IBM Rational University

software

§= @ é .'j .i»':;. V v

Pattern Implementation Workshop with

IBM Rational Software Architect

RD801/DEV498 April 2007
Student Workbook

Part No. 800-027313-000

IBM Corporation

Rational University

Pattern Implementation Workshop with IBM Rational Software Architect
Student Workbook

April 2007
Copyright © International Business Machines Corporation, 2007. All rights reserved.

This document may not be reproduced in whole or in part without the prior written permission
of IBM.

The contents of this manual and the associated software are the property of IBM and/or its
licensors, and are protected by United States copyright laws, patent laws, and various
international treaties. For additional copies of this manual or software, please contact Rational
Software.

IBM and the IBM logo are trademarks or registered trademarks of IBM Corporation, in the
United States, other countries or both.

Rational, the Rational logo, ClearCase, ClearCase LT, ClearCase MultiSite, Unified Change
Management, Rational SoDA, and Rational XDE are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries or both.

WebSphere, the WebSphere logo, and Studio Application Developer, are trademarks or
registered trademarks of International Business Machines Corporation in the United States, other
countries or both.

Microsoft Windows 2000, Microsoft Word, and Internet Explorer, among others, are trademarks
or registered trademarks of Microsoft Corporation.

Java and all Java-based marks, among others, are trademarks or registered trademarks of Sun
Microsystems in the United States, other countries or both.

UNIX is a registered trademark of The Open Group in the United States, other countries or
both.

Other company, product and service names may be trademarks or service marks of others.
Printed in the United States of America.

This manual prepared by:
IBM Rational Software
555 Bailey Ave.

Santa Teresa Lab

San Jose CA 95141-1003
USA

Lab 1: Introducing JET

Objectives
After completing this lab, you will be able to:
» Createanew EMFT JET project
» Configurethe plug-in
» RunaJET Transformation
Scenario
In thislab exercise you will create anew JET Transform and learn about the transformation’s component parts.

You will need Rational Software Architect V7 or later. These instructions are targeted to Rational Software
Architect V7.

© Copyright IBM Corp. 2007 1-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Task 1: Create a New EMFT JET Transformation Project

1. OntheFilemenu, click New Project > EMFT JET Transformation Project. Click Next.
2. Entermy.first.transform asthe Project name and click Finish.

3. Inthe Package Explorer view in the Java perspective, expand the newly created project named
my.first.transform.

% Package Explorer i Hierarchy | — O
- <~1='=f> =

= ‘,%/J- my. first. transform
=I[== META-INF
) MANIFEST.MF
== templates
El dump.jet
El main.jet
o build, properties
¢ plugin. xml
%| sample.xml

Figurel- 1: EMFT JET Transformation Project, my.first.transform

1-2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 1 — Create a Simple JET Transform

Task 2: Configure the Plug-in

1.

Open the editor for the plugin.xml file and click the editor’s plugin.xml tab.

-E: my. first. transform &3

I.-':x-n-' weTr2inon="mT""1 M e =M '_T_;II_'}

< ?eclip=e wversion="3.0"7>
<plugin>
<extension
id:rl Ll
1'.LE'.1TLE=" r
point="org.eclip=se.jet.transform">
<transform
startTemplate="templates,/main. jerc™
templateloaderClass="org.eclipse.jet.compiled. jg

<description»</description>
<tagLibraries>

<importLibrary id="org.eclipse.jet.controlTag=s" u

o

<importLibrary id="org.eclipse.jet.javaTags" useB

H
[}

<importLibrary id="org.eclipse.jet.formatTag=s" us

H
[}

<importLibrary id="org.eclips=e.jet.workspaceTags"

H
[}

</taglibraries>
< /transform>
< /extension>
</plugin>

Figurel - 2: EMFT JET Transformation Project, my.first.transform

Although each JET transform is implemented as an Eclipse plug-in, you really don’t have to know about Eclipse

plug-insin order to build a JET transform.

2. Click the plugin.xml editor'sMANIFEST.MF tab to view the transform’ s metadata.

-@ my. first. transform &2

hanifest—versiun: 1.0

Bundle-ManifestVersion: 2

Bundle-NHame: my.first.transform

Bondle-SymbolicName: my.first.transform: singlston:=true
Bundle-Ver=sion: 1.0.0

Bundle-Localization: plugin

Bundle-Vendor:

Require-Bundle: org.eclipse.jet

Bondle-Clas=sPath: .,bin/

Figure 1 - 3: Meta-information for my.first.transform

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

The only piece of metadata that you may care about is the symbolic name which is the transform’sid. This string
valueis used in severa advanced transform functions.

3. Opentheeditor for main. jet to seethe high-level template (named inthe plugin.xml fileinthe
startTemplate attribute).

Most of the template test is static, but there are several interesting features:

a taglib reference

L0k my. first. transform =i mainjet &3

“%@taglib prefix="ws" id="org.eclipse.jet.workspaceTags"

<E——

TODO: traverse input model, performing calculation=s and =
L

annotation=s via c:set tag

comment

traverse annotated model, performing text generatio
g2 wa:file, wa:folder and ws:project

<%—— For debug purposes, dump the annotated input model 1
the root of the project containing the original input

Hote that model formatting may
the ca=se of non-XML input model
——%>

ws:file tag

y

(<ws:file template="templates/dump.jet" path="{50rg.eci€§9

Figure 1 - 4: Key Information in the Plug-in Manifest
Thetaglib reference defines atag library containing tags that may be used in thistemplate.
The ws:file tag is one such tag.

Therest of the template is static text, mostly containing JET template commentsthat do not appear in the
generated text.

The dump.jet template also contains a mix of tags and static text.

1-4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 1 — Create a Simple JET Transform

Task 3: Filter the Project Explorer View

1. Click theFiltersicon (circled in the image below) and the Filter s menu item to change the Package Explorer

filters.

Erarchy LT T £IF my. first. fransform El main.jet
— t_e <?xml wversion="1.0" encodify
- Top Level Elements P.] ey
Select Working Set. ..

57 1 Window Working Set
—*| .
Filters...

Package Presentation »

“& Link With Editor

Figure 1 - 5: Opening the Filters Dialog for the Project Explorer
2. Clear the box next to Java elementsfrom JET Transformation projects and click OK.

Select the elements to exdude from the view:

.* resources |
[] Binary plug4n and feature projects Tl
[] Clozed projects

[] Empty packages

Empty parent packages

External Crystal Reports Documents

[] Fields

Import dedarations

Lt Trmer class files

'u'EI elements from JET Transformation projects
Bl
[|

ava files W

Figure 1 - 6: Turning off Java Elements filtering

3. The Package Explorer will now display several additional project items. Fully expand the jet2java package.

© Copyright IBM Corp. 2007

1-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

+

{% Package Explorer &7

{ o |

Hierarchy

&

= f_:d my.first. transform
-5 5 jetZava

= :-E arg.edipse.jet.compiled
+ m _jet_dump.java
+ m _jet_main.java
+ m _jet_transformation.java
= IRE System Library [jdk]
Bl Plug-n Dependendes
= META-INF
[MAMIFEST.MF
= templates
E dump.jet
Bl main.jet
b build. properties
I plugin.xm
X| sample.xml

8
o

Figure 1 - 7: The Package Explorer View

The generated Java classes (created when the transform’ s templates are edited) are normally hidden (because you
don't need to interact with them). Note that there is a Java class for each of the two templates, aswell asa
_jet_transformation.java class that acts as an index into the other classes.

4. UsetheFilters menu item to hide these Java elements again.

Task 4:

Run the Transformation

1. Openthe sample.xml fileand, using the editor’s source tab, add some arbitrary, but valid, XML.

¥ sample.xml 3
{:::h}
<view id="37":-
<title>ld view of number 37</
</ Viewr
cdata />
</ rootl

title>

Figure 1 - 8: The contents of the sample.xml file

1-6

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 1 — Create a Simple JET Transform

2. Transform the model in the XML file (the XML content) with the transformation. Click the Run icon and then
click the Run menu item.

File Edit Source Refactor Source Mawvigate Search Project Data

-0 - Q- Q- B G
Run As r

i] Run...

Organize Favorites. ..
= -

= "_?‘J my. first. transform]
<view j

' par-vas TEIC

+ —

% Package Explorer 7 plexml &3

Figure 1 - 9: Running the Transformation

TIP: You can alsoright-click the sample . xm1 file and select Run As > Input for JET Transformation.

3. Thelist of available configurations will vary based on the specific IDE that you're running. Select the Jet
Transformation configuration and click the New button (circled in the image below).

Create, manage, and run configurations

- H. .

I - Configure launch settings fro
e filter text * - Press the 'New' button
[Apache Tomcat = - Press the 'Duplicate’ bu
4 Edlipse Application
P Equinox O5Gi Framework ¥ - Press the Delete’ butto
5 Generic Server -y e
E Generic Server(External La roEEE T
E Java Applet - Edit or view an existing
4] Java Application
-Igf. Java Bean .
% JET Transformation Configure launch perspective
Ju JUnit

JU JUrit Plug-n Test
[=#7] SWT Application
E: Test

Figure 1 - 10: Running the Transformation

If thefileto be transformed is in the project containing the transform, then the new transformation instance

4.
should be initialized correctly. Otherwise you would have to set the various properties manually.

© Copyright IBM Corp. 2007 1-7
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Mame: | my.first. transform (sample.xml)

e Main .] Common
Transformation Input

my. first. transform/sample. xmil

Browse...

Transformation

ID: my. first, transform v

Mame: my. first. transform

Description:

Display Messages

Severity (at or above): |information [

Figure 1 - 11: Setting Transformation Properties

5. Click the Run button and you should see anew file, dump . xm1, created by the transformation. Open that file
and you should see the original XML. By default, new transforms simply write out the input model in afile
caled dump . xml.

[Package Explorer &3 Hierarchy | — O || | dump.seml 3

- % = k?xr:.'_ version="1.0" encoding=
= ‘_:"I my. first. transform <rootl
=I-[= META-INF
(5 MANIFEST.MF
—I-[= templates
El dump.jet
B main.jet
|mb build. properties
X dump.xml

<1t plugin, sml
X| sample.xml

cview id="3T7">

<title>h view of numb

[
I'l
I

L:.

Figure 1 - 12: Setting Transformation Properties

1-8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 1 — Create a Simple JET Transform

6. Deletethe dump.xml file and run the transform again by simply clicking the Run icon.

B0 - Q- Q- EH G

S " 1my.first. transform (sample. xml)

Run As r
sform | €2 Run..
IF Organize Favarites...

TEEST ME

Figure 1 - 13: Running the Transformation

© Copyright IBM Corp. 2007 1-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

1-10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 2: Using XPath

Objectives
After completing this lab, you will be able to:

» Usebasic JET tags and XPath to access a model
Given

» Theproject interchange fileusingxpPath. zip
Scenario

In thislab exercise, you will use basic JET tags and X Path to access a sample model in a number of common ways.

Task 1: Set up the Lab

1. Begin by using the Import from Project Interchange wizard to import the xpath Exerciser projectinfile
UsingXPath.zip.

Select an import source:
type filter text

= General

= Cvs

= EIB

= JZEE

[=* Plug-n Development
== Portal

= Profiling and Logging
= SIF

= Team

= Test

= web

= Web services

= Other

g, FTP /
Z, HTTP

,@, Project Interchange

e O R O O N O N = I [= O = O

Figure2 - 1: EMFT JET Transformation Project, my.first.transform

The transformation project contains severa files. Y ou will need to modify fileSxpath001.jet —xpath015.jet.
Each .jet template has instructions describing a small number of JET tags to be written. Each template also shows
the expected output from those tags.

© Copyright IBM Corp. 2007 2-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

2. Thefile sample.xml containsthe input model to be used for this exercise. To test your work, apply the XPath
Exerciser transformation to the sample.xmi file.

2-2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 3: Authoring a JET Transform Manually

Objectives
After completing this lab, you will be ableto:
» Revisean existing JET Transformation
Given
» Theproject interchange file AuthoringTransformsManually.zip
Scenario

In thislab you will author atransform that uses the basic JET tags, and which generates both Java and non-Java
artifacts.

Task 1: Revise the Transformation lab.ibean.transform

In this task, you will work through a transform that has been partially completed.

1. Begin by using the Import from Project Interchange wizard to import both projectsin file
AuthoringTransformsManually.zip.

2. Look at the projects that were imported. There is a Java project named IBean Java Project that contains
some Javaclasses. Thelab.ibean.transform project isatransform that can generate Java projects.

=I-1=> IBean Java Project
=2 arc
=83 org.ibean.bean
+ m BookImpl.java
*-[J] IBook.java
=83 org.ibean.log
+ m Logger.java
+-Bl, JRE System Library [idk]
¥ .dasspath
X| .project

Figure 3-1: The contents of |Bean Java Project

The 1Bean Java Project project representsthe kind of project that 1ab. ibean. transform will generate. In
addition to the project and its required meta-data files, thereis always a Logger class and pairs of business classes.
Each pair of classes contains a specialized Java bean and an interface for that bean.

The bean is specialized in that every set t er method invokes the logger to log an “object modified” message. The
interface names each get t er and set t er method.

Notethat get t er methods for boolean properties begin with is and variable names begin with £ield to avoid
accidental use of reserved words such as package or class.

Thetransform hasin it several sample XML filesthat illustrate the variability in the pattern. The transform as
originally loaded in your workspace, however, only generates the Java project, meta-datafiles, and the logger class.
It does not generate either the interfaces or the bean implementations.

© Copyright IBM Corp. 2007 3-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

3. Yourtask inthislab isto add the necessary tags and templatesto the 1ab . ibean. t ransform transform so
that it also generates those interfaces and bean implementations correctly.

3-2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1: Authorization Bean Exemplar Authoring

Objectives
After completing this lab, you will be ableto:
» Createan EMFT JET based transform using Exemplar Authoring
Given
» Theproject interchange file AuthorizationBean-ExemplarAnalysis.zip
Scenario

In thislab you will perform Exemplar Authoring on aworking bean. As aresult, the transform will be able to take
information about a set of beans as input, and then generate the Java code necessary for the set of beans.

Task 1: Set up the Lab

1. Usethe Import from Project Interchange wizard to import all of the projectsin file AuthorizationBean-
ExemplarAnalysis.zip.

2. Look at the project that was imported, this project makes up the exemplar:

e Theexemplarisin asingle project: Authorization Beans. The transform you must build from this
exemplar is the same transform you built by hand in Lab 3. The difference hereis that you will be using the
Exemplar Authoring toolsin Rational Software Architect to build the transformation.

3. Complete the lab using the Exemplar Authoring tool. If you need assistance, there is a step-by-step guide to
completing the task located in the solut ion folder for thislab on the Student CD.

© Copyright IBM Corp. 2007 41-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

41-2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution: Authoring the AuthorizationBean
Exemplar

Objectives
After completing this lab, you will be able to:
» Create an EMFT JET based transform using Exemplar Authoring
Given
» Theproject interchangefile AuthorizationBean-ExemplarAnalysis.zip
Scenario

In thislab, you will perform Exemplar Authoring on aworking Java bean. As aresult, the transform will be able to
take information about a set of beans as input, and then generate the Java code necessary for the set of beans.

Task 1: Set up the Lab
In this task you will set up your environment for this lab.

1. Begin by using the Import from Project Interchange wizard to import all of the projectsin file
AuthorizationBean-ExemplarAnalysis.zip

2. Look at the project that was imported.

[% Package Explorer 22 Hierarchy =0
=
=)=
= T:‘.?I- Authorization Beans ~
- src

=4 org.secure.bean
+ m IPassword.java
m IRole.java
m IUser.java
m PasswordImpl.java
+ m Rolelmpl.java
+ m UserImpl.java
-4 org.secure.log
+ m Logger.java
+ B JRE System Library [jdk] v

+

+

+

Figure4.1 - 1: Authorization Beans Exemplar Project

Theproject authorization Beans JavaProjectisyour exemplar. Assuch, it represents the kind of project that
your transform will generate. In addition to the project and required meta-datafiles, thereis aways aLogger class
and pairs of business classes. Each pair of classes contains a specialized bean and an interface for that bean.

© Copyright IBM Corp. 2007 41-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

The bean is specialized in that every setter method invokes the logger to log an “object modified” message. The
interface names each get t er and set t er method.

Note that get t er methods for Boolean properties begin with is and variable names begin with fie1d to avoid
accidental use of reserved words such as “ package” or “class’.

Aswith any Exemplar Authoring exercise, be sure to ask the SME (the instructor in this case) if you have any
guestions about the implementation of the exemplar application or about the points of variability to be supported by
the transform.

Task 2: Create Exemplar Authoring Project

In this task, you will create an Exemplar Authoring project.

1. Create anew JET transformation project called authorization.bean.transform. Usethe EMFT JET
Project with Exemplar Authoring project wizard.

Select a wizard

Create a new JET project with exemplar authoring.

Wizards:

exe =

JET Transformations
. [EMFT JET Project with Exemplar
[=-[= Transformation Authoring

% EMFT JET Project with Exemplar Authoring

[Ishow All Wizards.

Figure4.1 - 2: Creating an EMFT JET Project with Authoring Exemplar

41-2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

Create JET Project with Exemplar Authoring

Create a new JET project with exemplar authoring f
Project name€_| authorization.bean. transform

IIse default location

17 < Bacdk ” Mext = H Finish H Cancel

Figure 4.1 - 3: Specifying the project name
2. Besureto specify that the Authorization Beans project is selected as the Exemplar scope.

© Copyright IBM Corp. 2007 41-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

v.’i MNew Project

Transformation Scope

Select the scope of the exemplar by selecting one or more projects. i /

Exemplar scope

[J1mport existing input schema model from ecore file
Model file

Root type

] [Cancel

Figure 4.1 - 4: Specifying the Exemplar Scope
3. The Exemplar Authoring tool should now display the Authorization Beans exemplar and an empty model

41-4

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

% Packa... I3 Hierar... | — O || 2 autherization.bean.transform 52

= 08
o
05 Schema
+ ID‘J Authorization Beans
= '_7'J authorization.bean. transform Exemplar Transformation Input Schema an lﬂz =
H-[= .settings
-3 META-INF Associate the following exemplar artifacts with actions

Defipe-the fransformation input schema and output ac!
+-[=- templates = =F Authorization Beans @
%| .casspath #-[= bin

K| .project F- [src

lard build.properties .classpath
#| input.ecore project
A plugin. xml

X| sample.xml

%] schema.xsd Qverview | Schema

Problems | Javadoc | Dedaration | Search | Console | Known Patterns | E=| Properties £3

Property Value

Figure4.1 - 5: The authorization beans exemplar and the empty model

When the wizard completes, you' [l see anew plug-in project with the name you entered into the wizard. This plug-
in project contains the same files and folders that the New EMFT JET wizard creates, but it also contains afile

named transform.tma, this file will contain the model you build by performing Exemplar Analysis on your exemplar.

I Package Explorer ©7 - Hierarchy = O

5 & 7

+ '&Ié.ﬁ.uﬂﬂnrizaﬁnn Beans
= ::‘J gutharization, bean, transform
+-[= META-INF
+-[= templates
[build.properties
it | input.ecore
2l plugin, xml
|=| sample.xml
|=| schema.xsd
|=| test.xml
B transform.tma

Figure 4.1 - 6: The files within the transform project

The editor for transform.tmais shown above. It has two side-by-side panes. The |eft pane contains afile system
view of the project(s) you said contains your exemplar. The right pane contains several kinds of information. The
right pane contains the transformation input model schema (for now there’' s only asingle element type called

“root”). For each element type the right pane will show the actions to be taken by the transform whenever it
© Copyright IBM Corp. 2007 41-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

encounters an element of that type.

Task 3: Populate the Model: Items Created Once

1. Youwill use aone-word name, beanset, to describe the entire set of filesin the exemplar. Create a second-
level model type by that name.

Transformation Input Scher | |%;| .=

I Define the transformation input schema and oul

[2] root

Mew b [e]| Type

Update Project Attribute

Run Transformation * (=2 Project

Edit Exemplar Text... | = Falder
File
i@ Derived Attribute. ..

Rename

Maove »

Show Properties View

Transformation Input Schema and Output Actions

Define the transformation input schema and output actions.

= [e] rog
(8] beansSet

Figure4.1 - 7. Creating the beanSet type
2. Add an attribute called name to beanSet . This attribute will be used to capture the name of the project.

41-6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

Transformation Input Schema and Output Actions

Define the transformation input schema and output actions.

= [Elroot
E| | :
Update Project Attribute
Run Transformation ¥ 122 Project
Edit Exemplar Text... | = Folder
Filee
¥ Delete —
i@ Derived Attribute. ..
Rename _
Move r
Show Properties View
Figure 4.1 - 8: Creating the console type
Transformation Input Schema and Output Actions 1Bz

Define the transformation input schema and output actions,
= (8] root
-~ 8| beanSet
name|

Figure4.1 - 9: Adding a name attribute to the beanSet type
3. Identify the artifacts that will be created only once for each application of the transform. They include;
e TheJavaproject, Authorization Beans
e The project meta-datafiles .classpath and .project
e TheLogger class org.secure.bean.log.L ogger.java

4. Drag each of these artifacts from the |eft pane onto the beanSet type icon in the right pane. Be careful not to
drop any of the artifacts onto the create Project action.

© Copyright IBM Corp. 2007 41-7
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

il
52

Schema
Exemplar

Assodate the following exemplar artifacts with actions

= Tzg Authorization Beans
=2 src
=& org
== secure
#-[== bean
= ||:|g
|5 Logger.java
|5 .classpath
5 «project

Transformation Input Schema an | %] | =

Define the transformation input schema and output acl
= [root
=I-[] beanset
[+ S Create Project: Authorization Beans
E7] # Create File: .dasspath
£ _1? Create File: .project
*- | =] Create File: Logger.java

Figure4.1 - 10: Artifacts added under beanSet

Notice that in the |eft-hand pane the view is updated so that a checkmark is added once an artifact is

The name parameter shows that this project will always be created with the name “ Authorization Beans’.

Y ou want this name to be variable, and best practices call for using a derived attribute to specify and hold
that variable project name. The derived attribute, in turn, will be based on an attribute that’ sincluded as

TIP:
associated with an action.
TIP:
part of the input model.
41-8

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

|'§| *authorization.bean. transform £3
Schema
Exemplar

Associate the following exemplar artifacts with actions

= Tz Authorization Beans A

= src
= org
== secure
[#-[= bean
B log
- Logger.java

Overview | Schema

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

Transformation Input Schema an | |3, | =

Define the transformation input schema and output ac
= [8] root
=-[€] beanset
#-= iCreate Project: Authorization Beans |
_1? Create File: .dasspath
|2 Create File: .project

..+'

1? Create File: Logger.java

Problems | Javadoc | Dedaration | Search | Conzole | Known Patterns | =] Properties 53 — =
a1
Property Value [#%
i=! Action Parameters
Tname Authorization Beans
location
= Exemplars fae
LT © e iy gy, papap—p—" [WAPY § S FRy E R u [
[11l [

Figure4.1 - 11: The name property for the Create Project: Authorization Beans action

TIP: Youwill need to use the Properties view in your perspective to accomplish this task (and many others). To
add the view, select Window > Show View > Properties.

5. The project name will be taken completely from the value of a derived attribute that you are about to define.
Select the name parameter value (“Authorization Beans”) and click on the Replace with M odel

Refer ence menu action.

TIP:

Note that you' ve already added a new attribute called name to beanSet. The value passed into the

transform in this attribute will be used to build the derived attribute.

© Copyright IBM Corp. 2007

41-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

=
B =authorization.bean. transform &3

Schema

Exemplar Transformation Input Schema an |E| +=

Aszociate the following exemplar artifacts with actions Define the transformation input schema and output acl

= '[;_ﬁ Authorization Beans . = [8] root
EI[E- src EIIE beanSet
i EIE? org
E”E? SECuUre = Create Project: Authorization Bean
E’ bean |§ Create File: ,dasspat]
E'E? log |§ Create File: .project
""" | Logger.java M #- |2 Create File: Logger.java
Overview | Schema
' — "
Problems | Javadoc | Dedaration | Search | Console | Known Patterns M 8
B3N
Property Value &]
=l Action Parameters
*name Authorization Beans| 1
) Replace with Model Reference. .. 3
location
=1 Exemplars
Y| R TR | E— [Y IR TR . Pa—— M
< 1 | [l]
Figure 4.1 - 12: Replacing the default text with a model reference
TIP:

The Replace with M odel Refer ences dialog lets you select the model attribute whose value will replace
the selected text.

4.1-10

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

\;} Replace with Model References

Select model reference:

= [8] root MNew. ..
=-[&] beanset

(8)
@ name -

e () g

Cancel

Figure4.1 - 13: Creating a new model reference

6. You need aderived attribute that’ s not been defined yet, so you select beanSet and then click New to define
that derived attribute.

TIP: Notethat since this derived attribute will contain the name of the project to be created, and since the
beanSet type (and its subtree) contains all of the information needed to apply the transform once, you need
to select the beanSet type before clicking New so that the derived attribute is defined on the beanSet type.

TIP: TheCreate New Derived Attribute dialog lets you define the new derived attribute. The calculation field
lets you insert model references to define the formula used to build the derived attributes value.

.~ Create New Derived Attribute

Attribute name: | projectMame

Exemplar text: | Authorization Beans

Calculation:

Buthorization|Eeans [Insert Model Reference. ..]

[Ok H Cancel]

Figure4.1 - 14: Preparing to insert a model reference
7. Specify projectName asthevalue for the Attribute name.

© Copyright IBM Corp. 2007 4.1-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

8. Youwant the value of the derived attribute to be the value of the name attribute from the beanSet (with first
character uppercased) folloyoud by the string “ beans”. Within the Calculation field, select authorization
and then click on Insert Model Reference.

9. Inthe Select Model Reference dialog, select the name attribute, and then click OK.

G‘) Select Model Reference
Select model reference:
{sbeanset/@name}
= [€] root
=[] beanset
name
Ok l [Cancel
) Create NeJ Derived Attribute
Attribute name; prujeu_:h‘-lame
Exemplar text: Auﬂjnrizaﬁnn Beans
Calculation:
{sbeanset/@name} Feans [Lnsert Model Reference. .. l
QK] [Cancel]
Figure4.1 - 15: The updated calculation field that uses the name attribute from the beanSet type
41-12

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

TIP: Notethat the X Path query expression $beanSet/@name assumes that the variable $beanSet is associated

with amodel node of type <beanSet>

10. Add the uppercaseFirst function to uppercase the first character in the value of $beanSet/@name

Attribute name: | projectiMame

Exemplar text: | Authorization Beans

Calculation:

I uppercaseFirst(SbeanSet/@name) } Beans [Insert Model Reference. ..]

[oK H Cancel I

Figure4.1 - 16: Updated calculation with the uppercaseFirst function applied
11. Click OK inthe Create New Derived Attribute dialog.

) Replace with Model References
Select model reference:
=[] root

=[] beanset
name

i@ projectiame

Figure4.1 - 17: The newly created derived attribute now appears in the Replace with Model References dialog.
12. Select projectName and click OK to return to the name parameter property.

© Copyright IBM Corp. 2007 41-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

=
Problems | Javadoc | Dedaration | Search | Consaole | Known Patterns M = B
B35
Property Value h]
= Action Parameters
*name ItheanSet/@projectNamel| E
location
= Exemplars

Y | I Y P . p— [P S Y L . S M

£] 1]] [i]

Figure4.1 - 18: Artifacts

added under console

13. When you run the transform and the project is created, the project name will now be taken from derived

attribute projectName.

Next, let’s start to define naming attributes for use with Logger.java.

14. Add an attribute called basePackage 10 beanset, from which you'll derive package names for Java classes

and the corresponding directory names.

=]
Schema
Exemplar Transformation Input Schema an | |2, | =
Assodate the following exemplar artifacts with actions ~ Define the transformation input schema and output acl
El Teg Authorization Beans = |§| bearSe [i]
El (&= src _ . basePackage
i E-=org (@ Ta
== secure @ projecthame
'E‘ bean E‘ 'Lé Create Project: Authorization Bean:
EIIE: log E;ri = Creste File: .dasspath
- “ | Logger.java - |'_,';? Create File: .project
5 classpath # [(Create File: Logger.java.
- |5z .project I{_I il | m
guer_u'iew | schema |
: : =
Problems | Javadoc | Dedaration | Search | Console | Known Patterns | E Properties 2 \‘_% O
e [—
s
Project Directory (53
Property Value &]
(= Action Parameters (_/ﬁ g_/% =
*path Authorization Bean ,."srq" rg,."secureﬂog,."Logger java M
— i L] L |

Figure4.1 - 19: Note the newly created attribute. Also, when looking at the properties for the path of Logger .java
there are aspects that will vary.

15. Select the Create File: Logger.java action.

41-14

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

© Copyright IBM Corp. 2007

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

16. Inthe path field within the Properties view, select authorization Beans, right-click and click Replace
with Model Reference.

Problems | Javadoc | Dedaration | E=| Properties 3

Property Value
= Action
Display Mame Create File: Logger.java
= Action Parameters
*path Authorization Beanp i~= inrn inne e laa I nnce s
*template templates/beanset, Replace with Model Reference...
derived
encoding
replace frue
= Exemplars
Logger java JAuthorization Beans/srcforg/securelog/Logger.java

Figure 4.1 - 20: Sdlecting the text from the path property that needs to be replaced with a model reference
17. Select projectName and then click OK.

J Replace with Model References
Select model reference:
= [root
=I-2] beanset
basePackage

i)

Figure4.1 - 21: Sdlecting the projectName derived attribute
TIP: Theremaining part of the path property for the “Create File: L ogger.java’ action needs to be marked up
with references to two new derived attributes:
o logPackage will reference the package that the Logger.javafile belongs two.
o logDirectory: will reference the directory that the Logger.javafile should be written to.

These derived attributes are related to each other as well as to the basePackage attribute. The logPackage includes
the basePackage, but as seen in our exemplar, you need to append another package to the end for the Logger class.
This additional packageis called 1o0g. Once you have the logPackage attribute, all you need to do for calculating the
logDirectory attribute isto convert the“.” charactersinto “/” characters.

18. Inthe path field within the Properties view, select org/secure/1log, right-click and click Replace with
Model Reference.

19. Select beanSet and click New.
20. Specify 1ogpackage asthe Attribute name.

21. Update the text found in the Exemplar text field, replacing the “/” character with “.” character.

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

41-15

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

TIP: Later when editing the templates associated with this transform, the Exmplar text will be used to help guide
you in replacing static text with references to the attributes you’ ve created.

22. Select the org/secure/log text in the Calculation field.

.s! Create New Derived Attribute

Attribute name: IngPadcagE

Exemplar text: Drg.secure.lng_

Calculation:

org/zecure/log|

[lnsert Model Reference. ..]

Ok H Cancel]

Figure 4.1 - 22: Sdlecting the text to be replaced in the Calculation field

23. Click Insert Model Reference.

24. Select basePackage and then click OK.
25. Add .log at the end of the Calculation field.
26. Click OK.

..! Create Mew Derived Attribute

Attribute name: | logPackage
Exemplar text: | org.secure.log
Calculation:

{sbeanset/@beanPackage}.log

[lnsert Model Reference. ..]

0K H Cancel]

Figure 4.1 - 23: The details for the logPackage derived attribute

TIP: Atthispoint you have the path value that is needed for the Logger class. However, you need to format the
string so that it is an acceptable directory path. To do so, you replace the ‘. character with a‘/" character.
As such, you'll continue to work in the Replace with Model References dialog and add another new

derived attribute.

27. Inthe Replace with M odel References dialog, select beanSet and then click New.

28. Specify 1ogbirectory asthe Attribute name.

29. Select the org/secure/log text in the Calculation field.

30. Click Insert Model Reference.

31. Select logPackage and then click OK.

32. Update thetext in the Calculation field so that it appears as follows:

41-16

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

.2) Create New Derived Attribute

Attribute name: | logDirectory

Exemplar text: nrgfseu:ureﬂng_

Calculation:

{translate(sbeanset/ @ogPackaas,".,' [} [Insert Model Reference. ..]

[Ok H Cancel]

Figure4.1 - 24: The details for the logDirectory derived attribute
33. Click OK.

34. Select logDirectory and then click OK.

Problems | Javadoc | Dedaration | Search | Console | Known Patterns | &3 |E|:{=:{> B~ =08
Property Value [A]
Display Mame Create File: Logger.java L
= Action Parameters [El
*path {sbeanset/ @projectMame} fsrc/{sbeanSet/@logDirectory}/Logger. java
*template templates beanSet/Logger.java.jet
derived [V]

Figure 4.1 - 25: The updated path property for the Logger.java artifact

Transformation Input Schema and Output Actions ||%| | =

Define the transformation input schema and output actions.

= [&] root
=[] beanset
basePackage
name
@ﬂ logDirectory
@'ﬁ logPackaage
@'ﬁ projectMame
9 Create Project: Authorization Beans
j Create File: .dasspath
,f Create File: .project
j Create File: Logger.java

[

Figure 4.1 - 26: Updated input schema and output actions
35. Mark up the path parameter for .classpath and .project, too.

© Copyright IBM Corp. 2007 4.1-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Problems‘]avadoc‘Dedaraﬁon (ﬁ Properties &3 | E|I‘=:=> =¥ =4
Property Value
1=l Action
Display Mame Create File: .dasspath
=l Action Parameters
*path {sbeanset/@projectMame}/, dasspath
*emplate templates beanset/dasspath. jet
derived
encoding
replace true
1= Exemplars
.dasspath JAuthorization Beans/.dasspath

Figure 4.1 - 27: The updated path attribute for .classpath

- =
Problems | Javadoc | Dedlaration | Search | Console | Known Patternsw | = |:’~,=:'l> B~ ~—0

Property Value A
= Action

Display Mame Create File: .project =
= Action Parameters

*nath Itbeanset/ @projectMamelf. project

*template templates beanSet/project.jet

derwid M

Figure 4.1 - 28: The updated path attribute for .project

TIP: Even though the .classpath and .project files have constant names, the name of the project containing them
will change.

36. The singly-occurring artifacts have been modeled. Select File > Save All.

41-18 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

[/ authorization.bean.transform -2
Schema

Exemplar

Assodate the following exemplar artifacts with actions and model types.

= lzg Authorization Beans
+-(= bin
== src
== org
== secure
=l-[= bean
\=| IPassword.java
=| IRole.java
=] IUser.java
=| PasswordImpl.java
=| RoleImpl.java
|=| UserImpl.java
== log
|- Logger java
|5 asspath
|5 project

Overview | Schema

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

Transformation Input Schema and Output Actions 1Al

Define the transformation input schema and output actions.

= [&] root
=I-[e] beanget
bazePackage
name
@ logDirectory
@i logPackage
@TJ projectiame
+ Tg Create Project: Authorization Beans
= Create File: dasspath

o
i

<} Create File: Logger.java

Figure 4.1 - 29: After modeling the schema and actions for the singly occurring artifacts

Task 4. Add Supporting Derived Attributes to beanSet

Y ou know that all of the beans generated will be placed into one directory (and package). Earlier, when you created

the directory and package attributes for the log class, you used the basePackage attribute as a starting point. You'll
follow asimilar approach here as you create derived attributes that support the beans. As such, you will add two new
derived attributes called beanPackage and beanDirectory.

1. Right-click beanset and select New > Derived Attribute.
Specify beanPackage asthe Attribute name.

Specify org. secure.bean asthe Exemplar text.

Click Insert Model Reference.

Select basePackage and then click OK.

S o kW

Append .bean to the end of the text in the Calculation field.

2! Create New Derived Attribute

Attribute name: | beanPackage
Exemplar text: | org.secure.bean
Calculation:

{sbeanset/@basePackage}.bean

[lnsert Model Reference. ..]

[0K H Cancel I

Figure4.1 - 30: Creating the beanPackage derived attribute
© Copyright IBM Corp. 2007 41-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

7. Click OK.

8. Right-click beanset and click New > Derived Attribute.

9. Specify beanDirectory asthe Attribute name.

10. Specify org/secure/bean asthe Exemplar text.

11. Click Insert Model Reference.

12. Select BeanPackage and then click OK.

13. Update the text in the Calculation field so that it matches the following screen capture.

.2 Create New Derived Attribute

Attribute name: | beanDirectory
Exemplar text: | orgfsecure/bean
Calculation:

{|translate(sbeanset/@beanPackage , ', /) } [lnsert Model Reference. ..]

[QK l [Cancel]
Figure 4.1 - 31: Creating the beanDirectory derived attribute
14. Click OK.
Transformation Input Schema and Output Actions laz 4=

Define the transformation input schema and output actions.
= [8] root
=-[8] beanset
basePadkage
name
-jﬁ?-?l beanDirectory
-jé?-_il beanPackage
IEII logDirectory
@& logPackage
.jé;'._ii projectiame
i+ giﬂreate Project: Authorization Beans
=] xi} Create File: .dasspath
[Z Create File: .project
[Z create File: Logger.java

Figure 4.1 - 32: Updated view with the newly created derived attributes
15. Select File > Save All.

Task 5: Create a New Type: bean

In thistask, you will update the Schema with a new type called bean.
41-20 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

1. Create anew type (bean) under beanset. Select beanset, right-click and click New > Type. Enter bean as
the name.

Transformation Input Schema and Output Actions ;_éz.i =

Define the transformation input schema and output actions,

= [&] root
= [E] § "

i
bas Ew { L&] Type
nam Update Project Attribute
@ bea :
@2 De3 pun Transformation *| = o
IZEEI bea == Project
@ logt EditExemplar Text... | (= Folder
& logh | B Fle
o | 98 Belcte o
i@l prog (@4 Derived Atiribute. ..

& 15 Cre Rename -

= [Z cre Move 4
= |

= B

& =] Cre: Show Properties View

- | _‘? Creawrrerrogyerave

Figure 4.1 - 33: Artifacts added under console
2. Right-click bean and select New > Attribute. Enter name asthe value for the attribute’ s Name.

Task 6: Add Supporting Derived Attributes to bean

In thistask, you will create a set of derived attributes within the bean type to support the names associated with the
implementation and interface classes. Y ou add these to the bean type rather than the beanSet. Thisis because this
attribute will need to be available for each bean created, whereas the earlier attributes are based on the beanSet.

1. Right-click on bean and select New > Derived Attribute.
Specify interfaceName asthe Attribute Name.
Specify IPassword asthe Exemplar text.

Click on Insert Model Reference.

Select bean\name. Click OK.

o 9 kW

Update the Calculation field as shown in Figure 4.1 - 34.

© Copyright IBM Corp. 2007 4.1-21
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

.2) Create New Derived Attribute

Attribute name: | interfaceMame

Exemplar text: | IPassword

Calculation:

14 uppercaseFirst] Shean/@name) }

[lnsert Model Reference. ..]

Ok H Cancel]

Figure 4.1 - 34: Creating the interfaceName derived attribute

7. Click OK.

8. Right-click bean and select New > Derived Attribute.
9. Specify implementationName as the Attribute Name.
10. Specify PasswordImpl asthe Exemplar text.

11. Click on Insert Model Reference.

12. Select bean\name. Click OK.

13. Update the Calculation field as shown in Figure 4.1 - 35.

.2) Create New Derived Attribute

Attribute name:

Exemplar text:

implementationMame

PasswordImpl

Calculation:

{ uppercaseFirst{ shean/@name } Hmpl|

[lnsert Model Reference. ..]

0K H Cancel]

Figure 4.1 - 35: Creating the implementationName derived attribute

14. Click OK.

41-22

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

Transformation Input Schema and Output Actions &

Define the transformation input schema and output actions.

= [&] root
=-[8] beanset
basePackage

name
a1 beanDirectory

logPackage
rojectMame

name
@ implementationName
@ interfaceName
+ T§ Create Project: Authorization Beans
+ _¢ Create File: .dasspath
+ _<> Create File: .praject
+ _¢ Create File: Logger.java

Figure 4.1 - 36: Updated view with the new derived attributes

Task 7: Populate the Model: Items Created Multiple Times

You still need to model the repeating sets of artifacts. Each repeating set of artifacts has a Javainterface and a Java
bean implementation (for example, IPassword.java and Passwordlmpl.java)

1. Drag an example of each artifact in the repesting set, IPassword.java and PasswordImpl.java, onto the
bean type to create two new actions.

Schema
Exemplar Transformation Input Schema and Output Actions |laz e
Assodate the following exemplar artifacts with actions and model types. Define the transformation input schema and output actions.

1= lzg Authorization Beans
#-(= bin = beanset

(= src basePackage

name

|5z PasswordImpl.java

UserImpl.java implementationMName

- log @EJ interfaceMName
| .classpath [+ " Create File: IPassword.java
|5 project 1|2 Create File: PasswordImpl.java

5122 Create Project: Authorization Beans
(£} {f Create File: .dasspath

= Create File: .project

Create File: Logger.java

QOverview |Schema

Figure 4.1 - 37: Artifacts added under console
© Copyright IBM Corp. 2007 4.1-23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

TIP:

TIP:

2. Select the Create File: | Password.java action.

3.

4. Select projectName and then click OK.

You'll want to allow the user to provide a name for the set of beans. With the exemplar, you can see that

the bean was called “Password”, and then customized based on whether it was the interface or the

implementation.

and interface artifacts.

Asyou did earlier with the Logger.java artifact, you need to update the path value for the implementation

In the path field within the Properties view, select authorization Beans, right-click and click Replace
with Model Reference.

Problems | Javadoc | Dedaration | = Properties £

Property
= Action

Display Name
= Action Parameters

*path
*template
derived
encoding
replace

= Exemplars

IPassword.java

Value

Create File: IPassword.java

Buthorization Beansbar - fnrn/zen re hean Passwnrd izwa
templates /bean/IP; Replace with Model Reference...

frue

fAuthorization Beans/srcforg/secure bean/IPassword. java

Figure4.1 - 38: Sdlecting the text from the path property that needs to be replaced with a model reference

e Replace with Model References

w

Select model reference:

=[] root
=-[8] beanset

basePackage
name

i@ beanDirectory
@ beanPackage
i@ logDirectory
@i logPackage

Select beanDirectory and then click OK.

5.

M odel Reference.
6.
4.1-24

Figure 4.1 - 39: Sdlecting the projectName derived attribute
In the path field within the Properties view, select org/secure/bean, right-click and click Replace with

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

7. Inthepath field within the Properties view, select tpassword, right-click and click Replace with M odel
Reference.

8. Select bean\interfaceName and then click OK.

Problems | Javadoc | Dedaration | = Properties &2 BB YO
Property Value
= Action
Display Name Create File: IPassword.java
- Action Parameters
*path {sbeanSet/@projectiame} fsrc/{sheanset/@beanDirectory}/{shean/@interfaceName}. java
“template templates bean,IPassword.java.jet
derived
encoding
replace true
= Exemplars
IPassword.java JAuthorization Beans,/srcforgfsecure bean/TPassword.java

Figure 4.1 - 40: The completed path entry with references to the appropriate attributes
9. Select the Create File: Passwordlmpl.java action.

10. Inthe path field within the Propertiesview, select Authorization Beans, right-click and click Replace
with Model Reference.

Problems | Javadoc | Dedaration | £/ Properties 23

Property Value
= Action
Display Name Create File: PasswordImpl.java
- Action Parameters
*nath !Aummmﬁm Begnniorelara inas == Fonmm MmnmneATenn]l i
*template templates /bean Pz Replace with Model Reference. .
derived
encoding
replace true
= Exemplars
PasswordImpl.java JAuthorization Beans fsrcforg/secure /beanPasswordImpl.java

Figure4.1 - 41: Sdlecting the text from the path property that needs to be replaced with a model reference
11. Select projectName and then click OK.

12. Inthe path field within the Properties view, select org/secure/bean, right-click and click Replace with
M odel Reference.

13. Select beanDirectory and then click OK.

14. Inthe path field within the Properties view, select PasswordImpl, right-click and click Replace with M odel
Reference.

15. Select bean\implementationName and then click OK.

© Copyright IBM Corp. 2007 4.1-25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Problems | Javadoc | Dedaration | = Properties £ EEE YT
Property Value
= Action
Display Name Create File: PasswordImpl.java
= Action Parameters
*path {$beanset/@projectiame}/src/{$beanSet/@beanDirectory}/{$bean/@implementationName}| java
“template templates/bean/PasswordImpl java.jet
derived
encoding
replace true
- Exemplars
PasswordImpl.java JButhorization Beans/srcforgfsecure fbean/PasswordImpl.java

Figure 4.1 - 42: The completed path entry with references to the appropriate attributes

Y ou’'ve model ed the repeating set of artifacts and have defined: one attribute, two derived attributes, and two
transform actions.

4.1-26 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

Transformation Input Schema and O |l_az| +Z

Define the transformation input schema and output actions
(@ projecttlame A
(8] bean

name

i@ implementationMame

i@ interfaceMame
+ j Create File: IPassword, java
+ j Create File: PasswordImpl.java

+1-1=F Create Project: Authorization Beans
+ j Create File: .dasspath
+ j Create File: .project b |
+ j Create File: Logger.java ™
Problems | Javadoc | Dedaration | Search | Console | Known Patterns | - Properties 23 | =] |I~=:D ~ =0
Property Value il

= Action
Display Mame Create File: PasswordImpl.java
=l Action Parameters

*path @@prcﬁeu:tl'\l.ame},"src,."{SbeanSet,u"@l:ueanDirEu:b:ury},."{Sbeanf@implementah@

*template templates beanPasswordImpl.java.jet w
Problems | Javadoc | Dedaration | Search | Console | Known Patterns | £ &3 |E|:~=:$' B Y —0
Property Value]
= Action
Display Mame Create File: IPassword. java

= Action Parameters

*path @pmjecﬂﬂame}fsrcf{meansEtf @beanbirectory}/{sbean/ @interfaceN@
*template templates bean/IFassword.java. et dl

[3 2]

Figure 4.1 - 43: Artifacts added under console
The bean model object contains all the information required to generate the interface and implementation

Task 8: Modeling Additional Information Needed

In thistask, you'll model additional information that is needed to address the points of variability within the code
files.

TIP: But there's more information needed than what you have already modeled: Property name, Property type,
Getter name, Setter name, Variable name from within implementation file. Also, there is one set of these
names for each property, and there are multiple properties for each bean.

© Copyright IBM Corp. 2007 4.1-27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

[El =authorization.bean. transform 9] &3

package org.secure.bean;
import org.secure.logy.Logger:

public class PasswordImpl implements IPassword {

private String field « ue;
privat field expired;

private int field length:

== = public String getValue ()} {
retury” field walue?
H
i public vciiString value) {
Logger. 1&g a pert'ﬂanged",LnggEI.EEE’ERITY_INF""].:
valae;

= L
this.field_valae =

H
e o public bcclea.n] {
retorn field expired;
H

Figure 4.1 - 44: Additional points of variability within the implementation class

2. Add anew type within bean called property, to represent a set of repeating property information. Add
attributes to capture the name and type for the property.

Transformation Input Schema z | |%;| | =

r Define the transformation input schema and output ¢

"] -jﬁ'ﬂ logPackage [A]
-Eﬁl projectMame
= [8] bean
name
njﬁ'ﬂ implementationMame
njﬁ'ﬂ interfaceMame

=-[8] property
name
type
Zf Create File: Password.java [V]
| (& w | [

Figure 4.1 - 45: A new type of property with attributes of name and type.
3. Addanew derived attribute for the getterName. Right-click property and click New > Derived Attribute.

4.1-28 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

NS ok

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.

20.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

Specify aname of getterName.

Specify exemplar text of getvalue.

Click on Insert Model Reference.

Select beanset > bean > property > name and then click OK.

Update the Calculation field so that it matches the screen capture below, and then click OK.

2! Create New Derived Attribute

Attribute name: | getterMame

Exemplar text: | getValue

Calculation:

get{ uppercaseFirst{ $property/@name) Y [lnsert Model Reference. ..]

[0K l [Cancel

]

Figure4.1 - 46: A new derived attribute for the getter name.

Add anew derived attribute for the Boolean getterName. Right-click property and select New > Derived

Attribute.

Specify a name of booleanGet terName.

Specify exemplar text of isExpired.

Click Insert Model Reference.

Select beanset > bean > property > name and then click OK.

Update the Calculation field so that it matches the screen capture below, and then click OK.

.+! Create New Derived Attribute

Attribute name: | booleanGetterMame
Exemplar text: | isExpired

Calculation:

is{uppercaseFirst(Sproperty/ @name)} [Lnsert Model Reference. ..]

[Ok l [Cancel

]

Figure 4.1 - 47: A derived attribute for the Boolean getter name.

Add anew derived attribute for the setterName. Right-click property and click New > Derived Attribute.

Specify aname of setterName.

Specify exemplar text of setvalue.

Click on Insert Model Reference.

Select beanset > bean > property > name and then click OK.

Update the Calculation field so that it matches the screen capture below and then click OK.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

41-29

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

.o Create New Derived Attribute

Attribute name; | setterMame

Exemplar text: | setValue

Caloulation:

set{ uppercaseFirst { Sproperty/@name) }

[lnsert Model Reference... l

[OK l l Cancel]

Figure 4.1 - 48: A new derived attribute for the setter name.
21. Add anew derived attribute for the varName. Right-click property and click New > Derived Attribute.

22. Specify aname of varName.
23. Specify exemplar text of field value.
24. Click Insert Model Reference.

25. Select beanset > bean > property > name and then click OK.

26. Update the Calculation field so that it matches the screen capture below and then click OK.

. Create New Derived Attribute

Attribute name: | varName
Exemplar text: | field_valug|

Calculation:

field_{Sproperty/@name}

[Insert Model Reference. ..]

I 0K H Cancel]

Figure 4.1 - 49: A new derived attribute for the variable name.

27. Select File > Save All.

Task 9: Create the Transform’s Templates

In thistask, you will generate the templates for the transform.

1. To create the transform’ s templates, right-click in the right-hand side of the Schema editor and click Update

Proj ect.

4.1-30

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

[/ authorization.bean. transform &3 =0
Schema
Exemplar Transformation Input Schema and Output Actio | |%| |
Assodate the following exemplar artifacts with actions and model types. Define the transformation input schema and cutput actions.
=l lzg Authorization Beans = [e] I:]
(= bin = [8] beanSet New ,
(= src basePackage
| .dasspath name <m
|5 project [éﬁ beanDirectory on_
@ﬂ beanPackage]
@'ﬁ logDirectory Edit Exemplar Text...
ljﬁ'il logPackage %
IZE'EI projectName Rename
=-[8] bean M N
name ove
(@ implementation Show Properties View |

@ﬂ interfacelame
= [€] property
name
type
Iiﬁﬂ booleanGetterName
@ﬂ getterMName
.jﬁ'ﬂ setterName
@'ﬂ warName
|_|'{> Create File: IPassword.java
|_|4> Create File: PasswordImpl.java
= Create Project: Authorization Beans
ﬁ Create File: .dasspath |
|j Create File: .project M
.,

Overview | Schema

Figure 4.1 - 50: Artifacts added under console

2. Update Project will create atemplate folder for each type with create file actions, and will create atemplatein
that folder for each of those actions.

© Copyright IBM Corp. 2007 4.1-31

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

5 i1 . Hierarchy| — O
=
=S
#-1=> Authorization Beans -
= f_:"l authorization.bean. transform
+-[= ,settings

[0 META-TME

== templates \

== bean

B IPassword.java.jet

B PasswordImpl.java.jet
=I-[= beanSet
B dasspath.jet
Bl Logger.java.jet
B project.jet
dump.jet
Bl main.jet /
K| .classpath
X| .project
@. build. properties
@ input.ecore
-@: plugin.xml
X| sample.xml
X| schema.xsd
test. xml
| tfransform. tma

/

=

Figure 4.1 - 51: Artifacts added under console

Task 10: Edit the Transform’s Templates: project.jet
In thistask, you will set up the environment to allow you to test the transform.

1. Open the sample.xml file for editing.

2. Replace the contents of the file with the following:
<root>
<beanSet basePackage="com.dev498.test" name="TestBeans'">
<bean name="Curly">
<property name="age" type="String" />
<property name="funny" type="Boolean" />
</bean>
</beanSet>
</root>
Select File > Save All.
In the Package Explorer, right-click the sample . xml fileand click Run As> Input for JET Transformation.

Open the dump . xm1 file.

AL

Review the contents of the dump . xm1 file.

4.1-32 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

TIP: Asyouwork through the following tasks and complete the updates to the generated templates, remember
that you can test them quickly and easily as you proceed. In addition, when combined with the output from
the dump.xml file, you can get an understanding of the way that the input data is being interpreted.

Task 11: Edit the Transform’s Templates: project.jet
In thistask, you will edit the templates associated with the transform.

1. Opentheproject.jet template.

TIP: Thestring “Authorization Beans” is known to be associated with a model attribute, so the editor highlights
the string.

[E authorization.bean. transform B i =0

<?xml wersion="1.0" encoding="UTF=8%"7%2 . el
<projectDescription> |aMhmEMhnbemmnmﬁﬁwmﬂemmamsbemﬁebmq
i <nang>iunthorization Beans<lname
<COmmEnt></ comments>
<projectsi>

</projects>
<buildSpec>
<buildCommand>
<namex>com.ibm.etools.common.migration.Migration
<arguments>
< /arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.jdt.core.javabuilder<,/name>
<arguments>
</ arguments>
</buildCommand> v

Figure 4.1 - 52: Artifacts added under console
2. Select the Authorization Beans string, right-click and click Find/Replace with JET Model Reference.

© Copyright IBM Corp. 2007 4.1-33

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

-
[El authorization.bean. transform

<?xml version="1.0" encoding="UIF-8"7?> i
<projectDescription>
i <name>BAuchorizacion Beansk/names
<Comment></comment > <ﬂ

<projects
</projects>
<buildSpec>
<buildCommand> Show In Alt-+Shif
<name>com.ibm. etod
<Arguments» Cut Ctrl+¥
</argumencs> Copy Ctrl+C
</buildCommand> Paste Ctrl+v
<buildCommand:
<name>org.eclipse.
<arguments>
</arguments> Find/Replace with JET Model Reference... Ctrl+R

</buildCommands>
[<I 1 Run As

shift Right
shift Left

Figure 4.1 - 53: Artifacts added under console
3. Select the projectName attribute and click Replace, then click Close.

({ |
[El authorization.bean.transform (EI *project.jet 23 8

<?xml version="1.0" encoding="UIF-8"72?> kﬂ
<projectDescription>
<namer€<c:get select="SbeanSet/E@projectName" NAME >
<comment></comment>
<projectsi>

</projects>
<buildSpec>
<buildCommand
<name>com.ibm.etools.common.migration.Migration
<arguments>
</fargumentcs>
</buildCommand>
<buildCommand>
<namer>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>
</buildCommand> v

<] | | | | 1 | | (>

Figure 4.1 - 54: And the correct JET tag replaces the string.
4. Saveandthenclosetheproject.jet template.

Task 12: Edit the Transform’s Templates: Logger.java.jet

In thistask you'll update the template to generate the Logger . java file.
41-34 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

1. Openthe Logger.java.jet template for editing.
2. Select the text org.secure.log and then right-click and click Find/Replace with JET Model Reference.

3. Select 1ogPackage, click Replace and then click Close.

[E! *authorization.bean. transform [*Logger.java.jet &3 =0
package <c:get zelect="S£beanSet/@logPackage™ />:

public class Logger {

public static final int SEVERITY INFO = 07
public static final int SEVERITY WARNING
public static final int SEVERITY ERROR =
public static final int SEVERITY SEVERE = 3;

1;

k3l
e

public =s=tatic void log(5tring message, int severity)
System.out.println (message) !
H

Figure 4.1 - 55: The updated Logger.java.jet template.
4. SaveandclosetheLogger.java.jet template.

Task 13: Edit the Transform’s Templates: IPassword.java.jet
In thistask you'll update the IPassword.java.jet template that is used to generate the I<beanName>.javafile.

1. Openthe IPassword.java.jet template.

2. Selectthetext org. secure.bean and then right-click and click Find/Replace with JET Model Reference.
3. Select beanprackage, click Replace, and then click Close.

4. Select thetext 1Password and then right-click and click Find/Replace with JET Model Reference.

5

Select interfaceName, click Replace and then click Close.

© Copyright IBM Corp. 2007 41-35

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

[E/ authorization.bean. transform & *TPassword java.jet &3 =08

package <c:get select="SbeanSet/EbeanPackage™ />
public interface <c:get select="Sfbean/@interfaceName™ /> {
public String getWValue():
public void setValue (String wvalue);
public boolean isExpired():
public void setExpired(boolean walue);
public int getLength();

public void setlength(int wvalue);

Figure 4.1 - 56: The updated Logger.java.jet template.

TIP: At thispoint you now have to parameterize the template to handle the set of properties that are associated
with the bean. For each property you need to create a getter and setter, with the methods using the
appropriate types. In addition, in the case of Boolean parameters, you need to change the name of the getter
method to “is”.

6. First, add in some code for the setter and getter methods. Y ou need to iterate through the set of properties.
Remove the current method declarations and add the following text to the file:

<c:iterate select="Sbean/property" var="property"s>

public <c:get select="$property/@type” /> <c:get
select="$property/@getterName" /> () ;

public void <c:get select="Sproperty/@setterName" /> (<c:get
select="$property/@type” /> value) ;

</c:iterates>

TIP: If you copy and paste the code, note that the editor will not like the“ (curly quotation marks) character as
supplied by Microsoft Word. If you get an error on the line, replace the“ character with one typed in place
within the editor.

7. At thispoint, however, the code does not account for the case where the type is Boolean. You need to add in
some additional code to determine if the typeis Boolean, and if so, to use the booleanGetterName in place of
the getterName. Replace the following code:

public <c:get select="S$property/@type” /> <c:get select="S$Sproperty/@getterName"
/>0

with:
<c:choose select=" Sproperty/etype" >
4.1-36 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

<c:when test=" 'Boolean' " >

public <c:get select="$property/@type” /> <c:get
select="S$property/@booleanGetterName" /> () ;

</c:when>
<c:otherwise>

public <c:get select="S$property/@type” /> <c:get select="S$Sproperty/@getterName"
/>0);

</c:otherwises>

</c:choose>

8. Sedlect File> SaveAll.

Task 14: Edit the Transform’s Templates: PasswordIimpl.java.jet
In thistask you'll update the code in the Passwordimpl.java.jet file that is used to generate the

<beanName>Impl.java file.

1. Openthe PasswordImpl.java.jet template.

2. Select thetext org.secure.bean and then right-click and click Find/Replace with JET Model Reference.
3. Select beanprackage, click Replace and then click Close.
4. Selectthetext org.secure.log and thenright-click and select Find/Replace with JET Model Reference.
5. Seect 1ogPackage, click Replace and then click Close.
6. Select thetext passwordImpl and then right-click and select Find/Replace with JET M odel Reference.
7. Select implementationName, click Replace and then click Close.
8. Select thetext 1rassword and then right-click and select Find/Replace with JET Model Reference.
9. Select interfaceName, click Replace and then click Close.
© Copyright IBM Corp. 2007 4.1-37

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

2! authorization.bean. transform 21 PasswordImpl.javajet &2 =8

package <c:get select="SbeanSet/@beanPackage™ />; "
import <c:get select="$beanSet/@logPackage" />.Logger;

public class <c:get select="fbean/@implementationName” /> implements <c:get select="tbean/@interfaceName" {){ {

i private String field wvalue;
private boolean field expired;
private int field length;

i public String getValue() {

i return field wvalue;

H

i public void gerValue (String value) {

Logger.log("Property value changed",Logger.5SEVERITY INFO);:

i this.field wvalue = wvalue;

H
i public boolean isExpired{) {

return field_expired;
H

public void setExpired(boolean value) {
Logger.log ("Property expired changed"”,Logger.SEVERITY INFOQ):;
this.field expired = value;

H

public int getLength() {
return field length;

Figure4.1 - 57: Template updated with package, import, class name and implements reference.

10. Add an iterate statement for the creation of the variable declarations. Replace the current variable declarations
with the following text:

<c:iterate select="sSbean/property" var="property"s>

private <c:get select="S$property/@type" /> <c:get
select="$property/@varName" />;

</c:iterates>

11. Now, you just need to add the code for creating the methods. Replace the current method bodies, with the

following text:

<c:iterate select="Sbean/property" var="property">
<c:choose select=" Sproperty/@type" >
<c:when test="'Boolean'" >

public <c:get select="S$property/@type" /> <c:get
select="$property/@booleanGetterName" /> ()

</c:whens>
<c:otherwise>

public <c:get select="S$Sproperty/@type" /> <c:get select="S$Sproperty/@getterName"
/>0 {

</c:otherwise>
</c:choose>

return <c:get select="$property/@varName" />;

4.1-38 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution — Authorization Bean Exemplar Authoring

public void <c:get select="Sproperty/@setterName" /> (<c:get
select="$property/@type" /> value) ({

Logger.log ("Property <c:get select="Sproperty/@name" />
changed", Logger.SEVERITY INFO) ;

this.<c:get select="$property/@varName" /> = value;

}

</c:iterates>

12. Select File> Save All.

[2! authorization.bean. ransform 2/ PasswordImpl.java.jet &2

package <c:get select="S$beanSet/@beanPackage" /»;

import <ci:get select="SfbeanSet/E@logPackage" />.Logger:

public class <c:get select="Sfbean/@implementationMName" /> implements <c:get select="%bean/@interfacelame" /> {

<c:iterate select="$bean/property” var="property">
private <c:get select="Sproperty/@type" /> <c:get select="&property/@varName™ />;
<fciiterate>

<ciiterate select="$bean/property" var="property"r

<c:chooge select=" Sproperty/@typem™ >
<c:when test="'Boolean'" >

public <c:get select="Sproperty/@type"™ /> <ciget select="$property/@booleanGetterName”/> () {
</c:iwhenx
<c:otherwise>

public <c:get select="Sproperty/@type" /> <c:get select="&property/BgetterName” />(){
</ciotherwises

<fcichoose>
return <c:get select="$property/@varName" />;

public wvoid <c:get select="$property/@setterName" /> (<c:get select="4property/@type" /> valus) {
Logger.log ("Property <c:get select="Sproperty/@name” /> changed"”, Logger. SEVERITY INFO);
this.<c:get select="&property/@varName" /> = value;

}
<fcriterate>

Figure 4.1 - 58: The completed Passwordlmpl.java.jet template
13. You have now completed all of the customization needed for the transform. Test and review.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4.1-39

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

4.1-40 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.2: Exemplar Authoring

Objectives
After completing this lab, you will be ableto:
» Perform exemplar analysis
Given
» Theproject interchange file, Exemplaranalysis.zip
Scenario

In thislab you will perform Exemplar Analysis on an exemplar based on a set of feature projects and an Eclipse
update site.

Task 1: Set up the Lab

1. Usethe Import from Project Interchange wizard to import all of the projectsin the ExemplaraAnalysis.zip
file.

2. Look at the project that was imported. This project contains the exemplars.

o Theexemplar stretches across 12 projects. The transform to be authored from these projects will generate a
number of feature projects, and asingle update site project.

3. Update sites are the usual way that Eclipse tools are distributed. The tools exist in one or more plug-in projects.
The tool builder has to create a number of Eclipse feature projects for the plug-in projects, and must also create
an update site for the feature projects.

Each feature project has three files:

=I-1=F org.mycorp.rendering. feature
H| .project
lod build. properties
. i feature.xml

Figure 4.2 - 1. Feature Project org.mycorp.rendering.feature

The only file you may not have seen yet isthe feature . xm1 file (which always has that same name). Thefileisa
simple XML file that, among other things, lists the plug-ins to be contained in this feature:

© Copyright IBM Corp. 2007 42-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

4. Theupdate siteis also asimple project:

<plagid
id="org.mycorp.rendering”

download-size="0"
install-=size="0"
T

version="1.1.
unpack="falze"/>

<plugin

id="org.mycorp.extra®
download-size="0"
install-size="0"

version="1.0.9"
unpack="falze"/>

=I-l=F org.mycorp.updateSite

X| .project

i site.xml

Figure 4.2 - 3: Update Ste project org.mycorp.updateSite

Figure4.2 - 2: Plug-insin the Feature org.mycorp.rendering.feature

The only two files you need to generate are the .project fileand the site.xml file. Thesite.xml filelistsa
number of categories and the features that go into those categories.

A number of dummy plug-in projects are also included. Y our transform will not generate those. It will assume they
already exist. They are included here to avoid validation errors on the feature plug-ins. Y our exemplar consists of
the projectswhose namesend in . feature OF .updateSite.

42-2

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5: The Console Transform

Objectives
After completing this lab, you will be able to:
» Perform exemplar analysis on a Java application
Given
» The project interchange file TheConsoleTransform. zip
Scenario

In thislab, you will perform Exemplar Analysis on aworking Java application.

Task 1: Set up the Lab

1. Begin by using the Import from Project Interchange wizard to import all of the projectsin the
TheConsoleTransform.zip file.

2. Look at the project that was imported.

[% Package Explorer 32 Plug-ins = 0O
=

==
= TE‘J Console Exemplar
=B gre
=-f# com.mycorp. console
+ Console.java
+ ICammandHandler.java
=3 com.mycorp. console, handler
+ AddHandler.java
+ RepeatHandler.java
+ SampleHandler.java
AddHandler.properties
RepeatHandler. properties
SampleHandler, properties
+-Bh JRE System Library [jdk]
+-gl junit.jar - JUNIT_HOME - C:\IBM\comm
K| .classpath
X| .project

Figure5 - 1: Console Exemplar Project

This Java application is aworking command line console. It supports three commands; Add, Sample, and Repeat.
Each of those commands is implemented by a Handler class, which in turn implements the TcommandHandler
interface. Each handler also hasits own propertiesfile to hold trandatable strings.

The console classisthe main classin the application. It listensto input on its System. in stream. For each entered

command, console will try to match the command (the first token of the input string) to the command handled by

each of the handlers. If ahandler matching the command is found, then that handler is passed the full command and
© Copyright IBM Corp. 2007 5-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

is expected to process that command.

Each command accepts a specific set of typed arguments. There is code in the handler to convert each string token to
an appropriately typed local variable.

This exemplar is representative of a class of applications that accept command line input, and then invoke the
appropriate command. The transform you will author will generate instances of these command line applications.

Aswith any Exemplar Analysis exercise, be sure to ask the SME (the instructor in this case) if you have any
guestions about the implementation of the exemplar application or about the points of variability to be supported by

the transform.

Y ou should now have the Java project containing the console exemplar in your workspace.

TIP: The project was written using features of Java 5. To get the code to compile you must be using a JRE that
supports that version of Java. If the code does not compile for you, right-click the project and select
Properties. With the Properties window, select Java Compiler, click Enable project specific settings and
then set the Compiler compliance level to 5.0.

Java Build Path

#- Java Code Style

[+~ Java Compiler
Javadoc Location
JDEC Connections
Project References
WS-I BSP Compliance

.+ Properties for Console Exemplar @
type filter text] Seinss Comele'n
Info : . .
+|Enabl ct fi Hi
BeanInfo Path able project spedfic settings
Builders 10K Compliance

Compiler compliance level: 5.0 |

Use default compliance settings

Classfile Generation
Add variable attributes to generated dass files (used by the debugger)

Add line number attributes to generated dass files (used by the debugger)
Add source file name to generated dass file {used by the debugger)

Preserve unused (never read) local variahles

lRestore gefaults] I Apply I

[Ok JI Cancel]

5-2

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

3. Createanew JET transformation project called console.transform. Use the EMFT JET Project with Exemplar
Authoring wizard.

_—

) New Project

Select a wizard

=

Create a new JET project with exemplar authoring. [

Wizards;
| type filter text

[Edipse Modeling Framework |
&= EB
==

& EMFT JET Project with Exemplar Authoring
b=, S—
e B

Figure5 - 2: Creating an EMFT JET Project with Authoring Exemplar
4. Be sureto specify that the Console Exemplar project is selected as the Exemplar scope.

= g
) New Project |
Transformation Scope

Select the scope of the exemplar by selecting one or more projects. E 7

Exemplar scope | @ME | _j

Figure5 - 3: Specifying the Exemplar Scope

© Copyright IBM Corp. 2007 5-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

5. The Exemplar Authoring tool should now display the console exemplar and an empty model

2 conscle.transform &7
Schema

Exemplar

= T=F Console Exemplar
+1-[== bin
=l[=> src
=I-[= com
=I-[=> mycorp
=I[=* console

=I-[= handler

.Casspath
.project

Associate the following exemplar artifacts with actions and |

Transformation Input Scher | |3, [=

[2] root

AddHandler.java
AddHandler.properties
RepeatHandler java
RepeatHandler properties
SampleHandler.java
SampleHandler. properties
Console.java
ICommandHandler . java

Define the transformation input schema and oul

Figure 5 - 4: The console exemplar

Task 2: Populate the Model

1. You propose aone-word name, console, to describe the entire set of filesin the exemplar and creste a second-

level model type by that name.

5-4

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

Transformation Input Scher | |3, | =

I Define the transformation input schema and oul

[2] oot

Mew b [e] Type

|Ipdate Project Attribute

Run Transformation * (=2 Project

Edit Exemplar Text,.. | = Folder
File
i@ Derived Attribute. ..

Rename

Move r

Show Properties View

Transformation Input Scher ||%;| L=

I Define the transformation input schema and oul

= [&] root
[&]| console|

Figure5 - 5: Creating the console type
2. ldentify the artifacts that will be created only once for each application of the transform. They include:

The Java project Console Exemplar

The project meta-data files .classpath and .proj ect

The main class com.mycor p.console.Console,java
e Thehandler interface com.mycor p.console.l CommandHandler

3. Drag each of these artifacts from the | eft pane onto the console type icon in the right pane. Be careful not to
drop any of the artifacts onto the create Project action.

© Copyright IBM Corp. 2007 5-5
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Schema

Exemplar

Assodiate emplar artifacts with actions and model types.

== com
== mycorp
= console
== handler
=| AddHandler.java
| AddHandler.properties
=| RepeatHandler.java
_____ RepeatHandler.properties
=| SampleHandler.java
=| SampleHandler.properties
| Console.java
| ICommandHandler java
=| .dasspath
5 -project

Qvéviéw Schema

Figure5- 6:

5-6

Transformation Input Schema and Output Actions

Define the transformation input schema and output actions,

= [E] root
=-[8] console
#-1= Create Project: Console Java Project
¥ Create File: .casspath
T Create File: .project
I ° Create File: Console.java

[f} Create File: ICommandHandler java

Artifacts added under console

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

4. Notethat the remaining files (xxxHandler.java and xxxHandler.properties) Seemto be repeated in
pairs, with each pair having a Java source file and a properties file with a common root name. Because of the
one-to-many relationship between the Java project and these pairs of files, you will create a new nested type
under the console type.

Transformation Input Schema and OQuty ||%; +=

Define the transformation input schema and output actions.

= [®] root
=[] ‘console
-T2 Create fl. NEW ¥ [e] Type
S :

+ ! Createf |jndate Project Atiribute

+ Create |)
Run Transformation ¥ :

#- B Create == Project

- [Zf Createf§ Edit Exemplar Text... | (= Folder

File
¥ Delete -
i@ Derived Attribute. .,

Rename = _
Mave] [”

Figure5 - 7: Creating a new type under console

5. Thetyperepresents apair of files, a Java class and a propertiesfile, in support of one of the commands
implemented by the console. The name you choose for this new type, “command”, describes this pair of files.

Transformation Input Schema and Outy | |%; .=

Define the transformation input schema and output actions.

=l [8] root
= |£| COREaE

command

Greate-Rraftct: Console Exemplar
Create File: .dasspath

Create File: .project

Create File: ICommandHandler.java
Create File: ICommandHandler.java

R I = O B
1] . i [

Figure5 - 8: The command type

6. You need to drag representative samples of each of the filesto be generated for this command type. The
guestion is, which files should you use?

The choice isimportant, because the content of the fileswill be used asthe initial template for each resulting action.
Y ou want to choose the exemplar files that are most representative of the points of variability in the pattern. In this
example, the files for the Sample command demonstrate the most variety of parameter types.

© Copyright IBM Corp. 2007 5-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

7. Dragthetwo files, sampleHandler.java and SampleHandler.properties oOn top of the command typein
the right pane.

i *console. transform &3 = B

i

Schema
Exemplar Transformation Input Schema and Output Actior | |%;| =

Associate the following exemplz Define the transformation input schema and output actions,

* Tog = [&] root
=I-[8] console
=--[8] command
= Create File: SampleHandler . java

= Create File: SampleHandler. properties
I§ Create Project: Console Exemplar
Create File: .dasspath
Create File: .project
Create File: Console.java
Create File: ICommandHandler.java

N e B
k- Losp Lo Lol

Figure5 - 9: Sample files under command

Each of the create file actions, as well as the create project action, will create an Eclipse resource with avariable
name. The list below shows the names of those associated exemplar artifacts.

ConsoleExemplar

ConsoleExemplar/.project

ConsoleExemplar/.classpath
ConsoleExemplar/src/com/mycorp/console/Console. java
ConsoleExemplar/src/com/mycorp/console/ICommandHandler.java
ConsoleExemplar/src/com/mycorp/console/handler/SampleHandler. java
ConsoleExemplar/src/com/mycorp/console/handler/SampleHandler.properties

Within each of the above names you can identify a number of substrings that are likely to vary from application to
application of the transform:

ConsoleExemplar (name of the project)

com/mycorp/console (name of the console directory under the source folder)
com/mycorp/console/handler (nName of the handler directory)
SampleHandler (Nname of acommand handler)

These names, according to best practices, are to be stored in derived attributes in the model. These names are
derived from a number of other attributes:

The name of the console being generated

The console package

The handler package (this turns out to be a derived attribute, too)
The command name

Task 3: Add and Derive Attributes

1. Add the three attributes above into the model.
5-8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

Transformation Input Schema and Output Actior |l_'l'lz| +Z

Define the transformation input schema and output actions,

= (oot
=[]
E| Mew b [e] Type
g Update Project (&) Attribute
Run Transformation *| 5 procect
Edit Exemplar Text.., | = Folder
2 File
% [% Delete = _
; Derived Attribute. ..
Rename ”
Mave L
Showe Properties View
{ o | ﬁ-\
Exemplar Transformation Input Schema and Output Actior |l""z| +=
Associate the following exemplz Define the transformation input schema and output actions.
[Consaole Exemplar
= [T command
- =] Create File: SampleHandler java
|§ Create File: SampleHandler, properties
E_EI---Ié Create Project: Consale Exemplar
|ﬁ Create File: .casspath
Iﬁ Create File: .project
|ff Create File: Console.java
|ﬁ Create File: ICommandHandler java
Figure5 - 10: Adding attributes to console and command
© Copyright IBM Corp. 2007 5-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

2. Seectthecreate Project: Console Exemplar actionand view the propertiesfor that actionin the
Properties view.

B =console.transform &% = 5
Schema
Exemplar Transformation Input Schema and Output Actior | |%;| L=

Assodiate the following exemplz = Define the transformation input schema and output actions.

+l Tz Console Exemplar = [8] root
=8| console
name
package
—-[8] command
name
£ = Create File: SampleHandler. java
£ = Create File: SampleHandler. properties
@ Create Project: Console Exemplar

¥
| = Create File: .Casspath
| = Create File: Jproject
+- | = Create File: Console.java
+- |2 Create File: ICommandHandler . java
Civerview | Schema
Error Log | Tasks | Problems | £ Properties £:1 Console B = = 0
Property Value i
=l Action Parameters
*name Console Exemplar
location
= Exemplars
Crnenls Fyvamnlar Jrnnenle Fyamnlar Y.

Figure5 - 11: Properties of Create Project: Console Exemplar

In particular, note the value of the name action parameter. The value of that parameter will be used by the
transformation to name the console project when it isfirst created. Since that project name needs to be variable, you
need to define the calculation to be used to determine the project’ s name. Since the name of the project, according to
best practices, needs to be kept in a derived attribute, you need to define such an attribute and indicate that that
attribute’ s value is to be used as the project’s name.

3. Begin by selecting the entire text of the exemplar name and clicking the Replace with M odel Reference
button.
5-10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

Error Log | Tasks | Problems | C| Properties £3 Console

BEEL=NEE

Property Value A
= Action Parameters
*name Console Exemplar]
location Replace with Model Reference. .. | 3
= Exemplars |
[Crnanls Fyasmnlar I rnenls Fyamnlar .v.
£ I

Figure5 - 12: Replace with Model Reference
4. A dialog box will display the known model types and attributes.

\;} Replace with Model References

Select model reference:

= [e] root
=-[€] console
name
package
=-[8] command

name

MNew...

a

i) 1)

Cance

Figure5 - 13: Replace with Model References dialog box
5.
to create that derived attribute definition.

Since the derived variable that you want to use to hold the project name isn’t defined yet, click the New button

Note: Be sureto select the console type before clicking the New button, since the console type is the type that has

to contain this new derived attribute.

e

') Create New Derived Attribute

ﬂ

Attribute name: | |

Exemplar text: | Console Exemplar

Calculation:

Console Exemplar

[Insert Model Reference. ..

S

Cancel

Figure5 - 14: Create New Derived Attribute dialog box

© Copyright IBM Corp. 2007

5-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

6. The name of the new derived attribute will be projectName and the value of the attribute will be calculated by
concatenating the console name with the constant string console.

7. Point the cursor to the start of the Calculation field and click Insert Model Reference.

-E‘) Select Model Reference

Select model reference;
{5console/@name}

= [&] root
=-[8] console
name
package
=-[€] command
name

QK l [Cancel

Figure5 - 15: Select Model Referencesdialog
8. Select thename attribute for model type console and click OK.

') Create New Derived Attribute
Attribute name: | projectMame
Exemplar text: | Console Exemplar
Calculation:

{5console/@name}Console Exemplar [Insert Model Reference... l

[oK] [Cancel]
Figure5 - 16: Modifying the name attribute
5-12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

9. Notethat the query expression for the name attribute has been inserted into the Calculation field. Edit the rest
of the field to define the calculation correctly.

‘) Create New Derived Attribute

Attribute name: | projectMame

Exemplar text: | Console Exemplar

Calculation:

Iéconsole/@name} Console| [Insert Model Reference...]

[Ok, H Cancel]

Figure5 - 17: Adding a calculation to a new attribute

10. Click OK to return to the Replace with Model References dialog. Note that a new derived attribute named
projectName has been added to the model.

Ee Ty
\;} Replace with Model References
Select model reference:

= [&] root
=I-[8] console
name
QK
package -
i@ projectiame
+-[8] command

Figure5 - 18: A new derived attribute

11. Select the projectName attribute and click OK. Note that the action parameter nameis now set to a query
expression referring to projectName.

Error Log | Tasks | Problems | = Properties &3 Console | E|I=:€> B Y T O
Property Value *“‘
= Action Parameters
*name Ttronsolef E@projectamel] X
location W
= Exemplars —
- “nnenls Fyemnlar I nnenls Fyemnlar) V
¢ | i Ed
Figure5 - 19: Action Parameters name property
© Copyright IBM Corp. 2007 5-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

12. Select the . classpath file action and edit the path action parameter.

13. Select the string “ Console Exemplar” and use Replace with M odel Refer ence to replace the string with a
reference to the projectName derived attribute.

r = "y
Error Log | Tasks | Problems Hﬁ;unmle | = |:{=::> B B
Property Value w
= Action Parameters
*path Console Exemplarl’. dasspath =
*template templates/console /dasspath. jet - o =
derived
enrndinn M
< | i | [l]
" — |+ - 0O =
Error Log | Tasks | Problems H}anmle | = |_ﬁb & |
Property Value h]
= Action Parameters
*path {5console/ @projectMame). dasspath Ii
*template templates/console fdasspath. jet
derived
Frrndinn M
< | I] [i]

14. Do the same for the .pr

Figure5 - 20: Changing the path Action Parameters property
oject action:

[Log | Tasks | Problems H_junmle | =] | =R YT =i
Property Value h]
= Action Parameters

*path I5consolef @projectMamel. project Ii
*template templatesfoonsole/project.jet
derived
enrndinn M
<| i] [i]
Figure5 - 21: Changing the path Action Parameters property
15. Select the Consolejava action and add a reference to the project name

[Log | Tasks | Problems H_junmle | =] | =R YT =i
Property Value h]
= Action Parameters

*path I5console/ @projectMame srofcom /mycorp/console/Console. java E
“template templatesfconsole/Console.java.jet
derived
enrndinn M
<| i] [i]
Figure5 - 22: Changing the path Action Parameters property
5-14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

16. Of the remaining path value, only the substring com/mycorp/console hasbeen identified as possibly
changing from transform application to application. Y ou need to replace that substring with areference to a new

derived attribute.

-,

=) Create New Derived Attribute 3

Attribute name: | consoleDirectory
Exemplar text: | com/mycorp/console
Calculation:

I translate{ Sconsole/@package , ', ' i [Insert Model Reference. ..]

[Ok, H Cancel]

Figure5 - 23: Creating a new derived attribute
17. The attribute is derived by replacing all periodsin the package value with forward slashes.

i 5y
Error Log | Tasks | Problems w&msule | 5 |:{=:D> B~ =0
Property Value h]
Display Mame Create File: Console.java Ii
= Action Parameters 3
*path {tconzole/@projectiameljerc/{Sconsole/ @consaleDirectory HiConsole java
*template templates jconsole /Console. java.jet
Aerivead M
< | i | [»|

Figure5 - 24: Creating a new derived attribute
18. The path parameter is similarly modified for the I1CcommandHandler action:

A

-
Error Log | Tasks | Problems wonsule | 5 |:i=:|r> B~ =0
Property Value w
Display Mame Create File: ICommandHandler.java Ii
= Action Parameters 3
*path {4console/ @projectilame} fsrc/ $console/ @consoleDirectory HICommandHand|
*template templates/console /ICommandHandler . java.jet
Aerivead M
< i | (3|

Figure5 - 25: Changing the path parameter for ICommandHandler
19. Select the sampleHandler. java action and review its path parameter:

© Copyright IBM Corp. 2007 5-15
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Error Log | Tasks | Problems | = Properties &2 . Console | & (2 = =0
Property Value [A]
Display Mame Create File: SampleHandler.java [E
= Action Parameters 3
*path Console Exemplar fsrcfcom/mycorp/consolehandler /SampleHandler. java
*template templates/command /SampleHandler java.jet
Aerivead [Y]
a | 3]

Figure 5 - 26: Reviewing the path property

20. There are two substrings which need to be replaced by derived attributes. The substring
com/mycorp/console/handler needsto be replaced by areference to derived attribute handlerpackage,
which in turn is derived from attribute package:

Transformation Input Schema and Qutput Actions 18|42

I Define the fransformation input schema and output actions,

" = [&] root
=[] iconsole]
name Mew k| [e] Type
package Attribute

Update Project

] leDi
‘@7 consoleLired Run Transformation ¥ (&= Project I

-ETJ projectMame

=-[e] command Edit Exemplar Text... | (= Folder
name ” File
£ Delete =
=] Createf) Derived Attribute. ..
=7 Creater Rename —~ .
=2 Create Proje Move v
13
') Create New Derived Attribute
Attribute name: | handlerPackage
Exemplar text: | com.mycorp.console.handler
Calculation:
{sconsole/@package}. handler |§lnsert Model Reference... |
[oK] [Cancel]
Figure5 - 27: Creating a new derived attribute
5-16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

21. ThehandlerDirectory attribute is derived from attribute handlerpPackage.

‘) Create New Derived Attribute

Attribute name: | handlerDirectory

Exemplar text: | com/mycorp/consolefhandler

Calculation:

I translate{ Sconsole/@handlerPackage , ',)k [Insert Model Reference...]

[Ok, H Cancel]

Figure5 - 28: Creating the handler Directory derived attribute

22. The substring sampleHandler heedsto be replaced by the new derived attribute hand1lerName on model type
command.

‘) Create New Derived Attribute

Attribute name: | handlername

Exemplar text: | SampleHandler

Calculation:

{ uppercaseFirst(Scommand,@name) fHandler [Insert Model Reference. ..]

[Ok, H Cancel]

Figure5 - 29: Creating the handlername derived attribute
23. And the path parameter for sampleHandler.java should be finished.

Error Log | Tasks | Problems | T Properties £2 . Console B A=0=
Value [A]

Parameters

sth Ir'sronzole/@projectiame}jerc/{Sconsale/ @handlerDirectoryt /{Scommand/ @handlernamel. java [= l

'mplate templates jcommand/SampleHandler. java.jet

ived

~ridinn [V]

[{] | 1l [>]

Figure5 - 30: Editing the Path property for SampleHandler.java

© Copyright IBM Corp. 2007 5-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

24. Edit the path parameter for the sampleHandler.properties action in the same way:

P “
Error Log | Tasks | Problems wonsule | E |:{=:{> B~ =0

Property Value

Display Create File: SampleHandler. properties
= Action Par:
*path {éconsole/ @projectilame}fsrcf{$console f@handlerDirectory} /{ $command/ @handlername}| prop

*templ templates/command/SampleHandler . properties.jet U
o

derivar

< 1 | [l]

Figure5 - 31: Editing the Path property for SampleHandler.properties
The completed model looks like this.

mia

Schema

Exemplar Transformation Input Schema and Output Actions |E| +=

Associate the followir = Define the transformation input schema and output actione.

Iz Console Exen = [€] oot

----- @ consoleDirectory
----- @ handlerDirectory
----- @ handlerPackage
----- @ projectMame

handlername
|§ Create File: SampleHandler.java
|§ Create File: SampleHandler.properties

:I'[é Create Project: Console Exemplar

; E{T Create File: .dasspath

|§ Create File: .project

= |§ Create File: Console.java

= |§ Create File: ICommandHandler.java

=1

[i] !] [l]
Owverview | Schema

Figure5 - 32: The completed model
25. Select File> Save All.

Task 4: Generate and Edit Templates

It's now time to generate the templates for the JET transform.

5-18 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

1. Usethe Update Project action.

Exemplar

Transformation Input Schema and Output Actions |E| +

Assocate the followir
Iz Console Exen

Define the transformation input schema and output actions.

----- @ consoleDirectory e }

'''' @ handlerDirectory -
— Update Project
""" handlerPackage -
_____ projecthame Run Transformation ¥

EIIE command Edit Exemplar Text...
""" @ name
""" @ﬂ handlername R Delete
|§ Create File: SampleHandle Rename

#- |2 Create File: SampleHandle Move r
@ Create Project: Console Exem
|ﬁ Create File: .dasspath
|ﬁ Create File: .project
|j Create File: Console.java
ﬁ Create File: ICommandHandler.java

Show Properties View

-

Figure 5 - 33: Updating the Project

Note the new templates that have been generated.

© Copyright IBM Corp. 2007

5-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

= (Console Exemplar ;

EI:L:‘J console, transform
[Er .settings
- META-INF

EI[E- templates

=, command J
""" B sampleHandler.java.jet

""" E! sampleHandler. properties.jet
= console

""" El dasspath.jet

""" El Console.java.jet

""" Bl ICommandHandler.java.jet
_ B project.jet A
""" E dump.jet
""" B rmiair.jet
'''' |X]| .dasspath

Figure5 - 34: New generated templates
2. Edit thetemplates one at atime, starting with project. jet.

E
[E conzole. transform

k?xml version="1.0" encoding="UIF-8"72> kﬂ
<projectDe=scription>
i <name>Console Exemplar(fname>
<Ccomment></comment >
<projects>

</projects>
<buildSpec>
<buildCommand>
<name>x>com.ibm.etools.common.migration.MigrationBuilc
<arguments
</arguments>
</buildCommands>

Figure5 - 35: Editing project.jet

5-20 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

Note the blue underscore under the name element, Console Exemplar that indicates that that string matches one
of the exemplar strings for one of the attributes. 1t’s likely that the string should be replaced by a query expression

referencing that attribute.

3. Select the underlined string and click Find/Replace with JET Model Reference.

! console.transform | project.jet &3 =0
<?xml wversion="1.0" encoding="UTF-8"7: A
<projectDescription>

i <name>xonsole Exemplar<fnamﬁ>

<Ccomment></comment>
<projects>
</projectar
<buildSpec>
<buildComma
< TLATHE > C Builc
<argume Shaw In Alt+Shift+w »
</ argum
</buildComnm Cut Ctrl+¥%
<buildComma COPY Ctrl+C
CTAmE >0 Paste Ctrl+v
SEIQUIS o pight
<fargum oo em
< fbuildCormm,
<buildComma Find/Replace with JET Model Reference. .. Cirl+R
Lname>c e
e g Run Az r
. Debug As L4

Figure 5 - 36: Clicking Find/Replace with JET Model Reference

4. SelecttheprojectName attribute and click Replace, and then click Close.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5-21

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

"= Find/Replace With Model References 4

Find: Console Exemplar

Replace with: | <c:get select="%console/@projectiame” /=

Select model reference:

= [&] root
=-[&] console Mew...

(@ name

@ package -

@ consoleDirectory

@ handlerDirectory

@ﬂ handlerPackage

5 —

[e] command

Whole word
Case sensitive

Close

Figure5 - 37: Sdlecting projectName
5. Thestring in the template will be replaced by the correct <c: get > tag.

=
E! console. transform

<?xml wersion="1.0% encnding="U‘I‘F—B"?>| [ﬁ]
<projectDe=scripition=
<name¥<c:get select="$cnnsolef@projectNameD/ana.me:r
< COTOME IT 7 COMMEN G =

<projects>
</projectcs>
<buildSpecs
<buildCommand:
<name>com.ibm.etools.common.migration.MigrationBuil:

Figure5 - 38: The string replaced by <c:get>

5-22 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

6. Closetheproject.jet template and open the ICommandHandler.java.jet template. Usethe
Find/Replace with JET Model References dialog to replace the package name with the correct <c : get > tag.

B *console.transform 2| *ICommandHandler.java.jet &3 =8
package @:get select="ESconsole/Epackage"™ 1’9

public interface ICommandHandler
public String getCommandWName () ;
public wvoid help () :

public wvoid performCommand (String[] arg):

Figure5 - 39: The string replaced by <c:get>
7. Opentemplate console.java.jet and replace the package name with areference to the package attribute.

El *console.transform Ei *Conzole.java.jet &3 =0

package <c:get select="S2console/@packags" ,-">;| A

import java.io.BufferedReader;
import java.io.IC0Exception;

import java.io.InputStreamBeader;
import java.util.Vector;

com.mycorp. congole . . handler, AddHandler;
com.mycorp. congole . handler, RepeatHandler;
com.mycorn. console handler, SampleHandler:

public cla=s Con=ole

Figure5 - 40: The import statements that need to be updated

© Copyright IBM Corp. 2007 5-23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

8. Notethat thereisalist of three import statements which will vary from application to application of the
transform. Y ou need to generate one import line for each command object defined for the console. Y ou first add
the <c:iterate> tag:

[*console.transform 2| *Console.java.jet &3 = 0

package <c:get select="Zconsole/Epackage™ [>: _A:
import java.io.BufferedReader;

import java.io.ICException;

import java.io.InputStreamBeader;

import java.util.Vector;

<ciiterate select="Sconsole/command”™ wvar="command":>
i import com.mycorp.console. handler.SampleHandler:
</c:iterate>»

Figure5 - 41: Replacing the package name with a reference to the package attribute

9. Now usethe Find/Replace with JET Model Reference dialog to replace the strings
com.mycorp.console.handler and SampleHandler With the appropriate tags.

<c:iterate select="S5console/command”™ wvar="command":>

import <c:get select="%console/EhandlerPackage” />.<c:get select
</fciiterates

Figure 5 - 42: Replacing strings with tags
10. Mark up asimilar list further down in the template:

private wolid init()
Vector<ICommandHandler> v = new Vector<ICommandHandler>

<o:iterate select="Sconsole/command”™ wvar="command":>
v.addElement (new <c:get select="%command/Ehandlername"” ;
<Ic:iterateﬂ

Figure5 - 43: Replacing strings with tags

11. Edit thetemplate sampleHandler.java.jet. Replace the following strings with references to the appropriate
attributes in the following order:

com.mycorp.console.handler
com.mycorp.console
SampleHandler

sample (with command name)

12. Note the implementation of the performCommand method. There are what turn out to be alist of local variables
that correspond to the types command arguments. Each argument seems to have a name, alocal variable name,
and atype.

5-24 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

-
Bl *conscle. transform

= O

"

¥

*f

/¥ [(non-Jawvadoc)
* [@zee <c:get select="%console/@package” />.ICommandHandlea

public void performCommand (String[] arg) {

String

int arg i

arg s;

boolean arg bq
float arg £

try {

(]

System.
Syatem.
Syatem.
Sy=stem.

arg i = Integer.parselnt(arg[l]);

arg s = argl2]:
arg b = Boolean.parzeBoolean(arg[3]):

arg £ = Float.parseFloatiarg[4]):

} catch
Sy=stem.out.println ("Bad argument: "+e);
return;

{(HumberFormatException e} {

out.println("int "+arg_i);
out.println("String "+arg_s):
out.println("boolean "+arg b):
out.println("float "+arg f):

1]]

)

© Copyright IBM Corp. 2007

Figure5 - 44: Local variables of performCommand

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5-25

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

13. You need to go back to the Exemplar Authoring tool and add a new model type (argument) and two attributes
(name and type) to the mode.

= TTETTETET= =TT
i@ handlerPackage
nj'ﬁ;-nil projectMame
=8| command

T Create Fle: SampleHandler java

| = Create File: SampleHandler . properties
+ Tg Create Project: Console Exemplar
% |2 Create File: .classpath

Figure5 - 45: Adding argument model type

14. After running the Update Project action again, you can continue to mark up the SampleHandler.java.jet
template. In the process you determine that a new derived attribute needs to be created. Return to the Exemplar
Authoring tool and add a new derived attribute named varName under the argument element:

‘) Create New Derived Attribute

Attribute name: | varMame

Exemplar text: | arg_i

Calculation:

arg_{Sargument/@name} [Insert Model Reference... l

[QK H Cancel]

Figure 5 - 46: Defining the varName derived attribute
15. Select File> Save All.

16. Run the Update Project action again.

17. Addin avariable that will be used for accessing the array of elements passed into the handler. Then addin a
declaration for the local variables:

#/ v
public void performCommand (String[] arg) {

<c:iterate select="£command/arg" var="arg">
<c:get select="$arg/@type" /> arg <c:get select="farg/@name" /;
</c:iterate>
<c:setVariable select=" 1 " var="index" />
try {
<c:userRegion>
Iz s

1 <

Figure5 - 47: Defining a counter and the local variable
18. Mark up the section of code that converts the string arguments into the correct types:

5-26 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 — The Console Transform

*/
public void performCommand (String[] arg) {

<c:iterate select="Scommand/arg" var="arg"»
<ciget select="Sarg/@type” /> arg <c:iget select="farg/@name" />;
</c:iteratex
<cisetVariable select=" 1 " var="index" />
try {
<c:userRegion>
/e
// Start of business logic
<crinitialCode>
/i
<ciiterate select="$command/arg" var="arg">
<c:choose select="$arg/Etype™>
<c:when test="'String'">
<c:get select="Sarg/@varName" /> = arg[<c:get select="Sindex" />]:;<c:setVariable select=" Sindex + 1 " var="index" />
</crwhen>
<c:when test="'int'">
<ciget select="$arg/@varName" /> = Integer.parselnt (arg[<ciget select="$index" /»>]);<cisetVariable select=" $index + 1 " var="index" />
</c:when>
<c:when test="'float'">
<ciget select="Sarg/@varName" /> = Float.parseFloat (arg[<c:get select="Sindex" />]);<c:setVariable select=" Sindex + 1 " var="index" />
</crwhen>
<c:iwhen test="'boolean'">
<

o

iget select="%arg/@varMName" /> = Boolean.parseBoolean(arg[<ciget select="$index" />]);<c:isetVariable select=" $index + 1 " war="index" />
</c:when>
<c:otherwise>
<c:log severity="error"y<c:get select="$arg/@type"/» not known</c:log>
</c:otherwise>
</c:choose>
</c:iteratex
} catch (NumberFormatException e) {
System.out.println("Bad argument: "+e);
return;

i

<c:iterate select="S5command/arg™ var="arg">
System.out.pripgln("<ciget select="$arg/@type” /> <ciget select="§arg/@name” /> "+arg_<c:get select="%arg/Ename” />);

</c:iterate>

/i
</c:initialCode>

// End of business logic

/i
</c:userRegion>

}

Figure5 - 48: Final Markup
19. Select File> Save All.

20. Update the samplexml file to include the following:

<r oot >
<consol e name="Fred" package="org.fred.test">
<comand narme="nul ti ply" hel p="nultiplies two nunbers">
<arg nane="opl" type="int" />
<arg nane="op2" type="int" [>
</ command>
<command nare="I| og" hel p="10gs a nessage">
<arg nane="severe" type="bool ean" />
<arg nane="nmessage" type="String" [>
</ conmand>
<command name="pai nt" hel p="paints a portion of the screen">
<arg nane="length" type="float" />
<arg nane="w dth" type="float" />
<arg nane="color" type="String" />
</ conmand>
</ consol e>
</root >

21. Select File> SaveAll.
22. Review and Test.

© Copyright IBM Corp. 2007 5-27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

5-28 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.1:; Introduction to EMF

Create EMF Model and Editor for Console Transformation Input File
Objectives
After completing this lab, you will be able to:

» Import an XML Schemafileinto EMF.

» Generate EMF Framework based code.

> Create an EMF based Editor which acts as afront-end to a JET transformation
Given
Thislab has no inputs.
Scenario

In thislab, you will create an EMF based API for the input for the Console Transformation example. Y ou will also
create an automatically generated non-graphical editor for Console Transformation input files.

Task 1: Create and Prepare the Workspace

In this task you make sure switch to and prepare a new Workspace.
1. Open Rational Software Architect with a new workspace for thislab, suchasc: \EMF Lab Workspace.

2. Open the Preferences Window, select menu Window > Preferences. Expand the General option and select
Capabilities. Find Eclipse Developer, Developer, or Development in the Capabilities list and make sure that
the checkbox is selected. If the checkbox is empty or isfilled in with a square, click it until you see a check
mark. Thisenablesall of the Eclipse Developer capabilities, which includes EMF.

© Copyright IBM Corp. 2007 6.11-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

& preferences

kype Filker bext Capabilities P

A Capabilities allow vou to enable or disable various product cormponents, These

+- Appearance capabilities are grouped according to a set of predefined categories.
Capabilities

+ - ComparefPatch

Content: Types Prompt when enabling capabilities

3 Editors Capabilities; Description:
keys |:| Q;‘.Enterprise Java Developer
Perspectives [J =3 web Service Developer
Search [C2 RSx APT Migration
Startup and Shutday l'_:! Requirements Management I
‘Web Browser [®] Cg Modsling
welcome [Data Reguires:
+- Workspace = -
)) (lv] Ud Eclipse Developer
+|- Ackive Correlation Techn K
+- Agent Controller o feam 3
+- Analysis F >
+- Ank
Backward Compatibility [Enable All] [Disable all]
H- O+ w
< 5 [Restore QeFauIts] [apply]
@ I 94 l ’ Cancel]

Figure 6.1-1: Enabling the Eclipse Developer capabilities
3. Click OK when you are done.

4. Import the project called 1ab. console. transform from the Project Interchangefile
LabConsoleTransformPI.zip.

Task 2: Create an EMF Project

In thistask you use the generated input file format from the Console Transformation to create an EMF model of the
input file. Specificaly, an ECorefile named input . ecore and an XML Schema Definition file named
schema . xsd both describe the input file format. For thislab, you will actualy use schema . xsd.

1. Opentheproject 1ab.console.transform. Make acopy of schema.xsd named input.xsd. The name of
the EMF project files are based on the name of the schemafile.

Right-click input . xsd and select New > Project. Select the project type of EMF Project and click Next.
Name the project lab.console.input and click Next.
Select XML Schema for the Importer and click Next.

The input . xsd file should already be entered into the M odel URI text field. Click the Load button next to it
and then Next.

U S

6. Click Finish on thefinal page of the project wizard.

A new project named lab.console. input iscreated. Thefilemodel/Input.ecore containsthe EMF Data
Schema and the filemodel/input . genmodel contains the code generation settings. Review both files.

Task 3: Modify Code Generation Settings and Generate Code

In thistask, you will fine-tune the code generation settings and generate the code.

1. Make surethat thefile input . genmodel isopen. Y ou should see an editor like the one pictured below. If you
just see atext file, go back to Task 1 and make sure that your workspace has Eclipse Development (or just
Development) capabilities turned on.

6.1-2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.1.1 — Introduction to EMF

B input.genmodsl X

Input

2. Right-click the nested I nput node and select Show Properties View.

B input.genmaodal
= B Inp
Generate Model Code

U B R R

Refresh

{ Show Properties Wiew)

3. Inthe Properties view, go to the top of thelist of properties, find the property named Base Packagein the All
section, and change it to 1ab. console. For the code that is generated, that isthe prefix that will be used for all
new projects and packages.

input,.genmmodel &2

= B Input
Input

Property Yalue
= Al
@__ase Package = lab.console
Prefix = Input

= Ecore

4. Right-click anywherein the input.genmodel editor and click Generate All. That adds the input model AP
code to the current project (1ab.console. input). It createsthe following new projects:
lab.console.input.edit, lab.console. input.editor and lab.console. input.test.
lab.console. input.editor isafully functional non-graphical editor.

Task 4: Test the Generated Editor
In thistask, you will test the generated editor.

1. InNavigator or Package Explorer, right-click the project named 1ab. console. input.editor and select
Run As> Eclipse Application. Then wait for the run-time instance of the workbench to launch.

2. Intherun-time workbench, create a simple project named console. test.
3. Right-click the new project name and select New > Other. Select the Input Model wizard and click Next.
4. Accept the default of my . input and click Finish.
5. My.input should be opened in an editor that looks like the following.
© Copyright IBM Corp. 2007 6.1-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

|._ﬁ_~, Resaurce Set

=] @ platForm: fresourcefconsole, kesk My, input
=~ < Document Roak
4 <roaot> Root

6. Expand the nodes as shown, right-click <root> Root and select New Child > Console. That creates a new
Console entry in the XML file.

7. Right-click the new Console node and select Show Properties View. In the Properties view, enter My
Console asthe Name and my . console asthe Package.

Ll #My.input 52
|._|>_“| Resource Set

= @ platfarm: resourceconsole, besk My input
= 4+ Document Roak
=4 <root> Roak
4 Console My Consale

Selection | Parent | Lisk | Tree | Table | Tree with Columns

IEEl = Properties X Console

Properky:

U= My Console
I iy, console

8. Right-click Console and click New Child > Command. Name the new Command echo.

9. Right-click the new Command echo and click New Child > Arg. Enter the Name of argo and Type of
String.

10. Enter any additional Commands and Args that you want. Y ou can even enter multiple consoles.

11. Save and close My.input.

12. It'seasier to test the existing transformation if the file has an XML extension, so rename My.input to
My.input.xml.

TIP: Right-click My . input and click Refactor > Rename. Also note that after the file is renamed the
generated editor is no longer applicable.

13. Right-click My.input.xml and click Run As> Input for JET Transformation. In the Properties page that
appears, select 1ab. console. transformasthe ID. Then click OK to run the transformation.

14. The project My Console Console (and any other consolesin your file) are generated.

15. Review the generated code.

16. Close the run-time workbench by selecting File > Exit.

6.1-4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.2: EMF Optional Lab

Create Organization Chart Model

Objectives

After completing this lab, you will be able to:
» Define an object model using the EMF framework.
» Generate EMF Framework based code.

» Usean outline-based text editor to enter and manage data based on your object model saving the resultsto
an XML file.

Given
Thislab has no inputs.
Scenario

Thislab creates a simple model of an Organizational Chart from scratch. This lab also creates a simple non-
graphical editor.

© Copyright IBM Corp. 2007 6.2-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 1: Make sure that EMF Capabilities are turned on

In this task, you make sure that EMF Capabilities are turned on in the Rational Software Architect Workspace that
you are using for thislab.

1. Open Rational Software Architect with a new workspace for thislab, such asc: \EMF Lab Workspace.

2. Open the Preferences window, select menu Window > Prefer ences. Expand the General option and select
Capabilities. Find Eclipse Developer, Developer or Development in the Capabilities list and make sure that
the checkbox is selected. If the checkbox is empty or isfilled in with a square, click it until you see a check
mark. This enables all of the Eclipse Developer capabilities, which includes EMF.

& Preferences

tvpe Filker bext Capabilities =l

- Zapabilities allov wou ko enable or disable various produck companents, These

+- Appesrance capahilities are grouped according to a set of predefined categories.
Capabilities

+- Compare/Patch

Content Types Prompt when enabling capabilities

+- Editars Capahilities: Description:
Keys] L2 Enterprise Java Developer #
Perspectives [] 2 web Service Developer
Search [] 3 RSx APT Migration
Startup and Shutdow C®Requirements Management I
Web Browser [C2 Modeling
ielinsme 2 Data Fequires;
+- Warkspace =
i s ([v] L2 Edlipse Developer
+- Ackive Correlation Techn DI
+- Agent Controller g et w
+- Analysis £ S
+- Ank
Backward Compatibility [Enable all] [Disable Al
H- CIC+H+ "
5 5 [Restnre Qel‘aults] [Apply]
(7 [2k] [Zancel l

Figure 6.2-1: Enabling the Eclipse Developer capabilities
3. Click OK when you are done.

Task 2: Create an empty EMF Project

In this task you create an empty EMF project.
1. Select File> New > Project.

2. Inthe New Project wizard, type emf in the entry field on the top of the window. That will show al of the
project types that have EMF in their name. Then select Empty EMF Project and click Next.

6.2-2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 — EMF Optional Lab

& New Project ['5—<|

Wyizards:

Select a wizard

Zreate an empky Java project, setting up the classpath to use EMF |

emf

=X

== Eclipse Modeling Frarnewark,

[Z1.75, FMIET TFT Trancharrmabinne

Figure 6.2-2: Creating an empty EMF Project

3. For the name of the project enter com. tutorial .orgchart. Then click Finish.

Task 3: Create and initialize orgchart.ecore

Ecoreisthefile format and extension for defining EMF-based data structures. In this task, you create an ecore file

for the Orgchart definition.

1. Expand the project (in Navigator or Project Explorer), right-click the model directory and click New > Other.

2. Inthewizard dialog, enter ecore in the topmost edit field. Then double-click Ecore M odel from the list.

o
Select a wizard

Create a new Ecore model

Wizards:

Cerore)

Ei} Ecore ko XML Model
S %50 ko Ecore Model

Figure 6.2-3: Creating an Ecore Model

Namethefile orgchart . ecore and click Finish.

4. Thenew ecorefileisautomatically opened with an Ecore Model Editor, which displays the contents of the file
in atree structure. Expand the root level node. Under that you will find anode labeled null. Right-click that
null node and select Show Properties View.

© Copyright IBM Corp. 2007

6.2-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

= @ olatFarn; \resource)carm, tukarial . arachartmodel forgchart, ecore
Q- B

Tasks | 2| Properties 53

Property Yalue
EFactory Instance b nuall
Mame =
Ms Prefix =
Ms LRI =

Figure 6.2-4: Viewing the properties for the null node
5. Inthe Propertiesview, set Nameto orgchart, NsPrefix to oc, and NsURI t0 com. tutorial .orgchart.

TIP: Notethat Ns Prefix is the namespace prefix used in XML files used to store orgchart data, and Ns URI is
the unique namespace URI for the orgchart data. In this example, you are simply using the project name as
the URI, but it does not have to be the same.

Task 4: Define the data structures

Now it istime to define the structure of the orgchart data.

1. When you work with the resulting Org Chart data, you want to be able to store an Org Chart in asingle XML
file. The simplest way to do that isto define a classin the ecore file that corresponds to the contents of the XML
file. In the Ecore Editor for orgchart . ecore, right-click the orgchart package and click New Child >
EClass.

2 *orgehart.ecore X

= @ platfFarm: fresourcefcom. tukarial . orgechartmaodelforgchart ecore

< Undo Set

= EAnnatation ‘

o EData Tvoe

Figure 6.2-5: Adding a child

2. Inthe Properties view for the new class, enter orgchart asthe Name of the class. Thisisthe classthat
corresponds to one OrgChart (and its corresponding datafile).

6.2-4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 — EMF Optional Lab

& *orgchart.ecore 52

= @ platfFaorm: fresource)com, bukarial, orgchart fmodelforgchart . ecore
= ## aorgchart
H orgchart

Property Yalue
Abskrack 1o False
Default Yalue h=
ESuper Tvpes
Instance Class Mame
Ioterface

_ Orgchart

Figure 6.2-6: Specifying a name

3. Addtwo more classes to the orgchart package the same way: Employee and Department. You will keep track
of employee and department information in the org charts.

#) argchart.ecore 53

= @ platform: fresourcecom. tutorial. orgchart/modelforgehart . ecore
=8 orgchart
H orgchart
H Employves
E Department

Figure 6.2-7: View after adding two additional classes

4. You need to specify that Employee classes will be stored in an OrgChart (in the same file). To do that, create a
containment relationship from OrgChart to Employee. Right-click OrgChart in the tree and select New Child
> EReference. In the Properties, set Containment to true, EType to Employee, Nameto employees, and
Upper Bound to -1. The other default values should be OK. Containment of true indicates that thisisa
containment relationship. An Upper Bound of -1 indicates that their can be any number of employeesin an
OrgChart.

© Copyright IBM Corp. 2007 6.2-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

=] platform:resource/conm, tbukarial, orgchark maodelfor:;
=88 orgchart
=+ H orgchart

¥4 crployvees | Employes
H Employves
E Department

Tasks | =l Properties &7

Property Yalue
hangeable L brUE
Conkainer L False

@ntainment L brue __-_:)

Default Yalue =

Default Yalue Likeral

- LTIN |

Derived 1 False

EConkaining Class H orgchart

ECpposite

EReference Tune E E

ETvpe H Employes)

Lower Bound 30

Marry 1% brue
@me 1= employvees

Crdered L brue

Required L False

Resaolve Proxies Ly brue

Transienk L False

Unique Ly brue

Unsetkable L False
CI__I-_p_per Bound Ly -1

Yolakile L False

Figure 6.2-8: Specifying properties for the containment relationship

5. Likewise, add another containment relationship for Departments. Repeat the last steps, but thistime set EType
to Department and Nameto departments.

6. Next, you will define the name field for Departments. In the tree, right-click the Department class and select
New Child > EAttribute. In the Properties of the new Attribute set the ETypeto EString
<java.lang.String> and the Nameto name. Note that the type of the attribute is the EMF type EString. The
additional text of <java.lang.String> is areminder that the EString EMF data type corresponds to the
javalang.String Javatype.

6.2-6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 — EMF Optional Lab

H Sy ee
= E Cepartment
name : ESkring

Tasks | & Properties &3

Property Walue
hangeable L brLE
Default Yalue =
Defaulk Value Likeral =
Detived L False

Eattribute Tvpe B EString <java.lang. skring =
EConkaining Class Q Departrent
C:_ﬁ';.fpe B EString -::java.lang.Strin@
] L False
Lower Bound 30
Ay 1
Mame 1= name
Ordered Lk Erue
Fequired L False
Transienkt L False
Unique Ly brue
IUnsettable L False
pper Bound gl
YWolakile L False

Figure 6.2-9: Creating a name field for Departments
7. Likewise, add the following attributes to Employee: Name of type EString and jobTitle of type EString.

8. Next, add arelationship from Department to Employee so that Departments can reference the multiple
Employeesthat are in them. Note that thiswill NOT be a containment relationship. In EMF, containment
relationships correspond to physical storage of related classes. Both Employees and Departments are already
stored in the same Org Chart. Right-click the Department class and select New Child > EReference. In the
Properties, set ETypeto Employee, Nameto members and Upper Bound to -1, since a Department can have
any number of employees.

9. Next, add arelationship from Employee to Employee to indicate which other employees are being managed.
Right-click the Employee class and select New Child > EReference. In the Properties, set ETypeto
Employee, Nametomanages and Upper Bound to -1.

10. Your model is defined. Save the results by selecting File > Save All.

Task 5: Create the ‘EMF Model’ (orgchart.genmodel)

Orgchart.ecore now contains the definition of your Org Chart data model. Next, you need to create another file with
an extension of genmodel. EMF refersto thisfile asthe ' EMF Model’. The genmodel (or 'EMF Modd’) file
contains al of the additional information and settings needed to generate Java source files that correspond to the
model. Genmodel files maintain alink to their corresponding ecorefile.

1. Make sure that the current contents of the ecore file are saved.

2. Inthe Navigator or Package Explorer view, right-click the file orgchart.ecore, which is located in the model
directory of the com. tutorial.orgchart project. From the pop-up menu select New > Other.

© Copyright IBM Corp. 2007 6.2-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

IR a. -

= IE‘J com. kutaorial orgchart
= bin
[= META-INF
== madel

dor lil.l:ha rk.eco rE‘.

R ——
[= src
'_\| 1

" ety

Figure 6.2-10: Launching the New wizard

3. TypeeMF inthe new wizard' stext field, select EMF Model, and click Next.

jzards:
(emF)

== Eclipse Modeling Framewark,
VEEMF Model
1% EMF Project
TE Crembt s CRAE Feminek

Figure 6.2-11: Sdecting the EMF Model

The name of the file should already be set to orchart . genmodel in the model directory of the
com.tutorial.orgchart project. Correct it if itisn’t. Click Next.

Select Ecore modéd asthe Model Importer and click Next.

Make sure that the orgchart . ecore fileis selected as the Model URI (as shown below). Then click the L oad
button next to the text box. That actually loads the definition from the ecore file. Then click Next.

Ecore Import ﬂ_
Specify ane or more ' ecore’ of 'emof’ URIs and try bo load them

i

Model URIs: Browse File Syskem. ..] [Brnwse Warkspace, ..]

(=)

Figure 6.2-12: Load the definition from the ecorefile
The checkbox next to orgchart should be selected. Click Finish.

The new file orgchart . genmodel is created and automatically opened. It contains numerous options for
controlling how Java code is created that corresponds to the ecore definition.

Right now, you will only make one change. Y ou want to generate source code for the orgchart in the package
com.tutorial.orgchart. Because you defined a package called orgchart in ecore, right now, the default
output java package isjust orgchart. You need to define a package prefix which is called the base package.
In the genmodel editor, expand the root node and select the nested orgchart package node. In the properties
change the property Base Packageto com. tutorial. That prefixes com.tutorial in front of orgchart in the
generated Javafiles.

6.2-8

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 — EMF Optional Lab

@ orgchart.ecore orgchart.genmodel E:D

Ill.

Property Walue

G
Base Package = u:u:um.tutu:-ri_aD
Prefix I'= Orgchart

[=] Ecare

Figure 6.2-13: Specifying the Base Package
10. Savethe genmodel file.

Task 6: Generate the runtime Java code

Next, you need to generate the custom Java code that implements your model.

1. Inthe genmodel editor, right-click anywhere in the editor and select Generate Model Code. That adds the Java
code and plug-in definition information to the current project.

ﬂl:l orgchart, ecore B orgchart.genmodsl X

Crgchark

D

Generate Model Code

Generate Edit Code

Figure 6.2-14: Generating the Model Code

2. Review thefilesin the Package Explorer. Thecircled files and packages were added as aresult of generating
the Model Code.

© Copyright IBM Corp. 2007 6.2-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

3.

i Package Explorer Hieratchy

= ljbj-écum.tuturial.urgchart
== s
+- 84 com.tukorial, orgehart
+ :-E com. bukarial, argechart.irmpl
+- £ com.butorial, orgehart. kil
JRE owstem Library [Jak]
B Plug-in Dependencies
=~ META-IMF
MANIFEST.MF
=l[= model
#| orgchart, ecore
ta orgchart, genmodel
o build. properties
plugin, properties
<1 plugin. <l

+

+

Figure 6.2-15: The files that were generated

In the genmodel editor, right-click anywhere and select Generate Edit Code. This creates a brand new plug-in
project called com. tutorial.orgchart .edit. The edit project contains model specific utility classes. In
particular, it is used by the editor code (see the next step).

Likewise, Generate Editor Code which creates a new plug-in project called
com.tutorial.orgchart.editor. The editor isanon-graphical editor for working with orgchart data files
(which are currently defined as XML).

Task 7: Generate the runtime Java code

Y ou now have the source code for afully functional non-graphical OrgChart Eclipse Editor.

1.

6.2-10

In the Package Explorer view in the Java (or Plug-in Development) Perspectives (Window > Open
Per spective >, right-click com. tutorial.orgchart.editor and click Run As> Eclipse Application.
That will launch arun-time instance of the workbench. with an active OrgChart editor plug-in.

In the run-time workbench, close the Welcome screen (if it is open). Select File > New > Project. In the New
Project wizard, select General > Project (which isasimple, general purpose project).. Click Next, name the
project Test OrgChart, and click Finish.

In Navigator (or Package Explorer), right-click the Test OrgChart project and click New > Other . Then
typein org in the Filter text box, select Orgchart Model and click Next.

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

© Copyright IBM Corp. 2007

Select a wizard

Create a new Orgchart model

Wizards;

=l [Ewample-EMP-pedel.Creation Wizards
i) Orgchart Model

Figure 6.2-16: Selecting the Orgchart Model

4. Nameit test.orgchart and click Next.
Select Org Chart asthe model object and click Finish.

Lab 6.22 — EMF Optional Lab

6. Thenew Org Chart is automatically opened up in your (non-graphical) custom editor. Expand the root node so
that you can see the nested Org Chart object. Y ou can right-click it and add Employees and Departments.

7. Thisisone sample test scenario:

a. Add thefollowing employees. Pat S, John D, Susan R, Bill C, Fred M, and Betty A. Set their job titlesto
anything that you want. Remember that you need to go to the Properties view to edit names and Job Titles.

Oneway istoright-click aclass object and select Show Properties View.

b. Specify that Pat S manages John D and Susan R. To do that, go to the propertiesfor Pat S. Click the *’
button next to M anages. Select John D and click Add, and then select Susan R and click Add.

Likewise, John D manages Bill C, Fred M, and Betty A.
d. Add aDepartment called ‘ Information Services' and add John D, Bill C, Fred M, and Betty A toit.

e. You should see something like the following screen. Note that you see the properties for John.

© Copyright IBM Corp. 2007

6.2-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

B *reckorgehart X

L Resource Set

= & platfarm:/resourcelTest OrgCharttest, argchart
=l 4= Crg Chart
<+ Emploves Pat 5
SR Erriployee John D
<4+ Employes Susan R
<+ Employes Bill C
<+ Employves Fred M
4 Employee Betby &
4 Department Information Services

Selection | Parent | Lisk | Tree | Table | Tree with Columns

Tasks | = Properties 23

Property Yalue
Job Title 1= Director
Manages < Employes Bill C, Emploves Fred M, Employes Betby &
Mame 1= John D

Figure 6.2-17: Theresulting org chart
8. Savethe current orgchart, select File > Save.

9. Thefiletest.orgchart isan XML file. Let’stake aquick look at the contents. Right-click the file test.orgchart
and select Open With > Text Editor. Y ou should see the contents of the XML file.

1) test.orgchart B test.orgchart X

<?xmwl wersicon="1.0" encoding="UTF-3"2>-

<oc:OrgChart ®mi:version="Z2Z.0" xmlns:xmi="http://www.omyg.org/XMIT xmlns:oc="com. tutol
<employees hame="Pat 3" JjobhTitle="VP" manages="//lemployee=s.1 //Bemployees.2"/>
<employees name="John D" johTitle="Director" manages="//[Hemployeez.3 //lemployees.:
<employees hame="3usan R" jobTitle="Director"™/ />
<employees name="BEill C"/»
<employees name="Fred M"/>
<employees name="EBetty 4"/ >
<departments name="Information Services" mewbers="//femplovees.l //Hemployees.3 /[

<fociOrgCharts>

Figure 6.2-18: Viewing the xml source for the org chart
10. Close the run-time instance of the workbench when you are done.

Task 8: Generate the runtime Java code

The default display label for employeesis“Employee,” followed by their name. In this optional task, you will
change it to their job title followed by their name.

To do this, you will modify some of the generated code, but also indicate that you want to save the custom changes
so that it is preserved the next time(s) that code is generated.

1. Open either the Java or Plug-in Development perspective.

6.2-12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 — EMF Optional Lab

2. Openthefile

com.tutorial.orgchart.edit/src/com.tutorial.orgchart.provider/EmployeeltemProvider(.
java)'.

i Package Explorer Flug-ins =0

i’y
4

‘_;‘J comn. tukorial, orgchart
= f_jj comn, tukorial, orgchart, edit
=% s
= :-E com.bukarial, orgchart, provider
m DepartmentItemProvider, java

_m OrgCharkIbemProvider . java
_m CrgchartIbemProvideradapterFackory. java
Bl IRE Swstem Library [jdk]

Figure 6.2-19: The EmployeeltemProvider classin the Package Explorer

3. Gotothefunction getText (Object object). Thereisajavadoc tag egenerated inthe comments for
getText (). That isaflag that this function was automatically generated, and will be overwritten if you
generate code again. Change it to anything else or delete it to take manual ownership of the function. In this
example, change it to enot -generated. If you use a consistent naming guideline, then you can quickly find all
of the functions that you are manually maintaining.

4. Changethe body of the function to the following:
public String getText (Object object) {

String jobTitle = ((Employee)object) .getJobTitle() ;

String name = ((Employee)object) .getName () ;

String retval = getString(" UI Employee type"); // generic label
if (jobTitle != null) {

retval = jobTitle;

}
if (name != null) {

retval = retval + " " + name;

}

return retval;

}

ThisgetText function returns the display label for any employee. This new version usestheir job title, if it is
available.

5. Runand test the results again as described above. Note that there is no need to regenerate the code. Y ou should
now see something like the following.

© Copyright IBM Corp. 2007 6.2-13
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

=l & platform:fresource/Test OrgCharttest. orgchart
=< Org Chart

VP Pak 5

< Directar John D

<= Director Susan R

<4+ 5 Developer Bill C

<= Developer Fred M

<= Developer Betty A

4 Department Information Services

Figure 6.2-20: The updated view of your Org Chart

6.2-14 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 7 — Customize a Transformation

Objectives

After completing this lab, you will be able to:

» Apply a transformation.

» Customize the transformation to configure the location of the generated code.

Given

No lab artifacts are provided for this lab.

Scenario

In this lab, you will create a new workspace so that you will have a clean area in which to perform your

development. Next you will create projects that will be used by the UML-to-Java transformation to generate
Java™ classes from UML model elements.

e The first project will be the source project that will be populated with the UML modeling elements.

e The second project will be the target project that will contain the Java classes that are a result of
applying the standard IBM Rational Software Architect UML-to-Java transformation.

When the transformation is run, default names will be assigned to the files and folders it generates. Your team
uses a naming convention so you will need to customize the transformation to comply with the naming
convention. A mapping model will be used to implement your naming convention by specifying alternate
names for the generated files and folders.

© Copyright IBM Corp. 2007 7-1
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task

1: Create the Workspace

In this

task, you will switch to a new workspace named Cust oni zeTr ansf or mat i onWbr kspace that you

will create.

1. From the File menu, select Switch Workspace.

2. In

C:

the Workspace Launcher dialog, replace the displayed text with
\Workshop\StudentWork\CustomizeTransformationWorkspace and click the OK button.

3. Close the Welcome screen.

Task

2: Create the Source and Target Projects

In this

task, you will set up two new projects.

1. Create a new UML project named TransformationModels with a model named Source Model.

a)

b)

On the File menu, select New > Project.

Replace type filter text with UML

) New Project

Select a wizard —

Create a new UML modeling project

Wizards:
umML "
| = UML Project l
== Modeling
*s¥ UML Project
== UML Extensibility
*#5" UML Profile Project
=-= Bxamples
=+ RMP (Rational Modeling Platform] Plug-ins

[show All wizards.

Figure 7-1: Creating a New UML Project
Select UML Project and click Next.

Name the project TransformationModels and click Next.

Change the file name to Sour ce Model , select the default diagram type as Class Diagram and
click Finish.

If asked to switch modeling perspectives, click Yes.
© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2. Create a new Java project named TransformationTarget.
a) On the File menu, select New > Project.

Lab 7 — Customize a Transformation

b) Inthe New Project wizard, filter for and select Java Project. Click Next.
w.) New Project
Select a wizard
Create a Java project |
Wizards:
Java =
\5 Java Project
; & Java Project from Existing Ant Buildfile
= EXB
B dava
12 Java Project
& Java Project from Existing Ant Buildfile
[Ishow all Wizards.
Figure 7-2: Creating a New Java Project
)

d)

e) If asked to switch to the Java perspective, click No.

Task 3: Populate the Source Project

Name the project TransformationTarget and click Finish.

If asked to enable the Java Development capability, click Yes.

1.

Depar t ment using the action bar on the diagram editor.

Model.emx

In this task, you will create UML modeling elements in the Source Model.

Open the Main diagram within Source Model and add two new classes named Enpl oyee and

Source Model::Main &2

m%%

© Copyright IBM Corp. 2007

7-3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 7-3: Adding classes on a diagram using the action bar

2. On the main diagram, use the action bar to add the following attributes and operations to the Employee
class.
Attributes Operations
e salary: float o fire()
e id: String e giveRaise(amount : float)
e name: String
= @ o
=] Employee
| i
Figure 7-4: Adding an attribute to a class using the action bar
TI P: When you add the attribute to the class, you can immediately name it using the syntax nane:

type. A similar process can be followed for operations.

3. Right-click on the class and select Filter-> Show Signature to see operation parameters on the diagram.
4. On the main diagram, use the action bar to add the following attributes and operations to the
Department class.
Attributes Operations
e id: String e cal cul at ePayRai ses()
e budget: float
e maxEnpl oyees: int
5. On the Main Diagram, draw a directed association from Department to Employee.
[Class #
| Employee £ Package
=] Department H class -
Cg salary :float
g id : String 5 id : String E Interface
[Eg Name : 5tring 0| 5@ budget :float / Association +
i fire () &g maxEmployees :int / Generalization

2 giveRaise [amount : float)

%7 &3 calculatePayRaises () . Realization J

IDouble-click to show related elements, click and drag to create a connection.) -

7-4

Figure 7-5: Drawing an association using the diagram

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 7 — Customize a Transformation

Task 4: Apply a UML-to-Java Transformation

You will now apply the standard out of the box transformation to generate some code.

1.
2.

d)

e)

Configure the transformation:

On the Modeling menu, click Transform > New Configuration.

Name the configuration My UML to Java.

a) Select the UML to Java V 1.4 found within the IBM Rational Transformations folder.
b) Set the configuration file destination to /TransformationModels

c) Select Next.

« New Transformation Configuration

Name and Transformation

Name: | My UML to Java

Forward transformation:

E2: Java to UML

E? UML to EIB

EJ UML to Java V1.4
BJ UML to Java V5.0
Ely uML to wsDL

(TransformationModels

Specify the file and transformation information. —

UML to Java V1.4 (com.ibm.xtools.transform.uml2.java.internal.UML2JavaT ransform)

-I-=- IBM Rational Transformations A

Configuration file destination:

’ Next =] [Finish l ’ Cancel

Figure 7-6: Creating the Transformation Configuration

© Copyright IBM Corp. 2007

Open the Models folder and select the Source Model model as the Select source.
Select TransformationTarget project as the Selected target.
f) Click Next.

7-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

) New Transformation Configuration ﬁ

Source and Target

Set the transformation's source and target. -

Eas
Selected source: Selected target: l

==+ TransformationModels =2 TransformationTarget
=% Models
E=1 Source Model
El .project
%24 Source Model.emx
= TransformationTarget

] B

6] [< Back ” Next =] I Finish] ’ Cancel

Figure 7-7: Setting the source and target for a transformation

g Click Next through the next three screens, reviewing the available transformation options.

h) On the Common screen, and enable Create source to target relationships as the Transformation
options.

i) Click Finish.
j) Locate the configuration file in the Project Explorer.

[Project Explorer &2

== TransformationModels
== Diagrams
= % Models
=-E= Source Model
/" (employee:Employed
S (UMLPrimitiveTypes)
Q Department
E Employee

Main
B3 PrimitiveTyges—| —

E® My UML to Java.tc
= TransformationTarget

+

7-6 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 7 — Customize a Transformation
Figure 7-8: The Configuration File in Project Explorer
4. Run the transform.

a) Inthe Project Explorer, select M\y UML to Java.tc, right-click and choose Transform > UML to
Java V1.4.

b) Drag the newly generated classes found in the TransformationTarget onto the Main diagram in
the Source Model. If asked to enable java Modeling capability, click OK.

c) Select the «Java Class» Employee class, right-click and select Filters >Show Type as Association to
show the employee attribute as an association relationship, not as an attribute.

24 FSource Model.emx 2| *Source Model::Main &3 E® My UML to Java

= Employee
= Department
g salary :float 0.1 " . :
g id : 5tring g id : String
[Eg name : 5tring -employee 55 budget :float
43 fire () [Eg maxEmployees tint
&2 giveRaise (amount: float) &, calculatePayRaises ()
aderiues sderver
Derive Derive

B «Java Class» B «lavaClasse

(3 Employee {2 Department

a salary :float 1 o id ; String

o id : String o budget:float

@ name : Stinkmployee 2l = maxEmployees :int
@ getSalary () Ermployes @ getld ()

@ setSalary () = o setld ()

@ getld () o ogetBudget ()

@ setld () “LSER o setBudget ()

@ getMame() @ getMaxEmployees ()
@ setName () @ setMaxEmployees ()
@ fire () @ getEmployes ()

@ giveRaise () o setEmployes ()

o calculatePayRaises ()

Figure 7-9: Diagram of UML elements and generated Java classes

d) Double-click on the «Java Class» Employee to view the generated code.

Task 5: Use a Mapping Model

Use a mapping model to change the names of the classes, and have them generate into specific locations inside
the target model.

1. Setup the mapping model.

a) Double-click on the file My UML to Java.tc in the Project Explorer to open it in the editor view.
b) Select the Mapping tab.
c) On the Mapping tab, choose Enable Mapping, and click New.... Enter a filename of

JavaMappi nghbdel . enx and click Save.

© Copyright IBM Corp. 2007 7-7
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7-8

f)

8

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

24 Source Model.emx E| Source Model::Main E% =My UML to Java.tc &2 =0
[l Enable mapping

Mapping model file name:

\CustomizeTransformationWorkspace\TransformationModels\Mapping Models\JavaMappingModel.emsx E

[Edit Mapping...]

lUpdate Mapping Model...]

Target:

TransformationTarget

Main | B Source and Target| B Properties| B2 Collections | B Mapping | Comman

Figure 7-10: Setting the mapping model to be created
d) Click Edit Mapping....
e)

Select the Department class, change its Mapped Name to be com. ibm.rational .MyDepartment
and click Apply.

% Edit

Edit Mapped Names

Select a model element to set the mapped l: |
narme.

UML Element

= = TransformationModels
= (%= Models
=-E= Source Model
== Employee
Q Department
3 PrimitiveTypes
/" {employee:Employee)

F|

Department
Mapped Name:

com.ibm.rational.MyDepartment]

©) [oK H Close H Apply]

Figure 7-11: Specifying an alternate name for the generated file

Select the Employee class, change its Mapped Name to be

com.ibm.rational.employee.MyEmployee and click Apply.
Click OK.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 7 — Customize a Transformation

L Project Explorer &7

=-1=* TransformationModels
= Diagrams
= Mapping Models
=2 Models
- = JavaMappingModel :

=]

Department

Employee

PrimitiveTypes
=-E= Source Model

E Department

E Employee
Main

B3 PrimitiveTypes

~. (UMLPrimitiveTypes)

/" (employee:Employee)
S (UMLPrimitiveTypes)

= 0
Sh=

=

Y

Figure 7-12: Mapping model in the Model Explorer

2. Delete the classes from the TransformationTarget project.
3. Rerun the My UML to Java configuration.

4. Observe where the classes get created in the target project.

L Project Explorer &2

=-1=F TransformationModels
rg Diagrams
= Mapping Models
(2 Models
E% My UML to Java.tc |
=-1=% TransformationTarget
=3 com.ibm.rational
[J] MyDepartment.java

[J] MyEmployee.java
=i JRE System Library [jd

= com.ibm.rational.employee

=0

==

k]

Figure 7-13: Cenerated classes in the Model Explorer

5. From the File menu, select Save All to save all the projects.

© Copyright IBM Corp. 2007

7-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

7-10 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 — Create a Model to JET2 Transformation

Objectives

After completing this lab, you will be able to:

» Author, run, and test a custom model-to-text transformation using a JET transformation previously created

Given

The following lab artifacts can be found in the Inputs folder for this lab:
» NestedPackageContentsExtractor.java

» OwnedCommentToHelp.txt

» LabConsoleTransformPI.zip

» TestConsoleModel.zip

Scenario

In this lab, you want to provide a graphical front end for defining the classes and operations that need to become
console objects in your JET-implemented console generation transformation. This solution will allow business analysts
to identify which functionality of a system needs to be supported with console operations and the resulting
transformation will create the Java project with the solution. The business analyst will only have to make simple
markups in the UML model of the system and will therefore not see the details of the XML syntax of the input to the
JET transformation. Likewise, this saves a designer or developer from the tedious task of writing the same kind of
console application over and over.

You will use the Transformation with Model mapping capabilities of Rational Software Architect to define how the
source model elements will be mapped to the model that is used as input to the JET transformation. Then you will
generate and run the transformation from this model mapping.

Task 1: Create and Prepare the Workspace

In this task, you will switch to a new workspace named M2JET_Tr ansf or mat i onWr kspace that you will create.

1. From the File menu, select Switch Workspace.

2. You may use the workspace in which you previously created the 1ab.console. transform project by
switching to that workspace and then skipping ahead to step 6.

3. In the Workspace Launcher dialog, replace the displayed text with C: \Workshop\StudentWork\

© Copyright IBM Corp. 2007 8-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

M2JET TransformationWorkspace and click OK.

Close the Welcome screen.

Switch to the Modeling perspective.

From the C: \Workshop\Labs\ Inputs folder in the project interchange file
LabConsoleTransformPI.zip, import the project called lab.console.transform.

Make sure the XML Developer and EMF Developer capabilities are enabled. Go to Window > Preferences and
under General > Capabilities, check XML Developer. Click the Advanced button and, under the Eclipse
Development branch, select Eclipse Modeling Framework. Select OK twice to return to the workbench.

Task 2: Create a New EMF Project

In this task, you will create a new EMF project to hold the EMF representation of the input to the JET transform

and its associated code.

1. On the File menu, click New > Project

2. Replace type filter text with EMF and select EMF Project, then click Next.

3.

' New Project

X

Select a wizard

Create a new Java project with an EMF model

Wizards:

EMF

= (= Eclipse Modeling Framework
1% EMF Project
[9 Empty EMF Project

== EMFT JET Transformations
¥ EMFT JET Project with Exemplar Authoring
¥ EMFT JET Transformation Project

== Transformation Autharing
% EMFT JET Project with Exemplar Authoring
%4 EMFT JET Transformation Project

== Examples

] show All Wizards.

Cancel

Figure 8-1: Creating the EMF project

4. Select Ecore model as the Model Importers, then click Next .

Enter the project name | ab. consol e. t r ansf or m nodel , then click Next.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 — Create a Model to JET2 Transformation

5. Click Browse Workspace to find the file i nput . ecor e in the | ab. consol e. t r ansf or m project and select
it. Click OK then Click Next.

TIP: The input.ecore file was created as part of the JET project creation.

Ecore Import ., _H
Specify one or more '.ecore' or '.emof' URISs, try to load them, and L%f

choose a file name for the generator model

Model URIs: Browse File System...l \Eruwse Workspace...‘
platform:/resource/lab.console.transform/input.ecore

Generator model file name:

input.genmodel

@ [<sek [veis]

Figure 8-2: Import the Ecore model

6. Leave the defaults for the Package Selection and select Finish.

7. The file input .genmodel will display in the editor. Right-click the Input node and click Generate Model
Code.

[tz input.genmodel &2
- B Input
- Generate Model Code%
Generate Edit Code
Generate Editor Code
Generate Test Code
Generate All

Figure 8-3: Generate Model code

8. Observe the packages and files created under the src directory of the model project.

© Copyright IBM Corp. 2007

8-3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

L™ Project Explorer &3 — q.:p ~ =0
= f,_j',‘lEIaI:u.cu:unsu:ule.pru:ujeu:t.mu:udelE A
-2 src
=8 inputschema
=8 impl

+ EI ArgImpl.java
+ m CommandImpl.java
+ m ConsoleImpl.java
*-[J] InputSchemaFactoryImpl.java
*-[J] InputSchemaPackageImpl.java
+ m RootImpl.java
B uti
+ m InputSchemaAdapterFactory. java
+ m InputSchemaSwitch.java
m Arg.java
m Command.java
m Console.java
m InputSchemaFactory.java
m InputSchemaPackage.java
+ EI Root.java
B, JRE System Library [idk]
B Plug-in Dependendies
= META-INF
(= model

|n_-|'1 hiild. nronerties bl

¥ [- -

& - I

+

Figure 8-4: Resulting files from the generation

Task 3: Create a New Plug-in Project with Transformation Mapping

In this task, you will create a new Plug-in Transformation project named
| ab. consol e. transf orm front end to define the mapping from UML to the JET console transformation.

1. On the File menu, click New > Project
2. Replace type filter text with Plug

3. Select Plug-in Project and click Next.

8-4 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

N o o &

Lab 8 — Create a Model to JET2 Transformation

& New Project

Select a wizard
Create a Plug-in Project

Wizards:
Flug

% Plug-in Project

== Plug-in Development
% Plug-in from existing JAR archives
;2 Plug-in Project

== Fluglets
51 Pluglets Project

== Examples
= RMP (Rational Modeling Platform) Plug-ins

[Ishow All wizards.

Cancel

Figure 8-5: Creating the plug-in project

Select Plug-in with Transformation Mapping and click Next.

Name the project lab.console. transform. frontend and then click Next.
Review the Plug-in Content screen, leave all the defaults, and click Next.

On the Templates screen, select Create a plug-in using one of the templates.

) New Plug-in Project

Templates

Select one of the available templates to generate a fully-functioning

plug-in.
[¥] create a plug-in using one of the templates

Available Templates:

< Custom plug-in wizard

[Figure definitions converter

% Hello, World

% Plug-in with a incremental project builg
% Plug-in with a multi-page editor

% Plug-in with an editor

% Plug-in with a popup menu

% Plug-in with a property page
%P\ug-iﬂ with a sub-element counter
5 Plug-in with a view

S Plug-in with Patterns

1% Plug-in with sample help content

El. Plug-in with Transformation

. Plug-in with Transformation Mapping
4 1l b

This wizard creates a standard plug-in
directory structure with the following:

+ Transformation Provider. A
transformation provider is the
mechanism used to define new
transformations.

Transformation Mapping.
Transformations can be authored by
specifying mappings between features
of input and output models.
Extensions Used

.
com.ibm.xtools.transform.core.transforr

e

@ [

< Back][Next > H

Finish H Cancel l

Figure 8-6: Using the Transformation Mapping template

8. On the New Transformation Mapping screen, click Add Model next to Input models.

© Copyright IBM Corp. 2007

8-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

9. On the Load Resources dialog, click Browse Registered Packages.

10. Replace the “*” with “*UML". Select the package http://www.eclipse.org/uml2/2.0.0/UML, then
click OK twice. This selects the UML ecore model for the input model.

TIP: The mapping model uses ecore models as the common model format for mapping.

11. Click Add Model next to Output models. Click Browse Workspace, then select the file i nput . ecor e from
the | ab. consol e. t ransf orm nodel project from within the mode1l folder.

' New Transformation Authoring Project Using Tra...

New Transformation Mapping ,_.‘J"x_
=y —

Create a new model-to-model transformation with the Mapping Editor.

Map name: LbConsoleFrontend
Package name: | lab.console.transform.frontend
Version: 1.0.0

Input models:

platform:/plugin/org.eclipse.uml2.uml/model/UML.ecore
Add Model...

Output models:

platform:/resource/lab.console.transform.model/model/input.ecore

7 [Finish l l Cancel

Figure 8-7: Configuring the transformation project

12. Enter the Map name as LabConsoleFrontend.

13. Click Finish. If asked to switch to the Plug-in Development perspective, select No.

Task 4: Create the Model to Root Mapping

In this task, you will create the first mapping to be used in the transformation. You will create a total of four
mappings before you run the first version of the transformation.

5! LabConsoleFrontend.mapping &2 . 41+ lab.console.transform.frontend
~Mapping Root

LabConsoleFrontend

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 — Create a Model to JET2 Transformation

Figure 8-8: Creating Model to Root mapping
1. Afile called LabConsoleFrontend.mapping is created and opened in the mapping editor.
2. Right-click the LabConsoleFrontend button and select Create Map. Name the map ModelToRoot.

3. The mapping editor toolbar displays with your new map.

£ *LabConsoleFrontend.mapping 2 . 4 lab.console.trang

~Mapping Root

[/1 LabConsoleFrontend]

~ModelToRoot o I = S J[=%

Figure 8-9: The toolbar to be used when creating the mapping

4. Click the leftmost button in the toolbar to add an input object.

»ModelToRoot @%&D . Jl=

[4dd an input object]

Figure 8-10: Use the button on the left to create an input object

5. When the Add Input screen displays, simply start typing the letters mod and the UML Model will be highlighted.
Select OK.

© Copyright IBM Corp. 2007 8-7
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

) Add Input &3

Add Input Element from Input Model

Choose an input element to map to.

Element: Stereotype:

E LinkEndDestructionC|# |
H LiteralBoolean

E LiteralInteger

E LiteralMull

E LiteralSpecification

B LiteralString

B LiteralUnlimitedNatu

H LoopNode Filter Model...

E Manifestation =
H MergeNode
H Message
EH MessageEnd
EH MessageEvent
B MessageOccurrence
B Model |
H MultiplicityElement |
1]

@ ’ OK] I Cancel

Figure 8-11: Specifying the input object

6. Click the second button from the left in the toolbar to add an output object.

+ModelToRoot e =3

=/ 1 Model [Add an output object

L e CAmmmbmbimem [

Figure 8-12: Click the second button from the left to create an output object

1. Select Root and click OK.

Now you are ready to define the transformation between the input and output elements. You want to map the
packagedElement from the UML Model to the console element in the ecore model.

2. Hover the cursor over the packagedElement property of the input model until a handle appears. Select this
handle and drag and drop it onto the console element of the target root. The result will be a transformation of
type Submap, because the cardinality of these elements is greater than 1.

8-8 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8

— Create a Model to JET2 Transformation

~Mapping Root

LabConsoleFrontend

~ModelToRoot

= ¥ Model

eAnnotations
ownedComment

name

visibility
clientDependency
nameExpression
elementImport
packagelmport
ownedRule
owningTemplateParameter
templateParameter
templateBinding
ownedTemplateSignature
packageMerge
packagedElement
profileApplication
viewpoint

= Properties 2

Description
Details File:
Condition

- Map:
Input Filter

Output Filter

| =
= [Root
EAnnotation [] console Console []
Comment []
String
VisibilityKind

Dependency []
StringExpression
ElementImport []
PackageImport []
Constraint []
TemplateParameter
TemplateParameter
TemplateBinding []
TemplateSignature
PackageMerge []
PackageableElement []
ProfileApplication []
String

Tasks Console Bookmarks

Transformation - Submap

model/LabConsoleFrontend.mapping

ConsoleClassToConsole

¥ | New...

Browse...

Figure 8-13: Creating the mapping between the input and output objects

8. On the Details tab of the Properties view, click New and name this new map ConsoleClassToConsole.

9.

Enter Ctrl-Shift-S to save all of your work so far.

Task 5: Create the Console Class to Console Mapping

In this task, you will create the mapping that associates the class from the UML model to the console node in the

output model.

1.

In the Outline View, double-click the ConsoleClassToConsole mapping to open it in the mapping editor.

Note that the input and output elements were selected for you when the mapping was created.

already be set to Console.

Select the input element and delete it. Set the input element to be a UML class. The output element should

Create a transformation between the name of the input Class and the name of the output Console. Hover the

cursor over the name property of the input class until a handle appears. Select this handle and drag and drop it
onto the name element of the target console. The result will be a transformation of type Move. You could also

think of it as a copy.

© Copyright IBM Corp. 2007

8-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4. You want to map the package that the class is in to the package attribute of the console. In order to see the
package attribute of the class, you need to change the filter in the mapping editor. Right-click the editor surface
and select Feature Filters > Advanced.

5. Select the package attribute of the class and open the node so that you can select the package name and connect
it to the package attribute of the console output element. You will leave it as a Move transformation.

TIP: Make the editor larger by double-clicking the tab of the editor.

LabConsoleFrontend
~ConsoleClassToConsole w M|
= 1 Class = IE» Console
eAnnotations EAnnotation [] | name EString
ownedElement Element [] e Estring
= owner Element
ownedComment Comment [] command Command []
name String
visibility VisibilityKind
qualifiedName String
clientDependency Dependency []
namespace Namespace
nameExpression StringExpression
elementImport ElementImport []
packageImport PackageImport []
ownedRule Constraint []
member NamedElement []
importedMember PackageableElement []
ownedMember NamedElement []
isLeaf Boolean
redefinedElement RedefinableElement []
redefinitionContext Classifier []
® owningTemplateParameter TemplateParameter
® templateParameter TemplateParameter
= package Package
eAnnotations EAnnotation []
ownedElement Element []
owner Element
ownedComment Comment []
name String
visibility VisibilityKind
gualifiedame tring

Figure 8-14: The input object with Feature Filters set to Advanced

6. Create a Submap from the ownedOperation of the UML class to the command of the Console. In the Properties
View, Detail tab, create a new map and name it Operat ionToCommand.

TIP: Change the Feature Filter back to Basic in order to be able to make the connection in the editor.

7. Enter Ctrl-sShift-S to save all of your work so far.

Task 6: Create the Operation to Command Mapping

In this task, you will create the mapping that associates operations from the input UML class to the commands
in the output console application.

1. Inthe Outline View, double-click the OperationToCommand mapping to open it in the mapping editor. Note

8-10 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 — Create a Model to JET2 Transformation

that the input and output elements were selected for you when the mapping was created.
2. Create a Move transformation between the name of the input Operation and the name of the output Command.

3. Create a transformation between the ownedComment of the input class and the help of the Console. Note that a
Custom transformation was created. This is because the ownedComment is an array and the help is just a String.
You need to add code to tell the transformation how to translate from the input to the output.

4. In the Properties View, Detail tab, add the following code from
C:\Workshop\Labs\Inputs\OwnedCommentToHelp.txt

if (Operation src.getOwnedComments () .size() > 0)

Command_tgt.setHelp (((Comment)Operation src.getOwnedComments () .get (0)) .getBo
dy ());

} else {
Command_tgt.setHelp ("") ;

}

TIP: Ensure that Code is set to In-line. Once the code has been entered click Apply.

Cl Properties 7 . Tasks | Console | Bookmarks = =0
Description Transformation - Custom
Details

Code: (3 Indine) External
if{Operation_src,getOwnedComments().size) = 0)

Command_tgt.setHelp({{Comment)Operation_src.getOwnedComments().get(0)).getBody();
belse {

Command_tot.setHelp(™);
h

Figure 8-15: Adding custom code

5. Create a Submap between the ownedParameter of the input Operation and the arg of the output Command.
(Do you know what's coming next?) Create a new map for this called ParameterToArg.

© Copyright IBM Corp. 2007 8-11
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

=

nameExpression StringExpression

elementImport ElementImport []
packageImport PackageImport []
ownedRule Constraint []

member NamedElement []

importedMember PackageableElement []
ownedMember NamedElement []
isLeaf Boolean

redefinedElement RedefinableElement []

redefinitionContext Classifier []
isStatic Boolean
featuringClassifier Classifier []

ownedParameter Farameter []

[Properties &3 . Tasks Console Bookmarks

Transformation - Submap

Description
Details File: model/LabConsoleFrontend.mapping
Condition :
Map: ParameterToArg -
Input Filter s

Autnut Eiltar

= 1 Operation = [Command
eAnnotations EAnnotation [] | name EString
ownedElement Element [] help Estring
® owner Element :
ownedComment Comment [] arg Arg[]
name String
visibility VisibilityKind
qualifiediame String
clientDependency Dependency []
& namespace Namespace

Figure 8-16: Creating the submap

6. Enter Ctrl-Shift-S to save all of your work so far.

Task 7: Create the Parameter to Arg Mapping

In this task, you will create the mapping that associates parameters from the input UML class operations to the
arguments of the commands in the output console application.

1. Here is the last mapping. In the Outline View, double-click the ParameterToArg mapping to open it in the
mapping editor.

2. Create a Move transformation from the Parameter name to the Arg name.

3. Create a Move transformation from the Parameter type name to the Arg type.

TIP:

If you do not see the Parameter type as a node you can open, set the Feature Filter to Advanced.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4,

input.genmadel

rMapping Root
LabConsoleFrontend

*ParameterToArg

=[] Parameter

eAnnotations
ownedElement
F owner
ownedComment
name
visibility
qualifiedMame
dientDependency
F namespace
] nameExpression
=l type
efnnotations
ownedElement

&

owner
ownedComment
name

visibility
qualifiedMame
dientDependency
namespace

1 nameExpression

owningTemplateParameter

-@ lab.console, transformation. frontend

w XK =

EAnnotation []
Element []
Element
Comment []
String
VisibilityKind
String
Dependenicy []
Mamespace
StringExpression
Type
EAnnotation []
Element []
Element
Comment []
String
VisibilityKind
String
Dependency []
Mamespace
StringExpression

TemplateParameter

Figure 8-17: Creating the move map

Enter Ctrl-Shift-S to save all of your work so far.

Lab 8 — Create a Model to JET2 Transformation

5] LabConscleFrontend mapping &2

Mave

= [E> Arg
name

type

EString

EString

Task 8: Generate the Transformation Code

In this task, you will generate the transformation code from the transformation mapping.

1.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Before you generate code, review the files that are in the project so far by opening the nodes of the
lab.console.transform. frontend project in the Project Explorer. All of these were created when the
project was created and as you have been editing the . mapping file.

8-13

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

=.1=2 lab.console.transform.frontend
#-1= bin
= sre
- lab.console.transform.frontend
= [J] Activator.java
+ LabConsoleFrontendTransformationGUL java
+ LabConsoleFrontendTransformationProvider.java
+ LabConsoleFrontendTransformationValidator.java
=--f lab.console.transform.frontend.l10n
+ LabConsoleFrontendMessages.java
LabConsoleFrontendMessages.properties
-3 lab.console.transform.frontend.transforms
+-[J] MainTransform.java
+-B JRE System Library [jdk]
+-Bi Plug-in Dependencies
=== META-TNF
MANIFEST.MF
== model
“Z LabConsoleFrontend.mapping
[build.properties
plugin.properties
4 plugin.xml

Figure 8-18: Files as shown in the project explorer

1. In the Mapping Editor, right-click to the right of the LabConsoleFrontend button and select Generate
transformation source code from the pop-up menu.

2. To resolve the error in the file OperationToCommandTransform. java, double click this file and, in the
editor, enter ctrl-shift-o to organize imports. Select org.eclipse.uml2.uml.Comment. Enter Ctrl-Shift-S

to save all of your work and the error will be gone.

Review the transformation files that have been generated.

8-14

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 — Create a Model to JET2 Transformation

=125 lab.console.transform.frontend
= src
+-ff lab.console.transform.frontend
+-ff lab.console.transform.frontend.l10n
- lab.console.transform.frontend.transforms
+-[J] ConsoleClassToConsoleTransform.java
- [J] MainTransform.java
+-[J] ModelToReotTransform.java
+-[J] OperationToCommandTransform.java
= [J] ParameterToArgTransform.java
+- = JRE System Library [3dk]
+-=i Plug-in Dependencies
== META-INF
MAMIFEST.MF
== model
S LabConsoleFrontend. mapping
|m} build.properties
plugin.properties

b nlnnin wml

Figure 8-19: The generated transformation files

Task 9: Create a Custom Extractor

In this task, you will enhance the mapping with a custom extractor to constrain the elements that are
transformed.

You could test this transformation now, but you would find two issues: 1) all classes would be mapped to console
elements, and you only want to process those that have the keyword <<console>> applied, and 2) the
transformation would only process classes at the root level of the model, and you want it to find classes that are
nested in packages. To account for these requirements, you will implement a custom extractor.

1. The custom extractor is pre-cooked for you in the lab inputs, so in the Project Explorer select the folder
src\l ab. consol e. transform frontend. transf or ns, right-click it and select Import. From the file
system, import C: \Workshop\Labs\Inputs\NestedPackageContentsExtractor.java

© Copyright IBM Corp. 2007 8-15
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

L™ Project Explorer 7 = <}=={~} = =

+ ‘_:‘J- lab.console. transform
= ‘_:‘J- lab.console. transform. frontend
=2 sre
=-H4 lab.console. transform. frontend
+ m Activator.java
+ m LabConsoleFrontendTransformationGUIjava
+ m LabConsoleFrontendTransformationProvider. java
+ m LabConsoleFrontendTransformationValidator. java
=-H4 lab.console. transform, frontend. | 10n
+ m LabConsoleFrontendMessages.java
LabConsoleFrontendMessages. properties
=i lab.console. transform. frontend. transforms
+ m ConsoleClassToConsoleTransform. java
+ m MainTransform.java
m ModelToRootTransform.java
_m iNestedPackageContentsExtractor.java |
+ m OperationToCommandTransform. java
+ m ParameterToArgTransform.java
+-B8, JRE System Library [jdk]
+- B4, Plug-in Dependencies
*-(= META-INF
-2 model
@ build. properties
plugin, properties
-@ plugir, sl

E T_:‘J' lab.consale. transform. model

F

F

Figure 8-20: The imported class in the Project Explorer
2. Open the ModelToRoot mapping and select the Submap from packagedElement to Console.
a. In the Properties view, on the Custom Extractor tab, select the check box for Custom Extractor.

b. Select External for the Code option (because you are going to get the extractor from a class rather
than define it in-line).

c. Select Browse and start entering the text for NestedPackageContentExtractor until you can
select the class that you just imported.

d. Click OK.
3. Enter ctrl-shift-S to save all of your work.

4. In the Mapping Editor, right click to the right of the LabConsoleFrontend button and select Generate
transformation source code from the pop-up menu.

8-16 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 — Create a Model to JET2 Transformation

Task 10: Connect Transformation to JET

In this task, you will add the code that calls the JET transformation from the mapping transformation.

1. Inthe Project Explorer, in the | ab. consol e. t ransf orm f r ont end project under the
src\lab.console.transform.frontend package, find and open the file
LabConsoleFrontendTransformationProvider.java

=52 lab.console.transform.frontend
=2 src

-4 lab.console.transform.frontend
- [J] Activator.java
- [J] LabConsoleFrontendTransformationGULjava
- [J] LabConsoleFrontendTransformationProvider.java
#-[J] LabConsoleFrontendTransformationValidator.java

+- 1 lab.console.transform.frontend.l10n

+-i8 lab.console.transform.frontend.transforms
o =l 1RPE Cyctarm |ikeame Tidl] By

Figure 8-21: Find the Transformation Provider class

2. Inthe creat eRoot Tr ansf or mat i on method, replace the body of the method with this code:

return new Root Tr ansformati on(descriptor, new M nTransform()) ({
protected voi d addPost Processi ngRul es() {
add(new JETRul e("I| ab. consol e.transform'));

}
b
* Creates a root transformation. You may add more rules to the transformation here
#* «!-— begin-user-doc —--X
¢ l—— end-user-doc —-->
. transform The root transformation

* @ !generated

protected RootTransformation ereateRootTransformation (ITransformationDescriptor descriptor) {
retonrn new RootTransformation (descriptor, new MainTransform()) {
protected void addPostProcessingRules () {
add (new JETRule ("lab.console.transform™)):;

' I

Figure 8-22: The updated createRootTransformation method
3. Enter ctrl-shift-o to organize imports and resolve JETRule.
4. Change the @ener at ed tag in the method to @ ! generated.

TIP: The @generated tag marks code that the code generator may overwrite on subsequent code generation. By
negating this tag, you protect the code you added from being overwritten.

© Copyright IBM Corp. 2007 8-17
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

5. Enter Ctrl-shift-S to save all of your work.

Task 11: Configure Run-time Workbench

In this task, you will configure a Run-time workbench to use in testing the newly created transformation.

Switch to the Plug-in Development Perspective.

Select Run > Run from the main menu.

1
2
3. On the Run screen, select Eclipse Application and click the New button (leftmost on the toolbar).
4

Select the Configuration tab and set the Configuration File field to Use an existing config.ini file as a template.
Leave the default location. (Note: This step is critical, as the default Eclipse content option does not provide

enough functionality to support a Rational Software Architect test.)

! Run

Create, manage, and run configurations

Create a configuration to launch an Eclipse application.

-

| B2 ¥

type filter text

— 1,
=
=l

Name: New_configuration

&6 e =] Main| ®= Arguments.%&;} Plug-ins | || Canfiguration
=2 clipse Application | - : :

& New_configuration
4 Equinox OSGi Framewor
) Java Applet
3 Java Application
% JET Transformation
Ju JUnit
Junit Plug-in Test

Configuration Area
Use default location

[clear the configuration area before launching

= Configuration File
w1 WebSphere Admi !

¥ WebSphere v5.1 Applice
i WwebSphere v6.0 Applice
i WebSphere v6.1 Applicz

() Generate a config.ini file with default content
(3 Use an existing config.ini file as a template

Location: | ${target_home}\configuration\config.ini

Tracing | P Environment| = Common

Workspace...] ’File System...‘ [Variables...

l

Apply] l Revert]

Run] I Close ‘

Figure 8-23: Specifying the Configuration file
5. Select Apply, then Run.

Next you will need to test the transformation in the Run-time workbench.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 — Create a Model to JET2 Transformation

Task 12: Test the Transformation

In this task, you will test the newly created transformation in the Run-time workbench.

1. In the run-time workbench, close the Welcome screen.
2. Switch to the Modeling perspective in the Run-time workbench.
3. Import the project interchange file C: \Workshop\Labs\Inputs\TestConsoleModel.zip and select the
project TestConsoleModel.
4. Review the elements in the test model.
5. In the project, open the CommandModel and the Target Model models.
6. Create a new transformation configuration of the LabConsoleFrontend called myConsoleTest. Click Next.
& New Transformation Configuration
Name and Transformation)
Specify the file and transformation information. li,
L=l
Name: | myConsoleTest A
Forward transformation:
LabConsoleFrontend Transform (lab.console.transform.frontend.LabConsoleFrontendTr
+-[= Data Model Transformations
+-[= Frontend
+-[= IBM Rational Transformations
=I-= LabConsoleFrontend
El; LabConsoleFrontend Transform
+-(= Paul
+-l= Test
Configuration file destination:
[TestConsoleModel B 'v:
@ [Next >] [Finish] [Cancel
Figure 8-24: Creating the transformation configuration
7. Select the TestConsoleModel as the input model and TargetModel as the output model. Click Finish.
8. Locate the file myConsoleTest.tc in the Project Explorer. Right-click this file and select Transform
>LabConsoleFrontend Transform.
9. Asaresult of the transformation execution, two new projects are created in the workspace.
© Copyright IBM Corp. 2007 8-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Li*5 Project Explorer &2

=12 InPkg Console
= gre
- ab.c
+-[J] Console.java
+-[J] ICommandHandler.java
= a.b.c.handler
+-[J] DeleteHandler.java
+-[J] EchoHandler.java
+-[J] InsertHandler.java
+-[J] PardonHandler.java
+-[J] PasteHandler.java
+-[J] UpdateHandler.java
DeleteHandler.properties
EchoHandler.properties
InsertHandler.properties
PardenHandler.properties
PasteHandler.properties
UpdateHandler.properties
+-B JRE System Library [jdk]
+-4 junit.jar - JUNIT_HOME - C:\Program Files\1B
= =% NotInPkg Console
= src
=-f# TestConsoleModel
+-[J] Console.java
+-[J] ICommandHandler.java
-} TestConsoleModel.handler
+-[J] DeleteHandler.java
+-[J] EcheHandler.java
+-[J] InsertHandler.java
+-[J] PardonHandler.java
+-[J] PasteHandler.java
+-[J] UpdateHandler.java
DeleteHandler.properties
EchoHandler.properties
InsertHandler.properties
PardenHandler.properties
PasteHandler.properties
UpdateHandler.properties
+-B JRE System Library [jdk]
+-4 junit.jar - JUNIT_HOME - C:\Pregram Files\IB
+ 1= TestConsoleModel

=&~ -0

Figure 8-25: New projects generated as result of the transformation

3. Examine the contents of the projects and validate that the elements of the input UML model have been mapped

to the transformed text elements.

8-20

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 9 — Create a UX Modeling Profile

Objectives
After completing this lab, you will be able to:

» Create a UML profile to be used for modeling User Experience

» Add a constraint to a profile

» Customize a profile with domain related icons

» Export and import projects

» Configure and use a run-time workbench for plug-in testing
Given

» ScreenIcon.bmp and ScreenIcon.emf: Images to be used as part of the profile

» ProfileTestProject.zip: A Project Interchange file that contains a simple model to be
used when testing the profile

» JavaClassNameConstraint: A text file that contains code to be used in the constraint
class.

» UpdatedUXProfilePlug-in.zip: A Project Interchange file that contains additions to the
originally created profile

Scenario

In this portion of the workshop, you will create a UML Profile that will capture details related to User
Experience (UX) modeling. The initial purpose for this profile is to generate Struts-based applications.
However, an additional goal is to develop a profile that can be used for other user experience
implementations, such as JSF. In addition, you will add to the richness of the profile by adding custom
icons and a constraint.

Task 1: Create the Workspace

In this task, you will switch to a new workspace named Cr eat eUXPr of i | eWor kspace that you will
create.

1. From the File menu, select Switch Workspace.

© Copyright IBM Corp. 2007 9-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

2. In the Workspace Launcher dialog, replace the displayed text with

C:\Workshop\StudentWork\CreateAUXProfileWorkspace and click OK.

3. Close the Welcome screen.

Task 2: Create the Profile
1. Create a new UML Profile Project.

2. Click File > New > Project.

3. Inthe New Project dialog, replace type filter text with UML Profile. Select UML Profile Project,
and then click Next.
w.) New Project
Select a wizard
Create a new UML Profile Project |
Wizards:
UML Profile E™
_"—_L:',L Mod-n-eling
B & UM Extenshiity
"5+ UML Profile Project;
[show All Wizards.
@ = -
Figure 9-1: UML Profile Project
a.

Name the project UXModeling Profile Project. Click Next.
b. Name the Profile and File UxModel ing.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

i) New UML Profile Project

UML Profile
Create a new UML Profile

Profile Name:
UxModeling
File Name:
UxModeling|
Import Model Libraries
UML Primitive Types

|:| Jawva Primitive Types |:| Ecore Primitive Types

@ [Emish %H Cancel

Figure 9-2: Name the Profile

4. Ensure that UML Primitive Types is selected to limit your profile to UML 2 types.

5. Click Finish to create the project. If you are asked to open the Modeling perspective, click Yes.

Task 3: Add Stereotypes and Properties to the Profile

As part of your team’s effort, you will populate the profile with stereotypes, attributes, enumerations, and
S0 on.

1. Add new Stereotypes to the profile.

a.

In the Project Explorer view, right-click the UXModeling Profile and click Add UML >
Stereotype.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

P

L™ Project Explorer &3 — <,1=’='D = = O] 48 uxModeling.epx 22
= = IzliModellng Profile Project Alerts and Action Thems
=== Profiles . B i
= i
=[] § d 3
= Add UML reatype
ey Ej: Mew E Q Class
o Open Enumeration ™
Open With » OXModeEmg
Close C:\Workshop\Studer
Cloze All 164
Save As...
fied: | 12/11/06 2:36 FM
Mavigate 4
frue
Rename
Refactor 4

n licte the rintime vercinne

Figure 9-3: Add a UML Stereotype

b. Create three stereotypes named display, input, and useraction.

2. Add extensions to the display and input stereotypes

a. Add an extension to the display stereotype so that it will apply to Property (attributes).

TI P To specify the extension for a stereotype, select the stereotype in the Project Explorer and

then choose the Extensions tab within the Properties view.

=] Properties -2

General
Attributes
Stereotypes
Documentation
Extensions
Advanced

Tasks | Console | Bookmarks

<Stereotype> UXModeling::display

Metaclass Extensions:

Metadass | Reguired

Add Extension. h

Figure 9-4: Add an extension to the stereotype

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

w) Create Metaclass Extension

Metacass:

Property

COperationTemplateParameter w
Outputkin

Package

PackageImport

PackageMerge

PackageableElement

Parameter

ParameterSet

ParameterableElement

PartDiecomposition

Pin [
Port

PrimitiveType

Profile

ProfileApplication

Property M

Property
[‘Jrequired

[ok Rl[Cancel |

Figure 9-5: Choose the extension for the stereotype (do not select Required)

b. Add an attribute to the display stereotype. Its name will be javabean and it will be of Type
string. When you name the attribute, append a colon, and a context assist window will open
where you can select the type.

[Project Explorer 52 = S}:b = = 0| %8 =uxModeling.epx B3
=2 = I;IiMu:udellng Profile Project Alerts and Action Ttems
=== Profiles
g UXModeling * There are no problems associate
?!:, {uml) General Information
S (UMLPrimitiveTypes) This section describes general in
=
= Add UML L4 Cg Attri)lf§ L
i . o 3
:: Mavigate r /Metadass Extension ;
+ r
Rename # Metaclass Association |
i A
Duplicate {7} Constraint I

Figure 9-6: Add Stereotype Attributes

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

Tl P:

e.

i) 3 — <}:~{> = = B ||t =uxModeling.epx &
=l = I:IFiI"«"Iu:udellng Profile Project Alerts and Action It
=I-l== Profiles

i UXModeling = There are no problems
I?::, (uml) General Informatio

=F o)) .
i (UMLPrimitiveTypes) This section describes

.
=1 displ

. — Mame: UXMon

g base_Propert [E Boolean

input
+- * Property_display

Lnli diatural

Figure 9-7: Select the Attribute Type

You can use the code assist (Ctr1-Space) feature in Project Explorer to select the
element type.

Add an additional attribute, named label, to the display stereotype. It will also be of Type
string.

Add an extension to the input stereotype so that it will apply to Class. Do not make it
Required.

Add an attribute to the input stereotype named javabean of Type string.

3. Create an enumeration.

a.

In the Project Explorer view, right-click the UxModeling profile folder and click Add UML >
Enumeration.

Name the new enumeration ActionKind.

Right-click ActionKind and click Add UML > Enumeration Literal. Add Reset and
Submit enumeration literals.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

L™ *Project Explorer &3 = O
==
=l UXModeling Profile Project

=% Profiles
= U¥Modeling *
B
wep (umnl)
Bl .
i (UMLPrimitiveTypes)
=-EE] Actionkind
= Reset %
=1 Submit
A Class_input
display
input
A Property_display
useraction

- - - -

Figure 9-8: UML Enumeration

4. Selectthe useraction stereotype, and add an extension so it will apply to Operation. Do not
make it Required.

a. Forthe useraction stereotype, navigate to the Attributes tab in the Properties view. Add the
following attributes:

1 Properties &3

General
Attributes
Stereotypes
Documentation
Extensions

Advanced

i. Name: actionpath Type: string
ii. Name: javaclass Type: String
iii. Name: label Type: String
iv. Name: kind Type: Enumeration

Tasks | Console | Bookmarks | Problems

<Stereotype> UXModeling::useraction

MName Type | Default Value | Is Static
== actionpath <Primitive Type> String false
==} javaclass <Primitive Type = String false
Eg label <Primitive Type = String false
Eg base_Operation «<metadass>> «Class> Operation false

Figure 9-9: Add Stereotype Attributes

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

ActionKind

Multiplicity
1

1
1
1

I

Insert New Attribute

(3

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

= Properties &2 Tasks | Console | Bookmarks | Problems ¥ =08
General <Stereotype> UXModeling::useraction
Attributes Name Type | Default Value | Is Static | Multiplicity =l
Stereotypes = kind falze 1 b4
Documentation Eg actionpath <Primitive Type > String false 1
Extensions =Y javadass <Primitive Type > String false 1 _
e ==Y label <Primitive Type > String false 1 L

E§ base_Operation <<metadass>> <Class> Operation false 1

Figure 9-10: Specify the Type for an Attribute
5. Select File > Save All.

TI P: The ctrl-shift-S keyboard shortcut will also Save All.

6. Review. The following table and Project Explorer snapshot identify the model elements added to
your profile so far. For elements where documentation exists, add it via the element’s Property

View.
Name Add UML > Type Extension Owning Documentation Default
Element Value
ActionKind Enumeration
Reset Enumeration ActionKind
Literal
Submit Enumeration ActionKind
Literal

display Stereotype Property

javabean Attribute String display Bean class to which
the «display» field
belongs. Syntax =
rootpackage.package1.
...packagen.ClassName

input Stereotype Class

javabean Attribute String input (Mandatory) Syntax =
rootpackage.package.
package?2...packageN.b
eanname

useraction Stereotype Operation

actionpath Attribute String useraction

javaclass Attribute String useraction

label Attribute String useraction

kind Attribute Enumeration useraction

ActionKind

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

L[Project Explarer 52 =
==
=-1=F U¥Modeling Profile Project
= Profles
= iUxModeling
g e
ers umil)

l?::, {UMLPrimitiveTypes)
=& Actionkind
= Reset
= sSubmit
A Class_input
=] display %
Eg base_Property
[Eg javabean
Eg label
= input
Eg base_Class
[Eg javabean
e Operation_useraction
A Property_display
= useraction
[Eg actionpath
Eg kind
[Eg base_Operation
Eg javadass
[Eg label

Figure 9-11: Profile in Project Explorer
7. SaveAll

Task 4: Add Custom lcons

In this task, you will update the profile to use custom icons for the input stereotype you created.
Custom icons can add to the usability of your profile, providing the end user with a visual cue.

1. In the Project Explorer, select the input stereotype node.
2. In the Properties view, select the General tab.

a. Click the Browse button located to the right of the Icon field.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

1 Properties &3 Tasks | Console | Bookmarks | Problems ==
- ~

General <Stereotype> UXModeling::input

Attributes Marme: Input

Stereotypes

Documentation Category:

Extensions

Icon: Mot defined Browse. ,
Advanced

Shape Image: Mot defined

Suppressed: El
Visibility: ®public O private O Protected () Package

Figure 9-12: Ceneral properties for the input stereotype

b. Navigate to the C:\StudentWork\Labs\Inputs folder and select the FormIcon.bmp file.
Click Open.

c. Click the Browse button located to the right of the Shape Image field.

d. Navigate to the C: \StudentWork\Labs\Inputs folder and select the FormShape . em£
file. Click Open.

3. Select File > Save All.

Task 5: Add Profile to a Plug-in Project

In this task, you are going to add the Profile to a Plug-in project. Distributing the profile as just an .epx
file is fine in very simple cases, but more often than not you will want to put the profile into a Plug-in.

1. Select File > New > Project.

TI P If you are unable to find a type of project in the New Project dialog, select the Show all
Wizards checkbox to see the complete list. The dialog is initially populated based on the roles
and capabilities specified.

a. Replace type filter text with Plug-in. Then select Plug-in Development > Plug-in Project.
Click Next.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

'J' New Project

.
Select a wizard

Create a Plug-in Project

Wizards:

plug-n

; "-_ﬁ Plug-in Project
=& Plug-in Development

+_# Plug-n from existing JAR. archives

=& Examples

= RMP (Rational Modeling Platform) Plug-ins

[5how All Wizards.

Figure 9-13: Create the plug-in project
TI P: Click OK if you are asked to enable Eclipse Plug-in Development Capabilities.

b. Specify UXProfilePlug-in as the Project name. Click Next.

c. Fill out the Plug-in Content dialog as follows:

© Copyright IBM Corp. 2007

9-11
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

) New Plug-in Project
Plug-in Content e l"‘
Enter the data required to generate the plug-in. 7

Plug-in Properties
Plug-in ID: UXProfilePlug_in

Plug-in Version: | 1.0.0

Flug-in Name: UxProfiePlug_in|

Plug-in Provider:

Classpath:

Plug-in Options

Generate an activator, a Java dass that controls the plug-in's life cyde
Activator: | uxprofileplug_in. Activator

This plug-in will make contributions to the UL

Rich Client Application
Would you like to create a rich dient application? Yes O1

@ [<Back || mext» || Einishkj[Cancel

Figure 9-14: Details for the plug-in project
d. Click Finish.

2. Click Yes to switch to the Plug-in Development perspective.

3.

Switch to the Extensions tab of the manifest editor.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

[% Package Explorer &2 Plug-ins = O || %2d uxModeling.epx ﬁUXProﬁlePlug_in &l

= -
== Extensions

#-1=F UXModeling Profile Project
SR UXProfilePlug-in All Extensions

- arc o
+-E, JRE System Library [idk] l—_t\g
+

B, Plug-in Dependencies
=i [=> META-IMNF
[MANIFEST.MF
@ build. properties

b Body Text

Owverview | Dependencdies | Runtime | Extensions | Extensig

Figure 9-15: The extensions tab of the plugin.xml file within the manifest editor
2. Click Add.

3. Clear the Show only extension points from the required plug-ins option.

4. Select com.ibm.xtools.uml.msl.UMLProfiles from the Available extension points list.
Click Finish.

TI P Use the Extension Point filter to quickly and easily find the extension point.

5. Click Yes to add the plug-in to the list of plug-in dependencies.
6. Specify UXProfileID as the Id.

7. Specify UXProfileName as the Name.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

=
@ UI¥Modeling. epx

Extensions

All Extensions

'l UxProfiePlug_in &7

Extension Details

o= mnhnxmnls.minldmnﬂ?%

Set the properties of the selected extension.
ID: UxProfilelD

Mame: | UXProfileMame
Point: | com.ibm.xtools.uml.msl.UMLProfiles
==

w‘lﬁ Find dedaring extension point

Open extension point description

Figure 9-16: UMLProfiles extension

8. In All Extensions, right-click com. ibm.xtools.uml.msl.UMLProfiles and select New >

UMLProfile.

9. Fill in the Extension Element Details as shown below:

%24 UxModeling. epx (-@ =J¥ProfilePlug_in &3

Extensions

All Extensions

= <= com.ibm.xtools,uml.msl,UMLProfiles
@ LIXProfilePlug-n. UMLProfile 1 (UMLProfile)

» Body Text

Extension Element Details
Set the properties of "UMLProfile”

narne™:

path®;

UxModeling

bathmap://UX_TO_WEB_TRANSFORM,/UXModeling. epx

required: |false

visible: |true

id: UxMaodeling
bundle:

DverviewlDependendes|Runtime Extensions | Extension PointleuiIdlMANIFEST.MF|build.properﬁes|plugin.xml|

Figure 9-17: Connecting the UXModeling profile to the extension
2. Now define the pathmap under All Extensions:

a. Click Add.

b. Ensure that Show only extension points from the required plug-ins is not selected.

c. Selectorg.eclipse.gmf.runtime.emf.core.Pathmaps

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 - Create a UX Modeling Profile

TI P: Type in the first part of the Extension Point filter name to automatically filter.
‘2! New Extension
Extension Point Selection
Create a new Path Maps extension, -D—"

Extension Point filter: | org.edipse.gmf.runtime.emf.c

=] org.edipse.gmf.runtime.emf. dipboard. core, dipboardSupport
=] org.edipse.gmf.runtime.emf,core, Pathmaps

Showe only extension points from the required plug-ins

Extension Point Description: Path Maps

Extension point for the definition of path map variables. Path map variables allow for IAJ
portability of URIs, in similar fashion to path Edipse's core path variables, The actual F I
location indicated by a URI depends on the run-time binding of the path variable, Thus, .
different environments can work with the same resource URIs even though the resources [v

Available templates for path maps:

@ [Frsh || cancel |

Figure 9-18: Selecting the extension point for the Pathmap
3. Click Finish.

4. Click Yes to add the plug-in to the list of plug-in dependencies.

d. Enter the following details into the Extension Details:

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

Extension Details
Set the properties of the selected extension,

1D: I¥Modeling
Mame: | U¥_TO_WEE_TRANSFORM|
Point: | org.edipse.gmf.runtime,emf. core, Pathmaps

'Q.J"- Find dedaring extension point

'%' Dpen extension point description

Figure 9-19: Selecting the extension details Pathmap
e. Save.

f. Right-click the new extension point and select New > pathmap.

All Extensions Extensiqg

Set the p
#-0= com.ibm. xtools.uml.msl.UMLProfiles

... Mew 3 @ pamgap

Delete 4= Extension...

&

~¥ Find

]

Collapse all

Cut
Copy

Rewert
Save

Externalize Strings...

Find Dedaration
Show Description

Figure 9-20: Adding the pathmap

g. Enter the following details into the Extension Element Details:

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

Extension Element Details
Set the properties of "pathmap™

name®: | UX_TO_WEB_TRAMSFORM
path™ | profiles

plugin: | UxProfilePlug_in I

Figure 9-21: Specifying the details for the pathmap element
10. Save.

11. Review the source for the configuration by selecting the plugin.xml tab.

Now that you've set up the plug-in project, let’s put the profile .epx file into the plug-in project.
12. In the Package Explorer, right-click UXProfilePlug-in and select New > Folder.
13. Specify profiles as the Folder name. Click Finish.

14. Copy the UXModeling. epx file from the UxModeling project to the newly created profiles
folder within the UxProfilePlug-in project.

% PackageE... &% Plugins| — O
= <}=,=l“} =

=I-l=F UXMaodeling Profile Project
@ II¥Modeling. epx
= TE‘J LxProfilePlug-n
+-[2B sre
+-B8, JRE System Library [idk]
+-B Plug-in Dependencies
+-[= META-IMNF
= (= profiles
@ ¥Maodeling.epx
@u build. properties [}5
-@ plugin. xmil

Figure 9-22: Copying the UXModeling.epx file to the Plug-in

Task 6: Add a Constraint

In this task, you will add a constraint to the profile to ensure that one of the properties specified by the
profile is used properly. In this case, you want to make sure that the javaclass property for the
useraction stereotype is not left blank.

1. Switch to the Modeling perspective.

a. In the Project Explorer, right-click the UXModeling project and select Close.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

Tl P:

b. Within the UXProfilePlug-in project, navigate to the Profiles folder.

-~ 0o o n

= @

L[Project Explorer &3 = 0O

=R

LT UxModeling Profile Project
= TE‘J- LxProfiePlug-n

(UMLPrimitiveTypes)
Actionkind
Class_input

display

input
Operation_useraction
Froperty_display
useraction

+
2 [E 28

+

O [E

E

(2 src

Bl JRE System Library [dk]
Bl Plug-n Dependencies
(= META-INF

= profiles

@l build. properties

-@ plugin. xml

- -

=

Select the useraction stereotype node.

Right-click and select Add UML > Constraint.

Name the new constraint JavaClassNameConstraint.
In the Properties view, select the General tab.

Select Java Class as the Language.

Choose the UxModeling profile to open the profile for editing.

Close the original UML Profile project, because from this point forward you want to focus
on the profile that you just copied into the plug-in project. By closing the original version, you
reduce the risk of getting confused about which file and version you are working with.

Figure 9-23: UXModeling profile in the Modeling Perspective Project Explorer

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

= Properties &3 Tasks | Console Bookmarks | Problems B~ T8

General <Constraint> «ProfileConstraint» UXMod...vaClassNameConstraint Stereotype Rule

e Mame: JavaClassMameConstraint

Stereotypes

Documentation Lot useraction

Advanced Language: Java Class v)
Value:

com.ibm.uxprofile. constraints. JavaClassMameConstraint] I

Figure 9-24: Specifying the language for the constraint

i. Specify the Value as:
com. ibm.uxprofile.constraints.JavaClassNameConstraint.

TI P: You are specifying that the constraint can be found in the specified java class. The
constraint will eventually extend the AbstractModelConstraint class as found in the
com.ibm.xtools.emf.validation package.

jo Select File > Save All.

Task 7: Create Constraint Class

In this task, you will create the java class that contains the logic associated with the constraint
1. Switch to the Plug-in Development perspective.

a. Inthe Package Explorer, expand the UXProfilePlug-in project node.

b. Open the plugin.xml file.

c. Switch to the Dependencies tab of the manifest editor.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

-@: UXProfilePlug_in | '@ U¥Modeling.epx (@: U¥ProfilePlug_in &2 =08
Dependencies
Required Plug-ins Imported Packages

Spedfy the list of plug-ins required for the operation of this
plug-in:

Spedfy padages on which this plug-n depends without explictly
identifying their originating plug-in;

?;Imrg.edipse.ui Add...
?;I:snrg.edipse.core.runﬁme
?;Ikcom.ibm.xtools.uml.msl

?;I:mrg.edipse.gmf.runﬁme.emf. core

} Automated Management of Dependencies

Overview | Dependencies RunﬁmelElrtensions|ErI:ension Points|Bui|d|MkNIFEST.MF|pIugin.mI|build.pmperﬁes

} Dependency Analysis

d. Click Add.

Figure 9-25: Dependencies for the plug-in

e. Select org.eclipse.uml2.uml and then click OK.

i) Plug-in Selection

=%

Select a Plug-in:

org.edipse.uml2.u

#org.edipse.umi2.uml (2.0.2.v200610251409) |
?ilkurg.edipse.umlz. uml.ecore.exporter (2.0.0.v200610251+
?ilkorg.edipse.umlz.uml.ecnre.importer (2.0.0.v200610251<
?ilkorg.edipse.umlz.uml.edit (2.0.2.v200610251405)
?ilkorg.edipse.umlz.uml.editc-r (2.0.1.v200610251409)
?ilkorg.edipse.umlz.uml.resources (2.0.2.v200610251409)

[il m | [i]

Figure 9-26: Selecting the plug-in

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

f. Save.

g. In the Package Explorer, right-click src and select New > Package. Name the package
com.ibm.uxprofile.constraints. Click Finish.

h. Right-click the com. ibm.uxprofile.constraints package and select New > Class.

i. Fill in the New Java Class wizard dialog as shown below:

TI P: You can use the code assist (Ctr1-Space) feature to help select the Superclass.
e - -
w.) Mew Java Class
Java Class

Create a new Java dass.

Source folder: U¥ProfilePlug-in/src

Package: com.ibm.uxprofile. constraints Browse...
[CJEndosing type:

MName: JavaCIassNameConst’aint]

Modifiers: (%) public () default

[abstract [|final

Superdass: org.edipse,emf, validation. AbstractModelConstraint

Interfaces: Add...

Which method stubs would you like to create?
[public static void main{Strina[] args)
[Jconstructors from superdass
Inherited abstract methods
Do you want to add comments as configured in the proper ties of the current project?
[]cenerate comments

7 I Finish J%[Cancel

Figure 9-28: Creating the constraint class
jo Click Finish.

2. Save All.

3. Open the JavaClassNameConstraint class.

© Copyright IBM Corp. 2007 9-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

a. Replace the existing code of the class with the contents of the
JavaClassNameConstraint . txt file found in C:\Workshop\Labs\Inputs.

b. Review the code.

4. Select File > Save All.

Task 8: Export the Project

In this task, you will export the UXProfilePlug-in project where it will be picked up for additional work by
your team.

1. Select File > Export.
2. Select Project Interchange in the Ot her folder.
3. Click Next.

4. Click Select All and browse to c: \Workshop\StudentWork and save the file as
UXProfilePlug-in V1.zip.

Task 9: Import an Updated Version of the Project and Test

In this task, you will import an updated version of the UXPr of i | ePl ug- i n project, modified by other
members of your team. Additional stereotypes and enumerations have been added.

1. Switch to the Plug-in Development Perspective.
2. Select File > Import.

3. Select Project Interchange in the Qt her folder.
4

Click Select All and browse to ¢ : \Workshop\Labs\Inputs and import the file
UpdatedUXProfilePlug-in.zip.

5. Click OK at the Confirm Overwrite dialog.

Task 10: Configure Run-time Workbench

In this task, you will configure a Run-time workbench to use in testing the newly created profile.
1. Switch to the Plug-in Development Perspective.
Select Run > Run from the main menu.

2
3. On the Run screen, select Eclipse Application and click the New button (leftmost on the toolbar).
4. Name the configuration UXProfilePlug-in.

5

Select the Configuration tab and choose the Use an existing config.ini file as a template option.
Leave the default location.

TI P: This step is critical, because the default Eclipse content option does not provide enough
functionality to support an Rational Software Architect test.

9-22 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

w,,) Run

:

Create, manage, and run configurations —
Create a configuration to launch an Edipse application. (! ;;

TEX B -

: Mame: | UxProfilePlug-in
type filter text

” | (=] Main | 69= Arguments | 2z Plug-ins | || Configuration . & Tracing | I, Environment | = Common
H Apache Tomcat ' ' ' . :) '
=48 Edlipse Application
& New_configuration
’:b Equinox OSGi Framework
& Generic server
o Generic Server{External Lal
il Java Applet
[T Java Application
& JET Transformation
Ju JUnit
JU JUnit Plug-in Test

Configuration Area
Use default location

[clear the configuration area before launching

Configuration File

() Generate a config.ini file with default content

[z SWT Application %

E Test ocation: | ${target_home}\configuration\config.ini
b:‘:; WebSphere Administrative

li‘sﬁ WebSphere v5. 1 Applicatio

[@ WebSphere v6.0 Applicatio

li's.j WebSphere v6. 1 Applicatio

[5L Transformation

Workspace...] [File System...] [Variables. ..

%< , 1ill | » [Apply I I Revert

J

7 [Run] [Close

|

Figure 9-29: Configuring the run-time workbench
6. Select Apply, then Run.

Task 11: Test the Profile

In this task you will test the profile that you and your team created. A model has been partially built for
the purposes of testing the profile. You'll complete the model and conduct the test. All of the testing

will occur in the Run-time Workbench.
1. Close the Welcome screen.
2. Switch to the Modeling perspective in the Run-time workbench.
3. Select File > Import.
a. Select Project Interchange. Click Next.
b. Click Browse next to the From zip file field.

c. Navigate to the C: \Workshop\Labs\Inputs folder and select
ProfileTestProject.zip. Click Open.

d. Click Select All then click Finish.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

2. Apply the UXModeling profile to the test model.

a
b.

o

e.

Open the ProfileTest model
In the properties view, select the Profiles Tab
Click Add Profile.

Select UxModeling. Click OK.

o) Select Profile

() Deployed Profile

{Modeling ™

(3 Profile in Workspace

File

[Ok H Cancel l

Figure 9-30: Applying the profile

Click OK.

2. Open the Main diagram found within the com. ibm. strutssample package or, alternatively,
work with the model elements by expanding the ProfileTest model.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 - Create a UX Modeling Profile

%24 ProfileTest.emx

| : ProfileTest::Main | : ProfileTest::com::Main

| =

ProfileTest: :com: :ibm::Main

[O¢

£ Settings £ BookDetails
[Eg isbn : String
[Cg author ; String
[cg title : String
[datePublished : String
- bookdetdilsl
*
E Music =] Books
& logoff () 42 logoff ()
-musid..1 % search ()
~booky 4
*
*
= LogonForm = Home
[Eg username : String
53 password : String {2 books ()
2 music ()
“logonfgrrt Iogon[ﬂ?égg&]l
1
= Logon -logon
& logon (] 1

-logon2 1
logon[failure]

o
=l BookForm
[isbn : String
[Cg author ; String
[cg title : String

-bookforme

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Figure 9-31: Sample model elements from the com. ibm. strutssample diagram

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

L™ Project Explorer &3 - <}=={-} ¥ =0
+ I'E,-a Diagrams
= l’%’ Models
=-E2 ProfileTest
?::, (UMLPrimitiveTypes)
=-C3 com
=-E3 ibm
: Main
=1 strutssample
£ (bookdetails:BookDetailz)
+ / (hookform:BookFaorm)
- (books:Books)
+ / (logonform:LogonForm)
& (music:Music)
+ Q BookDetails
Q BookForm
Q Books
+ Q Haome
+ Q Logan
/" logon[failure]
+ /Ingnn[success]
+ Q LogonFarm
: Main
+ Q Music
Q Settings
: Main
: Main

¥

¥

Figure 9-32: Sample model elements viewed by expanding the ProfileTest model

Your teammates have applied stereotypes to the LogonForm, BookDetails,

model elements.

Home and Music

3. Apply stereotypes to the Logon, Home, and Music model elements. Click the element and

choose Apply Stereotypes from the Stereotype tab in the Properties view.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

] Properties &3

General
Attributes
Operations
Stereotypes
Documentation
Constraints

Advanced

Tasks | Console | Bookmarks | Search
Q <Class> ProfileTest::com::
Keywords;

Applied Stereotypes:

Stereotype | Profle | Required

Figure 9-33: Apply stereotypes to elements from the Properties view

a. Apply stereotypes to the model elements (Logon, Horre, Scr een) resulting in a class diagram

as shown below:

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

%8d ProfileTest.emx : ProfileTest: :Main : ProfileTest: :com::Main : ProfileTest: :com::ibm: :Main : Pro
"
£ settings £l BookDetails L] BookForm
(g isbn : String [Eg isbn : String
(g author: String (g authar : String
[cg title : String [cg title : String
g datePublished : String
-bookforme
-bookdetdils
$
1
«5Creens Ll Books
B Music
é2 loaoff ()
i logoff () g2 search ()
-musid..1 -booksy_ 4
#®
*®
=l LogonForm wsCreens
[Cg username : 5tring Q Home
5 password : Strin
aP g # books ()
* 42 music ()
-loganform
g logon[sarcetss]
1
«SCTEEM
-logan
Ef Logon g
1

2, «useraction» logon (]

-logon2 1
logon[failure]

Figure 9-34: Sample set of elements after applying the profile and adding stereotypes
b. Select File > Save All.

Now let’s test the constraint:

4. In the Project Explorer, select com under the ProfileTest model, right-click it, and select Validate.

9-28 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 — Create a UX Modeling Profile

= (= Models
=-E= ProfileTest
?I:, (UMLPrimitiveTypes)

=TT v

Add Diagram 4
Add Shortcut
Create Model from Package

Create Fragment...
Visualize L4

Rename
Duplicate
Refactor 4
of Cut
=| Copy
¥ Delete from Model

¥ validate %

Figure 9-35: Validate the model against the profile

a. Note that in the Problems view, a validation error has appeared relating to the «useraction»
elements.

b. Click the «<useraction»logon () operation on the «screen» Logon class.
c. Inthe Properties view, switch to the Advanced tab.

d. Navigate to the useraction node, and then update the javaclass property to
com. ibm. test .Logon.

#- /" (music:Music) IZ? logoff () 3 logaff () .
% BookDetails %6 109 iz 43 search () v
& Q BookForm
* Q Books [Properties &2 Tasks Console | Bookmarks | Pattern Explorer | Problems
+ E «5Creens Home
= f5ll ssareen Logon General {5 <Operation> «useraction» logon ()
{52 «useractions logon ()
+-[Eg home Parameters Property Value
Eg logon Stereotypes F UML
g logon2 ~ || Documentation = useraction
+-[Eg logonform Constraints écﬁonpaﬂn .
/ logon[failure] Advanced E\rjdass ;Dm;bm.ttest.Logon
#- /" logon[success] II;\ -Rese
+ = LogorForm v a0e
2 ¥2 Inheritance Explorer =il

Figure 9-36: Specifying a value for the javaclass property
e. Select File > Save All.

f. Run the validation again. Note that there should now be no validation errors.

g. Close the Run-time workbench.

Task 12: Release the Profile

In this task you will release the profile, because you've tested it and are certain that this accurately

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect — Student Workbook

reflects the elements within this domain. Any profile changes from this point onwards can only be
additive changes.

1.
2.
3.
4.

Switch to the Modeling perspective.
In the Project Explorer view, select the profile.
Right-click the UxModeling profile and select Release.

Provide v1.0. 0 as the version number. Click OK.

Task 13: Extra Challenges

If time permits during the course, or as a practice challenge for after the course, complete the following

tasks.
1. Enhance the profile to include any additional stereotypes, properties, or enumerations that would
make the profile more applicable to your organization.
2. Enhance the constraint so that it validates the javaclass property, checking that it has a valid java
package and class name.
9-30 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 10 — Manually Create a Transformation

Objectives

After completing this lab, you will be able to:

» Author, run, and test a custom model-to-model transformation.

Given

The following lab artifacts can be found in the Inputs folder for this lab:
» Code Fragmentl1.txt

» Code Fragnent2.txt

» Inport Statementsl.txt

» I|nport Statenents2.txt

» DEV498v7 Sanpl e Config.launch

Scenario

In this lab, your team needs to transform a number of source classes from one model to target interface and
implementation classes in another model. There must be a realization relationship from the implementation class to
the interface, and the implementation class needs copies of the source class operations, while the interface only needs
copies of the public source class operations.

Instead of each team member manually performing the transformation, your task is to automate the process and make
it available to the entire team.

To simplify the transformation authoring effort, you will use a plug-in template to produce the initial structure of the
transformation. When defining the transformation configuration, you will define the rules to convert one type of
source element into one or more target elements. You will then need to customize the transformation’s behavior by
modifying each rule’s hot spot. After creating a test project, you will run and test the transformation.

In addition to the conversion rules, you will add a mechanism to traverse the source model elements and run a rule
against a UML class that has a specific stereotype applied.

© Copyright IBM Corp. 2007 10-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 1: Create the Workspace

In this task, you will switch to a new workspace named M2MTr ansf or mat i onWor kspace that you will create.

1. From the File menu, select Switch Workspace.

2. In the Workspace Launcher dialog, replace the displayed text with
C:\Workshop\StudentWork\M2MTransformationWorkspace and click the OK button.

3. Close the Welcome screen.

Task 2: Create a New Plug-in Project

In this task, you will create a new Plug-in Transformation project named My Tr ansf or mat i on to simplify the

authoring effort.

1. On the File menu, click New > Project

2. Enable Show All Wizards.

3. Replace type filter text with Plug-in. Select Plug-in Project and click Next.

10-2

n.,:' New Project

Select a wizard

Create a Plug-n Project

Wizards:
Plug-n
L2 PlugHin Project
=2 Plug-in Development

o
Hiis

== Examples

= RMP (Rational Modeling Platform) Plug-ins

Show All Wizards,

= Plug-n from existing JAR. archives

Figure 10-1: Definition of Transformation Rules

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

© N o 0 &

Choose Plug-in with Transformation and click Next.

Lab 10 — Manually Create a Transformation

If prompted to confirm enablement of Eclipse Plug-In Development, click OK.
Name the project com. ibm.myTransformation and then click Next.
On the Plug-in Content screen, keep the defaults and click Next.

Select the Create a plug-in using one of the templates checkbox.

t2J New Plug-in Project

Templates

Create a plug-in using one of the templates

Available Templates:

Select one of the available templates to generate a fully-functioning plug-in.

ﬁ?Cus‘mm plug-in wizard

,_|_<>j Figure definitions converter

A% Hello, World

‘45.’: Plug-in with & incremental project builder
-'Gl-“?PIug-in with a multi-page editor

¥ Plug-in with an editor

-’\L?_ Plug-in with a popup menu
A%Plug-in with a property page

% Plug-in with a sub-element counter
AFPlug-n with a view

:Z;;,‘EPlug-in with Patterns

¥ Plug-in with sample help content
Iﬂﬂ Plug-in with Transformation Mapping

This wizard creates a standard plug-in
directory structure with the following:

* Transformation Provider. A
transformation provider is the mechanism
used to define new transformations.

Extensions Used

- 4 Ve
com.ibm. xtools, transform. core. transformatio

@ [< Back][MNext =][

Finish] l Cancel

Figure 10-2: Definition of Transformation Rules

9. On the New Transformation Provider screen, keep the defaults and click Next.

10. On the New Transformation screen, select UML2 to be the Source Model Type and the Target Model Type.

Click Next.

© Copyright IBM Corp. 2007

10-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

() New Transformation Authoring Project Creation

New Transformation = I _

Create a new transformation and assodated properties

D com.ibm.myTransformation. transformation

Name Transformation

Class Transformation

Source Model Type uML2 E
Target Model Type umML2
Group Path com.ibm.myTransformation

‘ersion 1.0.0 Author

Description Key Words

Profiles

Reverse Transformation ID
[supports Silent Mode

Properties

D Name Walue MetaType ReadCOnly

Use default UML2 Transformation framework

@ [< Back ” Next = H Fimish H Cancel]

Figure 10-3: Specify the Source Model Type and the Target Model Type
11. On the New Rule Definitions screen, create new rules as indicated below:

e Click Insert to add a class rule. Select Class from the list box in the UML Element Type column, and
enter Cl assRul e in the Name column.

¢ Click Insert to add an operation rule. Select Operation from the list box in the UML Element Type
column, and enter Oper at i onRul e in the Name column.

¢z} New Transformation Authori ng Project Creation

New Rule Definitions
Create rule definitions for the fransformation

| UML Element Type jin] Mame Class Package

Class com.ibm.myTransformation. transformation.rule ClassRule ClassRule com.ibm.mytransformation. transformation.rules
| Operation com.ibm.myTransformation. transformation.rulel ~ OperationRule OperationRule com.ibm.mytransformation. transformation.rules

Figure 10-4: Definition of Transformation Rules

TIP: The order in which you specify the rules on this screen will impact the order in which they are listed in
code. This order will then determine the order in which the rules are executed.

10-4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 — Manually Create a Transformation

12. Click Finish. If prompted to switch to the Plug-in Development perspective, click Yes.

Task 3: Visualize the Transformation Structure

In this task, you will visualize the initial structure of the transformation.

1. Select the following elements in the Package Explorer.
f% Package Explorer 53 Plug-ins =0

= TEJ com.ibm.myTransformation
= src
=8 com.ibm.mytransformation
+ m Activator.java
=8 com.ibm.mytransformation. transformation.rules
+ m ClassRule.java
+ m Operationfule.java
=8 com.ibm.mytransformation, transformationProvider
+ m Transformation.java
+ m {TransformationProvider 1.java |
+-B, JRE System Library [jdk]
+- B4, Plug-n Dependencies
(= META-INF
@ build, properties
-@s plugin, xml

Figure 10-5: Transformation Structure in the Model Explorer

2. Right-click and click Visualize > Add to New Diagram File > Class Diagram. If asked, click Yes to enable Java

Modeling activity.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10-5

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

£+ com.ibm.myTransformation %2 dlassdiagram.drx 52

«Java Class»
(® TransformationProviderl

@. createTransformation ()
@. validateContext()

«Java Class» LIEE

(3 Activator

W PLUGIN_ID : String
o% plugin : Activator

@ Activator () «Java Class»

@ start () © Transformation
@.stop ()

02 getDefault () . @ Transformation ()
@ getlmageDescriptor () m setuplnitialize ()

@ setupFinalize ()
= addUMLRules ()

wlUSem
WSk

«Java Class» «Java Class»
(OperationRule (@ ClassRule
@ OperationRule () o ClassRule ()
& OperationRule () & ClassRule ()
@. cregteTarget() @. createTarget()

Figure 10-6: Transformation Structure on a Class Diagram

Task 4: Edit the Rules

In this task, we will add code to the rules for the pattern. This code will provide the behavior for the pattern.

1. Edit the class rule.

e In the Package Explorer, double-click ClassRule. java to open it in an editor.

e Locate the import statements at the top, delete them, and replace them with the contents of Import
Statementsl.txt located in the C:\Workshop\Labs\Inputs folder.

e Update the declaration of the class so that

public class ClassRule extends AbstractRule

becomes:

public class ClassRule extends ModelRule

10-6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 — Manually Create a Transformation

e Locate the createTarget method, delete the body, and replace it with the contents of Code
Fragmentl.txt located in the C: \ Wor kshop\ Labs\ | nput s folder.

e Review the code.
2. Edit the operation rule.
e In the Package Explorer, double-click OperationRule. java to open it in an editor.

e Locate the import statements at the top, delete them, and replace them with the contents of Import
Statements2.txt located in the C: \Workshop\Labs\Inputs folder.

e Update the declaration of the class so that
public class OperationRule extends AbstractRule
becomes:
public class OperationRule extends ModelRule

e Locate the createTarget method, delete the body, and replace it with the contents of Code
Fragment?2 . txt located in the C: \Workshop\Labs\ Inputs folder.

e Review the code.
3. From the File menu, select Save All.

Task 5: Configure Run-time Workbench

In this task, you will configure a Run-time workbench to use in testing the newly created transformation. There are
two approaches that you can take when setting up your run-time workbench. The first approach is to spend time to
create a custom list of plug-ins to have included within the run-time workbench. This can take some time to develop,
but once created can significantly speed up the launching of the run-time workbench. The second approach is to
accept the default list of plug-ins. This is quick to configure, but the run-time workbench will launch more slowly.

1. Set up a stripped down configuration for the runtime workbench. This will reduce workbench launch and debug
times.
e Select File > Import.
e Select File system. Click Next.

¢ Click Browse and navigate to Workshop\Labs\Inputs and select DEV498v7 Sample
Config.launch.

e Specify MyTransformation as the value for the Into folder field.

© Copyright IBM Corp. 2007 10-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

10-8

Tingor
File system —
Import resources from the local file system. D

-
From directory; | C:\Workshop\Labs\Inputs Ivl [Browse...]
® [H] (= Inputs [E createDPTkModsl bet [

Ll :g!CreateUXModelingProﬁle.zi|:| |
El EI detaildependency-expand.input. txt IE'
O [2 details-expand.input. et

|:| D DiagramLister Code Fragment. txt

F] LSFDrmIcon.bmp
¥ i:]FrerShape.emf |
"] 2 Import Statements1. et [s]
€] u | &
FiIter'I_'ypes...] l Select Al] [Deselect All]
Into folder: | com.ibm.myTransformation
Options

|:| Qverwrite existing resources without warning
(") Create complete folder structure
(%) Create selected folders only

I:EJ Nesxt [Einish] [Cancel

Figure 10-7: Import the launch file
Click Finish.

From the Run menu, select Run

In the Create, manage, and run configurations dialog, select DEV498v7 Sample Config under Eclipse
Application.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 — Manually Create a Transformation

’k) Run

=

Create, manage, and run configurations

Create a configuration to launch an Edipse application.

w

E 5=

Mame: | DEV498v7 Sam_ple Config

type fiter fext

=] Main (0= Arguments | 2= Plug-ins ! =) Conﬁgurat_jon| = Trac'gng| 21 Environment| =] Common |

E E C/C++ Local Application

Workspace Data
=48 Edlipse Application
T ©

Location: | ${workspace_loc}/.. fruntimelew_configuration(1)

i ’ﬁ Equinox O5Gi Framework:
1] Java Applet

: [T 1ava Application

% JET Transformation

[l clear workspace data before launching

[ﬂorkspace...] [Fi]e System...] [Variables. ..

[v]

+ 'E‘ﬁ WebSphere Administrative
e l“ﬁ WebSphere v5. 1 Applicatio
: .F@ WebSphere v6.0 Applicatio
; F@ WebSphere v6. 1 Applicatio

Java Runtime Environment
Java Executable: (%) default

eJu JUnit Program to Run
% JUnit Plug-in Test (©)Run a product: |com.ibm.raﬁonal.rsa.product.ide
3 SWT Application

() Run an application:

Oiava

Runtme RE: |jdk

v | [installed IRES. .

Bootstrap Enfries: |

J

Close

Figure 10-8: Selected the sample configuration

Click Run.

2. Optional: If you would like to use a full configuration for the runtime workbench, follow these steps in place of

In the Create, manage, and run configurations dialog, select Eclipse Application and click the New

Name the new configuration Full Configuration

Step 1.
e From the Run menu, select Run
L]
launch configuration button.
[
o Click Apply.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without

10-9

the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

i~
q.) Run

T2 %X | &

type filter text

i

€] CJC++Local Application
=4 Edi licati
S
'3:‘-’ Equinox O5Gi Framework
G Java Applet
[T 1ava Application
% JET Transformation
e JUnit
- Ji JUnit Plug-in Test
@ SWT Application
5] Websphere Administrative
l]T‘sﬁ WebSphere v5. 1 Applicatio
G ‘WebSphere v6.0 Applicatio
Ffsj WebSphere v&. 1 Applicatio

| MName:

Create, manage, and run configurations
Create a configuration to launch an Edipse application.

Full Configuration

=] Main
Workspace Data

Location:

s{workspace_loc}/.. fruntimeew_configuration

[clear workspace data before launching

Program to Run

{®)Run a product:

{3 Run an application:

Java Runtime Environment
Java Executable: (%) default

| com.ibm.rational.rsa.product.ide

Oiava

W

()= Arguments | %ED Plug-ns | (] Configuration | & Tradng | g Environment | = Common |

[ﬂorkspace...] [File System...] [Variables. ..

Runtime JRE:

|k

[s] [nstalled 1REs...

Bootstrap Entries:

Run] [Cloge

Figure 10-9: Configuring a fill configuration runtime workbench

¢ Select Full Configuration in the Configurations list and click Run. Because this is a full version, it will take
several minutes to complete the launch of the Run-time Workbench.

TIP: Yes, you can create multiple configurations. When it comes time to test, you will need to select which

configuration you would like to use for your test.

Task 6: Create a Test Project

In this task, you will use the run-time workbench to test the pattern that you've built.

1. Using the Run-time Workbench, create a test UML Modeling Project named TransformationTest based on
the Blank Model template:
e Close the Welcome screen.
e From the File menu, click New > Project
e Replace type filter text with UML. Select UML Project, and click Next.

10-10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 — Manually Create a Transformation

\v.) New Project

Select a wizard

Create a new UML modeling project

Wizards:
umML

E"
°5¥ UML Project
(&= Modeling

%5 UML Profile Project
=)= Examples

= RMP {Rational Modeling Platform) Plug-ins

[Ishow &ll wizards.

Figure 10-10: Creating a new UML Project
e Name the project TransformationTest and click Next.
°

Under Templates, select Blank Model, change the file name to Sour ceModel , and click Finish.
If prompted to switch to the Modeling Perspective, click Yes.

2. Create a class named Enpl oyee and add three private operations; readEmail, answerPhone, and
performWork. Add one public operation reportToManager (name:String).

— Employee

§iy readEmail ()

& answerPhone ()

§ performWork ()

2 reportToManager(name : String)

Figure 10-11: Employee class

3. Tothe Transformati onTest project, add a new UML Model named Tar get Model based on the Blank
Model template.

On the Project Explorer, select the TransformationTest project, right-click and select New > UML

© Copyright IBM Corp. 2007

10-11
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Model.
e Click Next.
e Under Templates, select Blank Model, change the file name to Tar get Model and click Finish.

Task 7: Run the Transformation

In this task, you will configure and run the transformation.

1. From the Modeling menu, select Transform > New Configuration.
2. Select Transformation from under com.ibm.myTransformation folder.

3. Name the configuration MyTransformationConfiguration and click Next.

d Mew Transformation Configuration

Hame and Transformation
Specify the file and transformation information, -

Mame: | MyTransformationConfiguration|

Forward transformation:

Transformation {com.ibm.myTransformation. transformation)

=I-[== com.ibm.myTransformation
Il Transformation

+-[= Data Model Transformations

#-[= IBM Rational Transformations

Configuration file destination:

[TransformationTest E]

@ | mext> |[Fnish || cancel |

Figure 10-12: Creating the new transformation configuration

4. On the Source and Target screen, specify SourceModel as the Selected source and TargetModel as the
Selected target.

TIP: Ensure that you select the model and not the model file. The easiest way to discern between the two is

10-12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 — Manually Create a Transformation

that the model file has an emx extension.

5. Click Finish.

6. In the Project Explorer, right-click the MyTransformationConfiguration. tc file and click Transform >
Transformation.

7. Explore the results in TargetModel.

sinterfaces
IEmployee

g3 reportToManager()

Realization

 EmployeeImpl

g readEmail ()

% answerPhone ()
& performWork ()

2, reportToManager()

Figure 10-13: Resulting elements in the TargetModel

8. Optionally, you can add another public operation to the Employee class in SourceModel, for example
reportToManager (id:Integer), and re-run the transformation.

Task 8: Add a New Rule

In this task, we will add a new rule to the transformation. This rule will work with the properties (attributes) of a class
—and its output will depend on keywords that have been applied.

1. Close the run-time workbench and switch back to the host workbench.
2. Add a new class named PropertyRule to MyTransformation.transformation.rules package:

¢ In the Package Explorer, right-click on the MyTransformation.transformation.rules package
and select New > Class.

e Populate the New Java Class dialog as shown in the screen capture below:

© Copyright IBM Corp. 2007 10-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

f.) New Java Class

Java Class ¥

\
Create a new Java dass. (\1 - a
-

Source folder: com.ibm.myTransformation fsrc
Package: com.ibm.mytransformation. transformation.rules

[JEndosing type:
MName: PropertyRule
Modifiers: (%) public) default

[Jabstract [|final
Superdass: com.ibm, xtools, transform.core, AbstractRule

Which method stubs would you like to create?
[public static vaid main{String[] args)
[¥]Constructors from superdass;
Inherited abstract methods
Do you want to add comments as configured in the properties of the current project?

[] Generate comments

i) I Finish] [Cancel

Figure 10-14: Adding the new Property Rule

TIP: Make sure that you have selected Constructors from superclass.

e Click Finish.

TIP: You may recall from earlier that we changed the Supeclass for our rules from AbstractRule to
ModelRule. The reason for this change is that the ModelRule class provides support for modifying a
target UML model. In the case of this rule, we will not be modifying a UML model, so we can keep
AbstractRule as the Superclass.

3. Add code to the new rule:

e Update the code in the createTarget method so that we can tell when this method is called:

protected Object createTarget (ITransformContext arg0) throws Exception

NamedElement element = (NamedElement) arg0O.getSource() ;

EList keywords = element.getKeywords () ;

10-14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 — Manually Create a Transformation

if (keywords.isEmpty ())

System.out.println (element.getName () + " FunnyProperty
Keyword has NOT been applied");

}else if (keywords.contains ("MyFunnyProperty")) {
System.out.println (element.getName () + " FunnyProperty
Keyword has been applied");
}

return null;

}

e Right-click in the editor for the class and click Source > Organize Imports to add required import
statements.

4. Connect the new rule into the transformation:
e Add the following line to the end of the addUMLRules (UMLKindTransform transform) method
of the com. ibm.mytransformation.transformationProvider.Transformation class.
transform.addByKind (UMLPackage.eINSTANCE.getProperty (), new
PropertyRule ("MyTransformation.transformation.rule2", "PropertyRule")) ;
e Right-click in the editor for the class and click Source > Organize Imports to add any required import
statements.

e Select File > Save All.

Task 9: Test the New Rule

In this task, we will test the new rule that we added to the transformation in the previous task. In this case we will
launch the runtime workbench in Debug mode.

1. Launch a run-time instance of the workbench:

e Select Run > Debug.

e Select DEV498v7 Sample Config from the Configurations pane, and then click Debug.

e If you are prompted to switch to the Debug Perspective in the development workspace, click OK.
2. Test the updated transformation:

¢ In Model Explorer open the SourceModel.

e Create a new attribute named Salary on the Employee class. Add a Keyword to it named
MyFunnyProperty.

© Copyright IBM Corp. 2007 10-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

[l Properties &2 . Tasks | Console Bookmarks | =R
~

General g <Property> Salary ml

stereotypes Keywords: MyFunnyProperty|

Documentation

Constraints Applied Stereotypes:

Advanced Steregtype | Profie | Required

Figure 10-15: Specifying a keyword on the Salary attribute
e Create another attribute named Paydate on the Employee class. Do not specify a keyword on this
attribute.
¢ Open the TargetModel model.
e Re-run the transformation configuration MyTransformationConfiguration. The transformation should
produce output in the Console view within the host workbench.

TIP: If the console is not visible, click Window > Show View > Other , and then select Basic > Console.

Ll console &3 L] x o | ™ f-=0
DEV498v 7 Sample Config [Edipse Application] C:\IBM\w 7\SDP70Ydk binYjavaw.exe (Feb 5, 2007 12:45:14PM)

Salary FunnyProperty Eeyword has been applied

Paydate FunnyProperty Keyword has HOT been applied

Figure 10-16: Output written to the Console view within the Host workbench.

e When you have finished testing and debugging the transformation, close the run-time workbench.

Task 10: Extra Challenges

If time permits during the course, or as a practice challenge for after the course, complete the following task.

1. Work in debug mode, set a breakpoint in the createTarget methods of the rules in the transformation. Run the
transformation again and walk-through the code using the debugger.

10-16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 - Create a Model to Model Transformation

Objectives

After completing this lab, you will be able to:

» Author, run, and test a custom model-to-model transformation.

Given

The following lab artifacts can be found in the Inputs folder for this lab:
» OperationMapping.mapping
» Class2InterfaceCustomNameTransform.txt

» FindElementUtility.java

Scenario

In this lab, your team needs to transform a number of source classes from one model, to target interface and
implementation classes in another model. There must be a realization relationship from the implementation
class to the interface, and the implementation class needs copies of the source class operations, while the
interface only needs copies of the public source class operations.

Instead of each team member manually performing the transformation, your task is to automate the process
and make it available to the entire team.

You will use the Transformation with Model mapping capabilities of Rational Software Architect to define how
the source model elements will be mapped to the target model. Then you will generate and run the
transformation from this model mapping.

Task 1: Create the Workspace

In this task, you will switch to a new workspace named M2MTt ansf or mat i onWbr kspace that you will
create.

1. From the File menu, select Switch Workspace.

2. In the Workspace Launcher dialog, replace the displayed text with
C:\Workshop\StudentWork\M2MTransformationWorkspace and click the OK button.

3. Close the Welcome screen.

© Copyright IBM Corp. 2007 11-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4. Switch to the Modeling perspective

5. Make sure that the XML Developer capability is enabled. Go to Window > Preferences and under

General > Capabilities, select XML Developer.

Task 2: Create a New Plug-in Project with Transformation Mapping

In this task, you will create a new Plug-in Transformation project named Gener al i zed asses to simplify

the authoring effort.
1. On the File menu, click New > Project
2. Replace type filter text with Plug

3. Select Plug-in Project and click Next.

) New Project

Select a wizard —
Create a Plug-in Project

Wizards:
Plug H
I Plug-in Project
== Plug-in Development
¥ Plug-in from existing 1AR archives
i Plug-in Project
== Pluglets
5 Pluglets Project
== Bxamples
= RMP (Rational Modeling Platform) Plug-ins

[Jshows All Wizards.

Figure 11-1: Create a new Plug-in Project

4. Name the project Generalize Classes and then click Next.

5. Review the Plug-in Content screen, leave all the defaults, and click Next.

6. On the Templates screen, select Create a plug-in using one of the templates
7. Select Plug-in with Transformation Mapping and click Next.

11-2

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8. On the New Transformation Mapping screen, select the Add Model button next to Input models.

9. On the Load Resources dialog, select the Browse Registered Packages button.

Lab 11 — Create a Model to Model Transformation

=) New Plug-in Project E

Templates o
Select one of the available templates to generate a fully-functioning
plug-in.

Create a plug-in using one of the templates

Available Templates:

% Custom plug-in wizard This wizard creates a standard plug-in
[Figure definitions converter directory structure with the following:
4 Hello, World

s Transformation Provider. A
transformation provider is the
mechanism used to define new
transformations.

£ Plug-in with a incremental project builg
% Plug-in with a multi-page editor
% Plug-in with an editor

4% Plug-in with a popup menu . .
4 Plug-in with a property page Transformation Mapping.
%P\ug-iﬂ with a sub-element counter Transformations can be authored by

2 . N specifying mappings between features
@Plug-in with a view of input and output models.

S Plug-in with Patterns P P .

% Plug-in with sample help content Extensions Used
El, Plug-in with Transformation
| Plug-in with Transformation Mapping

l(] il | [}]

.
com.ibm.xtools.transform. core.transforr

3] [< Back][Mext > H Finish H Cancel

Figure 11-2: Specify the template to use

10. Replace “*” with “*UML” and then select the package

http://www.eclipse.org/uml2/2.0.0/UML, then OK twice. This selects the UML.ecore model

for the input model.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

v.} Package Selection = @

Select a registered package URI:

ML

8 htip:/fwwew. edipse.org fOCL2/1.0.0fodjuml
B8 http:/fwvewe. edipse.org fuml2/1. 1.0/GenModel
£ http: [fwww. eclipse org/uml2/2.0.0/UML |

o) | (3

@ [OK H Cancel l

Figure 11-3: Select the input model to use

11-3

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

11. Repeat steps 8-10 to select UML.ecore for the Output model.

=’ New Transformation Authoring Project Using Tra...

New Transformation Mapping =|:I):

Create a new model-to-model transformation with the Mapping Editor.

Map name: Generalize_Classes
Package name: | generalize_classes
Version: 1.0.0

Input models:

platform:/plugin/org.eclipse.uml2.uml/model/UML.ecore

Add Model...
Output medels:
platform:/plugin/org.eclipse.uml2.uml/model/UML.ecore
Add Model...
@ [Finish I [Cancel I

Figure 11-4: Specifying the input and output models
12. Click Finish. If asked to switch to the Plug-in Development perspective, select No.

Task 3: Create the Class to Class Mapping

In this task, you will create the first mapping to be used in the transformation. You will create a total of 4
mappings before you run the first version of the transformation.

+* Modeling - Generalize_Classes.mapping - Rational Software Archif

File Edit Mavigate Search Project Data Modeling Run Window Help

- ' FURN R R R G -

L Project Explorer &3 = B || i Generalize_Classes £ Generalize_Classes.mapping i3
0 g v ~Mapping Root

=% Generalize Classes

[Generalize_Classes]

Figure 11-5: The mapping editor
1. Afile called Generalize Classes.mapping is created and opened in the mapping editor.

2. Right-click the Generalize_Classes button and select Create Map. Name the map Class2Class.

11-4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 — Create a Model to Model Transformation

3. The mapping editor toolbar displays with your new map.

~Mapping Root

[& Generalize_Classes]

~Class2Class & =51

L

Figure 11-6: Toolbar within the mapping editor
4. Select the leftmost button to add an input element.

5. When the Add Input screen displays, simply start typing the letters c1a and the UML Class will be
highlighted. Select OK.

) Add Input %

Add Input Element from Input Model

Choose an input element to map to.

Element: Stereotype:
B Artifact &
H Association

H AssociationClass []
E Behavior

E BehavioralFeature

H BehavioredClassifiet

H BehaviorExecutions)

E BroadcastSignalActi
H CallAction
B calleehavioraction Add Model...
B callEvent

E calloperationAction

H CentralBufferMode

E ChangeEvent

H Class

H Classifier [vl

(<] i | (2]

@ I oK I ’ Cancel

Figure 11-7: Adding an Input element

6. Select the Add Output button (located to the right of the Add Input button).

7. When the Add Output screen displays, simply start typing the letters c1a and the UML Class will be
highlighted. Select OK.

© Copyright IBM Corp. 2007 11-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

~Mapping Root

~Class2Class

= [Class

eAnnotations
ownedComment
name

visibility
clientDependency
nameExpression
elementImport
packageImport
ownedRule

isLeaf

templateBinding

isAbstract
generalization
powertypeExtent
redefinedClassifier
substitution

representation

Generalize_Classes

templateParameter

ownedTemplateSignature

=]

EAnnotation []
Comment []
String
VisibilityKind
Dependency []
StringExpression
ElementImport []
PackageImport []
Constraint []

Boolean

owningTemplateParameter TemplateParameter

TemplateParameter
TemplateBinding []
TemplateSignature
Boolean
Generalization []
GeneralizationSet []
Classifier []
Substitution []
CollaborationUse

= B Class

eAnnotations
ownedComment

name

visibility
clientDependency
nameExpression
elementImport
packageImport
ownedRule

isLeaf
owningTemplateParameter
templateParameter
templateBinding
ownedTemplateSignature
isAbstract

generalization
powertypeExtent
redefinedClassifier
substitution

representation

EAnnotation []
Comment []

String

VisibilityKind
Dependency []
StringExpression
ElementImport []
PackageImport []
Constraint []
Boolean
TemplateParameter
TemplateParameter
TemplateBinding []
TemplateSignature
Boolean
Generalization []
GeneralizationSet []
Classifier []
Substitution []

P ’

Figure 11-8: Input and output elements added to the mapping

Now you are ready to define the transformation between the input and output elements. For the first part of
the exercise, you will simply create a new class in the target model with the same name as the class in the
source model. You will come back and add the mapping of operations later in this exercise.

8. Hover the cursor over the name property of the input class until a handle appears. Select this handle and
drag it onto the name element of the target class. The result will be a transformation of type Move. You
could also think of it as a copy.

~Class2Class

= [Class

eAnnotations
ownedComment
name

visibility
clientDependency

= K| »

EAnnotation []
Comment []
String
VisibilityKind
Dependency []

Move «

= L Class
eAnnotations
ownedComment
name
visibility
clientDependency

EAnnotation []
Comment []
String
VisibilityKind
Dependency []

11-6

Figure 11-9: Creating a Move transformation between the elements

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 — Create a Model to Model Transformation

Task 4: Create the Class to Interface Mapping

1. Using the skills you learned in Task 3, create a new mapping in Generalize_Classes. Call this mapping
Class2Interface.

2. Select the input element to be a UML Class, and the output element to be a UML Interface.
3. Create a transformation between the name of the input Class and the name of the output Interface.

4. Instead of a simple copy of the name, though, you want to rename the interface. Select the Move and use
the down arrow to change it to Custom.

5. Make sure that Custom transformation is selected, and then select the Details tab in the Properties view.

6. Inthe Code: area, be sure that In-line is selected and enter the following code:
Interface tgt.setName ("I"+Class src.getName()) ;

7. Asyou enter code, try out the code completion with Ctrl-Space.

~Mapping Root

Generalize_Classes

~Class2Interface 2 XK | =

= 04 Class = [E Interface

eAnnotations

EAnnotation []

eAnnotations

EAnnotation []

ownedComment Comment [] ownedComment Comment []
name String name String
visibility Visibilityind visibility Visibilitykind
clientDependency Dependency []

nameExpression

elementImport

StringExpression

ElementImport []

clientDependency
nameExpression
elementImport

Dependency []
StringExpression
ElementImport []

= Properties &2 . Tasks| Console| Bookmarks

Description Transformation - Custom

Details Code: & In-line) External
Interface_tgt.setName("I"+Class_src.getMame());

Figure 11-10: Custom mapping between the elements

8. Enter Ctrl-sShift-S to save all of your work so far.

Task 5: Create the Package to Package Mapping

1. Create a new mapping in Generalize_Classes. Call this mapping Package2Package.

2. Select the input element to be a UML Package and the output element to be a UML Package.

3. Create a transformation between the name of the input Package and the name of the output Package.
4

Create a transformation between the packagedElement of the input package and the packagedElement of
the output Package. Because the packageElement is an array, the mapping tool will create a transformation
of type Submap.

© Copyright IBM Corp. 2007 1-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

5. With the Submap transformation selected, in the Properties view, Details tab, make sure that the value for
the Map is Class2Class.

~Package2Package

= [¥ Package

eAnnotations
ownedComment

name

visibility
clientDependency
nameExpression
elementImport
packagelmport
ownedRule
owningTemplateParameter
templateParameter
templateBinding
ownedTemplateSignature
packageMerge
packagedElement
profileApplication

] Properties &2

Description
Details File:
Condition

. Map:
Input Filter

Output Filter
Custom Extractor

(=]

EAnnotation []
Comment []

String

VisibilityKind
Dependency []
StringExpression
ElementImport []
PackageImport []
Constraint []
TemplateParameter
TemplateParameter
TemplateBinding []
TemplateSignature
PackageMerge []
PackageableElement []
ProfileApplication []

Tasks| Console | Bookmarks

Transformation - Submap

Class2Class

model/Generalize_Classes.mapping

= [[» Package

eAnnotations
ownedComment
name

wisibility
clientDependency
nameExpression
elementImport
packagelmport
ownedRule

owningTemplateParameter TemplateParameter

templateParameter
templateBinding

ownedTemplateSignature

packageMerge
packagedElement

profileApplication

Browse... %

(]

EAnnotation []
Comment []
String
visibilityKind
Dependency []
StringExpression
ElementImport []
PackageImport []
Constraint []

TemplateParameter
TemplateBinding []
TemplateSignature
PackageMerge []
PackageableElement []

ProfileApplication []

Figure 11-11: A submap between the elements
6. Create another Submap between the packagedElements, set its Map to Class2Interface.

7. Create one more Submap between the packagedElements, so that your transformation will handle nested
packages, and set its Map to Package2Package.

8. You should now have three Submaps between the packageElements of the source and target.

LEMpig teEnindirg

ownedTemplateSignature TemplateSignature - -
ownedTemplateSignature TemplateSignature
packageMerge PackageMerge []
packageMerge PackageMerge []
packagedElement PackageableElement []
profileApplication ProfileApplication [] packagedElement PackageableElement []

profileApplication

TEMEEGT g []

ProfileApplication []

11-8

Figure 11-12: The three submaps between packagedElement

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 — Create a Model to Model Transformation

Task 6: Create the Model to Model Mapping

1
2
3.
4

o

Create a new mapping in Generalize_Classes. Call this mapping Model2Model.
Select the input element to be a UML Model and the output element to be a UML Model.
Create a transformation between the name of the input Model and the name of the output Model.

Instead of a simple copy of the name, though, you want to rename the model. Select the Move and use
the down arrow to change it to Custom.

Make sure that the Custom transformation is selected, then select the Details tab in the Properties view.

In the Code: area, be sure that in-line is selected and enter the following code:
Model tgt.setName (Model src.getName ()+"TgtModel") ;

Add a Submap transformation from the source Model packagedElement to the target Model
packagedElement and make sure its map is Package2Package.

In the Outline view, right-click on the Model2Model mapping and select Execution Order > Move Up.
Repeat until the Model2Model mapping is at the top of the list. Repeat for each mapping until the list of
mappings is in the following order:

E= Qutline 2 . Inher..., = O

- Model2Model

¥ Package2Package
+- Class2Class
- Class2Interface

Figure 11-13: The mappings in the Outline view

Task 7: Generate the Transformation Code

Enter ctrl-Shift-S to save all of your work so far.

Before you generate code, review the files that are in the project so far by opening the nodes of the project
in the Project Explorer. All of these were created when the project was created and you have been editing
the .mapping file.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11-9

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

L7 Project Explorer 52 0 & Y =0
= = Generalize Classes
=2 src
=3 generalize_classes
=-£ 110n
+-[J] Generalize_ClassesMessages.java
Generalize_ClassesMessages.properties
--f# transforms
+-[J] MainTransform.java
+-[J] Activator.java
+-[J] Generalize_ClassesTransformationGULjava
+-[J] Generalize_ClassesTransformationProvider.java
+-[J] Generalize_ClassesTransformationValidator.java
+-B JRE System Library [jdk]
+-2 Plug-in Dependencies
== META-INF
MANIFEST.MF
== model
|=| Generalize_Classes.mapping
| build.properties
plugin.properties
A plugin.xml

Figure 11-14: Files in Project Explorer before generating code

3. In the Mapping Editor, right-click the surface to the right of the Generalize_Classes button and click
Generate transformation source code from the context menu.

4. Review the transformation files that have been generated.

11-10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 — Create a Model to Model Transformation

[75 Project Explorer &2 == =/
= =% Generalize Classes
=% src
-3 generalize_classes
=-£3 110n
H-) Generalize_ClassesMessages.java
Generalize_ClassesMessages.properties
= E_:l transform
+-[J] Class2ClassTransform.java
+-[J] Class2InterfaceTransform.java
+-[J] MainTransform.java
+-[J] Model2ModelTransform.java
+-[J] Package2PackageTransform.java
=| [J] Activator.java
+[J] Generalize_Classes ranstormatonGULjava
+-[J] Generalize_ClassesTransformationProvider.java
+-[J] Generalize_ClassesTransformationValidator.java
+ B JRE System Library [jdk]
+-Bh Plug-in Dependencies
== META-INF
MANIFEST.MF
== model
|=| Generalize_Classes.mapping
|y build.properties
plugin.properties
4 plugin.xml

Figure 11-15: Project Explorer after generating code

5. Save your work.

Task 8: Configure Run-time Workbench

In this task, you will configure a Run-time workbench to use in testing the newly created transformation.

Switch to the Plug-in Development Perspective.
Select Run > Run from the main menu bar.
On the Run screen, select Eclipse Application and click the New button (leftmost on the toolbar).

Select the Configuration tab and set the Configuration File setting to Use an existing config.ini file as
a template. Leave the default location.

e

TIP: This step is critical, as the default Eclipse content option does not provide enough functionality to
support a Rational Software Architect test.

© Copyright IBM Corp. 2007 11-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

« Run Ed

Create, manage, and run configurations L
Create a configuration to launch an Eclipse application. (Eé)
TEX B3

Name: New_configuration

type filter text - :] _ — — :

& tdi - =] Main| t9= Arguments | %4 Plug-ins | = Configuration & Tracing| P& Environment | = Common

= clipse Application I : : : = | |
& New_configuration

@ Equinox O5Gi Framewor

3 Java Applet Use default location

Configuration Area

3 Java Application

% JET Transformation
Ju Junit

Jt Junit Plug-in Test
fa SWT Application
o WebSp
% WebSphere v5.1 Appti
i WwebSphere v6.0 Applice

[clear the configuration area before launching

Configuration File

i}

() Generate a config.ini file with default content

e an existing config.ini file as a template

% WebSphere v6.1 Applicz Location: | ${target_home}\configuration\config.ini
Workspace...] ’File System...] [Variables...
&l i (] [Apply] l Revert]
@ [Run] I Close]

Figure 11-16: Configuring a runtime configuration

5. Select Apply, then Run.

Task 9: Create a Test Project

In this task, you will be using the Run-time Workbench to test the newly created transformation.

1. Close the Welcome screen.
2. Switch to the Modeling perspective.
3. Create a test UML Modeling Project named TransformationTest based on the Blank Model template:

e From the File menu, click New > Project
e Select UML Project, and click Next.

e Name the project TransformationTest, keep the remaining defaults, and click Next.

11-12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 — Create a Model to Model Transformation

2 UML Modeling Project

UML Modeling Project

A new UML modeling project with a readied empty model well suited for
modeling.

Project name: TransformationTesd

Use default location

UML Model

Create new UML medel in the project
(& standard template

) Existing model

Creates a new UML model from a standard template

=)

[< Back ” MNext = l

Figure 11-17: Creating a modeling project

e Under Templates, select Blank Model, change the file name to Sour ceModel , and click Finish.
e If prompted to switch to the Modeling Perspective, click Yes.
4. Create a package named Busi nessC asses.

5. Inthe Busi nessCl asses package, create a class named Enpl oyee and add three private operations;
readEmail, answerPhone, and performWork. Add one public operation reportToManager
(name:String).

Note: to see signature, right-click class and select Filter > Show Signature.

=] Employee

@y readEmail ()

§% answerPhone ()

% perfformWoark ()

{2 reportToManager(name : String)

Figure 11-18: Employee class
6. Tothe Transfornati onTest project, add a new UML Model to be the target.

7. On the Project Explorer, select the TransformationTest project, right-click and select New > UML
Model.

8. Select the Standard Template, then click Next.

9. Under Templates, select Blank Model, change the file name to Tar get Model and click Finish.

© Copyright IBM Corp. 2007 11-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 10: Run the Transformation

In this task, you will configure and run the transformation.
1. From the main menu bar, select Modeling > Transform > New Configuration.

2. Name the new configuration FirstConfiguration and select the Generalize_Classes Transform,
then click Next.

=) New Transformation Configuration

Name and Transformation

Specify the file and transformation information.

Name: | FirstConfiguration

Forward transformation:

Generalize_Classes Transform (generalize_classes.Generalize_ClassesTransformatio

#-[= Data Model Transformations
—-= Generalize_Classes

El; Generalize_Classes Transform
#-[= IBM Rational Transformations

Configuration file destination:

fTransformationTest [B

2) [Next =] [Finish l [Cancel

Figure 11-19: Selecting the transformation

3. On the New Transformation Configuration screen, select SourceModel as the Selected source and
TargetModel as the Selected target. Click Next.

11-14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 — Create a Model to Model Transformation

' New Transformation Configuration

Source and Target

Selected source:

= = TransformationTest
= % Models
=-E2 TargetModel
® SourceModel
|5 .project
%% SourceModel.emx
&4 TargetModel.emx

SourceModel

Set the transformation's source and target.

Selected target:

= = TransformationTest
= % Models
+-C21 TargetModel
+-53 SourceModel
|5 .project
%84 SourceModel.emx
24 TargetModel.emx

TargetModel

Create New Target Container...

[< Back][Next = I [Finish } [Cancel]

Figure 11-20: Specify source and target

4. Click Next through the next three screens, but leave the defaults and then click Finish.

5. This creates a . tc file in the project that contains the transformation configuration. Right-click this file and
select Transform > Generalize_Classes Transform.

6. While the transformation is executing, you will be prompted that the target files will be updated with the

automatic merge options. Click OK.

7. The model merge dialog will display so that you can validate the changes to the target model. Select the
two changes as indicated in the following screenshot. Click OK.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11-15

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

2 Merge M=)}

Merge transformed model

Check-mark changes from the temporary model to be merged into target model L_,—ITI
» A& E
& Pending changes: There are 8 pending change(s), 2 marked to accept G 5 o &4

a Fl 4y Model View
=-[] 4 Changes related to TargetModel<Modal>

. Add BusinessClasses<Package> to TargetModel<Model>.Packaged Element
[] %4 Delete Main<Diagram=> from TargetModel<Model>
[]%4 Delete [reference] Main<Diagram> from TargetModel<Model=
4 Modify TargetModel<Model>.Name from "TargetModel" to "SourceModelTgtModel"
[%4 Delete <Package Import> from TargetModel<Model>.Package Import
[1%% Delete <Profile Application> from TargetModel<Model=.Profile Application
[1 %4 Delete <Profile Application> from TargetModel<Madel>.Profile Application
[%% Delete <Profile Application> from TargetModel<Model=>.Profile Application

Source: Temporary model Target: Target model
= D'EI-;,. SourceMoﬂ.eﬂ.'gthdell e Oa TargetMoﬂ.el.
B2 Properties ® [a Properties
[0z BusinessClasses [® Main
O & Pelete: Main i (UMLPrimitiveTypes)
O & Pelete: (Ui PrimitiveTypes) T (standard)
O = Pelete: {Standard) T& (Default)
O = Pelete: (Pefault) & (Deployment)
O ® Pelete: (Peployment)
Description | Properties) i
8 change(s) to properties or attributes.
This element can be manually mapped to a selected element in the opposite model,
7 DK l [Cancel
Figure 11-21: Merging the models
8. When prompted to accept changes from the file system, click Yes.
9. Explore the results in TargetModel.
11-16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 — Create a Model to Model Transformation

£ BusinessClasses

«interfaces

Empl
= Employee IEmployea

Figure 11-22: Resulting elements in the TargetModel

Task 11: Add New Mappings and a Relationship

You need to go back and complete the transformation by adding mappings to copy operations and adding the
code to create the realization relationship between the class and the interface. You have “pre-cooked” those
files to save time, and to demonstrate how you can re-use mappings across projects.

1. Close the run-time workbench and switch back to the host workbench.
2. Implement a mapping from another file.

e Copy the file OperationMapping.mapping from C:\Workshop\Labs\Inputs into the
model folder of the GeneralizeClasses project.

e If not already open, right-click the Generalize_Classes.mapping file in the model folder and select
Open with > Mapping Editor.

¢ Double-click Class2Class in the Outline view.
¢ Create a Submap from ownedOperation in the source Class to ownedOperation in the target Class.

¢ On the Details tab of the Properties view, click Browse and select the file
OperationMapping.mapping.

e Repeat these steps, adding this submap to the Class2Interface transformation.

3. Add a condition to this Submap on the Class2Interface transformation so that that only public visibility
operations are copied.

¢ In the Properties view, select the Input Filter tab. Select the checkbox for Filter Input Elements.

¢ Inthe Code: area, be sure that In-line is selected and enter the following code:

return ownedOperation src.getVisibility()==VisibilityKind.PUBLIC LITERAL;

TIP: Asyou enter code, try out the code completion with ctrl-Space.

4. Add the code to create the Realization relationship from the implementation class to the interface in the

© Copyright IBM Corp. 2007 11-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

target model.

e Select the Custom transform on the mapping of the name of the source class to the name of the target
interface. Copy the code from Class2InterfaceCustomNameTransform. txt into the code of
this custom transform.

5. Save all.
6. Generate and clean up code.

e Cenerate the transformation code for the operation mapping. In the Mapping Editor with the
OperationMapping.mapping file open, right-click the surface to the right of the OperationMapping
button and select Generate transformation source code from the context menu.

e Re-generate the transformation code for the Generalize_Classes mapping. In the Mapping Editor with
the Generalize_Classes.mapping file open, right-click the surface to the right of the
Generalize_Classes button and select Generate transformation source code from the pop-up menu.

¢ In the Generalize Classes project, create a new package under the src directory called utilities. Copy
FindElementUtility.java from C:\Workshop\Labs\Inputs into the utilities folder that you just created.

e There will be errors in Class2InterfaceTransform. java due to the fact that Class and Package
are resolved to java.util rather than the uml versions needed. To correct this, add the following import
statements:

import org.eclipse.uml2.uml.Class;

import org.eclipse.uml2.uml.Package;

¢ Organize imports in Class2InterfaceTransform.java using Ctrl-shift-o.
e Saveall.

7. Test the updated transformation
e Start the runtime workbench as before.

e Select FirstConfiguration.tc, right-click this file and select Transform > Generalize_Classes
Transform. The results in the target model will look like this when the package and two classes are
selected and dragged onto a diagram:

11-18 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 — Create a Model to Model Transformation

«interfaces
IEmployea

{7, reportToManager()

3 BusinessClasses

=] Employee

g readEmail ()
2 answerPhaone ()

& performWork ()
{2 reportToManager ()

Figure 11-23: Results in the target project

e When you have finished testing and debugging the transformation, close the run-time workbench.

Tips and Troubleshooting

TIP: If you close the mapping editor and need to re-open it, right-click the projectName.mapping file
in the models folder and select Open with > Mapping Editor. If the Mapping Editor does not
display as an option, then make sure that you have enabled the XML Developer capability (Task 1,
Step 5).

TIP: To use profiles, select the input and ouput profiles in addition to selecting the UML ECore model
on the Create Project wizard. This will allow you to select the UML element as well as any
stereotypes you want to map to and from.

TIP: When you create a new mapping transformation project using the New Project wizard it will add
dependencies that are implied by the input and output models that you identify. So, for instance if
you add the UML.ecore metamodel the wizard will add a dependency to that metamodels plugin.

If you later add another input or output metamodel you will need to add any new dependencies to your
plugin.xml manually (dependencies are really in the manifest.mf file).

Or if you create (with the New Map wizard, not the New Map Project wizard) a map or copy a map to a
non-mapping project, you will need to add necessary dependencies, nature, and builder to your
plugin.xml and .project files.

TIP: If you want to map an abstract element (for example, the Type of a parameter) you will need to
create a concrete mapping for each subtype you want handled. So for the Type of a parameter,
create a Class-to-Class map, and a primitiveType-to-primitiveType map.

© Copyright IBM Corp. 2007 11-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

11-20 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 12 — Create the Master Detail Pattern

Objectives
After completing this lab, you will be able to:

» Create a pattern to be used in conjunction with the UXModeling profile.
Given

The following lab artifacts, a set of project interchange files, can be found in the Inputs folder for this
lab:

details-expand.input.txt
listscreen-expand. input.txt
searchscreen-expand. input.txt
detaildependency-expand. input. txt

listdependency-expand. input. txt

vV V. v v VY

The project interchange file named CreateUXModelingProfile.zip.

Scenario

In this portion of the workshop, you will create a Rational Software Architect Pattern that will support the
creation of a Master-Detail relationship between a set of screens. The intent of the pattern will be to
automate the creation of relationships between the classes involved in the pattern, and create classes that
are needed to fill the roles within the Master-Detail collaboration.

This pattern will leverage the UXModeling profile that you created earlier. The pattern will be aware of
the profile and its stereotypes, and will also apply some of the stereotypes to the pattern parameters.

Task 1: Create the Pattern Project

In this task you will create an implementation of a Master-Detail pattern.
1. Create a pattern project

On the File menu, click New > Project.

Make sure that Show All Wizards is selected.

Replace type filter text with plug.
Select Plug-in Project. Click Next.

P o o

Name the project Struts, and then click Next.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

12-1

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

12-2

<’ New Project

Select a wizard
Create a Plug-in Project

Wizards:

plug

- Plug-in Project
& Plug-in Development
: % Plug-in from existing JAR
* 13 Plug-in Project
== Pluglets
&1 Pluglets Project
== Examples

archives

[¥-= RMP [Rational Modeling Platform) Flug-ins

Cancel

Figure 12-1: Creating the plug-in project

f. Click Next.

g. On the Templates page, select Create a Plug-in using one of the templates. Then choose

Plug-in with Patterns, and click Next.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 — Create the Master Detail Pattern

=’ New Pattern Authoring Plug-in Project

Pattern Library = I e

Choose the name and location for the pattern library class.

Java Package Name: | struts.lib

Library Class Mame: | PatternLibrary

l FEinish l [Cancel

Figure 12-2: Details for the Pattern Library
h. Click Finish.
i. If asked, click Yes to change to the Plug-in Development perspective.
jo If asked, click OK to enable Reusable Asset Management capability.
2. Set up the pattern.
a. Inthe Plug-in perspective, bring the Pattern Authoring view to the front. If it is not open,

then click Windows > Show View > Other. Replace type filter text with
Pattern. Select Pattern Authoring and then click OK.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

12 -4

k.

=) Show View 3

type filter texd]

= General ”
= Analysis

= Ant

= CfC++

[= Cheat Sheets
[= Crystal Reports
= Cvs

= Debug

= Help

= Java

= Java Browsing
= Linkability

= Make

= Modeling [v]

Cancel

Figure 12-3: Adding in the Pattern View
b. In the Pattern Authoring view, right-click Struts and then click New Pattern.

In the New Pattern dialog, specify Master-Detail as the Pattern Name. The Class Name
should be MasterDetail.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 — Create the Master Detail Pattern

) New Pattern X
Pattern 2R \J
Create a new pattern <T; -

General | Detall

Pattern Name: | Master-Detail
Class Name: MasterDetail

Package: struts.patterns.masterdetail

Pattern Type: |Col|aboration i:!

Target Types: []Package [¥]Collaboration [¥]Clags

Parameters: | pame Type Multiplicity Add...
Groups: Miscellaneous Fatterns Add...
Version: 1.0.0

@ [oK] [Cancel

Figure 12-4: Details for the new Pattern
I. Add parameters to the pattern as follows:
e Name: Search Screen Class Name: SearchScreen Type: Class
e Name: List Screen Class Name: ListScreen Type: Class
e Name: Details Screen Class Name: DetailsScreen Type: Class

m. Edit the List Screen parameter. On the Parameter Dependency tab, set Search Screen as
a Client Parameter and set Details Screen as a Supplier Parameter. Then click OK.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

12-5

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

12-6

n.

— = -

) Edit Pattern Parameter X
Parameter &5 "“
Edit a pattern parameter. '47; -

| General | Parameter Dependency

Select client parameters which depend on this parameter, or select supplier parameters on
which this parameter depends.

Existing Parameters: Client Parameters:
= search Screen

Supplier Parameters:

L Details Screen

(6] ’ oK] ’ Cancel

Figure 12-5: Parameter Dependencies

Remove the Miscellaneous group and add your own group called My Struts Patterns.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 — Create the Master Detail Pattern

<’ New Pattern X
Pattern 2R "’
Create a new pattern 'fT; -

General ' Detajl ;

Pattern Name: | Master-Detail
Class Name: | MasterDetail

Package: struts.patterns.masterdetail

Pattern Type: | Collaboration | 1!

Target Types: [¥]Package [¥]Collaboration [v]Class

Parameters: Hame Type Multiplicity
Search Screen Class 1
List Screen Class 1
Details Screen Class 1,
Groups: My Struts Patterns Add...
Version: 1.0.0
@ [oK] ’ Cancel

Figure 12-6: Completed pattern specification

o. Click OKto complete creating the pattern structure.

Task 2: Customize Expand Methods

In this task, you will add code to the Expand methods of the pattern to customize the behavior of the
pattern.

1. Use the following code to replace the code found in the public boolean
expand (PatternParameterValue value) of the DetailsScreen class:

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

12-7

12-8

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

{2 Package Explorer I3 % ¥ =0

= 2;% Struts
=2 sre
+ - struts
+- 7 struts.lib
-1-ff struts.patterns.masterdetail
-] MasterDetail.java
-9 MasterDetail
- GE DetailsScreen
% PARAMETER_ID
& DetailsScreen()
@. expand(PatternParameterValue)
@. expand(Removed)
¥ (E. ListScreen
+- (& SearchScreen
¥ PATTERN_ID
i PATTERN_VER
& detailsScreen
o listScreen
4« searchScreen
@ MasterDetail(AbstractPatternLibrary)
=), JRE System Library [jdk]
=i, Flug-in Dependencies
[= icons
= META-INF
[= PatternFiles
b build. properties
4% plugin.xm

¥

F

F

F

¥

Figure 12-7: Expand method for the DetailsScreen

TIP: You can copy the following code from C: \ Workshop\Labs\ Inputs\details-
expand. input.txt.

Profile uxProfile = null;

//add the <<screen>> stereotype to the class

//first ensure that the profile has been applied to the model
Class detailsClass = (Class)value.getValue() ;

for (Iterator iter =

detailsClass.getModel () .getProfileApplications () .iterator () ;iter.hasNext (
) i)

ProfileApplication profileAppl = (ProfileApplication)
iter.next () ;

Profile profile = (Profile) profilelAppl.getAppliedProfile() ;

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

© Copyright IBM Corp. 2007

Lab 12 — Create the Master Detail Pattern

if (profile.getName () .compareTo ("UXModeling") == 0)
uxProfile = profile;
break;
}
if (uxProfile != null)

//since the profile has been applied to the model, we can add
the stereotype

//to the class

Stereotype screen =
detailsClass.getAppliedStereotype ("UXModeling: :screen") ;

//if the stereotype has not been applied...

if (screen == null)

screen =
detailsClass.getApplicableStereotype ("UXModeling: :screen") ;
detailsClass.applyStereotype (screen) ;
}

//add a display stereotype to each attribute for the class
for (Iterator iter =
detailsClass.getOwnedAttributes () .iterator () ;iter.hasNext () ;)

//add the stereotype to each attribute

Property prop = (Property)iter.next();

Stereotype display =
prop.getAppliedStereotype ("UXModeling: :display") ;

//if the stereotype has not been applied...

if (display == null)

display =
prop.getApplicableStereotype ("UXModeling: :display") ;
prop.applyStereotype (display) ;
}

}

return true;

——

2. Right-click in the editor and select Source > Organize Imports. When prompted to choose
imports:

e For Iterator, select java.util.Iterator
e For Profile, select org.eclipse.uml2.uml.Profile.
3. Add in an import statement to the class as follows:
import org.eclipse.uml2.uml.Class;

4. Select File > Save All.

5. Use the following code to replace the code found in the public boolean
expand (PatternParameterValue value) ofthe ListScreen class:

TI P: The following code can be copied from C: \ Workshop\Labs\Inputs\listscreen-
expand. input.txt

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

12-9

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Profile uxProfile = null;
//add the <<screen>> stereotype to the class
//first ensure that the profile has been applied to the model
Class listClass = (Class)value.getValue() ;
for (Iterator iter =
listClass.getModel () .getProfileApplications () .iterator () ;iter.hasNext () ;)

ProfileApplication profileAppl = (ProfileApplication)
iter.next () ;
Profile profile = (Profile) profileAppl.getAppliedProfile() ;
if (profile.getName () .compareTo ("UXModeling") == 0)
uxProfile = profile;
break;
}
if (uxProfile != null)

//since the profile has been applied to the model, we can add
the stereotype

//to the class

Stereotype screen =
listClass.getAppliedStereotype ("UXModeling: :screen") ;

//if the stereotype has not been applied...

if (screen == null)

screen =
listClass.getApplicableStereotype ("UXModeling: :screen") ;
listClass.applyStereotype (screen) ;
}

//create an associated <<input>> class that will allow for entry of
search parameters
//use {class}Form as the name of the input class

//TODO : time permitting - add logic to ensure that the class does
not already exist

String theResultsName = listClass.getName() + "Results";

//now create a new class in the same package with theFormName

Package theTargetPackage = listClass.getPackage () ;

//add a relationship between {class} class and {class}Form class

Class newClass =
(Class) theTargetPackage.createPackagedElement (theResultsName,
UMLPackage.eINSTANCE.getClass_ ()) ;

//add a stereotype to the new class

Stereotype input =
newClass.getApplicableStereotype ("UXModeling::1list") ;

newClass.applyStereotype (input) ;

//add a composite relationship from the the input class to the
screen class

AbstractPatternInstance instance = (AbstractPatternInstance)
value.getOwningInstance () ;

instance.ensureDirectedAssociation(listClass, newClass, "creates
record list",AggregationKind.COMPOSITE LITERAL,1,1);

12-10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 — Create the Master Detail Pattern

return true;

——

6. Right-click in the editor and select Source > Organize Imports. When prompted to choose
imports:

e For AbstractPatternlnstance, select
com.ibm.xtools.patterns.framework.uml2.AbstractPatternInstance

e |If asked, for Class, select org.eclipse.uml2.uml.class

e If asked, for Iterator, select java.util.Iterator.

7. Add the following import statement to the class:

e import org.eclipse.uml2.uml.Package;
8. Select File > Save All.

9. Use the following code to replace the code found in the public boolean
expand(PatternParameterValue value) of the SearchScreen class:

TI P: The following code can be copied from
C. \ Workshop\Labs\Inputs\searchscreen-expand.input.txt.

//this code checking for the profile should be genericized and added
//to the utility class
Profile uxProfile = null;

//add the <<screen>> stereotype to the class

//first ensure that the profile has been applied to the model

Class searchClass = (Class)value.getValue() ;

for (Iterator iter =
searchClass.getModel () .getProfileApplications () .iterator () ;iter.hasNext () ;)

ProfileApplication profileAppl = (ProfileApplication) iter.next();
Profile profile = (Profile) profileAppl.getAppliedProfile() ;
if (profile.getName () .compareTo ("UXModeling") == 0)
uxProfile = profile;
break;
}
if (uxProfile != null)

//since the profile has been applied to the model, we can add the
stereotype

//to the class

Stereotype screen =
searchClass.getAppliedStereotype ("UXModeling: : screen") ;

//1f the stereotype has not been applied

if (screen == null)

screen =
searchClass.getApplicableStereotype ("UXModeling: : screen") ;
searchClass.applyStereotype (screen) ;
}

//create an associated <<input>> class that will allow for entry of
search
// parameters use {class}Form as the name of the input class

© Copyright IBM Corp. 2007 12-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

//time permitting - add logic to ensure that the class does not
already

//exist

String theFormName = searchClass.getName() + "Form";

//now create a new class in the same package with theFormName

Package theTargetPackage = searchClass.getPackage() ;

//add a relationship between {class} class and {class}Form class

Class newClass =
(Class) theTargetPackage.createPackagedElement (theFormName, UMLPackage.eINSTANCE.ge
tClass ());

//add a stereotype to the new class

Stereotype input =
newClass.getApplicableStereotype ("UXModeling: :input") ;

newClass.applyStereotype (input) ;

//add a composite relationship from the the input class to the
screen class

AbstractPatternInstance instance = (AbstractPatternInstance)
value.getOwningInstance () ;

instance.ensureDirectedAssociation (searchClass,

newClass, "contained",AggregationKind.COMPOSITE LITERAL,1,1);

return true;

}
10. Select File > Save All.

11. Review.

Task 3: Customize Update Methods

In this task, you will add code to the Update methods of the pattern to customize the behavior of the
pattern in cases where there is a dependency between the pattern parameters.

1. Use the following code to replace the code found in the public boolean
update (PatternParameterValue value, PatternParameterValue
dependencyValue) of the ListScreen.ListScreen DetailsScreenDependency class:

12-12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 — Create the Master Detail Pattern

{# Package Explorer 2 O & Y =0
- ‘_:f- Struts A
=% src
+-ff struts
+- 4 struts.lib

=B struts.patterns.masterdetail
=] MasterDetail.java
=-£9 MasterDetail
+- (& DetailsScreen
= % ListScreen
5-(§ ListScreen_DetailsScreenDependency
B ListScreen_DetailsScreenDependency(AbstractPatternParameter)
¢ update(PatternParameterValue, PatternParameterValue)
. update(Maintained, Removed)
. update(Removed, Maintained)
i PARAMETER_ID
& ListScreen(DetailsScreen)
@. expand(PatternParameterValue)
@. expand(Removed)
+- (& SearchScreen
¥ PATTERN_ID
i PATTERN_VER

F o4 o~

Figure 12-8: Update method for the ListScreen.ListScreen_DetailsScreenDependency

TI P: You can copy the following code from
C:. \ Workshop\Labs\Inputs\detaildependency-expand.input.txt.

//at this point we know the list screen and the details screen.

//create a directed relationship between them.

Class listClass = (Class)value.getValue() ;

Class displayClass = (Class) dependencyValue.getValue() ;

AbstractPatternInstance instance =
(AbstractPatternInstance)value.getOwningInstance () ;

instance.ensureDirectedAssociation((Class)value.getValue (), "creates record
list", (Class)dependencyValue.getValue(), "displays list");

return true;

1. Select File > Save All.

2. Use the following code to replace the code found in the public boolean
update(PatternParameterValue value, PatternParameterValue dependencyValue) of the
SearchScreen.SearchScreen_ListScreenDependency class:

TIP: You can copy the following code from
C:. \ Workshop\Labs\Inputs\listdependency-expand.input.txt.

//check if the association exists, if not then create it.
Class listClass = (Class)value.getValue() ;

© Copyright IBM Corp. 2007 12-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Class searchClass = (Class) dependencyValue.getValue() ;

AbstractPatternInstance instance = (AbstractPatternInstance)
value.getOwningInstance () ;

instance.ensureDirectedAssociation((Class)value.getValue (), "resultscontaine
dBy", (Class)dependencyValue.getValue(), "generatesSearchCriteria");

return true;

Select File > Save All.

}

3

4. Fix any compiler errors.
5. Select File > Save All.
6

Review.

Task 4: Test the Pattern

In this task, you will test the pattern that we’ve created. Note that the pattern depends on the
UXModeling profile that we created earlier.

1. Import the project interchange file that contains the UXProfile:
e Select File > Import.

e Replace type filter text with Project. Select Project Interchange and then click
Next.

e Click Browse and navigate to C: \Workshop\Labs\ Inputs and select
CreateUXModelingProfile.zip.

e Click Select All.
e Click Finish.
2. Open the plugin.xml file from within the Struts project.
3. On the Overview tab, click the Launch an Eclipse Application link.

12-14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

41+ Struts [J] PatternLibrary.java 4+ Struts &2
This section describes general information about this
plug-in.

ID: Struts
Version: 1.0.0

Mame: Struts Flug-in
Provider:

Platform filter:

struts. Activator

Browse...

[¥] Activate this plug-in when one of its classes is loaded

Activator:

Execution Environments

Specify the minimum execution environments required to
run this plug-in:

Add...

Configure JRE associations...

Update the classpath and the compiler compliance settings

Lab 12 — Create the Master Detail Pattern

The content of the plug-in is made up of two sections:

' Dependencies: lists all the plug-ins required on this
plug-in's classpath to compile and run.

f Runtime: lists the libraries that make up this plug-
in's runtime.

Extensions
This plug-in may define extensions and extension points:

 Extensions: declares contributions this plug-in
makes to the platform.

! Extension Points: declares new function points this
plug-in adds to the platform.

Testing @

Test this plug-in by launching a separate Eclipse
application:

Q@unch an Eclipse application
%F\sunch an Eclipse application in Debug maode

Exporting @
To package and export the plug-in:

1. Organize the plug-in using the Organize Manifests
Wizard

2. Specify what needs to be packaged in the
deployable plug-in on the Build Configuration page

3, Export the plug-in in a format suitable for

Overview | Dependencies| Runtime Extensions Extension Points| Build | MANIFEST.MF| plugin.xml | build.properties

Figure 12-9: Launching the runtime workbench

The remaining steps are performed in the run-time workbench where we will test the pattern by
applying it.

1.

i Rk W N

Create a new UML Model Project. Select File > New Project. Replace type filter text with

UML. Select UML Project. Click Next.

Specify PatternTest as the Project name. Click Next.

Select Blank Model as the Template.

Specify PatternTestModel as the File name. Click Finish.

Apply the UXModeling profile to the model.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

12 -15

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

o Select Profile

(%) Deployed Profile

UxModeling v

{3 Profile in Workspace

IFile

[Ok, H Cancel]

Figure 12-10: Assigned the profile to the model
6. Click OK when informed that the profile being applied has not yet been released.

7. Add the following classes to the model

e Music
e MusicDetails
e MusicList

e Add the following operation to the Music class
e logoff ()

e Add the following attributes to the MusicDetails class:
e artist : String
e recordingDate : String
e genre : String
e rating : String

e Add the following attributes to the MusicList class:
e artist : String
e rating : String

8. Apply stereotypes to the classes, attributes, and operations as shown in the diagram below:

12-16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 — Create the Master Detail Pattern

«SCIEemns | MusicDetails

g Music E.'chigplaw artist : String

g «display= recardingDate : String
g «display» genre : 5tring
Eg «display» rating : String

g =useraction» logoff ()

| MusicList
[Cg artist : String
(g rating : String

Figure 12-11: Classes to use as parameters for the pattern

4. Apply the Master Detail pattern using the classes shown above as parameters.
e Add a new Class Diagram to the model. Name the diagram Music-MasterDetail.

e Dragthe Master-Detail Pattern from the pattern explorer to the Music-
MasterDetail class diagram in the Diagram Editor.

© Copyright IBM Corp. 2007 12 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

12-18

»

: *Blank Model::Main *Blank Model::Mus... 22 1 =B
Palette — *
h Select
'+, Zoom
[=4 MNote -
[== UML Common
[~ Use Case
[~ Compasite...
«Pattern Instance» [~ Instance
<> Master-Detail (= Deployment

Component
Master-Detail L Comp

EearchScreen[1]: =L | =
List Screen([1]: E Package
Details Screen [1]: =L K Class -
] Interface
-
[~ Geometric ...
[=CfC++
Properties | Tasks | Console | Bookmarks ':;i,', Pattern Explorer 3 =0
L~

=" Design Patterns
£ My Struts Patterns

+-¢" Transformations

Overview | Short Description

Figure 12-12: Pattern instance within the class diagram

Drag the Music class from the Model Explorer to the Search Screen parameter of the
Master-Detail pattern

Drag the MusicList class from the Model Explorer to the List Screen parameter of
the Master-Detail pattern

Drag the MusicDetails class from the Model Explorer to the Details Screen
parameter of the Master-Detail pattern.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 — Create the Master Detail Pattern

«Pattern Instances:
< Master-Detail

Master-Detail
Search Screen [1]: & 9:Music

List Screen[1]: & #:MusicList
Details Screen [1]: = #:MusicDetails

Figure 12-13: Classes bound to the pattern

e Drag the following classes from the Model Explorer to the Music-MasterDetail class
diagram:

i. Music
ii. MusicList
iii. MusicDetails
iv. MusicForm
v. MusicListResults

5. Within the class diagram, select all of the elements.

Ho . o - Ro
B 7 \Og 758 T

17 =BidArrange Alls
6. On the toolbar, click Arrange All —— .
7. The results should appear as follows:
© Copyright IBM Corp. 2007 12-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

«Pattern Instances «liste «SCreens
<> Master-Detail E MusiclistResults T MusicDetails
[Eg «display» artist : String
Master-Detail g «display» recordingDate : String
Sear_r.h Screen [1]: QQZEMUS?C _ _creates record list g «display» genre : String
List Screen [1]: — % MusicList g «display» rating : String
Details Screen [1]: = :MusicDetails -displaysdist
1

tcreates music list

«inpube ®SCIEEn* L

£l MusicForm 7 MusicList
[artist : String
[Cg rating : String
- containedt
-generatesSearchCriteda

1 + resultscontainedsy

«5Creens 1

B Music

3 «useraction= logoff ()

Figure 12-14: Resulting classes as bound and generated by the pattern

Task 5: Extra Challenges

If time permits during the class, or as a practice challenge for after the class, complete the following tasks.

1. Enhance the pattern so that any attributes in the List Screen parameter get moved from the List
Screen to the List Results class that is created. In addition, each attribute in the new class should
have a «display» stereotype applied.

2. Enhance the pattern so that any attributes in the Search Screen parameter get moved from the
Search Screen to the {class}Form class that is created. In addition, each attribute in the new class
should have a «textfield» stereotype applied.

3. Refactor and simplify the code.

4. Complete the pattern customization by coding the behavior that should occur when a parameter is
removed from the pattern.

TI P: The necessary code should end up in the remaining Update and Expand methods.

12-20 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 — Create a Pluglet

Objectives

After completing this lab, you will be able to:

» Create and switch to a new workspace

» Customize a perspective

» Import and export shared projects using Project Interchange

» Create and test a simple pluglet

Given
The following lab artifacts can be found in the | nput s folder for this lab:

» A project interchange file that has a Pluglet project started (PlugletProject.zip)

» Diagraniister Code Fragment.txt

Scenario

In this lab, your team wants the capability to select a package in the Project Explorer and produce a listing of
the package hierarchy, including any diagrams in each package. The team will use one of the extensibility
features of IBM Rational Software Architect, known as a Pluglet. Another team member has partially
implemented the pluglet, and it is being shared with you for completion.

You will start by creating a new workspace so that you will have a clean area in which to perform your
development. Next you will need to configure a perspective, which allows you to control key aspects of the
perspective (including available submenu options and actions sets associated with the toolbar and menu bar).
Then, you will import the project to begin working on it.

Finally, you want to share your completed pluglet back with the other team members. Exporting your projects
using Project Interchange will maintain the entire project structure and dependents.

© Copyright IBM Corp. 2007 13 -1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 1: Create the Workspace

In this task, you will switch to a new workspace that you will create.
1. Start Rational Software Architect.

2. In the Workspace Launcher dialog, specify

C: \ Wor kshop\ St udent Wor k\ Cr eat eAPI ugl et Wr kspace as the Workspace directory, as shown
below:

J Workspace Launcher

Select a workspace

Rational Software Architect stores your projects in a folder called a workspace,
Choose & workspace folder to use for this session,

Workspace: C:\Workshop\StudentWork\CreateAPlugletWorkspace| |

[Juse this as the default and do not ask again

e

Figure 13-1: Making a new Workspace Directory

3. Click OK.

4. Close the Welcome screen.

Task 2: Configuring the Perspective

The steps in the task will guide you through activating pluglet projects and capabilities.
1. Ensure that you are in the Modeling perspective.

2. From the Window menu, select Customize Perspective.

3. In the Customize Perspective window, on the Shortcuts tab, be sure New is specified in the Submenus

list.

13-2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 — Create a Pluglet

4. In the Shortcut Categories list, select Pluglets to enable the pluglet projects and pluglet capabilities.

%’ Customize Perspective - Modeling . @

| Shortcuts | Commands |

Select the shortcuts that you want to see added as cascade items to the following submenus, The selections made will only
affect the current perspective (Modeling).

Submenus: Shortouts:
| Mew V Shorteut Description
Shortcut Categories: | EE{I"P'UQ'Et Create a pluglet
I _D jéva]| il Pluglets Project Create a Pluglets Project
[] Java Run/Debug P
] aunit
[Iythen
Mapping
=-[®] Modeling

[UML Extensibility
[] Plug-in Development

[

=[] i

[] RAS Repesitory Con|
s .
Team
|:| Transformation Authoriry
Transformations [

6] I Ok] [Cancel

Figure 13-2: Selecting Pluglets in the Shortcut Categories
5. In the right pane, select the Pluglet and Pluglets Project check boxes.

6. Click the Commands tab. In the Available command groups list, make sure Pluglets and Modeling are
selected.

7. Click OK.

Task 3: Import the Pluglet

You will import a project that contains a partially completed Pluglet.
1. From the File menu, select Import.

2. In the Import window, replace t ype filter text with project. Select Project Interchange and
click Next.

3. Inthe Import Project Interchange Contents dialog, click Browse and navigate to
C. \Wor kshop\ Labs\ | nput s.

4. Select Pl ugl et Proj ect. zi p and click Open.

© Copyright IBM Corp. 2007 13-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

5. Click Select All to import all projects in the zip file.

! Import Project Interchange Contents
Import Projects .
Import Projects from a zip file. l |
= d
From zip file: | C:\Workshop'\Labs\Inputs\PlugletProject. zip [v] [Browse. =]

Project location root: | C:\Workshop\StudentWork\CreateAPlugletWorkspace

= PlugletProject

@ I Finish L\SJ [Cancel

Figure 13-3: Select projects to import
6. Click Finish.

Task 4: Complete the Pluglet

The steps in the task will guide you through completing the pluglet.

1. In the Project Explorer, navigate to the (default package) and open the DiagramlLister class.
1. Review the partially completed pluglet, in particular the plugletmain method.
[Project Explorer 2% = & ¥ = O[] DiagranLister.java £ =
= 5 PlugletProject ®| * Licensed Materials - Use restricted, please refer to the "Samples Gallery" terms[] [a[m)
(22 Diagrams
(%2 Models
= (default package) #import java.util.Iterator;[]
=l DiagramLister java %
{2 Disgramiister public class Diagramlister extends Pluglet {
=4, Pluglets Plug-in Dependendies
B JRE System Library [idk] = 3
[2 pluglets.xml = Walk the selected objects and log them ta the consale
= p;\blic wvoid plugletmain(String[] args) {
/* Perform remaini Runnable
try {
e UMLModeler.getEditingDomain() .runExclusive (new Runnable () {
A g public void run() {
fll\;:‘[j:;ezi;;\;nts = UMLModeler.getUMLUIHelper () .getSelectedElenm
Figure 13-4: plugletmain method in DiagramlLister class
13-4

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 — Create a Pluglet

3. Add the following method to the Di agr anli st er class (found in
C. \ Wor kshop\ Labs\ | nput s\Di agr anLi ster Code Fragment. txt).

/**

* Recursively navigate thru a package and lists out all of the diagrams in that
* package and its children

* @param object The select object

*

*/

private void findDiagrams (List elements)

//get the UMLDiagramHelper - a helper for using UML 2.0 notation-based diagram
IUMLDiagramHelper diagramHelper = UMLModeler.getUMLDiagramHelper () ;

// cycle thru selected element and its children
for (Iterator iter = elements.iterator(); iter.hasNext();) ({
Object object = iter.next();

//ensure that it's a package - check for its children and go deeper
if (object instanceof Package)

org.eclipse.uml2.uml.Package pack = (org.eclipse.uml2.uml.Package)
object;
List diagrams = diagramHelper.getDiagrams (pack) ;
out.println() ;
out.println(pack.getName () + " package contains the following
diagrams:") ;
for (Iterator iterd = diagrams.iterator(); iterd.hasNext() ;)
Diagram diagram = (Diagram)iterd.next () ;
if (diagram != null)
out.println(diagram.getName() + " " + diagram.getType());
}
else

{
}

//get the children for this package and send recursively search it for
more diagrams
findDiagrams (pack.getNestedPackages()) ;
}

out.println("diagram was null") ;

4. Press Ctrl+S to save the changes.
2. From the Run menu, select Internal Tools > Internal Tools.

3. Choose Pluglet, click New and enter Di agr arrLi st er as the configuration name.

© Copyright IBM Corp. 2007 13-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4. Click Browse Workspace, select PlugletProject and DiagramLister.java, and then click OK.

i) Select Workspace Pluglet

Select a workspace pluglet

Folders: Pluglets:

125 PlugletProject). DiagramLister

.:':?:. [0K %_H Cancel

Figure 13-5: Selecting the Pluglet

5. Click Apply, and then click Close.

13-6

m = |
% Internal Tools
Create, manage, and run configurations _—
Create a configuration that will run a pluglet. .,;I}
< = Lo
FE X B3R Mame; | DiagramLister
type filter text -
FZIMain = Common|
= Ef Pluglet
] DiagramLister
Location: - - § _Bmwse Samples...
${workspace_loc: /PlugletProject/Diagramlister.java}
Browse File System. ..
Edit Pluglet
Arguments:
Note: Enclose an argument containing spaces using double-guotes (7).
®

Figure 13-6: Complete Run Configuration for the Pluglet

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 — Create a Pluglet

Task 5: Run the Pluglet

This task will test the pluglet you just created.

1. In the Project Explorer, open the ProfileTest model. A Confirm Enablement dialog appears. Click OK.
2. Navigate to the ProfileTest model.

3. From the Run menu, select Internal Tools > Internal Tools.

4

In the Configurations pane, select Di agr anLi st er and click Run.

Q Internal Tools

Create, manage, and run configurations

Create a configuration that will run a pluglet. H;J?J

2 Mame: | DiagramLister
type filter text

=2 E Pluglet
=

] Main Z Common

Browse Workspace. ..

Browse Samples...
Browse File System...

Edit Pluglet

Location:

S{WDrkspace_Ioc:fF‘IugIetProjecthiagramLister.ja\.'a}-

Arguments:

Mote: Enclose an argument containing spaces using double-guotes (7).

) & QJ[dose |

Figure 13-7: Select the Pluglet Configuration to Run. The console will display a list of the packages (and sub-
packages) along with the diagrams found within.

© Copyright IBM Corp. 2007 13-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

L™ Project Explorer &3 = <fg> ~ =0

= 5= PlugletProject A
+ [g Diagrams

%::, (UMLPrimitiveTypes)
=-E3 com
=-E3 ibm

™
L | Main

=B strutssample
=/ (bookdetails:BookDetails)

+ ./ (bookform:BookForm)
CRVd (books:Books)
+ ./ (logonform:LogonForm)

& /" (usic:Music) Properties | Tasks | E] Console 22 . Bookmarks wpl fE-5-70

+ Q BookDetails ol

+ Q BookForm Pluglets —

+ Q Books A
ProfileTest package contains the following diagrams: —

+ Q Home

£ Q Logon

/ logon[failure] com package contains the following diagrams:

/" logon[success]

+ Q LogonForm ibm package contains the following diagrams:
: Main R |
+ Q Music strutssample package contains the following diagrams:
. H settings Main Freeform b |
L | Main -v.
LI Main w o
Figure 13-8: Console after the Pluglet has been run
TI P: Now that the system knows about the Pluglet, you can achieve subsequent runs of the pluglet by

clicking Run > Internal Tools > DiagramlLister while a package is selected in the Model Explorer.

Run Window Help

?f’ Internal Tools L 1 DiagramLister
My Analysis...
vl 4 Run As r
win Analyze Last Launched ‘:}, Internal Tools. ..
£2] Launch the Web Services Explorer Organize Favorites...

1% External Tools r Mo

Figure 13-9: Internal Tools menu after the Pluglet has been run once

5. From the File menu, select Save All to save all the projects.

Task 6: Export the Pluglet

This task will allow sharing of the completed pluglet.
1. From the File menu, select Export.

2. In the Export window, select Project Interchange to export to a Zip format, and click Next.

13-8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 — Create a Pluglet

In the Export Project Interchange Information window, click Select All.

Click Browse and navigate to the C: \ Wor kshop\ Labs\ St udent Wor k directory.
Enter Cr eat eAPI ugl et Lab for the file name and click Save.

Click Finish.

oy koW

© Copyright IBM Corp. 2007 13-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

13-10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 — Create a UX Model Template

Objectives
After completing this lab, you will be able to:

» Create a UML Model Template that can be used in association with other Reusable Assets such
as profiles, patterns, and transformations

Given

» CreateUxModelingProfile.zip: A project interchange file containing a plug-in project
that hosts the UXModeling profile

» UX Model Template Note.txt: Instruction text included with the model template
Scenario

In this portion of the workshop, you will create a UML Model Template. This model template will
provide a person with a starting structure for their modeling activities in support of capturing details
related to UX modeling. In addition, you will add in some guidance on how to fill in the model using
the elements within the template.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

14 -1

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 1: Import the UXModeling Profile Plug-in Project

In this task, you will switch to, or create, a new workspace named
Cr eat eAVbdel Tenpl at eWbr kspace, and import the UXModeling Profile plugin project.

1. Start Rational Software Architect or select Switch Workspace.

2. In the Workspace Launcher dialog, replace the displayed text with
C:\Wor kshop\ St udent Wr k\ Cr eat eAMbdel Tenpl at eWbr kspace and click the OK
button.

Close the Welcome screen.

Switch to the Modeling perspective.
Select File > Import.

Select Project Interchange. Click Next.

Click Browse next to the From zip file field.

® N kW

Navigate to the C: \Workshop\Labs\ Inputs folder and select
CreateUXModelingProfile.zip. Click Open.

9. Click Select All and then click Finish.

10. Open the UXProfilePlug-in model.

Task 2: Create the Base Model

In this task, you will create the base model for the template. You create it much like any other model in
Rational Software Architect; the major difference is in the intent. Rather than designing a software
solution, you want to create a model that guides others in designing software solutions.

1. Create a new UML Project.

a. Click File > New > Project.

14 -2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 — Create UX Model Template

b. Inthe New Project dialog, replace type filter text with UML and then select UML
Project, and then click Next.
u) New Project
Select a wizard
Create a new UML modeling project |
Wizards:
[umL Ex
[eg® UM Project
=2 Modeli
=-{Z UML Extengibility
“egd | ML Profile Project
=2 Examples
(= RMP {Rational Modeling Platform) Plug-ins
[Ishow all wizards.
Figure 14-1: Create a UML Project
C.

Name the project UXModel Template Project. Click Next.
d.

From the Templates section, select Blank Model.

Tl P:

In this case you are starting with a Blank Model as you create your template. However,

you can select one of the existing templates as the starting point for your own custom template.
e. Enter UX Model as the File name. Then click Finish.

© Copyright IBM Corp. 2007

14 -3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

1) UML Modeling Project
Create a new UML model
Create a new UML model from a standard template
File types: Templates:
[UML Modeling % Blank Model ['|i
% Enterprise IT Design Madel —
{#} Service Design Model |
% Use Case Model 1
%2 XSD Model L
v
Template Description:
Create a blank UML model.
File name:
X Model|
Destination folder:
UxModel Template Project
Default diagram
Create a default diagram in the new model,
Default diagram type: iFreeform Diagram |vE
@ [< Back][Mext =] [Einiish] [Cancel]

Figure 14-2: Specify model to add to the project
f. Select File > Save All.

TI P: The ctrl-shift-S keyboard shortcut will also Save All.

Task 3: Create Model Structure

In this task, you will create a set of model elements to be copied and reused as a template.

1. In Project Explorer, create the following package structure within the UX Model model:

TI P: Apply required stereotypes from the Properties view.

14 -4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 — Create UX Model Template

L™ *Project Explorer &3 — <}=r=l"> ¥ =0

== UxModel Template Project
+ [g Diagrams
= % Models
=-E2 1JX Model *
I?::, (UMLPrimitiveTypes)
: Main
=-E3 smodelLibrary= UX Building Blocks
: Main
=-B3 ${functional.area}
: Main
=-F7 UseCaseStoryboards |
: Main

+ TE‘J- I¥ProfilePlug-n

Figure 14-3: Package structure for the template

Within the UseCase Storyboards package, add a collaboration, a sequence diagram, and a class
diagram:

1.

Right-click UseCase Storyboards and select Add Diagram > Sequence Diagram.
Note that this adds the containing collaboration for us automatically.

TI P: Work with the Models in Project Explorer to change model properties.
e Rename the collaboration to «use-case storyboards» ${use-case name}. Note
that «<use-case storyboards isa keyword, not a stereotype.
L5 *Project Explorer &3 = <“’=?> ¥ =0 : #J% Model::Main : * ¥ Model::U¥ Bui... : =X Model::UX Bui...
== L%Mude\ Template Project] Interactionl
*-[= Diagrams
=-(2 Models [
= B2 Ux Model * <
B -
“n &IMLP”MVETYDES) =l Properties &3 Tasks Console Bookmarks
L] Main
=2 ﬂn‘ade\ubrary»ux Building Blocks General <Collaboration> «use-case storyboard» UX Mc
L Main
=-B9 &{functional area} Stereotypes Keywords: use-case storyboard
: Main Documentation
=3 UseCaseStoryboards Constraints Appled Stereotypes:
X j&use-ase storyboards S{use-caze name}! | Advanced Stereatype | Profie | Required
L Main
ER= UxProfilePlug-in
[Profiles
T e
Figure 14-4: Specifying the keyword
TI P: Work with the Diagrams in Project Explorer to change diagram properties.
e Rename the interaction Basic Flow.
e Rename the sequence diagram Basic Flow.
[]

Right-click the collaboration and select Add Diagram > Class Diagram.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

14 -5

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

e Rename the class diagram Participants.

L™ *Project Explorer &3 — <,‘='=£> ¥ =0

=I-l=F UXModel Template Project
+ [% Diagrams

Sins U_IMLFi:SwiﬁveTypes}
s
| Main
=-B3 «modelLibrarys UX Building Blocks
: Main
=-B3 &{functional area}
: Main
=I-B3 UseCaseStoryboards
==k syse-case storyboards S{use-case name}
=-E1 Basic Flow
E Basic Flow
Participants
™
L Main
.12 1 WDrARlaDh e

Figure 14-5: Building blocks

2. Right-click Ux Model and select Add UML > Package. Name the package UX Specification
Viewpoints.

3. Add two packages to the UX Specification Viewpoints package, and then name them and apply their
Stereotypes as follows:

e «perspective» Screens
e «perspective» Storyboards

4. Select the freeform diagram, named Main, within the «perspective» Screens package and
name it Screens - Overview.

5. Select the freeform diagram, named Main, within the «perspective» Storyboards package
and name it Storyboards - Overview.

6. Select the freeform diagram, named Main, within the UX Model top level element and rename it
Template - Instructions.

7. Delete all of the remaining default Main diagrams that have been created.

14 -6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 — Create UX Model Template

[Project Explorer 52 =] <§> = =0

[=T= UXModel Template Project -~
= fg Diagrams
=-E2 U Model
[Template - Instructions
1I¥ Building Blocks::${functional.area}::UseCaseStor yboards: : S{use-case name}::Basic Flow: :Basic Flow
¥ Building Blocks::${functional.area}::UseCaseStoryboards:: ${use-case name}::Partidpants
¥ Spedification Viewpoints::Screens::Screens — Overview
¥ Specification Viewpoints::Storyboards::Storyboards — Overview

O (=)

= @‘ Models
=2 U Madel
=~E3 smodelLibrary U¥ Building Blocks
=BT s{functional.area}
eCaseStoryboard
¢ slse-case storyboards ${use-case name}
?I:, (UMLPrimitiveTypes)
: Template - Instructions
=3 U Specification Viewpoints
E3 sperspectives Screens
=B «perspectives Storyboards
: Storyboards — Overview [v]

Figure 14-6: Completed model template structure.
8. SaveAll

Task 4: Add Documentation

In this task, you’ll add some brief documentation for the user.
1. Openthe Template - Instructions Diagram.

1. Add two note elements to the diagram, then size and position them as shown in the screen capture
below:

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

ClUX Mode... | %*UXMod... [)AcmePa.. | f&AcmePa.. {%UXModel.. |[J]JavaCla... |)UX Mode... 3

Figure 14-7: Layout for the note elements.

2. Add the following text to the top note:
UX Model Template

3. Add the following text to the bottom note:

Tl P: This text can be found at C: \StudentWork\Labs\Inputs\ UX Model Template

Note. txt.

This model contains two main types of packages:
1. A set of reusable packages and diagrams that should be used to set
up your model. You will find these elements in the «modelLibrary» UX
Building Blocks package.
2. A set of <<perspective>> packages that will contain diagrams that
will provide additional viewpoints on how the specified services are
composed, consumed and behave. Additional <<perspective>> packages
should be added if new audiences or viewpoints need to be addressed.
No semantic elements should reside in these packages - just packages
and diagrams.
Users of this model can double-click the diagram links to navigate
through the main areas of the specification. Update the links as
necessary based on any adjustments that you make to the model
structure.
WHEN YOU NO LONGER NEED THESE INSTRUCTIONS:
1. Delete this note from the diagram.

4. Add links to the «perspective» diagrams:

14 -8

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

5.

Lab 14 — Create UX Model Template

e From the Project Explorer, drag the Screens - Overview diagram to the Template -
Instructions diagram in Diagram Editor.

e From the Project Explorer, drag the Storyboards - Overview diagram to the
Template - Instructions diagram in Diagram Editor.

U UX Mode... 3 . % UX Mode... | || Acme Pa... | i Acme Pa.. | % UXModel.. | [J]JavaCla.. | <UXProfi...

UX Model Template

This model contains two main types of packages:

1. A set of reusable packages and diagrams that should be
used to set up your model. You wil find these elements
in the «modelLibrary» UX Building Blocks package.

2. A set of <<perspective>> packages that wil contain
.) diagrams that wil provide additional viewpoints on how the
L] Screens - Overview specificed services are composed, consumed and behave.
Additional <<perspective>> packages should be added i
new audiences or viewpoints need to be addressed. Mo
sermantic elements should reside in these packages - just
packages and diagrams.

[Storyboards - Overview Users of this model can double-click the diagram links to
navigate through the main areas of the spedification.
Update the links as necessary based on any adjustments
that you make to the model structure.

WHEN YOU NO LONGER NEED THESE INSTRUCTIONS:
1. Delete this note from the diaaram.

Figure 14-8: Completed Template — Instructions diagram.
Save All.

Task 5: Add the Model as a Template to the UXModeling Profile Plug-in

TI P:

At this point, you have a model template that can be reused within your Workspace. For re-
use elsewhere, this project can be exported as a Project Interchange and then imported to
another Workspace.

In this task you'll add the model as a template to the UXModeling Profile plug-in.

1.

—
.

o W N

Switch to the Plug-in Development perspective.

Select the UXModelingPlug-in project.

Add a folder to the project and name it modeltemplate.
Click File > New > Other and choose UML Model.

Click Next and select the Existing Model radio button.

Click Next and Browse for the model file and Destination folder shown. Enter UX Model
Template as the File name.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

14 -9

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

1) New UML Model W

Create a new UML model

Provide file name for the new model

Select 3 model file:

iU?(Model Template,UX Model.emx iq Browse. ..

Referenced models

These models are referenced by the UX Model Template,UX Model.emx and will be copied to
the destination project

File name:
U Model Template
Destination folder:

UxProfilePlug-in/modeltemplate

Browse...

@ I Finish %[Cancel]
by

Figure 14-9: Completed UML Model Creation dialog.
6. Click Finish. Choose OK if a Java Modeling enablement dialog appears.

Close the UXModel Template Project project. You will work strictly with the model template added
to the UXModelingPlug-in project.

8. Open the plugin.xml file associated with the UXModelingPlug-in project.
9. Select the build tab.

10. In Binary Build, select the box corresponding to the modeltemplate folder.

14 -10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 — Create UX Model Template

-@: A ¢ProfilePlug_in &3 %8a UX Model Template.emx : UX Model:: Template - Instructions =0
Build Configuration
[custom Build

Runtime Information

Define the libraries, specify the order in which they should be built, and list the source folders that should be compiled into each selected
library:

=

Binary Build Source Build
Select the folders and files to indude in the binary build: Select the folders and files to indude in the source build:
[1E .dasspath
12 project (1B .project
+-[] = META-INF +-[] & META-INF
+ |:| = hin + |:| == bin
il [&@ build. properties O [@h build.properties
=I-[+] (= modeltemplate +-[] (= modeltemplate
%24 UK Model Template. emx O &k plugin.sml
-@ plugin, xml +-[] (= profies
+-[(] (= profies -] (= src

-] (= src

} Extra Classpath Entries

Overview | Dependencies | Runtime | Extensions | Extension Paints | Build | MANIFEST.MF | plugin. xml | build.properties

Figure 14-10: Build tab contents after selecting modeltemplate folder.
11. Save All.

Task 6: Apply Profile to the Model Template

In this task, you will apply the UxModeling profile to your model template. This way, when someone
uses the model template, the profile will already be applied for them. Configure a Run-time workbench
to use in applying the profile to your model template.

1. Open the plugin.xml file.
1. Select the Overview tab of the plugin.xml file in the manifest editor.

2. Click Launch an Eclipse application.

© Copyright IBM Corp. 2007 14 -11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

- - [Z Extension Points: declares new funcion
Execution Environments points this plug-in adds to the platform,

Specify the minimum execution environments required to

run this plug-in;
resne v

Test this plug-in by launching a separate Edipse
application:

0 Launch an Edjpse application

fz? Launch an Edk-e application in Debug
mode

Configure JRE assodations.. .

Exporting
Lpdate the dasspath and the compiler compliance settings @

Cwverview | Dependencies | Runtime | Extensions | Extension Points | Build | MAMIFEST.MF | plugin.xml | build.properties

Figure 14-11: Launching a Run-time Workbench configuration.

3. Close the Welcome screen if it appears.

4. Switch to the Modeling perspective in the Run-time workbench.

5. Create a new UML Project, named Test, and add a blank model to the project. Blank Model
is fine for the File name.

6. Delete the model from the project.

7. Select File > Import.

8. Select File system. Click Next.

9. Click Browse and navigate to C: \Workshop\StudentWork\

CreateAModelTemplateWorkspace\UXProfilePlug-in. Click OK.

10. Select UX Model Template.emx. Ensure that the Into folder matches the name of the UML
Project created previously.

14-12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 — Create UX Model Template

@ Import -
File system —
Import resources from the local file system. If f-f

-

From directory: | C:'|,\".|'orksho|:|\5tuu:ler|th:nrk'n,CreateAModeI'FempIate\ﬂ.l'orkspace‘l,l_l.!{FI:I [Browse,.,]

[[E] = UxProfiePlug-n [l .dasspath

|__—| project

@ build. properties
@:plugin.xml

2<1UX Model Template.emx

EOOOO

Filter'l_'ypes...] [Select all] [Deselect all

Into falder: | Test .

Opflions

|:| Qverwrite existing resources without warning
") Create complete folder structure
{*) Create selected folders only

@ Next | fnish CQ Cancel

Figure 14-12: Importing the model file for the template.
11. Click Finish.

12. Double-click UX Model Template.emx to open the model.
13. Open the model in the Project Explorer view.

14. In the Properties view, select the Profiles tab

15. Click Add Profile.

16. Select the UXxModeling profile. Click OK.

© Copyright IBM Corp. 2007 14 -13
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

&) Select Profile

(¥) Deployed Profile

UMadeling v

() Profile in Workspace

() File

[QK] [Cancel

Figure 14-13: Specifying the profile.
17. Save All.
18. Close the runtime workbench.
19. Switch to the host workbench.

20. Delete the existing copy of the model template, UX Model Template.emx, found in
UXProfilePlug-in.

21. Select File > Import.
22, Select File system. Click Next.

23. Click Browse and navigate to C: \Workshop\StudentWork\runtime-
EclipseApplication\Test. Click OK.

24. Select UX Model Template.emx. Ensure that the Into folder is set to UXProfilePlug-in.

14-14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 — Create UX Model Template

v.) Import

File system

Import resources from the local file system.

From directory: | C:\Workshop'\StudentWorkruntime-EdipseApplication {Test

:-q’ Browse..,]

= [m]E Test [& .project
&[] == bin *ed UX Model Template emx
- [T]i= META-INF
&[] profiles
- [JEs sre

FiIterIypes...] [Select All] l Deselect Al

Into folder: _ UxPrnﬁIePIug-i.n

Options

|:| QOverwrite existing resources without warning
() Create complete folder structure

(%) Create selected folders only

i Browse...

| Einish Q“ Cancel

Figure 14-14: Importing the template back into the plug-in project.

25. Click Finish.

TI P:

To double-check that you have a valid reference from the model template to the profile,

you can open the emx file in a text editor and confirm that the pathmap is being used.

TI P:

Model templates can be contributed via plug-ins by using the

com i bm xt ool s. nodel er. ui . wi zards. t enpl at e extension point. By contributing
in this way, the user will no longer need to find the location of the template on disk. Instead, the
newly registered template will show up in the Creation wizard with the other templates (for

instance, Analysis, EJB, WSDL, Use Case, Blank, and so on).

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

14 - 15

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

14 -16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 - Package Reusable Assets

Objectives

After completing this lab, you will be able to:
» Package a RAS asset that contains a profile, pattern, model template, and a transformation

» Import the RAS assets

Given

» A project interchange file, UXPackaging. zip, which contains the reusable assets that we are
going to package and deploy.

» UXTransformationTest.zip
Scenario

In this portion of the workshop, you will create a RAS asset that contains the reusable assets that you
have created during the course, including a profile, pattern, model template, and transformation. Once
you have packaged these artifacts as RAS assets, you will test the import of the assets in Rational Software
Architect.

Task 1: Create the Workspace

In this task, you will switch to a new workspace named Packagi ng\Wor kspace that you will create.
1. From the File menu, select Switch Workspace.

2. In the Workspace Launcher window, replace the displayed text with
C:\Workshop\StudentWork\PackagingWorkspace and click the OK button.

3. Close the Welcome screen.

Task 2: Create a RAS Repository

In this task you will create a Repository that will be used to manage RAS assets.
1. Switch to the RAS (Reusable Assets) perspective.
2. Set up a local repository:

e If necessary, open the RAS Asset Explorer by clicking Window > Show View > Other > RAS >
Asset Explorer.

© Copyright IBM Corp. 2007 15-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

e In the Asset Explorer, add a new Local Repository g and click Next.

@ New Repository Connection
Select a wizard

Create a new Local Repository Connection

Wizards:

(= RAS Repository Connection
Cf’ Local Repository

H _ﬁ Workgroup Repository
L[¥DE Repository

= Back I Next > I Einish | Cancel

Figure 15-1: New Repository Connection Dialog

3. Accept the default Repository Name and Repository Location. Then click Finish.

Task 3:

Import Reusable Assets

In this task, you will import the reusable assets that we want to package.

1.

2
3.
4

15-2

Switch to the Plug-in Development perspective.
Select File > Import.

Select Project Interchange. Click Next.

Quickly review the artifacts as shown within the Package Explorer view.

Click Browse and select UxPackaging. zip from the C: \Workshop\Labs\ Inputs directory.
Click Select All. Then click Finish.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 — Package Reusable Assets

[Package Explorer i2 . Plug-ins =0
& -
- =% Struts
+- [sre

+

= Plug-in Dependencies
= JRE System Library [eclipse]
(= PatternFiles
= icons
b build.properties
4 plugin.xmi
- 124 UXToWeb
+- (2 src
(# jetsrc
=\ Plug-in Dependencies
= JRE System Library [eclipse]
[= icons
(= modeltemplates
(= profiles
(= samplemodel
[= templates
b build.properties
4+ plugin.xml

+

+

+

+

+

+

+

+

+

+

+

Figure 15-2: Imported elements within the Package Explorer

Task 4: Create a Feature

In this task, you will create an Eclipse Feature that will be associated with the plug-in which contains the
reusable asset that we’ve built.

1. Select File > New > Project.

2. Select Feature Project. Click Next.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

15-3

15-4

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

k—) Mew Project

ol
Select a wizard " A
Create a Feature project

o
_—

Wizards:

. feature

=
= = Plug-in Development
- fiE Feature Patch
i L‘ﬁE Feature Project

[Jshow all wizards.

Figure 15-3: Create a new feature project
3.

Enter com.ibm.workshop.ux.feature as the Project name and accept the defaults on the
Feature Properties dialog. Click Next.

4. Select UXToWeb (1.0.0) and Struts (1.0.0) asthe Referenced Plug-ins. Click Finish.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 — Package Reusable Assets

) New Feature X
Referenced Plug-ins and F ts
Il Referenc ug-ins and Fragmen (]’\I,

[|
Select the plug-ins and fragments from your workspace to package into E /
the new feature.

[%= org.eclipse.xsd.doc (2.2.1.v200609210005) i~ selectal
[%= org.edlipse.xsd.ecore. exporter (2.2.1.v200609210005)

[%= org.eclipse.xsd.ecore.importer (2.2.0.v200609210005) Deselect All
[%= org.eclipse.xsd.edit (2.2.1.v200608210005)

[%= org.edlipse.xsd.editor (2.2.0.v200609210005)

[%= org.eclipse.xsd.source (2.2.1.+200609210005)

[#=org.junit (3.8.1)

] %=org.junit4 (4.1.0.1)

[*-org.uddi4j (2.0.5.v200608231542)

[%= org.wsdl4j (1.4.0.v200607181917)

<= Struts (1.0.0)

<[+ UXToWeb (1.0.0) [v]

[(] i | [)]

2 out of 1746 selected.

@ [Finish l [Cancel

Figure 15-4: Select the plug-ins that the feature should reference

TI P: The feature.xml file is opened by default in the manifest editor. When distributing
your own assets, you will want to enter details on the Information tab corresponding to a
description of the asset, copyright information, and licensing details.

5. Select File > Save All.

Task 5: Deploy as a RAS Asset

In this task you will package up the feature and associated plug-in project as a RAS asset.
1. Open the plugin.xml file for the UxToWeb plug-in project.
2. In the manifest editor, switch to the Build tab.

3. Confirm that the Binary Build section matches that shown below:

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Binary Build
Select the folders and files to include in the binary build:

[J & .classpath

] & .jetproperties
] .project

[v]& bin

i@t build.properties
& icons

O jetsrc

[“]= modeltemplates
[#]4# plugin.xml
[]= profiles

[v]&= samplemodel
O src

[J& templates

+

+

+

+

+

+

+

+

Figure 15-5: Binary Build section of the Build tab within the plugin.xml file for the UXToWeb project
4. Select File > Save All.

5. Open the plugin.xmnl file for the Struts plug-in project.

6. Confirm that the Binary Build section matches that shown below:

15-6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 — Package Reusable Assets

Binary Build
Select the folders and files to indude in the binary build:

[]E .dasspath

[]E .project
[¥] & META-INF
[v] (= PatternFiles
[bin

] |¢_i-l- build, properties
[¢] (= icons

-@ plugin, xral
[src

Figure 15-6: Binary Build section of the Build tab within the plugin.xml file for the Struts project
7. Select File > Save All.

8. On the File menu, click Export.
9. Select RAS Asset and then click Next.

10. In the Destination field, select Repository. Select My Local Repository from the Repository menu.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

L2) Export RAS Asset
RAS Asset (location and manifest) ——
Select the export destination, the manifest {if one exists), and the storage format i i

R
Destination

I File system location:

@ Repository:
|My Local Repaository |vj

Manifest
(%) Create a custom manifest

() Use the following manifest:

Optlions
Storage format: |Bundled |ﬂ

@ | sBack | MNext> | o

Figure 15-7: Setting Location and Manifest for RAS Asset

11. Click Next.
12. Enter a description and name for the asset. Click Next.

15-8

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 — Package Reusable Assets

') Export RAS Asset

RAS Asset Description

Mame: | U!;T_o_Wg_b_

Optional Descriptors

Short Description: Asset contains a_prqﬁln_a_ f'or !'!'_upu_:l_eliljg LI eleme_rgts__an!j a t:ans_fprmqﬁnn ﬁ;ur tot

Asset contains a profile for modeling U elements and a transformation for

Description:
Version: 1D
Id: | 3OF21DCC-77a3-3E09-6 186-8B4BE2C55ES

Descriptor
[=| Default
[=] Author

[=| Benefit

[=lkKeyword

Value i

Yaour name

Speed up development of w

LML Strite eh Newvelnn |r_|

| 2]

Add Descriptor
Add Value
Remowve

Add Group

[< Back][Mext =]

Cancel

Figure 15-8: Description for the RAS asset

13. Choose com.ibm.workshop.ux.feature as the resource to export, and ensure that Export as
a deployable feature, fragment or plug-in is selected.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

15-9

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

t) Export RAS Asset

RAS Asset Artifacts
Export the asset

Select the resources to export:

[struts
&[] UXToWeb
[-[w] 1=k com.ibm.workshop.ux. feature

Project options
[C]Export as a complete Edlipse project
[]Expart as deployable feature, fragment or plug-Hr:

- =

l l Cancel

Figure 15-9: Description for the RAS asset

14. Click Finish.
15. Click OK on the Export was successful dialog.

You can ignore the displayed warnings, as they just point out that RAS is not familiar with
some of the file extensions used. Click OK to dismiss the warnings.

Task 6:

Import the RAS Asset

In this task, you will import the RAS asset that contains the reusable assets. Perform a quick test once
you have imported the asset.

1.
2.

15-10

Switch to the Reusable Asset perspective.

Right-click inside the Asset Explorer and click Refresh.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 — Package Reusable Assets

e Select the UXToWeb asset, right-click and choose Import.

[5]Asset Explorer &1 . Mavigator =g

Q|
G
<8
[ia]
4

=-[J My Local Repository
g it

News 4
+-[] Patterns

Open Solution Guide
Feedback 4
Viewr 4

Copy...
Move...

¥ Delete

Download...

Publish Asset...
Import...

Download manifest...

= Show Properties View

Figure 15-10: Import the RAS asset
e Click OK, when told about the plug-in that it will install.
e Click Next to confirm the asset being imported.
e Accept the terms of the license agreement. Click Finish.
e Click OK when presented with the Import Results.

e Click Yes if prompted to restart Rational Software Architect.

Task 7: Verify the install of the RAS Asset

In this task, you will verify that the reusable assets that were contained within the RAS package were
installed.

1. Switch to the Modeling perspective.
2. Confirm that the assets were installed:
e Select Modeling > Transform > Configure Transformations.

e Ensure that UXToWeb Plug-in is available within the UxToWeb folder. Then click Close.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

15-11

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

L% Configure Transformations ﬁ

Configure or Run Transformations

Transformations / Configurations

+ (= com.ibm.xtools.transform.umi2.jacl Transformation Description !
+ (= IBM Rational Transformations
+-(=» Sample Transformations
= (= UXToweb

Lo [UXToWeb Plug-ini

¥ Show in "Transform" menu

~ Information -
Name: UxToWeb Plug-in

Description: Transforms source model marked up with
UxModeling Profile to Struts artifacts

Author: IBM

Id: com.ibm.jps.uxtoweb
Version: 1.0.0

Profiles: UxModeling
Keywords: UX, UML, Struts

s D ||

Figure 15-11: UXToWeb Transformation listed in the Configure Transformations dialog

e Open the Pattern Explorer.

e Ensure that Master Detail exists within the My Struts Patterns folder.

15-12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Figure 15-12: Master Detail pattern in the Pattern Explorer

Lab 15 — Package Reusable Assets

"5, Pattern Explorer i% 1% & w =0
+-: Design Patterns

+-«" Enterprise Patterns

- My Struts Pattern

+

-l WehSpherePIatform Messaging Patterns

e Select File > New > UML Model.

e Confirm that UX Model Template is available in the Templates list.

Task 8: Test the RAS Asset

In this task, you will use a sample model to test the asset.

1. Select File > Import.

2. Select Project Interchange.

3. Click Browse and navigate to C: \Workshop\Labs\Inputs and select

UXTransformationTest.zip.

4. Click Select All.
5. Click Finish.

6. Within the UxTestModel, navigate to the com. ibm. strutssample package and open the

Main diagram.

7. Review the stereotypes on the model elements to ensure that they match those shown in the screen

capture below:

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

15-13

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

«5CrEers
p— logon[success] _home F7 Home
7 Logon !
_ - hooks «5Creens
. 0.1 | 4 «link» books () 7 Books
§% =useraction=logon () 0.1 &2 «link» music () 1 0.1
-logon 1 & «link» logoff()
i L éj‘f};useraction» search ()
logon[failure] 1
01l *
pmLsic -bookform
“SCreens «inpute
B Music BookForm
. _ [cg «textfield»isbn : String
logonfarm 42, «link> logoff () 5 «textfield» author : String
[«textfield» title : String
«inpute i
D-lMookdetails
LogonForm
g «textfield» usemame : String lobal
g «textfield» password : String ég oban “acreen
RealUX 7 BookDetails

5 «display»isbn : String

g «display» author : String

g «display title : String

g «display» datePublished : Sting

Figure 15-13: Class diagram depicting elements in test model
1. Apply the pattern:
e Open the UXTestModel model
e Add the following classes to the com.ibm.strutssample package:
e MusicDetails
e MusicList
e Add the following attributes to the MusicDetails class:
e artist : String
e recordingDate : String
e genre : String
e rating : String
e Add the following attributes to the MusicList class:
e artist : String
e rating : String

2. The classes we will use with the pattern are Music, MusicDetails, and MusicList:

15-14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 — Package Reusable Assets

«sCreens
Bl Music

&2 «link» logoff ()

& MusicDetails .
MusicList
[Cg artist : String . .
Eg recordingDate : String g artist : String
[Eg Qenre : String [Cg rating : String

[Cg rating : String

Figure 15-14: Classes to use as parameters for the pattern

3. Apply the Master Detail pattern using the classes shown above as parameters.

e Add a new Class Diagram to the com. ibm.strutssample package. Name the diagram
Music-MasterDetail.

e Dragthe Master-Detail Pattern from the Pattern Explorer and drop it on the Music-
MasterDetail class diagram within the Diagram Editor.

«Pattern Instance»
<> Master-Detail0

Master-Detail
Bearch Screen [1]: & |

List Screen[1]: & |
Details Screen [1]: &

Figure 15-15: Pattern instance on class diagram

e Dragthe Music class from the Model Explorer to the Search Screen parameter of the
Master-Detail pattern

e Dragthe MusicList class from the Model Explorer to the List Screen parameter of
the Master-Detail pattern

e Dragthe MusicDetails class from the Model Explorer to the Details Screen
parameter of the Master-Detail pattern.

© Copyright IBM Corp. 2007 15 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

«Pattern Instances
w2 Master-Detail

Master-Detail
Search Screen [1]: & #:Music

List Screen[1]: & #:MusicList
Details Screen [1]: & #:MusicDetais

Figure 15-16: Classes bound to the pattern

e Drag the following classes from the Model Explorer to the Music-MasterDetail class

diagram:

i.

ii.

iid.

iv.

V.

Music

MusicList

MusicDetails

MusicForm

MusicListResults

4. The results should appear as follows:

15-16

«Pattern Instances
< Master-Detail

Master-Detail

«liste
=l MusiclistResults

«SCreens
7 MusicDetails

g «display» artist : String

GearchScreen [1]:

List Screen[1]:

Details Screen [1]:

g «display» recordingDate : String
cg «display» genre : 5tring
£ «display» rating : 5tring

F:Music
#:MusicList -creates recnrgl list
w:MusicDetalls
-displays list
play: §
1 + creates record list
«inpubs «sCreens 1
MusicForm Ef MusicList

[Cg artist : String
- containedt
-generatesSearchCritera

1 + resultscontainedBy

«SCreens 1
B Music

& «link> logoff ()

Figure 15-17: Pattern instance, parameters and generated elements

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 16: Running a GMF Editor

Run Pre-built GMF generated Editor for the Console’s Input XML File
Objectives
After completing this lab, you will be able to:
» Understand what a GMF editor can look like and how it behaves
Given

Thislab is based on the ongoing Console transformation example. All of the projects that are used are imported into
an empty workspace.

Scenario

In the EMF Lab, you built an EMF API for the XML file used as an input for the JET Console transformation. You
also built a ssmple non-graphical editor.

In thislab, you use a GMF-generated editor to edit the Console transformation’ s input file. The next lab walks
through the steps to run a pre-built GMF editor.

4! default,schema_diagram X = 8
Palette k
[}5 Select
*+, Zoom
4 MyConsole (= Note v
4 Arg
% add < Comrmand
- & test < Console
b I: String

Figure 16-1: A specialized Console editor

Task 1: Create and Prepare the Workspace

You will load the pre-built editor projectsinto an empty Workspace.
1. Open Rational Software Architect with a new workspace for this lab, such as“c:\GMF Demo Workspace”.

2. Open the Preferences window (select menu Window > Prefer ences). Expand the General option and select
Capabilities. Find Development (or Eclipse Developer) in the Capabilities list and make sure that the
checkbox is selected. If the checkbox is empty or isfilled in with asquare, click it until you see a check mark.
Thisenables all of the Eclipse Developer capabilities, which includes EMF.

© Copyright IBM Corp. 2007 16-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

I type filter text

(= General

o =] |
Capabilities - -

Capabilities allow you to enable or disable various product components. These capabilities are grouped
[according to a set of predefined categories,
C. Ca;biliﬁes D
[] SE:;ZT_]’:;?; ¥ Prompt when enabling capabilities
- Editors Capabilities: Description:
- Keys E!Requirements Management Integrah'c;l
- Perspectives [‘a Modellng
- Search
- Startup and Shute
- Web Browser Team Reguires:
- WWelcome
[#- Workspace ﬁ
- Active Correlation Tec
&l Agent Cantroller Enable Al | Disable Al | Advanced... |
[+ Analysis -
‘ | | LIJ Restore Defaults | Apply |
(7) oK I Cancel |

Figure 16-2: Enabling the Eclipse Developer capabilities

3. Click OK when you are done.
4.

Import all of the projects from the Project Interchange file Gmf SolutionPI. zip.

Task 2: Run the Editor

In thistask, you will run the generated editor.

1. InNavigator or Package Explorer, right-click the project named 1ab . console. input .diagram and select
Run As> Eclipse Application. Then wait for a new instance of Rational Software Architect to launch.

2. Inthe new instance of Rational Software Architect, create a simple project named console.diagram.test.

16-2

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 16 — Running a GMF Editor

L2} New Project
Select a wizard il

Create a new project resource

Wizards:
project ="
: l§ Java Project !6

¥ & Java Project from Existing Ant Buildfile
: Managed Make C++ Project
,u,f_ Plug-in Project

ioeg ML Project

== General

o

== C
Managed Make C Project

i @ Standard Make C Project

BB C+t
@ Managed Make C++ Project
[Standard Make C 4+ Proiect

Figure 16-3: Creating a simple Project

3. Right click the new project name and select New > Other. Select the Input Diagram wizard and click Next.

4. Accept the default of default and click Finish.
5. default.input diagram should be opened in an editor that looks like the following.

a||=Palette — »
|L‘3 Select

i+, Zoom

= Mote -
< Arg

< Command

< Console

4 o

Figure 16-4: Viewing default.input_diagramin the editor

6. To add anew Console, click Console in the Palette and then click the drawing surface. Name the new Console
MyConsole. Open up the propertiesfor MyConsole and set the Packageto my . console.

© Copyright IBM Corp. 2007 16-3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4 MyConsole

e_(E Properties &3

Property | Value
[EMF
Ll =]
it = e
Cl:ad-:age = my.con?cIa)
= Vi

Layout Constraint L
Styles

Figure 16-5: Setting the Package property for MyConsole
7. Inthe Diagram editor, expand the node for MyConsole so that there is room to work within the compartment.

4 Mvﬁunsule

4>

Figure 16-6: Expand the compartment within MyConsole

8. Toadd achild Command, click Command in the Palette and then click in the compartment in MyConsole.
Name the Command echo.

9. Click Argin the Palette and then in the compartment inside of echo Command to add an argument. Give the
new Arg alabel of text:String. Open the Propertiesof the Arg and you should see that the Nameis text
and the Typeisstring.

16 -4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 16 — Running a GMF Editor

-

) default.i = O
|| = Palette — »
4 MyConsole Ty select
i+, Zoom
[=1 Note -
< echo 4 Arg
<= Command
< Console
o
A 4
- L
Problems | Javadoc | Dedaration ﬂj Properties 4
Advanced
Property | Value
=
Mame 1= text
T'!I,IDE = Strll-lg
= Vviewr
Layout Constraint <>
Styles

Figure 16-7: Viewing the properties of the Arg element.

10.
11.
12.

Add any other Consoles, Comman

default.input.xml.

13.
page that appears, select 1ab. cons

© Copyright IBM Corp. 2007

ds, and Args that you want.

In order to test the transformation, save and close your diagram.

It's easier to test the existing transformation if the file has an XML extension, so rename default . input to

Right-click default.input.xml and select Run As> Input for JET Transformation. Inthe Properties

ole.transformasthelD. Then click OK to run the transformation.

16-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

' Properties for (default.input.xml)
Edit launch configuration properties @

MName: . {default.input.xrr!l.}

(% Main] Common |

Transformation Input
feonsole. diagram. test/default.input.xml

Transformation

D: e — i v]
Name: lab. console. transform
Description:

Display Messages

Severity (at or above): !infcrmation |\:}
[Apply] [Revert]
ok |[cancel |

@ [

Figure 16-8: Selecting the transformation to run.
14. The project MyConsole Console (and any other consolesin that you defined) are generated.

15. Close the second instance of Rational Software Architect when you are done testing.

16-6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17: Building a GMF Editor

Build a GMF Editor for the Console’s Input XML File
Objectives
After completing this lab, you will be able to:
» Create acustom Graphical Editor using GMF to edit an XML file.
Given
» Thislab continues at the end of the EMF Lab.
Scenario

Inthe EMF Lab, you built an EMF API for the XML file used as an input for the JET Console transformation. You
also built a simple non-graphical editor.

In thislab, you use GMF to build agraphical editor for the Console input file. The result will look like the

following.
] default.schema_diagram X =0
Palette L4
[Select
+, Zoom
< MyConsole = hote o
& Arg
<% Command
add
i & todt & Console
a.int
b : String

Figure 17-1: A view of the completed GMF editor for the console example

Task 1. Create and Prepare the Workspace

If you decide to use the results of the EMF Console lab, simply open that Workspace and skip the rest of this task.
Otherwise, you will create a new workspace and import existing projectsinto it in this task.

1. Open Rational Software Architect with a new workspace for this lab, such as“c:\GMF Lab Workspace'.

2. Open the Preferences window (select menu Window > Preferences). Expand the General option and select
Capabilities. Find Development (or Eclipse Developer) in the Capabilities list and make sure that the
checkbox is selected. If the checkbox isempty or isfilled in with a square, click it until you see a check mark.
This enables al of the Eclipse Developer capabilities, which includes EMF.

© Copyright IBM Corp. 2007 17-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

IR
| type filter text Capabilities e e
(2 General) - . ’) L
_— Capabilities allow you to enable or disable various product components. These capabilities are grouped

e according to a set of predefined categories.
C__ Capabilities

- tch
(- ComparePa ¥ PBrompt when enabling capabilities

- Content Types
- Editors Capabilities: Description:
- Keys L}!Requiremenm Management Integrah'c;l
- Perspectives [E] C3 Modeling
- Search =

- Startup and Shute

- \Web Browser Reguires:
- Welcome -
[+ Workspace P | | »

[#- Active Correlation Tet

- Agent Controller Enable Al | Disable Al | Adganced...l

[#- Analysis -
y | | LI—I Restore Defaults | Apply |

(7) oK | Cancel |

Figure 17-2: Enabling the Eclipse Developer capabilities
3. Click OK when you are done.

4. Import al of the projects from the Project Interchange file EMFLabSolutionPI. zip.

Task 2: Create GMFGraph

A GMFGraph Model isamode file (with the extension GMFGraph) which defines the graphical elements of a
GMF editor. For example, it defines how nodes and relationships are drawn.

1. Withinthe 1ab.console. input project, right-click model\ Input .ecore and select New > Other. Select
the GMFGraph Simple Model wizard and select Next. Note, do NOT select the GM FGraph M odel.

=I-[= Graphical Modeling Framewark
. {GMFGraph Simple Model |
4! GMFTool Simple Model
[4! Guide GMFMap Creation
=0 Mew GMF Project

Figure 17-3: Sdlecting GMFGraph Smple Model
2. A default filename of Input .gmfgraph should aready befilled in, so click Next.

3. The nput.ecore filethat you right-clicked should aready be highlighted as the input Domain Model, so
click Next.

4. Setthe Graphical Definition page options as shown below. In particular, the Diagram element should be set to
Root. Itisthe element in the model that corresponds to the entire diagram. In the Domain model elementsto
process grid, the first checkbox column indicates which Classes in the model will be drawn as nodesin the
generated diagram editor. In this example, consoles and commands will be drawn as nodes. The second
column indicates which classes and relationships will be drawn aslinks. In this example, you aren’t using any
links, so none are checked. The final column indicates what |abels are needed for nodes and links. Y ou do
want alabel for arg elements, but it isn't anode label, so you will manually add it shortly.

17-2 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

Graphical Definition

apecify basic graphical definition of the damain model

2400

Diagram element: | Roat A |

[JExclude types that are resolved as nodes and have container
[JEsxclude types that are resolved as links

Domain model elements ko process:

Elernent
= B &g

T name : Skring

L}
ey
I

Deselect All
Defaults

O
O

T bype : Skring
= B Command

T help ; String

5 name ; Skring

= B console

T name : String

& &
O O
R RO OO0

™= package : String
H Documentroot R
E Rook OO

'i':’:' I Finish] [Cancel

Figure 17-4: Graphical Definition Wizard Settings
5. Finadly, click Finish. The new file Input .gmfgraph is created and opened.

Task 3: Refine the Generated GMFGraph

In this task, you will fine tune the code generation settings and generate the code. The following illustration shows
some of the graphical elements that you need.

© Copyright IBM Corp. 2007 17 -3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

— Console Node

¢ MyConsole <4 Console's Label
1——— Compartment for Commands
< add — Compartment for Args
a:int CgadCE
b : String <= Arg Label

Figure 17-5: The graphical elements you will need in your editor

The wizard created anode and a label for the console and command nodes. Y ou need to create alabel for the arg
elements and compartments for the Command and Arg elements.

1. Make surethat thefile Input . gmfgraph isopen. You should see an editor like the one pictured below. If you
just see atext file, go back to Task 1 and make sure that your workspace has the Development capabilities

turned on.
@ Input.gmfgraph X

L™ Resource Set

= 2! iplatform: fresourceflab, console. input/modeliInput . gmfgraphi
= <= Canwvas Input
+- 4 Figure Gallery Default
<+ Mode Command
<+ Mode Console
<+ Diagram Label Commandhame
<+ Diagram Label ConsaleMarme

Figure 17-6: The input.gmfgraph in its editor

2. TheFigures Gallery defines low level graphical elements, such as square nodes, elliptical nodes and so on.
Y ou need to add alabel figure for the Argument label. Right-click Figure Gallery Default and select New
Child > Label.

3. Right-click the newly added label (which is nested under Figure Gallery Default) and select Show Properties
View. Inthe Propertiesview, set the name of the label to argLabelFigure. You should now seethe
following:

Ll *Input,gmfgraph 23

L7 Resaurce Set

= L& platform: resourceflab.console inputmodel Input, gmfgraph

= 4 Carvas Input
=< Figure Gallery Default
+- <+ Rectangle CommandFigure
e iqure
< Label ArglabelFigure
<+ ModeTemmand

Figure 17-7: The updated Label element
17-4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

4. Theelementsthat arein the Canvas | nput node are higher-level logical graphical constructs that reference the
lower level (physical definition) Figure Gallery elements. You need to add alogical Argument Label that
references the physical ArgLabelFigure. Right-click Canvas|nput and select New Child > Labels
Diagram Label. Inthe Properties view for the new label, set Element Icon to £alse, because you don’t want
an icon for the arguments. Set the Figureto Label ArgLabelFigure, whichisthelink to the low
level/physical label from the gallery. Set the Nameto ArgLabel.

<7 LNagram LaDel 'Onsoieranms
<+ Diagramn Label Arglabel

Selection | Parent | List | Tree | Table | Tree with Columns

Property Value
Element Icon Lk krue
Figure 4+ Label ArgLabelFigure
E 2rglabel
Resize Constraint '= MNSEW

Figure 17-8: Name is updated to ArgLabel

5. Next, you need to define the compartment within the console node which holds commands. Right-click
Canvas I nput and select New Child > Compartment. Set Collapsible to t rue which means that the
compartment can be collapsed and expanded. Set Figureto Rectangle ConsoleFigure, whichisthefigure
node which will contain this compartment. Set the Name to CommandCompartment. Leave Needs Title set to
false.

6. Likewise, add another compartment definition for the Argument compartment within the command node.
Right-click Canvas Input and select New Child > Compartment. Set Collapsibleto true, Figureto
Rectangle ConsoleFigure, and Nameto ArgCompartment.

7. Save and close the GMFGraph editor.

Task 4: Create GMFTool

A GMFTool Model isamode file (with the extension GMFTool) which defines the tools that are available in the
GMF editor. Toolsinclude menus, context menus and the toolbar palette. The GMFTool wizard creates a default
toolbar palette.

1. Withinthe 1ab.console. input project, right-click model\ Input .ecore and select New > Other. Select
the GMFTool Simple M odel wizard and select Next. Note, do NOT select the GMFTool M odel.

== Graphical Modeling Framework
L) GMFGraph Simple Madel
4! ‘GMFTool Simple Madel |
[4! Guide GMFMap Creation
T Mew GMF Project
4= Default

Figure 17-9: Sdecting GFMTool Smple Model
2. A default filename of Input .gmftool should aready befilled in, so click Next.

3. The input.ecore filethat you right-clicked should aready be highlighted as the input Domain Model, so
click Next.

© Copyright IBM Corp. 2007 17 -5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4. Set the Tooling Definition page as shown below. In particular, the Diagram element should be set to Root. It
isthe element in the model that corresponds to the entire diagram. In the Domain model elementsto process
grid, the first checkbox column indicates which Classes in the model need Node tools. In this example,
Consoles, Commands and Args need nodetools. The second column indicates which classes and relationships
need link tools. In thisexample, you aren’t using any links, so none are selected. The final column is not
actually used for defining Tools.

x
Tooling Definition
Specify basic tooling definition of the domain model ¢
|
Diagram element: IRu:u:ut j

[~ Exdude types that are resolved as nodes and have contsine
[T Exdude types that are resolved as links

Domain model elements to process:

Element EIEE Deselect#\lll
B B amg Ld
T name : String Defaults |
T type : String
= H command L

T help : String
T name : 5tring

B B Console

T name : String
T package : String
Q DocumentRoot
E Root

(7] = Back Mexk = | Finish I Cancel

Figure 17-10: Tooling Definition Wizard Settings
5. Finadly, click Finish. The new file Input .gmfgraph is created and opened.

Task 5: Create GMFMap

A GMFMap Model isamode file (with the extension GMFMap) which maps all the other GMF related files

together. Specifically, it maps the graphical elements (from GMFGraph) to the corresponding domain data (ecore)
and tools (GMFToal).

1. Withinthe 1ab.console. input project, right click model\ Input .ecore and select New > Other. Select
theGuide GMFMap Creation Wizard and select Next. Note, do NOT select the GMFMap Model.

17-6 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

== Graphical Modeling Framewark
@ GMFGEraph Simple Model
@ GMFTool Simple Model
& Guide GMFMap Creation |
&% New GMF Project
= Default

Figure 17-11: Selecting Guide GMFMap Creation
2. A default filename of Input .gmfmap should aready befilled in, so click Next.

3. Thenames of the Domain Model, Graphical Definition and Tooling Definition files should already befilled in
as shown below. Click the top right L oad button (for the Domain Model), then the one below that (for the

Graphical Definition) and then the last one (for the Tooling Definition) in order to load the variousfiles into the
wizard. Then click Next.

X
Source Models

Choose and load domain, graphical and tooling definition models

—Domain Model

IpIatFnrm:fresu:uurce,."lal:u.u:u:unsu:ule.input,."mu:u:lel,."lnput.eu:u:-re Browse... *I Load |

—Graphical Definition

|platfnrm:fresaurceﬂah.n:n:nns::nle.input,."m::ndelﬂnput.gmfgraph Browse... *I Luadl

~Tooling Definition

|platfnrm:frescuurceﬂal:u.u:u:unsu:ule.inputf'mcudelﬂnput.gmfb:ul Browse... *I Luadl

I.I_?I _. {Ea:k me):t :} | IWI ':ancel

Figure 17-12: The GMFMap creation wizard
4. Specify that the Diagram Root Element isrRoot and click Next.
5. On the Mapping screen, you see alist of tentative Nodes and Links. To change aNode into alink, select it and
click the AsLink = hutton. To changeaLink into anode, select it and click the As Node € button. To
remove an element, select in and click the Remove button. In this case, you only want to see the root level

nodes. Specifically, select the extraLinks and Nodes and remove them from the lists by clicking on Remove.
Asaresult, console isthe only Node and there are no Links.

© Copyright IBM Corp. 2007 17 -7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Create GMFMap model x|

Mapping

Map domain model elements

=ieres —

—Links
(Console (Console; u:u:unsu:ule]l)

&5 node <--

a5 link =

Eemove

]
o |
e

—Structure —Edit
Element; Command
Containment; command

Target Feature: Chiange .. |

— Visual | —Constraints
Diagram Element; Spedalization:
Initializer:
(7 < Back Mk = Finish Cancel

Figure 17-13: When specifying the Mapping, ensure that console is the only node
6. Click Finish. Thenew file Input . gmfmap is created and opened.

Task 6: Refine the Generated GMFMap

GMFGraph ties together the graphical elements, tooling elements and domain model elements together. In
particular, it isthe final definition of the nodes, link, labels and compartments. In addition, the graphical
compartments are defined in the GMFGraph, but GMFMap defines the hierarchical structure of the compartments.

1. Make surethat thefile Input . gmfmap iSopen.

2. Expand Input.gmfmap, then Mapping, then Top Node Reference so that you can see and select the Console
Node M apping.

TIP: Thisdefines anode for Consoles linking it to the graphical, domain, and tooling definitions.

17-8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

3. Review the Propertiesview for the console Node Mapping and make sure that the Domain meta
information > Element isEClass Console, the Visual representation > Diagram Nodeis set to Node
Console and that the Visual representation > Tool isset to Creation Tool Console.

-
@ *Input.gmfmap &2

r[:, Resource Set

El@ platform: fresource lab. consale, input/modelInput.gmfmap
A ¢ Mapping

pnsple(Consple] fConsole =
: o Mode |"-1-:IFII:IIF|EI <Console/Console> "
e -r:;‘»- Canvas Mapping

I i]] i
Selection | Parent | List | Tree | Table | Tree with Columns

=
Tasks | = Properties 3

Property | Value
E Domain meta information

Element
= Visual representation

Appearance Style

Context Menu
Diagram Mode ¢ Mode Console
Tool ¢ Creation Tool Consale

Figure 17-14: Ensure that the properties are set as shown

4. Next, you need to add the label for the Console Node. Right-click the console’s Node Mapping and select
New Child > Label Mapping. In the Properties, set the Diagram Label to Diagram Label ConsoleName
and set the Featuresto Eattribute name (using the popup dialog box from pressing ‘' button).

f[\:l Resource Set

El@ platform: fresource lab. console.input/model/Input.gmfmap

(=l 4+ Mapping
El 4 Top MNode Reference <ronsole{Console]) /Consale =
' El-ﬂ'}- Migde onsole/Console =

i]
Selechen Parent | List | Tree Tal::le|'|'ree with Culumns|

Tasks | T/ Properties &3

Property J..-'HBL — I

Diagram Label Q}- Diagram Label CenseIeName_')

Edit Pattern =

Features (Ei:ttribute name @
Read Cnly =]

View Pattern =

Figure 17-15: The updated set of properties

5. Next, you need to add the compartment to the Console node. Right-click the console’s Node Mapping and
select New Child > Compartment Mapping. Inthe Properties, set Visual representation > Compartment to
Compartment CommandCompartment.

© Copyright IBM Corp. 2007 17 -9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

L™ Resource Set

= @ platform: fresource flab. console.input/medel Input.amfmap
=14 Mapping
- 4 Top Mode Reference <console(Console)/Console =
=I- 4+ Mode Mapping <Console/Console >
< Label Mapping

ompartment Mapping <CommandCompartment>
<= Canv, ing

44| platform:/fresourceflab.console.input/model/Input.ecore
4 12! platform: fresource lab. console.input/model Input.amfgraph
+- ! platform: fresource flab. console.input/model Input.gmftool

Selection | Parent | List | Tree | Table | Tree with Columns

Tasks | | Properties 3 |3 fer ¥ = O
Property Value

= Misc

Children
= Visual representation

Compartment @tﬂmt Corﬂﬂa'ﬂCorrpa’t'nD

Figure 17-16: The updated set of properties

6. Next, add the nodes that can appear within the CommandCompartment. Right-click the console’s Node
Mapping and select New Child > Child Reference. In the Propertiesview, set Compartment to
Compartment Mapping <CommandCompartments, Which indicateswhich compartment thisnew childisin
(the Command Compartment). Set Containment Featureto EReference command, which isthe
Input .ecore defined containment element of Console' s which contain the nested (Command) el ements.

7. To complete the nested Command node definition, right-click thenew child Reference and select New
Child > Node Mapping. Inthe Properties, set Domain meta information > Element to EClass Command,
Diagram Nodeto Node Command, and Tool to Creation Tool Command.

17-10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

E‘:, Resource Set

EI@ platform: fresourcelab. console.input/model Input.gmfmap
-4 Mapping
E|*¢’- Top Mode Reference <conscle{Console)/Console =
. B4 Node Mapping <Console/Console =
-4 Label Mapping
B4 Chie SmmaRdCemmaRe
{4 Node Mapping <Command/Comma

H L) Lidl U1 apip il L) al 1L L)
L s Canvas Mapping
Selection | Parent | List | Tree | Table | Tree with Columns |

= Domain meta information

[= Visual representation
Appearance Style
Context Menu
Diagram Mode C ; Mode Command)
Tool (:4.,':: Creation Tool Cu:ummanu:l__:)

Figure 17-17: The updated set of properties

8. Addal abed Mapping to the Node M apping <Command/Command> node by right-clicking it and adding a

child Label Mapping. Setits Diagram Label to Diagram Label CommandName and Featuresto
EAttribute Name.

|.—|>_‘, Resource Set

= @ platform: fresourcelab. console. input/model Input.gmfmap i
[=)- 4 Mapping
[=- 4 Top Mode Reference <console(Console)/Conscle =
(=1 < Mode Mapping <Console/Console >
< Label Mapping
=) <= Child Reference <command{Command)/Command=
= 4 Mode Mapping <Command/Command =
<+ Label Mapping
<+ Compartment Mapping <CommandCompartment =
< Canvas Mapping [v]

Selection | Parent | List | Tree | Table | Tree with Columns

Tasks | £ Properties &3 |E|:.',,=:'t> fe- ¥ = O
Property Value
Diagram Label 4+ Diagram Label Commandiame
Edit Pattern =
Features < EAttribute name
Read Only [l false
View Pattern L=

Figure 17-18: The updated set of properties

9. Add aCompartment Mapping child to the Node M apping <Command/Command> Node setting its
Compartment property to Compartment ArgCompartment.

© Copyright IBM Corp. 2007 17 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

L™ Resource Set

=l platform: fresource lab. console.input/model Input.gmfmap
=4+ Mapping
=4 Top Node Reference <consale(Console)/Console >
=) 4 Mode Mapping <Console/Consale =

< Label Mapping
<+ Child Reference <command{Command)/Command >
=l < Mode Mapping <Command/Command =

<+ Label Mapping

<+ Compartment Mapping <ArgCompartment>

<+ Compartment Mapping <CommandCompartment=
<+ Canvas Mapping

Selection | Parent | List | Tree | Table | Tree with Columns

Tasks | =] Properties 2 i

Property

= Misc
Children

= Visual representation
Compartment

Value

<» Compartment ArgCompartment

Figure 17-19: The updated set of properties

10. Add anew ‘Child Reference’ child to the Node M apping <Command/Command> Node. For its properties,

set the Compartment to Compartment Mapping <ArgCompartments and set the Containment Featureto
EReference arg.

"y Resource Set

= 4l platform: resource/lab. console.input/model fInput.gmfmap
=~ 4 Mapping
=~ 4 Top MNode Reference <console(Console)/Console =
=4+ Node Mapping <Console/Console >
< Label Mapping
=~ <= Child Reference <command({Command)/Command >
= < MNode Mapping <Command,/Command:>
< Label Mapping
< Child Reference <arg=
<+ Compartment Mapping <ArgCompariment:=
< Compartment Mapping <CommandCompartment =
< Canvas Mapping

Selection | Parent | List | Tree | Table | Tree with Columns

Tasks | | Properties £

Property
Child
Children Feature
Compartment

Value

< Compartment Mapping <ArgCompartment=
Containment Feature <+ EReference arg

Referenced Child

Figure 17-20: The updated set of properties

11. Right-click thenew child Reference <args> and select New Child > Node Mapping. For the properties,
set Element to EClass Arg, Diagram Nodeto Diagram Label ArgLabel, and Tool t0o Creation Tool
arg. Note how you set the Diagram Node to alabel instead of a node.

17-12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

L Resource Set

=l platform: fresourcelab. console.input/model Input.amfmap |
=+ 4 Mapping
—I- 4 Top Node Reference <console(Console)/Consale>
= 4> Node Mapping <Conscle/Console >
4+ Label Mapping
= < Child Reference <command{Command)/Command =
=) 4+ Node Mapping <Command/Command >
< Label Mapping
=l <» Child Reference <arg({Arg)/ArglLabel >
<> MNode Mapping <ArafArglLabel >
<+ Compartment Mapping <ArgCompartment>
< Compartment Mapping <CommandCompartment:
<+ Canvas Mapping |
Selection | Parent | List | Tree | Table | Tree with Columns

Tasks | | Properties 272

o
i@i
i
4

I
]

Property Value
= Domain meta information

Element <4 EClass Arg
= Visual representation

Appearance Style

Context Menu

Diagram Mode < Diagram Label Arglabel
Tool Creation Tool Arg| ™

Figure 17-21: The updated set of properties

12. Add aLabel Mapping child to the new Node M apping <Arg/ArgL abel> node. Thislabel will be structured
differently then previously defined labels, because you want to show the name and the data type of the
argument in the label, such as“arg0:String’. For its properties, set the ‘ Diagram Label’ to ‘ Diagram L abel
ArgLabel’. Set the Featuresto ‘EAttribute name AND ‘EAttributetype’ (in that order). Set the‘View
Pattern’ to ‘{0}:{1}’ and set the ‘Edit Patternto ‘{0}:{1} . Inthe edit and view patterns, any instance of { 0}
represents the first feature (which is name), any instance of {1} represents the second feature (which is type)
and so on.

© Copyright IBM Corp. 2007 17 -13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

|._[\:| Resource Set

El@ platform: fresource lab. console, input/modelInput.gmfmap

=l 4+ Mapping

E|*$’- Mode Mapping <Conscle/Consale
----- 4 Label Mapping

i e Label Mapping

..... < Canvas Mapping

= *!} Top Mode Reference <consale{Console)/Console =
=- s Child Reference <command({Command)/Command =
El*t} Mode Mapping <Command/Command =

El < Child Reference <arg(arg)fArgLabel=

----- < Compartment Mapping <CommandCompartrment

-8 - innutfmodelTnngt. ecore
Selection | Parent | List | Tree | Table | Tree with Culumns|

B
Tasks | | Properties &3

Propecty | yalue

Diagram Label 4 Diagram Label ArgLabel
Edit Pattern L= {0k {1}

Read Only I+ falze
View Pattern L= {0k {1}

EAttribute name, EAttribute type

Figure 17-22: The updated set of properties

13. All of the nodes, labels, and compartments are defined.

14. Select File> Save All.

15. Closethe 1nput . GMFMap.

Task 7: Create GMFGen

The GMFGen file contains code generation settings for the various GMF files.

1.
model. Accept the default name of Input . gmfgen and click OK.

17-14

Withinthe 1ab . console. input project, right-click model\ Input .gmfmap and select Create generator

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

2. |If you are prompted for the location of the genmodel file, select the input . genmode1 file from the project.

@ Resource Selection

Can't find genmodel for package Input(platform: fresourcelab. console. transform finput. xsd)

=] |:|'[z:‘,Jr lab.console.input. edit
i []1=2 lab.console.input.editor
i []1=% lab.console.input. tests
i []122 lab.console. transform

& [@[] workspace [#)nput.ecore ;
=] 'L-:‘,J’ lab.console.input | @ put.gmfgraph
-~ []&= META-INF [& mput.gmfmap

H-[] = bin [& put.gmftocl
[E] = model %] input.genmodel
B[] & sre

[ok || cancel

Figure 17-23: Specifying the genmode! file
3. If you are prompted to use IMapMode, Select Yes.

4. A new file named Input . gmfgen should be created in the model directory.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

T, Navigator &4

o E{"::Dv:lﬁ

= '[D‘J lab.console.input
== bin
(= META-INF
== model
ﬂlj Input.ecore

LQ Input.gmfgrgah

@ Input.gmfmap
@ Input.gmftool
= src
.classpath
Jproject
@ build. properties
plugin. properties
plugin. xml
'[éj lab.console.input. edit
'[éj- lab.consaole.input.editor
'[éj- lab. console.input. tests
'[éj lab.console. ransform

Figure 17-24: Update view of the filesin the project

17-15

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 8: Refine the Generated GMFGen

By modifying Input . gmfgen you can change some of the behavior in the generated diagram editor.
1. Openlab.console.input/model/Input.gmfgen.

2. The default generated editor does NOT enable diagram printing. In order to enable diagram printing, expand
and find Gen Editor Generator lab.console.l nput.diagram / GenDiagram RootEditPart / Gen Plugin
Input Plugin. Inthe Properties view for the Gen Plugin I nput Plugin, set Printing Enabled to true.

L&} *Tnput.amfgen 23

fﬁ_—, Resource Set

EI@ platform: fresourcelab. console.input/model/Input.gmfgen
E- < Gen Editor Generator lab.console, Input.diagram
E < Gen Diagram RootEditPart
< Metamodel Type
-4 Figure Viewmap org.edipse.draw2d.FreeformLayer
-4 Gen Child Node CommandEditPart
-+ Gen Child Label Node ArgEditPart
-4 Gen Top Level Node ConsoleEditPart
< Gen Compartment ConsoleCommandCompar tmentEditPart
< Gen Compartment CommandArgCompartmentEditPart

----- 4> Gen Editor View lab.console. Input.diagram.part

&-[E o : '
Selection | Parent | List | Tree | Table | Tree with Columns

Tasks | T Properties &2

Property | Value
Activator Class Name I= InputDiagramEditorPlugin
D = [ab,console.input. diagram
[ame
Provider ample Plugin Provider, Inc

Version I= 1.0.0.qualifier

Figure 17-25: Ensure that Printing Enabled is set to true

17-16 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

3. Compartmentsin the generated diagrams can use aList Layout style or aFreeform Layout. If itisList
Layout style, then the child elements are displayed in avertical list. In Freeform Layout style, the user can
position the child nodes anywhere in the compartment. Y ou want Freeform Layout for the Command
Compartment and List Layout style for the Arg Compartment. Find the Gen Compartment entries as
illustrated before. Make surethat List Layout is false for Gen Compartment
ConsoleCommandCompartmentEditPart and t rue for Gen Compartment
CommandArgCompartmentEditPart.

I?_-, Resource Set

E@ platform: fresource lab. console.input/model Input.amfgen
E|¢ Gen Editor Generator lab.console. Input. diagram

B+ Gen Diagram RootEditPart
""" < Metamodel Type
-4 Figure Viewmap org.edipse.draw2d. FreeformLayer
-4 Gen Child Node CommandEditPart
< Gen Child Label Node ArgEditPart

& G=n Compar tment ConsoleCommandCompartmentEditPart
- < Gen Compartment CommandArgCompar tmenteditPart
-4 Palette lab.console. Input.diagram. part

-~ <4 Gen Plugin Input Plugin

-4 Gen Editor View lab.console. Input.diagram.part

I:I"- platform: fresourcelab. console.input/model finput. genmodel

-8 nlstinrm: fresonree ah.consale.innutimadel finnyt . erore

Selection Parent| Listl Tree | Table | Tree with Columns |

Tasks | = Properties £3

Property | Value
[=] Diagram Compartment
Can Collapse Iy true
Hide If Empty Lk frue
List Layout Ly false_jj
Meeds Title I+ falze
Title '= CommandCompartment
[=] Diagram Containment
Canonical Edit Policy Class Name 1= ConsoleCommandCompar tmentCanaonicalEdil
Child Nodes % Gen Chid Node CommandEditPart
Contained Nodes 4 Gen Child Node CommandEditPart

Figure 17-26: Set List Layout to false
4. Select File> SaveAll.

5. Closethe Input .gmfgen file.

Task 9: Generate the Graphical Editor

All the pieces are finally in place to generate the Graphical Editor’s plugin and source code.

1. Withinthe lab.console. input project, right-click model\ Input .gmfgen and select Generate diagram
code. A plug-in project named 1ab.console. input .diagram should be created/updated. It containsthe
graphical editor.

2. Click OK.

Task 10: Refine the generated code

The code generated by the GMF generator is designed to work with base Eclipse. Rationa Software Architect
leverages and extends the capabilities of basic GMF. In more advanced scenarios, it is possible to leverage the
additional power and capabilities of Rational Software Architect in your GMF based diagrams. However, thereis
one minor incompatibility in using basic GMF-generated editors with Rational Software Architect, which isvery
easily corrected.

© Copyright IBM Corp. 2007 17 -17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Note that if you do not do thistask, all text labelsthat arein the resulting editor will not work correctly. For
example, if you attempt to change the name of a Console in the editor, it will fail to change and give an error

message.

1. Inthe generated diagram editor plugin, whichislab. console. input .diagram, Open up plugin.xml.
Select the plugin.xml tab to view the source code for plugin.xml. Search for the string ‘ parserProviders'.
Change the nested element that says <Priority name="Lowest"/> 10 <Priority name="Low"/>. In
other words, change the priority from Lowest to Low. Then save and close plugin.xml.

[padage Eorer. x L0 I

|
=

@ Input.gmfgen (-@: lab.console.input. diagram &2

2 | B S

-5 lab.consale.input

=] '_pd Iab.console.inp
E-52 src

Bk JRE System Library [jdk]

B Plug4n Dependendes
(= icons
(&= META-INF

build. properti

ﬁ.

[]"E'pd lab.console.input.edit

[]""i'pd lab.console.input.editor
[]--'_:'7‘] lab.console.input. tests
i

T2 sk mmmenls framefaem

=0
<extension point="org.eclipse.gmf.runtime.common.ui.services.iconProviders"> ;l
<IconProvider class="lab.console.Input.diagram.providers.InputIconProvider">
<Priority name="Low"/>
</IconProvider>
</extension>
<extension point="org.eclipse.gmf.runtime.common.ui.serviced,parserProviders™y
<Par Al .console.Input.diagram.providers. InputParserProvider™>
<Priority name="Low"/> i
</PaTSETFrovider

</extension>

<exXtension noint="orao.eclinse.omf.runtime.emf,tvpe,.core.elementIvoes™>

ol

——
QOverview | Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MHEIugin.xgﬁﬂ}:uild.pmperﬁes |

Figure 17-27: The updating plugin.xml file

Task 11: Test the Generated Editor

In thistask, you will test the generated editor.

1. InNavigator or Package Explorer, right-click the project named 1ab. console. input .diagram and select
Run As> Eclipse Application. Then wait for a new instance of Rational Software Architect to launch.

2.

17-18

In the run-time workbench, create a simple project named console.diagram.test.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

t2? New Project

Select a wizard

Create a new project resource

Wizards:

project

i |§ Java Project
i & Java Project from Existing Ant Buildfile
: Managed Make C++ Project
“13% Plugdn Project
=g LML Project
koot
1 Broject
=R
Managed Make C Project
i @ Standard Make C Project
& CH+
@ Managed Make C++ Project

Cancel

Next.

Figure 17-28: Creating a simple Project
Right-click the new project name and select New > Other. Select the Input Diagram wizard and then click

4. Accept the default of default and click Finish.

default.input_ diagram should be opened in an editor that looks like the following.

K3

-,

= O

— Palette — ¥

<% Command

Figure 17-29: The default.input_diagram in the editor

6. Toadd anew Console, click Consolein the Palette and then click the drawing surface. Name the new Console
MyConsole. Open up the properties for MyConsole and set the Packageto my . console.

© Copyright IBM Corp. 2007

17-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4 MyConsole

e_(E Properties £

Property | Value
= EMF

bl Il

g;ad:age .
=l Vi

Layout Constraint
Styles

| ¥ I}
A=

brEn
my, consale

&

Figure 17-30: Specifying the Package for the Console
7. Inthe Diagram editor, expand the node for MyConsole so that there is room to work within the compartment.

4 MyConsole
<>,

Figure 17-31: Expand the compartment within MyConsole

8. To add achild Command, click Command in the Palette and then click in the compartment in MyConsole.
Name the Command echo.

9. Click Arginthe Palette and then in the compartment inside of echo Command to add an argument. Givethe

new Arg alabel of text:string. Open the Propertiesof the Arg and you should see that the Nameis text
and the Typeisstring.

17-20 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 — Building a GMF Editor

-,

= g
+||=Palette — »
4 MyConsole Ty Select
i+, Zoom
[= Mote -
< echo 4 Arg
<& Command
< Console
w
Kl]
- L
Problems | Javadoc | Declaration ﬂj Properties &3
Advanced
Froperty | Value
=
Mame L= text
Type L= String
= viemwr
Layout Constraint <
Styles

Figure 17-32: Viewing the properties of the Arg element.

10.
11.

12.
default.input.xml.

13.

Add any other Consoles, Commands, and Args that you want.

In order to test the transformation, save and close your diagram.

It's easier to test the existing transformation if the file has an XML extension, so rename default . input to

Right-click default.input.xml and select Run As> Input for JET Transformation. Inthe Properties

page that appears, select 1ab. console. transformasthe|D. Then click OK to run the transformation.

© Copyright IBM Corp. 2007

17 - 21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

') Properties for (default.input.ml}
Edit launch configuration properties @

Name: {dehult.inpyt.ml.}
I

e Main] Common |
Transformation Input
Jeonsole. diagram. test/default.input.xml
Transformation
1D: i[ﬂmmﬁnj&.!tm ... |[v
Name: lab. console. transform
Description:
Display Messages
Severity (at or above): !inFormation |_\:_}
[Apply] [Revert]
ok || cancel |

@ [

Figure 17-33: Selecting the transformation to run.
14. The project MyConsole Console (and any other consoles that you defined) are generated.

15. Close the second instance of Rational Software Architect when you are done testing.

17-22 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

	rd801gv1_stuwrk.pdf
	rd801gv1_stuwrk.pdf
	Lab 01 - Introducing JET.pdf
	Lab 1: Introducing JET
	Objectives
	Scenario

	Lab 02 - Using XPath.pdf
	Lab 2: Using XPath
	Objectives
	Given
	Scenario

	Lab 03 - Authoring Transforms Manually.pdf
	Lab 3: Authoring a JET Transform Manually
	Objectives
	Given
	Scenario

	Lab 04.1-Exemplar Authoring.pdf
	Lab 4.1: Authorization Bean Exemplar Authoring
	Objectives
	Given
	Scenario

	Lab 04.1-zSolution - The AuthorizationBean Transform.pdf
	Lab 4.1 Solution: Authoring the AuthorizationBean Exemplar
	Objectives
	Given
	Scenario

	Lab 04.2-Exemplar Authoring.pdf
	Lab 4.2: Exemplar Authoring
	Objectives
	Given
	Scenario

	Lab 05 - The Console Transform.pdf
	Lab 5: The Console Transform
	Objectives
	Given
	Scenario

	Lab 6.1 - EMF Lab.pdf
	Lab 6.1: Introduction to EMF
	Create EMF Model and Editor for Console Transformation Input
	Objectives
	Given
	Scenario

	Lab 6.2 - Optional EMF Lab.pdf
	Lab 6.2: EMF Optional Lab
	Create Organization Chart Model
	Objectives
	Given
	Scenario

	Lab 7 - Customize a Transformation.pdf
	Objectives
	Given
	Scenario
	Create the Workspace
	Create the Source and Target Projects
	Populate the Source Project
	Apply a UML-to-Java Transformation
	Use a Mapping Model

	Lab 8 - Create a Model to JET2 Transformation.pdf
	Objectives
	Given
	Scenario
	Create and Prepare the Workspace
	Create a New EMF Project
	Create a New Plug-in Project with Transformation Mapping
	Create the Model to Root Mapping
	Create the Console Class to Console Mapping
	Create the Operation to Command Mapping
	Create the Parameter to Arg Mapping
	Generate the Transformation Code
	Create a Custom Extractor
	Connect Transformation to JET
	Configure Run-time Workbench
	Test the Transformation

	Lab 9 - Create a Modeling Profile.pdf
	Lab 9 – Create a UX Modeling Profile
	Objectives
	Scenario

	Lab 10 - Manually Create a Transformation.pdf
	Objectives
	Given
	Scenario
	Create the Workspace
	Create a New Plug-in Project
	Visualize the Transformation Structure
	Edit the Rules
	Configure Run-time Workbench
	Create a Test Project
	Run the Transformation
	Add a New Rule
	Test the New Rule
	Extra Challenges

	Lab 11 - Create a Model to Model Transformation.pdf
	Objectives
	Given
	Scenario
	Create the Workspace
	Create a New Plug-in Project with Transformation Mapping
	Create the Class to Class Mapping
	Create the Class to Interface Mapping
	Create the Package to Package Mapping
	Create the Model to Model Mapping
	Generate the Transformation Code
	Configure Run-time Workbench
	Create a Test Project
	Run the Transformation
	Add New Mappings and a Relationship
	Tips and Troubleshooting

	Lab 12 - Create the Master Detail Pattern.pdf
	Lab 12 – Create the Master Detail Pattern
	Objectives
	Given
	Scenario

	Create the Pattern Project
	Customize Expand Methods
	Customize Update Methods
	Test the Pattern
	Extra Challenges

	Lab 13 - Create a Pluglet.pdf
	Lab 13 – Create a Pluglet
	Objectives
	Given
	Scenario

	Create the Workspace
	Configuring the Perspective
	Import the Pluglet
	Complete the Pluglet
	Run the Pluglet
	Export the Pluglet

	Lab 14 - Create Model Template.pdf
	Lab 14 – Create a UX Model Template
	Objectives
	Given
	Scenario

	Import the UXModeling Profile Plug-in Project
	Create the Base Model
	Create Model Structure
	Add Documentation
	Add the Model as a Template to the UXModeling Profile Plug-i
	Apply Profile to the Model Template

	Lab 15 - Package Reusable Assets.pdf
	Lab 15 – Package Reusable Assets
	Objectives
	Given
	Scenario

	Create the Workspace
	Create a RAS Repository
	Import Reusable Assets
	Create a Feature
	Deploy as a RAS Asset
	Import the RAS Asset
	Verify the install of the RAS Asset
	Test the RAS Asset

	Lab 16 - GMF Lab.pdf
	Lab 16: Running a GMF Editor
	Run Pre-built GMF generated Editor for the Console’s Input X
	Objectives
	Given
	Scenario

	Lab 17 - Using GMF.pdf
	Lab 17: Building a GMF Editor
	Build a GMF Editor for the Console’s Input XML File
	Objectives
	Given
	Scenario

