Jean-Pierre Schoch
26 September 2006

jp.schoch@fr.ibm.com
IBM Software Group

Installing the UML-To-XML Transformation Plug-in
Overview
This plug-in is a basic example of a transformation plug-in for RSA (IBM Rational Software Architect) or RSM (IBM Rational Software Modeler) 6.x. It takes a UML Model as an input and will create an XML file containing the stereotypes (and their attributes) of all stereotyped UML classes in the input model. See Using the UMLToXML plug-in below for an example.
The generation of the XML file is based on JET (Java Emitter Templates). Because the JET template is compiled “on-line”, you can modify the template and re-apply the transformation to adapt the plug-in to your specific need. (In fact, using the UML2 API, you can access any properties of a UML class and create a completely different output.)
A document on Using JET with RSA is also included.

You can also modify the plug-in to add additional JET templates to generate other types of files (any type really as long as it is text-based), modify the location of the generated file(s), access elements than UML classes, etc.

For a more complete example of a transformation plug-in demonstrating the MDD (Model-Driven Development) capabilities with RSA, refer to the UX-To-Web Transformation Plug-in from the same author. This plug-in makes full use of JET and UML2 profiles, and will generate an executable Web application from a UML model.
Contents of UMLToXML 1.0.0 Full.zip
1. Installing the UML-To-XML Transformation Plug-in.doc: this file.
2. Using JET with RSA.doc
3. UMLToXML 1.0.0 Plugin.zip: allows you to install UMLToXML as a standard Eclipse plug-in. The source code is included.
4. UMLToXML 1.0.0 ProjectInterchange.zip: allows you to directly import the project (also with the source code) in your workspace.
Note: It is recommended to install the Plug-in version first (so that you can use the transformation in a standard workspace). You can later import the ProjectInterchange version, version that will allow you to browse and possibly modify the code. An alternative to using the ProjectInterchange version is to directly import the project from the installed plug-in using the Plug-ins view in the Plug-in Development perspective of RSA/RSM. The ProjectInterchange zip is only provided as a convenience. In both cases, you must use the Run-Time Workbench to execute the transformation.
Installing the UMLToXML plug-in
1) Exit RSA/RSM.
2) Extract the contents of UMLToXML 1.0.0 Plugin.zip in C:\Program Files\IBM\Rational\SDP\6.0\rsa\eclipse (the exact path may be different based on your installation of RSA/RSM).

[image: image1.png]
3) Restart RSA/RSM. You should see the transformation by selecting Modeling > Transform > Configure Transformations…:
[image: image2.png]
Using the UMLToXML plug-in
Introduction

Version 1.0.0 of the transformation can be applied only to a model. What the transformation does is straightforward: it takes all UML classes and if the class is stereotyped, it will create an XML file in the GeneratedXMLFiles folder of the target project (any type). The XML file is created with the same hierarchy as the UML class (i.e. the stereotyped UML Class "MyModel::com.ibm.jps::test::MyClass" will result in the XML file "GeneratedXMLFiles.com.ibm.jps.test.MyClass.xml").
In terms of contents, the XML file will show the name of the class, the name of the stereotypes (profile::stereotype) and the attributes. For the attributes, I have included the name, type and value (the latter only for String - you are free to complete the code :-). (The tags I have used are arbitrary and the XML editor will obviously report errors but you can change the template to any extent you want.) Here is an example:

[image: image3.wmf]
<?xml version="1.0" encoding="ISO-8859-1"?>

<stereotypedClass name="TestClass">

<stereotype name="UXModeling2::screen">

<attribute name="label" type="String" value="A label" />

<attribute name="path" type="String" value="" />

<attribute name="heading" type="String" value="My title" />

<attribute name="headingLevel" type="String" value="2" />

</stereotype>

<stereotype name="Basic::Metaclass">

</stereotype>

<stereotype name="Intermediate::Specification">

</stereotype>

</stereotypedClass>

If you want to change the output, you only need to modify the xmlbuiler.javajet template (in C:\Program Files\IBM\Rational\SDP\6.0\rsa\eclipse\com.ibm.jps.umltoxml\templates) and re-run the transformation. Because the template accepts a UML class as an input, you can actually use the same template to output any class data.

If you want to change stuff like the path, name, extension of the output file, or apply the transformation to other UML elements, you will need to modify the transformation itself.

As indicated in the write-up on Using JET with RSA, users should really attempt to keep the control logic in the JET templates as simple as possible. I hesitated a long time between putting the logic to extract the stereotypes and their attributes in the transformation rules, rather than in the JET template. The difficulty is to choose between clean separation of roles and flexibility (as the templates do not require re-compiling). I chose the latter in this sample transformation because it makes it easier to grasp the power of JET used with RSA.
Generating your first XML file

1. Start RSA or RSM.

2. Switch to the Modeling perspective.

3. Create a model and add some UML classes. Stereotype the classes. (Note that the default stereotypes available in RSA/RSM do not have attributes. If you want to test the transformation with stereotype attributes, you will need to add other profiles. RSA users can for instance add the profile EJBTransformProfile and the <<service>> stereotype as shown below. RSM users will need to create or import other profiles.)
[image: image4.png]
4. In the Modeling perspective, configure the transformation (Modeling > Transform > Configure Transformations ...):

1. Click New to instantiate the transformation.

2. Choose an appropriate name (it is a good idea to name it after the target project).

3. Select the target project. You will notice that you still get an invalid source error. This is OK for now.

4. Click Apply, then Close.

[image: image5.png]
5. Run the transformation: Right-click the model in the Model Explorer and run the transformation (as illustrated below). Note: A .JETEmitters project is automatically created (by default it is filtered out). If you have used JET templates before, you might already have such a project. If you are experiencing any difficulties generating the project files, you might want to delete .JETEmitters and restart the transformation.
[image: image6.png]
6. Examine the generated file, for instance :
[image: image7.png]
<?xml version="1.0" encoding="ISO-8859-1"?>
<stereotypedClass name="TestClass">

<stereotype name="EJBTransformProfile::Service">

<attribute name="hasState" type="Boolean" value="" />

</stereotype>
</stereotypedClass>
7. Modify the template: open the template xmlbuilder.javajet in in C:\Program Files\IBM\Rational\SDP\6.0\rsa\eclipse\com.ibm.jps.umltoxml\templates (or equivalent).
[image: image8.png]

In the example below, we added the fully qualified class name to the template (text highlighted):

<%@ jet skeleton="skeletons/xmlbuilder.skel"

class="XmlBuilder"

startTag="<$"

endTag="$>"
%>
<?xml version="1.0" encoding="ISO-8859-1"?>
<$

Class cl = (Class) argument;

if (cl.getAppliedStereotypes() != null) {$>
<stereotypedClass name="<$= cl.getName()$>"
fullname="<$= cl.getQualifiedName()$>"><$
 for (Iterator j = cl.getAppliedStereotypes().iterator();
j.hasNext();) {
 Stereotype st = (Stereotype) j.next();$>
...

Re-run the transformation and inspect the results:

<?xml version="1.0" encoding="ISO-8859-1"?>
<stereotypedClass name="TestClass"
fullname="MyModel::com.ibm.jps::umltoxml::TestClass">

<stereotype name="EJBTransformProfile::Service">

<attribute name="hasState" type="Boolean" value="" />

</stereotype>
</stereotypedClass>

PAGE
6
Installing and using the UML-To-XML Transformation Plug-in

