

Rational XDE™ Model Structure Guidelines for
 Microsoft® .NET

Page 2 of 22

Table of Contents

1. Introduction 4

2. Scope 4

3. XDE Project Structure 4

4. RUP Model to XDE Model Mapping 7

5. Use-Case Model 8

6. Analysis Model 9

7. Design Model 11

7.1 Design Layers 12
7.2 Design Subsystems 13

7.2.1 Subsystem Specification 13
7.2.2 Subsystem Realization 14

7.3 Design Use-Case Realizations 15

8. Data Model 15

8.1 Logical Data Model (Optional) 15
8.2 Physical Data Model 16
8.3 Domain Model (Optional) 18

9. Implementation Model 19

9.1 C# Code Model for Class Library Project 20
9.2 C# Code Model for Web Application Project 20

10. Deployment Model 21

Page 3 of 22

1. Introduction
This document provides recommendations on how to represent and structure the RUP model artifacts in Rational

XDE™, Microsoft® .NET Edition. Of course, whether you decide to model these RUP artifacts in XDE is a
project-specific decision. Within this document, we note those models XDE provides automation support for and those
it does not, which may influence your decision.

Since all XDE models exist within XDE projects, the XDE Project Structure section provides recommendations on
what XDE projects should be created and what XDE model files should be created in those projects.

Both RUP and XDE use the term “model” and the mapping between RUP models and XDE models is not always
one to one. In the RUP Model to XDE Model Mapping section, the mapping from RUP models to XDE models is
described.

The structure of each of the RUP model artifacts in their XDE model files is then described in its own section.

2. Scope
This document focuses on describing the recommended XDE model file structures, not on the process for developing

the contents of the associated RUP artifacts. This document also does not describe detailed heuristics for defining the
XDE projects that contain the described XDE models. For information on how to define, develop, and model the
contents of the RUP artifacts, see RUP. For more information on projects, see the IDE documentation.

This document does not describe a complete example, but instead uses selected examples that emphasize the points
being covered; however, all examples are consistent with each other and are taken from actual XDE models.

The project and model structures described in this document are just recommendations and could be replaced by
any number of equally valid structures.

3. XDE Project Structure
The focus of this document is on how to structure XDE models. However, since all XDE models exist within XDE

projects, it is important that we provide a brief introduction to the project structure in which our recommended model
structures exist.

A VS.NET solution is a collection of projects and within each project there can be one or more XDE model files1.
Thus, the project structure affects the number of model files that are created, as well as their content.

A .NET Enterprise application may consist of multiple projects depending on the how the application is
architected. For example, if the application implements a XML Web service, Windows and Web interface, it is
recommended that the solution have a Web Service, Windows Application and Web Application projects
respectively. For more information on different VS.NET project templates, see the VS.NET help.

For a .Net enterprise application that is being developed by multiple people, we recommend that you create the
following XDE projects and models

1

XDE defines two types of model files - code and non-code model files. Code model files are used to model the C# language
 specific elements of a project while the non-code model files have no mapping to an implementation language and act as
 analysis and design models. There can be only one code model file associated with a project while there can be more than one
 non-code model files associated with a project.

Page 4 of 22

XDE Project Description XDE Models

“<recommended model name>” (<XDE file
type: model template>]

Application The Application Project represents the - “Use-Case Model” (Rational XDE: Use
Project (XDE entire application. Contains the XDE Case Model)
Basic Modeling model files that describe the application as a - “Analysis Model” (Rational XDE:
project) whole Analysis Model)

- “Overall Design Model” (Rational XDE:
Design Model)

- “Overall Implementation Model” (Rational
XDE: Blank Model)

- “Deployment Model” (.Net: Deployment
Model)

Data Modeling The Data Modeling Project contains the - “Logical Data Model” (Data: Logical Data
Project (XDE resources needed to model the application’s Model)
Data Modeling data, as well as roundtrip engineer a Data - “Physical Data Model2” (Data: vendor
Project) Model to/from a database. specific physical data model file) 2

- “Domain Model” (Data: vendor specific
domain model file)

.Net Class Library A Class Library project is a “C#” VS.NET - “.Net Code Model” (.Net: .Net Code
Projects (XDE project that contains the C# elements (i.e. Model)
Class Library classes, interfaces, etc.) needed to - “.Net Deployment Model” (.Net: .Net
Modeling Project) implement a class library, (Auction Deployment Model)

Manager in this example). The contained
elements are packaged and deployed as
a .NET assembly.

Note that a .NET application may contain more
than one such class library projects. As noted
earlier, the selection of the number of projects
is an architectural choice and may vary for
different applications.

Web Projects Web projects represent the Web resources - “.Net Code Model” (.Net: .Net Code
(XDE Web of the application. The contained elements Model)
Modeling Project) are packaged and deployed in a .Net - “.Net Deployment Model” (.Net: .Net

assembly. Deployment Model)

Separate Web projects can be defined for
specific areas of the presentation logic. The
recommendation is to create a Web project
for each assembly that needs to be
produced. If separate projects are defined,
then the name of the project should reflect
its contents.

An example of this project and model organization using both the Solutions Explorer and the XDE Model
Explorer views is shown in Figure 1. The Solution Explorer view is shown on the left side of the figure and the
Model Explorer view is shown on the right.

2

Rational XDE provides physical database support for multiple database vendors. A vendor specific template exists for each
 database vendor supported by XDE.

Page 5 of 22

Figure 1: Project Model and Organization

Alternatively, if the application is really small and is going to be developed by a single person, the above project
structure could be simplified to two projects, one that contains the application-wide and non-Web elements, and
another that contains the Web elements. In addition to reducing the number of projects, the number of models can be
reduced, as well. For example, for a small, single person project, the following simplifications are possible:

� A separate Analysis Model is not maintained. Analysis and design are both performed in
 the XDE roundtrip models.

� An “Overall Design Model” and an “Overall Implementation Model” are not maintained.
 The project is small enough that an overview can be obtained by looking at the XDE
 roundtrip models directly. Also, the Use-Case Realizations are maintained in the .Net
 code model.

� A separate Logical Data Model is not maintained. A physical data schema is developed
 directly in the “Physical Data Model”.

Such a “small project structure” is summarized in the following table.

XDE Project Description

Application The Application Project represents
Project (XDE the non-Web aspects of the
Class Library application. It contains the models
Modeling that describe the application as a
Project) whole, the Data Model, and the

.Net-specific models.
Web Project Web projects represent the Web
(XDE Web resources of the application. The

XDE Models
“<recommended model name>” (<XDE file type: model
template>]
- “Use-Case Model” (Rational XDE: Use-Case Model) -
“Physical Data Model” (Data: vendor specific physical
 data model file)
- “.Net Code Model” (.Net: .Net Code Model)
- “.Net Deployment Model” (.Net: .Net Deployment
 Model)
- “.Net Code Model” (.Net: .Net Code Model) “.Net
Deployment Model” (.Net: .Net Deployment

Page 6 of 22

Modeling contained elements are packaged Model)
Project) and deployed in a .Net assembly.

An example of a small project and model organization is shown in Figure 2.

Figure 2: Small XDE Project and Model Organization Example

The actual selection of the number of projects and individual model files is an architectural choice and could vary for
different projects. However, no matter how many projects are defined, there can only be one XDE .Net Code
model file per project. For more information on projects and the XDE model files they can contain, see the XDE
documentation.

Also, it is strongly recommended that the XDE model names be unique across all XDE projects. This becomes
extremely important when attempting to resolve references between XDE models. For more information on
intermodel references and resolving them, see the XDE documentation.

The structure of the XDE models shown in Figure 1 is the focus of the remainder of this document.

4. RUP Model to XDE Model Mapping
Before describing how to represent the RUP model artifacts in XDE, it is important to address the confusion

between a "RUP model" and an "XDE model" because they are different things and the mapping from the RUP
models to the associated XDE models is not always one-to-one (close, but not one-to-one). Since "model" is used in
both RUP and XDE, the initial assumption is that they should be the same. However, the models in RUP separate
process concerns (analysis vs. design vs. implementation, etc.), where the models in XDE separate development
concerns (separate code models for describing the programming language packaging structure versus a virtual
directory structure, separate code models for different programming languages and development environments, etc.).
In order to alleviate this confusion, in the context of this white paper, the term “model” is explicitly qualified with
“RUP” or “XDE”.

Page 7 of 22

The following table summarizes the mapping from RUP model to XDE model. The XDE models are those models
introduced in the XDE Project Structure section. The structure of each of the XDE models is described in later
sections of this white paper.

RUP Model <XDE Project>: < XDE Model Name>
Use-Case Model Application Project: Use-Case Model
Analysis Model Application Project: Analysis Model
Design Model Application Project: Design Model
Data Model XDE Data Models

Data Modeling Project: Logical Data Model
Data Modeling Project: Vendor-specific Physical Data Model
Data Modeling Project: Vendor-specific Domain Model

Implementation Model Application Project: Implementation Model
Deployment Model Application Project: Deployment Model

5. Use-Case Model
The recommended structure of the “Use-Case Model” is shown in Figure 3.

Figure 3: "Use Case Model" Structure

The “Use-Case Model” is partitioned into two packages: “Actors” and “Use Cases”.

In addition to the Use-Case Model diagrams that contain the Actors and Use Cases, additional diagrams can be
used to clarify different aspects of the Use Cases. The following supplemental model elements may be included
“under” the Use Case model element in the Use-Case Model, as shown in Figure 3:

� The “Place Bid Local Use-Case Diagram” diagram contains the “Place Bid” Use Case and the Actors
 that participate in that Use Case.

� The “Place Bid Flows of Events” collaboration instance contains the interaction diagrams that describe

Page 8 of 22

graphically the flows of events described in the use-case description (i.e., the interactions between the
Actors and the Use Case). This collaboration instance should not be confused with Use-Case
Realizations, described in both the Analysis Model section and the Design Use-Case Realizations
section, as the collaboration instances in the “Use-Case Model” are strictly “black box” and do not
describe interactions of elements within the application.

� The “Place Bid Flow of Events” activity graph contains the activity diagrams that describe graphically
 the flows of events described in the use-case description.

In the example shown in Figure 3, the “Global View of Actors and Use Cases” diagram in Figure 3 contains all of the
Use Cases and Actors and their relationships, unlike the “Main” diagrams, which just contain the elements in the
packages in which the “Main” diagrams exist. If there are many Actors and Use Cases, the information on the “Global
View of Actors and Use Cases” diagram can be expressed using multiple diagrams.

The “Use-Case View” diagram represents the Use-Case View of the software architecture. For more information on
architectural views, see RUP.

If desired, additional packages can be created in the Actors and Use Cases packages to further organize the
contained model elements as shown in Figure 4.

Figure 4: Additional Use-Cases Package Partitioning

6. Analysis Model
The Analysis Model is where the Analysis Classes and analysis Use-Case Realizations reside.

Note: Whether or not a separate Analysis Model and Design Model should be maintained is a project-specific
decision. If a separate Analysis Model is not maintained, then the Analysis Classes will be moved into the
appropriate Design Model partition3 and refined. Another option is to simply create the Analysis Classes and analysis
Use-Case Realizations in the Design Model and then evolve them into their design form from there. See the Design
Model section for more information on how the Design Model is represented in XDE.

The recommended structure for the Analysis Model is shown in Figure 5.

3

As you will see later, the right “Overall Design Model partition” just might be a package in one of the XDE roundtrip models since
 design of technology-specific elements is performed in the roundtrip models.

Page 9 of 22

Figure 5: Analysis Model Structure

The “Analysis Elements” package contains the Analysis Classes. Instances of the Analysis Classes appear in the
diagrams in the "Analysis Use-Case Realizations" package.

In addition to Analysis Classes, packages can be defined in the “Analysis Elements” package to further partition the
contained Analysis Classes (see the “Key Abstractions” package in Figure 5). Such additional partitioning is optional,
especially if a separate Analysis Model is not to be maintained. In such cases, the Analysis Classes can be considered
“transient” (i.e., they only exist until they evolve into design elements), so their organization is not considered critical.
One possible exception is the key abstraction Analysis Classes.

As shown in Figure 5, the “Key Abstractions” package contains the Analysis Classes that are considered to represent
the key abstractions of the system. As noted earlier, this package is optional. An alternative is to represent the key
abstractions on a class diagram in the “Analysis Elements” package. However, creating a separate package provides a
more explicit categorization of Analysis Classes as key abstractions. In fact, even if a separate Analysis Model is not
maintained in its entirety, some projects may choose to maintain the key abstraction Analysis Classes. In such cases,
defining a separate package to contain the Analysis Classes that are maintained is helpful.
Note: The key abstractions also appear on the “Logical View: Key Abstractions” diagram in the “Overall Design
Model”. See the Design Model section for more information.

The “Analysis Use-Case Realizations” package contains the analysis-level Use-Case Realizations, which describe
how the Use Cases are performed in terms of the Analysis Classes in the “Analysis Elements” package. Each of the
analysis Use-Case Realizations realizes a Use Case in the Use-Case Model, has the same name as that Use Case, and
should have the structure as that shown in Figure 6.

Figure 6: “Analysis Use-Case Realization” Package Structure

Page 10 of 22

The “Participants” diagram shows the Analysis Classes (from the “Analysis Elements” package) participating in the
Use-Case Realization (that is, those Analysis Classes whose instances appear on the interaction diagrams) and the
relationships that support the collaboration described in the interaction diagrams.

The "flow" interaction instances ("Basic Flow" and "Alternate Flow 1") contain sequence diagrams that describe the
Use Case flows of events. There should be one interaction instance for each significant use-case flow of events. The
sequence diagrams in the interaction instances describe the flow between the participating Analysis Classes during the
execution of the associated Use Case.

7. Design Model
The RUP Design Model is represented by multiple XDE models - the “Overall Design Model” and the

roundtripped design elements that reside in separate XDE roundtrip models (roundtripped design elements are
detailed design elements that participate in roundtrip engineering). That way, the automation available in the
individual roundtrip models can be leveraged.

The “Overall Design Model” describes the design of the application as a whole and contains elements that span
multiple roundtrip models. It contains the logical partitions that inspire the organization of the individual roundtrip
models, as well as the Use-Case Realizations that tie everything together (the Use-Case Realizations describe the
collaboration amongst the design elements from the different roundtrip models). The “Overall Design Model” contains
diagrams that refer to the roundtripped design elements. For information on the individual XDE roundtrip models, see
the Implementation Model section.

Another possibility is to represent the Design Model and the Implementation Model in the same XDE code
model. This is only possible if you only have one target implementation language and your team is small.

Maintaining the “Overall Design Model” is optional, but may be a good idea for organizing diagrams, raising the
level of abstraction, etc., as well as providing a place for design elements while still figuring out what
implementation mechanism to apply.

The recommended structure of the “Overall Design Model” is shown in Figure 7.

Figure 7: Overall Design Model Structure

This Overall Design Model contains the following packages:

� The «layer» packages contain (or contain diagrams that reference) the design elements of the system
 (Design Classes, Interfaces, and Design Subsystems). This structure represents a particular
 partitioning strategy that we describe in the Design Layers section.

� The “Use-Case Realizations” package contains the design-level Use-Case Realizations. The internal
 structure of the Use-Case Realizations is discussed in more detail in the Design Use-Case Realizations
 section.

The diagrams representing architectural views include “View” in the diagram name. For more information on
architectural views, see RUP.

Page 11 of 22

The “Logical View: Key Abstractions” diagram contains the key abstractions of the system. There are several
options for maintaining these key abstractions:

� A complete Analysis Model is maintained. In that case, the “Logical View: Key Abstractions”
 diagram contains the Analysis Classes from the Analysis Model that represent the key abstractions of
 the system.

� A partial Analysis Model is maintained, namely, just the key abstractions. In that case, the “Logical
 View: Key Abstractions” diagram contains the Analysis Classes from the Analysis Model that
 represent the key abstractions of the system.

� No part of the Analysis Model is maintained. In that case, the Analysis Classes that represent the key
 abstractions can be maintained in a package in the Design Model, called “Key Abstractions”

For more information on the Analysis Model, see the Analysis Model section.

7.1 Design Layers

The «layer» packages contain the design elements of the system (e.g., Design Classes, Interfaces, and Design
Subsystems) that evolve from the Analysis Classes. The «layer» packages could contain any number of subpackages
that further partition the contained design elements. The design Use-Case Realizations (contained in the “Use-Case
Realizations” package of the “Overall Design Model” are discussed under the heading in the Design UseCase
Realizations section) are written in terms of the design elements contained in these packages.

The Design Model can follow any number of partitioning strategies. The partitioning strategy described in this
section is shown in Figure 8.

Figure 8: Design Package Partitioning Example

In this example, the first level packages are considered layers, where each layer has a specific responsibility. The
second level packages further partition the layer package elements by business functionality.

The “Presentation” layer package is responsible for handling interactions with the end user. In a .Net application, the
design elements that might reside in the “Presentation” layer package include Active Server Pages (ASP.NET). You can
further divide the “Presentation” layer package into sub-packages to group elements that belong to a related set of Use
Cases; for example, the “Auction Management” package in Figure 8.

The “Business” layer package is responsible for performing any business processing. In the “Overall Design Model”
structure presented in this document, the “Business” layer package is comprised of a set of design subsystem packages,
one per major business function (for example, the “Auction Management” and “User Account

Page 12 of 22

Management”, subsystem packages in Figure 8). Design Subsystem packages are described in more detail under the
heading in the Design Subsystems section.

The “Integration” layer package is responsible for providing access to back-end resources, including databases and
external systems. In the Design Model structure presented in this document, the “Integration” layer package is also
comprised of design subsystem packages, one per external system (for example, the “Credit Service” subsystem
package in Figure 8). Design Subsystem packages are described in more detail under the heading in the Design
Subsystems section.

The “Common Elements” layer package contains the elements that are shared across layers.

Again, the structure described in this section could be replaced with a different structure that reflects a different
partitioning strategy.

7.2 Design Subsystems

Design Subsystems are represented by subsystem packages in the “Overall Design Model”. Each design
subsystem package should have the same structure. The specifics of that structure vary depending on the level of
detail being captured for the Design Subsystem.

An example of a more formal and rigorous Design Subsystem structure is shown in Figure 9.

Figure 9: Design Subsystem Structure

This design subsystem package structure supports the definition of separate “Specification” and “Realization”
packages within the design subsystem package. This structure was influenced by the book titled UML Components: A
Simple Process for Specifying Component-Based Software written by J. Cheesman and J. Daniels. A simplified design
subsystem package structure that does not contain these partitions could be used without impacting the other model file
structures defined in this document. Each of the “Specification” and “Realization” packages is discussed in the
following sections.

7.2.1 Subsystem Specification
The “Specification” package contains a description of the Design Subsystem’s interfaces.4 An example of a

subsystem specification is shown in Figure 10.

Figure 10: Design Subsystem Specification Example

4

In this simple example, you might question the need for a separate package just for the interface. However, on a real project the
 package is worth maintaining because it can contain references to documents that describe the subsystem and, in particular,
 interface constraints such as preconditions and post conditions on the operations.

Page 13 of 22

7.2.2 Subsystem Realization

The “Realization” package contains a description of how the Design Subsystem specification is realized. An
example of the “Realization” package of a design subsystem package is shown in Figure 11.

Figure 11: Design Subsystem Realization Example

The “Realization Elements” diagram contains references to the design elements that realize the subsystem. The
design elements themselves reside in a .Net Code Model, where they participate in roundtrip engineering. For more
information, see the Implementation Model section.

The “Interface Operation Realizations” package contains collaboration instances that describe how the subsystem
elements realize the significant operations of Design Subsystem interfaces (in the “Specification” package). There is
one collaboration instance per significant subsystem interface operation.5 An example of an “Interface Operation
Realizations” package is shown in Figure 12.

Figure 12: Interface Operation Realizations Package Example

As with the analysis-level Use-Case Realizations (discussed earlier in the Analysis Model section) and the
design-level Use-Case Realizations (discussed later in the Design Use-Case Realizations section), each interface
operation realization contains a class diagram containing the subsystem elements that participate in the realization
(the “Participants” diagram in Figure 12), as well as interaction diagrams that describe how those participants
collaborate to perform the subsystem interface operation (the “Basic Flow” diagram in Figure 12).

5

Not all operations need to be defined at this level. Some simpler operations might not need a separate collaboration.

Page 14 of 22

7.3 Design Use-Case Realizations

The “Use-Case Realizations” package contains the design-level Use-Case Realizations. Each of the Use-Case
Realizations is associated with a Use Case in the Use-Case Model, has the same name as that Use Case, and should
have the structure shown in Figure 13.

Figure 13: Design Use-Case Realization Structure

The Use-Case Realization “Participants” diagram shows the design elements that participate in the Use-Case
Realization (that is, those design elements whose instances appear on the Use-Case Realization interaction
diagrams) and the relationships that support the collaborations described in the interaction diagrams.

The “Basic Flow” diagram is an example of an interaction diagram that describes the flow between the
participating design elements during the execution of the associated Use Case. There should be an interaction
instance for each flow of events in the Use Case.

It is important to note that the Use-Case Realization diagrams may (and usually do) contain references to design
elements that physically reside in separate XDE roundtrip models. The Use-Case Realization is where the
collaboration amongst elements in separate roundtrip models is demonstrated.

8. Data Model
The RUP Data Model is represented by multiple XDE model files:

� Logical Data Model (optional). Represents the Logical Data Model, which is an application
 independent view of the logical design of the database.

� Physical Data Model. Represents a database vendor-specific Physical Data Model. It contains
 the detailed model elements for defining the specific characteristics of the tables of the database.
 The “Physical Data Model” XDE model file also includes the database specific implementation

artifacts for implementing the tables in a vendor-specific database.

� Domain Model (optional). Represents the database vendor-specific data types that may be used
 to define consistent data types across the “Physical Data Model”.

The separation of the XDE model files provides the optimal flexibility for supported automation between the
“Overall Design Model”, the Data Model, and the physical database.

Each of these XDE model files is described in more detail below.

8.1 Logical Data Model (Optional)

The Logical Data Model may be used in situations where the project has a need to create a standalone logical data
representation of the key entities and relationships important to the design of the database. Creating a XDE Logical
Data Model is optional since the database design team may instead transform persistent Design Classes in the Design
Model to tables in the Data Model to create the initial physical database design structure directly in the

Page 15 of 22

XDE Physical Data Model (see the Physical Data Model section below).

The XDE Logical Data Model may be partitioned into subject area packages, as needed. Subject area packages
define logical groupings of entity classes. The XDE Logical Data Model may also contain a “Common Elements”
package that contains model elements that cross subject areas.

The diagrams with “View” in the name are used to document the Data View of the architecture. The “Data View:
Overall Logical Data Model Organization” diagram is used to document the high-level data organization of the Logical
Data Model, as expressed in the major partitions (i.e., packages) of the XDE Logical Data Model. The “Data View: Key
Logical Data Elements” is used to document the key logical elements of the Data Model. If a Logical Data Model were
being maintained (i.e., there is a separate “Logical Data Model”), then this diagram would contain elements from the
XDE Logical Data Model. For more information on architecture views, see RUP.

An example of the recommended structure for the XDE Logical Data Model is shown in Figure 14.

Figure 14: XDE Logical Data Model Structure

In this example, there are two subject area packages, “Auction Management” and “User Account Management”.
Each subject area package contains the entity classes that together comprise the Logical Data Model. There is not a
direct mapping to package structures in the Design Model though there may be some similarity.

8.2 Physical Data Model

The Physical Data Model contains the detailed database table and stored procedure designs that are used to
implement the database through the XDE Data Modeler forward engineering facilities. The Physical Data Model also
consists of the model elements used to define the physical storage configuration of the database. In general, the model
elements include the databases and tablespaces that comprise the physical layout of the database tables on the target
storage media.

When creating the XDE Physical Data Model, the Database Designer must select the appropriate target database.
Supported databases include: DB2 MVS, DB2 UDB, Oracle, Sybase, and SQL Server. XDE will default the XDE
model file name to the selected database. In the “Physical Data Model” example in this document, the XDE model file
name has been updated to “Physical Data Model”. A Database Designer may choose to accept the default name when
creating the “Physical Data Model”.

Page 16 of 22

An example of the recommended structure for the XDE Physical Data Model is shown in Figure 15.

Figure 15: XDE Physical Data Model Structure

The “Common Elements” package contains the database tables and views that cross the subject areas.

The “Database” package contains the model elements that define the physical storage configuration of the
database. It contains the databases and tablespaces that comprise the physical layout of the database tables on the target
storage media. Tablespaces are used to logically group tables within a database. For guidelines on defining tablespaces,
see RUP. The “Database” package may be partitioned into lower level packages as needed, depending on the
complexity of the application.

In the example shown in Figure 15, the “Database” package contains a single database, MyAuction, its associated
tablespace, PRIMARY, and the table realization relationships. The tablespace can be named any appropriate name for a
database project. For the MyAuction database, only one tablespace named PRIMARY is defined. When forward
engineering is performed, the tables linked to the database via the realization relationship with the database’s tablespace
are created (either in a database or in a DDL).

The “Reference Tables” package contains the static data tables that hold “constant” data information needed by the
application.

The “Stored Procedures” package contains all the classes that represent the database-stored procedures («stored
procedure container » classes and the associated «stored procedure» operations). Stored procedures that relate to a
single table can be packaged either in the “Stored Procedures” package or in the “Subject Area” package with the

Page 17 of 22

table the stored procedure references, depending on whether you want to represent a “stored procedure centric” or a
“table centric” view6.

The “Subject Areas” package contains packages that group logically related sets of tables and views7. It is
recommended that views be created in the subject area package along with the tables. This recommendation is purely
for organizational reasons. It can be helpful to keep views in the subject area where they are used, which places them in
the same subject areas as the tables. In this example shown in Figure 15, there are two subject area packages, “Auction
Management” and “User Account Management”. The number of subject area packages is dependent on the complexity
of the application. However, in general, the subject area packages in the Logical Data Model “inspire” the subject area
packages in the Physical Data Model. The subject areas in the Logical Data Model are abstractions of the subject areas
in the Physical Data Model.

The tables in the subject area packages contain the columns and triggers defined for the table. The tables are
created through one of the following

� XDE class to table transformation function.

� XDE reverse engineering an existing database function8.

� Manual creation by the Database Designer.

When reverse engineering an existing database, a schema package(s) are created in the XDE Physical Data Model.
The names of these packages are based on the database owner9 of the database being reversed engineered. It is
recommended that the reverse engineered tables be moved into subject area packages within the “Subject Areas”
package and that the reverse engineered schema packages be deleted. Moving the tables into subject area packages
functionally organizes the tables to allow the Database Designer to update the tables as necessary.

The diagrams with “View” in the name are used to document the Data View of the architecture. The “Data View:
Overall Physical Data Model Organization” diagram is used to document the high-level data organization of the
Physical Data Model, as expressed in the major partitions (i.e., packages) of the XDE Physical Data Model. For more
information on architecture views, see RUP.

8.3 Domain Model (Optional)

The Domain Model is an optional XDE model that is used to store the user-defined datatypes for the database.
Domains enable Database Designers to reuse element properties across the database design. A domain is used by the
Database Designer to consistently document the properties of a column through out the database. The name of the
column is defined in the table; the domain is used to define the TypeExpression of the column.

6

A table-centric view allows for better understanding of the database design / operation all in one view. A stored procedure centric
 view simplifies finding and changing/maintenance of the stored procedure.

7

Some may question the use of subject area packages in the physical data model, as it requires additional maintenance to maintain
 the logical and physical database subject area packages. The subject areas in the physical data model are here for
 consistency with the logical data model (if it is used) and more so for the case where the physical data model is “large” and
 there is no logical data model. In such a case the subject area packages can be used to manage the tables generated from
 the Class to Table transformation.

8 Typically the database is reverse engineered once, and then all future updates are synchronized using XDE’s Compare and Sync
functions.

9

Within XDE, the database owner is captured as a property of the <<database>> component. Inside the Location property, as part
 of the connection string, there is a schema attribute. When reverse engineering a database, this is typically the database
 owner.

Page 18 of 22

An example of the recommended structure for the XDE Domain Model10 is shown in Figure 16.

Figure 16: XDE Domain Model Structure

In this example demonstrates the SQL Server domain values organized within the “SQL Server Domain”
package. In cases where the Database Designer defines a large number of domains, it may be necessary for the
Database Designer to organize the domains using packages under the “SQL Server Domain” package.

9. Implementation Model
The Implementation Model, as defined in RUP, contains the implementation elements, both their visual and

physical representation (e.g., the UML elements representing the implementation elements, as well as the physical files
in the file system). The value of XDE with regards to the Implementation Model is its ability to automatically
synchronize these separate representations via roundtrip engineering.

Within XDE, the Implementation Model is represented in multiple XDE models, an example of which is shown in
Figure 17:

Figure 17: Implementation XDE Models

In this example, we defined the following XDE model files to represent the Implementation Model:

- The “AuctionManager C# Code Model” is an XDE code model file that contains the Microsoft®
 Visual C# code elements that constitute the Auction Manager Implementation Subsystem. The
 elements in this model participate in XDE roundtrip engineering.
-
- The “PearlCircleWeb C# Code Model” XDE model file contains the ASP.NET C# code elements
 (Web Forms, Web Controls, and HTTP Handlers) that constitute PearlCircle Web Implementation
 Subsystem. This model corresponds to a VS.NET Web Application project. The elements in this

model participate in XDE roundtrip engineering.

Keep in mind that there can only be one XDE code model file per VS.NET project. The selection of the number of
projects and individual models is an architectural choice and may vary for different projects. For more information,
see XDE online help.

Each of these models is described in more detail in a later section.

10

Within XDE, several vendor databases are supported, including DB2, Oracle, Sybase, and SQL Server. When creating a Domain
 XDE Data Model, the Database Designer will create the Domain XDE Data Model by selecting the appropriate vendor
 database. XDE will create a default list of domains for the selected database vendor.

Page 19 of 22

9.1 C# Code Model for Class Library Project

The “C# Code Implementation Model” contains the elements that are implemented using C#.

Figure 18: "Auction Manager C# Code Model" Structure

In this example, the structure of the “Auction Manager C# Code Model” reflects the structure of the “Overall
Design Model” (discussed in section 7). There is a package (representing a .NET namespace) for each “Overall
Design Model” package whose content will be implemented in C# (this includes Serviced Components and other
supporting C# classes). .NET namespaces in XDE are modeled as package with a namespace stereotype (closed
curly braces ‘{ }’ icon). Since the C# programming language does not allow spaces in namespace names, a C#
namespace name may not be identical to the name of the equivalent “Overall Design Model” model element.

As shown in Figure 18, the “C# Code Model” contains the visual representation of the source code files (the .cs
elements). XDE creates an Artifacts package for each code model file that contains the source code files. These
source code files map to the classes defined in the “Overall Design Model” (see section 7) that have evolved/matured
to the point where they can be implemented (and in the case of XDE, roundtrip engineered).

As we can see from Figure 18, the “C# Code Model” structure follows the convention of using the company name
as the initial C# namespace name. The company name for the sample application is “Pearl Circle”. Thus, the packages
containing the implementation elements are placed within the PearlCircle namespace. As a result, all C# elements
within the PearlCircle namespace will have a fully qualified name that is prefixed with “PearlCircle”. For example, the
fully qualified name of the AuctionManager namespace is “PearlCircleBusiness.AuctionManager”. The convention of
using the company name as the initial C# namespace name guarantees that C# class names will be unique, even if a
third-party C# class library is incorporated.

9.2 C# Code Model for Web Application Project
XDE Web Model contains elements that correspond to an Active Server Page .NET (ASP.NET) Web Application
project. Figure 19 provides an example of the “PearlCircleWeb” XDE code model file that presents the elements of the
ASP.NET project.

Page 20 of 22

Figure 19: "PearlCircle Web C# Model" Structure

In this example, the structure of the “PearlCircle Web C# Model” reflects the structure of the “Overall Design
Model” (discussed in section 7). There is a namespace for each package in the “Overall Design Model” whose content
will be implemented in C# (this includes code-behind classes and other supporting C# classes). .NET namespaces in
XDE are modeled as package with a namespace stereotype (closed curly braces ‘{ }’ icon). Since the C# programming
language does not allow spaces in namespace names, a C# namespace name may not be identical to the name of the
equivalent “Overall Design Model” model element.11

The C# code-behind classes (.aspx.cs or .ascx.cs) associated with the Web Forms and Web Controls, and other
supporting C# classes such as HttpHandlers, can be roundtrip engineered using XDE. Note that currently XDE does not
support RTE for .aspx or .ascx files.12The class CreateAuction shown in Figure 19 models the code-behind class
residing inside file CreateAuction.aspx.cs . In the Artifacts package, the CreateAuctiont.aspx.cs file is shown under the
CreateAuction.aspx file.

If all of the architecturally significant functionality is contained within the code-behind classes, then the
automatically generated XDE code model is all that is needed. However, in cases where an architecturally significant
function is implemented inside a Web Control file (.ascx), a class corresponding to this file may be manually added
to the model. An example of this is the Browse_Auction_Catalog class shown in Figure 19. Note that this class was
manually added to this diagram.

10. Deployment Model
The Deployment Model is represented in an XDE “Blank Model” file named “Deployment Model”.

The “Deployment Model” contains the nodes and their connections that represent the network configuration of the
deployment environment. It also identifies the implementation elements that will be deployed on these nodes.

An example “Deployment Model” is shown Figure 20.

11

In Visual Basic.Net, the project property “Root Namespace” must be the namespace that is also defined for the class you are
 forward engineering. The recommended best practice that also addresses this issue is to remove the text from the “Root
 Namespace” project property before reverse engineering the Visual Basic project. All namespaces will thereafter be handled
 via Namespace declarations in code.

12

The ASCX and ASPX files are created with the appropriate form and other required tags. For example if you add a label or
 textbox to the code-behind class in XDE, it will forward engineer the private member variable into the code-behind class. The
 only reason the controls do not appear in the Visual Studio Designer is that the tags in the ASPX and code in the code-behind
 to create and position those elements was not generated. For more information please see the VS.NET documentation.

Page 21 of 22

Figure 20: Deployment Model Structure

In this example, the identified nodes are the “Database Server”, “Application Server”, and “Web Server”. The
auctionmanagement.dll is deployed on the Web Server. The auctionmanager.dll and commonintegrationelements.dll are
deployed on the Application Server.

The “Deployment Model” model file may also contain architectural view diagrams. In Figure 20, the
“Deployment View” diagram represents the Deployment View of the architecture. For more information on
architectural views, see RUP.

Page 22 of 22

