IBM Rational University

software

f;‘ é"j».u " Ve

Pattern Implementation Workshop with

IBM Rational Software Architect

RD801/DEV498 April 2007
Student Manual Volume 1

Part No. 800-027312-000

IBM Corporation

Rational University

Pattern Implementation Workshop with IBM Rational Software Architect
Student Manual Volume 1

April 2007
Copyright © International Business Machines Corporation, 2007. All rights reserved.

This document may not be reproduced in whole or in part without the prior written permission
of IBM.

The contents of this manual and the associated software are the property of IBM and/or its
licensors, and are protected by United States copyright laws, patent laws, and various
international treaties. For additional copies of this manual or software, please contact Rational
Software.

IBM and the IBM logo are trademarks or registered trademarks of IBM Corporation, in the
United States, other countries or both.

Rational, the Rational logo, ClearCase, ClearCase LT, ClearCase MultiSite, Unified Change
Management, Rational SoDA, and Rational XDE are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries or both.

WebSphere, the WebSphere logo, and Studio Application Developer, are trademarks or
registered trademarks of International Business Machines Corporation in the United States, other
countries or both.

Microsoft Windows 2000, Microsoft Word, and Internet Explorer, among others, are trademarks
or registered trademarks of Microsoft Corporation.

Java and all Java-based marks, among others, are trademarks or registered trademarks of Sun
Microsystems in the United States, other countries or both.

UNIX is a registered trademark of The Open Group in the United States, other countries or
both.

Other company, product and service names may be trademarks or service marks of others.
Printed in the United States of America.

This manual prepared by:
IBM Rational Software
555 Bailey Ave.

Santa Teresa Lab

San Jose CA 95141-1003
USA

DEV498: Pattern Implementation Workshop with Rational Software Architect

Contents

Module 0: About This Course

(11100 (U111 0]
COUrSE OULIINE. ...ttt e e e e s

Module 1: Best Practices

ODJECHIVES ...t
Patterns in Software Developmentcccceevevevevecieveseseeneas

Module 2: Reusable Assets and Artifacts

ODJECHIVES ...t
Extending Rational Software ArchiteCt..........cccovevveveievesienennens
Plug-ins and PIUGIELScovieieieceeeeesee e
ArtifactS and UMLccoovieeeeeee e

Module 3: Templating 101

ODJECHIVES ...t
(@ T 1 0! SR
EMPET JET oot

Module 4: JET2 Data Model

(@ o T1= 1AV =S ST
JET DataMOEc.oiiieieecteecteece ettt

Module 6: More JET Tags

(@ o T1= 1AV =S ST
Tagsand Tag Libraries......ccceveceeeevenie v
JET2 CONrOl TAGS .eeeeveieeeieniererie ettt
Simple Tag Combinationscccooeieeeriereree e
Lab 2: Using XPathccooviieiiiiieceeee s

© Copyright IBM Corp. 2007

Table of Contents

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect

Module 7: JET Examples

ODJECHIVES ...t
Writing an Arbitrary LiSt.....ccccoeveiiie i
Generating an Arbitrary Number of Files........ccocevevevvnvvnnnnee.
Attributes and Derived AtribULES.........ccccovvvvreneeeeeee e

Module 8: Exemplar Analysis

(@ o T1= 1AV =SSP
Finding a Pattern to Implementcccovvvvievececierceesesese e
Preparing to Author a Model-to-Text Transform...........ccccce.....
Authoring the Model and Templates..........ccooveeeeeieneneseienne
Lab 4.1: Exemplar AUtNOMINGccovveiiiiecreniesese s
Lab 4.2; Exemplar AUtNOIINGc..oceeeeierere e sie e
Lab 5: Console Transform........coveeeeeererenieseseeeseeeseesee e

Module 9: Introduction to EMF

(@ o T= 1AV =S S
What ISEMP?......cciiiice ettt

Module 10: Introduction to Transformations

(@ o 1= 1AV S
Configuring and Running Transformations.............c.ccoeeveeenenee.
Lab 7: Customize a Transformationccoceeeeeeerenesesenennns

Module 11: Designing Reusable Assets

(@ o T1= 1AV ST
Model-Driven Development (MDD)cccocvveveeerieereseesenenneens

© Copyright IBM Corp. 2007

Table of Contents

............................ 9-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 0 - 0: About This Course

| IBM Software Group

L

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect

Module 0: About This Course

T

=i N
'Rational. soffvsare

© 2006 IBM Corporation

Introductions

Contents
Course Outline

0-2
0-7

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Introductions

=Your organization
=Your role
= Your background and experience
» Software development experience
» Experience with patterns and reusable assets
= Course expectations

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Intended Audience

» Software developers who use Rational
Software Architect and who wish to:

» Employ Model-Driven Development (MDD) or
Model-Driven Architecture (MDA) strategies

» Design and build pattern implementations and
supporting artifacts

= Patterns

= Transformations
= Profiles

» Model templates

This courseisfor software architects, designers, and developers who create pattern
implementations and related artifacts such as patterns, transformations, profiles, and model
templates. Theintent isto enable your model-driven devel opment process using automation
to design and build a solution according to best practices.

© Copyright IBM Corp. 2007 0-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Prerequisites

This course assumes that students:
» Can read and write Java code
» Model applications with UML

» Have taken the following IBM Rational courses, or have
equivalent knowledge or experience:
= DEV312: Essentials of Eclipse Plug-in Development
= DEV325: Essentials of Model-Driven Architecture
= DEV396: Essentials of IBM Rational Software Architect
» (Recommended) Students are familiar with XPath and XML,
or have completed the following course:
= XM301: Introduction to XML and Related Technologies

This course assumes knowledge of and experience with Java™ programming, basics of
Eclipse plug-in development and Model-Driven Architecture, as well as familiarity with the
basic features of IBM® Rational® Software Architect.

© Copyright IBM Corp. 2007 0-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Course Goals and Objectives

= After completing this course, you will be able to
use Rational Software Architect to:

» Design and create Pattern Implementations and
related artifacts, including:

» Transformations

= UML Patterns

» Profiles

= Model templates

» Pluglets

» Package artifacts as a Reusable Asset
Specification (RAS) asset

This course shows architects, designers, and lead devel opers how to devel op reusable assets
with Rational Software Architect, including artifacts such as plug-ins and pluglets,
transformations, and patterns. It also shows you how to package these extensibility artifacts
using the Reusable Asset Specification.

© Copyright IBM Corp. 2007 0-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Topics Covered in this Course

Rational Rational Rational Rational
Application Software Software Systems
Developer Modeler Architect Developer

.......
S .
. S

& | J

Transformations

s

Model Templates

&, .»

Profiles

Pluglets

* Rational Systems Developer has a subset of Rational Software Architect transformations.
Rational Software Modeler supports only custom tGransformations

SNSNSNSNSNSS
SNSNNSNNSNSS
SNSNSNNSNSS

The IBM® Rational® Software Delivery Platform is based on the Eclipse open source
platform. This platform enables unprecedented tool integration and artifact traceability
throughout the development lifecycle. IBM® was afounding member of the Eclipse
Foundation.

That integration extends in two directions:
* It knits together the individual roles on the team, and

* It brings together the shared software devel opment disciplines that you see on this slide:
requirements, analysis, design, construction, and so on.

* IBM® Rationa® Systems Developer has a subset of Rational Software Architect
transformations

* |BM® Rational® Software Modeler has a subset of Rational Software Architect
transformations

* IBM® Rational® Application Developer alows you to author and run you own Model to
Text Transformations

© Copyright IBM Corp. 2007 0-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Course Outline: Day 1
Morning:
0: About This Course

1: Best Practices for Pattern Implementations
2: Overview of Reusable Assets and Artifacts

Lunch 1 hour

Afternoon:
3: Templating 101
4: The JET2 Data Model

© Copyright IBM Corp. 2007 0-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Course Outline: Day 2

Morning:
5: Basic JET Tags
6: More JET Tags
7: JET Examples

Lunch 1 hour

Afternoon:
8. Exemplar Analysis
9: Introduction to EMF

© Copyright IBM Corp. 2007 0-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Course Outline: Day 3

Morning:
10: Introduction to Transformations
11: Designing Reusable Assets
12: Extending Models with Profiles

Lunch 1 hour

Afternoon:
13: Model to Model Transformations
14: Creating UML Patterns in Rational Software Architect

© Copyright IBM Corp. 2007 0-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Course Outline: Day 4

Morning:
15: Introduction to UML2 API
16: Plug-ins and Pluglets
17: Model Templates

Lunch 1 hour

Afternoon:
18: Packaging Assets
19: Summary

© Copyright IBM Corp. 2007 0-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

Logistics

Morning
1 Fifteen-minute break

Lunch

1 Hour

Afternoon

1 Fifteen-minute break

© Copyright IBM Corp. 2007 0-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect

Bl v iEa
‘Rational. soffwara

Module 1: Best Practices for Pattern Implementations

© 2006 IBM Corporation

Contents
Objectives
Patterns in Software Development
Pattern Authoring Process
Review

© Copyright IBM Corp. 2007

1-2
1-11
1-23
1-34

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Best Practices for Pattern Implementations

» Objectives:
» Describe:
= A tool-based definition of patterns
*= The role of patterns in software development
» What decisions pattern authors must make
= How to author a pattern implementation

!!

© Copyright IBM Corp. 2007 1-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Course Outline in the Context of Model Driven Development

0wOO—~00=T ~0OW

You'll seethisslide several times throughout the workshop. It will serve asavisual guideto
the skills you are learning and how they fit into Model Driven Development.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Where Are We?

» Introduction and Overview
» Patterns in Software Development
= Pattern Authoring Process

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Background

Module 1 - Best Practices

A pattern provides a solution to a common problem by:

concepts

components, but at a lower level than an entire program
» Enabling communication, education, and understanding of key development

» Offering reuse at a higher level than lines of code or individual classes and

A pattern can be implemented using software development tools
to the problem.

» The pattern is abstracted from a exemplar that offers the best available solution
» A pattern specification captures a formal pattern description

» A pattern can be implemented using a development tool and easily shared and
applied in the development environment

» Patterns can be grouped into pattern recipes (sets of patterns)

= —~ 8 @

Pattern
(Solution)

Pattern Pattern
Specification Implementation

Recipe

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Pattern Specifications

= At first, patterns exist only as an idea in the
mind of the developer, as a best practice used
in many projects.

» Patterns are often captured as pattern
specifications.

» A pattern specification formally documents:
» The problem the pattern solves
» The solution it provides

» A strategy for applying the pattern in its
context

» Consequences, advantages, and
disadvantages of applying the pattern

© Copyright IBM Corp. 2007 1-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Pattern Specifications

» Pattern specifications are what we traditionally think of
as “patterns”
» Patterns described in books and documentation
= Capture best practices

= Are technologically abstract (do not contain technology-specific
details)

= Are often used for educational and communication purposes

» To use the pattern you must
code it yourself, manually

= Pattern specifications are
important, but there is much
more to patterns than just
documentation!

© Copyright IBM Corp. 2007 1-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Pattern Implementations

= A pattern implementation automates the application of a
pattern in a particular environment

» Automates the process of applying a pattern in the IDE
» Provides realized solutions to real problems
» Makes patterns sharable and reusable

= Patterns become tools, concrete artifacts, in the
development environment:

» Rational Software Architect UML Pattern

» Rational Software Architect Q
Transformation

» Plug-in

» JET2 pattern

Il
g

© Copyright IBM Corp. 2007 1-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Benefits of Pattern Implementations

» Increased productivity

» Simplifies and accelerates the building and testing of software
» Dramatically reduces development cycle times by eliminating repetitive
work

» Offers ease of use for beginners

» Improved software governance
» Consistently enforce architectural, design, and coding standards
» Increased quality

» Higher quality end product due to a higher level of consistency
» Greater leverage of expert skills within the development organization

= Increased openness

» Less dependency on a specific tool, vendor, or platform

© Copyright IBM Corp. 2007

1-9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Where Are We?

= Introduction and Overview
» Patterns in Software Development
= Pattern Authoring Process

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Patterns and Development Roles

Pattern User
Anyone who uses the pattern

- Pattern Author (SME)
m Expert in the problem domain explained by the pattern

Pattern Specification Author
Writes the document that describes the pattern in depth

' Pattern Implementation
] Author

Develops the micro tool that implements the pattern

Asset Librarian
Maintains and archives assets for the organization

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Patterns-Enabled Development Process

= |dentify the problem
» Select a pattern

» Prepare the pattern

» Implement the pattern
» Execute the pattern
» Analyze the impact

- -

Select/Prepare/ —> Execute Pattern
Invoke

Normally completed Normally completed

Output can also be
by people

by machines used to refine the
pattern

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Patterns-Enabled Development Process

Pattern Building starts with the design of the “Pattern Recipe”, which defines the
inputs, outputs, process flow, and the atomic patterns to be built or reused at each

step.
Input Domain Output Domain
Pattern Recipe
AF’BIY Ratieingy———— . Design Activity — |

Apply Pattern

» Apply Pattern
./ \‘ Design Activity

Apply Pattern \XK

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Patterns in Model-Driven Development

» Patterns put the potential of MDD within reach
» MDD involves using models to drive each stage in the
software development process

= Models abstract out and separate the key information from the details
of the target environment or platform

= The developer specifies the solution using models

= Patterns and tool automations transform each input model into a
target that is closer to the final artifacts

High-level model

Design decisions
made using models.

Patterns automate the
transitions from models

to working solution. Code artifacts

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Eclipse-Based Pattern Implementation Frameworks

= Eclipse Modeling Framework Technologies (EMFT) Java™ Emitter Template
(JET or JET2)

» Template engine for generating applications based on customizable, model-to-text
transformations

» Features exemplar analysis tools,
and a template editor

= |BM® Rational® software design
and construction tools support
patterns and transformations:

» Rational Software Architect

Patterns: Applied in a single
model and within the same level
of abstraction
= Examples: Business Delegate,
Session Facade patterns
applied in design model

» Transformations: Applied across
meta-models, models, and different
levels of abstractions

= Examples: UML to Java,
UML to EJB, Java to UML

Rational Software Architect isfor software architects and senior developers developing
applications for the Java platform or in C++. Rational Software Architect is a design and
construction tool for developing well-architected applications, including applications on a
Service Oriented Architecture. Rational Software Architect unifies UML modeling, Java
structural analysis, Web Services, Java or Java™ 2 Platform, Enterprise Edition (J2EE)
technology, Data, XML, Web development, and process guidance.

Rational Software Modeler isfor architects, system analysts, and designers who need to
ensure that their specifications, architecture, and designs are clearly defined and
communicated with their stakeholders. Rational Software Modeler isavisual modeling and
design tool that leverages UML to document and communicate.

© Copyright IBM Corp. 2007 1-15
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Choosing the Right Eclipse-Based Tooling
D

Will your pattern produce
Model or Text output?

Model Text

Recommended
In-place UML transform? Best Practice

Happy with Rational Software Architect Patterns UI?

Yes/Yes Otherwise

,ﬂ
5
||

Use this Decision tree to make the core technology selection.

The “patterns’ referred to here are “atomic patterns,” which address a single use case step. A
full use case usualy involves you in selecting and applying a series of atomic patterns
following a“Recipe”

By “Model” (as output), we mean a structure that is intended for further manipulation in
memory. The model could be text, EMF, or UML. The output may be a new model, or a
modified input model.

EMFT JET (Java™ Emitter Template) requires Eclipse 3.2. If thisis not available, use the
tech preview subset of EMFT JET available as a design pattern toolkit (DPTK).

If using atech preview is aso unacceptable, use JET.

© Copyright IBM Corp. 2007 1-16
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Model Output: Rational Software Architect

Patterns and transformations provide
two ways to transform models:
» UML Patterns: Use to add 7

details to a model.
= Observer pattern
= Session Facade pattern
» Transformations: Create more
detailed software artifacts UML Pattern

from more abstract artifacts
in a standard way.

= UML to UML

= UML to Java }]

= UML to EJB

= UMLto ...

= Java to UML
= .. to UML %

Transformations

© Copyright IBM Corp. 2007 1-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Text Output: EMFT JET

» Use EMFT JET to develop patterns with text output

» Capture best practices for design and implementation as text-to-text transformations

= EMFT JET has the following components:
» Transformation-based Eclipse resource generator
» Transformation development and distribution features

= EMFT JET evolved from DPTK

(Design Pattern Toolkit) 8 e on X G

Fuemplar

Assoaate the exempiar srifscts below with rokes nd model tyoes

= 12 Console Exemplar
=G b

& mycorp
(= console
(£ hander
Addrande dess
Addviandier properties
ManHardler dass
MaHarcler g ope S
Console. class
ommangseder dass
clmiarhiagy em s
e
& eom
-
=i (= conssle
& hander

Transformation

Descrbe the Fansformston

Mame: | Seatte Constie Pattern

i |[seatde.conscle pattem

Tyoe: | acodef =

Model: = 10 ap0

dassputh
= @ console java
Corsle gvn

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Rational Software Design and Construction Products

» Automate design and construction, allowing you to
create and customize:
» UML Profiles
» Transformations
» UML Patterns
» Pluglets
» Model templates

» Support the Reusable Asset
Specification for storing and
sharing these resources

[l
I

© Copyright IBM Corp. 2007 1-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Working with Models without Rational Software Architect

= [f Rational Software Architect is not available, you can use the

following technologies from the Eclipse Tools Project to work
with models in Eclipse:

» Eclipse Modeling Framework (EMF): Specify models using annotated
Java, XML, or modeling tools like Rational Rose then import them into

EMCII: flor building tools and other applications based on a structured data
model.

» Graphical Modelin% Framework (GMF): Develop graphical editors
based on EMF and GEF in Eclipse

» EMFT JET: Use a generic template engine that can be used to generate
SQL, XML, Java source code, and other output from templates.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Recommendations

v" Use the productivity tools in Rational Software Architect
wherever possible.

v If Rational Software Architect cannot be used, use EMFT
JET, and add GMF if graphical modeling capability is
essential

v' Model-to-Text transformations should be implemented
using EMFT JET or Rational Software Architect with EMFT
JET.

v'Rational Software Architect can be used to build a front-end
transformation and GUI ia

fae.

v’ By default, artifacts should be treated
as text, and generated or manipulated
with EMFT JET.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 1 - Best Practices

-21

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Where Are We?

= Introduction and Overview
» Patterns in Software Development
» Pattern Authoring Process

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Pattern Recipe Authoring

Analyze the
target domain

= Examine the problem

= Find an exemplar
solution

= |dentify points of
variability: what input
should be left to the
user, and what should
the pattern provide?

» Pattern implementations are developed in sets (recipes) to
address a specific target domain

D .[E

Repeat for €ach pattern

in the recipe
Design the Implement
Recipe patterns

= For each pattern, a
microtool is needed

= Determine a natural and
realistic entry point for

design = Pattern
= Figure out what information ~ implementation is our
is available at the start, and focus here

what information is needed
at each stage

= Create an outline of what

will happen in each stage
23

Package and
deploy

Results are
packaged and paired
with documentation
for the intended user
community.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Patterns: What to Implement and Specify

* You need to be able to customize patterns and assemble them

using specifications and tools, without having to understand all
the details of the implementations

» Pattern Implementation

» Patterns can be customized with each use

» Variability is supported by identifying places in exemplars where custom
information can be substituted

» Pattern Specification

» Patterns have to be documented in a standard way
» All pattern specs provide:

= Context: When to apply the pattern

= Problem: What problem the pattern solves

= Solution: How the pattern solves the problem

24

© Copyright IBM Corp. 2007

1-24
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Implementing a Pattern

» Pattern implementation consists of two parts, which should be
kept independent to maximize reuse potential:

» The pattern implementation
» A user-interface for applying the pattern

» This is true regardless of technology choice or pattern type.

R R

(NERRRRRERY
INENENENENY]

by

Identify an Abstract the Implement Establish Establish
Exemplar solution the pattern abstraction invocation
editor environment
Output: Output: Output: Output: Output:
Best practice A pattern abstraction, Pattern implementation Tool support for creating Mechanisms that will be
solution with structure and supporting automated abstraction instances used to configure,
variability points, customization of artifacts that will drive individual trigger, and execute
either in text or via substitutions at pattern applications applications of the
UML form variation points pattern

25

Regardless of the pattern implementation technology you choose (model-to-model or model-
to-text), you will follow a similar process when you build the pattern.

© Copyright IBM Corp. 2007 1-25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Exemplars

= Solution exemplars are the foundation for patterns and
automation

» They represent the best solution to a given problem, so they must
be developed by an expert in the target domain

= Quality exemplars:

» Follow best practices

= Best practices in exemplars reflect the pattern and applications of the
pattern

» Include all variations that the pattern automation will support
» Work

© Copyright IBM Corp. 2007 1-26

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Uses for Exemplars

» Provides the basis for the pattern implementation:

» Specification: Exemplar specifies what the pattern would
generate

» Test Case: Exemplar is a test case for the pattern output

© Copyright IBM Corp. 2007 1-27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Normalization of Reference Solutions (Exemplar)

» Creating a pattern abstraction requires the author to decide:
» What functional variation points must be exposed
» What details are invariant and need to be hidden

= Developing pattern abstractions
» Requires the involvement of a domain expert
» Develop iteratively

= The pattern abstraction will have to be revisited many times as you develop
and refine the pattern implementation

» Use a formal metamodel

= Examples:
— XML Schema
— UML Profile % o~
--*3” ZZ,‘ZiZmZmZZiZZ,‘
28
© Copyright IBM Corp. 2007 1-28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Implementing the Pattern

Key decision: will the pattern implementation be
presented as a model or as text?

» Models can be powerful

= Ensure that only correct instances are created
= May offer additional utilities:

— Default values and implied constructs

— Might support serialization capabilities for merging previous versions of the
generated solution

= However, APIs may be complicated and very large
— Pattern authors may have to learn many new APIs

» Patterns based on text substitution (such as JET2) are easier
to learn to create

© Copyright IBM Corp. 2007

1-29
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Implementing UML Model to Text Pattern Implementations

= Separate the task of creating the UML model and profile (if
needed) from the task of abstracting the exemplar

» Create a pattern abstraction whose output is simple text (XML)
documents

» Implement a “code generator” with EMFT JET that reads the documents
and produces the text output

@ User ¥isible Transformation

» To hide this processing
from the pattern user, Ul Mokl
. Front-end Transformation
implement a front-end
transformation that:
= Maps from UML to the
pattern abstraction
Target Domain
= Invokes the
code generator

Internal Model

Back-end Transformation

© Copyright IBM Corp. 2007

1-30
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect

Module 1 - Best Practices

Implementing UML Model to UML Model Pattern Implementations

There are two types of model-to-model
transformations that you can perform with
Rational Software Architect:

» In-place pattern expansion, where the problem
and solution domains are the same UML model
= Use Rational Software Architect UML Patterns in
most cases
= Use Rational Software Architect transformations if
input parameters can’t be represented in the
Rational Software Architect UML Patterns
framework

» Other model-to-model patterns: across models,
across metamodels, and so on

= Use the Rational Software Architect
Transformation framework

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Establish an Editing Environment for Abstraction

» Based upon best practices, you (the pattern
developer) can:

» Provide no additional input representation.
= Let the user edit XML documents as input to the pattern

» Create a UML-to-abstraction transform that wraps the back-
end (provide a back-end transformation)

» Create a custom graphic editor using GMF, including
component technologies EMF and GEF.

» Create some other kind of editor, such as a dialog or
wizard, using Eclipse extensibility. This will allow user input,
and programmatically trigger the pattern call.

!!

© Copyright IBM Corp. 2007 1-32

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Summary

» Patterns are a re-usable tool that can help simplify
development

» Patterns provide an efficient means for ensuring that
development is standardized

» By following protocols and best practices, patterns will help

your organization produce high-quality products in an efficient
manner

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

Review

» What are the two types of model to model
transformations you can perform with Rational
Software Architect?

» Describe the differences between a pattern
specification and a pattern implementation.

= What is the function of exemplars?

© Copyright IBM Corp. 2007 1-34

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM
Rational Software Architect
Module 2: Overview of Reusable Assets and Artifacts

‘Rational. software

© 2006 IBM Corporation

Contents
Objectives 2-2
Extending Rational Software Architect 2-8
Plug-ins and Pluglets 2-15
Artifactsand UML 2-19
© Copyright IBM Corp. 2007 2-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Overview of Reusable Assets and Artifacts

= Objectives:
» Describe what a reusable asset is

» Describe how reusable assets can be used in software
development

» Describe the extensibility features of Rational Software
Architect, and their uses for developing reusable assets.

N
Jln]]
1
|

This module discusses reusable assets and the artifacts provided by Rational Software
Architect.

© Copyright IBM Corp. 2007 2-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Course Outline in the Context of Model Driven Development

0w~000n> O=0VNCOX N

Y ou will seethis dide several times throughout the workshop. It will serve asavisua guide
to the skills that you are learning, and how they fit into model-driven Devel opment.

© Copyright IBM Corp. 2007 2-3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

What is a Reusable Asset?

» A reusable asset is an organized collection of artifacts that
provides a solution to a problem for a given context

= A reusable asset contains:

» Artifacts: Problem
Profiles, patterns,

transformations, pluglets,
model templates, and so on.

» Variability points: .
Allow users to customize Solution
the asset for a specific

project
O Artifact 3

(| .
Artifact Artifact

(3 variability Point |

N
Jln]]
|||||

A reusable asset is an organized collection of artifacts that provides a solution to a problem
for agiven context. Assets clearly have much in common with patterns. For example, each:

* Includesinstructions or usage rules, to minimize the time needed to discover, analyze,
consume, and test the asset

* Includes standard documentation describing the development and business context in
which the asset can be used

» Can have variability points, like pattern parameters, that allow usersto customize the
asset for a specific project
An asset is amore general concept than a pattern, since it is a collection of artifacts.

Asset can contain more than just patterns. An asset for a development project might contain
requirements, models, source code, and tests. Assets might also be used to package and share
deployable components, Web services, frameworks, and templ ates.

Reusable Asset Specification (RAS) is the standard structure. The IBM® Rationa® brand
products use the RAS specification. A RAS asset includes:

* RAS asset manifest file: The RAS asset is azipped file that stores the files that make up
the asset. At export, amanifest fileis created and isincluded in every RAS asset's file.

* RAS asset profiles: RAS asset profiles allow you to create different assets. A specialized
profile extends the contents of the default profile. Every RAS manifest must have aRAS
profile.

 Activity task types: Activities should be modified only by users who are familiar with
using the RAS to hand code manifest files. Modifications to the activities generated by
RAS manifest files can render them incompatible. Activities describe tasks the user
should do to reuse the asset. Y ou should not modify generated activities, but you are
encouraged to add your own as needed.

© Copyright IBM Corp. 2007 2-4
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Asset-Driven Development

» Reuse requirements, design, test, and deployment assets to
develop new or enhance existing applications

= Supported by IBM
Rational tools with:

Program Management

» Process guidance Candidate
. Asset

» Tooling

» Standards

» Assets

H

Feedback
The Asset Lifecycle

Asset-based development (ABD) provides away to reuse requirements, design, construction,
test, and deployment assets to develop new or enhance existing applications.

IBM Rational products support ABD with:

Process Guidance: Provided with the IBM® Rational Unified Process® (RUP®) platform and
its Asset-Based Development Plug-in

Tooling: The IBM Rational Software Delivery Platform makes it possible to package and
share reusable assets.

Standards: UML, Model-Driven Architecture, RAS, Middleware
Assets. Patterns, existing components, and new applications

The RUP platform and its ABD plug-in help team members |earn who is expected to do what
tasks, and when, with Rational Software Architect and other Rational brand tools. Teams
develop architected solutions, models, and other artifacts based on a set of well-defined
standards, including RAS and UML. Every project can consume assets and produce assets for
other projectsin an efficient way.

© Copyright IBM Corp. 2007 2-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Rational Software Architect Artifacts in Reusable Assets

{o}
sy (
@E J 3 @

Profiles UML Patterns Transformations
™
™
Pluglets Model Templates
‘&) areN
Help / Documentation RMC Plug-in

®
Jln]]

The following artifacts are used to extend Rational Software Architect:

» UML profiles are sets of stereotypes, tag value definitions, and constraints that you can
use to create model elements that reflect the semantics of a specific domain or platform.
Profiles can tailor the UML for a specific domain or platform. Y ou can use themin
patterns to apply stereotypes to pattern participants. They are also used in transformation
definitions to specify how model elements should be transformed.

» UML Patterns; Y ou can use the UML Patterns Service and Framework to create
implementations that codify specific patterns.

» Transformations: Rational Software Architect provides support using the PDE, Exemplar
Authoring, Model Mapping and a Transformations API for you to create custom
transformations.

 Pluglets are Java applications that provide an alternative to plug-ins for extending the
workbench. Pluglets can be thought of as a lightweight plug-in, usually created to
handle routine tasks.

» Model templates: Y ou can export amodel as atemplate so that its structure can be
reused as standard model structure, or as a transformation or pattern target. Model
templates are similar to patternsin the sense that they can provide whole sets of model
elements automatically.

The following artifacts can be bundled with these artifacts:

» Help: You can create custom help documentation to support any artifact you create, and
it can be integrated with the standard help documentation for the tool.

e IBM® Rational® Method Composer Plug-in: Provide RUP content along with your
artifacts.

© Copyright IBM Corp. 2007 2-6
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Where Are We?

» Extending Rational Software Architect
= Plug-ins and Pluglets

= Artifacts
» Profiles
» Model templates
» Patterns and Transformations

\,
Jln]]

This section provides an overview of how you can extend the capabilities of Rational
Software Architect.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Why Use Rational Software Architect to Build Reusable Assets?

» Configure the tool specifically for your environment
= Capture and codify best practices

» Automate tasks related to the specific problem domain and
underlying technology

» Reduce manual effort, which leads to:
» More quickly developed solutions
» Higher quality solutions

= Leverages Eclipse
» Extensible
» Open standards and specifications

®
Jln]]
lln
|

Rational Software Architect provides a variety of different customization options, which
alow you to tailor tools to respond flexibly to the different needs of different environments
and tasks. Architects can deliver tailored tools that directly address the specific needs of
developers, allowing them to improve the quality, reusability, and efficiency of the
development process.

Using this functionality, different organizations that have different needs do not have to
compromise on alowest common denominator tool set to achieve enterprise interoperability
and code reuse.

© Copyright IBM Corp. 2007 2-8
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

What is Eclipse?

» Eclipse is a universal platform for integrating development
tools

= Open, extensible architecture based on plug-ins

Plug-in development
environment

Java development
tools

Eclipse Platform Platform

Standard Java2
Virtual Machine

©
Jln]]
lln
]

© Copyright IBM Corp. 2007 2-9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Eclipse IDE: Plug-in Centric

.
.

.
* .0.
.
e

S “
Eclipse Platform Another
~ ~ Tool
Java Workbench Help

: |Development

Tools

DT
11

JFace

SWT
-

Team

. Plug-in
: |Development
: |Environment
: (PDE)

(Workspace
Debug

iUl

. v

Platform Runtime

\,

Eclipse Project

RN NN NN AN NN NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERS

10

Eclipseislayers:

» Platform Runtime: The base engine that makesit all work (plug-ins that provide
architecture and functional content)

 Eclipse Platform: Built on the Platform Runtime, thisis the base for the Workbench.
Provides an integration platform for tools and applications.
Platform components, in addition to the Platform Runtime:

» Workspace: Resource model, with support for projects, folders, and files, aswell as
natures, builders, and markers.

e SWT, JFace, and Workbench: Layersin the Ul domain that build on each other. SWT
isaJava APl on Operating System widgets, JFace is an application framework for Ul
components, and Workbench is the model for an integrated Ul with Views and Editors.

» Help: The ability to render navigation and content, with APIsfor tool-directed
navigation (F1) and help invocation of tools. Help can be in a standalone environment.

» Team: The framework for team programming and repository access. Eclipse comes
with the framework, and a CV S implementation.

» Debug: The framework for testing and debugging language-specific programs. It has no
functionality as delivered, so it must be taught.

» Ant (not shown here): Included and integrated into the Workbench platform. The PDE
uses Ant to support feature or plug-in preparation and packaging operations.

e Update Manager (not shown): A component and user interface that allows you to
manage the active configuration of features known to the workbench.

Java Development Tools. Features and Plug-ins providing a devel opment environment.

Plug-in Development Environment (PDE): Builds on the IDT or Workbench to provide
support for developing, testing, building, and deploying feature sets and plug-in sets.
© Copyright IBM Corp. 2007 2-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

The Architecture of Rational Software Architect

aling 2elitors UMIL Transiorrrations & Paiigrris

UMLZ Dorrlelin aclagiars Patterins Eramewerix

EVIE-rrioclels (2JB, Javal,

e \ Transfermation Eamewe)iz
45, anel 50 0f)) [ransienmationiEEMENo)e

UMLEZ EMEIFRJEN

EMEIENETE

© Copyright IBM Corp. 2007 2-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Rational Software Architect Extensibility

r——-i1
............. I
.
K ‘e
e —
]] R
3
'0 "
— ey o

Profiles UML Patterns Transformations
Model Templates Plug-ins Pluglets

Supporting creation of these artifacts are:
» The Plug-in Development Environment (PDE)
» Reusable Asset Specification (RAS) Import and Export

12

Use the following artifacts to extend Rational Software Architect:

 Eclipse Plug-ins. Extension pointsin Eclipse are available to customize system behavior
using plug-ins. The plug-ins that you develop can, in turn, contain their own extensions
to existing plug-ins, and make extension points available so that other plug-ins can build
on their functionality. Plug-ins are also used to package and exchange many types of
resources(such as, in Rational Software Architect, patterns and transformations).

» UML profilesare sets of stereotypes, tag value definitions, and constraints that you can
use to create model elements that reflect the semantics of a specific domain or platform.
Profiles make it possible to tailor the UML for use in a specific domain or platform. Y ou
can use them in patterns to apply stereotypes to pattern participants, and in
transformation definitions to specify how specific model elements should be
transformed.

 UML Patterns: You can use the UML Patterns Service and Framework to create
implementations that codify patterns that are specific to your organization.

» Transformations: Rational Software Architect provides support using the PDE,
Exemplar Authoring, Model Mapping and a Transformations API for you to create
custom transformations.

» Pluglets are Java applications that provide an aternative to plug-ins for extending the
workbench. Pluglets can be thought of as a lightweight plug-in, usually created to
handle routine tasks.

» The Plug-in Development Environment (PDE) isa set of toolsin Eclipse for creating,
developing, testing, debugging, and deploying Eclipse plug-ins. The PDE includes tools
for developing fragments, features, and update sites.

© Copyright IBM Corp. 2007 2-12
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Sources for Reusable Assets

Reusable assets are not limited to artifacts you create. They can
come from a variety of sources.

software

IBM Rational software Your Group

11

Solution in
Third-Party Software Peer Groups Rational Software
Companies Architect

13

The real power of extensibility resourcesis that they can be shared between collaborators,
projects, groups, or even different organizations.

These artifacts can be leveraged into major gains in productivity, not just for single projects
but in many different organizations within an enterprise. A good method really deserves more
than asingle use. By creatively using extensible artifacts, you can share good ideas and use
them in new projects simply and effectively.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Where Are We?

» Extending Rational Software Architect
» Plug-ins and Pluglets
= Artifacts

» Profiles

» Model templates

» Patterns and Transformations

14

This section provides an overview of plug-ins and pluglets, which are the base technologies
for creating assets in Rational Software Architect.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Plug-ins

Extensions

—. IJ [? E t .

= xtension
' Ty ;dl [MyPlugin :Cﬂ (Oggti)nntal)
o M T

Workbench Plug-in

v
.
.
o

.
- .

APl dependencies :‘J

What is a plug-in?
» A component or module
» The smallest unit of Eclipse functionality
= Can be developed and delivered separately
= Has extensions (to other plug-ins)
= Can provide extension points

» A method for authoring and packaging UML patterns
and transformations in Rational Software Architect

<A Eclipse Platform APIs

15

The Eclipse platform is structured as a core runtime engine with a set of additional features
installed as platform plug-ins at pre-defined extension points. These extension points are
available to developers to contribute to system behavior. The plug-ins you develop can, in
turn, contain their own extensions to existing plug-ins, and make extension points available
so that other plug-ins can build on your plug-ins' functionality.

Asyou will see in this module, you can use plug-ins not just to enhance the functionality of
Eclipse in the ways that you might expect (like the resource management system, or the
workbench plug-ins), but also to package and exchange many resources and assets that you
develop in Rational Software Architect.

In generd, to create a plug-in you would:
» Decide how your plug-in will be integrated with the platform.
» Identify the extension points that you need to contribute to integrate your plug-in.
» Implement these extensions according to the specification for the extension points.

» Provide amanifest file (plugin.xml) that describes the extensions you are providing and
the packaging of your code.

© Copyright IBM Corp. 2007 2-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Pluglets

= Pluglets:

» Are small Java applications used to make minor
workbench extensions

» Are a kind of Java-based scripting mechanism
» Are executed in the active workbench
= No target platform needed

» Provide easy access to workbench plug-in APIs
= For testing, APl exploration, and custom scripts

» They are created in a project

» They use the workbench Java
development environment

16

A pluglet isasmall Java application that can use any available Eclipse-based API’s. It was
specifically provided by Rational Software Architect and facilitates code Exploration.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

- 16

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Pluglets: Instant Menu Additions

_J' Modeling - ProfileTest::com::ibm::strutssample::Main - Rational Software Architect
File Edit Mawvigate Search Project Diagram Data Modeling Rum Window Help

A i A= R v R e ¥ Internal Tools ¥] 1Diagramlister
: Iy Analysis...
pln Analysis Run As R
- e Analyze Last Launched -
L(* Project Explorer &3 === | - WlnternfaITools....
= f_!:,b PlugletProject [| % External Tools 13 , Organize Favorites. ..
+ @ Diagrams
= %’ Models
=-Ea EPI':‘JWETEST: L Settings £ Book e
irs (UMLPrimitiveTypes) . :
= Eg isbn : String
5 B3 o 5 author : String
™ E title : String
L | Main

B2 datePublished : Str
=3 strutssample =

e (bookdetails:BookDetails)

+o" (bookform:BookForm) -bookdetailst
A ke Ranks)

17

Pluglets can be run instantly, using the Run Internal Tools button, in the same session,
without having to start a new target instance.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Where Are We?

» Extending Rational Software Architect
= Plug-ins and Pluglets
= Artifacts

» Profiles

» Model Templates

» UML Patterns and Transformations

18

This section introduces reusable UML artifacts that you can develop in Rational Software
Architect, including profiles, model templates, UML patterns, and transformations.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

The UML Profile: The Language of Reusable Assets

» Profiles enable extending the UML without changing the
modeling language.
= Profiles include:

» Stereotypes: A simple textual marker («...») or icon placed on a model
element to add semantics to the element

» Tagged values: To add properties that are not supported by the base
element

» Constraints: Constraints enforced on the element or its attributes

«Boundary» «Control» «Entity»
H@ OrderForm & OrderStock @ Customer
OrderForm Orderstock Customer

19

Rational Software Architect allows you to develop and apply UML profiles. UML profiles
are sets of stereotypes, tag value definitions, and constraints that you can use to create model
elements that reflect the semantics of a specific domain or platform.

» Stereotype: Thisisasimple textual marker («...») or icon placed on amodel element to
add semantics to the element. A stereotype extends UML, but not its structure. Y ou can
add stereotypes to model elements to create specialized forms, but you cannot add new
elementsto UML.

» Tagged Values: Typically astring or Boolean value, you can associate tag definitions
with specific stereotypes, or with all model elements of a specific type (class,
association, operation parameter, and so on). It is common to use tagged values to add
values to model elements, and to add information for transformations and code
generation.

» Constraint: Thisisaset of rulesthat you can execute to determine a model or modeling
element’ s correctness. Constraints are usually defined using the Object Constraint
Language (OCL), but can also be defined in natural languages and Java.

© Copyright IBM Corp. 2007 2-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

How Are Profiles Used?

= Profiles are used to model ,ié
platform- or model-specific
abstractions, for example:

Model Template

3 Enterprlse beans This f a profile added to the template
and rpodels created from it. Elements in
(3 Analysis Classes the mjodel can have stereotypes from

the pJofile, with constraints ensuring
correft usage.

= Profiles provide a ...
domain-specific &= SO
language for reusable UML Patterns
aSSGtS Profile Patterns may include para}meters with
» Add to model templates 2an be used 0 add stereotypes 0
» Use with domain-specific mocel elements
UML patterns . .@
» Use a transformation to . @:@
create a platform-specific
model

Transformations

Theses are designed to recognize and
transform elements with stereotypes
from the profile.

20

The profile marks up the template and models based on it, using constraints to enforce correct
usage.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

UML Patterns and Transformations

UML Patterns and transformations
rovide ?
0 ways to transform models:]
» UML Patterns: Add details to
a model.

= Observer pattern
» Session Facade pattern

» Transformations: Translate Rational Software Architect Pattern

elements from one model to
another.
—
» UML to UML]7

= UML to Java
= UML to EJB

Rational Software Architect Transformations

21

In Rational Software Architect and Software Modeler terms, UML patterns and
transformations are tool automation features. UML Patterns are sets of model elements that
are parameterized to be fitted into any existing model, to speed development and maintain
consistency among software solutions (so that, for example, every instance of an Observer is
designed the same way). Transformations can be used to translate model elements from one
model to another automatically, (in order to speed the transition of elements from, for
example, analysisto design or from design to implementation).

UML Patterns

UML Patterns allow you to make use of existing solutions developed in the same type of
model. For example, the Observer GoF pattern in Rational Software Architect contains
design-level UML model elements that would be applied ina UML design model. Y ou can
harvest patterns from an existing model and apply them in multiple models of the same type.
Yogelcan also harvest a pattern from amodel and apply it in adifferent part of the same
model.

Patterns have parameters so that you can customize them for a specific context, but patterns
do not automatically translate themselves to work in different model types. Y ou cannot, for

example, apply adesign pattern and get a code-level idiom (in Java code) without using
transformations.

Transfor mations

Transformations take elements from one model and translate them into elements of a
different model. Transformations are often applied to whole models, bué?/ou can apply them
to selections from models as well. Y ou could, for examPIe, appIeY atransformation to move
from a platform-independent model to a platform-specific model as you add in details about
the platform and get closer to the implementation. When adding levels of refinement, you can
transform from a platform-specific model to another, adding more details without changing
the model type.

© Copyright IBM Corp. 2007 2-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 2 - Reusable Assets and Artifacts

Model Templates

= Allow the user to create
a new model based on
an existing structure

= Used in conjunction with:

» Profiles: Guide the user in
structuring the model
as they use profile
stereotypes

» UML Patterns: Used to populate
the model with standard
elements and structures

= Model elements,

package structures, and
diagrams

» Transformations: Provide
a standard structure
source or target for a
custom transformation

@ New UML Model

Create UML Model
Create a new UML model

File types:
(= UML Madeling

Description:

Create a new Analysis Mo
Model Structure Guidslines

File name:
Analysis Model
Destination folder:

Application Praject

Templates:

R 2ralyss wodel | ~
%5a Blank Model

%%a Corba Template Model

%% Enterprise IT Design Model
{6} service Design Made!

T Model Explorer X Diagram Navigator

Fl-1== Application Project
=I-%24 Analysis Model.emx
=&} Analysis Model
= smodelLibrary: Analysis Building Blocks
+ EE §{functional.area}
: Analysig Building Block Instructions
M@ s{boundary}
é §{control}
@ Sfentity}
+-720 §{use, case}
= EE «perspectivex Overviews
: &{project} Analysis Views
Q &{project} Domain Model
E ${project} Key Abstractions
|@] ${project}Key Controllers
Q &{project} U1
: S{project} Analysis Overview
: Instructions
& (UML)

A

22

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Integration of Reusable Artifacts

Profiles, model templates, patterns, and transformations can be

used together to increase the ROI of your extensibility
investment.

_with template @ enrniTrae iy 1
<+ . "
— '. ‘.

Model Templates Profiles UML Patterns Transformations
Automatically
Populate Manually mark up mark up the model -l;;asr:jfz;mrslr:sm?;e'
the the model with with profile X
; recognize
model profile elements elements, and/or
. model markup
apply best practices
e v
Source i
Source ' Source Model with Target Model
Model Model with Markup, UML Patterns
Markup Applied

23

Asyou work with Rational Software Architect in your environment, you will come across
situations where plain UML is not able to model the elements of your domain sufficiently. In
addition, there will be patterns of usage that will accompany these domain-specific elements.

Y ou can develop UML profilesin Rational Software Modeler or Rational Software Architect
for these situations.

Creating a UML pattern that can understand and use the domain-specific elements of your
profile will help ensure that users are following best practices for your organization. Asa
final step in this workflow, the user would send the model through a transformation. Ideally,
the model elements would then be updated according to the profile, with elements structured
in away that makes the best use of those model elements. The transformation will

understand the domain-specific elements, and will produce an output model that reflects this
understanding.

UML Patterns and transformations can work together and extend each other:
» Transformations can apply patterns
» UML Patterns can execute transformations

A UML pattern can mark up model elements with the appropriate stereotypes to prepare
for atransformation

Transformations and UML Patterns can be contained in the same plug-in project

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Classic Model Driven Development

Create the Use Case model

Traceability
relationships
are created as a
byproduct of
patterns and
transformations

: Qf / Create the analysis model

4
T

e
==
|:'|E7'TJ:|

Create the design model

’ Complete the
— implementation using
o= UML visualization

A

< >

© Copyright IBM Corp. 2007 2-24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

One alternative using Rational Software Architect and JET2

e

é!

Traceability
relationships
arecreatedasa 4
byproduct of ¢
patterns and
transformations

Reverse
engineering is
also supported

in Rational

Software

Architect v7

25

Create the Use Case model

Create the model at
higher level of abstraction

e

Complete the
implementation using
UML visualization

(1R
®

This represents one of various approaches customers have taken to reduce the amount of
modeling (thus limiting variability) while infusing consistent architecture in the form of a

pattern-based transformation.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

-25

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Packaging Artifacts

= Artifacts can be packaged and shared using the Reusable Asset
Specification

= Why package artifacts?
» Group related and dependent
artifacts into whole solutions
= Recipes
= Pattern Solutions
= Eclipse Features
» Install artifacts easily
» Distribute assets without
giving out source files, with no user c«
» Add branding information

= Package artifacts
» The asset
» Example models
» Help and other documentation

» Workbench menu items, ¢ Patterns Library
actions and so on

26

Often they are used together as recipes or solutions. Y ou will see during arunning example
how these assets can come together. Note that thisisjust the starting point — additional
patterns and transformations may be added to this recipe or solution.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Demonstration: Reusable Artifacts

» The instructor will now show you how to:
» Use a reusable asset

27

The instructor will show you how to use a reusable asset.

© Copyright IBM Corp. 2007 2-27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

Review

» What are cases where you would combine artifacts
into a reusable asset?

= Why extend the functionality of Rational Software
Architect?

» What artifacts can you build with
Rational Software Architect that
promote reusability?

= Why develop pluglets?

28

© Copyright IBM Corp. 2007 2-28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 3 - Templating 101

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 3: Templating 101

‘Rational. sof rara

© 2006 IBM Corporation

Contents
Objectives
Original JET
EMFT JET
Review
Further Information

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3-2
3-5
3-9
3-13
3-14

Pattern Implementation Workshop with IBM Rational Software Architect

Module 3 - Templating 101

Templating 101
» Objectives:

» Describe the structure and syntax of a JET template
» Discuss the differences between JET (Original Templates)
and EMFT JET

There are two variants of JET (Java Emitter Templates). There' sthe original JET function

that came out sometime during Eclipse V1 and there's the new set of enhancements that came
out recently and upon which this workshop is based.

© Copyright IBM Corp. 2007

3-2
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

Course Qutline in the Context of MDD

Modules 3 to 8: EMFT JET,
XPath, Exemplar Analysis

JHC%

We will seethis dlide several times throughout the workshop. 1t will serve asavisua guide
to the skills we are learning and how they fit into model Driven Development.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

Where Are We?

»QOriginal JET (JET1)
“EMFT JET (JET2)

© Copyright IBM Corp. 2007 3-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

Two JETS

= JET1 (original JET)
» Templates as helper classes
» Control flow via embedded Java

»JET2 (EMFT JET with Eclipse 3.2 and
Rational Software Architect 7.0 and
later)

» JET1 support
» Stand-alone transformations
» Control flow, function via tags

Templating is the best way to produce large amounts of text programmatically.

When you worked with the “original JET” you were always writing a Java application
(usually an Eclipse tool) that needed to generate alarge amount of text output. When you
wrote your JET templates, you had to view them as helper classes that added a templating
component to the larger application. The templates were marked up with imbedded Java
expressions and code, and you had to be aware of the actual data model implementation (the
business objects) that was referenced by that embedded Java.

In contrast, the new enhancementsto JET allow you to build stand-alone transformations
using nothing but templates. There is no Javarequired to invoke the templates, and the
templates themselves do not require Javain order to access the data model. The Java has been
effectively replaced by some 50 JET tags that encapsulate the common (and uncommon)
templating behaviors.

Somebody almost always asks if the tags are really simpler to use than Java. That question is
answered in the next few charts.

© Copyright IBM Corp. 2007 3-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

JET1 Templates

<% @) jet skeleton="skeletons/temp.skel“ class="Temp*“ ... %>
<%@ begins a JET directive

public clas avaVar %> {.

\ <%= begins an embedded expression

<% if (someTest)

public int getlD
return id;
} <% begins embedded Java statements

<% } %>

Start by looking at arepresentative JET (original) template. The template editor in Eclipse
doesn't colorize the text, but we'll use blue to highlight the imbedded JET elements.

Each JET element begins with “<%" (open angle bracket percent sign), and the next
character tellswhat kind of element it is. There are directives that essentially act as compile
options, there are elements that contain Java expressions, and there are elements that contain
Java code. Note that the Java code in any one element doesn’'t have to be syntactically
correct, but the overall set of embedded Java does have to be syntactically correct.

© Copyright IBM Corp. 2007 3-6
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 3 - Templating 101

JET1 Templates Visualized

Template is converted

public class <%= javaVar %> 0 a Java Class

<% if (someTest) { %>
public int getID() { public String generate (Object argument) {

return id; StringBuffer stringBuffer = new StringBuffer();

}

<% } %> stringBuffer.append(“public class “);

stringBuffer.append(javaVar);
} stringBuffer.append(* {*);

if (someTest) {

- }
public class Temp { stringBuffer.append(* }");

o return stringBuffer.toString();
public int getlD() {

stringBuffer.append(“public int getID() { return id; }");

return id;

} Class is run to apply
} template to model

Take alook at what goes on “under the covers’ with JET.

Y ou should know that when you edit a Java source file and save, the Eclipse tooling will
automatically compile that code and store the resulting .class file in another part of the
project. The JET tooling works in much the same way. When you edit and save a JET
template, a Java class is generated from the template source and is compiled. The resulting

source and .class files are stored back into the same project.

The generated Java class has a generate method that takes an object, constructs a
StringBuffer, appends a bunch of stuff to the StringBuffer, and finally returns the contents of

the StringBuffer. The class is generated as follows:
1.Static text causes aline that appends the text to the StringBuffer
2.Imbedded expressions are resolved and appended to the StringBuffer
3.Javasourceis copied as-is

When the generate method isinvoked, the logic in that method performs the templating intent

of the JET template, and returns the string result.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

Where Are We?

» Original JET (JET1)
"EMFT JET (JET2)

© Copyright IBM Corp. 2007 3-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

EMFT JET Templates

» Use tags in addition to embedded Java
» Common tasks
» CRUD model data
= Control template processing
» Eclipse resource handling
» Re-apply support

» Extensible architecture
» Write your own tags, parsers, inspectors, functions

Internally, the new JET (what we'll call “JET” for the rest of this workshop) works much the
same way asthe old JET. In fact, embedded Javais still supported. The new JET has added
anumber of tags that support both common and uncommon templating behaviors. In
addition, JET is extensible, so you can write your own tags.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

JET2 Templates

public class <c:get select="$bean/impl/@name” /> {

\ Tags can write data from the model

<c:if select="$bean/impl/@type = ‘keyed’” >

public int getID() {
return id;
} Tags can control template processing
</c:if>
}

Thisisthe same template (as examined in original JET1) written with JET2 tags.

The<c: get > tag reads a piece of data (usually a string) out of the model and writesit inline
with the template.

The<c: i f > tag performs sometest, usually using datain the model. JET will only process
the contents of the<c: i f > tag if that test resolvesto Tr ue. In this case, processing the
tag's content will result in the get | D method source being written out as part of the template
output.

While it may seem that these tags might be as complex (if not more so for Java programmers)
astheir embedded Java counterparts, there are a number of tags that are the equivalent of a
great deal of embedded Java code. For example, the<ws: fi | e> tag will:

* Apply atemplate to the model
* Writethe resulting string to afilein, but Eclipse only after

» Collaborating with the CM plug-in to make sure that the file is checked out and
otherwise modifiable

* Collaborating with any editors that might have the file already open

© Copyright IBM Corp. 2007 3-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

JET1 Compared to JET?2

<%@)jet __ p@pednsa public class <c:get
skeleton="skeletons/temp.skel || select="$bean/impl/@name”
class="Temp*® ... %> 1> { Tags can write

data from the

. . model
public class JavaVar %> {.
\<%= begins an

embedded expression <C: |f

select="$bean/impl/@type =

<% if (someTest) ‘keyed’” >
public int getlD {\ public int getID() {
return id; <o begins embedded return id,; Tags can control
} Java statements } template
<% } %> <Jcif> processing
© Copyright IBM Corp. 2007 3-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

Lab 1. Introducing JET

= Complete the following tasks:
» Create Transform
» Examine Transform
» Run Transform

Complete Lab 1 in the student workbook.

© Copyright IBM Corp. 2007 3-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

Review

»\What are the differences between the original
JET and EMFT JET?

» Should you use JET or EMFT JET? Why?

© Copyright IBM Corp. 2007 3-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

Further Information

=\Web resources
= Eclipse Help

Web Resour ces
Eclipse website (www.eclipse.org)

Eclipse Help
Eclipse Help > EMF Developer Guide > Tutorials > JET Tutorial Part 1
Eclipse Help > EMF Developer Guide > Tutorials > JET Tutorial Part 2

© Copyright IBM Corp. 2007 3-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 4 - JET2 Data Model

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 4: The JET2 Data Model

Bl v iEa
‘Rational. soffwara

© 2006 IBM Corporation

Contents
Objectives
JET DataModel
XPath
Review
Further Information

© Copyright IBM Corp. 2007

4-2

4-8
4-28
4-29

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

The JET2 Data Model

» Objectives:
» Describe the JET data model
» Use XPath to query an XML model

!!

© Copyright IBM Corp. 2007 4-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Where Are We?

= JET Data Model
= XPath

» Query Expressions
» Examples

© Copyright IBM Corp. 2007 4-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

JET Transforms

= JET Transforms are programs
» Have a tag-based language
» Have a data model

= JET Tags
» Encapsulate common transformation behaviors
» Some act against the model
» Some perform templating actions

Although you do not need to write any Javato build a JET transform, each JET transformis
still afull-blown program in its own right, with syntax and a data model.

This course has talked about the JET tags that perform various templating functions. Most of
those tags act against the model in some way. This section is going to cover how atag
describes the part of the model that isto be the target of the tag's behavior.

© Copyright IBM Corp. 2007 4-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

JET Data Model

» Implementation level

» Bunch of Java objects floating in a Java™ Virtual
Machine (JVM) environment

» Accessed via embedded Java
<% pol i cy. get Cust oner |) %

= Access via tags

» Objects organized into DOM’s
» Optimal for templates: simple, easy access
» Navigation and access via XPath

» Tags use XPath to target their function

<c:get select=" $policy/ @ustonerlD" [>

5

With JET, there are two ways to think of the data model:

1. The model isimplemented as a set of Java objects, and if you can access them with
imbedded Java elements.

2.However, you should view the data model as a set of objects organized in DOM’s (tree
structures of data objects). It turns out that no matter what the data model
implementation is, templates almost always access the data in those models as if the data
werein aDOM. Once the datais made available asa DOM (even if the implementation
is otherwise), you can use XPath to access datain that DOM.

© Copyright IBM Corp. 2007 4-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

JET Data Model
» Bridging implementation and tag access

A loader associatesa new root , -
node with avariable name " An inspector specific to the source

‘| Node |§A node class extracts parents, children

and attributes from the model

[node [<lrze] [Node |~ [

To reiterate, the data model passed in to a JET transform can be in any shape or form, but the
JET tags will access that data using XPath asif the datawerein aDOM.

JET uses aloader to load a model into memory. The loader can load just the root node or the
entire tree, but it returns the root node to JET. Inspectors help to access the data asif it were
in atree by answering questions like, given a model object:

e What isits parent?

» What are its children?

What isits name?

What are the names of its attributes?

What is the name for the value of a given named attribute?

» What isthe tag's content?
Some loader and inspectors come with JET. They support:
e XML documents
» EMF documents (files and in-memory)
« UML
« Eclipse resources (IProject, IFolder, and IFile)
Y ou can also write your own loaders and inspectors if you need to.

© Copyright IBM Corp. 2007 4-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Where Are We?

= JET Data Model

= XPath
» Query Expressions
» Examples

© Copyright IBM Corp. 2007 4-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

XPath

= Query Expression
» Interpreted string that resolves into a value
= String, List of objects, Object, integer, and so on
» Can also perform calculations
» Usually describes a model traversal
= Two forms
» XPath verbose

» XPath abbreviated
= 90-10 rule: optional tokens defaulted

= www.W3.0rg/TR/1999/REC-xpath-19991116

8

[l
I

An SQL statement is a string value that, when processed, returns data from arelational data
base.

In asimilar fashion, an XPath expression is a string that, when processed by an XPath
processor, will resolve to some set of data from the model.

It is strongly recommended that you download this page: www.w3.org/TR/1999/REC-xpath-
19991116. It contains the proposed X Path specification, and is an extremely handy document
to be able to refer to when you have a question about X Path.

© Copyright IBM Corp. 2007 4-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 4 - JET2 Data Model

Query Expressions

= A query expression has:
» A description of where to begin the traversal
» A series of steps, separated by slashes (“/”)
= stepl / step2 /../stepn
= Step
» A simple traversal between related nodes
» Consists of:
= An axis
» A node test
» Predicates

Most of the time X Path query expressions are used to navigate the model, and return the
result of that navigation. The result of a query expression is the set of objects that you arrive
at when that navigation finishes. Each tag has its own way of further using the query
expression resullt.

When a query expression is being used to navigate the model, that query expression will
somehow indicate where that traversal will begin (which model object) and will have some
number of steps, each of which describes a primitive navigation.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Query Expressions: Start and Context Objects

= Each query expression has to start somewhere

» Three variants differ by beginning syntax

» Expression starts with “/”
— Start node is the document node (top element’s parent)
/pagellink
» Expression starts with “$”
— Start node specified via variable name
— Variable's value is the node from which to start
$page/link
» Otherwise, start node is the Context Object

— For a “stand alone” expression, it's the document node
— For a nested expression, it's the “current” node

page/link

There are three ways that a query expression can indicate the start object for amodel
traversal:

1. If the expression begins with a forward slash, then the start object is the parent of the

root. In XML terminology, this would be the document node — the parent of the high-
order element.

2.1f the expression begins with adollar sign, then the following token is the name of a

variable that should already be associated with a model object. That model object isthe
start object.

3. Otherwise, the start object is the context node. This usually happens when a query
expression has a nested query expression for the purpose of performing atest on some

node. The node being tested is the context object, and is where that nested expression
would start (if that expression doesn’t start with“$" or “/”).

Note that the examples (boxed in blue) have two steps, one step, and two steps, respectively.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Resolving Query Expressions

stepl / step?2

Three ways to describe K .
the start object Y The query expression resolves

Pl E | into the results of the last step
\ B e
~F]
A c] —,
ol—-[5
Each step:

« Describes how to go from one object to arelated set of objects
« |s applied to each object resulting from the previous step

Without the benefit of knowing exactly how a step is specified, let'slook at an abstract
example.

Here, a query expression starts at model object A. You do not care which of the three waysto
specify the start object was used in this example. It is enough to know that you start at object
A.

The first step (of two) in this query expression describes a simple navigation that, when
followed, takes you from object A to objects B, C, and D. For example, the step might be
from the source node (object A) to the source node’ s child nodes (B, C, and D in this case).

The second step also describes a simple navigation, and you follow that navigation from each
of the objects resulting from the previous step (objects B, C, and D). From object B, that
navigation takes you to objects E and F. Thereis no object that results from navigating from
node C. When performing the step 2 navigation from node D, you get to node G.

Since there are only two stepsin this example, the union of the nodes resulting from the last
step (nodes E, F, and G) is the result of the query expression.

© Copyright IBM Corp. 2007 4-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Query Expression Steps: AXis
= AXis

» Relationship between the source node and the
target nodes

= XPath supports
» Child, descendant, parent, and ancestor
» Following-sibling and preceding-sibling
» Following and preceding
» Attribute and namespace
» Self, descendant-or-self, and ancestor-or-self

Each step is composed of three components, whether they are specified or defaulted. The first
component is the axis, which describes the relationship between the source object and the
target objects. Another way to think about the axis is as the direction of the simple traversal.
Common axes include the child axis and the parent axis.

Since attributes are exposed as attribute nodes (regardless of the model implementation)
another common axisis the attribute axis. In order to access the value of an object’s attribute,
you need to traverse from that model object to the attribute node representing that attribute.
That traversal takes place along the attribute access.

There are other axes (listed on this chart). See the URL mentioned previously for a precise
definition of each.

© Copyright IBM Corp. 2007 4-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Query Expression Steps: Axis

[I
Ancestor Node §.

attr
Par ent

Attribute

Node §‘Dr' Node §A|'[_I '

attr

Child

Node §.[| at' Node

tr

content

Thisvisua demonstrates the traversals associated with common axis types.

Note that asingular axis (“Child” or “Ancestor”) might reach multiple nodes. There may be
Zero or one parent, but there can be many children, ancestors, and attributes.

© Copyright IBM Corp. 2007

4-13
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Query Expression Steps

=Node Test

» Target nodes are filtered based on node name
— name must match the name specified in the step

axis test
<portlet>
<page id="3" title="">
... [child::link / ... <form name="cust">
. <link toPage="4">
. Alink /.. ,
<link toPage="6">
</page>
</portlet>

14

The second component of astep isthe nodetest. The axisistraversed to reach a set of target
nodes, and those nodes are filtered based on their names.

In the example on this chart, the step chi | d: : I i nk (or just “link” for short since child is

the default axis) traverses the model to three child nodes, and two of those nodes are named
“link.” The step results, therefore, in two nodes.

By the way, to bypass this node test and get al of the nodes reached by the axis, use the name
“*" (asterisk). For example, “child::*” and the shorter “*” both result in traversing to all
children of the source node.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Query Expression Steps

= Predicate

» A filter on a list of model objects
» Form: [expression |
= Expression can use and, or, ! (not), >, <, =, and ()
» Values can be:
— Variable references

— Literals
— Numbers

— Function calls: position(), last(), count(), name(), namespace()
— Query expressions

— Node being tested is the expression’s context object

The axis and node test are used to arrive at a set of nodes. Then, the third component, the
predicate, is used to further filter that set of nodes.

The predicate consists of one or more expressions, each of which is enclosed in square
brackets. Each predicate is used to filter the list of nodes before the next predicate is used
(examples below). If the expression for a predicate contains a query expression, the context
node for the query expression is the node being tested by that predicate.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Query Expression Examples

page/link

— All of the children named “link” of all of the children named “page”
of the expression’s context object

$page/link

— All of the children named “link” of the object associated with $page

/root/schema/@name

— The value of the name attribute of the high-level element’s child
name “schema”, but only if the high-level element is named “root”

page[@id = ‘p001’]

— All of the children named “page” of the context object whose id
attribute value is “p001”

— "@id” is a nested query expression

16

Some examples follow.

Note that the character “ @” (the “at sign”) is short for the attribute axis. The string “ @name”
is astep whose node test is“name” and whose axis s the attribute axis.

© Copyright IBM Corp. 2007

4-16
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

JET Variables

= Variables indirectly reference nodes.
» Variable names are passed as tag attributes

<c:setVariable select="/root/view" var="view" [>

» Are also passed in query expressions

<c:get select="%view/@label" />

» Can have a scope

<c.iterate select="/root/page" var="page" >
<c.get select="$page/@id" />
</ciiterate>

We have shown how a“$" in front of a query expression means that the traversal defined by
that query expression begins at a node associated with the given variable name.

This chart talks about variables more broadly, and about common ways to use them.

The first example shows how a variable can be set to anode, which in turn is the result of a
query expression. From that point on, asin the second example, that variable name can be
used to begin query expressions. The query expression traversal would begin at that original
node (the one found by the query expression in the first example). Note that since all
templatesin a JET transform share the same data model, this association remainsin affect in
subsequent templ ates.

Another common use of variablesis as areference to the current node in an iteration over a
set of nodes. In the third example, the<c: i t er at e> tag will use a query expression to get
a collection of nodes. The tag will then iterate over that collection of nodes. For each node,
the<c: it er at e> tag will associate that node with the given variable name (“page” in this
case), and will then processthe <c: i t er at e> tag content. When the tag content has been

processed for the last node in the collection, the variable name is disassociated with the last
node, and does not have avalue after the</ c: i t er at e>.

© Copyright IBM Corp. 2007 4-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

JET XPath Functions

» Functions within an XPath expression
» Write the value of the attribute named “package”

<c.get select=" $view/@package" />

» Write the corresponding directory

<c.get select="trandate($view/@package,".' ,'/')" />

XPath query expressions can also make use of functions.

In the first example, a<c: get > tag writes out a value that appears to be a package name —
something in the form of a.b.c.d.

The second exampl e shows the same <c: get > tag, except that the query expression in the
first example is now an argument to the trandate function. The translate function replaces all
occurrences of one character with another character. This particular function example
converts a package name (form: a.b.c.d) into the corresponding folder name (for example,
alb/c/d) by replacing all of the periods with forward slashes.

© Copyright IBM Corp. 2007 4-18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

JET XPath Functions

» Other XPath Functions in JET
» camelCase
» cardinality
» className
» escapeJavaWhitespace
» lower-case
» lowercaseFirst
» xmlEncode
» packageName
» removeWhitespace
» trimWhitespace
» upper-case
» uppercaseFirst

u=

Common functions you will likely use for simple formatting include:
» | ower - case lowersthe case of every character in astring to lower case
» | ower caseFi r st lowersthefirst character in astring to lower case
e upper - case raises every character in a string to upper case
e upper caseFi r st raisesthefirst character in astring to upper case

© Copyright IBM Corp. 2007 4-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

JET XPath Functions

= Calculations within an XPath expression
» Set a variable to an integer value

<c:setVariablesdect="1" var="counter" />

» Increment the integer value of a variable

<c:setVariable sdlect=" $counter + 1" var="counter" />

Y ou can also use query expressions to perform calculations.

The first example sets variable “counter” to the integer value of 1. The second example adds
1 to the current value of variable “counter”, and stores the result back into variable “counter”.

© Copyright IBM Corp. 2007 4-20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

XPath Examples

(2 /root/library/book

<root>

<library>
<librarian name="Paige Turner" empno="123456" />
<book id="001" pages="420">A Pattern’s tale</book>
<book id="002" pages="210" missing="true">The Seventh Sense</book>

@ <book id="005" pages="293" missing="false">Patterns and Y ou</book>

<book id="021" pages="10" missing="false">For the Love of patterns</book>

</library>

</root>

© Copyright IBM Corp. 2007 4-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

XPath Examples

@ /r oot//book

<root>

<library>
<librarian name="Paige Turner" empno="123456" />
<book id="001" pages="420">A Pattern’s tale</book>
<book id="002" pages="210" missing="true">The Seventh Sense</book>

@ <book id="005" pages="293" missing="false">Patterns and Y ou</book>

<book id="021" pages="10" missing="false">For the Love of patterns</book>

</library>

</root>

© Copyright IBM Corp. 2007 4-22

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

XPath Examples

() Iroot/library/*

<root>
<library>
f<|ibrarian name="Paige Turner" empno="123456" />
<book id="001" pages="420">A Pattern’s tale</book>
@ < <book id="002" pages="210" missing="true">The Seventh Sense</book>
<book id="005" pages="293" missing="false">Patterns and Y ou</book>

\<book id="021" pages="10" missing="false">For the Love of patterns</book>
</library>

</root>

© Copyright IBM Corp. 2007 4-23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

XPath Examples

(®) /root/library/book [2]
@ [root/library/book [position() = 2]
@ /root/library/book [last()]

<root>

<library>
<librarian name="Paige Turner" empno="123456" />
<book id="001" pages="420">A Pattern’s tale</book>
@ <book id="002" pages="210" missing="true">The Seventh Sense</book>
<book id="005" pages="293" missing="false">Patterns and Y ou</book>
@ <book id="021" pages="10" missing="false">For the Love of patterns</book>
</library>

</root>

© Copyright IBM Corp. 2007 4-24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

XPath Examples

@ /root/library/book [@missing] [2]
@ /root/library/book [2] [@missing |
@ /root/library/book [1] [@missing |

<root>

<library>
<librarian name="Paige Turner" empno="123456" />
<book id="001" pages="420">A Pattern’s tale</book>
<book id="002" pages="210" missing="true">The Seventh Sense</book>
8 <book id="005" pages="293" missing="false">Patterns and Y ou</book>

<book id="021" pages="10" missing="false”>For the Love of patterns</book>
</library>

</root>

@ False Boolean value

This subtlety isworth illustrating.

Example 1 is the 2nd book that has an attribute named “ missing”.
Example 2 isthe 2nd book if it has an attribute named “missing”.
Example 3 isthe 1st book if it has an attribute named “missing”.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

XPath Examples

(®) Iroot/library/book [3]
(@) Iroot/library/book [3]/..
@ /root/library/book [3]/../librarian

<root>

@ <library>

@<Iibrarian name="Paige Turner" empno="123456" />
<book id="001" pages="420">A Pattern’s tale</book>

<book id="002" pages="210" missing="true">The Seventh Sense</book>
@<book id="005" pages="293" missing="false">Patterns and Y ou</book>

<book id="021" pages="10" missing="false">For the Love of patterns</book>
</library>

</root>

The double period is short for the parent axis.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

XPath Examples

() /root/library [book]
(@) Iroot/library/book [author]

<root>

@ <library>
<librarian name="Paige Turner" empno="123456" />
<book id="001" pages="420">A Pattern’s tale</book>
<book id="002" pages="210" missing="true">The Seventh Sense</book>
<book id="005" pages="293" missing="false">Patterns and Y ou</book>
<book id="021" pages="10" missing="false">For the Love of patterns</book>

</library>

</root>

@ False Boolean value

Example 1 isthe collection of library elements that have a child named “book”.
Example 2 is the collection of book elements that have a child named “author”.

In both cases, the string inside the predicate is not a numeric value or a quoted string. The
valueis assumed to be a query expression. Since the query expression does not start with “$”
or “/”, the start node for the navigation is the node being tested (for instance, the library node
in the first example). Since no axisis specified, it is assumed to be the Child axis, and the
string is used as the node test for the step. If there are children by that name, the returned
collection of objectsis not empty, and it is converted by the predicate (remember, it'sa
boolean expression) to true. If there are no children by that name, the returned collection is
empty. Empty collections are converted to a false boolean value.

© Copyright IBM Corp. 2007 4-27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Review

»\What is a query expression?
»How are variables used?
»\What are the three components of a step?

» How do those three components work
together?

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

Further Information
=\Web resources

Web Resources

* XPath Specification:http://www.w3.org/ TR/1999/REC-xpath-19991116

 Chris Aniszczyk and Nathan Marz. “ Create more -- better -- code in Eclipse with JET.”

IBM developerWorks. http://iwww-128.ibm.com/devel operworks/opensource/library/os-
ecl-jet

 Adrian Powell. Model with the Eclipse Modeling Framework, Part 2: Generate code with
Eclipse's Java Emitter Templates. IBM devel operWorks. http://www-
128.ibm.com/devel operworks/opensource/library/os-ecemf2/

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM

Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4-30

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 5: Basic JET Tags

‘Rational. sof rara

© 2006 IBM Corporation

Contents
Objectives 5-2
The Basic JET Tags 5-3
Review 5-12

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

Basic JET Tags

» Objectives:
» Use basic JET tags

Of the 50 or so tags that come with JET, you'll find yourself using only nine tags for most of
your template authoring.

© Copyright IBM Corp. 2007 5-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

The Basic JET Tags

= ws:file

» Applies a template to the model

» Stores the result in a generated file
= c:get, c:set, and c:dump

» Read and write model data
= C.iterate

» Processes its body once for each node matching criteria
= c:.choose, c:when, and c:otherwise

» Process the body of exactly one case or default tag
= c:if

» Conditionally processes template body

[l
I

These are the nine most commonly used JET tags.

© Copyright IBM Corp. 2007 5-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 5 - Basic JET Tags

<ws:file>

= Applies a template to the model
» Stores the result in a generated file

= Attributes

» template

— Relative path name of the template to be applied
» path

— Full name of the file to be generated

— Format: “/project/relativePath”
» replace

— Optional

— Whether or not to replace file if it already exists

It'simportant to note that the entire data model (including all of the currently defined
variables) is made available to the specified template when it is applied. Any changes made

by that template to the data model, or to variables, will continue to be in effect after the tag
completes.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

<c.get>

= Reads from the model
= \Writes the value

= Attributes
» select

— An XPath expression describing the value to be written

<c:get select="$bean/@name” />

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

<c.dump>

= \Writes out the subtree beneath an object
= XML representation
» Several formatting options

= Attributes

» select
— Query expression describing a single model object

It'simportant to note that the entire data model (including all of the currently defined
variables) is made available to the specified template when it is applied. Any changes made
by that template to the data model, or to variables, will continue to be in effect after the tag
completes.

© Copyright IBM Corp. 2007 5-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

<c.set>

» Processes its template body

= Stores the result back into the model
= Attributes
» select
— An XPath expression describing the target model object

» name ~

7

"
— The name of the attribute whose value is to be set

<c:set select="$bean" name="impl" ><c:get select="$bean/@name” />Impl</c:set>

Once al of the nested tags have been processed, the value of the <c: set > tag’'s content is
the new value of the attribute being set.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

<c:.iterate>

» Queries a set of objects from the model

» Processes its template content for each object
= Attributes

» select

— An XPath expression describing a collection of model objects
b var

— A variable name to be assigned to the current iteration object
» delimiter

— A string to be inserted after processing each object except the last

<c:iterate select="$plugin/view" var="currentView" >

<c:get select="$currentView/@label” />

</c:iterate>

The<c:iterate>tagwill retrieve aList of model objects that are the result of the
specified query expression. The<c: i t er at e> tag will then process each object in the

List. For each object, the<c: i t er at e> tag will associate that node with the variable name
specified in the var attribute, and the content of the<c: i t er at e> tag will be processed.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

<c:.choose>

» Processes the content of one of its when tags
» Or it processes the ot her wi se tag by default

<c:choose select="$data/@widget" >

<c:when test="‘text’ “ >

private Text text<c:get select="$data/@name"/>;
private String entered<c:get select="$data/@name"/>;
</c:when>

<c:when test=" ‘checkbox’ ">

private Button button<c:get select="$data/@name"/>;
private boolean <c:get select="$data/@name"/>Setting;
</c:when>

<c:otherwise>
private Object object<c:get select="$data/@name"/>;
</c:otherwise>

</c:.choose>

Note that the select and test attributes are both query expressions. That means that if you
want to compare a constant string, like ‘ checkbox’ above, you need to enclose it within single
guotes. In other words, the value of the test attribute, specified between double quotes, isa
string surrounded by single quotes.

© Copyright IBM Corp. 2007 5-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

<c:if>
» Evaluates the given XPath expression

» Converts results to a Boolean value
— One or more objects > true
— No objects - false
— Integer 0 - false

» Processes template content if test is true
= Attributes
» test — XPath expression
» var — the value before being converted to boolean

<c:if test="%action [@doubleclick = ‘true’]” var="dcAction” >
list.setDoubleClickAction(<c:get select="$dcAction/@id” />);
</c:if>

The var attribute is useful if you are testing for the existence of an object. The variable
specified by the var attribute is set to the located object, if one exists. This saves you from
having to perform the query expression again insidethe <c: i f > contents.

© Copyright IBM Corp. 2007 5-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Questions?

Module 5 - Basic JET Tags

» Reference

» Eclipse-based help for EMFT JET

@ Extending Rational Application Developer fun
=1 [authoring JET transformations

+ [Getting Started
+ [Tasks

-1 A Reference
+ [JET Syntax
+ [Tag Reference
+ [ypath Function Reference
|Zl Ant Tasks Provided by JET
=l Predefine ¥Path Variables
+ [aPI Reference

+ [Extension Point Reference
= Legal

+ [DFTK Tags

+ [OPTK Compatability ¥Path Functions

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

Review

»\What tag creates files?
»\What tags write model data?
»\What are the basic conditional tags?

© Copyright IBM Corp. 2007 5-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 6 - More JET Tags

| IBM Software Group

Rational Software Architect
Module 6: More JET Tags

Bl v iEa
‘Rational. soffwara

DEV498: Pattern Implementation Workshop with IBM

© 2006 IBM Corporation

Contents
Objectives
Tagsand Tag Libraries
JET2 Control Tags
Simple Tag Combinations
Lab 2: Using XPath
Review

© Copyright IBM Corp. 2007

6-2

6-8
6-14
6-18
6-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 6 - More JET Tags

More JET Tags

= Objectives:
» Use tag libraries
» Use tags in each library
» Use simple tag combinations

© Copyright IBM Corp. 2007

6-2
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Where Are We?

»Tag Libraries
=JET Tags
» Simple Tag Combinations

© Copyright IBM Corp. 2007 6-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Tags and Tag Libraries

» Tags are configured into tag libraries

» Standard JET2 control tags

= Flow control; Pattern-level; Model CRUD
» Standard JET2 workspace tags

» Eclipse resource creation
» Standard JET2 Java tags

» Java files, resources, or packages; Merge

» Standard JET2 format tags
= Unique values

» DPTK tags
» DPTK compatibility layer

Tags (whether shipped as part of JET, or written by other JET authors) are packaged together
into tag libraries. When you want to use atag you have to point JET at the tag library
containing that tag. Y ou can then use the original tag that you wanted to use, as well as any
other tag in the tag' stag library.

There are four standard tag libraries shipped with JET: Control Tags, Workspace Tags, Java
Tags, and Format Tags. The tag libraries are available in Eclipse.

A fifth tag library, the DPTK Compatibility Layer, contains tags that look exactly like the
DPTK tags, but which are implemented on JET. Using thistag library lets you run DPTK
patterns as JET transformations without modifying the templ ates.

© Copyright IBM Corp. 2007 6-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Using a Tag Library

» Define the library in the transform’s plugin.xmi

<pluginz>
<extension
point="org.eclipse.jet.transform">
<transform
startTemplate="dptk.pattern.test.suite.00
templateloaderClass="

org.eclipse.jet. d. je

<description>dptk.pattern.test.suite.00la</description>

<tagLibraries>
<importLibrary id="com
</taglLibraries>

.ibm.xtools.jet.dptk.dptk" usePrefix="" autoImport="true"/>

</transform>
</extension>
</plugin>

= importLibrary
» i d refers to the taglibrary extension defining the tag library
= Value is defining plugin id + “.” + tag library name
» usePr ef i x defines the namespace for all tags in the library

» aut ol nmpor t indicates whether templates need to include a
tag library directive

There are two ways to declare that you want to use the tagsin atag library in your templates.

Thefirst way isto add a bit of XML configuration to the transform’s plugin.xml. This makes
tagsin that tag library available to all templatesin the transform, but only if the
aut ol nport attributeissettotrue.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Using a Tag Library

» Use a taglib directive in each template
<% @taglib prefix="ws" id="org.eclipse.jet.workspaceTags" % >

=taglib
» pr ef i x is the namespace for all tags in the library

= For this template only
» i d refers to the taglibrary extension defining the tag library

» Value is defining plugin id + “.” + tag library name

= Either use the directive or the plugin reference

u=

The other way to declare that you want to use the tagsin atag library isto use ataglib
directive in each template that needs to use the tags.

© Copyright IBM Corp. 2007 6-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Where Are We?

» Tag Libraries
=JET Tags
» Simple Tag Combinations

© Copyright IBM Corp. 2007 6-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Standard JET2 Control Tags Library

<%@taglib prefix="c" id="org.eclipsejet.control Tags" %>

iterate (select, var, delimiter)
if (test, var)

get (select, default)

choose (select)

= when (test)

= otherwise ()

= visitor (select, var)

® visit (test)

= userRegion

= jnitialCode

* Include (template, passVariables)
= |log (severity)

= setVariable (select, var)

These next few chartslist the tagsin each of the four standard tag libraries, aswell asthe
attributes defined for each tag.

The<c: user Regi on>and<c: i ni ti al Code> tagsare used to identify areas of
generated content that can be modified by the user. If the transformis re-applied, those user
changes will be moved to the new versions of the generated content.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 6 - More JET Tags

Pattern Implementation Workshop with IBM Rational Software Architect

Standard JET2 Control Tags Library (cont.)

<%@taglib prefix="c" id="org.eclipsejet.control Tags" %>

addElement (select, name, var)

addTextElement (select, name, var, cdata)
removeElement (select)

copyElement (select, toSelect, name, recursive, var)
= load (url, var, urlContext, loader, type)

= set (select, name)

= marker (description)

» invokeTransform (transformld, passVariables)

= dump (select, format, entities)

= loadContent (var, type, loader)

= nodeAttributes (node, name, delimiter)

= replaceStrings (replace, with)

= stringTokens (string, delimitedBy, name, delimiter, reverse, tokenLength)

The *Element tags let you create, copy, and delete entire model objects within the model.
The <c: | oad> tagis useful for dealing with multiple input models.

The<c: | oadCont ent > tag isuseful for smple model-to-model transformations from one
DOM to another.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 6 - More JET Tags

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Standard JET2 Workspace Tags Library

<% @taglib prefix="ws’ id="org.eclipse.jet.workspaceTags" %>

project (name)
folder (path)
file (template, path, encoding, replace, derived)

copyFile (binary, replace, srcEncoding, targetEncoding, src, srcContext,
target)

rebuildWorkspace

Thetag <ws: pr oj ect > creates a project with the specified name for you, if one does not
already exist.

<ws: f ol der > does the same with folders.

<ws: copyFi | e> is useful for copying binary files like JARS, or image files from the
transform itself, to generated projects.

© Copyright IBM Corp. 2007 6-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Standard JET2 Java Tags Library

<% @taglib prefix="java’ id="org.eclipse.jet.javalags’ %>

= importsLocation (package)

= impliedimport (name)

= import

= package (name, srcFolder, project)

» resource (name, package, srcFolder, template, replace, encoding, derived)

= class (name, package, srcFolder, template, project, replace, encoding,
derived)

= merge (rules, rulesContext)

Thetags <j ava: package>, <java:resource>, and<j ava: cl ass> are like
<ws: folder> <ws:file> and <ws:fil e>, respectively. They take naming
attributes in the Java style (for example, class and package names) instead of the traditional
Eclipse URL format.

© Copyright IBM Corp. 2007 6-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Standard JET2 Format Tags Library

<%@taglib prefix="f" id="org.eclipse.jet.formatTags" %>

= replaceAll (value, replacement, regex)
= uc (offset, length)

= |c (offset, length)

= formatNow (pattern)

» milliseconds

= unigue

= yuid

Thetag <f: f or mat Now> writes out the current time, formatted using a pattern just like
the SimpleDateFormat classin Java.

<f:mlliseconds>, <f:unique>, and<f: uui d> eachwriteout aunique value

every time they’re used (even by the sametag in an iterate loop). They are useful in writing
many kinds of persisted data.

© Copyright IBM Corp. 2007 6-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Where Are We?

» Tag Libraries
=JET Tags
»Simple Tag Combinations

qg ===

© Copyright IBM Corp. 2007 6-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Simple Tag Combinations
Write the id attribute for all the books in library

<root>
<library>
<book id="001" pages=230" />
<book id="002" pages="410" />

</library>

</root>

<c.iterate select="/root/library/book" var="b" >
The value of attributeid is <c:get select="$b/@id" />.
</c.iterate>

© Copyright IBM Corp. 2007 6-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Simple Tag Combinations

If there’s a book element with id = “002”, then
write that element to the log

<root>
<library>
<book id="001" pages="230" />
<book id="002" pages="410" />

</library>

</root>

<c:if test="//book [@id = ‘002'] " var="b" >
<c:log severity="info"><c:dump select="%b" /></c:log>

</cif>

!!

© Copyright IBM Corp. 2007 6-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 6 - More JET Tags

Simple Tag Combinations

Write the id of the book whose title is “Patterns”

<library>

<book id="001" pages="230" >
<title>Patterns</title>

</book>

<book id="002" pages="410" >

<title>More Patterns</title>
</book>

</library>

<c.get select="/library/book [title = ‘Patterns' |/@id" />

The solution will not appear on this dide until the instructor hits RETURN.

© Copyright IBM Corp. 2007

6-16
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 6 - More JET Tags

Simple Tag Combinations

Write the title of the book whose id is “002”

<library>

<book id="001" pages="230" >
<title>Patterns</title>

</book>

<book id="002" pages="410" >

<title>More Patterns</title>
</book>

</library>

<c.get select="/library/book [@id = ‘002’]/title" />

The solution will not appear on this dide until the instructor hits RETURN.

© Copyright IBM Corp. 2007

6-17
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Lab 2: Using XPath

= Complete the following tasks:

» Modify 15 templates according to the instructions
in the templates

Complete Lab 2 in the student workbook.

© Copyright IBM Corp. 2007 6-18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

Review

»\What are the 4 JET tag libraries?

»\What must you do to reference a tag from a tag
library?

»How is the tag library prefix used?

© Copyright IBM Corp. 2007 6-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 6 - More JET Tags

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop

Module 7 - JET Examples

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 7: JET Examples

Bl v A
‘Rational. soffwara

© 2006 IBM Corporation

Contents
Objectives
Writing an Arbitrary List
Generating an Arbitrary Number of Files
Attributes and Derived Attributes
Lookups and De-Normalizations
Getter Names
Comma-Separated Lists
Lab 3: Authoring Transforms Manually
Review

© Copyright IBM Corp. 2007

7-2

7-8
7-13
7-22
7-27
7-30
7-32
7-33

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

JET Examples

» Objectives:
» Discuss common JET scenarios
» Discuss JET best practices

!!

© Copyright IBM Corp. 2007 7-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Where Are We?

=\Writing an Arbitrary List
= Generating an Arbitrary Number of Files
= Attributes and Derived Attributes

» Lookups and De-Normalizations

= Getter Names

» Comma-separated Lists

© Copyright IBM Corp. 2007 7-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Writing an Arbitrary List

You have a

model.... ...and you want to write out a

Java declaration for each bean

attribut;

<bean name="Customer" > /
<attribute type="String" />

<attribute name="name" type="String" />

<attribute name="type" type="int" />

</bean>

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop

Module 7 - JET Examples

Writing an Arbitrary List (cont.)

So you:

 Collect dl of the elements

* [terate over that collection

» Write the Java source that declares the attribute

<bean name="Customer" > .
<attribute name="id" type="String" /> / bea_n/aItrIbUte
<attribute name="name" type="String" /> describes the set of
_ P . o elements over which to
<attribute name="type" type="int" /> iterate.
</bean>

© Copyright IBM Corp. 2007

7-5
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop

Module 7 - JET Examples

Writing an Arbitrary List (cont.)

<bean name="Customer" >

<attribute name="id"

</bean>

type="String" />
<attribute name="name" type="String" />

<attribute name="type' type="int" />

</c:iterate>

<ciiterate select="/bean/attyibute" v

private <c:get select="%$a/@type" /> <c:get select="%$a/@name" />

4 L

private String id;

private String name;

private int type;

© Copyright IBM Corp. 2007

7-6
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Where Are We?

= \Writing an Arbitrary List
» Generating an Arbitrary Number of Files
= Attributes and Derived Attributes

» Lookups and De-Normalizations

= Getter Names

» Comma-separated Lists

© Copyright IBM Corp. 2007 7-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop

Module 7 - JET Examples

Generating an Arbitrary Number of Files

You have a

model ...and you want to write out a

Java class and a Java interface
for each object element

<root pkg:Wdir:“org/commerce" project="Commerce">
gﬁﬁ’l ass="CustomerImpl" interface="ICustomer" >
efhod name="markSpecia" />

<method name="archiveHistory" />
</object>

<object class="Orderlmpl" interface="10rder" >
<method name="fulfill" />
</object>

</root>

© Copyright IBM Corp. 2007

7-8
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop

Module 7 - JET Examples

Generating an Arbitrary Number of Files (cont.)

<root pkg="org.commerce" dir="org/commerce" project="Commerce">

<object class="Customerlmpl" interface="1Customer" >

<method name="markSpecia" />

<method name="archiveHistory" />
</object>

<object class="Orderlmpl" interface="I0rder" >
<method name="fulfill" />
</object>

</root>

\
Note how each <object> subtree

contains information for one set of files.

© Copyright IBM Corp. 2007

7-9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Generating an Arbitrary Number of Files (cont.)

(€ws:project] name="{ /root/ @project} " /> N dus
. ames created usi ng i
<ws:folder) path="/{ /root/ @project} /src” /> main.j et
(siolde]p t @project} model data
<citerate select="/root/object" var="obj" =" ™
<ws:fildtemplate="interface,jet" \,
path="/{ /root/ @project} /src/{ /root/ @dir} /{ Sobj/@interface} .java' /> Creates two files for
<ws:fild template="class,jet" each object element
path="/{ /root/ @project} /src/{ /root/@dir} /{ $obj/@class} .java’ />
</c:iterate>

<root pkg="org.commerce" dir="org/commerce" project="Commerce">

<object class="Customerlmpl" interface="1Customer" >

<method name="markSpecia" />

[Use <ws:copyFile>] <method name="archiveHistory" />

for binary files </object>

<object class="Orderlmpl" interface="IOrder" >
<method name="fulfill" />
</object>

</root>

Some things were | eft out of the above example because of space restrictions. In addition to
the <ws:project> and <ws:folder> tags, there should also be two <ws:file> tags — one for the
.project file and one for the .classpath file. When you create new projects, you also have to
create any metadata files or folders that are needed by any of the project’s natures.

Also note that you really did not need the <ws:folder> tag, because the source folder would
have been created automatically when the first Java class was created (all folders containing a
file are created automatically if they don’t already exist). In the case where there are no

<obj ect > elementsin the model, though, no files would have been created, and the source
folder wouldn’t have been created either. That is why you include a <ws:folder> tag here.

© Copyright IBM Corp. 2007 7-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop

Module 7 - JET Examples

Generating an Arbitrary Number of Files (cont.)

package <c:get select="/root/ @pkg" />;
public class <c:get select="$obj/@class" /> implements <c:get select="%$obj/@interface" /> {
<citerate select="$obj/method" var="method" >

public void <c:get select="$method/@name" />() {

}

</c.iterate>

}

/

classjet

/<root pkg="org.commerce" dir="org/commerce" project="Commerce">

<method name="markSpecia" />
Use the data from the / <method name="archiveHistory" />

<object class="Customerlmpl" interface="1Customer" >

subtree of the current </object>
<object> element in the <object class="Orderlmpl" interface="10rder" >
iteration in main.jet <method name="fulfill" />
</object>
</root>

Just to reinforce: templates all share the same data model and variable values. Use the

passV ariables attribute to restrict variable access.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Where Are We?

= \Writing an Arbitrary List
= Generating an Arbitrary Number of Files
= Attributes and Derived Attributes

» Lookups and De-Normalizations

= Getter Names

» Comma-separated Lists

© Copyright IBM Corp. 2007 7-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Attributes and Derived Attributes

Y ou have a model, but
there is duplication of data. [The smaller the model, the J
m

easier it isto use the transfor
*'instead of '/
<root pkg@dir@ project="Commerce">

<object class="Customerlmpl” interface="1Customer" >

<method name="markSpecia" />
<method name="archiveHistory" />

</object>

<object class€"Orderlmpl” interfac>
<method name="Wyfill" />

</object> Same oot ("Order”) with
</root> applied naming conventions
© Copyright IBM Corp. 2007 7-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Attributes and Derived Attributes (cont.)

= Attributes

» Present in the model when the transform starts
» Derived Attributes

» Not present when the transform starts

» Added to the model by the transform

(el

© Copyright IBM Corp. 2007 7-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Attributes and Derived Attributes (cont.)

»\When attribute A is a function of attribute B
» Make attribute A a derived attribute
» Remove it from the input model
» Add logic in main.jet to calculate its value

Replace al "." with "/"
<root pkgirroject:"Commerce">

<object class="Customerlmpl" interface="ICustomer" >

<method name="markSpecial" />
<method name="archiveHistory" />
</object>
<object class="Orderlmpl" interface="1Order" >
<method name="fulfill" />

</object>

</root>

© Copyright IBM Corp. 2007 7-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Attributes and Derived Attributes (cont.)

<object class="Customerlmpl” interface="ICustomer" />

<root pkg="org.commerce"

eqqmerce" |project="Commerce">

<object class="Orderlmpl" interface="10rder" />

I_l main.jet

<c:set select="/root" name="dir"><c:get select="trandate(/root/@pkg, "', 1" I></c:set>

</root>

<c:set> storesit’s content into <c.get> writes the result of an
an attribute in the model XPath query expression

<root pkg="org.commerce" dir="org/commerce" project="Commerce">
<object class="Customerlmpl" interface="ICustomer" />
<object class="Orderlmpl" interface="10rder" />

</root>

© Copyright IBM Corp. 2007 7-16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Attributes and Derived Attributes (cont.)

»\When attributes A and B share a root value
» Make attributes A and B derived attributes
» Remove them from the input model
» Add a new attribute to the model to hold the root
» Add logic in main.jet to calculate A and B

<root pkg="org.commerce" dir="org/commerce" project="Commerce">
<object class="Customerlmpl" interface="ICustomer" >
<method name="markSpecia" />
<method name="archiveHistory" />
</object>
<object cInterfac>
<method name="fulfill" />
</object>

</root>

© Copyright IBM Corp. 2007 7-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Attributes and Derived Attributes (cont.)

<root pkg="org.commerce" project="Commerce">

<object |class="

ustomer] name="Customer"/>

<object ¢l = mpl" interface=" name="Order" />

I_l main.jet
<c:iterate select="/root/object" var="obj">
<c:set select="%0bj" name="class'><c:get select="$obj/@name" /c:set>

</root>

<c:set select="%obj" name:"interface"®:get select="%obj/@name" /}</c:set>

Constant text inside <c:set>

<root pkg="org.commerce" project="Commerce">
<object class="Customerlmpl" interface="ICustomer" name="Customer" />

<object class="Orderlmpl" interface="10rder" name="COrder"/>

</root>

© Copyright IBM Corp. 2007 7-18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Attributes and Derived Attributes Best Practices

= Names of things should be in the model
» Stored as derived attributes

» Calculated once, used many times
= Project names
= Repeated file names
= Java class and interface names
= Method, variable, and property names

» main.jet has three parts
» A model traversal that calculates derived attributes
— The only time you write to the model
» A model traversal that generates artifacts
— Only reads from the model

» Optional dump of the model (using <c:dump/>)
— Make a habit of looking at this for debugging

[l
I

These are some of the most important best practices.

© Copyright IBM Corp. 2007 7-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Attributes and Derived Attributes

f
<c:set select="/root" name="dir"><c:get select="trandate(/root/@pkg , "',)" /></c:set>
<c:iterate select="/root/object" var="obj">
1< <c:set select="$obj" name="class'><c:get select="$obj/@name" />Impl</c:set>
<c:set select="$obj" name="interface">I<c:get select="$obj/@name" /></c:set>
. | </citerate> main.jet
(— | <ws.project name="{/root/@project}" />
<ws:folder path="/{/root/@project}/src" />
2 < <c:iterate select="/root/object" var="obj" >
<wsfile template="interface,jet" path="/{/root/@project}/src/{ /root/@dir} /{ Sobj/@interface} .java' />
<wsfile template="class,jet" path="/{/root/ @project} /src/{ Iroot/@dir} /{ $obj/@class} .java" />

- | </citerate>
3 { <ws:file template="dump.jet" path="/{/root/@project}/dump.xml" />

<root pkg="org.commerce" dir="org/commerce" project="Commerce">

<object class="Customerlmpl" interface="1Customer" name="Customer" >
<method name="markSpecia" />
<method name="archiveHistory" />

</object>

<object class="Orderlmpl" interface="I0rder" name="Order" >
<method name="fulfill" />

</object>

</root>

© Copyright IBM Corp. 2007 7-20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Where Are We?

= \Writing an Arbitrary List
= Generating an Arbitrary Number of Files
= Attributes and Derived Attributes

» Lookups and De-Normalizations

= Getter Names

» Comma-separated Lists

© Copyright IBM Corp. 2007 7-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Lookups and De-Normalizations

Y ou have amodel with
Javatypes factored

out...
\

<root>

<bean name="Customer" >

<attribute name="id" typeref/>

. ...and you want to write
<attribute name="name" typegef="01" />

out the Java declaration
</bean>
Attribute id has type (name and t_ype) for each
<types> javalang.Integer attribute
<type id="01" |

a="javalang.String" />

<type idjavaz"java.lang.lnteger" />

</types>

</root>

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Lookups and De-Normalizations (cont.)

<“i%t> .) « Variable arefersto the
ean name="Customer" > X
<attribute name="id" typeref="02" /> current attribute element
<attribute name="name" typeref="01" /> .
</bean> » Variablet refersto the correct
<types> type element
<type id="01" java="javalang.String" />
<type id="02" java="javalang.Integer" /> » But what'sthe query
/</types> expression to usein the
~/root> c:setVariable tag?

<c:iterate select="/root/bean/attribute" var @
<c:setVariable select=" " ovar @ >

private <c:get select="$t/@java’ /¥ <c:get select="$a/@name" />;

</c.iterate>
<z

private java.lang.Integer id;

private java.lang.String name;

© Copyright IBM Corp. 2007 7-23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Lookups and De-Normalizations (cont.)

Assume that variable $arefersto this
/ <attribute> element

<root>
<bean namg="Customer" >
namec"id" typeref/>

="01" />

Then the <type> element you want <attribute name="name" typ
can be described as:

</bean>
the <type> element whoseid

Attribute id has type
attribute ha ime value as <types>

javalang.Integer

<type id="01" java="javalang.String" />
<type idjava:"javalang.lnteger" />
</types>

</root>

Iroot/typesitype [@id = $a/ @typeref]

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Lookups and De-Normalizations (cont.)

<“fl’)t> , . - Variable arefersto the current
ean name="Customer" > .
<attribute name="id" typeref="02" /> attribute element
<attribute name="name" typeref="01" /> .
</bean> P *Variablet refersto the correct
<types> type element
<type id="01" java="javalang.String" /> .)
<type id="02" java="javalang.Integer" /> *Thec:setVariableisn't
/</types> necessary, but is useful if you
~/root> need to refer to the <type>
element several times

<c:iterate select="/root/bean/attribute" vars<ak

<c:setVariable select=" /root/types/type [@id = $a/ @typeref] " var@>

private <c:get select="$t/@java’' /> <c.get sded:"M@M

</c.iterate>

\w a4

private java.lang.Integer id;

private java.lang.String name;

The <c:setVariable> tag is not really needed here. If you take it out, you will need to combine
the select expressionsin the <c:setVariable> and the <c:get> tags. The <c:setVariable> is
often used to perform a common model traversal, and cache the result.

© Copyright IBM Corp. 2007 7-25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Where Are We?

= \Writing an Arbitrary List
= Generating an Arbitrary Number of Files
= Attributes and Derived Attributes

» Lookups and De-Normalizations

= Getter Names

» Comma-separated Lists

© Copyright IBM Corp. 2007 7-26

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Getter Names

You havea ...and you want to create and
mode! ... store method names for each bean
attribute back into the mode

getter

/>

<bean name="Customer" >
<attribute name="id" type="String"

<attribute name="name" type="String" />

<attribute name="person" type="boolean" />
</bean> \

Remember: boolean
getters begin with "is"

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

- 27

Pattern Implementation Workshop Module 7 - JET Examples

Getter Names (cont.)

<bean name="Customer" >
<attribute name="id" type="String" />
<attribute name="name" type="String" />
<attribute name="person" type="boolean" />

</bean>

<c:iterate select="/bean/attribute" var="a"' >
<c:choose select=" $a/@type" >
<c:when test=" 'boolean' " >
<c:set select="$a' name="getter">is<c:get select=" upper caseFir st($a/@name)" /></c:set>
</c:when>
<c:otherwise>
<c:set select="%a" name="getter">get<c:get select=" upper caseFir st($a/@name)" /></c:set>
</c:otherwise>
</c:choose>

</c.iterate>

© Copyright IBM Corp. 2007 7-28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Where Are We?

=\Writing an Arbitrary List
»Generating an Arbitrary Number of Files
= Attributes and Derived Attributes
»|_ookups and De-Normalizations
=Getter Names
»Comma-separated Lists

© Copyright IBM Corp. 2007 7-29

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop

Module 7 - JET Examples

Comma-Separated Lists

You have a
mode!... \

<method name="getTax" >

<arg name="amount" type="float" />

<arg name="city" type="String" />

<arg name="taxable" type="boolean" /> ...and you want to
</method> generate acal to the

method

getTax(amount, city, taxable);

|/

How can you get the right number of commas?

30

© Copyright IBM Corp. 2007

7-30
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop

Module 7 - JET Examples

Comma-Separated Lists (cont.)

<method name="getTax" >
<arg name="amount" type="float" />
<arg name="city" type="String" />

<arg name="taxable' type="boolean" />

argument name

getTax(amount, city, taxable);

</method>

lterate over all of delimiter attribute: what

the arg elements to put between iterations

' N\ \
getTax(<c:iterate select="/method/arg" var="a" delimiterté', "%c:get select="%a/@name"/></c.iterate>);
N—
N J
Y
Writes out the

The"getTax" in the template snippet above should really be a<c: get > tag pulling the value
of the name attribute of the method object. Unfortunately there wasn't enough room on the

chart without using a font that was too small.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Lab 3: Authoring Transforms Manually

= Given:
» A partial transformation

» An example of what the transformation is to
generate

= Complete the following tasks:

» Add tags and templates to the transformation to
generate required output .

w
8
||

Complete Lab 3 in the student workbook.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

Review

»\What is main.jet and what does it do?
»\What are the three sections in main.jet?

=\What is the difference between an attribute and
a derived attribute?

© Copyright IBM Corp. 2007 7-33

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7-34

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

—_—=
| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect

Module 8: Exemplar Analysis
H BT 2

'Rational, soffwara
© 2006 IBM Corporation
Contents
Objectives 8-2
Finding a Pattern to Implement 8-4
Preparing to Author a Model-to-Text Transform 8-14
Authoring the Model and Templates 8-18
Lab 4.1: Exemplar Authoring 8-32
Lab 4.2: Exemplar Authoring 8-33
Lab 5: Console Transform 8-34
Review 8-35
Further Information 8-36
© Copyright IBM Corp. 2007 8-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Exemplar Analysis

» Objectives:
» Describe:
= Where to look for patterns
» How to find patterns
» The model-to-text transform authoring roadmap
» Perform exemplar analysis
» Author a model-to-text transform

!!

© Copyright IBM Corp. 2007 8-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Where Are We?

»Finding a Pattern to Implement
» Preparing to Author a Model-to-Text Transform
= Authoring the Input Model and Templates

© Copyright IBM Corp. 2007 8-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Finding a Pattern to Implement

» Look at existing reusable assets
» Each asset class has unique reuse attributes
» Is there a better implementation?

» Think twice before creating a reusable asset

» Consider authoring a model-to-text transform
=Déja vu

» If you think you’ve solved the same problem before

If you want to author a model-to-text transformation, but are not quite sure what the pattern
should be, there are several techniques you can use to identify a potential pattern.

A great place to start is with existing reusable assets. Many development organizations use
reusable assets as a way to communicate information that is used over and over while
building applications. These reusable assets point to pattern authoring opportunities. It turns
out that often model-to-text transformations are actually more consumable that other reusable
asset classes. More on this later.

Another way to identify a potential pattern isto look at when you might create your own
reusable assets. For the reasons listed above, you might want to try authoring a pattern
instead of creating another reusable asset.

Finally, most experienced transformation authors know to look for situations when they solve
the same problem several times (and are likely to solve that same kind of problem in the
future).

© Copyright IBM Corp. 2007 8-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Re-Assessing Reusable Assets

» Reusable Asset
» Valued for time saved per reuse
» But there is a cost associated with each reuse
» Learning curve
= Customization required
» Typical classes of reusable assets
» Libraries
» Best practices papers
» Frameworks
» Pattern descriptions (GoF, Enterprise)
» Code samples
» Wizards

Usually, attention is paid to the time, cost, and resource savings from using reusable assets.
As authors of reusable assets, though, we need to understand that there are costs associated
with reusable assets, too. Not only is there alearning curve, but often the solution provided
by the reusable asset requires customization before it solves the problem that you are trying
to solve.

For example, abest practices document requires the user to read the document and
understand it well enough to mentally apply the best practices to the problem at hand. The
user then has to manually create the solution using the IC in the best practices document.
Note that there is agood deal of learning curve required as users read and self-educate
themselves on the IC.

That’s not to say that the different classes of reusable assets should be avoided. Y ou just
need to understand the total cost and benefit of reuse for your specific 1C when implemented
as a particular form of reusable asset.

© Copyright IBM Corp. 2007 8-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Patterns and Reusable Assets

» Key reusable asset question:

» The reusable asset is a solution to a recurring
problem.

» How much of that solution has to be customized?

= Different customization requirements
» Libraries
= No customization at all
» Frameworks

» Heavy customization of relatively small number of files
— But those files have exactly the same shape across applications

» Best Practices, Design Docs, and so on
= All files manually created

6

Each reusable asset class requires some form of learning curve, but that’s afixed cost. No
matter how many times you reuse an asset, you still only have to learn how to apply that asset
only once.

The more important cost for reusable asset use is the time it takes to customize the solution
provided by that reusable asset.

So what is that cost?

Libraries generally require no customization. Meanwhile, frameworks provide most of a
solution and only require the user to create only relatively few files that sit on top of that
framework. As mentioned above, documents tend to require the user to create the complete
solution manually.

© Copyright IBM Corp. 2007 8-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Customization Cost for Reusable Assets

None Customization Required per Reuse Total

& >
»

Libraries Wizards Frameworks Best Practices
Property-Driven

Model-to-Text Enterprise Patterns
Transforms
GoF Patterns

Shift for composition to thefile level Code Samples

r

Cost per reuseincreases

N
>

This chart shows where on the “ customization-required” spectrum each reusable asset class
falls. The blue arrow showsthat part of the spectrum for which model-to-text transforms
might be the best option in terms of customization required after each application of the
intellectual capital.

© Copyright IBM Corp. 2007 8-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Deriving Transforms from Reusable Assets

= Start with some reusable asset or intellectual
capital
» Best Practices or Design Document

» Reuse that intellectual capital to create a
number of files
» This may take some time
» Every reuse of this asset requires this much work
= One of several hidden costs

» Reusable Asset solution probably needs some
customization

(el

© Copyright IBM Corp. 2007 8-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Deriving Transforms from Reusable Assets

» Model-to-text (M2T) transforms generate to one of
several scopes
» Single file
— Eclipse dialog box

» Small set of collaborating files
— ISSW Exception Framework

» Component
— WAS-optimized Java™ DataBase Connectivity (* JDBC”) beans

» Deployable application
— In one or more Eclipse projects

= Assess the artifacts created with the Reusable Asset

» Choose the smallest of the above scopes containing those
artifacts

!!

© Copyright IBM Corp. 2007 8-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Deriving Transforms from Reusable Assets

» Determine what additional assets are needed:
» To fill out the scope
» By the assets you've created

» By other applicable reusable assets
— Internationalization, packaging guidelines, naming conventions

» Make sure that:
» All necessary artifacts are identified
» All applicable reusable assets have been applied

» This gives you a closed set of artifacts
» A M2T transform should be used to generate these

10

(el
if

© Copyright IBM Corp. 2007 8-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Example: Portlet Best Practices

= A whitepaper described core collaborations
» Between portlet and action classes
» Between action and state classes

» Between state, cargo beans, and JavaServer
Pages™ (JSPs)

= Built a portlet as described by the whitepaper

» Added Eclipse project and meta-data
» Added portal deployment descriptor

= Scope was an Eclipse project

= Authored M2T transform to generate portlet
projects

(el

© Copyright IBM Corp. 2007 8-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

A Potential Reusable Solution

» Reusable assets as a guide

» When applied, a rough pattern emerges in the
code resulting from the application

» You have a solution to a specific problem
» Customization can solve similar problems

= Déja vu can result in a rough pattern, too

» You solve the same kind of problem over and over

» Pick any of those implementations
— Later is probably better that earlier

H 1]
!

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Where Are We?

» Finding a Pattern to Implement

"Preparing to Author a Model-to-Text
Transform

= Authoring the Input Model and Templates

© Copyright IBM Corp. 2007 8-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Exemplar Analysis Overview

= Methodology for the authoring of model-to-text
transforms
= Scalable to arbitrarily large and complex transforms
= Applicable to any model-to-text transform
= Must be relatively fast

= Interview-style approach between two roles
= Domain SME understands the pattern to be authored
= Pattern SME understands the methodology
= Analogous to how patent attorneys work

= Requires as input an Exemplar
= Representative example of what the pattern is to produce
= Well and consistently written
= Might take 18 months to write
= Stop and go home if you don'’t have one

14

© Copyright IBM Corp. 2007 8-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Preparing to Author a Pattern

=“A pattern is a solution to a recurring problem”
— Grady Booch

= \What's your recurring problem?
» Don’'t know? Review the “Where to look” charts.

= Keep solving the problem

» The solution will eventually stabilize
» You'll eventually stop improving on it

(el

© Copyright IBM Corp. 2007 8-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Find a Pattern to Implement

» Things to do to your solution as it stabilizes
» Refactor classes

» Expand the pattern to cover more artifacts
» Adding j-unit tests or Help pages

» Refine your naming conventions

» Debug and optimize your code

!!

© Copyright IBM Corp. 2007 8-16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Where Are We?

» Finding a Pattern to Implement
» Preparing to Author a Model-to-Text Transform
» Authoring the Input Model and Templates

© Copyright IBM Corp. 2007 8-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 8 - Exemplar Analysis

Building A Good Exemplar
= Exemplar

» A representative output of a model-to-text
transform

Solution to arecurring
problem (AKA “Best

Practices’) \

Transform
M odel > Artifacts
What's different What's the same
between between Exemplar: Artifacts that best
problems? problems?

illustrate the variability in the
model and the pattern

© Copyright IBM Corp. 2007

8-18
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Good Exemplars

= A good exemplar demonstrates variability
» In the model
» In the pattern

» Example: The JavaBeans™ Pattern

» Beans can have any number of properties
= A good exemplar has more than one property

» The getter for a boolean property starts with “is”
» Implement both boolean and non-boolean properties

= Not even a perfect exemplar replaces the SME

19

© Copyright IBM Corp. 2007 8-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Exemplar Analysis

» Exemplar Analysis is a methodology
» Supported by the Exemplar Authoring tool
» Based on a set of Best Practices
» Transform design
* Input model
= JET tag usage

= A working knowledge of Exemplar Analysis
requires a working knowledge of these Best
Practices

(el

© Copyright IBM Corp. 2007 8-20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

A Monologue on the Model

» For model-to-text, there are only two model
design goals. The model design:

» Must contain all required dynamic values
» Must be optimized to make template access simple

= In practice, there is a pattern to the model

(el

© Copyright IBM Corp. 2007 8-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Model-to-Text Input Model Best Practices

= Model is viewed as a DOM by the transform
» Regardless of actual implementation
= Top-level node root
» Always called “root”
» Never has any attributes
= 2nd-level node
» Has all data needed to apply transform once, including subtree app
» Is at the 2nd level so the model can have many occurrences

» Drives the generation of singly-occurring artifacts /\
= Lower-level nodes

» Drive generation of multiply-occurring artifacts mult
» Normalized according to artifact and content cardinality
= Attributes
» Used to derive artifact names and language tokens
» Transform will add derived attributes holding complete names

= For example, for Policylmpl class, a model attribute for “policy” and a derived attribute
for Policylmpl

» Class, package, and file names are rarely passed in as part of the model

= Built up by the transform using naming conventions that are part of the transform
» Never build names on the fly

= Build once, store in the model and read many times

22

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Model-to-Text Input Model Notes

* The model
» Does not reflect the user’s view of the problem
» Does not contain terminology familiar to the user
» Is not the model originally populated by the user
» Is not an input to Exemplar Analysis, but an output

u=

© Copyright IBM Corp. 2007 8-23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Exemplar Analysis

= Given an Exemplar
» Extract the input model schema
» Extract the transformation logic (templates)

= Steps
» Identify all dynamic content in the exemplar

» Normalize that content
— Build a schema to describe that normalization

» Create templates from artifacts
— Replacing dynamic content with tags

!!

© Copyright IBM Corp. 2007 8-24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

The Simple Approach

» Only consider artifacts that are unique

= Start by identifying artifact roles
» Artifact Role: Why is that artifact in the exemplar?
» Same role =» generation by the same template

» Model the unique roles and their cardinality
» Group according to cardinality
» Name the groups
» Create a template for each role

(el

© Copyright IBM Corp. 2007 8-25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Listing the Roles

» Sample exemplar

Navigator | [# Package Explorer £3

u PrOJeCt (AUthOI‘IZ&tIOﬂ BeanS) =I [=> Authorization Beans
. = [5 src
» Classpath file (.classpath) = org.secure.bean

+ m IPassword.java
IRole.java
IUser.java
PasswaordImpl.java
RoleImpl java
UserImpl.java
=% org.secure.log

» Project description (.project)
= Logger (org.secure.log.Logger)
» Interface (IRole, IUser,..)

- - -

¥

» Bean (Rolelmpl, Userimpl,...) ; &J;Esfnﬁf:fﬁdu
X| .classpath
X project
26
© Copyright IBM Corp. 2007 8-26

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Modeling Unique Roles

= First, name the entire group
\ Bean.set e
cKeepittooneword | e

Project

Classpath
bean-set ProjDescription

= |dentify the one-time roles

Logger
= Project (Authorization Beans)
= Classpath file (.classpath B
p (p) bean In?zrnface

= Project description (.project)
= Logger (org.secure.log.Logger)

» Create nested sub-groups for repeating roles
» Bean contains Interface and Bean roles

27

(el

© Copyright IBM Corp. 2007 8-27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Modeling Unique Roles

» Nested groups become types
« Implemented as XML elements | 72

= Roles become templates Project

Classpath
bean-set ProjDescription

Logger

= Transform creates files
= Using the templates bean iatoce
= Driven by model types

<root >
<bean-set >
<bean />

</bean-set >

<lroot>

© Copyright IBM Corp. 2007 8-28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Exemplar Analysis

» Model types drive the creation of artifacts

» But they lack the information required to generate
content

» Need to add attributes to model types
» Naming

» Language tokens
— Class, variable, method names

» Distinguish between input and derived

» Names of Eclipse artifacts are usually derived
— Naming conventions

» Input attributes are usually simple and atomic

29

(el

© Copyright IBM Corp. 2007 8-29

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 8 - Exemplar Analysis

Exemplar Authoring

» Use Rational tooling

& authorization.bean. transform &7
Schema
Exemplar

Assodiate the following exemplar artifacts with actions and model types.
= g Authorization Beans
®-= bin
-6 sre
& dasspath
& Project

Overview | Schema

» To help with Exemplar Analysis
» To author the JET transform

Transformation Input Schema and Output Actio | 1% 4=

Define the transformation input schema and output actions.

= [ot ~
=1 [€] beanSet po N
basePackage
name Update Project
@] beanDrrectory RunTransformation ¥
@) beanPackage
@ logDirectory Edit Exemplar Text...
@ logPackage
@l i
é Ernjec iame —
=-[¢] bean
Move »

@ name
@ implementationiy
@ interfaceName
=-[&] property
name
type

ocleanGetterName

Show Properties View

|2 Create File: IPassward java

[Create File: Passwordimpl.java
=% Create Project: Authorization Beans
-2 Create Fie: .dasspath
@ f Create Fie: .project

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Demonstration: Authoring a Transformation

» The instructor will now show you how to:
» Author a Transformation
» Perform Exemplar Analysis
» Run the Transformation

The instructor will show you how to author atransformation.

© Copyright IBM Corp. 2007 8-31

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Lab 4.1: Exemplar Authoring

= Given:
» Authorization Bean exemplar
= Complete the following tasks:
» Author a transform for the exemplar

Complete Lab 4.1 in the student workbook.

© Copyright IBM Corp. 2007 8-32
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Lab 4.2: Exemplar Authoring

= Given:

» Update Site and Feature Projects Exemplar
= Complete the following tasks:

» Author a transform for the exemplar

Complete Lab 4.2 in the student workbook.

© Copyright IBM Corp. 2007 8-33
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Lab 5: Console Transform

= Given:
» Exemplar
= Complete the following tasks:
» Author a transform for the exemplar

Complete Lab 5 in the student workbook.

© Copyright IBM Corp. 2007 8-34
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Review

»\Why does the root node in the model never
have attributes and actions?

»\What is the purpose of the second-level node
in the model?

»\What are the three kinds of Eclipse resources

© Copyright IBM Corp. 2007 8-35

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

Further Information
=\Web resources

Web Resour ces

« Pattern Solutions: Use patterns to drive productivity in software design and development:
http://www-128.ibm.com/devel operworks/rational/products/patternsol utions/

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 9: Introduction to EMF

Bl v iEa
‘Rational. soffwara

© 2006 IBM Corporation

Contents
Objectives 9-2
What is EMF? 9-3
Labs 9-13
Further Information 9-15
© Copyright IBM Corp. 2007 9-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Introduction to EMF

» Objectives:
» Describe EMF (Eclipse Modeling Framework)

» Understand how you can use EMF along with
JET2

» Understand how to create a simple data editor
using EMF

© Copyright IBM Corp. 2007 9-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

What is EMF

» EMF = Eclipse Modeling Framework

= Eclipse standard mechanism to manage and
store structured data

» Eclipse-based products and plug-ins need to
manage structured data

= Lets you define a data structure (model),
generate the runtime code, use the runtime
code, and map to persist data stores (like XML)

= For example, use EMF to create a simple API
for an XML file

= EMF designer also includes the ability to create
a simple editor automatically

In other words, EMF let’ s you define your Eclipse data structures (models), generate the
runtime code, use the runtime code, and map to persistence data stores, (like XML).

Y ou can use the EMF capahilities to create custom XML file editors. The EMF designer
even includes the ability to create a simple editor for XML (or EMF) files.

© Copyright IBM Corp. 2007 9-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Importance of EMF

» Standard data definition and management
framework

» Used by most non-trivial extensions to Eclipse

» Other technologies and frameworks (such as
JET2, UML2, and GMF) take EMF and extend
it

814
il
Il

© Copyright IBM Corp. 2007 9-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Key capabilities
» Can define (model) data structures

» Can generate runtime data classes

» Includes runtime framework to support the data
classes

» Can map runtime data classes to persistent
storage(like XML)
» Lets you create XML schema-specific API

= Unifies UML models, Java, and XML

» Start with a model of the data, annotated Java
code, or XML structure, and generate the other two

» The three forms become interchangeable

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

EMF can enhance JET
= Remember that JET transformations take XML
(or EMF) files as input

»You can use EMF-based API to manipulate
JET input files

» For example, create a custom wizard that uses the
EMF API

»You can use EMF-based editors to manipulate
JET input files

Wizard EMF Based

o.2| | AP \
JET

XML Transformation

. * Code
File
EMF Based /

Editor

6

(el

Y ou can use EMF to provide different ways to create and maintain the input files for JET
transformations, such as an EMF-based editor.

© Copyright IBM Corp. 2007 9-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

EMF used in UML-to-code transformations

» JET2 generates an input.ecore model
representing the input model

= In another module, you will use this EMF model
to map between a UML front end and JET2

Model to Model JET

Transformation Transformation
UML [* »{ EMF Based XML * Code
API File

(el

© Copyright IBM Corp. 2007 9-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

EMF Files

= ECore
» Contains the data Schema

» Even if you import the definition from another
source, like XML Schema, EMF stores it in ECore

» ECore files are used at Design Time and for Code
Generation

» ECore files are not used at run time
= Generated Java files used at run time

» GenModel
» Augments an ECore file with code generation
settings
4 Maintains a link back to the corresponding ECore
ile

8

» Used at Design Time and for Code Generation

u=

ECore = schema of the data model
GenModel = code generation options

© Copyright IBM Corp. 2007 9-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Creating EMF definition

= Can be imported
» Annotated Java
» IBM® Rational Rose®

» Rational Software Architect or Rational Software
Modeler model

» Generic UML2 model
» XML Schema
» Can be generated from scratch
» Create a new ECore file and populate it

(el

© Copyright IBM Corp. 2007 9-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Contents of ECore Schema definition file

= Contains the data Schema as a model

= Note: All of the EMF data definition classes are
prefixed with E, like EClass for the class

= Contains il
4 sampleOperationt)
» EPackage B
> EClaSS B anotherclass
} EO pe ratIO n H sampleclass
= sampleaAttribute
} E R efe rence 3 sampleOperation
= Reference from one class sampleRsfererne
tO anOther 5 anotherclass
» EAttribute
> ...

!!

The examples on the right show the same example twice. Thetop right isthe ECorefilein
the ECore editor. The lower right isthe ECore file as a diagram.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Java Code Generation
» The Genmodel file is used to customize Java
Code Generation
» Very customizable

» Each EMF data class (EClass) maps to a Java
Interface and a Java implementation Class

» The EClass defines getters and setters for
attributes

» Example: aSampleClass.getName()

= |t also generates the Eclipse Plugin
configuration files

» The result is an easy-to-use API for the data
files

814
il
Il

© Copyright IBM Corp. 2007 9-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 9 - Introduction to EMF

Runtime editor

» The code generator includes the option to
generate a simple data schema-specific
runtime editor automatically

\[*] Resource Set

= 4 platform: resourcejconsole. bestiMy input
=< Document Roak
=4 <root Root
=4 Console My Console
= 4 Command echo
‘
4 frgargl

Selection | Parent | List | Tree | Table | Tree with Columns

Tasks | = Properties 52 Console =1 }:9
Property Walue
Hame: 1= argl
Type '= String

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Lab 6.1: Introducing EMF

= Given:
» The JET Console Transformation
= After completing this lab, you will be able to:
» Import an XML Schema Definition into EMF
» Generate EMF Framework-based code
» Create an EMF-based Editor which
acts as a front-end 2 T
to a JET transformation

© Copyright IBM Corp. 2007 9-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Lab 6.2: Optional EMF Lab

» This optional lab builds a simple EMF model
and an EMF editor by hand

= |t does not start with any existing data schema
= |t does not link into JET

© Copyright IBM Corp. 2007 9-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

Further Information
=\Web Resources

Web Resour ces
» www.eclipse.org/emf (Eclipse page for EMF)

« www.eclipse.org/lemft (EMFT isaset of technologies that extend the base EMF
framework.)

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 10: Introduction to Transformations

TR

Rational. software
© 2006 IBM Corporation
Contents
Objectives 10-2
Configuring and Running Transformations 10-7
Lab 7: Customize a Transformation 10-12
Creating a Model-to-Text Transformation 10-14
Lab 8: Create aModel to JET Transformation 10-38
Review 10-39
Further Information 10-40

© Copyright IBM Corp. 2007 10-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Introduction to Transformations

= Objectives:
» Describe the role of model transformation in the Model-
Driven Development approach to software development

» Connect a UML model to an EMFT JET based
transformation using Model Mapping

» Apply a transformation in Rational Software Architect

This module introduces model transformationsin Rational Software Architect. After briefly
introducing the role of transformations in Model-Driven Development, the modul e discusses
how to configure atransformation and then moves on to how to connect a UML model to an

EMFT JET based transformation using Model Mapping.

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Classic Model-Driven Development

Create the Use Case model

Trail of
traceability
relationships
left by patterns
and
transformations

Create the analysis model

Create the design model

Complete the
implementation using
UML visualization

© Copyright IBM Corp. 2007

10-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Transformations

» Transformations create elements in a
target model (domain) based on %—O
elements from a source model]

= Often, the source domain is more
abstract than the target domain

» Examples: { /O
» Based on a use-case model, create an K Q
analysis model containing analysis

classes, sequence diagrams, and so on,
that realize the use cases following
company standards

» Based on the analysis model, create a }
design model(containing the appropriate
design classes) that incorporates
elements of the company’s security and -
persistence frameworks, and that follows %
the company standards

» Starting with a UML model, apply

Rational Software Architect’s standard
“UML to EJB” transformation to create
EJB code elements Transformations

;.
Jln]]
KA
Iy,
-:i|'"
n

© Copyright IBM Corp. 2007 10-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Model Transformation Uses

» There is flexibility in choosing transformation sources and
targets:

» Transform a model to a model of the same type
» Transform a model across levels of abstraction
» Transform one type of model to another

» Extend another transformation

Transformation
Definition

—~
= 4
~
> v
, o
e >
- >

Model Transformation Tool Model

5

The following transformations are possible:

» Across models of the sametype: When adding levels of refinement, you may

transform from a PSM to another PSM. More details are added, but the type of model
remains the same.

» Acrosslevels of abstraction: Move from aPIM model to a PSM model asyou add in
details about the platform and get closer to the implementation.

e From onetype of model to another: With transformations you can transform UML to
code. Thisisthe most common transformation available in Rational Software Architect.

» Extend another transformation: In Rational Software Architect transformations can
be built on top of existing transformations.

© Copyright IBM Corp. 2007 10-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Where Are We?

» Configuring and Running Transformations
» Creating a Model to Text Transformation

®
Jln]]

This section introduces the role of transformations in model development with Rational
Software Architect.

© Copyright IBM Corp. 2007 10-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Applying a Transformation

» Create a new instance of the transformation
» Set up a mapping model (optional)

= Choose an appropriate project target

» Create source to target relationships

O f— @g

Transformation Profile

#} Transformation N
N

Iineségr: —— < §
ode ‘ ® A ,\\q ﬁ Model

< < L
“ ™ % (L)

o W

Markup |- Transformation
Configuration Mapping

Model File Model
(Optional)

To apply atransformation, you must configure it by specifying properties. Transformation
configurations define how a specific transformation will be applied. Y ou can define multiple
transformation configurations for the same transformation. The model to be transformed can
include markup, such as keyword applications (often from UML patterns applied to the
model) that get used in the transformation. The transformation can apply stereotypes from
any profiles created for the more platform-specific target model.

Asan optional step you can also use a mapping model. Mapping models describe how the
transformed elements will be created in your target; what is going to be the the name of the
created artifact going to be going to be, under which package will they reside, and so on.
The last step is applying the transformation configuration to generate the transform elements
in the target you specified.

© Copyright IBM Corp. 2007 10-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Creating a Transformation Configuration

* You can Cre.ate multlple . ' New Transformation Configuration
transformation configurations

Name and Transformation

» Configurations allow all =

N Specify the file and transformation information. E,
transformations to be rerun many =l
times without having to add or modify |, .. <. confguratin

settings each time. '

Forward transformation:

L] A transformatlon Conflguratlon Generalize_Classes Transform (generalize_classes.Generalize_ClassesTransformatio
aSSOCIateS a tranSfOFmathn Wlth a. #- (= Data Model Transformations

. H == Generalize_Classes
4 Conf|gurat|0n name [E; Generalize_Classes Transform
) Transforma“on source #-[= IBM Rational Transformations
. #-[= OperationMapping
} Tl’anSfOI’matIOI’] tal‘get - (= Utilities

» Properties

» Transformation instances
»fAl\ppear in the Project Explorer as .tc

1es Configuration file destination:

» Are executed using the pop-up menu | /rersemetenTes L]
of the .tc file

» .tc files can be shared via a CM
system

Next >] [Finish 1 [Cancel

Before you can apply atransformation to a source model, you must first create a
transformation configuration. A transformation configuration is an instance of a
transformation that contains the information that the transformation uses to generate the

output that you expect, such as the specific transformation source and target, and its
properties.

The Configure Transformations dialog shows what transformations are installed and which

configurations are based on them, with the instance shown under the transformation. Clicking

the transformation or instance in the left pane brings up the properties of the item in the right
side of the dialog.

© Copyright IBM Corp. 2007 10-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Transformation Configuration Execution and Editing

L5 Project Explorer &2 = O/ sourceModel::Main %2 Target Model.emx [SourceModelTgtMod... [SecondConfigurati... &2 - "2 = O

o <
s Selected source: Selected target:
= = TransformationTest

58 Dinarams = = TransformationTest = = TransformationTest
=
g Mntgle\s =-(2 Models = (2 Models
¥ Sﬂ S dConfiquration.t #-E2 SourceMedelTgtModel -2 SourceModelTgtModel
E% Secon .on iquration.tc % £ SourceModel +-2 SourceModel
E% FirstConfiguration.tc
=l .project =l .project
E¥ FirstConfiguration.tc E% FirstConfiguration.tc

% secondConfiguration.tc % secondConfiguration.tc

‘24 SourceModel.emx 24 SourceModel.emx
% Target Model.emx % Target Model.emx

<

Main E% Source and Target| Properties E3 Auxiliary Sources and Targets| Common

» Transformation instances
» Appear in the Project Explorer as .tc files
» Are executed using the context menu of the .tc file

» The tabbed Transformations Configuration editor:
» Organizes information in the configuration
» Reports problems with the configuration in the Problems view

9

Before you can apply atransformation to a source model, you must first create a
transformation configuration. A transformation configuration is an instance of a
transformation that contains the information that the transformation uses to generate the
output that you expect, such as the specific transformation source and target, and its
properties.

The Configure Transformations dialog shows what transformations are installed and which
configurations are based on them, with the instance shown under the transformation. Clicking

the transformation or instance in the left pane brings up the properties of the item in the right
side of the dialog.

© Copyright IBM Corp. 2007 10-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Using a Mapping Model

A mapping model allows you to rename elements and rearrange
the structure of transformed elements in the target model.

» Generate the mapping model from the Transform Configuration wizard,
or the multi-page editor.

» Specify the file property of the artifacts.
» Set the transform to use the mapping model.

N
\ Model
. %N\ [> o
- 9 N N
@
Model
[>| Mode
Transformation Mapping
Configuration Models

,4
5
Jln]]

A transformation assigns default file namesto the files and folders that it generates based on
the logical element names and structure of the source model. Y ou can use a mapping model
to specify an aternate file name for files and folders that a transformation generates. Y ou can
also use a mapping model to specify the file structure of files that a transformation generates.

A mapping model contains an artifact for each element selected in the source model. Each
artifact refers to, and has the same name as, the corresponding source model element. Y ou
can specify an alternate file name by changing the file name property of an artifact. The next
time you run atransformation, you can select the mapping model that you edited. The
transformation assigns the file name (that you specified in the file name property of each
artifact) to the corresponding target element.

Y ou must create a mapping model in the same workspace and project as the selected model
elements.

© Copyright IBM Corp. 2007 10- 10
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Uses for Mapping Models

Use a mapping model in cases where:

> YOlé| nleed to create different file names and structures in the target
mode

» It is impossible or impractical to change the names of elements in
the source model

| Project Explorer &2 = G ¥ = O| E Froperties &2
=
t T; ;i;;'::“ze] General <Artifact> MyMapping::Thing1
=8 my.proj Stereotypes Hame: Thingt
#- 1] otherStuff.java Documentation
File Mame: my.proj.stuff
#- 4] stuff.java Constraints
ey . . Visibility:
. bd?pEJrZEUSny;tae;:i:ngary [jdk] Advanced isibility
Abstract:]
== SimpleModel
®-(2 Diagrams Leaf: O
o (2 Models
=-E2 MyMapping
B2 (UMLPrimitiveTypes)
== Thingl
s (Thing1)
#-[#] Thing2
=52 Simple Model
24 (UMLPrimitiveTypes)
|5 Main
=5 Thingl
=& Thing2

@public Oprivate O Protected O

11

In many cases, the structure of the model produced by the transformation will have to be
different from the source model. When you need to seed the code based on a design model,
the names and structure of design packages might not make sense in the target coding
environment, and they might need to be mapped to a different structure of physical packages.
A mapping model can assist you in handling this transition, so that you do not have to make
any temporary changes to the design model just to perform the transformation.

In some cases, it is not desirable just to change the structure of the source model, such as
when you might need to transform the same model to many different transformation targets,

with different structures. Developing sets of mapping models for different target typesisthe
best solution for these cases.

© Copyright IBM Corp. 2007 10-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Lab 7: Customize a Transformation

Complete the following tasks:
» Create the Workspace
» Create the Source and Target Projects
» Populate the Source Project
» Apply a UML-to-Java Transformation
» Use a Mapping Model

12 = —

Complete Lab 7 in the student workbook.

© Copyright IBM Corp. 2007 10-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Where Are We?

= Configuring and Running Transformations
= Creating a Model to Text Transformation

13

This section introduces the role of transformations in connecting a UML model to an EMFT
JET based transformation using Model Mapping within Rational Software Architect.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 10 - Intro to Transformations

10- 13

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Ways to Drive Architecture: Classic MDD

Create the use-case model

Trail of
traceability
relationships
left by patterns
and
transformations

Create the analysis model

Create the design model

Complete the
implementation using
UML visualization

© Copyright IBM Corp. 2007 10- 14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

MDD Using Rational Software Architect with EMFT JET

Create the Use Case model

Create the model at

il Of higher level of abstraction

raceability

relationships

left by patterns
and

transformations

Reverse
engineering
also supported
in Rational
Software
Architect v7

Complete the
implementation using
UML visualization

15

This represents one of various approaches customers have taken to reduce the amount of
modeling (thus limiting variability) while infusing consistent architecture in the form of a
pattern based transformation.

© Copyright IBM Corp. 2007 10- 15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Creating a Complete Solution

A

1. Jet Authoring

2. Model-to-model authoring

16

Using Rational Software Architect transformations, you can create EMFT JET input from
UML models.

© Copyright IBM Corp. 2007 10- 16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Steps to Create Model to JET Transform

1. Determine what (and how) UML elements will map to the input
model of the JET transformation

2.Create an EMF Project from the ECore model of the JET
Transformation

3. Generate code for the EMF model

4. Create a mapping transformation from the UML ECore model
to the JET transformation ECore model

5. Generate the mapping transformation code
6.Add the JETRule code to the mapping transformation
7.Test and run the mapping transformation

17

© Copyright IBM Corp. 2007 10- 17
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Mapping Models Contain Mapping Declarations

Package2EPackage
=I £+ Package «EPackage» > =| [E» EPackage

Class2EClass
=l ¥ Class «EClass» > = [EClass

= Mapping models are ECore models

= Mapping models contain references to the ECore models that
are being mapped. For example:

» UML.ecore — input model
» Ecore.ecore — output model (input into JET2)

= Mapping models are persisted like other ECore Models; they
are serialized as XML files

18

© Copyright IBM Corp. 2007 10- 18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Mapping Model in XML Editor

. 0" encoding="UILF-8" 7>

"/plugin/org.eclipse.uml?.uml/model/UML. ecore™ wvar="src"/>

type ("Model') "™ war
"type ("Root ')} " wva

="Model src
="Root_tgt",

path="packagedElement" wvar="packagedElement src"/>
patk
ref="map:ConsoleClassToConsole™/ >

="console™ 'Ja:="con5c|le_t,gt, L s 5

gDeclarati name="ConsoleClassToConsole™:>

"type ('Class')"™ 'Ja‘:="Cla55_5:rc"_.">
h="type ('Con=sole'}™ '-Ja:="Con.3c|le_t,gt, L

path="name" wvar="name src"/>

path="name" wvar="name tgt"/>

"package/name" var="name_ src"/>
n="package" wvar="package tgt"/>

"ownedCperation™ '-Ja:="c|wned0peration_5rc”,-">
"command" var="command tgt"/>
<zubmap ref="map:OperationToCommand™/>

</mappi
< /mapp tion>
<mappingDeclaration name="OperationToCommand™:>

19

1s="http://www.ibm.com/2006/ccl/Mapping™ =zmlns:map="http://lab.console.trg

"tgt />

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10- 19

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Mapping Declarations

Input Object Output Object
Package2EPackage
= [Package «EPackages > = [L» EPackage
eAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] name EString
name String nsURI EString
visibility VisibilityKind nsPrefix EString
dientDependency Dependency [] eClassifiers EClassifier []
nameExpression StringExpression eSubpackages EPackage []
elementImport ElementImport []
packageImport PackageImport []
°'*"”_Edi“'e — f°“5t|rj‘“;“ t » Mapping Declarations specify how to
owningTemplateParameter TemplateParameter .
. create or update an output object
emplateParameter TemplateParameter . . N
templateBinding TemplateBinding [] g|Ven an Input ObJeCt
o'r\'l:{edTemplateSignature Ten:{plateSignature n Mapp|ng Declarations are named,
M P M
pactagelverge >cagetierce L] for example, Package2EPackage
packagedElement PackageableElement []
profileApplication ProfileApplication []
packageMame EString
nsPrefix EString
nsURI EString
basePackage EString
prefix EString
20
© Copyright IBM Corp. 2007 10- 20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Move Mapping

Input Object

Output Object

=| [Package «EPackages

= [L» EPackage

eAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] name EString
name Strirn
g nsURI EString

visibility VisibilityKind pref =5

nsPrefix ing
dientDependency Dependency [1 eClassifiers EClassifier []
nameExpression StringExpression yr—— o 0

eSubpackages ackage
elementImport ElementImport []
packageImport PackageImport []
ownedRule Constraint []
owningTemplateParameter TemplateParameter
templateParameter TemplateParameter .

|

=) The transformation source code

ownedTemplateSignature
packageMerge
packagedElement
profileApplication

TemplateSignature
PackageMerge []
PackageableElement []
ProfileApplication []

generated for a Move
implements a Rule that copies
the value of one input attribute

paciagetiane Estring to one output attribute
nsPrefix EString
nsURI EString
bazePackage EString
prefix EString

21

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10-21

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Submap Mappings

Input Object Output Object
= [Package «EPackage: =| [C» EPackage

eAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] name EString
name String nsURI EString
wisibility VisibilityKind nsPrefix EString
dientDependency Dependency [] eClassifiers EClassifier []
nameExpression StringExpression esubpackages EPackage []
elementImport ElementImport []
packagelmport PackageImport []
ownedRule Constraint [] H

_ » The transformation source
owningTemplateParameter TemplateParameter
templateParameter TemplateParameter COd e g e n e ra.ted fO r S u b m ap
templateBinding TemplateBinding [] |mp|ements a Rule tha‘t Ca”s
ownedTemplateSignature TemplateSignature th -
packageMerge PackageMerge [] ano er mapplng
paclf(i;agedflement Paclfci;ageatlnleEleme[n]t [1 3 Can be in a dif—ferent mapplng
profileApplication ProfileApplication
packageMame EString mOdeI
nsPrefix EString
nsURI EString
basePackage EString
prefix EString

22
© Copyright IBM Corp. 2007 10- 22

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Submap Mappings

Input Object Qutput Object

=| [Package «EPackage* =l [E» EPackage
efAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] name EString
name String nsURI EString
nePrefix EString
actual packagedElement PackageableElement [] eClassifiers EClassifier [] aCtual

rofileApplication ProfileApplication
e il s t eSubpackages EPackage []
packageName EString

ePrefix = formal must be directly

nsURI EString .
basePackage “Sting assignable to actual

prefix EString

eClassifiers[o] =
map((Class)packagedElement][i])

actual must be castable v
to formal . .
Referenced Mapping Declaration

formal formal
=l [¥ Class «EClass» = [EClass
efAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] Move 1 name EString
name String -
instanceClassMame EString
visibility Visibilitykind
abstract EBoolean
23
© Copyright IBM Corp. 2007 10- 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Custom Mappings

Input Object Output Object
=) [¥] Package «EPackage» =) [[» EPackage
eAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] name EString
pame Hi nsURI Estring
visibility Visibilitykind -
dientDependency Dependency [] nsTreﬁ; ES:nngﬁ
nameExpression StringExpression EEESSeS EClassifier []
elementImport ElementImport [] esubpackages EPackage []
packageImport PackageImport []
ownedRule Constraint []
owningTemplateParameter TemplateParameter - The tranSfOI‘matl on source COde
templateParameter TemplateParameter t d f C t . I t
templateBinding TemplateBinding [] genera e or ustom Imp ements a
ownedTemplateSignature TemplateSignature RUIe that Wraps the CUStom_‘]ava COde
packageMerge PackageMerge [] pI‘OVIded by the '[I‘anSfOI’matlon authOI'
packagedElement PackageableElement []
profileApplication ProfileApplication []
packageMamme EString
nsPrefix EString
nslURI EString
basePackage EString
prefix EString
24
© Copyright IBM Corp. 2007 10- 24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Custom Mapping Example

Input Object (UML)

=)-{ 2= Models
=-E21 Example
) F1 [eePackage Package 1
&4, (UMLPrimitiveTypes)

Input Attribute

] Properties 52

Apply Stereotypes...

Stereotype Properties:

Property

= ePackage
basePackage
nsPrefix
nsURI
packagehame
prefix

Value

m2mExample

General [<Package> «ePackage» Example::Package]l m
Profiles Keywards:

Stereotypes

Documentation Applied Stereotypes:

Constraints Stereotype | Profile | Required

Advanced ePackage Ecore False

25

Output Object (Ecore)

= #] platform: fresource Model to Model Example Example. ecore

= # Example

+- 8 Packagel
Output Attribute

I Properties &3

Property Value
EFactory Instance I Packagei
Name 1= Packagel

C UStom Ns Prefix =

Ns URID 1= m2mExample

This Custom mapping checks the
input object’s Stereotype attribute
nsURI to see if it's been specified and
if available assigns that value to the
NsURI attribute of the output object;
and if not , the mapping
availableuses availableuses the value
of the name attribute of the input
object for the assignment

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 10 - Intro to Transformations

10- 25

Pattern Implementation Workshop with IBM Rational Software Architect

Module 10 - Intro to Transformations

New Mapping Project Wizard

» File > New > Project

= File > New > Other

J New Project

JNew

Select a wizard
input and output models

Wizards:
type filter text

E- (= Jython

E- (= Modeling

& (& Plug-in Development

& (= Pluglets

B s

= (&= Transformation Autharing
e EMFT JET Project with Exemplar Authoring
%l EMFT JET Transformation Project
B, Generic Transformation Project

51, Model to Model Mapping Transformation Project!
- (= Web
- (= Examples

[(Ishow all Wizards.

Create a new plug-in project with a transformation by specifying mappings between

Cancel

Select a wizard
input and output models

Wizards:
type filter text

== Transformation Authoring

% EMFT JET Transformation Project
[l Generic Transformation Project

Create a new plug-in project with a transformation by specifying mappings between

F EMFT JET Project with Exemplar Authoring

£, Model to Model Mapping Transformation Project!

ﬁ Transformation Mapping
=)= Transformations
E% Transformation Configuration
(= Web
(= Web Services
- XML
® [Examples

[show All wizards.

@

enabled

26

Extensibility must be installed, and Modeling and XML Development

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10- 26

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

New Mapping Project Wizard

! New Plug-in Project 1
o) New Plug-in Project 1
) New Plug-in Project

Plug-in Project

Create a new plug-n project Plug-in Content
(3) Project name contained characters which | Templates |
ted to undh 3
conver HNEErSEOres Select one of the available templates to generate a fully-functioning plug-in. !
Project name: | Model to Model Transformg
Plug-in Properties
Use default location Plug-n I0: Model_to_Model_Transf| Create a plug-in using one of the templates
Plug-in Version: | 1.0.0 Available Templates:
Project Settings Plug-in Name: Model_to_Model_Transf 4 Custom plug-in wizard This wizard creates a standard plug-n
Create a Java project Plug-in Provider: [Figure defintions converter directory structure nith the folowing:
P ® Transfi tion Provider. A
Source folder: | src Classpath: :é :E"D' \':IID_;? e h;::ﬁ:romr;:n 'Sr';vi;::’is ;’e mechanism
Qutput folder: [bin L 1gn with & ineremental project bulder used to define new transformations.
= Plug-in Options = P:”g*” ""f: a m”:_] “page editor Transformation Mapping.
Target Flatform Generate an activator, & Java class tha “'g;P lug-in with an editor Transformations can be authored by
i q . 5 Plug-n with a popup menu specifying mappings between features of
is plug-in \.s Iargebe. o run with: Activator: | model_to_model_transfor 45 Plug-n with a property page input and output models.
() Edipse version: 32 ["] This plug-in will make contributions to thj| | 52 Plug-in with a sub-slement counter Extensions Used
() an O5Gi framewark: '«l‘f Flug-in with a view * com.ibm.xtools. transform.core, ransformati

Rich Client Application
Would you like to create a rich client applic:

@Plugﬁn with Patterns

'wJ‘f Plug-in with sample help content

Bl Plug-in with Transformation

15l Plug-n with Transformation Mapping |

< Back

@ < Back|

@ < Back ” Next > H Finish H Cancel

27

© Copyright IBM Corp. 2007 10 - 27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

New Mapping Project Wizard

&) New Transformation Authoring Project Using Transformation Mapping .
wew Transformation vapping = = Default values provided
Create a new model-to-model transformation with the Mapping Editor. 2 } Map Name
Map name: Model_to_Maodel_Transformations_Mapping_Example } PaCkage Name
Package name: | model_to_model_transformations_mapping_example } Verslons
Wersion: 1.0.0
Input e = Input and Output Models
platform: fpluginforg. edipse.uml2.uml/model/UML. ecore .
platform: fresource/org.edipse.uml2.uml.resources profies/Ecare. profile.uml } Metamodels for models that Wl” be
used by generated transformation as
sources or targets
cuiputmases: » ECore Metamodels
platform: fpluginforg. edipse.emf.ecore fmodel Ecore.ecore
= .ecore
» UML Profiles
= .epx
= uml (profiles only)

28

© Copyright IBM Corp. 2007 10- 28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

New Map Wizard

= Add another mapping file to an existing mapping project
= File > New > Other
;)New

Select a wizard

Bl

J New Map Wizard

E

Create a new transformation by specifying mappings between input and cutput || Create a new map
models

Wizards:

type filter text

Project: Model to Model Transformations Mapping Example [
=)-(Z= Transformation Authering

. Folder: model
& EMFT JET Project with Exemplar Authoring
% EMFT JET Transformation Project

Map Name: |
EE Generic Transformation Project Wersion: 100
5 Model to Model Mapping Transformation Project Input Models:
Transformation Mapping

=l (& Transformations
E% Transformation Configuration

Add Model...
(= Web
(= Web Services
= XML Output Models:
+ [Examples

[show All wizards.

@

29

© Copyright IBM Corp. 2007

10-29
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 10 - Intro to Transformations

Model to Model Transformation Mapping Editor

Wodeling - Model_1n_Uodel _Transiormations_Wapping [xample mugpiag - Rationad Sofrware Architect
0 hwgen Cewd o Den bodeeg Run nde e

Qe e

B Ly e—
[rpeyeap

T

Mapping Editor Diagram View

Mapping Editor
Start Here —— gce=POP-UP Ment
Generated Project .
and Transformation ——
Source Code

»
Eeature Filters

% Generate transformation source code
=] Show in Properties
m— et royprrpar T ——
Mapping Editor 2
Outline View

i - PTObDIEMS View

30

© Copyright IBM Corp. 2007

10- 30
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 10 - Intro to Transformations

Mapping Editor: Diagram View

+Mapping Root

Current Mapping -
Declaration

visibility
dientDependency
nameExpression
Start Here elementimpaort
packageImpart
ownedRule
owningTemplateParameter
templateParameter
templateBinding
ownedTemplateSignature
packageMerge
packagedElement
profieApplication
packageMame

nsPrefix

nsURIT

basePackage

prefix

4+ Model_to_Model_Transformations_Mapping_Example

Add Input Object

Mapping Toolbar wn s Mapping_Example
~vPackage2EPackage &

*Input Object

EAnnotation []
Comment []

String

VisibilityKind
Dependency []
StringExpression
ElementImport []
Packagelmport []
Constraint []
TemplateParameter
TemplateParameter
TemplateBinding []
TemplateSignature
PackageMerge []
PackageableElement []
ProfileApplication []
EString

EString

EString

EString

EString

31

-51 Model_to_Model_Transformations_Mapping_Example.mapping 2%

Add Output Object

Output Object

= [E» EPackage
eAnnotations EAnnotation []
| name EString
I nsURI EString
nsPrefix EString
eClassifiers EClassifier []

* eSubpackages

Current Mapping

EPackage []

Mappings can be created via
drag and drop from input
to output or by doing
multi-select and then
toolbar button, context
menu, or shortcut key

© Copyright IBM Corp. 2007

10-31

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 10 - Intro to Transformations

[-.‘Mim « Model_to_Model_Transformations_Mapping_Fxample.mapping - Rational Software Architect '__15‘
Fle Edt Nevigate Search Froject Dsts Modelng Run Window Help . .
WG| O P @ [ey R e Mapping declarations and
A e e externally coded mapping
i _ ' refinements in other projects
e — can be referenced
::’:u Fle: modelModel_to Model Transformations Mapong Exampie. mapong
Trput Fiter Ma: ClassiECinss -
T [Modeling - Model_to_ikadel_Transformations_Mapping Example.mapping - Rational Software Architect |]|
Ble Edt Mevigswe Search Prosmct Oufs Modeng Bun Window Heb
< e = O Q- O~ § i L B | B Mecteleg; |8 0
- o Web [Resource
[l propernes =1 i
Desroten Transformation - Submap
f’:w %] Custom Extractor lo.mapping - Rational Softwars Architect :E
::"‘h:l“;! Ir'm«;:\. m_w;_:\em_emfﬂw:«'ﬁ_m_ﬁ_m transforms AdeinssesFrombiestedncinges | | Browse... ¥ e 1| 5. Modelng | @) 2ava
Custom Extractor @ Web L[Rescurce
< >
Code assist with template T =
support is available to aid in Do
authoring in-line refinements
32

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10-32

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Mapping Editor: Outline View

5= outiine &2 =0

= —5‘ Package 2EPackage
=1L Input Ohjects
[Package «EPackages
=% Output Objects
[[» EPackage
=@) Transformations < Undo Change code

I Move r\‘"> Redo Delete transformation

" Submap Revert

& Custom

= submap ¥ Delete

=1
5 Class2EClass Sort Transforms 4

Execution Order 4
Feature Filters v Moveup

Move down

-

=] show in Properties

= Commands for setting the order in which the generated
transformations will be executed at runtime can be set
from the pop-up menu in the Outline view

» Mapping declarations, as well as individual mappings within
mapping declarations, can be ordered

33

© Copyright IBM Corp. 2007 10- 33

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Mapping Editor: Problems View

[Vit e el _Ts st W [mple e - Fatbonal Scltars At = < |
-9 & a- [Woeing - Vel _vo Wdel ¥ vanafarmations Tappira Example = |
= = NS G el ol Prwatemars | Fle [t Newgaste Sesrch Project Data Modeing Run Windaw belp
C @ - L [Meteing |8 sava
il DA A i@ 2 We | Resaurce

Reporting missing source
code for in-line refinement
Line number refers to
i e . @ITOF lOCALION N tEXT
view of mapping file

34

© Copyright IBM Corp. 2007 10- 34
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Generating Transformation Source Code

The command to generate transformation
source code is available on Explorer’s pop-up
menu for mapping file

*Mapping Root

Model_to_Model_Transformations_Mapping_Example

b G Tiwsbematon Cade

:.-_,_: e : »Package2EPackage 4] Undo Remove condition
You can also generate transformation 5 reate M
source code from the pop-up menu for
mapplng root N Mapplng Edltor Sort Transforms 3

Execution Order 4

» Command is disabled if changes to the
mapping model have not yet been saved

Feature Filters 4

5% Generate transformation source code

= Show in Properties

35

© Copyright IBM Corp. 2007 10- 35
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Generated Transformation Source Code (cont.)

L™ Project Explorer &3

= :7J MtM Transformations Mapping Example

. == sre
| Transformat'on =58 Ed:I_‘;D_[noc!el_transfnrmahons_mapplng_example
. #-4J] Activator.java
infrastructure

+ Model_to_Model_Transformations_Mapping_ExampleTransformationGULjava
+ Model_to_Madel_Transformations_Mapping_ExampleTransformationProvider java

+ Model_to_Madel_Transformations_Mapping_ExampleTransformationValidator.java
=3 model_to_model_transformations_mapping_example.|10n

+ Model_to_Model_Transformations_Mapping_ExampleMessages. java

» Transform class
generated for each
mapping
declaration

Model_to_Model_Transformations_Mapping_ExampleMessages. properties

= 3} model_to_model_transformations_mapping_example. transforms

+ AddClassesFromNestedPackages.java
_m Class2EClassTransform.java
MainTransform.java
m Package 2EPackageTransform.java
B JRE System Library [dk]
B Plug-in Dependendes
(= META-INF
= model

. . 2 Model_to_Model|_Transformations_Mapping_Example, mapping
» Plug-in and project

X| .classpath
. K| project
| nfra.StrU CtU re |mb build. properties
plugin. properties
4 plugin. xml

36

© Copyright IBM Corp. 2007

10- 36
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Typical Extension: Chain to JET Transformation

» Transformations can be chained together

= A model-to-model transformation can be chained to a JET model-to-text
transformation

» The intermediate model need not be persisted

/**

Creates a root transformation. You may add nore rules to the transformation here
<!-- begin-user-doc -->

<!-- end-user-doc -->

@aram transform The root transformation

* @enerated NOT

* % % *

*/
/ prot ect ed Root Transformati on creat eRoot Transformation(!lTransformati onDescriptor descriptor)

return new Root Transformati on(descriptor, new M nTransforn()) {
protected voi d addPost Processi ngRul es() {
h
}

add(new JETRul e(“MJet Transformation")); //$NON-NLS-1$
= Add post-processing rule to createRootTransformation method in
generated TransformationProvider class

» Override @generated tag
» Specify JET transformation

37

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 10 - Intro to Transformations

10- 37

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Lab 8: Create a Model to JET Transformation

= Given
» JET Transformation
» Code Snippets
» Test Model

= Complete the following tasks:
» Create a UML model-to-text transformation

38

Complete Lab 8 in the student workbook.

© Copyright IBM Corp. 2007 10- 38

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Review

» What is a transformation configuration?
» Describe potential uses for custom transformations.
= Describe possible uses for mapping models.

= How does JET2 work with Rational Software Architect
transformations?

= How do you select the right
transformation technology?

39

© Copyright IBM Corp. 2007 10- 39

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

Further Information

= Rational Software Architect Help
= \Web Resources
= | jterature

40

Rational Software Architect Help Topics
» |BM Rational Software Modeler AP
Web Resour ces
» Alan Brown, “An introduction to Model Driven Architecture Part |: MDA and Today's
Systems.” http://www-128.ibm.com/devel operworks/rational/library/3100.html

» Alan Brown, “An Introduction to Model-Driven Architecture Part |11: How MDA affects
the iterative development process’ http://www-

128.ibm.com/devel operworkg/rational/library/apr05/brown/
Literature

 Frankel, David S. Model-Driven Architecture: Applying MDA to Enterprise Computing.
Indianapolis, IN: Wiley, 2003.

© Copyright IBM Corp. 2007 10 - 40

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 11: Designing Reusable Assets

‘Rational. saftware

© 2006 IBM Corporation

Contents
Objectives 11-2
Model-Driven Development (MDD) 11-4
Summary 11-25
Review 11-26
© Copyright IBM Corp. 2007 11-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Designing Reusable Assets

= Objectives:

» Describe the role of assets in a Model-Driven Development
process

» Describe the component parts of a transformation-based
solution

» Describe the steps in designing an asset in Rational
Software Architect

N
Jln]]
1
|

© Copyright IBM Corp. 2007 11-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 11 - Designing Reusable Assets

Course Outline in the Context of MDD

What is the process for
figuring out what | need?

Y ou will seethis dide several times throughout the workshop. It will serve asavisua guide
to the skills that you are learning, and to how they fit into MDD Maodel Driven Devel opment.

© Copyright IBM Corp. 2007

11-3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Model-Driven Development (MDD)

Realm of
modeling
languages

«sc_module»
| producer |
start

ABSTRACTION

outl

SC_MODULE (producer)
{sc_inslave<int> inl;
int sum; //

void accumulate (){
sum += inl;

cout << “Sum_= “ <<
sum << endl;}

«sc_module»
| producer |
start

= MDD is an approach to software development in which the focus and
primary artifacts of development are models (as opposed to programs)

= MDD is based on two time-proven methods:

» Abstraction: Made possible by the use of a modeling language
» Automation: Made easy by the use of development tools

AUTOMATION

outl

SC_MODULE (producer)
{sc_inslave<int> inl;
int sum; //

void accumulate (){
sum += inl;

cout << “Sum = “ <<
sum << endl;}

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 11 - Designing Reusable Assets

11-4

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Assets in Model-Driven Development

» Rational Software Architect enables MDD by providing
modeling and automated model transformation
» UML models used to specify the solution

= Separate the key information from the details of the target environment
or platform

» UML Patterns and transformations handle the details of transforming
each input model into a target that is closer to the final artifacts

High Level Model

Design decisions
made using models.

Patterns automate the
transitions from models

to working solution. Code Artifacts

o
Jln]]

© Copyright IBM Corp. 2007 11-5
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

MDD Development Process

—— MDD Process

Framework Deveiopment Instead of capturing architectural
Sl R decisions in a document or Web
site and hoping that developers
apply them manually, capture them
| explicitly as assets and automate
.-—"| their application.
| Architectural Principles and Patterns I 7'

Develop modelling Impl nt patt:
(Cleate sample components) C conventions) (mplement patterms
Development

(Implement fransforms)

Model Application

Application Model

Apply
Transformations

Implementation Arifacts

®
Jln]]

There the two distinct activitiesin the MDD process:

» Expertise Capture and Automation: Build the MDD framework that partially
automates the development of software that follows a particular architectural style.

» Application Development: Apply your MDD framework to build software components,
applications, and solutions. These activities are performed by different groups of people
and require different skills. Y ou should use Rational Software Architect to build UML
profiles, patterns, and transformations.

People must create modeling conventions and devel op transformations to automate code
generation. The key dependencies between modeling conventions and transformation
development are:

» UML profiles and patterns must be available for application modeling. Sometimes, this
dependency is managed in an iterative manner.

 To generate implementation artifacts, transformations must be available. Often, the target
platform and the transformations are selected first. In others, this decision is deferred.

8.1.1 Framewor k development
MDD framework development is concerned with:
» Capturing expertise in the form of architectural principles and patterns
* Implementing sample components and defining the technical architecture

* Designing and implementing UML profiles and Rational Software Architect patterns and
transformations

8.1.2 Application development
» Usesan MDD framework to rapidly build well architected applications and components.
* Includes modeling the application using UML and applying transformations.
© Copyright IBM Corp. 2007 11-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Asset Design Process

» Transformations drive the process of creating assets
with Rational Software Architect extensibility artifacts

» Designing a transformation involves creating:

» Internal Model: An abstraction of the target domain
represented as UML

» Front-end Transformation: From representation to
abstraction

» Back-end Transformation: From abstraction to target
domain

=» These elements are invisible to the user

» The transformations are chained together, and the user
runs them with one gesture

\.
Jln]]
!l
[HIH
"Iillll
al
]

© Copyright IBM Corp. 2007 11-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 11 - Designing Reusable Assets
Activity Flow of a Typical Transformation

& User Visible Transformation

Ll Model
Front-end Transformation

Internal Model

Back-end Transformation
Target Dornain

Thetop-level activity represents the transformation as seen by the user.

© Copyright IBM Corp. 2007

11-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

The Process

© Copyright IBM Corp. 2007 11-9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

the author can write

= Goals:

Module 11 - Designing Reusable Assets
Create an Example of the Desired Output

» Include as much variability as can be imagined
= Suggestions:

. Create an example of the desired output
» Allow enough time for care to

be taken increating an
exemp|ar Build an abstraction of the exemplar
» The exemplar must work; you ma

include unit tests as part or the
exemplar.

» Expect to make changes to
the exemplar during

Build a back-end transformation
development

Determine how the user will view the internal model

Build a front-end transformation

Buld supporting solution elements

10

= A domain expert creates an exemplar, which represents the best solution

» Constrain the rest of your development to a known problem
transformation

» Provide a model of best practices output to drive creation of the back-end

Exemplar

Internal Model

User Representation

11-10

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Build an Abstraction of the Exemplar

* The exemplar author creates a model of the exemplar that describes its
variable aspects

= Goals

» Associate artifacts found in the exemplar (projects, folders, files, ...) with types,
properties, and so on in the model

» Identify groups of artifacts that fulfill the same role
» Build an instance of the model that is an equivalent description of the exemplar
= Suggestions

> Flndlng the rlght match Create an example of the desired output
between a UML type or property

and an exemplar concept can Build 2n abstraction of the exemplar
be difficult.

Exemplar

Internal Model
= If and when you find a
match, typically some

aspects of UML must be
ignored or augmented

Build a back-end transformation

Determine how the user will view the internal model User Representation

. Build a front-end transformation
= An internal model may
have Several equa”y valid Buld supporting solution elements
representations in UML

11

The Solution Author is the person who creates the transformation and all the other associated

bits. It isimportant to note that this person may be different from the Exemplar Creator, who
isthe expert in the transformation’ s output domain.

© Copyright IBM Corp. 2007

11-11
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Tool Tips

» Document the Internal Model (input.core) using UML class
diagramming concepts

» Represent found artifacts (things in the exemplar) as UML
Artifacts, potentially including properties on the UML Artifacts

» Represent the artifact types or roles as UML Classes with a
«template» keyword

» These roles represent transform processes that we will create

= Map artifacts to «template» Classes with Manifestations
» These mappings define the outputs from the transform processes

= Map «template» Classes to Internal Model types with
Dependencies

» These mappings define the inputs to the transform processes

12

© Copyright IBM Corp. 2007 11-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

«termnplate»
Ll factory interface
H Project «manifests «artifacts
LibraryFactory
1
stemplate»
I factory impl
#| .
*heanmaodel amanifests «artifact»
£ BeanModel LibraryFactoryImpl
nModel
1
«artifact»
Author
o h«tem|_:llatte:f «manifests
ean interface
* lbean
=] Bean
«artifact»
«templates AuthorImpl
I bean impl «manifests
13

To do an Exemplar Analysisusing a UML Model:

1. Represent files/folders/projects that must be generated as UML Artifacts.

2. Start building an Internal Modéel to represent an abstraction of these artifacts.
3.Bind artifacts model elements with a* manifestation”.

4.0nce dl of the artifacts are associated with a model type, revisit them. Often several
artifacts fulfill the same role. Create a Class stereotyped «template» to represent thisrole,
and move the manifestations to point to this «template». Create a dependency from the
new «template» to the original model type.

© Copyright IBM Corp. 2007 11-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 11 - Designing Reusable Assets

Build a Back-End Transformation

objects
» Goals:

workspace
= Suggestions:

» Internal Model could
be implemented as
bean-like Java classes,
EMF, or XML

» Templates could be
implemented with

14

= The solution author implements the internal model, and
builds templates that generate desired artifacts from its

» The back-end transformation traverses the Internal Model,
executing the templates and writing artifacts to the

Create an example of the desired output
Build an abstraction of the exemplar

Build a back-end transformation

Determine how the user will view the internal model

] Build a front-end transformation
Velocity or JET2
. . Buld supporting solution elements
» Available enabling tools
include JET2 and JMerge

Exemplar

Internal Model

User Representation

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior

11-14
written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Options for Deriving Values from the Internal Model

= Option 1: Do the calculation in the template itself
» Pro: simple

» Con: duplicate code, pollutes the template with calculation

= Option 2: Declare the derived methods in the Internal
Model

» Pro: avoids polluting templates with calculations
» Con: pollutes the Internal Model interface
» The example used this option

= Option 3: Derive a secondary model that wraps the
Internal Model in the back-end

» Pro: avoids polluting templates and Internal Model interface
» Con: More complex coding

15

A variation on doing the template calculation isto build a helper class that wraps cal culations
inside amethod. Thisway, only the template calculation is calling these hel per methods.

Who cares about pollution?

A major goal of atemplate should be to resemble the ultimate output as much as possible.
Putting excess cal culations in atemplate generally works against this goal because it can
pollute the template.

Internal Model pollution: There are two uses of the Internal Model: templates and model
creation. Templates benefit from the addition of derived methods — they need the extra
information. On the other hand, model creation code becomes more complex to create if
many derived methods are included — the extra methods add to the “weight” of the interfaces.
Choosing a method:

« If only afew derived methods are required, choose option 2.
« If many derived methods are required, choose option 3.

© Copyright IBM Corp. 2007 11-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Kinds of Transformation Output

» There are three kinds of transformation output:
» Transformation Owned: no user modification is allowed

» User Modifiable: transform will continue to write default versions unless
the user specifies a custom version

» Seeded: transformation will write this element only once

» |[n addition, the transformation may encounter elements in the
target domain that are none of these. That is, they are user-
generated (or generated by another transformation)

Best Practice: Separate Transformation Owned
output from other elements

16

© Copyright IBM Corp. 2007 11-16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Recognizing Transformation Output

» In order to identify kinds of transformation output, it must be
either:
» Marked with some form of annotation, OR
» Placed in a specific location that is declared transformation owned

= Examples:
» The Java compiler owns the bin directory, and feels free to overwrite its
contents at any time

» The Rational Software Architect Java transformation uses special
Javadoc tags to indicate ownership. (The Java transform has a Re-apply
contract stating what it will preserve and what it will overwrite.)

17

© Copyright IBM Corp. 2007 11-17
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Re-Running a Transformation

= When rerun, a transformation may have to write a file
that already exists.

= Establish a reapply contract between the
transformation and its users, clearly identifying:

» Which files the transformation will always overwrite
» Which files the transformation will never overwrite

» Which files are shared between transformation and user
(and how the sharing works)

18

© Copyright IBM Corp. 2007 11-18
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Recommended Transformation Re-apply Actions

Create

Create Create

Update Update, if no user

Do not update
modifications

Error, output may be inconsistent

Remove

Remove, if no
user

modifications

Do not remove

19

flun]
()

This table shows recommended actions. They are not automatically enforced.
There are two approaches to implementing are-apply strategy:

« At each point in the transformation where an element is being created, check to seeif it
already exists, and perform the appropriate action

e Pros: It isstraight forward to implement

« Cons: There-apply code gets dispersed throughout the transformation, making it
harder to correctly modify the re-apply strategy later

¢ Thisworks when the re-apply actions are simple.
¢ The transformation assumes there are no existing elements. Just prior to writing the
generated elements, areconciliation is performed to merge the generated elements with
any existing elements.
* Pros: Centralizesre-apply code in asingle location; simplifies generation logic; re-
apply tooling can be re-used (like IMerge)

¢ Cons: There are alimited number of tools available: IMerge for Java, but little else.
Creating other merge toolsis not atrivial activity.

© Copyright IBM Corp. 2007

11-19
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Determine How User Will View the Internal Model

» Choose an appropriate UML diagramming metaphor
» Class Diagrams, State Chart Diagrams, Activity Diagrams, and so on

» Create a mapping between Internal Model types and the UML
types used in the diagram

= Determine how Internal Model attributes will be calculated from
the UML types or attributes

Create an example of the desired output Exemplar
= If necessary, create a _ _
U M L prOflle Wlth Build an abstraction of the exemplar Internal Model
Ste reotypes and Constralnts Build a back-end transformation
t(-)l: ISI\F;IIEfe nt SpeCIaI Izatl 0 nS Determine how the user will view the internal model User Representation
0 ypes
. N Build a front-end transformation
= If UML is not a fit —
CO nSIder E M F\G M F Buld supporting solution elements

20

Note that keywords that are not programmatically applied are proneto failure. As such, if the
user is expected to apply this type of differentiator, a profile would be preferable.

© Copyright IBM Corp. 2007 11-20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Creating UML Profiles

= Create stereot%pe properties to represent Internal Model
attributes that have no natural UML equivalent
» UML keywords can be used instead of stereotypes. However ,

keywords cannot have properties, and entering them
is more prone to error

» When a transform requires a profile and stereotypes:

» Minim(ijze the number of elements to which stereotypes must be
applie

» Use stereotypes to denote non-default characteristics, and lack of a
stereotype to imply documented defaults

» Cor}_siger creating template UML models with the profile already
applie

21

© Copyright IBM Corp. 2007 11-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

UML Profile Tool Tips

» Represent UML meta-types (Class, Property, and so on)
as UML classes with a «uml» keyword

» Create association classes between UML meta-types and

In}ernal Model types. The association class is a mapping
rule.

= Rules often contain rules

» Document this containment with UML composition associations.

» Name the association for the UML collection attribute that is used
to navigate from parent source to target source

= Some rules are not bound to the input. Document these as
UML classes with an «init-rule» or «final-rule» keyword.

22

With respect to the «uml» keyword, note that other people and companies have used different
keywords for this. The important aspect is to be consistent.

© Copyright IBM Corp. 2007 11-22

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Build the Font-End Transformation

= Map the User Representation Model to a Rational Software
Architect Transformation
» First choice should be to start with Model Mapping
= Second choice should be Manual creation
» Group rules that operate on the same elements

» Initial cut at the number of mappings needed in the transformation is
equal to the number of rule groups

= Other considerations:

» How many levels of abstraction are needed?

» If this is a case of
meet-in-the-middle, does the
input need to be filtered before
performing the transformation? Buld an abstraction of the exemplar Internal Model

Create an example of the desired output Exemplar

Build a back-end transformation
Determine how the user will view the internal model User Representation

Build a front-end transformation

Buld supporting solution elements

23

© Copyright IBM Corp. 2007 11-23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Build Supporting Solution Elements

Use Rational Software Architect to support your solution

» UML Template Models, to help guide users to the proper configuration of
their UML Model

» Rational Software Architect UML Patterns, to configure the UML model
in a more automated way

» Transformation Documentation and Help, important to describe:

= The processes to follow in
creating the source model

= The transformation
contract: elements transformed,
outputs, markup needed for P T e Exemplar
the source model

= The “re-apply” contract: which
solution elements to modify in Buld 2 back-end ransformation
the source model versus the

Build an abstraction of the exemplar Internal Model

Determine how the user will view the internal model User Representation
generated output
. Build a front-end transformation
= How to configure the
tranSfOI‘matlon Buld supporting solution slemants
2 S
© Copyright IBM Corp. 2007 11-24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Summary

» The process for creating transformations:
» Generally begins with the end result in mind

» Works backward to establish the form of intermediate and initial input
models

» Can use low-level Eclipse and higher-level Rational Software Architect
APIs to manipulate initial and internal models

» Can use various code generation template technologies to accelerate
the creation of code-generating transformations

» The Internal Model is separated from UML Representation
» Allows evolution of representation without rebuilding the back-end
» Separates UML knowledge from output domain knowledge

25

© Copyright IBM Corp. 2007 11-25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

Review

= Explain why transformations drive the process of
Rational Software Architect asset creation.

= Why create a transformation solution composed of an

internal model with front-end and back-end
transformations?

= Describe the three types of
transformation output.

26

© Copyright IBM Corp. 2007 11- 26
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

	rd801gv1_stuman_cov
	DEV498Stuman_TOC
	Contents

	DEV498_M00_About_This_Course_stud
	DEV498_M01_Best_Practices_stud
	DEV498_M02_Reusable_Assets_stud
	DEV498_M03_Templating_101_stud
	DEV498_M04_JET_Model_stud
	DEV498_M05_JET_Tags_stud
	DEV498_M06_More_JET_Tags_stud
	DEV498_M07_JET_Examples_stud
	DEV498_M08_Exemplar_Analysis_stud
	DEV498_M09_IntroEMF_stud
	DEV498_M10_Intro_Transformations_stud
	DEV498_M11_Designing_stud
	DEV498_M12_Profiles_stud
	DEV498_M13_Transformations_stud
	DEV498_M14_Patterns_stud
	DEV498_M15_IntroToUML2API_stud
	DEV498_M16_Plugins_stud
	DEV498_M17_Templates_stud
	DEV498_M18_Packaging_stud
	DEV498_M19_Summary_stud
	DEV498_M20_Advanced_Transform_stud
	DEV498_M21_IntroGMF_stud
	DEV498_M22_XPath_Overview_stud

