
Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 1

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

1

IBM Software Group

®

Essentials of Visual Modeling with UML 2.0
Module 3: Concepts of Object Orientation

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 2

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

2

Objectives

Describe abstraction, encapsulation,
modularity, and hierarchy.
Describe the physical structure of a class.
Describe the relationship between a class
and an object.
Define polymorphism and generalization.

Introduce the objectives for
this module.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 3

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

3

Where Are We?

What is an object?
Four principles of OO
What is a class?
Polymorphism and
generalization
Organizing model elements

Introduce the first topic in
this module.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 4

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

4

Informally, an object represents an entity,
either physical, conceptual, or software.

Physical entity

Conceptual entity

Software entity

Truck

Chemical Process

Linked List

What Is an Object?

Objects allow the software developer to represent real-world concepts in
their software design. These real-world concepts can represent a physical
entity such as a person, truck, or space shuttle.
Objects can be concepts like a chemical process or algorithms.
Object can even represent software entities like a linked list.

Stress that objects can
represent anything.
Remember, most of your
students do not know what
an object is.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 5

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

5

A More Formal Definition

An object is an entity
with a well-defined
boundary and identity
that encapsulates state
and behavior.

State is represented by
attributes and
relationships.
Behavior is represented
by operations, methods,
and state machines. Object

Operations

Attributes

An object is an entity that has a well-defined boundary. That is, the
purpose of the object should be clear.
An object has two key components: attributes and operations.
Attributes and relationships represent an object’s state. Operations
represent the behavior of the object.
Object behavior and state are discussed in the next few slides.

Emphasize that state, identity
and behavior are the key
characteristics of an object.

Take a moment to explain
the graphic on this slide.
Attributes are documented
on the inside of the
doughnut.
Operations are documented
on the borders, which
become clearer to the
student as you discuss topics
like encapsulation.
Note that the doughnut is
not part of the UML
notation. UML notation is
discussed later.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 6

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

6

An Object Has State

State is a condition or situation during the life of
an object, which satisfies some condition,
performs some activity, or waits for some event.
The state of an object normally changes over
time.

Name: J Clark
Employee ID: 567138
Date Hired: July 25, 1991
Status: Tenured
Discipline: Finance
Maximum Course Load: 3 classes

Name: J Clark
Employee ID: 567138
HireDate: 07/25/1991
Status: Tenured
Discipline: Finance
MaxLoad: 3

Professor Clark

The state of an object is one of the possible conditions in which an
object may exist. State normally changes over time.
The state of an object is usually implemented by a set of properties
called attributes, along with the values of the properties and the links the
object may have with other objects.
State is not defined by a “state” attribute or set of attributes. Instead,
state is defined by the total of an object’s attributes and links. For
example, if Professor Clark’s status changed from Tenured to Retired, the
state of the Professor Clark object would change.

Explain the concept of state
to the students.

Provide some supplemental
state exercises to ensure that
the class understands the
concept of state. For
example an online order
(Pending, Approved,
Shipped, BackOrdered,
Cancelled, etc.) or a car’s
Cruise Control (Engaged,
Disengaged, On,
Accelerating, Decelerating).

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 7

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

7

An Object Has Behavior

Behavior determines how an object acts and
reacts.
The visible behavior of an object is modeled by a
set of messages it can respond to (operations that
the object can perform).

Professor Clark’s behavior
Submit Final Grades
Accept Course Offering
Take Sabbatical
Set Max Load

Sub
m

itF
in

al
G

ra
de

s(
)

AcceptCourseOffering()

TakeSabbatical()

Professor Clark

SetM
axLoad()

The second characteristic of an object is that it has behavior. Objects are
intended to mirror the concepts that they are modeled after, including
behavior.
Behavior determines how an object acts and reacts to requests from
other objects.
Object behavior is represented by the operations that the object can
perform. For example, Professor Clark can choose to take a sabbatical
once every five years. The Professor Clark object represents this behavior
through the TakeSabbatical() operation.

Explain the concept of
behavior to the students.

Objects “do” some
interesting things. This is
where the work in an OO
system is done.
The melding of data and
behavior is what makes OO
such a powerful
development technique.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 8

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

8

An Object Has Identity

Each object has a unique identity, even if the
state is identical to that of another object.

Professor “J Clark”
teaches Biology

Professor “J Clark”
teaches Biology

In the real world, two people can share the same characteristics: name,
birth date, job description. Yet, there is no doubt that they are two
individuals with a unique identity.
The same concept holds true for objects. Although two objects may
share the same state (attributes and relationships), they are separate,
independent objects with their own unique identity.

Explain the concept of
identity to the students.

Every object is unique, even
if it shares the exact same
characteristics of another
object.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 9

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

9

Where Are We?

What is an object?
Four principles of OO
What is a class?
Polymorphism and
generalization
Organizing model elements

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 10

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

10

Basic Principles of Object Orientation

Ab
st

ra
ct

io
n

H
ie

ra
rc

hy

Object Orientation

En
ca

ps
ul

at
io

n

M
od

ul
ar

ity

There are four basic principles of object orientation:
• Abstraction
• Encapsulation
• Modularity
• Hierarchy

Introduce the four basic
principles of OO.

Be sure the students
understand objects before
you begin this next section.
You’ve introduced objects
first to help students better
apply each of these
principles.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 11

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

11

What Is Abstraction?

The essential characteristics
of an entity that distinguishes
it from all other kinds of
entities.
Defines a boundary relative to
the perspective of the viewer.
Is not a concrete
manifestation, denotes the
ideal essence of something.

Abstraction can be defined as:
Any model that includes the most important, essential, or
distinguishing aspects of something while suppressing or ignoring less
important, immaterial, or diversionary details. The result of removing
distinctions so as to emphasize commonalties. (Dictionary of Object
Technology, Firesmith, Eykholt, 1995.)

• Abstraction allows us to manage complexity by concentrating on the
essential characteristics of an entity that distinguishes it from all other
kind of entities.

• An abstraction is domain and perspective dependent. That is, what is
important in one context may not be in another.

• OO allows us to model our system using abstractions from the
problem domain (for example, classes and objects).

Explain the concept of
abstraction to the students.

A car (“a mobile, powered
vehicle for transporting
people from place to place”)
is an example of an
abstraction if it suppresses
less important details.
The abstract use of car is not
concrete. However, if you
describe the car as a 1995
Blue Ford Mustang, then it
becomes a concrete
manifestation and not an
abstraction.
Discuss the makings of a
good abstraction.
• Concise
• Single coherent concept
Abstraction removes the
unnecessary details to make
something easier to
understand.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 12

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

12

Example: Abstraction

Student Professor

Course Offering (9:00 a.m.,
Monday-Wednesday-Friday)

Course (e.g. Algebra)

The following are examples of abstraction:
• A student is a person enrolled in classes in the university.
• A professor is a person teaching classes at the university.
• A course is a class offered by the university.
• A course offering is a specific offering for a course including the days of

the week and the times.

Explain how these are
examples of abstraction.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 13

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

13

What Is Encapsulation?

Improves Resiliency

Hides implementation from clients.
Clients depend on interface.

Encapsulation can be defined as:
The physical localization of features (for example, properties,
behaviors) into a single blackbox abstraction that hides their
implementation (and associated design decisions) behind a public
interface. (Dictionary of Object Technology, Firesmith, Eykholt, 1995.)

• Encapsulation is often referred to as “information hiding,” making it
possible for the clients to operate without knowing how the
implementation implements the interface.

• Encapsulation eliminates direct dependencies on the implementation
(clients depend on/use the interface). Thus, it’s possible to change the
implementation without updating the clients as long as the interface is
unchanged.

• Clients are not affected by changes in implementation, thus reducing
the “ripple effect,” where a correction to one operation forces the
corresponding correction in a client operation and so on. As a result of
encapsulation, maintenance is easier and less expensive.

• Encapsulation offers two kinds of protection. It protects an object’s
internal state from being corrupted by its clients and client code from
changes in the object’s implementation.

• Define the concept of
encapsulation to the
students.

• Encapsulation is putting
the “data bits” and
operations that manipulate
them in the same place.

• Encapsulation does NOT
allow direct manipulation
of things that have been
encapsulated without
using the supplied
interface.

• An example is a car’s
accelerator. Generally
speaking, you put your
foot down and the car
goes faster. You don’t
worry about the cables,
electronics, engine, and
the rest.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 14

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

14

Encapsulation Illustrated

Professor Clark
needs to be able
to teach four
classes in the
next semester.

Sub
m

itF
in

al
Gra

de
s(

)

AcceptCourseOffering()

TakeSabbatical()

Professor Clark

SetM
axLoad()

Name: J Clark

Employee ID: 567138

HireDate: 07/25/1991

Status: Tenured

Discipline: Finance

MaxLoad:4
SetMaxLoad(4)

The key to encapsulation is an object’s message interface. The object
interface ensures that all communication with the object takes place
through a set of predefined operations. Data inside the object is only
accessible by the object’s operations. No other object can reach inside
the object and change its attribute values.
For example, Professor Clark needs to have her maximum course load
increased from three classes to four classes per semester. Another object
makes a request to Professor Clark to set the maximum course load to
four. The attribute, MaxLoad, is then changed by the SetMaxLoad()
operation.
Encapsulation is beneficial in this example because the requesting object
does not need to know how to change the maximum course load. In the
future, the number or variables that are used to define the maximum
course load may be increased, but it doesn’t affect the requesting object.
It depends on the operation interface for the Professor Clark object.

Point out that the requesting
object does not need to
know the structure of the
Professor object to request a
state change.
The object that owns the
attributes is the only one
allowed to change its own
attributes.
Note that encapsulation can
also be illustrated using
interfaces. However, the
scope of this course does not
include this discussion.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 15

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

15

What Is Modularity?

Breaks up something complex
into manageable pieces.
Helps people understand
complex systems.

Modularity can be defined as:
The logical and physical decomposition of things (for example,
responsibilities and software) into small, simple groupings (for
example, requirements and classes, respectively), which increase the
achievements of software-engineering goals. (Dictionary of Object
Technology, Firesmith, Eykholt, 1995.)

• Another way to manage complexity is to break something that is large
and complex into a set of smaller, more manageable pieces. These
pieces can then be independently developed as long as their
interactions are well understood.

• Packages (described later in the course) support the definition of
modular components.

Explain the concept of
modularity to the students.

Modularity supports a
separation of concerns.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 16

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

16

Example: Modularity

For example, break
complex systems into
smaller modules. Billing

System

Course Registration
System

Course
Catalog
System

Student
Management
System

Often, the system under development is too complex to understand. To
better understand this, imagine that the system is broken into smaller
blocks that are maintained independently. Breaking down a system in
this way is called modularity. It is critical for understanding a complex
system.
For example, the system under development is a Course Registration
System. The system itself is too large and abstract to understand the
details. Therefore, the development team broke this system into three
modular systems, each independent of the others.
• Billing System
• Course Catalog System
• Student Management System

A car is an example of
modularity. It is made of up
of a body, chassis, engine,
wheels, and so on.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 17

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

17

What Is Hierarchy?

Decreasing
abstraction

Increasing
abstraction

Asset

RealEstate

Savings

BankAccount

Checking Stock

Security

Bond

Elements at the same level of the hierarchy
should be at the same level of abstraction.

Hierarchy can be defined as:
Any ranking or ordering of abstractions into a tree-like structure.
Kinds: Aggregation hierarchy, class hierarchy, containment hierarchy,
inheritance hierarchy, partition hierarchy, specialization hierarchy,
type hierarchy. (Dictionary of Object Technology, Firesmith, Eykholt,
1995.)

• Hierarchy organizes in a particular order or rank (for example,
complexity, responsibility, and so on). This organization is dependent
on perspective. Using a hierarchy to describe differences or variations
of a particular concept provides for more descriptive and cohesive
abstractions and a better allocation of responsibility.

• In any one system, there may be multiple abstraction hierarchies (for
example, a financial application may have different types of customers
and accounts).

• Hierarchy is neither an organizational chart nor a functional
decomposition.

• Hierarchy is a taxonomic organization. The use of hierarchy makes it
easy to recognize similarities and differences. For example, botany
organizes plants into families. Chemistry organizes elements into a
periodic table.

Explain the concept of
hierarchy to the students.

Hierarchy is a taxonomic
organization. The use of
hierarchy makes it easy to
recognize similarities and
differences.
A taxonomic organization is
one that represents an
orderly classification. For
example, plants and animals
are classified taxonomically.
Note that this is not part of
the UML notation. UML
notation is discussed later.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 18

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

18

Representing Objects in the UML

An object is represented as a rectangle
with an underlined name.

J Clark :
Professor

: Professor

Named Object

Anonymous Object

Professor J Clark

An object is represented with a rectangle and the name of the class.
The name of the object is always underlined. To name an object, place
its name before the colon.
An object can be either named or anonymous. To remain anonymous,
do not include a name.

Demonstrate how an object
is modeled in UML.

Many of your students may
now wonder, “Hey, what is a
class?” Classes are defined
on the next slide.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 19

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

19

Where Are We?

What is an object?
Four principles of OO
What is a class?
Polymorphism and
generalization
Organizing model elements

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 20

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

20

What Is a Class?

A class is a description of a set of objects
that share the same attributes, operations,
relationships, and semantics.

An object is an instance of a class.

A class is an abstraction in that it
Emphasizes relevant characteristics.
Suppresses other characteristics.

A Class can be defined as:
A description of a set of objects that share the same attributes,
operations, relationships, and semantics. (The Unified Modeling
Language User Guide, Booch, 1999.)

• There are many objects identified for any domain.
• Recognizing the commonalties among the objects and defining classes

helps us deal with the potential complexity.
• The OO principle abstraction helps us deal with complexity.

Explain what a class is to the
students. Remember, many
of your students are not
familiar with this term.

The course introduces
objects before classes
because objects are the
things that actually do most
of the work. Classes are the
templates for the objects.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 21

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

21

A Sample Class

Class
Course

Properties
Name

Location
Days offered
Credit hours

Start time
End time

Behavior
Add a student

Delete a student
Get course roster

Determine if it is full

The class “Course” is an abstraction of the real-world representation of a
college course. The class has properties: name, location, days offered,
credit hours, start time, and end time. It also has behavior, like adding
and deleting a student to the class, retrieving a current course roster, and
determining if the course is full.
The class does not represent a specific course like Algebra 101 or
Theatre Arts 102. Rather, it is a description of the types of properties and
behavior a typical course may have.

Point out the differences
between a class and an
object.

Emphasize that a class is not
an object.
These properties are not
“filled in” to represent a
specific course. Rather, it
serves as a template.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 22

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

22

Representing Classes in the UML

A class is represented using a rectangle
with three compartments:

The class name

The structure (attributes)

The behavior (operations)

Professor
- name
- employeeID : UniqueId
- hireDate
- status
- discipline
- maxLoad

+ submitFinalGrade()
+ acceptCourseOffering()
+ setMaxLoad()
+ takeSabbatical()
+ teachClass()

The UML notation for a class permits you to see an abstraction apart
from any specific programming language, which lets you emphasize the
most important parts about an abstraction – its name, attributes, and
operations.
Graphically, a class is represented by a rectangle.
The UML represents public visibility with a plus (+) symbol and private
visibility with a minus (-) symbol.

Demonstrate how a class is
modeled in UML.

Tell them that the UML
represents public visibility
with a plus (+) symbol and
private visibility with a minus
(-) symbol. Do not discuss
protected visibility.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 23

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

23

The Relationship between Classes and Objects

A class is an abstract definition of an object.
It defines the structure and behavior of each
object in the class.
It serves as a template for creating objects.

Classes are not collections of objects.

Professor

Professor Meijer

Professor Torpie

Professor Allen

A class is a description of a set of objects that share the same
responsibilities, relationships, operations, attributes, and semantics.
A class defines an object. A class defines a template for the structure and
behavior of all its objects. The objects created from a class are also called
the instances of the class.
The class is the static description and the object is the run-time instance
of that class.
Modeling is from real-world objects. Software objects are based on the
real-world objects, but exist only in the context of the system.
Use real-world objects, abstract out what you don't care about. Then,
take these abstractions and go through the process of classification based
on what you do care about. Classes in the model are the result of this
classification process.
These classes are then used as templates within an executing software
system to create software objects. These software objects represent the
real-world objects you originally started with.
Some classes/objects may be defined that don't represent real-world
objects. They are there to support the design and are "software only.”

Show how classes and
objects are related.

Classic example: A class is to
an object what a cookie
cutter is to a cookie.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 24

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

24

What Is an Attribute?

An attribute is a named property of a class
that describes the range of values that
instances of the property may hold.

A class may have any number of attributes or no
attributes at all.

Attributes

Student
- name
- address
- studentID
- dateOfBirth

An Attribute can be defined as:
A named property of a class that describes the range of values that
instances of the property may hold. (The Unified Modeling Language
User Guide, Booch, 1999.)

• A class may have any number of attributes or no attributes at all. At
any time, an object of a class has specific values for every one of its
class’s attributes.

• An attribute defined by a class represents a named property of the
class or its objects. An attribute defines the type of its instances.

• An attribute has a type, which tells us what kind of attribute it is.
Typical attributes are integer, Boolean, real, and enumeration. These
are called primitive types. An attribute does not need to be a primitive
type though.

Define the term attribute for
the students.

Remember, there are still
operations in this class, but
choose to suppress them.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 25

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

25

Attributes in Classes and Objects

Class

Objects

Student
- name
- address
- studentID
- dateOfBirth

:Student

- name = “M. Modano”
- address = “123 Main St.”
- studentID = 9
- dateOfBirth = “03/10/1967”

:Student

- name = “D. Hatcher”
- address = “456 Oak Ln.”
- studentID = 2
- dateOfBirth = “12/11/1969”

At the class level, the Student class attributes indicate that the Students
have names, addresses, studentIDs, and a date of birth.
At the object level, the attributes indicate the values for the name,
address, studentID, and date of birth.
Only the class instance (objects) should be able to change the value of
the attributes.
The state of an object is defined by the value of its attributes and the
existence of links to other objects.

Show that an attribute is
defined on a class and
instantiated on an object.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 26

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

26

What Is an Operation?

A service that can be requested from an
object to effect behavior. An operation has
a signature, which may restrict the actual
parameters that are possible.
A class may have any number of operations
or none at all.

Operations

Student

+ get tuition()
+ add schedule()
+ get schedule()
+ delete schedule()
+ has prerequisites()

An Operation can be defined as:
A service that can be requested from an object to effect behavior. An
operation has a signature, which may restrict the actual parameters
that are possible.

• The operations in a class describe what the class can do.
• An operation can either be a command or a question. A question

should never change the state of the object. Only a command can
change the state of the object.

• An operation is described with a return-type, name, and zero or more
parameters. Together, the return-type, name, and parameters are
called the signature of the operation.

• The outcome of the operation depends on the current state of the
object. Often, but not always, invoking an operation on an object
changes the object’s data or state.

Define the term operation for
the students.

Point out that these should
be called operations. Many
people use the term methods
instead of operations.
In the UML, methods and
operations are NOT
synonymous and have
distinct definitions.
An operation is simply the
advertisement of a service
that is offered by a class. A
method is the actual code
that realizes that operation.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 27

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

27

Where Are We?

What is an object?
Four principles of OO
What is a class?
Polymorphism and
generalization
Organizing model elements

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 28

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

28

What Is Polymorphism?

The ability to hide many different
implementations behind a single interface.

Manufacturer A
Manufacturer B Manufacturer C

OO Principle:
Encapsulation

Remote Control

The Greek term polymorphos means “having many forms.” Every
implementation of the interface must include at least the interface. In
some cases, the implementation can include more than the interface.
For example, a remote control can be used to monitor/support any type
of television that relates to a specific interface (the specific interface the
remote was designed to be used with).

Define the term
polymorphism for the
students.

In a nutshell, polymorphism
means that different things
respond in different ways to
the same command. For
example, if you told your
class to relax each one of the
students would do
something different, but they
would still relax.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 29

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

29

Example: Polymorphism

Stock Bond Mutual Fund

getCurrentValue()

financialInstrument.getCurrentValue()

getCurrentValue()

getCurrentValue()

In this example, a requesting object would like to know the current
value of a financial instrument. However, the current value for each
financial instrument is calculated in a different fashion. The stock needs
to determine the current asking price in the financial market that it is
listed under. The bond needs to determine the maturity timelines and
interest rates. A mutual fund needs to check the day’s closing price from
the fund management company.
In a non object-oriented development environment, you would write
code that may look something like this:

IF financialInstrument = Stock THEN

calcStockValue()

ELSEIF financialInstrument = Bond THEN

calcBondValue()

ELSEIF financialInstrument = MutualFund THEN

calcMutualFundValue()

With object technology, each financial instrument can be represented by
a class, and each class would know how to calculate its own value. The
requesting object simply needs to ask the specific object (for example,
Stock) to get its current value. The requesting object does not need to
keep track of three different operation signatures. It only needs to know
one. Polymorphism allows the same message to be handled in different
ways depending on the object that receives it.

This diagram shows how
three different objects can
have the same operation:
getCurrentValue().
However, the way each
interprets that operation is
unique because the current
value for each instrument is
dependent on different
variables.
Point out how the requesting
object does not need to
know anything about the
calculations or the
differences. All that it cares
about is that the current
value is calculated.
One of the huge benefits of
polymorphism is that the
calling object does not need
to know what type of object
it is calling. In this example,
it doesn’t care what type of
asset it gets the value from,
just that it gets the value.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 30

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

30

What Is Generalization?

A relationship among classes where one
class shares the structure and/or behavior
of one or more classes.
Defines a hierarchy of abstractions in which
a subclass inherits from one or more
superclasses.

Single inheritance.
Multiple inheritance.

Is an “is a kind of” relationship.

Generalization can be defined as:
A specialization/generalization relationship, in which objects of the
specialized element (the child) are substitutable for objects of the
generalized element (the parent). (The Unified Modeling Language User
Guide, Booch, 1999.)

• The subclass may be used where the superclass is used, but not vice
versa.

• The child inherits from the parent.
• Generalization is transitive. You can always test your generalization by

applying the “is a kind of” rule. You should always be able to say that
your generalized class “is a kind of” the parent class.

• The terms “generalization” and “inheritance” are generally
interchangeable, but if you need to distinguish, generalization is the
name of the relationship. Inheritance is the mechanism that the
generalization relationship represents/models.

Inheritance can be defined as:
The mechanism by which more specific elements incorporate the
structure and behavior of more general elements. (The Unified
Modeling Language User Guide, Booch, 1999.)

• Single inheritance: The subclass inherits from only one superclass (has
only one parent).

• Multiple inheritance: The subclass inherits from more than one
superclass (has multiple parents).

Introduce the concept of
generalization. Remember,
many of your students are
not familiar with this term.

Generalization relationships
are also permitted between
packages. However,
packages do not have
semantics. Therefore,
generalization between
packages is not common.
According to Grady Booch:
The terms “inheritance” and
“generalization” are,
practically speaking,
interchangeable. The UML
standard calls a relationship
“generalization” so as not to
confuse people with
language-specific meanings
of inheritance.
To confuse matters more,
some call this an “is-a” or a
“kind of” relationship
(especially those into
conceptual modeling in the
cognitive sciences).
So, for most users, it’s fair to
use either term. For power
users, people who care
about things like the UML
metamodel and specifying
formal semantics of the
same, the relationship is
called “generalization” and
applying such a relationship
between two classes, for
example, results in the
subclass inheriting the
structure and operations of
the superclass (inheritance is
the mechanism).

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 31

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

31

Example: Single Inheritance

One class inherits from another.

CheckingSavings

Superclass
(parent)

Subclasses
(children)

Generalization
Relationship

Ancestor

Account
- balance
- name
- number

+ withdraw()
+ createStatement()

Descendents

The generalization is drawn from the subclass class to the
superclass/parent class.
The terms “ancestor” and “descendent” may be used instead of
“superclass” and “subclass.”

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 32

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

32

Example: Multiple Inheritance

A class can inherit from several other
classes.

Use multiple inheritance only when needed and
always with caution!

FlyingThing Animal

HorseWolfBirdHelicopterAirplane

Multiple Inheritance

Multiple inheritance means that a class can inherit several other classes.
For example, Bird inherits from both FlyingThing and Animal.
Multiple inheritance is conceptually straight forward and may be needed
to model the real world accurately. However, there are potential
implementation problems when you use multiple inheritance, as not all
implementation languages support it. Thus, be judicious with your use of
multiple inheritance. Use it only where it accurately describes the
concept and reduces the complexity of your model. Be aware, however,
that this representation probably needs to be adjusted in design and
implementation.
Generally, a class inherits from only one class.

Provide an example of
generalization.

Some languages do not
support multiple inheritance.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 33

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

33

What Is Inherited?

Inheritance leverages the similarities among classes.

A subclass inherits its parent’s attributes,
operations, and relationships.
A subclass may:

Add additional attributes, operations,
relationships.
Redefine inherited operations. (Use caution!)

Common attributes, operations, and/or
relationships are shown at the highest
applicable level in the hierarchy.

Generalization is more than finding common attributes, operations, and
relationships. It is more about the responsibilities and essence of the
classes.

Explain how generalization
works.

Emphasize that when a
change is made to a super
class, all descendent classes
inherit the change.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 34

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

34

Where Are We?

What is an object?
Four principles of OO
What is a class?
Polymorphism and
generalization
Organizing model elements

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 35

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

35

A general purpose mechanism for
organizing elements into groups.
A model element that can contain other
model elements.
A package can be used:

To organize the model under development.
As a unit of configuration management.

What Is a Package?

University
Artifacts

A Package can be defined as:
A general purpose mechanism for organizing elements into groups.
(The Unified Modeling Language User Guide, Booch, 1999.)

• Models can contain hundreds and even thousands of model elements.
The sheer number of these elements can quickly become
overwhelming. Therefore, it’s critical to group model elements into
logical collections to maintain and easily read the model (application
of modularity and hierarchy).

• Packages are a general grouping mechanism for grouping elements
into semantically related groups. A package contains classes that are
needed by a number of different packages, but are treated as a
“behavioral unit.”

• A package is simply a grouping mechanism. No semantics are defined
for its instances. Thus, packages do not necessarily have a
representation in implementation, except maybe to represent a
directory.

• In the UML, a package is represented as a tabbed folder.
• Package diagrams depict dependencies between packages and are

now formalized in UML 2.

Introduce the term package
to the students.

A package is a “virtual bag.”
You can place just about
anything inside of it that you
would like.
Packages allow us to
organize our models into bits
and pieces that make sense.
They support the concept of
modularity.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 36

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

36

A Package Can Contain Classes

The package, University Artifacts, contains
one package and five classes.

University
Artifacts

CourseOffering

Schedule

Professor

Course

Student

Student
Artifacts

A package owns its elements and can even own other packages.
Owning is a composite relationship, meaning that the element is
declared in the package. If the package is destroyed, the element is
destroyed.
Every element is uniquely owned by exactly one package. For example,
the package UniversityArtifacts owns the following classes: Course,
Student, Schedule, Professor, and Course Offering. If the
UniversityArtifacts package is destroyed then all of these classes are also
destroyed. If you move the package to a different location in your model
(architecturally speaking), then the classes move, too.
A package is an important mechanism for dealing with scale. Without
packages, you would end up with large, flat models where all elements
would be uniquely named.
Packages help you control the elements that compose your system as
they evolve at different rates over time.

Explain how packages and
classes are related to one
another.

Make sure students
understand that packages are
a higher level of abstraction
than a class.
Everything in your model
must reside in a package.
Therefore, it is assumed that,
at the top level of your
model, there is one owning
package.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 37

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

37

Diagram Depiction

<heading>

<contents area>

Each diagram has a frame, a heading
compartment in the upper left corner, and a
contents area.

If the frame provides no additional value, it may
be omitted and the border of the diagram area
provided by the tool will be the implied frame.

A heading compartment is a string contained in a name tag (a rectangle
with cutoff corner) in the upper leftmost corner with the following
syntax:
[<kind>]<name>[<parameters>]

This <kind> can be:
• activity - activity diagram
• package - class diagram, package diagram
• communication - communication diagram
• component - component diagram
• class - composite structure diagram
• deployment - deployment diagram
• intover - interaction overview diagram
• object - object diagram
• state machine - state machine diagram
• sd - sequence diagram
• timing -timing diagram
• use case - use case diagram

The UML 2 specification
does not have consistent
usage of <kind>, for
example, the interactions
chapter uses sd for all kinds
of interaction diagrams
(including timing), which is
clearly erroneous.

The frame is primarily used
in cases where the
diagrammed element has
graphical border elements,
like ports for classes and
components (in connection
with composite structures),
entry/exit points on state
machines, and
gates/fragments on sequence
diagrams. The majority of
these are not discussed in
this course but will be in
OOAD.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 38

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

38

Review

What is an object?
What are the four principles of object
orientation? Describe each.
What is a class? How are classes
and objects related?
What is an attribute? An operation?
Define polymorphism. Provide an
example of polymorphism.
What is generalization?
Why use packages?

A. An object is an entity with a
well-defined boundary and
identity that encapsulates state
and behavior.

B. There are four basic
principles of object orientation:
abstraction, encapsulation,
modularity and hierarchy.
C. A class is a description of a
set of objects that share the
same attributes, operations,
relationships, and semantics.
The class is the static
description and the object is
the run-time instance of that
class.
D. An attribute is a named
property of a class that
describes the range of values
that instances of the property
may hold. An operation is the
implementation of a service
that can be requested from any
object of the class to affect
behavior.
E. Polymorphism is the ability
to hide many different
implementations behind a
single interface. For example, a
remote control can be used to
monitor/support any type of
television that relates to a
specific interface (whichever
interface the remote was
designed to be used with).
F. Generalization is a
relationship among classes
where one class shares the
structure and/or behavior of
one or more classes.
G. Without packages, you
would end up with large, flat
models where all elements
would be uniquely named.
Packages help you control the
elements that compose your
system as they evolve at
different rates over time.

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 39

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

39

Exercise: Principles of Object Orientation

The “OO Quiz Show” Rules
Everyone in the class is assigned a number.
The instructor displays a question.
The instructor calls out a number.
If the student answers the question correctly,
the class continues to the next question.
If the student does not answer the question
correctly, the class goes back to the beginning.
The game is over when all questions have been
answered correctly.

• Reinforce the basic
concepts of OO for the
student.

• The purpose of this
exercise is to ensure that
the students understand all
key concepts that have
been discussed in the first
three chapters.

• After a student answers a
question correctly, take
their number out of the
hat. This ensures that
everyone participates.

• Bring candy, coffee mugs,
or some other “prize” to
hand out.

• Stay with the game until all
the questions are correctly
answered.

• The key to education is
repetition, repetition,
repetition. By virtue of the
game’s design, some
questions in the game may
come up three to four
times. If a question on
polymorphism comes up
that many times, you can
be sure that your students
will know polymorphism
by the end of the game!

Essentials of Visual Modeling w/ UML 2.0 - Instructor Notes

3 - 40

Instructor Notes:

© Copyright IBM Corp. 2004

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 3 - Concepts of Object Orientation

40

