

IBM Rational University

 Pattern Implementation Workshop with
IBM Rational Software Architect
RD801/DEV498 April 2007
Student Workbook
Part No. 800-027313-000

IBM Corporation
Rational University
Pattern Implementation Workshop with IBM Rational Software Architect
Student Workbook

April 2007

Copyright © International Business Machines Corporation, 2007. All rights reserved.

This document may not be reproduced in whole or in part without the prior written permission
of IBM.

The contents of this manual and the associated software are the property of IBM and/or its
licensors, and are protected by United States copyright laws, patent laws, and various
international treaties. For additional copies of this manual or software, please contact Rational
Software.

IBM and the IBM logo are trademarks or registered trademarks of IBM Corporation, in the
United States, other countries or both.

Rational, the Rational logo, ClearCase, ClearCase LT, ClearCase MultiSite, Unified Change
Management, Rational SoDA, and Rational XDE are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries or both.

WebSphere, the WebSphere logo, and Studio Application Developer, are trademarks or
registered trademarks of International Business Machines Corporation in the United States, other
countries or both.

Microsoft Windows 2000, Microsoft Word, and Internet Explorer, among others, are trademarks
or registered trademarks of Microsoft Corporation.

Java and all Java-based marks, among others, are trademarks or registered trademarks of Sun
Microsystems in the United States, other countries or both.

UNIX is a registered trademark of The Open Group in the United States, other countries or
both.

Other company, product and service names may be trademarks or service marks of others.

Printed in the United States of America.

This manual prepared by:
IBM Rational Software
555 Bailey Ave.
Santa Teresa Lab
San Jose CA 95141-1003
USA

Lab 1: Introducing JET
Objectives

After completing this lab, you will be able to:

► Create a new EMFT JET project

► Configure the plug-in

► Run a JET Transformation

Scenario
In this lab exercise you will create a new JET Transform and learn about the transformation’s component parts.

You will need Rational Software Architect V7 or later. These instructions are targeted to Rational Software
Architect V7.

© Copyright IBM Corp. 2007 1 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Task 1: Create a New EMFT JET Transformation Project

1. On the File menu, click New Project > EMFT JET Transformation Project. Click Next.

2. Enter my.first.transform as the Project name and click Finish.

3. In the Package Explorer view in the Java perspective, expand the newly created project named
my.first.transform.

Figure 1 - 1: EMFT JET Transformation Project, my.first.transform

1 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 1 – Create a Simple JET Transform

Task 2: Configure the Plug-in

1. Open the editor for the plugin.xml file and click the editor’s plugin.xml tab.

Figure 1 - 2: EMFT JET Transformation Project, my.first.transform

Although each JET transform is implemented as an Eclipse plug-in, you really don’t have to know about Eclipse
plug-ins in order to build a JET transform.

2. Click the plugin.xml editor’s MANIFEST.MF tab to view the transform’s metadata.

Figure 1 - 3: Meta-information for my.first.transform

© Copyright IBM Corp. 2007 1 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

The only piece of metadata that you may care about is the symbolic name which is the transform’s id. This string
value is used in several advanced transform functions.

3. Open the editor for main.jet to see the high-level template (named in the plugin.xml file in the
startTemplate attribute).

Most of the template test is static, but there are several interesting features:

Figure 1 - 4: Key Information in the Plug-in Manifest

The taglib reference defines a tag library containing tags that may be used in this template.

The ws:file tag is one such tag.

The rest of the template is static text, mostly containing JET template comments that do not appear in the
generated text.

The dump.jet template also contains a mix of tags and static text.

1 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 1 – Create a Simple JET Transform

Task 3: Filter the Project Explorer View

1. Click the Filters icon (circled in the image below) and the Filters menu item to change the Package Explorer
filters.

Figure 1 - 5: Opening the Filters Dialog for the Project Explorer
2. Clear the box next to Java elements from JET Transformation projects and click OK.

Figure 1 - 6: Turning off Java Elements filtering
3. The Package Explorer will now display several additional project items. Fully expand the jet2java package.

© Copyright IBM Corp. 2007 1 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 1 - 7: The Package Explorer View

The generated Java classes (created when the transform’s templates are edited) are normally hidden (because you
don’t need to interact with them). Note that there is a Java class for each of the two templates, as well as a
_jet_transformation.java class that acts as an index into the other classes.

4. Use the Filters menu item to hide these Java elements again.

Task 4: Run the Transformation

1. Open the sample.xml file and, using the editor’s source tab, add some arbitrary, but valid, XML.

Figure 1 - 8: The contents of the sample.xml file

1 - 6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 1 – Create a Simple JET Transform

2. Transform the model in the XML file (the XML content) with the transformation. Click the Run icon and then
click the Run menu item.

Figure 1 - 9: Running the Transformation

TIP: You can also right-click the sample.xml file and select Run As > Input for JET Transformation.

3. The list of available configurations will vary based on the specific IDE that you’re running. Select the Jet
Transformation configuration and click the New button (circled in the image below).

Figure 1 - 10: Running the Transformation
4. If the file to be transformed is in the project containing the transform, then the new transformation instance

should be initialized correctly. Otherwise you would have to set the various properties manually.

© Copyright IBM Corp. 2007 1 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 1 - 11: Setting Transformation Properties
5. Click the Run button and you should see a new file, dump.xml, created by the transformation. Open that file

and you should see the original XML. By default, new transforms simply write out the input model in a file
called dump.xml.

Figure 1 - 12: Setting Transformation Properties

1 - 8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 1 – Create a Simple JET Transform

6. Delete the dump.xml file and run the transform again by simply clicking the Run icon.

Figure 1 - 13: Running the Transformation

© Copyright IBM Corp. 2007 1 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

1 - 10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 2: Using XPath
Objectives

After completing this lab, you will be able to:

► Use basic JET tags and XPath to access a model

Given

► The project interchange file UsingXPath.zip

Scenario

In this lab exercise, you will use basic JET tags and XPath to access a sample model in a number of common ways.

Task 1: Set up the Lab
1. Begin by using the Import from Project Interchange wizard to import the XPath Exerciser project in file

UsingXPath.zip.

Figure 2 - 1: EMFT JET Transformation Project, my.first.transform

The transformation project contains several files. You will need to modify files xpath001.jet – xpath015.jet.
Each .jet template has instructions describing a small number of JET tags to be written. Each template also shows
the expected output from those tags.

© Copyright IBM Corp. 2007 2 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

2. The file sample.xml contains the input model to be used for this exercise. To test your work, apply the XPath
Exerciser transformation to the sample.xml file.

2 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 3: Authoring a JET Transform Manually
Objectives

After completing this lab, you will be able to:

► Revise an existing JET Transformation

Given

► The project interchange file AuthoringTransformsManually.zip

Scenario
In this lab you will author a transform that uses the basic JET tags, and which generates both Java and non-Java
artifacts.

Task 1: Revise the Transformation lab.ibean.transform
In this task, you will work through a transform that has been partially completed.

1. Begin by using the Import from Project Interchange wizard to import both projects in file
AuthoringTransformsManually.zip.

2. Look at the projects that were imported. There is a Java project named IBean Java Project that contains
some Java classes. The lab.ibean.transform project is a transform that can generate Java projects.

Figure 3-1: The contents of IBean Java Project

The IBean Java Project project represents the kind of project that lab.ibean.transform will generate. In
addition to the project and its required meta-data files, there is always a Logger class and pairs of business classes.
Each pair of classes contains a specialized Java bean and an interface for that bean.

The bean is specialized in that every setter method invokes the logger to log an “object modified” message. The
interface names each getter and setter method.

Note that getter methods for boolean properties begin with is and variable names begin with field to avoid
accidental use of reserved words such as package or class.

The transform has in it several sample XML files that illustrate the variability in the pattern. The transform as
originally loaded in your workspace, however, only generates the Java project, meta-data files, and the logger class.
It does not generate either the interfaces or the bean implementations.

© Copyright IBM Corp. 2007 3 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

3. Your task in this lab is to add the necessary tags and templates to the lab.ibean.transform transform so
that it also generates those interfaces and bean implementations correctly.

3 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1: Authorization Bean Exemplar Authoring
Objectives

After completing this lab, you will be able to:

► Create an EMFT JET based transform using Exemplar Authoring

Given

► The project interchange file AuthorizationBean-ExemplarAnalysis.zip

Scenario
In this lab you will perform Exemplar Authoring on a working bean. As a result, the transform will be able to take
information about a set of beans as input, and then generate the Java code necessary for the set of beans.

Task 1: Set up the Lab
1. Use the Import from Project Interchange wizard to import all of the projects in file AuthorizationBean-

ExemplarAnalysis.zip.

2. Look at the project that was imported, this project makes up the exemplar:

• The exemplar is in a single project: Authorization Beans. The transform you must build from this
exemplar is the same transform you built by hand in Lab 3. The difference here is that you will be using the
Exemplar Authoring tools in Rational Software Architect to build the transformation.

3. Complete the lab using the Exemplar Authoring tool. If you need assistance, there is a step-by-step guide to
completing the task located in the solution folder for this lab on the Student CD.

© Copyright IBM Corp. 2007 4.1 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

4.1 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution: Authoring the AuthorizationBean
Exemplar
Objectives

After completing this lab, you will be able to:

► Create an EMFT JET based transform using Exemplar Authoring

Given

► The project interchange file AuthorizationBean-ExemplarAnalysis.zip

Scenario
In this lab, you will perform Exemplar Authoring on a working Java bean. As a result, the transform will be able to
take information about a set of beans as input, and then generate the Java code necessary for the set of beans.

Task 1: Set up the Lab
In this task you will set up your environment for this lab.

1. Begin by using the Import from Project Interchange wizard to import all of the projects in file
AuthorizationBean-ExemplarAnalysis.zip

2. Look at the project that was imported.

Figure 4.1 - 1: Authorization Beans Exemplar Project

The project Authorization Beans Java Project is your exemplar. As such, it represents the kind of project that
your transform will generate. In addition to the project and required meta-data files, there is always a Logger class
and pairs of business classes. Each pair of classes contains a specialized bean and an interface for that bean.

© Copyright IBM Corp. 2007 4.1 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

The bean is specialized in that every setter method invokes the logger to log an “object modified” message. The
interface names each getter and setter method.

Note that getter methods for Boolean properties begin with is and variable names begin with field to avoid
accidental use of reserved words such as “package” or “class”.

As with any Exemplar Authoring exercise, be sure to ask the SME (the instructor in this case) if you have any
questions about the implementation of the exemplar application or about the points of variability to be supported by
the transform.

Task 2: Create Exemplar Authoring Project
In this task, you will create an Exemplar Authoring project.

1. Create a new JET transformation project called authorization.bean.transform. Use the EMFT JET
Project with Exemplar Authoring project wizard.

Figure 4.1 - 2: Creating an EMFT JET Project with Authoring Exemplar

4.1 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 3: Specifying the project name
2. Be sure to specify that the Authorization Beans project is selected as the Exemplar scope.

© Copyright IBM Corp. 2007 4.1 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 4: Specifying the Exemplar Scope
3. The Exemplar Authoring tool should now display the Authorization Beans exemplar and an empty model

4.1 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 5: The authorization beans exemplar and the empty model
When the wizard completes, you’ll see a new plug-in project with the name you entered into the wizard. This plug-
in project contains the same files and folders that the New EMFT JET wizard creates, but it also contains a file
named transform.tma, this file will contain the model you build by performing Exemplar Analysis on your exemplar.

Figure 4.1 - 6: The files within the transform project
The editor for transform.tma is shown above. It has two side-by-side panes. The left pane contains a file system
view of the project(s) you said contains your exemplar. The right pane contains several kinds of information. The
right pane contains the transformation input model schema (for now there’s only a single element type called

© Copyright IBM Corp. 2007 4.1 - 5
“root”). For each element type the right pane will show the actions to be taken by the transform whenever it

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

encounters an element of that type.

4.1 - 6 © Copyright IBM Corp. 2007

Task 3: Populate the Model: Items Created Once
1. You will use a one-word name, beanSet, to describe the entire set of files in the exemplar. Create a second-

level model type by that name.

Figure 4.1 - 7: Creating the beanSet type
2. Add an attribute called name to b ture the name of the project. eanSet. This attribute will be used to cap

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 8: Creating the console type

Figure 4.1 - 9: Adding a name attribute to the beanSet type
3. Identify the artifacts that will be created only once for each application of the transform. They include:

• The Java project, Authorization Beans
• The project meta-data files .classpath and .project
• The Logger class org.secure.bean.log.Logger.java

4. Drag each of these artifacts from the left pane onto the beanSet type icon in the right pane. Be careful not to
drop any of the artifacts onto the Create Project action.

© Copyright IBM Corp. 2007 4.1 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 10: Artifacts added under beanSet

TIP: Notice that in the left-hand pane the view is updated so that a checkmark is added once an artifact is
associated with an action.

TIP: The name parameter shows that this project will always be created with the name “Authorization Beans”.
You want this name to be variable, and best practices call for using a derived attribute to specify and hold
that variable project name. The derived attribute, in turn, will be based on an attribute that’s included as
part of the input model.

4.1 - 8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 11: The name property for the Create Project: Authorization Beans action

TIP: You will need to use the Properties view in your perspective to accomplish this task (and many others). To
add the view, select Window > Show View > Properties.

5. The project name will be taken completely from the value of a derived attribute that you are about to define.
Select the name parameter value (“Authorization Beans”) and click on the Replace with Model
Reference menu action.

TIP: Note that you’ve already added a new attribute called name to beanSet. The value passed into the
transform in this attribute will be used to build the derived attribute.

© Copyright IBM Corp. 2007 4.1 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 12: Replacing the default text with a model reference

TIP: The Replace with Model References dialog lets you select the model attribute whose value will replace
the selected text.

4.1 - 10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 13: Creating a new model reference
6. You need a derived attribute that’s not been defined yet, so you select beanSet and then click New to define

that derived attribute.

TIP: Note that since this derived attribute will contain the name of the project to be created, and since the
beanSet type (and its subtree) contains all of the information needed to apply the transform once, you need
to select the beanSet type before clicking New so that the derived attribute is defined on the beanSet type.

TIP: The Create New Derived Attribute dialog lets you define the new derived attribute. The calculation field
lets you insert model references to define the formula used to build the derived attributes value.

Figure 4.1 - 14: Preparing to insert a model reference
7. Specify projectName as the value for the Attribute name.

© Copyright IBM Corp. 2007 4.1 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

8. You want the value of the derived attribute to be the value of the name attribute from the beanSet (with first
character uppercased) folloyoud by the string “ beans”. Within the Calculation field, select Authorization
and then click on Insert Model Reference.

9. In the Select Model Reference dialog, select the name attribute, and then click OK.

Figure 4.1 - 15: The updated calculation field that uses the name attribute from the beanSet type

4.1 - 12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

TIP: Note that the XPath query expression $beanSet/@name assumes that the variable $beanSet is associated
with a model node of type <beanSet>

10. Add the uppercaseFirst function to uppercase the first character in the value of $beanSet/@name

Figure 4.1 - 16: Updated calculation with the uppercaseFirst function applied
11. Click OK in the Create New Derived Attribute dialog.

Figure 4.1 - 17: The newly created derived attribute now appears in the Replace with Model References dialog.
12. Select projectName and click OK to return to the name parameter property.

© Copyright IBM Corp. 2007 4.1 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 18: Artifacts added under console
13. When you run the transform and the project is created, the project name will now be taken from derived

attribute projectName.

Next, let’s start to define naming attributes for use with Logger.java.

14. Add an attribute called basePackage to beanSet, from which you’ll derive package names for Java classes
and the corresponding directory names.

t y

Figure 4.1 - 19: Note the newly created attribute
there ar

15. Select the Create File: Logger.java action.

4.1 - 14

Course materials may not be reproduced in w
Projec
. Also, when lookin
e aspects that will

hole or in part wit
Director

g at the properties for the path of Logger.java
vary.

© Copyright IBM Corp. 2007

hout the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

16. In the path field within the Properties view, select Authorization Beans, right-click and click Replace
with Model Reference.

Figure 4.1 - 20: Selecting the text from the path property that needs to be replaced with a model reference
17. Select projectName and then click OK.

Figure 4.1 - 21: Selecting the projectName derived attribute

TIP: The remaining part of the path property for the “Create File: Logger.java” action needs to be marked up
with references to two new derived attributes:

• logPackage will reference the package that the Logger.java file belongs two.

• logDirectory: will reference the directory that the Logger.java file should be written to.

These derived attributes are related to each other as well as to the basePackage attribute. The logPackage includes
the basePackage, but as seen in our exemplar, you need to append another package to the end for the Logger class.
This additional package is called log. Once you have the logPackage attribute, all you need to do for calculating the
logDirectory attribute is to convert the “.” characters into “/” characters.

18. In the path field within the Properties view, select org/secure/log, right-click and click Replace with
Model Reference.

19. Select beanSet and click New.

20. Specify logPackage as the Attribute name.

21. Update the text found in the Exemplar text field, replacing the “/” character with “.” character.

© Copyright IBM Corp. 2007 4.1 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

TIP: Later when editing the templates associated with this transform, the Exmplar text will be used to help guide
you in replacing static text with references to the attributes you’ve created.

22. Select the org/secure/log text in the Calculation field.

Figure 4.1 - 22: Selecting the text to be replaced in the Calculation field
23. Click Insert Model Reference.

24. Select basePackage and then click OK.

25. Add .log at the end of the Calculation field.

26. Click OK.

Figure 4.1 - 23: The details for the logPackage derived attribute

TIP: At this point you have the path value that is needed for the Logger class. However, you need to format the
string so that it is an acceptable directory path. To do so, you replace the ‘.’ character with a ‘/’ character.
As such, you’ll continue to work in the Replace with Model References dialog and add another new
derived attribute.

27. In the Replace with Model References dialog, select beanSet and then click New.

28. Specify logDirectory as the Attribute name.

29. Select the org/secure/log text in the Calculation field.

30. Click Insert Model Reference.

31. Select logPackage and then click OK.

32. Update the text in the Calculation field so that it appears as follows:

4.1 - 16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 24: The details for the logDirectory derived attribute
33. Click OK.

34. Select logDirectory and then click OK.

Figure 4.1 - 25: The updated path property for the Logger.java artifact

Figure 4.1 - 26: Updated input schema and output actions
35. Mark up the path parameter for .classpath and .project, too.

© Copyright IBM Corp. 2007 4.1 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 27: The updated path attribute for .classpath

Figure 4.1 - 28: The updated path attribute for .project

TIP: Even though the .classpath and .project files have constant names, the name of the project containing them
will change.

36. The singly-occurring artifacts have been modeled. Select File > Save All.

4.1 - 18 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 29: After modeling the schema and actions for the singly occurring artifacts

Task 4: Add Supporting Derived Attributes to beanSet
You know that all of the beans generated will be placed into one directory (and package). Earlier, when you created
the directory and package attributes for the log class, you used the basePackage attribute as a starting point. You’ll
follow a similar approach here as you create derived attributes that support the beans. As such, you will add two new
derived attributes called beanPackage and beanDirectory.

1. Right-click beanSet and select New > Derived Attribute.

2. Specify beanPackage as the Attribute name.

3. Specify org.secure.bean as the Exemplar text.

4. Click Insert Model Reference.

5. Select basePackage and then click OK.

6. Append .bean to the end of the text in the Calculation field.

Figure 4.1 - 30: Creating the beanPackage derived attribute

© Copyright IBM Corp. 2007 4.1 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

7. Click OK.

8. Right-click beanset and click New > Derived Attribute.

9. Specify beanDirectory as the Attribute name.

10. Specify org/secure/bean as the Exemplar text.

11. Click Insert Model Reference.

12. Select BeanPackage and then click OK.

13. Update the text in the Calculation field so that it matches the following screen capture.

Figure 4.1 - 31: Creating the beanDirectory derived attribute
14. Click OK.

Figure 4.1 - 32: Updated view with the newly created derived attributes
15. Select File > Save All.

Task 5: Create a New Type: bean
In this task, you will update the Schema with a new type called bean.

4.1 - 20 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

1. Create a new type (bean) under beanSet. Select beanSet, right-click and click New > Type. Enter bean as
the name.

Figure 4.1 - 33: Artifacts added under console
2. Right-click bean and select New > Attribute. Enter name as the value for the attribute’s Name.

Task 6: Add Supporting Derived Attributes to bean
In this task, you will create a set of derived attributes within the bean type to support the names associated with the
implementation and interface classes. You add these to the bean type rather than the beanSet. This is because this
attribute will need to be available for each bean created, whereas the earlier attributes are based on the beanSet.

1. Right-click on bean and select New > Derived Attribute.

2. Specify interfaceName as the Attribute Name.

3. Specify IPassword as the Exemplar text.

4. Click on Insert Model Reference.

5. Select bean\name. Click OK.

6. Update the Calculation field as shown in Figure 4.1 - 34.

© Copyright IBM Corp. 2007 4.1 - 21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 34: Creating the interfaceName derived attribute
7. Click OK.

8. Right-click bean and select New > Derived Attribute.

9. Specify implementationName as the Attribute Name.

10. Specify PasswordImpl as the Exemplar text.

11. Click on Insert Model Reference.

12. Select bean\name. Click OK.

13. Update the Calculation field as shown in Figure 4.1 - 35.

Figure 4.1 - 35: Creating the implementationName derived attribute
14. Click OK.

4.1 - 22 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 36: Updated view with the new derived attributes

Task 7: Populate the Model: Items Created Multiple Times
You still need to model the repeating sets of artifacts. Each repeating set of artifacts has a Java interface and a Java
bean implementation (for example, IPassword.java and PasswordImpl.java)

1. Drag an example of each artifact in the repeating set, IPassword.java and PasswordImpl.java, onto the
bean type to create two new actions.

Figure 4.1 - 37: Artifacts added under console

© Copyright IBM Corp. 2007 4.1 - 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

TIP: You’ll want to allow the user to provide a name for the set of beans. With the exemplar, you can see that
the bean was called “Password”, and then customized based on whether it was the interface or the
implementation.

TIP: As you did earlier with the Logger.java artifact, you need to update the path value for the implementation
and interface artifacts.

2. Select the Create File: IPassword.java action.

3. In the path field within the Properties view, select Authorization Beans, right-click and click Replace
with Model Reference.

Figure 4.1 - 38: Selecting the text from the path property that needs to be replaced with a model reference
4. Select projectName and then click OK.

Figure 4.1 - 39: Selecting the projectName derived attribute
5. In the path field within the Properties view, select org/secure/bean, right-click and click Replace with

Model Reference.

6. Select beanDirectory and then click OK.

4.1 - 24 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

7. In the path field within the Properties view, select IPassword, right-click and click Replace with Model
Reference.

8. Select bean\interfaceName and then click OK.

Figure 4.1 - 40: The completed path entry with references to the appropriate attributes
9. Select the Create File: PasswordImpl.java action.

10. In the path field within the Properties view, select Authorization Beans, right-click and click Replace
with Model Reference.

Figure 4.1 - 41: Selecting the text from the path property that needs to be replaced with a model reference
11. Select projectName and then click OK.

12. In the path field within the Properties view, select org/secure/bean, right-click and click Replace with
Model Reference.

13. Select beanDirectory and then click OK.

14. In the path field within the Properties view, select PasswordImpl, right-click and click Replace with Model
Reference.

15. Select bean\implementationName and then click OK.

© Copyright IBM Corp. 2007 4.1 - 25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 42: The completed path entry with references to the appropriate attributes
You’ve modeled the repeating set of artifacts and have defined: one attribute, two derived attributes, and two
transform actions.

4.1 - 26 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 43: Artifacts added under console
The bean model object contains all the information required to generate the interface and implementation

Task 8: Modeling Additional Information Needed
In this task, you’ll model additional information that is needed to address the points of variability within the code
files.

TIP: But there’s more information needed than what you have already modeled: Property name, Property type,
Getter name, Setter name, Variable name from within implementation file. Also, there is one set of these
names for each property, and there are multiple properties for each bean.

© Copyright IBM Corp. 2007 4.1 - 27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 44: Additional points of variability within the implementation class
2. Add a new type within bean called property, to represent a set of repeating property information. Add

attributes to capture the name and type for the property.

Figure 4.1 - 45: A new type of property with attributes of name and type.
3. Add a new derived attribute for the getterName. Right-click property and click New > Derived Attribute.

4.1 - 28 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

4. Specify a name of getterName.

5. Specify exemplar text of getValue.

6. Click on Insert Model Reference.

7. Select beanset > bean > property > name and then click OK.

8. Update the Calculation field so that it matches the screen capture below, and then click OK.

Figure 4.1 - 46: A new derived attribute for the getter name.
9. Add a new derived attribute for the Boolean getterName. Right-click property and select New > Derived

Attribute.

10. Specify a name of booleanGetterName.

11. Specify exemplar text of isExpired.

12. Click Insert Model Reference.

13. Select beanset > bean > property > name and then click OK.

14. Update the Calculation field so that it matches the screen capture below, and then click OK.

Figure 4.1 - 47: A derived attribute for the Boolean getter name.
15. Add a new derived attribute for the setterName. Right-click property and click New > Derived Attribute.

16. Specify a name of setterName.

17. Specify exemplar text of setValue.

18. Click on Insert Model Reference.

19. Select beanset > bean > property > name and then click OK.

20. Update the Calculation field so that it matches the screen capture below and then click OK.

© Copyright IBM Corp. 2007 4.1 - 29

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 48: A new derived attribute for the setter name.
21. Add a new derived attribute for the varName. Right-click property and click New > Derived Attribute.

22. Specify a name of varName.

23. Specify exemplar text of field_value.

24. Click Insert Model Reference.

25. Select beanset > bean > property > name and then click OK.

26. Update the Calculation field so that it matches the screen capture below and then click OK.

Figure 4.1 - 49: A new derived attribute for the variable name.
27. Select File > Save All.

Task 9: Create the Transform’s Templates
In this task, you will generate the templates for the transform.

1. To create the transform’s templates, right-click in the right-hand side of the Schema editor and click Update
Project.

4.1 - 30 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

Figure 4.1 - 50: Artifacts added under console
2. Update Project will create a template folder for each type with create file actions, and will create a template in

that folder for each of those actions.

© Copyright IBM Corp. 2007 4.1 - 31

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 51: Artifacts added under console

Task 10: Edit the Transform’s Templates: project.jet
In this task, you will set up the environment to allow you to test the transform.

1. Open the sample.xml file for editing.

2. Replace the contents of the file with the following:
<root>

 <beanSet basePackage="com.dev498.test" name="TestBeans">

 <bean name="Curly">

 <property name="age" type="String" />

 <property name="funny" type="Boolean" />

 </bean>

 </beanSet>

</root>

3. Select File > Save All.

4. In the Package Explorer, right-click the sample.xml file and click Run As > Input for JET Transformation.

5. Open the dump.xml file.

6. Review the contents of the dump.xml file.

4.1 - 32 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

TIP: As you work through the following tasks and complete the updates to the generated templates, remember
that you can test them quickly and easily as you proceed. In addition, when combined with the output from
the dump.xml file, you can get an understanding of the way that the input data is being interpreted.

Task 11: Edit the Transform’s Templates: project.jet
In this task, you will edit the templates associated with the transform.

1. Open the project.jet template.

TIP: The string “Authorization Beans” is known to be associated with a model attribute, so the editor highlights
the string.

Figure 4.1 - 52: Artifacts added under console
2. Select the Authorization Beans string, right-click and click Find/Replace with JET Model Reference.

© Copyright IBM Corp. 2007 4.1 - 33

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 53: Artifacts added under console
3. Select the projectName attribute and click Replace, then click Close.

Figure 4.1 - 54: And the correct JET tag replaces the string.
4. Save and then close the project.jet template.

Task 12: Edit the Transform’s Templates: Logger.java.jet
In this task you’ll update the template to generate the Logger.java file.
4.1 - 34 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

1. Open the Logger.java.jet template for editing.

2. Select the text org.secure.log and then right-click and click Find/Replace with JET Model Reference.

3. Select logPackage, click Replace and then click Close.

Figure 4.1 - 55: The updated Logger.java.jet template.
4. Save and close the Logger.java.jet template.

Task 13: Edit the Transform’s Templates: IPassword.java.jet
In this task you’ll update the IPassword.java.jet template that is used to generate the I<beanName>.java file.

1. Open the IPassword.java.jet template.

2. Select the text org.secure.bean and then right-click and click Find/Replace with JET Model Reference.

3. Select beanPackage, click Replace, and then click Close.

4. Select the text IPassword and then right-click and click Find/Replace with JET Model Reference.

5. Select interfaceName, click Replace and then click Close.

© Copyright IBM Corp. 2007 4.1 - 35

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 56: The updated Logger.java.jet template.

TIP: At this point you now have to parameterize the template to handle the set of properties that are associated
with the bean. For each property you need to create a getter and setter, with the methods using the
appropriate types. In addition, in the case of Boolean parameters, you need to change the name of the getter
method to “is”.

6. First, add in some code for the setter and getter methods. You need to iterate through the set of properties.
Remove the current method declarations and add the following text to the file:

<c:iterate select="$bean/property" var="property">

 public <c:get select=”$property/@type” /> <c:get
select="$property/@getterName" />();

 public void <c:get select="$property/@setterName" />(<c:get
select=”$property/@type” /> value);

</c:iterate>

TIP: If you copy and paste the code, note that the editor will not like the “ (curly quotation marks) character as
supplied by Microsoft Word. If you get an error on the line, replace the “ character with one typed in place
within the editor.

7. At this point, however, the code does not account for the case where the type is Boolean. You need to add in
some additional code to determine if the type is Boolean, and if so, to use the booleanGetterName in place of
the getterName. Replace the following code:

public <c:get select=”$property/@type” /> <c:get select="$property/@getterName"
/>();

with:
<c:choose select=" $property/@type" >

4.1 - 36 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

 <c:when test=" 'Boolean' " >

public <c:get select=”$property/@type” /> <c:get
select="$property/@booleanGetterName"/>();

 </c:when>

 <c:otherwise>

public <c:get select=”$property/@type” /> <c:get select="$property/@getterName"
/>();

 </c:otherwise>

 </c:choose>

8. Select File > Save All.

Task 14: Edit the Transform’s Templates: PasswordImpl.java.jet
In this task you’ll update the code in the PasswordImpl.java.jet file that is used to generate the
<beanName>Impl.java file.

1. Open the PasswordImpl.java.jet template.

2. Select the text org.secure.bean and then right-click and click Find/Replace with JET Model Reference.

3. Select beanPackage, click Replace and then click Close.

4. Select the text org.secure.log and then right-click and select Find/Replace with JET Model Reference.

5. Select logPackage, click Replace and then click Close.

6. Select the text PasswordImpl and then right-click and select Find/Replace with JET Model Reference.

7. Select implementationName, click Replace and then click Close.

8. Select the text IPassword and then right-click and select Find/Replace with JET Model Reference.

9. Select interfaceName, click Replace and then click Close.

© Copyright IBM Corp. 2007 4.1 - 37

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.1 - 57: Template updated with package, import, class name and implements reference.
10. Add an iterate statement for the creation of the variable declarations. Replace the current variable declarations

with the following text:
<c:iterate select="$bean/property" var="property">

 private <c:get select="$property/@type" /> <c:get
select="$property/@varName" />;

</c:iterate>

11. Now, you just need to add the code for creating the methods. Replace the current method bodies, with the
following text:
 <c:iterate select="$bean/property" var="property">

 <c:choose select=" $property/@type" >

 <c:when test="'Boolean'" >

 public <c:get select="$property/@type" /> <c:get
select="$property/@booleanGetterName"/>(){

 </c:when>

 <c:otherwise>

 public <c:get select="$property/@type" /> <c:get select="$property/@getterName"
/>(){

 </c:otherwise>

 </c:choose>

 return <c:get select="$property/@varName" />;

 }

4.1 - 38 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.1 Solution – Authorization Bean Exemplar Authoring

 public void <c:get select="$property/@setterName" />(<c:get
select="$property/@type" /> value) {

 Logger.log("Property <c:get select="$property/@name" />
changed",Logger.SEVERITY_INFO);

 this.<c:get select="$property/@varName" /> = value;

 }

</c:iterate>

12. Select File > Save All.

Figure 4.1 - 58: The completed PasswordImpl.java.jet template
13. You have now completed all of the customization needed for the transform. Test and review.

© Copyright IBM Corp. 2007 4.1 - 39

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

4.1 - 40 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 4.2: Exemplar Authoring
Objectives

After completing this lab, you will be able to:

► Perform exemplar analysis

Given

► The project interchange file, ExemplarAnalysis.zip

Scenario
In this lab you will perform Exemplar Analysis on an exemplar based on a set of feature projects and an Eclipse
update site.

Task 1: Set up the Lab

1. Use the Import from Project Interchange wizard to import all of the projects in the ExemplarAnalysis.zip
file.

2. Look at the project that was imported. This project contains the exemplars.

• The exemplar stretches across 12 projects. The transform to be authored from these projects will generate a
number of feature projects, and a single update site project.

3. Update sites are the usual way that Eclipse tools are distributed. The tools exist in one or more plug-in projects.
The tool builder has to create a number of Eclipse feature projects for the plug-in projects, and must also create
an update site for the feature projects.

Each feature project has three files:

Figure 4.2 - 1: Feature Project org.mycorp.rendering.feature

The only file you may not have seen yet is the feature.xml file (which always has that same name). The file is a
simple XML file that, among other things, lists the plug-ins to be contained in this feature:

© Copyright IBM Corp. 2007 4.2 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 4.2 - 2: Plug-ins in the Feature org.mycorp.rendering.feature
4. The update site is also a simple project:

Figure 4.2 - 3: Update Site project org.mycorp.updateSite

The only two files you need to generate are the .project file and the site.xml file. The site.xml file lists a
number of categories and the features that go into those categories.

A number of dummy plug-in projects are also included. Your transform will not generate those. It will assume they
already exist. They are included here to avoid validation errors on the feature plug-ins. Your exemplar consists of
the projects whose names end in .feature or .updateSite.

4.2 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5: The Console Transform
Objectives

After completing this lab, you will be able to:

► Perform exemplar analysis on a Java application

Given

► The project interchange file TheConsoleTransform.zip

Scenario

In this lab, you will perform Exemplar Analysis on a working Java application.

Task 1: Set up the Lab
1. Begin by using the Import from Project Interchange wizard to import all of the projects in the

TheConsoleTransform.zip file.

2. Look at the project that was imported.

Figure 5 - 1: Console Exemplar Project

This Java application is a working command line console. It supports three commands: Add, Sample, and Repeat.
Each of those commands is implemented by a Handler class, which in turn implements the ICommandHandler
interface. Each handler also has its own properties file to hold translatable strings.

© Copyright IBM Corp. 2007 5 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

The Console class is the main class in the application. It listens to input on its System.in stream. For each entered
command, Console will try to match the command (the first token of the input string) to the command handled by
each of the handlers. If a handler matching the command is found, then that handler is passed the full command and

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

is expected to process that command.

Each command accepts a specific set of typed arguments. There is code in the handler to convert each string token to
an appropriately typed local variable.

This exemplar is representative of a class of applications that accept command line input, and then invoke the
appropriate command. The transform you will author will generate instances of these command line applications.

As with any Exemplar Analysis exercise, be sure to ask the SME (the instructor in this case) if you have any
questions about the implementation of the exemplar application or about the points of variability to be supported by
the transform.

You should now have the Java project containing the console exemplar in your workspace.

TIP: The project was written using features of Java 5. To get the code to compile you must be using a JRE that
supports that version of Java. If the code does not compile for you, right-click the project and select
Properties. With the Properties window, select Java Compiler, click Enable project specific settings and
then set the Compiler compliance level to 5.0.

5 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

3. Create a new JET transformation project called console.transform. Use the EMFT JET Project with Exemplar
Authoring wizard.

Figure 5 - 2: Creating an EMFT JET Project with Authoring Exemplar
4. Be sure to specify that the Console Exemplar project is selected as the Exemplar scope.

Figure 5 - 3: Specifying the Exemplar Scope

© Copyright IBM Corp. 2007 5 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

5. The Exemplar Authoring tool should now display the console exemplar and an empty model

Figure 5 - 4: The console exemplar

Task 2: Populate the Model
1. You propose a one-word name, console, to describe the entire set of files in the exemplar and create a second-

level model type by that name.

5 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

Figure 5 - 5: Creating the console type
2. Identify the artifacts that will be created only once for each application of the transform. They include:

• The Java project Console Exemplar
• The project meta-data files .classpath and .project
• The main class com.mycorp.console.Console.java
• The handler interface com.mycorp.console.ICommandHandler

3. Drag each of these artifacts from the left pane onto the console type icon in the right pane. Be careful not to
drop any of the artifacts onto the Create Project action.

© Copyright IBM Corp. 2007 5 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 5 - 6: Artifacts added under console

5 - 6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

4. Note that the remaining files (xxxHandler.java and xxxHandler.properties) seem to be repeated in
pairs, with each pair having a Java source file and a properties file with a common root name. Because of the
one-to-many relationship between the Java project and these pairs of files, you will create a new nested type
under the console type.

Figure 5 - 7: Creating a new type under console
5. The type represents a pair of files, a Java class and a properties file, in support of one of the commands

implemented by the console. The name you choose for this new type, “command”, describes this pair of files.

Figure 5 - 8: The command type
6. You need to drag representative samples of each of the files to be generated for this command type. The

question is, which files should you use?

The choice is important, because the content of the files will be used as the initial template for each resulting action.
You want to choose the exemplar files that are most representative of the points of variability in the pattern. In this
example, the files for the Sample command demonstrate the most variety of parameter types.

© Copyright IBM Corp. 2007 5 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

7. Drag the two files, SampleHandler.java and SampleHandler.properties on top of the command type in
the right pane.

Figure 5 - 9: Sample files under command

Each of the create file actions, as well as the create project action, will create an Eclipse resource with a variable
name. The list below shows the names of those associated exemplar artifacts.

• ConsoleExemplar
• ConsoleExemplar/.project
• ConsoleExemplar/.classpath
• ConsoleExemplar/src/com/mycorp/console/Console.java
• ConsoleExemplar/src/com/mycorp/console/ICommandHandler.java
• ConsoleExemplar/src/com/mycorp/console/handler/SampleHandler.java
• ConsoleExemplar/src/com/mycorp/console/handler/SampleHandler.properties

Within each of the above names you can identify a number of substrings that are likely to vary from application to
application of the transform:

• ConsoleExemplar (name of the project)
• com/mycorp/console (name of the console directory under the source folder)
• com/mycorp/console/handler (name of the handler directory)
• SampleHandler (name of a command handler)

These names, according to best practices, are to be stored in derived attributes in the model. These names are
derived from a number of other attributes:

• The name of the console being generated
• The console package
• The handler package (this turns out to be a derived attribute, too)
• The command name

Task 3: Add and Derive Attributes

5 - 8 © Copyright IBM Corp. 2007
1. Add the three attributes above into the model.

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

Figure 5 - 10: Adding attributes to console and command

© Copyright IBM Corp. 2007 5 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

2. Select the Create Project: Console Exemplar action and view the properties for that action in the
Properties view.

Figure 5 - 11: Properties of Create Project: Console Exemplar

In particular, note the value of the name action parameter. The value of that parameter will be used by the
transformation to name the console project when it is first created. Since that project name needs to be variable, you
need to define the calculation to be used to determine the project’s name. Since the name of the project, according to
best practices, needs to be kept in a derived attribute, you need to define such an attribute and indicate that that
attribute’s value is to be used as the project’s name.

3. Begin by selecting the entire text of the exemplar name and clicking the Replace with Model Reference
button.

5 - 10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

Figure 5 - 12: Replace with Model Reference
4. A dialog box will display the known model types and attributes.

Figure 5 - 13: Replace with Model References dialog box
5. Since the derived variable that you want to use to hold the project name isn’t defined yet, click the New button

to create that derived attribute definition.

Note: Be sure to select the console type before clicking the New button, since the console type is the type that has
to contain this new derived attribute.

Figure 5 - 14: Create New Derived Attribute dialog box

© Copyright IBM Corp. 2007 5 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

6. The name of the new derived attribute will be projectName and the value of the attribute will be calculated by
concatenating the console name with the constant string Console.

7. Point the cursor to the start of the Calculation field and click Insert Model Reference.

Figure 5 - 15: Select Model References dialog
8. Select the name attribute for model type console and click OK.

Figure 5 - 16: Modifying the name attribute

5 - 12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

9. Note that the query expression for the name attribute has been inserted into the Calculation field. Edit the rest
of the field to define the calculation correctly.

Figure 5 - 17: Adding a calculation to a new attribute
10. Click OK to return to the Replace with Model References dialog. Note that a new derived attribute named

projectName has been added to the model.

Figure 5 - 18: A new derived attribute
11. Select the projectName attribute and click OK. Note that the action parameter name is now set to a query

expression referring to projectName.

Figure 5 - 19: Action Parameters name property

© Copyright IBM Corp. 2007 5 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

12. Select the .classpath file action and edit the path action parameter.

13. Select the string “Console Exemplar” and use Replace with Model Reference to replace the string with a
reference to the projectName derived attribute.

Figure 5 - 20: Changing the path Action Parameters property
14. Do the same for the .project action:

Figure 5 - 21: Changing the path Action Parameters property
15. Select the Console.java action and add a reference to the project name

Figure 5 - 22: Changing the path Action Parameters property

5 - 14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

16. Of the remaining path value, only the substring com/mycorp/console has been identified as possibly
changing from transform application to application. You need to replace that substring with a reference to a new
derived attribute.

Figure 5 - 23: Creating a new derived attribute
17. The attribute is derived by replacing all periods in the package value with forward slashes.

Figure 5 - 24: Creating a new derived attribute
18. The path parameter is similarly modified for the ICommandHandler action:

Figure 5 - 25: Changing the path parameter for ICommandHandler
19. Select the SampleHandler.java action and review its path parameter:

© Copyright IBM Corp. 2007 5 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 5 - 26: Reviewing the path property
20. There are two substrings which need to be replaced by derived attributes. The substring

com/mycorp/console/handler needs to be replaced by a reference to derived attribute handlerPackage,
which in turn is derived from attribute package:

Figure 5 - 27: Creating a new derived attribute

5 - 16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

21. The handlerDirectory attribute is derived from attribute handlerPackage.

Figure 5 - 28: Creating the handlerDirectory derived attribute
22. The substring SampleHandler needs to be replaced by the new derived attribute handlerName on model type

command.

Figure 5 - 29: Creating the handlername derived attribute
23. And the path parameter for SampleHandler.java should be finished.

Figure 5 - 30: Editing the Path property for SampleHandler.java

© Copyright IBM Corp. 2007 5 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

24. Edit the path parameter for the SampleHandler.properties action in the same way:

Figure 5 - 31: Editing the Path property for SampleHandler.properties

The completed model looks like this.

Figure 5 - 32: The completed model
25. Select File > Save All.

Task 4: Generate and Edit Templates
It’s now time to generate the templates for the JET transform.

5 - 18 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

1. Use the Update Project action.

Figure 5 - 33: Updating the Project

Note the new templates that have been generated.

© Copyright IBM Corp. 2007 5 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 5 - 34: New generated templates
2. Edit the templates one at a time, starting with project.jet.

Figure 5 - 35: Editing project.jet

5 - 20 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

Note the blue underscore under the name element, Console Exemplar that indicates that that string matches one
of the exemplar strings for one of the attributes. It’s likely that the string should be replaced by a query expression
referencing that attribute.

3. Select the underlined string and click Find/Replace with JET Model Reference.

Figure 5 - 36: Clicking Find/Replace with JET Model Reference
4. Select the projectName attribute and click Replace, and then click Close.

© Copyright IBM Corp. 2007 5 - 21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

Figure 5 - 37: Selecting projectName
5. The string in the template will be replaced by the correct <c:get> tag.

Figure 5 - 38: The string replaced by <c:get>

5 - 22 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

6. Close the project.jet template and open the ICommandHandler.java.jet template. Use the
Find/Replace with JET Model References dialog to replace the package name with the correct <c:get> tag.

Figure 5 - 39: The string replaced by <c:get>
7. Open template Console.java.jet and replace the package name with a reference to the package attribute.

Figure 5 - 40: The import statements that need to be updated

© Copyright IBM Corp. 2007 5 - 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

8. Note that there is a list of three import statements which will vary from application to application of the
transform. You need to generate one import line for each command object defined for the console. You first add
the <c:iterate> tag:

Figure 5 - 41: Replacing the package name with a reference to the package attribute
9. Now use the Find/Replace with JET Model Reference dialog to replace the strings

com.mycorp.console.handler and SampleHandler with the appropriate tags.

Figure 5 - 42: Replacing strings with tags
10. Mark up a similar list further down in the template:

Figure 5 - 43: Replacing strings with tags
11. Edit the template SampleHandler.java.jet. Replace the following strings with references to the appropriate

attributes in the following order:

• com.mycorp.console.handler
• com.mycorp.console
• SampleHandler
• sample (with command name)

12. Note the implementation of the performCommand method. There are what turn out to be a list of local variables
that correspond to the types command arguments. Each argument seems to have a name, a local variable name,
and a type.

5 - 24 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

Figure 5 - 44: Local variables of performCommand

© Copyright IBM Corp. 2007 5 - 25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

13. You need to go back to the Exemplar Authoring tool and add a new model type (argument) and two attributes
(name and type) to the model.

Figure 5 - 45: Adding argument model type
14. After running the Update Project action again, you can continue to mark up the SampleHandler.java.jet

template. In the process you determine that a new derived attribute needs to be created. Return to the Exemplar
Authoring tool and add a new derived attribute named varName under the argument element:

Figure 5 - 46: Defining the varName derived attribute
15. Select File > Save All.

16. Run the Update Project action again.

17. Add in a variable that will be used for accessing the array of elements passed into the handler. Then add in a
declaration for the local variables:

Figure 5 - 47: Defining a counter and the local variable
18. Mark up the section of code that converts the string arguments into the correct types:

5 - 26 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 5 – The Console Transform

Figure 5 - 48: Final Markup
19. Select File > Save All.

20. Update the sample.xml file to include the following:

<root>
 <console name="Fred" package="org.fred.test">
 <command name="multiply" help="multiplies two numbers">
 <arg name="op1" type="int" />
 <arg name="op2" type="int" />
 </command>
 <command name="log" help="logs a message">
 <arg name="severe" type="boolean" />
 <arg name="message" type="String" />
 </command>
 <command name="paint" help="paints a portion of the screen">
 <arg name="length" type="float" />
 <arg name="width" type="float" />
 <arg name="color" type="String" />
 </command>
 </console>
</root>

21. Select File > Save All.

22. Review and Test.

© Copyright IBM Corp. 2007 5 - 27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with IBM Rational Software Architect — Student Workbook

5 - 28 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.1: Introduction to EMF
Create EMF Model and Editor for Console Transformation Input File

Objectives
After completing this lab, you will be able to:

► Import an XML Schema file into EMF.

► Generate EMF Framework based code.

► Create an EMF based Editor which acts as a front-end to a JET transformation

Given
This lab has no inputs.

Scenario
In this lab, you will create an EMF based API for the input for the Console Transformation example. You will also
create an automatically generated non-graphical editor for Console Transformation input files.

Task 1: Create and Prepare the Workspace
In this task you make sure switch to and prepare a new Workspace.

1. Open Rational Software Architect with a new workspace for this lab, such as C:\EMF Lab Workspace.

2. Open the Preferences Window, select menu Window > Preferences. Expand the General option and select
Capabilities. Find Eclipse Developer, Developer, or Development in the Capabilities list and make sure that
the checkbox is selected. If the checkbox is empty or is filled in with a square, click it until you see a check
mark. This enables all of the Eclipse Developer capabilities, which includes EMF.

© Copyright IBM Corp. 2007 6.1.1 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 6.1-1: Enabling the Eclipse Developer capabilities
3. Click OK when you are done.

4. Import the project called lab.console.transform from the Project Interchange file
LabConsoleTransformPI.zip.

Task 2: Create an EMF Project
In this task you use the generated input file format from the Console Transformation to create an EMF model of the
input file. Specifically, an ECore file named input.ecore and an XML Schema Definition file named
schema.xsd both describe the input file format. For this lab, you will actually use schema.xsd.

1. Open the project lab.console.transform. Make a copy of schema.xsd named input.xsd. The name of
the EMF project files are based on the name of the schema file.

2. Right-click input.xsd and select New > Project. Select the project type of EMF Project and click Next.

3. Name the project lab.console.input and click Next.

4. Select XML Schema for the Importer and click Next.

5. The input.xsd file should already be entered into the Model URI text field. Click the Load button next to it
and then Next.

6. Click Finish on the final page of the project wizard.

A new project named lab.console.input is created. The file model/Input.ecore contains the EMF Data
Schema and the file model/input.genmodel contains the code generation settings. Review both files.

Task 3: Modify Code Generation Settings and Generate Code
In this task, you will fine-tune the code generation settings and generate the code.

1. Make sure that the file input.genmodel is open. You should see an editor like the one pictured below. If you
just see a text file, go back to Task 1 and make sure that your workspace has Eclipse Development (or just
Development) capabilities turned on.

6.1 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.1.1 – Introduction to EMF

2. Right-click the nested Input node and select Show Properties View.

3. In the Properties view, go to the top of the list of properties, find the property named Base Package in the All
section, and change it to lab.console. For the code that is generated, that is the prefix that will be used for all
new projects and packages.

4. Right-click anywhere in the input.genmodel editor and click Generate All. That adds the input model API
code to the current project (lab.console.input). It creates the following new projects:
lab.console.input.edit, lab.console.input.editor and lab.console.input.test.
lab.console.input.editor is a fully functional non-graphical editor.

Task 4: Test the Generated Editor
In this task, you will test the generated editor.

1. In Navigator or Package Explorer, right-click the project named lab.console.input.editor and select
Run As > Eclipse Application. Then wait for the run-time instance of the workbench to launch.

2. In the run-time workbench, create a simple project named console.test.

3. Right-click the new project name and select New > Other. Select the Input Model wizard and click Next.

4. Accept the default of My.input and click Finish.

5. My.input should be opened in an editor that looks like the following.

© Copyright IBM Corp. 2007 6.1 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

6. Expand the nodes as shown, right-click <root> Root and select New Child > Console. That creates a new
Console entry in the XML file.

7. Right-click the new Console node and select Show Properties View. In the Properties view, enter My
Console as the Name and my.console as the Package.

8. Right-click Console and click New Child > Command. Name the new Command echo.

9. Right-click the new Command echo and click New Child > Arg. Enter the Name of arg0 and Type of
String.

10. Enter any additional Commands and Args that you want. You can even enter multiple consoles.

11. Save and close My.input.

12. It’s easier to test the existing transformation if the file has an XML extension, so rename My.input to
My.input.xml.

TIP: Right-click My.input and click Refactor > Rename. Also note that after the file is renamed the
generated editor is no longer applicable.

13. Right-click My.input.xml and click Run As > Input for JET Transformation. In the Properties page that
appears, select lab.console.transform as the ID. Then click OK to run the transformation.

14. The project My Console Console (and any other consoles in your file) are generated.

15. Review the generated code.

16. Close the run-time workbench by selecting File > Exit.

6.1 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.2: EMF Optional Lab
Create Organization Chart Model

Objectives
After completing this lab, you will be able to:

► Define an object model using the EMF framework.

► Generate EMF Framework based code.

► Use an outline-based text editor to enter and manage data based on your object model saving the results to
an XML file.

Given

This lab has no inputs.

Scenario

This lab creates a simple model of an Organizational Chart from scratch. This lab also creates a simple non-
graphical editor.

© Copyright IBM Corp. 2007 6.2 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 1: Make sure that EMF Capabilities are turned on
In this task, you make sure that EMF Capabilities are turned on in the Rational Software Architect Workspace that
you are using for this lab.

1. Open Rational Software Architect with a new workspace for this lab, such as c:\EMF Lab Workspace.

2. Open the Preferences window, select menu Window > Preferences. Expand the General option and select
Capabilities. Find Eclipse Developer, Developer or Development in the Capabilities list and make sure that
the checkbox is selected. If the checkbox is empty or is filled in with a square, click it until you see a check
mark. This enables all of the Eclipse Developer capabilities, which includes EMF.

Figure 6.2-1: Enabling the Eclipse Developer capabilities
3. Click OK when you are done.

Task 2: Create an empty EMF Project
In this task you create an empty EMF project.

1. Select File > New > Project.

2. In the New Project wizard, type emf in the entry field on the top of the window. That will show all of the
project types that have EMF in their name. Then select Empty EMF Project and click Next.

6.2 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 – EMF Optional Lab

Figure 6.2-2: Creating an empty EMF Project
3. For the name of the project enter com.tutorial.orgchart. Then click Finish.

Task 3: Create and initialize orgchart.ecore
Ecore is the file format and extension for defining EMF-based data structures. In this task, you create an ecore file
for the Orgchart definition.

1. Expand the project (in Navigator or Project Explorer), right-click the model directory and click New > Other.

2. In the wizard dialog, enter ecore in the topmost edit field. Then double-click Ecore Model from the list.

Figure 6.2-3: Creating an Ecore Model
3. Name the file orgchart.ecore and click Finish.

4. The new ecore file is automatically opened with an Ecore Model Editor, which displays the contents of the file
in a tree structure. Expand the root level node. Under that you will find a node labeled null. Right-click that
null node and select Show Properties View.

© Copyright IBM Corp. 2007 6.2 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 6.2-4: Viewing the properties for the null node
5. In the Properties view, set Name to orgchart, Ns Prefix to oc, and Ns URI to com.tutorial.orgchart.

TIP: Note that Ns Prefix is the namespace prefix used in XML files used to store orgchart data, and Ns URI is
the unique namespace URI for the orgchart data. In this example, you are simply using the project name as
the URI, but it does not have to be the same.

Task 4: Define the data structures
Now it is time to define the structure of the orgchart data.

1. When you work with the resulting Org Chart data, you want to be able to store an Org Chart in a single XML
file. The simplest way to do that is to define a class in the ecore file that corresponds to the contents of the XML
file. In the Ecore Editor for orgchart.ecore, right-click the orgchart package and click New Child >
EClass.

Figure 6.2-5: Adding a child
2. In the Properties view for the new class, enter OrgChart as the Name of the class. This is the class that

corresponds to one OrgChart (and its corresponding data file).

6.2 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 – EMF Optional Lab

Figure 6.2-6: Specifying a name
3. Add two more classes to the orgchart package the same way: Employee and Department. You will keep track

of employee and department information in the org charts.

Figure 6.2-7: View after adding two additional classes
4. You need to specify that Employee classes will be stored in an OrgChart (in the same file). To do that, create a

containment relationship from OrgChart to Employee. Right-click OrgChart in the tree and select New Child
> EReference. In the Properties, set Containment to true, EType to Employee, Name to employees, and
Upper Bound to -1. The other default values should be OK. Containment of true indicates that this is a
containment relationship. An Upper Bound of -1 indicates that their can be any number of employees in an
OrgChart.

© Copyright IBM Corp. 2007 6.2 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 6.2-8: Specifying properties for the containment relationship
5. Likewise, add another containment relationship for Departments. Repeat the last steps, but this time set EType

to Department and Name to departments.

6. Next, you will define the name field for Departments. In the tree, right-click the Department class and select
New Child > EAttribute. In the Properties of the new Attribute set the EType to EString
<java.lang.String> and the Name to name. Note that the type of the attribute is the EMF type EString. The
additional text of <java.lang.String> is a reminder that the EString EMF data type corresponds to the
java.lang.String Java type.

6.2 - 6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 – EMF Optional Lab

Figure 6.2-9: Creating a name field for Departments
7. Likewise, add the following attributes to Employee: Name of type EString and jobTitle of type EString.

8. Next, add a relationship from Department to Employee so that Departments can reference the multiple
Employees that are in them. Note that this will NOT be a containment relationship. In EMF, containment
relationships correspond to physical storage of related classes. Both Employees and Departments are already
stored in the same Org Chart. Right-click the Department class and select New Child > EReference. In the
Properties, set EType to Employee, Name to members and Upper Bound to -1, since a Department can have
any number of employees.

9. Next, add a relationship from Employee to Employee to indicate which other employees are being managed.
Right-click the Employee class and select New Child > EReference. In the Properties, set EType to
Employee, Name to manages and Upper Bound to -1.

10. Your model is defined. Save the results by selecting File > Save All.

Task 5: Create the ‘EMF Model’ (orgchart.genmodel)
Orgchart.ecore now contains the definition of your Org Chart data model. Next, you need to create another file with
an extension of genmodel. EMF refers to this file as the ‘EMF Model’. The genmodel (or ’EMF Model’) file
contains all of the additional information and settings needed to generate Java source files that correspond to the
model. Genmodel files maintain a link to their corresponding ecore file.

1. Make sure that the current contents of the ecore file are saved.

2. In the Navigator or Package Explorer view, right-click the file orgchart.ecore, which is located in the model
directory of the com.tutorial.orgchart project. From the pop-up menu select New > Other.

© Copyright IBM Corp. 2007 6.2 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 6.2-10: Launching the New wizard
3. Type EMF in the new wizard’s text field, select EMF Model, and click Next.

Figure 6.2-11: Selecting the EMF Model
4. The name of the file should already be set to orchart.genmodel in the model directory of the

com.tutorial.orgchart project. Correct it if it isn’t. Click Next.

5. Select Ecore model as the Model Importer and click Next.

6. Make sure that the orgchart.ecore file is selected as the Model URI (as shown below). Then click the Load
button next to the text box. That actually loads the definition from the ecore file. Then click Next.

Figure 6.2-12: Load the definition from the ecore file
7. The checkbox next to orgchart should be selected. Click Finish.

8. The new file orgchart.genmodel is created and automatically opened. It contains numerous options for
controlling how Java code is created that corresponds to the ecore definition.

9. Right now, you will only make one change. You want to generate source code for the orgchart in the package
com.tutorial.orgchart. Because you defined a package called orgchart in ecore, right now, the default
output java package is just orgchart. You need to define a package prefix which is called the base package.
In the genmodel editor, expand the root node and select the nested orgchart package node. In the properties
change the property Base Package to com.tutorial. That prefixes com.tutorial in front of orgchart in the
generated Java files.

6.2 - 8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 – EMF Optional Lab

Figure 6.2-13: Specifying the Base Package
10. Save the genmodel file.

Task 6: Generate the runtime Java code
Next, you need to generate the custom Java code that implements your model.

1. In the genmodel editor, right-click anywhere in the editor and select Generate Model Code. That adds the Java
code and plug-in definition information to the current project.

Figure 6.2-14: Generating the Model Code
2. Review the files in the Package Explorer. The circled files and packages were added as a result of generating

the Model Code.

© Copyright IBM Corp. 2007 6.2 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 6.2-15: The files that were generated
3. In the genmodel editor, right-click anywhere and select Generate Edit Code. This creates a brand new plug-in

project called com.tutorial.orgchart.edit. The edit project contains model specific utility classes. In
particular, it is used by the editor code (see the next step).

4. Likewise, Generate Editor Code which creates a new plug-in project called
com.tutorial.orgchart.editor. The editor is a non-graphical editor for working with orgchart data files
(which are currently defined as XML).

Task 7: Generate the runtime Java code
You now have the source code for a fully functional non-graphical OrgChart Eclipse Editor.

1. In the Package Explorer view in the Java (or Plug-in Development) Perspectives (Window > Open
Perspective > , right-click com.tutorial.orgchart.editor and click Run As > Eclipse Application.
That will launch a run-time instance of the workbench. with an active OrgChart editor plug-in.

2. In the run-time workbench, close the Welcome screen (if it is open). Select File > New > Project. In the New
Project wizard, select General > Project (which is a simple, general purpose project).. Click Next, name the
project Test OrgChart, and click Finish.

3. In Navigator (or Package Explorer), right-click the Test OrgChart project and click New > Other . Then
type in Org in the Filter text box, select Orgchart Model and click Next.

6.2 - 10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 – EMF Optional Lab

Figure 6.2-16: Selecting the Orgchart Model
4. Name it test.orgchart and click Next.

5. Select Org Chart as the model object and click Finish.

6. The new Org Chart is automatically opened up in your (non-graphical) custom editor. Expand the root node so
that you can see the nested Org Chart object. You can right-click it and add Employees and Departments.

7. This is one sample test scenario:

a. Add the following employees: Pat S, John D, Susan R, Bill C, Fred M, and Betty A. Set their job titles to
anything that you want. Remember that you need to go to the Properties view to edit names and Job Titles.
One way is to right-click a class object and select Show Properties View.

b. Specify that Pat S manages John D and Susan R. To do that, go to the properties for Pat S. Click the ‘’
button next to Manages. Select John D and click Add, and then select Susan R and click Add.

c. Likewise, John D manages Bill C, Fred M, and Betty A.

d. Add a Department called ‘Information Services’ and add John D, Bill C, Fred M, and Betty A to it.

e. You should see something like the following screen. Note that you see the properties for John.

© Copyright IBM Corp. 2007 6.2 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 6.2-17: The resulting org chart
8. Save the current orgchart, select File > Save.

9. The file test.orgchart is an XML file. Let’s take a quick look at the contents. Right-click the file test.orgchart
and select Open With > Text Editor. You should see the contents of the XML file.

Figure 6.2-18: Viewing the xml source for the org chart
10. Close the run-time instance of the workbench when you are done.

Task 8: Generate the runtime Java code
The default display label for employees is “Employee,” followed by their name. In this optional task, you will
change it to their job title followed by their name.

To do this, you will modify some of the generated code, but also indicate that you want to save the custom changes
so that it is preserved the next time(s) that code is generated.

1. Open either the Java or Plug-in Development perspective.

6.2 - 12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 6.22 – EMF Optional Lab

2. Open the file
com.tutorial.orgchart.edit/src/com.tutorial.orgchart.provider/EmployeeItemProvider(.
java)’.

Figure 6.2-19: The EmployeeItemProvider class in the Package Explorer
3. Go to the function getText(Object object). There is a javadoc tag @generated in the comments for

getText(). That is a flag that this function was automatically generated, and will be overwritten if you
generate code again. Change it to anything else or delete it to take manual ownership of the function. In this
example, change it to @not-generated. If you use a consistent naming guideline, then you can quickly find all
of the functions that you are manually maintaining.

4. Change the body of the function to the following:
public String getText(Object object) {

 String jobTitle = ((Employee)object).getJobTitle();

 String name = ((Employee)object).getName();

 String retval = getString("_UI_Employee_type"); // generic label

 if (jobTitle != null) {

 retval = jobTitle;

 }

 if (name != null) {

 retval = retval + " " + name;

 }

 return retval;

 }

This getText function returns the display label for any employee. This new version uses their job title, if it is
available.

5. Run and test the results again as described above. Note that there is no need to regenerate the code. You should
now see something like the following.

© Copyright IBM Corp. 2007 6.2 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 6.2-20: The updated view of your Org Chart

6.2 - 14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 7 – Customize a Transformation

Objectives

After completing this lab, you will be able to:

► Apply a transformation.

► Customize the transformation to configure the location of the generated code.

Given

No lab artifacts are provided for this lab.

Scenario

In this lab, you will create a new workspace so that you will have a clean area in which to perform your
development. Next you will create projects that will be used by the UML-to-Java transformation to generate
Java™ classes from UML model elements.

• The first project will be the source project that will be populated with the UML modeling elements.

• The second project will be the target project that will contain the Java classes that are a result of
applying the standard IBM Rational Software Architect UML-to-Java transformation.

When the transformation is run, default names will be assigned to the files and folders it generates. Your team
uses a naming convention so you will need to customize the transformation to comply with the naming
convention. A mapping model will be used to implement your naming convention by specifying alternate
names for the generated files and folders.

© Copyright IBM Corp. 2007 7 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

7 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Task 1: Create the Workspace

In this task, you will switch to a new workspace named CustomizeTransformationWorkspace that you
will create.

1. From the File menu, select Switch Workspace.

2. In the Workspace Launcher dialog, replace the displayed text with
C:\Workshop\StudentWork\CustomizeTransformationWorkspace and click the OK button.

3. Close the Welcome screen.

Task 2: Create the Source and Target Projects

In this task, you will set up two new projects.

1. Create a new UML project named TransformationModels with a model named Source Model.

a) On the File menu, select New > Project.
b) Replace type filter text with UML

Figure 7-1: Creating a New UML Project

c) Select UML Project and click Next.
d) Name the project TransformationModels and click Next.
e) Change the file name to Source Model, select the default diagram type as Class Diagram and

click Finish.
f) If asked to switch modeling perspectives, click Yes.

Lab 7 – Customize a Transformation

© Copyright IBM Corp. 2007 7 - 3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2. Create a new Java project named TransformationTarget.

a) On the File menu, select New > Project.
b) In the New Project wizard, filter for and select Java Project. Click Next.

Figure 7-2: Creating a New Java Project

c) Name the project TransformationTarget and click Finish.
d) If asked to enable the Java Development capability, click Yes.
e) If asked to switch to the Java perspective, click No.

Task 3: Populate the Source Project

In this task, you will create UML modeling elements in the Source Model.

1. Open the Main diagram within Source Model and add two new classes named Employee and
Department using the action bar on the diagram editor.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

7 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Figure 7-3: Adding classes on a diagram using the action bar

2. On the main diagram, use the action bar to add the following attributes and operations to the Employee
class.

Attributes Operations

• salary: float

• id: String

• name: String

• fire()

• giveRaise(amount : float)

Figure 7-4: Adding an attribute to a class using the action bar

TIP: When you add the attribute to the class, you can immediately name it using the syntax name:
type. A similar process can be followed for operations.

3. Right-click on the class and select Filter-> Show Signature to see operation parameters on the diagram.

4. On the main diagram, use the action bar to add the following attributes and operations to the
Department class.

Attributes Operations

• id: String
• budget: float
• maxEmployees: int

• calculatePayRaises()

5. On the Main Diagram, draw a directed association from Department to Employee.

Figure 7-5: Drawing an association using the diagram

Lab 7 – Customize a Transformation

© Copyright IBM Corp. 2007 7 - 5
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Task 4: Apply a UML-to-Java Transformation

You will now apply the standard out of the box transformation to generate some code.

1. Configure the transformation:

2. On the Modeling menu, click Transform > New Configuration.

3. Name the configuration My UML to Java.

a) Select the UML to Java V 1.4 found within the IBM Rational Transformations folder.
b) Set the configuration file destination to /TransformationModels
c) Select Next.

Figure 7-6: Creating the Transformation Configuration

d) Open the Models folder and select the Source Model model as the Select source.
e) Select TransformationTarget project as the Selected target.
f) Click Next.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

7 - 6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Figure 7-7: Setting the source and target for a transformation

g) Click Next through the next three screens, reviewing the available transformation options.
h) On the Common screen, and enable Create source to target relationships as the Transformation

options.
i) Click Finish.
j) Locate the configuration file in the Project Explorer.

Lab 7 – Customize a Transformation

© Copyright IBM Corp. 2007 7 - 7
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Figure 7-8: The Configuration File in Project Explorer

4. Run the transform.

a) In the Project Explorer, select My UML to Java.tc, right-click and choose Transform > UML to
Java V1.4.

b) Drag the newly generated classes found in the TransformationTarget onto the Main diagram in
the Source Model. If asked to enable java Modeling capability, click OK.

c) Select the «Java Class» Employee class, right-click and select Filters >Show Type as Association to
show the employee attribute as an association relationship, not as an attribute.

Figure 7-9: Diagram of UML elements and generated Java classes

d) Double-click on the «Java Class» Employee to view the generated code.

Task 5: Use a Mapping Model

Use a mapping model to change the names of the classes, and have them generate into specific locations inside
the target model.

1. Setup the mapping model.

a) Double-click on the file My UML to Java.tc in the Project Explorer to open it in the editor view.
b) Select the Mapping tab.
c) On the Mapping tab, choose Enable Mapping, and click New…. Enter a filename of

JavaMappingModel.emx and click Save.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

7 - 8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Figure 7-10: Setting the mapping model to be created

d) Click Edit Mapping….
e) Select the Department class, change its Mapped Name to be com.ibm.rational.MyDepartment

and click Apply.

Figure 7-11: Specifying an alternate name for the generated file

f) Select the Employee class, change its Mapped Name to be
com.ibm.rational.employee.MyEmployee and click Apply.

g) Click OK.

Lab 7 – Customize a Transformation

© Copyright IBM Corp. 2007 7 - 9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Figure 7-12: Mapping model in the Model Explorer

2. Delete the classes from the TransformationTarget project.

3. Rerun the My UML to Java configuration.

4. Observe where the classes get created in the target project.

Figure 7-13: Generated classes in the Model Explorer

5. From the File menu, select Save All to save all the projects.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

7 - 10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

Objectives

After completing this lab, you will be able to:

► Author, run, and test a custom model-to-text transformation using a JET transformation previously created

Given

The following lab artifacts can be found in the Inputs folder for this lab:

► NestedPackageContentsExtractor.java
► OwnedCommentToHelp.txt
► LabConsoleTransformPI.zip
► TestConsoleModel.zip

Scenario

In this lab, you want to provide a graphical front end for defining the classes and operations that need to become
console objects in your JET-implemented console generation transformation. This solution will allow business analysts
to identify which functionality of a system needs to be supported with console operations and the resulting
transformation will create the Java project with the solution. The business analyst will only have to make simple
markups in the UML model of the system and will therefore not see the details of the XML syntax of the input to the
JET transformation. Likewise, this saves a designer or developer from the tedious task of writing the same kind of
console application over and over.

You will use the Transformation with Model mapping capabilities of Rational Software Architect to define how the
source model elements will be mapped to the model that is used as input to the JET transformation. Then you will
generate and run the transformation from this model mapping.

Task 1: Create and Prepare the Workspace

In this task, you will switch to a new workspace named M2JET_TransformationWorkspace that you will create.

1. From the File menu, select Switch Workspace.

2. You may use the workspace in which you previously created the lab.console.transform project by
switching to that workspace and then skipping ahead to step 6.

3. In the Workspace Launcher dialog, replace the displayed text with C:\Workshop\StudentWork\

© Copyright IBM Corp. 2007 8 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

M2JET_TransformationWorkspace and click OK.

4. Close the Welcome screen.

5. From the C:\Workshop\Labs\Inputs folder in the project interchange file
LabConsoleTransformPI.zip, import the project called lab.console.transform.

6. Switch to the Modeling perspective.

7. Make sure the XML Developer and EMF Developer capabilities are enabled. Go to Window > Preferences and
under General > Capabilities, check XML Developer. Click the Advanced button and, under the Eclipse
Development branch, select Eclipse Modeling Framework. Select OK twice to return to the workbench.

Task 2: Create a New EMF Project

In this task, you will create a new EMF project to hold the EMF representation of the input to the JET transform
and its associated code.

1. On the File menu, click New > Project

2. Replace type filter text with EMF and select EMF Project, then click Next.

Figure 8-1: Creating the EMF project

3. Enter the project name lab.console.transform.model, then click Next.

4. Select Ecore model as the Model Importers, then click Next.

8 - 2 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

5. Click Browse Workspace to find the file input.ecore in the lab.console.transform project and select
it. Click OK then Click Next.

TIP: The input.ecore file was created as part of the JET project creation.

Figure 8-2: Import the Ecore model

6. Leave the defaults for the Package Selection and select Finish.

7. The file input.genmodel will display in the editor. Right-click the Input node and click Generate Model
Code.

Figure 8-3: Generate Model code

8. Observe the packages and files created under the src directory of the model project.

© Copyright IBM Corp. 2007 8 - 3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 8-4: Resulting files from the generation

Task 3: Create a New Plug-in Project with Transformation Mapping

In this task, you will create a new Plug-in Transformation project named
lab.console.transform.frontend to define the mapping from UML to the JET console transformation.

1. On the File menu, click New > Project

2. Replace type filter text with Plug

3. Select Plug-in Project and click Next.

8 - 4 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

Figure 8-5: Creating the plug-in project

4. Name the project lab.console.transform.frontend and then click Next.

5. Review the Plug-in Content screen, leave all the defaults, and click Next.

6. On the Templates screen, select Create a plug-in using one of the templates.

7. Select Plug-in with Transformation Mapping and click Next.

Figure 8-6: Using the Transformation Mapping template

8. On the New Transformation Mapping screen, click Add Model next to Input models.

© Copyright IBM Corp. 2007 8 - 5
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

9. On the Load Resources dialog, click Browse Registered Packages.

10. Replace the “*” with “*UML”. Select the package http://www.eclipse.org/uml2/2.0.0/UML, then
click OK twice. This selects the UML ecore model for the input model.

TIP: The mapping model uses ecore models as the common model format for mapping.

11. Click Add Model next to Output models. Click Browse Workspace, then select the file input.ecore from
the lab.console.transform.model project from within the model folder.

Figure 8-7: Configuring the transformation project

12. Enter the Map name as LabConsoleFrontend.

13. Click Finish. If asked to switch to the Plug-in Development perspective, select No.

Task 4: Create the Model to Root Mapping

In this task, you will create the first mapping to be used in the transformation. You will create a total of four
mappings before you run the first version of the transformation.

8 - 6 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

Figure 8-8: Creating Model to Root mapping

1. A file called LabConsoleFrontend.mapping is created and opened in the mapping editor.

2. Right-click the LabConsoleFrontend button and select Create Map. Name the map ModelToRoot.

3. The mapping editor toolbar displays with your new map.

Figure 8-9: The toolbar to be used when creating the mapping

4. Click the leftmost button in the toolbar to add an input object.

Figure 8-10: Use the button on the left to create an input object

5. When the Add Input screen displays, simply start typing the letters mod and the UML Model will be highlighted.
Select OK.

© Copyright IBM Corp. 2007 8 - 7
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 8-11: Specifying the input object

6. Click the second button from the left in the toolbar to add an output object.

Figure 8-12: Click the second button from the left to create an output object

1. Select Root and click OK.

Now you are ready to define the transformation between the input and output elements. You want to map the
packagedElement from the UML Model to the console element in the ecore model.

2. Hover the cursor over the packagedElement property of the input model until a handle appears. Select this
handle and drag and drop it onto the console element of the target root. The result will be a transformation of
type Submap, because the cardinality of these elements is greater than 1.

8 - 8 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

Figure 8-13: Creating the mapping between the input and output objects

8. On the Details tab of the Properties view, click New and name this new map ConsoleClassToConsole.

9. Enter Ctrl-Shift-S to save all of your work so far.

Task 5: Create the Console Class to Console Mapping

In this task, you will create the mapping that associates the class from the UML model to the console node in the
output model.

1. In the Outline View, double-click the ConsoleClassToConsole mapping to open it in the mapping editor.
Note that the input and output elements were selected for you when the mapping was created.

2. Select the input element and delete it. Set the input element to be a UML class. The output element should
already be set to Console.

3. Create a transformation between the name of the input Class and the name of the output Console. Hover the
cursor over the name property of the input class until a handle appears. Select this handle and drag and drop it
onto the name element of the target console. The result will be a transformation of type Move. You could also
think of it as a copy.

© Copyright IBM Corp. 2007 8 - 9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4. You want to map the package that the class is in to the package attribute of the console. In order to see the
package attribute of the class, you need to change the filter in the mapping editor. Right-click the editor surface
and select Feature Filters > Advanced.

5. Select the package attribute of the class and open the node so that you can select the package name and connect
it to the package attribute of the console output element. You will leave it as a Move transformation.

TIP: Make the editor larger by double-clicking the tab of the editor.

Figure 8-14: The input object with Feature Filters set to Advanced

6. Create a Submap from the ownedOperation of the UML class to the command of the Console. In the Properties
View, Detail tab, create a new map and name it OperationToCommand.

TIP: Change the Feature Filter back to Basic in order to be able to make the connection in the editor.

7. Enter Ctrl-Shift-S to save all of your work so far.

Task 6: Create the Operation to Command Mapping

In this task, you will create the mapping that associates operations from the input UML class to the commands
in the output console application.

1. In the Outline View, double-click the OperationToCommand mapping to open it in the mapping editor. Note

8 - 10 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

that the input and output elements were selected for you when the mapping was created.

2. Create a Move transformation between the name of the input Operation and the name of the output Command.

3. Create a transformation between the ownedComment of the input class and the help of the Console. Note that a
Custom transformation was created. This is because the ownedComment is an array and the help is just a String.
You need to add code to tell the transformation how to translate from the input to the output.

4. In the Properties View, Detail tab, add the following code from
C:\Workshop\Labs\Inputs\OwnedCommentToHelp.txt

if(Operation_src.getOwnedComments().size() > 0)

{

 Command_tgt.setHelp(((Comment)Operation_src.getOwnedComments().get(0)).getBo
dy());

} else {

 Command_tgt.setHelp("");

}

TIP: Ensure that Code is set to In-line. Once the code has been entered click Apply.

Figure 8-15: Adding custom code

5. Create a Submap between the ownedParameter of the input Operation and the arg of the output Command.
(Do you know what’s coming next?) Create a new map for this called ParameterToArg.

© Copyright IBM Corp. 2007 8 - 11
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 8-16: Creating the submap

6. Enter Ctrl-Shift-S to save all of your work so far.

Task 7: Create the Parameter to Arg Mapping

In this task, you will create the mapping that associates parameters from the input UML class operations to the
arguments of the commands in the output console application.

1. Here is the last mapping. In the Outline View, double-click the ParameterToArg mapping to open it in the
mapping editor.

2. Create a Move transformation from the Parameter name to the Arg name.

3. Create a Move transformation from the Parameter type name to the Arg type.

TIP: If you do not see the Parameter type as a node you can open, set the Feature Filter to Advanced.

8 - 12 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

Figure 8-17: Creating the move map

4. Enter Ctrl-Shift-S to save all of your work so far.

Task 8: Generate the Transformation Code

 In this task, you will generate the transformation code from the transformation mapping.

1. Before you generate code, review the files that are in the project so far by opening the nodes of the
lab.console.transform.frontend project in the Project Explorer. All of these were created when the
project was created and as you have been editing the .mapping file.

© Copyright IBM Corp. 2007 8 - 13
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 8-18: Files as shown in the project explorer

1. In the Mapping Editor, right-click to the right of the LabConsoleFrontend button and select Generate
transformation source code from the pop-up menu.

2. To resolve the error in the file OperationToCommandTransform.java, double click this file and, in the
editor, enter ctrl-shift-o to organize imports. Select org.eclipse.uml2.uml.Comment. Enter Ctrl-Shift-S
to save all of your work and the error will be gone.

3. Review the transformation files that have been generated.

8 - 14 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

Figure 8-19: The generated transformation files

Task 9: Create a Custom Extractor

In this task, you will enhance the mapping with a custom extractor to constrain the elements that are
transformed.

You could test this transformation now, but you would find two issues: 1) all classes would be mapped to console
elements, and you only want to process those that have the keyword <<console>> applied, and 2) the
transformation would only process classes at the root level of the model, and you want it to find classes that are
nested in packages. To account for these requirements, you will implement a custom extractor.

1. The custom extractor is pre-cooked for you in the lab inputs, so in the Project Explorer select the folder
src\lab.console.transform.frontend.transforms, right-click it and select Import. From the file
system, import C:\Workshop\Labs\Inputs\NestedPackageContentsExtractor.java

© Copyright IBM Corp. 2007 8 - 15
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 8-20: The imported class in the Project Explorer

2. Open the ModelToRoot mapping and select the Submap from packagedElement to Console.

a. In the Properties view, on the Custom Extractor tab, select the check box for Custom Extractor.

b. Select External for the Code option (because you are going to get the extractor from a class rather
than define it in-line).

c. Select Browse and start entering the text for NestedPackageContentExtractor until you can
select the class that you just imported.

d. Click OK.

3. Enter Ctrl-Shift-S to save all of your work.

4. In the Mapping Editor, right click to the right of the LabConsoleFrontend button and select Generate
transformation source code from the pop-up menu.

8 - 16 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

Task 10: Connect Transformation to JET

In this task, you will add the code that calls the JET transformation from the mapping transformation.

1. In the Project Explorer, in the lab.console.transform.frontend project under the
src\lab.console.transform.frontend package, find and open the file
LabConsoleFrontendTransformationProvider.java

Figure 8-21: Find the Transformation Provider class

2. In the createRootTransformation method, replace the body of the method with this code:
 return new RootTransformation(descriptor, new MainTransform()) {
 protected void addPostProcessingRules() {
 add(new JETRule("lab.console.transform"));
 }
 };

Figure 8-22: The updated createRootTransformation method

3. Enter ctrl-shift-o to organize imports and resolve JETRule.

4. Change the @generated tag in the method to @!generated.

TIP: The @generated tag marks code that the code generator may overwrite on subsequent code generation. By
negating this tag, you protect the code you added from being overwritten.

© Copyright IBM Corp. 2007 8 - 17
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

5. Enter Ctrl-Shift-S to save all of your work.

Task 11: Configure Run-time Workbench

In this task, you will configure a Run-time workbench to use in testing the newly created transformation.

1. Switch to the Plug-in Development Perspective.

2. Select Run > Run from the main menu.

3. On the Run screen, select Eclipse Application and click the New button (leftmost on the toolbar).

4. Select the Configuration tab and set the Configuration File field to Use an existing config.ini file as a template.
Leave the default location. (Note: This step is critical, as the default Eclipse content option does not provide
enough functionality to support a Rational Software Architect test.)

Figure 8-23: Specifying the Configuration file

5. Select Apply, then Run.

Next you will need to test the transformation in the Run-time workbench.

8 - 18 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 8 – Create a Model to JET2 Transformation

Task 12: Test the Transformation

In this task, you will test the newly created transformation in the Run-time workbench.
1. In the run-time workbench, close the Welcome screen.

2. Switch to the Modeling perspective in the Run-time workbench.

3. Import the project interchange file C:\Workshop\Labs\Inputs\TestConsoleModel.zip and select the
project TestConsoleModel.

4. Review the elements in the test model.

5. In the project, open the CommandModel and the Target Model models.

6. Create a new transformation configuration of the LabConsoleFrontend called myConsoleTest. Click Next.

Figure 8-24: Creating the transformation configuration

7. Select the TestConsoleModel as the input model and TargetModel as the output model. Click Finish.

8. Locate the file myConsoleTest.tc in the Project Explorer. Right-click this file and select Transform
>LabConsoleFrontend Transform.

9. As a result of the transformation execution, two new projects are created in the workspace.

© Copyright IBM Corp. 2007 8 - 19
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 8-25: New projects generated as result of the transformation

3. Examine the contents of the projects and validate that the elements of the input UML model have been mapped
to the transformed text elements.

8 - 20 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 9 – Create a UX Modeling Profile

Objectives

After completing this lab, you will be able to:

► Create a UML profile to be used for modeling User Experience

► Add a constraint to a profile

► Customize a profile with domain related icons

► Export and import projects

► Configure and use a run-time workbench for plug-in testing

Given

► ScreenIcon.bmp and ScreenIcon.emf: Images to be used as part of the profile

► ProfileTestProject.zip: A Project Interchange file that contains a simple model to be
used when testing the profile

► JavaClassNameConstraint: A text file that contains code to be used in the constraint
class.

► UpdatedUXProfilePlug-in.zip: A Project Interchange file that contains additions to the
originally created profile

Scenario

In this portion of the workshop, you will create a UML Profile that will capture details related to User
Experience (UX) modeling. The initial purpose for this profile is to generate Struts-based applications.
However, an additional goal is to develop a profile that can be used for other user experience
implementations, such as JSF. In addition, you will add to the richness of the profile by adding custom
icons and a constraint.

Task 1: Create the Workspace

In this task, you will switch to a new workspace named CreateUXProfileWorkspace that you will
create.

1. From the File menu, select Switch Workspace.

© Copyright IBM Corp. 2007 9 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

2. In the Workspace Launcher dialog, replace the displayed text with
C:\Workshop\StudentWork\CreateAUXProfileWorkspace and click OK.

3. Close the Welcome screen.

Task 2: Create the Profile
1. Create a new UML Profile Project.

2. Click File > New > Project.

3. In the New Project dialog, replace type filter text with UML Profile. Select UML Profile Project,
and then click Next.

Figure 9-1: UML Profile Project

a. Name the project UXModeling Profile Project. Click Next.

b. Name the Profile and File UXModeling.

9 - 2 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-2: Name the Profile

4. Ensure that UML Primitive Types is selected to limit your profile to UML 2 types.

5. Click Finish to create the project. If you are asked to open the Modeling perspective, click Yes.

Task 3: Add Stereotypes and Properties to the Profile

As part of your team’s effort, you will populate the profile with stereotypes, attributes, enumerations, and
so on.

1. Add new Stereotypes to the profile.

a. In the Project Explorer view, right-click the UXModeling Profile and click Add UML >
Stereotype.

© Copyright IBM Corp. 2007 9 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-3: Add a UML Stereotype

b. Create three stereotypes named display, input, and useraction.

2. Add extensions to the display and input stereotypes

a. Add an extension to the display stereotype so that it will apply to Property (attributes).

TIP: To specify the extension for a stereotype, select the stereotype in the Project Explorer and
then choose the Extensions tab within the Properties view.

Figure 9-4: Add an extension to the stereotype

9 - 4 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-5: Choose the extension for the stereotype (do not select Required)

b. Add an attribute to the display stereotype. Its name will be javabean and it will be of Type
string. When you name the attribute, append a colon, and a context assist window will open
where you can select the type.

Figure 9-6: Add Stereotype Attributes

© Copyright IBM Corp. 2007 9 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-7: Select the Attribute Type

TIP: You can use the code assist (Ctrl-Space) feature in Project Explorer to select the
element type.

c. Add an additional attribute, named label, to the display stereotype. It will also be of Type
string.

d. Add an extension to the input stereotype so that it will apply to Class. Do not make it
Required.

e. Add an attribute to the input stereotype named javabean of Type string.

3. Create an enumeration.

a. In the Project Explorer view, right-click the UXModeling profile folder and click Add UML >
Enumeration.

b. Name the new enumeration ActionKind.

c. Right-click ActionKind and click Add UML > Enumeration Literal. Add Reset and
Submit enumeration literals.

9 - 6 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-8: UML Enumeration

4. Select the useraction stereotype, and add an extension so it will apply to Operation. Do not
make it Required.

a. For the useraction stereotype, navigate to the Attributes tab in the Properties view. Add the
following attributes:

i. Name: actionpath Type: String

ii. Name: javaclass Type: String

iii. Name: label Type: String

iv. Name: kind Type: Enumeration ActionKind

Figure 9-9: Add Stereotype Attributes

© Copyright IBM Corp. 2007 9 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-10: Specify the Type for an Attribute

5. Select File > Save All.

TIP: The Ctrl-Shift-S keyboard shortcut will also Save All.

6. Review. The following table and Project Explorer snapshot identify the model elements added to
your profile so far. For elements where documentation exists, add it via the element’s Property
View.

Name Add UML > Type Extension Owning
Element

Documentation Default
Value

ActionKind Enumeration

Reset Enumeration
Literal

 ActionKind

Submit Enumeration
Literal

 ActionKind

display Stereotype Property

javabean Attribute String display Bean class to which
the «display» field
belongs. Syntax =
rootpackage.package1.
...packagen.ClassName
.

input Stereotype Class

javabean Attribute String input (Mandatory) Syntax =
rootpackage.package1.
package2...packageN.b
eanname

useraction Stereotype Operation

actionpath Attribute String useraction

javaclass Attribute String useraction

label Attribute String useraction

kind Attribute Enumeration
ActionKind

 useraction

9 - 8 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-11: Profile in Project Explorer

7. Save All.

Task 4: Add Custom Icons

In this task, you will update the profile to use custom icons for the input stereotype you created.
Custom icons can add to the usability of your profile, providing the end user with a visual cue.

1. In the Project Explorer, select the input stereotype node.

2. In the Properties view, select the General tab.

a. Click the Browse button located to the right of the Icon field.

© Copyright IBM Corp. 2007 9 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-12: General properties for the input stereotype

b. Navigate to the C:\StudentWork\Labs\Inputs folder and select the FormIcon.bmp file.
Click Open.

c. Click the Browse button located to the right of the Shape Image field.

d. Navigate to the C:\StudentWork\Labs\Inputs folder and select the FormShape.emf
file. Click Open.

3. Select File > Save All.

Task 5: Add Profile to a Plug-in Project
In this task, you are going to add the Profile to a Plug-in project. Distributing the profile as just an .epx
file is fine in very simple cases, but more often than not you will want to put the profile into a Plug-in.

1. Select File > New > Project.

TIP: If you are unable to find a type of project in the New Project dialog, select the Show all
Wizards checkbox to see the complete list. The dialog is initially populated based on the roles
and capabilities specified.

a. Replace type filter text with Plug-in. Then select Plug-in Development > Plug-in Project.
Click Next.

9 - 10 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-13: Create the plug-in project

TIP: Click OK if you are asked to enable Eclipse Plug-in Development Capabilities.

b. Specify UXProfilePlug-in as the Project name. Click Next.

c. Fill out the Plug-in Content dialog as follows:

© Copyright IBM Corp. 2007 9 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-14: Details for the plug-in project

d. Click Finish.

2. Click Yes to switch to the Plug-in Development perspective.

3. Switch to the Extensions tab of the manifest editor.

9 - 12 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-15: The extensions tab of the plugin.xml file within the manifest editor

2. Click Add.

3. Clear the Show only extension points from the required plug-ins option.

4. Select com.ibm.xtools.uml.msl.UMLProfiles from the Available extension points list.
Click Finish.

TIP: Use the Extension Point filter to quickly and easily find the extension point.

5. Click Yes to add the plug-in to the list of plug-in dependencies.

6. Specify UXProfileID as the Id.

7. Specify UXProfileName as the Name.

© Copyright IBM Corp. 2007 9 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-16: UMLProfiles extension

8. In All Extensions, right-click com.ibm.xtools.uml.msl.UMLProfiles and select New >
UMLProfile.

9. Fill in the Extension Element Details as shown below:

Figure 9-17: Connecting the UXModeling profile to the extension

2. Now define the pathmap under All Extensions:

a. Click Add.

b. Ensure that Show only extension points from the required plug-ins is not selected.

c. Select org.eclipse.gmf.runtime.emf.core.Pathmaps

9 - 14 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

TIP: Type in the first part of the Extension Point filter name to automatically filter.

Figure 9-18: Selecting the extension point for the Pathmap

3. Click Finish.

4. Click Yes to add the plug-in to the list of plug-in dependencies.

d. Enter the following details into the Extension Details:

© Copyright IBM Corp. 2007 9 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-19: Selecting the extension details Pathmap

e. Save.

f. Right-click the new extension point and select New > pathmap.

Figure 9-20: Adding the pathmap

g. Enter the following details into the Extension Element Details:

9 - 16 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-21: Specifying the details for the pathmap element

10. Save.

11. Review the source for the configuration by selecting the plugin.xml tab.

Now that you’ve set up the plug-in project, let’s put the profile .epx file into the plug-in project.

12. In the Package Explorer, right-click UXProfilePlug-in and select New > Folder.

13. Specify profiles as the Folder name. Click Finish.

14. Copy the UXModeling.epx file from the UXModeling project to the newly created profiles
folder within the UXProfilePlug-in project.

Figure 9-22: Copying the UXModeling.epx file to the Plug-in

Task 6: Add a Constraint

In this task, you will add a constraint to the profile to ensure that one of the properties specified by the
profile is used properly. In this case, you want to make sure that the javaclass property for the
useraction stereotype is not left blank.

1. Switch to the Modeling perspective.

a. In the Project Explorer, right-click the UXModeling project and select Close.

© Copyright IBM Corp. 2007 9 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

TIP: Close the original UML Profile project, because from this point forward you want to focus
on the profile that you just copied into the plug-in project. By closing the original version, you
reduce the risk of getting confused about which file and version you are working with.

b. Within the UXProfilePlug-in project, navigate to the Profiles folder.

Figure 9-23: UXModeling profile in the Modeling Perspective Project Explorer

c. Choose the UXModeling profile to open the profile for editing.

d. Select the useraction stereotype node.

e. Right-click and select Add UML > Constraint.

f. Name the new constraint JavaClassNameConstraint.

g. In the Properties view, select the General tab.

h. Select Java Class as the Language.

9 - 18 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-24: Specifying the language for the constraint

i. Specify the Value as:
com.ibm.uxprofile.constraints.JavaClassNameConstraint.

TIP: You are specifying that the constraint can be found in the specified java class. The
constraint will eventually extend the AbstractModelConstraint class as found in the
com.ibm.xtools.emf.validation package.

j. Select File > Save All.

Task 7: Create Constraint Class
In this task, you will create the java class that contains the logic associated with the constraint

1. Switch to the Plug-in Development perspective.

a. In the Package Explorer, expand the UXProfilePlug-in project node.

b. Open the plugin.xml file.

c. Switch to the Dependencies tab of the manifest editor.

© Copyright IBM Corp. 2007 9 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-25: Dependencies for the plug-in

d. Click Add.

e. Select org.eclipse.uml2.uml and then click OK.

Figure 9-26: Selecting the plug-in

9 - 20 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

f. Save.

g. In the Package Explorer, right-click src and select New > Package. Name the package
com.ibm.uxprofile.constraints. Click Finish.

h. Right-click the com.ibm.uxprofile.constraints package and select New > Class.

i. Fill in the New Java Class wizard dialog as shown below:

TIP: You can use the code assist (Ctrl-Space) feature to help select the Superclass.

Figure 9-28: Creating the constraint class

j. Click Finish.

2. Save All.

3. Open the JavaClassNameConstraint class.

© Copyright IBM Corp. 2007 9 - 21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

a. Replace the existing code of the class with the contents of the
JavaClassNameConstraint.txt file found in C:\Workshop\Labs\Inputs.

b. Review the code.

4. Select File > Save All.

Task 8: Export the Project
In this task, you will export the UXProfilePlug-in project where it will be picked up for additional work by
your team.

1. Select File > Export.

2. Select Project Interchange in the Other folder.

3. Click Next.

4. Click Select All and browse to c:\Workshop\StudentWork and save the file as
UXProfilePlug-in_V1.zip.

Task 9: Import an Updated Version of the Project and Test
In this task, you will import an updated version of the UXProfilePlug-in project, modified by other
members of your team. Additional stereotypes and enumerations have been added.

1. Switch to the Plug-in Development Perspective.

2. Select File > Import.

3. Select Project Interchange in the Other folder.

4. Click Select All and browse to c:\Workshop\Labs\Inputs and import the file
UpdatedUXProfilePlug-in.zip.

5. Click OK at the Confirm Overwrite dialog.

Task 10: Configure Run-time Workbench
In this task, you will configure a Run-time workbench to use in testing the newly created profile.

1. Switch to the Plug-in Development Perspective.

2. Select Run > Run from the main menu.

3. On the Run screen, select Eclipse Application and click the New button (leftmost on the toolbar).

4. Name the configuration UXProfilePlug-in.

5. Select the Configuration tab and choose the Use an existing config.ini file as a template option.
Leave the default location.

TIP: This step is critical, because the default Eclipse content option does not provide enough
functionality to support an Rational Software Architect test.

9 - 22 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-29: Configuring the run-time workbench

6. Select Apply, then Run.

Task 11: Test the Profile

In this task you will test the profile that you and your team created. A model has been partially built for
the purposes of testing the profile. You’ll complete the model and conduct the test. All of the testing
will occur in the Run-time Workbench.

1. Close the Welcome screen.

2. Switch to the Modeling perspective in the Run-time workbench.

3. Select File > Import.

a. Select Project Interchange. Click Next.

b. Click Browse next to the From zip file field.

c. Navigate to the C:\Workshop\Labs\Inputs folder and select
ProfileTestProject.zip. Click Open.

d. Click Select All then click Finish.

© Copyright IBM Corp. 2007 9 - 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

2. Apply the UXModeling profile to the test model.

a. Open the ProfileTest model

b. In the properties view, select the Profiles Tab

c. Click Add Profile.

d. Select UXModeling. Click OK.

Figure 9-30: Applying the profile

e. Click OK.

2. Open the Main diagram found within the com.ibm.strutssample package or, alternatively,
work with the model elements by expanding the ProfileTest model.

9 - 24 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-31: Sample model elements from the com.ibm.strutssample diagram

© Copyright IBM Corp. 2007 9 - 25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-32: Sample model elements viewed by expanding the ProfileTest model

Your teammates have applied stereotypes to the LogonForm, BookDetails, Home and Music
model elements.

3. Apply stereotypes to the Logon, Home, and Music model elements. Click the element and
choose Apply Stereotypes from the Stereotype tab in the Properties view.

9 - 26 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-33: Apply stereotypes to elements from the Properties view

a. Apply stereotypes to the model elements (Logon, Home, Screen) resulting in a class diagram
as shown below:

© Copyright IBM Corp. 2007 9 - 27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

Figure 9-34: Sample set of elements after applying the profile and adding stereotypes

b. Select File > Save All.

Now let’s test the constraint:

4. In the Project Explorer, select com under the ProfileTest model, right-click it, and select Validate.

9 - 28 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 9 – Create a UX Modeling Profile

Figure 9-35: Validate the model against the profile

a. Note that in the Problems view, a validation error has appeared relating to the «useraction»
elements.

b. Click the «useraction»logon() operation on the «screen» Logon class.

c. In the Properties view, switch to the Advanced tab.

d. Navigate to the useraction node, and then update the javaclass property to
com.ibm.test.Logon.

Figure 9-36: Specifying a value for the javaclass property

e. Select File > Save All.

f. Run the validation again. Note that there should now be no validation errors.

g. Close the Run-time workbench.

Task 12: Release the Profile
In this task you will release the profile, because you’ve tested it and are certain that this accurately

© Copyright IBM Corp. 2007 9 - 29

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect – Student Workbook

reflects the elements within this domain. Any profile changes from this point onwards can only be
additive changes.

1. Switch to the Modeling perspective.

2. In the Project Explorer view, select the profile.

3. Right-click the UXModeling profile and select Release.

4. Provide v1.0.0 as the version number. Click OK.

Task 13: Extra Challenges

If time permits during the course, or as a practice challenge for after the course, complete the following
tasks.

1. Enhance the profile to include any additional stereotypes, properties, or enumerations that would
make the profile more applicable to your organization.

2. Enhance the constraint so that it validates the javaclass property, checking that it has a valid java
package and class name.

9 - 30 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 10 – Manually Create a Transformation

Objectives

After completing this lab, you will be able to:

► Author, run, and test a custom model-to-model transformation.

Given

The following lab artifacts can be found in the Inputs folder for this lab:

► Code Fragment1.txt
► Code Fragment2.txt
► Import Statements1.txt
► Import Statements2.txt
► DEV498v7 Sample Config.launch

Scenario

In this lab, your team needs to transform a number of source classes from one model to target interface and
implementation classes in another model. There must be a realization relationship from the implementation class to
the interface, and the implementation class needs copies of the source class operations, while the interface only needs
copies of the public source class operations.

Instead of each team member manually performing the transformation, your task is to automate the process and make
it available to the entire team.

To simplify the transformation authoring effort, you will use a plug-in template to produce the initial structure of the
transformation. When defining the transformation configuration, you will define the rules to convert one type of
source element into one or more target elements. You will then need to customize the transformation’s behavior by
modifying each rule’s hot spot. After creating a test project, you will run and test the transformation.

In addition to the conversion rules, you will add a mechanism to traverse the source model elements and run a rule
against a UML class that has a specific stereotype applied.

© Copyright IBM Corp. 2007 10- 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 1: Create the Workspace

In this task, you will switch to a new workspace named M2MTransformationWorkspace that you will create.

1. From the File menu, select Switch Workspace.

2. In the Workspace Launcher dialog, replace the displayed text with
C:\Workshop\StudentWork\M2MTransformationWorkspace and click the OK button.

3. Close the Welcome screen.

Task 2: Create a New Plug-in Project

In this task, you will create a new Plug-in Transformation project named MyTransformation to simplify the
authoring effort.

1. On the File menu, click New > Project

2. Enable Show All Wizards.

3. Replace type filter text with Plug-in. Select Plug-in Project and click Next.

Figure 10-1: Definition of Transformation Rules

10 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 – Manually Create a Transformation

4. If prompted to confirm enablement of Eclipse Plug-In Development, click OK.

5. Name the project com.ibm.myTransformation and then click Next.

6. On the Plug-in Content screen, keep the defaults and click Next.

7. Select the Create a plug-in using one of the templates checkbox.

8. Choose Plug-in with Transformation and click Next.

Figure 10-2: Definition of Transformation Rules

9. On the New Transformation Provider screen, keep the defaults and click Next.

10. On the New Transformation screen, select UML2 to be the Source Model Type and the Target Model Type.
Click Next.

© Copyright IBM Corp. 2007 10 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 10-3: Specify the Source Model Type and the Target Model Type

11. On the New Rule Definitions screen, create new rules as indicated below:

• Click Insert to add a class rule. Select Class from the list box in the UML Element Type column, and
enter ClassRule in the Name column.

• Click Insert to add an operation rule. Select Operation from the list box in the UML Element Type
column, and enter OperationRule in the Name column.

Figure 10-4: Definition of Transformation Rules

TIP: The order in which you specify the rules on this screen will impact the order in which they are listed in
code. This order will then determine the order in which the rules are executed.

10 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 – Manually Create a Transformation

12. Click Finish. If prompted to switch to the Plug-in Development perspective, click Yes.

Task 3: Visualize the Transformation Structure

In this task, you will visualize the initial structure of the transformation.

1. Select the following elements in the Package Explorer.

Figure 10-5: Transformation Structure in the Model Explorer

2. Right-click and click Visualize > Add to New Diagram File > Class Diagram. If asked, click Yes to enable Java
Modeling activity.

© Copyright IBM Corp. 2007 10 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 10-6: Transformation Structure on a Class Diagram

Task 4: Edit the Rules

In this task, we will add code to the rules for the pattern. This code will provide the behavior for the pattern.

1. Edit the class rule.

• In the Package Explorer, double-click ClassRule.java to open it in an editor.

• Locate the import statements at the top, delete them, and replace them with the contents of Import
Statements1.txt located in the C:\Workshop\Labs\Inputs folder.

• Update the declaration of the class so that

public class ClassRule extends AbstractRule

becomes:

public class ClassRule extends ModelRule

10 - 6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 – Manually Create a Transformation

• Locate the createTarget method, delete the body, and replace it with the contents of Code
Fragment1.txt located in the C:\Workshop\Labs\Inputs folder.

• Review the code.
2. Edit the operation rule.

• In the Package Explorer, double-click OperationRule.java to open it in an editor.

• Locate the import statements at the top, delete them, and replace them with the contents of Import
Statements2.txt located in the C:\Workshop\Labs\Inputs folder.

• Update the declaration of the class so that

public class OperationRule extends AbstractRule

becomes:

public class OperationRule extends ModelRule

• Locate the createTarget method, delete the body, and replace it with the contents of Code
Fragment2.txt located in the C:\Workshop\Labs\Inputs folder.

• Review the code.
3. From the File menu, select Save All.

Task 5: Configure Run-time Workbench

In this task, you will configure a Run-time workbench to use in testing the newly created transformation. There are
two approaches that you can take when setting up your run-time workbench. The first approach is to spend time to
create a custom list of plug-ins to have included within the run-time workbench. This can take some time to develop,
but once created can significantly speed up the launching of the run-time workbench. The second approach is to
accept the default list of plug-ins. This is quick to configure, but the run-time workbench will launch more slowly.

1. Set up a stripped down configuration for the runtime workbench. This will reduce workbench launch and debug
times.

• Select File > Import.

• Select File system. Click Next.

• Click Browse and navigate to Workshop\Labs\Inputs and select DEV498v7 Sample
Config.launch.

• Specify MyTransformation as the value for the Into folder field.

© Copyright IBM Corp. 2007 10 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 10-7: Import the launch file

• Click Finish.

• From the Run menu, select Run

• In the Create, manage, and run configurations dialog, select DEV498v7 Sample Config under Eclipse
Application.

10 - 8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 – Manually Create a Transformation

Figure 10-8: Selected the sample configuration

• Click Run.
2. Optional: If you would like to use a full configuration for the runtime workbench, follow these steps in place of

Step 1.

• From the Run menu, select Run

• In the Create, manage, and run configurations dialog, select Eclipse Application and click the New
launch configuration button.

• Name the new configuration Full Configuration

• Click Apply.

© Copyright IBM Corp. 2007 10 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 10-9: Configuring a fill configuration runtime workbench

• Select Full Configuration in the Configurations list and click Run. Because this is a full version, it will take
several minutes to complete the launch of the Run-time Workbench.

TIP: Yes, you can create multiple configurations. When it comes time to test, you will need to select which
configuration you would like to use for your test.

Task 6: Create a Test Project

In this task, you will use the run-time workbench to test the pattern that you’ve built.

1. Using the Run-time Workbench, create a test UML Modeling Project named TransformationTest based on
the Blank Model template:

• Close the Welcome screen.

• From the File menu, click New > Project

• Replace type filter text with UML. Select UML Project, and click Next.

10 - 10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 – Manually Create a Transformation

Figure 10-10: Creating a new UML Project

• Name the project TransformationTest and click Next.

• Under Templates, select Blank Model, change the file name to SourceModel, and click Finish.

• If prompted to switch to the Modeling Perspective, click Yes.
2. Create a class named Employee and add three private operations; readEmail, answerPhone, and

performWork. Add one public operation reportToManager (name:String).

Figure 10-11: Employee class

3. To the TransformationTest project, add a new UML Model named TargetModel based on the Blank
Model template.

• On the Project Explorer, select the TransformationTest project, right-click and select New > UML

© Copyright IBM Corp. 2007 10 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Model.

• Click Next.

• Under Templates, select Blank Model, change the file name to TargetModel and click Finish.

Task 7: Run the Transformation

In this task, you will configure and run the transformation.

1. From the Modeling menu, select Transform > New Configuration.

2. Select Transformation from under com.ibm.myTransformation folder.

3. Name the configuration MyTransformationConfiguration and click Next.

Figure 10-12: Creating the new transformation configuration

4. On the Source and Target screen, specify SourceModel as the Selected source and TargetModel as the
Selected target.

TIP: Ensure that you select the model and not the model file. The easiest way to discern between the two is

10 - 12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 – Manually Create a Transformation

that the model file has an emx extension.

5. Click Finish.

6. In the Project Explorer, right-click the MyTransformationConfiguration.tc file and click Transform >
Transformation.

7. Explore the results in TargetModel.

Figure 10-13: Resulting elements in the TargetModel

8. Optionally, you can add another public operation to the Employee class in SourceModel, for example
reportToManager (id:Integer), and re-run the transformation.

Task 8: Add a New Rule

In this task, we will add a new rule to the transformation. This rule will work with the properties (attributes) of a class
– and its output will depend on keywords that have been applied.

1. Close the run-time workbench and switch back to the host workbench.

2. Add a new class named PropertyRule to MyTransformation.transformation.rules package:

• In the Package Explorer, right-click on the MyTransformation.transformation.rules package
and select New > Class.

• Populate the New Java Class dialog as shown in the screen capture below:

© Copyright IBM Corp. 2007 10 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 10-14: Adding the new Property Rule

TIP: Make sure that you have selected Constructors from superclass.

• Click Finish.

TIP: You may recall from earlier that we changed the Supeclass for our rules from AbstractRule to
ModelRule. The reason for this change is that the ModelRule class provides support for modifying a
target UML model. In the case of this rule, we will not be modifying a UML model, so we can keep
AbstractRule as the Superclass.

3. Add code to the new rule:

• Update the code in the createTarget method so that we can tell when this method is called:

 protected Object createTarget(ITransformContext arg0) throws Exception
{

 NamedElement element = (NamedElement) arg0.getSource();

 EList keywords = element.getKeywords();

10 - 14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 10 – Manually Create a Transformation

 if(keywords.isEmpty())

 {

 System.out.println(element.getName() + " FunnyProperty
Keyword has NOT been applied");

 }else if(keywords.contains("MyFunnyProperty")){

 System.out.println(element.getName() + " FunnyProperty
Keyword has been applied");

 }

 return null;
 }

• Right-click in the editor for the class and click Source > Organize Imports to add required import
statements.

4. Connect the new rule into the transformation:

• Add the following line to the end of the addUMLRules(UMLKindTransform transform) method
of the com.ibm.mytransformation.transformationProvider.Transformation class.

 transform.addByKind(UMLPackage.eINSTANCE.getProperty(), new
PropertyRule("MyTransformation.transformation.rule2", "PropertyRule"));

• Right-click in the editor for the class and click Source > Organize Imports to add any required import
statements.

• Select File > Save All.

Task 9: Test the New Rule

In this task, we will test the new rule that we added to the transformation in the previous task. In this case we will
launch the runtime workbench in Debug mode.

1. Launch a run-time instance of the workbench:

• Select Run > Debug.

• Select DEV498v7 Sample Config from the Configurations pane, and then click Debug.

• If you are prompted to switch to the Debug Perspective in the development workspace, click OK.
2. Test the updated transformation:

• In Model Explorer open the SourceModel.

• Create a new attribute named Salary on the Employee class. Add a Keyword to it named
MyFunnyProperty.

© Copyright IBM Corp. 2007 10 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 10-15: Specifying a keyword on the Salary attribute

• Create another attribute named Paydate on the Employee class. Do not specify a keyword on this
attribute.

• Open the TargetModel model.

• Re-run the transformation configuration MyTransformationConfiguration. The transformation should
produce output in the Console view within the host workbench.

TIP: If the console is not visible, click Window > Show View > Other , and then select Basic > Console.

Figure 10-16: Output written to the Console view within the Host workbench.

• When you have finished testing and debugging the transformation, close the run-time workbench.

Task 10: Extra Challenges

If time permits during the course, or as a practice challenge for after the course, complete the following task.

1. Work in debug mode, set a breakpoint in the createTarget methods of the rules in the transformation. Run the
transformation again and walk-through the code using the debugger.

10 - 16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Objectives

After completing this lab, you will be able to:

► Author, run, and test a custom model-to-model transformation.

Given

The following lab artifacts can be found in the Inputs folder for this lab:

► OperationMapping.mapping
► Class2InterfaceCustomNameTransform.txt
► FindElementUtility.java

Scenario

In this lab, your team needs to transform a number of source classes from one model, to target interface and
implementation classes in another model. There must be a realization relationship from the implementation
class to the interface, and the implementation class needs copies of the source class operations, while the
interface only needs copies of the public source class operations.

Instead of each team member manually performing the transformation, your task is to automate the process
and make it available to the entire team.

You will use the Transformation with Model mapping capabilities of Rational Software Architect to define how
the source model elements will be mapped to the target model. Then you will generate and run the
transformation from this model mapping.

Task 1: Create the Workspace

In this task, you will switch to a new workspace named M2MTransformationWorkspace that you will
create.

1. From the File menu, select Switch Workspace.

2. In the Workspace Launcher dialog, replace the displayed text with
C:\Workshop\StudentWork\M2MTransformationWorkspace and click the OK button.

3. Close the Welcome screen.

© Copyright IBM Corp. 2007 11 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4. Switch to the Modeling perspective

5. Make sure that the XML Developer capability is enabled. Go to Window > Preferences and under
General > Capabilities, select XML Developer.

Task 2: Create a New Plug-in Project with Transformation Mapping

In this task, you will create a new Plug-in Transformation project named GeneralizeClasses to simplify
the authoring effort.

1. On the File menu, click New > Project

2. Replace type filter text with Plug

3. Select Plug-in Project and click Next.

Figure 11-1: Create a new Plug-in Project

4. Name the project Generalize Classes and then click Next.

5. Review the Plug-in Content screen, leave all the defaults, and click Next.

6. On the Templates screen, select Create a plug-in using one of the templates

7. Select Plug-in with Transformation Mapping and click Next.

11 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Figure 11-2: Specify the template to use

8. On the New Transformation Mapping screen, select the Add Model button next to Input models.

9. On the Load Resources dialog, select the Browse Registered Packages button.

10. Replace “*” with “*UML” and then select the package
http://www.eclipse.org/uml2/2.0.0/UML, then OK twice. This selects the UML.ecore model
for the input model.

Figure 11-3: Select the input model to use

© Copyright IBM Corp. 2007 11 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

11. Repeat steps 8-10 to select UML.ecore for the Output model.

Figure 11-4: Specifying the input and output models

12. Click Finish. If asked to switch to the Plug-in Development perspective, select No.

Task 3: Create the Class to Class Mapping

In this task, you will create the first mapping to be used in the transformation. You will create a total of 4
mappings before you run the first version of the transformation.

Figure 11-5: The mapping editor

1. A file called Generalize_Classes.mapping is created and opened in the mapping editor.

2. Right-click the Generalize_Classes button and select Create Map. Name the map Class2Class.

11 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

3. The mapping editor toolbar displays with your new map.

Figure 11-6: Toolbar within the mapping editor

4. Select the leftmost button to add an input element.

5. When the Add Input screen displays, simply start typing the letters cla and the UML Class will be
highlighted. Select OK.

Figure 11-7: Adding an Input element

6. Select the Add Output button (located to the right of the Add Input button).

7. When the Add Output screen displays, simply start typing the letters cla and the UML Class will be
highlighted. Select OK.

© Copyright IBM Corp. 2007 11 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 11-8: Input and output elements added to the mapping

Now you are ready to define the transformation between the input and output elements. For the first part of
the exercise, you will simply create a new class in the target model with the same name as the class in the
source model. You will come back and add the mapping of operations later in this exercise.

8. Hover the cursor over the name property of the input class until a handle appears. Select this handle and
drag it onto the name element of the target class. The result will be a transformation of type Move. You
could also think of it as a copy.

Figure 11-9: Creating a Move transformation between the elements

11 - 6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Task 4: Create the Class to Interface Mapping

1. Using the skills you learned in Task 3, create a new mapping in Generalize_Classes. Call this mapping
Class2Interface.

2. Select the input element to be a UML Class, and the output element to be a UML Interface.

3. Create a transformation between the name of the input Class and the name of the output Interface.

4. Instead of a simple copy of the name, though, you want to rename the interface. Select the Move and use
the down arrow to change it to Custom.

5. Make sure that Custom transformation is selected, and then select the Details tab in the Properties view.

6. In the Code: area, be sure that In-line is selected and enter the following code:
Interface_tgt.setName("I"+Class_src.getName());

7. As you enter code, try out the code completion with Ctrl-Space.

Figure 11-10: Custom mapping between the elements

8. Enter Ctrl-Shift-S to save all of your work so far.

Task 5: Create the Package to Package Mapping

1. Create a new mapping in Generalize_Classes. Call this mapping Package2Package.

2. Select the input element to be a UML Package and the output element to be a UML Package.

3. Create a transformation between the name of the input Package and the name of the output Package.

4. Create a transformation between the packagedElement of the input package and the packagedElement of
the output Package. Because the packageElement is an array, the mapping tool will create a transformation
of type Submap.

© Copyright IBM Corp. 2007 11 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

5. With the Submap transformation selected, in the Properties view, Details tab, make sure that the value for
the Map is Class2Class.

Figure 11-11: A submap between the elements

6. Create another Submap between the packagedElements, set its Map to Class2Interface.

7. Create one more Submap between the packagedElements, so that your transformation will handle nested
packages, and set its Map to Package2Package.

8. You should now have three Submaps between the packageElements of the source and target.

Figure 11-12: The three submaps between packagedElement

11 - 8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Task 6: Create the Model to Model Mapping

1. Create a new mapping in Generalize_Classes. Call this mapping Model2Model.

2. Select the input element to be a UML Model and the output element to be a UML Model.

3. Create a transformation between the name of the input Model and the name of the output Model.

4. Instead of a simple copy of the name, though, you want to rename the model. Select the Move and use
the down arrow to change it to Custom.

5. Make sure that the Custom transformation is selected, then select the Details tab in the Properties view.

6. In the Code: area, be sure that in-line is selected and enter the following code:
Model_tgt.setName(Model_src.getName()+"TgtModel");

7. Add a Submap transformation from the source Model packagedElement to the target Model
packagedElement and make sure its map is Package2Package.

8. In the Outline view, right-click on the Model2Model mapping and select Execution Order > Move Up.
Repeat until the Model2Model mapping is at the top of the list. Repeat for each mapping until the list of
mappings is in the following order:

Figure 11-13: The mappings in the Outline view

Task 7: Generate the Transformation Code

1. Enter Ctrl-Shift-S to save all of your work so far.

2. Before you generate code, review the files that are in the project so far by opening the nodes of the project
in the Project Explorer. All of these were created when the project was created and you have been editing
the .mapping file.

© Copyright IBM Corp. 2007 11 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 11-14: Files in Project Explorer before generating code

3. In the Mapping Editor, right-click the surface to the right of the Generalize_Classes button and click
Generate transformation source code from the context menu.

4. Review the transformation files that have been generated.

11 - 10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Figure 11-15: Project Explorer after generating code

5. Save your work.

Task 8: Configure Run-time Workbench

In this task, you will configure a Run-time workbench to use in testing the newly created transformation.

1. Switch to the Plug-in Development Perspective.
2. Select Run > Run from the main menu bar.
3. On the Run screen, select Eclipse Application and click the New button (leftmost on the toolbar).
4. Select the Configuration tab and set the Configuration File setting to Use an existing config.ini file as

a template. Leave the default location.

TIP: This step is critical, as the default Eclipse content option does not provide enough functionality to
support a Rational Software Architect test.

© Copyright IBM Corp. 2007 11 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 11-16: Configuring a runtime configuration

5. Select Apply, then Run.

Task 9: Create a Test Project

In this task, you will be using the Run-time Workbench to test the newly created transformation.

1. Close the Welcome screen.

2. Switch to the Modeling perspective.

3. Create a test UML Modeling Project named TransformationTest based on the Blank Model template:

• From the File menu, click New > Project

• Select UML Project, and click Next.

• Name the project TransformationTest, keep the remaining defaults, and click Next.

11 - 12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Figure 11-17: Creating a modeling project

• Under Templates, select Blank Model, change the file name to SourceModel, and click Finish.

• If prompted to switch to the Modeling Perspective, click Yes.
4. Create a package named BusinessClasses.

5. In the BusinessClasses package, create a class named Employee and add three private operations;
readEmail, answerPhone, and performWork. Add one public operation reportToManager
(name:String).

Note: to see signature, right-click class and select Filter > Show Signature.

Figure 11-18: Employee class

6. To the TransformationTest project, add a new UML Model to be the target.

7. On the Project Explorer, select the TransformationTest project, right-click and select New > UML
Model.

8. Select the Standard Template, then click Next.

9. Under Templates, select Blank Model, change the file name to TargetModel and click Finish.

© Copyright IBM Corp. 2007 11 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 10: Run the Transformation

In this task, you will configure and run the transformation.

1. From the main menu bar, select Modeling > Transform > New Configuration.

2. Name the new configuration FirstConfiguration and select the Generalize_Classes Transform,
then click Next.

Figure 11-19: Selecting the transformation

3. On the New Transformation Configuration screen, select SourceModel as the Selected source and
TargetModel as the Selected target. Click Next.

11 - 14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Figure 11-20: Specify source and target

4. Click Next through the next three screens, but leave the defaults and then click Finish.

5. This creates a .tc file in the project that contains the transformation configuration. Right-click this file and
select Transform > Generalize_Classes Transform.

6. While the transformation is executing, you will be prompted that the target files will be updated with the
automatic merge options. Click OK.

7. The model merge dialog will display so that you can validate the changes to the target model. Select the
two changes as indicated in the following screenshot. Click OK.

© Copyright IBM Corp. 2007 11 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 11-21: Merging the models

8. When prompted to accept changes from the file system, click Yes.

9. Explore the results in TargetModel.

11 - 16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Figure 11-22: Resulting elements in the TargetModel

Task 11: Add New Mappings and a Relationship

You need to go back and complete the transformation by adding mappings to copy operations and adding the
code to create the realization relationship between the class and the interface. You have “pre-cooked” those
files to save time, and to demonstrate how you can re-use mappings across projects.

1. Close the run-time workbench and switch back to the host workbench.

2. Implement a mapping from another file.

• Copy the file OperationMapping.mapping from C:\Workshop\Labs\Inputs into the
model folder of the GeneralizeClasses project.

• If not already open, right-click the Generalize_Classes.mapping file in the model folder and select
Open with > Mapping Editor.

• Double-click Class2Class in the Outline view.

• Create a Submap from ownedOperation in the source Class to ownedOperation in the target Class.

• On the Details tab of the Properties view, click Browse and select the file
OperationMapping.mapping.

• Repeat these steps, adding this submap to the Class2Interface transformation.

3. Add a condition to this Submap on the Class2Interface transformation so that that only public visibility
operations are copied.

• In the Properties view, select the Input Filter tab. Select the checkbox for Filter Input Elements.

• In the Code: area, be sure that In-line is selected and enter the following code:

return ownedOperation_src.getVisibility()==VisibilityKind.PUBLIC_LITERAL;

TIP: As you enter code, try out the code completion with Ctrl-Space.

4. Add the code to create the Realization relationship from the implementation class to the interface in the

© Copyright IBM Corp. 2007 11 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

target model.

• Select the Custom transform on the mapping of the name of the source class to the name of the target
interface. Copy the code from Class2InterfaceCustomNameTransform.txt into the code of
this custom transform.

5. Save all.

6. Generate and clean up code.

• Generate the transformation code for the operation mapping. In the Mapping Editor with the
OperationMapping.mapping file open, right-click the surface to the right of the OperationMapping
button and select Generate transformation source code from the context menu.

• Re-generate the transformation code for the Generalize_Classes mapping. In the Mapping Editor with
the Generalize_Classes.mapping file open, right-click the surface to the right of the
Generalize_Classes button and select Generate transformation source code from the pop-up menu.

• In the Generalize Classes project, create a new package under the src directory called utilities. Copy
FindElementUtility.java from C:\Workshop\Labs\Inputs into the utilities folder that you just created.

• There will be errors in Class2InterfaceTransform.java due to the fact that Class and Package
are resolved to java.util rather than the uml versions needed. To correct this, add the following import
statements:

import org.eclipse.uml2.uml.Class;

import org.eclipse.uml2.uml.Package;

• Organize imports in Class2InterfaceTransform.java using Ctrl-Shift-o.

• Save all.

7. Test the updated transformation

• Start the runtime workbench as before.

• Select FirstConfiguration.tc, right-click this file and select Transform > Generalize_Classes
Transform. The results in the target model will look like this when the package and two classes are
selected and dragged onto a diagram:

11 - 18 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 11 – Create a Model to Model Transformation

Figure 11-23: Results in the target project

• When you have finished testing and debugging the transformation, close the run-time workbench.

Tips and Troubleshooting

TIP: If you close the mapping editor and need to re-open it, right-click the projectName.mapping file
in the models folder and select Open with > Mapping Editor. If the Mapping Editor does not
display as an option, then make sure that you have enabled the XML Developer capability (Task 1,
Step 5).

TIP: To use profiles, select the input and ouput profiles in addition to selecting the UML ECore model
on the Create Project wizard. This will allow you to select the UML element as well as any
stereotypes you want to map to and from.

TIP: When you create a new mapping transformation project using the New Project wizard it will add
dependencies that are implied by the input and output models that you identify. So, for instance if
you add the UML.ecore metamodel the wizard will add a dependency to that metamodels plugin.

If you later add another input or output metamodel you will need to add any new dependencies to your
plugin.xml manually (dependencies are really in the manifest.mf file).

Or if you create (with the New Map wizard, not the New Map Project wizard) a map or copy a map to a
non-mapping project, you will need to add necessary dependencies, nature, and builder to your
plugin.xml and .project files.

TIP: If you want to map an abstract element (for example, the Type of a parameter) you will need to
create a concrete mapping for each subtype you want handled. So for the Type of a parameter,
create a Class-to-Class map, and a primitiveType-to-primitiveType map.

© Copyright IBM Corp. 2007 11 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

11 - 20 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 12 – Create the Master Detail Pattern

Objectives

After completing this lab, you will be able to:

► Create a pattern to be used in conjunction with the UXModeling profile.

Given

The following lab artifacts, a set of project interchange files, can be found in the Inputs folder for this
lab:

► details-expand.input.txt

► listscreen-expand.input.txt

► searchscreen-expand.input.txt

► detaildependency-expand.input.txt

► listdependency-expand.input.txt

► The project interchange file named CreateUXModelingProfile.zip.

Scenario

In this portion of the workshop, you will create a Rational Software Architect Pattern that will support the
creation of a Master-Detail relationship between a set of screens. The intent of the pattern will be to
automate the creation of relationships between the classes involved in the pattern, and create classes that
are needed to fill the roles within the Master-Detail collaboration.

This pattern will leverage the UXModeling profile that you created earlier. The pattern will be aware of
the profile and its stereotypes, and will also apply some of the stereotypes to the pattern parameters.

Task 1: Create the Pattern Project
In this task you will create an implementation of a Master-Detail pattern.

1. Create a pattern project

a. On the File menu, click New > Project.
b. Make sure that Show All Wizards is selected.
c. Replace type filter text with plug.
d. Select Plug-in Project. Click Next.
e. Name the project Struts, and then click Next.

© Copyright IBM Corp. 2007 12 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 12-1: Creating the plug-in project

f. Click Next.
g. On the Templates page, select Create a Plug-in using one of the templates. Then choose

Plug-in with Patterns, and click Next.

12 - 2 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

Figure 12-2: Details for the Pattern Library

h. Click Finish.
i. If asked, click Yes to change to the Plug-in Development perspective.
j. If asked, click OK to enable Reusable Asset Management capability.

2. Set up the pattern.

a. In the Plug-in perspective, bring the Pattern Authoring view to the front. If it is not open,
then click Windows > Show View > Other. Replace type filter text with
Pattern. Select Pattern Authoring and then click OK.

© Copyright IBM Corp. 2007 12 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 12-3: Adding in the Pattern View

b. In the Pattern Authoring view, right-click Struts and then click New Pattern.

k. In the New Pattern dialog, specify Master-Detail as the Pattern Name. The Class Name
should be MasterDetail.

12 - 4 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

Figure 12-4: Details for the new Pattern

l. Add parameters to the pattern as follows:

• Name: Search Screen Class Name: SearchScreen Type: Class

• Name: List Screen Class Name: ListScreen Type: Class

• Name: Details Screen Class Name: DetailsScreen Type: Class
m. Edit the List Screen parameter. On the Parameter Dependency tab, set Search Screen as

a Client Parameter and set Details Screen as a Supplier Parameter. Then click OK.

© Copyright IBM Corp. 2007 12 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 12-5: Parameter Dependencies

n. Remove the Miscellaneous group and add your own group called My Struts Patterns.

12 - 6 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

Figure 12-6: Completed pattern specification

o. Click OK to complete creating the pattern structure.

Task 2: Customize Expand Methods

In this task, you will add code to the Expand methods of the pattern to customize the behavior of the
pattern.

1. Use the following code to replace the code found in the public boolean
expand(PatternParameterValue value) of the DetailsScreen class:

© Copyright IBM Corp. 2007 12 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 12-7: Expand method for the DetailsScreen

TIP: You can copy the following code from C:\Workshop\Labs\Inputs\details-
expand.input.txt.

{
 Profile uxProfile = null;

 //add the <<screen>> stereotype to the class
 //first ensure that the profile has been applied to the model
 Class detailsClass = (Class)value.getValue();
 for (Iterator iter =
detailsClass.getModel().getProfileApplications().iterator();iter.hasNext(
);)
 {
 ProfileApplication profileAppl = (ProfileApplication)
iter.next();
 Profile profile = (Profile) profileAppl.getAppliedProfile();

12 - 8 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

 if(profile.getName().compareTo("UXModeling") == 0)
 {
 uxProfile = profile;
 break;
 }
 }
 if(uxProfile != null)
 {
 //since the profile has been applied to the model, we can add
the stereotype
 //to the class
 Stereotype screen =
detailsClass.getAppliedStereotype("UXModeling::screen");
 //if the stereotype has not been applied...
 if(screen == null)
 {
 screen =
detailsClass.getApplicableStereotype("UXModeling::screen");
 detailsClass.applyStereotype(screen);
 }
 }
 //add a display stereotype to each attribute for the class
 for(Iterator iter =
detailsClass.getOwnedAttributes().iterator();iter.hasNext();)
 {
 //add the stereotype to each attribute
 Property prop = (Property)iter.next();
 Stereotype display =
prop.getAppliedStereotype("UXModeling::display");
 //if the stereotype has not been applied...
 if (display == null)
 {
 display =
prop.getApplicableStereotype("UXModeling::display");
 prop.applyStereotype(display);
 }

 }
 return true;
}
2. Right-click in the editor and select Source > Organize Imports. When prompted to choose

imports:

• For Iterator, select java.util.Iterator.

• For Profile, select org.eclipse.uml2.uml.Profile.

3. Add in an import statement to the class as follows:

import org.eclipse.uml2.uml.Class;

4. Select File > Save All.

5. Use the following code to replace the code found in the public boolean
expand(PatternParameterValue value) of the ListScreen class:

TIP: The following code can be copied from C:\Workshop\Labs\Inputs\listscreen-
expand.input.txt

{

© Copyright IBM Corp. 2007 12 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

 Profile uxProfile = null;
 //add the <<screen>> stereotype to the class
 //first ensure that the profile has been applied to the model
 Class listClass = (Class)value.getValue();
 for (Iterator iter =
listClass.getModel().getProfileApplications().iterator();iter.hasNext();)
 {

 ProfileApplication profileAppl = (ProfileApplication)
iter.next();
 Profile profile = (Profile) profileAppl.getAppliedProfile();

 if(profile.getName().compareTo("UXModeling") == 0)
 {
 uxProfile = profile;
 break;
 }
 }
 if(uxProfile != null)
 {
 //since the profile has been applied to the model, we can add
the stereotype
 //to the class
 Stereotype screen =
listClass.getAppliedStereotype("UXModeling::screen");
 //if the stereotype has not been applied...
 if(screen == null)
 {
 screen =
listClass.getApplicableStereotype("UXModeling::screen");
 listClass.applyStereotype(screen);
 }
 }
 //create an associated <<input>> class that will allow for entry of
search parameters
 //use {class}Form as the name of the input class

 //TODO : time permitting - add logic to ensure that the class does
not already exist
 String theResultsName = listClass.getName() + "Results";
 //now create a new class in the same package with theFormName
 Package theTargetPackage = listClass.getPackage();
 //add a relationship between {class} class and {class}Form class
 Class newClass =
(Class)theTargetPackage.createPackagedElement(theResultsName,
UMLPackage.eINSTANCE.getClass_());

 //add a stereotype to the new class
 Stereotype input =
newClass.getApplicableStereotype("UXModeling::list");
 newClass.applyStereotype(input);

 //add a composite relationship from the the input class to the
screen class
 AbstractPatternInstance instance = (AbstractPatternInstance)
value.getOwningInstance();

 instance.ensureDirectedAssociation(listClass, newClass,"creates
record list",AggregationKind.COMPOSITE_LITERAL,1,1);

12 - 10 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

 return true;
}
6. Right-click in the editor and select Source > Organize Imports. When prompted to choose

imports:

• For AbstractPatternInstance, select
com.ibm.xtools.patterns.framework.uml2.AbstractPatternInstance

• If asked, for Class, select org.eclipse.uml2.uml.class

• If asked, for Iterator, select java.util.Iterator.

7. Add the following import statement to the class:

• import org.eclipse.uml2.uml.Package;

8. Select File > Save All.

9. Use the following code to replace the code found in the public boolean
expand(PatternParameterValue value) of the SearchScreen class:

TIP: The following code can be copied from
C:\Workshop\Labs\Inputs\searchscreen-expand.input.txt.

{
 //this code checking for the profile should be genericized and added
 //to the utility class
 Profile uxProfile = null;

 //add the <<screen>> stereotype to the class
 //first ensure that the profile has been applied to the model
 Class searchClass = (Class)value.getValue();
 for (Iterator iter =
searchClass.getModel().getProfileApplications().iterator();iter.hasNext();)
 {

 ProfileApplication profileAppl = (ProfileApplication) iter.next();
 Profile profile = (Profile) profileAppl.getAppliedProfile();

 if(profile.getName().compareTo("UXModeling") == 0)
 {
 uxProfile = profile;
 break;
 }
 }
 if(uxProfile != null)
 {
 //since the profile has been applied to the model, we can add the
stereotype
 //to the class
 Stereotype screen =
searchClass.getAppliedStereotype("UXModeling::screen");
 //if the stereotype has not been applied
 if(screen == null)
 {
 screen =
searchClass.getApplicableStereotype("UXModeling::screen");
 searchClass.applyStereotype(screen);
 }

 //create an associated <<input>> class that will allow for entry of
search
 // parameters use {class}Form as the name of the input class

© Copyright IBM Corp. 2007 12 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

 //time permitting - add logic to ensure that the class does not
already
 //exist
 String theFormName = searchClass.getName() + "Form";
 //now create a new class in the same package with theFormName
 Package theTargetPackage = searchClass.getPackage();
 //add a relationship between {class} class and {class}Form class
 Class newClass =
(Class)theTargetPackage.createPackagedElement(theFormName,UMLPackage.eINSTANCE.ge
tClass_());

 //add a stereotype to the new class
 Stereotype input =
newClass.getApplicableStereotype("UXModeling::input");
 newClass.applyStereotype(input);

 //add a composite relationship from the the input class to the
screen class
 AbstractPatternInstance instance = (AbstractPatternInstance)
value.getOwningInstance();

 instance.ensureDirectedAssociation(searchClass,
newClass,"contained",AggregationKind.COMPOSITE_LITERAL,1,1);
 }

 return true;
}
10. Select File > Save All.

11. Review.

Task 3: Customize Update Methods

In this task, you will add code to the Update methods of the pattern to customize the behavior of the
pattern in cases where there is a dependency between the pattern parameters.

1. Use the following code to replace the code found in the public boolean
update(PatternParameterValue value, PatternParameterValue
dependencyValue) of the ListScreen.ListScreen_DetailsScreenDependency class:

12 - 12 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

Figure 12-8: Update method for the ListScreen.ListScreen_DetailsScreenDependency

TIP: You can copy the following code from
C:\Workshop\Labs\Inputs\detaildependency-expand.input.txt.

{
 //at this point we know the list screen and the details screen.
 //create a directed relationship between them.
 Class listClass = (Class)value.getValue();
 Class displayClass = (Class) dependencyValue.getValue();
 AbstractPatternInstance instance =
(AbstractPatternInstance)value.getOwningInstance();
 instance.ensureDirectedAssociation((Class)value.getValue(),"creates record
list", (Class)dependencyValue.getValue(), "displays list");

 return true;
}
1. Select File > Save All.

2. Use the following code to replace the code found in the public boolean
update(PatternParameterValue value, PatternParameterValue dependencyValue) of the
SearchScreen.SearchScreen_ListScreenDependency class:

TIP: You can copy the following code from
C:\Workshop\Labs\Inputs\listdependency-expand.input.txt.

{
 //check if the association exists, if not then create it.
 Class listClass = (Class)value.getValue();

© Copyright IBM Corp. 2007 12 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

 Class searchClass = (Class) dependencyValue.getValue();

 AbstractPatternInstance instance = (AbstractPatternInstance)
value.getOwningInstance();
 instance.ensureDirectedAssociation((Class)value.getValue(),"resultscontaine
dBy", (Class)dependencyValue.getValue(), "generatesSearchCriteria");

 return true;
}
3. Select File > Save All.

4. Fix any compiler errors.

5. Select File > Save All.

6. Review.

Task 4: Test the Pattern

In this task, you will test the pattern that we’ve created. Note that the pattern depends on the
UXModeling profile that we created earlier.

1. Import the project interchange file that contains the UXProfile:

• Select File > Import.

• Replace type filter text with Project. Select Project Interchange and then click
Next.

• Click Browse and navigate to C:\Workshop\Labs\Inputs and select
CreateUXModelingProfile.zip.

• Click Select All.

• Click Finish.

2. Open the plugin.xml file from within the Struts project.

3. On the Overview tab, click the Launch an Eclipse Application link.

12 - 14 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

Figure 12-9: Launching the runtime workbench

The remaining steps are performed in the run-time workbench where we will test the pattern by
applying it.

1. Create a new UML Model Project. Select File > New Project. Replace type filter text with
UML. Select UML Project. Click Next.

2. Specify PatternTest as the Project name. Click Next.

3. Select Blank Model as the Template.

4. Specify PatternTestModel as the File name. Click Finish.

5. Apply the UXModeling profile to the model.

© Copyright IBM Corp. 2007 12 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 12-10: Assigned the profile to the model

6. Click OK when informed that the profile being applied has not yet been released.

7. Add the following classes to the model

• Music

• MusicDetails

• MusicList

• Add the following operation to the Music class

• logoff()

• Add the following attributes to the MusicDetails class:

• artist : String

• recordingDate : String

• genre : String

• rating : String

• Add the following attributes to the MusicList class:

• artist : String

• rating : String

8. Apply stereotypes to the classes, attributes, and operations as shown in the diagram below:

12 - 16 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

Figure 12-11: Classes to use as parameters for the pattern

4. Apply the Master Detail pattern using the classes shown above as parameters.

• Add a new Class Diagram to the model. Name the diagram Music-MasterDetail.

• Drag the Master-Detail Pattern from the pattern explorer to the Music-
MasterDetail class diagram in the Diagram Editor.

© Copyright IBM Corp. 2007 12 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 12-12: Pattern instance within the class diagram

• Drag the Music class from the Model Explorer to the Search Screen parameter of the
Master-Detail pattern

• Drag the MusicList class from the Model Explorer to the List Screen parameter of
the Master-Detail pattern

• Drag the MusicDetails class from the Model Explorer to the Details Screen
parameter of the Master-Detail pattern.

12 - 18 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 12 – Create the Master Detail Pattern

Figure 12-13: Classes bound to the pattern

• Drag the following classes from the Model Explorer to the Music-MasterDetail class
diagram:

i. Music

ii. MusicList

iii. MusicDetails

iv. MusicForm

v. MusicListResults

5. Within the class diagram, select all of the elements.

6. On the toolbar, click Arrange All .

7. The results should appear as follows:

© Copyright IBM Corp. 2007 12 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 12-14: Resulting classes as bound and generated by the pattern

Task 5: Extra Challenges

If time permits during the class, or as a practice challenge for after the class, complete the following tasks.

1. Enhance the pattern so that any attributes in the List Screen parameter get moved from the List
Screen to the List Results class that is created. In addition, each attribute in the new class should
have a «display» stereotype applied.

2. Enhance the pattern so that any attributes in the Search Screen parameter get moved from the
Search Screen to the {class}Form class that is created. In addition, each attribute in the new class
should have a «textfield» stereotype applied.

3. Refactor and simplify the code.

4. Complete the pattern customization by coding the behavior that should occur when a parameter is
removed from the pattern.

TIP: The necessary code should end up in the remaining Update and Expand methods.

12 - 20 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 – Create a Pluglet

Objectives

After completing this lab, you will be able to:

► Create and switch to a new workspace

► Customize a perspective

► Import and export shared projects using Project Interchange

► Create and test a simple pluglet

Given

The following lab artifacts can be found in the Inputs folder for this lab:

► A project interchange file that has a Pluglet project started (PlugletProject.zip)

► DiagramLister Code Fragment.txt

Scenario

In this lab, your team wants the capability to select a package in the Project Explorer and produce a listing of
the package hierarchy, including any diagrams in each package. The team will use one of the extensibility
features of IBM Rational Software Architect, known as a Pluglet. Another team member has partially
implemented the pluglet, and it is being shared with you for completion.

You will start by creating a new workspace so that you will have a clean area in which to perform your
development. Next you will need to configure a perspective, which allows you to control key aspects of the
perspective (including available submenu options and actions sets associated with the toolbar and menu bar).
Then, you will import the project to begin working on it.

Finally, you want to share your completed pluglet back with the other team members. Exporting your projects
using Project Interchange will maintain the entire project structure and dependents.

© Copyright IBM Corp. 2007 13 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 1: Create the Workspace

In this task, you will switch to a new workspace that you will create.

1. Start Rational Software Architect.

2. In the Workspace Launcher dialog, specify
C:\Workshop\StudentWork\CreateAPlugletWorkspace as the Workspace directory, as shown
below:

Figure 13-1: Making a new Workspace Directory

3. Click OK.

4. Close the Welcome screen.

Task 2: Configuring the Perspective

The steps in the task will guide you through activating pluglet projects and capabilities.

1. Ensure that you are in the Modeling perspective.

2. From the Window menu, select Customize Perspective.

3. In the Customize Perspective window, on the Shortcuts tab, be sure New is specified in the Submenus
list.

13 - 2 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 – Create a Pluglet

4. In the Shortcut Categories list, select Pluglets to enable the pluglet projects and pluglet capabilities.

Figure 13-2: Selecting Pluglets in the Shortcut Categories

5. In the right pane, select the Pluglet and Pluglets Project check boxes.

6. Click the Commands tab. In the Available command groups list, make sure Pluglets and Modeling are
selected.

7. Click OK.

Task 3: Import the Pluglet

You will import a project that contains a partially completed Pluglet.

1. From the File menu, select Import.

2. In the Import window, replace type filter text with project. Select Project Interchange and
click Next.

3. In the Import Project Interchange Contents dialog, click Browse and navigate to
C:\Workshop\Labs\Inputs.

4. Select PlugletProject.zip and click Open.

© Copyright IBM Corp. 2007 13 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

5. Click Select All to import all projects in the zip file.

Figure 13-3: Select projects to import

6. Click Finish.

Task 4: Complete the Pluglet

The steps in the task will guide you through completing the pluglet.

1. In the Project Explorer, navigate to the (default package) and open the DiagramLister class.

1. Review the partially completed pluglet, in particular the plugletmain method.

Figure 13-4: plugletmain method in DiagramLister class

13 - 4 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 – Create a Pluglet

3. Add the following method to the DiagramLister class (found in
C:\Workshop\Labs\Inputs\DiagramLister Code Fragment.txt).

/**
* Recursively navigate thru a package and lists out all of the diagrams in that
* package and its children
* @param object The select object
*
*/
private void findDiagrams(List elements)
{
//get the UMLDiagramHelper - a helper for using UML 2.0 notation-based diagram
IUMLDiagramHelper diagramHelper = UMLModeler.getUMLDiagramHelper();
// cycle thru selected element and its children
for (Iterator iter = elements.iterator(); iter.hasNext();) {
 Object object = iter.next();

//ensure that it's a package - check for its children and go deeper
 if (object instanceof Package)
 {
 org.eclipse.uml2.uml.Package pack = (org.eclipse.uml2.uml.Package)
object;
 List diagrams = diagramHelper.getDiagrams(pack);
 out.println();
 out.println(pack.getName() + " package contains the following
diagrams:");

 for (Iterator iterd = diagrams.iterator(); iterd.hasNext();)

{
 Diagram diagram = (Diagram)iterd.next();
 if(diagram != null)
 {
 out.println(diagram.getName() + " " + diagram.getType());
 }
 else
 {
 out.println("diagram was null");
 }
 }
 //get the children for this package and send recursively search it for
more diagrams
 findDiagrams(pack.getNestedPackages());
 }
}
}
4. Press Ctrl+S to save the changes.

2. From the Run menu, select Internal Tools > Internal Tools.

3. Choose Pluglet, click New and enter DiagramLister as the configuration name.

© Copyright IBM Corp. 2007 13 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4. Click Browse Workspace, select PlugletProject and DiagramLister.java, and then click OK.

Figure 13-5: Selecting the Pluglet

5. Click Apply, and then click Close.

Figure 13-6: Complete Run Configuration for the Pluglet

13 - 6 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 – Create a Pluglet

Task 5: Run the Pluglet

This task will test the pluglet you just created.

1. In the Project Explorer, open the ProfileTest model. A Confirm Enablement dialog appears. Click OK.

2. Navigate to the ProfileTest model.

3. From the Run menu, select Internal Tools > Internal Tools.

4. In the Configurations pane, select DiagramLister and click Run.

Figure 13-7: Select the Pluglet Configuration to Run. The console will display a list of the packages (and sub-
packages) along with the diagrams found within.

© Copyright IBM Corp. 2007 13 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 13-8: Console after the Pluglet has been run

TIP: Now that the system knows about the Pluglet, you can achieve subsequent runs of the pluglet by
clicking Run > Internal Tools > DiagramLister while a package is selected in the Model Explorer.

Figure 13-9: Internal Tools menu after the Pluglet has been run once

5. From the File menu, select Save All to save all the projects.

Task 6: Export the Pluglet

This task will allow sharing of the completed pluglet.

1. From the File menu, select Export.

2. In the Export window, select Project Interchange to export to a Zip format, and click Next.

13 - 8 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 13 – Create a Pluglet

3. In the Export Project Interchange Information window, click Select All.

4. Click Browse and navigate to the C:\Workshop\Labs\StudentWork directory.

5. Enter CreateAPlugletLab for the file name and click Save.

6. Click Finish.

© Copyright IBM Corp. 2007 13 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

13 - 10 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 – Create a UX Model Template

Objectives

After completing this lab, you will be able to:

► Create a UML Model Template that can be used in association with other Reusable Assets such
as profiles, patterns, and transformations

Given

► CreateUXModelingProfile.zip: A project interchange file containing a plug-in project
that hosts the UXModeling profile

► UX Model Template Note.txt: Instruction text included with the model template

Scenario

In this portion of the workshop, you will create a UML Model Template. This model template will
provide a person with a starting structure for their modeling activities in support of capturing details
related to UX modeling. In addition, you will add in some guidance on how to fill in the model using
the elements within the template.

© Copyright IBM Corp. 2007 14 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 1: Import the UXModeling Profile Plug-in Project

In this task, you will switch to, or create, a new workspace named
CreateAModelTemplateWorkspace, and import the UXModeling Profile plugin project.

1. Start Rational Software Architect or select Switch Workspace.

2. In the Workspace Launcher dialog, replace the displayed text with
C:\Workshop\StudentWork\CreateAModelTemplateWorkspace and click the OK
button.

3. Close the Welcome screen.

4. Switch to the Modeling perspective.

5. Select File > Import.

6. Select Project Interchange. Click Next.

7. Click Browse next to the From zip file field.

8. Navigate to the C:\Workshop\Labs\Inputs folder and select
CreateUXModelingProfile.zip. Click Open.

9. Click Select All and then click Finish.

10. Open the UXProfilePlug-in model.

Task 2: Create the Base Model
In this task, you will create the base model for the template. You create it much like any other model in
Rational Software Architect; the major difference is in the intent. Rather than designing a software
solution, you want to create a model that guides others in designing software solutions.

1. Create a new UML Project.

a. Click File > New > Project.

14 - 2 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 – Create UX Model Template

b. In the New Project dialog, replace type filter text with UML and then select UML
Project, and then click Next.

Figure 14-1: Create a UML Project

c. Name the project UXModel Template Project. Click Next.

d. From the Templates section, select Blank Model.

TIP: In this case you are starting with a Blank Model as you create your template. However,
you can select one of the existing templates as the starting point for your own custom template.

e. Enter UX Model as the File name. Then click Finish.

© Copyright IBM Corp. 2007 14 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 14-2: Specify model to add to the project

f. Select File > Save All.

TIP: The Ctrl-Shift-S keyboard shortcut will also Save All.

Task 3: Create Model Structure

In this task, you will create a set of model elements to be copied and reused as a template.

1. In Project Explorer, create the following package structure within the UX Model model:

TIP: Apply required stereotypes from the Properties view.

14 - 4 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 – Create UX Model Template

Figure 14-3: Package structure for the template

1. Within the UseCase Storyboards package, add a collaboration, a sequence diagram, and a class
diagram:

• Right-click UseCase Storyboards and select Add Diagram > Sequence Diagram.
Note that this adds the containing collaboration for us automatically.

TIP: Work with the Models in Project Explorer to change model properties.

• Rename the collaboration to «use-case storyboard» ${use-case name}. Note
that «use-case storyboard» is a keyword, not a stereotype.

Figure 14-4: Specifying the keyword

TIP: Work with the Diagrams in Project Explorer to change diagram properties.

• Rename the interaction Basic Flow.

• Rename the sequence diagram Basic Flow.

• Right-click the collaboration and select Add Diagram > Class Diagram.

© Copyright IBM Corp. 2007 14 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

• Rename the class diagram Participants.

Figure 14-5: Building blocks

2. Right-click UX Model and select Add UML > Package. Name the package UX Specification
Viewpoints.

3. Add two packages to the UX Specification Viewpoints package, and then name them and apply their
Stereotypes as follows:

• «perspective» Screens

• «perspective» Storyboards

4. Select the freeform diagram, named Main, within the «perspective» Screens package and
name it Screens – Overview.

5. Select the freeform diagram, named Main, within the «perspective» Storyboards package
and name it Storyboards – Overview.

6. Select the freeform diagram, named Main, within the UX Model top level element and rename it
Template – Instructions.

7. Delete all of the remaining default Main diagrams that have been created.

14 - 6 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 – Create UX Model Template

Figure 14-6: Completed model template structure.

8. Save All.

Task 4: Add Documentation

In this task, you’ll add some brief documentation for the user.

1. Open the Template – Instructions Diagram.

1. Add two note elements to the diagram, then size and position them as shown in the screen capture
below:

© Copyright IBM Corp. 2007 14 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 14-7: Layout for the note elements.

2. Add the following text to the top note:

UX Model Template

3. Add the following text to the bottom note:

TIP: This text can be found at C:\StudentWork\Labs\Inputs\ UX Model Template
Note.txt.

This model contains two main types of packages:

1. A set of reusable packages and diagrams that should be used to set
up your model. You will find these elements in the «modelLibrary» UX
Building Blocks package.

2. A set of <<perspective>> packages that will contain diagrams that
will provide additional viewpoints on how the specified services are
composed, consumed and behave. Additional <<perspective>> packages
should be added if new audiences or viewpoints need to be addressed.
No semantic elements should reside in these packages - just packages
and diagrams.

Users of this model can double-click the diagram links to navigate
through the main areas of the specification. Update the links as
necessary based on any adjustments that you make to the model
structure.

WHEN YOU NO LONGER NEED THESE INSTRUCTIONS:

1. Delete this note from the diagram.

4. Add links to the «perspective» diagrams:

14 - 8 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 – Create UX Model Template

• From the Project Explorer, drag the Screens – Overview diagram to the Template –
Instructions diagram in Diagram Editor.

• From the Project Explorer, drag the Storyboards – Overview diagram to the
Template – Instructions diagram in Diagram Editor.

Figure 14-8: Completed Template – Instructions diagram.

5. Save All.

Task 5: Add the Model as a Template to the UXModeling Profile Plug-in

TIP: At this point, you have a model template that can be reused within your Workspace. For re-
use elsewhere, this project can be exported as a Project Interchange and then imported to
another Workspace.

In this task you’ll add the model as a template to the UXModeling Profile plug-in.

1. Switch to the Plug-in Development perspective.

1. Select the UXModelingPlug-in project.

2. Add a folder to the project and name it modeltemplate.

3. Click File > New > Other and choose UML Model.

4. Click Next and select the Existing Model radio button.

5. Click Next and Browse for the model file and Destination folder shown. Enter UX Model
Template as the File name.

© Copyright IBM Corp. 2007 14 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

 Figure 14-9: Completed UML Model Creation dialog.

6. Click Finish. Choose OK if a Java Modeling enablement dialog appears.

7. Close the UXModel Template Project project. You will work strictly with the model template added
to the UXModelingPlug-in project.

8. Open the plugin.xml file associated with the UXModelingPlug-in project.

9. Select the build tab.

10. In Binary Build, select the box corresponding to the modeltemplate folder.

14 - 10 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 – Create UX Model Template

Figure 14-10: Build tab contents after selecting modeltemplate folder.

11. Save All.

Task 6: Apply Profile to the Model Template
In this task, you will apply the UXModeling profile to your model template. This way, when someone
uses the model template, the profile will already be applied for them. Configure a Run-time workbench
to use in applying the profile to your model template.

1. Open the plugin.xml file.

1. Select the Overview tab of the plugin.xml file in the manifest editor.

2. Click Launch an Eclipse application.

© Copyright IBM Corp. 2007 14 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 14-11: Launching a Run-time Workbench configuration.

3. Close the Welcome screen if it appears.

4. Switch to the Modeling perspective in the Run-time workbench.

5. Create a new UML Project, named Test, and add a blank model to the project. Blank Model
is fine for the File name.

6. Delete the model from the project.

7. Select File > Import.

8. Select File system. Click Next.

9. Click Browse and navigate to C:\Workshop\StudentWork\
CreateAModelTemplateWorkspace\UXProfilePlug-in. Click OK.

10. Select UX Model Template.emx. Ensure that the Into folder matches the name of the UML
Project created previously.

14 - 12 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 – Create UX Model Template

Figure 14-12: Importing the model file for the template.

11. Click Finish.

12. Double-click UX Model Template.emx to open the model.

13. Open the model in the Project Explorer view.

14. In the Properties view, select the Profiles tab

15. Click Add Profile.

16. Select the UXModeling profile. Click OK.

© Copyright IBM Corp. 2007 14 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 14-13: Specifying the profile.

17. Save All.

18. Close the runtime workbench.

19. Switch to the host workbench.

20. Delete the existing copy of the model template, UX Model Template.emx, found in
UXProfilePlug-in.

21. Select File > Import.

22. Select File system. Click Next.

23. Click Browse and navigate to C:\Workshop\StudentWork\runtime-
EclipseApplication\Test. Click OK.

24. Select UX Model Template.emx. Ensure that the Into folder is set to UXProfilePlug-in.

14 - 14 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 14 – Create UX Model Template

Figure 14-14: Importing the template back into the plug-in project.

25. Click Finish.

TIP: To double-check that you have a valid reference from the model template to the profile,
you can open the emx file in a text editor and confirm that the pathmap is being used.

TIP: Model templates can be contributed via plug-ins by using the
com.ibm.xtools.modeler.ui.wizards.template extension point. By contributing
in this way, the user will no longer need to find the location of the template on disk. Instead, the
newly registered template will show up in the Creation wizard with the other templates (for
instance, Analysis, EJB, WSDL, Use Case, Blank, and so on).

© Copyright IBM Corp. 2007 14 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

14 - 16 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 – Package Reusable Assets

Objectives

After completing this lab, you will be able to:

► Package a RAS asset that contains a profile, pattern, model template, and a transformation

► Import the RAS assets

Given

► A project interchange file, UXPackaging.zip, which contains the reusable assets that we are
going to package and deploy.

► UXTransformationTest.zip

Scenario

In this portion of the workshop, you will create a RAS asset that contains the reusable assets that you
have created during the course, including a profile, pattern, model template, and transformation. Once
you have packaged these artifacts as RAS assets, you will test the import of the assets in Rational Software
Architect.

Task 1: Create the Workspace

In this task, you will switch to a new workspace named PackagingWorkspace that you will create.

1. From the File menu, select Switch Workspace.

2. In the Workspace Launcher window, replace the displayed text with
C:\Workshop\StudentWork\PackagingWorkspace and click the OK button.

3. Close the Welcome screen.

Task 2: Create a RAS Repository

In this task you will create a Repository that will be used to manage RAS assets.

1. Switch to the RAS (Reusable Assets) perspective.

2. Set up a local repository:

• If necessary, open the RAS Asset Explorer by clicking Window > Show View > Other > RAS >
Asset Explorer.

© Copyright IBM Corp. 2007 15 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

• In the Asset Explorer, add a new Local Repository and click Next.

Figure 15-1: New Repository Connection Dialog

3. Accept the default Repository Name and Repository Location. Then click Finish.

Task 3: Import Reusable Assets
In this task, you will import the reusable assets that we want to package.

1. Switch to the Plug-in Development perspective.

2. Select File > Import.

3. Select Project Interchange. Click Next.

4. Click Browse and select UXPackaging.zip from the C:\Workshop\Labs\Inputs directory.
Click Select All. Then click Finish.

5. Quickly review the artifacts as shown within the Package Explorer view.

15 - 2 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 – Package Reusable Assets

Figure 15-2: Imported elements within the Package Explorer

Task 4: Create a Feature
In this task, you will create an Eclipse Feature that will be associated with the plug-in which contains the
reusable asset that we’ve built.

1. Select File > New > Project.

2. Select Feature Project. Click Next.

© Copyright IBM Corp. 2007 15 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 15-3: Create a new feature project

3. Enter com.ibm.workshop.ux.feature as the Project name and accept the defaults on the
Feature Properties dialog. Click Next.

4. Select UXToWeb (1.0.0) and Struts (1.0.0) as the Referenced Plug-ins. Click Finish.

15 - 4 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 – Package Reusable Assets

Figure 15-4: Select the plug-ins that the feature should reference

TIP: The feature.xml file is opened by default in the manifest editor. When distributing
your own assets, you will want to enter details on the Information tab corresponding to a
description of the asset, copyright information, and licensing details.

5. Select File > Save All.

Task 5: Deploy as a RAS Asset

In this task you will package up the feature and associated plug-in project as a RAS asset.

1. Open the plugin.xml file for the UXToWeb plug-in project.

2. In the manifest editor, switch to the Build tab.

3. Confirm that the Binary Build section matches that shown below:

© Copyright IBM Corp. 2007 15 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 15-5: Binary Build section of the Build tab within the plugin.xml file for the UXToWeb project

4. Select File > Save All.

5. Open the plugin.xml file for the Struts plug-in project.

6. Confirm that the Binary Build section matches that shown below:

15 - 6 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 – Package Reusable Assets

Figure 15-6: Binary Build section of the Build tab within the plugin.xml file for the Struts project

7. Select File > Save All.

8. On the File menu, click Export.

9. Select RAS Asset and then click Next.

10. In the Destination field, select Repository. Select My Local Repository from the Repository menu.

© Copyright IBM Corp. 2007 15 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 15-7: Setting Location and Manifest for RAS Asset

11. Click Next.
12. Enter a description and name for the asset. Click Next.

15 - 8 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 – Package Reusable Assets

Figure 15-8: Description for the RAS asset

13. Choose com.ibm.workshop.ux.feature as the resource to export, and ensure that Export as

a deployable feature, fragment or plug-in is selected.

© Copyright IBM Corp. 2007 15 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 15-9: Description for the RAS asset

14. Click Finish.
15. Click OK on the Export was successful dialog.

TIP: You can ignore the displayed warnings, as they just point out that RAS is not familiar with
some of the file extensions used. Click OK to dismiss the warnings.

Task 6: Import the RAS Asset
In this task, you will import the RAS asset that contains the reusable assets. Perform a quick test once
you have imported the asset.

1. Switch to the Reusable Asset perspective.

2. Import:

• Right-click inside the Asset Explorer and click Refresh.

15 - 10 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 – Package Reusable Assets

• Select the UXToWeb asset, right-click and choose Import.

Figure 15-10: Import the RAS asset

• Click OK, when told about the plug-in that it will install.

• Click Next to confirm the asset being imported.

• Accept the terms of the license agreement. Click Finish.

• Click OK when presented with the Import Results.

• Click Yes if prompted to restart Rational Software Architect.

Task 7: Verify the install of the RAS Asset
In this task, you will verify that the reusable assets that were contained within the RAS package were
installed.

1. Switch to the Modeling perspective.

2. Confirm that the assets were installed:

• Select Modeling > Transform > Configure Transformations.

• Ensure that UXToWeb Plug-in is available within the UXToWeb folder. Then click Close.

© Copyright IBM Corp. 2007 15 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 15-11: UXToWeb Transformation listed in the Configure Transformations dialog

• Open the Pattern Explorer.

• Ensure that Master Detail exists within the My Struts Patterns folder.

15 - 12 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 – Package Reusable Assets

Figure 15-12: Master Detail pattern in the Pattern Explorer

• Select File > New > UML Model.

• Confirm that UX Model Template is available in the Templates list.

Task 8: Test the RAS Asset
In this task, you will use a sample model to test the asset.

1. Select File > Import.

2. Select Project Interchange.

3. Click Browse and navigate to C:\Workshop\Labs\Inputs and select
UXTransformationTest.zip.

4. Click Select All.

5. Click Finish.

6. Within the UXTestModel, navigate to the com.ibm.strutssample package and open the
Main diagram.

7. Review the stereotypes on the model elements to ensure that they match those shown in the screen
capture below:

© Copyright IBM Corp. 2007 15 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 15-13: Class diagram depicting elements in test model

1. Apply the pattern:

• Open the UXTestModel model

• Add the following classes to the com.ibm.strutssample package:

• MusicDetails

• MusicList

• Add the following attributes to the MusicDetails class:

• artist : String

• recordingDate : String

• genre : String

• rating : String

• Add the following attributes to the MusicList class:

• artist : String

• rating : String

2. The classes we will use with the pattern are Music, MusicDetails, and MusicList:

15 - 14 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 15 – Package Reusable Assets

Figure 15-14: Classes to use as parameters for the pattern

3. Apply the Master Detail pattern using the classes shown above as parameters.

• Add a new Class Diagram to the com.ibm.strutssample package. Name the diagram
Music-MasterDetail.

• Drag the Master-Detail Pattern from the Pattern Explorer and drop it on the Music-
MasterDetail class diagram within the Diagram Editor.

Figure 15-15: Pattern instance on class diagram

• Drag the Music class from the Model Explorer to the Search Screen parameter of the
Master-Detail pattern

• Drag the MusicList class from the Model Explorer to the List Screen parameter of
the Master-Detail pattern

• Drag the MusicDetails class from the Model Explorer to the Details Screen
parameter of the Master-Detail pattern.

© Copyright IBM Corp. 2007 15 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 15-16: Classes bound to the pattern

• Drag the following classes from the Model Explorer to the Music-MasterDetail class
diagram:

i. Music

ii. MusicList

iii. MusicDetails

iv. MusicForm

v. MusicListResults

4. The results should appear as follows:

Figure 15-17: Pattern instance, parameters and generated elements

15 - 16 © Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Lab 16: Running a GMF Editor
Run Pre-built GMF generated Editor for the Console’s Input XML File

Objectives

After completing this lab, you will be able to:

► Understand what a GMF editor can look like and how it behaves

Given

This lab is based on the ongoing Console transformation example. All of the projects that are used are imported into
an empty workspace.

Scenario
In the EMF Lab, you built an EMF API for the XML file used as an input for the JET Console transformation. You
also built a simple non-graphical editor.

In this lab, you use a GMF-generated editor to edit the Console transformation’s input file. The next lab walks
through the steps to run a pre-built GMF editor.

Figure 16-1: A specialized Console editor

Task 1: Create and Prepare the Workspace
You will load the pre-built editor projects into an empty Workspace.

1. Open Rational Software Architect with a new workspace for this lab, such as “c:\GMF Demo Workspace”.

2. Open the Preferences window (select menu Window > Preferences). Expand the General option and select
Capabilities. Find Development (or Eclipse Developer) in the Capabilities list and make sure that the
checkbox is selected. If the checkbox is empty or is filled in with a square, click it until you see a check mark.
This enables all of the Eclipse Developer capabilities, which includes EMF.

© Copyright IBM Corp. 2007 16 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 16-2: Enabling the Eclipse Developer capabilities
3. Click OK when you are done.

4. Import all of the projects from the Project Interchange file GmfSolutionPI.zip.

Task 2: Run the Editor
In this task, you will run the generated editor.

1. In Navigator or Package Explorer, right-click the project named lab.console.input.diagram and select
Run As > Eclipse Application. Then wait for a new instance of Rational Software Architect to launch.

2. In the new instance of Rational Software Architect, create a simple project named console.diagram.test.

16 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 16 – Running a GMF Editor

Figure 16-3: Creating a simple Project

3. Right click the new project name and select New > Other. Select the Input Diagram wizard and click Next.

4. Accept the default of default and click Finish.

5. default.input_diagram should be opened in an editor that looks like the following.

Figure 16-4: Viewing default.input_diagram in the editor
6. To add a new Console, click Console in the Palette and then click the drawing surface. Name the new Console

MyConsole. Open up the properties for MyConsole and set the Package to my.console.

© Copyright IBM Corp. 2007 16 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 16-5: Setting the Package property for MyConsole
7. In the Diagram editor, expand the node for MyConsole so that there is room to work within the compartment.

Figure 16-6: Expand the compartment within MyConsole
8. To add a child Command, click Command in the Palette and then click in the compartment in MyConsole.

Name the Command echo.

9. Click Arg in the Palette and then in the compartment inside of echo Command to add an argument. Give the
new Arg a label of text:String. Open the Properties of the Arg and you should see that the Name is text
and the Type is String.

16 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 16 – Running a GMF Editor

Figure 16-7: Viewing the properties of the Arg element.
10. Add any other Consoles, Commands, and Args that you want.

11. In order to test the transformation, save and close your diagram.

12. It’s easier to test the existing transformation if the file has an XML extension, so rename default.input to
default.input.xml.

13. Right-click default.input.xml and select Run As > Input for JET Transformation. In the Properties
page that appears, select lab.console.transform as the ID. Then click OK to run the transformation.

© Copyright IBM Corp. 2007 16 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 16-8: Selecting the transformation to run.
14. The project MyConsole Console (and any other consoles in that you defined) are generated.

15. Close the second instance of Rational Software Architect when you are done testing.

16 - 6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17: Building a GMF Editor
Build a GMF Editor for the Console’s Input XML File

Objectives
After completing this lab, you will be able to:

► Create a custom Graphical Editor using GMF to edit an XML file.

Given

► This lab continues at the end of the EMF Lab.

Scenario

In the EMF Lab, you built an EMF API for the XML file used as an input for the JET Console transformation. You
also built a simple non-graphical editor.

In this lab, you use GMF to build a graphical editor for the Console input file. The result will look like the
following.

Figure 17-1: A view of the completed GMF editor for the console example

Task 1: Create and Prepare the Workspace
If you decide to use the results of the EMF Console lab, simply open that Workspace and skip the rest of this task.
Otherwise, you will create a new workspace and import existing projects into it in this task.

1. Open Rational Software Architect with a new workspace for this lab, such as “c:\GMF Lab Workspace”.

2. Open the Preferences window (select menu Window > Preferences). Expand the General option and select
Capabilities. Find Development (or Eclipse Developer) in the Capabilities list and make sure that the
checkbox is selected. If the checkbox is empty or is filled in with a square, click it until you see a check mark.
This enables all of the Eclipse Developer capabilities, which includes EMF.

© Copyright IBM Corp. 2007 17 - 1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 17-2: Enabling the Eclipse Developer capabilities
3. Click OK when you are done.

4. Import all of the projects from the Project Interchange file EMFLabSolutionPI.zip.

Task 2: Create GMFGraph
A GMFGraph Model is a model file (with the extension GMFGraph) which defines the graphical elements of a
GMF editor. For example, it defines how nodes and relationships are drawn.

1. Within the lab.console.input project, right-click model\Input.ecore and select New > Other. Select
the GMFGraph Simple Model wizard and select Next. Note, do NOT select the GMFGraph Model.

Figure 17-3: Selecting GMFGraph Simple Model
2. A default filename of Input.gmfgraph should already be filled in, so click Next.

3. The Input.ecore file that you right-clicked should already be highlighted as the input Domain Model, so
click Next.

4. Set the Graphical Definition page options as shown below. In particular, the Diagram element should be set to
Root. It is the element in the model that corresponds to the entire diagram. In the Domain model elements to
process grid, the first checkbox column indicates which Classes in the model will be drawn as nodes in the
generated diagram editor. In this example, Consoles and Commands will be drawn as nodes. The second
column indicates which classes and relationships will be drawn as links. In this example, you aren’t using any
links, so none are checked. The final column indicates what labels are needed for nodes and links. You do
want a label for Arg elements, but it isn’t a node label, so you will manually add it shortly.

17 - 2 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

Figure 17-4: Graphical Definition Wizard Settings
5. Finally, click Finish. The new file Input.gmfgraph is created and opened.

Task 3: Refine the Generated GMFGraph
In this task, you will fine tune the code generation settings and generate the code. The following illustration shows
some of the graphical elements that you need.

© Copyright IBM Corp. 2007 17 - 3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 17-5: The graphical elements you will need in your editor

The wizard created a node and a label for the Console and Command nodes. You need to create a label for the Arg
elements and compartments for the Command and Arg elements.

1. Make sure that the file Input.gmfgraph is open. You should see an editor like the one pictured below. If you
just see a text file, go back to Task 1 and make sure that your workspace has the Development capabilities
turned on.

Figure 17-6: The input.gmfgraph in its editor
2. The Figures Gallery defines low level graphical elements, such as square nodes, elliptical nodes and so on.

You need to add a label figure for the Argument label. Right-click Figure Gallery Default and select New
Child > Label.

3. Right-click the newly added label (which is nested under Figure Gallery Default) and select Show Properties
View. In the Properties view, set the name of the label to ArgLabelFigure. You should now see the
following:

Figure 17-7: The updated Label element

17 - 4 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

4. The elements that are in the Canvas Input node are higher-level logical graphical constructs that reference the
lower level (physical definition) Figure Gallery elements. You need to add a logical Argument Label that
references the physical ArgLabelFigure. Right-click Canvas Input and select New Child > Labels
Diagram Label. In the Properties view for the new label, set Element Icon to false, because you don’t want
an icon for the arguments. Set the Figure to Label ArgLabelFigure, which is the link to the low
level/physical label from the gallery. Set the Name to ArgLabel.

Figure 17-8: Name is updated to ArgLabel
5. Next, you need to define the compartment within the Console node which holds Commands. Right-click

Canvas Input and select New Child > Compartment. Set Collapsible to true which means that the
compartment can be collapsed and expanded. Set Figure to Rectangle ConsoleFigure, which is the figure
node which will contain this compartment. Set the Name to CommandCompartment. Leave Needs Title set to
false.

6. Likewise, add another compartment definition for the Argument compartment within the Command node.
Right-click Canvas Input and select New Child > Compartment. Set Collapsible to true, Figure to
Rectangle ConsoleFigure, and Name to ArgCompartment.

7. Save and close the GMFGraph editor.

Task 4: Create GMFTool
A GMFTool Model is a model file (with the extension GMFTool) which defines the tools that are available in the
GMF editor. Tools include menus, context menus and the toolbar palette. The GMFTool wizard creates a default
toolbar palette.

1. Within the lab.console.input project, right-click model\Input.ecore and select New > Other. Select
the GMFTool Simple Model wizard and select Next. Note, do NOT select the GMFTool Model.

Figure 17-9: Selecting GFMTool Simple Model
2. A default filename of Input.gmftool should already be filled in, so click Next.

3. The Input.ecore file that you right-clicked should already be highlighted as the input Domain Model, so
click Next.

© Copyright IBM Corp. 2007 17 - 5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

4. Set the Tooling Definition page as shown below. In particular, the Diagram element should be set to Root. It
is the element in the model that corresponds to the entire diagram. In the Domain model elements to process
grid, the first checkbox column indicates which Classes in the model need Node tools. In this example,
Consoles, Commands and Args need node tools. The second column indicates which classes and relationships
need link tools. In this example, you aren’t using any links, so none are selected. The final column is not
actually used for defining Tools.

Figure 17-10: Tooling Definition Wizard Settings
5. Finally, click Finish. The new file Input.gmfgraph is created and opened.

Task 5: Create GMFMap
A GMFMap Model is a model file (with the extension GMFMap) which maps all the other GMF related files
together. Specifically, it maps the graphical elements (from GMFGraph) to the corresponding domain data (ecore)
and tools (GMFTool).

1. Within the lab.console.input project, right click model\Input.ecore and select New > Other. Select
the Guide GMFMap Creation wizard and select Next. Note, do NOT select the GMFMap Model.

17 - 6 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

Figure 17-11: Selecting Guide GMFMap Creation
2. A default filename of Input.gmfmap should already be filled in, so click Next.

3. The names of the Domain Model, Graphical Definition and Tooling Definition files should already be filled in
as shown below. Click the top right Load button (for the Domain Model), then the one below that (for the
Graphical Definition) and then the last one (for the Tooling Definition) in order to load the various files into the
wizard. Then click Next.

Figure 17-12: The GMFMap creation wizard
4. Specify that the Diagram Root Element is Root and click Next.

5. On the Mapping screen, you see a list of tentative Nodes and Links. To change a Node into a link, select it and
click the As Link button. To change a Link into a node, select it and click the As Node button. To
remove an element, select in and click the Remove button. In this case, you only want to see the root level
nodes. Specifically, select the extra Links and Nodes and remove them from the lists by clicking on Remove.
As a result, Console is the only Node and there are no Links.

© Copyright IBM Corp. 2007 17 - 7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 17-13: When specifying the Mapping, ensure that console is the only node
6. Click Finish. The new file Input.gmfmap is created and opened.

Task 6: Refine the Generated GMFMap
GMFGraph ties together the graphical elements, tooling elements and domain model elements together. In
particular, it is the final definition of the nodes, link, labels and compartments. In addition, the graphical
compartments are defined in the GMFGraph, but GMFMap defines the hierarchical structure of the compartments.

1. Make sure that the file Input.gmfmap is open.

2. Expand Input.gmfmap, then Mapping, then Top Node Reference so that you can see and select the Console
Node Mapping.

TIP: This defines a node for Consoles linking it to the graphical, domain, and tooling definitions.

17 - 8 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

3. Review the Properties view for the Console Node Mapping and make sure that the Domain meta
information > Element is EClass Console, the Visual representation > Diagram Node is set to Node
Console and that the Visual representation > Tool is set to Creation Tool Console.

Figure 17-14: Ensure that the properties are set as shown
4. Next, you need to add the label for the Console Node. Right-click the Console’s Node Mapping and select

New Child > Label Mapping. In the Properties, set the Diagram Label to Diagram Label ConsoleName
and set the Features to EAttribute name (using the popup dialog box from pressing ‘’ button).

Figure 17-15: The updated set of properties
5. Next, you need to add the compartment to the Console node. Right-click the Console’s Node Mapping and

select New Child > Compartment Mapping. In the Properties, set Visual representation > Compartment to
Compartment CommandCompartment.

© Copyright IBM Corp. 2007 17 - 9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 17-16: The updated set of properties
6. Next, add the nodes that can appear within the CommandCompartment. Right-click the Console’s Node

Mapping and select New Child > Child Reference. In the Properties view, set Compartment to
Compartment Mapping <CommandCompartment>, which indicates which compartment this new child is in
(the Command Compartment). Set Containment Feature to EReference command, which is the
Input.ecore defined containment element of Console’s which contain the nested (Command) elements.

7. To complete the nested Command node definition, right-click the new Child Reference and select New
Child > Node Mapping. In the Properties, set Domain meta information > Element to EClass Command,
Diagram Node to Node Command, and Tool to Creation Tool Command.

17 - 10 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

Figure 17-17: The updated set of properties
8. Add a Label Mapping to the Node Mapping <Command/Command> node by right-clicking it and adding a

child Label Mapping. Set its Diagram Label to Diagram Label CommandName and Features to
EAttribute Name.

Figure 17-18: The updated set of properties
9. Add a Compartment Mapping child to the Node Mapping <Command/Command> Node setting its

Compartment property to Compartment ArgCompartment.

© Copyright IBM Corp. 2007 17 - 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 17-19: The updated set of properties
10. Add a new ‘Child Reference’ child to the Node Mapping <Command/Command> Node. For its properties,

set the Compartment to Compartment Mapping <ArgCompartment> and set the Containment Feature to
EReference arg.

Figure 17-20: The updated set of properties
11. Right-click the new Child Reference <arg> and select New Child > Node Mapping. For the properties,

set Element to EClass Arg, Diagram Node to Diagram Label ArgLabel, and Tool to Creation Tool
Arg. Note how you set the Diagram Node to a label instead of a node.

17 - 12 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

Figure 17-21: The updated set of properties
12. Add a Label Mapping child to the new Node Mapping <Arg/ArgLabel> node. This label will be structured

differently then previously defined labels, because you want to show the name and the data type of the
argument in the label, such as “arg0:String’. For its properties, set the ‘Diagram Label’ to ‘Diagram Label
ArgLabel’. Set the Features to ‘EAttribute name’ AND ‘EAttribute type’ (in that order). Set the ‘View
Pattern’ to ‘{0}:{1}’ and set the ‘Edit Pattern to ‘{0}:{1}’. In the edit and view patterns, any instance of {0}
represents the first feature (which is name), any instance of {1} represents the second feature (which is type)
and so on.

© Copyright IBM Corp. 2007 17 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 17-22: The updated set of properties
13. All of the nodes, labels, and compartments are defined.

14. Select File > Save All.

15. Close the Input.GMFMap.

Task 7: Create GMFGen
The GMFGen file contains code generation settings for the various GMF files.

1. Within the lab.console.input project, right-click model\Input.gmfmap and select Create generator
model. Accept the default name of Input.gmfgen and click OK.

17 - 14 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

2. If you are prompted for the location of the genmodel file, select the input.genmodel file from the project.

Figure 17-23: Specifying the genmodel file
3. If you are prompted to use IMapMode, select Yes.

4. A new file named Input.gmfgen should be created in the model directory.

Figure 17-24: Update view of the files in the project

© Copyright IBM Corp. 2007 17 - 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Task 8: Refine the Generated GMFGen
By modifying Input.gmfgen you can change some of the behavior in the generated diagram editor.

1. Open lab.console.input/model/Input.gmfgen.

2. The default generated editor does NOT enable diagram printing. In order to enable diagram printing, expand
and find Gen Editor Generator lab.console.Input.diagram / GenDiagram RootEditPart / Gen Plugin
Input Plugin. In the Properties view for the Gen Plugin Input Plugin, set Printing Enabled to true.

Figure 17-25: Ensure that Printing Enabled is set to true

17 - 16 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

3. Compartments in the generated diagrams can use a List Layout style or a Freeform Layout. If it is List
Layout style, then the child elements are displayed in a vertical list. In Freeform Layout style, the user can
position the child nodes anywhere in the compartment. You want Freeform Layout for the Command
Compartment and List Layout style for the Arg Compartment. Find the Gen Compartment entries as
illustrated before. Make sure that List Layout is false for Gen Compartment
ConsoleCommandCompartmentEditPart and true for Gen Compartment
CommandArgCompartmentEditPart.

Figure 17-26: Set List Layout to false
4. Select File > Save All.

5. Close the Input.gmfgen file.

Task 9: Generate the Graphical Editor
All the pieces are finally in place to generate the Graphical Editor’s plugin and source code.

1. Within the lab.console.input project, right-click model\Input.gmfgen and select Generate diagram
code. A plug-in project named lab.console.input.diagram should be created/updated. It contains the
graphical editor.

2. Click OK.

Task 10: Refine the generated code
The code generated by the GMF generator is designed to work with base Eclipse. Rational Software Architect
leverages and extends the capabilities of basic GMF. In more advanced scenarios, it is possible to leverage the
additional power and capabilities of Rational Software Architect in your GMF based diagrams. However, there is
one minor incompatibility in using basic GMF-generated editors with Rational Software Architect, which is very
easily corrected.

© Copyright IBM Corp. 2007 17 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Note that if you do not do this task, all text labels that are in the resulting editor will not work correctly. For
example, if you attempt to change the name of a Console in the editor, it will fail to change and give an error
message.

1. In the generated diagram editor plugin, which is lab.console.input.diagram, open up plugin.xml.
Select the plugin.xml tab to view the source code for plugin.xml. Search for the string ‘parserProviders’.
Change the nested element that says <Priority name="Lowest"/> to <Priority name="Low"/>. In
other words, change the priority from Lowest to Low. Then save and close plugin.xml.

Figure 17-27: The updating plugin.xml file

Task 11: Test the Generated Editor
In this task, you will test the generated editor.

1. In Navigator or Package Explorer, right-click the project named lab.console.input.diagram and select
Run As > Eclipse Application. Then wait for a new instance of Rational Software Architect to launch.

2. In the run-time workbench, create a simple project named console.diagram.test.

17 - 18 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

Figure 17-28: Creating a simple Project
3. Right-click the new project name and select New > Other. Select the Input Diagram wizard and then click

Next.

4. Accept the default of default and click Finish.

5. default.input_diagram should be opened in an editor that looks like the following.

Figure 17-29: The default.input_diagram in the editor
6. To add a new Console, click Console in the Palette and then click the drawing surface. Name the new Console

MyConsole. Open up the properties for MyConsole and set the Package to my.console.

© Copyright IBM Corp. 2007 17 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 17-30: Specifying the Package for the Console
7. In the Diagram editor, expand the node for MyConsole so that there is room to work within the compartment.

Figure 17-31: Expand the compartment within MyConsole
8. To add a child Command, click Command in the Palette and then click in the compartment in MyConsole.

Name the Command echo.

9. Click Arg in the Palette and then in the compartment inside of echo Command to add an argument. Give the
new Arg a label of text:String. Open the Properties of the Arg and you should see that the Name is text
and the Type is String.

17 - 20 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Lab 17 – Building a GMF Editor

Figure 17-32: Viewing the properties of the Arg element.
10. Add any other Consoles, Commands, and Args that you want.

11. In order to test the transformation, save and close your diagram.

12. It’s easier to test the existing transformation if the file has an XML extension, so rename default.input to
default.input.xml.

13. Right-click default.input.xml and select Run As > Input for JET Transformation. In the Properties
page that appears, select lab.console.transform as the ID. Then click OK to run the transformation.

© Copyright IBM Corp. 2007 17 - 21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect - Student Workbook

Figure 17-33: Selecting the transformation to run.
14. The project MyConsole Console (and any other consoles that you defined) are generated.

15. Close the second instance of Rational Software Architect when you are done testing.

17 - 22 © Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

	rd801gv1_stuwrk.pdf
	rd801gv1_stuwrk.pdf
	Lab 01 - Introducing JET.pdf
	Lab 1: Introducing JET
	Objectives
	Scenario

	Lab 02 - Using XPath.pdf
	Lab 2: Using XPath
	Objectives
	Given
	Scenario

	Lab 03 - Authoring Transforms Manually.pdf
	Lab 3: Authoring a JET Transform Manually
	Objectives
	Given
	Scenario

	Lab 04.1-Exemplar Authoring.pdf
	Lab 4.1: Authorization Bean Exemplar Authoring
	Objectives
	Given
	Scenario

	Lab 04.1-zSolution - The AuthorizationBean Transform.pdf
	Lab 4.1 Solution: Authoring the AuthorizationBean Exemplar
	Objectives
	Given
	Scenario

	Lab 04.2-Exemplar Authoring.pdf
	Lab 4.2: Exemplar Authoring
	Objectives
	Given
	Scenario

	Lab 05 - The Console Transform.pdf
	Lab 5: The Console Transform
	Objectives
	Given
	Scenario

	Lab 6.1 - EMF Lab.pdf
	Lab 6.1: Introduction to EMF
	Create EMF Model and Editor for Console Transformation Input
	Objectives
	Given
	Scenario

	Lab 6.2 - Optional EMF Lab.pdf
	Lab 6.2: EMF Optional Lab
	Create Organization Chart Model
	Objectives
	Given
	Scenario

	Lab 7 - Customize a Transformation.pdf
	Objectives
	Given
	Scenario
	Create the Workspace
	Create the Source and Target Projects
	Populate the Source Project
	Apply a UML-to-Java Transformation
	Use a Mapping Model

	Lab 8 - Create a Model to JET2 Transformation.pdf
	Objectives
	Given
	Scenario
	Create and Prepare the Workspace
	Create a New EMF Project
	Create a New Plug-in Project with Transformation Mapping
	Create the Model to Root Mapping
	Create the Console Class to Console Mapping
	Create the Operation to Command Mapping
	Create the Parameter to Arg Mapping
	Generate the Transformation Code
	Create a Custom Extractor
	Connect Transformation to JET
	Configure Run-time Workbench
	Test the Transformation

	Lab 9 - Create a Modeling Profile.pdf
	Lab 9 – Create a UX Modeling Profile
	Objectives
	Scenario

	Lab 10 - Manually Create a Transformation.pdf
	Objectives
	Given
	Scenario
	Create the Workspace
	Create a New Plug-in Project
	Visualize the Transformation Structure
	Edit the Rules
	Configure Run-time Workbench
	Create a Test Project
	Run the Transformation
	Add a New Rule
	Test the New Rule
	Extra Challenges

	Lab 11 - Create a Model to Model Transformation.pdf
	Objectives
	Given
	Scenario
	Create the Workspace
	Create a New Plug-in Project with Transformation Mapping
	Create the Class to Class Mapping
	Create the Class to Interface Mapping
	Create the Package to Package Mapping
	Create the Model to Model Mapping
	Generate the Transformation Code
	Configure Run-time Workbench
	Create a Test Project
	Run the Transformation
	Add New Mappings and a Relationship
	Tips and Troubleshooting

	Lab 12 - Create the Master Detail Pattern.pdf
	Lab 12 – Create the Master Detail Pattern
	Objectives
	Given
	Scenario

	Create the Pattern Project
	Customize Expand Methods
	Customize Update Methods
	Test the Pattern
	Extra Challenges

	Lab 13 - Create a Pluglet.pdf
	Lab 13 – Create a Pluglet
	Objectives
	Given
	Scenario

	Create the Workspace
	Configuring the Perspective
	Import the Pluglet
	Complete the Pluglet
	Run the Pluglet
	Export the Pluglet

	Lab 14 - Create Model Template.pdf
	Lab 14 – Create a UX Model Template
	Objectives
	Given
	Scenario

	Import the UXModeling Profile Plug-in Project
	Create the Base Model
	Create Model Structure
	Add Documentation
	Add the Model as a Template to the UXModeling Profile Plug-i
	Apply Profile to the Model Template

	Lab 15 - Package Reusable Assets.pdf
	Lab 15 – Package Reusable Assets
	Objectives
	Given
	Scenario

	Create the Workspace
	Create a RAS Repository
	Import Reusable Assets
	Create a Feature
	Deploy as a RAS Asset
	Import the RAS Asset
	Verify the install of the RAS Asset
	Test the RAS Asset

	Lab 16 - GMF Lab.pdf
	Lab 16: Running a GMF Editor
	Run Pre-built GMF generated Editor for the Console’s Input X
	Objectives
	Given
	Scenario

	Lab 17 - Using GMF.pdf
	Lab 17: Building a GMF Editor
	Build a GMF Editor for the Console’s Input XML File
	Objectives
	Given
	Scenario

