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the Visually-Challenged 
 
Metrics have been applied – and misapplied – to 
icsoftware systems for a number of decades now. In a 
perfect world, metrics provide both a measure of quality, 
an estimate of defect rates, and even the likely location of 
defects in a given system. In general, a metric is a 
measurement of some characteristics of the system that 
is, in theory, related to an important system aspect that is 

difficult to measure or compute directly. Using metrics is akin to looking at a potential 
new-hire’s college grades as a measure of what he or she knows, because measuring what 
they actually know is fairly difficult. You hope there is a strong correlation between what 
you’re measuring and what you want. It’s the old story of things that are easy to measure 
versus things that you want to know. Or, as Kant put it in A Critique of Pure Reason, 
“That which is known cannot be real, and that which is real cannot be known” – the so-
called “analytic-synthetic dichotomy.”  All too often, though, the use of metrics is more 
like searching for your keys under the streetlight even though you lost them hundreds of 
yards away in the bushes because “the light is better.” There is the risk that what you are 
actually measuring is uncorrelated with what you hope to estimate.  
 
The application of metrics in a blind, simplistic fashion is unlikely to yield any benefit; 
however, if you understand the concepts, metrics can provide useful information that can 
improve the actual quality of the system under development. In this paper, we’ll focus on 
UML model metrics rather than software metrics, even though the history of such metrics 
is primarily developed in the software industry. One advantage of model metrics is that it 
allows us to apply the very same techniques to disciplines other than software that also 
use models, especially systems engineering.   
 

Types of Metrics 
As stated above, a metric is a measurement used to estimate some information that you 
want but is difficult to obtain directly. Since there are different kinds of such information, 
there are different kinds of metrics. The metrics that we will be concerned with here can 
be divided into two groups: quality metrics, and fault metrics. Quality metrics estimate 
some aspect of the quality of the system, such as the ability to 
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• maintain, modify, adapt, and evolve the system over time, 
• understand and comprehend the system, 
• extend the system to new requirements, 
• port the system to new environments, 
• demonstrate adherence to one or more standards, such as DO-178B, for the 

purpose of regulatory agency approval 
 
On the other hand, fault metrics attempt to estimate the likelihood and even the probable 
location of flaws in the system analysis, design, or implementation. The primary way this 
latter goal is achieved is by measuring behavioral complexity. The theory is that the more 
complex something is, the more likely it is to have defects in it.  
 
Some metrics users have gone so far as to make strict guidelines, such as “The 
cyclomatic complexity of any module shall not exceed x.xx” or “The coupling among 
units shall be less than y.yy”. While understandable, ultimately these efforts are 
misguided. Metrics are guidelines and should never be rules. Metrics are not really 
measures of quality and error rate, but are instead measures of things one hopes correlate 
with those characteristics. Furthermore, some design problems are just harder than others 
so that there is a distribution of complexity in various modules. I do think there is a use 
for metrics – primarily as an indication that a module of class might require some special 
attention. Using metrics to guide testing, for example, or peer reviews, is a great idea. If a 
module or class is has higher coupling or cyclomatic complexity doesn’t mean that the 
module or class is bad, but does suggest that some extra testing or examination is 
probably a good idea.  
 

Law of Douglass #72: “The Difference between Theory 
and Practice is Greater in Practice Than it is in Theory” 
There are many different metrics available. Many of these metrics are straightforward 
adaptations of metrics from structured design approaches, others are less straightforward 
adaptations, and still others are entirely new, constructed to analyze object-specific 
features. Some of these metrics apply to large-scale structural aspects of the models and 
others apply to small (object/block) scale. The interested reader is referred off to the 
references for more information.  
 
The main thing to remember is that metrics are guidelines – quantitative though they may 
be, they are not the same thing as the benefit or the quality measure we are trying to 
achieve. So it doesn’t make sense to rigidly adhere to these metrics but it does make 
sense to use them to identify potential “hot spots” or areas of potential concern.  
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Model Organizational Metrics 
I like to organize structural metrics into two primary forms, following the two kinds of 
architecture identified in the ROPES approach. On one hand, we have the “logical 
architecture” – the organization of things that exist at design time, and on the other, we 
have “physical architecture” – the organization of things that exist at run-time. The 
former is also known as “model organization” because it concerns itself with how we 
organize models on our desktop, and this is a completely independent concern than how 
we organize pieces of the running system. In the logical model, we group analysis and 
design elements into units called packages. In the UML, a package is a design-time-only 
model element that contains other model elements. It is meant to be a work unit and also 
a configuration management unit1.  
 
Name Purpose Description 
NP Number of Packages Identifies the number of “work” or “configuration” 

units in the model 
DPC Depth of Package 

Containment 
A measure of the depth of the model organization 
unit 

EP Number of Elements 
In Package 

The number of classes and other elements (such as 
use cases and types) in a specified package, a 
measure of the size and granularity of the package  

AEP Average Number of 
Elements Per 
Package 

A measure of the overall granularity of the model 
organization 

MEPP Maximum Number 
of Elements Per 
Package 

A measure of the maximum complexity of model 
organizational elements 

PU Package Utility Number of developers the number of people who 
have read or usage access to a package / the 
number of developers who write element of a 
package 

 

Requirements Metrics 
The “functional model” of a system refers to the capabilities of a system and the various 
qualities of service (QoS) of those capabilities without regard to how those capabilities 
are achieved. In reality, this is nothing more (or less) than the set of black-box 
requirements of a system or system element. The UML elements used to represent these 
are use cases, various relations among the use cases, requirements elements (a Rhapsody 
extension to the UML 2.02), statecharts and activity diagrams (to specify the 
requirements in a formal language), sequence diagrams, constraints, actors, association
among the actors and the use cases, information flows, and informati

s 
on items.  

                                                 
1 For more discussion about this topic, see my white paper in reference [6]. 
2 This extension is to be found in the SysML (Systems Modeling Language) specification work that is 
currently underway and should be submitted to the OMG for standardization later this year.  
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Name Purpose Description 
NUC Number of Use 

Cases 
A measure of the number of independent 
capabilities of the system 

FP Function Points An estimate of the complexity of the problem to be 
solved, maps well to the NUC metric 

NA Number of Actors The number of actors associated with a given use 
case 

NUCA Number of Use 
Cases per Actor 

Given an actor, the number of use cases associated 
with the it 

NUCSD Number of Use Case 
Sequence Diagrams 

The total number of black-box sequence diagrams 
used as exemplars for use cases 

AUCSD Average number of 
Use Case Sequence 
Diagrams 

NUCSD / NUC. This is a measure of the average 
scope of a use case 

NUCS Number of Use Case 
States 

Total number of states + activities used to specify 
the use cases 

UCDC Use Case 
Decomposition 
Complexity 

The number of use cases derived from a single use 
case – this includes generalization and 
dependencies (both «includes», and «extends» 
relations) 

IIC Information Item 
Count 

Total number of Information Items in the use case 
model 

IICUC Information Item 
Count per Use Case 

IIC / NUC 

 
 
Figure 1 shows how requirements elements might be bound to a use case (either 
dependency or anchors can be used for this purpose). Figure 2 shows how a more 
complex requirements taxonomy from a use case might be represented – in this case, an 
alarm system for a medical device.  
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Figure 1: Combining Requirements Elements with Use Cases 
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Figure 2: Modeling a Requirements Taxonomy 

 
It is also possible to represent information flow in UML 2 and Rhapsody 5 as well. Many 
people find this a useful analytic technique for understanding the information processing 
required of a system. Figure 3 shows how such a diagram might be used to represent the 
information management for an air traffic control system. Such diagrams can be done for 
the entire system, but in complex systems, they should be done independently for each 
information-rich use case.  
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Figure 3: Information Flows in UML 2 and Rhapsody 

Model Architectural Structural Metrics 
The model structural metrics are focused on model analysis and design content, rather 
than on how it is organized or how its requirements are specified. These metrics can be 
applied to large models or small and to architectural aspects or to semantic elements. The 
difference is that architectural elements such as subsystems, tasks, channels, etc. exist to 
organize and deploy the semantic elements, and the semantic elements perform the “real 
work” of the system functionality.  
 
Name Purpose Description 
NS Number of 

Subsystems  
The number of large-scale architectural units of a 
system.  

NT Number of Tasks Number of «active» objects in a system 
NAS Number of Address 

Spaces 
A measure of the scope of the distribution of a 
model across address spaces or computers.  

CASC Cross-Address Space 
Coupling 

A measure of the cohesion within address spaces 
versus cohesion across address spaces.  

RAS Redundant 
Architecture Scope 

Number of redundant architectural units for use in 
the Safety and Reliability Architecture (either 
homogeneous or heterogeneous)  

NP Number of 
Processors 

Number of processor nodes in the system. This 
may (or may not) be identical with the NAS metric 

NCP Number of 
Components per 

Measures the cohesion of functionality within a 
processor node, assuming that a component 
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Processor provides a coherent set of functionality.  
NUCS Number of Use 

Cases per Subsystem 
For systems that decompose system use cases into 
subsystem level use cases (see references [5] and 
[7]) 

 
For example, Figure 4 shows the subsystem architecture for an anesthesia device. NS for 
this system would be 6.  
 

 
Figure 4: Subsystem Architecture 

 
For the User Interface Subsystem, the NUCS is 4 as shown in the next figure.  
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Figure 5: User Interface Subsystem Use Cases 

 

Model Semantic Structural Elements 
While the architectural elements organize the system into units, the semantic elements do 
“real work”. The semantic elements (aka “primitive objects and classes”) perform the 
structural and behavioral semantics of the system within the confines of the architecture. 
The architectural elements organize, optimize, and delegate behavior to these semantic 
elements but they don’t perform the actual desired functionality of the system. That falls 
to the semantic elements.  
 
 
Name Purpose Description 
NoC Number of Classes A measure of the number of model size 
CC Class Coupling Measures the cohesion of the classes by computing 

the number of associations a class has with its 
peers 

TSC Total number of 
subclasses 

Measures the global use of generalization within a 
model 

CID Class Inheritance 
Depth 

The maximum length of a given class 
generalization taxonomy 

NC Number of Children Number of direct descendent (subclasses), a 
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measure of the class reuse 
NM Number of Methods Number of methods within a class 
NP Number of ports Number of unique identifiable connection points 

of a class 
EF Encapsulation Factor Number of class features (attributes, methods, and 

event receptions) publicly visible divided by the 
total number of such features – a measure of the 
degree to which the internal structure of a class is 
encapsulated 

SF Specialization Factor The number of operations and statechart action 
sets which are specialized in subclasses 

 
A couple of comments are in order. With the Class Coupling (CC) metric, we are 
concerned not about the number of clients a class has, but rather the number of servers it 
uses. Therefore, we only add the association when the association is navigable from the 
current class to another; if it is one way from another class, it doesn’t count in the class 
coupling. This means that this metric estimates how many other classes I might have to 
touch if the current class must be updated.   
 

 
Figure 6: Example Class Diagram 

 
What is the class coupling of the classes shown in Figure 6? The Calculator class has a 
coupling of 6, as it has composition relations with 6 classes. The Evaluator has a class 
coupling of 2 since it only knows how to “talk to” 2 other classes (the NumberStack and 
OperatorStack classes).  
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The Encapsulation Factor (EP) is a good metric for maintainability because it measures 
the degree to which the internal structure of a system is hidden from its clients. Figure 7 
shows a CachedQueue class with a EP metric value of  0.56 (5/9). 
 

 
Figure 7: Encapsulation 

 

Behavioral Metrics 
The previous section discussed some of the metrics for assessing structural elements. 
This section provides some metrics for assessing behavioral semantics. A couple of these 
metrics look at the method bodies to assess their quality or complexity, but most are 
firmly focused at the model level.  The UML has three primary behavioral views – 
sequence diagrams for collaborative behavior (and some alternative notations which are, 
in some sense, equivalent – communication and timing diagrams), and statecharts and 
activity diagrams for the behavioral specification of individual elements.  
 
 
Name Purpose Description 
SDS Sequence Diagram 

size 
Number of messages x number of lifelines 

DCC Douglass Cyclomatic 
Complexity 

Modified McCabe cyclomatic complexity to 
account for nesting and and-states 

WMC Weighted Methods 
per Class 

A measure of (non-reactive) class complexity = 
sum of methods x complexity for all methods. For 
classes without activity diagrams, method 
complexity can be estimated by Lines of Code in 
the method.  

ND Nesting Depth State and activity nesting depth – number of levels 
of nesting  

NE Nesting 
Encapsulation 

Number of transitions (other than default) that 
cross levels of nesting 
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NAS Number of And-
States 

Total number of and-states within a statechart 

SCN Statechart 
completeness 

Number of events received by a statemachine / 
number of transitions 

NPS Number of 
pseudostates 

Number of non-default pseudostates such as 
history, conditional, fork, join, junction, and stubs 

 
Cyclomatic complexity is probably the most common metric used for behavioral 
complexity and can be applied directly to both statecharts and activity diagrams. The 
basic computational rule for cyclomatic complexity is the number of edges – number of 
nodes (e.g. states) + 2.  
 

 
Figure 8: Cyclomatic Complexity for States 

Figure 8 shows the computation of cyclomatic complexity for two different state 
machines. They are both straightforward, other than to note that an edge is a complete 
transition path to another state so that the number of such paths in the right hand side of 
the figure is 5 and not 6 (you don’t count the path to the conditional connector as a 
separate edge). However, CC doesn’t account for nesting of states, nor does it account for 
and-states.  
 
Consider Figure 9. The two statemachines are behaviorally equivalent. In either case, you 
have 4 states and from each state there is a transition path to the other three. If you 
compute the standard CC for the left statemachine you’ll get a cyclomatic complexity of 
1 (4-5+2), while you’ll get 10 (12-4+2). Which is right?  

 Bruce Powel Douglass Page 12 



Computing Model Complexity 

 

 
Figure 9: CC for Nested States 

 
To answer the question, we need to remember why we’re doing this. We want to 
ascertain a measure of the likelihood that the statechart is incorrect due to complexity-
induced errors. Therefore, in this case I would prefer to go with the former computation 
rather than that of the semantic equivalent (1 instead of 10). However, nesting does itself 
add some amount of complexity. Even though this statechart and the left-most statechart 
in Figure 8 have the same computed CC, surely the latter is more complex. Thus, I add 
“1” for every level of nesting. Thus the Douglass Cyclometric Complexity (DCC) for the 
left hand figure is 2, since there is one level of nesting.  
 
Next, what about and-states?  
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Figure 10: CC for And-States 

First, let me say that the upper and lower statecharts in Figure 10 are semantically 
equivalent (you knew you liked statecharts for a reason, didn’t you!). The statechart in the 
upper part of the figure, use and-states to represent three independent aspects of the class 
while the lower part is the same thing without the and-states.  A straightforward 
cyclomatic complexity of the upper part of the figure yields 1 (7-8+2) while the same 
computation on the semantically-identical lower statechart yields 25 (35-12+2). 
Arguably, both values are correct, but which is the more useful? I think that the lower 
part of the figure is far more difficult to understand and get right that the upper part, so 
I’m very much inclined to use the computation for the upper part. On the other hand, 
using and-states is more complex than not. Surely, the upper part of this figure is more 
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complex than the left-most statechart in Figure 8. Therefore, I add a “1” for every and-
state, yielding a DCC value of 4 for the upper figure.  
 
So the computation of the DCC is simply this:  
 DCC = edges – nodes + 2 + levels of nesting + number of and-states 
 
This gives a measure of complexity that correlates well, I believe, with the ability to 
model the state behavior without making an error.  By way of an example, what is the 
complexity of the statechart shown in Figure 11 
 
 

 
Figure 11: Example Statechart 

 
This figure represents the statechart for a class that evaluates tokens in a calculator. Much 
of the complexity of this statechart arises from the numerous actions that are executed. 
The computed CC for this statechart would be (22 – 7 + 2 + 2 (for 2 levels of nesting)) 
for a total of 19.  
 

Diagram-Specific Metrics 
The metrics commonly used are all, if you will, model metrics. That is, the hope to 
analyze some aspect of the quality of the system as opposed to the presentation. The main 
reason for that, I believe, is because in source code these two issues are the same thing. 
However, in a language such as UML, the visualization of a model and the semantics of 
the model are independent issues, with the possible exception of statecharts and activity 
diagrams. Therefore I think it makes sense to have separate metrics for the visualization 
aspects.  
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Why are statecharts and activity diagrams the exceptions? Simply put, because these 
diagrams are fully constructive visual representations of the underlying semantic model. 
That is, for a given model element (Classifier or method, for example), a statechart or 
activity diagram completely specifies the behavior of that element. Ok, it might invoke 
“submachines,” breaking the single diagram into a hierarchy of diagrams, but logically 
it’s a single specification and a single diagram. The other diagrams are not. I can choose 
virtually any scheme to organize my class diagrams, for example into a set of, at best, 
loosely coupled diagrams.  
 
When writing books, authors (and I am as guilty as any in this regard) select and simplify 
examples so that they illustrate the point at hand. Thus we see single diagrams showing a 
model or aspect of a model. Real systems, however, are complex and cannot be shown on 
a single diagram – even if you use E-size plotter paper and 2-pt font. Some rule or 
guideline must be applied to decide how to break up the system views across multiple 
diagrams.  
 
A simple one is the famous, and counterproductive, 7 +/- 2 rule. The idea, misinterpreted 
from some neurolinguistics research is that the human brain can only hold 7 (+/- 2) things 
at once, so this is, therefore, a good rule to apply to diagram construction. The flaw is that 
the authors of this rule failed to understand the research. First of all, the rule, such as it is, 
is a rule about short-term memory not comprehension. That is, most humans can hold 7 
(+/- 2) things in short term memory at once. However, if you’re looking at a diagram, you 
don’t need to hold those things in memory because they are right in front of you! Duh…  
 
So on the face of it, the rule is a misinterpretation of the basic research. But how does it 
work in practice?  
 
The answer is “poorly.” Back in the good old Data Flow Diagram (DFD) days of the 80s, 
this rule was widely applied as a rule of good diagram construction and rigidly enforced 
in many environments. The results were diagrams that were virtually unreadable, with 
arbitrarily-deeply nested diagrams just to meet the criterion.  
 
A better rule, I think, is the ROPES3 rule, which has to do with the coherence of a 
diagram. The coherence of a diagram may be thought of as the degree to which the 
diagram represents a single important concept; what ROPES refers to as the mission of 
the diagram. The ROPES rule is “every diagram should convey a single important 
concept.” That is, every diagram should represent all elements necessary to convey its 
mission, whether that is one element or 50. Statecharts and activity diagrams already 
meet this criteria; their mission is to describe the possible sequences of actions and event 
receptions for a single model element. The other diagram types are more flexible in this 
regard and so coherence becomes more important for those diagrams.  
 

                                                 
3 Rapid Optimizing Process for Embedded Systems 
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Consider the standard class diagram (OMD in Rhapsody parlance). It is a structural 
diagram showing some aspect of the system structure. Some standard ROPES missions 
for class diagrams are: 
 

• Collaboration – show all of the object roles collaborating to realize a single use 
case 

• Package contents – show all the classes within a single package 
• Domain diagram – show the set of “domains” and their relations (single subject 

matter packages); this is sometimes called a “package diagram”  
• Subsystem architecture – show the set of subsystems4 and their relations 
• Distribution architecture – show how objects are distributed across address spaces 

with distribution patterns such as Broker or Publish-Subscribe.  
• Safety and reliability architecture – show how faults are identified, isolated, and 

corrected at run-time through the application of redundancy 
• Concurrency architecture – the so-called “task diagram”; show the set of 

concurrent elements («active» and other concurrency objects such as mutex 
semaphores, message queues, etc)  

• Deployment architecture – show how elements from different engineering 
disciplines (e.g. software, mechanical, electrical, and chemical) collaborate5 

• Generalization – show the a single generalization taxonomy 
• Class structure – show the decomposition of a “structured” class into its internal 

parts 
 
Diagrams that adhere to this guideline only contain elements that contribute to the 
mission of the diagram and avoid others.  This means that a class typically participates in 
multiple missions (several collaborations, it resides in a single package, might be part of a 
generalization taxonomy, etc).  
 
The good news is that the consistent use of diagram missions leads to highly readable and 
comprehensible systems, and it scales very well from tiny to huge systems. The bad news 
is that it is very difficult to compute adherence to the guideline because coherence to a 
concept is difficult to quantify. The best way to ensure adherence to this guideline 
remains (1) specify on the diagram what the mission is, and (2) check adherence during a 
peer review.  
 

                                                 
4 Note that a subsystem is just a “big architectural object” that contains and delegates services to, its 
internal part object roles 
5 This can be shown on a “deployment diagram” which is arguably just a weak form of a class diagram. 
However, the SysML (Systems Modeling Language) effort has rejected deployment diagrams because they 
are not as powerful as normal class diagrams, and use class diagrams with various kinds of stereotyped 
classes («electrical», «mechanical», «chemical», and «software») instead. 
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Qualitative Guidelines for Model Quality 
Metrics, as has already been stated, use easily-computed values to estimate more 
ethereal-but-desirable system and model properties. While computational metrics can be 
useful when properly applied, it behooves us to understand what are the qualitative goals 
that these quantitative measures seek to measure, so that they may be optimized.  
 

Model Organization Guidelines 
• Models should be organized to optimize developer workflow  
• Packages are the primary organizational unit of UML modeling 
• Use of domains (i.e. «domain» stereotype of package) maximizes reusability of 

classes  
• Use of subsystems allows flexible organization of objects into coherent run-time 

artifacts 
 
A typical model organization looks Figure 12:  
 

 
Figure 12: Model Organization 

 
In Figure 12, we see an three “high-level” packages – Analysis, Logical, and Physical. 
The Analysis package is where we locate requirements and “system” things, such as the 
system actors, the system class, system use cases, sequence diagrams and so on. The 
Logical package contains subpackages stereotyped «domain» which contain all of the 
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classes and types identified in object analysis. The Physical package contains primarily, 
the architectural design elements, such as subsystems, and collaborations instantiated 
from the classes and types specified in the domains of the Logical package.  
 

Requirements Guidelines 
Requirements need not be done in UML or Rhapsody, but there are advantages to doing 
so. Requirements written and maintained in text have problems with completeness, 
consistency, accuracy, and correctness. These properties are much easier to ensure in a 
UML/Rhapsody view because of the increase in formality of the representational 
semantics of the forms of use cases, statecharts, activity diagrams, and sequence 
diagrams. Some important guidelines for requirements include:  
 

• A use case should be a coherent representation of a complete system usage at a 
given level of abstraction 

• There should be 6-24 use cases at the highest level 
• In complex system, use cases may be decomposed with «include» and «extends» 

dependencies, and with generalization among use cases to create more specific, 
detailed uses cases at a lower level of abstraction 

• Use cases should not reveal or imply system design, nor specific system interface 
technologies 

• Actors should represent elements outside the scope of the system with which the 
system must interact 

• Time is not an actor – sometimes systems provide autonomous behavior 
• A use case should return a result visible to at least one actor.  

o For capabilities within a system that do not return a result to an actor, use 
requirements elements inside a package or stereotype a use case to be 
«internal» 

• Use cases should be approximately independent in their requirements, although 
not necessarily in terms of their ultimate design or implementation 

• Use case names should be strong verbs, never nouns 
 
 

Model Architectural Structural Guidelines 
These guidelines have to do with overall organization of the running system.  
 

• Architectural design is all about optimizing the system through organization in-
the-large 

• Physical architecture should be represented with at least one class diagram in each 
of the Five Views of Architecture 

o Subsystem and Component View 
o Distribution View 
o Concurrency and Resource View 
o Safety and Reliability View 
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o Deployment View 
• Each subsystem contains and delegates behaviors to its internal parts.  
• The internal parts of a subsystem are ultimately instances of the types and classes 

specified in the domains 
 
Figure 13 schematically shows the 5 views of architecture, while the next figure shows an 
example of the safety and reliability architecture. Note in Figure 14 that the subsystems 
(using the Channel Pattern from [5]) contain semantic objects as parts.  
 

 
Figure 13: Architectural Views in the ROPES Process 
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Figure 14: Safety and Reliability Architecture View 

 
Figure 15 is a typical task diagram from the concurrency architecture view. It uses 
«active» objects as the primary elements, with passive object running in the context of 
those threads as parts, resources shown as shared among those threads, and various other 
elements of the concurrency architecture including semaphores, queues, and concurrency 
properties.  
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Figure 15: Concurrency Architecture View 

 

Model Structural Guidelines 
These guidelines refer to the semantic elements used to perform the “real work” of the 
system.  
 

• Each semantic6 class belongs in exactly one domain; when this is not true, either 
refactor the class or refactor the domains 

• A class is not the same as a role; a role is a usage of a class in a specific context 
while a class is a specification of a thing that may fulfill a number of different 
roles 

o E.g. “attack dog” is a role – “Dog” is the class, and “myAttackDog” is the 
name of the association role end, or the name of the instance 

• Generalization taxonomies always stay within a single domain 
• All use case collaborations contain elements from multiple domains 

o Associations cross package boundaries 
• When packages represent concepts at different levels of abstraction, associations 

should only be navigable from more abstract -> less abstract 
• All class diagrams should depict a single important concept 

o Only show class features that contribute to the mission of the diagram 

                                                 
6 As opposed to classes added to optimize the design of the system.  
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o Show role names on associations when they contribute the diagram 
mission 

• Classes should have noun or noun phrases for names 
o Operations should have verbs for names 
o Operation names should reveal semantic role of the operation not internal 

implementation 
o Attributes should have nouns or noun phrases for names 

• Attributes should be structurally simple 
o Complex attributes should be modeled as classes with a composition 

relation from the primary class 
• Always indicate multiplicity 

 

 
Figure 16: Class Diagram 

 
Figure 16 shows a class diagram, emphasizing the internal structure of one of the 
subsystems.  
 

Model Behavioral Guidelines  
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Statemachine and Activity Diagram Guidelines 
• Use a statechart to specify class (or use case) behavior when the behavior is 

driven primarily in response to incoming events 
• Use an activity diagram to specify class (or use case) behavior when the behavior 

is primarily control flow (algorithmic) behavior 
• Always identify initial states 
• When a one or more transitions have the same effect for a set of states, consider 

making those sets nested within a composite state 
• Use and-states to specify independent aspects of state behavior 
• Guards should never overlap; that is, at most one guard on a set of related 

transitions should be true at any time 
• Place actions on transitions if those actions are only performed under some 

circumstances when leaving or entering a state 
• Place actions on entry to a state when they must always be executed when the 

state is entered; similarly, place actions on exit from a state when they must 
always be executed when a state is left 

• When a set of states is accessible from all other states in that set, make them all 
nested states of a single composite and make the transitions from the composite to 
the nested states 

• For use case statecharts, message from the actors to the system should be modeled 
as transition events; messages from the system to the actors should be modeled as 
actions 

• Use swimlanes on activity diagrams to map activities to different objects 
• Use submachines to simplify diagrams when a statechart or activity diagram 

becomes too complex 
• “Wrap” long sequences of actions into single operations defined on the class to 

simplify the diagrams 
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Figure 17: Statechart diagram 

Figure 17 shows a somewhat typical statechart diagram for a Manage Alarms use case.  
 
 

Sequence Diagram Guidelines 
Sequence diagrams can easily become unmanageable with long sequences and random 
ordering of messages. Use of the following guidelines will improve the readability of 
your sequence diagrams.  
 

• Place a note box in an upper corner of each sequence diagram to identify the 
diagram, which use case (or collaboration) it elaborates, its pre- and 
postconditions, and the purpose of the sequence 

• Try to get left-to-right ordering of messages as much as possible  
• Avoid activation instance boxes – they only apply in a subset of sequences 
• Use partition lines when you want to add special semantics to a set of messages – 

including loops, iterations, or constraints 
• Use text freely along one side of the sequence diagram with comments as to why 

the sequences are flowing as they are 
• Use lifeline decomposition when you want to show sequence diagrams at multiple 

levels of decomposition. At the high level, the life lines can represent architectural 
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units (such as subsystems) which may be composed into sequence among their 
parts in the nested sequences 

• Use interaction fragment decomposition when you have a coherent set of 
messages that you want to remove to either simplify the current sequence diagram 
or because you want to reuse the nested sequence in multiple places 

• In a lifeline decomposition sequence, use a System Border element to represent 
message crossing the nesting boundary 

 

 
Figure 18: Sequence diagram 

 

General Diagram Guidelines 
Some guidelines apply to all diagrams:  
 

• Eliminate or minimize line crossing 
• Use color only as hints, never to convey semantic information 
• Always include a diagram note naming the diagram and identifying its purpose 

(mission), context, and pre- and postconditions where appropriate 
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• Each diagram should represent exactly one important concept and contain only 
those elements that support that mission 

o It is perfectly permissible to have the same model elements show up on 
multiple diagrams 

• Use consistent naming conventions; recommended is 
o Class names between with uppercase letters 
o Class features (operations, triggered operations, events, and attributes) 

begin with lowercase letters 
•  Use “pin notes” for To-Do items use other notes for persistent comments about 

model structure and semantics 
• When there are many diagrams of the same type, use packages to organize them 

into coherent sets 
 
 

Computing Metrics of Rhapsody Models 
Oops, I seem to have run out of space. In a future column I’ll pick several of these 
metrics and show how the Rhapsody API can be used to access the model with Visual 
Basic, and provide some VBA macros to compute these metrics.  
 
 

Conclusion 
We’ve discussed, albeit briefly, some of the metrics that can be applied to models to gain 
an insight into their quality and fault proneness. Which are best?  They all have their 
place but the various metrics measure or emphasizes different measures of “goodness.”  
 
To improve collaboration in large-scale teams, it is important to follow the organizational 
guidelines given, even though they are difficult to estimate with quanitative metrics. 
Some metrics that are valuable to estimate team collaboration potential include package 
methods Package Usefulness – the ratio of the number of people who use a package 
versus the number of people of can use elements of a package. When this ration is large, 
then the package tends to be coherent and “tight”, while at the same time being highly 
useful to other teams. Deeply nested packages are of less concern when the nested 
elements are not visible to the client of the primary package; however, when this is not 
true, then a high DPC (Depth of Package Containment) can seriously inhibit the usability 
of elements within a package. Class coupling is also important, because it is a measure of 
how many elements I might need to modify when I change a class. This is especially 
important for Cross-Address Space Coupling (CASC), where we identify the number of 
clients in other address spaces.  
 
For maintainability, we want to maximize encapsulation so that when we change some 
internal part of a model element we have minimal, if any, effect of the clients or users of 
that element. For maintainability, the most important metric is the Encapsulation Factor 
(EF) metric (number of public class features / total number of class features). When this 
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number is low, then the classes hide significant internal design. This generally improves 
maintainability. Similarly, low class coupling implies that changes will be more 
localized, simplifying maintenance.   
 
 For fault estimation, we want to simplify the behavior for the simple expedient that 
simple things are easier to get right.  For getting behavior right, the Douglass Cyclomatic 
Complexity metric is my favorite, a perhaps minor tweak on a classic measurement. For 
non-reactive systems, the same metric can be applied to activity diagrams. When the 
behavior of classes isn’t modeled (such as when you write the methods using the target 
source language), then Weighted Methods Per Class is a good measure for predicting 
faults. WMC is sums the product of each method and its complexity, such as measured in 
Lines of Code.  
 
In a future article, we’ll actually write some VBA macros to extract this information from 
your models and compute the results.  
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