

IBM Rational University

 Pattern Implementation Workshop with
IBM Rational Software Architect
RD801/DEV498 April 2007
Student Manual Volume 2
Part No. 800-027312-000

IBM Corporation
Rational University
Pattern Implementation Workshop with IBM Rational Software Architect
Student Manual Volume 2

April 2007

Copyright © International Business Machines Corporation, 2007. All rights reserved.

This document may not be reproduced in whole or in part without the prior written permission
of IBM.

The contents of this manual and the associated software are the property of IBM and/or its
licensors, and are protected by United States copyright laws, patent laws, and various
international treaties. For additional copies of this manual or software, please contact Rational
Software.

IBM and the IBM logo are trademarks or registered trademarks of IBM Corporation, in the
United States, other countries or both.

Rational, the Rational logo, ClearCase, ClearCase LT, ClearCase MultiSite, Unified Change
Management, Rational SoDA, and Rational XDE are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries or both.

WebSphere, the WebSphere logo, and Studio Application Developer, are trademarks or
registered trademarks of International Business Machines Corporation in the United States, other
countries or both.

Microsoft Windows 2000, Microsoft Word, and Internet Explorer, among others, are trademarks
or registered trademarks of Microsoft Corporation.

Java and all Java-based marks, among others, are trademarks or registered trademarks of Sun
Microsystems in the United States, other countries or both.

UNIX is a registered trademark of The Open Group in the United States, other countries or
both.

Other company, product and service names may be trademarks or service marks of others.

Printed in the United States of America.

This manual prepared by:
IBM Rational Software
555 Bailey Ave.
Santa Teresa Lab
San Jose CA 95141-1003
USA

DEV498: Pattern Implementation Workshop with Rational Software Architect

Contents
Module 12: Creating UML Profiles

Objectives .. 12-2
What Are Profiles? .. 12-4
Lab 9: Create the UX Modeling Profile... 12-17
Review... 12-18
Further Information .. 12-19

Module 13: Model to Model Transformations
Objectives .. 13-2
Transformations Review.. 13-5
APIs for Transformations ... 13-13
Lab 10: Manually Create a Transformation (Optional) 13-29
Model to Model Mapping.. 13-35
Review... 13-58
Further Information .. 13-59

Module 14: Designing with UML Patterns
Objectives .. 14-2
Review: Patterns .. 14-5
Applying a UML Pattern ... 14-9
Creating a UML Pattern in Rational Software Architect 14-19
Lab 12: Create the Master Detail Pattern .. 14-37
Review... 14-38
Further Information .. 14-39

Module 15: Introduction to the UML 2 API
Objectives .. 15-2
Profile Helpers... 15-4
Key UML API .. 15-8
Further Information .. 15-16

Module 16: Plug-ins and Pluglets
Objectives .. 16-2
Plug-ins.. 16-4
Pluglets .. 16-16
Lab 13: Create a Pluglet .. 16-28
Review... 16-29

Module 17: Models Templates
Objectives .. 17-2
Model Templates ... 17-3
Lab 14: Create a UX Model Template .. 17-7

© Copyright IBM Corp. 2007 i
 Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect

Review... 17-8
Further Information .. 17-9

Module 18: Packaging Artifacts
Objectives .. 18-2
Eclipse Features ... 18-5
Reusable Asset Specification (RAS) .. 18-19
Lab 15: Package Reusable Artifacts .. 18-23
Review... 18-24

Module 19: Summary and Conclusion
IBM Software Delivery Platform and Eclipse ... 19-2
Model-Driven Development with Patterns .. 19-6
Choosing the Kind of Pattern Implementation .. 19-8

Module 20: Advanced Transformation Topics
Advanced Transformation Topics ... 20-2
Cloning Transformations ... 20-14
Enabling Custom Transformation UI .. 20-18
Reverse Transformations ... 20-22

Module 21: Introduction to GMF
Introduction to GMF.. 21-2
Introduction to DSL... 21-10
Optional: Technical details .. 21-14
Further Information .. 21-24

Module 22: XPath: XML Path Language
XPath – XML Path Language.. 21-2
XPath Address Notation .. 21-9
XPath 2.0 ... 21-26
Further Information .. 21-30

© Copyright IBM Corp. 2007 ii
 Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 12: Extending Models with Profiles

Contents
Objectives 12-2
What Are Profiles? 12-4
Lab 9: Create the UX Modeling Profile 12-17
Review 12-18
Further Information 12-19

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Creating UML Profiles
Objectives:

Describe UML profiles
The uses for profiles
How to design a profile
How to create a profile in Rational Software Architect
How to customize profiles by adding icons and constraints
How to apply a profile to a model

Describe the relationship between profiles, models, UML
patterns and transformations.
Create a UML profile in Rational Software Architect

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of MDD

Module 12: How do I
create profiles that allow
me to extend UML
notation?

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

We will see this slide several times throughout the workshop. It will serve as a visual guide
to the skills that you are learning, and to how they fit into MDD.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

What Are Profiles?
Part of the UML standard
Specializes UML for specific domains

Projects, process, industry, or technology
Multiple profiles can be applied to a model

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Profiles (cont.)
Profiles consist of stereotypes, which add semantics to model
elements

Can be localized
Are versioned and formally deployed
Are stored in a single file: <profile name>.epx

Stereotypes can include:
Properties

A name-value pair that captures additional information
Examples: package owner, class QA status, and addressed requirements

Constraints
Live and batch rules
Examples: age > 18, or stereotyped class must inherit from library class

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

UML Profiles in Rational Software Architect
Stored outside the model, using .epx files.

Created using the Project Explorer view, in the
Modeling perspective, and the Properties view.

Existing profiles can be
updated with new
versions of the profile.

Reference .epx files
directly, or deploy via a
plug-in and add the profile to
Rational Software Architect.

Rational Software Architect allows you to develop and apply UML profiles. You can use
UML profiles to create model elements that reflect the semantics of a specific domain or
platform. UML profiles are sets of stereotypes, tagged values, and constraints.

• Stereotype: Elements based on existing types or classes in the UML metamodel, that
extend the metamodel. Stereotypes can extend the semantics, but not the structure of pre-
existing types and classes.

• Tagged Value: A property as a name-value pair; the name is referred to as the “tag.”
• Constraint: A semantic condition or restriction.

Like the other extensibility features, profiles can be deployed as Eclipse plug-in projects. You
author profiles using the Project Explorer view and the Properties view, rather than authoring
them in the diagram editor. When the profile is complete, users can apply the profile to their
models by selecting the target model in the Project Explorer view, and then adding the profile
under the Profiles tab in the Properties view.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

What are Stereotypes?
They add semantic meaning

There are multiple
stereotypes per element

Their presentation includes
Project Explorer: text and icon
Diagram Editor: icon, shape,
and text

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

What are Properties?
Name-value pairs on model elements
Called “tagged values” when applied
Include types: String, Boolean, Integer, and Enum

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

What are Properties? (cont.)
Define your own enumerations

Restrict to predefined values

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

What Are Constraints?
Allow you to express a condition or restriction to which the
element must conform
Can be expressed in:

Natural languages or
mathematical notation
Java
Object Constraint Language (OCL)

Project Explorer View

A constraint lets you refine the semantics of a UML model element by expressing a condition
or a restriction to which the element must conform.
You can specify the language that you use to write the body of a constraint so that others who
read the constraint can more easily understand its condition or restriction.
In Rational Software Architect, you can create constraints in the following languages:

• Natural languages such as English or mathematical notation (in UML comments)
• Java
• Object Constraint Language (OCL)

You can specify constraints within a stereotype in a custom UML profile. When you define
Object Constraint Language (OCL) constraints, the constraints are validated syntactically.
However, Java™ constraints are not validated syntactically. When you apply a stereotype to
a model element, the attributes of the stereotype are added to the model element. Stereotype
constraints apply to the attributes of the model element to which the stereotype is applied.
The model validation process checks model element attributes for compliance with stereotype
constraints. If you specify a value for the attribute that does not comply with the constraint,
an error is displayed in the Problems view.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Creating a Profile in Rational Software Architect
Create a Profile Project

Add stereotypes
Use extensions to
connect the
stereotypes to UML
elements

Add tagged values and
constraints

Test by applying the
profile to a project

Distribute as:
RAS file
Plug-in
.epx file

The key steps in creating a Profile in Rational Software Architect, are:
1. Create a profile project: Profile projects are a form of modeling project in Rational

Software Architect.
2. Add stereotypes, tagged values, and constraints: These elements are added in the

Project Explorer, using the Modeling Perspective, and modified using the properties
view.

3. Use extensions to connect the stereotypes to UML elements: The Extensions page in
the Properties view for the stereotypes allows you to apply the stereotype to specific
elements (class, component, and so on) in the UML metamodel.

4. Test by applying the profile to a project: Verify that the profile is valid, and that it is
semantically sound, based on the target domain or technology.

5. Distribute: Profiles are distributed as Eclipse plug-ins.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Distributing Custom Profiles
When ready for use, profiles have to be released
and made available as an Eclipse plug-in

After release, modifications are restricted to
adding stereotypes only
Profiles in plug-in form can be distributed as a
RAS asset

Tips:
Do not release the profile
during development (perform
release process for testing only)
Wait until the profile stabilizes
before distributing it

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Demo: Create a Profile
The instructor will now show you how to:

Create a Profile
Add Stereotypes
Specify Extensions
Create an Enumeration

Watch your instructor create a simple profile.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Tips for Creating Profiles
Use the following tips to guide your profile
development:

Look for published, existing profiles that may meet your
needs

Determine the level of abstraction that makes the most
sense

Identify the key terms in the
domain that you are trying to
represent in the profile

Consider how profiles may work
with custom patterns and
transformations

When a project calls for a new UML profile, look for existing profiles that may meet your
needs before trying to design a new profile. Profiles may be available in internal RAS
repositories or publicly available from IBM®’s developerWorks®, industry repositories, the
OMG, and so on.
If it becomes clear that you must build a new UML profile, consider the following general
suggestions:

• Determine the level of abstraction that makes the most sense for the types of models you
will be creating with the profile.

• Identify the key terms in the domain that you are trying to represent in the profile. Note
that the terms captured in the profile are not the elements of the solution, but elements
used to describe the solution.

• Design the profile with the UML patterns and transformations in mind that will be used
in the models to be developed with the profile.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

UXModeling Profile

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Example UML Model with UXModeling Profile Applied

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Lab 9: Create the UX Modeling Profile
Complete the following tasks:

Create the Workspace
Create the Profile
Apply the Profile to a Model
Add a constraint to the profile
Add the profile to a plug-in project

Complete Lab 9 in the student workbook.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Review
Describe the difference between a constraint and a
property.
How many profiles should be applied to a model?
What languages can be used for specifying a
constraint?

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Further Information
Rational Software Architect Help Topics
Web resources
Literature

Rational Software Architect Help Topics
• Extending Rational Software Architect Functionality > Extending the UML

metamodel by using custom UML profiles
Web Resources
• Simon Johnston. “UML 2.0 Profile for Software Services.” IBM

developerWorks, http://www-
128.ibm.com/developerworks/rational/library/05/419_soa/

• Kim Letkeman. “Comparing and merging UML models in IBM Rational
Software Architect, Part 6: Parallel model development with custom
profiles.” IBM developerWorks, http://www-
128.ibm.com/developerworks//rational/library/05/0823_Letkeman/

• Duskco Misic. “Authoring UML profiles using Rational Software Architect
and Rational Software Modeler.” IBM developerWorks, http://www-
128.ibm.com/developerworks/rational/library/05/0906_dusko/index.html#N
10452

• Bran Selic. “Unified Modeling Language version 2.0.” IBM
developerWorks, http://www-
128.ibm.com/developerworks/rational/library/05/321_uml/

Literature
• James Rumbaugh et al. The Unified Modeling Language Reference Manual.

Boston: Addison Wesley, 2005.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

© Copyright IBM Corp. 2007 12 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 13: Model to Model Transformations

Contents
Objectives 13-2
Transformations Review 13-5
APIs for Transformations 13-13
Lab 10: Manually Create a Transformation (Optional) 13-29
Model to Model Mapping 13-35
Review 13-58
Further Information 13-59

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Model to Model Transformations
Objectives:

Design a model to model transformation
Create a model to model transformation
Describe the ways in which model mapping and the
resulting transformations can be combined

This module takes a closer look at model transformations in Rational Software Architect.
Earlier, we saw how UML model transformations can be configured, and how the
transformations can be used to connect a UML model to EMFT JET based transformation.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of MDD

How do I create
model to model
transformations?

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

We will see this slide several times throughout the workshop. It will serve as a visual guide
to the skills you are learning, and to how they fit into MDD .

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Where Are We?
Transformation Review
Model to Model using Transformation API
Model to Model using Mapping
Connecting Model to Model and Model to Text

This section reviews some of the transformation concepts we’ve already covered.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Review: Transformations
Transformations create elements in a
target model (domain) based on
elements from a source model
Often, the source domain is more
abstract than the target domain

Examples:
Based on a use-case model, create an
analysis model containing analysis
classes, sequence diagrams, and so on,
that realize the use cases following
company standards
Based on the analysis model, create a
design model, containing the appropriate
design classes, that incorporates
elements of the company’s security and
persistence frameworks, and that follows
the company standards
Starting with a UML model, apply
Rational Software Architect’s standard
“UML to EJB” transformation to create
EJB code elements

Transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Review: Model Transformation Uses
There is flexibility in choosing transformation sources and
targets:

Transform a model to a model of the same type.
Transform a model across levels of abstraction.
Transform one type of model to another.
Extend another transformation.

Transformation ToolModel Model

Transformation
Definition

The following transformations are possible:
• Across models of the same type: When adding levels of refinement, you may

transform from a PSM to another PSM. More details are added, but the type of model
remains the same.

• Across levels of abstraction: Move from a PIM model to a PSM model as you add in
details about the platform and get closer to the implementation.

• From one type of model to another: With transformations you can transform UML to
code. This is the most common transformation available in Rational Software Architect.

• Extend another transformation: In Rational Software Architect transformations can
be built on top of existing transformations.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Planning the Transformation
What is the source of the transformation?

Examples: use case model, analysis model, design model, and so on
What is the target of the transformation?

Examples: analysis model, design model, and so on
How does the source map to the target?
How will the transformation work?

Size and complexity of input
Complexity of Transform process
Size and complexity of output

Target

?
?

Source to Target Mapping

Profile

Source

?

Before writing a transformation, determine the following:
• What will be the transformation source (information provider)?
• What will be the transformation target?
• What will the transformation generate?
• What information is required to generate the target?
• Where does this information come from?
• What is the format of the source information?
• What is the source-to-target mapping (are there any structural differences between the

source and target models)?
• Which data in the source determines the created target?

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Planning: Metamodel and Semantics
What are the semantics of an element?

What does it translate to?
Are there constraints?
Do I need additional data?

Flags, other annotations?
Which dependencies do they have?
Where is the information located in the
source?
Where is the information located in the
target?

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Planning the Transformation: Determinations
Determine:

Transformation rules
Source navigation
Transformation customization

Transformation Rules

?

Transformation Customization

?Source Navigation

?

Other considerations in the planning of transformations include:
• What transformation rules are required?
• What is the source and target for each rule?
• How can the transformation be divided?
• What is the source navigation?
• How does the transformation provide each rule with its source?
• Can the transformation be customized?
• Can the transformation be configured?
• What transformation properties are needed?
• Can the transformation be extended?

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Steps in Creating a Transformation
Plan the transformation

Model and analyze the situation

Drive decisions based on the results

Model parts of the transformation

Design parts of the transformation

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Where Are We?
Transformation Review
Model to Model using Transformation API
Model to Model using Mapping
Connecting Model to Model and Model to Text

This section describes the steps to develop a transformation using the Transformation API.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Rational Software Architect 7.0: Overview

EclipseEclipse

GEFGEF

EMFEMF--models (EJB, Java, models (EJB, Java,
XSD,XSD,……))

Diagram PlugDiagram Plug--ins ins
(one per diagram type)(one per diagram type)

UML Modeling & Domain Modeling editorsUML Modeling & Domain Modeling editors

UML2UML2
GMFGMF

EMF/EMFTEMF/EMFT

Transformation FrameworkTransformation Framework

UML Patterns FrameworkUML Patterns Framework

UML Transformations & PatternsUML Transformations & Patterns

UML2 Domain adaptersUML2 Domain adapters

EMFT JET2EMFT JET2

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

U
M

L
M

od
el

er

M
SL …

EMF

UML2

JDT …

APIs to use in Transformations

Transformation

Patterns

Transformation
Pattern

Rational Software Architect APIs Eclipse APIs

When developing transformations, you should be aware of the following APIs:
• Eclipse UML2: The Eclipse UML2 API is an EMF-based implementation of the UML

2.0 metamodel. This provides us with an underlying structured data model for the models
that we create within Rational Software Architect. Provides CRUD access to model
elements. Supports all UML 2 user model objects and relationships (class, interface,
package, association, dependency, generalization, and so on).

• EMF (The Eclipse Modeling Framework): Enables the Eclipse platform’s modeling
capabilities and code generation facility to interoperate with other tools and applications,
for building tools and other applications based on a structured data model.

• JDT (Java Development Tools): Java development tools, along with the Eclipse
technology, create applications that run on real-time operating systems and embedded
environments.

The following APIs are available in Rational Software Modeler and Rational Software
Architect:

• UML Modeler: A single utility class forms an API that exposes model and profile
lifecycle operations, and provides access to the modeling platform.

• MSL (Modeling Services Layer): The MSL exposes classes and interfaces to manage
Eclipse Modeling Framework (EMF) models.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Elements of a Transformation
Transformations contain the following elements:

Transforms: Containers that traverse the transformation
element hierarchy

Execute extractors, rules, and nested transforms
Each transform gets its own parse through the source
Responsible for passing elements to rules

Rules: Responsible for transforming individual elements

Extractors: Responsible for extracting the next set of items
from a given item, and passing them back to the transform(
for example, All classes in a package)

When you look at a model in Rational Software Modeler or Rational Software Architect, you
see a visual representation of the model, with diagrams, packages, and classes. The visual
elements simply represent a data structure of the model elements and their relationships.
When thinking about an automated process like transformations, it is best to think of model
elements in terms of data structures. The underlying structure of the model to be transformed
is what matters.
A similar case would be an XML document. You can open the document in Rational
Software Architect (or any other XML editor) and view a user-friendly presentation of the
underlying data. This makes it easy for you to review and understand both the data and the
structure of the document. However, if you want to work with the data—either manipulating
the data or using XSLT to transform the content—then it is the structure of the elements and
the data that matter.
Transforms, rules, and extractors are types of classes in your transformation that will assist
you in working with the source model, and in generating the target model. A transform
contains a set of rules, extractors, and other transforms. When executing a transformation, the
transform is called and will work with its extractors and rules to read data structure for the
source model.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Transformation Model
Generated by
transformation
service

Provides values
for properties

Provides stereotypes
for transformation

Defines transformation, provides
property processing (incl. UI)

Container for ordered list of
transform elements

Converts source to
target

Extracts content from
source and execute
transform on resulting
objects

Description for UI

Generic, abstract piece of a
transformation

Transformation

- Name
- ID
+ Source
+ Target
+ Properties []

Rule

ExecuteUpdate ()
PostProcessing ()
ExecuteCreate ()

Profile

Condition

-reqdProfile
*

0..1

Transformation Descriptor

+ Name
+ Identification
+ Description
+ Required Profiles
+ Source type
+ Target type
+ Author
+ Version
+ Properties []

1
1

Content Extractor

GetFirstElement ()
GetNextElement ()
RunTransformForElement ()

Transform Element

- ID
- Name

Transform

- ID
- Name

- rootTransform1

{ordered} 1..*

0..1

1

«artifact»
Transformation Instance

+ Property Values []
«artifact»

Transformation Log0..1

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Example Transformation Structure

The slide shows a simple example of a transformation created using the Plug-in With
Transformation plug-in project template. In the diagram, you can see the classes that were
described in the abstract on the previous slide: TransformationProvider,
Transformation, and Rule. The other classes are part of the transformation engine or
represent context elements outside the plug-in project.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Steps to Write a Model to Model Transformation
To write a model to model transformation in Rational
Software Architect:
1.Create a transformation plug-in project
2.Specify type of source and target model
3.Specify associated profiles
4.Add rules to the transformation
5.Implement transformation specific behavior
6.Test the transformation

This slide shows the steps in creating a profile from scratch. Those steps are discussed on the
following slides.
There will also be cases in which you will reuse the source for an existing transformation (for
example some transformations ship in the sample gallery) or extend an existing
transformation.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Step 1: Create a Transformation Plug-in Project

Click File > New >
Generic
Transformation
Project

Enter a project name

Select Plug-in with
Transformation from
the available list of
templates

When creating a plug-in project, the Create Project Wizard includes a Plug-in with
Transformation plug-in template that will produce the initial structure of a transformation to
simplify the authoring effort. This structure includes directories for the plug-in class, rules,
and transformation providers.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Step 2: Specify Source and Target Model Type

Source and Target models can be
selected from several types of
data

The next page of the Wizard allows you to specify basic transformation properties.
Source and target models allow you choose a category that will be used as a filter for the
types of projects that can be used as either a Source Model or a Target Model. The category
can be of one of the following types:

• UML2: Restricts the model to only those that contain UML2 elements.
• UML2 Notation: Restricts the model to only those that contain representations of

UML2 elements based on the UML2 Notation API.
• Resource: Restricts the model to known Rational Software Architect project types.
• Raw: No filtering is applied.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Step 3: Specify Additional Options
Specify other options
associated with the
transformation

Profiles from which rules of the
transformation look for stereotypes

Properties that supply additional
configuration options to the
transformation

Support for silent running and
reverse transformation

Specify any profiles associated with the transformation in the Profiles section of the New
Transformation page. Rules that you create in the transformation will look for stereotypes
from the profiles listed here when the transformation runs and make the appropriate changes
in the target model.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Step 4: Add Rules to the Transformation
Create rules for any UML element type
Name each rule

A class is created for each rule based on the rule name

Conversion rules can be created based on any UML model element. Rules in a transformation
convert one type of source element into one or more target elements. In addition to
conversion rules, a transformation contains a mechanism to traverse the elements of the
source model and to selectively run the appropriate rules based on the element type and rule-
specific criteria. For example, a given rule might only run if the type of model element is a
UML class that has a specific stereotype applied to it.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Step 5: Implement Transformation Specific Behavior
Implement Transformation Specific Behavior using
hotspots

Hotspots are places in the transformation code where the
transformation author can customize the transformation’s
behavior

Numerous hotspots are available in the API

Working in the PDE, add code to your rules using the APIs made available in Rational
Software Architect, which we have already discussed. The framework creates and positions
methods in the code called hotspots. Hotspots are the significant non-final, public, or
protected methods that can be overridden to alter framework or transformation behavior in
some way at run-time. The createTarget() hotspot is discussed further on the following
slide.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

The createTarget Method
createTarget:

Is a key method in transformation rules

Creates a new target object based on source

public class ClassRule extends AbstractRule {
public ClassRule() {

super();
}
public ClassRule(String id, String name) {

super(id, name);
}

}

public Object createTarget(ITransformContext context) {
NamedElement element = (NamedElement) context.getSource();
System.out.println("Class: " + element.getName());
return null;

}

When coding the rules for the transformation, the createTarget hotspot is of central
importance. This is where information from the source model is converted into information
for the target model. The createTarget method creates a new element if it does not exist.
In cases where the element already exists you would not have to return anything.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Accessing Profile Data: Source Code

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Accessing Profile Data: Get QAStatus Stereotype

Determine if our stereotype has been applied

Element.getAppliedStereotype(“Profile::Stereotype”)
returns the stereotype specified if it is applied
Specified with “<ProfileName>::<StereotypeName>”

Additional methods
apply(), unapply(), getAppliedStereotypes(), isApplied(),
isRequired()

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Accessing Profile Data: Getting QAStatus Properties

Property values can be explicitly accessed
<Element>.getValue(<Stereotype>, “<PropertyName>”)

Returns an object for the value of the property
Can print primitive types: String, Integer, Boolean
Enumerations need special treatment (EnumerationLiteral)

EnumerationLiteral is a NamedElement
getName() returns name of literal

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

Step 6: Test the Transformation
Run the transformation in a runtime workbench

Create source
and target models
to test the
transformation

Create a configuration
of the transformation
using the wizard

The configuration is
stored in a .tc file

From the PDE, launch a runtime instance of the workbench that will contain your
transformation plug-in. From the runtime instance of the workbench, test your transformation
by applying it to a model.
You can launch a runtime instance of the developer workbench to test the transformation.
The developer and runtime instances are interactive. Any breakpoints or trace messages that
you included in the transformation code are reported to the developer workbench.
Note: You cannot make changes to the transformation code while the runtime session is
running.
To launch the runtime workbench:

1. Click Window > Open Perspective > Other to open the Select Perspective window.
2. Click Debug and click OK. The Debug perspective opens.
3. Click Run > Debug. The Debug window opens.
4. In the Configurations list, click Run-time Workbench and click New.
5. Type a configuration name in the Name field and select the Clear workspace data

before launching check box to ensure that the latest changes to your pattern are used.
6. Click Debug to launch a new instance of the workbench.

Note: After you set up a debug configuration, you can start a debug session by clicking
the debug icon.

The Rational Software Delivery Platform splash screen appears while the run-time instance is
loading.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Demo: Create a Transformation
The instructor will now show you how to create a generic
transformation

Create a new plug-in project
Add rules to the transformation
Explore the packages and classes generated

Watch your instructor demonstrate how to create a simple transformation.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

Lab 10: Manually Create a Transformation (Optional)
Given:

Code fragments
Complete the following tasks:

Create a New Transformation Project
Add Rules to the Transformation
Create a Test Project
Run the Transformation
Add a New Rule

Complete Lab 10 in the student workbook.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30

Where Are We?
Transformation Review
Model to Model using Transformation API
Model to Model using Mapping
Connecting Model to Model
and Model to Text

This section describes the steps to develop a Model to Model transformation using Mapping.
Note that we will be using the same tooling as when we connected a UML model to an
EMFT JET based transformation. As such, we’ll take a more in-depth look at the Mapping
options and features.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

31

31

Creating a complete solution

Reference
Solution

JET TransformationInput
Model

User
Model Front-end

1. Jet Authoring

2. Model-to-model authoring

Using Rational Software Architect transformations, you can automate how you create and
deliver software solutions. As shown on this slide, you are able to leverage Exemplar
Authoring to quickly and easily automate how text based artifacts are created. In addition,
you can leverage UML and Domain Specific Languages (DSL) using UML Profiles and
EMF/GMF to create a front-end user representation. The Model mapping discussed earlier
and again here can assist you in moving between levels of abstraction, either between models
or from models to text.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

32

32

Ways to Drive Architecture: Classic MDD

Create the use-case model

Create the analysis model

Create the design model

Complete the
implementation using

UML visualization

Trail of
traceability

relationships
left by patterns

and
transformations

EMFT JET based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

33

33

Review: Mapping Models

Mapping models are Ecore models
Mapping models contain references to the Ecore
models that are being mapped, for example:

UML.ecore (input)
UML.ecore (output)

Mapping models are persisted like other Ecore
Models; they are serialized as XML files

Package2EPackage

Class2EClass

Mapping Models Contain Mapping Declarations

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

34

34

Input Object Output Object
Package2EPackage

Review: Mapping Declarations

Mapping Declarations specify how to
create or update an output object given
an input object
Mapping Declarations are named, for
example, Package2EPackage

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

35

35

Model to Model Mapping
Let’s take a more in-depth look at model mapping,
including:

Custom mappings
Submap refinements

Condition
Input Filter
Output Filter
Extractors

Move refinements
Condition

Integration with Fuse

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

36

36

Submap Mappings
Input Object Output Object

The transformation source code
generated for Submap implements a
Rule that calls another mapping

Can be in a different mapping model
The input and output attributes must be
compatible EClasses

Both are multi-valued or neither is
Semantics are like method invocation

Types of actual parameters must be
compatible with formal parameters
Can be recursive

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

37

37

Submap Mappings

Input Object Output Object

Referenced Mapping Declaration
formal formal

actualactual

eClassifiers[o] =
map((Class)packagedElement[i])actual must be castable

to formal

formal must be directly
assignable to actual

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

38

38

Submap Mapping Example

elements = Package1_src.getPackagedElement();
for (i=0; i<elements.size; i++)

If (elements[i] instanceof uml.Class) { // filter input attribute
uml.Class umlClass = (uml.Class)elements[i]; // adapt input attribute
EClass ecoreClass = Class2EClass(umlClass); // call referenced mapping
Package1_tgt.getEClassifiers().add(ecoreClass); // add to output attribute

}

Input Object (UML) Output Object (Ecore) Before

Output Object (Ecore) After

Submap Invocation

Submap Invocation Pseudo-code

Nested Objects
Transformed

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

39

39

Custom Mappings

Input Object Output Object

The transformation source code
generated for Custom
implements a Rule that wraps
the custom Java code provided
by the transformation author

Custom Mappings must have:
One or more output attributes
Zero or more input attributes
Zero or one input objects

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

40

40

Custom Mappings: Java Source Code Snippets
Java source code snippets for Custom
mappings can be added directly into the
custom mapping specification in the
mapping file

// use specified URI if present and default to package name if not present
String uri = (String)UMLTransformAuthoringUtil.getStereotypeValue

(Package_src, "Ecore::EPackage::nsURI");
EPackage_tgt.setNsURI(uri!=null&&uri.length()>0?uri:Package_src.getName());

Code snippets are copied as-is into the generated
transformation source code
Simple convention for naming variables

Input objects &attributes: <name>_src
Output objects &attributes: <name>_tgt
Duplicate names yield variable names like <name>_src2,
etc.

Code assistance is provided in the Mapping Editor

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

41

41

Custom Mappings – Java Classes
Java classes that implement
com.ibm.xtools.transform.authoring.RuleExtension
can supply the Custom mapping processing

package uml_to_ecore_example.transforms;
import org.eclipse.emf.ecore.EObject;
import org.eclipse.emf.ecore.EPackage;
import org.eclipse.uml2.uml.Package;
import com.ibm.xtools.transform.authoring.RuleExtension;
import com.ibm.xtools.transform.authoring.uml2.UMLTransformAuthoringUtil;
public class SetNsUri implements RuleExtension {

public void execute(EObject source, EObject target) {
Package umlPackage = (Package)source;
EPackage ecorePackage = (EPackage)target;
String uri = (String)UMLTransformAuthoringUtil.getStereotypeValue

(umlPackage, "Ecore::EPackage::nsURI"); //$NON-NLS-1$
// use specified URI if present and default to package name if not present
ecorePackage.setNsURI(uri!=null&&uri.length()>0?uri:umlPackage.getName());

}
}

Recommended over Java snippets in mapping file if:
Same (or very similar) processing can be used by multiple mappings

(Avoids reuse via copy and paste)

You want the ability to change custom processing without changing
mapping file

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

42

42

Custom Mapping Example

The Custom mapping checks the
input object’s Stereotype attribute
NsURI to see if it has been
specified and, if available, assigns
that value to the NsURI attribute of
the output object. If it is not , the
mapping available uses the name
attribute value of the input object
for the assignment.

Input Object (UML) Output Object (Ecore)

Input Attribute Output Attribute

Custom

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

43

43

Mapping Refinements
Refinements are optional customizations of mapping
behavior

Implementation choices are similar to that used for Custom
mappings

Java source code snippets
Java classes

Refinement applicable to Move mappings
Condition

Refinements applicable to Submap mappings
Condition
Input Filter
Output Filter
Custom Extractor

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

44

44

Mapping Refinements: Condition
Serves as guard on Move or Submap mapping
execution

Execute mapping iff condition evaluates to true

Java source code snippet implementation
Variable <name>_src designates the input object
Snippet must return a boolean value

Java class implementation
Class must extend
org.eclipse.emf.query.conditions.Condition
One method needs to be implemented

boolean isSatisfied(Object object)
– The parameter object is set to the input object

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

45

45

Condition Refinement Example

Java code snippet for condition
// only process classes for public packages
return Package_src.getVisibility().equals

(org.eclipse.uml2.uml.VisibilityKind.PUBLIC_LITERAL);

Input Object (UML)

Output Object (Ecore) After

Conditional
Submap Invocation

Nested Objects
Transformed iff
Condition is satisfied

Output Object (Ecore)

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

46

46

Mapping Refinements: Input Filter
For each value in the collection of the input object’s attribute,
designated in the submap, decide if that value should be
transformed

Filter is called once for each value in the collection
Transform input value iff filter evaluates to true

Java source code snippet implementation
Variable <name>_src designates the current value from the
collection of the input object’s attribute
Snippet must return a boolean value

Java class implementation
Class must extend org.eclipse.emf.query.conditions.Condition
One method needs to be implemented

boolean isSatisfied(Object object)
– The parameter object is set to the current value from the collection of the input

object’s attribute

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

47

47

Input Filter Refinement Example

Java class for filter

Input Object (UML)

Output Object (Ecore) After

Submap Invocation

Transform of each
nested object decided separately

Output Object (Ecore)

// only include non-abstract classes
package uml_to_ecore_example.transforms;
import org.eclipse.emf.query.conditions.Condition;
import org.eclipse.uml2.uml.Class;
public class IsNotAbstractClass extends Condition {

public boolean isSatisfied(Object object) {
return (object instanceof Class)?

!((Class)object).isAbstract()
:false;

}
}

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

48

48

Mapping Refinements: Output Filter
Applicable only if the collection from the output object’s attribute,
that is designated by the submap, is not by containment

Non-containment implies that there could be duplicates in the
collection

For each value in the collection of the output object’s attribute
decide if that value should be transformed

Filter is called once for each value in the collection
Transform output value iff filter evaluates to true

Java source code snippet implementation
Variable <name>_tgt designates the current value from the collection
of the output object’s attribute
Snippet must return a boolean value

Java class implementation
Class must extend org.eclipse.emf.query.conditions.Condition
One method needs to be implemented

boolean isSatisfied(Object object)
– The parameter object is set to the current value from the collection of the output

object’s attribute

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

49

49

Mapping Refinements: Custom Extractor
Overrides the default extractor

Default extractor returns the collection from the input object’s
attribute that is designated by the submap
Override should return the collection of objects to be used
when invoking mapping declaration designated in submap

Java source code snippet implementation
Variable <name>_src designates the current input object
Snippet must return a java.util.Collection

Java class implementation
Class must implement
com.ibm.xtools.transform.authoring.ExtractorExtension

One method needs to be implemented
– Collection execute(EObject source)

– The parameter object is set to the current input object

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

50

50

package uml_to_ecore_example.transforms;
+import java.util.Collection;…
public class AddClassesFromNestedPackages implements ExtractorExtension {

public Collection execute(EObject source) {
Package pkg = (Package)source;
Collection c = new BasicEList();
// recursively add all classes in this package and its nested packages
for (Iterator i=pkg.getPackagedElements().iterator(); i.hasNext();) {

Object obj = i.next();
if (obj instanceof Class) c.add(obj);
else if (obj instanceof Package) c.addAll(execute((Package)obj));

}
return c;}}

Custom Extractor Refinement Example

Java class for custom extractor

Input Object (UML)

Output Object (Ecore) After

Submap Invocation

Transformed using derived collection

Output Object (Ecore)

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

51

51

Typical Extension: Specify Model Merge Behavior

The authored transformation outputs a model
The model need not be complete

Transformation users will configure the
transformation to place its output in a designated
target container

The target container may or may not be empty when
transformation runs
Configure Rational Software Architect Model Fuse to
merge the new output with existing contents

<extension point="org.eclipse.core.runtime.contentTypes">
<file-association

content-type="com.ibm.xtools.comparemerge.emf.emfContentType"
file-extensions="input"/>

</extension>

Extension can be added to metamodel project or
mapping project

Generic EMF merge is a good default
Specify the model type defined in the metamodel project

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

52

52

Lab 11: Create a Model to Model Transformation
Given:

Code fragments
Complete the following tasks:

Create a New Transformation with Mapping Project
Create Transformation Mappings
Generate the Transformation Code
Create a Test Project
Run the Transformation
Add a New Mapping

Complete Lab 11 in the student workbook.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

53

53

Where Are We?
Transformation Review
Model to Model using Transformation API
Model to Model using Mapping
Connecting Model to Model
and Model to Text

This section describes how the different models and transformations can be used in
conjunction.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

54

54

Review: Activity Flow of a Typical Transformation

The top-level activity represents the transformation as seen by the user.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

55

55

Model to Text Transformations

instance of

metamodel of

JET Input Metamodel
(XSD / Ecore)

Sample Input Model
(XML)

Exemplar Project

JET Templates

JET2
Template

Instantiation

JET2
Authoring

Green = Authoring Time Flow Red = Apply Time Flow

Sample Project

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

56

56

Simplified Model to Model Transformations

instance of

metamodel of

instance of

metamodel of

Source Model

Source Metamodel Target Metamodel

Target Model

Mapping Specification

Transformations

Run
Transformations

Transformation
Mapper

Green = Authoring Time Flow Red = Apply Time Flow

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

57

57

Model to Model and Model to Text Transformation Chain

Exemplar Project

Source Model

Green & Blue = Authoring Time Flow Red = Apply Time Flow

JET Input Metamodel

JET Templates

Sample Project

Source Metamodel Mapping Specification

Transformations
Sample Input Model
(typically transient)

instance of

metamodel of

JET2 Authoring

Instantiate JET2
Templates

Run
Transformations

Transformation
Mapper

User Initiates Apply Time Flow
by Running Transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

58

58

Review
What are mapping refinements?
What refinements are applicable to Submap
mappings?
What naming conventions are used when coding a
custom mapping?

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

59

59

Further Information
Rational Software Architect Help
Web Resources
Literature

Rational Software Architect Help Topics
• IBM Rational Software Modeler API
• JET Tutorial Part 1 (Introduction to JET)
• JET Tutorial Part 2 (Write Code that Writes Code)
• Introduction to Transformation Authoring (from the Tutorials Gallery, an

asset part of the developerWorks respository)
Web Resources

• API Documentation on the Eclipse UML2 component:
http://download.eclipse.org/tools/uml2/javadoc/

• “Getting Started with UML2,”
http://dev.eclipse.org/viewcvs/indextools.cgi/%7Echeckout%7E/uml2-
home/docs/articles/Getting_Started_with_UML2/article.html

• Alan Brown, “An introduction to Model Driven Architecture Part I: MDA
and Today's Systems.” http://www-
128.ibm.com/developerworks/rational/library/3100.html

• Alan Brown, “An Introduction to Model-Driven Architecture Part III:
How MDA affects the iterative development process” http://www-
128.ibm.com/developerworks/rational/library/apr05/brown/

Literature
• Frankel, David S. Model-Driven Architecture: Applying MDA to

Enterprise Computing. Indianapolis, IN: Wiley, 2003.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

© Copyright IBM Corp. 2007 13 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

60

60

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 14: Creating UML Patterns in Rational Software
Architect

Contents
Objectives 14-2
Review: Patterns 14-5
Applying a UML Pattern 14-9
Creating a UML Pattern in Rational Software Architect 14-19
Lab 12: Create the Master Detail Pattern 14-37
Review 14-38
Further Information 14-39

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Creating UML Patterns with Rational Software Architect
Objectives:

Describe the role of UML patterns in designing applications
Explain the process for authoring a UML pattern in Rational
Software Architect
Create a simple UML pattern in Rational Software Architect

This module introduces UML pattern development in Rational Software Architect, including
how to design and author UML patterns.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of MDD

Modules 14 & 15:
How do I use UML
patterns to populate a
model according to
best practices?

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

We will see this slide several times throughout the workshop. It will serve as a visual guide
to the skills you are learning, and to how they fit into MDD .

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Where Are We?
Introduction to UML Patterns
UML Pattern Design
Creating a UML Pattern in Rational Software Architect

This section defines and introduces UML patterns as a way to reuse and share software
design solutions.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Review: Patterns
A pattern is a solution template for a recurring
problem that has proven useful in a given context.

Can be used in all phases of development

A pattern specification has:
A problem it solves
A solution for the problem
A strategy for applying the pattern in its context
Consequences, advantages, and disadvantages of
implementing the solution.

Patterns provide a standard way of capturing and naming solutions, programming idioms, and
best practices. As more developers research and understand patterns, patterns become a
standard way for practitioners to communicate and share what they know with others.
For the designer, a set of carefully selected patterns, customized for a specific organization or
project, can reduce time spent on repetitive tasks and help standardize approaches to specific
design problems across projects and applications.
Pattern documentation is important. The pattern user does not need to know how to design a
pattern, but good pattern documentation is needed for the pattern applier to locate, select, and
apply a pattern. The user needs to know what problem the pattern solves, how it is solved,
and the consequences of applying it.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

UML Patterns vs. Transformations
Model-to-model in-situ substitutions with a Rational
Software Architect UML Pattern:

If you have a model where in-place model changes are desired
An example is applying the singleton design pattern to a class
Existing visual pattern authoring feature

Model-to-model rule-based substitutions with a Rational
Software Architect Transformation:

If you need to create a new model based on the content of an
existing model
An example is the UML to Java transformation

Model-to-text exemplar-based templates with a JET2
Template:

If you need to generate and manipulate textual artifacts based on
model state

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

The Role of Rational Software Architect UML Patterns
In asset development, Rational Software Architect UML
patterns help to develop the input model for a transformation.

Provide solutions at higher levels of abstraction
Provide standard ways to develop the solution
Can help ensure that profile elements are applied correctly and in a
structure that makes sense

Target Model

Profile Transformations

Source
Model

Model Template UML Patterns

Source Model with
Markup, Patterns

Applied

Source
Model with

Markup

Populate
the
model

Manually mark up
the model with
profile elements

Automatically mark up
the model with
profile elements, and
apply best practices.

Transform the model
based on rules that
recognize model markup

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Representing UML Patterns in Rational Software Architect
A UML Pattern is represented with a UML collaboration,
package, or class

Pattern
Parameters

Binding Indicator
Parameter Type

Multiplicity

Argument
Value

Binding

Pattern

Pattern
Instance

A UML pattern instance in Rational Software Modeler and Rational Software Architect is
represented with a UML collaboration stereotyped «pattern instance».
The pattern instance includes the following features:

• Parameters: A UML pattern has points of variability, called parameters. Arguments are
provided for parameters when the pattern is expanded into the target model. Each
parameter in the pattern instance takes an argument. When the pattern instance is
created, its parameters show the unbound parameter icon as an empty blue box. You can
add or create an argument using the action bar, or by dragging an existing element from
the diagram or Model Explorer view onto the parameter. When bound, the icon changes
to a blue box containing a double arrow.

• Parameter Multiplicity: The parameter’s multiplicity is shown in brackets after the
parameter name.

• Parameter Type: After the multiplicity, an Eclipse-style icon or text shows the
parameter type (for example, class, interface, or operation).

• Binding Indicator: An icon or text that shows whether the parameter has an argument
bound to it. An empty blue box indicates that no arguments are bound to the parameter.
A binding icon shows that arguments are bound to the parameter.

• Arguments: One (or more, if the pattern allows it) arguments can be bound to the
parameter.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Use the action bar to create an
argument value for a parameter.3

Create a pattern instance by dragging a pattern from
the Pattern Explorer view onto an open diagram, or to
a model in the Project Explorer view.

1

Drag an existing class from the
diagram or Project Explorer view
onto a pattern parameter to make it
an argument of the pattern, or…

2

Applying a UML Pattern

Applying a pattern is a two-step process: you first add an instance of a pattern to the model, and then
select (or “bind”) argument values for the pattern—either existing elements of the model or new
elements that you create while applying the pattern.
There are two ways to apply patterns in Rational Software Architect:

• Apply the pattern using the Apply Pattern wizard. Select a model as the location for the pattern
instance and then select or create elements to use as argument values. You can continue to add
argument values to the pattern instance after using the wizard.

• Apply the pattern interactively, using the Pattern Explorer view and the diagram editor. Drag the
pattern from the Pattern Explorer and drop it onto an open diagram. If you click or hover the mouse
over a parameter in the pattern instance, the action bar will appear, allowing you either to select an
existing element in the model or to create a new one as the argument value. You can also drag and
drop an existing model element, either from the diagram or from the Model Explorer view, onto a
pattern instance’s parameter to bind that element to the parameter.

To “unapply” a pattern, right-click the pattern instance and then click Patterns > Unapply. The pattern
instance is deleted, and all bindings to model elements are deleted.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Pattern Libraries
Sets of related patterns
are gathered into pattern
libraries

Patterns are sorted within
libraries into groups

Patterns are always members of pattern libraries, and are always gathered into groups
within the library. A pattern library is a collection of one or more patterns. Pattern libraries
are implemented as Eclipse plug-ins, and each pattern is implemented by Java classes and
XML files in that plug-in.
The groups that are shown in the Model Explorer view can be customized and rearranged.
Right-clicking the elements in the Pattern Explorer provides you with options for creating
new groups, renaming existing groups, and moving patterns between groups.
Rational Software Architect includes a number of patterns, including 23 GoF patterns to
apply, categorized as Behavioral, Creational, and Structural patterns. In addition, there are
eight GoF patterns to modify, including: Implementation, Interface, Keyword List, Directed
Association, Delegation, Strategy, Singleton and Abstract Factory. These modifiable patterns
must be imported into your installation from the Samples library: Welcome page > Samples
> Pattern Library.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Role of the Pattern User
Recognize the modeling consistency and
time-savings benefits when applying
patterns to their UML models and
therefore:

Explore the universe of available patterns to
find a domain-specific pattern solution to the
problem of interest
Evaluate the candidate pattern, and verify its

applicability and usefulness to the problem of
interest
Apply the selected pattern to the model, and

incrementally select the pattern participants for
each specified pattern role

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Where Are We?
Introduction to UML Patterns
UML Pattern Design
Creating a UML Pattern in Rational Software Architect

This section introduces the process for designing UML patterns in Rational Software Modeler
and Rational Software Architect, and discusses some issues to consider for effective UML
pattern design.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Identifying Opportunities for Pattern Creation
Patterns are discovered, not invented

Watch for recurring situations and solutions:
Explore the relationships between modeled classes in
existing solutions
Review and inspect code
Review current literature

Books, articles, Web sites,
and blogs that identify patterns
particular to a specific
interest area

Discuss problems and solutions
with other architects, designers,
and developers

Some suggestions for finding patterns:
• In existing models, use browse diagram to investigate the relationships between modeled

classes.
• Review the current literature. Many books, articles, Web sites, and blogs identify

patterns particular to a specific interest area.
• Identify repeating problems and solutions in code reviews and inspections.
• Follow discussions between architects, designers, and developers.
• Keep an eye out for repeating situations and solutions in your own work.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Role of the Pattern Author
Identify UML modeling pattern candidates
and subsequently:

Specify the pattern in document form (also
known as the pattern specification)
Design and Implement the pattern using

Rational Software Architect visual authoring tools,
which generate an Eclipse plug-in with Java code-
and related OMG RAS pattern-profiled manifests
Publish the pattern, which involves specifying

the pattern parts, documenting the pattern,
packaging the pattern parts in a concise format,
optionally certifying the pattern functionality and
quality conformance levels, distributing the
pattern, and building awareness around the newly
offered pattern

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

UML Pattern Granularity
UML Patterns vary in
granularity:

Micropatterns are
primitive type patterns.

Design patterns are
more abstract, and might
reuse micropatterns or
other design patterns.

Architectural patterns
are even more abstract,
and might reuse design
patterns or other
architectural patterns.

Granularity
Abstraction increases with pattern granularity

Patterns vary in granularity, from micropatterns to design patterns to architectural patterns.
• Micropatterns can be thought of as primitives because they cannot be decomposed into

further patterns.
• Design patterns are larger in granularity and might be defined by reusing micropatterns

and other design patterns.
• Architectural patterns are even larger in granularity and might be defined through

reusing design patterns, other architectural patterns, or both.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

UML Patterns as Components In Pattern Authoring
Consider pattern granularity and relationship to
other patterns

Because patterns in Rational Software Architect are
implemented with Java code, apply common reuse
strategies:

Patterns framework mechanisms (patterns as
components)
Traditional OO methods such
as composition
or inheritance Patterns as components:

The pattern signature is the
exposed interface and the
internal implementation is a
black-box (the pattern
specification must also be
exposed).

Pattern (Class [1], Interface [1..*])

When authoring patterns, reuse can benefit from thinking about a pattern’s granularity and
relationship to other patterns. Because patterns manifest as Java code, all development
techniques used for application development could be used for pattern authoring as well.
Patterns can be thought of as components from a pattern authoring point of view with the
pattern signature being the exposed interface and the internal implementation being a black
box (the pattern specification must also be exposed).
Reuse options available to the author include reuse using patterns framework mechanisms
(patterns as components) or reuse using traditional OO methods such as composition or
inheritance.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Rational Software Architect Componential Patterns

Composite Patterns

Component Patterns

Micro-pattern

Micro-pattern

Componential Pattern Assembly

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Where Are We?
Introduction to UML Patterns
UML Pattern Design
Creating a UML Pattern in Rational Software
Architect

This section follows detailed steps for authoring patterns in Rational Software Architect.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Pattern Service and Pattern Framework
The Pattern Service acts as a
broker for pattern clients

Discover definitions of patterns

Create instances of patterns

The Patterns Framework:
Extends the pattern service to
provide default pattern behavior

Can be used to add expand and
post-expand behavior to the pattern

Framework

Pattern

Service

The Java-based pattern implementation model is created automatically by extending two
plug-ins: a pattern service and a pattern framework that abstracts the use of the pattern
service. Along with the Pattern Authoring view and the Pattern Explorer view in Rational
Software Architect and Rational Software Modeler, the pattern service and pattern
framework provide the basic functions to structure, design, code, search for, organize, and
apply patterns.
The Pattern Service acts as a broker for patterns clients. It is responsible for helping the
clients to discover patterns as well as create instances of patterns. In addition to being called
when a user applies a pattern, the clients include patterns and transformations that expand
nested patterns.
The Pattern Framework is a layer that operates between the pattern service and your
pattern. The patterns framework provides the default pattern code for the pattern library, its
member patterns, and their parameters. The framework promotes consistency across pattern
libraries. The framework also provides for much of the processing that is common across
patterns.
The pattern authoring tools generate Java source that makes calls into, and is called by, the
framework. The pattern authoring tools generate Java source that makes calls into, and is
called by, the framework. The main implementation task of a pattern author is to provide
code for pattern behavior in the pattern’s variability points, called hot spots.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Key APIs and Classes
EMF (Eclipse Modeling Framework)

Code generation facility
Based on a structured data model

Eclipse UML2:
An EMF-based implementation of the UML 2.0 metamodel
for the Eclipse platform
Provides CRUD access to model elements
Supports all UML2 user model objects and relationships
(Class, Interface, Package, Association, Dependency,
Generalization, and so on)

AbstractPatternInstance:
Provides utility methods
Simplifies interactions with UML2 API

EMF: A modeling framework and code generation facility for building tools and other
applications based on a structured data model. For the pattern author, it provides a structured
object model that can be traversed and accessed.
Eclipse UML2: The Eclipse UML2 API is an EMF-based implementation of the UML 2.0
metamodel, providing the pattern author with an underlying structured data model for the
models you create in Software Architect. You will work with UML2 elements whenever you
need to examine what elements exist or modify the model as part of the pattern. For
example, if you have a pattern that adds a method to a class you will need to work with the
UML2 Class object, create a new Operation object, and then add it to the Class object.
AbstractPatternInstance: Provides utility methods for many common tasks when working
with the UML2 API. In most cases, the utility methods provide an “intelligent” way to add
information to an element in a model. In the example already cited, adding an operation to a
class using the UML2 API, you would need to first check to see if the method exists. If the
method does not exist, you would want to have the operation added, and if not, you would
want to have no changes made. To make this check, you would make a single call to the
ensureOperation method on AbstractPatternInstance and it will take the
appropriate action.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Patterns Framework at Runtime

Framework

Service

Pattern

Apply UI Framework Others

Invokes Invokes

Forwards

Hot-Spots

Pattern Service Clients

The pattern framework provides support for the base classes that are extended by the standard
pattern implementation model that includes the pattern library, the contained patterns, and the
pattern parameters. The framework promotes consistency in pattern design.

The framework is a layer between a pattern service and the end-user (generated and author
written) pattern implementation. Pattern implementations depend on the pattern framework
and the framework depends primarily on the pattern service. The service needs to know about
what the pattern provides and provides interfaces and abstractions to define the contract of
the pattern. The Framework must actually work with applying an instance of the pattern, so it
needs to access the pattern behavior.

The pattern service discovers the available pattern plug-ins from a variety of sources,
including installed plug-ins and local or remote repositories. The pattern service is also
responsible for discovering pattern definitions, creating pattern instances, and directly
supporting the client UI components. Both the pattern service and the pattern framework are
Eclipse plug-ins.

Both UML 2.0 and RAS asset metamodels are supported within the pattern structure. A UML
2.0 representation of the pattern model is persisted in the pattern.

The default pattern model simplifies pattern authoring because the author must supply code
only for the pattern executable behavior. The locations to add the expansion behavior are
known as hot spots, and they are indicated by empty expansion methods. Dependent and
independent expansion code is separated; hot spot update method locations are indicated to
handle expansion dependencies when required by the pattern author.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Basic Classes Involved in Pattern Building

Patterns are composed of the following basic classes:
• Pattern Library Class: The outermost abstraction that contains pattern definitions. The

PatternLibrary class in a pattern is a subclass of the AbstractPatternLibrary class, which
is a façade for nearly all invocations forwarded from the pattern service.

• Pattern Definition Class: Contained within a pattern library and instantiated at run-time
by the pattern author’s concrete library.

• Parameter Class: When the pattern author adds parameters to the pattern, they are
added as inner classes (shown in the class diagram with the owned element association)
to the pattern definition class and are instantiated when the pattern is applied by the
pattern definition class’s constructor.

• Dependency Class: Parameter classes have inner classes for observing dependents and
observed dependencies, which is typically instantiated by the owning parameter’s
constructor.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Pattern Delegate Mechanism
The Pattern Delegate Mechanism allows you to apply
one pattern from within another

Key Classes involved are:
PatternDefinitionUsage
PatternDependencyDelegate

As discussed previously, there will be times when you find that there are other patterns that
implement some behavior that you want to reuse within a new pattern that is being created.
Rather than rewriting, or copying and pasting the code, you can delegate responsibility to the
other pattern.

Key classes:
• PatternDefinitionUsage: Represents the use of a pattern definition. A pattern

definition usage is required when constructing a pattern delegate instance. When you
want to have another pattern used within your pattern, you will first need to create a
PatternDefinitionUsage instance that refers to the pattern that you would like to utilize
within your pattern.

• PatternDependencyDelegate: The delegate enables pattern dependency
implementations to move some of the behavior that a dependency is responsible for into
another pattern.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Four Steps of Pattern Creation
To create a pattern:

1.Create a pattern library

2.Add a pattern to the pattern library

3.Define the pattern
Add template parameters to the pattern
Specify dependencies between template parameters

4. Implement pattern specific behavior

Code Pattern
(Customize Java code)

Create Library
(PDE pattern project)

Create Pattern
(Create Java class)

Define Pattern
(Generate Java code)

Using Authoring UI Using Java Editor

Details on the steps in the above slide:

A new pattern project is created to contain created patterns and represent the pattern library,
the appropriate libraries are adjusted in the plugin.xml, and a manifest is created.

A new pattern is created using the pattern authoring UIs, Java classes are created to represent
the pattern, and a manifest is created.

A pattern is structured with the UI by creating signature and parameter dependencies, a Java
inner class is created for each parameter and an inner class for each dependency, and the
manifests are updated.

Additional code is added to the generated Java classes, implementing patterns framework hot
spots (the primary hot spots are expand and update), pattern delegates are coded, and
manifests are adjusted if necessary.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Step 1: Create a Pattern Library
Create a plug-in Project
Select the plug-in with Patterns template

The example used in this section is the simple interface pattern used in the Rational Software
Architect cheat sheet on pattern authoring. The Interface pattern has two template
parameters: an interface with methods and a class that implements them. The pattern ensures
that the class implements each of the methods on the interface. The apply-time behavior of
the pattern includes adding an implementation relationship and a set of methods bodies to the
class.
Begin by creating a new pattern library. Pattern libraries are implemented as Eclipse plug-ins.
Rational Software Architect also has a plug-in template available to provide a quick start for
pattern authoring.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Step 2: Add a New Pattern to the Library
Name and describe the pattern

A pattern definition is created when the pattern author uses the Pattern Authoring view to add
a pattern and its template parameters to a pattern library. Each pattern in the pattern library
has its own pattern definition.
The pattern definition is a UML 2.0 element with a keyword of Pattern Definition. Depending
on the pattern type, it is a parameterized collaboration, class, or package.
The pattern author can locate the pattern definition in the pattern definition model (the plug-
in project used to create the pattern). However, the author should not directly modify the
pattern definition. A new pattern definition can be regenerated if it gets out of sync with the
pattern's Java code.
In the pattern application process, the pattern definition provides essential model information.
Although not readily visible to the pattern applier, the pattern definition is bound to all
generated pattern instances.
Pattern templates
The pattern framework supplies default code for each pattern as you add each pattern to the
library. You can modify this code, except where comments indicate that modifications will
render the pattern incompatible.
Pattern Template Parameters
The pattern framework supplies default code for each parameter as you add each one to the
pattern. You can modify this code except where comments indicate that modifications will
render the pattern incompatible. The pattern author would usually add code to the expansion
methods and, if applicable, to the update methods.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

Step 3: Define the Pattern
Add template parameters:

Name
Class Name
Short Description
Type
Allowable Subtypes
Multiplicity

Template parameters are similar to operation parameters; they are place holders for the actual
argument values that will be supplied later. For templates, this assignment by the pattern user
at apply-time, of argument values to template parameters is called binding.

The principal tasks of a pattern author when creating a new template parameter are: (1) to
specify its properties, such as its name, type, and multiplicity; and (2) to define its apply-time
behavior, in other words, what happens when an argument value is bound to it.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Step 3: Define the Pattern (cont.)
Specify dependencies
Template dependencies
are values bound to one
template parameter that
affect the
apply-time behavior of
other template
parameters

It is frequently the case that the values bound to one template parameter will affect the apply-
time behavior of other template parameters. These relationships are called template parameter
dependencies and provide direct support for them in the Patterns Framework and pattern
authoring tools. Hot spot methods of a dependent parameter are called by the framework
when the parameter that they are dependent upon has its binding modified, such as when a
user assigns a new argument value.
For example, in the Interface pattern, every time an additional interface value is bound, you
want to add another implementation relationship to the class that is bound to the
implementation parameter. You could do this processing with the Interface parameter's hot
spot method, however, it is preferable to do this processing within one of the dependent
parameter's hot spots because, in general, there might be multiple dependent parameters and
dependency relationships.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

Step 4: Implement Pattern-Specific Behavior
Implement Pattern-Specific Behavior using “hotspots”
Hotspots are places in the pattern code where the pattern author can customize
the pattern’s apply-time behavior
Two hotspots, among many in the API, are of particular interest:

Expansion Methods
Update Methods

When you add a parameter to a pattern in the Pattern Authoring view, a parameter class with
two expansion methods is added to the pattern implementation model.
The pattern framework creates and positions expansion methods and optional update methods
in the code, known as hot spots. You add Java code to the hot spots to dictate the pattern
behavior when an argument value is added to, or removed from, a parameter. Hot spots are
clearly annotated in the default Java code with TODO comments. The default code is marked
with Javadoc @generated tags. The @generated tags must be removed if the default
code is modified, or the modifications will be overwritten when the implementation model is
regenerated.
These types of hot spots are discussed further on the following slides.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30

Expansion Methods
Expand methods are called when a parameter is
added to, or removed from, a pattern

expand(PatternParameterValue value)
Add pattern behavior after an argument value is supplied to a
template parameter.

expand(PatternParamterValue.Removed value)
Allows you to add behavior when a user deletes a value.

When you add a parameter to a pattern in the Pattern Authoring view, a parameter class with
two expansion methods is added to the pattern implementation model. The expansion
methods are called whenever a parameter is added or removed from a pattern.

Expansion methods:
•expand(PatternParameterValue value): Allows you to add pattern
behavior after an argument value is supplied to a template parameter. When writing
the expansion code, you should consider the effects of partial or incremental
expansion.
•expand(PatternParamterValue.Removed value): Allows you to add
behavior when a user deletes a value.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

31

31

Update Methods
Update Methods are used in cases where
dependencies between pattern parameters
have been identified

update(PatternParameterValue value,
PatternParameterValue dependencyValue)

Execute behavior when two parameters with a
dependency relationship have been bound to the pattern

update(PatternParameterValue.Maintained value,
PatternParameterValue.Removed
dependencyValue)

Called when the user removes a dependent parameter
that had already been added to the pattern

update(PatternParameterValue.Removed
value,PatternParameterValue.Maintained
dependencyValue)

A pattern can contain one or more parameters where the argument for one parameter, the
supplier parameter, is used to calculate the values for dependent (client) parameters. When
the user specifies a valid argument for a supplier parameter, the update methods are called to
recompute the dependent client parameters.
You add a dependency relationship by using the New Pattern wizard when adding a new
pattern, or by using the Properties view from the Pattern Authoring view. When added, the
code for update hot spots is added to the pattern implementation model.
The three types of update methods are generated only for the client parameter. update
methods are invoked for the following activities: the addition of a supplier argument, the
removal of a supplier argument, and no change to the supplier argument when the pattern is
reapplied.
Using update methods, you can suppress total or partial expansion of the client parameter
until the required values are specified in the supplier parameters.
update(PatternParameterValue value, PatternParameterValue
dependencyValue): If, when creating your pattern, you identify that there is a
dependency between the parameters, you will need a way to execute behavior when both of
the parameters have been identified. This hot spot is called after both the parameters in the
dependency have been bound to the pattern.
update(PatternParameterValue.Maintained value,
PatternParameterValue.Removed dependencyValue): This method is called
when the user removes a dependent parameter that had already been added to the pattern. In
this form of the method, it is indicating that the dependency has been removed.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

32

32

Hot Spots Revisited
Expand()

parameter is bound

Expand(remove)
parameter is unbound

Update()
dependency is created between arguments

Update(maintained, removed)
Second parameter was unbound
Need to reconcile first parameter

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

33

33

Implement Hot Spots
Now we just need to add behavior to the hot spots

Just calls to UML2, EMF, MSL APIs, right?
Yes, but which hot spot(s)?

Our desired behavior
Create implementation relationship between class and interface
In class, create a method for each operation in interface

Let’s not worry about the remove hot spots right now

So let’s map behavior to hot spots

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

34

34

Test the Pattern
The Eclipse PDE provides support for launching a version of
the Workbench that can be used for testing and debugging.

When working in the Plug-in Development Environment (PDE), one of the key artifacts
associated with a plug-in is the plugin.xml file. When you open this file in the
workbench, you can find out important information about the plug-in, such as dependencies,
extension points, and general details about the plug-in. In addition, the workbench provides a
link that will launch a new instance of the workbench with your new pattern loaded.
After the new instance has been loaded, you can test your pattern as well as work with it
using the Debug perspective found in the launching instance of the workbench.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

35

35

Master Detail Pattern

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

36

36

Demo: Create a UML Pattern
The instructor will now show you how to:

Create a Pattern Project
Specify dependencies between parameters

Watch your instructor create a simple pattern.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

37

37

Lab 12: Create the Master Detail Pattern
Complete the following tasks:

Create the Pattern Project
Customize Expand Methods
Customize Update Methods
Test the Pattern
Extra Challenges

Complete Lab 12 in the student workbook.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

38

38

Review
What are the three granular types of patterns?
Describe examples of an architectural and a design
pattern.
Describe the role of the
Pattern Framework and
the Pattern Service in
pattern authoring in
Rational Software Architect.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

39

39

Further Information
Rational Software Architect Help
Web resources
Literature

Software Architect Help
• “Authoring Patterns” Cheat Sheet
• “IBM Rational Software Modeler API”

Web Resources
• Martha Andrews, “Documenting your patterns using Rational Software

Architect.” IBM developerWorks. http://www-
128.ibm.com/developerworks//rational/library/05/martha-andrews/

• Alan Brown and Jim Conallen, "An introduction to Model-Driven
Architecture (MDA) Part II: Lessons from the design and use of an MDA
toolkit.“ IBM developerWorks. http://www-
106.ibm.com/developerworks/rational/library/apr05/brown/index.html

• Kenn Hussey, “Getting Started with UML2.” IBM developerWorks.
http://dev.eclipse.org/viewcvs/indextools.cgi/%7Echeckout%7E/uml2-
home/docs/articles/Getting_Started_with_UML2/article.html

Literature
• Jim D'Anjou et al. The Java Developer's Guide to Eclipse. 2nd Ed. New

York: Addison-Wesley, 2004.
• Erich Gamma et al. Design Patterns: Elements of Reusable Object-

Oriented Software. Boston: Addison-Wesley, 1995.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

© Copyright IBM Corp. 2007 14 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

40

40

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 15: Introduction to the UML 2 API

Contents
Objectives 15-2
Profile Helpers 15-4
Key UML API 15-8
Further Information 15-16

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Describe the UML2 API

Profile helpers
Key UML API

Understand and use key UML2 API elements

Introduction to the UML2 API

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Where Are We?
Profile Helpers
Key UML API Elements

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Profile Helpers
getStereotype()

For a given NamedElement, where a UML stereotype has
been applied, returns the stereotype and stereotype string.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Profile Helpers
hasKeyword()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Profile Helpers
hasStereotype()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Where Are We?
Profile Helpers
Key UML API Elements

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Key UML API (1 of 7)
isUMLModel(), isPackage(), isUMLOperation()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Key UML API (2 of 7)
getAllNestedElements()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Key UML API (3 of 7)
findAllClasses(), findAllEnumerations()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Key UML API (4 of 7)
getClassByName(), getInterfaceByName()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Key UML API (5 of 7)
getComment()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Key UML API (6 of 7)
getGeneralizations(), getDependencies()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Key UML API (7 of 7)
findorCreateClass()

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

References
Help > Extending Rational Software Architect Functionality > Extending the
workbench > UML2Documentation > Reference > API UML2Documentation

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

© Copyright IBM Corp. 2007 15 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Further Information
Web resources
Books

Web Resources
• Kenn Hussey, “Getting Started with UML2.” IBM developerWorks.

http://dev.eclipse.org/viewcvs/indextools.cgi/%7Echeckout%7E/uml2-
home/docs/articles/Getting_Started_with_UML2/article.html

Books
• Jim D'Anjou et al. The Java Developer's Guide to Eclipse. 2nd Ed. New York: Addison-

Wesley, 2004.
• James Rumbaugh et al. The Unified Modeling Language Reference Manual. Boston:

Addison Wesley, 2005

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 16: Plug-ins and Pluglets

Contents
Objectives 16-2
Plug-ins 16-4
Pluglets 16-16
Lab 13: Create a Pluglet 16-28
Review 16-29

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Plug-ins and Pluglets
Objectives:

Describe the following about plug-ins and pluglets
The differences between them
The structure and contents of plug-in and pluglet projects
The plug-in and pluglet authoring processes

Create a simple pluglet

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of MDD

Modules 16 & 17: How
do I improve the
consumability of my
patterns using model
templates? How can I
quickly interact with the
available APIs using
pluglets? What are
plugins?JET2 based

Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

We will see this slide several times throughout the workshop. It will serve as a visual guide
to the skills you are learning, and to how they fit into MDD .

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Where Are We?
Plug-ins
Pluglets

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

What is a Plug-in?
A plug-in is a set of contributions that:

Provides an extension to the platform or
another plug-in
Is built on specific platform
or plug-in extension points
May have dependencies
on other plug-ins or
platform APIs
May have extension points
of its own

The platform controls and
manages all contributions

MyPlugin

Extensions

API dependencies

Eclipse Platform APIs

Extension
Point

(Optional)

Earlier, we considered the role of plug-ins in making Eclipse a platform for application
development. When you look more closely at a plug-in, you see that it has the following
features:

• Extensions: Every plug-in contributes new behavior to the platform or to other plug-ins.
This new behavior is called an extension. For example, a plug-in that contributes a
simple action to a menu bar provides an extension to the platform extension point,
org.eclipse.ui.actionSets.

• Extension Points: The extensions a plug-in provides have to be built on a specific
extension point or points, which are declared on another plug-in or on the platform. Each
extension point defines attributes and expected values (in an associated XML schema)
that the extension’s syntax must follow. Information about all available extension points
is maintained in the platform’s central plug-in registry.

• Plug-in Dependencies: A plug-in has dependencies to any other plug-ins whose code it
uses, to any plug-ins it extends, and to any classes in the Eclipse platform APIs that it
uses.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Example: Contributing to the Workbench UI
Custom extensions
can be added to the
Workbench UI using
Eclipse plug-ins:

Toolbar actions
View actions
Action set actions
Custom editors
Content outliners
Custom views

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Eclipse Plug-in Architecture – Typical Arrangement

Plug-in design is based on the Delegation pattern:
Plug-in A

Declares extension point P and an interface I
Plug-in B

Implements interface I with its own class C
Contributes class C to extension point P

Plug-in A instantiates C and calls its I methods

plug-in A plug-in B

extension
point P

extension
contributes

creates, calls

implementsI interface I C class C

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Plug-in Development Environment

Package Explorer

Plug-in Manifest Editor
Outline View

Plug-ins View

The Plug-in Development Environment (PDE) assists developers with creating, developing,
testing, debugging, and deploying Eclipse plug-ins. The mandate of the PDE also supports the
development of fragments, features, and update sites.
The PDE is part of the Eclipse SDK and does not have to be launched separately. In line with
the general Eclipse platform philosophy, the PDE provides a wide variety of platform
contributions (such as views, editors, wizards, launchers, and so on) that blend transparently
with the rest of the Eclipse workbench. These contributions assist the developer in every
stage of plug-in development while working inside the Eclipse workbench.
Host and Runtime Workbench Instances
When working in the PDE, the instance of the workbench in which you create the plugin is
known as the host workbench. When testing and debugging the plugin, the instance of the
workbench that is launched as part of the testing is known as the runtime workbench instance.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Plug-in Project
A plug-in includes a:

Manifest (plugin.xml)
Describes the structure, content, and dependencies of the plug-in

Plug-in class
Named Activator.java
Top-level Java class that represents the entire plug-in and controls class
behavior at runtime.

You develop an Eclipse plug-in in a plug-in project. A plug-in project is really just a Java
project with additional packages and default items shown in the Package Explorer:
A plug-in is composed of a set of Java classes in their own namespace, and a plug-in
manifest, which is an XML file that describes the contents of the plug-in. The manifest file is
always called plugin.xml, and is always contained in the plug-in project’s root directory. The
Eclipse Platform uses manifest files to populate or update a registry of information that is
used to configure the whole platform.

• Plug-in Manifest: The manifest includes a plug-in identifier and other meta-
information, as well as sections specifying dependencies with other plug-ins, the plug-
in’s extensions, runtime libraries containing classes used by the plug-in, and the plug-
in’s extension points.

• Source Folder: The source folder is included with the project automatically, and
includes packages containing the plug-in class (with the name PluginNamePlugin.java).
The plug-in class is a top-level Java class that represents the entire plug-in, and controls
class behavior at runtime. The src folder also includes code for the extensions that the
plug-in class controls.

• Build Configuration: Created when the project is created, the build configuration is
used to compile source folders into JARs. The PDE provides a simple editor for the
build.properties file. The editor has form and source views. The file itself follows the
Java properties format. You need to provide a number of keys and their corresponding
values. Multiple values are separated using a delimiter comma.

• Plug-in Dependencies: Shows the parts of the Eclipse that the project uses.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

<?eclipse version="3.0"?>
<plugin id = “com.example.tool"

name = “Example Plug-in Tool"
class = "com.example.tool.ToolPlugin">

<requires>
<import plugin =

"org.eclipse.core.resources"/>
<import plugin = "org.eclipse.ui"/>

</requires>
<runtime>

<library name = “tool.jar"/>
</runtime>
<extension point =

"org.eclipse.ui.preferencepages">
<page id = "com.example.tool.preferences"

icon = "icons/knob.gif"
title = “Tool Knobs"
class =

"com.example.tool.ToolPreferenceWizard“/>
</extension>

<extension-point name = “Frob Providers“ id =
"com.example.tool.frobProvider"/>
</plugin>

Declare
contribution
this plug-in makes

Declare new extension
point open to contributions
from other plug-ins

Location of plug-in’s code

Other plug-ins needed

Plug-in identification

Plug-in Manifest (plugin.xml file)

An <extension-point> element has been added for this example.
<plugin>…</plugin>

The plugin element is the root element of the manifest file. The id attribute (expressed as a
Java package) is the unique identifier the platform uses to reference the plug-in. The class
attribute specifies the main plug-in class.
<runtime>…</runtime>
The runtime element contains a list of the libraries that contain the plug-in's implementation
classes. As the project is created the New Plug-in Wizard generates this runtime element.
<requires>…</requires>
The requires element contains a list of the other plug-ins that the plug-in depends on. Each
dependency is captured with the import plugin element.
<extension-point>…</extension-point>
The extension point element contains a list of extension points defined for this plug-in. The
information included here is stored (and made available for developers) in Eclipse’s plug-in
registry. An extension point declaration defines the id and name of the extension point, and
any other plug-in specific information.
An extension point XML schema is also generated to describe the extension points, so that
they can be validated and processed automatically.
<extension>…</extension>
The extension element, with the point attribute, shows which plug-in or platform extension
point(s) this plug-in extends.
Note the difference between the extension-point element and the extension element.
extension-point shows what extension points this plug-in offers to others. The extension
element defines the functionality that extends another plug-in.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Plug-in Activation
Each plug-in gets its own Java class loader

Delegates to required plug-ins
Restricts class visibility to exported APIs

Contributions processed without plug-in activation
Example: Menu constructed from manifest information for
contributed items

Plug-ins are activated only as needed
Example: Plug-in activated only when user selects its
menu item
Initial activation starts the defined (or default) plug-in class,
and then the requested function is invoked
Scalable for large base of installed plug-ins
Helps avoid long start-up times

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

PDE Runtime and Debug Testing
PDE launches another Eclipse workbench
Run and debug are supported

1. Workbench
running PDE

(host)

2. Run-time
workbench

(target)

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Running a Plug-in
Host versus run-time instances

Host instance
Running as you develop your plug-in using the PDE and other tools

Run-time instance
Launched from Run or Debug
Workspace plug-ins (plug-ins under development) are merged with
the External host plug-ins
Launch modes
– Run

– Debug

Eclipse JDT uses Java remote debugging. The runtime instance becomes the debug server,
with the host instance as the client listening on a port for debug events.
If you want to debug a standalone Java™ application and make use of the hot method replace
functionality, you will need to use a Java Runtime Environment (JRE) that supports hot
method replace (also called hot code replace). The installed default JRE included with the
IBM® Rational® Software Development Delivery Platform provides this support.
To enable hot method replace when running with the default IBM Rational Software
Development Delivery Platform JRE, go to the Arguments Tab of your Java Application
launch configuration and specify -Xj9 as a JVM Argument.
When debugging Java using hot method replace, there are some limitations. To learn about
these limitations, see the Java and mixed language debug limitations topic.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Run-time Workbench Configuration Wizard
Session Arguments
Plug-in visibility
control
Tracing options
Source lookup
Environment
variables
Launcher options

You will use this launcher to start test sessions. You need to become comfortable with
optimizing its use.

• Arguments page: Runtime workspace location and the ability to clear the workspace. If
required, choose between the JVM, arguments, Eclipse arguments, and other launcher
control details.

• Plug-ins and Fragments: Controls which will be included in the test session. When
there are duplicates, workspace copy is used.

• Default (1st): is workspace plus PDE Preferences>Target Platform list
• Features (2nd): can test feature definitions , but requires the use of \plugins and

\features directories in the workspace (see the error message when this option is
selected).

• Choose list (3rd): Pick and choose from those in the workspace and target platform list.
• Tracing: Allows you to select trace control input for plug-ins that are setup to support

tracing (.options)
• Source: Where source will be found for debugger visibility
• Common: Controls perspective choices after launch (overrides Preferences settings),

shortcuts, and the ability to save the launch config in a file for others to use

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Where Are We?
Plug-ins
Pluglets

This section provides an overview of how you can extend the capabilities of Rational
Software Architect by creating and using pluglets. You can also use pluglets to help create
other extensibility artifacts, such as patterns and transformations.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Pluglets Overview
What are pluglets?

They are used to make minor extensions to the workbench
You can make pluglets that:

Gather model metrics (fan-in, fan-out, and model enumeration)
Explore APIs

They have available templates
Similar to plug-ins, they have a pluglets.xml manifest file
and a plugletmain() entry point
They are available in
Rational Software
Architect, Rational Systems
Designer, and Rational
Software Modeler

Pluglet Manifest

A pluglet, developed in a pluglet project, is a light-weight version of the plug-in, can provide
a script-like extension to the development environment to handle routine tasks. Pluglet
functionality offers you an easy way to explore and learn the application programming
interfaces (APIs) offered by the workbench platform and other product extensions. From a
workbench perspective your can write the statement Platform.getWorkbench() and
gain completed access to the entire workbench and its parts. From a modeling perspective,
the UMLModeler class allows you access to a model and its contents.
It is a simple Java program that runs from a top-level menu. Because pluglets have a limited
scope, they are relatively easy to develop and require only minimal knowledge of how plug-
ins work. As Java programs, pluglets can be developed in the Java development environment
and access the workbench plug-in APIs (such as the Eclipse, UML2, EMF, and Rational
Software Architect APIs). Pluglets can also be tested in the same instance of the workbench.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Pluglet Applicability and Limitations
Applications

Use for samples, one-time tools (such as a migration utility), and so on
Useful for exploring the extensibility APIs when building patterns and
transformations
Very useful for obtaining access to a model in the current workspace
Don’t use pluglets in place of workbench product extensions
Shipped samples should include source code

Required for the Ready for Rational Software program

Limitations
Requires a separate Rational Software Architect session to run in the
debugger
System.out is NOT written to console view.
Use Pluglet.out

Start Rational Software Architect with the
–consolelog parameter and you will see
System.out.

Can be helpful if your pluglet includes other
classes that require debugging

If you reference other classes they probably won’t be extending the Pluglet class, so the out
method is not available. Using System.out with the –consolelog startup of Rational
Software Architect will allow you to see debugging output from those other classes
This is very useful for working with and exploring the api's (uml2, emf, rsa, and so on). It
can be used to figure out how a pattern or transformation should work. Then the code can be
put into the pattern or transformation.
This method can save you a great deal of time, as the pluglet runs in the same eclipse
instance.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Pluglets versus Plug-ins
Plug-ins:

Require significant effort for
simple automation work
Need to create a PDE
Project
Need to add a menu
contribution
Need to deploy the plug-in in
the host environment
Used, for example, to add
whole perspectives and
views to Eclipse
Allow debug and hot swap
capabilities during
development

Pluglets:
Provide a lightweight
alternative to plug-ins for
simple extensions
Reside in a Java Pluglet
Project
Invoked from a generic
Internal Tools menu similar
to the External Tools menu
Run in the tool instead of in
a separate workbench
instance
Used, for example, to add
custom dialogs or retrieve
model information
Allow debug and hot swap
capabilities during
development

You can create pluglets to handle routine tasks, and pluglet functionality offers you an easy
way to explore and learn the APIs offered by the workbench platform and other product
extensions. From a workbench perspective you can write the statement
Platform.getWorkbench() and gain complete access to the entire workbench and its
parts. From a modeling perspective, the UMLModeler class allows you access to a model and
its contents.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Creating Pluglets
Create a pluglets project in the Java perspective
Fill in the pluglets manifest
Create Java classes
Test in the same workbench

Use debug features in a separate session

To create a pluglet, you only need the class implementing the desired behavior and the
pluglet.xml file (indicating the other plug-ins to import).
You can test your pluglet directly on the same session on which you are developing it. This is
as opposed to plug-ins testing, where you need to start a target workbench instance. Iif you
like to debug the pluglet and use breakpoints you will need to start a new session.

1. Create a new plug-in:
a. Click File > New > Pluglets Project. The New Pluglets Project wizard appears.
b. On the first page of the New Pluglets Project wizard, enter the project name.
c. Either accept the default directory or specify an output directory for the new

pluglets project and Click Finish.
2. Add a pluglet to the pluglet project:

a. Click File > New > Pluglet to display the new pluglet page.
b. On the New Pluglet page, select one of the templates for the new pluglet.
c. Click Next.
d. Enter the name of the new pluglet in the Name field.
e. Click Finish to start working with the pluglet.

3. Write pluglet code. Pluglets extend the Pluglets class, and the plugletmain method is
called first.

4. Test the pluglet. Select the newly created pluglet in the Model Explorer view. Click Run
> Internal Tools > Pluglet-name.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Enabling Pluglet Development
To begin developing pluglets, add Plugets and Pluglet
Projects to the New menu.

To enable pluglets development, you first need to customize the perspective to include menu
items for creating pluglets and pluglets projects:

1. Click Window > Customize Perspective.
2. In the Customize Perspective window, click the Shortcuts tab and be sure New is

specified in the Submenus list.
3. In the Shortcut Categories list, select Pluglets to enable the related shortcuts. Make

sure that the Pluglet and Pluglets Project check boxes are checked in the Shortcut list.
4. Click the Commands tab. In the Available command groups list, select Pluglets and

Modeling.
5. Click OK.

To check if your perspective is customized, click File > New and check if the Pluglets
Project was added to the pull down menu.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Pluglets Manifest (pluglets.xml)
Used to identify dependencies on other plug-in libraries

Serves as the pluglets’ classpath
Minimally references the pluglets plug-in
Requires manual update when new plug-in dependences occur
One pluglets.xml file per project
Use Help > Extending Rational Software Architect functionality >
Extensibility Reference > API Reference for help on plug-ins to import

This effectively provides the classpath for your pluglet by identifying plug-ins whose
libraries (JAR files) you have a dependency on.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

The Pluglet Class
Provides properties and basic
services used by pluglets

PrintWriter provides the output
for the pluglet

The class provides convenience
dialogs

Confirm
Prompt
Error
Question
Warning

To use the basic pluglet properties and services, pluglet must extend the Pluglet class from
the Eclipse pluglet API. This class includes, for example, the following methods:
• getName: retrieve the name of the pluglet.
• getDirectory: retrieves the full path of the pluglet directory.

Use of this class and extending the class is optional.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Development Considerations
Pluglet class

All pluglets extend this class
Contains many helper methods for user interaction,
basic i/o, pluglet info, and so on

Diagnosticsdumpstack,
printStackTrace

get/set pluglet data.
directory, file, pluglet name

getXXX, setXXX

User interaction dialogsinform,question
prompt,confirm,
warning, error,

Printwriter field. Use in
place of System.out

out
DescriptionField/Method

Examples of user interaction dialogs are on the next slide.
com.ibm.xtools pluglets:

• Class Pluglet
• java.lang.Object com.ibm.xtools.pluglets.Pluglet
• Direct Known Subclasses:
• InsertDateAndTime, ListPerspectives, ListProjects, ShowSelection
• public class Pluglet extends Object
• Provides pluglet properties and basic services used by pluglets. To use these properties

and basic services, a pluglet class must extend this class. Use of this class (and thus
extending this class) is optional.

• Field Summary PrintWriterout
The output for this pluglet. Constructor SummaryPluglet()

Method Summary:
• booleanconfrim(String message): Displays a message dialog with OK

and Cancel buttons.
• Booleanconfirm(String message,string title: Displays a message

dialog with OK and Cancel buttons and the given title.
• VoiddumpStack(): Prints a stack trace of the current thread to the pluglet

output writer.
• voiddumpStack(PrintWriter writer): Prints a stack trace of the current

thread to the specified print writer.
• Voiderror(String message): Displays an error dialog with an OK button.
• Voiderror(String message, String title): Displays an error dialog

with an OK button and the given title.
• IPlugletMessageDialoggetDialog(): Retrieves the host's IPlugletMessageDialog

implementation.
• StringgetDirector(): Retrieves the full path of pluglet directory.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Example Pluglet Class Dialogs

More sophisticated dialogs are possible using the Eclipse
JFace and SWT Dialog classes.

•StringgetFile(): Retrieves the full path of the pluglet file.
•StringgetFullName(): Retrieves the full name of the pluglet.
•StringgetName(): Retrieves the name of the pluglet.
•voidinform(String message): Displays a dialog with an OK button.
•voidinform(String message, String title): Shows an OK button and title.
•voidprintStackTrace(Throwable t): Prints the throwable and its backtrace to
the pluglet output writer.
•voidprintStackTrace(Throwable t, PrintWriter writer) Prints the
throwable and its backtrace to the specified print writer.
•Stringprompt(String message): Displays an input dialog with a prompt
message, a text input field, and OK and Cancel buttons.
•Stringprompt(String message, String initialText): Displays an input
dialog with a prompt, the text input field initial text, and OK button and Cancel buttons.
•Stringprompt(String message, String initialText,
String title): Displays an input dialog with a prompt message, the text input field
initial text, the title, and OK button and Cancel buttons.
•booleanquestion(String message): Displays a dialog with Yes and No.
•booleanquestion(String message, String title): Displays a question
message dialog with Yes and No buttons and the given title.
•voidsetDialog(IPlugletMessageDialog dialog): Sets the host's
IPlugletMessageDialog implementation.
•voidsetDirectory(String directory): Sets the full path of pluglet directory.
•voidsetFile(String file): Sets the full path of pluglet file.
•voidsetFullName(String fullName): Sets the full name of the pluglet.
•voidsetName(String name): Sets the name of the pluglet.
•voidwarning(String message): Displays a warning dialog with an OK button.
•voidwarning(String message, String title): Displays a dialog with an
OK button and title.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Some Pluglet API Entry Points
Rational Software Architect and Eclipse or JDT classes
with static methods that open up particular workbench
API’s

DescriptionPlug-inClass

Central access point for
Java UI

Central access point for
Eclipse JDT model

Central access point UML
diagrams

Central access point for
UML model access

Workspace

Central access point for
workbench UI

org.eclipse.jdt.uiJavaUI

org.eclipse.jdt.coreJavaCore

com.ibm.xtools.viz.uiUMLDiagramResourceUtil

com.ibm.xtools.modeler.uiUMLModeler

org.eclipse.core.resourcesResourcesPlugin.getWorkspace

org.eclipse.uiPlatformUI.getWorkbench

These are classes in Eclipse, Java, and Rational Software Architect that contain static
methods that provide access to root objects in the class hierarchy of these components. They
provide entry points for pluglets.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Testing the pluglet
Context menu from
selected pluglet
Run > Pluglet

Or from the toolbar
Including Modeling

perspective

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

Demo: Create a Pluglet
The instructor will now show you how to:

Enable Pluglet sub-items in the New menu
Create a pluglet
Run the pluglet

Watch your instructor create a simple pluglet.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Lab 13: Create a Pluglet
Given:

Pluglet project, PlugletProject.zip
Code fragments

Complete the following tasks:
Create the Workspace
Configure the Perspective
Import the Pluglet
Complete the Pluglet
Run the Pluglet
Export the Pluglet

Complete Lab 13 in the student workbook.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

Review
What is the difference between a host and run-time
workbench?
What are the components of a plug-in project?
For what purposes can pluglets be used?

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007 16 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 17: Model Templates

Contents
Objectives 17-2
Model Templates 17-3
Lab 14: Create a UX Model Template 17-7
Review 17-8
Further Information 17-9

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Model Templates
Objectives:

Describe Rational Software Architect model templates
The uses for model templates
How to design a model template
How to create a model template in Rational Software Architect

Describe the relationship between model templates,
profiles, UML patterns, and transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Model Templates
Allow the user to create
a new model based on
a pre-existing structure

Built-in templates available
from the New Project wizard

Used in conjunction with:
Profiles: Guide the user in
structuring the model as the use
profile stereotypes
UML Patterns: Used to
populate the model with
standard elements and
structures, such as model
elements, package structures
and diagrams
Transformations: Provide
a standard, structure, source
, or target for a custom
transformation

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Review: Populating a Model Template
Model templates contain:

Packages
Diagrams
Building blocks
Applied profiles

The built-in templates can be
customized.

Example Building Block package

Example Building Block element

Every template contains a «modelLibrary» package called TemplateName Building Blocks.
This package contains chunks of model content that you can use to build the design model
more quickly. Building blocks act as template model elements. You can copy (CTRL+C) and
paste (CTRL+V) the building block elements to create new elements for your model.
To use a building block element:

• In the Project Explorer, copy a building block element from the building blocks package
and paste it in the desired location in the model.

• Right-click the new element and choose Find/Replace to change the placeholder name
{$name} to the desired name.

A best practice for naming diagrams is to come up with a descriptive name and then add the
diagram type. For example, the use-case diagram above is called “PO Management Use
Cases.” You might also call it “PO Management Use-Case Diagram.”

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Creating a Model Template
Build a new model structure based on a blank
model or other model
Create a Plug-in Project
Add .emx file to the Plug-in
Connect to an extension point
Specify template details in the .ve file

You can save a model in the workspace as a model template. Model templates can contain
pre-defined model elements and provide the basic structure of a new model. Model templates
can be distributed to other team members to ensure that there is a consistent model format
within a project.
To export a model as a template:

1. Build a model that represents the structure that you wish to make available to others for
reuse.

2. Create a Plug-in project.
3. Copy the .emx file for the model into the plug-in project. By convention, you should

place the .emx file into a folder names templates.
4. Connect to the com.ibm.xtools.modeler.wizards.template extension point. Add a

directory element and point to the location where you placed the template file.
5. Create a new text document with a .ve extension.
6. Add details to the .ve file that describe your template.
7. Test.
8. Deploy.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Specify Template Details
The .ve file allows you to specify details for your
model template, including:

Name
Description
Icon

The .ve file is used to specify details that will make your model template more consumable
by the template’s end users. Within the .ve file you can specify the name, description, and an
icon for the template. To ensure that this information is shown in support of just your
template, you also specify the name of the profile file, as well as the id of the plug-in that
contains the template.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Lab 14: Create a UX Model Template
Complete the following tasks:

Create the Model Template
Add the Model Template to a Plug-in
Apply a Profile to the Model Template

Complete Lab 14 in the student workbook.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Review
What elements can be found within a model
template?
How are model templates distributed?
What roles can model templates play
alongside other artifacts?

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Further Information
Web resources
Literature

Web Resources
• Bran Selic. “Unified Modeling Language version 2.0.” IBM developerWorks, http://www-

128.ibm.com/developerworks/rational/library/05/321_uml/
Literature
• James Rumbaugh et al. The Unified Modeling Language Reference Manual. Boston:

Addison Wesley, 2005.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

© Copyright IBM Corp. 2007 17 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 18: Packaging Artifacts

Contents
Objectives 18-2
Eclipse Features 18-5
Reusable Asset Specification (RAS) 18-19
Lab 15: Package Reusable Artifacts 18-23
Review 18-24

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Packaging Artifacts
Objectives:

Describe the methods of managing and packaging
extensibility artifacts:

Plug-ins
Features
Reusable Asset Specification (RAS) Archives

Create a RAS archive

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of MDD

18: How do I package
these elements
as reusable assets?

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

We will see this slide several times throughout the workshop. It will serve as a visual guide
to the skills you are learning, and to how they fit into MDD .

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Where Are We?
Eclipse Features
Reusable Asset Specification Archives

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Eclipse Features: Packaging and Installing Plug-ins
Eclipse Features

For packaging plug-ins:
Organize plug-ins so that they can be installed and managed by the Update
Manager
It is possible to brand features

For installing plug-ins:
The user can choose to disable or enable features.
Features can be nested to manage the source of service for a set of features.
Features are installed and managed using the Update Manager.

Feature

Eclipse Extension

Plug-inPlug-inPlug-ins

Eclipse ExtensionExtensionsExtensionsExtensions

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Feature Structure

Required plug-ins and features used to validate feature install and
enablement
Referenced plug-ins are managed and serviced by referencing feature
Included features are serviced by the parent-defined update URL

<feature>

references
<plugin> <feature><plugin>

<includes><requires>

<feature>
<plugin>

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

What are Install Sites?
Install sites are the basic building block in a configuration.
An install site is a location on the file system where the features and
plugins directories can be found.
An install site is a single location on the file system, but the same
location could be included in multiple configurations and in multiple
Eclipse-based product installations.
Types of install sites:

Platform base site: This is where Eclipse itself is installed. It always exists.
Extension site: Distinguished from other sites through the .eclipseextension
file.
Update site: Distinguished from other sites through the site.xml file.

Update Site

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

What are Configurations?
The Update Manager controls your Eclipse configurations.

Creates an initial configuration during startup if there is no existing configuration
Reads the active configuration
Manages changes that occur to the configuration

A Configuration identifies:
What Install sites are accessible
What Features exist in each site

Configuration information is saved in the platform.xml , which is
filefound in the configuration/org.eclipse.update directory

A Configuration applies to any workspace that might be accessed

The default configuration is used when Eclipse is launched
<eclipse_install>/eclipse/configuration

An alternate configuration can be specified using the
-configuration startup parameter

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Tool Developer

Install Image

Tool User

Update
Manager

Server

Installer Technology
New Product
Or Extension

Install

PDE Feature Project
Packages Sets of Plug-ins

Update Manager
Add, Update, or Remove

Components

Feature Scenarios

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Create a Feature
1. Open the New wizard dialog

by hitting CTRL+N, filter for
feature, and click Next.

2. Add project name and
Feature Provider, and click
Next.

3. Select required plugins and
features, and Finish.

4. feature.xml opens in a multi-
page editor similar to
plugin.xml.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Edit a Feature
Overview page

Define Update URL

Information page
Define Feature description
Define Copyright Notice
Define License Agreement

Plug-ins page
Define included plug-ins

Feature page
Define Features to be nested

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Package a Feature: Overview (1 of 3)
Packaging plug-ins using features is required to install into Eclipse
The process is driven by the build.properties, feature.xml, and
plugin.xml files
Features and their associated plug-ins can be packaged in two ways:
1. Packaging for an Extension site

eclipse folder
.eclipseextension file
features folder
– <featureId_ver> folder

– Feature.xml

– …
– …
plugins folder
– <pluginsId_ver> folder

– plugin.xml
– <runtime>.jar
– …

– …

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Package a Feature: Overview (2 of 3)
Eclipse features and their associated plug-ins can be packaged in three
ways:
1. As a RAS asset
2. As Packaging for an Extension site
3. As Packaging for an Update site

updateSite folder
site.xml file
Features folder
– <featureId_ver>.jar

– …
Plugins folder
– <pluginId_ver>.jar

– ….

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Package a Feature: Overview (3 of 3)
Packaging options include:
1. Ant scripts using PDE

1. Build for an Extension site
2. Build for an Update site

2. Export Features wizard
1. Export for an Extension site
2. Export for an Update site

3. Site editor’s Build All action
1. Build for an Update site

4. Ant scripts using AntRunner
1. Build for an Extension site
2. Build for an Update site

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Package a Feature: Export Features Wizard
The Export Features
wizard provides three
options:
1.Export as a directory

structure
Builds for Extension site

2.Export as a single ZIP file
Builds for Extension site

3.Export as individual JAR
archives

Builds for Update site

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Package an Install Site
Two options exist for how Features can be installed in Eclipse. The
result of these two techniques is the same.
1.Install Feature from an Extension site

Tool providers package their Features including an .eclipseextension file using
InstallShield.
.eclipseextension content includes:
id=com.ibm.jdg2e.simplemodel.ui
name=JDG2E Simple Model UI
version=1.0.0

2.Install Feature from an Update site
Tool providers package their Features including a site.xml file to a HTTP site.
site.xml content includes:
<site>

<feature url="features/com.ibm.jdg2e.simplemodel.ui_1.0.0.jar"
id="com.ibm.jdg2e.simplemodel.ui" version="1.0.0">

<category name="jdg2e.service"/>
</feature>
<category-def name="jdg2e.service" label="JDG2E Service">

<description> JDG2E Service Description </description>
</category-def>

</site>

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Summary
Features are:

An installable unit of function
A packaging construct

Features can:
Brand plugins
Nest other features

Features can be:
Installed and managed using the Update Manager
Developed using PDE

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Where Are We?
Eclipse Features
Reusable Asset Specification Archives

This section provides an overview of the Reusable Asset Specification.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Reusable Asset Specification (RAS)
The RAS provides a standard format for assembling,
organizing, storing, and documenting reusable assets,
including extensibility artifacts.

Rational Software Architect supports the exchange of
RAS assets:

RAS Import and Export
RAS documentation
.ras file format
Support for RAS repositories

Rational Software Architect uses the Reusable Asset Specification (RAS) to provide a
standard way to package and extract a set of related files. A RAS asset is a RAS-compliant
collection of related files or artifacts.
A RAS asset can contain many types of artifacts; for example, design and use-case models,
pattern assets, Web links, code samples, text files, and test data. Assets targeted for long-term
reuse benefit from good documentation that summarizes the asset's purpose, use, content, and
context. Documentation plays a key role in helping the consumer determine if the asset
satisfies his requirements.
RAS assets provide the following benefits:

• A method to communicate software solutions easily.
• Organization of diverse, but related, files in a single package.
• Presentation of consistent information in all assets of the same type.
• Multiple and flexible keywords to search repositories for assets.
• Options to store and retrieve assets from one or more RAS asset repositories.
• Use of simple variations of the standard import and export functions to load and package

assets.
• Maintenance of activities to ensure accurate file restoration upon import or export.

The RUP for Asset-Based Development plug-in describes the asset identification, asset
production, and asset consumption process components of the asset-based development
discipline. This plug-in is available for download from the “List of RUP Plug-ins” on IBM
developerWorks: http://www-128.ibm.com/developerworks/rational/library/5823.html.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

RAS Assets
A RAS asset contains:

Artifacts
Variability points

Parts of a RAS asset file include:
RAS manifest
Asset profile
Activity task types

Artifact

Artifact

Artifact

Artifact

Variability Point

Problem

Solution

When you begin using pattern solutions in the development environment, you need to find a
standard way to store and share them (along with other project artifacts). This mechanism for
sharing artifacts is the reusable asset.
A reusable asset is an organized collection of artifacts that provides a solution to a problem
for a given context. Assets clearly have much in common with patterns. Similar to a pattern,
an asset:

• Includes instructions or usage rules, to minimize the time developers need to discover,
analyze, consume, and test the asset.

• Includes standard documentation describing the development and business context in
which the asset can be used.

• Can have variability points, like pattern parameters, that allow users to customize the
asset for a specific project.

An asset is a more general concept than a pattern, since it is a collection of artifacts and not
just a collection of model elements.
An asset can contain more than patterns. An asset for a development project might contain
requirements, models, source code, and tests. Assets might also be used to package and share
deployable components, Web services, frameworks, and templates.
The standard structure of reusable assets is the Reusable Asset Specification (RAS), an OMG
standard. The Rational brand products use the RAS specification for exporting and importing
assets to help with asset-based development. By default, a local repository is provided for
storing and retrieving your files. A Pattern repository also comes preloaded in the Asset
Explorer view. Additional repositories can be established using applications for Web-based
access.

• RAS asset manifest file: The RAS asset is a compressed file that stores the files that
make up the asset. At export, a manifest file is created (from the selected RAS profile
file) and is included in every RAS asset's file.

• Types of RAS asset profiles: RAS asset profiles allow you to create different types of
assets. A specialized profile extends the original contents of the default profile. Every
RAS manifest must have a RAS profile associated with it.

• Activity task types: Activities should be modified only by users who are familiar with
using the Reusable Asset Specification to hand code manifest files. Modifications to the
RAS manifest files-generated activities can render them incompatible. Activities
describe tasks the user should do to reuse the asset. It is recommended that you do not
modify generated activities, but you are encouraged to add your own as needed.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Packaging UML Patterns and Transformations
Patterns with
transformations can be
grouped into pattern
libraries

Pattern libraries and
transformations can reside
in the same Eclipse plug-in

Plug-ins can be grouped
and exchanged in RAS
format.

Eclipse Plug-ins

Patterns Library

Transformations

Eclipse Plug-in

Patterns Library

Transformations

RAS Asset

Patterns realize their maximum benefit from reuse and distribution as RAS assets. They can
be exported as deployable plug-ins.
As patterns are created, the required meta (RAS manifest) files (which support the RAS
packaging) are added to the pattern project, both to the individual patterns that it comprises
and to the pattern library itself on export. The content of the manifest file is determined by a
pattern’s profile, which specifies the type of the meta file used to package (and also restore)
RAS assets.
A pattern repository is always created for you whenever any pattern plug-ins are detected and
available to your workspace. Patterns installed as plug-ins and patterns in other repositories
all display in the pattern repository and the Pattern Explorer view.
Common RAS features, such as searching and adding groups (folders) are also available in
the Pattern Explorer view. Thus, pattern functions can be accomplished without using the
Asset Explorer view.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

RAS Repositories
Repository Types

DeveloperWorks
Local
Workgroup
IBM® Rational® XDE™

Repositories provide a way to organize and manage assets so that they can be exchanged
quickly and easily with developers and co-workers. You can easily add a repository to your
repository list so that you can view, search, inspect, and import these assets. The RAS feature
supports the following types of repositories; developerWorks, Local, Workgroup, IBM®
Rational® XDE™, and Patterns.

• developerWorks repository: Contains new Rational Software Modeler Product assets,
and is hosted by IBM on the developerWorks website.

• Local repository: Resides on your local personal computer, and does not contain any
assets until you populate it.

• Workgroup repository: Can be any J2EE Web server repository. Note: Workgroup
repositories run only on IBM® WebSphere® Application Server 5.1 or later.

• XDE repository: Contains IBM Rational® XDE assets. This format is provided so that
you can use legacy assets developed and exported from Rational XDE.

Neil Boyette of IBM research has produced a RAS Repository for Workgroups for IBM®
alphaWorks®, IBM’s resource for emerging technologies. The Reusable Asset Specification
Repository for Workgroups supports a variety of ways for users to retrieve information about
the assets in the repository. These include searching and browsing with the RAS 1.0 standard
interface, or with an enhanced interface (to be proposed for incorporation in the next version
of RAS) that supports more complex queries. Administrators can publish assets to the
repository, create and organize the logical view of the assets, and perform measurement
tracking.
This repository is on IBM alphaWorks: http://www.alphaworks.ibm.com/tech/rasr4w

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Lab 15: Package Reusable Artifacts
Given:

Project with Reusable assets
Complete the following tasks:

Create a RAS Repository
Create RAS asset containing reusable assets
Test RAS asset

Complete Lab 15 in the student workbook.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

© Copyright IBM Corp. 2007 18 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Review
Why do we want to package the asset we build?
Why wrap the plug-in with a feature?
What is RAS?

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 19: Summary and Conclusion

Contents
IBM Software Delivery Platform and Eclipse 19-2
Model-Driven Development with Patterns 19-6
Choosing the Kind of Pattern Implementation 19-8

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

IBM Software Delivery Platform and Eclipse
The IBM SDP is built on Eclipse and its services

Eclipse CoreEclipse Core

HyadesHyadesModel Services (UML2 ext, other MetaModel Services (UML2 ext, other Meta--Models, Code Gen APIs, Models, Code Gen APIs, ……))

GEFGEF JDT/CDTJDT/CDT Team Team CM, Merge, TraceabilityCM, Merge, Traceability…….. EMFEMF

J2EE, Web Services, UML2 ModelsJ2EE, Web Services, UML2 Models

Ec
lip

se

Analyst
Architect

Developer
Tester

Project
Manager Deployment

Manager

The Eclipse platform provides an open environment for enterprise development, with the
capacity to support all phases of the application development life cycle, including analysis,
requirements, design, development, testing, software configuration management, defect
tracking, project management, and so on. The main components include a universal platform
for development tool integration, and a Java development environment built with Eclipse. At
the heart of the Eclipse platform is an extensive toolset with core capabilities, plus support for
extensions through a plug-in architecture.
The components of a development tool chain based on the Eclipse framework are:

• The Eclipse Modeling Framework: A fundamental part of Eclipse, enabling the
platform’s modeling capabilities to interoperate with other tools and applications.

• The Eclipse C and C++ Development Tools (CDT) project: An open-source C and
C++ development plug-in that leverages common open-source underlying tools such as
gcc, gdb and make.

• The Eclipse Test and Performance Tools Platform Project (TPTP): Provides a
common user interface, standard data models, data collection and communications
control, as well as remote execution environments. Can be extended for solution-specific
tooling and runtimes.

• The Graphical Editing Framework (GEF): Allows you to easily develop graphical
representations for existing models.

• Java Development Tools (JDT): Java development tools, along with the Eclipse
technology, create applications that run on real-time operating systems and embedded
environments.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Artifacts for Reusable Assets in Rational Software Architect
Profiles

Provide custom stereotypes
Are often used in patterns
Are required for transformations

Model templates
Allow you to create a new model based on a pre-existing structure
Can provide a model structure consistent with related patterns and
transformations
Can be distributed with a custom profile applied

UML Patterns
Are developed as Eclipse plug-ins
Add or change structures in the model
Are available in libraries for different types of development projects

Transformations
Are developed as Eclipse plug-ins
Transform model elements based on a transformation definition
Are applied to specific elements or whole models
Work as part of pattern solutions

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Integration of Artifacts in Reusable Assets
Profiles, model templates, UML patterns, and
transformations can be used together to increase the
ROI of your extensibility investment.

Profiles Transformations

Source
Model

Model Templates UML Patterns

Source Model with
Markup, Patterns

Applied

Target ModelSource
Model with

Markup

Supply
with template

Populate
the
model

Manually mark up
the model with
profile elements

Automatically
mark up the model
with profile
elements, and
apply best practices

Transform the model
based on rules that
recognize
model markup

As you work with Rational Software Architect in your environment, you will come across
situations where plain UML is not able to model the elements of your domain sufficiently. In
addition, there will be patterns of usage that will accompany these domain-specific elements.
UML profiles can be developed in Rational Software Modeler or Rational Software Architect
for these situations.
Creating a UML pattern that can understand and use the domain-specific elements of your
profile will help in ensuring that users are following best practices for your organization. As a
final step in this workflow, the user would send the model through a transformation. Ideally,
the model elements would then be updated according to the profile, with elements structured
in a way that makes the best use of those model elements. The transformation will
understand the domain-specific elements, and will produce an output model that reflects this
understanding.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Accelerating Model-Driven Development

Platform-
Independent

Model

Code-based Development

Apply Patterns

Apply Patterns

Apply Patterns

ITER
ATE

Forward Transform
(embedded patterns) Reverse Transform

(embedded patterns)

Apply Patterns

Forward Transform
(embedded patterns) Reverse Transform

(embedded patterns)

Forward Transform
(embedded patterns) Reverse Transform

(embedded patterns)

Forward Transform
(embedded patterns) Reverse Transform

(embedded patterns)

Application Design
(high abstraction)

Implementation

Application Use-Cases

Application Analysis

Computational
Independent

Model

Platform-
Specific Model

Business Analysis
Business Process Models

Business Use-Cases

Model-Driven
Architecture RUP Methodology

Platform-specific model markup

A code-generator is an important component of Model Driven Development (MDD). The
goal of MDD is to describe a software system using abstract models (such as EMF/ECORE
models or UML models), and then refine and transform these models into code. Although it is
possible to create abstract models, and manually transform them into code, the real power of
MDD comes from automating this process. Such transformations accelerate the MDD
process. The transformations can capture "best practices" and can ensure that a project
consistently employs these practices.
However, transformations are not always perfect. Best practices are often dependent on
context - what is optimal in one context may be suboptimal in another.
Rational Software Architect is designed to support MDD, the development of the appropriate
models to facilitate all development activities and stages in the lifecycle, plus tools to
transform models to move development work forward.
An analyst might begin by modeling the business domain in Rational Software Architect to
define the key products, deliverables, or events. The analyst can then create a use-case model
to define the actors, system boundary, and use cases the system will support.
The architect then uses Rational Software Architect to create a platform-independent design
model from the use-case model. This model or set of models can be transformed in platform-
dependent implementation models (including code and UML) with the assistance of visual
development tools, such as:

• UML editors for Java, C++, or data
• Site Designer
• Page Designers

As each new stage of development begins, transformations can create more detailed models
that are incrementally closer to the target platform and infrastructure. Transformations can be
designed to include traceability so that you can query the target model, using elements from
the source model to find elements in the target model. This feature is currently built into the
UML to Java transformation that comes with Rational Software Architect. After the
transformation is complete, you can right-click a model element in the design model and
perform a query to find the associated Java code.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Model-Driven Development with Patterns
Instead of capturing architectural

decisions in a document and
applying them manually, capture
them explicitly as assets and
automate their application.

There the two distinct types of activity in the MDD process:
• Expertise Capture and Automation: This is where you build the MDD framework that

partially automates the development of software that follows a particular architectural
style.

• Application Development: This is where you apply your chosen MDD framework to
build software components, applications, and solutions. These activities are typically
performed by different groups of people and require different skills. Rational Software
Architect supports both sets of activities. You use Rational Software Architect to build
UML profiles, patterns, and transformations that are then used to customize Rational
Software Architect to provide an MDD framework.

There is no magic to MDD. Someone must come up with a set of modeling conventions that
are suitable for the software under development. Someone must also develop transformations
that can automate the generation of code from models that follow these conventions. The key
dependencies between the two streams of activity are as follows:

• UML profiles and patterns must be available when application modeling begins. In some
cases, this dependency is managed in an iterative manner, with profiles and patterns that
address some aspects of design being made available before others.

• Transformations must be available in order to generate implementation artifacts. In some
projects, the target platform and the transformations are selected at the start of the
project. In others, this decision is deferred.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

The Asset Development Process

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Choosing the Kind of Pattern Implementation

Which
transform type?

Jet2

Model2Text

RSA Patterns UI is OK?
Simple UML transform?

RSx Pattern RSx Transform

Yes/Yes Otherwise

Model2Model

RSx Transform
+ Jet2

Input model is already
suited to Jet2 transform?

Yes No

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Class Discussion
How does the use of reusable assets help in
the design of a software solution?
How do you plan to apply reusable assets in
your current projects?
How would you evolve the artifacts
from the workshop?

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

© Copyright IBM Corp. 2007 19 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 20: Advanced Transformation Topics (Appendix)

Contents
Advanced Transformation Topics 20-2
Cloning Transformations 20-14
Enabling Custom Transformation UI 20-18
Reverse Transformations 20-22

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Advanced Transformation Topics
Objectives:

Describe how to:
Extend transformations
Clone transformations
Customize the Transform GUI
Decide when reverse transformations are needed

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

What Else Can Be Done to Transformations?
Create Transformation extensions

Clone a Transformation

Call a transformation from a menu or other plug-in

Enhance the Transformation UI

Include a reverse transformation

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Where Are We?
Transformation Extensions
Cloning Transformations
Enhance the Transformation UI
Reverse Transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Transformation Extensions
Transformations in Rational Software Architect, as
Eclipse plug-ins, are designed to be extended

You can modify a transformation to add customized
behavior

Generate additional items from your model according to
your own code standards
A better alternative than
creating your own
transformation from scratch

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Types of Extension Points
Metatype Converters

This extension defines a metatype converter, which allows new
metatypes to be defined and used by transformations and their
properties.

Transformation Providers
This extension point facilitates the configuration of providers for the
transformation service. The transformation service enables Xtools clients
to register model transformations. These transformations can be used to
convert the data from one model into a different model.

Transformation Extensions
This extension point facilitates the configuration of extensions to
transformations that are defined by transformation providers registered
with the transformation service. Using a transformation extension, a
client can extend the behavior of an existing transformation.

Transformation Utilities
This extension point lets users define and register transform utilities that
can be used by transformations.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Extending Transformations
Extension point:
com.ibm.xtools.transform.core.transformationExtensions

Used to:
Define new properties
Define new transforms
Define new rules
Define new extractors
Add new transforms, rules, and extractors to an existing transformation

Does not create a new transformation, but adds behavior to the existing one

When you run the transformation, all of its extensions are run
You must manually disable any plug-ins that you do not want to run

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

«XML Fragment»
Transformation

Extension

+ properties []

Transform Element

- extandedTransform
1..*

Transformation

- extendedTransformation
1

Transform

- transformElementExtension
*

- transform

*

Transformation Extension

Transformation
to be extended Transform (in selected

transformation) to be
extended

New transform element
to add to (or replace in)
the selected transform

The transformation
extension

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

AddRule Element
AddRule element in the plug-in manifest specifies a rule and
where it should be inserted

AddRule has the following attributes:
Index: Shows where the rule is inserted among existing rules
id: Determines which rule is added. Must match the id of an existing
RuleDefinition

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Extending a Transformation Rule

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Adding Transformation Extensions
To discover how and where to extend a
transformation, you need to rely on transformation
documentation

Easy to extend your own transformations or transformations
you have source code available
Hard to extend 3rd party transformations if no documentation

is available

Transformations designed to be extended must have
well-documented extension points.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Issues with Transformation Extensions
Transformation extensions extend all instances of the
transformation in the workbench

Can make customizable:
Using transformation properties
Using profiles

Multiple extensions can extend the same transformation
Difficult to predict how all extensions will interact within the transformation

Sometimes difficult to know where to insert new rules, and so on
It is necessary to know the ID of the transformation to extend
It is necessary to know the number of the rules of a transformation to
determine the index to extend the transformation

Extensions should have very specific accept conditions to
prevent unintended side-effects on existing transforms

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Where Are We?
Transformation Extensions
Cloning Transformations
Enhance the Transformation UI
Reverse Transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Cloning Transformations
Instead of simply extending an existing transformation

Copy a transformation and extend it to leave the original
transformation available without the extension

Requires new TransformationProvider
New Transform class
– Get original transformation from Transformation Service
– Add original transformation to new Transform
Extend the new transform

Works better if placeholders for extensions are defined
for the original transformation

Good Practice

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Cloning Transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Cloning Transformations Example

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Where Are We?
Transformation Extensions
Cloning Transformations
Enhance the Transformation UI
Reverse Transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Enabling Custom Transformation UI

Before a transformation author can customize the UI
for a transformation, he must first inform the
Transformation Service. This is easily accomplished
by doing the following:

Create a class that is derived from AbstractTransformGUI
and override the appropriate methods, such as
getConfigurationTabs()

In the transformation descriptor in XML, add the
transformGUI attribute where the value is the fully qualified
class created above

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Adding New Configuration Tabs
The method getConfigurationTabs() returns an array of configuration
tabs to be displayed when a configuration for the associated
transformation is selected. This list should include the three default
tabs, where the Target tab usually comes first and the Common tab
comes last.

Each custom tab should be derived from AbstractTransformConfigTab
and should be in the middle of the configuration tab list returned by
getConfigurationTabs(). There are two key methods of this class that
must be implemented:

populateContext(ITransformContext) saves the data from the tab's UI
controls by defining one or more properties in the context with the
appropriate values. These property values should be defined in the
manner expected by the transformation when it executes.
populateTab(ITransformContext) resets the data for the tab's UI controls
by examining one or more properties defined in the context.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Filtering Displayed Source and Target Objects
Although the source and target model types defined in the
transformation descriptor enable the UI to filter the available source
and target objects for the transformation, you may wish to provide
additional pruning of the selection tree.

There are two methods in AbstractTransformGUI for deciding if an
object is to be displayed in the corresponding selection tree:

showInSourceTree() is called before an object is added to the
transformation's source selection tree. The method enables the tree to be
pruned. True should be returned if the given object is valid, or if it might
contain a valid object. The method should return false if the object and all
of its contained objects are invalid.
showInTargetContainerTree() is called before an object is added to the
transformation's target selection tree. This method prunes the object in the
tree in the same manner as the source tree.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Where Are We?
Transformation Extensions
Cloning Transformations
Enhance the Transformation UI
Reverse Transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Model-code Reconciliation and Reverse Transformations
Benefits

Allow globally distributed teams
to work on design and
implementation, and to
reconcile results

Enhanced difference and merge
capabilities in Version 7.0

Reverse transform code to model
Reconcile models
Merge resulting model
Forward transform model to code

Reverse engineering
for code-to-model transformation

Reverse transformations for Java,
C++

While there have been capabilities to harvest existing code into UML models with IBM
Rational tools in the past , there has been no comprehensive way to differentiate and merge
models and code. New transformations in V7 and later include the ability to reverse engineer
code to UML models, reconcile differences, and merge the models together before forward
engineering the merged architecture back to code. This allows globally distributed teams to
work on design and implementation, while being able to ensure architectural integrity.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Architectural Governance Scenario

Will implementation
conform to
specification?

How do you account for
both changing over
time?

Architecture
v1.0

Architecture Team Implementation Team

Implementation
v1.0

Architecture
v1.1

Implementation
v1.1

Iterate Iterate

Geography,
subcontract,

or corporate culture

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Architectural Governance Scenario (cont.)

Architecture
v1.0

Implementation
v1.0

Architecture
v1.1

Implementation
v1.1

Iterate Iterate

UML Model of
Implementation

v1.1

•Compare /
Merge

Conformance
restored

Architecture
v1.1+

Accepted change

Implementation
v1.1+Forward Transformation

(omit rejected change)

Architectural
deviation
introduced

Reverse Transformation

Some architectural deviations introduced by the implementation team may be accepted as
improvements. Others may be rejected due to “bigger picture” concerns.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Reverse Transformation Configuration
When configuring a UML-to-Java or a UML-to-C++
transformation, you can choose to enable the
corresponding reverse transformation.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Running the Reverse Transform
A reverse transformation allows
the developers and designers to
make changes to either the code
or the model, and to keep those
changes in sync.

Running from code to a model
could add implementation details
to your model.

After the transformation runs, a
dialogue will allow you to select the
changes to apply.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

Further Information
Rational Software Architect Help Topics
Web resources
Literature

Rational Software Architect Help Topics
• Extending Rational Software Architect Functionality

Web Resources
• “Extending the UML to Java Transformation in Rational Software Architect.”

http://www-128.ibm.com/developerworks/rational/library/05/802_uml/
Literature

• Frankel, David S. Model Driven Architecture: Applying MDA to Enterprise Computing.
Indianapolis: Wiley Publishing, 2003.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007 20 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 21: Introduction to GMF (Appendix)

Contents
Introduction to GMF 21-2
Introduction to DSL 21-10
Optional: Technical details 21-14
Further Information 21-24

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Describe GMF
Understand how you can use GMF along with JET2
Understand DSL

Introduction to GMF

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

What is GMF?
GMF = Eclipse Graphical Modeling Framework
Ability to create totally customized Diagram Editors
May use UML or EMF (Eclipse Modeling Framework)
and XML-based data
Resulting diagrams have very similar look and feel to
native Rational Software Architect diagrams

Remember that it is very easy to wrap XML data into an EMF-based API, and then create a
GMF-based Diagram Editor for it.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

GMF Can Enhance JET
Remember that JET transformations take XML (or
EMF) files as input
You can use GMF to create custom Graphical
Diagram editors for JET input files

CodeGMF based
Diagram Editor

XML
File

EMF Based
API

JET
Transformation

GMF can be used for many different scenarios. One possible scenario is to create a custom
graphical Diagram editor for JET input files. GMF can be used to create a graphical editor
for any XML file.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Example
Custom Diagram Editor to edit Console
Transformation’s input XML files

GMF XML

The diagram on the right is a custom Console Transformation Input editor. The diagram on
the right is the resulting XML file.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Overview of How GMF Works
Use a set of GMF Wizards and Editors to define and
generate a new Diagram
Then write Java code to extend and refine the
generated source code as needed
The illustrated example is only using generated code

Took about one hour to create

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Lab 1: Run Example
Given:

A Project Interchange file that contains a pre-built GMF
based editor

After completing this lab, you will be able to:
Use a GMF-based editor
See how GMF-based editors can edit XML files that can be
used with transformations

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Two-Phase Transformation
Recommendation: When designing a transformation,
derive its input model from the transformation

Better not to use existing model as input to transformation
Recommendation: When designing a front-end model
for users, derive the model from the user’s
perspective for ease of entry and maintenance

The model may be UML, XML, EMF, GMF, and so on
The model may already exist

Result: Front-end model may be different from the
transformation’s input model, which is OK

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Two-Phase Transformation (cont.)
Use another transformation to transform the front-end
information into the Transformation’s input (back-end
model)

The front-end transformation may use JET
The front-end transformation may use Rational Software
Architect’s model to model the transformation engine
Generally, you should design the front-end transformation to
automatically run the back-end transformation

CodeFront-End Editor
(EMF, GMF, UML, …)

Transformation
Input File

Front-End
Model File

JET
Transformation

Transformation

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Introduction to DSL
Domain Specific Language

A custom programming language or graphical modeling
language designed to support a (domain) specific task

In contrast to
Generic languages like Java and C++
Generic modeling languages like UML

Examples
The sample Console input model is an EMF-based DSL for
building Console Applications
The sample Console GMF Editor is a graphical DSL
modeling language for building Console Applications

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

How to Implement DSL with Rational Software Architect
UML with UML Profiles

UML can be extended and customized using Profiles
Profiles add Stereotypes, additional model data, and additional model
validation

Lets you extend and customize UML to create a DSL
EMF with EMF and GMF based Editors

Using EMF, you can create a completely custom (XML-
Based) language
Use EMF and GMF to create non-graphical and graphical
editors for the language

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Mix and Match Implementation of DSL
With Rational Software Architect, you can mix and
match UML, EMF, and GMF in creating a DSL
Examples:

Create a custom diagram for UML using GMF
Include EMF-based data inside of a UML model (emx file)

Rational Software Architect has very flexible support to use EMF, GMF, and UML together
in various configurations. The examples listed are far from exhaustive.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

EMF/GMF versus UML/UML Profile-Based DSLs
UML-based DSLs

Much easier to create
Much less flexible

EMF/GMF-based DSLs
Much more flexible
Much harder to create and maintain

Note that UML has a lot of flexibility, but EMF/GMF has more.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Optional: Technical details
The remaining slides and lab describe GMF in more
technical detail

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Overview

Domain
Model
(ecore)

Graphical
Definition
Model

Tooling
Definition
Model

Mapping
Model

Diagram
Gen
Model

Diagram
Plug-in with
Java Source
Code

Combine

Note that in Rational Software Architect V7 and later, all of
the Models have model type-specific non-graphical model
editors.

The different models are explained in the next slides

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Domain Model (ecore)
Defines the data model for the custom editor
File extension is ecore
This is any EMF data model which is an input into the
GMF process

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Graphical Definition Model (gmfgraph)
Defines the graphical elements for the custom editor

What are the nodes, compartments, connectors, labels, and
so on?
How can I graphically draw them?

Example, ‘ConnectorZ’ is a two pixel-wide dashed line with an open
arrow head

File extension is gmfgraph
You can re-use gmfgraph files for different editors
Rational Software Architect includes a wizard to
automatically create a default gmfgraph file based on
an EMF Ecore file
A gmfgraph file is NOT linked to any specific ecore file

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Tooling Def Model (gmftool)
Defines the tools for the custom editor

Palette and menu entries
File extension is gmftool
Generally, tooling definition is domain model-specific,
and not appropriate to re-use between different
custom diagrams
Rational Software Architect includes a wizard to
automatically create a default gmftool file based on an
EMF Ecore file

Can be created or extended by hand
A gmftool file is NOT linked to any specific ecore file

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Mapping Model (gmfmap)
Ties together (maps) the graphical definition
(gmfgraph), tooling definition (gmftool) and domain
model (ecore)
File extension is gmfmap
Created using a wizard

Can be extended and refined by hand
For example: link together a domain model node with
its graphical definition and its tools (palettes and
menus)

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Diagram Gen Model (gmfgen)
Defines the custom editor’s code generation options

For example, property defines if Print support should be
included

File extension is gmfgen

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Generated Code
From the Diagram Gen Model, you generate the
custom diagram’s code
Generates a new Eclipse plugin project

Fully-configured plug-in
Includes the generated Java source code

Additional customization and enhancement can be
made to the generated editor

Edit the generated code
It is designed to be extensible, and can be extended with
additional plug-ins

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

GMF and Rational Software Architect Models
GMF Diagrams can be stored outside of Rational
Software Architect Model files
GMF Diagrams can be stored inside of Rational
Software Architect Model files
GMF Diagrams can reference, display, and
manipulate UML information
So, GMF can be used to extend Rational Software
Architect Model capabilities

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Lab 2: Build Console GMF Example
Given:

The ongoing Console Transformation example and the
generated EMF wrappers for its input files

After completing this lab, you will be able to:
Create and run a GMF generated graphical editor

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

© Copyright IBM Corp. 2007 21 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Further Information
Web resources

www.eclipse.org/gmf
Eclipse page for GMF

www.eclipse.org/emf
Eclipse page for EMF

www.eclipse.org/gef
Eclipse page for GEF

Web Resources
• www.eclipse.org/gmf

(Eclipse page for GMF)
• www.eclipse.org/emf

(Eclipse page for EMF)
• www.eclipse.org/gef

(Eclipse page for GEF)

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 22: XPath – XML Path Language (Appendix)

Contents
XPath – XML Path Language 22-2
XPath Address Notation 22-9
XPath 2.0 22-26
Further Information 22-30

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Describe the reasons for using XPath
Define the components and constructs that make up the
XML Path Language
Describe how XPath can reference data in XML documents
Write simple XPath expressions
Identify abbreviated XPath expressions
Describe how to partition the XPath document

XPath – XML Path Language

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

What is XPath?
XPath is a specification for querying an XML document.

Originally designed for use by XSLT and XPointer.
Now used by many XML-related technologies, such as XQuery.

XPath satisfies the need to address (locate) parts of a
document which meet specified criteria.

Example: In the XML description of a book, "find all chapters with 'Java'
in the title."

XPath provides the ability to address any slice of an XML
document in any direction.
XPath is a W3C Recommendation.

November 16, 1999

XPath was defined during the development of XSLT (XML Stylesheet Language
Transformation) and XPointer. It was designed to provide unambiguous traversal of XML
documents.
XPointer and XSLT both use XPath's functionality, but XSLT uses only a subset of XPath,
while XPointer uses additional syntax to extend its functionality.
XPointer allows forward and backward addressing to specific XML locations internal to a
document, and to locations in external XML documents.
XQuery is an emerging technology that will eventually provide standardized access to
RDBMS data stores that use XML.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Why is it Called XPath?
XML documents are frequently viewed as a tree of nodes.
Expressions describe a path to a given node or set of nodes
(node-set).
Consider the DOS, UNIX, or URI syntax for addressing files in
a directory structure.

/publications/articles/Transformations.xml

This is called a pathname to the file.
It describes the path to follow, from the root,
through a tree of directories (folders), to
locate a given file.

Similarly, XPath also uses a forward
slash to separate the nodes of a path.

Paths are a natural way to express a hierarchical structure.
DOS and Windows actually use a backslash to represent the path separators. URI's, XPath,
and most other path addressing schemes use a forward slash, as backslash is used to express
or escape special characters. For example, '\t' represents a TAB character, and '\\' represents a
backslash.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Example Tree Representation of XML

<?xml version="1.0"?>
<book>

<author>Tom Wolfe</author>
<title>The Right Stuff</title>
<price>$6.00</price>

</book>

address = "/"ROOT

<book>

<author> <title> <price>

"Tom
Wolfe"

"The Right
Stuff" "$6.00"

address = "/book/price"

address = "/book"

address = "/book/*"
address = "/book/price/text()"

This example shows a typical XML document and how it is represented as a tree of nodes.
There is a single root node, that contains several other types of nodes.
There are seven node types in XML. They are:

1. root nodes
2. element nodes
3. text nodes
4. attribute nodes
5. namespace nodes
6. processing instruction nodes
7. comment nodes

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

XPath Expression Evaluation
An XPath expression is a series of steps.

A step is a search criteria statement.
Example: "find figures in the current chapter."

An XPath expression has a current context.
A node in the tree that is the starting point for the step.
Example: "current chapter in the book."

Each step, except the last, must evaluate to a set of nodes in
the XML tree.

Example: "all the chapters in a book."
Steps are evaluated against one or more nodes.
The resulting set of nodes may be empty.

The last step returns one of these:
Number
Boolean
String
Node-set

Think of an XPath expression as a series of steps through the XML tree. Each step is a rung
in the ladder, or layer of the tree.
Wildcards permit a single step to represent many layers, much like skipping several rungs
when climbing down the ladder.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

XPath Current Context
The active element within the XPath address step

–/Root/.../Ancestor/Parent/SELF/Child/Descendant

Self is always a
single node. It can only have
one parent and one root. It may have
multiple children, ancestors, and so forth.

.../Ancestor

/Child

/Descendant/...

/Parent

/ (Root)

/Self
(Context Node) following-siblingpreceding-sibling

The current context is simply a "you are here" designation within a complete XPath address.
As an XPath expression is evaluated, the current context usually shifts.
Relative paths do not make sense as standalone entities. They must be combined in some
other context based on the document root.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

XPath Step Syntax
An XPath location path is made up of one or more
steps separated by forward slashes ("/").
Each step within the path consists of:

Axis: Branch of the node tree relative to the current context
node.
NodeTest: Tests node for inclusion.
Predicate: Optional filter of matched nodes.

Example:
Locate all chapters titles in the book that contain the string
'XPath':
/book/child::chapter/child::title[contains(text(),'XP
ath')]/

.../axis::nodeTest[predicate]/...

XPath provides a simple method to traverse an XML tree structure, and to select a slice of
information in any direction as defined by the Axis.
Paths starting with a forward slash are absolute paths from the root downward through the
document tree; paths not beginning with a slash are relative to the current (context) node of
the node list.
XPath is not a language, but more of an addressing syntax used to identify slices of
information within an XML document. XPath uses a path notation to define locations within
a document. For brevity, this syntax does not use XML constructs.
XPaths, when expressed in an XML document, usually appear as an attribute value, as in an
xsl:template element in XSLT.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

XPath Address Notation
An address is a node (or several nodes) in a tree that
is your starting point for searching.
Abbreviated syntax is allowed for several different
axes.

"child::" has an empty default as it is the default axis
Example: "/child::catalog/child::tools/" is the same as
"/catalog/tools/"

A complete XPath expression may consist of only a
location path.
Absolute location path:

Starts search at the root of the tree
Search begins with a forward slash

Example: /catalog/tools
Relative location path:

Sequence of one or more location steps, or referenced from
the current context node.

Example: catalog/tools

All axes and abbreviations will be discussed later in this unit.
Absolute paths are sometimes called fully-referenced or full paths.
Relative paths are sometimes called partial paths.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Example: Absolute Addressing

appendixchapter chapter

section sectionsection

section

section

section

section

@status

paper

root

title

title

titletitle

title

titletitle

title

title

title

title

1

2 3

/paper/chapter[1]/section[2]/title Title for first chapter, second section
/paper/chapter/title Titles for all chapters
/paper/*/title Any title that is a child of any

child of paper

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Example: Absolute Addressing with Predicates

appendixchapter chapter

section sectionsection

section

section

section

section

@status

paper

root

title

title

titletitle

title

titletitle

title

title

title

title

2

1
3 "Sect.1.1

Title"

1. /paper/*/section[last()]/title
2. /paper/*/section[last()-1]/title
3. /paper/chapter[1]/section[title='Sect.1.1

Title']/title

Titles for last sections
Titles for the second-to-last sections
Select title by name

Instructor Notes:

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Testing XPaths in Rational Application Developer
Rational Application
Developer provides the
XPath Expression Builder to
build and evaluate XPath
Expressions.

Available from within XSL
editor.
To use, position cursor within
an <xsl:template> tag and
choose XPath Expression...
from the context menu, or press
Ctrl+Shift+Z.

Allows expressions to be
built "by example" from
elements in a representative
document, or entered by
hand.
Results are shown both as a
tree and in terms of source.

Ctrl+Shift+Z

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Example: Relative Addressing

appendixchapter chapter

section sectionsection

section

section

section

section

@status

paper

root

title

title

titletitle

title

titletitle

title

title

title

title

1 2
3

4 5

/paper/chapter[2]/section[1] - Absolute path to "current context"
1. parent::node() or .. Parent of current context
2. self::node() or . Context node (self)
3. ../.. Parent of parent of context node
4. child::* (default) Children of the current context node
5. ./following-sibling::node()/@status Status attribute of any following

or ./following-sibling::*/@status sibling node siblings1

This chart demonstrates relative addressing, based on a current context of the first section of
the second chapter. It introduces the abbreviations "." (for self, the current node) and ".." (for
the parent of self). These abbreviations are similar to those used in Windows and UNIX® file
systems.
The chart also introduces the @ notation for identifying attributes.
The examples show the following: The parent of the current context is the second chapter
element.

1. The current context.
2. The parent of the parent of the current context.
3. The default next step of the current context is always its child or children.
4. The status attribute of the sibling element that follows the current context (in this case,

section) .

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

XPath: The Thirteen Axes

The context node13.self

All siblings that precede the context node12.preceding-sibling

All nodes that are before the context node, not including ancestors, attributes and
namespaces

11.preceding

Parent of context node if it exists. Parent of attribute or namespace is the element
that contains it.

10.parent

Namespace node of context node9. namespace

All siblings that follow the context node8. following-sibling

All nodes that follow the context node, not including descendants, attributes, and
namespaces

7. following

Context node and its descendants6. descendant-or-self

Descendants of the context node: child, grandchild, and so on5. descendant

Children of the context node4. child

Attributes of the context node3. attribute

Context node and its ancestors2. ancestor-or-self

Ancestors of context node: parent, grandparent, and so on1. ancestor

DescriptionAxis Name

There are 13 axes defined in XPath that enable you to search different parts of the XML
Document from the current context node or the root. Despite the singular form of axis names
(such as "ancestor" and "child"), only parent and self always refer to a single node.
All axes can be used in both relative and absolute paths.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Abbreviated Step Notation

.//chapter expands to ./descendant-or-
self::node()/chapter (all the chapter
descendants of the context node)

/descendent-or-
self::node()/

//

./@name expands to
self::node()/attribute::name (the name
attribute of the context node)

attribute::@

../attribute::name expands to
parent::node()/attribute::name (the name
attribute of the parent of the context node)

parent::node()..

./attribute::name expands to
self::node()/attribute::name (the name
attribute of the context node)

self::node().

chapter/section expands to
child::chapter/child::section (all the
section children of all the chapter children of
the context node)

child::

ExampleExpansion

The commonly-used axes, such as attribute, child, and descendent-or-self, have a shorthand
syntax.
If the shorthand syntax is used the "::" separator that follows the axis name is omitted.
child:: is the default axis if no axis is specified.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

XPath: Partitioning the Document
Self, ancestor, descendant, preceding, and
following partition the entire document.

appendixchapter chapter

section sectionsection

section

section

section

section

@status

paper

root

title

title

titletitle

title

titletitle

title

title

title

title

Preceding

Ancestor

Following

Self

Descendant

For the node labeled "Self" (the current context node), the labels on the various nodes
indicate their axis relationship to "Self".
These five axes contain all the nodes within the document, and do not overlap.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Example: Addressing with Axes

appendixchapter chapter

section sectionsection

section

section

section

section

@status

paper

root

title

title

titletitle

title

titletitle

title

title

title

title

1

32

1. /paper/chapter[last()]/following::* Everything after the last
chapter.

2. /paper/chapter[2]/descendant::node()/title All title descendants of
chapter 2.

3. //*[attribute::status] or //*[@status] All element nodes
containing a status attribute.

These samples depict the variety and scale of simple XPath queries using different axis
notation. This path extracts everything following the last chapter in the book.

1. This path extracts every title element up to and including the second chapter.
2. This path extracts all the descendents of self that have a status attribute.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

XPath Axis Node Type and Node Tests

element nodeall other axes

namespace nodenamespace

attribute nodeattribute

Type of nodes returnedAxis type

Returns the node containing an ID type attribute of the specified value.id("value")
Is true for any node of any type whatsoever.node()
Returns the comment (for comment nodes).comment()

Returns the processing instruction (for PI nodes). The processing-instruction
node test can have an optional predicate which contains a literal.

processing-
instruction()

Returns the node's body text.text()
Selects node if it has the specified namespace.NCName:*

Selects node if it has the specified namespace qualified name (if namespace
is null, then name is not in any namespace).

QName
Select all nodes of the given axis type.* (Wildcard)
ResultNode test

The first table lists the types or axes, and the corresponding type of node returned. This list
only indicates the principal node type. For example, an axis of child::* will return nodes of
type element, but the returned elements may have child nodes that are of type attribute.
The second table lists the node tests and the resulting node (or node list). A node test follows
the Axis in the address step, and qualifies the nodes to be included or excluded in the search.
The most common form of node test is the QName or actual element name.
The wildcard ("*") node test selects all nodes of the given type. For example,
attribute::* selects all attributes.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Sample Node Tests
//comment()

Extract all comments from a document.
/book/*/title

Extract all top-level titles regardless of parent type (that is,
Chapter, Appendix, and so on).

/processing-instruction()
Extract all processing instructions that exist outside of the
root element.

/book/chapter[2]//text()
Extract the actual text from all elements inside the second
chapter.

chapter/section[2][@status="Draft"]
Extract the second section child of every chapter child of the
context node where the section status attribute has a value
of "Draft".

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Predicates
All comparisons or function calls are within the
predicate, enclosed within [].
Predicates test a set of nodes and return one of:

A new set of nodes
A string
A Boolean
A number

Each node in the list of nodes is tested to see if the
predicate is true.

If predicate is true then the node is included in the resulting
list of nodes.

If a predicate results in no matching nodes, an empty
result set is returned.

Predicates filter a list of nodes. Predicate expressions can be function calls, numbers, literals,
or location paths.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Predicate Expressions
Predicate expression types:

Function call
Number
Literal
Location path

Operators may be used inside a predicate.
Node-set
| (union)
Boolean
and or

Relational
= != < > <= >=

Arithmetic
+ - * div mod

Predicates offer a wide variety of built-in functions to aid in filtering nodes. A predicate may
consist of a single test, which may itself consist of a direct address node index, or a boolean
function. However, most predicate tests consist of one or more comparison operations.
Multiple tests can be combined within a single predicate test using operators.
A predicate may combine two node-sets using the union ("|") operator.
A predicate expression may contain logical operators. If A and B are expressions with a
boolean value (such as "a=1"), then A and B is true if both expressions are true, and A or B is
true if either condition is true. There is no "not" operator, but the not() function (described
later in this unit) may be used instead.
The div operator performs floating point division. The mod operator provides a remainder
function.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Predicate Core Functions

Returns the fully qualified name for the first
node in the node-set

stringname(node-set-
expr)

Split a fully qualified name and return the
namespace URI

stringnamespace-uri
(node-set-expr)

Split a fully qualified name (namespace:object)
and return the object's name.

stringlocal-name
(node-set-expr)

Returns a node-set containing the nodes that
have the specified IDs.

node-setid(object)

Returns the number of nodes in the node-set
identified by the given expression.

numbercount(node-set-
expr)

Returns the index of the current node within
the context.

numberposition()

Returns the index of the last node in the current
context, that is, the context size.

numberlast()

DescriptionReturnsFunction

The table lists the XPath predicate functions that are part of the core function library. A node-
set-expr is a relative or absolute path.
For the id function, the object parameter may contain more that one node, in which case the
returned node-set may contain more than one node.
A few functions, such as local-name and Namespace-URI, have optional arguments. If no
argument is present, the current context node is treated as the argument.
Examples:
/child::chapter[position()=1] returns the first chapter element that is under the
document root.
/chapter[1] is the abbreviated form of the same expression.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Predicate String Functions (1 of 2)

Returns a substring of source,
starting at index for an optional
count.

stringsubstring (source, index,
count)

Returns the substring of source
preceding the first occurrence of
target.

stringsubstring-before (source,
target)

Returns the substring of source
following the first occurrence of
target.

stringsubstring-after (source,
target)

Returns true if source contains
the characters of the target.

Booleancontains (source, target)

Returns true if source starts with
the characters of target.

Booleanstarts-with (source, target)

Converts object into a string.stringstring (object)

DescriptionReturn
Type

String Functions

Almost any object type can be passed into string functions. The processor will attempt to
convert non-string objects to their string representation. Booleans are converted to the strings
"true" and "false". The string value of an element is the concatenation of all the characters of
the element and its descendants.
In the string function, only the first node of the argument node-set is converted to a string.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Predicate String Functions (2 of 2)
DescriptionReturn TypeString Functions

Returns source with each
character that appears in from
replaced by the corresponding
character in to.

stringtranslate (source, from,
to)

Removes leading and trailing
whitespace, and replaces
adjacent whitespace characters
with a single whitespace.

stringnormalize-space (string)

Returns a concatenation of its
arguments. Must have at least
two arguments.

stringconcat (string, string,
...)

Returns the string length.numberstring-length (string)

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Predicate Number and Boolean Functions

Returns the closest integer to argument.round (number)

Returns the smallest integer that is not less than argument
(rounds up).

ceiling (number)

Returns the largest integer that is not greater than
argument (rounds down).

floor (number)

Returns the sum of values of nodes of the node set.sum (node-set)

Converts an object to a number.number (object)

DescriptionNumber Functions

Returns false.false ()

Returns true.true ()

Returns true if the argument is false and false otherwise.not (boolean)

DescriptionBoolean Functions

The number functions all return numbers. The boolean functions all return booleans.
The number() function attempts to convert its argument or the current context to a number.
If it is unable to do this, it returns NaN ("Not a Number").

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

XPath 2.0
XPath 2.0 is more powerful and more complex than
XPath 1.0.
XPath 2.0 processes sequences.

Like a node-set, but can include additional atomic values
Ordered set of values without duplicates

XPath 2.0 replaces the primitive XPath 1.0 data types
with XML Schema data types.

For example, XPath 1.0 has no date-time data types.
Additional functions augment the XPath 1.0 ones
XPath 2.0 is a syntactic subset of XQuery 1.0.

XPath 2.0 became a W3C candidate recommendation in June 2006. For the basic
specification, see http://www.w3.org/TR/xpath20/. For the specification pertaining to the new
XPath 2.0 functions, see http://www.w3.org/TR/xpath-functions.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

Checkpoint Questions (1 of 3)
1. Which of the following items are part of the XPath

step syntax?
a. Predicate
b. AxisName
c. Ancestor
d. Ceiling
e. NodeTest

2. The axis shorthand notation of // indicates what?
a. Ancestor
b. Parent
c. Ancestor-or-self
d. Descendant-or-self

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Checkpoint Questions (2 of 3)
3. Which XPath statement will return the number of

questions on a test?
a. count(/test/question)

b. /test/question/count()

c. /test[count(question)]

d. None of the above

4. The predicate function starts-with ("XML is Great",
"XML") will return:

a. XML
b. true
c. Is Great
d. False
e. XML is Great

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

Checkpoint Questions (3 of 3)
5. What will be the results of the following XPath:

/news/story[@year='2001']/self::node()[cont
ains(text(),'IBM')]/

a. All 2001 news stories that contain IBM inside the text
element

b. All news stories with a year element = 2001 and a text
element of IBM

c. Any news story with either IBM or 2001 in its text
d. All 2001 news stories that contain the letters IBM in any

order
e. Error, as this is an invalid XPath statement

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

© Copyright IBM Corp. 2007 22 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30

Further Information
Rational Software Architect Help Topics
Web Resources

Rational Software Architect Help Topics
• Developing Applications and Websites > Building XML applications > Creating XPath

Expressions
Web Resources

• W3C XPath specification
www.w3.org/TR/xpath

• Interactive tutorial
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

• Expression testers
http://www.zvon.org:9001/saxon/cgi-bin/XLab/XML/xlabIndex.html?

stylesheetFile=XSLT/xlabIndex.xslt
• Axis Powers (two parts)

http://www.xml.com/pub/a/2000/12/20/xpathaxes.html
http://www.xml.com/pub/a/2001/01/03/xpathaxes.html

• Finding Relatives
http://www.xml.com/pub/a/2000/10/04/transforming/trxml5.html

	rd801gv1_stuman_cov
	DEV498Stuman_TOC
	Contents

	DEV498_M00_About_This_Course_stud
	DEV498_M01_Best_Practices_stud
	DEV498_M02_Reusable_Assets_stud
	DEV498_M03_Templating_101_stud
	DEV498_M04_JET_Model_stud
	DEV498_M05_JET_Tags_stud
	DEV498_M06_More_JET_Tags_stud
	DEV498_M07_JET_Examples_stud
	DEV498_M08_Exemplar_Analysis_stud
	DEV498_M09_IntroEMF_stud
	DEV498_M10_Intro_Transformations_stud
	DEV498_M11_Designing_stud
	DEV498_M12_Profiles_stud
	DEV498_M13_Transformations_stud
	DEV498_M14_Patterns_stud
	DEV498_M15_IntroToUML2API_stud
	DEV498_M16_Plugins_stud
	DEV498_M17_Templates_stud
	DEV498_M18_Packaging_stud
	DEV498_M19_Summary_stud
	DEV498_M20_Advanced_Transform_stud
	DEV498_M21_IntroGMF_stud
	DEV498_M22_XPath_Overview_stud

