
 

 
 

 
 

 
 
 
 
 
 
 
 

 

 
 

IBM Rational University
 
 
 
 

  

 
 

 Pattern Implementation Workshop with  
IBM Rational Software Architect 
RD801/DEV498 April 2007 
Student Manual Volume 1 
Part No. 800-027312-000 



 

 
 
 
 
 
 
IBM Corporation 
Rational University  
Pattern Implementation Workshop with IBM Rational Software Architect 
Student Manual Volume 1 
 
 
April 2007 
 
Copyright © International Business Machines Corporation, 2007. All rights reserved. 
 
This document may not be reproduced in whole or in part without the prior written permission 
of IBM. 
 
The contents of this manual and the associated software are the property of IBM and/or its 
licensors, and are protected by United States copyright laws, patent laws, and various 
international treaties. For additional copies of this manual or software, please contact Rational 
Software. 
 
IBM and the IBM logo are trademarks or registered trademarks of IBM Corporation, in the 
United States, other countries or both. 
 
Rational, the Rational logo, ClearCase, ClearCase LT, ClearCase MultiSite, Unified Change 
Management, Rational SoDA, and Rational XDE are trademarks or registered trademarks of 
International Business Machines Corporation in the United States, other countries or both. 
 
WebSphere, the WebSphere logo, and Studio Application Developer, are trademarks or 
registered trademarks of International Business Machines Corporation in the United States, other 
countries or both. 
 
Microsoft Windows 2000, Microsoft Word, and Internet Explorer, among others, are trademarks 
or registered trademarks of Microsoft Corporation. 
 
Java and all Java-based marks, among others, are trademarks or registered trademarks of Sun 
Microsystems in the United States, other countries or both. 
 
UNIX is a registered trademark of The Open Group in the United States, other countries or 
both. 
 
Other company, product and service names may be trademarks or service marks of others. 
 
Printed in the United States of America. 
 
This manual prepared by: 
IBM Rational Software 
555 Bailey Ave. 
Santa Teresa Lab 
San Jose CA 95141-1003 
USA 

 



DEV498: Pattern Implementation Workshop with Rational Software Architect Table of Contents 

Contents 
Module 0: About This Course 

Introductions............................................................................................................ 0-2 
Course Outline......................................................................................................... 0-7 

 

Module 1: Best Practices 
Objectives ................................................................................................................ 1-2 
Patterns in Software Development ....................................................................... 1-11 
Pattern Authoring Process ..................................................................................... 1-23 
Review................................................................................................................... 1-34 

 

Module 2:  Reusable Assets and Artifacts 
Objectives ................................................................................................................ 2-2 
Extending Rational Software Architect ................................................................... 2-8 
Plug-ins and Pluglets ............................................................................................. 2-15 
Artifacts and UML................................................................................................. 2-19 

 

Module 3: Templating 101 
Objectives ................................................................................................................ 3-2 
Original JET ............................................................................................................ 3-5 
EMFT JET .............................................................................................................. 3-9 
Review................................................................................................................... 3-13 
Further Information .............................................................................................. 3-14 

 

Module 4: JET2 Data Model 
Objectives ................................................................................................................ 4-2 
JET Data Model....................................................................................................... 4-4 
XPath ....................................................................................................................... 4-8 
Review................................................................................................................... 4-28 
Further Information .............................................................................................. 4-29 

 

Module 5: Basic JET Tags 
Objectives ................................................................................................................ 5-2 
The Basic JET Tags ................................................................................................. 5-3 
Review................................................................................................................... 5-12 

 

Module 6: More JET Tags 
Objectives ................................................................................................................ 6-2 
Tags and Tag Libraries ............................................................................................ 6-4 
JET2 Control Tags .................................................................................................. 6-8 
Simple Tag Combinations ..................................................................................... 6-14 
Lab 2: Using XPath ............................................................................................... 6-18 

© Copyright IBM Corp. 2007 i 
 Course materials may not be reproduced in whole or in part without the prior written permission of IBM.   



DEV498: Pattern Implementation Workshop with Rational Software Architect Table of Contents 

Review................................................................................................................... 6-19 
 

Module 7: JET Examples 
Objectives ................................................................................................................ 7-2 
Writing an Arbitrary List ......................................................................................... 7-4 
Generating an Arbitrary Number of Files................................................................ 7-8 
Attributes and Derived Attributes.......................................................................... 7-13 
Lookups and De-Normalizations........................................................................... 7-22 
Getter Names ......................................................................................................... 7-27 
Comma-Separated Lists......................................................................................... 7-30 
Lab 3: Authoring Transforms Manually................................................................ 7-32 
Review................................................................................................................... 7-33 

 

Module 8: Exemplar Analysis 
Objectives ................................................................................................................ 8-2 
Finding a Pattern to Implement ............................................................................... 8-4 
Preparing to Author a Model-to-Text Transform .................................................. 8-14 
Authoring the Model and Templates ..................................................................... 8-18 
Lab 4.1: Exemplar Authoring ................................................................................ 8-32 
Lab 4.2: Exemplar Authoring ................................................................................ 8-33 
Lab 5: Console Transform..................................................................................... 8-34 
Review................................................................................................................... 8-35 
Further Information .............................................................................................. 8-36 

 

Module 9: Introduction to EMF 
Objectives ................................................................................................................ 9-2 
What is EMF?.......................................................................................................... 9-3 
Labs ....................................................................................................................... 9-13 
Further Information .............................................................................................. 9-15 

 

Module 10: Introduction to Transformations 
Objectives .............................................................................................................. 10-2 
Configuring and Running Transformations........................................................... 10-7 
Lab 7: Customize a Transformation .................................................................... 10-12 
Creating a Model-to-Text Transformation .......................................................... 10-14 
Lab 8: Create a Model to JET Transformation ................................................... 10-38 
Review................................................................................................................. 10-39 
Further Information ............................................................................................ 10-40 

 

Module 11: Designing Reusable Assets 
Objectives .............................................................................................................. 11-2 
Model-Driven Development (MDD)..................................................................... 11-4 
Summary.............................................................................................................. 11-25 
Review................................................................................................................. 11-26 

 

© Copyright IBM Corp. 2007 ii 
 Course materials may not be reproduced in whole or in part without the prior written permission of IBM.   



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 0: About This Course

Contents
Introductions 0-2
Course Outline 0-7



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Introductions
Your organization
Your role
Your background and experience

Software development experience
Experience with patterns and reusable assets

Course expectations



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Intended Audience
Software developers who use Rational 
Software Architect and who wish to:

Employ Model-Driven Development (MDD) or 
Model-Driven Architecture (MDA) strategies
Design and build pattern implementations and 

supporting artifacts
Patterns
Transformations
Profiles
Model templates

This course is for software architects, designers, and developers who create pattern 
implementations and related artifacts such as patterns, transformations, profiles, and model 
templates.  The intent is to enable your model-driven development process using automation 
to design and build a solution according to best practices.



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Prerequisites
This course assumes that students:

Can read and write Java code
Model applications with UML
Have taken the following IBM Rational courses, or have 
equivalent knowledge or experience:

DEV312: Essentials of Eclipse Plug-in Development
DEV325: Essentials of Model-Driven Architecture
DEV396: Essentials of IBM Rational Software Architect

(Recommended) Students are familiar with XPath and XML, 
or have completed the following course:

XM301: Introduction to XML and Related Technologies

This course assumes knowledge of and experience with Java™ programming, basics of 
Eclipse plug-in development and Model-Driven Architecture, as well as familiarity with the 
basic features of IBM® Rational® Software Architect.



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Course Goals and Objectives
After completing this course, you will be able to 
use Rational Software Architect to:

Design and create Pattern Implementations and 
related artifacts, including:

Transformations
UML Patterns
Profiles
Model templates
Pluglets

Package artifacts as a Reusable Asset 
Specification (RAS) asset

This course shows architects, designers, and lead developers how to develop reusable assets 
with Rational Software Architect, including artifacts such as plug-ins and pluglets, 
transformations, and patterns. It also shows you how to package these extensibility artifacts 
using the Reusable Asset Specification. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Topics Covered in this Course
Rational 
Systems 

Developer

Rational 
Software 
Architect

Rational 
Software 
Modeler

Rational 
Application 
Developer

Plug-ins

Patterns

«...»
Profiles

Pluglets

Model Templates

Rational Systems Developer has a subset of Rational Software Architect transformations. 
Rational Software Modeler supports only custom transformations.

Transformations

The IBM® Rational® Software Delivery Platform is based on the Eclipse open source 
platform. This platform enables unprecedented tool integration and artifact traceability 
throughout the development lifecycle. IBM® was a founding member of the Eclipse 
Foundation.
That integration extends in two directions:

• It knits together the individual roles on the team, and
• It brings together the shared software development disciplines that you see on this slide: 

requirements, analysis, design, construction, and so on.

* IBM® Rational® Systems Developer has a subset of Rational Software Architect 
transformations

* IBM® Rational® Software Modeler has a subset of Rational Software Architect 
transformations

* IBM® Rational® Application Developer allows you to author and run you own Model to 
Text Transformations



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Course Outline: Day 1

2: Overview of Reusable Assets and Artifacts

4: The JET2 Data Model
3: Templating 101

1: Best Practices for Pattern Implementations

Afternoon:

1 hourLunch

0: About This Course
Morning:



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Course Outline: Day 2

7: JET Examples

9: Introduction to EMF
8: Exemplar Analysis

6: More JET Tags

Afternoon:

1 hourLunch

5: Basic JET Tags
Morning:



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Course Outline: Day 3

12: Extending Models with Profiles

14: Creating UML Patterns in Rational Software Architect
13: Model to Model Transformations

11: Designing Reusable Assets

Afternoon:

1 hourLunch

10: Introduction to Transformations
Morning:



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Course Outline: Day 4

17: Model Templates

19: Summary
18: Packaging Assets

16: Plug-ins and Pluglets

Afternoon:

1 hourLunch

15: Introduction to UML2 API
Morning:



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Logistics

Morning
1 Fifteen-minute break

Lunch 
1 Hour
Afternoon
1 Fifteen-minute break



Pattern Implementation Workshop with IBM Rational Software Architect Module 0 - 0: About This Course

© Copyright IBM Corp. 2007 0 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect 
Module 1: Best Practices for Pattern Implementations 

Contents
Objectives 1-2
Patterns in Software Development 1-11
Pattern Authoring Process 1-23
Review 1-34



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Best Practices for Pattern Implementations
Objectives:

Describe:
A tool-based definition of patterns
The role of patterns in software development
What decisions pattern authors must make
How to author a pattern implementation



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of Model Driven Development

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

You’ll see this slide several times throughout the workshop.  It will serve as a visual guide to 
the skills you are learning and how they fit into Model Driven Development.



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Where Are We?
Introduction and Overview
Patterns in Software Development
Pattern Authoring Process



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Background
A pattern provides a solution to a common problem by:

Offering reuse at a higher level than lines of code or individual classes and 
components, but at a lower level than an entire program
Enabling communication, education, and understanding of key development 
concepts

A pattern can be implemented using software development tools
The pattern is abstracted from a exemplar that offers the best available solution 
to the problem.
A pattern specification captures a formal pattern description 
A pattern can be implemented using a development tool and easily shared and 
applied in the development environment
Patterns can be grouped into pattern recipes (sets of patterns)

Problem Pattern
Specification

Pattern
Implementation

Exemplar
(Solution)

10010011000100100100100
10010011000100100100100
10010011000100100100100
10010011000100100100100
10010011000100100100100
10010011000100100100100

10010011000100100100100
10010011000100100100100

10010011000100100100100
10010011000100100100100
10010011000100100100100

Pattern
Recipe



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Pattern Specifications
At first, patterns exist only as an idea in the 
mind of the developer, as a best practice used 
in many projects.

Patterns are often captured as pattern 
specifications.

A pattern specification formally documents:
The problem the pattern solves
The solution it provides
A strategy for applying the pattern in its 
context
Consequences, advantages, and 
disadvantages of applying the pattern



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Pattern Specifications
Pattern specifications are what we traditionally think of 
as “patterns”

Patterns described in books and documentation
Capture best practices
Are technologically abstract (do not contain technology-specific
details)
Are often used for educational and communication purposes

To use the pattern you must
code it yourself, manually

Pattern specifications are 
important, but there is much 
more to patterns than just 
documentation!



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Pattern Implementations
A pattern implementation automates the application of a 
pattern in a particular environment

Automates the process of applying a pattern in the IDE
Provides realized solutions to real problems
Makes patterns sharable and reusable

Patterns become tools, concrete artifacts, in the 
development environment:

Rational Software Architect UML Pattern 
Rational Software Architect 
Transformation
Plug-in
JET2  pattern



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Benefits of Pattern Implementations
Increased productivity

Simplifies and accelerates the building and testing of software
Dramatically reduces development cycle times by eliminating repetitive 
work
Offers ease of use for beginners

Improved software governance
Consistently enforce architectural, design, and coding standards

Increased quality
Higher quality end product due to a higher level of consistency
Greater leverage of expert skills within the development organization

Increased openness
Less dependency on a specific tool, vendor, or platform



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Where Are We?
Introduction and Overview
Patterns in Software Development
Pattern Authoring Process



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Patterns and Development Roles

Pattern Specification Author

Anyone who uses the pattern
Pattern User

Pattern Author (SME)
Expert in the problem domain explained by the pattern

Develops the micro tool that implements the pattern

Pattern Implementation 
Author

Writes the document that describes the pattern in depth

Asset Librarian
Maintains and archives assets for the organization



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Patterns-Enabled Development Process
Identify the problem
Select a pattern
Prepare the pattern

Implement the pattern
Execute the pattern
Analyze the impact

Normally completed 
by machines

Normally completed
by people

Execute PatternSelect/Prepare/
Invoke

Inputs Output

Output can also be
used to refine the 

pattern



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Patterns-Enabled Development Process

Pattern Recipe
Input Domain

Input1

Input2

Input3

Output Domain

Output1

Output2

Output3

Output4

Output5

Apply Pattern 

Apply Pattern 

Apply Pattern

Apply Pattern

Design Activity

Apply Pattern 

Design Activity

Pattern Building starts with the design of the “Pattern Recipe”, which defines the 
inputs, outputs, process flow, and the atomic patterns to be built or reused at each 
step. 



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Patterns in Model-Driven Development
Patterns put the potential of MDD within reach

MDD involves using models to drive each stage in the 
software development process

Models abstract out and separate the key information from the details 
of the target environment or platform
The developer specifies the solution using models
Patterns and tool automations transform each input model into a 
target that is closer to the final artifacts

Design decisions 
made using models.

High-level model

Code artifacts

Patterns automate the 
transitions from models 
to working solution.



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Eclipse-Based Pattern Implementation Frameworks
Eclipse Modeling Framework Technologies (EMFT) Java™ Emitter Template 
( JET or JET2)

Template engine for generating applications based on customizable, model-to-text  
transformations
Features exemplar analysis tools, 
and a template editor

IBM® Rational® software design 
and construction tools support 
patterns and transformations:

Rational Software Architect 
Patterns: Applied in a single 
model and within the same level 
of abstraction

Examples: Business Delegate, 
Session Facade patterns 
applied in design model

Transformations: Applied across 
meta-models, models, and different 
levels of abstractions

Examples: UML to Java, 
UML to EJB, Java to UML

The Eclipse Platform
EMFT JET

Rational Software Architect
(Java, J2EE, C++)

Rational Systems Developer
(C/C++, Java, J2SE, CORBA) 

Rational Software Modeler

Rational Software Architect is for software architects and senior developers developing 
applications for the Java platform or in C++. Rational  Software Architect is a design and 
construction tool for developing well-architected applications, including applications on a 
Service Oriented Architecture. Rational Software Architect unifies UML modeling, Java 
structural analysis, Web Services, Java or Java™ 2 Platform, Enterprise Edition (J2EE) 
technology, Data, XML, Web development, and process guidance.
Rational Software Modeler is for architects, system analysts, and designers who need to 
ensure that their specifications, architecture, and designs are clearly defined and 
communicated with their stakeholders. Rational Software Modeler is a visual modeling and 
design tool that leverages UML to document and communicate.



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Rational Software 
Architect 
transform 

at front end

Use
Rational Software 
Architect patterns 

UI

Use other UI

Will your pattern produce
Model or Text output?

Text

In-place UML transform?
Happy with Rational Software Architect Patterns UI?

Yes/Yes Otherwise

Model

Use EMFT JET
pattern

Recommended
Best Practice

Use
Rational Software Architect

Choosing the Right Eclipse-Based Tooling

Use this Decision tree to make the core technology selection. 
The “patterns” referred to here are “atomic patterns,” which address a single use case step. A 
full use case usually involves you in selecting and applying a series of atomic patterns 
following a “Recipe”
By “Model” (as output), we mean a structure that is intended for further manipulation in 
memory. The model could be text, EMF, or UML. The output may be a new model, or a 
modified input model.
EMFT JET (Java™ Emitter Template) requires Eclipse 3.2. If this is not available, use the 
tech preview subset of EMFT JET available as a design pattern toolkit (DPTK).
If using a tech preview is also unacceptable, use JET.



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Model Output: Rational Software Architect
Patterns and transformations provide 

two ways to transform models:
UML Patterns: Use to add 
details to a model. 

Observer pattern
Session Facade pattern

Transformations: Create more 
detailed software artifacts 
from more abstract artifacts 
in a standard way.

UML to UML
UML to Java
UML to EJB
UML to  . . . 
Java to UML
… to UML

UML Pattern

Transformations



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Text Output: EMFT JET
Use EMFT JET to develop patterns with text output

Capture best practices for design and implementation as text-to-text transformations

EMFT JET has the following components:
Transformation-based Eclipse resource generator
Transformation development and distribution features

EMFT JET evolved from DPTK 
(Design Pattern Toolkit)



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Rational Software Design and Construction Products
Automate design and construction, allowing you to 
create and customize:

UML Profiles
Transformations
UML Patterns
Pluglets
Model templates

Support the Reusable Asset 
Specification for storing and 
sharing these resources



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Working with Models without Rational Software Architect
If Rational Software Architect is not available, you can use the
following technologies from the Eclipse Tools Project to work 
with models in Eclipse:

Eclipse Modeling Framework (EMF): Specify models using annotated 
Java, XML, or modeling tools like Rational Rose then import them into 
EMF for building tools and other applications based on a structured data 
model.

Graphical Modeling Framework (GMF): Develop graphical editors 
based on EMF and GEF in Eclipse

EMFT JET: Use a generic template engine that can be used to generate 
SQL, XML, Java source code, and other output from templates. 



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Recommendations
Use the productivity tools in Rational Software Architect 
wherever possible. 

If Rational Software Architect cannot be used, use EMFT 
JET, and add GMF if graphical modeling capability is 
essential 

Model-to-Text transformations should be implemented 
using EMFT JET or Rational Software Architect with EMFT 
JET.

Rational Software Architect can be used to build a front-end 
transformation and GUI

By default, artifacts should be treated
as text, and generated or manipulated 
with EMFT JET.



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Where Are We?
Introduction and Overview
Patterns in Software Development
Pattern Authoring Process



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Pattern Recipe Authoring
Pattern implementations are developed in sets (recipes) to 
address a specific target domain

Examine the problem

Find an exemplar 
solution

Identify points of 
variability: what input 
should be left to the 
user, and what should 
the pattern provide?

Determine a natural and 
realistic entry point for 
design

Figure out what information 
is available at the start, and 
what information is needed 
at each stage

Create an outline of what 
will happen in each stage

For each pattern, a 
microtool is needed

Pattern 
implementation is our 
focus here

Results are 
packaged and paired 
with documentation 
for the intended user 
community.

Analyze the 
target domain

Design the 
Recipe

Package and 
deploy

Implement 
patterns

Repeat for each pattern 
in the recipe



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Patterns: What to Implement and Specify
You need to be able to customize patterns and assemble them 
using specifications and tools, without having to understand all
the details of the implementations

Pattern Implementation
Patterns can be customized with each use
Variability is supported by identifying places in exemplars where custom 
information can be substituted

Pattern Specification
Patterns have to be documented in a standard way
All pattern specs provide:

Context: When to apply the pattern
Problem: What problem the pattern solves
Solution: How the pattern solves the problem



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Implementing a Pattern
Pattern implementation consists of two parts, which should be 
kept independent to maximize reuse potential:

The pattern implementation
A user-interface for applying the pattern

This is true regardless of technology choice or pattern type.

10010011000100100100
100100110001001001001
10010011000100100100
10010011000100100100
10010011000100100100
10010011000100100100

10010011000100100100
100100110001001001001

10010011000100100
100100110001001001001
10010011000100100100

Identify an 
Exemplar

Output:
Best practice 
solution

Output:
A pattern abstraction, 
with structure and 
variability points,
either in text or 
UML form

Abstract the 
solution

Implement 
the pattern

Establish 
abstraction 

editor

Establish 
invocation 

environment
Output:
Pattern implementation 
supporting automated 
customization of artifacts 
via substitutions at 
variation points

Output:
Tool support for creating 
abstraction instances 
that will drive individual 
pattern applications

Output:
Mechanisms that will be 
used to configure, 
trigger, and execute 
applications of the 
pattern

Regardless of the pattern implementation technology you choose (model-to-model or model-
to-text), you will follow a similar process when you build the pattern.



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Exemplars
Solution exemplars are the foundation for patterns and 
automation

They represent the best solution to a given problem, so they must 
be developed by an expert in the target domain

Quality exemplars:
Follow best practices

Best practices in exemplars reflect the pattern and applications of the 
pattern

Include all variations that the pattern automation will support
Work

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100

100100110001001001001001001001001001001001001001100100110001001001001001001001001001001001001001100100100100100



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

Uses for Exemplars
Provides the basis for the pattern implementation:

Specification: Exemplar specifies what the pattern would 
generate
Test Case: Exemplar is a test case for the pattern output



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Normalization of Reference Solutions (Exemplar)
Creating a pattern abstraction requires the author to decide:

What functional variation points must be exposed
What details are invariant and need to be hidden

Developing pattern abstractions
Requires the involvement of a domain expert
Develop iteratively

The pattern abstraction will have to be revisited many times as you develop 
and refine the pattern implementation

Use a formal metamodel
Examples:

– XML Schema
– UML Profile

1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100
1001001100010010010010010010010010011000100100



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

Implementing the Pattern
Key decision: will the pattern implementation be 
presented as a model or as text?

Models can be powerful
Ensure that only correct instances are created
May offer additional utilities:
– Default values and implied constructs
– Might support serialization capabilities for merging previous versions of the 

generated solution
However, APIs may be complicated and very large
– Pattern authors may have to learn many new APIs

Patterns based on text substitution (such as JET2) are easier 
to learn to create



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30

Implementing UML Model to Text Pattern Implementations
Separate the task of creating the UML model and profile (if 
needed) from the task of abstracting the exemplar

Create a pattern abstraction whose output is simple text (XML) 
documents

Implement a “code generator” with EMFT JET that reads the documents 
and produces the text output

To hide this processing 
from the pattern user, 
implement a front-end 
transformation that:

Maps from UML to the 
pattern abstraction
Invokes the 
code generator



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

31

31

Implementing UML Model to UML Model Pattern Implementations

There are two types of model-to-model 
transformations that you can perform with 
Rational Software Architect:

In-place pattern expansion, where the problem 
and solution domains are the same UML model

Use Rational Software Architect UML Patterns in 
most cases
Use Rational Software Architect transformations if 
input parameters can’t be represented in the 
Rational Software Architect UML Patterns 
framework

Other model-to-model patterns: across models, 
across metamodels, and so on

Use the Rational Software Architect 
Transformation framework



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

32

32

Establish an Editing Environment for Abstraction
Based upon best practices, you (the pattern 
developer) can:

Provide no additional input representation.
Let the user edit XML documents as input to the pattern

Create a UML-to-abstraction transform that wraps the back-
end (provide a back-end transformation)

Create a custom graphic editor using GMF, including 
component technologies EMF and GEF.

Create some other kind of editor,  such as a dialog or 
wizard, using Eclipse extensibility. This will allow user input,
and programmatically trigger the pattern call.



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

33

33

Summary
Patterns are a re-usable tool that can help simplify 
development
Patterns provide an efficient means for ensuring that 
development is standardized
By following protocols and best practices, patterns will help 
your organization produce high-quality products in an efficient 
manner 



Pattern Implementation Workshop for IBM Rational Software Architect Module 1 - Best Practices

© Copyright IBM Corp. 2007 1 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

34

34

Review
What are the two types of model to model 
transformations you can perform with Rational 
Software Architect?
Describe the differences between a pattern 
specification and a pattern implementation.
What is the function of exemplars?



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 2: Overview of Reusable Assets and Artifacts

Contents
Objectives 2-2
Extending Rational Software Architect 2-8
Plug-ins and Pluglets 2-15
Artifacts and UML 2-19



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Overview of Reusable Assets and Artifacts
Objectives:

Describe what a reusable asset is

Describe how reusable assets can be used in software 
development

Describe the extensibility features of Rational Software 
Architect, and their uses for developing reusable assets.

This module discusses reusable assets and the artifacts provided by Rational Software 
Architect. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of Model Driven Development

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

You will see this slide several times throughout the workshop.  It will serve as a visual guide 
to the skills that you are learning, and how they fit into model-driven Development.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

What is a Reusable Asset? 
A reusable asset is an organized collection of artifacts that 
provides a solution to a problem for a given context

A reusable asset contains:
Artifacts: 
Profiles, patterns, 
transformations, pluglets, 
model templates, and so on.

Variability points:
Allow users to customize 
the asset for a specific 
project 

Artifact

Artifact

Artifact

Artifact

Variability Point

Problem

Solution

A reusable asset is an organized collection of artifacts that provides a solution to a problem 
for a given context.  Assets clearly have much in common with patterns. For example, each:

• Includes instructions or usage rules, to minimize the time needed to discover, analyze, 
consume, and test the asset 

• Includes standard documentation describing the development and business context in 
which the asset can be used 

• Can have variability points, like pattern parameters, that allow users to customize the 
asset for a specific project 

An asset is a more general concept than a pattern, since it is a collection of artifacts.
Asset can contain more than just patterns. An asset for a development project might contain 
requirements, models, source code, and tests. Assets might also be used to package and share 
deployable components, Web services, frameworks, and templates.
Reusable Asset Specification (RAS) is the standard structure. The IBM® Rational® brand 
products use the RAS specification. A RAS asset includes:

• RAS asset manifest file: The RAS asset is a zipped file that stores the files that make up 
the asset. At export, a manifest file is created and is included in every RAS asset's file.

• RAS asset profiles: RAS asset profiles allow you to create different assets. A specialized 
profile extends the contents of the default profile. Every RAS manifest must have a RAS 
profile.

• Activity task types: Activities should be modified only by users who are familiar with 
using the RAS to hand code manifest files. Modifications to the activities generated by 
RAS manifest files can render them incompatible. Activities describe tasks the user 
should do to reuse the asset. You should not modify generated activities, but you are 
encouraged to add your own as needed. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Asset-Driven Development
Reuse requirements, design, test, and deployment assets to 
develop new or enhance existing applications

Supported by IBM 
Rational tools with:

Process guidance
Tooling
Standards
Assets

Asset
Management

Asset 
Production

Asset
Consumption

Feedback

Feedback

Asset 
Identification

Candidate
Asset

Program Management

The Asset Lifecycle

Asset-based development (ABD) provides a way to reuse requirements, design, construction, 
test, and deployment assets to develop new or enhance existing applications.
IBM Rational products support ABD with:

Process Guidance: Provided with the IBM® Rational Unified Process® (RUP®) platform and 
its Asset-Based Development Plug-in 
Tooling: The IBM Rational Software Delivery Platform makes it possible to package and 
share reusable assets. 
Standards: UML, Model-Driven Architecture, RAS, Middleware 
Assets: Patterns, existing components, and new applications 
The RUP platform and its ABD plug-in help team members learn who is expected to do what 
tasks, and when, with Rational Software Architect and other Rational brand tools. Teams 
develop architected solutions, models, and other artifacts based on a set of well-defined 
standards, including RAS and UML. Every project can consume assets and produce assets for 
other projects in an efficient way.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Rational Software Architect Artifacts in Reusable Assets

Pluglets Model Templates

Help / Documentation RMC Plug-in

UML Patterns TransformationsProfiles

The following artifacts are used to extend Rational Software Architect:

• UML profiles are sets of stereotypes, tag value definitions, and constraints that you can 
use to create model elements that reflect the semantics of a specific domain or platform. 
Profiles can tailor the UML for a specific domain or platform. You can use them in 
patterns to apply stereotypes to pattern participants. They are also used in transformation 
definitions to specify how model elements should be transformed.

• UML Patterns: You can use the UML Patterns Service and Framework to create 
implementations that codify specific patterns.  

• Transformations: Rational Software Architect provides support using the PDE, Exemplar 
Authoring, Model Mapping and a Transformations API for you to create custom 
transformations.  

• Pluglets are Java applications that provide an alternative to plug-ins for extending the 
workbench.  Pluglets can be thought of as a lightweight plug-in,  usually created to 
handle routine tasks.

• Model templates: You can export a model as a template so that its structure can be 
reused as standard model structure, or as a transformation or pattern target. Model 
templates are similar to patterns in the sense that they can provide whole sets of model 
elements automatically.

The following artifacts can be bundled with these artifacts:
• Help: You can create custom help documentation to support any artifact you create, and 

it can be integrated with the standard help documentation for the tool.
• IBM® Rational® Method Composer Plug-in: Provide RUP content along with your 

artifacts.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Where Are We?
Extending Rational Software Architect
Plug-ins and Pluglets
Artifacts

Profiles
Model templates
Patterns and Transformations

This section provides an overview of how you can extend the capabilities of Rational 
Software Architect.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Why Use Rational Software Architect to Build Reusable Assets?
Configure the tool specifically for your environment

Capture and codify best practices

Automate tasks related to the specific problem domain and 
underlying technology

Reduce manual effort, which leads to:
More quickly developed solutions
Higher quality solutions 

Leverages Eclipse
Extensible
Open standards and specifications

Rational Software Architect provides a variety of different customization options, which 
allow you to tailor tools to respond flexibly to the different needs of different environments 
and tasks. Architects can deliver tailored tools that directly address the specific needs of 
developers, allowing them to improve the quality, reusability, and efficiency of the 
development process.
Using this functionality, different organizations that have different needs do not have to 
compromise on a lowest common denominator tool set to achieve enterprise interoperability 
and code reuse. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

What is Eclipse?
Eclipse is a universal platform for integrating development 
tools
Open, extensible architecture based on plug-ins

Java VM
Standard Java2
Virtual Machine 

PlatformEclipse Platform

Java development
tools

JDT

PDE
Plug-in development

environment



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Eclipse IDE: Plug-in Centric

Platform Runtime

Workspace

Help

Team

Workbench

JFace

SWT

Eclipse Project

Java
Development

Tools
(JDT)

Their 
Tool

Your 
Tool

Another
Tool

Plug-in
Development
Environment

(PDE)

Eclipse Platform

Debug

Eclipse is layers:  

• Platform Runtime: The base engine that makes it all work (plug-ins that provide 
architecture and functional content)

• Eclipse Platform: Built on the Platform Runtime, this is the base for the Workbench. 
Provides an integration platform for tools and applications.

Platform components, in addition to the Platform Runtime:

• Workspace: Resource model, with support for projects, folders, and files, as well as 
natures, builders, and markers. 

• SWT, JFace, and Workbench: Layers in the UI domain that build on each other. SWT 
is a Java API on Operating System widgets, JFace is an application framework for UI 
components, and Workbench is the model for an integrated UI with Views and Editors. 

• Help: The ability to render navigation and content, with APIs for tool-directed 
navigation (F1) and help invocation of tools.  Help can be in a standalone environment.

• Team: The framework for team programming and repository access.  Eclipse comes 
with the framework, and a CVS implementation.

• Debug: The framework for testing and debugging language-specific programs.  It has no 
functionality as delivered, so it must be taught.

• Ant (not shown here):  Included and integrated into the Workbench platform.  The PDE 
uses Ant to support feature or plug-in preparation and packaging operations.

• Update Manager (not shown): A component and user interface that allows you to 
manage the active configuration of features known to the workbench.

Java Development Tools: Features and Plug-ins providing a development environment.
Plug-in Development Environment (PDE): Builds on the JDT or Workbench to provide 
support for developing, testing, building, and deploying feature sets and plug-in sets.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

EclipseEclipse

The Architecture of Rational Software Architect 

GEFGEF

EMFEMF--models (EJB, Java, models (EJB, Java, 
XSD, and so on) XSD, and so on) 

Diagram PlugDiagram Plug--insins
(one per diagram type)(one per diagram type)

UML ModelingUML Modeling andand Domain Modeling editorsDomain Modeling editors

UML2UML2
GMFGMF

EMF/EMFTEMF/EMFT

Transformation FrameworkTransformation Framework

Patterns FrameworkPatterns Framework

UML Transformations & PatternsUML Transformations & Patterns

UML2 Domain adaptersUML2 Domain adapters

EMFT JETEMFT JET



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Rational Software Architect Extensibility

Supporting creation of these artifacts are:
The Plug-in Development Environment (PDE)
Reusable Asset Specification (RAS) Import and Export

Plug-ins

UML PatternsProfiles

PlugletsModel Templates

Transformations

Use the following artifacts to extend Rational Software Architect:

• Eclipse Plug-ins: Extension points in Eclipse are available to customize system behavior 
using plug-ins. The plug-ins that you develop can, in turn, contain their own extensions 
to existing plug-ins, and make extension points available so that other plug-ins can build 
on their functionality. Plug-ins are also used to package and exchange many types of 
resources( such as, in Rational Software Architect, patterns and transformations). 

• UML profiles are sets of stereotypes, tag value definitions, and constraints that you can 
use to create model elements that reflect the semantics of a specific domain or platform. 
Profiles make it possible to tailor the UML for use in a specific domain or platform. You 
can use them in patterns to apply stereotypes to pattern participants, and in 
transformation definitions to specify how specific model elements should be 
transformed.

• UML Patterns: You can use the UML Patterns Service and Framework to create 
implementations that codify patterns that are specific to your organization.  

• Transformations: Rational Software Architect provides support using the PDE, 
Exemplar Authoring, Model Mapping and a Transformations API for you to create 
custom transformations.  

• Pluglets are Java applications that provide an alternative to plug-ins for extending the 
workbench.  Pluglets can be thought of as a lightweight plug-in,  usually created to 
handle routine tasks.

• The Plug-in Development Environment (PDE) is a set of tools in Eclipse for creating, 
developing, testing, debugging, and deploying Eclipse plug-ins. The PDE includes tools 
for developing fragments, features, and update sites.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Sources for Reusable Assets
Reusable assets are not limited to artifacts you create. They can 
come from a variety of sources.

IBM Rational software

Solution in
Rational Software

Architect
Peer Groups

Your Group

Third-Party Software 
Companies

The real power of extensibility resources is that they can be shared between collaborators, 
projects, groups, or even different organizations.
These artifacts can be leveraged into major gains in productivity, not just for single projects 
but in many different organizations within an enterprise. A good method really deserves more 
than a single use. By creatively using extensible artifacts, you can share good ideas and use 
them in new projects simply and effectively. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Where Are We?
Extending Rational Software Architect
Plug-ins and Pluglets
Artifacts

Profiles
Model templates
Patterns and Transformations

This section provides an overview of plug-ins and pluglets, which are the base technologies 
for creating assets in Rational Software Architect.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Plug-ins

What is a plug-in?
A component or module
The smallest unit of Eclipse functionality

Can be developed and delivered separately
Has extensions (to other plug-ins)
Can provide extension points

A method for authoring and packaging UML patterns 
and transformations in Rational Software Architect

Workbench Plug-in

MyPlugin

Extensions

API dependencies

Eclipse Platform APIs

Extension
Point

(Optional)

The Eclipse platform is structured as a core runtime engine with a set of additional features 
installed as platform plug-ins at pre-defined extension points. These extension points are 
available to developers to contribute to system behavior. The plug-ins you develop can, in 
turn, contain their own extensions to existing plug-ins, and make extension points available 
so that other plug-ins can build on your plug-ins’ functionality.
As you will see in this module, you can use plug-ins not just to enhance the functionality of 
Eclipse in the ways that you might expect (like the resource management system, or the 
workbench plug-ins), but also to package and exchange many resources and assets that you 
develop in Rational Software Architect.
In general, to create a plug-in you would:

• Decide how your plug-in will be integrated with the platform. 
• Identify the extension points that you need to contribute to integrate your plug-in. 
• Implement these extensions according to the specification for the extension points. 
• Provide a manifest file (plugin.xml) that describes the extensions you are providing and 

the packaging of your code. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Pluglets
Pluglets:

Are small Java applications used to make minor 
workbench extensions
Are a kind of Java-based scripting mechanism 
Are executed in the active workbench

No target platform needed
Provide easy access to workbench plug-in APIs

For testing, API exploration, and custom scripts

They are created in a project

They use the workbench Java 
development environment

A pluglet is a small Java application that can use any available Eclipse-based API’s. It was 
specifically provided by Rational Software Architect and facilitates code Exploration.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Pluglets: Instant Menu Additions

Pluglets can be run instantly, using the Run Internal Tools button, in the same session, 
without having to start a new target instance.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Where Are We?
Extending Rational Software Architect
Plug-ins and Pluglets
Artifacts

Profiles
Model Templates
UML Patterns and Transformations

This section introduces reusable UML artifacts that you can develop in Rational Software 
Architect, including profiles, model templates, UML patterns, and transformations.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

The UML Profile: The Language of  Reusable Assets
Profiles enable extending the UML without changing the 
modeling language.
Profiles include:

Stereotypes: A simple textual marker («…») or icon placed on a model 
element to add semantics to the element
Tagged values: To add properties that are not supported by the base 
element
Constraints: Constraints enforced on the element or its attributes

Rational Software Architect allows you to develop and apply UML profiles. UML profiles 
are sets of stereotypes, tag value definitions, and constraints that you can use to create model 
elements that reflect the semantics of a specific domain or platform.

• Stereotype: This is a simple textual marker («…») or icon placed on a model element to 
add semantics to the element. A stereotype extends UML, but not its structure. You can 
add stereotypes to model elements to create specialized forms, but you cannot add new 
elements to UML.

• Tagged Values: Typically a string or Boolean value, you can associate tag definitions 
with specific stereotypes, or with all model elements of a specific type (class, 
association, operation parameter, and so on). It is common to use tagged values to add 
values to model elements, and to add information for transformations and code 
generation.

• Constraint: This is a set of rules that you can execute to determine a model or modeling 
element’s correctness. Constraints are usually defined using the Object Constraint 
Language (OCL), but can also be defined in natural languages and Java.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

How Are Profiles Used?
Profiles are used to model 
platform- or model-specific 
abstractions, for example:

Enterprise beans
Analysis classes

Profiles provide a 
domain-specific 
language for reusable 
assets:

Add to model templates
Use with domain-specific 
UML patterns
Use a transformation to 
create a platform-specific
model

Profile

Transformations

Model Template

UML Patterns

Theses are designed to recognize and
transform elements with stereotypes
from the profile.

Patterns may include parameters with 
stereotypes from the profile. Patterns 
can be used to add stereotypes to
model elements.

This is a profile added to the template 
and models created from it. Elements in 
the model can have stereotypes from 
the profile, with constraints ensuring
correct usage.

The profile marks up the template and models based on it, using constraints to enforce correct 
usage.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

UML Patterns and Transformations
UML Patterns and transformations 
provide 
two ways to transform models:

UML Patterns: Add details to 
a model. 

Observer pattern
Session Facade pattern

Transformations: Translate 
elements from one model to 
another.

UML to UML
UML to Java
UML to EJB

Rational Software Architect Transformations

Rational Software Architect Pattern

In Rational Software Architect and Software Modeler terms, UML patterns and 
transformations are tool automation features. UML Patterns are sets of model elements that 
are parameterized to be fitted into any existing model, to speed development and maintain 
consistency among software solutions (so that, for example, every instance of an Observer is 
designed the same way). Transformations can be used to translate model elements from one 
model to another automatically, (in order to speed the transition of elements from, for 
example, analysis to design or from design to implementation). 
UML Patterns
UML Patterns allow you to make use of existing solutions developed in the same type of 
model. For example, the Observer GoF pattern in Rational Software Architect contains 
design-level UML model elements that would be applied in a UML design model. You can 
harvest patterns from an existing model and apply them in multiple models of the same type. 
You can also harvest a pattern from a model and apply it in a different part of the same 
model.
Patterns have parameters so that you can customize them for a specific context, but patterns 
do not automatically translate themselves to work in different model types. You cannot, for 
example, apply a design pattern and get a code-level idiom (in Java code) without using 
transformations.
Transformations
Transformations take elements from one model and translate them into elements of a 
different model. Transformations are often applied to whole models, but you can apply them 
to selections from models as well. You could, for example, apply a transformation to move 
from a platform-independent model to a platform-specific model as you add in details about 
the platform and get closer to the implementation. When adding levels of refinement, you can 
transform from a platform-specific model to another, adding more details without changing 
the model type. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Model Templates
Allow the user to create 
a new model based on 
an existing structure

Used in conjunction with:
Profiles: Guide the user in 
structuring the model 
as they use profile
stereotypes
UML Patterns: Used to populate 
the model with standard
elements and structures

Model elements, 
package structures, and 
diagrams

Transformations: Provide 
a standard structure
source or target for a 
custom transformation



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Integration of Reusable Artifacts
Profiles, model templates, patterns, and transformations can be 
used together to increase the ROI of your extensibility 
investment.

Profiles Transformations

Source
Model

Model Templates UML Patterns

Source Model with
Markup, UML Patterns 

Applied

Target ModelSource
Model with

Markup

Supply 
with template

Populate 
the
model

Manually mark up 
the model with 
profile elements

Automatically 
mark up the model 
with profile 
elements, and/or
apply best practices

Transform the model 
based on rules that 
recognize
model markup

As you work with Rational Software Architect in your environment, you will come across 
situations where plain UML is not able to model the elements of your domain sufficiently. In 
addition, there will be patterns of usage that will accompany these domain-specific elements. 
You can develop UML profiles in Rational Software Modeler or Rational Software Architect 
for these situations.

Creating a UML pattern that can understand and use the domain-specific elements of your 
profile will help ensure that users are following best practices for your organization. As a 
final step in this workflow, the user would send the model through a transformation. Ideally, 
the model elements would then be updated according to the profile, with elements structured 
in a way that makes the best use of those model elements.  The transformation will 
understand the domain-specific elements, and will produce an output model that reflects this 
understanding.

UML Patterns and transformations can work together and extend each other:

• Transformations can apply patterns
• UML Patterns can execute transformations
• A UML pattern can mark up model elements with the appropriate stereotypes to prepare 

for a transformation
• Transformations and UML Patterns can be contained in the same plug-in project



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Classic Model Driven Development

Create the Use Case model

Create the analysis model

Create the design model

Complete the 
implementation using 

UML visualization

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

Traceability 
relationships 

are created as a 
byproduct of 
patterns and 

transformations



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

One alternative using Rational Software Architect and JET2 

Create the model at 
higher level of abstraction

Complete the 
implementation using 

UML visualization

JET2 based
Transformation

Model 2 Model
Transformation

Traceability 
relationships 

are created as a 
byproduct of 
patterns and 

transformations

Reverse 
engineering is 
also supported 

in Rational 
Software 

Architect v7

Architectural 
intellectual capital 
infused into the 
Transformation

Create the Use Case model

This represents one of various approaches customers have taken to reduce the amount of 
modeling (thus limiting variability) while infusing consistent architecture in the form of a 
pattern-based transformation.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Packaging Artifacts
Artifacts can be packaged and shared using the Reusable Asset 
Specification

Why package artifacts?
Group related and dependent 
artifacts into whole solutions

Recipes
Pattern Solutions
Eclipse Features

Install artifacts easily
Distribute assets without 
giving out source files, with no user compilation required
Add branding information

Package artifacts
The asset
Example models
Help and other documentation
Workbench menu items, 
actions and so on

Eclipse Plug-ins

Patterns Library

Transformations

Eclipse Plug-ins or
Features

Patterns Library

Transformations

RAS Archive

Often they are used together as recipes or solutions.  You will see during a running example 
how these assets can come together.  Note that this is just the starting point – additional 
patterns and transformations may be added to this recipe or solution.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

Demonstration: Reusable Artifacts
The instructor will now show you how to:

Use a reusable asset

The instructor will show you how to use a reusable asset.



Pattern Implementation Workshop with IBM Rational Software Architect Module 2 - Reusable Assets and Artifacts

© Copyright IBM Corp. 2007 2 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Review
What are cases where you would combine artifacts 
into a reusable asset?
Why extend the functionality of Rational Software 
Architect?
What artifacts can you build with 
Rational Software Architect that 
promote reusability?
Why develop pluglets?



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 3: Templating 101

Contents
Objectives 3-2
Original JET 3-5
EMFT JET 3-9
Review 3-13
Further Information 3-14



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Describe the structure and syntax of a JET template
Discuss the differences between JET (Original Templates) 
and EMFT JET

Templating 101

There are two variants of JET (Java Emitter Templates).  There’s the original JET function 
that came out sometime during Eclipse V1 and there’s the new set of enhancements that came 
out recently and upon which this workshop is based.



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of MDD

Modules 3 to 8: EMFT JET, 
XPath, Exemplar Analysis

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

We will see this slide several times throughout the workshop.  It will serve as a visual guide 
to the skills we are learning and how they fit into model Driven Development.



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Where Are We?
Original JET (JET1)
EMFT JET (JET2)



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Two JETs
JET1 (original JET)

Templates as helper classes
Control flow via embedded Java

JET2 (EMFT JET with Eclipse 3.2 and 
Rational Software Architect 7.0 and 
later )

JET1 support
Stand-alone transformations
Control flow, function via tags

Templating is the best way to produce large amounts of text programmatically.
When you worked with the “original JET” you were always writing a Java application 
(usually an Eclipse tool) that needed to generate a large amount of text output.  When you 
wrote your JET templates, you had to view them as helper classes that added a templating 
component to the larger application. The templates were marked up with imbedded Java 
expressions and code, and you had to be aware of the actual data model implementation (the 
business objects) that was referenced by that embedded Java.
In contrast, the new enhancements to JET allow you to build stand-alone transformations 
using nothing but templates. There is no Java required to invoke the templates, and the 
templates themselves do not require Java in order to access the data model. The Java has been 
effectively replaced by some 50 JET tags that encapsulate the common (and uncommon) 
templating behaviors.
Somebody almost always asks if the tags are really simpler to use than Java. That question is 
answered in the next few charts.



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

<%@  jet skeleton="skeletons/temp.skel“ class=“Temp“ … %>

public class <%= javaVar %> {.

<% if (someTest) { %>
public int getID() {

return id;
}

<% } %>

}

JET1 Templates

<%@ begins a JET directive

<%= begins an embedded expression

<% begins embedded Java statements

Start by looking at a representative JET (original) template. The template editor in Eclipse 
doesn’t colorize the text, but we’ll use blue to highlight the imbedded JET elements.
Each JET element begins with “<%” ( open angle bracket percent sign), and the next 
character tells what kind of element it is. There are directives that essentially act as compile 
options, there are elements that contain Java expressions, and there are elements that contain 
Java code. Note that the Java code in any one element doesn’t have to be syntactically 
correct, but the overall set of embedded Java does have to be syntactically correct.



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

JET1 Templates Visualized

public class Temp {

public int getID() {
return id;

}
}

public class <%= javaVar %> {.

<% if (someTest) { %>
public int getID() {

return id;
}

<% } %>

}

public String generate (Object argument) {
StringBuffer stringBuffer = new StringBuffer();

stringBuffer.append(“public class “);
stringBuffer.append( javaVar );
stringBuffer.append(“ {“);

if (someTest) {
stringBuffer.append(“public int getID() { return id;   }”);

} 
stringBuffer.append(“ }”);
return stringBuffer.toString();
}

Template is converted 
to a Java Class

Class is run to apply 
template to model

Take a look at what goes on “under the covers” with JET.
You should know that when you edit a Java source file and save, the Eclipse tooling will 
automatically compile that code and store the resulting .class file in another part of the 
project. The JET tooling works in much the same way. When you edit and save a JET 
template, a Java class is generated from the template source and is compiled. The resulting 
source and .class files are stored back into the same project.
The generated Java class has a generate method that takes an object, constructs a 
StringBuffer, appends a bunch of stuff to the StringBuffer, and finally returns the contents of 
the StringBuffer. The class is generated as follows:

1.Static text causes a line that appends the text to the StringBuffer 
2.Imbedded expressions are resolved and appended to the StringBuffer
3.Java source is copied as-is

When the generate method is invoked, the logic in that method performs the templating intent 
of the JET template, and returns the string result.



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Where Are We?
Original JET (JET1)
EMFT JET (JET2)



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

EMFT JET Templates
Use tags in addition to embedded Java

Common tasks
CRUD model data
Control template processing
Eclipse resource handling
Re-apply support

Extensible architecture
Write your own tags, parsers, inspectors, functions

Internally, the new JET (what we’ll call “JET” for the rest of this workshop) works much the 
same way as the old JET.  In fact, embedded Java is still supported.  The new JET has added 
a number of tags that support both common and uncommon templating behaviors.  In 
addition, JET is extensible, so you can write your own tags.



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

JET2 Templates

public class <c:get select=“$bean/impl/@name” /> {

<c:if select=“$bean/impl/@type = ‘keyed’” >
public int getID() {

return id;
}

</c:if>

}

Tags can write data from the model

Tags can control template processing

This is the same template (as examined in original JET1) written with JET2 tags.
The <c:get> tag reads a piece of data (usually a string) out of the model and writes it inline 
with the template.
The <c:if> tag performs some test, usually using data in the model.  JET will only process 
the contents of the <c:if> tag if that test resolves to True.   In this case, processing the 
tag’s content will result in the getID method source being written out as part of the template 
output.
While it may seem that these tags might be as complex (if not more so for Java programmers) 
as their embedded Java counterparts, there are a number of tags that are the equivalent of a 
great deal of embedded Java code.  For example, the <ws:file> tag will:

• Apply a template to the model
• Write the resulting string to a file in , but Eclipse only after

• Collaborating with the CM plug-in to make sure that the file is checked out and 
otherwise modifiable

• Collaborating with any editors that might have the file already open



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

JET1 Compared to          JET2
<%@  jet 
skeleton="skeletons/temp.skel“
class=“Temp“ … %>

public class <%= javaVar %> {.

<% if (someTest) { %>
public int getID() {

return id;
}

<% } %>

}

<%@ begins a 
JET directive

<%= begins an 
embedded expression

<% begins embedded 
Java statements

public class <c:get 
select=“$bean/impl/@name”
/> {

<c:if 
select=“$bean/impl/@type = 
‘keyed’” >

public int getID() {
return id;

}
</c:if>

}

Tags can write 
data from the 
model

Tags can control 
template 
processing



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Lab 1: Introducing JET
Complete the following tasks:

Create Transform
Examine Transform
Run Transform

Complete Lab 1 in the student workbook.



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Review
What are the differences between the original 
JET and EMFT JET?
Should you use JET or EMFT JET?  Why?



Pattern Implementation Workshop with IBM Rational Software Architect Module 3 - Templating 101

© Copyright IBM Corp. 2007 3 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Further Information 
Web resources
Eclipse Help

Web Resources
Eclipse website (www.eclipse.org)

Eclipse Help
Eclipse Help > EMF Developer Guide > Tutorials > JET Tutorial Part 1
Eclipse Help > EMF Developer Guide > Tutorials > JET Tutorial Part 2



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 4: The JET2 Data Model

Contents
Objectives 4-2
JET Data Model 4-4
XPath 4-8
Review 4-28
Further Information 4-29



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Describe the JET data model
Use XPath to query an XML model

The JET2 Data Model



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Where Are We?
JET Data Model
XPath

Query Expressions
Examples



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

JET Transforms
JET Transforms are programs

Have a tag-based language 
Have a data model

JET Tags
Encapsulate common transformation behaviors
Some act against the model
Some perform templating actions

Although you do not need to write any Java to build a JET transform, each JET transform is 
still a full-blown program in its own right, with syntax and a data model.
This course has talked about the JET tags that perform various templating functions. Most of 
those tags act against the model in some way. This section is going to cover how a tag 
describes the part of the model that is to be the target of the tag’s behavior.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Implementation level
Bunch of Java objects floating in a Java™ Virtual 
Machine ( JVM) environment
Accessed via embedded Java

Access via tags
Objects organized into DOM’s

Optimal for templates: simple, easy access
Navigation and access via XPath

Tags use XPath to target their function

JET Data Model

<%=   policy.getCustomerID()   %>

<c:get  select=" $policy/@customerID "  />

With JET, there are two ways to think of the data model:
1. The model is implemented as a set of Java objects, and if you can access them with 

imbedded Java elements.
2. However, you should view the data model as a set of objects organized in DOM’s (tree 

structures of data objects). It turns out that no matter what the data model 
implementation is, templates almost always access the data in those models as if the data 
were in a DOM. Once the data is made available as a DOM (even if the implementation 
is otherwise), you can use XPath to access data in that DOM.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

JET Data Model
Bridging implementation and tag access

Node
attr

Node

content

Node
attr

Node
attr

Node

attr

A loader associates a  new root 
node with a variable name An inspector specific to the source 

node class extracts parents, children 
and attributes from the model

To reiterate, the data model passed in to a JET transform can be in any shape or form, but the 
JET tags will access that data using XPath as if the data were in a DOM.
JET uses a loader to load a model into memory. The loader can load just the root node or the 
entire tree, but it returns the root node to JET. Inspectors help to access the data as if it were 
in a tree by answering questions like, given a model object: 

• What is its parent? 
• What are its children?
• What is its name?
• What are the names of its attributes?
• What is the name for the value of a given named attribute?
• What is the tag’s content?

Some loader and inspectors come with JET. They support:
• XML documents
• EMF documents (files and in-memory)
• UML
• Eclipse resources (IProject, IFolder, and IFile)

You can also write your own loaders and inspectors if you need to.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Where Are We?
JET Data Model
XPath

Query Expressions
Examples



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

XPath
Query Expression

Interpreted string that resolves into a value
String, List of objects, Object, integer, and so on

Can also perform calculations
Usually describes a model traversal

Two forms
XPath verbose
XPath abbreviated

90-10 rule: optional tokens defaulted

www.w3.org/TR/1999/REC-xpath-19991116 

An SQL statement is a string value that, when processed, returns data from a relational data 
base.
In a similar fashion, an XPath expression is a string that, when processed by an XPath 
processor, will resolve to some set of data from the model.
It is strongly recommended that you download this page: www.w3.org/TR/1999/REC-xpath-
19991116. It contains the proposed XPath specification, and is an extremely handy document 
to be able to refer to when you have a question about XPath.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

A query expression has:
A description of where to begin the traversal
A series of steps, separated by slashes (“/”) 

step 1 /  step 2 / ... / step n

Step
A simple traversal between related nodes
Consists of:

An axis
A node test
Predicates

Query Expressions

Most of the time XPath query expressions are used to navigate the model, and return the 
result of that navigation. The result of a query expression is the set of objects that you arrive 
at when that navigation finishes. Each tag has its own way of further using the query 
expression result.
When a query expression is being used to navigate the model, that query expression will 
somehow indicate where that traversal will begin (which model object) and will have some 
number of steps, each of which describes a primitive navigation.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Each query expression has to start somewhere
Three variants differ by beginning syntax

Expression starts with “/”
– Start node is the document node (top element’s parent)

Expression starts with “$”
– Start node specified via variable name
– Variable’s value is the node from which to start

Otherwise, start node is the Context Object
– For a “stand alone” expression, it’s the document node
– For a nested expression, it’s the “current” node

Query Expressions: Start and Context Objects

page/link

$page/link

/page/link

There are three ways that a query expression can indicate the start object for a model 
traversal:

1. If the expression begins with a forward slash, then the start object is the parent of the 
root. In XML terminology, this would be the document node – the parent of the high-
order element.

2. If the expression begins with a dollar sign, then the following token is the name of a 
variable that should already be associated with a model object. That model object is the 
start object.

3. Otherwise, the start object is the context node. This usually happens when a query 
expression has a nested query expression for the purpose of performing a test on some 
node. The node being tested is the context object, and is where that nested expression 
would start (if that expression doesn’t start with “$”  or “/”).

Note that the examples (boxed in blue) have two steps, one step, and two steps, respectively.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Resolving Query Expressions

step 1 /     step 2

D

C

B

A

G

F

E
Three ways to describe 

the start object

Each step:
• Describes how to go from one object to a related set of objects
• Is applied to each object resulting from the previous step

The query expression resolves 
into the results of the last step

Without the benefit of knowing exactly how a step is specified, let’s look at an abstract 
example.
Here, a query expression starts at model object A. You do not care which of the three ways to 
specify the start object was used in this example. It is enough to know that you start at object 
A.
The first step (of two) in this query expression describes a simple navigation that, when 
followed, takes you from object A to objects B, C, and D. For example, the step might be 
from the source node (object A) to the source node’s child nodes (B, C, and D in this case).
The second step also describes a simple navigation, and you follow that navigation from each 
of the objects resulting from the previous step (objects B, C, and D). From object B, that 
navigation takes you to objects E and F. There is no object that results from navigating from 
node C. When performing the step 2 navigation from node D, you get to node G.
Since there are only two steps in this example, the union of the nodes resulting from the last 
step (nodes E, F, and G) is the result of the query expression.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Query Expression Steps: Axis
Axis

Relationship between the source node and the 
target nodes

XPath supports
Child, descendant, parent, and ancestor
Following-sibling and preceding-sibling
Following and preceding
Attribute and namespace
Self, descendant-or-self, and ancestor-or-self

Each step is composed of three components, whether they are specified or defaulted. The first 
component is the axis, which describes the relationship between the source object and the 
target objects. Another way to think about the axis is as the direction of the simple traversal. 
Common axes include the child axis and the parent axis. 
Since attributes are exposed as attribute nodes (regardless of the model implementation) 
another common axis is the attribute axis. In order to access the value of an object’s attribute, 
you need to traverse from that model object to the attribute node representing that attribute. 
That traversal takes place along the attribute access.
There are other axes (listed on this chart). See the URL mentioned previously for a precise 
definition of each.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Query Expression Steps: Axis

Node attr

Node

content

Node attr

Node attr Node

attr

Parent

Child

Attribute

Ancestor

This visual demonstrates the traversals associated with common axis types.
Note that a singular axis (“Child” or “Ancestor”) might reach multiple nodes. There may be 
zero or one parent, but there can be many children, ancestors, and attributes.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Query Expression Steps
Node Test

Target nodes are filtered based on node name
– name must match the name specified in the step

<portlet>

<page id="3"  title="">

<form name="cust">

<link toPage="4">

<link toPage="6">

</page>    

</portlet>

… / child::link / …

… / link / …

axis        test

The second component of a step is the node test. The axis is traversed to reach a set of target 
nodes, and those nodes are filtered based on their names.
In the example on this chart, the step child::link (or just “link” for short since child is 
the default axis) traverses the model to three child nodes, and two of those nodes are named 
“link.”  The step results, therefore, in two nodes.
By the way, to bypass this node test and get all of the nodes reached by the axis, use the name 
“*” (asterisk). For example, “child::*” and the shorter “*” both result in traversing to all 
children of the source node.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Query Expression Steps
Predicate

A filter on a list of model objects
Form:  [ expression ]

Expression can use and, or, ! (not), >, <, =, and ()
Values can be:
– Variable references
– Literals 
– Numbers
– Function calls: position(), last(), count(), name(), namespace()
– Query expressions

– Node being tested is the expression’s context object

The axis and node test are used to arrive at a set of nodes. Then, the third component, the 
predicate, is used to further filter that set of nodes.
The predicate consists of one or more expressions, each of which is enclosed in square 
brackets. Each predicate is used to filter the list of nodes before the next predicate is used 
(examples below). If the expression for a predicate contains a query expression, the context 
node for the query expression is the node being tested by that predicate.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

– All of the children named “link” of all of the children named “page” 
of the expression’s context object

– All of the children named “link” of the object associated with $page

– The value of the name attribute of the high-level element’s child 
name “schema”, but only if the high-level element is named “root”

– All of the children named “page”  of the context object whose id
attribute value is “p001”

– “@id” is a nested query expression

Query Expression Examples

page/link

$page/link

/root/schema/@name

page [@id = ‘p001’]

Some examples follow.
Note that the character “@” (the “at sign”) is short for the attribute axis. The string “@name” 
is a step whose node test is “name” and whose axis is the attribute axis.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Variables indirectly reference nodes.
Variable names are passed as tag attributes

Are also passed in query expressions

Can have a scope

JET Variables

<c:setVariable select="/root/view"  var="view" /> 

<c:get select="$view/@label"  /> 

<c:iterate select="/root/page"  var="page" > 

<c:get   select="$page/@id"  />

</c:iterate>

We have shown how a “$” in front of a query expression means that the traversal defined by 
that query expression begins at a node associated with the given variable name.
This chart talks about variables more broadly, and about common ways to use them.
The first example shows how a variable can be set to a node, which in turn is the result of a 
query expression.   From that point on, as in the second example, that variable name can be 
used to begin query expressions. The query expression traversal would begin at that original 
node (the one found by the query expression in the first example). Note that since all 
templates in a JET transform share the same data model, this association remains in affect in 
subsequent templates.
Another common use of variables is as a reference to the current node in an iteration over a 
set of nodes. In the third example, the <c:iterate> tag will use a query expression to get 
a collection of nodes. The tag will then iterate over that collection of nodes. For each node, 
the <c:iterate> tag will associate that node with the given variable name (“page” in this 
case), and will then process the <c:iterate> tag content. When the tag content has been 
processed for the last node in the collection, the variable name is disassociated with the last 
node, and does not have a value after the </c:iterate>.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Functions within an XPath expression
Write the value of the attribute named “package”

Write the corresponding directory

JET XPath Functions

<c:get select=" $view/@package "    /> 

<c:get select="translate( $view/@package , '.' , '/' )"    /> 

XPath query expressions can also make use of functions. 
In the first example, a <c:get> tag writes out a value that appears to be a package name –
something in the form of a.b.c.d.
The second example shows the same <c:get> tag, except that the query expression in the 
first example is now an argument to the translate function. The translate function replaces all 
occurrences of one character with another character. This particular function example 
converts a package name (form: a.b.c.d) into the corresponding folder name (for example, 
a/b/c/d) by replacing all of the periods with forward slashes.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

JET XPath Functions
Other XPath Functions in JET

camelCase
cardinality
className
escapeJavaWhitespace
lower-case
lowercaseFirst
xmlEncode
packageName
removeWhitespace
trimWhitespace
upper-case
uppercaseFirst

Common functions you will likely use for simple formatting include:
• lower-case lowers the case of every character in a string to lower case
• lowercaseFirst lowers the first character in a string to lower case
• upper-case raises every character in a string to upper case
• uppercaseFirst raises the first character in a string to upper case



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Calculations within an XPath expression
Set a variable to an integer value

Increment the integer value of a variable

JET XPath Functions

<c:setVariable select=" 1 "  var="counter"    /> 

<c:setVariable select=" $counter + 1"  var="counter"    /> 

You can also use query expressions to perform calculations.
The first example sets variable “counter” to the integer value of 1. The second example adds 
1 to the current value of variable “counter”, and stores the result back into variable “counter”.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

XPath Examples

<root>

<library>

<librarian name="Paige Turner" empno="123456" />

<book id="001" pages="420">A Pattern’s tale</book>

<book id="002" pages="210" missing="true">The Seventh Sense</book>

<book id="005" pages="293" missing="false">Patterns and You</book>

<book id="021" pages="10"   missing="false">For the Love of patterns</book>

</library>

</root>

/root/library/book

1

1



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

XPath Examples

<root>

<library>

<librarian name="Paige Turner" empno="123456" />

<book id="001" pages="420">A Pattern’s tale</book>

<book id="002" pages="210" missing="true">The Seventh Sense</book>

<book id="005" pages="293" missing="false">Patterns and You</book>

<book id="021" pages="10"   missing="false">For the Love of patterns</book>

</library>

</root>

/root//book

1

1



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

XPath Examples

<root>

<library>

<librarian name="Paige Turner" empno="123456" />

<book id="001" pages="420">A Pattern’s tale</book>

<book id="002" pages="210" missing="true">The Seventh Sense</book>

<book id="005" pages="293" missing="false">Patterns and You</book>

<book id="021" pages="10"   missing="false">For the Love of patterns</book>

</library>

</root>

/root/library/*

1

1



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

XPath Examples

<root>

<library>

<librarian name="Paige Turner" empno="123456" />

<book id="001" pages="420">A Pattern’s tale</book>

<book id="002" pages="210" missing="true">The Seventh Sense</book>

<book id="005" pages="293" missing="false">Patterns and You</book>

<book id="021" pages="10"   missing="false">For the Love of patterns</book>

</library>

</root>

/root/library/book [ 2 ]

1

1

/root/library/book [ position() = 2 ]

2

/root/library/book [ last() ]2

1



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

XPath Examples

<root>

<library>

<librarian name="Paige Turner" empno="123456" />

<book id="001" pages="420">A Pattern’s tale</book>

<book id="002" pages="210" missing="true">The Seventh Sense</book>

<book id="005" pages="293" missing="false">Patterns and You</book>

<book id="021" pages="10"   missing="false”>For the Love of patterns</book>

</library>

</root>

/root/library/book [ @missing ] [ 2 ]

1

1

/root/library/book [ 2 ] [ @missing ]2

2

3 /root/library/book [ 1 ] [ @missing ]

3 False Boolean value

This subtlety is worth illustrating. 
Example 1 is the 2nd book that has an attribute named “missing”.
Example 2 is the 2nd book if it has an attribute named “missing”. 
Example 3 is the 1st book if it has an attribute named “missing”.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

XPath Examples

<root>

<library>

<librarian name="Paige Turner" empno="123456" />

<book id="001" pages="420">A Pattern’s tale</book>

<book id="002" pages="210" missing="true">The Seventh Sense</book>

<book id="005" pages="293" missing="false">Patterns and You</book>

<book id="021" pages="10"   missing="false">For the Love of patterns</book>

</library>

</root>

/root/library/book [3]

1

1

/root/library/book [3]/..

2

2

/root/library/book [3]/../librarian3

3

The double period is short for the parent axis.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

XPath Examples

<root>

<library>

<librarian name="Paige Turner" empno="123456" />

<book id="001" pages="420">A Pattern’s tale</book>

<book id="002" pages="210" missing="true">The Seventh Sense</book>

<book id="005" pages="293" missing="false">Patterns and You</book>

<book id="021" pages="10"   missing="false">For the Love of patterns</book>

</library>

</root>

/root/library [ book ] 1

/root/library/book [ author ]2

1

False Boolean value2

Example 1 is the collection of library elements that have a child named “book”. 
Example 2 is the collection of book elements that have a child named “author”. 
In both cases, the string inside the predicate is not a numeric value or a quoted string. The 
value is assumed to be a query expression. Since the query expression does not start with “$” 
or “/”, the start node for the navigation is the node being tested (for instance, the library node 
in the first example). Since no axis is specified, it is assumed to be the Child axis, and the 
string is used as the node test for the step. If there are children by that name, the returned 
collection of objects is not empty, and it is converted by the predicate (remember, it’s a 
boolean expression) to true.   If there are no children by that name, the returned collection is 
empty. Empty collections are converted to a false boolean value.



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Review
What is a query expression?
How are variables used?
What are the three components of a step?  
How do those three components work 
together?



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

Further Information 
Web resources

Web Resources
• XPath Specification:http://www.w3.org/TR/1999/REC-xpath-19991116 
• Chris Aniszczyk and Nathan Marz. “Create more -- better -- code in Eclipse with JET.” 

IBM developerWorks.  http://www-128.ibm.com/developerworks/opensource/library/os-
ecl-jet

• Adrian Powell. Model with the Eclipse Modeling Framework, Part 2: Generate code with 
Eclipse's Java Emitter Templates. IBM developerWorks. http://www-
128.ibm.com/developerworks/opensource/library/os-ecemf2/



Pattern Implementation Workshop with IBM Rational Software Architect Module 4 - JET2 Data Model

© Copyright IBM Corp. 2007 4 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 5: Basic JET Tags

Contents
Objectives 5-2
The Basic JET Tags 5-3
Review 5-12



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Use basic JET tags

Basic JET Tags

Of the 50 or so tags that come with JET, you’ll find yourself using only nine tags for most of 
your template authoring.



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

The Basic JET Tags
ws:file

Applies a template to the model
Stores the result in a generated file

c:get, c:set, and c:dump
Read and write model data

c:iterate
Processes its body once for each node matching criteria

c:choose, c:when, and c:otherwise
Process the body of exactly one case or default tag

c:if
Conditionally processes template body

These are the nine most commonly used JET tags.



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

<ws:file>
Applies a template to the model 
Stores the result in a generated file
Attributes

template
– Relative path name of the template to be applied

path
– Full name of the file to be generated
– Format:  “/project/relativePath”

replace
– Optional
– Whether or not to replace file if it already exists

It’s important to note that the entire data model (including all of the currently defined 
variables) is made available to the specified template when it is applied. Any changes made 
by that template to the data model, or to variables, will continue to be in effect after the tag 
completes.



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

<c:get>
Reads from the model
Writes the value
Attributes

select 
– An XPath expression describing the value to be written

<c:get   select=“$bean/@name” />



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

<c:dump>
Writes out the subtree beneath an object

XML representation
Several formatting options

Attributes
select

– Query expression describing a single model object

It’s important to note that the entire data model (including all of the currently defined 
variables) is made available to the specified template when it is applied. Any changes made 
by that template to the data model, or to variables, will continue to be in effect after the tag 
completes.



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

<c:set>
Processes its template body
Stores the result back into the model
Attributes

select
– An XPath expression describing the target model object

name
– The name of the attribute whose value is to be set

<c:set   select=“$bean"   name=“impl" ><c:get   select=“$bean/@name” />Impl</c:set>

Once all of the nested tags have been processed, the value of the <c:set> tag’s content is 
the new value of the attribute being set.



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

<c:iterate>
Queries a set of objects from the model

Processes its template content for each object
Attributes

select
– An XPath expression describing a collection of model objects

var
– A variable name to be assigned to the current iteration object

delimiter
– A string to be inserted after processing each object except the last

<c:iterate   select=“$plugin/view"   var=“currentView" >
….

<c:get   select=“$currentView/@label” />

….

</c:iterate>

The <c:iterate> tag will retrieve a List of model objects that are the result of the 
specified query expression. The <c:iterate> tag will then process each object in the 
List. For each object, the <c:iterate> tag will associate that node with the variable name 
specified in the var attribute, and the content of the <c:iterate> tag will be processed.



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

<c:choose>
Processes the content of one of its when tags

Or it processes the otherwise tag by default
<c:choose select=“$data/@widget" >

<c:when test=“ ‘text’ “ >
private Text   text<c:get select=“$data/@name"/>;
private String entered<c:get select=“$data/@name"/>;
</c:when>

<c:when test=“ ‘checkbox’ ">
private Button  button<c:get select=“$data/@name"/>;
private boolean <c:get select=“$data/@name"/>Setting;
</c:when>

<c:otherwise>
private Object  object<c:get select=“$data/@name"/>;
</c:otherwise>

</c:choose>

Note that the select and test attributes are both query expressions. That means that if you 
want to compare a constant string, like ‘checkbox’ above, you need to enclose it within single 
quotes. In other words, the value of the test attribute, specified between double quotes, is a 
string surrounded by single quotes.



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

<c:if>
Evaluates the given XPath expression

Converts results to a Boolean value
– One or more objects true
– No objects false
– Integer 0 false

Processes template content if test is true
Attributes

test – XPath expression
var – the value before being converted to boolean

<c:if  test=“$action [@doubleclick = ‘true’]” var=“dcAction” >
list.setDoubleClickAction(<c:get select=“$dcAction/@id” />);

</c:if>

The var attribute is useful if you are testing for the existence of an object. The variable 
specified by the var attribute is set to the located object, if one exists. This saves you from 
having to perform the query expression again inside the <c:if> contents.



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Questions?
Eclipse-based help for EMFT JET

Reference



Pattern Implementation Workshop with IBM Rational Software Architect Module 5 - Basic JET Tags

© Copyright IBM Corp. 2007 5 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Review
What tag creates files?
What tags write model data? 
What are the basic conditional tags?



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 6: More JET Tags

Contents
Objectives 6-2
Tags and Tag Libraries 6-4
JET2 Control Tags 6-8
Simple Tag Combinations 6-14
Lab 2: Using XPath 6-18
Review 6-19



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Use tag libraries
Use tags in each library
Use simple tag combinations

More JET Tags



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Where Are We?
Tag Libraries
JET Tags
Simple Tag Combinations



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Tags and Tag Libraries
Tags are configured into tag libraries

Standard JET2 control tags
Flow control; Pattern-level; Model CRUD

Standard JET2 workspace tags
Eclipse resource creation

Standard JET2 Java tags
Java files, resources, or packages; Merge

Standard JET2 format tags
Unique values

DPTK tags
DPTK compatibility layer

Tags (whether shipped as part of JET, or written by other JET authors) are packaged together 
into tag libraries. When you want to use a tag you have to point JET at the tag library 
containing that tag. You can then use the original tag that you wanted to use, as well as any 
other tag in the tag’s tag library.

There are four standard tag libraries shipped with JET: Control Tags, Workspace Tags, Java 
Tags, and Format Tags. The tag libraries are available in Eclipse.

A fifth tag library, the DPTK Compatibility Layer, contains tags that look exactly like the 
DPTK tags, but which are implemented on JET. Using this tag library lets you run DPTK 
patterns as JET transformations without modifying the templates.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Using a Tag Library
Define the library in the transform’s plugin.xml

importLibrary
id refers to the taglibrary extension defining the tag library

Value is defining plugin id + “.” + tag library name
usePrefix defines the namespace for all tags in the library
autoImport indicates whether templates need to include a 
tag library directive

There are two ways to declare that you want to use the tags in a tag library in your templates.
The first way is to add a bit of XML configuration to the transform’s plugin.xml. This makes 
tags in that tag library available to all templates in the transform, but only if the
autoImport attribute is set to true.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Using a Tag Library
Use a taglib directive in each template

taglib
prefix is the namespace for all tags in the library

For this template only
id refers to the taglibrary extension defining the tag library

Value is defining plugin id + “.” + tag library name

Either use the directive or the plugin reference

<%@taglib prefix="ws" id="org.eclipse.jet.workspaceTags" %>

The other way to declare that you want to use the tags in a tag library is to use a taglib 
directive in each template that needs to use the tags.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Where Are We?
Tag Libraries
JET Tags
Simple Tag Combinations



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Standard JET2 Control Tags Library

iterate (select, var, delimiter)
if (test, var)
get (select, default)
choose (select)
when (test)
otherwise ()
visitor (select, var)
visit (test)
userRegion
initialCode
Include (template, passVariables)
log (severity)
setVariable (select, var)

<%@taglib prefix=“c” id="org.eclipse.jet.controlTags" %>

These next few charts list the tags in each of the four standard tag libraries, as well as the 
attributes defined for each tag.
The <c:userRegion> and <c:initialCode> tags are used to identify areas of 
generated content that can be modified by the user. If the transform is re-applied, those user 
changes will be moved to the new versions of the generated content.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Standard JET2 Control Tags Library (cont.)

addElement (select, name, var)
addTextElement (select, name, var, cdata)
removeElement (select)
copyElement (select, toSelect, name, recursive, var)
load (url, var, urlContext, loader, type)
set (select, name)
marker (description)
invokeTransform (transformId, passVariables)
dump (select, format, entities)
loadContent (var, type, loader)
nodeAttributes (node, name, delimiter)
replaceStrings (replace, with)
stringTokens (string, delimitedBy, name, delimiter, reverse, tokenLength)

<%@taglib prefix=“c” id="org.eclipse.jet.controlTags" %>

The *Element tags let you create, copy, and delete entire model objects within the model.
The <c:load> tag is useful for dealing with multiple input models.
The <c:loadContent> tag is useful for simple model-to-model transformations from one 
DOM to another.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Standard JET2 Workspace Tags Library

project (name)
folder (path)
file (template, path, encoding, replace, derived)
copyFile (binary, replace, srcEncoding, targetEncoding, src, srcContext, 
target)
rebuildWorkspace

<%@taglib prefix=“ws” id="org.eclipse.jet.workspaceTags" %>

The tag <ws:project> creates a project with the specified name for you, if one does not 
already exist.

<ws:folder> does the same with folders.

<ws:copyFile> is useful for copying binary files like JARs, or image files from the 
transform itself, to generated projects.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Standard JET2 Java Tags Library

importsLocation (package)
impliedImport (name) 
import
package (name, srcFolder, project)
resource (name, package, srcFolder, template, replace, encoding, derived)
class (name, package, srcFolder, template, project, replace, encoding, 
derived)
merge (rules, rulesContext)

<%@taglib prefix=“java” id="org.eclipse.jet.javaTags" %>

The tags <java:package>, <java:resource>, and <java:class> are like
<ws:folder>, <ws:file> and <ws:file>, respectively. They take naming 
attributes in the Java style (for example, class and package names) instead of the traditional 
Eclipse URL format.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Standard JET2 Format Tags Library

replaceAll (value, replacement, regex)
uc (offset, length)
lc (offset, length)
formatNow (pattern)
milliseconds
unique
uuid

<%@taglib prefix=“f” id="org.eclipse.jet.formatTags" %>

The tag <f:formatNow> writes out the current time, formatted using a pattern just like
the SimpleDateFormat class in Java.

<f:milliseconds>, <f:unique>, and <f:uuid> each write out a unique value 
every time they’re used (even by the same tag in an iterate loop). They are useful in writing 
many kinds of persisted data.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Where Are We?
Tag Libraries
JET Tags
Simple Tag Combinations



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Simple Tag Combinations
Write the id attribute for all the books in library

<root>

<library>

<book id="001" pages=230" />

<book id="002" pages="410" />

</library>

</root>

<c:iterate select="/root/library/book" var="b" >

The value of attribute id is <c:get select="$b/@id" />.

</c:iterate>



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Simple Tag Combinations
If there’s a book element with id = “002”, then 
write that element to the log

<root>

<library>

<book id="001" pages="230" />

<book id="002" pages="410" />

</library>

</root>

<c:if test="//book [@id = ‘002’] " var="b" >

<c:log severity="info"><c:dump select="$b" /></c:log>

</c:if>



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Simple Tag Combinations
Write the id of the book whose title is “Patterns”

<library>

<book id="001" pages="230" >

<title>Patterns</title>

</book>

<book id="002" pages="410" >                               

<title>More Patterns</title>

</book>

</library>

<c:get  select="/library/book [title = ‘Patterns’]/@id"  />

The solution will not appear on this slide until the instructor hits RETURN. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Simple Tag Combinations
Write the title of the book whose id is “002”

<library>

<book id="001" pages="230" >

<title>Patterns</title>

</book>

<book id="002" pages="410" >                               

<title>More Patterns</title>

</book>

</library>

<c:get  select="/library/book [@id = ‘002’]/title"  />

The solution will not appear on this slide until the instructor hits RETURN. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Lab 2: Using XPath
Complete the following tasks:

Modify 15 templates according to the instructions 
in the templates

Complete Lab 2 in the student workbook.



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Review
What are the 4 JET tag libraries?
What must you do to reference a tag from a tag 
library?
How is the tag library prefix used?



Pattern Implementation Workshop with IBM Rational Software Architect Module 6 - More JET Tags

© Copyright IBM Corp. 2007 6 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 7: JET Examples

Contents
Objectives 7-2
Writing an Arbitrary List 7-4
Generating an Arbitrary Number of Files 7-8
Attributes and Derived Attributes 7-13
Lookups and De-Normalizations 7-22
Getter Names 7-27
Comma-Separated Lists 7-30
Lab 3: Authoring Transforms Manually 7-32
Review 7-33



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Discuss common JET scenarios
Discuss JET best practices

JET Examples



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Where Are We?
Writing an Arbitrary List
Generating an Arbitrary Number of Files
Attributes and Derived Attributes
Lookups and De-Normalizations
Getter Names
Comma-separated Lists



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Writing an Arbitrary List

<bean name="Customer" >

<attribute name="id"      type="String"  />

<attribute name="name" type="String"  />

<attribute name="type"   type="int"  />

</bean>

You have a 
model… …and you want to write out a 

Java declaration for each bean 
attribute



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Writing an Arbitrary List (cont.)

<bean name="Customer" >

<attribute name="id"      type="String"  />

<attribute name="name" type="String"  />

<attribute name="type"   type="int"  />

</bean>

So you:

• Collect all of the elements

• Iterate over that collection

• Write the Java source that declares the attribute

"/bean/attribute" 
describes the set of 
elements over which to 
iterate.



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Writing an Arbitrary List (cont.)
<bean name="Customer" >

<attribute name="id"      type="String"  />

<attribute name="name" type="String"  />

<attribute name="type"   type="int"  />

</bean>

private String id;

private String name;

private int type;

<c:iterate select="/bean/attribute"  var="a" >

private <c:get select="$a/@type" />  <c:get select="$a/@name" />;

</c:iterate>



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Where Are We?
Writing an Arbitrary List
Generating an Arbitrary Number of Files
Attributes and Derived Attributes
Lookups and De-Normalizations
Getter Names
Comma-separated Lists



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Generating an Arbitrary Number of Files

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" >

<method name="markSpecial"  />

<method name="archiveHistory"  />

</object>

<object class="OrderImpl"  interface="IOrder" >

<method name="fulfill"  />

</object>

</root>

You have a 
model… …and you want to write out a 

Java class and a Java interface 
for each object element



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Generating an Arbitrary Number of Files (cont.)

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" >

<method name="markSpecial"  />

<method name="archiveHistory"  />

</object>

<object class="OrderImpl"  interface="IOrder"   >

<method name="fulfill"  />

</object>

</root>

Note how each <object> subtree 
contains information for one set of files.



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Generating an Arbitrary Number of Files (cont.)

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" >

<method name="markSpecial"  />

<method name="archiveHistory"  />

</object>

<object class="OrderImpl"  interface="IOrder"   >

<method name="fulfill"  />

</object>

</root>

<ws:project  name="{/root/@project}" />

<ws:folder  path="/{/root/@project}/src" />

<c:iterate  select="/root/object"  var="obj" >

<ws:file template="interface.jet"

path="/{/root/@project}/src/{/root/@dir}/{$obj/@interface}.java" />

<ws:file template="class.jet"
path="/{/root/@project}/src/{/root/@dir}/{$obj/@class}.java" />

</c:iterate>

Creates two files for 
each object element

Names created using 
model data

Use <ws:copyFile> 
for binary files

main.jet

Some things were left out of the above example because of space restrictions. In addition to 
the <ws:project> and <ws:folder> tags, there should also be two <ws:file> tags – one for the 
.project file and one for the .classpath file. When you create new projects, you also have to 
create any metadata files or folders that are needed by any of the project’s natures.
Also note that you really did not need the <ws:folder> tag, because the source folder would 
have been created automatically when the first Java class was created (all folders containing a 
file are created automatically if they don’t already exist). In the case where there are no
<object> elements in the model, though, no files would have been created, and the source 
folder wouldn’t have been created either. That is why you include a <ws:folder> tag here.



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Generating an Arbitrary Number of Files (cont.)

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" >

<method name="markSpecial"  />

<method name="archiveHistory"  />

</object>

<object class="OrderImpl"  interface="IOrder"   >

<method name="fulfill"  />

</object>

</root>

package <c:get select="/root/@pkg" />;

public class <c:get select="$obj/@class" /> implements <c:get select="$obj/@interface" /> {

<c:iterate  select="$obj/method"  var="method" >

public void <c:get select="$method/@name" />() {

}

</c:iterate>

}

class.jet

Use the data from the 
subtree of the current 
<object> element in the 
iteration in main.jet

Just to reinforce: templates all share the same data model and variable values. Use the 
passVariables attribute to restrict variable access.



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Where Are We?
Writing an Arbitrary List
Generating an Arbitrary Number of Files
Attributes and Derived Attributes
Lookups and De-Normalizations
Getter Names
Comma-separated Lists



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Attributes and Derived Attributes

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" >

<method name="markSpecial"  />

<method name="archiveHistory"  />

</object>

<object class="OrderImpl"  interface="IOrder"   >

<method name="fulfill"  />

</object>

</root>

You have a model, but 
there is duplication of data.

‘.' instead of '/'

Same root ("Order") with 
applied naming conventions

The smaller the model, the 
easier it is to use the transform



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Attributes and Derived Attributes (cont.)
Attributes

Present in the model when the transform starts
Derived Attributes

Not present when the transform starts
Added to the model by the transform



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Attributes and Derived Attributes (cont.)
When attribute A is a function of attribute B

Make attribute A a derived attribute
Remove it from the input model
Add logic in main.jet to calculate its value

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" >

<method name="markSpecial"  />

<method name="archiveHistory"  />

</object>

<object class="OrderImpl"  interface="IOrder"   >

<method name="fulfill"  />

</object>

</root>

Replace all "." with "/"



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Attributes and Derived Attributes (cont.)

<c:set select="/root"  name="dir"><c:get select="translate( /root/@pkg , '.' , '/')" /></c:set>

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" />

<object class="OrderImpl"  interface="IOrder"   />

</root>

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" />

<object class="OrderImpl"  interface="IOrder"   />

</root>

<c:set> stores it’s content into 
an attribute in the model

<c:get> writes the result of an 
XPath query expression

main.jet



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Attributes and Derived Attributes (cont.)
When attributes A and B share a root value

Make attributes A and B derived attributes
Remove them from the input model
Add a new attribute to the model to hold the root
Add logic in main.jet to calculate A and B

<root  pkg="org.commerce"  dir="org/commerce"  project="Commerce">

<object class="CustomerImpl"  interface="ICustomer" >

<method name="markSpecial"  />

<method name="archiveHistory"  />

</object>

<object class="OrderImpl"  interface="IOrder"   >

<method name="fulfill"  />

</object>

</root>



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Attributes and Derived Attributes (cont.)

<c:iterate select="/root/object" var="obj">

<c:set select="$obj"  name="class"><c:get select="$obj/@name" />Impl</c:set>

<c:set select="$obj"  name="interface">I<c:get select="$obj/@name" /></c:set>

</c:iterate>

<root  pkg="org.commerce" project="Commerce">

<object class="CustomerImpl"  interface="ICustomer"  name="Customer"/>

<object class="OrderImpl"  interface="IOrder"               name="Order"      /> 

</root>

<root  pkg="org.commerce" project="Commerce">

<object class="CustomerImpl"  interface="ICustomer"  name="Customer" />

<object class="OrderImpl"        interface="IOrder"         name="Order"/>

</root>

main.jet

Constant text inside <c:set>



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Attributes and Derived Attributes Best Practices
Names of things should be in the model

Stored as derived attributes
Calculated once, used many times

Project names
Repeated file names
Java class and interface names
Method, variable, and property names

main.jet has three parts
A model traversal that calculates derived attributes

– The only time you write to the model
A model traversal that generates artifacts

– Only reads from the model
Optional dump of the model (using <c:dump/>)

– Make a habit of looking at this for debugging

These are some of the most important best practices. 



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Attributes and Derived Attributes
<c:set select="/root"  name="dir"><c:get select="translate( /root/@pkg , '.' , '/')" /></c:set>

<c:iterate select="/root/object" var="obj">

<c:set select="$obj"  name="class"><c:get select="$obj/@name" />Impl</c:set>

<c:set select="$obj"  name="interface">I<c:get select="$obj/@name" /></c:set>

</c:iterate>
<ws:project  name="{/root/@project}" />
<ws:folder  path="/{/root/@project}/src" />
<c:iterate  select="/root/object"  var="obj" >

<ws:file template="interface.jet"  path="/{/root/@project}/src/{/root/@dir}/{$obj/@interface}.java" />
<ws:file template="class.jet"        path="/{/root/@project}/src/{/root/@dir}/{$obj/@class}.java" />

</c:iterate>
<ws:file template="dump.jet"  path="/{/root/@project}/dump.xml" />

<root  pkg="org.commerce" dir="org/commerce" project="Commerce">

<object class="CustomerImpl" interface="ICustomer" name="Customer" >

<method name="markSpecial"  />

<method name="archiveHistory"  />

</object>

<object class="OrderImpl" interface="IOrder" name="Order"   >

<method name="fulfill"  />

</object>

</root>

main.jet

1

2

3



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Where Are We?
Writing an Arbitrary List
Generating an Arbitrary Number of Files
Attributes and Derived Attributes
Lookups and De-Normalizations
Getter Names
Comma-separated Lists



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Lookups and De-Normalizations

<root>

<bean name="Customer" >

<attribute name="id"      typeref="02"  />

<attribute name="name" typeref="01"  />

</bean>

<types>

<type id="01"  java="java.lang.String" />

<type id="02"  java="java.lang.Integer" />

</types>

</root>

You have a model with 
Java types factored 
out… 

…and you want to write 
out the Java declaration 

(name and type) for each 
attribute

Attribute id has type 
java.lang.Integer



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Lookups and De-Normalizations (cont.)
<root>

<bean name="Customer" >
<attribute name="id"      typeref="02"  />
<attribute name="name" typeref="01"  />

</bean>
<types>

<type id="01"  java="java.lang.String" />
<type id="02"  java="java.lang.Integer" />

</types>
</root>

private java.lang.Integer   id;

private java.lang.String   name;

<c:iterate select="/root/bean/attribute"  var="a" >

<c:setVariable  select=" ???  "  var="t" />

private <c:get select="$t/@java" />  <c:get select="$a/@name" />;

</c:iterate>

• Variable a refers to the 
current attribute element

• Variable t refers to the correct 
type element

• But what’s the query 
expression to use in the 
c:setVariable tag?



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Lookups and De-Normalizations (cont.)

<root>

<bean name="Customer" >

<attribute name="id"      typeref="02"  />

<attribute name="name" typeref="01"  />

</bean>

<types>

<type id="01"  java="java.lang.String" />

<type id="02"  java="java.lang.Integer" />

</types>

</root>

Attribute id has type 
java.lang.Integer

Assume that variable $a refers to this 
<attribute> element

Then the <type> element you want 
can be described as:

the <type> element whose id 
attribute has the same value as 

$a/@typeref

/root/types/type [@id = $a/@typeref]



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Lookups and De-Normalizations (cont.)
<root>

<bean name="Customer" >
<attribute name="id"      typeref="02"  />
<attribute name="name" typeref="01"  />

</bean>
<types>

<type id="01"  java="java.lang.String" />
<type id="02"  java="java.lang.Integer" />

</types>
</root>

private java.lang.Integer   id;

private java.lang.String   name;

<c:iterate select="/root/bean/attribute"  var="a" >

<c:setVariable  select=" /root/types/type [@id = $a/@typeref]  "  var="t" />

private <c:get select="$t/@java" />  <c:get select="$a/@name" />;

</c:iterate>

• Variable a refers to the current 
attribute element

•Variable t refers to the correct 
type element

•The c:setVariable isn’t 
necessary, but is useful if you 
need to refer to the <type> 
element several times

The <c:setVariable> tag is not really needed here. If you take it out, you will need to combine 
the select expressions in the <c:setVariable> and the <c:get> tags. The <c:setVariable> is
often used to perform a common model traversal, and cache the result.



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Where Are We?
Writing an Arbitrary List
Generating an Arbitrary Number of Files
Attributes and Derived Attributes
Lookups and De-Normalizations
Getter Names
Comma-separated Lists



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

Getter Names

<bean name="Customer" >

<attribute name="id"      type="String"            />

<attribute name="name" type="String"           />

<attribute name="person"   type="boolean"    />

</bean>

You have a 
model…

…and you want to create and 
store method names for each bean 
attribute back into the model 
getter

getter="getId"

getter="isPerson"

Remember: boolean 
getters begin with "is"



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Getter Names (cont.)
<bean name="Customer" >

<attribute name="id"      type="String"  />

<attribute name="name" type="String"  />

<attribute name="person"   type="boolean"  />

</bean>

<c:iterate select="/bean/attribute"  var="a" >

<c:choose select=" $a/@type" >

<c:when  test="  'boolean' " >

<c:set  select="$a"  name="getter">is<c:get select=" uppercaseFirst( $a/@name)" /></c:set>

</c:when>

<c:otherwise>

<c:set select="$a" name="getter">get<c:get select=" uppercaseFirst( $a/@name)" /></c:set>

</c:otherwise>

</c:choose>

</c:iterate>



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

Where Are We?
Writing an Arbitrary List
Generating an Arbitrary Number of Files
Attributes and Derived Attributes
Lookups and De-Normalizations
Getter Names
Comma-separated Lists



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30

Comma-Separated Lists

<method name="getTax" >

<arg name="amount"     type="float"  />

<arg name="city"           type="String"  />

<arg name="taxable"     type="boolean" />

</method>

You have a 
model…

…and you want to 
generate a call to the 

method

getTax(amount, city, taxable);

How can you get the right number of commas?



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

31

31

Comma-Separated Lists (cont.)
<method name="getTax" >

<arg name="amount"     type="float"  />

<arg name="city"           type="String"  />

<arg name="taxable"     type="boolean" />

</method>

getTax(amount, city, taxable);

getTax( <c:iterate select="/method/arg" var="a" delimiter=", "><c:get select="$a/@name"/></c:iterate>);

Iterate over all of 
the arg elements

delimiter attribute: what 
to put between iterations

Writes out the 
argument name

The "getTax" in the template snippet above should really be a <c:get> tag pulling the value 
of the name attribute of the method object. Unfortunately there wasn’t enough room on the 
chart without using a font that was too small.



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

32

32

Lab 3: Authoring Transforms Manually
Given:

A partial transformation
An example of what the transformation is to 
generate

Complete the following tasks:
Add tags and templates to the transformation to 
generate required output

Complete Lab 3 in the student workbook.



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

33

33

Review
What is main.jet and what does it do?
What are the three sections in main.jet?
What is the difference between an attribute and 
a derived attribute?



Pattern Implementation Workshop Module 7 - JET Examples

© Copyright IBM Corp. 2007 7 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

34

34



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 8: Exemplar Analysis

Contents
Objectives 8-2
Finding a Pattern to Implement 8-4
Preparing to Author a Model-to-Text Transform 8-14
Authoring the Model and Templates 8-18
Lab 4.1: Exemplar Authoring 8-32
Lab 4.2: Exemplar Authoring 8-33
Lab 5: Console Transform 8-34
Review 8-35
Further Information 8-36



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Exemplar Analysis
Objectives:

Describe: 
Where to look for patterns
How to find patterns
The model-to-text transform authoring roadmap

Perform exemplar analysis
Author a model-to-text transform



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Where Are We?
Finding a Pattern to Implement
Preparing to Author a Model-to-Text Transform 
Authoring the Input Model and Templates



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Finding a Pattern to Implement
Look at existing reusable assets

Each asset class has unique reuse attributes
Is there a better implementation?

Think twice before creating a reusable asset
Consider authoring a model-to-text transform

Déjà vu
If you think you’ve solved the same problem before

If you want to author a model-to-text transformation, but are not quite sure what the pattern 
should be, there are several techniques you can use to identify a potential pattern.
A great place to start is with existing reusable assets.  Many development organizations use 
reusable assets as a way to communicate information that is used over and over while 
building applications.  These reusable assets point to pattern authoring opportunities. It turns 
out that often model-to-text transformations are actually more consumable that other reusable 
asset classes.  More on this later.
Another way to identify a potential pattern is to look at when you might create your own 
reusable assets.  For the reasons listed above, you might want to try authoring a pattern 
instead of creating another reusable asset.
Finally, most experienced transformation authors know to look for situations when they solve 
the same problem several times (and are likely to solve that same kind of problem in the 
future).



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Re-Assessing Reusable Assets
Reusable Asset

Valued for time saved per reuse
But there is a cost associated with each reuse

Learning curve
Customization required

Typical classes of reusable assets
Libraries
Best practices papers
Frameworks
Pattern descriptions (GoF, Enterprise)
Code samples
Wizards

Usually, attention is paid to the time, cost, and resource savings from using reusable assets.  
As authors of reusable assets, though, we need to understand that there are costs associated 
with reusable assets, too.  Not only is there a learning curve, but often the solution provided 
by the reusable asset requires customization before it solves the problem that you are trying 
to solve.
For example, a best practices document requires the user to read the document and 
understand it well enough to mentally apply the best practices to the problem at hand.  The 
user then has to manually create the solution using the IC in the best practices document.  
Note that there is a good deal of learning curve required as users read and self-educate 
themselves on the IC.
That’s not to say that the different classes of reusable assets should be avoided.  You just 
need to understand the total cost and benefit of reuse for your specific IC when implemented 
as a particular form of reusable asset.



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Patterns and Reusable Assets
Key reusable asset question:

The reusable asset is a solution to a recurring 
problem.
How much of that solution has to be customized?

Different customization requirements
Libraries

No customization at all
Frameworks

Heavy customization of relatively small number of files
– But those files have exactly the same shape across applications

Best Practices, Design Docs, and so on
All files manually created

Each reusable asset class requires some form of learning curve, but that’s a fixed cost.  No 
matter how many times you reuse an asset, you still only have to learn how to apply that asset 
only once.
The more important cost for reusable asset use is the time it takes to customize the solution 
provided by that reusable asset.  
So what is that cost?
Libraries generally require no customization.  Meanwhile, frameworks provide most of a 
solution and only require the user to create only relatively few files that sit on top of that 
framework.  As mentioned above, documents tend to require the user to create the complete 
solution manually.



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Customization Cost for Reusable Assets
Customization Required per ReuseNone Total

Libraries FrameworksWizards Best Practices

Design Docs

GoF Patterns

Enterprise Patterns

Code Samples

Cost per reuse increases

Property-Driven

Shift for composition to the file level

Solve these problems with M2T transforms: 10x - 100x reduced customization

Model-to-Text 
Transforms

This chart shows where on the “customization-required” spectrum each reusable asset class 
falls.  The blue arrow shows that part of the spectrum for which model-to-text transforms 
might be the best option in terms of customization required after each application of the 
intellectual capital.



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Deriving Transforms from Reusable Assets
Start with some reusable asset or intellectual 
capital

Best Practices or Design Document

Reuse that intellectual capital to create a 
number of files

This may take some time
Every reuse of this asset requires this much work
One of several hidden costs

Reusable Asset solution probably needs some 
customization



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Deriving Transforms from Reusable Assets
Model-to-text (M2T) transforms generate to one of 
several scopes

Single file
– Eclipse dialog box

Small set of collaborating files
– ISSW Exception Framework

Component
– WAS-optimized Java™ DataBase Connectivity (“ JDBC”) beans

Deployable application
– In one or more Eclipse projects

Assess the artifacts created with the Reusable Asset
Choose the smallest of the above scopes containing those 
artifacts



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Deriving Transforms from Reusable Assets
Determine what additional assets are needed:

To fill out the scope
By the assets you’ve created
By other applicable reusable assets

– Internationalization, packaging guidelines, naming conventions

Make sure that:
All necessary artifacts are identified
All applicable reusable assets have been applied

This gives you a closed set of artifacts
A M2T transform should be used to generate these



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Example: Portlet Best Practices
A whitepaper described core collaborations

Between portlet and action classes
Between action and state classes
Between state, cargo beans, and JavaServer
Pages™ (JSPs)

Built a portlet as described by the whitepaper
Added Eclipse project and meta-data
Added portal deployment descriptor

Scope was an Eclipse project

Authored M2T transform to generate portlet 
projects



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

A Potential Reusable Solution
Reusable assets as a guide

When applied, a rough pattern emerges in the 
code resulting from the application
You have a solution to a specific problem
Customization can solve similar problems

Déjà vu can result in a rough pattern, too
You solve the same kind of problem over and over
Pick any of those implementations

– Later is probably better that earlier



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Where Are We?
Finding a Pattern to Implement
Preparing to Author a Model-to-Text 
Transform 
Authoring the Input Model and Templates



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Exemplar Analysis Overview
Methodology for the authoring of model-to-text 
transforms

Scalable to arbitrarily large and complex transforms
Applicable to any model-to-text transform
Must be relatively fast

Interview-style approach between two roles
Domain SME understands the pattern to be authored
Pattern SME understands the methodology
Analogous to how patent attorneys work

Requires as input an Exemplar
Representative example of what the pattern is to produce
Well and consistently written
Might take 18 months to write
Stop and go home if you don’t have one



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Preparing to Author a Pattern 
“A pattern is a solution to a recurring problem”

– Grady Booch

What’s your recurring problem?
Don’t know?  Review the “Where to look” charts.

Keep solving the problem

The solution will eventually stabilize
You’ll eventually stop improving on it



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Find a Pattern to Implement
Things to do to your solution as it stabilizes

Refactor classes

Expand the pattern to cover more artifacts
Adding j-unit tests or Help pages

Refine your naming conventions

Debug and optimize your code



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Where Are We?
Finding a Pattern to Implement
Preparing to Author a Model-to-Text Transform 
Authoring the Input Model and Templates



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Building A Good Exemplar
Exemplar

A representative output of a model-to-text 
transform

Model
Transform

Artifacts

What’s different 
between 

problems?

What’s the same 
between 

problems?

Solution to a recurring 
problem (AKA “Best 

Practices”)

Exemplar: Artifacts that best 
illustrate the variability in the 

model and the pattern



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Good Exemplars
A good exemplar demonstrates variability

In the model
In the pattern

Example: The JavaBeans™ Pattern
Beans can have any number of properties

A good exemplar has more than one property
The getter for a boolean property starts with “is”

Implement both boolean and non-boolean properties

Not even a perfect exemplar replaces the SME



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Exemplar Analysis
Exemplar Analysis is a methodology

Supported by the Exemplar Authoring tool
Based on a set of Best Practices

Transform design
Input model
JET tag usage

A working knowledge of Exemplar Analysis 
requires a working knowledge of these Best 
Practices



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

A Monologue on the Model
For model-to-text, there are only two model 
design goals. The model design:

Must contain all required dynamic values
Must be optimized to make template access simple

In practice, there is a pattern to the model



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Model-to-Text Input Model Best Practices
Model is viewed as a DOM by the transform

Regardless of actual implementation
Top-level node

Always called “root”
Never has any attributes

2nd-level node
Has all data needed to apply transform once, including subtree
Is at the 2nd level so the model can have many occurrences
Drives the generation of singly-occurring artifacts

Lower-level nodes
Drive generation of multiply-occurring artifacts
Normalized according to artifact and content cardinality

Attributes
Used to derive artifact names and language tokens

Transform will add derived attributes holding complete names
For example, for PolicyImpl class, a model attribute for “policy” and a derived attribute 
for PolicyImpl

Class, package, and file names are rarely passed in as part of the model
Built up by the transform using naming conventions that are part of the transform

Never build names on the fly
Build once, store in the model and read many times

root

app

mult



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Model-to-Text Input Model Notes
The model

Does not reflect the user’s view of the problem
Does not contain terminology familiar to the user
Is not the model originally populated by the user
Is not an input to Exemplar Analysis, but an output



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Exemplar Analysis
Given an Exemplar

Extract the input model schema
Extract the transformation logic (templates)

Steps
Identify all dynamic content in the exemplar
Normalize that content

– Build a schema to describe that normalization

Create templates from artifacts
– Replacing dynamic content with tags



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

The Simple Approach
Only consider artifacts that are unique

Start by identifying artifact roles
Artifact Role: Why is that artifact in the exemplar?
Same role generation by the same template

Model the unique roles and their cardinality 
Group according to cardinality
Name the groups
Create a template for each role



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Listing the Roles
Sample exemplar

Project (Authorization Beans)
Classpath file (.classpath)
Project description (.project)
Logger (org.secure.log.Logger)
Interface (IRole, IUser,..)
Bean (RoleImpl, UserImpl,…)



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

First, name the entire group
Bean-set

Keep it to one word

Identify the one-time roles
Project (Authorization Beans)
Classpath file (.classpath)
Project description (.project)
Logger (org.secure.log.Logger)

Create nested sub-groups for repeating roles
Bean contains Interface and Bean roles

Modeling Unique Roles

bean-set

bean

Project 
Classpath 
ProjDescription 
Logger

Bean 
Interface

root



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

Nested groups become types
Implemented as XML elements

Roles become templates

Transform creates files
Using the templates
Driven by model types

Modeling Unique Roles

<root  >

<bean-set >

<bean />

</bean-set  >

</root>

bean-set

bean

Project 
Classpath 
ProjDescription 
Logger

Bean 
Interface

root



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

Exemplar Analysis
Model types drive the creation of artifacts

But they lack the information required to generate 
content

Need to add attributes to model types
Naming
Language tokens

– Class, variable, method names

Distinguish between input and derived
Names of Eclipse artifacts are usually derived 

– Naming conventions

Input attributes are usually simple and atomic



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30

Exemplar Authoring
Use Rational tooling

To help with Exemplar Analysis
To author the JET transform



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

31

31

Demonstration: Authoring a Transformation
The instructor will now show you how to:

Author a Transformation
Perform Exemplar Analysis
Run the Transformation

The instructor will show you how to author a transformation.



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

32

32

Lab 4.1: Exemplar Authoring
Given:

Authorization Bean exemplar
Complete the following tasks:

Author a transform for the exemplar

Complete Lab 4.1 in the student workbook.



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

33

33

Lab 4.2: Exemplar Authoring
Given:

Update Site and Feature Projects Exemplar
Complete the following tasks:

Author a transform for the exemplar

Complete Lab 4.2 in the student workbook.



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

34

34

Lab 5: Console Transform
Given:

Exemplar
Complete the following tasks:

Author a transform for the exemplar

Complete Lab 5 in the student workbook.



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

35

35

Review
Why does the root node in the model never 
have attributes and actions?
What is the purpose of the second-level node 
in the model?
What are the three kinds of Eclipse resources 
that a transform can generate?



Pattern Implementation Workshop with IBM Rational Software Architect Module 8 - Exemplar Analysis

© Copyright IBM Corp. 2007 8 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

36

36

Further Information 
Web resources

Web Resources
• Pattern Solutions: Use patterns to drive productivity in software design and development: 

http://www-128.ibm.com/developerworks/rational/products/patternsolutions/



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 9: Introduction to EMF

Contents
Objectives 9-2
What is EMF? 9-3
Labs 9-13
Further Information 9-15



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Objectives:
Describe EMF (Eclipse Modeling Framework)
Understand how you can use EMF along with 
JET2
Understand how to create a simple data editor 
using EMF

Introduction to EMF



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

What is EMF
EMF = Eclipse Modeling Framework
Eclipse standard mechanism to manage and 
store structured data

Eclipse-based products and plug-ins need to 
manage structured data

Lets you define a data structure (model), 
generate the runtime code, use the runtime 
code, and map to persist data stores (like XML)
For example, use EMF to create a simple API 
for an XML file
EMF designer also includes the ability to create 
a simple editor automatically

In other words, EMF let’s you define your Eclipse data structures (models), generate the 
runtime code, use the runtime code, and map to persistence data stores, ( like XML). 
You can use the EMF capabilities to create custom XML file editors.  The EMF designer 
even includes the ability to create a simple editor for XML (or EMF) files.



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Importance of EMF
Standard data definition and management 
framework
Used by most non-trivial extensions to Eclipse
Other technologies and frameworks ( such as 
JET2, UML2, and GMF) take EMF and extend 
it



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Key capabilities
Can define (model) data structures
Can generate runtime data classes
Includes runtime framework to support the data 
classes
Can map runtime data classes to persistent 
storage( like XML)

Lets you create XML schema-specific API
Unifies UML models, Java, and XML

Start with a model of the data, annotated Java 
code, or XML structure, and generate the other two
The three forms become interchangeable



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

EMF can enhance JET
Remember that JET transformations take XML 
(or EMF) files as input
You can use EMF-based API to manipulate 
JET input files

For example, create a custom wizard that uses the 
EMF API

You can use EMF-based editors to manipulate 
JET input files

Code

Wizard
or …?

EMF Based
Editor

XML
File

EMF Based
API

JET
Transformation

You can use EMF to provide different ways to create and maintain the input files for JET 
transformations, such as an EMF-based editor.



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

EMF used in UML-to-code transformations
JET2 generates an input.ecore model 
representing the input model
In another module, you will use this EMF model 
to map between a UML front end and JET2

CodeUML XML
File

EMF Based
API

JET
Transformation

Model to Model
Transformation



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

EMF Files
ECore

Contains the data Schema
Even if you import the definition from another 
source, like XML Schema, EMF stores it in ECore
ECore files are used at Design Time and for Code 
Generation
ECore files are not used at run time

Generated Java files used at run time
GenModel

Augments an ECore file with code generation 
settings
Maintains a link back to the corresponding ECore
file
Used at Design Time and for Code Generation

ECore = schema of the data model
GenModel = code generation options



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Creating EMF definition
Can be imported

Annotated Java
IBM® Rational Rose®

Rational Software Architect or Rational Software 
Modeler model
Generic UML2 model
XML Schema

Can be generated from scratch
Create a new ECore file and populate it



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Contains the data Schema as a model
Note: All of the EMF data definition classes are 
prefixed with E, like EClass for the class
Contains

EPackage
EClass
EOperation
EReference

Reference from one class
to another

EAttribute
…

Contents of ECore Schema definition file

The examples on the right show the same example twice.  The top right is the ECore file in 
the ECore editor.  The lower right is the ECore file as a diagram.



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Java Code Generation
The Genmodel file is used to customize Java 
Code Generation

Very customizable
Each EMF data class (EClass) maps to a Java 
Interface and a Java implementation Class
The EClass defines getters and setters for 
attributes

Example: aSampleClass.getName()
It also generates the Eclipse Plugin 
configuration files
The result is an easy-to-use API for the data 
files



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Runtime editor
The code generator includes the option to 
generate a simple data schema-specific 
runtime editor automatically



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Lab 6.1: Introducing EMF
Given:

The JET Console Transformation
After completing this lab, you will be able to: 

Import an XML Schema Definition into EMF
Generate EMF Framework-based code
Create an EMF-based Editor which
acts as a front-end 
to a JET transformation



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Lab 6.2: Optional EMF Lab
This optional lab builds a simple EMF model 
and an EMF editor by hand
It does not start with any existing data schema
It does not link into JET



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Further Information 
Web Resources

Web Resources
• www.eclipse.org/emf (Eclipse page for EMF)
• www.eclipse.org/emft (EMFT is a set of technologies that extend the base EMF 

framework.)



Pattern Implementation Workshop with IBM Rational Software Architect Module 9 - Introduction to EMF

© Copyright IBM Corp. 2007 9 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 10: Introduction to Transformations

Contents
Objectives 10-2
Configuring and Running Transformations 10-7
Lab 7: Customize a Transformation 10-12
Creating a Model-to-Text Transformation 10-14
Lab 8: Create a Model to JET Transformation 10-38
Review 10-39
Further Information 10-40



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Introduction to Transformations
Objectives:

Describe the role of model transformation in the Model-
Driven Development approach to software development
Connect a UML model to an EMFT JET based 
transformation using Model Mapping
Apply a transformation in Rational Software Architect

This module introduces model transformations in Rational Software Architect. After briefly 
introducing the role of transformations in Model-Driven Development, the module discusses 
how to configure a transformation and then moves on to how to connect a UML model to an 
EMFT JET based transformation using Model Mapping.



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Classic Model-Driven Development

Create the Use Case model

Create the analysis model

Create the design model

Complete the 
implementation using 

UML visualization

Trail of 
traceability 

relationships 
left by patterns 

and 
transformations

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Transformations
Transformations create elements in a 
target model (domain) based on 
elements from a source model
Often, the source domain is more 
abstract than the target domain
Examples:

Based on a use-case model, create an 
analysis model containing analysis 
classes, sequence diagrams, and so on, 
that realize the use cases following 
company standards
Based on the analysis model, create a 
design model( containing the appropriate 
design classes) that incorporates 
elements of the company’s security and 
persistence frameworks, and that follows 
the company standards
Starting with a UML model, apply 
Rational Software Architect’s standard 
“UML to EJB” transformation to create 
EJB code elements Transformations



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Model Transformation Uses
There is flexibility in choosing transformation sources and 
targets:

Transform a model to a model of the same type
Transform a model across levels of abstraction
Transform one type of model to another
Extend another transformation

Transformation ToolModel Model

Transformation 
Definition

The following transformations are possible:
• Across models of the same type: When adding levels of refinement, you may 

transform from a PSM to another PSM.  More details are added, but the type of model 
remains the same.

• Across levels of abstraction: Move from a PIM model to a PSM model as you add in 
details about the platform and get closer to the implementation.

• From one type of model to another: With transformations you can transform UML to 
code. This is the most common transformation available in Rational Software Architect.

• Extend another transformation: In Rational Software Architect transformations can 
be built on top of existing transformations. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

Where Are We?
Configuring and Running Transformations
Creating a Model to Text Transformation

This section introduces the role of transformations in model development with Rational 
Software Architect. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Applying a Transformation
Create a new instance of the transformation
Set up a mapping model (optional)
Choose an appropriate project target
Create source to target relationships 

Transformation Profile

Mapping
Model

(Optional)

Transformation
Configuration

Transformation

Model File

Design
Model Model

(L)

Markup

To apply a transformation, you must configure it by specifying properties. Transformation 
configurations define how a specific transformation will be applied. You can define multiple 
transformation configurations for the same transformation. The model to be transformed can 
include markup, such as keyword applications (often from UML patterns applied to the 
model) that get used in the transformation. The transformation can apply stereotypes from 
any profiles created for the more platform-specific target model.
As an optional step you can also use a mapping model. Mapping models describe how the 
transformed elements will be created in your target; what is going to be the the name of the 
created artifact going to be going to be, under which package will they reside, and so on.
The last step is applying the transformation configuration to generate the transform elements 
in the target you specified.



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Creating a Transformation Configuration
You can create multiple 
transformation configurations 

Configurations allow all 
transformations to be rerun many 
times without having to add or modify 
settings each time.

A transformation configuration 
associates a transformation with a:

Configuration name
Transformation source
Transformation target 
Properties

Transformation instances
Appear in the Project Explorer as .tc 
files
Are executed using the pop-up menu 
of the .tc file
.tc files can be shared via a CM 
system

Before you can apply a transformation to a source model, you must first create a 
transformation configuration. A transformation configuration is an instance of a 
transformation that contains the information that the transformation uses to generate the 
output that you expect, such as the specific transformation source and target, and its 
properties.
The Configure Transformations dialog shows what transformations are installed and which 
configurations are based on them, with the instance shown under the transformation. Clicking 
the transformation or instance in the left pane brings up the properties of the item in the right 
side of the dialog.



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

Transformation Configuration Execution and Editing

Transformation instances
Appear in the Project Explorer as .tc files
Are executed using the context menu of the .tc file

The tabbed Transformations Configuration editor:
Organizes information in the configuration
Reports problems with the configuration in the Problems view

Before you can apply a transformation to a source model, you must first create a 
transformation configuration. A transformation configuration is an instance of a 
transformation that contains the information that the transformation uses to generate the 
output that you expect, such as the specific transformation source and target, and its 
properties.
The Configure Transformations dialog shows what transformations are installed and which 
configurations are based on them, with the instance shown under the transformation. Clicking 
the transformation or instance in the left pane brings up the properties of the item in the right 
side of the dialog.



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Using a Mapping Model
A mapping model allows you to rename elements and rearrange 
the structure of transformed elements in the target model.

Generate the mapping model from the Transform Configuration wizard, 
or the multi-page editor.
Specify the file property of the artifacts.
Set the transform to use the mapping model.

Model
(L)

Transformation
Configuration

Mapping
Models

Model
(L)

A transformation assigns default file names to the files and folders that it generates based on 
the logical element names and structure of the source model. You can use a mapping model 
to specify an alternate file name for files and folders that a transformation generates. You can 
also use a mapping model to specify the file structure of files that a transformation generates.
A mapping model contains an artifact for each element selected in the source model. Each 
artifact refers to, and has the same name as, the corresponding source model element. You 
can specify an alternate file name by changing the file name property of an artifact. The next 
time you run a transformation, you can select the mapping model that you edited. The 
transformation assigns the file name (that you specified in the file name property of each 
artifact) to the corresponding target element.
You must create a mapping model in the same workspace and project as the selected model 
elements.



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Uses for Mapping Models
Use a mapping model in cases where:

You need to create different file names and structures in the target 
model
It is impossible or impractical to change the names of elements in 
the source model

In many cases, the structure of the model produced by the transformation will have to be 
different from the source model. When you need to seed the code based on a design model, 
the names and structure of design packages might not make sense in the target coding 
environment, and they might need to be mapped to a different structure of physical packages. 
A mapping model can assist you in handling this transition, so that you do not have to make 
any temporary changes to the design model just to perform the transformation.
In some cases, it is not desirable just to change the structure of the source model, such as 
when you might need to transform the same model to many different transformation targets, 
with different structures. Developing sets of mapping models for different target types is the 
best solution for these cases.



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Lab 7: Customize a Transformation
Complete the following tasks:

Create the Workspace
Create the Source and Target Projects
Populate the Source Project
Apply a UML-to-Java Transformation
Use a Mapping Model 

Complete Lab 7 in the student workbook. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Where Are We?
Configuring and Running Transformations
Creating a Model to Text Transformation

This section introduces the role of transformations in connecting a UML model to an EMFT 
JET based transformation using Model Mapping within Rational Software Architect. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Ways to Drive Architecture: Classic MDD

Create the use-case model

Create the analysis model

Create the design model

Complete the 
implementation using 

UML visualization

Trail of 
traceability 

relationships 
left by patterns 

and 
transformations

EMFT JET based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

MDD Using Rational Software Architect with EMFT JET

Create the model at 
higher level of abstraction

Complete the 
implementation using 

UML visualization

EMFT JET-based
Transformation

Model 2 Model
Transformation

Trail of 
traceability 

relationships 
left by patterns 

and 
transformations

Reverse 
engineering 

also supported 
in Rational 
Software 

Architect v7

Architectural 
intellectual capital 
infused into the 
Transformation

Create the Use Case model

This represents one of various approaches customers have taken to reduce the amount of 
modeling (thus limiting variability) while infusing consistent architecture in the form of a 
pattern based transformation.



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Creating a Complete Solution

Reference
Solution

JET TransformationInput
Model

User
Model Front-end

1. Jet Authoring

2. Model-to-model authoring

Using Rational Software Architect transformations, you can create EMFT JET input from 
UML models.



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Steps to Create Model to JET Transform
1.Determine what (and how) UML elements will map to the input 

model of the JET transformation
2.Create an EMF Project from the ECore model of the JET 

Transformation
3.Generate code for the EMF model
4.Create a mapping transformation from the UML ECore model 

to the JET transformation ECore model
5.Generate the mapping transformation code
6.Add the JETRule code to the mapping transformation
7.Test and run the mapping transformation



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Mapping Models Contain Mapping Declarations

Mapping models are ECore models
Mapping models contain references to the ECore models that 
are being mapped. For example: 

UML.ecore – input model
Ecore.ecore – output model (input into JET2)

Mapping models are persisted like other ECore Models; they 
are serialized as XML files

Package2EPackage

Class2EClass



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Mapping Model in XML Editor



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Input Object Output Object
Package2EPackage

Mapping Declarations

Mapping Declarations specify how to 
create or update an output object 
given an input object
Mapping Declarations are named, 
for example, Package2EPackage



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Move Mapping
Input Object Output Object

The transformation source code 
generated for a Move 
implements a Rule that copies 
the value of one input attribute 
to one output attribute



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

Submap Mappings
Input Object Output Object

The transformation source 
code generated for Submap 
implements a Rule that calls
another mapping

Can be in a different mapping 
model



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Submap Mappings

Input Object Output Object

Referenced Mapping Declaration
formal formal

actualactual

eClassifiers[o] = 
map((Class)packagedElement[i])actual must be castable 

to formal

formal must be directly 
assignable to actual



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Custom Mappings
Input Object Output Object

The transformation source code 
generated for Custom implements a 
Rule that wraps the custom Java code 
provided by the transformation author



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Custom Mapping Example

This Custom mapping checks the 
input object’s Stereotype attribute 
nsURI to see if it’s been specified and 
if available assigns that value to the 
NsURI attribute of the output object; 
and if not , the mapping 
availableuses availableuses the value 
of the name attribute of the input 
object for the assignment

Input Object (UML) Output Object (Ecore)

Input Attribute Output Attribute

Custom



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

New Mapping Project Wizard
File > New > Project File > New > Other

Extensibility must be installed, and Modeling and XML Development 
enabled



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

27

27

New Mapping Project Wizard



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

28

28

New Mapping Project Wizard

Default values provided
Map Name
Package Name
Versions

Input and Output Models
Metamodels for models that will be 
used by generated transformation as 
sources or targets
ECore Metamodels

.ecore
UML Profiles

.epx

.uml (profiles only)



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

29

New Map Wizard
Add another mapping file to an existing mapping project
File > New > Other



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

30

Model to Model Transformation Mapping Editor

Mapping Editor Diagram View

Mapping Editor Properties View
Mapping Editor
Outline View

Generated Project
and Transformation
Source Code

Problems View

Mapping Editor 
Pop-up MenuStart Here



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

31

31

Mapping Editor: Diagram View

Current Mapping 
Declaration

Mapping Toolbar
Add Input Object

Add Output Object

Current Mapping

Input Object
Output Object

Start Here

Mappings can be created via 
drag and drop from input 
to output or by doing 
multi-select and then 
toolbar button, context 
menu, or shortcut key



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

32

32

Mapping Editor Properties View

Mapping declarations and 
externally coded mapping 
refinements in other projects 
can be referenced

Code assist with template 
support is available to aid in 
authoring in-line refinements



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

33

33

Mapping Editor: Outline View

Commands for setting the order in which the generated 
transformations will be executed at runtime can be set 
from the pop-up menu in the Outline view

Mapping declarations, as well as individual mappings within 
mapping declarations, can be ordered



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

34

34

Mapping Editor: Problems View

Reporting missing source 
code for in-line refinement

Line number refers to 
error location in text 
view of mapping file



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

35

35

Generating Transformation Source Code

The command to generate transformation 
source code is available on Explorer’s pop-up 
menu for mapping file

You can also generate transformation 
source code from the pop-up menu for 
mapping root in Mapping Editor

Command is disabled if changes to the 
mapping model have not yet been saved



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

36

36

Generated Transformation Source Code (cont.)

Transformation 
infrastructure

Transform class 
generated for each 
mapping 
declaration

Plug-in and project 
infrastructure 



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

37

37

Typical Extension: Chain to JET Transformation
Transformations can be chained together
A model-to-model transformation can be chained to a JET model-to-text 
transformation

The intermediate model need not be persisted

/**
* Creates a root transformation. You may add more rules to the transformation here
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @param transform The root transformation
* @generated NOT
*/

protected RootTransformation createRootTransformation(ITransformationDescriptor descriptor) 
{

return new RootTransformation(descriptor, new MainTransform()) {
protected void addPostProcessingRules() {

add(new JETRule(“MyJetTransformation")); //$NON-NLS-1$
}

};
}

Add post-processing rule to createRootTransformation method in 
generated TransformationProvider class 

Override @generated tag
Specify JET transformation



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

38

38

Lab 8: Create a Model to JET Transformation
Given

JET Transformation
Code Snippets
Test Model

Complete the following tasks:
Create a UML model-to-text transformation

Complete Lab 8 in the student workbook. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

39

39

Review
What is a transformation configuration?
Describe potential uses for custom transformations.
Describe possible uses for mapping models.
How does JET2 work with Rational Software Architect 
transformations?
How do you select the right 
transformation technology?



Pattern Implementation Workshop with IBM Rational Software Architect Module 10 - Intro to Transformations

© Copyright IBM Corp. 2007 10 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

40

40

Further Information 
Rational Software Architect Help
Web Resources
Literature

Rational Software Architect Help Topics
• IBM Rational Software Modeler API

Web Resources
• Alan Brown, “An introduction to Model Driven Architecture Part I: MDA and Today's 

Systems.” http://www-128.ibm.com/developerworks/rational/library/3100.html
• Alan Brown, “An Introduction to Model-Driven Architecture Part III: How MDA affects 

the iterative development process” http://www-
128.ibm.com/developerworks/rational/library/apr05/brown/

Literature
• Frankel, David S. Model-Driven Architecture: Applying MDA to Enterprise Computing.

Indianapolis, IN: Wiley, 2003.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

1

®

IBM Software Group

© 2006 IBM Corporation

DEV498: Pattern Implementation Workshop with IBM 
Rational Software Architect
Module 11: Designing Reusable Assets

Contents
Objectives 11-2
Model-Driven Development (MDD) 11-4
Summary 11-25
Review 11-26



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

2

2

Designing Reusable Assets
Objectives:

Describe the role of assets in a Model-Driven Development 
process
Describe the component parts of a transformation-based 
solution
Describe the steps in designing an asset in Rational 
Software Architect



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

3

3

Course Outline in the Context of MDD

What is the process for 
figuring out what I need?

JET2 based
Transformation

Model 2 Model
Transformation

Model 2 Model
Transformation

You will see this slide several times throughout the workshop.  It will serve as a visual guide 
to the skills that you are learning, and to how they fit into MDD Model Driven Development. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

4

4

Model-Driven Development (MDD)
MDD is an approach to software development in which the focus and 
primary artifacts of development are models (as opposed to programs)

MDD is based on two time-proven methods:
Abstraction: Made possible by the use of a modeling language
Automation: Made easy by the use of development tools

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ << 
sum << endl;}

««sc_modulesc_module»»
producerproducer

start out1

ABSTRACTION AUTOMATION

««sc_modulesc_module»»
producerproducer

start out1

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ << 
sum << endl;}

Realm of Realm of 
modelingmodeling
languageslanguages

Realm of Realm of 
toolstools



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

5

5

Assets in Model-Driven Development
Rational Software Architect enables MDD by providing 
modeling and automated model transformation

UML models used to specify the solution
Separate the key information from the details of the target environment 
or platform

UML Patterns and transformations handle the details of transforming 
each input model into a target that is closer to the final artifacts

Design decisions 
made using models.

High Level Model

Code Artifacts

Patterns automate the 
transitions from models 
to working solution.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

6

6

MDD Development Process
Instead of capturing architectural 

decisions in a document or Web
site and hoping that developers 
apply them manually, capture them 
explicitly as assets and automate 
their application.

There the two distinct activities in the MDD process:
• Expertise Capture and Automation: Build the MDD framework that partially 

automates the development of software that follows a particular architectural style.
• Application Development: Apply your MDD framework to build software components, 

applications, and solutions. These activities are performed by different groups of people 
and require different skills. You should use Rational Software Architect to build UML 
profiles, patterns, and transformations. 

People must create modeling conventions and develop transformations to automate code 
generation. The key dependencies between modeling conventions and transformation 
development are:

• UML profiles and patterns must be available for application modeling. Sometimes, this 
dependency is managed in an iterative manner.

• To generate implementation artifacts, transformations must be available. Often, the target 
platform and the transformations are selected first. In others, this decision is deferred.

8.1.1 Framework development
MDD framework development is concerned with:

• Capturing expertise in the form of architectural principles and patterns
• Implementing sample components and defining the technical architecture
• Designing and implementing UML profiles and Rational Software Architect patterns and 

transformations
8.1.2 Application development

• Uses an MDD framework to rapidly build well architected applications and components.
• Includes modeling the application using UML and applying transformations.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

7

7

Asset Design Process
Transformations drive the process of creating assets 
with Rational Software Architect extensibility artifacts

Designing a transformation involves creating:
Internal Model: An abstraction of the target domain 
represented as UML
Front-end Transformation: From representation to 
abstraction
Back-end Transformation: From abstraction to target 
domain

These elements are invisible to the user
The transformations are chained together, and the user 
runs them with one gesture



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

8

8

Activity Flow of a Typical Transformation

The top-level activity represents the transformation as seen by the user.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

9

9

The Process



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

10

Create an Example of the Desired Output
A domain expert creates an exemplar, which represents the best solution 
the author can write

Goals:
Constrain the rest of your development to a known problem
Provide a model of best practices output to drive creation of the back-end 
transformation
Include as much variability as can be imagined

Suggestions:
Allow enough time for care to 
be taken in creating an 
exemplar
The exemplar must work; you may 
include unit tests as part of the 
exemplar.
Expect to make changes to 
the exemplar during 
development



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

11

Build an Abstraction of the Exemplar
The exemplar author creates a model of the exemplar that describes its 
variable aspects

Goals
Associate artifacts found in the exemplar (projects, folders, files, …) with types, 
properties, and so on in the model
Identify groups of artifacts that fulfill the same role
Build an instance of the model that is an equivalent description of the exemplar

Suggestions
Finding the right match 
between a UML type or property
and an exemplar concept can 
be difficult.

If and when you find a 
match, typically some 
aspects of UML must be 
ignored or augmented
An internal model may 
have several equally valid 
representations in UML

The Solution Author is the person who creates the transformation and all the other associated 
bits. It is important to note that this person may be different from the Exemplar Creator, who 
is the expert in the transformation’s output domain.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12

12

Tool Tips
Document the Internal Model (input.core) using UML class 
diagramming concepts 

Represent found artifacts (things in the exemplar) as UML 
Artifacts, potentially including properties on the UML Artifacts

Represent the artifact types  or roles as UML Classes with a 
«template» keyword

These roles represent transform processes that we will create

Map artifacts to «template» Classes with Manifestations
These mappings define the outputs from the transform processes

Map «template» Classes to Internal Model types with 
Dependencies

These mappings define the inputs to the transform processes



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

13

Exemplar Analysis in UML

To do an Exemplar Analysis using a UML Model:
1. Represent files/folders/projects that must be generated as UML Artifacts.
2. Start building an Internal Model to represent an abstraction of these artifacts.
3. Bind artifacts model elements with a “ manifestation”. 
4. Once all of the artifacts are associated with a model type, revisit them. Often several 

artifacts fulfill the same role. Create a Class stereotyped «template» to represent this role, 
and move the manifestations to point to this «template».  Create a dependency from the 
new «template» to the original model type.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

14

Build a Back-End Transformation
The solution author implements the internal model, and 
builds templates that generate desired artifacts from its 
objects
Goals:

The back-end transformation traverses the Internal Model, 
executing the templates and writing artifacts to the 
workspace

Suggestions:
Internal Model could 
be implemented as 
bean-like Java classes, 
EMF, or XML
Templates could be 
implemented with 
Velocity or JET2
Available enabling tools 
include JET2 and JMerge



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

15

Options for Deriving Values from the Internal Model
Option 1: Do the calculation in the template itself 

Pro: simple
Con: duplicate code, pollutes the template with calculation

Option 2: Declare the derived methods in the Internal 
Model 

Pro: avoids polluting templates with calculations
Con: pollutes the Internal Model interface
The example used this option

Option 3: Derive a secondary model that wraps the 
Internal Model in the back-end 

Pro: avoids polluting templates and Internal Model interface
Con: More complex coding

A variation on doing the template calculation is to build a helper class that wraps calculations 
inside a method. This way, only the template calculation is calling these helper methods.
Who cares about pollution?
A major goal of a template should be to resemble the ultimate output as much as possible. 
Putting excess calculations in a template generally works against this goal because it can 
pollute the template.
Internal Model pollution: There are two uses of the Internal Model: templates and model 
creation. Templates benefit from the addition of derived methods – they need the extra 
information. On the other hand, model creation code becomes more complex to create if 
many derived methods are included – the extra methods add to the “weight” of the interfaces.
Choosing a method:

• If only a few derived methods are required, choose option 2.
• If many derived methods are required, choose option 3.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

16

Kinds of Transformation Output
There are three kinds of transformation output:

Transformation Owned: no user modification is allowed
User Modifiable: transform will continue to write default versions unless 
the user specifies a custom version
Seeded: transformation will write this element only once

In addition, the transformation may encounter elements in the 
target domain that are none of these. That is, they are user-
generated (or generated by another transformation)

Best Practice: Separate Transformation Owned
output from other elements



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

17

Recognizing Transformation Output
In order to identify kinds of transformation output, it must be 
either:

Marked with some form of annotation, OR
Placed in a specific location that is declared transformation owned

Examples:
The Java compiler owns the bin directory, and feels free to overwrite its 
contents at any time
The Rational Software Architect Java transformation uses special
Javadoc tags to indicate ownership. (The Java transform has a Re-apply 
contract stating what it will preserve and what it will overwrite.)



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18

18

Re-Running a Transformation
When rerun, a transformation may have to write a file 
that already exists.

Establish a reapply contract between the 
transformation and its users, clearly identifying:

Which files the transformation will always overwrite
Which files the transformation will never overwrite
Which files are shared between transformation and user 
(and how the sharing works)



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19

19

Recommended Transformation Re-apply Actions

Transform output kind / Re-apply action

Do not removeRemove, if no 
user 
modifications

RemoveElement is in 
target, but not in 
output

User Seeded 
Output

User Modifiable 
Output

Transformation 
Owned Output

Existing 
Element

Error, output may be inconsistentFound, different 
output kind 

Do not updateUpdate, if no user 
modifications

UpdateFound, has 
same output 
kind

CreateCreateCreateDoes not exist in 
target

This table shows recommended actions.  They are not automatically enforced.
There are two approaches to implementing a re-apply strategy:

• At each point in the transformation where an element is being created, check to see if it 
already exists, and perform the appropriate action

• Pros: It is straight forward to implement
• Cons: The re-apply code gets dispersed throughout the transformation, making it 

harder to correctly modify the re-apply strategy later
• This works when the re-apply actions are simple.

• The transformation assumes there are no existing elements. Just prior to writing the 
generated elements, a reconciliation is performed to merge the generated elements with 
any existing elements.

• Pros: Centralizes re-apply code in a single location; simplifies generation logic; re-
apply tooling can be re-used (like JMerge)

• Cons: There are a limited number of tools available: JMerge for Java, but little else. 
Creating other merge tools is not a trivial activity.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20

20

Determine How User Will View the Internal Model
Choose an appropriate UML diagramming metaphor

Class Diagrams, State Chart Diagrams, Activity Diagrams, and so on 

Create a mapping between Internal Model types and the UML 
types used in the diagram

Determine how Internal Model attributes will be calculated from 
the UML types or attributes

If necessary, create a 
UML profile with 
stereotypes and constraints
to represent specializations 
of UML types
If UML is not a fit   
consider EMF\GMF

Note that keywords that are not programmatically applied are prone to failure. As such, if the 
user is expected to apply this type of differentiator, a profile would be preferable. 



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21

21

Creating UML Profiles
Create stereotype properties to represent Internal Model 
attributes that have no natural UML equivalent

UML keywords can be used instead of stereotypes. However , 
keywords cannot have properties, and entering them 
is more prone to error

When a transform requires a profile and stereotypes:
Minimize the number of elements to which stereotypes must be 
applied
Use stereotypes to denote non-default characteristics, and lack of a 
stereotype to imply documented defaults 
Consider creating template UML models with the profile already 
applied



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

22

UML Profile Tool Tips
Represent UML meta-types (Class, Property, and so on)  
as UML classes with a «uml» keyword

Create association classes between UML meta-types and 
Internal Model types. The association class is a mapping 
rule.

Rules often contain rules  
Document this containment with UML composition associations.
Name the association for the UML collection attribute that is used 
to navigate from parent source to target source

Some rules are not bound to the input. Document these as 
UML classes with an «init-rule» or «final-rule» keyword.

With respect to the «uml» keyword, note that other people and companies have used different 
keywords for this.  The important aspect is to be consistent.



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

23

23

Build the Font-End Transformation
Map the User Representation Model to a Rational Software 
Architect Transformation

First choice should be to start with Model Mapping
Second choice should be Manual creation

Group rules that operate on the same elements
Initial cut at the number of mappings needed in the transformation is 
equal to the number of rule groups

Other considerations:
How many levels of abstraction are needed?
If this is a case of                                            
meet-in-the-middle, does the                                                
input need to be filtered before                                
performing the transformation?



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

24

24

Build Supporting Solution Elements
Use Rational Software Architect to support your solution

UML Template Models, to help guide users to the proper configuration of 
their UML Model
Rational Software Architect UML Patterns, to configure the UML model 
in a more automated way
Transformation Documentation and Help, important to describe:

The processes to follow in 
creating the source model
The transformation 
contract: elements transformed, 
outputs, markup needed for 
the source model
The “re-apply” contract: which 
solution elements to modify in 
the source model versus the 
generated output 
How to configure the 
transformation



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

25

25

Summary
The process for creating transformations:

Generally begins with the end result in mind
Works backward to establish the form of intermediate and initial input 
models
Can use low-level Eclipse and higher-level Rational Software Architect 
APIs to manipulate initial and internal models
Can use various code generation template technologies to accelerate 
the creation of code-generating transformations 

The Internal Model is separated from UML Representation
Allows evolution of representation without rebuilding the back-end
Separates UML knowledge from output domain knowledge



Pattern Implementation Workshop with IBM Rational Software Architect Module 11 - Designing Reusable Assets

© Copyright IBM Corp. 2007 11 -

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

26

26

Review
Explain why transformations drive the process of 
Rational Software Architect asset creation.
Why create a transformation solution composed of an 
internal model with front-end and back-end 
transformations?
Describe the three types of 
transformation output.


	rd801gv1_stuman_cov
	DEV498Stuman_TOC
	Contents

	DEV498_M00_About_This_Course_stud
	DEV498_M01_Best_Practices_stud
	DEV498_M02_Reusable_Assets_stud
	DEV498_M03_Templating_101_stud
	DEV498_M04_JET_Model_stud
	DEV498_M05_JET_Tags_stud
	DEV498_M06_More_JET_Tags_stud
	DEV498_M07_JET_Examples_stud
	DEV498_M08_Exemplar_Analysis_stud
	DEV498_M09_IntroEMF_stud
	DEV498_M10_Intro_Transformations_stud
	DEV498_M11_Designing_stud
	DEV498_M12_Profiles_stud
	DEV498_M13_Transformations_stud
	DEV498_M14_Patterns_stud
	DEV498_M15_IntroToUML2API_stud
	DEV498_M16_Plugins_stud
	DEV498_M17_Templates_stud
	DEV498_M18_Packaging_stud
	DEV498_M19_Summary_stud
	DEV498_M20_Advanced_Transform_stud
	DEV498_M21_IntroGMF_stud
	DEV498_M22_XPath_Overview_stud



