Process, it is a view of the use-
case model.

2.134 Utility Class
A class that contains a collection of free subprograms.

2.135 Visibility
How a name can be seen and used by others.

2.136 Visual Modeling
A way of thinking about problems using models organized around real-world ideas.

 © Copyright IBM Corp. 2004 Page 21 of 22

Essentials of Visual Modeling with UML 2.0 Version: 2004.06.00
Glossary

 © Copyright IBM Corp. 2004 Page 22 of 22

	Introduction
	Definitions
	Abstract Class
	Abstraction
	Action
	Active Class
	Activity
	Activity Diagram
	Activity State
	Actor
	Aggregation
	Analysis
	Analysis Class
	Analysis Mechanism
	Architectural Mechanism
	Architecture
	Assembly Connector
	Association
	Association Class
	Attribute
	Ball
	Behavior
	Boundary Class
	Choice
	Class
	Class Diagram
	Classifier
	Collaboration
	Combined Fragment
	Communication Diagram
	Component
	Component Diagram
	Composite Structure Diagram
	Composition
	Concrete Class
	Concurrency
	Connector
	Control Class
	Delegation Connector
	Dependency
	Deployment
	Deployment Diagram
	Deployment Specification
	Deployment View
	Derived Attribute
	Design
	Design Model
	Design Mechanism
	Device
	Encapsulation
	Entity Class
	Event
	Event Occurrence
	Execution Environment
	Execution Occurrence
	Forward Engineering
	Frame
	Framework
	Gate
	Generalization
	General Ordering
	Guard Condition
	Hierarchy
	Implementation Mechanism
	Implementation View
	Inheritance
	Instance
	Interaction
	Interaction Diagram
	Interaction Fragment
	Interaction Occurrence
	Interaction Operand
	Interaction Overview Diagram
	Interface
	Iteration
	Iteration Expression
	Lifeline
	Link
	Logical View
	Manifestation
	Message
	Method
	Modularity
	Multiple Inheritance
	Multiplicity
	Navigability
	Node
	Object
	Object Diagram
	Object Lifeline
	Object-Orientation (OO)
	Object Technology
	Operation
	Operation Signature
	Package
	Package Diagram
	Package Import
	Partitions
	Pattern
	Polymorphism
	Port
	Process
	Process View
	Property
	Provided Interface
	Realization
	Relationship
	Required Interface
	Responsibility
	Reverse Engineering
	Role
	Scenario
	Sequence Diagram
	Single Inheritance
	Socket
	State
	State Machine
	State Machine Diagram
	Stereotype
	Stored Procedures
	Structured Class
	Structure Diagram
	Structured Part
	Subsystem
	Thread
	Time Constraint
	Timing Diagram
	Transaction
	Transition
	Unified Modeling Language (UML)
	Use Case
	Use-Case Diagram
	Use-Case Model
	Use-Case Realization
	Use-Case View
	Utility Class
	Visibility
	Visual Modeling

