Computing Model Complexity

Computing Model Complexity

Bruce Powel Douglass
Chief Evangelist
IBM Rational

Metrics: The Good, the Bad, and
~ the Visually-Challenged

Metrics have been applied — and misapplied — to
icsoftware systems for a number of decades now. In a
. perfect world, metrics provide both a measure of quality,

an estimate of defect rates, and even the likely location of
defects in a given system. In general, a metric is a
measurement of some characteristics of the system that

A is, in theory, related to an important system aspect that is

difficult to measure or compute directly. Using metrics is akin to looking at a potential
new-hire’s college grades as a measure of what he or she knows, because measuring what
they actually know is fairly difficult. You hope there is a strong correlation between what
you’re measuring and what you want. It’s the old story of things that are easy to measure
versus things that you want to know. Or, as Kant put it in A Critique of Pure Reason,
“That which is known cannot be real, and that which is real cannot be known” — the so-
called “analytic-synthetic dichotomy.” All too often, though, the use of metrics is more
like searching for your keys under the streetlight even though you lost them hundreds of
yards away in the bushes because “the light is better.” There is the risk that what you are
actually measuring is uncorrelated with what you hope to estimate.

The application of metrics in a blind, simplistic fashion is unlikely to yield any benefit;
however, if you understand the concepts, metrics can provide useful information that can
improve the actual quality of the system under development. In this paper, we’ll focus on
UML model metrics rather than software metrics, even though the history of such metrics
is primarily developed in the software industry. One advantage of model metrics is that it
allows us to apply the very same techniques to disciplines other than software that also
use models, especially systems engineering.

Types of Metrics

As stated above, a metric is a measurement used to estimate some information that you
want but is difficult to obtain directly. Since there are different kinds of such information,
there are different kinds of metrics. The metrics that we will be concerned with here can
be divided into two groups: quality metrics, and fault metrics. Quality metrics estimate
some aspect of the quality of the system, such as the ability to

Bruce Powel Douglass Page 1

Computing Model Complexity

maintain, modify, adapt, and evolve the system over time,

understand and comprehend the system,

extend the system to new requirements,

port the system to new environments,

demonstrate adherence to one or more standards, such as DO-178B, for the
purpose of regulatory agency approval

On the other hand, fault metrics attempt to estimate the likelihood and even the probable
location of flaws in the system analysis, design, or implementation. The primary way this
latter goal is achieved is by measuring behavioral complexity. The theory is that the more
complex something is, the more likely it is to have defects in it.

Some metrics users have gone so far as to make strict guidelines, such as “The
cyclomatic complexity of any module shall not exceed x.xx” or “The coupling among
units shall be less than y.yy”. While understandable, ultimately these efforts are
misguided. Metrics are guidelines and should never be rules. Metrics are not really
measures of quality and error rate, but are instead measures of things one hopes correlate
with those characteristics. Furthermore, some design problems are just harder than others
so that there is a distribution of complexity in various modules. | do think there is a use
for metrics — primarily as an indication that a module of class might require some special
attention. Using metrics to guide testing, for example, or peer reviews, is a great idea. If a
module or class is has higher coupling or cyclomatic complexity doesn’t mean that the
module or class is bad, but does suggest that some extra testing or examination is
probably a good idea.

Law of Douglass #72: “The Difference between Theory

and Practice is Greater in Practice Than it is in Theory”

There are many different metrics available. Many of these metrics are straightforward
adaptations of metrics from structured design approaches, others are less straightforward
adaptations, and still others are entirely new, constructed to analyze object-specific
features. Some of these metrics apply to large-scale structural aspects of the models and
others apply to small (object/block) scale. The interested reader is referred off to the
references for more information.

The main thing to remember is that metrics are guidelines — quantitative though they may
be, they are not the same thing as the benefit or the quality measure we are trying to
achieve. So it doesn’t make sense to rigidly adhere to these metrics but it does make
sense to use them to identify potential “hot spots™ or areas of potential concern.

Bruce Powel Douglass Page 2

Computing Model Complexity

Model Organizational Metrics

I like to organize structural metrics into two primary forms, following the two kinds of
architecture identified in the ROPES approach. On one hand, we have the “logical
architecture” — the organization of things that exist at design time, and on the other, we
have “physical architecture” — the organization of things that exist at run-time. The
former is also known as “model organization” because it concerns itself with how we
organize models on our desktop, and this is a completely independent concern than how
we organize pieces of the running system. In the logical model, we group analysis and
design elements into units called packages. In the UML, a package is a design-time-only
model element that contains other model elements. It is meant to be a work unit and also

a configuration management unit'.

Name Purpose Description
NP Number of Packages | Identifies the number of “work” or “configuration”
units in the model
DPC Depth of Package A measure of the depth of the model organization
Containment unit
EP Number of Elements | The number of classes and other elements (such as
In Package use cases and types) in a specified package, a
measure of the size and granularity of the package
AEP Average Number of | A measure of the overall granularity of the model
Elements Per organization
Package
MEPP Maximum Number | A measure of the maximum complexity of model
of Elements Per organizational elements
Package
PU Package Utility Number of developers the number of people who
have read or usage access to a package / the
number of developers who write element of a
package

Requirements Metrics

The “functional model” of a system refers to the capabilities of a system and the various
qualities of service (QoS) of those capabilities without regard to how those capabilities
are achieved. In reality, this is nothing more (or less) than the set of black-box

requirements of a system or system element. The UML elements used to represent these
are use cases, various relations among the use cases, requirements elements (a Rhapsody
extension to the UML 2.0%), statecharts and activity diagrams (to specify the
requirements in a formal language), sequence diagrams, constraints, actors, associations
among the actors and the use cases, information flows, and information items.

! For more discussion about this topic, see my white paper in reference [6].
% This extension is to be found in the SysML (Systems Modeling Language) specification work that is
currently underway and should be submitted to the OMG for standardization later this year.

Bruce Powel Douglass Page 3

Computing Model Complexity

Name Purpose Description
NUC Number of Use A measure of the number of independent
Cases capabilities of the system
FP Function Points An estimate of the complexity of the problem to be
solved, maps well to the NUC metric
NA Number of Actors The number of actors associated with a given use
case
NUCA Number of Use Given an actor, the number of use cases associated
Cases per Actor with the it
NUCSD Number of Use Case | The total number of black-box sequence diagrams
Sequence Diagrams | used as exemplars for use cases
AUCSD Average number of | NUCSD / NUC. This is a measure of the average
Use Case Sequence | scope of a use case
Diagrams
NUCS Number of Use Case | Total number of states + activities used to specify
States the use cases
UCDC Use Case The number of use cases derived from a single use
Decomposition case — this includes generalization and
Complexity dependencies (both «includes», and «extends»
relations)
Inc Information Item Total number of Information Items in the use case
Count model
lICUC Information Item I1IC/NUC

Count per Use Case

Figure 1 shows how requirements elements might be bound to a use case (either
dependency or anchors can be used for this purpose). Figure 2 shows how a more
complex requirements taxonomy from a use case might be represented — in this case, an
alarm system for a medical device.

Bruce Powel Douglass Page 4

Computing Model Complexity

Automatic control of
Flight

’ n

.

A<includes>>

!t il

’ A
i

Automatic
guidance control

Automatic attitude
control

%ach orthogonal spatial axis
shall be maintained within

0.2% of sefting

7 1)
! a

JJ \\. .

S<<includes> y=<include>>
." ‘\
I X
The three axes of control Ezm'tude shall be controlled ~._ <<derived>>

are longitudal, latitudinal,
and fransverse

with required accuracy in the
event of any single actuator

Figure 1: Combining Requirements Elements with Use Cases

Bruce Powel Douglass

failure h

Bl

Primary failure
considerations include
thrusters, reaction wheels,
and aftitude sensors

Page 5

Computing Model Complexity

Rhopsedy in Ces by I=Logix Inc, = [Use Cose Diagrom: Alorm on Criticol Event UCD in System:: AlormOnCriticalEventlC]

#1 File Edit View cCode Loymt Toaks

Window Options Holp

+] Uss Case Ciagrams:
T Use Cases

DEFE ‘RE | &? |0 RALD X GeEREpE -2 of M #40|% O3 | 25
0t S [DelniConpran = [DetsdConng =] mAlMDR | DEERE
Untire Hodel w7
+ 5 ——————— . -
+ [0 chiect Model Disgrams B AT Mamiea A3 tones shall be NONE, BERIOUS, o CRITICAL
= 3 Fachages i Alzms shal be classfied Critical Evara :[<«spacies s Serous alarm tones saund peiodicalty every 15
am = Ilnlru Onenmm:'eé va_ilﬁlurlesn o TrTreesseoL s geconds unlllthe slam |s slenced or cancelled o
nforrnaionad, Seslous, aad | e uril ihe alarming conction siops. CRITICAL lone
¥ el Preele Ty R0) 2 Crilical - soands contnuously untl he alamm siiance it
Systam ; a .., <=<terhedns presaed or ifthe alam condilion eeas2s then il shall
T Q tors “u J " cetpshiptiss el sound gvery 3 seconds unti alarm cancal is
= L) Packages =edervedsr "
= 9 MenionCrticEveniUc i) :
= [Rersments : = T
‘ reurgmenk_1 = 1l Cailical Alarma shall paky
= g regdeennt_) A = L Serioies Marms Shall ety il i ralay infor affests
[reqursment_L0 Infoemational Akams shall that s pessibiy affac pasent safaly palierd safet eilher
[reqursmert = ariy el infarmalion that 1ESUENY in & Mosk mings injury e immadialely or in the near
;] r 15 00 ImascE on T Fafey condilions and events Tat may in me s
5] 3 af e paliert corribugE 10 mare S2H0US injury given an * eeinciudes>
- e ‘-g - __additional condilin ar emnd L
(3 recprement & Lintludess » einelude=» ', senthide s "y
B 7 y =einehudu=> 3 o -
[reuremment &) : o] = Ta Grital Alarms =nal Include hardwars or
B recusenent 5 E] s Serlnus Alamns shal nalude goansre t;a:llg talated 1o alcmalmnr_
= <+ Stareciypes Informn e ns Alarmns L ceinghidars hrthaae of $oMane faits reisiad detvary of tharapr, or manitoring o
i et =hall Inclide maching o manitoFing of Maching stads. patient vitals, 55 well a8 lsl san
5> spacluns hardware and softwarne 5 incications of immediate or neardenm
+] Uss Cass Duagrams rewsion information and y matignt sk
440 Uss Cases other matinenante M L T
infnrms -

Serlous Alamns must be displswed bafors thay
iy be dismizsed by the physician. I the condiion
parsists aflar e Aam Cancel key 15 pressed, the

alamn shall ieanninicats in 2 minies. The

Sarioys alarm fone shall sound when the alam

neCur.

- B
I
Informational Alarms may ge
desmissed with the Alarm
Cancel key wilhout being
piemed, o audible tane shall
b2 given.

Crical Alarns just be disolaped before ey may e
dizmissed by the prysician, Wile the alarmnig
condilion persists, e siam ted shal Nssh red &l a
rabe of 0.5Hz INMne condilion persists aes the Aarm
Cancel key s pressed, e slamn shall resnnunicate
in 2 rinales. The Crfieal alanm long is sounded
wnEn e Flarm areurs

e i A |

3

For Hel, press FI

A[A[FToTBuild § CheckModel } Configuration Managenent }Animation

Fri, 8, For 2004 12:35 FM

Figure 2: Modeling

a Requirements Taxonomy

It is also possible to represent information flow in UML 2 and Rhapsody 5 as well. Many
people find this a useful analytic technique for understanding the information processing
required of a system. Figure 3 shows how such a diagram might be used to represent the
information management for an air traffic control system. Such diagrams can be done for
the entire system, but in complex systems, they should be done independently for each
information-rich use case.

Bruce Powel Douglass

Page 6

Computing Model Complexity

Track_location, Track_
direction, Track
Idenfication
f P Track_location, Track_direction >
Primary ~~_ LR
RADAR o BT
= ACME_AirTrafficControlSystem -2 _-7 Controller
e .-~ Display_Configuration
Qutgoing Flight
~~lInfo
% Beacon Return_Code Tl
""""""""""" b ‘“‘A%
Secondary L B
RADAR e National
"“Incoming_ Airspace
Pilot_Communciations _ Flight_Info
i <<system>> ©~.._ Flight_Plan
<" pjlot_Communications 1
Flight - sedassdesesesmasd >
Flight Plan_Update
Flight
Planning

Figure 3: Information Flows in UML 2 and Rhapsody

Model Architectural Structural Metrics

The model structural metrics are focused on model analysis and design content, rather
than on how it is organized or how its requirements are specified. These metrics can be
applied to large models or small and to architectural aspects or to semantic elements. The
difference is that architectural elements such as subsystems, tasks, channels, etc. exist to
organize and deploy the semantic elements, and the semantic elements perform the “real
work” of the system functionality.

Name Purpose Description

NS Number of The number of large-scale architectural units of a
Subsystems system.

NT Number of Tasks Number of «active» objects in a system

NAS Number of Address | A measure of the scope of the distribution of a
Spaces model across address spaces or computers.

CASC Cross-Address Space | A measure of the cohesion within address spaces
Coupling versus cohesion across address spaces.

RAS Redundant Number of redundant architectural units for use in

Architecture Scope | the Safety and Reliability Architecture (either
homogeneous or heterogeneous)

NP Number of Number of processor nodes in the system. This
Processors may (or may not) be identical with the NAS metric

NCP Number of Measures the cohesion of functionality within a
Components per processor node, assuming that a component

Bruce Powel Douglass Page 7

Computing Model Complexity

Processor provides a coherent set of functionality.
NUCS Number of Use For systems that decompose system use cases into
Cases per Subsystem | subsystem level use cases (see references [5] and
[7])

For example, Figure 4 shows the subsystem architecture for an anesthesia device. NS for
this system would be 6.

SleepyTime Anesthesia System

i userinterface |

thesiologist Haospital
anesthesiologis —— :
? . <<5ub5yg‘tem>:~ Infarmation
Vapaorizer System
<<sibsystem==>
Ventilator L /’i
<csubsystem>> ECG Monitor

BreathingCircuit
==subsystem==> —
Gas Supply
CO2Monitar Chart Recorder

patient <=subsystem>>

SPO2Monitor 1

=<subsystem==

Figure 4: Subsystem Architecture

For the User Interface Subsystem, the NUCS is 4 as shown in the next figure.

Bruce Powel Douglass Page 8

Computing Model Complexity

25 Fhopsody by Hogix Inc. - [Use Cose Diagram: User Interface Use Cases in Dafouli]

T Bk Edt Yiow Code Layow Jook Wiedow Datans Help METES|
DEE 0S5 % QaEFE B0 > [Do || 8 EHE @5 | &eals

LS

=

i \

= Usge face Subswsl

T User Interface Subsystem P

£ %

. Display Hospital
= Waveforms Infarmation

Display
Numeric Status

anesthesiologist

snternal:

sInternal: E):
% aCo2mM oniN

aventilator [l
sinlernal=

—
L

Chart Recorder

=2

ECG Monitor

Configure

Delivery
Subsystem
Annunciate

Alarms

aSpO2Monitor
‘internal:

avaporizer

aBreathingCircuit

-

1] [+
I I Toa 15, Aup 2000 E14 M

Figure 5: User Interface Subsystem Use Cases

Model Semantic Structural Elements

While the architectural elements organize the system into units, the semantic elements do
“real work”. The semantic elements (aka “primitive objects and classes”) perform the
structural and behavioral semantics of the system within the confines of the architecture.
The architectural elements organize, optimize, and delegate behavior to these semantic
elements but they don’t perform the actual desired functionality of the system. That falls
to the semantic elements.

Name Purpose Description
NoC Number of Classes A measure of the number of model size
CcC Class Coupling Measures the cohesion of the classes by computing
the number of associations a class has with its
peers
TSC Total number of Measures the global use of generalization within a
subclasses model
CID Class Inheritance The maximum length of a given class
Depth generalization taxonomy
NC Number of Children | Number of direct descendent (subclasses), a

Bruce Powel Douglass Page 9

Computing Model Complexity

measure of the class reuse

NM

Number of Methods

Number of methods within a class

NP

Number of ports

Number of unique identifiable connection points
of a class

EF

Encapsulation Factor

Number of class features (attributes, methods, and
event receptions) publicly visible divided by the
total number of such features — a measure of the
degree to which the internal structure of a class is
encapsulated

SF

Specialization Factor

The number of operations and statechart action
sets which are specialized in subclasses

A couple of comments are in order. With the Class Coupling (CC) metric, we are
concerned not about the number of clients a class has, but rather the number of servers it
uses. Therefore, we only add the association when the association is navigable from the
current class to another; if it is one way from another class, it doesn’t count in the class
coupling. This means that this metric estimates how many other classes | might have to
touch if the current class must be updated.

Calculator

z=Testin

Tester Stimulator

gBuddy=>

its Tokenizer Tokenizer

itsEvaluatorEvaluator

]

tsTokenize

+okenStr:
+value : double

OMString +result - double

+0p : char 1 +clear():void
1 stensPlare - douhle itsEvaluator +reduce()void)
+addDot():void +displayResuli()void

+beginToken(char c)void
+digit(char ¢):int
+addDigit(char ¢):void
+addFractionalDigit{char ¢)vo
+sendOp(int ¢):void

+push{double num):void
+push(char op):void
+reduceFactor()-void
+pushUnary(char unaryOp)-void
+reduceUnary():void

itsCharParser

itsCharParser CharParser

3

+exprstring - OMString
+currentChar - char
+pos - int

+len - int

+ireeRun - OMBoolean

1

+print(char® s):void
+print(char ¢):void

+setExpression(OMString newExpr):void

itshumberStack NumberStac

1

g

itsOperatorStack CperatorSta

Figure 6: Example Class Diagram

What is the class coupling of the classes shown in Figure 6? The Calculator class has a
coupling of 6, as it has composition relations with 6 classes. The Evaluator has a class
coupling of 2 since it only knows how to “talk to” 2 other classes (the NumberStack and
OperatorStack classes).

Bruce Powel Douglass Page 10

Computing Model Complexity

The Encapsulation Factor (EP) is a good metric for maintainability because it measures
the degree to which the internal structure of a system is hidden from its clients. Figure 7
shows a CachedQueue class with a EP metric value of 0.56 (5/9).

CachedQueu

#head : int
#tail - int
+5ize - int

+insert()void
+remove()void
#lush()void
+load():void
+evStart()
#prioritize()void

Figure 7: Encapsulation

Behavioral Metrics

The previous section discussed some of the metrics for assessing structural elements.
This section provides some metrics for assessing behavioral semantics. A couple of these
metrics look at the method bodies to assess their quality or complexity, but most are
firmly focused at the model level. The UML has three primary behavioral views —
sequence diagrams for collaborative behavior (and some alternative notations which are,
in some sense, equivalent — communication and timing diagrams), and statecharts and
activity diagrams for the behavioral specification of individual elements.

Name Purpose Description
SDS Sequence Diagram Number of messages x number of lifelines
size
DCC Douglass Cyclomatic | Modified McCabe cyclomatic complexity to
Complexity account for nesting and and-states
WMC Weighted Methods A measure of (non-reactive) class complexity =
per Class sum of methods x complexity for all methods. For
classes without activity diagrams, method
complexity can be estimated by Lines of Code in
the method.
ND Nesting Depth State and activity nesting depth — number of levels
of nesting
NE Nesting Number of transitions (other than default) that

Encapsulation

cross levels of nesting

Bruce Powel Douglass Page 11

Computing Model Complexity

NAS Number of And- Total number of and-states within a statechart
States

SCN Statechart Number of events received by a statemachine /
completeness number of transitions

NPS Number of Number of non-default pseudostates such as
pseudostates history, conditional, fork, join, junction, and stubs

Cyclomatic complexity is probably the most common metric used for behavioral
complexity and can be applied directly to both statecharts and activity diagrams. The
basic computational rule for cyclomatic complexity is the number of edges — number of
nodes (e.g. states) + 2.

state b
state 2
state 0
state 5
statn;_‘] state_3
state 4
CC=1-2+1=1 CC=5-5+2=2

Cyclomatic complexity (CC) = Edges - Nodes + 2

Figure 8: Cyclomatic Complexity for States

Figure 8 shows the computation of cyclomatic complexity for two different state
machines. They are both straightforward, other than to note that an edge is a complete
transition path to another state so that the number of such paths in the right hand side of
the figure is 5 and not 6 (you don’t count the path to the conditional connector as a
separate edge). However, CC doesn’t account for nesting of states, nor does it account for
and-states.

Consider Figure 9. The two statemachines are behaviorally equivalent. In either case, you
have 4 states and from each state there is a transition path to the other three. If you
compute the standard CC for the left statemachine you’ll get a cyclomatic complexity of
1 (4-5+2), while you’ll get 10 (12-4+2). Which is right?

Bruce Powel Douglass Page 12

Computing Model Complexity

state 6

state_0

- - N state_5 ™

state 4

<: state 1 4——>

state 2
state 3 <—~’”> -
state
< | -

h /

Figure 9: CC for Nested States

To answer the question, we need to remember why we’re doing this. We want to
ascertain a measure of the likelihood that the statechart is incorrect due to complexity-
induced errors. Therefore, in this case | would prefer to go with the former computation
rather than that of the semantic equivalent (1 instead of 10). However, nesting does itself
add some amount of complexity. Even though this statechart and the left-most statechart
in Figure 8 have the same computed CC, surely the latter is more complex. Thus, I add
“1” for every level of nesting. Thus the Douglass Cyclometric Complexity (DCC) for the
left hand figure is 2, since there is one level of nesting.

Next, what about and-states?

Bruce Powel Douglass Page 13

Computing Model Complexity

|
|
state 2 | state &
) |
|

state 7

state &

Figure 10: CC for And-States

First, let me say that the upper and lower statecharts in Figure 10 are semantically
equivalent (you knew you liked statecharts for a reason, didn’t you!). The statechart in the
upper part of the figure, use and-states to represent three independent aspects of the class
while the lower part is the same thing without the and-states. A straightforward
cyclomatic complexity of the upper part of the figure yields 1 (7-8+2) while the same
computation on the semantically-identical lower statechart yields 25 (35-12+2).
Arguably, both values are correct, but which is the more useful? I think that the lower
part of the figure is far more difficult to understand and get right that the upper part, so
I’m very much inclined to use the computation for the upper part. On the other hand,
using and-states is more complex than not. Surely, the upper part of this figure is more

Bruce Powel Douglass Page 14

Computing Model Complexity

complex than the left-most statechart in Figure 8. Therefore, | add a “1” for every and-
state, yielding a DCC value of 4 for the upper figure.

So the computation of the DCC is simply this:
DCC = edges — nodes + 2 + levels of nesting + number of and-states

This gives a measure of complexity that correlates well, I believe, with the ability to
model the state behavior without making an error. By way of an example, what is the
complexity of the statechart shown in Figure 11

/;JONE Evaluatorsm \

WRONGTOKEN EARLY_EOS

evEQ
J evRightParen/ 51 \
reduceSubExpr(); eviultop -
/ evLeftParen/ ParsingTe rm\

push{params-=op)

N

evAddOp/
pushUnary(params-=op.

eviMumber/

pushiparams-=value}, /
reducelnary(); eviMumbe

evLeftParen/
push(params-=og

Y evAddOp!
pushUnary(params-=op)

evMumber/
push{params-=value);

eviultop/ educeUnary();

pushiparams-=op};

eviMumber/
pushiparams-=value},
- | reduceU
displayResult(}; reduceFattor();

.- evAddOp/
evilultop
clear();

pushUnary(params-=op)
ExpressionError> ECE‘ ParsingFactor

evRightParen/
reduceSubExpr(};

evAddOp/
reduce();
push{params-=op},

eviultop/
push(params-=ap) evEQS/
evLeftParen/ reducel)
WRONGTOKEN ~ EARLY_EOS vliultop push(params-=op) displayResutr:
ParsingExpression T boNE /
¥
\ WRONGTOKEN /

Figure 11: Example Statechart

This figure represents the statechart for a class that evaluates tokens in a calculator. Much
of the complexity of this statechart arises from the numerous actions that are executed.
The computed CC for this statechart would be (22 — 7 + 2 + 2 (for 2 levels of nesting))
for a total of 19.

Diagram-Specific Metrics

The metrics commonly used are all, if you will, model metrics. That is, the hope to
analyze some aspect of the quality of the system as opposed to the presentation. The main
reason for that, | believe, is because in source code these two issues are the same thing.
However, in a language such as UML, the visualization of a model and the semantics of
the model are independent issues, with the possible exception of statecharts and activity
diagrams. Therefore I think it makes sense to have separate metrics for the visualization
aspects.

Bruce Powel Douglass Page 15

Computing Model Complexity

Why are statecharts and activity diagrams the exceptions? Simply put, because these
diagrams are fully constructive visual representations of the underlying semantic model.
That is, for a given model element (Classifier or method, for example), a statechart or
activity diagram completely specifies the behavior of that element. Ok, it might invoke
“submachines,” breaking the single diagram into a hierarchy of diagrams, but logically
it’s a single specification and a single diagram. The other diagrams are not. | can choose
virtually any scheme to organize my class diagrams, for example into a set of, at best,
loosely coupled diagrams.

When writing books, authors (and | am as guilty as any in this regard) select and simplify
examples so that they illustrate the point at hand. Thus we see single diagrams showing a
model or aspect of a model. Real systems, however, are complex and cannot be shown on
a single diagram — even if you use E-size plotter paper and 2-pt font. Some rule or
guideline must be applied to decide how to break up the system views across multiple
diagrams.

A simple one is the famous, and counterproductive, 7 +/- 2 rule. The idea, misinterpreted
from some neurolinguistics research is that the human brain can only hold 7 (+/- 2) things
at once, so this is, therefore, a good rule to apply to diagram construction. The flaw is that
the authors of this rule failed to understand the research. First of all, the rule, such as it is,
is a rule about short-term memory not comprehension. That is, most humans can hold 7
(+/- 2) things in short term memory at once. However, if you’re looking at a diagram, you
don’t need to hold those things in memory because they are right in front of you! Duh...

So on the face of it, the rule is a misinterpretation of the basic research. But how does it
work in practice?

The answer is “poorly.” Back in the good old Data Flow Diagram (DFD) days of the 80s,
this rule was widely applied as a rule of good diagram construction and rigidly enforced
in many environments. The results were diagrams that were virtually unreadable, with
arbitrarily-deeply nested diagrams just to meet the criterion.

A better rule, I think, is the ROPES® rule, which has to do with the coherence of a
diagram. The coherence of a diagram may be thought of as the degree to which the
diagram represents a single important concept; what ROPES refers to as the mission of
the diagram. The ROPES rule is “every diagram should convey a single important
concept.” That is, every diagram should represent all elements necessary to convey its
mission, whether that is one element or 50. Statecharts and activity diagrams already
meet this criteria; their mission is to describe the possible sequences of actions and event
receptions for a single model element. The other diagram types are more flexible in this
regard and so coherence becomes more important for those diagrams.

® Rapid Optimizing Process for Embedded Systems

Bruce Powel Douglass Page 16

Computing Model Complexity

Consider the standard class diagram (OMD in Rhapsody parlance). It is a structural
diagram showing some aspect of the system structure. Some standard ROPES missions
for class diagrams are:

e Collaboration — show all of the object roles collaborating to realize a single use
case

e Package contents — show all the classes within a single package

e Domain diagram — show the set of “domains” and their relations (single subject
matter packages); this is sometimes called a “package diagram”

e Subsystem architecture — show the set of subsystems” and their relations

e Distribution architecture — show how objects are distributed across address spaces
with distribution patterns such as Broker or Publish-Subscribe.

e Safety and reliability architecture — show how faults are identified, isolated, and
corrected at run-time through the application of redundancy

e Concurrency architecture — the so-called “task diagram”; show the set of
concurrent elements («active» and other concurrency objects such as mutex
semaphores, message queues, etc)

e Deployment architecture — show how elements from different engineering
disciplines (e.g. software, mechanical, electrical, and chemical) collaborate®

e Generalization — show the a single generalization taxonomy

e Class structure — show the decomposition of a “structured” class into its internal
parts

Diagrams that adhere to this guideline only contain elements that contribute to the
mission of the diagram and avoid others. This means that a class typically participates in
multiple missions (several collaborations, it resides in a single package, might be part of a
generalization taxonomy, etc).

The good news is that the consistent use of diagram missions leads to highly readable and
comprehensible systems, and it scales very well from tiny to huge systems. The bad news
is that it is very difficult to compute adherence to the guideline because coherence to a
concept is difficult to quantify. The best way to ensure adherence to this guideline
remains (1) specify on the diagram what the mission is, and (2) check adherence during a
peer review.

* Note that a subsystem is just a “big architectural object” that contains and delegates services to, its
internal part object roles

> This can be shown on a “deployment diagram” which is arguably just a weak form of a class diagram.
However, the SysML (Systems Modeling Language) effort has rejected deployment diagrams because they
are not as powerful as normal class diagrams, and use class diagrams with various kinds of stereotyped
classes («electrical», «<mechanical», «chemical», and «software») instead.

Bruce Powel Douglass Page 17

Computing Model Complexity

Qualitative Guidelines for Model Quality

Metrics, as has already been stated, use easily-computed values to estimate more
ethereal-but-desirable system and model properties. While computational metrics can be
useful when properly applied, it behooves us to understand what are the qualitative goals
that these quantitative measures seek to measure, so that they may be optimized.

Model Organization Guidelines

e Models should be organized to optimize developer workflow

e Packages are the primary organizational unit of UML modeling

e Use of domains (i.e. «domain» stereotype of package) maximizes reusability of
classes

e Use of subsystems allows flexible organization of objects into coherent run-time
artifacts

A typical model organization looks Figure 12:

< Rhopsody in Ce+ by I-Logix Inc, - AMS.rpy - [Object Model Diogram: Model Organization] EEX
ge Nk Edit Vie o Lmpl Took Window Optons Help -8 x
DEW B P ARDX Aq@EREfe J8 |PHAOHIR 8L = i
s [r][e -l ma wmpa |~ (DEREE Dlagram view
%| Package Diagram Analysis | : of packages
9| (Class diagram
S; emphasizing
g | the model package
a| structure)
T+ Physical
L_‘ Logical
]
2l
+
S Monitor_And_Control Subsystems
o Jomain
h‘
£
cOmieo —
ALSubsy
A <<domain=> is a package organzied by
subject matter g
2 »
Browser view o
of packages
} Ll el o] ot § CheckModd § Corfipration Maagement § Animabon [
Fox Help, press F1 Fri, 9, Apr 2004 12:56 PM

Figure 12: Model Organization

In Figure 12, we see an three “high-level” packages — Analysis, Logical, and Physical.
The Analysis package is where we locate requirements and “system” things, such as the
system actors, the system class, system use cases, sequence diagrams and so on. The
Logical package contains subpackages stereotyped «domain» which contain all of the

Bruce Powel Douglass Page 18

Computing Model Complexity

classes and types identified in object analysis. The Physical package contains primarily,
the architectural design elements, such as subsystems, and collaborations instantiated
from the classes and types specified in the domains of the Logical package.

Requirements Guidelines

Requirements need not be done in UML or Rhapsody, but there are advantages to doing
s0. Requirements written and maintained in text have problems with completeness,
consistency, accuracy, and correctness. These properties are much easier to ensure in a
UML/Rhapsody view because of the increase in formality of the representational
semantics of the forms of use cases, statecharts, activity diagrams, and sequence
diagrams. Some important guidelines for requirements include:

e A use case should be a coherent representation of a complete system usage at a
given level of abstraction
e There should be 6-24 use cases at the highest level
e In complex system, use cases may be decomposed with «include» and «extends»
dependencies, and with generalization among use cases to create more specific,
detailed uses cases at a lower level of abstraction
e Use cases should not reveal or imply system design, nor specific system interface
technologies
e Actors should represent elements outside the scope of the system with which the
system must interact
e Time is not an actor — sometimes systems provide autonomous behavior
e A use case should return a result visible to at least one actor.
o0 For capabilities within a system that do not return a result to an actor, use
requirements elements inside a package or stereotype a use case to be
«internal»
e Use cases should be approximately independent in their requirements, although
not necessarily in terms of their ultimate design or implementation
e Use case names should be strong verbs, never nouns

Model Architectural Structural Guidelines
These guidelines have to do with overall organization of the running system.

e Architectural design is all about optimizing the system through organization in-
the-large
e Physical architecture should be represented with at least one class diagram in each
of the Five Views of Architecture
0 Subsystem and Component View
o Distribution View
o0 Concurrency and Resource View
o Safety and Reliability View

Bruce Powel Douglass Page 19

Computing Model Complexity

0 Deployment View
e Each subsystem contains and delegates behaviors to its internal parts.
e The internal parts of a subsystem are ultimately instances of the types and classes
specified in the domains

Figure 13 schematically shows the 5 views of architecture, while the next figure shows an
example of the safety and reliability architecture. Note in Figure 14 that the subsystems
(using the Channel Pattern from [5]) contain semantic objects as parts.

Figure 13: Architectural Views in the ROPES Process

Bruce Powel Douglass Page 20

Computing Model Complexity

) Rhapsody in C+# by MLogix Inc. - [Object Model Disgram: Modeli *] =]

1mmtmcummmtrmtmmmm -2 x

DEE ‘GBSt 0 W"hAa@BEpn y THYrQrP: 20
I T T T pe— = |[DetmsConty |- Re2E S WOOBR B

Ertira Modsd Visw ™
=B ECE -

A
¥

Maveform Pragessing Channel

Waveform_Sampe Wavetam_Sample Waetorm_Sarmple|
[rawa] [reduced] [displayable]
| ECG | Lo Pass_Fiker | | Data Reoucer | | Display Scaler | | et View

= =<Subsystems>

£
|
v | BB B B H Ha | [P [B

i

"
< ¥
Object Model Dlagram ; - [, Oty ‘WaveForm_Processing Channel
.

Garerel Propertes | Module

== L1 ECE | Lo Fass_Fiker | | Data Fecucer [| Display_Scaler || Wvaeetor_Misw 1., I
& A" Con™ Ower” Loo ’ J—l = = 3 4 i— £
N

< obleciModelie (2
*| clmr

“| aoorenal
7| steist
*| Classhig: Wavetorm_Samplke 1.
£ Camoke [raea] ’
"| Camgr
*| Compes
*| Domen
" Inberian
*| hate

*|_Packame
" Dialen Haart Mumarics_Channal

o -
B.C,-;'r:m:@'ﬁ'a'::ﬂ'é L) GRS _Recagnaer | PYC_natzer | | ST_Segment_gnakzer »
‘ 5 < r

Lecate | 0k | soo | . Hodant« |

o
=

1 1 1

Wvaveform_Sample|

[Fisplyabliz]

<=Subsysieme2

Figure 14: Safety and Reliability Architecture View

Figure 15 is a typical task diagram from the concurrency architecture view. It uses
«active» objects as the primary elements, with passive object running in the context of
those threads as parts, resources shown as shared among those threads, and various other
elements of the concurrency architecture including semaphores, queues, and concurrency
properties.

Bruce Powel Douglass Page 21

Computing Model Complexity

mutex

'

CmdQueue:Queue
= 11l

]

priority = 3
worst case execution time = §

(period = 10
deadline = 10}

T
LY
(8
%
¥

RobotArm_T a_sk

s
I/ schedulabilily constraints 1
1 L
{period = 25
1 priority = 10
1 worst case execution =15
MessageQueus:Quaue deadline = 23}
= 1111 :
’
’
1 v
.
1 ;{
Communications_Task :
1
=<<active=> object
<<queues>
mites 1 1 DataGueue: Queue
P + s

<<gsemaphore>> 1

MovingTask

Monitoring Task

mutex

r

SensedDala

<=resource=>

DatalO_Task

{period = 50 ms
priority = 20
waorst case execution time = 10
deadline = 30}

Figure 15: Concurrency Architecture View

Model Structural Guidelines
These guidelines refer to the semantic elements used to perform the “real work” of the

system.

e Each semantic® class belongs in exactly one domain; when this is not true, either
refactor the class or refactor the domains

e Aclass is not the same as a role; a role is a usage of a class in a specific context
while a class is a specification of a thing that may fulfill a number of different

roles

o E.g. “attack dog” is a role — “Dog” is the class, and “myAttackDog” is the
name of the association role end, or the name of the instance
e Generalization taxonomies always stay within a single domain
e All use case collaborations contain elements from multiple domains
0 Associations cross package boundaries
e When packages represent concepts at different levels of abstraction, associations
should only be navigable from more abstract -> less abstract
e All class diagrams should depict a single important concept
o0 Only show class features that contribute to the mission of the diagram

® As opposed to classes added to optimize the design of the system.

Bruce Powel Douglass

Page 22

Computing Model Complexity

0 Show role names on associations when they contribute the diagram

mission

e Classes should have noun or noun phrases for names
0 Operations should have verbs for names

o0 Operation names should reveal semantic role of the operation not internal
implementation
o0 Aittributes should have nouns or noun phrases for names
e Attributes should be structurally simple
0 Complex attributes should be modeled as classes with a composition
relation from the primary class

e Always indicate multiplicity

Ventilator
<<Subsystems=:=

1

1

AgentMonitor
<<Subsystems==

1

1

Vaporizer

TextView m

agentView |1 selectikKnobf 1

1 1

levelknob

1

1 ~ -
GasFlowSensor

DeliveryController

lconicVew

fullnessView

+activeReservoir - int

+commandedConcentration : double

+selectedAgent - AgentType

1 Agent_Resevoir

Valve

0.1

+getvolume():double
+setSelection():void

+selectAgent(AgentType a)void
+setConcentration(double prct):void

AlarmingClass

Button

1 1

1 EMG_Monitor

1
1
silenceButton|1
1
r 1

| AirSupply |
1
| Heater |

depthOfAnesthesialie !

HistogramView

Alarm

AlarmManager

alarmView 1 alarmListView

TextView |— »

ListView

<<Subsystems=

Figure 16: Class Diagram

Figure 16 shows a class diagram, emphasizing the internal structure of one of the

subsystems.

Model Behavioral Guidelines

Bruce Powel Douglass

Page 23

Computing Model Complexity

Statemachine and Activity Diagram Guidelines

Use a statechart to specify class (or use case) behavior when the behavior is
driven primarily in response to incoming events

Use an activity diagram to specify class (or use case) behavior when the behavior
is primarily control flow (algorithmic) behavior

Always identify initial states

When a one or more transitions have the same effect for a set of states, consider
making those sets nested within a composite state

Use and-states to specify independent aspects of state behavior

Guards should never overlap; that is, at most one guard on a set of related
transitions should be true at any time

Place actions on transitions if those actions are only performed under some
circumstances when leaving or entering a state

Place actions on entry to a state when they must always be executed when the
state is entered; similarly, place actions on exit from a state when they must
always be executed when a state is left

When a set of states is accessible from all other states in that set, make them all
nested states of a single composite and make the transitions from the composite to
the nested states

For use case statecharts, message from the actors to the system should be modeled
as transition events; messages from the system to the actors should be modeled as
actions

Use swimlanes on activity diagrams to map activities to different objects

Use submachines to simplify diagrams when a statechart or activity diagram
becomes too complex

“Wrap” long sequences of actions into single operations defined on the class to
simplify the diagrams

Bruce Powel Douglass Page 24

Computing Model Complexity

I AlarmStates I Alarm on Critical Even
/NanﬂingConditon_Status \ use case for handling
conditionActivate/GEM(regular)] individual alarms
-~ | ConditionActive [* Conditionlnactive
conditionCeases/GEN(greyOut)

Sound_Processing 7

silence

AlarmToneActive

chence tm{ON_TIME) "
. conditionActivate | sound(ON
AlarmTonelnactive ToneOn ToneDff
tm(SILENCE_TIME)/ tm{OFF_TIME)/
GEN(stopSilence) . sound(OFF)

" : Cut)
RegularDisplay B, GreyedQut
" regular

DisplayStyle_Processing

(SILENCE_TIME)

Acknowledgement_Processing
f WaitingForAcknowledgement ™,

AlarmHandled

MNotViewed stopSilence

[IS_IN{Condition

T

nactive]

Acknowledged

alarmDisplay

sileng .
conditionCease

> o /

Figure 17: Statechart diagram

Figure 17 shows a somewhat typical statechart diagram for a Manage Alarms use case.

Sequence Diagram Guidelines
Sequence diagrams can easily become unmanageable with long sequences and random

ordering of messages. Use of the following guidelines will improve the readability of
your sequence diagrams.

e Place a note box in an upper corner of each sequence diagram to identify the
diagram, which use case (or collaboration) it elaborates, its pre- and
postconditions, and the purpose of the sequence

e Try to get left-to-right ordering of messages as much as possible

e Avoid activation instance boxes — they only apply in a subset of sequences

e Use partition lines when you want to add special semantics to a set of messages —
including loops, iterations, or constraints

e Use text freely along one side of the sequence diagram with comments as to why
the sequences are flowing as they are

e Use lifeline decomposition when you want to show sequence diagrams at multiple
levels of decomposition. At the high level, the life lines can represent architectural

Bruce Powel Douglass Page 25

Computing Model Complexity

units (such as subsystems) which may be composed into sequence among their
parts in the nested sequences

e Use interaction fragment decomposition when you have a coherent set of
messages that you want to remove to either simplify the current sequence diagram
or because you want to reuse the nested sequence in multiple places

e Ina lifeline decomposition sequence, use a System Border element to represent
message crossing the nesting boundary

Calculator[0]-> Calculator[0]> Calculator[0]-> Calculator[0]-> Calculator[0]->
itsCharParser: itsTokenizer: itsEvaluator: tsMumberStack: tsOperatorStack:
CharParser Tokenizer Evaluator Stack Stack

Mame: Calculation 1 evDigit(currentChar = 2)

Description: Show execution eginToken(c = 2)

of the calculation of 2%(3+4) '

Preconditions: System is ready digitic = 2}

Postconditions: Calculation

result is displayed evOplcurrentChar = *)

eviumberfvalue = 2)
N
ush{num = 2)

ushielement = 2)
reduceUnary()

Start Parenthetical Phrase 'f [EYOP(cumentChar = ()

sendOp(c = 42)

evMultOp(op = *)

*

ush{op = *)

ush(element = *)

evDigit{currentChar = 3)
sendOp(c = 40)

evLeftParen(op = ()
eginToken(c = 3)

Figure 18: Sequence diagram

General Diagram Guidelines
Some guidelines apply to all diagrams:

e Eliminate or minimize line crossing

e Use color only as hints, never to convey semantic information

e Always include a diagram note naming the diagram and identifying its purpose
(mission), context, and pre- and postconditions where appropriate

Bruce Powel Douglass Page 26

Computing Model Complexity

Each diagram should represent exactly one important concept and contain only
those elements that support that mission
o Itis perfectly permissible to have the same model elements show up on
multiple diagrams
e Use consistent naming conventions; recommended is
o Class names between with uppercase letters
o Class features (operations, triggered operations, events, and attributes)
begin with lowercase letters
e Use “pin notes” for To-Do items use other notes for persistent comments about
model structure and semantics
e When there are many diagrams of the same type, use packages to organize them
into coherent sets

Computing Metrics of Rhapsody Models

Oops, | seem to have run out of space. In a future column I’ll pick several of these
metrics and show how the Rhapsody API can be used to access the model with Visual
Basic, and provide some VBA macros to compute these metrics.

Conclusion

We’ve discussed, albeit briefly, some of the metrics that can be applied to models to gain
an insight into their quality and fault proneness. Which are best? They all have their
place but the various metrics measure or emphasizes different measures of “goodness.”

To improve collaboration in large-scale teams, it is important to follow the organizational
guidelines given, even though they are difficult to estimate with quanitative metrics.
Some metrics that are valuable to estimate team collaboration potential include package
methods Package Usefulness — the ratio of the number of people who use a package
versus the number of people of can use elements of a package. When this ration is large,
then the package tends to be coherent and “tight”, while at the same time being highly
useful to other teams. Deeply nested packages are of less concern when the nested
elements are not visible to the client of the primary package; however, when this is not
true, then a high DPC (Depth of Package Containment) can seriously inhibit the usability
of elements within a package. Class coupling is also important, because it is a measure of
how many elements | might need to modify when I change a class. This is especially
important for Cross-Address Space Coupling (CASC), where we identify the number of
clients in other address spaces.

For maintainability, we want to maximize encapsulation so that when we change some
internal part of a model element we have minimal, if any, effect of the clients or users of
that element. For maintainability, the most important metric is the Encapsulation Factor
(EF) metric (number of public class features / total number of class features). When this

Bruce Powel Douglass Page 27

Computing Model Complexity

number is low, then the classes hide significant internal design. This generally improves
maintainability. Similarly, low class coupling implies that changes will be more
localized, simplifying maintenance.

For fault estimation, we want to simplify the behavior for the simple expedient that
simple things are easier to get right. For getting behavior right, the Douglass Cyclomatic
Complexity metric is my favorite, a perhaps minor tweak on a classic measurement. For
non-reactive systems, the same metric can be applied to activity diagrams. When the
behavior of classes isn’t modeled (such as when you write the methods using the target
source language), then Weighted Methods Per Class is a good measure for predicting
faults. WMC is sums the product of each method and its complexity, such as measured in
Lines of Code.

In a future article, we’ll actually write some VBA macros to extract this information from
your models and compute the results.

References
[1] Lorenz and Kidd “Object-Oriented Software Metrics” Prentice-Hall, 1994

[2] In, Kim, and Barry “UML-Based Object-Oriented Metrics for Architecture
Complexity Analysis” Texas A&M, 2003
http://sunset.usc.edu/gsaw/gsaw2003/s8e/in.pdf

[3] Rosenberg, Linda “Applying and Interpreting Object Oriented Metrics”
http://www.rspa.com/reflib/ProductMetrics.htmI#OOMetrics

[4] Douglass, Bruce Powel “Real-Time UML 3" Edition: Advances in the UML for Real-
Time Systems” Addison-Wesley, 2004

[5] Douglass, Bruce Powel “Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems” Addison-Wesley, 2002

[6] Douglass, Bruce Powel “Beyond Objects: Organizing Models the Right Way”
http://www.ilogix.com/whitepapers/whitepapers.cfm

[7] Douglass, Bruce Powel “Dr. Douglass’ Guided Tour Through the Wonderland of
Systems Engineering, UML, and Rhapsody”
http://www.ilogix.com/whitepapers/whitepapers.cfm

[8] Ambler, Scott “The Elements of UML Style” Cambridge Press, 2003

Bruce Powel Douglass Page 28

http://sunset.usc.edu/gsaw/gsaw2003/s8e/in.pdf
http://www.rspa.com/reflib/ProductMetrics.html#OOMetrics
http://www.ilogix.com/whitepapers/whitepapers.cfm
http://www.ilogix.com/whitepapers/whitepapers.cfm

Computing Model Complexity

About the Author

Bruce Powel Douglass has over 20 years experience designing safety-critical real-time
applications in a variety of hard real-time environments. He has designed and taught
courses in object-orientation, real-time, and safety-critical systems development. He is an
advisory board member for the Embedded Systems Conference, UML World Conference,
and Software Development magazine. He is a cochair for the Real-Time Analysis and
Design Working Group in the OMG standards organization. He is the Chief Evangelist at
Telelogic, a leading real-time object-oriented and structured systems design automation
tool vendor. He can be reached at bpd@ilogix.com.

Bruce Powel Douglass Page 29

mailto:bpd@ilogix.com

	Computing Model Complexity
	Metrics: The Good, the Bad, and the Visually-Challenged
	Types of Metrics
	Law of Douglass #72: “The Difference between Theory and Practice is Greater in Practice Than it is in Theory”
	Model Organizational Metrics
	Requirements Metrics
	Model Architectural Structural Metrics
	Model Semantic Structural Elements
	Behavioral Metrics
	Diagram-Specific Metrics
	Qualitative Guidelines for Model Quality
	Model Organization Guidelines
	Requirements Guidelines
	Model Architectural Structural Guidelines
	Model Structural Guidelines
	Model Behavioral Guidelines
	Statemachine and Activity Diagram Guidelines
	Sequence Diagram Guidelines

	General Diagram Guidelines

	Computing Metrics of Rhapsody Models
	Conclusion
	References
	About the Author

