
IBM InfoSphere Optim
Version 9 Release 1

Using IBM InfoSphere Optim Designer

���

IBM InfoSphere Optim
Version 9 Release 1

Using IBM InfoSphere Optim Designer

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 141.

Version 9 Release 1

This edition applies to version 9, release 1 of Optim Designer and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright IBM Corporation 1996, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Using InfoSphere Optim
Designer 1
Getting started. 1

Optim Designer workspace 1
Optim Perspective 1
Roadmap for extracting data 4
Roadmap for masking data 4
Using Optim Manager from Optim Designer . . 4
Sample data 5
Database support 13

Accessibility Features 13

Chapter 2. Configuring Optim Designer 15
Setting the IBM InfoSphere Optim location 15
Configuring IBM InfoSphere Optim for an Optim
Directory 15
Connecting to an Optim directory 16
Creating a Directory Explorer folder 16
Configuring the designer to use a connection
manager 17

Chapter 3. Configuring IBM InfoSphere
Optim for an Optim Directory 19
Signing an Optim exit 19
Entering the product license key 20
Creating an Optim directory and database alias . . 20
Applying maintenance to an Optim directory . . . 20
Applying maintenance to a database alias 20
Configuring options 21
Setting the IBM InfoSphere Optim location 21

Chapter 4. Managing data source
connections 23
Working with an Optim directory 23

Connecting to an Optim directory 23
Editing a directory connection 23
Changing a directory connection 23

Upgrading Optim directory objects 24
Working with a data store alias 24

Defining a data store alias 24
Editing a data store alias 25
Connecting to a data store alias. 25
Synchronizing a data store alias 25

Chapter 5. Managing data models . . . 27
Working with access definitions 27

Creating an access definition 28
Managing tables in an access definition 28
Managing selection criteria 29
Managing relationships in an access definition. . 32
Managing variables in an access definition . . . 35
Managing point and shoot lists 36

Working with Optim relationships 37
Compatibility rules for relationships 39

Creating an Optim Relationship 41
Editing an Optim relationship 41

Working with Optim primary keys 42
Creating a primary key 43
Editing a primary key 43

Working with table maps 44
Creating a table map 44
Editing a table map. 45

Working with column maps 46
Compatibility rules for column maps 46
Creating a column map 48
Editing a column map 48

Working with physical data models 50
Importing a physical data model 50

Chapter 6. Designing data management
services 51
Working with extract services 51

Creating an extract service 51
Editing an extract service 51

Working with convert services 54
Creating a convert service 54
Editing a convert service 54
Converting to extract file format 55
Converting to comma-separated value format . . 55
Converting to XML format 55
Converting to HDFS CSV format 56
Defining convert actions 56

Working with insert services. 59
Creating an insert service 60
Editing an insert service 60

Working with load services 62
Creating a load service 63
Editing a load service 63

Testing a data management service 65

Chapter 7. Masking data 67
Applying a data masking policy 67
Data masking functions 67

Lookup Functions 67
Shuffle Function 76
TRANS SSN Function 77
TRANS CCN Function 81
TRANS EML Function. 83
TRANS COL Function 88
TRANS NID 89
Substring Function 100
Random Function 101
Sequential Function 101
Identity or Serial Function 102
Oracle Sequence Function 103
Propagate Primary or Foreign Key Value
Function 103
Concatenated expressions 105
Numeric expressions 105

© Copyright IBM Corp. 1996, 2013 iii

Literal and value functions 106
Age Function 106
Currency Function. 109
Auto-Generated Email Name 111
Formatted Email Name 111
Random Number Function 112
Sequential Number Function 112

Using Exit Routines 112
Writing Exit Routines 113
Standard Exit Routine 114
Source Format Exit 115
Destination Format Exit 118

Working with column map procedures 120
Creating a named column map procedure . . . 120
Applying a column map procedure 120
Editing a column map procedure in a column
map 121
Entering values for parameters in a column map
procedure 121
Writing column map procedures with Lua
scripting 121

Chapter 8. Managing data 131
Browsing data 131

Editing data 131
Comparing data 132

Defining a compare request 132
Editing a compare request 133
Running a compare process 133

Creating tables 133

Chapter 9. Tutorials 135
Extracting data with Optim Designer 135

Creating a Directory Explorer Folder 135
Creating an access definition 135
Defining selection criteria 136
Creating an extract service 136

Masking Data with Optim Designer 137
Creating a table map 137
Editing a table map 138
Creating a column map 138
Applying a data masking policy 139
Adding a column map to a table map 139
Creating a convert service 139

Index 145

iv IBM Optim: Using Optim Designer

Chapter 1. Using InfoSphere Optim Designer

Use IBM® InfoSphere® Optim™ Designer to define data models, data masking policies, data management
services, and data stores. You can define objects in Optim Designer and share them in an Optim directory.
Use the Directory Explorer to view and manage objects in an Optim directory.

Data management services
Use a data management service to extract, convert, load, or insert data. A service uses access
definitions to define the data to extract. A service also uses table maps and column maps to map
source and target data. You can also transform process requests in an Optim Directory into data
management services. Use Optim Manager in embedded mode to test services.

Data masking
You can mask data processed by a data management service. Use data masking to transform data
such as national ID numbers, credit card numbers, dates, numeric values, and personal
information. Use a column map to enter a data masking function or create a column map
procedure with a LUA script.

Access definitions
Use an access definition to define data models and subsets of data in matching or different
schemas. An access definition identifies selection criteria and relationships used in a data
management service. You can define relationships outside of a DBMS and use SQL to define
selection criteria.

Optim Manager
You can open Optim Manager from Optim Designer (embedded mode), allowing you to test data
management services.

Getting started
To get started, you must use the Directory Explorer to connect to an Optim directory.

Optim Designer workspace
Use the workspace to store Optim directory connection information.

The default workspace, named designer-workspace, is located in the following Optim installation
directory: Optim\data\designer_workspace.

To change the workspace location, click File > Switch Workspace.

If you create a new workspace, you will need to enter directory connection information.

Optim Perspective
In Optim Designer, the Optim perspective provides tools you need to define data models, data
management services, and connect to an Optim directory. When you first open Optim Designer, the
Optim perspective is the default perspective.

The Optim perspective includes the Directory Explorer. Use the Directory Explorer to connect to an
Optim directory and manage objects.

To open the Optim perspective, click Window > Open Perspective > Other. In the Open Perspective
window, select Optim.

© Copyright IBM Corp. 1996, 2013 1

Directory Explorer
Use the Directory Explorer to connect to an Optim directory as well as define data store aliases, access
definitions, data management services, and other objects stored in the directory. You can use the explorer
to transform process requests into data management services.

When Optim Designer is connected to an Optim directory, the Directory Explorer includes the following
objects:

Data Store Aliases
A data store alias is a user-defined object associated with a database. When you define a data
store alias, you provide parameters that Optim uses to communicate with that database. These
parameters include the type and version of the database management system (DBMS) and the
properties for both a client connection and a JDBC connection.

A data store alias name serves as a high-level qualifier that allows you to access a specific
database to perform requested functions. For example, in an access definition, you must qualify
the name of a table with a data store alias name. The referenced data store alias supplies the
parameters needed to connect to the database in which the table resides.

Optim Primary Keys
A primary key is the column or columns that contain values that uniquely identify each row in a
table. A database table must have a primary key for Optim to insert, update, restore, or delete
data from a database table. Optim uses primary keys that are defined to the database. However,
you can also define Optim primary keys to supplement the primary keys in the database.

Optim Relationships
Optim uses relationships to determine the data to be retrieved from related tables and relies upon
relationships defined to the database, when available. However, you can also define Optim
relationships to supplement relationships in the database.

Access Definitions
Use access definitions to specify the tables, relationship traversal, and selection criteria for the
data you want to process.

Column Maps
A column map provides specifications needed to match or exclude columns from processing in a
data management service. Convert, insert, and load services must reference a table map, which
may reference one or more column maps. You can use a column map to define data
transformations with privacy policies or column map procedures.

Table Maps
Use a table map to define specifications for correlating source and destination tables of
compatible data. You can map tables that have different names, modify table names, exclude
tables from a process, or include column maps for greater control over the data.

Services
Use a data management service to extract, convert, load, or insert data. A service uses access
definitions to define the data to extract. A service also uses table maps and column maps to map
source and target data. You can mask data by applying a data privacy policy to an entity
processed by a service. You can also transform process requests in an Optim directory into data
management services. Use Optim Manager in embedded mode to test services.

Folders

A Directory Explorer folder contains services, access definitions, column maps, and table maps.
Use the folders to organize these objects.

The explorer displays a folder for each creator ID associated with an object in an Optim directory.

The following definitions are available.

2 IBM Optim: Using Optim Designer

Icon Definition

access definition

archive request

column

column map

convert request

creator ID

DB alias

delete request

extract request

insert request

load request

primary key

relationship

restore request

table

table map

variable

Creating a Directory Explorer folder:

Use the New Folder window to create a folder in the Directory Explorer.

A Directory Explorer folder contains services, access definitions, column maps, and table maps. Use the
folders to organize these objects.

To create a Directory Explorer folder.
1. Depending on whether a folder exists, do one of the following steps:

a. To create an initial folder, click Click to create a new folder in the Directory Explorer.
b. To create an additional folder, right-click the Directory Explorer view and click New > Folder.

The New Folder window opens.
2. Enter a folder name and click OK.

The new folder is displayed in the Directory Explorer.

Chapter 1. Using InfoSphere Optim Designer 3

Roadmap for extracting data
To extract data, use an access definition to define the data to an extract, and create an extract service to
extract the data.
1. Define a data store alias for the database that contains the data to extract, as described in “Defining a

data store alias” on page 24.
2. Create an access definition that defines the data to extract, as described in “Creating an access

definition” on page 28.
3. Edit the access definition to define selection criteria and other data selection options, as described in

the following topics:
“Managing tables in an access definition” on page 28
“Managing selection criteria” on page 29
“Managing relationships in an access definition” on page 32
“Managing variables in an access definition” on page 35
“Managing point and shoot lists” on page 36

4. Create an extract service, as described in “Creating an extract service” on page 51.
5. Edit the extract service, as described in “Editing an extract service” on page 51.
6. Test the extract service, as described in “Testing a data management service” on page 65.

Roadmap for masking data
To mask data, map the source and target data, apply a masking function or procedure, and create a
convert service to transform the data.
1. Create a table map to map the source tables to the target tables that will contain the masked data, as

described in “Creating a table map” on page 44.
2. Edit the table map to define the target data, as described in “Editing a table map” on page 45.
3. Create a column map to map the source columns to the target columns that will contain the masked

data, as described in “Creating a column map” on page 48.
4. Apply a data masking function or a column map procedure, as described in the following topics:

“Applying a data masking policy” on page 48
“Working with column map procedures” on page 49

5. Create a convert service, as described in “Creating a convert service” on page 54.
6. Edit the convert service, as described in “Editing a convert service” on page 54.
7. Test the convert service, as described in “Testing a data management service” on page 65.

Using Optim Manager from Optim Designer
Use Optim Manager from Optim Designer to test data management services and Optim interoperability
services. Using Optim Manager from Optim Designer is also known as Optim Manager in embedded
mode.

Optim Manager is a web application that you can use to test services. Optim Manager is displayed either
in the internal browser provided by Optim Designer or in an external browser. You can select the browser
that you want Optim Designer to use for Optim Manager by clicking Window > Preferences > General >
Web Browser in Optim Designer.

Opening Optim Manager from Optim Designer

You can open Optim Manager by testing a service. You can also open Optim Manager by entering the
following URL in a web browser: http://localhost:portnumber/console, where portnumber is the port
number assigned to Optim Manager. The default port number is 60000.

If the browser displays a message about a page not found when you open Optim Manager, a port conflict
may exist and you must change the Optim Manager port number.

4 IBM Optim: Using Optim Designer

You can also open Optim Manager from the Optim Designer toolbar.

Changing the Optim Manager port number

To change the port number, you must edit the following property in the eclipse.ini file located in the
Optim Designer installation directory:
-Dorg.eclipse.equinox.http.jetty.http.port=portnumber

where portnumber is the new Optim Manager port number. If Optim Designer is open, you must restart
the application to apply the new port number.

Sample data
Optim provides sample data for data masking as well as predefined source and target data sources.

Sample database tables and structure
As a group, the database tables include information on customers and orders, with shipping instructions.
The sample tables also include information about sales and inventory. Minor differences in data types
exist, depending upon the DBMS you use to install the sample tables. The following diagram shows the
basic structure of the sample database.

As a group, the database tables include information on customers and orders, with shipping instructions.
The sample tables also include information about sales and inventory. Minor differences in data types
exist, depending upon the DBMS you use to install the sample tables.

An additional set of tables is also installed with the sample database. Tables in the additional set have the
same names as tables in the first set, with the suffix “2” appended. The four tables in this additional set
are:
v OPTIM_CUSTOMERS2
v OPTIM_ORDERS2
v OPTIM_DETAILS2
v OPTIM_ITEMS2

Tables in the additional set do not contain data. They are used to demonstrate the facilities in Optim.

OPTIM_SALES table:

The OPTIM_SALES table identifies each salesperson by name, ID number and manager.

The OPTIM_SALES table has the following columns:

SALESMAN_ID
CHAR; up to 6 characters; cannot contain null.

FIRST_NAME
VARCHAR; up to 15 characters; cannot contain null.

LAST_NAME
VARCHAR; up to 15 characters; cannot contain null.

NATIONALITY
VARCHAR; up to 30 characters

NATIONAL_ID
VARCHAR; up to 30 characters

PHONE_NUMBER
VARCHAR; up to 20 characters; cannot contain a null value.

Chapter 1. Using InfoSphere Optim Designer 5

EMAIL_ADDRESS
VARCHAR; up to 70 characters; cannot contain null.

AGE SMALLINT; cannot contain null; has a default value.

SEX CHAR; 1 character; cannot contain null; has a default value.

TERRITORY
VARCHAR; up to 14 characters; cannot contain null.

MANAGER_ID
VARCHAR; up to 6 characters.

Primary keys

The SALESMAN_ID column is the primary key column.

Relationships to other tables

The OPTIM_SALES table is a parent of:
v The OPTIM_CUSTOMERS table, through a foreign key on column SALESMAN_ID.
v The OPTIM_MALE_RATES table, through an Optim data-driven relationship on column AGE when

SEX = ‘M'.
v The OPTIM_FEMALE_RATES table, through an Optim data-driven relationship on column AGE when

SEX = ‘F'.
v The OPTIM_STATE_LOOKUP table, through an Optim substring relationship using

SUBSTR(SALESMAN_ID,1,2).

OPTIM_CUSTOMERS table:

The OPTIM_CUSTOMERS table contains customer names, ID numbers, and addresses.

The OPTIM_CUSTOMERS table has the following columns:

CUST_ID
CHAR; up to 5 characters; cannot contain null; contains a check constraint.

CUSTNAME
CHAR; up to 20 characters; cannot contain null.

ADDRESS1
VARCHAR; up to 100 characters; cannot contain null.

ADDRESS2
VARCHAR; up to 100 characters; cannot contain null.

LOCALITY
VARCHAR; up to 56 characters

CITY VARCHAR; up to 60 characters

STATE
VARCHAR; up to 30 characters

COUNTRY_CODE
CHAR; up to 2 characters

POSTAL_CODE
VARCHAR; up to 15 characters

POSTAL_CODE_PLUS4
CHAR; up to 4 characters; can contain a null value.

6 IBM Optim: Using Optim Designer

EMAIL_ADDRESS
VARCHAR; up to 70 characters

PHONE_NUMBER
VARCHAR; up to 20 characters

YTD_SALES
DECIMAL; dollar amount; cannot contain null; has a default value.

SALESMAN_ID
CHAR; up to 6 characters

NATIONALITY
VARCHAR; up to 30 characters

NATIONAL_ID
VARCHAR; up to 30 characters

CREDITCARD_NUMBER
VARCHAR; 19 characters

CREDITCARD_TYPE
VARCHAR; up to 30 characters

CREDITCARD_EXP
CHAR; 4 characters

CREDITCARD_CVV
VARCHAR; up to 4 characters

DRIVER_LICENSE
VARCHAR; up to 30 characters

CUSTOMER_INFO
XMLTYPE

Primary keys

The CUST_ID column is the primary key column.

Relationships to other tables

The OPTIM_CUSTOMERS table is a parent of:
v The OPTIM_ORDERS table, through a foreign key on column CUST_ID.
v The OPTIM_SHIP_TO table, through an Optim relationship on column CUST_ID.

The OPTIM_CUSTOMERS table is a child of:
v The OPTIM_SALES table, through its foreign key on column SALESMAN_ID.

OPTIM_ORDERS table:

The OPTIM_ORDERS table contains information for orders, including order number, customer ID, and
salesman.

The OPTIM_ORDERS table has the following columns:

ORDER_ID
DECIMAL; order ID number; cannot contain null.

CUST_ID
CHAR; customer ID number; up to 5 characters; cannot contain null.

Chapter 1. Using InfoSphere Optim Designer 7

ORDER_DATE
TIMESTAMP; date of order; cannot contain null; has default value.

ORDER_TIME
TIMESTAMP; time of day; cannot contain null; has default value.

FREIGHT_CHARGES
DECIMAL; dollar amount

ORDER_SALESMAN
CHAR; up to 6 characters

ORDER_POSTED_DATE
TIMESTAMP; cannot contain null; has default value.

ORDER_SHIP_DATE
CHAR; date when order is shipped; up to 8 characters; cannot contain null; has default value.

Primary keys

The ORDER_ID column is the primary key column.

Relationships to other tables

The OPTIM_ORDERS table is a parent of the OPTIM_DETAILS table, through a foreign key on column
ORDER_ID.

The OPTIM_ORDERS table is a child of the OPTIM_CUSTOMERS table, through its foreign key on
column CUST_ID.

OPTIM_DETAILS table:

The OPTIM_DETAILS table contains additional information for each order in the OPTIM_ORDERS table.

The OPTIM_DETAILS table has the following columns:

ORDER_ID
DECIMAL; order ID number; cannot contain null.

ITEM_ID
CHAR; up to 5 characters; item ID number; cannot contain null.

ITEM_QUANTITY
DECIMAL; number of items; cannot contain null.

DETAIL_UNIT_PRICE
DECIMAL; unit price; dollar amount; cannot contain null.

Primary keys

The ORDER_ID and ITEM_ID columns are the primary key.

Relationships to other tables

The OPTIM_DETAILS table is a child of:
v The OPTIM_ORDERS table, through its foreign key on column ORDER_ID.
v The OPTIM_ITEMS table, through its foreign key on column ITEM_ID.

8 IBM Optim: Using Optim Designer

OPTIM_ITEMS table:

The OPTIM_ITEMS table contains information about each item for an order, including description, price,
and quantity in inventory.

The OPTIM_ITEMS table has the following columns:

ITEM_ID
CHAR; up to 5 characters; cannot contain null.

ITEM_DESCRIPTION
VARCHAR; up to 72 characters; cannot contain null.

CATEGORY
VARCHAR; up to 14 characters; cannot contain null.

RATING
CHAR; up to 4 characters; cannot contain null.

UNIT_PRICE
DECIMAL; dollar amount; cannot contain null.

ON_HAND_INVENTORY
INTEGER; cannot contain null.

Primary keys

The ITEM_ID column is the primary key column.

Relationships to other tables

The OPTIM_ITEMS table is a parent of the OPTIM_DETAILS table, through a foreign key on column
ITEM_ID.

OPTIM_SHIP_TO table:

The OPTIM_SHIP_TO table contains order shipping information.

The OPTIM_SHIP_TO table has the following columns:

CUST_ID
CHAR; up to 5 characters; cannot contain null.

SHIP_ID
DECIMAL; cannot contain null.

ADDRESS1
VARCHAR; up to 100 characters

ADDRESS2
VARCHAR; up to 100 characters

LOCALITY
VARCHAR; up to 56 characters

CITY VARCHAR; up to 30 characters

STATE
VARCHAR; up to 30 characters

COUNTRY_CODE
CHAR; 2 character abbreviation

Chapter 1. Using InfoSphere Optim Designer 9

POSTAL_CODE
VARCHAR; up to 15 characters

POSTAL_CODE_PLUS4
CHAR; 4 characters

IN_CARE_OF
VARCHAR; up to 31 characters

SHIPPING_CHANGE_DT
TIMESTAMP; cannot contains nulls; has default value.

Primary keys

The SHIP_ID column is the primary key column.

Relationships to other tables

The OPTIM_SHIP_TO table is a parent of the OPTIM_SHIP_INSTR table, through an Optim relationship
on column SHIP_ID.

The OPTIM_SHIP_TO table is a child of the OPTIM_CUSTOMERS table, through its Optim relationship
on column CUST_ID.

OPTIM_SHIP_INSTR table:

The OPTIM_SHIP_INSTR table contains detailed information for order shipping.

The OPTIM_SHIP_INSTR table has the following columns:

SHIP_ID
DECIMAL

SHIP_INSTR_ID
INTEGER

ORDER_SHIP_INSTR
VARCHAR; up to 254 characters

SHIP_UPDATED
TIMESTAMP; cannot contain null; has default value.

Primary keys

The SHIP_INSTR_ID column is the primary key column.

Relationships to other tables

The OPTIM_SHIP_INSTR table is a child of the OPTIM_SHIP_TO table, through its Optim relationship
on column SHIP_ID.

OPTIM_MALE_RATES table:

The OPTIM_MALE_RATES table contains insurance rates, based on age.

The OPTIM_MALE_RATES table has the following columns:

AGE SMALLINT

RATE_PER_1000
DECIMAL; rate in dollar amount

10 IBM Optim: Using Optim Designer

Primary keys

The RATE_PER_1000 column is the primary key column.

Relationships to other tables

The OPTIM_MALE_RATES table is a child of the OPTIM_SALES table, through its Optim data-driven
relationship on column AGE.

OPTIM_FEMALE_RATES table:

The OPTIM_FEMALE_RATES table contains insurance rates based on age.

The OPTIM_FEMALE_RATES table has the following columns:

AGE SMALLINT

RATE_PER_1000
DECIMAL; rate in dollar amount

Primary keys

The RATE_PER_1000 column is the primary key column.

Relationships to other tables

The OPTIM_FEMALE_RATES table is a child of the OPTIM_SALES table, through its Optim data-driven
relationship on column AGE.

OPTIM_STATE_LOOKUP table:

The OPTIM_STATE_LOOKUP table contains state codes and corresponding abbreviations.

The OPTIM_STATE_LOOKUP table has the following columns:

DIST_CODE
CHAR; 3 characters; cannot contain a null value.

DISTRICT
CHAR; 2 characters; cannot contain a null value.

Primary keys

The OPTIM_STATE_LOOKUP table does not have a primary key.

Relationships to other tables

The OPTIM_STATE_LOOKUP table is a child of the OPTIM_SALES table through a substring relationship
on column DISTRICT using SUBSTR(SALESMAN_ID,1,2).

Data privacy tables
Data privacy tables are available to clients who have an Optim Data Privacy License. Use the tables to
mask company and personal data such as employee names, customer names, social security numbers,
credit card numbers, and email addresses. Use the tables to generate transformed data that is both unique
and valid within the context of the application.

You can use the data privacy tables to:

Chapter 1. Using InfoSphere Optim Designer 11

v Prevent internal privacy breaches by de-identifying or masking the data available to developers,
quality assurance testers, and other personnel.

v Improve privacy compliance initiatives by substituting customer data with contextually accurate, but
fictionalized data.

v Protect confidential customer information and employee data in your application development and
testing environments.

v Ensure valid test results by propagating masked elements across related tables to ensure the referential
integrity of the database.

Each category of personal data is provided in a separate table for the following countries (abbreviations
are in parentheses): Australia (AU), Canada (CA), France (FR), Germany (DE), Italy (IT), Japan (JP), Spain
(ES), United Kingdom (UK), and United States (US). Each table includes a column of sequential numbers
that is used with lookup policies that use hash values to select a row in the lookup table.

Each table name is composed of a country abbreviation prefix and the category
(countryabbreviation_category). For example, the address table for Canada is named CA_ADDRESSES and
the address table for Germany is named DE_ADDRESSES.

The schema includes the following categories:

ADDRESSES
Tables that include columns for street address, city, locality (e.g., state or province), and postal
code.

FIRSTNAME
Tables that include a column with male and female given names.

FIRSTNAME_F
Tables that include a column with female given names.

FIRSTNAME_M
Tables that include a column with male given names.

LASTNAME
Tables that include a column with family names.

PERSON
Tables that include columns for birth date, given name, family name, gender, phone number,
national ID number, company name, and email address.

CCN Tables that include a credit card numbers for the associated issuer (MasterCard, VISA, etc.).

DOMAIN_NAMES
Table that includes domain names for masking email addresses.

Creating sample data tables
Use the Configuration utility to create sample data tables.

To create sample data tables:
1. From Optim Designer, click Utilities > Configure The Configuration utility opens.
2. Click Tasks > Load/Drop Sample Data The Load/Drop Sample Data wizard opens.
3. Complete the steps of the wizard.

You must select an Optim directory.
When prompted to select a DB alias, select a data store alias name.

12 IBM Optim: Using Optim Designer

Creating data privacy tables
Use the Configuration utility to create data privacy tables.

To create data privacy tables:
1. From Optim Designer, click Utilities > Configure The Configuration utility opens.
2. Click Tasks > Load/Drop Data Privacy Data The Load/Drop Data Privacy Data wizard opens.
3. Complete the steps of the wizard.

You must select an Optim directory.
When prompted to select a DB alias, select a data store alias name.

Database support
Optim Designer provides support for multiple database management systems.

For a complete list of supported databases, see the detailed system requirements.

DB2® Prerequisites
To allow Optim to obtain full JDBC metadata from an instance of DB2 z/OS®, the DESCSTAT
value in ZPARMS must be set to YES. Also, you must run job DSNTIJMS to install the stored
procedures needed by JDBC, bind the necessary packages, and set security permissions. In
addition, workload manager (WLM) definitions are needed to ensure that the WLM can start the
stored procedure address space when requested by DB2.

Accessibility Features
Accessibility features help people with a physical disability, such as restricted mobility or limited vision,
or with other special needs, to use software products successfully.

Optim Designer uses accessibility features available with the Eclipse environment.

Accessibility features help people with a physical disability, such as restricted mobility or limited vision,
or those with special needs to use software products successfully.

In addition to the features available with the Eclipse environment, users can press F1 to open a help topic
or press F2 to open a hover help topic.

Chapter 1. Using InfoSphere Optim Designer 13

http://www-01.ibm.com/support/docview.wss?&uid=swg27036391

14 IBM Optim: Using Optim Designer

Chapter 2. Configuring Optim Designer

To configure Optim Designer, complete the following steps.
1. Set the IBM InfoSphere Optim location
2. Configure IBM InfoSphere Optim for an Optim directory.
3. Connect to an Optim directory.
4. Create a Directory Explorer folder.
5. Configure a connection manager location

Setting the IBM InfoSphere Optim location
By default, the Optim Designer configuration includes the default path of the IBM InfoSphere Optim BIN
directory, C:\IBM\InfoSphere\Optim\RT\BIN. If IBM InfoSphere Optim is installed in a different path, use
the Optim Designer preferences to enter the path.

To enter the IBM InfoSphere Optim BIN directory location in the Optim Designer preferences:
1. From Optim Designer, click Window > Preferences. The Preferences window opens.
2. In the navigation tree, expand the Optim node and then click Optim Distributed. The Optim

Distributed editor opens.
3. In the Command-line directory field, enter the path to the IBM InfoSphere Optim BIN directory or

click Browse to select the path.
4. Click OK.

Configuring IBM InfoSphere Optim for an Optim Directory
Use the Configuration utility to configure IBM InfoSphere Optim for the Optim directory.

Optim Designer supports only Optim directories that use Unicode characters and the following DBMSs:
v IBM DB2 for Linux, UNIX, Windows
v Oracle
v Microsoft SQL Server

New installation

To configure IBM InfoSphere Optim for an Optim directory, complete the following steps:
1. Sign the Optim exit
2. Enter the product license key
3. Create an Optim directory and database alias
4. Configure options

Existing installation with an Optim directory not supported by Optim Designer

To configure IBM InfoSphere Optim for an installation with an existing Optim directory that is not
supported by Optim Designer, complete the following steps:
1. Sign the Optim exit
2. Export definitions from the old Optim directory, as described in the Optim Common Elements Manual.
3. Create an Optim directory and database alias
4. Configure options

© Copyright IBM Corp. 1996, 2013 15

5. Import definitions into the new Optim directory, as described in the Optim Common Elements Manual.

Existing installation without an Optim directory

To configure IBM InfoSphere Optim for an Optim directory, complete the following steps:
1. Sign the Optim exit
2. Create an Optim directory and database alias
3. Configure options

Existing installation without an Optim directory

To configure IBM InfoSphere Optim for an Optim directory, complete the following steps:
1. Sign the Optim exit
2. Create an Optim directory and database alias
3. Configure options

Connecting to an Optim directory
Use the Access Existing Optim Directory wizard to define a connection to an Optim directory.

The Optim directory must be accessible to create a connection. Optim designer uses JDBC to connect to
the directory.

To define a connection to an Optim directory:
1. In the Directory Explorer, do one of the following.

v To create an initial Optim directory connection for a workspace, click click to access an existing
Optim directory.

v To connect to a different Optim directory, right-click the Directory Explorer and click New > Optim
Directory

The Access Existing Optim Directory wizard opens.
2. Enter connection information and the user credentials for the directory. A JDBC driver is required for

the Optim directory DBMS.
3. Click Test Connection to verify the connection.
4. Click OK.

When Optim Designer connects to the directory, the Directory Explorer displays the contents of the
directory.

Creating a Directory Explorer folder
Use the New Folder window to create a folder in the Directory Explorer.

A Directory Explorer folder contains services, access definitions, column maps, and table maps. Use the
folders to organize these objects.

To create a Directory Explorer folder.
1. Depending on whether a folder exists, do one of the following steps:

a. To create an initial folder, click Click to create a new folder in the Directory Explorer.
b. To create an additional folder, right-click the Directory Explorer view and click New > Folder.

The New Folder window opens.
2. Enter a folder name and click OK.

16 IBM Optim: Using Optim Designer

The new folder is displayed in the Directory Explorer.

Configuring the designer to use a connection manager
To use the designer to design or run services on servers other than the local server, you must configure
the designer to use a connection manager. The connection manager is a web application that stores
connection information for Optim directories and servers.

Before you begin, obtain the connection information for the connection manager. You must obtain the
host name or IP address of the computer on which the connection manager is deployed and the port
number that is used by the connection manager.

To use the connection manager, the connection manager must be deployed and running on an application
server. Also, the designer must have an unimpeded network connection to the connection manager
computer.

To configure the designer to use a connection manager:
1. Click Window > Preferences.
2. Click Optim > Optim Connection Manager.
3. Click Add, enter the connection information for the connection manager, and click OK.
4. Click Test Connection to ensure that you can connect to the connection manager.

Chapter 2. Configuring Optim Designer 17

18 IBM Optim: Using Optim Designer

Chapter 3. Configuring IBM InfoSphere Optim for an Optim
Directory

Use the Configuration utility to configure IBM InfoSphere Optim for the Optim directory.

Optim Designer supports only Optim directories that use Unicode characters and the following DBMSs:
v IBM DB2 for Linux, UNIX, Windows
v Oracle
v Microsoft SQL Server

New installation

To configure IBM InfoSphere Optim for an Optim directory, complete the following steps:
1. Sign the Optim exit
2. Enter the product license key
3. Create an Optim directory and database alias
4. Configure options

Existing installation with an Optim directory not supported by Optim Designer

To configure IBM InfoSphere Optim for an installation with an existing Optim directory that is not
supported by Optim Designer, complete the following steps:
1. Sign the Optim exit
2. Export definitions from the old Optim directory, as described in the Optim Common Elements Manual.
3. Create an Optim directory and database alias
4. Configure options
5. Import definitions into the new Optim directory, as described in the Optim Common Elements Manual.

Existing installation without an Optim directory

To configure IBM InfoSphere Optim for an Optim directory, complete the following steps:
1. Sign the Optim exit
2. Create an Optim directory and database alias
3. Configure options

Existing installation without an Optim directory

To configure IBM InfoSphere Optim for an Optim directory, complete the following steps:
1. Sign the Optim exit
2. Create an Optim directory and database alias
3. Configure options

Signing an Optim exit
Use the Sign Optim Exit window in the Configuration utility to sign an Optim exit, which validates that
a user is authorized to use Optim. The Optim exit must be signed.

© Copyright IBM Corp. 1996, 2013 19

A default Optim exit, which allows access to all actions by all users, is supplied with Optim and can be
used if your company security policies allow. To sign the default Optim exit, you must enter the unique
password that was included when you received your company ID and license key.

For information about creating a user supplied exit, refer to the IBM InfoSphere Optim Installation and
Configuration Guide.

The Sign Optim Exit window opens automatically when the Configuration utility is first opened.

To open the Configuration utility from Optim Designer, click Utilities > Configure.

To open the Sign Optim Exit window, click Options > Sign Optim Exit from the Configuration utility.

Entering the product license key
Use the Specify Product License Key window in the Configuration utility to enter the product license key.

The product license key provides an internal control that determines the features and number of users
your company is licensed to use Optim. This key may be changed from time to time when you upgrade
the product.

To enter the license key, you can copy it from the email sent to you by IBM.

The Specify Product License Key window opens automatically the first time the Configuration utility is
used.

To open the Configuration utility from Optim Designer, click Utilities > Configure.

To open the Specify Product License Key window, click Options > License from the Configuration utility.

Creating an Optim directory and database alias
Use the Create/Update Optim Directory wizard to create an Optim directory and a database alias.
1. From Optim Designer, click Utilities > Configure. The Configuration utility opens.
2. Click Tasks > Create/Update Optim Directory The Create/Update Optim Directory wizard opens.
3. Complete the steps of the wizard.

For details about the pages in the Create/Update Optim Directory wizard, see Create Optim
Directory.

Applying maintenance to an Optim directory
Use the Apply Maintenance for Optim Directory Access wizard to upgrade Optim directory tables,
1. From Optim Designer, click Utilities > Configure. The Configuration utility opens.
2. Click Tasks > Apply Maintenance for Optim Directory Access The Apply Maintenance for Optim

Directory Access wizard opens.
3. Complete the steps of the wizard.

For details about the Apply Maintenance for Optim Directory Access wizard, see Apply Maintenance
for Optim Directory Access.

Applying maintenance to a database alias
Use the Apply Maintenance for DB Alias Access wizard to upgrade Optim directory tables,
1. From Optim Designer, click Utilities > Configure. The Configuration utility opens.

20 IBM Optim: Using Optim Designer

2. Click Tasks > Apply Maintenance for DB Alias Access The Apply Maintenance for DB Alias Access
wizard opens.

3. Complete the steps of the wizard.
For details about the Apply Maintenance for DB Alias Access wizard, see Apply Maintenance for DB
Alias Access.

Configuring options
Use the Configure Options wizard in the Configuration utility to create a product configuration file and
specify working directories.

A product configuration file is required for each installation of IBM InfoSphere Optim.

The Temporary Work Directory stores internal work files and trace files.

The Data Directory stores target data files associated with file data stores.

To configure options:
1. From Optim Designer, click Utilities > Configure. The Configuration utility opens.
2. Click Tasks > Configure Options The Configure Options wizard opens.
3. On the Specify Optim Directory page, select Use Existing Optim Directory and Registry Entry, and

from Name, select the Optim directory name.
4. On the Initialize Security page, ensure that Initialize is not selected. Click Skip.
5. On the Enable/Disable Optim Server Feature page, click Skip.
6. On the Enable/Disable Archive ODBC Feature page, click Skip.
7. On the Specify Product Configuration File page, do the following steps:

a. Select Create New File.
b. Enter a File Name for the configuration file.
c. In the Password field, enter the password that was included when you received your company

ID and license key.
d. Click Proceed.

8. On the Modify Product Options page, click Proceed.
9. On the Modify Personal Options page, click Personal Options. The Personal Options window opens.

10. Select the General tab and do the following steps:
a. Enter a Temporary Work Directory.
b. Enter a Data Directory.
c. Click OK to return to the Modify Personal Options page.
d. Click Proceed.

11. On the Complete page, click Close.
12. Click File > Exit to close the Configuration utility.

Setting the IBM InfoSphere Optim location
By default, the Optim Designer configuration includes the default path of the IBM InfoSphere Optim BIN
directory, C:\IBM\InfoSphere\Optim\RT\BIN. If IBM InfoSphere Optim is installed in a different path, use
the Optim Designer preferences to enter the path.

To enter the IBM InfoSphere Optim BIN directory location in the Optim Designer preferences:
1. From Optim Designer, click Window > Preferences. The Preferences window opens.

Chapter 3. Configuring IBM InfoSphere Optim for an Optim Directory 21

2. In the navigation tree, expand the Optim node and then click Optim Distributed. The Optim
Distributed editor opens.

3. In the Command-line directory field, enter the path to the IBM InfoSphere Optim BIN directory or
click Browse to select the path.

4. Click OK.

22 IBM Optim: Using Optim Designer

Chapter 4. Managing data source connections

Use the Directory Explorer to create data store aliases and connect to an Optim directory.

Working with an Optim directory
The Optim directory contains the definitions, such as data store aliases, services, and access definitions,
that are shared among the Optim components.

Connecting to an Optim directory
Use the Access Existing Optim Directory wizard to define a connection to an Optim directory.

The Optim directory must be accessible to create a connection. Optim designer uses JDBC to connect to
the directory.

To define a connection to an Optim directory:
1. In the Directory Explorer, do one of the following.

v To create an initial Optim directory connection for a workspace, click click to access an existing
Optim directory.

v To connect to a different Optim directory, right-click the Directory Explorer and click New > Optim
Directory

The Access Existing Optim Directory wizard opens.
2. Enter connection information and the user credentials for the directory. A JDBC driver is required for

the Optim directory DBMS.
3. Click Test Connection to verify the connection.
4. Click OK.

When Optim Designer connects to the directory, the Directory Explorer displays the contents of the
directory.

Editing a directory connection
Use the Access Existing Optim Directory wizard to define a connection to an Optim directory.

To define a connection to an Optim directory:
1. In the Directory Explorer, right-click an Optim directory connection and click Open. The Access

Existing Optim Directory wizard opens.
2. Enter connection information and the user credentials for the repository.
3. Click Test Connection to verify the connection.
4. Click OK.

Changing a directory connection
Use the Switch Optim Directory window to connect to a different Optim directory.

To connect to a different Optim directory:
1. Right-click inside the Directory Explorer and click Switch Optim Directory. The Switch Optim

Directory window opens.
2. Select a directory connection.

© Copyright IBM Corp. 1996, 2013 23

3. Click OK.

When Optim Designer connects to the directory, the Directory Explorer displays the contents of the
directory.

Upgrading Optim directory objects
Use the upgrade process to upgrade Optim directory objects from a previous version of Optim.

You can upgrade an object by opening it in an editor or by using the Upgrade menu option.

To use the Upgrade menu option, complete the following steps.
1. In the Directory Explorer, right-click a folder or node, and click Upgrade. The Progress Information

window will open.
2. When the upgrade process is complete, the nodes that contain upgraded objects will display an

updated object count.

Working with a data store alias
A data store alias is a user-defined object associated with a database. When you define a data store alias,
you provide parameters that Optim uses to communicate with that database. These parameters include
the type and version of the database management system (DBMS) and the properties for both a client
connection and a JDBC connection.

A data store alias name serves as a high-level qualifier that allows you to access a specific database to
perform requested functions. For example, in an access definition, you must qualify the name of a table
with a data store alias name. The referenced data store alias supplies the parameters needed to connect to
the database in which the table resides.

A data store alias identifies a specific database and serves as a prefix in the fully qualified names of
primary keys, database tables, and relationships. Data store aliases are essential elements in managing
your databases. The following rules apply to data store alias names:
v Each database can have only one data store alias.
v Each data store alias name must be unique.

To use a data store alias with Optim Designer, the data store alias requires an entry in the Windows
registry. If a registry entry is missing, Designer cannot create a data store alias connection. Use the
synchronize feature to add a Windows registry entry for a data store alias. If a data store alias was
created on a different computer, the Windows registry entry will not be present.

Defining a data store alias
Use the New Data Store Alias wizard to define a new data store alias.

To define a data store alias, you need both the connection string for a client connection and the .jar file
for a JDBC connection.

To define a data store alias:
1. In the Directory Explorer, right-click Data Store Aliases and click New Data Store Alias. The New

Data Store Alias wizard opens.
2. Complete the steps of the wizard.

You must enter properties for both a client connection and a JDBC connection. You must also identify
the character set used by the database and how to manage packages for accessing Optim objects.

24 IBM Optim: Using Optim Designer

Editing a data store alias
Use the Connection Properties wizard to edit a data store alias.

To edit a data store alias:
1. In the Directory Explorer, expand the Data Store Aliases node, right-click the data store alias and

click Open. The Connection Properties wizard opens.
2. Complete the steps of the wizard.

Connecting to a data store alias
Use the Directory Explorer to connect to a data store alias.

To connect to a data store alias:

In the Directory Explorer, expand the Data Store Aliases node, right-click the data store alias and click
Connect.

Synchronizing a data store alias
To use a data store alias with Optim Designer, the data store alias requires an entry in the Windows
registry. Use the synchronize feature to add a Windows registry entry for a data store alias.
1. In the Directory Explorer, expand the Data Store Aliases node, right-click the data store alias, and

click Synchronize. The Configuration utility window opens.
2. The Configuration utility will create an entry in the Windows registry for the data store alias.

Chapter 4. Managing data source connections 25

26 IBM Optim: Using Optim Designer

Chapter 5. Managing data models

You can create data models that define data to extract and map target data for data management services.
You can also create Optim relationships and primary keys to supplement relationships and primary keys
in the database.

Working with access definitions
Use access definitions to specify the tables, relationship traversal, and selection criteria for the data you
want to process.

An access definition includes the following items.

Tables An access definition must reference at least one table, view, alias, or synonym. The table, view,
alias, or synonym from which rows are selected first is called the start table. You can enter the
name of a start table and easily include the names of all tables related to the start table (to a
maximum of 24,000 tables).

Start Table
The start table is the first table to use when extracting data. You can specify any table in
the access definition as the start table, except a reference table. If you do not explicitly
specify a start table, the first table in the table list is the start table.

Reference Table
Tables from which all rows are selected, unless selection criteria are specified for the
reference table. Specify any table as a reference table, except the start table.

Relationships
Relationships determine the traversal path for selecting data from tables. By default, relationships
are traversed from parent to child, but you can control the direction of traversal using settings in
the access definition. Relationships among tables referenced by the access definition are listed on
the relationship tab (to a maximum of 24,000 tables). You can select relationships to be used in
processing and the direction in which they are traversed.

Selection Criteria
Selection criteria define a specific set of data to use from the tables in an access definition. You
can specify SQL operators and values, and use substitution variables with default values.

Point and Shoot
Use a point and shoot list to select specific rows from a start table that will be included in a
service.

Variables
Variables are user-defined default values specified in an access definition. You can use these
substitution variables to specify column selection criteria or to create an SQL WHERE clause.

Additional Parameters
Use additional parameters for extracting rows that correspond to a particular column value in the
start table or for using a specified sampling rate (every nth row).

Naming conventions

A fully qualified access definition name is in the form identifier.name, where:

identifier
Qualifier assigned to the access definition (1 to 8 characters).

name Base name assigned to the access definition (1 to 12 characters).

© Copyright IBM Corp. 1996, 2013 27

A logical set of naming conventions can identify the use for each access definition and be used to
organize them for easy access.

Creating an access definition
Use the New Access Definition wizard to create an access definition.

Before creating an access definition, a data store alias must exist for the database that contains the start
table.

To create an access definition:
1. Expand a folder in the Directory Explorer to contain the access definition, right-click Access

Definitions and click New Access Definition. The New Access Definition wizard opens.
2. Complete the steps of the wizard.

You must select a data store alias and a start table from the alias. You can choose to add tables related
to the start table.

The new access definition is displayed in the Access Definition Editor.

Managing tables in an access definition
Use the Tables tab in the Access Definition editor to add or remove tables in an access definition. You can
also change tables to related or reference tables.

Adding related tables to an access definition
Use the Add Related Tables window to add related tables to an access definition.

To add related tables to an access definition:
1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Click Add Related Tables. The Add Related Tables window opens.
4. You must select a table to use as the basis for selecting related tables and the relationship types to use.

Use the results list to select the tables to add.
5. Save the access definition.

Adding reference tables to an access definition
Use the Add Reference Tables window to add related tables to an access definition.

All rows are selected from a reference table, unless selection criteria are specified for the table. Specify
any table as a reference table, except the start table.

To add reference tables to an access definition:
1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Click Add Reference Tables. The Add Related Tables window opens.
4. You must select a data store alias that contains the tables to add. Use the Results list to select the

tables to add.
5. Save the access definition.

28 IBM Optim: Using Optim Designer

Changing tables to reference or related
Use the Access Definition Editor to change table in an access definition to related or reference tables.

To change tables to reference or related:
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Select a table to change to related or reference.
4. Click Change to Reference or Change to Related. The Type column will show the new table type.
5. Save the access definition.

Removing tables from an access definition
Use the Access Definition Editor to remove tables from an access definition.

To remove tables from an access definition:
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Select a table to remove.
4. Click Remove Table.
5. Save the access definition.

Viewing and editing traversal steps
Use the Traversal Steps window to view and edit the traversal steps of an access definition.

You can evaluate the tables, relationships, and the steps performed to select data. This evaluation can
ensure that you retrieve the desired set of data.

The steps in a process may be repeated any number of times according to relationships you select and
criteria you specify.

Any table may be revisited several times in successive steps. Cycles may also be involved. A cycle causes
a set of tables to be traversed repeatedly until a complete pass through the cycle does not result in
selecting additional rows.

When a relationship is traversed to select parent rows for child rows already selected, any selection
criteria for the parent table are ignored.

To view and edit traversal steps:
1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Click Show Steps. The Traversal Steps window opens.
4. Review the steps and edit the order in which tables are selected.
5. Click OK.
6. Save the access definition.

Managing selection criteria
Use selection criteria to focus on a specific set of related data by defining an SQL WHERE clause and
using substitution variables with default values.

Chapter 5. Managing data models 29

Selection criteria must conform to SQL syntax and include relational or logical operators. Logical
operators and syntax vary among DBMSs. Refer to the appropriate DBMS documentation for information.

To select the desired set of data for a table, you may need a combination of AND and OR logical operators.

If a Point and Shoot list is also used, it is logically included with the other criteria with an OR logical
operator.

When a relationship is traversed from child to parent, any selection criteria for the parent table are
ignored.

Date criteria

A unique operator, BEFORE, allows you to select data on the basis of values in a DATE column. The syntax
for this operator is:
BEFORE (nD nW nM nY)

Use the D, W, M, and Y arguments in any combination to indicate the number of days, weeks, months, or
years subtracted from the date at run time. If no arguments are specified, the current date is used. Rows
with a date older than the calculated date are extracted or archived. The n multiplier is an integer and
can optionally be preceded by + or -.

Defining selection criteria
Use the Table Specification window to define selection criteria with an SQL WHERE clause.

To define selection criteria:
1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Select the table to which you will add selection criteria.
4. Click Add Selection Criteria. The Table Specification window opens.
5. Select the Selection Criteria tab. The tab displays a WHERE clause for the table.
6. Enter selection criteria.

To display a list of columns and operators, right-click the WHERE clause and click Content Assist.
To add a variable, select a Variable delimiter and click Insert Variable.
Click Check Syntax to verify the syntax and identify errors.

7. Click OK.
If the syntax is not valid, a prompt will open to identify to error. You cannot save the criteria if it
contains errors.

8. Save the access definition.

Defining file attachments
Use the Table Specification window to define file attachments. You can extract files that are referenced
within or associated with a row of extracted data and include the files with the extracted data. You can
attach multiple files to each row in a table.

The files are attached to the extracted data by three columns that are identified by a specific prefix:
v prefix_FILE_NAME (a VARCHAR2 column that includes the file name
v prefix_BLOB (a BLOB column that includes the file data)
v prefix_ATTRIB (a BLOB column that includes file attribute information)

Files are identified by the following criteria:

30 IBM Optim: Using Optim Designer

v A file name format, which must include the name of a column with data that forms part of a file name.
Only CHAR, VARCHAR, NCHAR, and NVARCHAR columns are valid. The name is generated by
concatenating values from the column data and specified literals.

v A path to search for files that match the file name format.
v The process selects the first file that matches the criteria.

For example, if the file name format includes the CUSTOMER_ID column and the extension .txt, the
process attaches the first file named 123.txt in the search path for a row with the value 123 in the column.

To define file attachments:
1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Select the table for the selection criteria.
4. Click Add Selection Criteria. The Table Specification window opens.
5. Select the File Attachments tab.
6. Define criteria for the file attachments:

a. Specify a Column Prefix for the columns to contain the attached files. Each prefix must be unique
to the table.

b. Select a Trigger Column with data to form the file name. You can also specify the trigger column
within the File Name Parts.

c. Specify processing options for the row such as whether to delete the file or continue processing if
a file is not found for a row.

d. Specify one or more File Search Paths to search for the file. Separate each path with a semicolon.
You can choose to use the Default file search paths instead.

e. Specify the File Name Parts to form the file name. Enter each literal or column name in order on a
separate row, enclosing literals in quotation marks and selecting column names.

7. Click OK.
8. Save the access definition.

Defining column specifications
Use the Table Specification window to define column specifications. You can specify columns from which
to extract data and LOB display options

To define column specifications:
1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Select the table for the selection criteria.
4. Click Add Selection Criteria. The Table Specification window opens.
5. Select the Columns tab.
6. In the Extract Data column, select columns from which to extract data.
7. In the Native LOB Mode column, select LOB columns to display as normal LOB data when using

the Edit or Browse utilities. Clear the check box to display LOBs as VARCHAR or VARBIN data.
8. In the Association column, enter a file extension (such as .jpg) that is associated with an application

that is used to view or edit LOB data.
9. Click OK.

10. Save the access definition.

Chapter 5. Managing data models 31

Specifying data grouping options
Use the Data group properties tab in the Access Definition Editor to specify group selection, which
extracts a number of rows based on values in a particular column in the start table. Rows in each group
have the same value in the selected column.

When criteria are used in combination with group selection parameters, the criteria are applied first with
group selection parameters applied to the result.

To specify data grouping options:
1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Data group properties tab.
3. Select a column and specify grouping options.
4. Save the access definition.

Specifying data sampling and row limit options
Use the Tables tab in the Access Definition Editor to specify options for extracting a sampling of rows or
for limiting the number of rows to extract.

If a Point and Shoot list is used to select start table rows, the extract service ignores any data sampling or
row limit parameters for the start table.

To specify options for data sampling and row limits:
1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Enter the following options:

Every Nth Number of Rows
Enter a numeric value to specify a sampling factor for a table. For example, if you enter 5, the
process extracts every 5th row in the table, beginning with the 5th row. Valid values are 1
through 9999.

Row Limit
Enter a numeric value to limit the number of rows extracted from a table. Valid values are 1
through 999999999999.

4. Save the access definition.

Managing relationships in an access definition
Use the Relationships tab in the Access Definition Editor to add or remove relationships in an access
definition. You can also specify relationship traversal and table access options.

Selecting relationship traversal options
Use the Access Definition Editor to manage relationship traversal options in an access definition.

You can specify the following options:
v The maximum number of rows from the child table to be selected for a relationship.
v The maximum number of key lookups performed at one time for a table.

Increasing the key lookup limit may significantly improve performance. For example, if you specify 5
as the key lookup limit and the key has a single column, 5 key values are searched in a single request
to the DBMS.

v The traversal paths:

32 IBM Optim: Using Optim Designer

– Traverse the relationship from child to parent, in order to select a parent row for each child row to
ensure the relational integrity. (Option 1)

– Traverse the relationship to select additional child rows for each parent row selected as a result of a
traversal from child to parent. (Option 2)

Options 1 and 2 are relevant when the start table is a child table or when a table has more than one
parent table that is referenced by the access definition.
Option 2 is relevant only if you traverse a relationship from child to parent. For example, if a process
traverses from child to parent (option 1) and a parent row is selected, option 2 causes the process to
select additional child rows for that parent row.
If you select option 2 for a relationship, consider a child limit on the number of child rows to extract.

To manage relationship traversal options in an access definition:
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Relationships tab.
3. Select the relationship.
4. Select the Traversal Options tab.
5. Enter traversal options.
6. Save the access definition.

Reviewing and changing relationship traversal
Use the Traversal Steps window to review the traversal of tables and relationships in the selection of
data. You can also change the order of tables for the selection process.

The process can repeat steps any number of times according to relationships you select and criteria you
specify. When a relationship is traversed to select parent rows for child rows that are already selected,
any selection criteria for the parent table are ignored.

Any table can be revisited several times in successive steps. Cycles can also be involved. A cycle causes a
set of tables to be traversed repeatedly until a complete pass through the cycle does not result in selecting
additional rows.
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Relationships tab.
3. Click Show Steps. The Traversal Steps window opens.
4. To change the order of a table in the selection process, complete the following steps:

a. Select the table in the Set table order list.
b. Click Move Up or Move Down.
c. Click OK. The Traversal Steps window closes.
d. Save the access definition.

Selecting table access options
Use the Access Definition Editor to select the method for accessing the parent or child table for each
relationship.

You can specify the following options:

Default
Optim determines the best method. A key lookup is used when a DBMS index is available, and a
scan when an index is not available. However, if accessing a significant portion of the table, the
default is to scan, even if an index exists.

Chapter 5. Managing data models 33

Force scan
Read all rows in a table at one time.

Force key lookup
Locate rows using a WHERE clause to search for primary or foreign key values.

Note: Override the default method only if the statistical information in the process report indicates that
the default method is less efficient.

To manage table access options:
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Relationships tab.
3. Select the relationship.
4. Select the Table Access tab.
5. Enter table access options.
6. Save the access definition.

Specifying ignore relationship options
Use the Access Definition Editor to specify whether to exclude rows from processing if a relationship has
a specific value.

You can ignore relationships with values equal to null, blank, zero length, any numeric value you choose,
or any combination of these options.
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Relationships tab.
3. Select the relationship.
4. Select the Ignore Relationship Options tab.
5. Select a Combine the column options with option, which determines whether or not criteria are

combined. Select And to ignore a relationship if all relationship columns match the criteria. Select Or
to ignore a relationship if any columns match the criteria.

6.

7. Specify the following criteria:

Ignore Null
Ignore null values. This option is valid for all data types.

Ignore Blank
Ignore blank values. This option is valid for fixed and variable length character columns.

Ignore Zero Length
Ignore zero length values. This option is valid for variable length character columns.

Ignore Numeric Value
Ignore a numeric value. Enter the value in the Value to Ignore column. This option is valid
for INTEGER type numeric columns.

8. Save the access definition.

Analyzing relationship indexes
Use the Relationship Index Analysis window to analyze indexes for relationships that are used with the
access definition and to create indexes.

34 IBM Optim: Using Optim Designer

The Relationship Index Analysis window lists each relationship in the Access Definition, with an analysis
of indexes for the corresponding parent and child tables. The window lists the following index statuses
for the parent and child table columns in each relationship:

None Necessary indexes do not exist.

Partial Necessary indexes for some relationship columns exist.

Full Necessary indexes for all relationship columns exist.

Indeterminate
Optim attempted to create DBMS indexes. Click Refresh to analyze the new index.

Not Analyzed
No indexes are needed.

If the analysis determines that the parent or a child table requires an index to increase the efficiency of
processing, the Needed check box is selected. If the Needed check box is not selected, the index was not
analyzed or is not needed.

You cannot create an index for an expression in a relationship that is not a column name (a
concatenation, literal, or substring). If a relationship includes an expression that is not a column name,
only the column name expressions that precede the non-column name expression can be indexed.

New index names use the following format: the identifier (creator ID, owner ID, or schema name), the
letter I, the first eight letters of the table name, and an eight-digit number. For example:
identifier.I_tablenamnnnnnnnn.
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Relationships tab.
3. Click Index Analysis. The Relationship Index Analysis window opens.
4. If the status of an index is Partial or None, complete the following steps to create an index:

a. Right-click the relationship, and select one of the following options:

Create all indexes > data store alias name
Create indexes for tables in the relationship within the data store alias.

Create indexes > Parent | Child| Both
Create indexes for the parent table, child table, or both if the tables are in the same data
store alias.

The Review Index SQL window opens.
b. Review and edit the SQL create index statement.
c. Click Proceed to create the index.

5. To review a relationship, complete the following step:
a. Select the relationship and click Open Relationship. The Relationship Editor opens and displays

the relationship.
6. Save the access definition.

Managing variables in an access definition
Variables are user-defined default values specified in an access definition. You can use these substitution
variables to create an SQL WHERE Clause.

By assigning variables, you provide values for the variables each time the access definition is processed.
As an option, you can provide default values for substitution variables. The variables are saved with the
access definition.

Chapter 5. Managing data models 35

Default values

When you create a variable, you can enter an optional default value to be used when no value is
specified for the variable at run time.

Default values must be of the appropriate data type and size for the column and must conform to SQL
syntax. For example, assume a variable name is ST (state), the variable delimiter is a colon (:), and the
column requires character data.
v If you use the variable with single quotes in the selection criteria, you must specify the value without

single quotes:

Selection Criteria Value

= ':ST' CA

v If you use the variable without single quotes in the selection criteria, you must specify the value with
single quotes:

Selection Criteria Value

= :ST 'CA'

Note: Default values are not validated until run time. If a value has the incorrect data type or size for the
column or does not conform to SQL syntax, processing errors may result.

Prompt string

You must enter the text that prompts for the variable value at run time. Type the prompt string exactly as
you want it to appear in the process request dialog (up to 50 characters). This prompt is displayed before
you run the process.

Creating a variable
Use the Add a Variable window to create a variable in an access definition.

To create a variable:
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Variables tab.
3. Click Add. The Add a Variable window opens.
4. Enter information for the variable. You must enter a variable name and prompt text. Click OK.
5. Save the access definition.

Managing point and shoot lists
Use a point and shoot list to select specific rows from a start table that will be included in a service.

A point and shoot list is included in an access definition. When you use point and shoot to select rows
from the start table, the primary keys for these rows are stored in a point and shoot file. The service
request uses the primary keys to identify the rows to process first.

Creating a point and shoot list file
Use the New Point and Shoot File window to create a point and shoot list file for a table in a data store
alias.

To create a point and shoot list file:

36 IBM Optim: Using Optim Designer

1. Expand a folder in the Directory Explorer that contains the access definition, expand the Access
Definitions node, and double-click the access definition. The Access Definition Editor opens.

2. Select the Point and Shoot tab.
3. Click Add. The New Point and Shoot File window opens.
4. Enter a file name and click OK. The Point and Shoot Editor opens.
5. In the Select column, click the check box for each row to include in the list.
6. Click File > Save to save the point and shoot list file.
7. Save the access definition.

Selecting a point and shoot list
Use the Access Definition Editor to select a point and shoot list for an access definition.

To select a point and shoot list, a point and shoot file must be available for the start table.

To select a point and shoot list:
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Point and Shoot tab.
3. From the Select point and shoot list list, select a point and shoot list.
4. Save the access definition.

Editing a point and shoot list
Use the Point and Shoot Editor to edit a point and shoot list for an access definition.

To edit a point and shoot list:
1. Expand the folder in the Directory Explorer that contains the access definition, expand the Access

Definitions node, and double-click the access definition. The Access Definition Editor opens.
2. Select the Point and Shoot tab.
3. From the Select point and shoot list list, select a point and shoot list.
4. Click Edit. The Point and Shoot Editor opens.
5. Use the Select column to select the rows to include in the list.
6. Click File > Save to save the point and shoot list file.
7. Save the access definition.

Working with Optim relationships
Optim uses relationships to determine the data to be retrieved from related tables and relies upon
relationships defined to the database, when available. However, you can also define Optim relationships
to supplement relationships in the database.

With Optim relationships, a number of the database restrictions are relaxed. For example:
v Primary keys and foreign keys are not required.
v Corresponding columns need not be identical, but must be compatible.
v At least one of a pair of corresponding columns must be specified by column name. However, you can

use an expression to evaluate or define the value in the second column. Expressions can include string
literals, numeric constants, NULL, concatenation, and substrings.

The more flexible Optim relationships are called “extended” relationships. Extended relationships can
replicate implicit or application-managed relationships in your database, allowing you to manipulate sets
of relational data in the same manner as in your production environment.

Chapter 5. Managing data models 37

In addition, an Optim relationship can be stored in the Optim Directory as:
v An explicit relationship, used for a single pair of tables.
v A generic relationship, used for one or more pairs of tables that have the same base name, column

names, and attributes, but different Creator IDs.

Generic relationships are useful when several sets of tables differ only by Creator ID. (For example, in a
test environment, each programmer may use a separate copy of the same production tables. Each set of
tables can be distinguished by the Creator ID.) Using generic relationships, you define one set of
relationships that applies to all sets of tables. Also, when a set of these tables is added, the generic
relationships automatically apply.

Restrictions

Although the rules for creating Optim relationships are more flexible than the rules for creating
database-defined relationships, there are some restrictions:
v You must reference at least one column for each table in the relationship.
v You can reference a maximum of 64 columns for any table in the relationship.
v You cannot match a literal or constant to a literal or constant.
v You cannot use a Large Object (LOB) or SQL variant column.
v The total length of all values specified in either the parent table or the child table cannot exceed 3584

bytes.
v You cannot create a relationship using an SQL Variant column.

In a Relationship definition for a multi-byte or Unicode database:
v You cannot use the Substring Function.
v You cannot concatenate character data (CHAR or NCHAR) with binary (RAW).
v If Oracle character semantics are used for any CHAR column, all CHAR columns in the relationship

must have character semantics or an NCHAR data type.

EXAMPLES:

Parent
Supported/Not
Supported Child Description

CHAR CHAR Supported, semantics must match

NCHAR NCHAR Supported, semantics irrelevant.

CHAR NCHAR Not Supported

CHAR VARCHAR Supported, semantics must match.

NCHAR NVARCHAR Supported, semantics irrelevant.

CHAR||NCHAR NCHAR||CHAR Supported, if character semantics;
not supported if byte semantics.

CHAR||NCHAR NCHAR||NCHAR Supported, if character semantics;
not supported if byte semantics.

38 IBM Optim: Using Optim Designer

Compatibility rules for relationships
When you define an Optim relationship, the corresponding values must be compatible.

Column Type Is Compatible With

Character Column v Character Column

v Numeric Column

v String Literal

v Character Expression

Numeric Column v Numeric Column

v Numeric Constant

v Character Column

Binary Column v Binary Column

v Hexadecimal Literal

v Binary Expression

Boolean Column v Boolean Column

v Boolean Constant (True or False)

Date Time Column Date Time Column

Date Column Date Column

Time Column Time Column

Interval Column Interval Column

Note:

v In processing, a value is converted to the data type needed to select related rows. By default, the result
of converting a numeric value to a character data type is right-justified with leading zeros. Special
registry settings allow you to change the default to left justification with leading or trailing spaces.
Also, a character to numeric pairing requires a scale equal to 0 for the numeric column.

v You can use NULL for any null eligible column.
v Unicode or multi-byte columns must be of the same character set.

Data types

The following classes of data and associated data types are supported. These data classes are important
for data compatibility when you use column values in relationships.

Character class

DBMS Data Types

DB2 CHAR, VARCHAR, CLOB

Oracle CHAR, VARCHAR2, LONG, CLOB, NCLOB, NCHAR, NVARCHAR

Sybase ASE CHAR, VARCHAR, TXT

SQL Server CHAR, VARCHAR, TXT

Informix® CHAR, VARCHAR, TXT

Note: Single-byte character columns are not compatible with multi-byte or Unicode character
columns.

Numeric class

Chapter 5. Managing data models 39

DBMS Data Types

DB2 INTEGER, SMALLINT, DECIMAL, FLOAT, DOUBLE

Oracle NUMBER, FLOAT

Sybase ASE TINYINT, INT, SMALLINT, DECIMAL, FLOAT, REAL, MONEY, SMALL
MONEY

SQL Server TINYINT, INT, SMALLINT, DECIMAL, FLOAT, REAL, MONEY, SMALL
MONEY

Informix INTEGER, SMALLINT, DECIMAL, FLOAT, REAL, DOUBLE PRECISION,
SMALLFLOAT, SERIAL, MONEY, NUMERIC

Binary class

DBMS Data Types

DB2 CHAR (for Bit Data), VARCHAR (for Bit Data), BLOB

Oracle RAW, LONG RAW

Sybase ASE BINARY, VARBINARY, IMAGE

SQL Server BINARY, VARBINARY, IMAGE

Informix BYTE

Boolean class

DBMS Data Types

Sybase ASE BOOLEAN (TRUE or FALSE)

Datetime

DBMS Data Types

DB2 TIMESTAMP

Oracle DATE, TIMESTAMP, TIMESTAMP WITH LOCAL TIME ZONE, TIMESTAMP
WITH TIME ZONE

Sybase ASE DATETIME, SMALL DATE TIME

SQL Server DATETIME, SMALL DATE TIME

Informix DATE, DATETIME

Date class

DBMS Data Types

DB2 DATE

Oracle DATE

Informix DATE

Time class

DBMS Data Types

DB2 TIME

Interval class

40 IBM Optim: Using Optim Designer

DBMS Data Types

Oracle YEAR/MONTH INTERVAL, DAY/SECOND INTERVAL

Informix YEAR/MONTH INTERVAL, DAY/TIME INTERVAL

Creating an Optim Relationship
Use the New Optim Relationship wizard to create a new Optim relationship.

Before creating an Optim relationship, a data store alias must exist for the tables in the relationship.

To create an Optim relationship:
1. In the Directory Explorer, right-click Optim Relationships and click New Optim Relationship. The

New Optim Relationship wizard opens.
2. Complete the steps of the wizard.

You must select the parent and child tables in the relationship.

The new Optim relationship is displayed in the Relationship Editor.

You must use the Relationship Editor to define a column expression that identifies the parent and child
columns in the relationship.

Editing an Optim relationship
Use the Relationship Editor to define a column expression that identifies the parent and child columns in
an Optim relationship. You can also use the editor to create a generic relationship and edit columns.

Creating a column expression
Use the Add Column Expression window to create a column expression that identifies the parent and
child columns in an Optim relationship.

To create a column expression in an Optim relationship:
1. In the Directory Explorer, expand the Optim Relationships node and double-click the relationship to

edit. The Relationship Editor opens.
2. Click Add Column Expression.... The Add Column Expression window opens.
3. Click Select Parent Column. The Select a Parent Column window opens.
4. Select a parent column and click OK to return to the Add Column Expression window.
5. Click Select Child Column. The Select a Child Column window opens.
6. Select a child column and click OK to return to the Add Column Expression window.
7. Click OK to return to the editor. The parent and child columns are listed in the editor.
8. Save the relationship.

Editing the columns in a relationship
Use the Select a Parent Column and Select a Child Column windows to edit the columns in an Optim
relationship.

To edit the columns in an Optim relationship:
1. In the Directory Explorer, expand the Optim Relationships node and double-click the relationship to

edit. The Relationship Editor opens.
2. Select the row that contains a column to edit. To edit a parent column:

a. Click Select Parent Column. The Select a Parent Column window opens.
b. Select a parent column and click OK to return to the editor.

Chapter 5. Managing data models 41

To edit a child column:
a. Click Select Child Column. The Select a Child Column window opens.
b. Select a child column and click OK to return to the editor.

The selected items are listed in the editor.
3. Save the relationship.

Changing the column order in a relationship
Use the Relationship Editor to change the order of columns in an Optim relationship.

To change the order of columns in an Optim relationship:
1. In the Directory Explorer, expand the Optim Relationships node and double-click the relationship to

edit. The Relationship Editor opens.
2. Select the row that contains columns to reorder.
3. Click Move Row Up or Move Row Down to change the order.
4. Save the relationship.

Creating a generic relationship
Use the Relationship Editor to create a generic Optim relationship.

Some databases contain sets of tables that are identical except for the creator ID. Rather than define a
relationship for each set of tables, you can define a generic relationship that applies for all sets of tables
that have the same base name, regardless of the creator ID. You can modify the base tables in a generic
relationship.

To create a generic Optim relationship:
1. In the Directory Explorer, expand the Optim Relationships node and double-click the relationship to

edit. The Relationship Editor opens.
2. Click Generic.
3. Save the relationship.

Working with Optim primary keys
A primary key is the column or columns that contain values that uniquely identify each row in a table. A
database table must have a primary key for Optim to insert, update, restore, or delete data from a
database table. Optim uses primary keys that are defined to the database. However, you can also define
Optim primary keys to supplement the primary keys in the database.

A primary key is needed:
v In any table that is visited more than once in a process, for example, a child table that has two or more

parent tables referenced in the access definition.
v To enable the point and shoot feature for a start table.

Note: If a primary key is not defined and is required to perform a specific task, an error message
appears.

Types of Optim primary keys

You can define two types of primary keys:
v An explicit primary key applies to a single table.
v A generic primary key applies to any tables that have the same base name, column names, and

attribute specifications, but different creator IDs.

42 IBM Optim: Using Optim Designer

There is no difference in function or appearance between generic and explicit primary keys. However, if a
table has keys of both types, the explicit primary key is used.

Naming conventions

The fully qualified name of a primary key is the same as the fully qualified name of the database table
for which it is defined. This name consists of: alias.creatorid.tablename.

alias Alias that identifies the database where the table resides (1 to 12 characters).

creatorid
Creator ID assigned to the table (1 to 64 characters).

tablename
Base table name (1 to 64 characters).

Note:

v The combined total length of columns for a primary key is limited to 3584 bytes.

Creating a primary key
Use the New Primary Key wizard to create a new primary key for a table.

Before creating a primary key, a data store alias must exist for the table.

To create a primary key:
1. In the Directory Explorer, right-click Optim Primary Keys and click New Primary Key. The New

Primary Key wizard opens.
2. Complete the steps of the wizard.

You must select a table.

The new primary key is displayed in the Primary Key editor.

You must use the Primary Key Editor to select primary key columns for the table.

Editing a primary key
Use the Primary Key Editor to edit a primary key for a table. You can select key columns and define a
generic primary key.

Selecting primary key columns
Use the Primary Key Editor to select primary key columns for a table. You can also set the order of the
key columns.

To select primary key columns for a table:
1. In the Directory Explorer, expand the Optim Primary Keys node and double-click the relationship to

edit. The Primary Key Editor opens.
2. In the Available columns list, select the key columns.
3. Click >> to move the columns to the Key columns list.

To set the order of the key columns:
a. In the Key columns list, select a column to move.
b. Click Move Up to move a column up in the order, or Move Down to move a column down in the

order.
4. Save the primary key.

Chapter 5. Managing data models 43

Creating a generic primary key
Use the Primary Key Editor to create a generic Optim primary key.

Some databases contain sets of tables that are identical except for the creator ID. Rather than define an
explicit primary key for each table, define a generic primary key for all tables that have the same base
name, regardless of the creator ID.

To create a generic Optim primary key:
1. In the Directory Explorer, expand the Optim Primary Keys node and double-click the relationship to

edit. The Primary Key Editor opens.
2. Click Generic.
3. Save the primary key.

Working with table maps
Use a table map to define specifications for correlating source and destination tables of compatible data.
You can map tables that have different names, modify table names, exclude tables from a process, or
include column maps for greater control over the data.

Use a table map to:
v Direct the placement of data in a convert, insert, or load service.
v Exclude one or more tables from a convert, insert, or load service.
v Include a column map.

Depending on the process for which you are using a table map, the two sets of tables are referred to as
source tables and target tables:
v Source tables are extracted tables that contain data to be used in a convert, insert, or load process.
v Target tables are the tables into which data is converted, inserted, or loaded.

Note: Matched tables can have different creator IDs or names.

Table maps are stored in the Optim directory or embedded in a data management service.

As an option, you can use a column map for any pair of tables in a table map. Column maps identify
and match columns in a pair of tables. A column map must be used when column names or attributes are
dissimilar or data transformations are needed.

Naming conventions

The fully qualified name of a table map is in the form: identifier.name.

identifier
Identifier assigned to the table map (1 to 8 characters).

name Name assigned to the table map (1 to 12 characters).

It is helpful to use a logical set of naming conventions to identify the use for each and to organize
definitions for easy access.

Creating a table map
Use the New Table Map wizard to create a new table map.

Before creating a table map, a source file must exist for the source table.

44 IBM Optim: Using Optim Designer

To create a table map:
1. Expand a folder in the Directory Explorer to contain the table map, right-click Table Maps and click

New Table Map. The New Table Map wizard opens.
2. Complete the steps of the wizard.

You must select a source file for the source table.

The new table map is displayed in the Table Map Editor.

You must use the editor to define target data stores and schemas before saving the table map.

Editing a table map
Use the Table Map Editor to edit target data and add a column map.

Defining default target data in a table map
Use the Table Map Editor to define default target data stores and schemas in a table map.

Before defining default table map target data, a data store alias must exist for the target data.

To define default target data in a table map:
1. Expand a folder in the Directory Explorer that contains the table map, expand the Table Maps node,

and double-click the table map. The Table Map Editor opens.
2. Select the Table map tab.
3. In the Data store alias and schema map area, select the row that contains the source data store.
4. To define a target data store alias, click the Target Data Store Alias cell and select the target data

store alias from the list.
5. To define a target schema, click the Target Schema cell and select the target schema from the list.
6. Save the table map.

Editing target data in a table map
Use the Table Map Editor to edit target data stores, schemas, and tables for source tables in a table map.

Before editing table map target data, a default target data store alias must exist for the target data.

To edit target data in a table map:
1. Expand a folder in the Directory Explorer that contains the table map, expand the Table Maps node,

and double-click the table map. The Table Map Editor opens.
2. Select the Table map tab.
3. In the Table map area, select the row that contains the source table.
4. To define a target data store alias, click the Target Data Store cell and enter the name of a target data

store alias.
5. To define a target schema, click the Target Schema cell and select the target schema from the list.
6. To define a target table, click the Target Table cell and select the target table from the list.
7. Save the table map.

Adding a column map to a table map
Use the Table Map Editor to add a column map to a pair of mapped tables.

To add a column map to a table map:
1. Expand a folder in the Directory Explorer that contains the table map, expand the Table Maps node,

and double-click the table map. The Table Map Editor opens.
2. Select the Table map tab.

Chapter 5. Managing data models 45

3. In the Table map area, select the row that contains the tables for the column map.
4. Click Add Column Map. The New Column Map window opens with a list of column maps that

contain the selected tables.
5. Select a column map or select Create a new column map to create a column map based on the

selected tables. Click OK.
a. If you choose to create a new column map, the Column Map Editor opens and is populated with

the columns from the selected tables.
b. Edit and save the new column map.

6. Save the table map.

Working with column maps
A column map provides specifications needed to match or exclude columns from processing in a data
management service. Convert, insert, and load services must reference a table map, which may reference
one or more column maps. You can use a column map to define data transformations with privacy
policies or column map procedures.

When you create a new column map, you must choose a file as the source for the columns you want to
map. Similarly, you must specify a data store alias for the target data.

Column maps stored in the Optim directory are available for reuse or sharing with other users. A local
column map is stored as part of a data management service and is otherwise not available for other
services. If the associated table map is local to a service, both the table map and column map are
available only to the specific service.

Naming conventions

The fully qualified name of a column map has two parts: identifier.name.

identifier
Identifier assigned to the column map (1 to 8 characters).

name Name assigned to the column map (1 to 12 characters).

When you create column maps, it is helpful to use a logical set of naming conventions to identify and
organize definitions for easy access.

Compatibility rules for column maps
The following classes of data and associated data types are supported. These data classes are important
for data compatibility when you specify column values in relationships and column maps.

Character

DBMS Data Types

DB2 CHAR, VARCHAR, CLOB

Oracle CHAR, VARCHAR2, LONG, CLOB, NCLOB, NCHAR, NVARCHAR

Sybase ASE CHAR, VARCHAR, TXT

SQL Server CHAR, VARCHAR, TXT

Informix CHAR, VARCHAR, TXT

Note: Single-byte character columns are not compatible with multi-byte or Unicode character
columns.

Numeric

46 IBM Optim: Using Optim Designer

DBMS Data Types

DB2 INTEGER, SMALLINT, DECIMAL, FLOAT, DOUBLE

Oracle NUMBER, FLOAT

Sybase ASE TINYINT, INT, SMALLINT, DECIMAL, FLOAT, REAL, MONEY, SMALL MONEY

SQL Server TINYINT, INT, SMALLINT, DECIMAL, FLOAT, REAL, MONEY, SMALL MONEY

Informix INTEGER, SMALLINT, DECIMAL, FLOAT, REAL, DOUBLE PRECISION, SMALLFLOAT,
SERIAL, MONEY, NUMERIC

Binary

DBMS Data Types

DB2 CHAR (for Bit Data), VARCHAR (for Bit Data), BLOB

Oracle RAW, LONG RAW

Sybase ASE BINARY, VARBINARY, IMAGE

SQL Server BINARY, VARBINARY, IMAGE

Informix BYTE

Boolean

DBMS Data Types

Sybase ASE BOOLEAN (TRUE or FALSE)

Datetime

DBMS Data Types

DB2 TIMESTAMP

Oracle DATE, TIMESTAMP, TIMESTAMP WITH LOCAL TIME ZONE, TIMESTAMP WITH TIME
ZONE

Sybase ASE DATETIME, SMALL DATE TIME

SQL Server DATETIME, SMALL DATE TIME

Informix DATE, DATETIME

Date

DBMS Data Types

DB2 DATE

Oracle DATE

Informix DATE

Time

DBMS Data Types

DB2 TIME

Interval

DBMS Data Types

Oracle YEAR/MONTH INTERVAL, DAY/SECOND INTERVAL

Chapter 5. Managing data models 47

DBMS Data Types

Informix YEAR/MONTH INTERVAL, DAY/TIME INTERVAL

Creating a column map
Use the New Column Map wizard to create a new column map.

Before creating a column map, a file must exist for the source and target data.

To create a column map:
1. Expand a folder in the Directory Explorer to contain the column map, right-click Column Maps and

click New Column Map. The New Column Map wizard opens.
2. Complete the steps of the wizard.

You must select a source file and table for the source data. You must also select a data store alias and
table for the target data.

The new column map is displayed in the Column Map Editor.

Editing a column map
Use the Column Map Editor to edit a column map and apply data masking policies.

Applying a data masking policy
Use the Column Map Editor to apply and edit a function for a column.

To apply a data masking function:
1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps

node, and double-click the column map. The Column Map Editor opens.
2. Select the column for the policy.
3. Click Apply Function. The Apply Function window opens.
4. Select the function to apply. Click OK. The function name appears in the associated column and the

function editor opens in the Column Map Editor.
5. Depending on the function, do one of the following steps:

Select the function expression tab and edit the function expression.
Select an option tab and select options for the function.

6. Save the column map.

Mapping a source column
Use the Column Map Editor to map a source column to a target. Source and target columns with the
same name and compatible data types are automatically mapped.

To map a source column:
1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps

node, and double-click the column map. The Column Map Editor opens.
2. Click a source column and select a column name from the list.
3. Save the column map.

Applying a classification
Use the Classification column in the Column Map Editor to apply a classification to a source column in
the map. If a source column uses a masking policy, the map will use the policy as the default
classification type.

48 IBM Optim: Using Optim Designer

To apply a classification:
1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps

node, and double-click the column map. The Column Map Editor opens.
2. Click the Classification column cell for the source column to which you will apply the classification.
3. Complete one of the following steps:

v Type a classification name.
v Click the cell and select Apply Classificationfrom the list to open the Apply Classification window.

Use the window to select a classification.
4. Save the column map.

Working with column map procedures
A column map procedure is a procedure that is used to mask or transform the data in a column when
you run a service. As the name indicates, you must add column map procedures to a column map. You
can write column map procedures by using the Lua scripting language.

Creating a named column map procedure:

Use the Lua script editor to create a named column map procedure.

To create a named column map procedure:
1. Expand a folder in the Directory Explorer to contain the column map procedure, right-click the

Column Map Procedure node, and click New Column Map Procedure. The New Column Map
Procedure window opens.

2. Enter a name for the procedure in the format indentifier.name.
3. Click OK. The new procedure appears under the Column Map Procedure node.
4. Double-click the procedure name. The Lua script editor opens.
5. Create and save the procedure.

Editing a column map procedure in a column map:

Use the Lua script editor to edit a column map procedure in a column map.

Editing PST Basic column map procedures

Optim Designer does not support editing column map procedures written in PST Basic. Optim
Designer supports editing only Lua column map procedures, but you can convert a PST Basic
column map procedure to Lua.

When you try to edit a PST Basic column map procedure, Designer will offer the option to
convert the procedure to Lua. The conversion process will store a copy of the PST Basic
procedure in your workspace and then overwrite the procedure. The old procedure will be stored
in the LUAProject directory of the Designer workspace.

To edit a column map procedure in a column map:
1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps

node, and double-click the column map. The Column Map Editor opens.
2. Select the column that is associated with the column map procedure.
3. Click Edit Procedure. The Lua script editor opens.
4. Edit and save the procedure.
5. Save the column map.

Chapter 5. Managing data models 49

Entering values for parameters in a column map procedure:

Use the Column Map Editor to enter values for parameters in a column map procedure.

To enter values for parameters in a column map procedure:
1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps

node, and double-click the column map. The Column Map Editor opens.
2. Select the column that contains the procedure. The Procedure editor opens in the Column Map Editor.
3. In the Procedure Parameters field, enter column separated values for the parameters. For example:

abc, def.
4. Save the column map.

Working with physical data models
You can import a physical data model created with IBM InfoSphere Data Architect or IBM InfoSphere
Discovery and associate the model with a data store alias.

The import process applies the relationships and privacy policy enforcements in the physical data model
to the associated data store alias. The import process will also compare the metadata in the model to the
data store alias. If the metadata in the model is not present in the data store alias, the import process
cannot be completed.

When a privacy policy enforcement is included in an import, Optim will apply masking functions
defined in the policy enforcements to the column maps that use the associated data store alias.

Importing a physical data model
Use the Import wizard to import a physical data model and associate the model with a data store alias.
1. Click File > Import. The Import wizard opens.
2. On the Select page, open the Optim folder and select Import Physical Data Model.
3. Complete the steps of the wizard.

You must select a data store alias for the physical data model. If the metadata in the model is not
present in the data store alias, the import process cannot be completed.

50 IBM Optim: Using Optim Designer

Chapter 6. Designing data management services

Use a data management service to extract, convert, load, or insert data. A service uses access definitions
to define the data to extract. A service also uses table maps and column maps to map source and target
data. You can mask data by applying a data privacy policy to an entity processed by a service. You can
also transform process requests in an Optim directory into data management services. Use Optim
Manager in embedded mode to test services.

Working with extract services
Use an extract service to copy a set of related rows from one or more tables and save the rows to a file.

The extract service specifies the set of parameters needed to extract data and object definitions from
source tables and the file in which to store the extracted information.

The extract service always extracts definitions for tables and columns. These definitions are used to create
the destination tables, if necessary. You can also choose to extract other object definitions, including
primary keys, relationships, and indexes.

Naming conventions

The fully qualified name of an extract service consists of: identifier.name.

identifier
Identifier that serves as the prefix for the extract service name (1 to 8 characters).

name Name assigned to the extract service (1 to 12 characters).

When you create extract services, it is helpful to use a logical set of naming conventions to identify the
use for each and to organize definitions for easy access.

Creating an extract service
Use the New Service wizard to create an extract service.

An extract service requires an access definition. During the creation of a service, you can select or create
an access definition.

To create an extract service:
1. Expand a folder in the Directory Explorer to contain the extract service, right-click Services, and click

New Service. The New Service wizard opens.
2. Complete the steps of the wizard.

You must select or create an access definition. You must also enter a name for the target file.

The new extract service is displayed in the Extract Service Editor.

Editing an extract service
Use the Extract Service Editor to specify extract service processing options, including the data objects to
extract, conversion, file compression, and variable overrides.

© Copyright IBM Corp. 1996, 2013 51

Specifying extract processing options
Use the Service Properties tab in the Extract Service Editor to specify extract service processing options.

You can specify the following extract service processing options:
v Manage the number of database connections. Increasing database connections improves performance

when processing large quantities of data by allowing multiple threads to extract rows concurrently.
v Limit the number of extracted rows.
v Allow file attachments.
v Include statistical information in the extract service report.

To specify extract service processing options:
1. Expand a folder in the Directory Explorer that contains the extract service, expand the Services node,

and double-click the extract service to edit. The Extract Service Editor opens.
2. Select the Service Properties tab.
3. Edit the service processing options.
4. Save the extract service.

Specifying objects and grouping options
Use the Data and Objects tab in the Extract Service Editor to specify data objects to extract.

You can specify the following options:
v Indicate if the service should extract data only, objects only or both.
v Select the objects to extract.

To specify data objects to extract:
1. Expand a folder in the Directory Explorer that contains the extract service, expand the Services node,

and double-click the extract service to edit. The Extract Service Editor opens.
2. Select the Data and Objects tab.
3. Edit the service processing options.
4. Save the extract service.

Applying a convert service
Use the Conversion tab in the Extract Service Editor to apply a convert service to the extract service. You
can use the convert service to convert the extracted data.

To apply a convert service:
1. Expand a folder in the Directory Explorer that contains the extract service, expand the Services node,

and double-click the extract service to edit. The Extract Service Editor opens.
2. Select the Conversion tab.
3. Click Run convert after extract.
4. Click Apply Convert Service. The Convert Service wizard opens.
5. Complete the steps of the wizard.

You must choose the type of convert service to use. You must also select or create a table map.
6. Save the extract service.

Specifying file compression options
Use the File Compression Options tab in the Extract Service Editor to specify options for compressing
the extract file or extracted tables.

You can specify the following options:
v Indicate if the file or specific tables are compressed.

52 IBM Optim: Using Optim Designer

v For each table, you can choose to use a compression threshold or compress as much as possible. The
threshold value is the minimum amount of reduction in size that you expect to achieve by compressing
the table. Enter a value in the range 1 - 99 to set a threshold value for that table.

The following compression methods are available for a file:

Inline Compression
Data is compressed as it is extracted and before it is written to the file. Inline compression has
lower I/O, when compared with post compression, but uses database resources for the duration
of the extract service.

Inline Compression requires less storage resources during the extract process when compared to
post compression.

Post Compression

Data is extracted and written to an uncompressed file. In a second step, Optim reads the
uncompressed file, and writes a compressed version of the file. The benefit of post compression is
that database connections are closed earlier with post compression than with inline compression.
However, with post compression the total elapsed time is increased because the uncompressed
file must be closed, read, and then a new compressed version created.

Sites having concerns about database resource contention may find post compression useful as it
shortens the time database resources are needed. However, post compression increases the
elapsed time and storage requirements for processing the extract service. Although increased
storage is necessary during the compression operation, that temporary storage required will be
released when the compression is completed.

To specify file compression options:
1. Expand a folder in the Directory Explorer that contains the extract service, expand the Services node,

and double-click the extract service to edit. The Extract Service Editor opens.
2. Select the File Compression Options tab.
3. Edit the service processing options.
4. Save the extract service.

Specifying variable options
Use the Variables tab in the Extract Service Editor to override variable default values.

To specify variable options:
1. Expand a folder in the Directory Explorer that contains the extract service, expand the Services node,

and double-click the extract service to edit. The Extract Service Editor opens.
2. Select the Variables tab.
3. Enter values to override default values.
4. Save the extract service.

Changing an access definition for an extract service
Use the Change Access Definition wizard to change an access definition associated with an extract
service.

To change an access definition associated with an extract service:
1. Expand a folder in the Directory Explorer that contains the extract service, expand the Services node,

and double-click the extract service to edit. The Extract Service Editor opens.
2. Click Change. The Change Access Definition wizard opens.
3. Complete the steps of the wizard.

Select an access definition or choose to create a local access definition.

Chapter 6. Designing data management services 53

4. Save the extract service.

Working with convert services
Use a convert service to transform data in a source file. You can transform data to assure data privacy or
to systematically transform data to meet your application testing requirements.

Specify a table map to match tables in the source file to tables in the target file or to exclude tables from
the convert service.

Use column maps in the table map to specify which data to convert and how it is to be converted.

Naming conventions

Note: The fully qualified name of a convert service consists of the following: identifier.name.

identifier
Identifier that serves as the prefix for the convert service name (1 to 8 characters).

name Name assigned to the convert service (1 to 12 characters).

When you create convert service, it is helpful to use a logical set of naming conventions to identify the
use for each and to organize them for easy access.

Creating a convert service
Use the New Service wizard to create a convert service.

A convert service requires a table map. During the creation of a service, you can select or create a table
map.

To create a convert service:
1. Expand a folder in the Directory Explorer to contain the service, right-click Services, and click New

Service. The New Service wizard opens.
2. Complete the steps of the wizard.

You must select or create a table map. You can enter a name for the target file or choose to overwrite
the source file.

The new convert service is displayed in the Convert Service Editor.

Editing a convert service
Use the Convert Service Editor to specify convert service processing options.

Specifying convert process options
Use the Processing Options tab in the Convert Service Editor to specify convert service processing
options.

You can specify the following convert service processing options:
v Set a discard row limit.
v Compress the target file.
v Allow file attachments.

To specify convert service processing options:
1. Expand a folder in the Directory Explorer that contains the convert service, expand the Services node,

and double-click the convert service to edit. The Convert Service Editor opens.

54 IBM Optim: Using Optim Designer

2. Select the Processing Options tab.
3. Edit the service processing options.
4. Save the convert service.

Changing a table map for a convert service
Use the Change Table Map wizard to change a table map associated with a convert service.

To change a table map associated with a convert service:
1. Expand a folder in the Directory Explorer that contains the convert service, expand the Services node,

and double-click the convert service to edit. The Convert Service Editor opens.
2. Click Change. The Change Table Map wizard opens.
3. Complete the steps of the wizard.

Select a table map or choose to create a local table map.
4. Save the convert service.

Converting to extract file format
You can convert data in an extract file into extract file format.
1. Expand a folder in the Directory Explorer that contains the convert service, expand the Services node,

and double-click the convert service to edit. The Convert Service Editor opens.
2. Select the Target File Options tab.
3. In the Target file format list, select Extract File (XF).
4. In the Target file name field, enter a name of the target extract file.
5. Save the convert service.

Converting to comma-separated value format
You can convert data in an extract file into comma-separated value (CSV) format.
1. Expand a folder in the Directory Explorer that contains the convert service, expand the Services node,

and double-click the convert service to edit. The Convert Service Editor opens.
2. Select the Target File Options tab.
3. In the Target file format list, select Comma Separated Value (CSV).
4. In the Target file name field, enter a name of the target file, which will be used for tables that do not

have a target files specified. Select Use file macro to enter Optim file macros that dynamically create
unique target file names for each table.

5. Use the Object Files tab to optionally define thresholds for converted files or enter target file names
for the converted tables.
To modify the default thresholds, click Edit Thresholds to open the Target File Defaults window and
modify the defaults. Use the grid to override the default thresholds for an object.
To generate unique files for tables, use the grid to enter file names if a macro is not used or to
override the macro. The grid is populated with table names in the associated table map.
The following guidelines apply to files generated for a specific table:
v If you do not specify a file name, the service will create a file with the name specified in the Target

file name for the service.
v If you do not specify a fully-qualified path for the file, the converted file will use the same location

as the Target file name for the service.
6. Use the CSV Options tab to define formatting options for the CSV files.
7. Save the convert service.

Converting to XML format
You can convert data in an extract file into XML format.

Chapter 6. Designing data management services 55

1. Expand a folder in the Directory Explorer that contains the convert service, expand the Services node,
and double-click the convert service to edit. The Convert Service Editor opens.

2. Select the Target File Options tab.
3. In the Target file format list, select XML.
4. In the Target file name field, enter a name of the target file, which will be used for tables that do not

have a target files specified. Select Use file macro to enter Optim file macros that dynamically create
unique target file names for each table.

5. Use the Object Files tab to optionally define thresholds for converted files or enter target file names
for the converted tables.
To modify the default thresholds, click Edit Thresholds to open the Target File Defaults window and
modify the defaults. Use the grid to override the default thresholds for an object.
To generate unique files for tables, use the grid to enter file names if a macro is not used or to
override the macro. The grid is populated with table names in the associated table map.
The following guidelines apply to files generated for a specific table:
v If you do not specify a file name, the service will create a file with the name specified in the Target

file name for the service.
v If you do not specify a fully-qualified path for the file, the converted file will use the same location

as the Target file name for the service.
6. Use the XML Options tab to define formatting options for the XML files.
7. Save the convert service.

Converting to HDFS CSV format
You can convert data in an extract file into comma-separated value (CSV) format for use with Hadoop
Distributed File Systems (HDFS).
1. Expand a folder in the Directory Explorer that contains the convert service, expand the Services node,

and double-click the convert service to edit. The Convert Service Editor opens.
2. Select the Target File Options tab.
3. In the Target file format list, select Hadoop Distributed File System (HDFS).
4. In the Target file name field, enter a name of the target file, which will be used for tables that do not

have a target files specified. Select Use file macro to enter Optim file macros that dynamically create
unique target file names for each table.

5. Use the Object Files tab to enter target file names for the converted tables if a macro is not used or to
override the macro. The grid is populated with table names in the associated table map.
The following guidelines apply to files generated for a specific table:
v If you do not specify a file name, the service will create a file with the name specified in the Target

file name for the service.
v If you do not specify a fully-qualified path for the file, the converted file will use the same location

as the Target file name for the service.
6. Use the HDFS Options tab to define formatting options for the HDFS CSV files.
7. Use the Actions tab to specify a utility to perform additional processing associated with a convert

service action.
8. Save the convert service.

Defining convert actions
You can define actions to perform with an associated utility, such as the pr0hdfs Big Data loader, as part
of the convert process.
1. Open a convert request for a target file format, such as Hadoop Distributed File System (HDFS), that

includes convert actions.
2. From the Target File Options tab, click the Actions tab.

56 IBM Optim: Using Optim Designer

3. Click Use actions.
4. In the Action list, select a convert process action to use with a utility.
5. In the Executable location field, enter the location of the utility executable file. Use a fully-qualified

path only (not a relative path).
6. In the Command line options field, enter command line options for the utility.
7. To include Optim variables in the command line statement, complete the following steps:

a. From the Optim variable delimiter list, select a delimeter that will identify Optim variables.
b. Click Insert Optim variable. The Insert Optim Variable window opens.
c. Select a variable and click OK. The variable is displayed in the Command line options field.

8. Define processing options to Optim such as utility keywords and values. The options will be
appended to the command line statement.
To define processing options, complete the following steps:
a. Click Processing Options. The Processing Options window opens.
b. In the Keyword column, enter the keyword used by the utility.
c. In the Value column, enter the value for the keyword.

For a log file, enter the log file location. Use a fully-qualified path only (not a relative path).
For an Optim variable, click Insert Optim Variable to select from a list of Optim variables.

d. In the Classification column, select a classification for the keyword.
For a log file, select Log file location.
For an Optim variable, select Optim variable.

e. Click OK.
9. Select one of the On error options to determine whether the convert service stops or continues

processing if an error occurs.
10. To review the command line statement, click Preview.
11. Save the convert service.

Big Data loader utility
Use the Big Data loader utility, pr0hdfs, to load converted files into a Hadoop Distributed Files System
(HDFS) cluster. The utility can be invoked from the command line or used by convert actions as part of a
convert service that uses the HDFS target file format.

The utility requires the HDFS WebHDFS REST Web service interface, usually deployed on the HDFS
NameNode (on port 50070) and on the DataNodes (on port 50075). The HDFS administrator must enable
WebHDFS, as it is not enabled by default.

For Windows, the utility uses the following files located in the rt\bin installation directory: pr0hdfs.exe
(the executable) and pr0hdfs.jar. For UNIX and LINUX, the utility uses the following files located in the
rt/bin installation directory: pr0hdfs (the executable) and pr0hdfs.jar. The executable and .jar files must be
located within the same directory and use the same file names.

The utility uses both long parameter names supplied with two dashes (--url) and one-character parameter
names supplied with a single dash (-u). Both formats can be used together. Enter the parameters in any
order.

Parameter (long form/short
form) Description

--url/-u Required. The HTTP URL of the HDFS NameNode.

For example, -u http://hostname:50070.

Chapter 6. Designing data management services 57

Parameter (long form/short
form) Description

--source/-s Required. The source file to load into HDFS.

If a relative path is specified, the path is resolved to the current Optim working
directory.

From the Convert Service Editor, this parameter can be used with the
OPTIM_FILE_NAME variable. Use this variable to reference multiple files specified
in the Object Files tab. Depending on the convert action, the OPTIM_FILE_NAME
variable will use the following source value:

v For the start of convert process and end of convert process actions, the source
value is taken from the Target file name field in the Target File Options tab of
the Convert Service Editor.

v For the start of table and end of table actions, the source value is taken from the
File Name column for objects in the Object Files tab. If a file name is not
specified for an object in the Object Files tab, the source value is taken from the
Target file name field in the Target File Options tab of the Convert Service
Editor.

For example, -s c:\data\sales.csv or -s :OPTIM_FILE_NAME .

--destination/-d Required. The destination directory in HDFS. The file name is derived from the
source file name.

If a relative path is specified, the HDFS home directory is automatically obtained
from Hadoop and prepended. The user name is specified in the userName
parameter or the operating system user name of the user executing the loader.

For example, -d /user/user_name/input or -d input.

--log/-l The name and location of the log file. If the path is invalid or the log file is not
writable, the utility will stop processing.

For example, -l C:\temp\log_files\example.txt..

To include the log file information in the Convert Process Report, use the processing
options in the Convert Service Editor to define the following parameters.

Keyword
-log/-l

Value The name and location of the log file.

Classification
Log/Report File Name

If the log file information is entered in the processing options, the log file
information will be appended to the command line statement.

--overwrite/-o A yes/no or true/false indication of whether the destination file may be
overwritten. The default is no (false).

For example, -o yes.

--userName/-n The name of the HDFS user. If a name is not specified, the operating system user
name will be used.

For example, -n hadoop1.

--table/-t The name of the table from which the CSV file was created. For use with the
pr0hdfs log file.

For example, -t CUSTOMERS.

58 IBM Optim: Using Optim Designer

Examples

The following example includes only the required parameters.

pr0hdfs -u http://qrh6032a:50070 -s C:\data\custsomers.csv -d input

The following example uses the OPTIM_FILE_NAME variable for the source parameter.

pr0hdfs -u http://qrh6032a:50070 -s :OPTIM_FILE_NAME -d input

The following example includes log file information.

pr0hdfs -u http://qrh6032a:50070 -s C:\data\custsomers.csv -d input -l C:\temp\log_files\
example.txt

Optim variables for convert actions
Use Optim variables to provide a convert action utility with values from the convert process.

The following Optim variables are available:

OPTIM_CONVERT_DESC
The description of convert service request.

OPTIM_CURRENT_DATETIME
The current date and time a convert action is performed.

OPTIM_FILE_NAME

For the start of convert process and end of convert process actions, the value is taken from the
Target file name field in the Target File Options tab of the Convert Service Editor.

For the start of table and end of table actions, the value is taken from the File Name column for
objects in the Object Files tab. If a file name is not specified for an object in the Object Files tab,
the value is taken from the Target file name field in the Target File Options tab of the Convert
Service Editor.

OPTIM_MACHINE_NAME
The name of the machine processing the convert service.

OPTIM_OBJECT_NAME
The value of this variable will be "empty" (no value) for start and end of convert actions. For start
and end of table actions, the value will be taken from the Object Name column in the Object
Files tab.

OPTIM_SERVER_NAME
The name of Optim server processing the convert service or “(Local)” if a server is not used.

OPTIM_USER_ID
The operating system user ID logged into the machine processing the convert service.

Working with insert services
Use an insert service to insert data stored in a source file into a destination database.

Use table maps and column maps to map data from the source to the target. You must use a table map to
specify the destination for the tables in the source file. You may also use column maps for one or more
destination tables. Column maps enable you to specify the source data for each column and, optionally,
to transform the data before it is inserted.

The following insert process options are available:

Chapter 6. Designing data management services 59

Insert If the primary key value is unique to the destination table, the new row is added to the
destination table. If the primary key value is not unique to the destination table (the row already
exists), the row is discarded.

Update Only
If the primary key of a row in the source data matches the primary key of a row in the
destination table, the row is updated. If the primary key of a row in the source data does not
match the primary key of a row in the destination table, the row is reported as failed.

Update/Insert
If the primary key value is unique to the destination table, the new row is added to the
destination table. If the primary key value is not unique to the destination table (the row already
exists), the row in the extract file replaces or updates the existing row.

Mixed Optim also allows a mix of insertion methods where some tables are inserted and others are
updated.

If tables in the source file do not exist at the target, use the Create utility to create them.

Naming conventions

The fully qualified name of an insert service consists of: identifier.name.

identifier
Identifier that serves as the prefix for the insert service name (1 to 8 characters).

name Name assigned to the insert service (1 to 12 characters).

When you create insert services, it is helpful to use a logical set of naming conventions to identify the use
for each and to organize them for easy access.

Creating an insert service
Use the New Service wizard to create an insert service.

An insert service requires a table map. During the creation of a service, you can select or create a table
map.

To create an insert service:
1. Expand a folder in the Directory Explorer to contain the service, right-click Services, and click New

Service. The New Service wizard opens.
2. Complete the steps of the wizard.

You must select or create a table map.

The new insert service is displayed in the Insert Service Editor.

Editing an insert service
Use the Insert Service Editor to specify insert service processing options. You can specify options for
inserting and deleting rows and also handling triggers and constraints.

Specifying insert processing options
Use the Processing Options tab in the Insert Service Editor to specify insert service processing options.

You can specify the following processing options:
v Select the type of processing to be performed. Specify parameters to lock tables, set a commit

frequency and set a discard row limit.

60 IBM Optim: Using Optim Designer

v Delete rows from all or specified tables. Delete is useful for restoring data during testing. If a row
cannot be deleted for any reason, all deleted rows up to the last commit are restored, and insert
processing stops.

v Disable database triggers.
v Disable database constraints.

Row processing includes the following options:

Insert Inserts new rows into the tables.
v If the primary key of a row in the source data does not match the primary key of a row in the

destination table, the row is inserted.
v If the primary key of a row in the source data matches the primary key of a row in the

destination table, the row is bypassed and marked as discarded.

Mixed Updates, inserts, or updates/inserts according to your selection for each table on the Specify by
Table window. To use the Specify by Table window, click Specify by Table and select a process
option for each table.
v If you select Mixed and do not specify selections on the Specify by Table window, or you set

all tables to the same selection, the process option changes to indicate the process used for all
tables.

Note: You cannot select Mixed if All rows will be deleted is selected in the Row delete options
area.

Update
Updates rows in the tables. Tables must have a primary key.
v If the primary key of a row in the source data matches the primary key of a row in the

destination table, the row is updated.
v If the primary key of a row in the source data does not match the primary key of a row in the

destination table, the row is reported as failed.

Note: You cannot select Update if All rows will be deleted is selected in the Row delete options
area.

Update/Insert
Updates and inserts rows in tables. Tables must have a primary key.
v If the primary key of a row in the source data does not match the primary key of a row in the

destination table, the row is inserted.
v If the primary key of a row in the source data matches the primary key of a row in the

destination table, the row is updated.

Note: You cannot select Update/Insert if All rows will be deleted is selected in the Row delete
options area.

To specify insert processing options:
1. Expand a folder in the Directory Explorer that contains the insert service, expand the Services node,

and double-click the insert service to edit. The Insert Service Editor opens.
2. Select the Processing Options tab.
3. Edit the service processing options.
4. Save the insert service.

Changing a table map for a insert service
Use the Change Table Map wizard to change a table map associated with a insert service.

To change a table map associated with a insert service:

Chapter 6. Designing data management services 61

1. Expand a folder in the Directory Explorer that contains the insert service, expand the Services node,
and double-click the insert service to edit. The Insert Service Editor opens.

2. Click Change. The Change Table Map wizard opens.
3. Complete the steps of the wizard.

Select a table map or choose to create a local table map.
4. Save the insert service.

Working with load services
Use a load service to transform the contents of a source file into a format that is appropriate for a
particular DBMS loader and then, if specified, start the corresponding database load utility.

The load service generates a data file in the correct format for each table in the source file and an SQL file
or a BAT file (batch execution), depending on the DBMS, that contains the syntax necessary to start the
database loader.

A load service contains the parameters used to prepare data for a DBMS loader and the instructions
required to process the load. Specify a table map in the load service to map the destination for the data to
load. Use optional column maps in the load service to transform data before loading.

Data to be loaded must be contained in a source file.

Load versus insert

Optim can move data into a database by using a load or an insert service. Consider the following when
deciding which method to use:
v The volume of data and the speed of using the database load utility may offset the advantages of the

insert service.
v The data may contain referential integrity (RI) cycles that exceed the capability of the insert service to

insert all the data successfully.
v The database load utility requires exclusive control of the database and prevents user access during the

load service. The database is available to other users while the insert service is performed.
v The database load utility either inserts new data or replaces existing data. The insert service allows for

update/insert processing in one step.

Output file names

A load service generates the following types of files to support the load process of the database utility:

Data files
Data files contain the data you want to load, prepared in the format appropriate for the DBMS
you are using. Optim generates a data file for each table in the source file. Data files are named
the same as the source file, but contain sequentially numbered file name extensions. For example,
a source file named demo.xf that contains three tables will generate three data files named:
demo.001, demo.002, and demo.003.

Message files
Message files contain information that the database load utility generates during the load service.
Typically, there is one message file for the entire load service. The message file is named the same
as the source file, but contains the extension .msg. For example, if the source file is named demo.xf,
the message file is named demo.msg.

62 IBM Optim: Using Optim Designer

SQL file
For DB2, an SQL file is generated with one statement for each destination table that contains the
loader syntax to manually execute the loader. The SQL file is named the same as the source file,
but has the extension .sql.

BAT file
For Oracle, Sybase ASE, SQL Server, and Informix, a BAT file is generated that contains the
syntax to manually execute the loader for each table. A BAT file is generated for each data store
alias specified in the table map. Each BAT file resides in the directory with the corresponding
converted source file. If you chose to manually execute the loader, the BAT file must be edited (in
Notepad, for example) to replace a string of eight question marks with specific password
information (except Informix).

Additionally, a format file is generated for each data file. A format file has the same name as the
corresponding data file, except that the file name extension is different. If there are less than 500
tables to load, the format file name extension is 500 greater numerically than the data file name
extension. (For example, if there are three data files named demo.001, demo.002, and demo.003, the
corresponding format files are named demo.501, demo.502 and demo.503, respectively.) If there are
more than 500 tables, a more complex file extension generation algorithm is employed.

Note: If your file server does not allow long file names of greater than 8 characters and the source file
has a long name, the load service will fail. The best solution is to avoid using long file names for source
files. If needed, you can copy and rename a file before you use it for a load service.

Naming conventions

The fully qualified name of a load service consists of: identifier.name.

identifier
Identifier that serves as the prefix for the service name (1 to 8 characters).

name Name assigned to the service (1 to 12 characters).

When you create load services, it is helpful to use a logical set of naming conventions to identify the use
for each and to organize them for easy access.

Creating a load service
Use the New Service wizard to create a load service.

A load service requires a table map. During the creation of a service, you can select or create a table map.

To create a load service:
1. Expand a folder in the Directory Explorer to contain the extract service, right-click Services, and click

New Service. The New Service wizard opens.
2. Complete the steps of the wizard.

You must select or create a table map.

The new load service is displayed in the Load Service Editor.

Editing a load service
Use the Load Service Editor to specify load processing options. You can specify options for the load
process and for the DBMS loader associated with each the target data store.

Chapter 6. Designing data management services 63

Specifying load processing options
Use the Processing Options tab in the Load Service Editor to specify load service processing options.

You can specify the following options:
v Select how to run multiple DBMS loaders when more than one data store alias is used: parallel (to run

different DBMS loaders at the same time) or in sequence (to run different DBMS loaders one after
another).

v Stop a DBMS loader if an error occurs. If multiple DBMS loaders are running in sequence, processing
stops for the DBMS loader with an error and all subsequent DBMS loaders.

v Disable database triggers.
v Disable database constraints.

To specify load service processing options:
1. Expand a folder in the Directory Explorer that contains the load service, expand the Services node,

and double-click the load service to edit. The Load Service Editor opens.
2. Select the Processing Options tab.
3. Edit the service processing options.
4. Save the load service.

Specifying DBMS loader options
Use the Load Options tab in the Load Service Editor to specify options for each DBMS loader.

You can specify the following options:
v A processing mode.
v Options that are specific to each target data store alias.

Depending on the DBMS of the selected target file, the following processing modes are available:

Insert Inserts rows from the source file into empty target tables. If target tables contain data, the loader
returns an error.

Replace
Clears and replaces all of the existing rows in the target tables with the rows from the source file.
(Replace might be significantly more resource-intensive than Truncate since no logging is
performed.)

Append
Inserts the rows from the source file into the target tables. If the primary key values match,
duplicate rows are discarded or inserted into the exception table (if specified).

Truncate
Truncate is the same as Replace but the database does not log the rows being deleted, and
Truncate requires that RI constraints are disabled.

To specify DBMS loader options:
1. Expand a folder in the Directory Explorer that contains the load service, expand the Services node,

and double-click the load service to edit. The Load Service Editor opens.
2. Select the Load Options tab.
3. Select the target data store alias.
4. Edit the service processing options.
5. Save the load service.

64 IBM Optim: Using Optim Designer

Changing a table map for a load service
Use the Change Table Map wizard to change a table map associated with a load service.

To change a table map associated with a load service:
1. Expand a folder in the Directory Explorer that contains the load service, expand the Services node,

and double-click the load service to edit. The Load Service Editor opens.
2. Click Change. The Change Table Map wizard opens.
3. Complete the steps of the wizard.

Select a table map or choose to create a local table map.
4. Save the load service.

Testing a data management service
Use Optim Manager in embedded mode to test a data management service.

To test a data management service:
1. Expand a folder in the Directory Explorer that contains the extract service and expand the Services

node.
2. Right-click the service and click Run Service. Optim Manager opens and the Run Service window is

displayed.
3. Click Run. To monitor the progress of the service, use the Service Monitoring tab.

Chapter 6. Designing data management services 65

66 IBM Optim: Using Optim Designer

Chapter 7. Masking data

You can mask data such as national ID numbers, credit card numbers, dates, numeric values, and
personal information. Use a column map to enter a data masking function or create a column map
procedure with a LUA script. Use a convert service to transform the data.

Applying a data masking policy
Use the Column Map Editor to apply and edit a function for a column.

To apply a data masking function:
1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps

node, and double-click the column map. The Column Map Editor opens.
2. Select the column for the policy.
3. Click Apply Function. The Apply Function window opens.
4. Select the function to apply. Click OK. The function name appears in the associated column and the

function editor opens in the Column Map Editor.
5. Depending on the function, do one of the following steps:

Select the function expression tab and edit the function expression.
Select an option tab and select options for the function.

6. Save the column map.

Data masking functions
Data masking functions provide various methods to transform or mask sensitive data.

Lookup Functions
Use the lookup functions to select values from a lookup table that are used to populate the target table.
Use the Lookup and Hash Lookup functions to select values based on the source value. Alternatively, use
the Random Lookup function to select values from a lookup table without regard to the source value.

Lookup Function
The Lookup Function obtains the value for a destination column from a lookup table, according to the
value in a source column. There are two forms of the Lookup Function, single column and multiple
column.

The single column form inserts a value into a single destination column. The multiple column form
inserts values from multiple lookup table columns into corresponding destination columns.

You can enter the multiple column Lookup Function for any source column that will be replaced by a
lookup table value, but you must edit the column map to remove the names of remaining source
columns that will also be replaced.

The ignore parameter allows you to ignore the lookup table and use a source value when a row in a
specified source column contains a specified value (NULL, SPACES (for CHAR columns), or zero-length
VARCHAR).

© Copyright IBM Corp. 1996, 2013 67

You can use the preserve parameter to ignore the lookup table and use a source value when a row in a
specified source column contains a specified value (NULL, SPACES (for CHAR columns), or zero-length
VARCHAR). preserve can also be used to ignore the lookup table if a source column does not contain a
value.

If a match is not found in the lookup table, a conversion error is reported.

The syntax is:
LOOKUP ([sourcesearchcol, | SRCSEARCH=(sourcecol1,...,sourcecoln)]

[dest=(col1, coln) ,]
lktablename ({LookupTableSearchcol
| LKPSEARCH=(LookupTableSearchCol1,...,LookupTableSearchColn},
{value | values=(col1, coln) }

[,cache | ,nocache])
[,ignore=(colname (spaces, null, zero_len),)
| PRESERVE=([NOT_FOUND,] colname (spaces, null, zero_len),...)])

sourcesearchcol
For single column search, name of the source table column that contains the search value
(optional). If not specified, the name of the destination column is used.

SRCSEARCH=
For multiple column search, names of the source table columns containing the search values.
Column names must be enclosed in parentheses and separated by commas.

dest= Names of the destination table columns in which values from the lookup table are inserted.
(Required for multiple column lookup.)

col1, coln
Destination table column names. The order of the column names must correspond to the
lookup table columns in the values= parameter.

lktablename
Name of the lookup table. You may specify the lookup table name as dbalias.creatorid.tablename,
creatorid.tablename, or tablename. If you do not fully qualify the table name, the qualifiers for the
destination table are used.

LookupTableSearchcol
For single column lookup, name of the column in the lookup table that contains a value to match
against the search value from the source column.

value Name of the column in the lookup table that contains the translated search value to be inserted at
the destination. (Required for single column lookup.)

values=
Names of the lookup table columns that contain values to be inserted at the destination.
(Required for multiple column lookup.)

col1, coln
Lookup table column names. The order of the column names must correspond to the
destination table columns in the dest= parameter.

cache | nocache
Specify cache (default) to maintain a table of found lookup values in memory or nocache to discard
found values. Using cache is faster when retrieving a value many times, but requires extra
memory.

ignore=
List of source columns with values that are inserted at the destination instead of the lookup value
when the column has a row with a stated value (null, spaces, zero or zero-length varchar).

col The source column name.

68 IBM Optim: Using Optim Designer

For single column lookup, enter one column name only.

For multiple column lookup, the order of the column names must correspond to the
destination table columns in the dest= parameter. The number of columns must equal the
columns in the dest= parameter, and at least one column must include values. To not
specify values for a column, do not enter a value. For example, coln().

null Ignore the lookup table if the source column row has a null value.

SPACES
Ignore the lookup table if the source column row has a SPACES value. For CHAR
columns only.

ZERO_LEN
Ignore the lookup table if the source column row has a zero-length VARCHAR value.

preserve=
List of source columns with values that are inserted at the destination instead of the lookup value
when the source column contains a stated value (NOT_FOUND, null, spaces, or zero-length
varchar).

NOT_FOUND
Ignore the lookup table if no match is found for the source column row.

Note:

preserve= and ignore= are mutually exclusive. ignore= will be deprecated in a future release.

The col, null, spaces, and zero_len operands have the same effect when used with either preserve=
or ignore=.

Single column example

Use the Lookup Function to translate the source value in a lookup table to a corresponding value in
another table.

For example, assume the source column, STATE, contains state abbreviations (for example, NJ) and the
destination column is to contain the complete state name (in this example, New Jersey). A lookup table
named STATE_LOOKUP contains a column (CODE) for state abbreviations or codes and a column
(NAME) for the corresponding names.

To obtain the value for the destination column using the STATE_LOOKUP table, specify:

LOOKUP(STATE,STATE_LOOKUP(CODE,NAME))

The Lookup Function searches for a value in the CODE column of the STATE_LOOKUP table that
matches the value (NJ) in the source table STATE column. When a match is found, the function inserts
the corresponding value from the NAME column (New Jersey) in the destination column.

Multiple column example

Use the Lookup Function to insert values from columns in a lookup table row into columns in a
destination table row, based on a value in a source column.

For example, based on a source column (SOC_SEC) that contains social security numbers, you can replace
values in destination columns (FIRST_NAME and LAST_NAME) with first and last names from a lookup
table. A table named NAME_LOOKUP contains a column (SSN) with the social security numbers from
the source table as well as columns (FIRST_MASK and LAST_MASK) to mask corresponding names in
the destination.

Chapter 7. Masking data 69

To replace names in the destination table based on a social security number, specify:

LOOKUP(SOC_SEC,DEST=(FIRST_NAME,LAST_NAME),
NAME_LOOKUP(SSN,VALUES=(FIRST_MASK, LAST_MASK)))

The Lookup Function searches for a value in the SSN column of the NAME_LOOKUP table that matches
the value in the source table SOC_SEC column. When a match is found, the function inserts the
corresponding values from the lookup table FIRST_MASK and LAST_MASK columns into the
corresponding destination columns.

Ignore example

Use the following statement to extend the single column example, where you want to use the source
NULL and SPACES values instead of lookup table values:

LOOKUP(STATE,STATE_LOOKUP(CODE,NAME),
IGNORE=(STATE(NULL,SPACES)))

NoCache example

Use the following statement to extend the single column example, where you do not want to maintain a
table of found lookup values in memory:

LOOKUP(STATE,STATE_LOOKUP(CODE,NAME),NOCACHE)

Hash Lookup Function
The Hash Lookup Function obtains the value for a destination column from a lookup table, according to
a hashed value derived from a source column. The Hash Lookup Function allows you to consistently
mask data when you use the same source and lookup tables in any environment.

The source column that is hashed does not need to be a column that will be replaced by lookup table
values.

The Hash Lookup Function is case-sensitive. For example, the source values John and JOHN will be
hashed to different values. You can use the TRIM parameter to convert the source value to uppercase
before it is hashed.

There are two forms of the Hash Lookup Function, single column and multiple column. The single
column form inserts a value into a single destination column. The multiple column form inserts values
from multiple lookup table columns into corresponding destination columns, based on a single hash
value from a source column.

You can enter the multiple column Hash Lookup Function for any source column that will be replaced by
lookup table values, but you must edit the column map to remove the names of remaining source
columns that will also be replaced.

The lookup table must include a key column that contains sequential number values without any gaps,
and the remaining columns contain replacement values. The key column must be a numeric data type.
The lookup table is typically indexed. The function hashes a source column to derive sequential numbers
from 1 to the maximum value in the key column of the lookup table. The hashed value from the source
table is matched with the sequential numbers in the lookup table, and values from the corresponding
lookup table row are inserted at the destination.

If the source column used to derive the hashed value contains certain values (NULL, spaces (for CHAR
columns), zero-length VARCHAR), the value is not hashed and the following reserved values are used as
keys to the lookup table:

70 IBM Optim: Using Optim Designer

Source Value Lookup Table Key

NULL -1

spaces (CHAR or VARCHAR) -2

zero-length VARCHAR -3

The lookup table should include a row for each of these numbers, allowing you to insert a lookup value
for each of these source values. If one of these source values is found and a corresponding number is not
in the lookup table, a conversion error is reported.

The ignore parameter allows you to ignore the lookup table and use a source value when a row in a
specified source column contains a specified value (NULL, SPACES (for CHAR columns), or zero-length
VARCHAR).

You can use the preserve parameter to ignore the lookup table and use a source value when a row in a
specified source column contains a specified value (NULL, SPACES (for CHAR columns), or zero-length
VARCHAR). preserve can also be used to ignore the lookup table if a source column does not contain a
value.

The trim parameter allows you to specify characters that will be trimmed from the source value before it
is hashed. For example, if you choose to trim commas from a source value, the values Smith, John, and
Smith John will each be hashed to the same value. You can also use this parameter to convert the source
value to uppercase before it is hashed.

If the source value is converted to uppercase, the trim characters are also converted to uppercase.

You can use the seed parameter to vary the calculation performed by the hashing algorithm. The hashed
value from the source column and the seed value are matched with a sequential number from the lookup
table to obtain the replacement value for the destination column.

The syntax is:
HASH_LOOKUP([sourcecol,] [trim=([char1char2] [\u]),]
dest=(col1, coln), lktablename (search,
{ value | values=(col1, coln) }) [,cache | ,nocache]
[,ignore=(col (spaces, null, zero_len),)

| PRESERVE=([NOT_FOUND,] colname (spaces, null, zero_len),)])[,seed=n])

sourcecol
Name of the source table column from which hashed values are derived (optional). If not
specified, the name of the destination column is used.

trim= List of characters to be trimmed from the source value before it is hashed as well as an option to
convert the source value to uppercase before it is hashed. If the resulting source value is NULL or
all spaces after characters have been trimmed, the source value will not be hashed and will be
assigned the appropriate reserved value (-1 or -2).

char1char2...
Characters to be trimmed from the source value before it is hashed. The list is
case-sensitive. You can specify a space or comma as a character. After the initial
occurrence of a character, any additional occurrences in the list are ignored.

To specify a backslash “\” or a right parentheses “)”, you must precede the character
with a backslash escape character. For example, to specify a right parentheses, enter:
trim=(\)).

You can only use the escape character with a backslash, a right parentheses, or as part of
the uppercase indicator.

Chapter 7. Masking data 71

\u Indicates the source value is to be converted to uppercase before it is hashed. The
characters to be trimmed are also converted to uppercase.

dest= Names of the destination table columns in which values from the lookup table are inserted.
(Required for multiple column lookup.)

col1,coln
Destination table column names. The order of the column names must correspond to the
lookup table columns in the values= parameter.

lktablename
Name of the lookup table. You may specify the lookup table name as
dbalias.creatorid.tablename, creatorid.tablename, or tablename. If you do not fully qualify the
table name, the qualifiers for the destination table are used.

search Name of the column in the lookup table that contains sequential values to match against the hash
values from the source column.

value Name of the column in the lookup table that contains the translated search value to be inserted at
the destination. (Required for single column lookup.)

values=
Names of the columns in the lookup table that contain values to be inserted at the destination.
(Required for multiple column lookup.)

col1,coln
Lookup table column names. The order of the column names must correspond to the
destination table columns in the dest= parameter.

cache | nocache
Specify cache (default) to maintain a table of found lookup values in memory or nocache to discard
found values. Using cache is faster when retrieving a value many times, but requires extra
memory.

ignore=
List of source columns with values that are inserted at the destination instead of the lookup value
when the column has a row with a stated value (NULL, SPACES, ZERO, or zero-length
VARCHAR).

col The source column name.

For single column lookup, enter one column name only.

For multiple column lookup, the order of the column names must correspond to the
destination table columns in the dest= parameter. The number of columns must equal the
columns in the dest= parameter, and at least one column must include values. To not
specify values for a column, do not enter a value. For example, coln().

NULL Ignore the lookup table if the source column row has a NULL value.

SPACES
Ignore the lookup table if the source column row has a SPACES value. For CHAR
columns only.

ZERO_LEN
Ignore the lookup table if the source column row has a zero-length VARCHAR value.

preserve=
List of source columns with values that are inserted at the destination instead of the lookup value
when the column contains a stated value (NOT_FOUND, null, spaces, or zero-length varchar).

NOT_FOUND
Ignore the lookup table if no match is found for the source column row.

72 IBM Optim: Using Optim Designer

Note:

preserve= and ignore= are mutually exclusive. ignore= will be deprecated in a future release.

Thecol, null, spaces, and zero_len operands have the same effect when used with eitherpreserve= or
ignore=.

seed= Use seed= to vary the hashing algorithm calculation. Values from 1 to 2,000,000,000 can be used. If
you use a value of 0, the seed= parameter is ignored.

Single column example

Use the Hash Lookup Function to insert values from a column in a lookup table into a destination table
column, based on a value hashed from a source column.

For example, assume the source column, FIRST_NAME, contains first names and the destination column
will include replacement first names from the lookup table. A lookup table, NAME_LOOKUP, contains a
column (FIRST) with first names and a column (SEQ) containing sequential values.

To obtain values for the destination column using the NAME_LOOKUP table, specify:

HASH_LOOKUP(FIRST_NAME,NAME_LOOKUP(SEQ, FIRST))

The Hash Lookup Function matches the hash values from the source column with values in the SEQ
column of the NAME_LOOKUP table. When a match is found, the function inserts the corresponding
value from the FIRST column into the destination column.

Multiple column example

Use the Hash Lookup Function to insert values from columns in a lookup table row into columns in a
destination table row, based on a value hashed from a source column.

For example, based on values hashed from a source column (FIRST_NAME) that contains first names,
you can replace values in destination columns (FIRST and LAST) with first and last names from a lookup
table. A lookup table named NAME_LOOKUP contains a column (SEQ) with sequential values as well as
columns (FIRST_MASK and LAST_MASK) to mask values in the destination.

To replace names in the destination table based on values hashed from a source column, specify:

HASH_LOOKUP(FIRST_NAME,DEST=(FIRST,LAST), NAME_LOOKUP(SEQ,VALUES=(FIRST_MASK, LAST_MASK)))

The Hash Lookup Function matches the hash values from the source FIRST_NAME column with values
in the SEQ column of the NAME_LOOKUP table. When a match is found, the function inserts the
corresponding values from the lookup table FIRST_MASK and LAST_MASK columns into the
corresponding destination columns.

Ignore example

Use the following statement to extend the single column example, where you want to use the source
NULL and SPACES values instead of lookup table values:

HASH_LOOKUP(FIRST_NAME,NAME_LOOKUP(SEQ, FIRST),IGNORE=(FIRST_NAME(NULL,SPACES)))

NoCache example

Use the following statement to extend the single column example, where you do not want to maintain a
table of found lookup values in memory:

Chapter 7. Masking data 73

HASH_LOOKUP(FIRST_NAME,NAME_LOOKUP(SEQ, FIRST),NOCACHE)

Trim example

Use the following statement to extend the single column example, where you want to trim spaces and
commas from the source value as well as convert the source value to uppercase before it is hashed:

HASH_LOOKUP(FIRST_NAME, TRIM=(,\u),NAME_LOOKUP(SEQ,FIRST))

Random Lookup Function
The Random Lookup Function selects a value at random from a specified lookup table to insert in a
destination column. The function generates a random number between 1 and the limit or number of rows
in the lookup table to use as a subscript into the table. The column value or values from the row that
correspond to the subscript are inserted in the destination column.

There are two forms of the Random Lookup Function, single column and multiple column. The single
column form inserts a value into a single destination column. The multiple column form inserts values
from multiple lookup table columns into corresponding destination columns.

You can enter the multiple column Random Lookup Function for any source column that will be replaced
by a lookup table value, but you must edit the column map to remove the names of remaining source
columns that will also be replaced.

The ignore parameter allows you to ignore the lookup table and use a source value when a row in a
specified source column contains a specified value (NULL, SPACES (for CHAR columns), or zero-length
VARCHAR).

You can use the preserve parameter to ignore the lookup table and use a source value when a row in a
specified source column contains a specified value (NULL, SPACES (for CHAR columns), or zero-length
VARCHAR).

The syntax is:
RAND_LOOKUP(lktablename, { columnname | dest=(col1,coln) ,values=(col1,coln) }
[,limit] [,ignore=(col(spaces, null, zero_len),) | PRESERVE=(colname (spaces, null, zero_len),)])

lktablename
Name of the lookup table. You may specify the lookup table name as dbalias.creatorid.tablename,
creatorid.tablename, or tablename. If the table name is not fully qualified, destination table
qualifiers are used.

columnname
Name of the column in the lookup table that contains the values to be randomly selected for
insertion at the destination. (Required for single column lookup.)

dest= Names of the destination table columns in which values from the lookup table are inserted.
(Required for multiple column lookup.)

col1,coln
Destination table column names. The order of the column names must correspond to the
lookup table columns in the values= parameter.

values=
Names of the columns in the lookup table that contain values to be inserted at the destination.
(Required for multiple column lookup.)

col1,coln
Lookup table column names. The order of the column names must correspond to the
destination table columns in the dest= parameter.

74 IBM Optim: Using Optim Designer

limit Optional limit on number of rows from the lookup table used to select column values. Specify an
integer, up to a maximum value of 2,000,000,000. If no limit is specified, all rows are used.

Note: A table of column values is generated in memory. The size of this table may be limited by
system resources.

ignore=
List of source columns with values that are inserted at the destination instead of the lookup value
when the column has a row with a stated value (NULL, SPACES, or zero-length VARCHAR).

col The source column name.

For single column lookup, enter one column name only.

For multiple column lookup, the order of the column names must correspond to the
destination table columns in the dest= parameter. The number of columns must equal the
columns in the dest= parameter, and at least one column must include values. To not
specify values for a column, do not enter a value. For example, coln().

null Ignore the lookup table if the source column row has a NULL value.

spaces Ignore the lookup table if the source column row has a SPACES value. For CHAR
columns only.

zero_len
Ignore the lookup table if the source column row has a zero-length VARCHAR value.

preserve=
List of source columns with values that are inserted at the destination instead of the lookup value
when the column contains a stated value (NOT_FOUND, null, spaces, or zero-length varchar).

NOT_FOUND
Ignore the lookup table if no match is found for the source column row.

Note:

preserve= and ignore= are mutually exclusive. ignore= will be deprecated in a future release.

The col, null, spaces, and zero_len operands have the same effect when used with either preserve=
or ignore=.

Single column example

To select a value at random from the STATE column in the first 50 rows of a table named
STATE_LOOKUP and insert it in the destination column, specify:

RAND_LOOKUP(STATE_LOOKUP,STATE,50)

Multiple column example

To select values from the CITY, STATE, and ZIPCODE columns in a random row of a table named
STATE_LOOKUP and insert them in the corresponding destination columns, specify:

RAND_LOOKUP(STATE_LOOKUP,
DEST=(CITY,STATE,ZIPCODE),
VALUES=(CITY,STATE,ZIP))

Ignore example

Use the following statement to extend the single column example, where the source column is named
STATES and you want to use the source NULL and SPACES values instead of lookup table values:

Chapter 7. Masking data 75

RAND_LOOKUP(STATE_LOOKUP,STATE,50, IGNORE=(STATES(NULL,SPACES)))

Shuffle Function
The Shuffle Function replaces a source value with another value from the column that is then inserted in
a destination column. The source row and the row that contains the replacement value will never be the
same, but depending on your data, source and replacement values can be identical.

You can indicate the number of times the function will refetch a replacement value until a value that does
not match the source value is found (a “retry”), or you can allow a replacement value to match the
source. Each Shuffle Function operates independently of other Shuffle Functions used in a column map.

There are two forms of the Shuffle Function, single column and multiple column. The single column form
inserts a replacement value into a single destination column. The multiple column form inserts
replacement values from multiple columns in a row into corresponding destination columns. A column
cannot be included in more than one Shuffle Function in a column map. If the retry feature is used with a
multiple column shuffle, the function will refetch another replacement row if any value in the source row
column matches the value in a corresponding replacement row column. (The multiple column form
cannot be used in a Propagate Function.)

To create a multiple column Shuffle Function, enter the function for a source column that will be replaced
with shuffled values, and edit the column map to remove the names of any other source columns with
values that will also be replaced.

The ignore parameter prevents the function from replacing a source row or using a replacement row if
either contains a specified value (NULL, SPACES (for CHAR columns), or zero-length VARCHAR). If no
retries are allowed, the ignore parameter will not apply to the replacement row.

The syntax is:
SHUFFLE [(dest=(col1,coln))] |
[(dest=(col1,coln) , retry[=number])] |
[(dest=(col1,coln) [, retry[=number]] , ignore=(col1 ([spaces] | [spaces,null]
| [spaces,null,zero_len] | [null] | [null,zero_len] | [zero_len]) , coln (....)))] |
[(retry[=number])] |
[(retry[=number] , ignore=(col ([spaces] | [spaces,null] | [spaces,null,zero_len]
| [null] | [null,zero_len] | [zero_len])))] |
[(ignore=(col ([spaces] | [spaces,null] | [spaces,null,zero_len]
| [null] | [null,zero_len] | [zero_len])))]

where:

dest= Names of the destination table columns in which replacement values are inserted. (Required for
multiple column shuffle.)

col1, coln, ...
Destination table column names.

retry Number of times to refetch a replacement value to find a value that does not match the source
row. Enter zero to allow a replacement value to match the source.

Note: Using a high retry value with columns that contain many duplicate values will increase the
processing time. For these columns, it may be best to use a retry value of zero.

=number
Enter a value in the range 0-1000. Enter 0 to allow a replacement value to match the
source.

ignore=
List of columns for which the function will not replace a source value or not use a replacement
value if either is a specified value (NULL, SPACES (for CHAR columns), or zero-length

76 IBM Optim: Using Optim Designer

VARCHAR). If a replacement value is ignored, the function will refetch another replacement
value. If no retries are allowed, the ignore= parameter will not apply to replacement values.

col The source column name.

For single column shuffle, enter one column name only.

For multiple column shuffle, the order of the column names must correspond to the
destination table columns in the dest= parameter. The number of columns must equal the
columns in the dest= parameter, and at least one column must include values. To not
specify values for a column, do not enter a value. For example, coln().

null Do not replace the source value or use a replacement value if either is a NULL value.

spaces Do not replace the source value or use a replacement value if either is a SPACES value.
For CHAR columns only.

zero_len
Do not replace the source value or use a replacement value if either is a zero-length
VARCHAR value.

Single column default example

The following example inserts shuffled values in a single column.

SHUFFLE

Single column retry example

The following example inserts shuffled values in a single column and refetches a replacement value that
does not match the source up to 12 times.

SHUFFLE(RETRY=12)

Multiple column example

The following example inserts shuffled values in the STATE and ZIP columns and refetches a replacement
value that does not match the source up to 12 times.

SHUFFLE(DEST=(STATE,ZIP),RETRY=12)

Ignore example

The following example inserts shuffled values in the STATE and ZIP columns and refetches a replacement
value that does not match the source up to 12 times. The example also does not replace a source value or
use a replacement value for the STATE column if a source or replacement row contains a NULL or
SPACES value, but does not ignore any source or replacement rows for the ZIP column.

SHUFFLE(DEST=(STATE,ZIP),RETRY=12,
IGNORE=(STATE(NULL,SPACES),ZIP()))

TRANS SSN Function
Use the TRANS SSN function to generate a valid and unique U.S. Social Security Number (SSN). By
default, TRANS SSN algorithmically generates a consistently altered destination SSN based on the source
SSN. TRANS SSN can also generate a random SSN when the source data does not have an SSN value or
when there is no need for transforming the source SSN in a consistent manner.

Chapter 7. Masking data 77

An SSN is made of 3 subfields. The first 3 digits (area) represent an area generally determined by the
state in which the SSN is issued. The next 2 digits (group) define a group number corresponding to the
area number. The last 4 digits (serial) are a sequential serial number. Regardless of the type of processing,
default or random, TRANS SSN will generate an SSN with a group number appropriate to the area
number.

The default processing method generates an SSN that includes the source area number as well as altered
group and serial numbers based on the source SSN.

The random processing method generates an SSN that can include the source area number and uses a
group number most recently issued by the Social Security Administration for the destination area
number. Serial numbers begin with 0001 and are incremented by 1 for each additional SSN generated for
the area number. When the serial number exceeds 9999, the serial number will be reset to 0001 and the
group number preceding the number most recently issued for the area number will be used.

The syntax of TRANS SSN is:
TRANS SSN [('[=flags] [sourcecol [preserve=invalid]’)]

flags You can specify one or more case-insensitive processing option flags.

n Generate a random SSN that is not based on a source value.

m Use the maximum group of all SSN area values, including values from 773 through 899,
and excluding invalid area numbers.

r Generate a SSN with a random area number corresponding to the same state as input
SSN.

v Validate the source group number by comparing it with numbers used by the Social
Security Administration.

- The destination SSN should include dashes separating the fields (for example,
123-45-6789). Requires a character-type destination column at least 11 characters long.

sourcecol
The source column name. If a source column name is not specified, the destination column name
will be used. If a source column name is not specified and the destination column name does not
match a column name in the source table, an error will occur during processing.

preserve=invalid
If the source column contains an invalid SSN, do not replace it with a generated value. The
source column value will be used in the destination column.

Data types allowed

The following source and destination data types are permitted:

CHAR
The length of data in the column must be from 9 to 256 characters.

DECIMAL
The precision of the column must be 9 - 20 and the scale 0.

INTEGER
No restrictions.

VARCHAR
The length of data in the column must be from 9 to 254 characters.

If a source or destination column does not adhere to these restrictions, an error will occur during
processing.

78 IBM Optim: Using Optim Designer

Destination processing rules

The following rules apply to the destination SSN value, according to the destination data type or value:

CHAR
If the source value is 0, spaces, or a zero-length VARCHAR, the destination value will be set to
spaces.

If a source value is 11 characters or more and includes embedded dashes (-), or if the ‘-' flag is
specified, the destination value will include dashes if the destination column length is 11
characters or more.

DECIMAL, INTEGER
If the source value is 0, spaces, or a zero-length VARCHAR, the destination value will be 0.

VARCHAR
If the source value is 0, spaces, or a zero-length VARCHAR, the destination length will be 0.

If a source value is 11 characters or more and includes embedded dashes (-), or if the ‘-' flag is
specified, the destination value will include dashes if the destination column length is 11
characters or more.

NULL If the source value is NULL, the destination value will be NULL.

Skipped rows

The following conditions may cause a source row to be skipped and not written to the destination:
v The source value is NULL, and the destination column does not allow a NULL value.
v The source column is CHAR or VARCHAR, and the source value is less than 9 characters, contains a

non-numeric character (other than dashes between the 3 subfields), or is too large.
v The source area number has not been used by the Social Security Administration.
v The source group number has not been used with the area number by the Social Security

Administration (only if the ‘v' flag has been specified).
v The source serial number is 0000, or the SSN is a reserved value not issued by the Social Security

Administration (for example, 078-05-1120).
v The source value cannot be converted to a format TRANS SSN supports.

Error messages

The following error messages may be issued:

SSN01
Parm on Col ccccc ("ppp") is invalid

Explanation
The column contains a TRANS function with a processing option flag that is not valid.

User Action
Ensure that the TRANS function on the column specified uses a valid processing option
flag (n, r, v, -).

SSN02
Col ccccc not on source

Explanation
The column that was entered as a sourcecol parameter or the destination column name (if
the sourcecol parameter was omitted) was not found on the source table.

User Action
Check the source table and resolve any discrepancies or missing columns.

Chapter 7. Masking data 79

SSN03
Source Col ccccc-aaa invalid

Explanation
The format of the source column is not supported because the attribute indicated is not
valid.

User action
Check the source column and ensure the values for type, length, precision, and scale are
appropriate.

SSN04
Dest Col ccccc-aaa invalid

Explanation
The format of the destination column is not supported because the indicated attribute is
not valid.

User Action
Check the destination column to ensure the values for type, length, precision, and scale
are appropriate.

SSN05
Get col ccccc data-rc=nnn

Explanation
An unexpected internal error has occurred while getting the value from the source
column.

User Action
Check the values of the source and destination columns and ensure the values for type,
length, precision, and scale are appropriate. If the problem persists, contact IBM Software
Support.

SSN08
Put col ccccc data-rc=nnn

Explanation
An unexpected internal error has occurred while setting the value on the destination
column.

User Action
Check the values of the source and destination columns and ensure the values for type,
length, precision, and scale are appropriate. If the problem persists, contact IBM Software
Support.

If any other errors occur, contact Technical Support.

Example 1

The following example uses a source column name that matches the destination column and generates a
random SSN that is not based on the source value:

TRANS SSN ('=n’)

Example 2

The following example uses a source column name (NATIONAL_ID) that differs from the destination
column and generates an SSN using the default processing method and including dashes:

TRANS SSN ('=- NATIONAL_ID’)

80 IBM Optim: Using Optim Designer

TRANS CCN Function
Use the TRANS CCN function to generate a valid and unique credit card number (CCN). By default,
TRANS CCN algorithmically generates a consistently altered CCN based on the source CCN. TRANS
CCN can also generate a random value when the source data does not have a CCN value or when there
is no need for transforming the source CCN in a consistent manner.

A CCN, as defined by ISO 7812, consists of a 6-digit issuer identifier followed by a variable length
account number and a single check digit as the final number. The check digit verifies the accuracy of the
CCN and is generated by passing the issuer identifier and account numbers through the Luhn algorithm.
The maximum length of a CCN is 19 digits.

The default processing method generates a CCN by including the first 4 digits of the issuer identifier
from the source CCN and altering the remaining 2 digits of the issuer identifier number and the account
number based on the source CCN. A valid check digit is also assigned.

The random processing method generates a CCN that can include the first 4 digits of the source issuer
identifier number or an issuer identifier number assigned to American Express, Discover, MasterCard, or
VISA. A valid check digit is also assigned. If the first four digits of a source issuer identifier number are
included, the first account number based on those digits will begin with 1, and for each additional CCN
that uses those digits, the account number will be incremented by 1.

The syntax of TRANS CCN is:
TRANS CCN [('[=flag] [sourcecol] [preserve=invalid]’)]

flag Specify an option flag to generate a random CCN.

n Generate a random CCN that is not based on a source value and includes an issuer
identifier number assigned to American Express, Discover, MasterCard, or VISA.

r Generate a random CCN that includes the first 4 digits of the source issuer identifier
number.

sourcecol
The source column name. If a source column name is not specified, the destination column name
is used.

If a source column name is not specified and the destination column name does not match a
column name in the source table, an error will occur during processing.

preserve=invalid
If the source column contains an invalid CCN, do not replace it with a generated value. The
source column value will be used in the destination column.

Data types allowed

The following source and destination data types are permitted:

CHAR
The column length must be from 13 to 256 characters.

VARCHAR
The column length must be from 13 to 254 characters.

DECIMAL
The precision of the column must be from 13 to 254 and the scale 0.

If a source or destination column does not adhere to these restrictions, an error message occurs.

Chapter 7. Masking data 81

Destination processing rules

The following rules apply to the destination CCN value, according to the destination data type or value:

CHAR
If the source value is spaces or a zero-length VARCHAR, the destination value will be set to
spaces.

VARCHAR
If the source value is spaces or a zero-length VARCHAR, the destination length will be 0.

DECIMAL
If the source value is 0, the destination value will be 0.

NULL If the source value is NULL, the destination value will be NULL.

Skipped rows

The following conditions may cause a source row to be skipped and not written to the destination:
v The source value is NULL, and the destination column does not allow a NULL value.
v The source value is less than 13 characters, contains a non-numeric character, is too large, or has an

incorrect check digit.
v The source value length is not valid for the credit card issuer.
v The source value cannot be converted to a format TRANS CCN supports.

Error messages

The following error messages may be issued:

CCN01
Parm on Col ccccc ("ppp") is invalid

Explanation
The indicated column contains a TRANS function with a processing option flag that is
not valid.

User Action
Ensure that the TRANS function on the column specified uses a valid processing option
flag (n, r, 6).

CCN02
Col ccccc not on source

Explanation
The column that was entered as a sourcecol parameter or the destination column name (if
the sourcecol parameter was omitted) was not found on the source table.

User Action
Check the source table and resolve any discrepancies or missing columns.

CCN03
Source Col ccccc-aaa invalid

Explanation
The format of the source column is not supported because the attribute indicated is not
valid.

User Action
Check the source column and ensure the values for type, length, precision, and scale are
appropriate.

82 IBM Optim: Using Optim Designer

CCN04
Dest Col ccccc-aaa invalid

Explanation
The format of the destination column is not supported because the indicated attribute is
not valid.

User Action
Check the destination column to ensure the values for type, length, precision, and scale
are appropriate.

CCN05
Get col ccccc data-rc=nnn

Explanation
An unexpected internal error has occurred while getting the value from the source
column.

User Action
Check the values of the source and destination columns and ensure the values for type,
length, precision, and scale are appropriate. If the problem persists, contact IBM Software
Support.

CCN08
Put col ccccc data-rc=nnn

Explanation
An unexpected internal error has occurred while setting the value on the destination
column.

User Action
Check the values of the source and destination columns and ensure the values for type,
length, precision, and scale are appropriate. If the problem persists, contact IBM Software
Support.

If any other errors occur, contact Technical Support.

Example 1

The following example uses a source column name (CREDITCARD) that differs from the destination
column and generates a random CCN not based on the source value:

TRANS CCN ('=n CREDITCARD’)

Example 2

The following example uses a source column name (CREDITCARD) that differs from the destination
column and generates a CCN using the default processing method:

TRANS CCN ('CREDITCARD’)

TRANS EML Function
Use the TRANS EML function to generate an email address. An email address consists of two parts, a
user name followed by a domain name, separated by ‘@'. For example, user@domain.com.

TRANS EML generates an email address with a user name based on either destination data or a literal
concatenated with a sequential number. The domain name can be based on an email address in the
source data, a literal, or randomly selected from a list of large email service providers. The email address
can also be converted to upper or lower case.

Chapter 7. Masking data 83

TRANS EML can generate a user name based on the values in one or two destination table columns
(usually containing the name of a user). Processing options allow you to use only the first character of
the value in the first column (for example, the initial letter of a first name) and separate the values from
both columns using either a period or an underscore.

If the user name is based on a single destination column value or a literal, the name will be concatenated
with a sequential number. If a user name is based on values in two destination table columns and a
separating period or underscore is not used, the values are concatenated. If a parameter is not provided
for the user name, the name will be formed by the literal “email” concatenated with a sequential number.
Sequential numbers for user names are suffixes that begin with 1 and are incremented by 1.

The syntax of TRANS EML is:

TRANS EML [('[=flags] , [{sourcecol | “domain” | , }
[{name1col[name2col] | “userpfx”}]] [preserve=invalid]’)]

flags You can specify one or more case-insensitive processing option flags.

n Generate a random domain name from a list of large email service providers.

. Separate the name1col and name2col values with a period.

_ Separate the name1col and name2col values with an underscore.

i Use only the first character of the name1col value.

l Convert the email address to lower case.

u Convert the email address to uppercase.

sourcecol
The source column name with email addresses used to provide the domain name.

If neither the ‘n' flag nor the domain parameter are defined, the domain name in the source
column is used. (If sourcecol is not defined, the source column name is based on the destination
column name.)

If a source column name is not specified and the destination column name does not match a
column name in the source table, an error will occur during processing.

domain A literal, up to 31 characters, that forms the domain name.

, A comma is required if neither a sourcecol nor a domain parameter is defined and you define
either a literal or column name(s) for the domain name.

name1col
A destination table column name with values used to form the first (or only) part of the user
name.

name2col
A destination table column name with values used to form the second part of the user name.

userpfx A literal, up to 31 characters, that is concatenated with a sequential number to form the user
name.

preserve=invalid
If the source column contains an invalid email address, do not replace it with a generated value.
The source column value will be used in the destination column.

Data types allowed

The following source and destination data types are permitted:

84 IBM Optim: Using Optim Designer

CHAR
The column length must be from 3 to 4096 characters.

VARCHAR
The column length must be from 3 to 4094 characters.

If a source or destination column does not adhere to these restrictions, an error message will be issued.

Destination processing rules

The following rules apply to the destination email value, according to the destination data type or value:

CHAR
If the source value is spaces or a zero-length VARCHAR, the destination value will be set to
spaces.

VARCHAR
If the source value is spaces or a zero-length VARCHAR, the destination length will be 0.

NULL If the source value is NULL, the destination value will be NULL.

Skipped rows

The following conditions may cause a source row to be skipped and not written to the destination:
v The source value is NULL, and the destination column does not allow a NULL value.
v The source value is a VARCHAR less than 3 characters long.
v The source email value does not contain a ‘@'.
v The source value cannot be converted to a format TRANS EML supports.

Error messages

The following error messages may be issued:

EML01
Parm on Col ccccc ("ppp") is invalid

Explanation
The indicated column contains a TRANS function with a processing option flag that is
not valid.

User Action
Ensure that the TRANS function on the column specified uses a valid processing option
flag (n, . , _ , i, l, u).

EML02
Col ccccc not on source

Explanation
The column that was entered as a sourcecol parameter or the destination column name (if
the sourcecol parameter was omitted) was not found on the source table.

User Action
Check the source table and resolve any discrepancies or missing columns.

EML03
Source Col ccccc-aaa invalid

Explanation
The format of the source column is not supported because the attribute indicated is not
valid.

Chapter 7. Masking data 85

User Action
Check the source column and ensure the values for type, length, precision, and scale are
appropriate.

EML04
Dest Col ccccc-aaa invalid

Explanation
The format of the destination column is not supported because the indicated attribute is
not valid.

User Action
Check the destination column to ensure the values for type, length, precision, and scale
are appropriate.

EML05
Get col ccccc data-rc=nnn

Explanation
An unexpected internal error has occurred while getting the value from the source
column.

User Action
Check the values of the source and destination columns and ensure the values for type,
length, precision, and scale are appropriate. If the problem persists, contact IBM Software
Support.

EML08
Put col ccccc data-rc=nnn

Explanation
An unexpected internal error has occurred while setting the value on the destination
column.

User Action
Check the values of the source and destination columns and ensure the values for type,
length, precision, and scale are appropriate. If the problem persists, contact IBM Software
Support.

EML09
Domain literal sssss too long

Explanation
The string specified as the domain name literal (domain) exceeds the maximum limit of
31 characters.

User Action
Specify a domain name consisting of 31 characters or fewer.

EML10
User literal sssss too long

Explanation
The string specified as the user name literal (userpfx) exceeds the maximum limit of 31
characters.

User Action
Specify a user name consisting of 31 characters or fewer.

EML11
Name1 Col ccccc not on dest

86 IBM Optim: Using Optim Designer

Explanation
To perform the indicated TRANS function, a name1col column must be specified on the
destination table.

User Action
Verify that the specified name1col column matches the name1col column indicated in the
TRANS function.

The name1col column name was not found on the destination table.

EML12
Name1 Col ccccc-aaa invalid

Explanation
To perform the indicated TRANS function, the name1col column specified must be in a
valid format.

User Action
Verify that the name1col column availability, type, and length are appropriate.

EML13
Name2 Col ccccc not on dest

Explanation
To perform the indicated TRANS function, a name2col column must be specified on the
destination table.

User Action
Verify that the specified name2col column matches the name2col column indicated in the
TRANS function.

The name2col column name was not found on the destination table.

EML14
Name2 Col ccccc-aaa invalid

Explanation
To perform the indicated TRANS function, the name2col column specified must be in a
valid format.

User Action
Verify that the name2col column availability, type, and length are appropriate.

If any other errors occur, contact Technical Support.

Example 1

The following example uses a literal (optim.com) to form the domain name and two destination table
columns (NAME_FIRST and NAME_LAST) to form a user name that includes an underscore:

TRANS EML ('=_ “optim.com” NAME_FIRST NAME_LAST’)

Example 2

The following example uses a domain name from the source column and a literal (OptimUser) to form a
user name that will be suffixed with a sequential number:

TRANS EML (', “OptimUser” ’)

Chapter 7. Masking data 87

TRANS COL Function
The TRANS COL function can mask data that has no inherent format or a format that is not widely
known. TRANS COL maintains the format and character type of the source data at the destination.

If the source data is upper case, alphabetic characters, TRANS COL generates upper case, alphabetic
characters at the destination. This function masks alphabetic and numeric characters, but other characters
in the source data are copied to the destination without being changed. You can use TRANS COL to
mask CHAR, VARCHAR, and non-float numeric data types. You can generate unique values, a different
value for each occurrence of the same source, and you can generate values with a length different from
the source.

The syntax of TRANS COL is:

TRANS COL (’{ unique | hash }[source=colname]
[copy=((start,len [, "lit"])...)]
[seed= {"lit" | var (variable)| RANDOM}]
[length=n | max] [preserve=([null] [spaces] [zero_len])]
[TRIM=(char1 [charn,...] [\u] [\r])] [num]’)

unique Generate a unique destination value. The length of the destination value will be the same as the
source value length.

hash Generate a destination value by hashing the source value. When hash is used, different source
values can produce the same destination values each time the process is run.

Note:
For the same source value, it is possible to obtain the same destination value when either the
unique parameter or the hash parameter is used. Use hash with the seed parameter to produce
different destination values each time the process is run.

source=colname
Use this parameter to specify the name of the source column if the destination column is different
from the source column name. The value you specify will be converted to uppercase; to prevent
the value from conversion to uppercase, enclose the value in double quotation marks.

copy= One or more pairs of substrings to be copied to the destination without being masked. If you
supply a literal string, the source characters in the specified positions are replaced. The copy=
parameter is valid only for a character data type column.

seed= Value used to alter the behavior of the masking algorithms. Specify a literal string, reference to an
environment variable, or RANDOM.

"lit" To specify a literal string, enclose the string in double quotation marks.

var (variable)
Specify an environment variable enclosed in parentheses. The variable name and its value
cannot include double quotation marks.

RANDOM
Generate a random seed value from the current system date and time.

length={n | max }
Generate a destination value with a length different from the source value length. Use length=max
to generate a destination value that will fill the column completely. Specifying a length shorter
than the source value causes the source value to be truncated when it is written to the
destination. The value you select for n cannot exceed the defined length of the destination
column. The length= parameter is valid only with hash=.

preserve=
List one or more source values that should not be replaced at the destination.

88 IBM Optim: Using Optim Designer

null If the source column has a null value do not replace the value at the destination.

spaces If the source column has a value of spaces do not replace the value at the destination. For
CHAR columns only.

zero_len
If the source column has a zero-length VARCHAR value do not replace the value at the
destination.

TRIM=(char1 [charn,...])
The specified source column character or characters are not masked and not written to the
destination. For example, if you specify TRIM=(x,y,z,1,2,3), if any of the characters x, y, z, 1, 2, 3
appear anywhere in the source column, they will not be masked or written to the destination.

[\u] Use this parameter to convert the character(s) to upper case before masking. If a character
has no upper case representation, it remains unchanged. For example, specifying
TRIM=(x,y \u) does not mask the characters x and y if they appear anywhere in the
source column, and changes any other source column characters to upper case before
masking them.

[\r] Use this operand to remove trailing spaces. For example, TRIM=(x,y \u \r) does not
mask the characters x and y if they appear anywhere in the source column, changes any
other source column characters to upper case before masking them, and removes any
trailing spaces before masking.

num Use this parameter to cause the transformation of integers in a character data type column to be
identical to that of a numeric data type column. The num parameter is valid only on numeric
values in a character data type column. When used in this way, foreign key integrity is
maintained across differing data types. If you use this parameter, do not specify copy= or length=.

Examples:
v TRANS COL UNIQUE for source value CDE-7834, could produce a destination value of: ZWQ-4598

v TRANS COL UNIQUE SEED=RANDOM for source value CDE-7834-2008 could produce a destination
value of: SWX-3162-8451

v TRANS COL UNIQUE for source value Smith, John could produce a destination value of: Fnxwq,
Lrzp

v TRANS COL UNIQUE for source value SMITH JOHN could produce a destination value of: FNXWQ
LRZP

v TRANS COL UNIQUE (COPY=((1,3)(10,4))) for source value CDE-7834-2008 could produce a
destination value of: CDE-4032-2008

v TRANS COL HASH (LENGTH=13) for source value CDE-7834 could produce a destination value of:
ZWQ-4598RN7A0

v TRANS COL UNIQUE PRESERVE=(spaces) for source value XYZ 477 6835 could produce a destination
value of: LMN 623 0972

v TRANS COL HASH TRIM=(e \u) for source value InfoSphere could produce a destination value of:
RBIWACRL

TRANS NID
Use the TRANS NID function to mask national ID numbers.

You can mask national ID numbers with either a repeatable method that preserves part of the source
value or a random method that does not preserve any part of the source value.

You can also specify the type of separators used in the output values (dashes, periods, spaces, or no
separators).

Chapter 7. Masking data 89

The TRANS NID function uses the following syntax:
[TRANS] NID (’SWI=country_code, [FMT=(output_format)], [MTD={mask|random}],

[SRC=column_name], [VAL={Y|N}], [PRE=INV]’)

SWITCH or SWI

A two-character value that indicates the type of national ID to mask. This parameter is required.
Only one switch value is permitted.

The following two-character values are valid:

Canada: Canadian Social Insurance Number (SIN)
CA

France: French National Institute for Statistics and Economic Studies Number (INSEE)
FR

Italy: Italian Fiscal Code Number (CF)
IT

Spain: Spanish Fiscal Identification Number (NIF)
ES

United Kingdom: United Kingdom National Insurance Number (NINO)
UK

United States of America: United States Social Security Number (SSN)
US

FMT or FORMAT

Determines the output format and which parts of the source value to mask. The syntax for this
parameter is determined by the national ID being masked:
v Canadian Social Insurance Number (SIN)
v French National Institute for Statistics and Economic Studies Number (INSEE)
v Italian Fiscal Code Number (CF)
v Spanish Fiscal Identification Number (NIF)/Foreign Identification Number (NIE)
v United Kingdom National Insurance Number (NINO)
v United States Social Security Number (SSN)

If this parameter is omitted and MTD=mask, the source format is used and the default fields will
be masked.

If this parameter is omitted and MTD=random, the output values will not include separators.

If the destination column is not large enough to contain an output format that uses separators,
separators will not be included.

MTD or METHOD
Determines which masking method to use, repeatable or random. If this parameter is omitted,
repeatable masking is performed (MTD=mask).

mask The source values are masked in a repeatable manner. The output values are based on the
source values. Default.

random
The output values are generated by a random masking algorithm. The output values are
not based on the source values.

Note:

v MTD=random is not compatible with the following parameters: VAL=Y and PRE=INV.

90 IBM Optim: Using Optim Designer

v If MTD=random and the FMT parameter specifies that part of the source value should
be copied to the output value, the output value will not include source values;
however, any separators specified in the FMT parameter will be included in the output
value.

SRC or SOURCE
The name of the column that contains the source values. Use this parameter only if the names of
the source and destination columns do not match.

VAL or VALIDATE
Determines if country-specific validation is performed on the source values. If this parameter is
omitted, validation is not performed (VAL=N).

Y Validate the source values.

Note: The option cannot be used if MTD=random.

N Do not validate the source values. Default.

PRE or PRESERVE
Determines if invalid source values are copied to the destination column. If this parameter is
omitted, invalid source values are not copied to the destination column and rows that contain
these values are skipped. This parameter includes only one option, INV or INVALID.

INV or INVALID
Copy invalid source values to the destination column.

Note: The option cannot be used if MTD=random.

Examples

The following syntax will mask United States Social Security Numbers (SSN) with a repeatable method.
The function will copy the first three digits of the source SSN and include a dash separator for the output
value. Validation will be performed on the output value.
NID(’SWITCH=US, FMT=(US=3C-2X-4X), MTD=MASK, VAL=Y’)

The following syntax will mask French National Institute for Statistics and Economic Studies numbers
(INSEE) with a random method. The function will use the default output format, which will not include
separators.
NID(’SWITCH=FR, MTD=RANDOM’)

The following syntax will mask Spanish Fiscal Identification Numbers (NIF) with a repeatable method.
The function will preserve invalid source values and use the default output format.
NID(’SWITCH=ES, MTD=MASK, PRE=INV’)

Canadian Social Insurance Number masking
You can use the TRANS NID function to mask Canadian Social Insurance Numbers (SIN).

An SIN is a nine-digit number that consists of a one-digit region code number followed by an eight-digit
serial number. The first three digits are called the header. The last digit of the serial number is a check
digit.

The TRANS NID function generates a masked SIN with a check digit that is calculated based on the
preceding masked eight digits of the output value.

Output formats (FMT=)

The following output formats are available for an SIN.

Chapter 7. Masking data 91

C indicates values that are copied. X indicates values that are masked. For example, 3C4X indicates that
the first three characters are copied and the next four characters are masked.

Fields to be masked
Format without
separator

Format with dash
separator

Format with space
separator

Format with period
separator

Serial number
without header digits
(MTD=mask default)

CA=3C6X CA=3C-3X-3X CA=3C 3X 3X CA=3C.3X.3X

Serial number and
header digits

CA=9X CA=3X-3X-3X CA=3X 3X 3X CA=3X.3X.3X

Data types

The following data types are permitted for source and destination columns. Restrictions for each data
type are noted.

CHAR and NCHAR
The length of the column must be at least 9 characters.

DECIMAL
The precision of the column must be between 9 and 20 and the scale must be 0.

INTEGER
No restrictions.

VARCHAR and NVARCHAR
The length of the column must be at least 9 characters.

Validation (VAL=Y)

If the (VAL=Y) parameter is used, a source row will be skipped if any of the following apply:
v The first digit is eight.
v There are three consecutive zeros at positions 1-3, 4-6, or 7-9.
v The check digit is invalid.

Special processing

The following checks will be made during processing:
v If the source value is 0 (INTEGER or DECIMAL data type), spaces, or either a zero-length VARCHAR

or NVARCHAR, and
– the destination column is an INTEGER or DECIMAL data type, the output value will be 0.
– the destination column is a CHAR or NCHAR data type, the output value will be spaces.
– the destination column is a VARCHAR or NVARCHAR data type, the destination length will be 0.

v If a destination column length is 11 characters or more and separators were specified for the output
value, the separators will be included if the destination column is a CHAR, NCHAR, VARCHAR, or
NVARCHAR data type.

v If the source value is NULL, the output value will be NULL.

Skipped rows

A source row will be skipped and not written to the destination table if the following occurs:

Null value
The source value is NULL but the destination column does not allow a NULL value.

Invalid SIN

92 IBM Optim: Using Optim Designer

v The source column is a CHAR, NCHAR, VARCHAR, or NVARCHAR but the source value is
less than 9 characters (not including separators).

v The source column is a CHAR, NCHAR, VARCHAR, or NVARCHAR but the source value is
more than 9 characters (not including separators).

v The source value includes a non-numeric character.

French National Institute for Statistics and Economic Studies Number masking
You can use the TRANS NID function to mask French National Institute for Statistics and Economic
Studies numbers (INSEE).

An INSEE number is a 15-digit number with the following format: SYYMMDDCCCOOOKK.

S Sex and citizenship information.

YY Last two digits of the year of birth.

MM Month of birth.

DD Department of origin.

CCC Commune of origin.

OOO Order number.

KK Control key or check digits.

The TRANS NID function generates a masked INSEE according to the following rules:
v If the department field is masked, the commune field is also masked with a compatible value.
v The order field is always masked.
v The check digit field is calculated based on the preceding masked 13 digits of the output value.

Output formats (FMT=)

The following output formats are available for an INSEE.

All formats mask the order and check digit fields. If the department field is masked, the commune field
will also be masked with a compatible value.

C indicates values that are copied. X indicates values that are masked. For example, 3C4X indicates that
the first three characters are copied and the next four characters are masked.

Fields to be masked (in
addition to Order and
Check Digit) Format without separator

Format with dash
separator

Format with space
separator

Sex, Year, Month,
Commune (MTD=mask
default)

FR=5X2C8X FR=5X2C6X-2X FR=5X2C6X 2X

Sex FR=1X9C5X FR=1X9C3X-2X FR=1X9C3X 2X

Sex, Year FR=3X7C5X FR=3X7C3X-2X FR=3X7C3X 2X

Sex, Month FR=1X2C2X5C5X FR=1X2C2X5C3X-2X FR=1X2C2X5C3X 2X

Sex, Commune FR=1X6C8X FR=1X6C6X-2X FR=1X6C6X 2X

Sex, Department FR=1X4C8X FR=1X4C6X-2X FR=1X4C6X 2X

Sex, Year, Month FR=5X5C5X FR=5X5C3X-2X FR=5X5C3X 2X

Sex, Year, Commune FR=3X4C8X FR=3X4C6X-2X FR=3X4C6X 2X

Sex, Year, Department,
Commune

FR=3X2C10X FR=3X2C8X-2X FR=3X2C8X 2X

Chapter 7. Masking data 93

Fields to be masked (in
addition to Order and
Check Digit) Format without separator

Format with dash
separator

Format with space
separator

Sex, Month, Commune FR=1X2C2X2C8X FR=1X2C2X2C6X-2X FR=1X2C2X2C6X 2X

Sex, Month, Department,
Commune

FR=1X2C12X FR=1X2C10X-2X FR=1X2C10X 2X

Sex, Year, Month,
Department, Commune

FR=15X FR=13X-2X 13X FR=13X 2X

Year FR=1C2X7C5X FR=1C2X7C3X-2X FR=1C2X7C3X 2X

Year, Month FR=1C4X5C5X FR=1C4X5C3X-2X FR=1C4X5C3X 2X

Year, Commune FR=1C2X4C8X FR=1C2X4C6X-2X FR=1C2X4C6X 2X

Year, Department FR=1C2X2C10X FR=1C2X2C8X-2X FR=1C2X2C8X 2X

Year, Month, Commune FR=1C4X2C8X FR=1C4X2C6X-2X FR=1C4X2C6X 2X

Year, Month, Department FR=1C14X FR=1C12X-2X FR=1C12X 2X

Month FR=3C2X5C5X FR=3C2X5C3X-2X FR=3C2X5C3X 2X

Month, Commune FR=3C2X2C8X FR=3C2X2C6X-2X FR=3C2X2C6X 2X

Month, Department FR=3C12X FR=3C10X-2X FR=3C10X 2X

Commune FR=7C8X FR=7C6X-2X FR=7C6X 2X

Department FR=5C10X FR=5C8X-2X FR=5C8X 2X

Data types

The following data types are permitted for source and destination columns. Restrictions for each data
type are noted.

CHAR and NCHAR
The length of the column must be at least 15 characters.

VARCHAR and NVARCHAR
The length of the column must be at least 15 characters.

Validation (VAL=Y)

If the (VAL=Y) parameter is used, a source row will be skipped if any of the following apply:
v The source commune field value is invalid.
v The source check digit field is invalid.

Special processing

The following checks will be made during processing:
v If the source value is spaces or either a zero-length VARCHAR or NVARCHAR, and

– the destination column is a CHAR or NCHAR data type, the output value will be spaces.
– the destination column is a VARCHAR or NVARCHAR data type, the destination length will be 0.

v If the source value is NULL, the output value will be NULL.
v If a destination column length is 16 characters or more and a separator was specified for the output

value, the separator will be included.

94 IBM Optim: Using Optim Designer

Skipped rows

A source row will be skipped and not written to the destination table if the source value includes the
following errors:

Null value
The source value is NULL but the destination column does not allow a NULL value.

Invalid INSEE

v The size of the input INSEE value is more or less than valid.
v The input INSEE value contains invalid separators or separators in the wrong position.
v The sex field is not one of the following values: 1, 2, 7, or 8.

Italian Fiscal Code number masking
You can use the TRANS NID function to mask Italian Fiscal Codes (CF).

A CF is a 16-character alphanumeric value with the following format: FFF-NNN-YYMDD-RRRRC.

FFF Encoded surname.

NNN Encoded given name.

YY Year of birth.

M Month of birth.

DD Date of birth.

RRRR Region code.

C Control character.

The TRANS NID function generates a masked CF according to the following rules:
v Any consonant that appears in the given name or surname fields is masked as a consonant and any

vowel is masked as a vowel. If an X appears after a vowel, it must be copied to the output value.
v The control character field is calculated based on the preceding masked 15 digits of the output value.

Output formats (FMT=)

The following output formats are available for a CF.

C indicates values that are copied. X indicates values that are masked. For example, 3C4X indicates that
the first three characters are copied and the next four characters are masked.

Fields to be masked Format without separator
Format with dash
separator

Format with space
separator

Date of birth, Region
(MTD=mask default)

IT=6C10X IT=3C-3C-5X-5X IT=3C 3C 5X 5X

Surname, Given name,
Region

IT=6X5C5X IT=3X-3X-5C-5X IT=3X 3X 5C 5X

Surname, Given name, Date
of birth

IT=11X4C1X IT=3X-3X-5X-4C1X IT=3X 3X 5X 4C1X

Surname, Given name IT=6X9C1X IT=3X-3X-5C-4C1X IT=3X 3X 5C 4C1X

Date of birth IT=6C5X4C1X IT=3C-3C-5X-4C1X IT=3C 3C 5X 4C1X

Region IT=11C5X IT=3C-3C-5C-5X IT=3C 3C 5C 5X

Surname, Given name, Date
of birth, Region

IT=16X IT=3X-3X-5X-5X IT=3X 3X 5X 5X

Chapter 7. Masking data 95

Data types

The following data types are permitted for source and destination columns. Restrictions for each data
type are noted.

CHAR and NCHAR
The length of the column must be at least 16 characters.

VARCHAR and NVARCHAR
The length of the column must be at least 16 characters.

Validation (VAL=Y)

If the VAL=Y parameter is used, a source row will be skipped if it contains an invalid control character.

Special processing

The following checks will be made during processing:
v If the source value is spaces or either a zero-length VARCHAR or NVARCHAR, and

– the destination column is a CHAR or NCHAR data type, the output value will be spaces.
– the destination column is a VARCHAR or NVARCHAR data type, the destination length will be 0.

v If the source value is NULL, the output value will be NULL.
v If a destination column length is 19 characters or more and separators were specified for the output

value, the separators will be included.

Skipped rows

A source row will be skipped and not written to the destination table if the following occurs:

Null value
The source value is NULL but the destination column does not allow a NULL value.

Invalid CF
The source column has an invalid source value or the source value is too large.

The source value is less than 16 characters.

Spanish Fiscal Identification Number and Foreign Identification Number masking
You can use the TRANS NID function to mask Spanish Fiscal Identification Numbers (NIF) and Foreign
Identification Numbers (NIE).

An NIF is an eight character value in the following format NNNNNNN-A, where the first seven
characters are a serial number and the final character is an alphabetic suffix. The suffix is a check digit.

Foreign Spanish nationals use a Foreign Identification Number (NIE), which is a nine character value that
uses the same format as an NIF, but is preceded by an X. An NIE uses the following format:
X-NNNNNNN-A.

The TRANS NID function generates a masked NIF or NIE with a check digit that is calculated based on
the preceding masked 7 digits of the output value.

Output formats (FMT=)

The following output formats are available for an NIF and NIE.

For each format, all characters are masked. NIF and NIE numbers use the same format options. An NIE
source value will always include an X prefix in the output value.

96 IBM Optim: Using Optim Designer

Fields to be masked Format without separator
Format with dash
separator

Format with space
separator

Serial, Suffix (MTD=mask
default)

ES=8X ES=7X-1X ES=7X 1X

Data types

The following data types are permitted for source and destination columns. Restrictions for each data
type are noted.

CHAR and NCHAR
The length of the column must be at least 8 characters.

VARCHAR and NVARCHAR
The length of the column must be at least 8 characters.

Validation (VAL=Y)

If the VAL=Y parameter is used, a source row will be skipped if it contains an invalid suffix.

Special processing

The following checks will be made during processing:
v If the source value is spaces or either a zero-length VARCHAR or NVARCHAR, and

– the destination column is a CHAR or NCHAR data type, the output value will be spaces.
– the destination column is a VARCHAR or NVARCHAR data type, the destination length will be 0.

v If the source value is NULL, the output value will be NULL.
v If a destination column length is 11 characters or more and a separator was specified for the output

value, the separator will be included.

Skipped rows

A source row will be skipped and not written to the destination table if the following occurs:

Invalid length
The input value does not contain separators and is less than 8 characters (NIF) or is less than 9
characters (NIE).

The input value contains separators and is less than 9 characters (NIF) or is less than 11
characters (NIE).

Invalid pattern
The length of the source value is valid, but the value does not match the pattern of an NIF or
NIE.

Separators
Different separators were found in positions 2 and 10 in an NIE source value.

The source value contains an invalid separator.

Null value
The source value is NULL but the destination column does not allow a NULL value.

United Kingdom National Insurance Number masking
You can use the TRANS NID function to mask United Kingdom National Insurance Numbers (NINO).

Chapter 7. Masking data 97

A NINO consists of three parts: two letters (the prefix), six digits (the number), and one optional letter
(the suffix).

Output formats (FMT=)

The following output formats are available for a NINO.

A NINO can be masked without a separator or with a separator in either a three- or five-part format.

C indicates values that are copied. X indicates values that are masked. For example, 3C4X indicates that
the first three characters are copied and the next four characters are masked.

To create a NINO without a separator, use the following parameters:

Fields to be masked Format without separator

Prefix, Number UK=8X1C

Number (MTD=mask default) UK=2C6X1C

Prefix, Number, Suffix (MTD=random only) UK=9X

To create a NINO with either a three- or five-part format, use the following parameters:

Fields to be masked
Format with dash
separator

Format with space
separator

Format with period
separator

Prefix, Number (three-part) UK=2X-6X-1C UK=2X 6X 1C UK=2X.6X.1C

Prefix, Number (five-part) UK=2X-2X-2X-2X-1C UK=2X 2X 2X 2X 1C UK=2X.2X.2X.2X.1C

Number (three-part) UK=2C-6X-1C UK=2C 6X 1C UK=2C.6X.1C

Number (five-part) UK=2C-2X-2X-2X-1C UK=2C 2X 2X 2X 1C UK=2C.2X.2X.2X.1C

Prefix, Number, Suffix
(three-part) (MTD=random
only)

UK=2X-6X-1X UK=2X 6X 1X UK=2X.6X.1X

Prefix, Number, Suffix
(five-part) (MTD=random
only)

UK=2X-2X-2X-2X-1X UK=2X 2X 2X 2X 1X UK=2X.2X.2X.2X.1X

Data types

The following data types are permitted for source and destination columns. Restrictions for each data
type are noted.

CHAR and NCHAR
The length of the column must be at least 9 characters.

VARCHAR and NVARCHAR
The length of the column must be at least 9 characters.

Validation (VAL=Y)

The VAL=Y parameter is not valid for NINO masking and will be ignored.

Special processing

The following checks will be made during processing:
v If the source value is spaces or either a zero-length VARCHAR or NVARCHAR, and

98 IBM Optim: Using Optim Designer

– the destination column is a CHAR or NCHAR data type, the output value will be spaces.
– the destination column is a VARCHAR or NVARCHAR data type, the destination length will be 0.

v If the source value is NULL, the output value will be NULL.
v If the destination column cannot accommodate a separator, the output value will not include a

separator.

Skipped rows

A source row will be skipped and not written to the destination table if the following occurs:

Null value
The source value is NULL but the destination column does not allow a NULL value.

Invalid NINO

v The size of the source value is less or greater than the size of a valid NINO.
v The source value includes separators in the wrong positions.
v The source value includes an invalid separator.
v The source value includes an invalid prefix.
v The source value includes a suffix other than A, B, C, or D.
v The source value includes a number field that is not between 000001 and 999999.

United States Social Security Number masking
You can use the TRANS NID function to mask United States Social Security Numbers (SSN).

An SSN consists of 3 subfields with the following format: AAAGGSSSS.

AAA Area number. The area is generally determined by the state in which the SSN is issued.

GG Group number. A group number is assigned based on the area number.

SSSS Serial number.

The TRANS NID function generates a masked SSN according to the following rules:
v A group number that is appropriate for the area number is generated. The group number will be the

most recent group used by the Social Security Administration for the area.
v Serial numbers begin with 0001 and are incremented by 1 for each additional SSN generated for the

area number. When the serial number exceeds 9999, the serial number will be reset to 0001 and the
group number preceding the number most recently issued for the area number will be used.

v When MTD=mask, the output value will include an area number corresponding to the same state as the
source area number.

Output formats (FMT=)

The following output formats are available for an SSN.

C indicates values that are copied. X indicates values that are masked. For example, 3C4X indicates that
the first three characters are copied and the next four characters are masked.

Fields to be masked
Format without
separator

Format with dash
separator

Format with space
separator

Format with period
separator

Group, Serial number
(MTD=mask default)

US=3C6X US=3C-2X-4X US=3C 2X 4X US=3C.2X.4X

Area, Group, Serial
number

US=9X US=3X-2X-4X US=3X 2X 4X US=3X.2X.4X

Chapter 7. Masking data 99

Data types

The following data types are permitted for source and destination columns. Restrictions for each data
type are noted.

CHAR and NCHAR
The length of the column must be at least 9 characters.

DECIMAL
The precision of the column must be between 9 and 20 and the scale must be 0.

INTEGER
No restrictions.

VARCHAR and NVARCHAR
The length of the column must be at least 9 characters.

Validation (VAL=Y)

If the (VAL=Y) parameter is used, a source row will be skipped if any of the following apply:
v The source area number exceeds the maximum value.
v The source area number has not been used by the Social Security Administration.
v The source group number has not been used for the source area number.

Special processing

The following checks will be made during processing:
v If the source value is 0 (INTEGER or DECIMAL data type), spaces, or either a zero-length VARCHAR

or NVARCHAR, and
– the destination column is an INTEGER or DECIMAL data type, the output value will be 0.
– the destination column is a CHAR or NCHAR data type, the output value will be spaces.
– the destination column is a VARCHAR or NVARCHAR data type, the destination length will be 0.

v If a destination column length is 11 characters or more and separators were specified for the output
value, the separators will be included.

v If the source value is NULL, the output value will be NULL.

Skipped rows

A source row will be skipped and not written to the destination table if the following occurs:

Null value
The source value is NULL but the destination column does not allow a NULL value.

Invalid SSN

v The source column is a CHAR, NCHAR, VARCHAR, or NVARCHAR, but the source value is
more or less than 9 characters (not including separators).

v The source value includes a non-numeric character.
v The source value is 0 or a reserved value such as 078-05-1120 and 457-55-5462.

Substring Function
The Substring Function returns a substring of the contents of the named column.

SUBSTR(columnname, start, [length])

columnname
Name of a character or binary column.

100 IBM Optim: Using Optim Designer

start The position of the first character in the string.

length The number of characters to use.
v If the locale uses a comma as the decimal separator, you must leave a space after each comma that

separates numeric parameters (for example, after the comma between start and length.
v start and length are integers greater than or equal to 1.
v start plus length cannot exceed the total data length plus 1.
v column-name and start value are required. If you specify only one integer, it is used as the start value.

The substring begins at start and includes the remainder of the column value.

Example

If the PHONE_NUMBER column is defined as CHAR(10), you can use the Substring Function to map the
area code. To obtain a substring of the first three positions of the phone number (area code) for the
destination column, specify:

SUBSTR(PHONE_NUMBER, 1, 3)

Random Function
The Random Function returns a number selected at random within the range indicated by the low and
high values.

RAND(low, high)

low Lowest possible random value.

high Highest possible random value.
v Use the Random Function with character or numeric data.
v If the locale uses a comma as the decimal separator, you must leave a space after the comma.
v low and high are integers within the range -2,147,483,648 to 2,147,483,647.
v low and high are further limited by the data type and length for the destination column.
v low must be less than high.
v When you use the Random Function in a concatenated expression, a variable length string is returned.

Example

You can use the Random Function to mask or change sales data for a test database. Assume the
YTD_SALES column is defined as DECIMAL(7,2). The maximum number of digits preceding the decimal
is 5; the possible range for this column is -99999 to 99999. To create test data within a range from 1000
(low) to 89999 (high), specify:

RAND(1000, 89999)

In this example, the function returns random sales values within the range you specified from 1000.00 to
89999.99.

Sequential Function
The Sequential Function returns a number that is incremented sequentially. The syntax is:

SEQ(start, step)

start Start value.

step Incremental value.
v Use the Sequential Function with character and numeric data.

Chapter 7. Masking data 101

v If the locale uses a comma as the decimal separator, you must leave a space after the comma.
v start and step are integers within the range of -2,147,483,648 and 2,147,483,647.
v start and step are further limited by the data type and length of the destination column.
v If the calculated value exceeds the length of the destination column, the function automatically resets

to the start value.
v When you use the Sequential Function in a concatenated expression, a variable length string is

returned.

Example 1

You can use the Sequential Function to change customer data for a test database. Assume that the
CUST_ID column is defined as CHAR(5). To increment by 50, starting at 1, specify:

SEQ(1, 50)

In this example, the function returns CUST_ID values starting at '00001' and increments by 50 to generate
'00051', '00101', etc. When the result exceeds '99951', the function resets to the start value of 1.

Example 2

You can use the Sequential Function in a column map to mask sales data for a test database. Assume that
the YTD_SALES column is defined as DECIMAL(7,2). To increment by 100 starting at 1000, specify:

SEQ(1000, 100)

In this example, the function returns YTD_SALES values starting at 1000 and increments by 100 to
generate 1100, 1200, etc. When the result exceeds 99999, the function resets to the start value of 1000.

Example 3

Assume that the SALESMAN_ID column is defined as CHAR(6). To insert values beginning with ‘NJ,'
followed by a number starting at 50 and incremented by 10, use the function in a concatenated
expression:

’NJ’||SEQ(50, 10)

In this example, the function returns SALESMAN_ID values starting at 'NJ50 ' and increments by 10 to
generate 'NJ60 ', 'NJ70 ', etc. When the result exceeds 'NJ9990', the function resets to the start value.

Identity or Serial Function
The Identity and Serial Functions direct the DBMS to supply a sequential value (integer) for a destination
column. The syntax for these functions is:

IDENTITY()

SERIAL ()

v Use the Identity Function for Identity columns in DB2, Sybase ASE, and SQL Server databases.
v Use the Serial Function for Serial columns in Informix databases.
v Both functions are valid for Insert (update/insert) and Load Processing, but are not valid for Convert

Processing.
v If rows are updated in an Insert Process (update/insert), the destination column targeted by the

Identity Function or Serial Function retains the original value. In addition, if the destination column is
part of the primary key, the column value remains unchanged when the row is updated.

102 IBM Optim: Using Optim Designer

v You can use the Identity Function or Serial Function with the Propagate Function for Insert Processing;
however, you cannot propagate Identity or Serial columns in a Load Process.

Oracle Sequence Function
The Oracle Sequence Function assigns a value to the destination column by using an Oracle Sequence.

schema.seqname.NEXTVAL [INCL_UPD]

schema Qualifier for the Oracle Sequence name.

seqname
Name of the Oracle Sequence that assigns sequential values.

NEXTVAL
Keyword that inserts the next Oracle value into the destination column.

INCL_UPD
Optional keyword that updates a sequence value assigned to a column when rows are updated
during an insert process. If not specified (default), the column value remains unchanged when
the row is updated.

v You can use the Oracle Sequence Function to assign unique sequential values for rows to be inserted
into an Oracle database.

v The Oracle Sequence Function is valid when used in a column map for insert or load processing, but is
not valid for convert processing.

v If rows are updated in an insert (update/insert) process and the destination column is part of the
primary key, the column value remains unchanged when the row in the destination table is updated.
To use Oracle Sequence when performing an update/insert, include INCL_UPD with the function.

v During a load process, the process uses the Oracle Sequence Function to assign a new value to each
destination row. The Load calls the DBMS to obtain these values. If you choose not to run the Oracle
Loader, these sequence values are never used.

Example 1

To assign a sequential value to increment customer numbers, where the name of the Oracle Sequence is
schema.numeven, specify:

schema.numeven.NEXTVAL

Example 2

To expand the first example and update an existing sequence value, specify:

schema.numeven.NEXTVAL(INCL_UPD)

Propagate Primary or Foreign Key Value Function
The Propagate Function assigns a value to a primary key or foreign key column and propagates that
value to all related tables.

The syntax is:

PROP({ value [, columnname|] EXIT exitname |
PROC { LOCAL | identifier.name } })

value Value to assign to the column. Specify any valid column map source value (for example, a
column name, string literal, expression, or function). The value must be appropriate for the
column.

Chapter 7. Masking data 103

columnname
Name of the source column that contains the value that is the subject of the function. The
resulting value is inserted into the destination column of the mapped table and the appropriate
destination column in the participating related tables.

The column name is required only if no source column matches the destination column in both
name and data type. If not specified, the name of the destination column is used.

exitname
A column map exit name.

identifier.name
A column map procedure name.

v If the locale uses a comma as the decimal separator, you must leave a space after each comma that
separates numerical parameters.

v The Propagate Function is valid in a column map for insert (but not update or update/insert), load, or
convert processing.

v When you use the Propagate Function, at least one related table must be included in the process. You
can use Propagate multiple times for the same process.

v You can use the Propagate Function for either a primary key column or its corresponding foreign key
column, but not both.

v If multiple columns define a relationship, you can use the Propagate Function for one or more of those
columns. However, in an Optim extended relationship, you can specify the Propagate Function only on
column-to-column relations.

v You can use the Identity Function or the Serial Function within the Propagate Function for insert
processing; however, you cannot propagate the Identity Function in a load process.

v The parameters specified in the Propagate Function are not validated until run time. If there are
conflicts, the process does not run.

v Insert can have propagate cycles. However, load and convert processing may not result in propagate
cycles. Cycles are detected when the process is validated at run time. If a load or convert request
generates a propagate cycle, the process does not run.

v Optim remembers the source values and the values assigned to corresponding destination columns.
Therefore, you can propagate to destination columns where the source is an expression. When the
evaluated expression matches a source value, Optim assigns the corresponding destination value.
When the evaluated expression does not match any source values, a conversion error occurs.

Before executing an insert, load, or convert process, you can review the column map to verify how the
Propagate Function is used in the process.

Example 1

You can generate a random number, assign it to the default destination column, and propagate the
number in the destination columns of related tables. To generate a value between 10000 and 99999, insert
it into the mapped destination column and propagate it to the destination columns of related tables,
specify:

PROP(RAND(10000, 99999))

Example 2

You can perform the same function as in Example 1 when the source and destination column names do
not match. To include the name of the source column (CUST_NUMBER) in the Propagate Function,
specify:

PROP(RAND(10000, 99999), CUST_NUMBER)

104 IBM Optim: Using Optim Designer

Example 3

You can use Oracle Sequence to generate the value for the destination column and propagate that value
in destination columns of the related tables. To propagate the Oracle Sequence named, schema.numeven,
specify:

PROP(schema.numeven.NEXTVAL)

Concatenated expressions
Concatenation allows you to combine column values or combine a column value with another value, by
using a concatenation operator (CONCAT, ||, or +). A concatenated expression can include character
values or binary values, but not both:

Character Values
Concatenated character values can be character columns, string literals, substrings of values in
character columns, the sequential function, or the random function.

Binary Values
Concatenated character values can be binary columns, hexadecimal literals, substrings of binary
columns, the sequential function, or the random function.

v A concatenated expression cannot include a zero-length string literal (' '), a special register, or the Age
Function.

Example

Assume that the CUSTOMERS table stores an address in two columns: ADDRESS1 and ADDRESS2. The
SHIP_TO table stores an address in one column: ADDRESS. You can use a concatenated expression to
combine address information from two columns in one table to one column in another.

To combine the address, specify one of the following examples:

CUSTOMERS Table SHIP_TO Table

ADDRESS1 || ADDRESS2 ADDRESS

ADDRESS1 CONCAT ADDRESS2 ADDRESS

ADDRESS1 + ADDRESS2 ADDRESS

Numeric expressions
Use a numeric expression to specify a value in the source column whenever the data types for the
corresponding source and destination columns are compatible.

An numeric expression consists of the following syntax:

operand1 operator operand2

Each operand must be a numeric column or a numeric constant. The operator specifies whether to add (
+), subtract (-), divide (/), or multiply (*).

Example 1

To increase the value in a column UNIT_PRICE defined as DECIMAL(5,2) by 10 percent, specify the
following example:

1.1 * UNIT_PRICE

Chapter 7. Masking data 105

Example 2

To divide the value in an INTEGER column ON_HAND_INVENTORY in half, specify the following
example:

ON_HAND_INVENTORY / 2.

Literal and value functions
Use the literal and value functions to specify literals such as a string or hexadecimal and values such as
NULL or a special register.

Function Description

Column Name An explicit column name (column names are case�insensitive).

NULL NULL. The destination column must be nullable.

Numeric
Constant

A numeric constant. The constant value must fit into the destination column as defined by its data
type, precision, and scale.

Boolean
Constant

A Boolean constant (TRUE or FALSE).

Special Register A special register:

v CURRENT DATE

v CURRENT_DATE

v CURRENT TIME

v CURRENT_TIME

v CURRENT TIMESTAMP

v CURRENT_TIMESTAMP

v CURRENT SQLID

v CURRENT_SQLID

v CURDATE()

v CURTIME()

v GETDATE()

v GETTIME()

v SYSDATE()

v NOW()

v WORKSTATION_ID

v USER

String Literal A string literal, enclosed in single quotes. The destination column must contain character data.

Example: 'CA' or '90210'.

Hexadecimal
Literal

A hexadecimal literal.

Example: X‘1234567890ABCDEF' or 0X1234567890ABCDEF

Date/Time
Literal

A date/time literal, enclosed in single quotes. Separate the date and time with a space. To format
the date/time with a decimal fraction, place a period after the time, followed by the fraction. The
date format is determined by the settings in Regional Options on the Control Panel of your
computer.
Note: For Oracle Timestamp with Time Zone columns, you must specify the time zone suffix last.

Age Function
Use the Age Function to age values in a source column. The source column can contain character,
numeric, date, or timestamp data. A CHAR or VARCHAR column has a maximum length of 256 bytes.

106 IBM Optim: Using Optim Designer

The Age Function is formatted as:
AGE(parameters)

v Define the Age Function to include one or more aging parameters.
v Use commas or spaces to separate parameters in the Age Function.
v Parameters can be specified in any order.

Parameter Format Valid Values

Column Name: Specify the name of
the source column if it differs from
the destination column.

SC=column-name
SRCCOL=column-name

Column Name

Default: Age dates based on the date
adjustment value specified in a
process request.

DEF Uses date adjustment value specified
in the process request.

None: Do not age value. NONE Value should not be aged regardless
of specifications in the process
request.

Incremental – Incremental Aging is
based on a known time unit. Optim
supports date aging in single units
(for example 20 years) or multiple
units (for example, 2 years, 3 months,
2 days).

+ or -] nY
[+ or -] nM
[+ or -] nW
[+ or -] nD
(The plus [+] sign is optional.)

nY -2500 to +1581
nM -30000 to +30000
nW -30000 to +30000
nD -99999 to +99999

Specific Year: Age dates based on a
specific four�digit year in the desired
format.

nnnnY 1582 - 3999

Multiple/Rule: Age dates based on
the number of times to apply a
business rule. If you define the Age
Function using the Multiple/Rule,
you must also include the RULE
parameter.

nnnnnR 1 - 30000

Semantic Aging

Semantic Aging is based on a set of rules that you define to manage dates that occur on holidays,
weekends, and so on. You can use Semantic Aging to adjust dates so that they occur on valid business
days.

Calendar –
Name of the calendar that defines the special dates to which the rules apply. If you use
CALENDAR, you must also specify a RULE.
CA=calendar-name
CALENDAR=calendar-name

Rule –
Name of the rule that defines the adjustment for special dates. If DEF is specified, the default rule
specified in the process request is used.
RU=rule-name
RULE=rule-name
RU=DEF
RULE=DEF

Chapter 7. Masking data 107

Century Pivot –
Determines the century for two-digit years. Enter a value 00 to 99.
PI=nn
PIVOT=nn

v If you specify AGE(RU=DEF), the RULE specified in a process request is used. You must specify
values for any other age function parameters.

v If you use RULE and do not specify a CALENDAR, then the Age Function uses the default calendar
you specify in a process request.

v If you do not include CALENDAR, RULE, and PIVOT where needed in the Age Function, the default
values you specify in a process request apply.

v To specify the correct century for a two-digit year, you must include the PIVOT in the Age Function.
v If you specify a PIVOT value, all two-digit years equal to or greater than the PIVOT value are placed

in the 20th century (19xx). All two�digit years less than the PIVOT value are placed in the 21st century
(20xx). The default PIVOT is 65.

Date Formats

The source date format and the destination date format must contain a single valid date format and must
be less than or equal to the length of the destination column. The format string must be delimited by
single quotation marks.

Source Date Format –
Applies the source column format string to age character and numeric columns.
SF='format-string'
SRCFMT='format-string'

If the source column is character or numeric, you must use SRCFMT or a Source Exit Routine (SRCEXIT)
to describe the contents of the column. These parameters are mutually exclusive.

Destination Date Format –
Applies the destination column format string to age character and numeric columns.
DF='format-string'
DSTFMT='format-string'

If the destination column is character or numeric, you can specify DSTFMT or a Destination Exit Routine
(DSTEXIT). If you do not specify a format for the destination, the date aging function uses SRCFMT by
default. The destination column for an AGE function cannot be binary.

Use the following character strings to specify components of the date format:

Year Month Day Time Parts/Second

YYYY MONTH DDD HH FFFFFF

CCYY MMM DD MI FFFFF

YY MM D SS FFFF

M FFF

FF

F

v If you specify a question mark (?) in a format string, the Age Function maps the character value as it
is. (Use the question mark to include slashes, dashes, periods, and so on, in the date format.)

v If you specify an asterisk (*) in a format string, the Age Function maps any remaining characters in the
source column to the destination column. (Use the asterisk when the column value is a date
concatenated to additional characters.)

108 IBM Optim: Using Optim Designer

Note: You can use the Calendar Utility to define a default separator and a default output year. These
defaults apply when the source and destination formats require separators or a specific year.

Example 1

To age a date column by 2 years, 6 months, 40 weeks, and 15 days, and then apply a rule, format the Age
Function as:

AGE(+2Y,+6M,+40W,+15D,RU=NEXTPAYDAY)

Example 2

To age only the year portion in a date column to the year 2020, and apply a rule, format the Age
Function as:

AGE(2020Y,RU=NEXTWORKDAY)

Example 3

To age a date column using MULTIPLE/RULE to increment by five occurrences of a rule called
NEXTSTRTQTR, using a calendar called PSAPRULE, format the Age Function as:

AGE(CA=PSAPRULE,RU=NEXTSTRTQTR,5R)

Example 4

To age data in a character or numeric column by the following parameters:
v A named source column.
v The source format, using the first two characters for the last two digits of the year and the remaining 3

digits as the day in the Julian calendar.
v A century pivot to determine the correct century because the source is formatted with a two-digit year.

The century pivot in this example is 42. All two-digit years greater than or equal to 42 are placed in
the 20th century (19xx). All two-digit years less than 42 are placed in the 21st century (20xx).

v Age date by 5 years.

Format the Age Function as:

AGE(5Y,SC=ORDER_DATE,SF=’YYDDD’,PI=42)

Currency Function
Use the Currency Function to convert a currency value in a source column from one currency to another.
The source column must be defined as numeric, but not floating point. Two conversion methods are
available:

Direct Conversion
Provide conversion parameters based on values defined in a Currency Definition. Use the
Currency Function to convert a monetary value in a column (replacing the prior value) or, by
defining different source and destination columns, retain the original value and the converted
value. You can explicitly define the source and destination currency types or you can identify a
reference column to indicate the currency type.

The first calculation preference is to use the conversion rate for the source currency to the
destination currency. The second calculation conversion preference is to use the conversion rate
for the destination currency to the source.

Chapter 7. Masking data 109

Triangulation
Convert the value in a column from the source currency to the euro dollar and then convert the
euro dollar to the destination currency. Both rates must be provided in the rate table: one
between the euro dollar and the source currency, and one between the euro dollar and the
destination currency. The specification expression is TRIANG or TR.

The Currency Function is formatted as follows:
CURRENCY({ST=code | SS=(column-name,Types Table number)}
{DT=code | DS=(column-name,Types Table number)}
[SC=column-name] [TR] [CU=Currency Definition name]
[TD=transaction-date-column-name] [DF=’format’]
[NS=scale])

The Currency Function must include at least a combination of the source currency type (ST) or source
specification (SS) and the destination currency type (DT) or destination specification (DS). All other
parameters are optional.

The source and destination currency types can be specified in one of two ways:
1. Use the ST/DT keywords to allow explicit specification of the currency using the three-character ISO

4217 Currency Code.
2. Use the SS/DS keywords to allow indirect specification of the currency type where a value in a

named column in the row is used as a key. The key is correlated with a currency type as defined in
the specified Currency Definition Type Table.

If you specify a transaction date (TD) and the transaction date column does not use the DATE format,
you must also specify a date format (DF). If a specified transaction date is outside the date ranges
specified in the Currency Definition Rates Table, the nearest date range is used for conversion
calculations.

Note: If any required data (for example, currency types, rates) are missing, conversion errors will result
at run time.

The following table describes the valid format and allowed values for the Currency Function parameters.
Parameters can be specified in any order. Use commas or spaces to separate parameters in the Currency
Function.

Parameter Format

Source Column SC=column-name
SRCCOL=column name

Source Currency Type ST=code
SRCTYP=code
where code = ISO 4217 Currency Code

Destination Currency Type DT=code
DSTTYP=code
where code = ISO 4217 Currency Code

Source Specification SS=column name, Types Table number
SRCSPC=column name, Types Table number
where column name, Types Table number = Types Table column
and number (defined in the Currency Definition) to be used to
specify the source currency type

110 IBM Optim: Using Optim Designer

Parameter Format

Destination Specification DS=column name, Types Table number
DSTSPC=column name, Types Table number
where column name, Types Table number = Types Table column
and number (defined in the Currency Definition) to be used to
specify the destination currency type

Triangulation (Forces conversion via the Euro dollar) TR TRIANG

Currency Definition CU=Currency Definition name
CURTBL=Currency Definition name
where Currency Definition name = Currency Definition that
contains the appropriate conversion parameters.

Transaction Date TD=column name
TRNDAT=column name
where column name = Transaction Date column name to
identify the conversion date

Date Format DF='format'
DATFMT='format' where format = format of transaction date
column, if not Date type.

Numeric Scale NS=scale
NUMSCL=scale
where scale = scale to be applied to Oracle numeric destination
columns with an undefined scale.

Example 1

To convert from Finnish Markkas to Euro Dollars, format the Currency Function as:

CURRENCY(ST=FIM DT=EUR)

If the original value must be preserved, use the Currency Function to provide a value for a different
column in the destination table.

Example 2

To convert from Finnish Markkas to Euro Dollars, and create a new column to retain the original source
value (in Finnish Markkas) in a column labeled ITEM_COST, format the Currency Function as:

CURRENCY(ST=FIM DT=EUR SC=ITEM_COST)

Auto-Generated Email Name
The auto-generated email name function generates an email address with a user name based on a literal
concatenated with a sequential number. The sequential numbers are suffixes that begin with 1 and are
incremented by 1. The function uses the domain name from an email address in a specified source
column.

Formatted Email Name
The formatted email name function generates an email address with a user name based on values
obtained from one or two attributes. The policy uses the domain name from an email address in a
specified source column.

Chapter 7. Masking data 111

Random Number Function
The random number function generates numbers selected at random within the range indicated by the
low and high values.

You can use the random number function to replace character or numeric data. The low and high values
must be integers within the range -2,147,483,648 to 2,147,483,647. The low value must be less than the
high value.

Sequential Number Function
The sequential number function generates numbers that are incremented sequentially.

You can use the sequential number function to replace character or numeric data. You must enter a start
value and a value by which the numbers are incremented. The start and incremental values must be
integers within the range -2,147,483,648 to 2,147,483,647.

The generated value is limited by the data type and length of the destination column. If the generated
value exceeds the length of the destination column, the function automatically resets to the start value.

Using Exit Routines
When you create a service to convert, create, insert, load, or restore data, you can specify a table map that
includes one or more column maps to derive the appropriate values for destination columns.

There are several ways to specify a column value in a column map. One way is to specify an exit routine
as the source; the exit sets values that could not otherwise be defined for destination columns. Another
way is to use exit routines to exclude rows from processing. You can use three types of exit routines:

Standard Exit

The Standard Exit routine is called to derive the value for a destination column in a column map. This
type of exit routine is useful when you want to perform data transformations that are beyond the scope
of column maps. For example, an exit can change an employee department number for selected rows
according to a complex algorithm, or select specific rows to be processed and discard all others.

A standard exit can get a substring segment of a source LOB column. To insert a new LOB value in a
destination LOB column, an exit can create a file and pass the file name back to the column map
processor.

Source Format Exit

The Source Format Exit is called to format the source column in an Age Function that would otherwise
not be supported in a column map. This exit routine examines the source date in a character or integer
column and converts it into a date format usable as input to the Age Function.

Destination Format Exit

The Destination Format Exit is called to format the destination column in an Age Function that would
otherwise not be supported in a column map. This exit routine converts a date into one of four different
destination formats. The data type of the destination column determines the format.

Exit in a column map

To use an exit routine in a column map, you must specify one of the following in the appropriate source
column:

112 IBM Optim: Using Optim Designer

Standard Exit
EXIT dllname[(parm[[,]parm]...)]

Source Format Exit
AGE(SRCEXIT=dllname)

Destination Format Exit
AGE(DSTEXIT=dllname)

The process calls the column map exit routine, once for each data row processed and passes a
termination call after the last row is processed. Optional parameters specified with a standard exit routine
are passed to the exit, and must be string (enclosed in single quotes) or numeric literals (limit 8).

Writing Exit Routines
You can write exit routines in any programming language; however, calls to subroutines must conform to
conventions used in the C programming language.

Header files

To define the parameters, structures, and return codes used in the exit routine, an exit routine must
include two C program header files, PSTEXIT.H and, depending on the character format of the metadata
(table names, column names, etc.), either PSTCMXIT.H or PSTCMWXT.H:

PSTEXIT.H
Specifies the data types, return codes, and structures for Optim-defined data types.

PSTCMXIT.H
For metadata in single-byte (e.g., ASCII) format.

Provides the prototypes for column map call�back routines and specifies the defines and structure
definitions for the column map exit parameters.

PSTCMWXT.H
For metadata in UTF-16 (WCHAR) format.

Provides the prototypes for column map call�back routines and specifies the defines and structure
definitions for the column map exit parameters.

These header files are located in the same directory with the IBM InfoSphere Optim application files.

Note: If a parameter has a single-byte form and a UTF-16 form, this chapter provides the UTF-16 form in
parentheses.

Using DLLs

You must compile and link each exit routine as a separate DLL. Optim loads each DLL dynamically at
run time. A DLL can contain only one occurrence of a particular type of column map exit. However, you
can include one of each type of column map exit routine in the same DLL.

You must use the name of the DLL in the column map. Specify the DLL name as it is defined to the
platform (that is, do not use the generic name). Write the DLL to name and export the actual functions
that implement the exit routine:

Standard Exit
PSTColMapExit
(PSTColMapWExit)

Source Format Exit
PSTColMapAgeSrcExit
(PSTColMapAgeSrcWExit)

Chapter 7. Masking data 113

Destination Format Exit
PSTColMapAgeDstExit
(PSTColMapAgeDstWExit)

Requirements

Each column map exit routine must satisfy the following requirements:
v The exit must generate a value appropriate for the destination column and must not change any other

storage areas.
v Optim uses the primary key to build internal work areas. If the exit routine assigns a value to a

column that is part of the primary key, and that routine is called several times for the same source row,
ensure that the exit routine generates the same output value every time.

v An exit may be called frequently; avoid unnecessary overhead. For example, the exit should initialize
processing in the first call and save information for subsequent calls in the work area.

Standard Exit Routine
When you write a Standard Exit, you specify the exit function, PSTColMapExit (PSTColMapWExit), and
the following parameters:

single-byte
PSTColMapExit

(PST_STRUCT_CM_EXIT_PARM * pInputParms,
PST_STRUCT_CM_EXIT_COL_LIST * pSrcColList,
PST_STRUCT_CM_EXIT_COL_LIST * pDstColList)

UTF-16
PSTColMapWExit

(PST_STRUCT_CM_WEXIT_PARM * pInputParms,
PST_STRUCT_CM_WEXIT_COL_LIST * pSrcColList,
PST_STRUCT_CM_WEXIT_COL_LIST * pDstColList)

Parameters

When a process calls a standard exit routine, the process passes the following parameters on every call:

pInputParms
Pointer to PST_STRUCT_CM_EXIT_PARM (PST_STRUCT_CM_WEXIT_PARM). This structure
contains information about the source and destination tables, the nature of the current call,
number of optional parameters specified with the exit, and pointers to the call�back functions,
work areas, and optional parameters.

The first field in this structure is the FuncCode field identified by either
PST_CM_FUNC_TRANSFORM (PST_CMW_FUNC_TRANSFORM) or
PST_CM_FUNC_TERMINATE (PST_CMW_FUNC_TERMINATE).

The field NumParms contains the number of optional parameters specified with the column map
exit (0 to 8).

The field pParm contains an array of pointers to each optional parameter specified with the
column map exit.

pScrColList
Pointer to PST_STRUCT_CM_EXIT_COL_LIST (PST_STRUCT_CM_WEXIT_COL_LIST). This
structure describes the source columns.

pDstColList
Pointer to PST_STRUCT_CM_EXIT_COL_LIST (PST_STRUCT_CM_WEXIT_COL_LIST). This
structure describes the destination columns.

114 IBM Optim: Using Optim Designer

Call-back functions

Each time an Optim process calls a standard exit routine, the process passes the addresses of the
following call-back functions:

pPSTGetColValue()
Retrieves data for all source columns and most destination columns in the current data row. In
general, the exit routine calls this function only once to retrieve the data for a source column.
However, the exit routine can call this function several times to retrieve the data for different
columns.

pPSTPutColValue()
Specifies data for the destination column in the current data row. The exit routine determines the
value for the destination column and returns the value to Optim. This function must be called
unless the row is rejected or the process is aborted.

Processing

Typical processing for the Standard Exit routine is summarized in the following steps:
1. On every call from Opitm, the exit routine checks for a first time call. On the first call, the exit

performs any initialization tasks and normal processing (step 2). On subsequent calls only normal
processing is performed (step 2).

2. Optim does not pass column data to the standard exit routine; however, the exit routine can make
calls to the pPSTGetColValue() call-back function to obtain data for the source columns. These values
are needed to determine the value of the destination column.

3. After the exit routine generates the destination value, the exit either calls the pPSTPutColValue()
call-back function to store the value in the destination column or passes an appropriate return code
instructing the process to skip the data row or abort.

4. After the last data row is processed, the Optim passes a termination call to the exit routine, identified
by a value of PST_CM_FUNC_TERMINATE (PST_CMW_FUNC_TERMINATE) in the FuncCode field.
This call prompts the exit routine to free any dynamically allocated storage. When final tasks are
complete, the exit routine passes a return code to Optim.

Return codes

The following return codes apply to standard exit routines:
PST_CM_EXIT_SUCCESS
(PST_CMW_EXIT_SUCCESS)

Destination column is assigned a value or is successfully transformed.
PST_CM_EXIT_REJECT_ROW
(PST_CMW_EXIT_REJECT_ROW)

Destination column cannot be assigned a value or transformed. Discard the row.
PST_CM_EXIT_ABORT_PROCESS
(PST_CMW_EXIT_ABORT_PROCESS)

Fatal error. Terminate processing. To return an error message, place the message in the work area and set
the unused space to blanks or NULL.

Source Format Exit
When you write a Source Format Exit routine for Optim, you specify the exit function,
PSTColMapAgeSrcExit (PSTColMapAgeSrcWExit), and the following parameters:

Chapter 7. Masking data 115

single-byte
PSTColMapAgeSrcExit

(PST_STRUCT_CM_AGE_SRCFMT_PARM * pInputParms,
PST_STRUCT_CM_EXIT_COL_LIST * pSrcColList,
PST_STRUCT_CM_EXIT_COL_LIST * pDstColList)

UTF-16
PSTColMapAgeSrcWExit

(PST_STRUCT_CM_AGE_SRCFMT_WPARM *
pInputParms,

PST_STRUCT_CM_WEXIT_COL_LIST * pSrcColList,
PST_STRUCT_CM_WEXIT_COL_LIST * pDstColList)

Parameters

When an Optim process calls a source format exit routine, the process passes the following parameters:

pInputParms
Pointer to PST_STRUCT_CM_AGE_SRCFMT_PARM
(PST_STRUCT_CM_AGE_SRCFMT_WPARM). This structure contains information about the
source and destination tables, the nature of the current call, and pointers to a call-back function
and work areas.

The first field in this structure is the FuncCode field identified by either
PST_CM_SRCFMT_TRANSFORM (PST_CMW_SRCFMT_TRANSFORM) or
PST_CM_SRCFMT_TERMINATE (PST_CMW_SRCFMT_TERMINATE).

pSrcColList
Pointer to PST_STRUCT_CM_EXIT_COL_LIST (PST_STRUCT_CM_WEXIT_COL_LIST). This
structure describes the source columns.

pDstColList
Pointer to PST_STRUCT_CM_EXIT_COL_LIST (PST_STRUCT_CM_WEXIT_COL_LIST). This
structure describes the destination columns.

Call-Back Function

Each time an Optim process calls a source format exit routine, the process passes the address of the
following call-back function:

pPSTGetColValue()
Retrieves data for all source columns and most destination columns in the current data row. In
general, the exit routine does not need to call this function because the data for the source
column is provided in the first parameter. However, the exit routine can call this function to
retrieve the data for different columns.

Processing

Typical processing for the Source Format Exit routine is summarized in the following steps:
1. On every call from Optim, the exit routine checks for a first time call. On the first call, the exit

performs any initialization tasks and normal processing (step 2). On subsequent calls only normal
processing is performed (step 2).

2. The exit receives the value of the source column as specified in the Age Function defined in the
column map. Optim does not apply the Age Function before calling the exit routine and stores the
raw value in one of the InputValue union fields as indicated by the ValueType field in the header file.

3. If the exit needs to examine other columns to calculate the value for the destination column, the exit
must call the pPSTGetColValue() call-back function to obtain the value for those columns.

4. After the destination value is generated, the exit routine must format the value and place it either in
the OutputTimeStamp field or OutputSybDateTime field. Optim validates this value and applies the Age

116 IBM Optim: Using Optim Designer

Function. The exit must pass an appropriate return code indicating the field where the data is saved
or instructing the process to skip the data row or abort.

5. After the last data row is processed, Optim passes a termination call to the exit routine, identified by
a value of PST_CM_SRCFMT_TERMINATE (PST_CMW_SRCFMT_TERMINATE) in the FuncCode field.
This call prompts the exit routine to free any dynamically allocated storage. When final tasks are
complete, the exit routine passes a return code to Optim.

Abort modes

There are several ways that the Source Format Exit routine can abort processing:
v Process rows with skipped dates or invalid dates. If you select either of these options in a process

request, and the source and destination columns have the same attributes, the source column is copied
unchanged to the destination column. If you do not select either option, the row is rejected.

v Reject the row. Reject the row regardless of the process options for skipped or invalid dates, based on
specifications in the exit routine.

v Abort the whole process, based on specifications in the exit routine.

The exit routine passes a return code indicating which date format or which abort mode to use.

During a process, the exit routine may interrogate any columns from the input row and some of the
columns from the destination row. However, the exit routine cannot interrogate a destination column that
includes an exit routine and is defined in the column map after the current destination column. All other
destination columns are available.

Return codes

The following return codes apply to source format exits:
PST_CM_SRCFMT_USE_TIMESTAMP
(PST_CMW_SRCFMT_USE_TIMESTAMP)

Destination column is assigned a value in the OutputTimeStamp field of the first parameter passed to the
exit.
PST_CM_SRCFMT_USE_SYB_DATETIME
(PST_CMW_SRCFMT_USE_SYB_DATETIME)

Destination column is assigned a value in the OutputSybDateTime field of the first parameter passed to the
exit.
PST_CM_SRCFMT_SKIP
(PST_CMW_SRCFMT_SKIP)

Aging is not applied. If you do not select the option to Process rows with skipped dates, the row is
rejected. Otherwise, the data is copied to the source, as long as the source and destination are compatible.
If not compatible, the row is rejected.
PST_CM_SRCFMT_COL_INVALID
(PST_CMW_SRCFMT_COL_INVALID)

Aging is not applied. If you do not select the option to Process rows with invalid dates, the row is
rejected. Otherwise, the data is copied to the source, as long as the source and destination are compatible.
If not compatible, the row is rejected.
PST_CM_SRCFMT_REJECT_ROW
(PST_CMW_SRCFMT_REJECT_ROW)

Source column cannot be assigned a value. Reject (discard) the row.
PST_CM_SRCFMT_ABORT_PROCESS
(PST_CMW_SRCFMT_ABORT_PROCESS)

Chapter 7. Masking data 117

Fatal error. Terminate. To return an error message, place the message in the work area and set the unused
space to blanks or NULL.

Destination Format Exit
When you write a Destination Format Exit routine for Optim, you specify the exit function,
PSTColMapAgeDstExit (PSTColMapAgeDstWExit), and the following parameters:

single-byte
PSTColMapAgeDstExit

(PST_STRUCT_CM_AGE_DSTFMT_PARM * pInputParms,
PST_STRUCT_CM_EXIT_COL_LIST * pSrcColList,
PST_STRUCT_CM_EXIT_COL_LIST * pDstColList)

UTF-16
PSTColMapAgeDstWExit

(PST_STRUCT_CM_AGE_DSTFMT_WPARM * pInputParms,
PST_STRUCT_CM_WEXIT_COL_LIST * pSrcColList,
PST_STRUCT_CM_WEXIT_COL_LIST * pDstColList)

Parameters

When an Optim process calls a destination format exit routine, the process passes the following
parameters:

pInputParms
Pointer to PST_STRUCT_CM_AGE_DSTFMT_PARM
(PST_STRUCT_CM_AGE_DSTFMT_WPARM). This structure contains information about the
source and destination tables, the nature of the current call, and pointers to a call-back function
and work areas.

The first field in this structure is the FuncCode field, identified by:

PST_CM_DSTFMT_TO_CHAR (PST_CMW_DSTFMT_TO_WCHAR),
PST_CM_DSTFMT_TO_INTEGER (PST_CMW_DSTFMT_TO_INTEGER),
PST_CM_DSTFMT_TO_TIMESTAMP (PST_CMW_DSTFMT_TO_TIMESTAMP),
PST_CM_DSTFMT_TO_SYB_DATETIME (PST_CMW_DSTFMT_TO_SYB_DATETIME), or
PST_CM_DSTFMT_TERMINATE (PST_CMW_DSTFMT_TERMINATE).

pSrcColList
Pointer to a PST_STRUCT_CM_EXIT_COL_LIST (PST_STRUCT_CM_WEXIT_COL_LIST). This
structure describes the source columns.

pDstColList
Pointer to a PST_STRUCT_CM_EXIT_COL_LIST (PST_STRUCT_CM_WEXIT_COL_LIST). This
structure describes the destination columns.

Call-back function

Each time an Optim process calls a destination format exit routine, the process passes the address of the
following call-back function:

pPSTGetColValue()
Retrieves data for all source columns and most destination columns in the current data row. In
general, the exit routine does not need to call this function because the data for the aged source
column is provided in the first parameter. However, the exit routine can call this function to
retrieve the data for different columns.

118 IBM Optim: Using Optim Designer

Formats

The input date is in both a PST_C_TIMESTAMP and PST_C_SYB_DATETIME format. The exit is directed
to transform that date into one of the following formats, based on the data type of the destination
column.

PST_C_CHAR_SZ
CHAR and VARCHAR destination columns.

PST_C_INTEGER_CHAR_SZ
NUMERIC destination columns.

PST_C_TIMESTAMP
DB2 and Oracle DATE/TIME columns.

PST_C_SYB_DATETIME
Sybase ASE DATETIME columns.

Processing

Typical processing for the Destination Format Exit routine is summarized in the following steps:
1. On every call from Optim, the exit routine checks for a first time call. On the first call, the exit

performs any initialization tasks and normal processing (step 2). On subsequent calls only normal
processing is performed (step 2).

2. The exit receives the value of the source column as specified in the Age Function defined in the
column map. Optim applies the Age Function before calling the column map exit and stores the aged
value in both the InputTimeStamp and InputSybaDateTime fields in the header file.

3. If the exit needs to examine other columns to calculate the value for the destination column, the exit
must call the pPSTGetColValue() call-back function to obtain the value for those columns.

4. After the destination value is generated, the exit routine must format the value and place it in one of
the fields in the OutputValue union. The FuncCode field indicates the field in the OutputValue union
where the value must be placed. The exit must return an appropriate code indicating the field where
the data is saved or instructing the process to skip the row or abort.

5. After the last data row is processed, Optim passes a termination call to the exit routine, identified by
a value of PST_CM_DSTFMT_TERMINATE (PST_CMW_DSTFMT_TERMINATE) in the FuncCode field.
This call prompts the exit routine to free any dynamically allocated storage. When final tasks are
complete, the exit routine passes a return code to Optim.

Abort Modes

There are several ways that the Destination Format Exit routine can abort processing:
v Process rows with skipped dates or invalid dates. If you select either of these options in a process

request, and the source and destination columns have the same attributes, the source column is copied
unchanged to the destination column. If you do not select either option, the row is rejected.

v Reject the row. Reject the row regardless of the process options for skipped or invalid dates, based on
specifications in the exit routine.

v Abort the whole process, based on specifications in the exit routine.

The exit routine passes a return code indicating whether the conversion was successful or which abort
mode to use.

During a process, the exit routine may interrogate any columns from the input row and some of the
columns from the destination row. However, the exit routine cannot interrogate a destination column that
includes an exit routine and is defined in the column map after the current destination column. All other
destination columns are available.

Chapter 7. Masking data 119

Return codes

The following return codes apply to destination format exits:
PST_CM_DSTFMT_SUCCESS
(PST_CMW_DSTFMT_SUCCESS)

Destination column is assigned a value, as specified in the FuncCode field of the first parameter passed to
the exit.
PST_CM_DSTFMT_SKIP
(PST_CMW_DSTFMT_SKIP)

If you do not select the option to Process rows with skipped dates, the row is rejected. Otherwise, the
source data is copied to the target, as long as the source and target are compatible. If not compatible, the
row is rejected.
PST_CM_DSTFMT_COL_INVALID
(PST_CMW_DSTFMT_COL_INVALID)

If you do not select the option to Process rows with invalid dates, the row is rejected. Otherwise, the
data is copied to the source, as long as the source and target are compatible. If not compatible, the row is
rejected.
PST_CM_DSTFMT_REJECT_ROW
(PST_CMW_DSTFMT_REJECT_ROW)

Destination column cannot be assigned a value. Reject (discard) the row.
PST_CM_DSTFMT_ABORT_PROCESS
(PST_CMW_DSTFMT_ABORT_PROCESS)

Fatal error. Terminate. To return an error message, place the message in the work area and set the unused
space to blanks or NULL.

Working with column map procedures
A column map procedure is a procedure that is used to mask or transform the data in a column when
you run a service. As the name indicates, you must add column map procedures to a column map. You
can write column map procedures by using the Lua scripting language.

Creating a named column map procedure
Use the Lua script editor to create a named column map procedure.

To create a named column map procedure:
1. Expand a folder in the Directory Explorer to contain the column map procedure, right-click the

Column Map Procedure node, and click New Column Map Procedure. The New Column Map
Procedure window opens.

2. Enter a name for the procedure in the format indentifier.name.
3. Click OK. The new procedure appears under the Column Map Procedure node.
4. Double-click the procedure name. The Lua script editor opens.
5. Create and save the procedure.

Applying a column map procedure
Use the Apply Procedure window to apply a column map procedure.

To apply a column map procedure:

120 IBM Optim: Using Optim Designer

1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps
node, and double-click the column map. The Column Map Editor opens.

2. Select the column for the procedure.
3. Click Apply Procedure. The Apply Procedure window opens.
4. Choose to select a named column map procedure, or choose to create either a named or local

(available for the column map only) column map procedure.
5. Click OK. The Lua script editor opens and displays the column map procedure.
6. Edit and save the column map procedure. The column that is associated with the procedure displays

Procedure name.
7. Save the column map.

Editing a column map procedure in a column map
Use the Lua script editor to edit a column map procedure in a column map.

Editing PST Basic column map procedures

Optim Designer does not support editing column map procedures written in PST Basic. Optim
Designer supports editing only Lua column map procedures, but you can convert a PST Basic
column map procedure to Lua.

When you try to edit a PST Basic column map procedure, Designer will offer the option to
convert the procedure to Lua. The conversion process will store a copy of the PST Basic
procedure in your workspace and then overwrite the procedure. The old procedure will be stored
in the LUAProject directory of the Designer workspace.

To edit a column map procedure in a column map:
1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps

node, and double-click the column map. The Column Map Editor opens.
2. Select the column that is associated with the column map procedure.
3. Click Edit Procedure. The Lua script editor opens.
4. Edit and save the procedure.
5. Save the column map.

Entering values for parameters in a column map procedure
Use the Column Map Editor to enter values for parameters in a column map procedure.

To enter values for parameters in a column map procedure:
1. Expand a folder in the Directory Explorer that contains the column map, expand the Column Maps

node, and double-click the column map. The Column Map Editor opens.
2. Select the column that contains the procedure. The Procedure editor opens in the Column Map Editor.
3. In the Procedure Parameters field, enter column separated values for the parameters. For example:

abc, def.
4. Save the column map.

Writing column map procedures with Lua scripting
A column map procedure is a procedure that is used to mask or transform the data in a column when
you run a service. As the name indicates, you must add column map procedures to a column map. You
can write column map procedures by using the Lua scripting language.

For more information about the Lua programming language, see the Lua web site at http://www.lua.org

Chapter 7. Masking data 121

http://www.lua.org/

Lua functions for column map procedures
Column map procedures support most standard Lua functions. Column map procedures also support
functions that are specific to Optim.

A column map procedure can contain either a complex expression or a set of standard functions.

Complex expression

A complex expression is an unstructured block of statements. When a column map procedure contains a
complex expression, the complex expression is called for every row processed. A complex expression is
functionally the same as a cm_transform() function, but a complex expression cannot contain a formal
function statement.

The following example complex expression replaces nil values in a column with 1 and leaves all other
values unchanged.
srcvalue = source.column.getvalue()
if srcvalue = nil then

target.column.setvalue(’1’)
else

target.column.setvalue(srcvalue)
end

Standard function names for user-defined functions

Use the following function names in your Lua column map procedures. Each of these functions is called
automatically at the point indicated. You can also create functions with other function names and call
these functions from the standard functions.

Name Description Required

cm_load() This function is called before any
tables are processed.

No

cm_unload() This function is called after all tables
are processed.

No

cm_starttable() This function is called at the start of
processing for each table.

No

cm_endtable() This function is called at the end of
processing for each table.

No

cm_transform() This function is called for every row
processed.

Yes

Global functions

The following functions are available in all column map procedure execution contexts.

Name Description

numparms() Get the number of parameters that are passed to the
column map procedure.

parms.get(n) Get the value of the parameter at index n.

print() Print messages to process report.

122 IBM Optim: Using Optim Designer

Data store functions

Use the following functions to get information about the source and target data stores.

Name Description

source.getdbalias() Get the DB alias of the source data store.

source.getcreatorid() Get the creator ID of the source data store.

target.getdbalias() Get the DB alias of the target data store.

target.getcreatorid() Get the creator ID of the target data store.

Table functions

Use the following functions to get information about the source and target tables. Table functions can be
used only within a complex expression or within the cm_starttable(), cm_endtable(), and
cm_transform() functions.

Name Description

source.gettablename() Get the name of the source table.

target.gettablename() Get the name of the target table.

Column functions

Use the following functions to get information about the source and target columns, transform column
data, write the result to the target column, and exit. Column functions can be used only within a complex
expression or within the cm_transform() function.

Name Description

source.column.getvalue() Get a value from a source column. Use this function for
nonnumeric columns and for numeric columns that have
data types other than the following data types:

v DECIMAL

v DOUBLE

v FLOAT

v DECIMAL FLOAT (Informix)

v NUMBER (Oracle)

A runtime error is generated if you use the
source.column.getvalue() function to get values from
columns with binary data types.

source.column.getasdouble() Get a value in double-precision format from a source
column. Use this function to get data from columns that
have the following data types:

v DECIMAL

v DOUBLE

v FLOAT

v DECIMAL FLOAT (Informix)

v NUMBER (Oracle)

source.column.getlength() Get the length of the source column.

source.column.getname() Get the name of the source column.

source.column.gettype() Get the data type of the source column.

Chapter 7. Masking data 123

Name Description

target.column.setvalue() Set the value of a target column.

A runtime error is generated if you use the
target.column.setvalue() function to set values in
columns with binary data types.

target.column.getlength() Get the length of the target column.

target.column.getname() Get the name of the target column.

target.column.gettype() Get the data type of the target column.

optimmask() Call an Optim Data Privacy Providers (ODPP) provider.

userexit() Call a user exit.

rejectrow() Skip row and go to the next row.

Unsupported functions

The following categories of functions are not supported in column map procedures.
v Input and output facilities that are built into the Lua io library
v string.dump()

Limitations of column map procedures
Column map procedures do not support certain data types and Lua functions.

Numeric data processed in double-precision format

Column map procedures process numeric data in double-precision format. Use the
source.column.getasdouble() function to get data from columns that have the following data types. A
runtime error is generated if you use source.column.getvalue() to get data from columns that have the
following data types.
v DECIMAL

v DOUBLE

v FLOAT

v DECIMAL FLOAT (Informix)
v NUMBER (Oracle)

Encoding

Column map procedures use UTF-16 encoding in their internal processing.

Binary data types not supported

A runtime error is generated if you use the source.column.getvalue() function to get values from
columns with binary data types. A runtime error is also generated if you use the
target.column.setvalue() function to set values in columns with binary data types.

Unsupported functions

The following categories of functions are not supported in column map procedures.
v Input and output facilities that are built into the Lua io library
v string.dump()

124 IBM Optim: Using Optim Designer

Column map procedure example: Generic procedure
The column map procedure example illustrates the structure of a column map procedure with its
standard functions: cm_load, cm_unload, cm_starttable, cm_endtable, and cm_transform.

--
-- IBM Optim sample column map procedure
--
-- Name: OptimSample
--
-- Revision: 1.0
--
-- Description: Demonstrates all capabilities of Optim/Lua column map procedures
--
-- Input: Zero or more parameters, which will simply be echoed back to the
-- Optim process report
--
--
-- Output: Section in Optim process report showing information from this
-- column map procedure. The column itself is left unchanged.
--
--

-- cm_load function - Called before any tables are processed

function cm_load()

print(" *** Start of Process ***")

colinfoshown = false

-- Display parameters passed from Column Map

print(" Argument Count: " .. string.format("%d", numparms()))
for i = 1, numparms(), 1 do

print(" Argument " .. string.format("%d", i-1) .. " " .. parms.get(i-1))
end

end

-- cm_unload function - Called after all tables are processed

function cm_unload()

print(" *** End of Process ***")

end

-- cm_starttable function - Called at the start of processing for each table

function cm_starttable()

print(" \nStart of processing table")
fullname = source.getdbalias() .. "." .. source.getcreatorid() .. "." .. source.gettablename()
print(" Source Table: " .. fullname)
fullname = target.getdbalias() .. "." .. target.getcreatorid() .. "." .. target.gettablename()
print(" Target Table: " .. fullname)

end

-- cm_endtable function - Called at the end of processing for each table

Chapter 7. Masking data 125

function cm_endtable()

print(" \nEnd of processing table")

end

-- cm_transform function - Called for each row processed

function cm_transform()

if (not colinfoshown) then
colinfoshown = true
print(" Processing column " .. source.column.getname())
print(" Type: " .. source.column.gettype())
print(" Length: " .. source.column.getlength())

end

-- This statement gets the value in the column for which cm_transform was called
-- Optionally, the name of another column can be specified, for example:
-- source.column.getvalue("COL1") will return the value in column COL1
oldvalue = source.column.getvalue()

-- This code sets that target column to the same value as the source column
-- Logic to change the value would be placed here.
-- If you wish to NOT insert this row into the target table, call the rejectrow() function

newvalue = oldvalue
target.column.setvalue(newvalue)

end

Column map procedure example: Switched lookup
The column map procedure example illustrates how the mask_parms function masks a column by using
data from a lookup table.

--
-- IBM Optim sample column map procedure
--
-- Name: OptimSwitchedLookup
--
-- Revision: 1.0
--
-- Description: Masks a column by using table lookup. The lookup table to
-- be used is determined by the value of another column.
--
-- Input: Parameter 1 (Required):
-- A string that indicates the type of lookup to use:
-- HASH, RANDOM, or LOOKUP
--
-- Parameter 2 n-1 (Required)
-- An expression that indicates the lookup table to use. The format is
-- COND(column-name=value) DATASOURCE(datasource_parameters)
-- This parameter can be repeated multiple times. If a row does not
-- satisty any of the COND parameters than it will not be inserted
-- into the target table.
--
-- Parameter n (Optional):
-- A string containing additional parameters to be
-- copied into the optimmask invocation.
-- This is in addition to the datasource_parameters value in
-- the COND clause of Parameter 2 and the mask_parms_constant field
-- that is declared at the start of this script.
--
--
--

126 IBM Optim: Using Optim Designer

-- Output: - The masked column data as set by the target.column.setvalue function
-- - Text directed to the Optim report by the print function
--
-- Return Codes: 0 - Successful execution
-- 1 - Reject row (Use in cm_transform; row will not be inserted to
-- destination table)
-- 2 - Abort process
--
-- Two helper functions are specified to specify conditions other than
-- return code 0.
-- There is no need to code a return statement when using these
-- functions.
-- error(string) - This call causes the Optim process to abort
-- and string is shown in the Optim report
-- as an error message.
-- rejectrow() - This call causes Optim to reject the row
-- currently being processed. The row is
-- not inserted into the destination table.
--
--
--

function cm_transform()

-- Change this field to contain parameters that should
-- be placed into all optimmask calls
local mask_parms_constant = ’CACHE=Y,WHENNF=PRE’

--
-- Validate number of parameters:
--
nparm = numparms()
if (nparm < 2) then

process_error("Call to column map procedure OptimSwitchedLookup must have 2 or more parameters")
end

--
-- Process Parameter 1 (lookup type)
parm = parms.get(0)
if (string.lower(parm) == "hash") then

provalue = "HASH_LOOKUP"
elseif (string.lower(parm) == "random") then

provalue = "RANDOM_LOOKUP"
elseif (string.lower(parm) == "lookup") then

provalue = "LOOKUP"
else

process_error("Invalid parameter. Expected HASH, RANDOM or LOOKUP. Found " .. parm)
end

--
-- Process COND/DATASOURCE parameters
--
gotcond = false
for parmptr = 1, nparm-1 do

parm = parms.get(parmptr)
if (string.lower(string.sub(parm, 1, 5)) == "cond(") then

gotcond = true
datasource_parameters = process_cond()
if (datasource_parameters > "") then

break;
end

end
end
if (not gotcond) then

process_error("No COND parameter found")

Chapter 7. Masking data 127

end

-- No COND matched this row, so reject the row
if (datasource_parameters <= "") then

rejectrow()
end

--
-- Process optional additional optimmask parameter
--
lastparm = parms.get(nparm-1)
if (string.lower(string.sub(lastparm, 1, 5)) == "cond(") then

optimmask_additional_parms = ""
else

optimmask_additional_parms = lastparm
end

--
-- Construct call to optimmask, make the call,
-- and place new value into target column
--
mask_parms = "PRO=" .. provalue .. "," .. mask_parms_constant

-- This use of environment variables to store userid and password
-- for the system table is for simple illustrative purposes only.
-- For greater security, store this information in environment variables
-- in an encrypted format.
userid = os.getenv("optimmaskuserid")
if (userid) then

mask_parms = mask_parms .. ",USER=" .. userid
end
password = os.getenv("optimmaskpswd")
if (password) then

mask_parms = mask_parms .. ",PASS=" .. password
end

mask_parms = mask_parms .. "," .. optimmask_additional_parms

oldvalue = source.column.getvalue()
newvalue = optimmask(oldvalue, mask_parms)
target.column.setvalue(newvalue)

end

function process_cond()

strptr = 6 -- Point to first character after "COND("

-- Get the column name
equalsign = string.find(parm, "=", strptr, true)
if (not equalsign) then

process_error("Syntax error around character " .. strptr .. " in expression: " .. parm)
end
colname = string.sub(parm, strptr, equalsign-1)

-- Get the column value
strptr = equalsign + 1
closeparen = string.find(parm, ")", strptr, true)
if (not closeparen) then

process_error("COND expression is missing closing parenthesis in expression: " .. parm)
end
colvalue = string.sub(parm, strptr, closeparen-1)

--Debug - Print scan results:
--print ("Found colname=" .. colname .. " in parm: " .. parm)
--print ("Found colvalue=" .. colvalue .. " in parm: " .. parm)

128 IBM Optim: Using Optim Designer

-- If COND(column-name=value) condition not met for this row, then
-- do no further processing on this parameter. Return "" to indicate no hit.
if (source.column.getvalue(colname) ~= colvalue) then

return ""
end

-- Got a match on COND, so get the DATASOURCE value
strptr = closeparen + 1
datasourceValuePtr = string.find(parm, "DATASOURCE(", strptr, true)
if (not datasourceValuePtr) then

process_error("DATASOURCE clause not found in expression: " .. parm)
end
-- (Note: This scanning is very simple; it assumes that there
-- is no errant text between the COND and DATASOURCE clauses)
closeparen = string.find(parm, ")", datasourceValuePtr, true)
if (not closeparen) then

process_error("COND expression is missing closing parenthesis in expression: " .. parm)
end
return string.sub(parm, datasourceValuePtr+11, closeparen-1)

end
function process_error(msg)

errprefix = "Error in column map procedure for column " .. source.column.getname()
errprefix = errprefix .. " in table " .. source.getdbalias() .. "." .. source.getcreatorid() .. ".

" .. source.gettablename()
error(errprefix .. ":\n " .. msg)

end

Column map procedure example: National ID masking
The column map procedure example illustrates how the mask_parms function masks a column that
contains a national ID.

--
-- IBM Optim sample column map procedure
--
-- Name: OptimNID
--
-- Revision: 1.0
--
-- Description: Masks a national ID column based on the value of another
-- column or a script argument with the country code.
--
-- Input: Parameter 1 (Required):
-- A string country code (eg. US for United States)
-- --OR--
-- COL(column-name) where column-name is the name of a column
-- that contains the country code
--
-- Parameter 2 (Optional):
-- A string containing additional parameters to be copied into the
-- optimmask invocation
-- This is in addition to the mask_parms_constant field that is
-- delcared at the start of this script.
--
--
--
-- Output: - The masked column data as set by the target.column.setvalue function
-- - Text directed to the Optim report by the display function
--
-- Return Codes: 0 - Successful execution
-- 1 - Reject row (Use in cm_transform; row will not be inserted to
-- destination table)
-- 2 - Abort process
--
-- Two helper functions are specified to specify conditions other than

Chapter 7. Masking data 129

-- return code 0.
-- There is no need to code a return statement when using these
-- functions.
-- error(string) - This call will cause the Optim process to abort
-- and string will be shown in the Optim report
-- as an error message.
-- rejectrow() - This call will cause Optim to reject the row
-- currently being processed The row will
-- not be inserted into the destination table.-
--
--

function cm_transform()

-- Change this field to contain parameters that should
-- be placed into all optimmask calls
local mask_parms_constant = ’MTD=REPEATABLE’

--
-- Obtain parameters:
--
nparm = numparms()
if nparm ~= 1 and nparm ~= 2 then

msg = "Call to column map procedure for column "
msg = msg .. source.column.getname()

msg = msg .. " must have 1 or 2 parameters"
error(msg)

end
parm1 = parms.get(0)
if (nparm == 2) then

parm2 = parms.get(1)
end

--
-- Get country code into swivalue field based on parameters
--
if string.lower(string.sub(parm1, 1, 4)) == ’col(’ then

closeparen = string.find(parm1, ’)’, 5, true)
if (not closeparen) then

error("No closing parenthesis found in expression: " .. parm1)
end
colname = string.sub(parm1, 5, closeparen-1)
swivalue = source.column.getvalue(colname)

else
swivalue = parm1

end

--
-- Construct call to optimmask, make the call,

-- and place new value into target column
--
mask_parms = ’PRO=NID, SWI=’ .. swivalue .. ’, ’ .. mask_parms_constant
if (parm2) then

mask_parms = mask_parms .. ’, ’ .. parm2
end
oldvalue = source.column.getvalue()

newvalue = optimmask(oldvalue, mask_parms)
target.column.setvalue(newvalue)

end

130 IBM Optim: Using Optim Designer

Chapter 8. Managing data

Use the Optim Designer utilities to edit, browse, and compare data. You can also create tables.

Browsing data
Use the Browse utility to review the contents of a file without having to restore it to the database.

Use the help facility in the Browse utility to obtain more information about a specific topic or function.
You can open a help window by selecting Help > Contents, right-clicking an item and selecting What's
This, or by pressing F1.

To browse data:
1. From Optim Designer, click Tools > Browse The Browse windows opens.
2. Click File > Open to open the Open window and select a data file created by a service. The files are

stored in the data directory specified in the Configuration utility.
3. Click Open. The tables in the data file are listed in the Browse window.
4. Click Tools > Create All Selected Objects. The table opens in the Browse Data window.

Editing data
Use the Table Editor to browse and edit sets of relationally intact data in database tables. The editor
handles an arbitrarily complex data model consisting of any number of tables and relationships and
ensures a referentially intact set of data.

Use the help facility in the Table Editor to obtain more information about a specific topic or function. You
can open a help window by selecting Help > Contents, right-clicking an item and selecting What's This,
or by pressing F1.

To edit data:
1. From Optim Designer, click Tools > Edit The Edit Options windows opens.
2. Enter a Table Name or Named Access Definition, select Initial Display or Mode options, and click

OK. The Table Editor window opens.
3. Edit one or more tables at the same time.

Commit changes to the database by moving the pointer to a different row or by using menu options.
Each instance of a commit counts as an undo level. An undo level is defined as a change to a row
that is committed to the database.
If an error condition results when you attempt to commit data to the database, the data is not
committed, but the attempt still counts as an undo level. The editor allows you to restore the data you
modify to a specific commit point.
A fetch set is the set of rows the editor reads from a single table in the database.
v To undo changes and restore rows to the original versions obtained in the current fetch set for all

tables, select Tools > Undo.
v To undo a change for a row, right-click the row and click Undo.
v To display each successive version of the row committed in the current fetch set, and the original

version of the row in the fetch set, right-click the row and click Undo....

© Copyright IBM Corp. 1996, 2013 131

Comparing data
Use the Compare utility to compare data from one set of source tables with data from another. You can
define a compare request that is stored in the Optim directory and save the results of a comparison in a
compare file.

Defining a compare request
Use the Compare Request Editor to define data sources to compare and processing options.

Use the help facility in the Compare utility to obtain more information about a specific topic or function.
You can open a help window by selecting Help > Contents, right-clicking an item and selecting What's
This, or by pressing F1.

To define a compare request:
1. In the Directory Explorer, right-click Compare and click New Compare. The Compare Request Editor

opens.
2. In the General tab, complete the following steps:

a. Enter a compare file name in the Compare File field.
b. Select Browse Results Immediately to view the results of the compare process after the process is

competed.
c. Select a Comparison mode.

Single Table

Source File – Source File
Compare data in a single table in one source file with data in another source file.

Source File – Database Table
Compare data in a single table in a source file with data in a single table in the
database.

Database Table – Database Table
Compare data in a single table in one database with data in a single table in
another database.

Multiple Tables

Source File – Source File
Compare the data in tables in one source file with data in another source file.

Source File – Access Definition
Compare the data in tables in a source file with the data specified in an access
definition.

Source File – All Database Tables
Compare the data in tables in a source file with data in a database.

Note: This selection is extremely useful when testing a database application. The
source file represents the “before” image compared with the database tables, which
represent the “after” image.

Access Definition – Access Definition
Compare the data specified in one access definition with data specified in another
access definition.

Access Definition – All Database Tables
Compare the data specified in an access definition with data in a database.

3. In the Source tab, select the data sources to compare based on the comparison mode.
4. Click File > Run to begin the compare process.

132 IBM Optim: Using Optim Designer

5. Click File > Saveto save the compare request. Enter a request name in the format
IDENTIFIER.NAME.

The process will create a compare file in the data directory specified in the Configuration utility. Use the
Browse utility to view the results of the comparison.

Editing a compare request
Use the Compare Request Editor to edit a compare request.

Use the help facility in the Compare utility to obtain more information about a specific topic or function.
You can open a help window by selecting Help > Contents, right-clicking an item and selecting What's
This, or by pressing F1.

To edit a compare request:
1. In the Directory Explorer, expand the Compare node, right-click the request to edit and click Edit. The

Compare Request Editor opens.
2. Edit the request.
3. Click File > Saveto save the compare request.

Running a compare process
You can run a compare process to generate a compare file that you can view with the Browse utility.

To run a compare request:

Run the request by using one of the following methods:
To run the compare process from the Directory Explorer, right-click a compare request and click Run.
To run the compare process from the Compare Request Editor, click File > Run.

The process will create a compare file in the data directory specified in the Configuration utility. Use the
Browse utility to view the results of the comparison.

Creating tables
Use the Create utility to create objects based on definitions in a source data file.

Use the help facility in the Create utility to obtain more information about a specific topic or function.
You can open a help window by selecting Help > Contents, right-clicking an item and selecting What's
This, or pressing F1.

To create tables:
1. From Optim Designer, click Tools > Create The Create Options windows opens.
2. Select a source data file created by a service. The files are stored in the data directory specified in the

Configuration utility.
3. Select one of the Table Map Options.

If you choose a Local table map, the Local - Table Map Editor opens. Complete the following steps:
a. In the Qualifier field, you must enter a target data store alias and creator ID in the format

data_store_alias.creator_id.
b. Modify the destination table names.
c. Click File > Update and Return.

If you select a named table map, complete the following step:
a. In the Table Map Name field, enter or select a table map name.

Chapter 8. Managing data 133

4. Click OK. The Create window opens.
5. Edit and select the objects to create.
6. Click Tools > Create All Selected Objects to begin the create process.

134 IBM Optim: Using Optim Designer

Chapter 9. Tutorials

Optim Designer provides a single design interface for Optim test data management solutions.

Extracting data with Optim Designer
This tutorial teaches you how to use Optim Designer to create an Optim extract service. In this tutorial,
you will define an access definition and an extract service.

After completing this tutorial you will be able to run an extract service.

Learning objectives

When you complete the exercises, you will know how to do the following tasks:
v Create a Directory Explorer folder
v Create an access definition to define the data to extract
v Edit an access definition to defines election criteria
v Create an extract service

Time required

This module should take approximately 60 minutes to complete.

Prerequisites

This tutorial requires an Optim Designer environment that includes a connection to an Optim directory
and a data store alias that contains the Optim sample data.

This tutorial can be completed in the Optim Designer environment.

Creating a Directory Explorer Folder
In this exercise, you will create a Directory Explorer folder. A Directory Explorer folder contains services,
access definitions, column maps, and table maps. Use the folders to organize these objects.

To create a Directory Explorer folder:
1. Right-click the Directory Explorer view and click New > Folder. The New Folder window opens.
2. In Name, type Tutorial and click OK.

You have created a Directory Explorer folder named Tutorial.

Creating an access definition
In this exercise you will create an access definition. Use access definitions to specify the tables,
relationship traversal, and selection criteria for the data you want to process.

Before creating an access definition, a data store alias must exist for the database that contains the start
table.

To create an access definition:
1. Expand the Tutorial folder in the Directory Explorer, right-click Access Definitions, and click New

Access Definition. The New Access Definition wizard opens.

© Copyright IBM Corp. 1996, 2013 135

2. On the Enter Access Definition Name page, enter SAMPLE.AD. Click Next.
3. On the Select a Data Store Alias page, select the data store alias that contains the Optim sample data.

Click Next.
4. On the Select a Start Table page, do the following steps:

a. In the Table Search Pattern field, enter the following search pattern: SCHEMA.OPTIM_CUSTOMERS,
where SCHEMA is the schema that contains the Optim sample data. For example:
SAMPLE.OPTIM_CUSTOMERS.

b. Click Display Tables. The table list displays tables that match the pattern.
c. Select the OPTIM_CUSTOMERS table.
d. Click Next.

5. On the Specify a Table Selection Method page, click Find related tables. Click Next.
6. On the Display and Select Related Tables page, do the following steps:

a. Click Display Tables. The table list displays tables related to OPTIM_CUSTOMERS.
b. Click Select All.
c. Click Finish.

The new access definition is displayed in the Access Definition Editor.

Defining selection criteria
In this exercise, you will define selection criteria in the access definition. Use selection criteria to focus on
a specific set of related data by defining an SQL WHERE clause and using substitution variables with
default values.

Selection criteria must conform to SQL syntax and include relational or logical operators. Logical
operators and syntax vary among DBMSs. Refer to the appropriate DBMS documentation for information.

To select the desired set of data for a table, you may need a combination of AND and OR logical operators.

To define selection criteria:
1. Expand the Tutorial folder in the Directory Explorer, expand the Access Definitions node, and

double-click the SAMPLE.AD access definition. The Access Definition Editor opens.
2. Select the Tables tab.
3. Select the OPTIM_CUSTOMERS table from the table list.
4. Click Add Table Specifications. The Table Specification window opens.
5. Select the Selection Criteria tab. The tab displays a WHERE clause for the table.
6. Enter the following criteria: COUNTRY_CODE='US'.

Click Check Syntax to verify the syntax and identify errors.
7. Click OK to return to the Access Definition Editor.

If the syntax is not valid, a prompt will open to identify to error. You cannot save the criteria if it
contains errors.

8. From the main menu, click File > Save to save the access definition.

You have defined selection criteria that will only select rows from the OPTIM_CUSTOMERS table in
which the value of the COUNTRY_CODE column is 'US'.

Creating an extract service
In this exercise, you will create an extract service based on the data specified in an access definition. Use
an extract service to copy a set of related rows from one or more tables and save the rows to an extract
file.

136 IBM Optim: Using Optim Designer

To create an extract service:
1. Expand the Tutorial folder in the Directory Explorer, right-click Extract Services, and click New

Service. The New Service wizard opens.
2. On the Enter a Service Name and Select a Service Type page, do the following steps:

a. In the Name field, enter SAMPLE.EXTRACT.
b. In the list of service types, select Extract.
c. Click Next.

3. On the Select an Access Definition page, click Select an access definition. The page displays a list of
access definitions.

4. From the list, select SAMPLE.AD. Click Next.
5. On the Enter a Target File Name page, enter SAMPLE_EXT in the Extract file name field.
6. Click Finish.

The new extract service displayed in the Extract Service Editor. You can use this service to create an
extract file for a convert, insert, or load service. You can also use the file to create a column map or table
map.

Masking Data with Optim Designer
This tutorial teaches you how to use Optim Designer to create a convert service that transform data in a
source file.

This tutorial requires the SAMPLE_EXT file created in the “Extracting data with Optim Designer” on
page 135 tutorial.

After completing this tutorial you will be able to apply a privacy function and run a convert service.

Learning objectives

When you complete the exercises, you will know how to do the following tasks:
v Create and edit a table map
v Create a column map
v Apply a data masking function
v Create a convert service

Time required

This module should take approximately 60 minutes to complete.

Prerequisites

This tutorial requires an Optim Designer environment that includes a connection to an Optim directory
and a data store alias that contains the Optim sample data.

This tutorial can be completed in the Optim Designer environment.

Creating a table map
In this exercise, you will create a table map. Use a table map to define specifications for correlating
source and destination tables of compatible data. You can map tables that have different names, modify
table names, exclude tables from a process, or include column maps for greater control over the data.

To create a table map:

Chapter 9. Tutorials 137

1. Expand the Tutorial folder in the Directory Explorer, right-click Table Maps and click New Table
Map. The New Table Map wizard opens.

2. On the Enter Table Map Name page, enter SAMPLE.TMAP in the Name field. Click Next.
3. On the Choose a Source File page, click Browse to an Optim file.
4. In the Browse to an Optim file area, click Browse. The Please select an Optim file window opens.
5. Browse to the location of the SAMPLE_EXT file created in the “Extracting data with Optim Designer”

on page 135 tutorial.
6. Select the file and click Open. The file displays in the Optim file name field.
7. Click Next.

The new table map is displayed in the Table Map Editor.

You must use the editor to define target data stores and schemas before saving the table map.

Editing a table map
In this exercise, you will use the Table Map Editor to define target data stores and schemas for source
tables in a table map.

To edit target data in a table map:
1. Expand the Tutorial folder in the Directory Explorer, expand the Table Maps node, and double-click

the SAMPLE.TMAP table map. The Table Map Editor opens.
2. Select the Table map tab.
3. In the Data store alias and schema map area, select the row that contains the source data store.
4. Click the Target Data Store Alias cell and select the data store alias that contains the Optim sample

data.
5. Click the Target Schema cell and select the schema that contains the Optim sample data.
6. From the main menu, click File > Save to save the table map.

The table map uses the same source and target tables in order to mask source data and maintain the
same schema and data store alias.

Creating a column map
In this exercise, you will create a column map. A column map provides specifications needed to match or
exclude columns from processing in a data management service. Convert, insert, and load services must
reference a table map, which may reference one or more column maps. You can use a column map to
define data transformations with functions or column map procedures.

To create a column map:
1. Expand the Tutorial folder in the Directory Explorer, right-click Column Maps and click New

Column Map. The New Column Map wizard opens.
2. On the Enter Column Map name page, enter SAMPLE.CMAP in the Name field. Click Next.
3. On the Select a Source Table page, do the following steps:

a. In the Selection method area, click Data store alias.
b. In the Data store alias area, enter the following search pattern in the Table Search Pattern field, :

DATA_STORE_ALIAS.SCHEMA.OPTIM_CUSTOMERS, where DATA_STORE_ALIAS.SCHEMA are the data
store alias and schema that contain the Optim sample data. For example:
OPTIM.SAMPLE.OPTIM_CUSTOMERS.

c. Click Display Tables. The table list displays tables that match the pattern.
d. Select the OPTIM_CUSTOMERS table.
e. Click Next.

138 IBM Optim: Using Optim Designer

4. On the Select a Target Table page, do the following steps:
a. In the Table Search Pattern field, enter the following search pattern: SCHEMA.OPTIM_CUSTOMERS,

where SCHEMA is the schema that contains the Optim sample data. For example:
SAMPLE.OPTIM_CUSTOMERS.

b. Click Display Tables. The table list displays tables that match the pattern.
c. Select the OPTIM_CUSTOMERS table.

5. Click Finish.

The new column map is displayed in the Column Map Editor.

Applying a data masking policy
In this exercise, you will apply a data masking function to a column in a column map. You can mask
data such as national ID numbers, credit card numbers, dates, numeric values, and personal information.

To apply a data masking function.
1. Expand the Tutorial folder in the Directory Explorer, expand the Column Maps node, and

double-click the SAMPLE.CMAP column map. The Column Map Editor opens.
2. Select the PHONE_NUMBER column.
3. Click Apply Policy. The Apply Policy window opens.
4. Expand the Data Manipulation node and select Shuffle Policy. Click OK. The policy name appears

in the Source Column column and the policy editor opens in the Column Map Editor.
5. In the policy editor Column map expression field, enter SHUFFLE(RETRY=12).
6. From the main menu, click File > Save to save the column map.

You have applied the Shuffle Policy to the PHONE_NUMBER column. The policy will mask data by
replacing values in the column with other values in the column. The policy will search up to twelve
times for a replacement value that does not match the source value.

Adding a column map to a table map
In this exercise you will a column map to a table map. A table map is required for a convert service. Use
the associated column map to enable the convert service to perform the data masking function defined in
the column map.

To add a column map to a table map:
1. Expand the Tutorial folder in the Directory Explorer, expand the Table Maps node, and double-click

the SAMPLE.TMAP table map. The Table Map Editor opens.
2. Select the Table map tab.
3. In the Table Map area, select the OPTIM_CUSTOMERS table.
4. Click Add Column Map. The New Column Map window opens with a list of column maps that

contain the selected tables.
5. Select the SAMPLE.CMAP column map. Click OK.
6. From the main menu, click File > Save to save the table map.

You have added the SAMPLE.CMAP column map (and its associated data masking function) to the
SAMPLE.TMAP table map, which will enable a convert service to transform data.

Creating a convert service
In this exercise you will create a convert service to mask data.

To create a convert service:

Chapter 9. Tutorials 139

1. Expand the Tutorial folder in the Directory Explorer, right-click Convert Services, and click New
Service. The New Service wizard opens.

2. On the Enter a Service Name and Select a Service page, do the following steps:
a. In the Name field, enter SAMPLE.CONVERT.
b. In the list of service types, select Convert.
c. Click Next.

3. On the Select a Table Map Source page, click Browse to an Optim file.
4. In the Browse to an Optim file area, click Browse. The Please select an Optim file window opens.
5. Browse to the location of the SAMPLE_EXT file created in the “Extracting data with Optim Designer”

on page 135 tutorial.
6. On the Select a Table Map page, select the SAMPLE.TMAP table map. Click Next.
7. On the Enter Target Properties page, select Eenter SAMPLE_CONV in the File field.

a. Select Extract from the File format list.
b. Enter SAMPLE_CONV in the File field.

8. Click Finish.

The new convert service displayed in the Convert Service Editor. You can use this service to mask the
PHONE_NUMBER column in the OPTIM_CUSTOMERS table.

140 IBM Optim: Using Optim Designer

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1996, 2013 141

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM
IBM logo
DB2
AIX
Informix
InfoSphere
Optim

Netezza® is a registered trademark of IBM International Group B.V., an IBM Company.

142 IBM Optim: Using Optim Designer

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Apache Derby is a trademark of The Apache Software Foundation.

Eclipse is a trademark of Eclipse Foundation, Inc.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Notices 143

144 IBM Optim: Using Optim Designer

Index

A
Access Definition Editor 29

Data group properties tab 32
Point and Shoot tab 37
Relationships tab 32, 33, 34, 35
Tables tab 32
Traversal Steps window 33

access definitions
Access Definition Editor 29, 32
Add Reference Tables window 28
Add Related Tables window 28
adding reference tables 28
adding related tables 28
analyze indexes for relationships 35
changing relationship traversal 33
changing tables to reference or

related 29
creating 28
ignore relationship options 34
managing relationships 32
managing tables 28
New Access Definition wizard 28
overview 27
point and shoot list 36, 37
relationship traversal options 32
removing tables 29
reviewing relationship traversal 33
selection criteria 30
show steps 33
table access options 33
Table Specification window 30, 31
traversal steps 29
Traversal Steps window 29
variables 35, 36

Access Existing Optim Directory
wizard 16, 23

Add a Variable window 36
Add Reference Tables window 28
Add Related Tables window 28
Age Function 107

destination format exit 112
incremental aging 107
semantic aging 107
source format exit 112

Apply Classification window 49
Apply Function window 48, 67
Apply Procedure window 120
Auto-Generated Email Name

Function 111

B
Browse utility 131
browsing data 131

C
Column Map Editor 48, 49

Apply Function window 48, 67
Lua script editor 49, 120, 121

column map procedure 121
applying 120
column maps 49, 120
creating 49, 120
editing 49, 121
editing parameters 50, 121
encoding 124
example 125, 126, 129
functions 122
limitations 124
numeric data format 124
reserved names 122

column maps
adding to table maps 45
Apply Classification window 49
Apply Function window 48, 67
Apply Procedure window 120
applying a classification 49
applying column map procedure 120
applying data masking function 48,

67
Column Map Editor 48
column map procedure 49, 120
creating 48
creating column map procedure 49,

120
data compatibility rules 46
data types 46
editing 48
editing column map procedure 49,

121
editing parameters in column map

procedure 50, 121
exit routines 112
Lua script editor 49, 120, 121
mapping source column 48
New Column Map wizard 48
overview 46

column specifications
defining 31
Table Specification window 31

Compare Request Editor 132, 133
Compare utility

overview 132
comparing data 132
concatenated expressions 105
Configuration utility 15, 19

Entering product license key 20
Sign Optim Exit window 20
Signing an Optim exit 20
Specify Product License Key

window 20
configuring

designer 17
connection manager

configuring on the designer 17
Connection Properties wizard 25
convert actions

Big Data loader utility 57
defining 56
Optim variables 59

convert actions (continued)
pr0hdfs 57

convert service
changing table map 55
convert actions 56, 57, 59
Convert Service Editor 54, 55
creating 54
CSV format 55
editing 54
extract file format 55
HDFS CSV format 56
New Service wizard 54
overview 54
processing options 54
XML format 56

Convert Service Editor 54
Change Table Map wizard 55
Processing Options tab 54

Create utility 133
Currency Function 109

direct conversion 109
triangulation 110

D
data management services

convert service 54
extract service 51
insert service 59
load service 62
Optim Manager embedded mode 65
overview 51
testing 65

data masking
Age Function 107
applying column map procedure 120
applying data masking function 48,

67
Auto-Generated Email Name

Function 111
Boolean Constant 106
concatenated expressions 105
creating column map procedure 49,

120
Currency Function 109
Date/Time Literal 106
editing column map procedure 49,

121
editing parameters in column map

procedure 50, 121
Formatted Email Name 112
functions 67
Hash Lookup Function 70
Hexadecimal Literal 106
Identity Function 102
Literal and value functions 106
Lookup Function 67
Lookup Functions 67
NULL 106
Numeric Constant 106
numeric expressions 105

© Copyright IBM Corp. 1996, 2013 145

data masking (continued)
Oracle Sequence Function 103
overview 67
Propagate Function 103
Random Function 101
Random Lookup Function 74
Random Number Function 112
Sequential Function 101
Sequential Number Function 112
Serial Function 102
Shuffle Function 76
Special Register 106
String Literal 106
Substring Function 100
TRANS CCN Function 81
TRANS COL Function 88
TRANS EML Function 83
TRANS NID Function 89

Canada SIN 91
France INSEE 93
Italy CF 95
Spain NIF 96
U.K. NINO 98
U.S. SSN 99

TRANS SSN Function 78
data models

access definitions 27
overview 27
physical data models 50

data store alias
connecting 25
Connection Properties wizard 25
defining 24
editing 25
New Data Store Alias wizard 24
overview 24
synchronizing 25

designer
configuring 17

Directory Explorer 2
Directory Explorer folder 3, 16

Directory Explorer folder 3, 16

E
editing data 131
encoding

column map procedures 124
exit routines

destination format exit
abort modes 119
call-back function 118
formats 119
function 118
input to Age Function 112
parameters 118
processing 119
return codes 120

overview 112
requirements 114
sample header files 113
source format exit

abort modes 117
call-back function 116
function 116
input to Age Function 112
parameters 116

exit routines (continued)
source format exit (continued)

processing 116
return codes 117

standard exit
call-back functions 115
parameters 114
processing 115
return codes 115

Standard Exit 114
using DLLs 113
writing 113

extract service
changing access definition 53
conversion options 52
creating 51
editing 52
Extract Service Editor 52, 53
file compression options 52
New Service wizard 51
objects and grouping options 52
overview 51
processing options 52
variable options 53

Extract Service Editor 52
Change Access Definition wizard 53
Conversion tab 52
Data and Objects tab 52
File Compression Options tab 52
Service Properties tab 52
Variables tab 53

F
file attachments

defining 30
Table Specification window 30

Formatted Email Name Function 112

H
Hash Lookup Function 70

I
IBM InfoSphere Optim

BIN directory path 15, 21
configuring for Optim directory 15,

19
Optim Distributed preferences 15, 21

Identity Function 102
insert service

changing table map 61
creating 60
editing 60
Insert Service Editor 60, 61
New Service wizard 60
overview 59
processing options 60

Insert Service Editor 60
Change Table Map wizard 61
Processing Options tab 60

L
Literal and value functions 106
load service

changing table map 65
creating 63
DBMS loader options 64
editing 64
Load Service Editor 64, 65
New Service wizard 63
output files 62
overview 62
processing options 64

Load Service Editor 64
Change Table Map wizard 65
Load Options tab 64
Processing Options tab 64

Lookup Function 67
Lookup Functions 67
Lua script editor 49, 120, 121

M
managing data

Browse utility 131
browsing data 131
Compare Request Editor 132, 133
Compare utility 132
comparing data 132
Create utility 133
creating tables 133
defining a compare request 132
editing a compare request 133
editing data 131
Optim Designer utilities 131
running a compare request 133
Table Editor 131

masking data 67
modeling data

access definitions 27
overview 27

N
national ID masking

example 129
New Access Definition wizard 28
New Column Map window 45
New Column Map wizard 48
New Data Store Alias wizard 24
New Optim Relationship wizard 41
New Point and Shoot File window 36
New Primary Key wizard 43
New Service wizard 51, 54, 60, 63
New Table Map wizard 44
numeric expressions 105

O
Optim Designer

accessibility features 13
configuration roadmap 15
database connections 23
database support 13
Directory Explorer 2
getting started 1

146 IBM Optim: Using Optim Designer

Optim Designer (continued)
Optim perspective 1
overview 1
workspace 1

Optim Designer utilities
Browse utility 131
browsing data 131
Compare Request Editor 132, 133
Compare utility 132
comparing data 132
Create utility 133
creating tables 133
defining a compare request 132
editing a compare request 133
editing data 131
overview 131
running a compare request 133
Table Editor 131

Optim directory
Access Existing Optim Directory

wizard 16, 23
changing connection 23
connecting 16, 23
editing connection 23
IBM InfoSphere Optim

configuration 15, 19, 21
overview 23
Switch Optim Directory 23

Optim Manager embedded mode 4, 65
Optim perspective

Directory Explorer 2
overview 1

Optim primary keys
creating 43
editing 43
explicit 42
generic 42, 44
New Primary Key wizard 43
overview 42
Primary Key Editor 43, 44
propagate value 103
selecting key columns 43

Optim relationships
column expressions 41
column order 42
creating 41
data compatibility 39
editing 41
editing columns 41
explicit 38
extended 37
generic 38
generic relationship 42
New Optim Relationship wizard 41
overview 37
Relationship Editor 41
restrictions 38

Oracle Sequence Function 103

P
physical data models

importing 50
using 50

Point and Shoot Editor 36, 37
point and shoot list

creating 36

point and shoot list (continued)
editing 37
New Point and Shoot File

window 36
overview 36
Point and Shoot Editor 36, 37
Point and Shoot tab 37
selecting 37

Primary Key Editor 43, 44
Propagate Function 103
propagate primary key value 103

R
Random Function 101
Random Lookup Function 74
Random Number Function 112
Relationship Editor 41, 42

Add Column Expression window 41
Select a Child Column window 41
Select a Parent Column window 41

Relationship Index Analysis window 35
Run Service window 65

S
sample data

creating data privacy tables 13
creating Optim sample tables 12
data privacy tables 11
Optim sample data 5
OPTIM_CUSTOMERS table 6
OPTIM_DETAILS table 8
OPTIM_FEMALE_RATES table 11
OPTIM_ITEMS table 9
OPTIM_MALE_RATES table 10
OPTIM_ORDERS table 7
OPTIM_SALES table 5
OPTIM_SHIP_INSTR table 10
OPTIM_SHIP_TO table 9
OPTIM_STATE_LOOKUP table 11
overview 5

selection criteria
analyze indexes for relationships 35
changing relationship traversal 33
data grouping 32
data sampling and row limit

options 32
defining 30
ignore relationship options 34
managing relationships 32
overview 30
point and shoot list 36, 37
Relationship Index Analysis

window 35
relationship traversal options 32
reviewing relationship traversal 33
show steps 33
table access options 33
Table Specification window 30
variables 35, 36

Sequential Function 101
Sequential Number Function 112
Serial Function 102
Shuffle Function 76, 77
Sign Optim Exit window 20

Specify Product License Key window 20
Substring Function 100
Switch Optim Directory 23
switched lookup

example 126

T
Table Editor 131
Table Map Editor 45

New Column Map window 45
Table map tab 45

table maps
adding column map 45
column maps 45
creating 44
default target data 45
editing 45
editing target data 45
New Table Map wizard 44
overview 44
Table Map Editor 45

Table Specification window 30, 31
testing services 65
TRANS CCN Function 81
TRANS COL Function 88
TRANS EML Function 83
TRANS NID Function

Canada SIN 91
France INSEE 93
Italy CF 95
overview 89
Spain NIF 96
U.K. NINO 98
U.S. SSN 99

TRANS SSN Function 78
Traversal Steps window 29, 33

V
variables

Add a Variable window 36
creating 36
overview 35

Index 147

148 IBM Optim: Using Optim Designer

����

Printed in USA

	Contents
	Chapter 1. Using InfoSphere Optim Designer
	Getting started
	Optim Designer workspace
	Optim Perspective
	Directory Explorer

	Roadmap for extracting data
	Roadmap for masking data
	Using Optim Manager from Optim Designer
	Sample data
	Sample database tables and structure
	Data privacy tables
	Creating sample data tables
	Creating data privacy tables

	Database support

	Accessibility Features

	Chapter 2. Configuring Optim Designer
	Setting the IBM InfoSphere Optim location
	Configuring IBM InfoSphere Optim for an Optim Directory
	Connecting to an Optim directory
	Creating a Directory Explorer folder
	Configuring the designer to use a connection manager

	Chapter 3. Configuring IBM InfoSphere Optim for an Optim Directory
	Signing an Optim exit
	Entering the product license key
	Creating an Optim directory and database alias
	Applying maintenance to an Optim directory
	Applying maintenance to a database alias
	Configuring options
	Setting the IBM InfoSphere Optim location

	Chapter 4. Managing data source connections
	Working with an Optim directory
	Connecting to an Optim directory
	Editing a directory connection
	Changing a directory connection

	Upgrading Optim directory objects
	Working with a data store alias
	Defining a data store alias
	Editing a data store alias
	Connecting to a data store alias
	Synchronizing a data store alias

	Chapter 5. Managing data models
	Working with access definitions
	Creating an access definition
	Managing tables in an access definition
	Adding related tables to an access definition
	Adding reference tables to an access definition
	Changing tables to reference or related
	Removing tables from an access definition
	Viewing and editing traversal steps

	Managing selection criteria
	Defining selection criteria
	Defining file attachments
	Defining column specifications
	Specifying data grouping options
	Specifying data sampling and row limit options

	Managing relationships in an access definition
	Selecting relationship traversal options
	Reviewing and changing relationship traversal
	Selecting table access options
	Specifying ignore relationship options
	Analyzing relationship indexes

	Managing variables in an access definition
	Creating a variable

	Managing point and shoot lists
	Creating a point and shoot list file
	Selecting a point and shoot list
	Editing a point and shoot list

	Working with Optim relationships
	Compatibility rules for relationships
	Creating an Optim Relationship
	Editing an Optim relationship
	Creating a column expression
	Editing the columns in a relationship
	Changing the column order in a relationship
	Creating a generic relationship

	Working with Optim primary keys
	Creating a primary key
	Editing a primary key
	Selecting primary key columns
	Creating a generic primary key

	Working with table maps
	Creating a table map
	Editing a table map
	Defining default target data in a table map
	Editing target data in a table map
	Adding a column map to a table map

	Working with column maps
	Compatibility rules for column maps
	Creating a column map
	Editing a column map
	Applying a data masking policy
	Mapping a source column
	Applying a classification
	Working with column map procedures

	Working with physical data models
	Importing a physical data model

	Chapter 6. Designing data management services
	Working with extract services
	Creating an extract service
	Editing an extract service
	Specifying extract processing options
	Specifying objects and grouping options
	Applying a convert service
	Specifying file compression options
	Specifying variable options
	Changing an access definition for an extract service

	Working with convert services
	Creating a convert service
	Editing a convert service
	Specifying convert process options
	Changing a table map for a convert service

	Converting to extract file format
	Converting to comma-separated value format
	Converting to XML format
	Converting to HDFS CSV format
	Defining convert actions
	Big Data loader utility
	Optim variables for convert actions

	Working with insert services
	Creating an insert service
	Editing an insert service
	Specifying insert processing options
	Changing a table map for a insert service

	Working with load services
	Creating a load service
	Editing a load service
	Specifying load processing options
	Specifying DBMS loader options
	Changing a table map for a load service

	Testing a data management service

	Chapter 7. Masking data
	Applying a data masking policy
	Data masking functions
	Lookup Functions
	Lookup Function
	Hash Lookup Function
	Random Lookup Function

	Shuffle Function
	TRANS SSN Function
	TRANS CCN Function
	TRANS EML Function
	TRANS COL Function
	TRANS NID
	Canadian Social Insurance Number masking
	French National Institute for Statistics and Economic Studies Number masking
	Italian Fiscal Code number masking
	Spanish Fiscal Identification Number and Foreign Identification Number masking
	United Kingdom National Insurance Number masking
	United States Social Security Number masking

	Substring Function
	Random Function
	Sequential Function
	Identity or Serial Function
	Oracle Sequence Function
	Propagate Primary or Foreign Key Value Function
	Concatenated expressions
	Numeric expressions
	Literal and value functions
	Age Function
	Currency Function
	Auto-Generated Email Name
	Formatted Email Name
	Random Number Function
	Sequential Number Function

	Using Exit Routines
	Writing Exit Routines
	Standard Exit Routine
	Source Format Exit
	Destination Format Exit

	Working with column map procedures
	Creating a named column map procedure
	Applying a column map procedure
	Editing a column map procedure in a column map
	Entering values for parameters in a column map procedure
	Writing column map procedures with Lua scripting
	Lua functions for column map procedures
	Limitations of column map procedures
	Column map procedure example: Generic procedure
	Column map procedure example: Switched lookup
	Column map procedure example: National ID masking

	Chapter 8. Managing data
	Browsing data
	Editing data
	Comparing data
	Defining a compare request
	Editing a compare request
	Running a compare process

	Creating tables

	Chapter 9. Tutorials
	Extracting data with Optim Designer
	Creating a Directory Explorer Folder
	Creating an access definition
	Defining selection criteria
	Creating an extract service

	Masking Data with Optim Designer
	Creating a table map
	Editing a table map
	Creating a column map
	Applying a data masking policy
	Adding a column map to a table map
	Creating a convert service

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V

