IBM Rational PurifyPlus for Windows
IBM Rational Purify for Windows

Getting Started Guide

‘VERSION: 7.0.1

MATERIAL ID: GI11-9428-00

Contents

Welcome to PurifyPlus.......coviiiiiiiiiiiii ittt i 1
IBM Rational PurifyPlus: Whatitis........ i 1
Tips for development eNgINEEISo oottt et et e 2

Tips for test ENGINEEIS.« oot 3

Other PurifyPlus reSOUICESottt e e e e e e 4
Contacting IBM CUStOMET SUPPOTt ottt ittt ettt e e e 5
Getting Started: Purify........ccciiiiiiiiiiiiiii ittt i e 7
Purify for C/C++ developers and testers oottt 7
What it doeso 7

The DasiC StOPS « o v v ot ettt 9
Advanced features e 20

Purify for .NET managed code developers andtesters, 26
What it doest 26

The Dasic StePS .« . vt ettt e 27
Advanced features 35
Getting Started: PureCoverage.........c.coiiiiitiiienenenenncnenns 41
What 1t dOeS. . . .o 41
The DaSIC SEOPS. . v vt et ettt e et 43
Advanced featuresot e 49
Getting Started: Quantifycc0iiiiiiiiiiiiiiiiiiiiiiiiieas 57
What 1t doesS.o 57
The DasiC StePS. .« . o v vt ettt et e e e 58
Advanced features 68
NOLICES & v vvtiiiiiiiiiinnresneesessoessosnsosnssssssosnsosnssnns 77

Contents iii

iv Contents

Welcome to PurifyPlus

IBM Rational PurifyPlus: What it is

IBM® Rational® PurifyPlus™ consists of three dynamic software analysis
components that help you you develop high-quality applications more
efficiently:

Purify® An automatic error detection tool for finding memory errors and
leaks in every component of your program.

Quantify® A performance analysis tool for resolving performance
bottlenecks so your program can run faster.

PureCoverage® A code coverage tool for making sure your code is
thoroughly tested before you release it.

These tools are easy to use, yet provide invaluable information to help your
team develop faster and more reliable applications in C/C++, Visual Basic,
Java, or managed code in any language that Microsoft Visual Studio supports.

If you’re developing code in Visual Studio, start the PurifyPlus tools from the
Visual Studio menu. You can use Purify, for example, along with your Visual
Studio debugger and editor to save time correcting a software defect. You can
also use the tools as standalone applications when you don’t need all the
resources of Visual Studio.

If you’re testing software, incorporate PurifyPlus into existing test scripts and
harnesses to automate error detection, code-coverage monitoring, and
performance testing. Use the tools from the beginning with your nightly tests
so that you can easily spot regressions as soon as they occur.

Don’t waste days looking for problems that PurifyPlus can pinpoint in seconds.
And don’t release a product with hidden bugs that these tools can detect easily.
Consistent use of PurifyPlus, from the time you start development until you
ship, will provide solid benefits both to you and to your customers.

IBM Rational PurifyPlus: What itis 1

Tips for development engineers

Here are some tips for using PurifyPlus to develop fast, reliable code.

Find memory errors early Prevent performance
bottlenecks

Use Purify as you code to pinpoint

hard-to-find bugs. Memory errors Whenever you write new code or

don't always show up right away, but modify existing code, use Quantify to

they're the ones that will make your catch any incremental performance

program crash someday. losses before they turn into
bottlenecks.

Quantify gives you the information
you need to write more efficient code.
It can turn everyone on your team into
a performance engineer.

PureCoverage

Analyze code structure

A common reason for writing new
code is to improve the performance of
You haven’t Purify’d® code you a program. But how can you

haven’t run. effectively improve the performance of
code that might have been developed
over several years by many different
people?

Improve code coverage

Use PureCoverage to make sure
you're exercising all your code during
pre-checkin testing.

Use Quantify not only to find
performance bottlenecks, but also to
learn more about how your code is
structured. It will help you to make
effective performance improvements.

For C/C++ code, you can run
PureCoverage from within
Purify—just click Coverage, error,
and leak data in Purify’s Run Program
dialog.

2 Chapter - Welcome to PurifyPlus

Tips for test engineers

Here are some tips for using PurifyPlus to guarantee quality software.

Find the internal errors in
your code

For best results, run all your tests on a
Purify'd version of your program.
This will find the internal memory
problems that your external
functionality tests can't uncover.

part of your code is no longer being
exercised. Compare the most recent
PureCoverage results with a previous
run to see if you're still getting the
same level of coverage.

Test all your code daily

Use PureCoverage every day to make
sure you're testing all your code. With
ongoing coverage feedback, you can
be sure your tests are keeping pace
with your code development.

PureCoverage

If coverage goeS down.. ..

If code coverage drops, your existing
tests may not be exercising new code.
Or the new code might have
introduced a defect that's causing a
large section of code not to be tested.
Use an automated testing tool like
Rational Robot or Rational Visual
Test® to write test cases that exercise
the new code.

If performance drops ...

A sudden drop in performance is
probably caused by the most recent
code checked in. Let Quantify show
you which parts of your program
became slower compared to a previous
run that had acceptable performance.

IBM Rational PurifyPlus: What itis 3

Other PurifyPlus resources

Additional information is available for all the PurifyPlus tools:

To learn how to pinpoint hard-to-find bugs in C/C++ native and .NET managed code, go to

Getting Started: Purify on page 7

s St o
O o S

[)

B BTl ||| 2 Data BrowserPuiity'd stockves.... IS
° éumgzgz EnorView | Module View | File View | Functio [|[Enorview | Modue View | Fie View | Functio < [>
© Fin@oa || ® @ 28: Array bounds write in |[®@ Bu: Array bounds write in
@@ 2E0: Array bounds writa in ||| @ ABW: hrray bounds write in
@@ 2ER: Array hounds read in i|| € ABR: hrray bounds read in i
@ 2BR: Array bounds read in i
@ ABR: Array bounds read in i
@ ABW: Array bounds writa in
« o
R | |[Displayed Evors 1721 of 1721 Disp | IDisleyedEnars: 1701 of 1701 Disp

To learn how to highlight performance bottlenecks, go to

Getting Started: Quantify on page 57

Getting Started: PureCoverage on

3 Rational PureCoverage - [D:\PWALK\pdebug.c in pwalk.exe]
S Fie Edt View Settings Window Help

page 41

To learn how you can avoid shipping untested code, go to

ElR| Sl x| mIB| Fl L] AR

& 8 EE= 8|

s

char

return FALSE;

D\PWALKow: | Functons: [CreateDebug verts =] ol ¥
© fuobiee
5 Run @044 Tine = |
| o
126 |7+ Toral Function orestes debug event chiects for thresd synciel
1 leohomvents)
T

2Event (MAX_PATH ;

LoadString (GetloduleHandle (NULL), TDS_DEGEVNTACTIVE,
if (1 (LpDhgBvents DEBUGACTIVE] =

TRUE,
ssBvent]|]

ox
CraateBvent ((LBSECURITY_

il

| 7

- »| [Line 129011465 [Functr: CieateDebugverts
dow Help. e
=6 sl 2| 2| B plslE Alz]) B8] BlE B8] Moowes = o 5| &2
2] zom o e R |
/ - S
] [@
e {Eren) \
Onlde 71 onde "
u coter | ercom [cons | Popagsted 2]
713 208 azesm -
onc Lol taes i2brem
5| ormem
ool S| tes ogeran
353l 1'aes| 0205 =]
L Descendants rcn [cote | Foped]
Visble: 21/576 Highighied 7/7 |CPoeneew: ComenteMeterlint] [C \homet_eogthome: exe] time.
Ready. —i
=l
Cios 17 [Deendis 0 s 4

The online help systems for Purify, Quantify, and PureCoverage contain
detailed information about using the products and interpreting the data they

collect.

For information about other IBM Rational products, go to
http://www.ibm.com/software/rational.

4 Chapter - Welcome to PurifyPlus

Contacting IBM customer support

The IBM software support Internet site provides you with self-help resources
and electronic problem submission. The IBM Software Support Home page for
Rational products can be found at www.ibm.com/software/rational/support/.

Voice Support is available to all current contract holders by dialing a telephone
number in your country (where available). For specific country phone
numbers, go to www.ibm.com/planetwide/.

Note: When contacting IBM Software Support, please be prepared to supply
the following information:

Your name, company name, ICN number, telephone number, and e-mail
address

Your operating system, version number, and any service packs or patches
you have applied

Product name and release number

Your PMR number (if you are following up on a previously reported
problem)

Other PurifyPlus resources 5

6 Chapter - Welcome to PurifyPlus

Getting Started: Purify

Whether you’re working in C/C++ native code or .NET managed code,
Rational® Purify® can save you time and improve the quality of your code.

Purify for C/C++ developers and testers

What it does

Run-time memory errors and leaks are among the most difficult errors to locate
and the most important to correct. The symptoms of incorrect memory use are
unpredictable and typically appear far from the cause of the error. The errors
often remain undetected until triggered by some random event, so that a
program can seem to work correctly when in fact it’s only working by accident.

That’s where Purify can help you get ahead. Purify provides:
Fast, comprehensive run-time error detection for C/C++ programs
Error checking even when the source is not available
Code-coverage data that shows you code you haven’t tested

Purify automatically integrates into Microsoft Visual Studio and requires no
special builds. You can use Purify without changing the way you work.

Find errors before they occur

Purify detects the following kinds of memory errors—and many
others—before they actually occur, so that you can resolve them before they do
any damage:

Array bounds errors

Accesses through dangling pointers
Uninitialized memory reads
Memory allocation errors

Memory leaks

More information? For a complete list of the errors that Purify detects in
C/C++, select Purify Messages from the Purify Help menu.

Purify for C/C++ developers and testers 7

Check every component in your program

Software development today is component based. To deliver quality
applications on time, you not only need to make sure your own code is error
free, you also need a way to check the components your software uses—even
when you don’t have the source code. Errors that occur within a component
may be the result of your code supplying the component with unexpected data;
only Purify can detect such errors so that you can correct your use of the
component and improve the reliability of your application.

Purify can check every component in your program, even in complex
multi-threaded, multi-process applications, including:

.dIl’s, including Windows .d1l’s and Microsoft Foundation Class Library
.dll’s

C/C++ components embedded within Visual Basic applications, Internet
Explorer, Firefox, or any Microsoft Office application

Microsoft Excel and Microsoft Word plug-ins
COM-enabled applications using OLE and ActiveX controls

Purify checks calls to Windows API functions, including GDI, Internet
services, system registry, and COM and OLE interface API functions. It also
validates parameters such as memory handles and pointers.

Look for errors in the right places

In addition to finding the critical errors that occur when you exercise your
program, Purify can also tell you how thoroughly you’ve covered your
program’s code. If you have Rational PureCoverage installed, Purify can
collect coverage data automatically for every run, report exactly how much of
your code you’ve checked, and identify untested lines and functions. Using
this information you can make sure you’re finding the errors in all your code,
and that you won’t be caught off-guard by undiscovered problems in lines or
functions that you overlooked.

More information? Look up coverage data in the Purify online Help index.

Use Purify from the start

For maximum benefit, start using Purify as soon as your code is ready to run
and continue using it regularly throughout your development cycle, especially
for:

8 Chapter - Getting Started: Purify

The basic steps

Code check-in. Reduce the risk that bugs in your code might impact other
code modules.

Nightly tests. Incorporate Purify into your test harness to verify that
modules work together and to expose code dependencies and collisions.
Collect coverage data for every run to make sure that your tests are
exercising any code that has been added or modified.

Acceptance tests. Validate third-party code or code from other
development groups before incorporating it into your application.

By using Purify consistently from the time you start development, you’ll
release clean, reliable products on time.

With Purify, you can deliver more reliable C/C++ code in a few easy steps:
1 Run your program with Purify to collect:

« Error data

« Code coverage data
2 Analyze the error data and correct your source code.

3 Ifyou’ve collected coverage data, analyze it to find any parts of your code
that you have not Purify’d®.

4 Rerun your program with Purify.

The following pages show you how to use Purify integrated with Microsoft
Visual Studio, but you can also use Purify in other ways. Read the following:

Using Purify standalone on page 22

Testing C/C++ code with the command-line interface on page 23.

Running a C/C++ program with Purify
Open your project in Visual Studio, then engage Purify from the Purify menu.

If you have installed Rational PureCoverage, select the menu item PurifyPlus
> Purify > Collect Coverage Data to collect coverage data in addition to
checking for errors and memory leaks.

Build and execute your program using commands from the Visual Studio Build
menu. To get the maximum level of detail in Purify error and coverage data,
build your program with debug and relocation data.

Purify for C/C++ developers and testers 9

More information? For information about building programs with debug and
relocation data, look up debug data in the Purify online Help index.

Purify copies the program and each library the program calls, then instruments
the copies using Object Code Insertion (OCI) technology. The instrumentation
process inserts instructions that validate every read, write, and memory
allocation and deallocation. If you’re collecting coverage data, Purify also
inserts instructions that increment counters when you exercise specific lines
and functions.

Purify reports its progress as it instruments each module.

. Purify Instrumenting stockvch.exe ... = s
The module that Purify is

currently instrumenting ——{wp stockvcFexe 344150 Precize Line [00 .
RPCLTCI.DLL 13584 Minimal Ewclude |
RPCLTS1.0LL 8976 Minimal Exclude |
KERMEL32DLL 372436 Minimal | Exclude |
USER32DLL 330512 Minimal Exclude |
[
[
[
[

The instrumentation level
for error checking and

A GDI32DLL 165648 Minimal Exclude
coverage monitoring for COMDLG3ZDLL 185104 Minimal Exclude

each module 'WINSPOOLDRY 925944 Minimal Exclude
ADVAFIZZDLL 246544 Minimal Exclude

LCancel Instrumentation | Help |

Purify instruments each module at a default instrumentation level. If you want
to focus on a specific part of your program, you can override the default and
customize the instrumentation level.

More information? For an explanation of instrumentation levels and how to
use them, read Customizing instrumentation on page 20. For more detail, look
up instrumenting in the Purify online Help index.

Purify caches the instrumented copy of each module. When you rerun a
program, Purify saves time and resources by using the cached modules,
re-instrumenting only the ones that have changed since the previous run.

As you exercise your program, Purify detects run-time errors and memory
leaks and displays them in an Error View tab in the Purify Data Browser
window.

10 Chapter - Getting Started: Purify

%, stackvcb - Microsoft Visual C++ - [Rational Purify Main Window]

File Edit View Insert Project Buld Tools Puify PureCowerage HQuantfy Window Help . = |
EN : v 7
2 zEd el o BER G
R EE GRS
2= B | Pt
Bl Bl | Data Browser:Purify'd stockveb.ene M= B
B wakapac 2 ® suotios | Fevovien |oddeVien| Flevien| FuncinGotven] |
o [T Stock O Finat odule View | File View | Function List View
B3 5¢ € Starting Purify'd stockvce.exe at D2/05/99 16:22:52 a
[© starting main
: . 1# B-@) 2BW: Array bounds write in CStockipp::CStockippivoid
Purlfy Error View tab, E -4, UMR: Uninitialized memory read in SetWindowTexth {14
Data Browser window [# B4 UMR: Uninitialized memory read in stramp {17 occurre
[# B4, UMR: Uninitialized memory read in lstrleni {14 ocow
[# B4, UMR: Uninitialized memory read in MultiByteToWideCh:
[# B4, UMR: Uninitialized memory read in MultiByteToWideCh
[# @) 2BW: Array bounds write in sprintf {47 occurrences}
[@) ABR: Array bounds read in SetWindowTextk {646 occur:
[# @) 2BR: Array bounds read in lstrlenk {230 occurrences
[# @) ABR: Array bounds read in SetWindowTextk {184 occur:
[#e @) 2BW: Array bounds write in sprintf {13 occurrences} v
an il i | o
L] N | | [Displayed Enors: 1721 of 1721 Displayed Warmings: 530153 Bytes leaked: 040 ZI
H[Purify: Instrumenting D:“Program Files“Rational~Furify-sanples-StockNl-Releasesstockvos B
d|Purify: Instrumsntation finished =
JJ Build { Debug § Find in Files 1 & Find in Files2 §, Results 3 SCL Debugging / HLU »
Ready A

More information? Look up error view in the Purify online Help index.

Note: If you’re debugging client/server and multi-process applications, you
can debug several processes and see the error reports for each running
application simultaneously. To do this, run each process in a separate instance
of Visual Studio with Purify engaged. Alternatively, you can use the standalone
Purify user interface. See Using Purify standalone on page 22.

Seeing all your errors at a glance

Purify displays error and warning messages about run-time errors and memory
leaks, and informational messages about the progress of your program’s
execution.

Purify for C/C++ developers and testers 11

Color-coded icons show message severity:

ﬂinformational &Waming Oerror

¥ Data Browser: Purify'd stockvcE. exe

Errar View | Module View | File iew | Function List View |

I:I--o Starting Purify'd stockwveh.exe at 08705799 16:22:52 =
¥ Starting main

Acronyms like ABW
identify message type

]--& UME: Uninitialized memory read in
74 UMR: Uninitialized memory read in str Copy
]--& UME: Uninitialized memory read in lst
H-# UMR: Uninitialized memory read in Mul Submit Clearfues Defect ances

]--& UME: Uninitialized memory read in Mul o ancas
- AEW: Ar h s ite i intf {4 »
H- @ ray bounds write in sprin { T —

[Callapse

]--0 AER: Array bounds read in lstrlend {8
H-@) AER: Array bounds read in SetWindowTe HuickFilter
]--0 ABW: Array bounds write in sprintf {1 Cioate Filter..
s - EXH: Handled exception in AfxThrowllse ancal
Foradescrlptlon qfa J--g HAN: Handle 0x00000001 is invalid in | diew Souce HE e
message, right-click 7 HAN: Handle OxEEEEEfff is invalid in | Select SouceFile
the message, then ¥ Summary of all memory leaks... {0 bytes, 0 blocks)

select Describe - ¥ Summary of all memory in uss... {29034 bytes, 64 blocks) -
| | ’I—I

T
£
£
£
£
£
£
I:I--o AER: Array bounds read in SetWindowTe
£
£
£
£
£
£

|Displayed Ermorg: 1721 of 1721 Displayed Warnings: 53 of 53 Bytes leaked: 0+0 | o

When you exit the program, Purify reports memory leaks. In addition to
memory leaks, you can set Purify to report memory in use at exit and handles
in use at exit.

More information? Look up error and leak settings in the Purify online Help
index.

12 Chapter - Getting Started: Purify

When identical errors repeat

An error often repeats many times in a program, particularly if it occurs inside
a loop. To provide a concise overview of a program’s errors, Purify by default
displays each error message only once, the first time an error occurs, and then
updates a counter whenever the error repeats.

This uninitialized memory
read (UMR) occurred 17 times

#¥ Data Browser: Purify'd stockvcE. exe
Ermar Wiew | Module View | File Wiew | Function List Viewl

[]--o 2tarting Purify'd stockvct.eowxe at 02/05799 [16:22:52 -
¥ Starting main
]--0 AEW: Array bounds write in CE2tocklpp::CStogkipp(void)] {1 occurrencal
]--& UME: Uninitialized memory read in SetWindowTextA {14 occurrances}

: Uninitializ in stramp {17 o =}

1 memory read

£

£

£]

[: Uninitialized memory read in lstrlend {14 occurrences}
[]--& UME: Uninitialized memory read in MultiByteToWideChar {3 ocourrences
[]--& UME: Uninitialized memory read in MultiByteToWideChar {3 ocourrences
I:I--o AEW: Array bounds write in sprintf {47 occurrencas}

I:I--o AER: Array bounds read in SotWindowTextld {646 occurrencas}
I:I--o AER: Array bounds read in lstrlend {230 occurrencas}

I:I--o AER: Array bounds read in SotWindowTexti {184 occurrencas}
I:I--o AEW: Array bounds write in sprintf {13 occurrencas}

I:I--o EXH: Handled exception in AfxThrowlUserException(void) {1 occurrencel
/%, HAN: Handle 0x00000001 is invalid in GetObjectW {1 occurrsnca} e
[]--& HAN: Handle OxEEfff£fff is invalid in GetObjectW {1 occurrenca}l

o Summary of all memory leaks... {0 bytes, 0 blocks}

I:I--o Bummary of all memory in use... {29034 byte=., 64 blocks} -

[l o
|Displayed Ermorg: 1721 of 1721 Displayed Warnings: 53 of 53 Bytes leaked: 0+0 | o

More information? 1f you want Purify to display each occurrence of a
message individually, instead of reporting counts, you can change the default
setting. Look up error and leak settings in the Purify online Help index.

Focusing on critical errors first

A large program can generate hundreds of messages. To focus on the most
critical error messages quickly, create filters to hide all other messages from
the display.

Purify for C/C++ developers and testers 13

You can filter messages individually, or you can filter them based on their type
and source. Consider hiding all informational messages, for example, or all
messages originating from a specific file.

An unfiltered error view displays all the A filtered error view displays only the
messages from the program messages you want to see

¥ D ata Browser:Purily'd stockvcb_exe

Errar View I Madule Viewl File View | Function List Wiew |

[]--o Starting Purify'd stockvcé.exe at 08/05/99 16:22:52 -
¥ Starting main

Describe AB'W: Aray Bounds Wiite

in SatWindowTextld {14 occurrences}

&
B
B4 TMR: | pony in stremp {17 occurrences}
B TMR in lstrleni {14 nceurrencas}
. . [, MR Subrmit Cleart]uest Defect in MultiByteToWidseChar {3 ocourrences
nght'Cth amessage []--& TUME. : Eynand in MultiBytaToWideChar {3 ocourrences
and select QuickFilter) AEW: E_D o Branch ntf {47 occurrences}
. E-@ apR, | PonosEnt ndowTexth {646 occurrancas}
to hlde the message [+ 0 ABE Collapz2 gnd {830 ocourrencas}
immediate]y) JEE: BuickFilter ndowTextd {184 ocourrences}
B XBW: | Cieate Fiter... ntf {13 occurrences}
-4 EXH i - rowllsarException (void) {1 oceourrence}
Or select oA HaN e S ource il id in GetObjectW {1l occurrenca)} s
Create Filter to define []% gﬁ;na_x ¥ Data Browser:Puiify'd stockvch.exe

a set 5 Summar | Evorvies | Modue view | File Visw | Function Listvisw |

: Array bounds write in CStocklipp::CStockhpp(wvoid) {1 occurrenca}
: Array bounds write in sprintf {47 occurrencas]}

: Array hounds read in SetWindowTextld {646 ocourrancas)

: Array hounds read in lstrlend {230 occurrences}

: Array bounds read in SetWindowTexth {184 occurrences}

@) 2BW: Array bounds write in sprintf {13 occurrences}

of filtering criteria

Dizplayed Emars: 13

| Displayed Errors: 1721 of 1721 Displayed Warings: O of 53 Butes leaked: 0+0 [4

Once created, filters apply to the current run and to all future runs of the
program until you disable them. Disabling a filter causes hidden messages to
be redisplayed in the error view.

14 Chapter - Getting Started: Purify

Working with filters

Purify filters are very flexible. Click the Filter Manager tool to create
individual filters or groups of filters, and to apply them to specific programs or
modules. You can also create global filters that apply to all programs and
modules. And you can share filters, which Purify saves as .pft files, with other
members of your team.

Click to enable or ~ The checked filters apply to the selected program
disable filters until you disable or delete them

Purify Filter Manager: Ermor Data - stockvchb_exe
Filter Edit View Help

= Q All Filkers Type | Enabled | Date | Comment |
[he Filter Manager creates a —f— EI . B stockvce exe i Filker Yes 08/06/3310:28:08 QuickFilker
ilter group for each program b (221 My Filters F) HAN: Handie .. Filer ‘es 08/06/3310:28:08 QuickFilter
you run [CAMy Filters Group es 02/06/99 1003719 Assigned to GB
g; Starting Purify... Filter ‘Yes 08/06/9910:27:12
(] % UMR: Uriinitia... Filker Ma 02/06/93 10:55:02
Drag and drop filters to ‘
move or copy them

0k I Cancel | Apply | Help |

More information? Purify provides filters for coverage data as well as for error
data. Look up filtering data in the Purify online Help index.

In addition to filtering, you can also use Purify’s PowerCheck feature to focus
on specific modules and simultaneously minimize instrumentation time. For
information about the PowerCheck feature, read Customizing instrumentation
on page 20.

Analyzing Purify error data

You can expand Purify’s messages to pinpoint where errors occur and to obtain
diagnostic information for understanding why they occur.

Purify for C/C++ developers and testers 15

The location in memory
where the error occurs

Call stack showing
the function calls
leading to the error

Flag indicating the line
where the error occurs

Call stack showing the
function calls leading to the
allocation of the

memory block

associated with the error

Here’s an example of an expanded ABW (array bounds write) error message:

¥ Data Browser:Purify'd stockvcb.exe |_ (O] x|
Emrar View |Modu|a V\ewl File: Viawl Function List V\ewl
Elo ABW: Array bounds writa in CStockhpp::CStockhpp(void)] {1 OCCUrrance} 4|
Writing 1 byte to 0x001540f2 (1 byte at 0x001540f2 illagal)
Addrass 0x001540£2 i=s 1 byte past tha and of a 20 bytae block at 0Os
Addrass 0x001540£2 point= to a HeapAlloc'd block in tha dafaunlt he
Thraad ID: 0Oxch
=2 Error location
B- CBtockipp::C8tockapp (void) [Stock.cpp:156]
CStockipp: :C8tockippi)
i
m_Ticker = (char *)Heaphlloc|CGetProcessHeap(), 0, TICKEE_
» m_Ticker [TICKER_SIZE] = 0;
}
FEURGEEEII i i
[+ $E188 (C++ ctor/dtor) [Btock.cpp:162]
2E191 (C++ ctorjfdtor) [stockwceh . axa]
_unlockaxit [stockwceh . axa]
WinMainCRTStartup [memcpy.obj]
=2 Allocation location
Heapillac [KERNELS2.411]
+ CBtockhpp: :C2tockdpp (void) [2tock.cpp:155] -
| | _'l_I
|Displa_l,led Errars: 1721 of 1721 Displayed " amings: 53 of 53 Bytes leaked: 0+0 ‘ S

The level of detail provided in call stacks depends on the availability of debug
and relocation data. Even if you build your program in release mode, you can
still get the highest possible level of detail. For more information, look up
debug data (C/C++), release version in the Purify online Help index.

You can customize the format of Purify’s messages. For example, you can
increase the number of lines of source code that are displayed, or include
instruction pointers and offsets to make locating errors easier.

More information? Look up preferences, source code (C/C++) in the Purify
online Help index.

16 Chapter - Getting Started: Purify

Correcting errors

Purify makes it easy to correct errors.

Data Browser:Pur

Error View | adule Viewl File Viewl Functior List V\ewl

E--o ABW: Array bounds write in CStockipp::CStockippivoid) {1 ocourrence}a|
Writing 1 byts to O0x001540f8 (1 byte at 0x001540f8 illegal)
Address O0x001540£28 is 1 byte past the ond of a B0 byte block at 0O
Addross 0x001540£8 points to a Heapilloc'd block in the default he
Thread ID: O0xch

[Error location

CEtocklipp: 1CEtockhpp (void) [Stock.cpp:lSa]

CEtockipp: :CStockApp()

i

m_Ticker = {char *)HeapAlloc(GetProcessHeap(). 0. TICKER_
» m_Ticksr [TICKER_SIZE] = 0O;
¥

Double-click
the line where
the error occurs

Ny R N N RN NN N NS NN A NN
$E198 (C++ ctor/dtor) [Stock.cpp:162]

$E191 (C++ ctor/dtor) [stockved . axa]

_unlockexit [stockwveh . axa)

WinMainCRTEtartup [memcpy.obi]

Allocation location

Heaphllos [EERNEL32.411]
8-, stockvce - Microsoft Visual C++ - [stock_cpp] i A |
L e Edit Wiew Insert Project Buid Tools Puify PueCoverage Quantfy Window Help |
Displayed Errc - o |
— 2 |=md@ tme o |BER GTckersizE - m‘”@m,{, (N
EREE PR R R R
x4 /# Standard print setup command j
ON_COMMAND(ID_FILE_PRINT_SETUF, CVinkpp: :OnFilePrintSetup) =
3 Workspace 'st & END_WESSAGE_NAP()
=8 StockvC
El asuwc(TEPP TP TP TP IS TP TIPS TI TIPS

/7 CStockApp construction

CS5tockipp: CStockApp() s
{

=nkl loc(GetProcsssHean(). 0. TICKER SIZE):
-0

. w

Purify opens the ihlj
source COde ln the - = . LTSS

editor, positioned at fac@R KIS ;IJ

the exact location Hl[Furify. Instrumenting D.~Frogram Files~Rational“Purify~samples StockHT Release stocka]
dl|Purify: Instrumentation finished =

of the error H Build 4 Debug % Find in Files 1 % Find in Files2 & Results) SOL Debugging 7 Tl 3
Peady [156, Col 1 REC [COL [vA [READ |

More information? Look up source code, editing in the Purify online Help
index.

Checking code coverage with Purify

To make sure that you find errors in your code wherever they occur, use Purify
to monitor code coverage each time you run your program. With Purify’s
coverage feature, you can check that you’re exercising all your code,
especially those parts that have recently been added or modified.

Purify for C/C++ developers and testers 17

Purify displays coverage data in views that you can sort to find the largest gaps

in your testing.

The Module View tab The File View tab The Function List View tab lists
groups functions based groups functions all functions in the program across
on module based on source file modules and files

4 Data Browser: Purify'd stockvcE. exe

Error Wigw Module Yiew | File Viewl Function List View
Click any column header Functions | Functi ¢ Functi Lines |Lines | % Lines 4|
Coverage Item Calls | Missed Hit Hit Missed | Hit Hit
to sort the coverage data
- @ CDialog:HandlelnitDialogUL.| 1 hit ikl g 4211
- @ CDiglog:HandleSetFortiUik. | 1 hit 0 3 100.00
- @ CDiglog:InitdodalindirectiDl.| 0 mizged 5 0 0o J
- @ CDiglog:Initdodalindirectjve.| 0 mizged 5 0 0o
- @ CDialog:OnCancel(void] a miszed 2 1] 0.0
- @ CDialog:OnCrdMsgUINT .| 12 hit 7 7 50.00
- @ CDialog:OnCommandHelp(L..| 0 miszed 9 1] 0.00
- @ CDialog:OnCHCalar[CDC = C.| 26 hit 0 2 100.00
=] OnHelpHiTesiUIN.| - 0 miszed 4 1] 0.0
Double-click a ™ il oid) 1 5
function to display it in - % CDislog: 1 bit 0 4 100.00
an Annotated Source - @ CDialog:OnSetFont(CFont * 1 h!t 0 1 100.00
. - @ CDialog::Postt odalfvoid) 1 hit 1 9 90.00
window - @ CDialog::PrelnitDialogfvaid) 1 hit 0 1 100,00 |-
Kl | LIJ
| Coverage Item: Azcending order | Furmction: Chialag::OninitDialoglveid) i

Purify can also display line-by-line coverage information marked directly on a

copy of your code in an Annotated Source window. The color of each
code indicates whether it is tested, untested, or partially tested, so that
tell at a glance where you need to tighten up your testing.

Click to display information

The Annotated Source about color coding

window displays coverage
information in a copy of
your code —i— Funetions: | CDialog::OnlnitDialag(void) 7| Colas: =]

B D:\Program Files\Microsoft ¥isual 5tudio\YC98\MFC\SRCAdlgcore.cpp in stockvch.exe

line of
you can

Source

Lo 662 ff exeacute dialog ET_DLEINIT resource
This line was 663 EOOL bDlgInit:
exercised once 1 664 if {m_lpDialogInit != MULL)
o 665 WDlgInit = ExecuteDlgInitim_ lpDialogInit):
This line was not 0 666 alsa
exercised 1 667 WDlgInit = ExecuteDlglInitim_lp==zTamplatelama) ;
668
1 G5 if [!EDlglnit)
670 i
671 TRACEQD (["Warning: ExecuteDlglInit failed during dials
672 EndDialogi-1);
1 673 raturn FALSE;
674 1 -
J | of

=

—

|Line: BB of 832 |Functi0n: CDialog:: OnlnitDialog(woid)

18 Chapter - Getting Started: Purify

A color-coded icon
indicates the maximum
message severity
displayed in the

error view for the run

Based on the coverage data, refine your approach to exercising your code to
make sure you are testing all the critical lines and functions. If you are testing
manually, try different menu commands, or enter new values for variables. If
you are testing automatically, revise or add test scripts.

More information? Look up coverage data (C/C++) in the Purify online Help
index.

Comparing program runs

When you are satisfied that you’ve made good progress in eliminating errors,
and that you can exercise the parts of your program that most need testing,
rebuild. Then rerun the program under Purify.

After rerunning your corrected program, you can easily compare runs to verify
your corrections. Purify’s Navigator window, which you can display from the
Purify View menu, helps you keep track of multiple runs and multiple
programs.

The Navigator window groups runs by program

¥ R ational Purify Main Window
stockyvoh. exe #¥ Data Browser:Purify'd stockvcé.... =] E3
g ;um;%gj[||| Erroriew I Module iew | File iew | Functio 4| ¥
un
: o Fun @ 084 bounds write in 0 ABW: Array bhounds write in
: Array bounds write in © 2EW: Array bounds write in
: Array bounds read in i @ RER: Array bounds read in |
: Array bounds read in | 0 ABR: Array hounds read in
+ : Array bounds read in i
=) ABW: Array bounds write in
|| I— I ||| | B
ll_l LI |D|splayed Emors: 1721 of 1721 Displayed Warnings: 2 ‘D\sp\ayed Erors: 1707 of 1701 Displayed Warmings: 2

More information? You can compare coverage data from different runs using
the Compare Runs tool @ . Look up comparing runs in the Purify online Help
index.

Saving Purify data

You can save Purify error data from a run and analyze it later, share it with
other members of your team, or include it in reports. Purify can save data in the
following formats:

Purify for C/C++ developers and testers 19

Advanced features

Use the PowerCheck
tab in the settings
dialogs to modify

default levels for
error detection . . .

and for coverage
monitoring

» Purify data files (.pfy, .pcy). The file extension Purify uses depends on
whether you are saving error data alone, or error and coverage data. You
can save merged coverage data to PureCoverage data files (.cfy).

» ASCII text files (.txt). You can process this data with scripts or use it in
spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help index.

Customizing instrumentation

Purify uses one of the following error-checking instrumentation levels as the
default for each module, depending on the module’s size and the availability of
debug and relocation data:

» Precise instrumentation, which provides full run-time error detection to
pinpoint problems in any part of your program

" Minimal instrumentation, which improves Purify’s performance while
providing a basic level of error detection

For coverage monitoring, Purify uses one of the following levels as the default:
v Line-level instrumentation, which reports line-by-line coverage data

" Function-level instrumentation, which improves performance but reports
only function-by-function coverage data

Purify Settings for D:\Program Files\R ational\Purify\samplesi\Stock. .. B [E3

Erors and Leaks PowerCheck I Files I Ad\-’ancedl

— Detault errar lewvel
Use minimal instrumentation when
¥ The module doesn't contain debugaing information

[The maduls is larger than [1 200 EB

— Default coverage lewel
| Line
" Eunction

¥ Exclude all modules in Windows directories

Modules... II Click to override
the defaults for

ok | cance | Hep || individual modules

20 Chapter - Getting Started: Purify

Select one or
more modules
in the list

Then specify the ———

instrumentation
level for the
selected modules

You can override the default and specify the level for each module to meet
your own requirements.

Purify Module Instrumentation EHE
| x

Purify | Sizel Coverage | Debug |A
[Precize] 348248 [Line) Yes

Module

1 nk35hapstem32vpolc]. [Minirnal] 13584 ([Exclude] Mo
cwinnt3Bhapstem32intshui.dl [Minirnal] 37648 [Exclude] Mo
cwwinnt3Bhaystem32hole 32 dI [Minirnal] T04272 [Exclude] Mo b
chwinnt 3B apsten32hnetrap. di [Minirnal] 17168 [Exclude] Mo
chwwinnt3Bhaystem32inetapi32 i [Minirnal] 224528 ([Exclude] Mo
cwwinnt38haystemn 32hzamlib. dil [Minirnal] 41744 [Exclude] Mo
cwinnt3Bhaystem32mevert. dl [Minirnal] 254005 [Exclude] “es

o wwinnt3Bhapstem 32hwersion. dil [Minirnal] 36112 [Exclude] Mo
c:hinnt35haustem32hiz32.dil [tinirnall 12560 (Excludel Mo LI
_—Errorlevel— Coverage level ¥ Show full path names

& Default & Default

" Precise Line

' Minimal " Eunction

 Epclude

Llear Cache | QK I Cancel | Help |

Try using the Precise error level for the most critical modules in your program
and the Minimal level for the others. Later, you can change the Minimal level
to Precise for a thorough check of the other modules.

More information? Look up instrumentation levels (C/C++) and powercheck
settings (C/C++) in the Purify online Help index.

Using just-in-time debugging

Purify’s just-in-time debugging support provides instant access to your
debugger when you need to solve tough problems. Click @ to enable Break
on Error. Purify now stops your program just before an error executes so that
you can debug it. You can also run a Purify’d program directly under the
debugger.

Purify for C/C++ developers and testers 21

/# Data Browser:Purify'd stockvch.exe o [m]
Error View I

0 ABW: Array hounds write in CStocklpp::CEtockipp(woid) {1 ocourrencal

i j -in-ti] + stockwcb3PC_D_Program Files_Rational_Purify_samples_5Stoc _Release.exe - Application E...
With just-in-time PC_D_P\ Files_R: I_Purif les_StockMT_Rel Appl E..H
debugglng, Purlfy raises a The exception Breakpaint
breakpoint exception when A breakpoint has been reached.

[0x80000003) occurred in the application at location 0:6fca82cd.

it detects an
. Click on OF ta terminate the application
€ITor or warning Click on CANCEL ta debug the application

B

Clle Cancel to explore the \D\sp\ayed Erorg: 10f 1 Displayed Warmings: Dof 0 Bytes leaked: [+
error in your debugger

To quickly debug only the most critical errors in your program, use Break on
Error together with Purify filters. First, filter out all the less critical messages,
then enable Break on Error. Purify breaks only for the unfiltered messages.
When you’re ready to debug the remaining errors, just disable the filters.

More information? Look up break on error tool (C/C++) in the Purify online
Help index.

Using Purify standalone

When you don’t need all of the Microsoft Visual Studio resources, you can use
Purify standalone. Purify’s independent user interface provides the same
error-detection and coverage capabilities as when you use Purify integrated
with Visual Studio.

Note: You can also use Purify’s independent user interface while continuing to
work integrated with Visual Studio by deselecting Embed Data Browsers in the
Purify Settings menu.

To use Purify as a standalone application, launch Purify from the Start menu.
Then click Run in the Purify Welcome Screen to display the Run Program
dialog.

22 Chapter - Getting Started: Purify

Use the Browse button to
select the program that
you want to check . . .

and select whether you
want to collect Error
and leak data, or
Coverage, error, and
leak data

Run Prograim HE

Program name: ‘
I =L — Then click
Command-line arguments: Run

Cancel

| =]
) Settings...
“Warking directary

| =

i Collect:
 Eror and leak data. ™ Run undler the debugger

& Coverage, emor, and leak data. | Balse consale after exit

 Memaory profiling data

Purify instruments your code and displays the results in a Data Browser
window.

More information? For information about a tool, menu command, or dialog,
click and then click the item.

Testing C/C++ code with the command-line interface

Using the Purify command-line interface, you can use Purify with existing
makefiles, batch files, or Perl scripts. For example, if you have a test script that
runs a program, you can easily modify the script to instrument and run the
program. To do this, change the line that runs Exename.exe to:

purify Exename.exe

Alternatively, to run the instrumented version of Exename . exe consistently
throughout your tests, add this line to the beginning of your test script:

purify /Replace=yes /Run=no Exename.exe

This line instructs Purify to save the original Exename.exe to a .bak file, and
to instrument Exename.exe but not to run it at this time. Now, whenever your
test script runs Exename. exe, it runs the instrumented version of the program,
providing Purify’s detailed diagnostics.

To collect coverage data as well as error data when you run a program from the
command line, use the /Coverage option:
purify /Coverage=yes Exename.exe

You can run Purify without the graphical interface by using

the /saveTextData option. This option saves Purify’s diagnostic messages to
a text output file. You can use the error and warning messages in this file as
additional criteria for your test results.

Purify for C/C++ developers and testers 23

More information? Look up command line in the Purify online Help index.

Extending error checking with Purify API functions

Purify includes a set of API functions that extend its error checking capabilities
and give you greater control over tracking errors.

Using Purify’s API functions, you can set memory state, test memory state, and
search for memory and handle leaks. For example, by default Purify reports
memory leaks only when you exit your program. But you can use the API
function PurifyNewLeaks to check for leaks more frequently. Click the
NewLeaks tool to call PurifyNewLeaks while your program is running,
or add calls to PurifyNewLeaks at key points in your code. Purify reports any
new memory leaks it has detected since the last time you called the function.
This periodic checking enables you to track memory leaks more closely.

You can call Purify API functions from the Purify View menu as your program
runs. You can also call them from the QuickWatch dialog in the Visual Studio
debugger, as well as by including them in your code.

More information? For the complete listing of Purify API functions, including
functions related to coverage monitoring, look up api function list. For
instructions on using the functions, look up api functions, using in the Purify
online Help index.

Using IBM Rational product integrations

Rational tools integrate into your working environment to help you do your job
more effectively and efficiently. For example, you can use Purify with IBM
Rational ClearQuest™, a change request management tool, and with Rational
Robot, a functional testing tool.

Using Purify with ClearQuest

If you have IBM Rational ClearQuest installed, you can submit a defect as
soon as Purify detects an error or warning, or when you find a coverage
problem.

24 Chapter - Getting Started: Purify

Right-click on an error
message and select

Submit ClearQuest —

Defect

:’ Data Browser-Purify'd stockvcE._exe

Error View I Madule View | File Wiew | Function List View |

Describe ABW: Anap Bounds Write

htf {47 ocourrences)
hdowTexth {640 ocourrences})
nh {830 occurrences)
hdowTextA {184 ocourrences)
htf {13 ocourrences)

Exzpand
Expand Branch
[Callanse

QuickFilte
Create Filter...

e Sauree e
SeleetSaurce e

4] | &

| Displayed Errors: 1721 of 1721 Displayed ‘wWarnings: 0 of 53 Bytes leaked: 0+0 [G

Purify automatically supplies entries for a number of fields in the submission
form and specifies the category of error. You can easily attach Purify data files
to further document the error.

Using Purify with Rational testing tools

If you have Robot installed, you can set a playback option in Robot to collect
Purify error and leak data when you run a Robot test script. Purify detects
memory errors as the code is executed. Robot also includes a playback option
that allows you to collect code coverage information as well as error and leak
data.

More information? Look up clearquest and robot in the Purify online Help
index, and refer to the ClearQuest and Robot documentation.

Now you’re ready to put Purify to work on your
C/C++ code. Remember that Purify’s online Help

N— contains detailed information to assist you.

\m\\”\“i e

Purify for C/C++ developers and testers 25

Purify for NET managed code developers and testers

What it does

Purify finds and reports memory leaks in .NET managed code (assemblies,
.exe’s, .dll’s, OLE/ActiveX controls, and COM objects).

Memory leaks in managed code
Managed code can leak memory, which can cause problems for your program.

The .NET garbage collector automatically removes memory objects that your
program no longer needs, and so avoids most of the memory leaks that occur in
other programming contexts. But managed code applications can still consume
more and more memory over time. There are two major categories of leaks in
managed code: object references that are no longer needed, and system
resources that are not freed.

Object references that are no longer needed

Very often, managed code retains references to memory that it no longer needs,
and this prevents the memory from being garbage collected. Managed code
objects typically include references to other objects, so a single object can hold
an entire tree of objects in memory. Problems can occur, for example, when
you do any of the following:

Add objects to arrays and forget about them.

Retain references to an object until the next time you use the object. A
menu command, for example, can create an object and not release
references to the object until the next time the command is invoked which
may never happen.

Change an object’s state while some references still reflect the old state.
For example, when you store properties for a text file in an array and then
store properties for a binary file, some fields, such as “number of
characters,” continue to hold memory that is no longer needed.

Allow a reference to be pinned by a long-running thread. Setting the object
reference to NULL does not help; the memory won’t be garbage collected
until the thread terminates or goes idle.

26 Chapter - Getting Started: Purify

The basic steps

System resources that are not freed

Managed code methods can also allocate heap memory that exists outside of
managed data instances, such as resources for windows and bitmaps. Managed
code allocates these resources by calling unmanaged code like native C and
C++ routines.

How Purify can help

Purify helps you find these managed code memory leaks by reporting the
methods, classes, and objects that are responsible for monopolizing large
chunks of memory that the garbage collector does not free.

Using the data Purify gathers, you can zero in on memory problems. Once
you’ve located them, you can eliminate references to unneeded objects, or
force garbage collections in key areas of your code.

More information? In addition to detecting excessive memory consumption
with Purify, you can also improve your application’s performance and increase
your confidence in your testing using the other PurifyPlus tools, PureCoverage
and Quantify. PureCoverage can show you the areas in your code that your
tests are not reaching, and Quantify can help you find the bottlenecks that slow
down your code. For more information, read Getting Started: PureCoverage
on page 41, and Getting Started: Quantify on page 57.

To use Purify to profile managed code memory usage:

1 Run your managed code program with Purify.

2 Take a snapshot when memory usage stabilizes.

3 Execute code that may be leaking and take another snapshot.

4 Compare the two snapshots to identify methods that may be causing
memory problems.

5 Pinpoint the leaked objects allocated by these methods, and identify the
references that are preventing the objects from being garbage collected.

The following pages show you how to use Purify integrated with Microsoft
Visual Studio, but you can also use Purify in other ways. Read the following:

Using Purify standalone on page 37

Integrating Purify into your managed code test environment on page 38.

Purify for NET managed code developers and testers 27

Running your managed code program with Purify

To Purify your managed code program in Visual Studio, open your project in
Visual Studio, then engage Purify using the Purify menu.

Build and execute your program as usual, using commands from the
Visual Studio menu. To get the maximum level of detail in Purify memory
profiling data, build your program with debug data.

More information? Look up running programs in the Purify online Help
index.

As your program runs, Purify intercepts and tabulates messages related to
memory usage from the .NET runtime environment. Based on these messages,
Purify keeps track of how much memory your program has allocated to each
method and object at any given time.

Taking snapshots of memory use

To zero in on memory leaks in your managed code program, wait until your
application’s memory usage has stabilized (typically after it completes
initialization), then select the menu item PurifyPlus > Purify > Run Control
> Snapshot Data to take a snapshot of the current memory usage status. This
snapshot is your baseline for investigating how your program uses memory as
it runs.

28 Chapter - Getting Started: Purify

Take your first snapshot
when your program’s
baseline memory usage
has stabilized

Watch for increasing
memory usage, then take
a second snapshot

Now exercise the program in a way that you suspect may be leaking memory.
As your program runs, the Purify Data Browser’s Memory tab displays a graph
that indicates the amount of memory your program is using.

% Solution "Accessible” (1 project) - Microsoft Development Environment [design] - Untitled2.pmy Data Browser: Pu... [B[s]

File Edit Wiew Project Build Debug Tools Purify Quantify PureCoverage Window Help
- @ LR R o o BB) e - | o] -
(DHE @B L E 2 cm AL 4755,
4 b

f]

—_—
/ Show less time Shay entire un

PurifyPlus Mavigator r =
n - . - } Purify
% Memory | Call Graph I Function List Yiew I Obiject List Wigw I é Accessible.exe
m ® . main_0 - B Run @ 04/04/2002 13:53:20
k=3 m thread_1 1 1] i~ @ Snapshot @ 04/04/2002 13:5
g || = thread 2 == - - W Snapshot @ 04/04/2002 13:5
& m thresd 3, mem [EENENEEENEEEEEEEEE]
m thread_4, mm [111] [1]
§ m thread 5. mem | IIIIIlllllllllllllllllllllllij
|l 4 3
Running ™ Waiting I/ = Blocked Purify ® Exited
Mem in use:
o] o] 4 > |
200KB . :
H I & PurifyPlus Navigator EM_
1s0KE 4 e oo
| Solution Explorer R ox \
100 KE =

R Solution 'Accessible’ (1 project)
B 5 Accessible

- [£53] References

e Accessible,cs

1:55:04 PM

Current mem usage: 69,152 Mem diff since st
Peak mem usage: 143,906 iaarbage Collect

Status: Exit=d [Elapsed Time: 00:01:48

Output R =

R T Ot | o B
| Ready I I | 2

Watch the graph for fluctuations in memory usage. A large increase in memory
usage may indicate a problem, especially when you can’t reduce it by selecting
the menu item PurifyPlus > Purify > Run Control > Garbage Collect to
force a garbage collection.

Now take another snapshot so that you have a “before” and “after” record of
what’s going on, and exit your program.

More information? Look up taking snapshots and garbage collection in the
Purify online Help index.

Comparing snapshots to identify problem methods

Select your second snapshot in the Navigator and select the menu item
PurifyPlus > Purify > Run Control > Compare Runs to compare the second
snapshot with the first.

Purify for NET managed code developers and testers 29

Purify now displays a call graph showing the methods that are responsible for
allocating the largest amounts of memory during the interval between the first
and second snapshots.

The thickest lines [calarapn |Fumom Lt View |
indicate the paths where
the difference in
memory between the
two snapshots

is greatest

atvisibleCo ‘ Cantrol gELHandIE‘— Form CreateHand|e |« | Conirol CreateHandle | £

The call graph overview -
helps you orient yourself

within the call graph
g p EI@ Zoom '—J_ Highlight: IA\ID:amn Changes j
lvisble: 41/1371 [Highlighted: 41/325 |System Windows Forms Button, WndProct) [System.!

The call graph also shows you the calling relationship between methods. This
can give you clues about which methods are holding references to unneeded
objects and preventing the garbage collector from doing its job.

Move your cursor over the method or path you want to investigate. A tool tip
pops up to give you memory-related statistics for that method.

Call Graph |Funct|0n List Wiew |

sVisibleCo..]

1' ontral.get_Har : Farm.CreateHandle |) s C.ontrol. CreateHandle |10

Method: Nattvewindow, Calback.] -
Source File: (o) : == |ControlMative
Mem is —JClass: System.Windows.Forms.Mativewindow
emory usage data is Cals (Diff): 5,680 0T
available dlrectly from |current method bytes alocated (Diff): © _—
M+Dbytes (Diff): 47,826 - - - =
the call graph Total method bytes alocated: 0
El@ Zoom: — . |— Highlight IAHocatlnn Changes j
visble: 41/1371 |Highlighted: 41/325 [System. Windows.Forms.Button.WndProc() [System !

This allows you to zero in on the method that is consuming memory, as well as
its descendants.

To view your code from within Purify, right-click a method for which source is
available, then select Source File.

More information? Look up diffing snapshots, call graph, and source code,
viewing in the Purify online Help index.

30 Chapter - Getting Started: Purify

Diagnosing leaks with the Function List View tab

The Function List View tab in the Data Browser provides a textual,
non-hierarchical view of the same data that appears in the call graph. You can
do full-program sorts in the Function List View to find the biggest
memory-consuming methods in your entire program.

Call Graph Function List view |
Current method =
Click a column header to Mathad (CNZI\Ij) (SSL'S) bytes(gilfcfi)l:ated Class S‘;'i’,';ez’
sort the memory ColorDptions.Calculate 132 1 18,720 | ColorOptions (Mane)
proﬁling data EuttonBase.CommanLa. 132 1 9,424 | System Windows Forms B |(None)
ButtonBase CommonPRe.. 132 1 5,808 | Syster Windows.Forms.B... |(MNone)
Contral PaintBackground 167 2 3.348 | System \Windows Forms C.. | (None)
DikGraphicsBuffertana.. 264 2 2,480 | DibGraphicsBufferManager |(MNone)
Graphics BeginContainer 132 1 2.096 | System Drawing Graphics | (None)
Graphics.FromHdelntern.. 173 8 2,080 | Systern Drawing.Graphics |(Mone)
Graphics Save 167 2 2.032 | Systemn Drawing. Graphics |(None)
ButtonBase DrawText 132 1 1.488 | Systern Windows.Forms.B... |(MNone)
“alueCollection. GetEnu 987 12 288 |valueCollection (Mone)
LayoutOptions.Layout 132 1 148 |LayoutOptions (Mane)
Message GetlParam 29 2 96 |System Windows Forms M... |(Naone)
LayoutOptions.CalcText... 132 1 B4 |LayoutOptions (Mane)
tMessageBox.ShowCore 32 o BB [System Windows Forms M... |(Naone)
b Dmind (mbDm m 1 m nr n C0 00 mbimien b i ol it m Eominnm FOYPPPRY hd
4] | ;l_l
visble: 1371/1371 |System.windows.Forms.Cont|

More information? Look up function list view tab in the Purify online Help
index.

Focusing on a method with the Function Detail window

By double-clicking any method in the call graph or function list view, you can
open a Function Detail window. This window shows how the method, its
callers, and its descendants allocated memory.

Method: ColorOptions.Calculate
Calls {Diff): 131
Calls (New): 132
Calls (Base): 1
Current method bytes allocated (Diff): 18,720
Total method bytes allocated: 20,436
Number of Objects: 120
M bytes (New): 18,720
M bytes (Base): 0
M+Dbytes (Diff): 18,656
M+D bytes (New): 18,826
M+D bytes (Base): 170
Class: ColorDptions
Source File: (Miane)
Hidden methods: Yes
Double-click a method in — Caller Current method z]
bytes allocated (Di
the Caller or Descendant ButtonEase. PaintWorker 1E,ESE| =l
column to see the Descendant Current method =
bytes allocated (Diff)
memory data for that Color gel G i
method Graphics GethearestCalor o
Color.op_Eguality 0 =l
Callers: 1 [Descendants: 11 [coloroptions. Caleulate)

Purify for NET managed code developers and testers 31

More information? Look up function detail window in the Purify online Help
index.

If the amount of memory attributed to any method seems unexpectedly high, it
may be the case that another method, possibly a descendant, has created a
reference to an object that is preventing the memory from being garbage
collected. For example, a descendant method may have created a static
variable as part of a string array. This would keep the memory for the entire
array from going out of scope, which may slow your program down, and even
kill it.

When you’ve located a method that appears to be causing memory problems,
go on to look at the method’s objects. Purify provides extensive information
not only about methods, but also about all objects in your program and their
use of memory.

Looking for unneeded objects

Objects that a program no longer needs often prevent memory from being
garbage collected and so, over time, slow down your program. Purify displays
comprehensive memory data for objects in several formats, so that you can
easily track down this sort of problem.

Note: Use a snapshot data set to examine object data. Comparison data sets,
which are generated by selecting the menu item PurifyPlus > Purify > Run
Control > Compare Runs, do not contain object data.

Getting from a suspicious method to its objects

The Function Detail window, in addition to its information about a method,
also lists objects that have been allocated by the method. You can sort the
objects in the list by clicking on any column heading.

32 Chapter - Getting Started: Purify

— .
g Method: ColorOptions.Calculate -
Calls: 132
Current method bytes allocated: | 18,720 (21.07% of Focus)
H Total method bytes allocated: 20592
The Ob_]eCtS that the Number of Objects: 120
method currently has M+D bytes: 118,626 (21 18% of Facus)
_oli Avg M bytes: 156
alloca.ted. D01.1ble click Min M bytes: 15
an object to display the Max M bytes: 156
. . . Class: ColorOptions
Object Detail window STl tiang)
with comprehensive Hidden methods: 0 bytes (0.00% of M+D bytes) x|
Object Class A 0+R GCs -
memory dataifor Name Name it Size Survived :I
the object term Sting Z05E0AZD | System Sting 156G 156 2| =
|] _’l_I
. i Caller Calls | Current method il
Note that Function —— ' bytes allocated
. . ButtonBase.Paint.. 132 18.826 =
Detail windows for =l
. . g Current method -
snapshots include pie Descendant | Calls | o c aiigcated :I
charts ShOWil’lg memory Color Fromargh 264 106
. SystemColors.get 132 0 |
allocation Callers: 1 [Descendants: 11 [coloraptions. CalcUlata()

Examining object details

When you double-click an object in the Function Detail window, the Object
Detail window opens. This window contains complete memory-related
information for the object. Use it to identify objects that are holding on to large
chunks of memory, and determine how long these objects have been in
existence.

e Zoom: '—J— Highlight: |Object Maximum Path to Root j

The object reference graph ___| =

shows the objects that \ System Sting 206084A0

reference, and are
E!— System. String 205004B8
referenced by, the current

Ob_] ect System String 20502600 —
System String 2058798
System String 205087 A8
=
. . Object Name: System.String 206E0A20 Name ‘ Value
Details about the object —trmsstmme: 5ystom Sting ObectDump | Netavaikbls
currently selected in the Method Name: ColorOptions Calculate
Size 156
reference graph, 0+F Size 158

including size and GCs Sunived: 2
Creation Time: 4:04:03 P

creation time Line Number: 0
Feferences 0
Feferees 1
Foot Type:
[References: 0 [Referees: 1 [System String 205E0420

Looking at all allocated objects together

To review the top-level objects in a program, open the Data Browser window
for the snapshot that reveals potential memory problems, and click the Object
List View tab.

Purify for NET managed code developers and testers 33

Click any column head to sort

the list \
Mermory | Cal Graph | Function List view Qbject List View
Memory data for all the Method . ; GCs Line =
Size\| 0+R Size 3
tly allocated Name Survived Number.
currently 2064 0
top-level objects in the em 2
rooram tem String 0
progra System String 205DE45C Unknown 10 10 1
System String 205CENES Unknown 108 108 0
System String 205DFC2C Unknown 108 108 1
System String 20508048 Unknown 102 102 0
System String 205C4B60 Unknown 100 100 0
System String 2050DF5FC Unknown 94 94 1
System String 205C404C Unknown 90 90 0
The status bar shows the Systern Sting 205C31C8 | Unknown 30 30 0 _';|
selected line number and < | 3
the total number of Cbject: 2/183 [System.Siring 205E0A20 [Coloroptions. Calculate()

objects —

The object list shows all top-level objects that were allocated at the time the
snapshot was taken. In addition to the size of the objects, the object list
provides information such as the time the object was created and the number of
garbage collections it has survived. You can sort the list to find the objects that
are holding on to the most memory, and the oldest objects in the list.

You can open the Object Detail window for any object by double-clicking the
entry for the object.

When you locate an object that may no longer be needed, look at your code. If
you determine that the object is in fact no longer needed, modify your code to
release all references to the object so that the object can be garbage collected.

More information? Look up function detail window, object detail window, and
object list view tab in the Purify online Help index.

Saving Purify memory profiling data

You can save Purify data and analyze it later, share it with other members of
your team, or include it in reports. Purify can save managed code data in the
following formats:

» Purify memory profiling files (. pmy). You can open these files and view
them in Purify, just as you would any run, snapshot, or other dataset.

» ASCII text files (. txt). You can process this data with scripts or use it in
spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help index.

34 Chapter - Getting Started: Purify

Advanced features

Highlighting methods that share key attributes

You can highlight methods in the call graph to display specific memory-related
characteristics or to show calling relationships.

Click to display the Highlight list

Select Maximum Path to
Root, for example,

to highlight all methods
between

the selected method

and .Root on the path
where the most memory
is allocated | 4

o

Mermory Call Graph | Function List View | Gbject List Yikons)

Top 10: Calls

Top 10: Current method bytes allocated

Top 10: Total method bytes allocated

Top 10: Number of Objects

ButtorBase PaintLayol Top 10: h+D byles

Top 10: Avg M nytes LttonBase.
" Top 10: Min M bytes

ButtonBase PaintRen o 10 Mo M bytes

MNode: All Descendants

MNode: Immediate Descendants

MNode: All Callers

woPzse PairtFiel

M Zoom;

Highlight: |Mode: Maximum Path to Root ﬂ

Aethods with Hidden Methods

|visible: 35/1484

35 of the 1484 methods in the/

Highlighted: 21/21 |Colorgptions. CalcLlater) [Colorptions]

current dataset are displayed in All 21 of the 21 functions on the
the call graph maximum path to .Root are
displayed in the call graph

More information? Look up highlighting in the Purify online Help index.

Purify for NET managed code developers and testers

35

Focusing your data

Use Purify’s filter commands to remove a selected method, or all methods in a
class file, from the set of data that Purify has collected. Alternatively, use
subtree commands to focus on or remove a specific method and all its
descendants from the dataset. Right-click a method in the call graph, function
list view, or function detail to perform these operations.

_ Hide: Methiod LeakSample, <init=
Subtree 3 Hide Class LeakSample
Delete Method LeakSample, <init=>
e $ Delete Class LeakSampls
You can hide or Line Scale Fackors 3 =) P
Cge . Wrnd e Last e Gperatian
delete individual Calars »
methods, all Method Mame.., Filter Manager. .,
methods in a Source File L
class, orentire — | v Data Browser... Cirl+B The Filter Manager offers additional filtering
subtrees. options

Hide methods or
subtrees to sum up their Filter 4

memory and attribute it b Focus anSubtree. —1— Select Focus on Subtree
to their callers; delete Expand/Callapse » g'c:etsght;e to delete all methods except
them to discard their Line Scale Factars | ISR those in the subtree
Unda Hide Subtree

memory completely Colars] it s A

Method Mame. .. Beset to Roat.

Soutce Fle

v Data Browser, .. Chrl+E

Purify has undo capabilities for all filter and subtree commands so that you can
easily return to any previous dataset configuration.

The call graph also provides a series of expand and collapse commands that
work with subtrees. Unlike the filter and subtree commands, however, these
commands affect only what is displayed in the call graph; they do not change
the dataset.

36 Chapter - Getting Started: Purify

In addition to the menu commands, you can use the Filter Manager to select the

data you need.

Filter Manager: Memory Profiling Data

You can filter data ——Classes l tethads]

based on class file or
on method

Click to enable or
disable filters

Filter Enabled Memor}i‘
v | ArrayListEnumeratorSimple Yes Yes
v] ArraySubsetEnumerator Yes Yes
] ColorOptions Mo Yes
v |»] CommonHandles Yes Yes
#] Componenttanager Mo Yes
] ControlCollection Mo Yes
] ControlMativeWindow Mo Yes
#] Decoder Mo Yes -
| | E
Mermory
™ Show full path
Show full path narmes ¢ Retain
" Delete
’Tl Cancel Help

More information? Look up filtering data and subtrees in the Purify online

Help index.

Using Purify standalone

When you don’t need all of the Microsoft Visual Studio resources, you can use

Purify standalone. Purify’s independent user interface provides the same
memory profiling capabilities as when you use Purify integrated with Visual

Studio.

To use Purify as a standalone application, launch Purify from the Start menu.

Then click Run in the Purify Welcome Screen to display the Run Program

dialog.

Purify for NET managed code developers and testers

37

Use the Browse button
to select the managed
code program that you
want to profile . . .

and select the button for
collecting Memory
profiling data

Run Program [x]

PBrograrm narme:

| = _‘l —Then click Run

Cormmand-line arguments:
Cancel
| =
Settings.
Working directory,

l [I

—Collect:
" Error and leak data. = Burunderthe debuagen

 Caverage, eror, and leak data. W Pause console after exit

. & ?Memory profiling data}

Purify instruments your code and displays the results in a Data Browser
window.

More information? For information about a tool, menu command, or dialog,
click and then click the item.

Integrating Purify into your managed code test environment

The Purify command-line interface makes it possible for you to collect
memory profiling data in your automated testing environment. Modify existing
makefiles, batch files, or Perl scripts to run your program under Purify. For
example, if you have a test script that runs a managed code program, change
the line that runs it to:

Purify /SaveData /Net Exename.exe

This command runs your managed code program and collects memory
profiling data, then saves the data to a .pmy file that you can open and analyze
in the Purify interface or share with other members of your team.

Use the /saveTextData option instead of the /SaveData option to save
your data in a .txt file. You can develop scripts to process this data and generate
reports about your program’s use of memory. For example, you might want to
compare the dataset from the current nightly test with that from the previous
nightly test to detect memory-related regressions as soon as they occur.

To control your automated data collection and ensure that you generate
comparable datasets from every test, use the Purify API. Read Controlling
managed code memory profiling with the Purify API, immediately following.

More information? Look up command line in the Purify online Help index.

38 Chapter - Getting Started: Purify

Controlling managed code memory profiling with the Purify
API

Purify includes a set of API functions that give you greater control over its
memory profiling capabilities.

The API is especially useful if you are doing automated testing. You can
programmatically determine the parts of your code that are profiled, excluding
your program’s initialization activities and focusing on specific modules or
routines. You can also clear your data after initialization, then continue
collecting data as your program runs, and save it just before the program
terminates; this is equivalent to comparing two snapshots in the Purify user
interface.

More information? For the complete listing of Purify API functions, including
functions related to coverage monitoring, look up api function list. For
instructions on using the functions, look up api functions, using in the Purify
online Help index.

Now you’re ready to put Purify to work on your
managed code. Remember that Purify’s online Help
contains detailed information to assist you.

Purify for NET managed code developers and testers 39

40 Chapter - Getting Started: Purify

Getting Started:
PureCoverage

What it does

Before you ship your products, you need the assurance that the code you’re
responsible for has been exercised thoroughly—every line, every function,
procedure, or method.

That’s where PureCoverage® can help you get ahead. PureCoverage
automatically evaluates the completeness of your testing and pinpoints the
parts of your code you’re failing to reach. As a C++, Visual Basic, Java, or
NET managed code programmer, you can easily monitor testing coverage as
you run your program. As a quality engineer, you can include PureCoverage in
your test harness to generate comprehensive coverage reports automatically for
every test you run.

Using PureCoverage you can:

» See immediately what percentage of your code has and has not been
exercised

» Identify untested, or insufficiently tested, functions, procedures, or
methods

Locate individual untested lines in your source code
» Customize data collection for maximum efficiency
» Customize displays to focus on the details you need
» Merge coverage data from multiple runs of a program
» Save coverage data to share with other team members or to generate reports

» Monitor code coverage from within your development environment by
using the PureCoverage integration with Microsoft Visual Studio

Check every component in your program
PureCoverage analyzes coverage for every component in:

C/C++ code in .exe’s, .dll’s, OLE/ActiveX controls, and COM objects

What it does 41

» p-code .exe’s, native-code .exe’s, .dll’s, OLE/ActiveX controls, and COM
objects

» Java applets, class files, jar files, and code launched by container
programs

» NET managed code .exe’s generated in Microsoft Visual Studio.

Components launched from container programs such as Microsoft Internet
Explorer, the Microsoft Transaction Server, jexegen’d executables,
Jview.exe, Tstcon32.exe, Firefox, or any Microsoft Office application

» Microsoft Excel and Microsoft Word plug-ins

Note that any discussion that applies to functions and modules also applies to
Java methods and class files, and to Visual Basic procedures and object
libraries.

Use PureCoverage throughout the engineering cycle

Start using PureCoverage early in the development and testing cycles to find
and eliminate gaps in both your formal and informal tests. You’ll know that
you’re exercising all your code right from the beginning and finding errors
while there’s time to correct them. Continue using PureCoverage whenever
you exercise new or modified code, up to the time of final product release.

Tips for development engineers

Let’s say you’ve just put together a new routine. You can use PureCoverage to
collect coverage data and easily focus on the information for your new code.
You’ll see immediately whether you’ve tested everything before check-in.
PureCoverage provides coverage data with minimal effort on your part.

If you’re exercising your code manually, use PureCoverage to monitor and
guide your testing as you work. PureCoverage shows you interactively the
percentage of your code’s functions, procedures, or methods that you’ve
exercised.

PureCoverage automatically integrates with Microsoft Visual Studio, so you
can use it without changing the way you work if you’re developing code in this
environment.

Tips for test engineers

As a test engineer, use PureCoverage to gauge how well your test suite is
keeping pace with the evolution of the program you’re testing. You can add
one or two lines of code to your test scripts to run PureCoverage automatically

42 Chapter - Getting Started: PureCoverage

The basic steps

in batch mode whenever you test. With immediate and continuous feedback
about the effectiveness of your test suite, you can guarantee that you are
exercising every modification in the program you’re testing.

More information? PureCoverage’s online Help provides detailed reference
information and step-by-step instructions for using PureCoverage. For a start,
look up purecoverage, introduction in the online Help index.

With PureCoverage®, you can ensure that all of your code is exercised in a few
easy steps:

1 Run a program with PureCoverage.

2 Get the big picture with the Coverage Browser and Function List windows.
Use PureCoverage filters to focus on the areas that concern you most.

3 Identify unexercised lines in the Annotated Source window.

4 Modify your test run to cover missed lines, conditions, functions,
procedures, or methods.

5 Rerun the program to verify that you’ve improved coverage. Save coverage
data to share information with other team members.

This chapter describes how to use PureCoverage as a standalone desktop
application. The same principles apply when you use PureCoverage integrated
with Microsoft Visual Studio, or when you incorporate it into your test harness.
For more information, read Integrating PureCoverage with your development
desktop on page 49 and Integrating PureCoverage in your test environment on
page 54.

Note: PureCoverage monitors coverage of functions and, if debug line
information is available, of individual lines as well. If you want line-level data
for programs built in release mode, you must supply debug line information.
For specific instructions, look up debug data in the PureCoverage online Help
index.

Running a program

To monitor code coverage for an application, launch PureCoverage from the
Start menu. Then click Run in the PureCoverage Welcome Screen to display
the Run Program dialog.

The basic steps 43

Click the browse button

Run Program [2]x]

to select the program you
want
to test. ..

and select the
type of code

As the program runs, the
Run Summary window
shows the number of
functions, procedures,

or methods that have and
have not been exercised

Frogram name

‘ Tthen click
L E=5 | —Run to run the
CommancHine argurments: Cancel progral’n
| Bl .
: Settings... I
Waorking directony:
| ERES Bl _I ﬁl

[~ Collect Data Fram:——————
¥ | Banze cansole afierexit
— & Unmanaged Code

 Java Code
" Managed Code

You can click Settings to specify data-collection
instructions for special situations, such as selective
instrumentation of specific modules

Your program begins to execute. As it runs, PureCoverage collects
comprehensive information about what lines and functions have been
exercised.

PureCoverage displays a Run Summary window as the program runs, showing
the current status of program coverage.

Run Summary: pwalk.exe

A color-coded indicator
shows how calls are

distributed among the
functions, procedures,
or methods

Coverage | Detai\sl Log | Messagesl PowerEovl Files |
Maodule ‘ EaM Missed| H\t‘ Total ZH\t‘ Calls Distribution ‘
PEFILE.DLL 12 19 3 18 65O
PROBE.DLL 14 45 9 WA
prialk.exe 991 L N1 I | ——
| Function call counts: O calls <10calls m ¢100cals <1000 cals w1000+ calls
| Status: Rurring [Elzpsed Time: 000712 ﬁ

Getting the big picture

The Coverage Browser and Function List windows show you the overall
coverage status of your program at a glance:

» Every function that has not been called is reported as missed. Those that

have been called at least once are reported as hit.

» The number of lines of code missed and hit is also reported, if debug line

information was available to PureCoverage.

44 Chapter - Getting Started: PureCoverage

With this information, you can easily identify testing hot spots—major areas
that your tests have not covered.

The Coverage Browser window provides coverage data organized
hierarchically according to source file.

The Module View tab groups data The File View tab groups data by file across all
by file within modules modules in your program

."* R ational PureCoverage - [Coverage Browser:pwalk.exe]
@ Ele Edit Wiew Seftngs ‘window Hel == 5[

FETE TS = ET RN AR =S T
5 F#] DAPwWALKpwd | [Moduleiew | Fie view |

@ Auto Merge

The Coverage Browser
window shows hierarchical

Lines (% Lines ||

coverage information fOl‘ +-B Run & 04/ . Coverage Item Hit
functions, procedures, or
methods . . . i [%] D:\PWALKAPROBE.DLL

=HEE DAPwALK pwalk ene

EE=LRETES TEEE o]
and for lines B 3|
0 misged
- @ AddDIMode 9
L% AddThesdr | 1 il
l 3
_I_I J Coverage Item: Ascending order [
Ready 7

The Function List window provides a textual, non-hierarchical view of the
same data. You can do full-program sorts in the Function List window to find
the least tested components in your entire program.

Click any column heading

for - —
. g Rational PureCoverage - [Function List: pwalk_exe]
full-program sorting File Edit View Sefings Window Help
HEENEEEEE =N PR e e
T - - - -
= 5] D \PwALK\ow: Function Calls | fjnes | Lines | Lines| % Lies | Module STETER =
D huta Merge g eccProcessitemory | O 10 10 [000 [DoPWALKipwalk.... |D:PWALKipdebug.c
- B Run @ 044 n ctivateviewiindow] B B 0 000 |DoPWALKpwalk.... |DPWALKview.c
AcciDIMNocde a 20 1 19 95.00 D Pl Kpdebug o
AddThreadhode 1 13 2 17 8947 DR ipdebug.c
Al DlgProc a 32 32 0 0.00 O P AL aview .o
AnalyzeProcess a kil kil o 0.00 Pl Kipdebug.c
CloseChildProcess a 12 12 1] 000 [DeewaLKpwalk.... |DOPWALKpdebug.c
CommittedMemoryRa... a B B 0 0.00 DOPWALK pwalk.... |DIPWaLKadebug.c
CreateDebugEverts 2 45 28 17 3778 | DOPWALKpwalk. Pl Kipdebug.c
DebugEventThread 1 131 b B0 4580 |CoPwWALK\pwalk.... |DPYWALKpdebug.c
DisplayBytes a g7 g7 0 0.00 DOPWALK pwalk.... |DIPWALKview.c
Dilain 5 7 0 7 10000 |D0PWALKIPROE D Pl Hprobe o
Diltdain 5 3 0 3 100.00 |Co'PWWALKIPEFIL... |D:PwWALKpefile.o LI
£l 1 | A= e S - S byt ity PPt
Functior: 75/75 | Function: winhain
Ready A

More information? To learn how to customize the data display, look up
coverage browser window and function list window in the PureCoverage online
Help index.

The basic steps 45

Focusing coverage data with filters

PureCoverage collects coverage information for every module in your
program, but, by default, does not display all the data it collects. In order to
highlight the coverage information that you are most likely to find interesting,
PureCoverage applies a default filter set to hide the data for certain system and
third-party components of your program.

To see the data that PureCoverage has filtered out, or to change the filtering to
display other information that concerns you, click the Filter Manager tool

to open the Filter Manager dialog.

Use the Modules Use the Files tab to
tab to filter out filter out data by source file
data by module

Use the Functions/Procedures/Methods tab to
filter out data by function, procedure, or method

Filter Manager

Modules | Files I Functions

()8 I
Filt Stat Case Sensii
. 1er | atuz | aze Sensitive | Cancel
Click to turn the ———— 1[I D\ PwaLK \pwalk. exe Mo | |
filter on and off Fitered Mo Apply
Filtered Mo —I
[|3] D:sPwaLKAPEFILE.DLL Mo
Hel
[3] DPWALKAPROBE DLL Na _ te |
Type other patterns
to use as filters —— ——Faitem |* Gl | | e |

[T Case sensitive

Save Settings | Fevert to Saved | Fieset to Default |

" Default filter set

More information? Look up filters in the PureCoverage online Help index.

46 Chapter - Getting Started: PureCoverage

Identifying unexercised lines

PureCoverage displays line-by-line coverage data as annotations in a copy of
your source file. Double-click a function, procedure, or method in the
Coverage Browser or Function List window to display the code in the
Annotated Source window.

Click to display or change the color coding for coverage annotations

3 Rational PureCoverage - [D:\PWALK\pdebug.c in pwalk. exe]
[E) File Edt View Settings Window Help
e EE R EPNE EE T B
The Annotated Source L] Iz I 2] 2 !
window displays a copy of =% QIFWAF | funcions [Ciectebebugkvens =l Colors:]
Yy y B futo Merge 4
1 B Run @ 04/(Line Line =
your source with notes n Coverage | Humber Source
about line coverage 126 /% local function creates debug event objects for thread synch
g 127 BCOL WIHRPI CreateDebugEwvents [
128 LEHANDLE 1pDbgEvents |
120 char szEvent [HAX_DATH] ;
131
. . 132
This line was 2 133 LoadString (GetModuleHandle [WULL), IDS_DEGEVNTACTIVE, szE
K i 134 if {1 (1pDhgEvents [DEBUGACTIVE] = CreateEvent |{LPSESURITY.
exercised twice 135 TR,
136 ‘TRUE,
Lo 2 127 szEvent)]]
This line was 0 138 return FALSE:
139 A
not exercised 4 | _;|_|
4 v| (Line 1230i 1466 [Function CreateDebugEvents
Ready 7

By default, PureCoverage displays untested lines in red, tested lines in blue,
and dead lines (typically in functions, procedures, or methods for which no
active call is present in the code) in black. PureCoverage displays partially
tested multi-block lines in pink. These lines often occur in conditional
expressions for which you haven’t tested the entire range of possible values.

You can ensure that multi-block lines are fully tested by using the QuickWatch
dialog in Visual Studio. With the program running, type in the name of the
partially tested function or procedure and supply the parameter values you still
need to test.

More information? Look up annotated source window and colors, using in the
PureCoverage online Help index. For help with the QuickWatch dialog, see
your Visual Studio documentation.

Modifying your test run

Now you know what sections of code you missed when you exercised the
program. If you’re running the program informally, consider how you can
exercise the code that you missed previously. If you’re working with a test
suite, you can add or adjust test scripts to improve coverage.

The basic steps 47

In either case, with the information PureCoverage provides, you’re working
with your eyes open. You know what parts of your code need to be
covered—no guesswork.

Rerunning your program

Now test again, and check your results. Check not only the coverage data for
the new run, but also the Auto Merge data. The Auto Merge data is a composite
of the coverage data from the new run and any available previous runs of the

program.
ﬂ" Rational PureCoverage - [Coverage Browser:pwalk_exe [Auto Merge)]
[5s File Edit Yiew Settings Window Help & x|
=(al @il | | = o=l Al]|E 8] EEE]E]] s
_E—EI- DAPWALK v Madule View I File Viawl
The Navigator window ————— 8 [éulo Meigs
: : B Run @08/ Coverage ltem
identifies merged B Pun 09
data sets b k
: EFILE.|
' DAPwALKSPROBE.DLL
BEH DAPWALK pwalk. exe
4 »
_I—I _I Coverage Item: Azcending arder
Ready i

You can also merge data for specific runs manually.

More information? Look up merging runs in the PureCoverage online Help
index. For information about merging data from a series of tests automatically,
read “Integrating PureCoverage in your test environment” on page 54.

Saving coverage data

PureCoverage saves you time during testing by making it easy to share
information with other team members. To save data, and share information,
click the Save Copy As tool |E|

PureCoverage supports two data formats:

» PureCoverage data files (.cfy), which you can open later in PureCoverage
to analyze or to compare to future program runs. Or you can share .cfy files
for use by other team members who are using PureCoverage.

48 Chapter - Getting Started: PureCoverage

» ASCII text files (.txt), for use in spreadsheet and word-processing
programs. You can also communicate testing status effectively by including
.txt files in email messages or bug reports.

You can also save data from the command line, which is essential if you’re
running PureCoverage without the interface for your nightly tests.

More information? Look up saving data in the PureCoverage online Help
index.

Advanced features

PureCoverage provides powerful features that can help you make maximum
use of the coverage data you’ve collected . For example, you can:

» Integrate PureCoverage with your development desktop
» Fine tune data collection
» Use selective instrumentation to collect data for a subset of your program
» Zero in on key program areas
Integrate PureCoverage in your test environment

This section gets you started using these features to monitor your code more
efficiently, and to focus on untested sections of code quickly and easily.

Integrating PureCoverage with your development desktop

PureCoverage’s integrations put powerful coverage data within easy reach
while you develop and test your code using your favorite tools. You can
integrate PureCoverage with Microsoft Visual Studio, Rational Robot, and
Rational ClearQuest™,

Advanced features 49

View and work with
coverage data directly
within Visual Studio .

During installation, a PureCoverage menu is automatically added to Visual
Studio so you can monitor your code at any time during development, without

leaving your development environment. .

program

gg Select the PurifyPlus > PureCoverage menu, then run your

+.. pwalk - Microzoft Visual C++ - [Rational PureCoverage Main Window]

EE\I& Edt VMiew Inset Project Buld Test Taools Purfy Suantify PurcCoverage Window Help

=181 x|

L |ﬁ uﬁ“‘) a‘f)v e ‘Eﬁ%ﬂ%lﬁckel_size

Halle e vEs

R R EER EEEEE

% Solution ‘Accessible” {1 project) - Microsoft Development Environment [design] - Untitled1.cfy Coverage Bro...

212 Wodule View | File View I
(] puwalk e
Funct tions | % Functions | Lines | Lines | % Lines [4]
Coverage Item Calls | Missed Hit Hit Missed | Hit Hit
EHE] Run @ 08/17/98 141337 <no .| 1838 43 X2 4287 1335 | B30 | 3407
D:APWALKAPEFILE.DLL M 1 3 243 129 55 2889
L% D:APWALKAPROBE DLL Ll 1 4 80.00 8) 75.00
EI--E DAPWALK pwalk.exe 1594 kil] 4464 1198 | 611 37
EHEY DAPWALK 1554 kil 25 4464 1198 | 611 3378
& pdebuge Al 14 i 36.36 36 190 | 3447
pstat.c 25 3 4 57.14 22 a8 283
e c 1 3 1 10.00 299 10 3n
pwalk.c 1308 1] i E1.54 34 275 4663

15 7 | am
17 i non|wl

Ele Edit Build Debug Tools Purify Quantfy PureCoverage Window Help
H--FEE| L BB oo B-E|) e - | o =

PurifyPlus Navigator

=

o

5

Mmoo o—= = mo

[By o AT FERFE
@ 11| Untitled1.cfy C... Accessible.exe |11 0d
2 || Madule view | [Er— |

g

o Methods | Methods | % Methods =|
ﬁ_ Coverage Item Missed Hit Hit |
2

2

B~ [PureCoverage

[Tn3 ColT__[FEC [COL [0V [FEAD 4|

=N ;\Program Files|Microsoft Visual
@ auto Merge @ 04/04 (2002 1
o B Run @ 04{04/2002 14:55:31

Ll »

I & PurifyPlus Navigator EMI

WHNDCLASS D | Soltion Explorer x|
(3] WNDOLASS
' WINSZ—FINP—DATA Q Salution 'Accessible’ (1 project)
ValueCallection Eﬂ ibl
&3 i 15 - 8 Accessible
4 (5] References
Accessible.cs
| Coverage Item: Descending order [
Output 2
ey
| Reaty I I | 4

If you have Robot installed, you can run a test script for a program and monitor
the program at the same time, without leaving Robot. With ClearQuest, you
can submit a coverage defect, and attach a PureCoverage data file (.cfy), as
soon as you find untested code, without leaving PureCoverage.

More information? Look up integrating in the PureCoverage online Help

index.

50 Chapter - Getting Started: PureCoverage

Fine-tuning data collection

Using the PureCoverage PowerCov' " options, you can fine-tune the level of
code coverage reported for any module in your program at any stage of
development and testing. You can set default settings that apply to all
programs. You can also assign settings that apply only to the current program.

Settings for C:'Program Files'Rational',Coverage',Samples'hello.exe EHE

PowerCoy | Files |

— Default Coverage

Select Line or Function as
the default coverage level

" Function

To customize coverage

levels for specific
modules, click
Configure

— Modules ta Instrument

& Al Modules Configure. .. |

¥ Exclude all madules in Windaws directories

Module Coverage

| Coverage | Debug |A

es

Mo

=

W Show full path names

Then select one or more [Line)
. cwinnthapstemn32imzidle. dil [Exclude)
modules in the Module chwinntispstem32hcomdlg32.dil [Exclude]
Coverage dialog . . . o hwinnthapstem32shel 32, dI [Exclude)
cwinnthspstem32hcomet 32, I [Exclude]
chwinnthspstem32hshiwapi. dil [Exclude]
d:pwalkpefile.dll [Line]
d:pwalkhprobe. dil [Line]
chwinntaystem32user32 di [Exclude]
c:hwinnthaestem32hodizz. di [Exchudel
— Coverage
and set a coverage level & Default
for them Line
— " Eunction
" Exclude

LClear Cache |

Ok I Cancel |

Help

Cancel | Help |

To concentrate on specific modules in your code, use PowerCov options to
select Line as the coverage level for only those modules. You can improve
instrumentation and run-time performance by selecting Function as the
coverage level for the other modules. Or you can exclude some modules from

coverage.

More information? Look up settings, overview and coverage levels, overview
in the PureCoverage online Help index.

Advanced features 51

Using Selective instrumentation

If you are working in C/C++ or Visual Basic native-compiled code,
PureCoverage offers you the option of selecting for instrumentation one or
more modules or .dll’s, rather than instrumenting all modules. This has the
advantage of automatically focusing your coverage data on the code you’re
most concerned with, and it also saves time when you run your code under
PureCoverage.

For example, assume you are working on a plug-in application that is to be
loaded by Microsoft Internet Information Server (IIS). You don’t need to
instrument and profile all of IIS. All you need to do is instrument your plug-in,
and then run it as usual under IIS. PureCoverage collects code coverage data as
your plug-in runs, and presents this data to you when the plug-in exits.

To instrument your plug-in, select Settings > Default settings in PureCoverage
to display the Settings dialog, and then in the dialog select Modules to
Instrument: Selected Modules. Click on Configure to open the Module
Instrumentation dialog for specifying the name of your plug-in.

Module Coverage [Selective] HE
Click to add a module Fo i e @l e ||
the Tist | Module | Eoveragel Debugl Instrumentation Statel
[Line] Yes Tranzient
Selected modules must
have debug data
avaliable; an .exe module
also requires relocation
data
With transient
—Coverage————— Instrurentation State— ¥ Show full path names instrumentation, the
& Default & Transient instrumented version of
' Line " Permanent the module is kept only
" Eunction ' Nane for the duration of one
™ Exclude program run, and is then
replaced by the
uninstrumented original
Bestore All Modules | QK I Cancel | Help |

Run your plug-in as usual. PureCoverage collects and displays profiling data.

More information? Look up selective instrumentation in the PureCoverage
online Help index.

52 Chapter - Getting Started: PureCoverage

Zeroing in on key program areas

With PureCoverage, you can capture coverage data for your entire program or
for any section of it. You can capture coverage information for specific
sections using:

» Interactive snapshots

» PureCoverage API functions

Taking interactive snapshots

Using PureCoverage, you can take snapshots of coverage data for individual
routines as you exercise your program.

Start and stop [+ I Clear data Take a data
recording snapshot

i‘ Rational PureCoverage - [Run Summary. pwalk.cxe]

Q File Edit View Settings Window Help _|ﬂ 5[
LS
z(=] Sl el Bl B nwls] A2 Ea] @EETE | o
= 5] DAPWALK . Coverags | Detals | Log | Messages | PowerCav | Files |
g :ﬁl:geégf Module ‘ Ealls| M\ssed‘ Hlt‘ Tolal| ZH\t| Calls Distribution ‘
3 Fun @08/ FEFILE.DLL 43 13 5 18 Znad
: PROBE.DLL 18 4 5 9 55560
F OHOW program coverage B R @08 | ok ene 1390 143 B0 03 AS—————e
in the Run Summary &8 Snapshat @
window
| Function call counts: 0 calls <10cals m <100cals <1000 cals = 1000+ calls
1 3
_I_I J Status: Running |Elapsed Time: 00:01:03
Ready A

More information? Look up snapshots and run summary window in the
PureCoverage online Help index.

Using PureCoverage API functions

PureCoverage includes a set of Application Programming Interface (API)
functions that give you additional control over the collection of coverage data.
You can use them to start and stop data collection or to save data at any time
during a run, collecting only the coverage data you need to focus on a specific
area of your program.

You can call PureCoverage API functions from your program, from the
QuickWatch dialog in Visual Studio, or from whatever debugger you’re using.

Advanced features 53

More information? Look up api functions, using in the PureCoverage online
Help index.

Integrating PureCoverage in your test environment

Integrating PureCoverage with your test environment gives you a powerful
tool for continuous coverage monitoring. For example, you can easily run
PureCoverage from an existing makefile, batch file, or Perl script by adding
the command:

Coverage /SaveTextData Exename.exe

to run your program under PureCoverage. The /SaveTextData option
generates coverage data in text-file format, without the graphical interface.
You can incorporate the information from this file into your test results report.

PureCoverage can also merge coverage data from multiple runs. Say you’re
running a series of automated tests on a program, each time using a different
set of data. You can modify the script to merge the coverage data into a single
file. Add the following line to the beginning of your test script:

del Exename AutoMerge.cfy

to delete any existing Auto Merge files.

Then, each time you run your program, substitute the following for the run
command:

Coverage /SaveMergeData /SaveMergeTextData Exename.exe

This command merges the coverage data from all runs of the program and
saves it to a PureCoverage data file, Exename AutoMerge.cfy, and to an
ASCII text file, Exename AutoMerge.txt.

Java, NET managed code, and Visual Basic programmers: For Java code,
the command line must include the /Java switch. For NET managed code and
and Visual Basic p-code programs, the command line must include the /Net
switch. For example, if you have a test script that runs a Java class file, change
the line that runs it to:

Coverage /SaveData /Java Java.exe Classname.class
For managed code and p-code programs, the command is:
Coverage /SaveData /Net Exename.exe

More information? For details, and additional command-line options, look up
command line and scripts in the PureCoverage online Help index.

If you have Rational Robot installed, you can run a test script for a program
and monitor the program at the same time, without leaving Robot.

54 Chapter - Getting Started: PureCoverage

More information? Look up robot in the PureCoverage online Help index.

Now you’re ready to put PureCoverage to work.
Remember that the online Help contains detailed
information to assist you.

Advanced features 55

56 Chapter - Getting Started: PureCoverage

Getting Started: Quantify

What it does

Your customers want the fastest possible software. They want your program to
work instantaneously and make the most of their computing resources. Inferior
performance reduces their satisfaction with the features you worked so hard to
include.

So what can you do about it?

The practical solution is to identify bottlenecks, and then to reduce or eliminate
them, through systematic performance engineering. Begin monitoring
performance just as soon as you have a program that runs, when it’s easiest and
most economical to make structural changes. Continue working on
performance until you’re ready to ship. Weigh the cost of implementing each
improvement against the benefits you expect from it.

How can you get the data you need for performance engineering?

Quantify® puts successful performance engineering within your grasp. It
collects complete, accurate performance data and displays it in
easy-to-understand graphs and tables, so that you can see exactly where your
code is least efficient. Using Quantify, you can make virtually any program run
faster, and you can measure the results.

Quantify profiles performance for code written in all commonly used
programming languages:

C/C++ code in .exe’s, .dll’s, OLE/ActiveX controls, and COM objects

» p-code .exe’s, native-code .exe’s, .dll’s, OLE/ActiveX controls, and COM
objects

» NET managed code assemblies, .exe’s, .dll’s, OLE/ActiveX controls, and
COM objects

» Components launched from container programs such as Microsoft Internet
Explorer, the Microsoft Transaction Server, Tstcon32.exe, Firefox, or any
Microsoft Office application

» Microsoft Excel and Microsoft Word plug-ins

What it does 57

The basic steps

Quantify can profile all components of your code, whether you have source
code or not. For native-code applications written in C/C++ and Visual Basic,
Quantify also allows you to select exactly which modules you want to profile.

Quantify automatically integrates with Microsoft Visual Studio, so you can use
Quantify without changing the way you work if you’re developing code in this
environment.

This chapter shows you how to use Quantify to find performance bottlenecks,
and introduces the features that make Quantify a powerful, flexible
performance engineering tool. As you read this chapter, keep in mind that any
discussion that applies to functions and modules also applies to Visual Basic
procedures and object libraries.

Quantify provides a complete, accurate set of performance data for your
program and its components, and shows you exactly where your program
spends most of its time.

To improve a program's performance:
1 Run the program with Quantify to collect performance data.

2 Use the Quantify data windows to analyze the performance data and find
bottlenecks.

3 Modify your code to reduce or eliminate bottlenecks.

4 Rerun the program and use the Compare Runs tool to verify performance
improvements.

This chapter describes how to use Quantify as a standalone desktop
application. The same principles apply when you use Quantify integrated with
Microsoft Visual Studio, or when you incorporate Quantify into your test
harness. For more information, read Integrating Quantify with your
development desktop on page 68 and Integrating Quantify in your test
environment on page 75.

Running a program

To collect performance data for a program, launch Quantify from the Windows
Start menu and click Run in the Quantify welcome screen to open the Run
program dialog.

58 Chapter - Getting Started: Quantify

Click the browse button
to select the program you
want to profile . . .

and select the
type of code

21

Program name: .
T = and then click

Command fine arguments: el Run to run the

ance
| Ei | program
Settings..-

Warking diectory: (22

|C:4Program FiestRalional PurifyPlush amplest Quantify = [Help

(- Collect Data From:

4 UnmanagedCode € Managed Code
Collect performance information in nalively compled C/Ca+ applications.

[~ Use settings fram NI i
¥ Compute sutomatically

™ Bause consale after exi

You can click Settings to specify data-collection
instructions for special situations, such as selective
instrumentation of specific modules

Quantify profiles performance for functions and, if debug line information is
available, for individual lines as well. If you want line-level data for programs
built in release mode, you must supply debug line information. For specific
instructions, look up debug data in the Quantify online Help index.

Quantify displays a Run Summary window as the program runs, showing the
current status of all program threads.

Click to pause and resume profiling in order
to focus on specific routines

& Rational Quantify - hello.exe

Fle Edit View Setfings Window | Help
(6] S(o] x| 2@ E| o (wes] AlE]|E 2] ElE e B)=
IM\chsechds j IUUU j

=8 C\Program F
L8 Run @07

= Run Summary: hello.exe

Threads |Deta||s| Log | Messages | PowerTumel Files |

W .man 354 I(eeEEEEEEEEn

Running m Waiting I/0 W Blocked Quantify m Exited

- @l [status: Running [Blapsed Time: 00:00:11 4
/_—I_I

Ready |

Quantify saves all instrumented components. When you rerun a program,
Quantify saves time by using these instrumented components, reinstrumenting
only the ones that have changed since the previous run.

The basic steps 59

i Rational Quantify - [Call Graph: homer_exe] [_[O]x]
The Quantify Call -(:"; File Edt “iew Settings Window Help _|5 LI
Graph initially | (8] @] %] 2] B sl alz]] B8] B [ZE] [=] oo = €3]
displays the 20 most | 2| @] | zoom - |— Highlight: [Node: Masimum Path to oot =] |
expensive functions
ina program Computeldster
PR Registeral [analyze_prosody
MdrClientCall2
fain|E——————— | A xinhdaing Initinstance LoacdFrame
:l CoRegisterClassObiec...
Onidle Onldle
Oncreste [
LoadLibrarysd
A root node, LoadBimana
representing the
total time for the Ontrests
run, brings the Creste
number of visible |4 0|
nodes to 21 — |V\sib\e: 21/576 \H\ghlighted T |CF‘oem\f’iew::CompuleMelel[int] [C:\homer_praghhomer. exe]
Fieady SCAL 2

When you exit your program, Quantify has an accurate profile of its
performance.

More information? Look up profiling, selective instrumentation, run summary
and recording data in the Quantify online Help index.

Analyze the performance data

The second step in improving your program's performance is to analyze the
performance data that Quantify has collected.

Using the Quantify Call Graph window

When you exit your program, Quantify displays the Call Graph window. The
window’s initial display focuses on the heavy-duty components of your code,
the areas where any performance improvement would have the greatest impact.

The call graph initially highlights the most expensive path. You can choose
instead to highlight functions based on various criteria, including performance,
calling relationships, and possible causes for bottlenecks. You can also show
additional functions, hide functions, and grab and move functions to see
calling relationships more clearly.

Use the call graph to find
functions that are taking more
time than you think they should.

analyze_prosody

60 Chapter - Getting Started: Quantify

The Subtree
commands adjust
the

focus of

the dataset

The Expand and
Collapse
commands

help you explore a
program’s
structure

For example, the programmer who wrote this code knows that the
ComputeMeter function should be so fast that it wouldn’t show up in the
initial call graph display at all.

Having located a suspicious function, you can isolate it to examine where it
spends its time.

a Rational Quantify - [Call Graph: homer.exze]
=QE File Edit “iew Settings Window Help

D"|H| él@.l EI |EBI @I ||||«|@I Alz” El@l I“‘E Ellg“Microseconds ﬂ IU.UU
@@ |ZUUm | Highight: [Node: Masimum FPaih to oot =] |

[E3
=18 x|

r|I==

' |
li MdrClientCall2 [+
Expand/Collapse 3 I SRR rClisniCall2 51
) Delete Subtree
o] P [&intain] % ————Trtinstance Line Scals Factors Y rda Hide Subties
LColors: | ——
Function Name... Beset to .Root.
Onldle Submit Eleariuest Defect
Switch to b | - OnCreste [
LoadLibrarys,
LoacBitmap.t,
OnCreate
Create
K|]
[Wisible: 21576 |Highlighted: 7/7 | CPoem\fizw:: Computeheter(int] [C:\homer_proghhomer. ex]
Reduce curent dataset to selected subtres SCRL

Quantify adjusts the dataset so it contains only ComputeMeter and its
descendants. You can now can expand the ComputeMeter subtree to see
what’s going on downstream.

a Rational Quantify - [Call Graph: homer. exe]

(E Ele Edit Y“iew Seftings Window Help
L =T e T W oA = =] N - T e
|2 | Zoom: J— Highilight: INode: P aximum Path to R oot ﬂ |

[|am— znalyze_prosody

=181
=) e

Line Scale Factors
LColois 3

Expand Immediate Descendants

Expand 4l Descendants k
Lollapse All Descendants

Show &l Nodes

Whde Last ExpandrCallapse Mperation

Function Name.

Sutrmbt Elearusst efect

Switch o 3

BResetto Top 20

[Wisible: 290 [Highlighted: 141
Expand top 20 descendants

\EPoemV\ew::EomputeMeter[int] [C:vhomer_praghhomer. exe]

[[stAE)

The basic steps 61

You can judge the
relative expense of
paths by the
thickness of the
lines

The most expensive paths in the ComputeMeter subtree lead to the

SetWindowTextA function.

a Rational Quantify - [Call Graph: homer.exe]
(?E File Edit View Seftings window Help & x|
=TI T T e N T TN o =T] B T T e e e =
@l Zoom; J_ Highlight; INDdE I aximum Fath to Root j
N
/ o
mark_vowrels
mark_position =
mark_synizesis =
convert_iota_subscri... B} s
mark_consonants [
N h
mark_achileus =} - 5
==X
|CumpuleMaisr|analyzsjrusudyl ark_accusative_plur .=
A 7 =
[Visible: 19/34 |Highlighted: 4./4 | Setw/indowT exté [C:NwWINNT\System324USERIZDLL]
SCRL #

Ready

The programmer who wrote this code intended this function to provide
feedback when he was developing his algorithm, and not to be part of the
released application. Removing the function will significantly improve

performance.

Using the Function List window to analyze numerical data

Click the Function List
tool to display numerical
data

Quantify starts by orienting you in your
program with the call graph, and then provides
additional ways to zero in on problems. You can
use the Function List window to display and
sort numerical performance data.

62 Chapter - Getting Started: Quantify

This is one of —
the most
expensive
functions in
terms of
F+D time

B Function List: homer.exe

In this example, the Function List window shows exactly how much time the
obsolete calls to SetiWindowTextA are costing. The data displayed is all the
data for the SetWindowTextA subtree.

F+D time includes the time the program spends in the
function and in all its descendants

Pt Ccalls Fm:lc‘tion IT+D F time F+D time A_ug F -
time time (% of Focus) | (% of Focus) time
Computehdeter 1 0.94 BO7 924 B4 000 100.00 0.94
analyze_prosody 1 52.34 599 951 BS 0.01 9569 8234
strlen 40 554 258 857 .54 255,857 .54 4752 47 .52 712
make_wwork_copy 1 22001 173,630.44 0.04 28 .56 22001
mark_wowels 1 127.89 165,474 .54 00z 2722 127.89
mark_pasition 1 73556 95 E41.50 012 15.73 73556
mark_synizesis 1 7284 12,085 67 0.0 1.99 7284
convert_iota_subscripts 1 JE34E 10,745.26 0.04 177 JE34E
mark_conzonarts 1 230033 10,399.57 0.04 1.7 230.33
mark_Achilleus 1 5778 10,289.57 o 169 5778
mark_accusative_plurals 1 71.91 10,243.30 0.0 1.68 1.
mark_finalvowels 1 14118 10,209.56 00z 168 14118
mark_a_ge 1 71.07 10,192.27 o 168 71.07
find_dipthongs 1 86.30 10,162.29 001 187 SBTF
4 | »

[\isible: 94/94

|SetwindomT et

Consider the percentages: SetWindowTextA takes up almost 50% of the
subtree’s total time. Since this function serves no purpose in the current version
of the program, this is a clear example of unnecessary processing, one of the
most common causes of performance bottlenecks.

Doing interactive ‘what-ifs’

In addition to analyzing your program’s current performance, you can use
Quantify to project performance improvements.

In this example, you could right-click SetWindowTextA in the Call Graph and
then delete the SetWindowTextA subtree. Quantify discards the subtree’s time
from the displayed dataset and recomputes the remaining data so that you can
see exactly how the program will perform without the subtree.

The basic steps 63

The time for the
ComputeMeter
subtree, which took
over 600,000
microseconds
before the change,
is now just over
311,000
microseconds

EH Function List: homer_exe

Computehdeter 1,
analyze_prosody 82 34 303 94532 | |
strlen 40,554 255,657 54 255,597 .04 9273 9275 712
mark_pasition 1 73396 95 6d1.50 0.24 3071 73956
miake_weork_copy 1 220.01 27, 748.65 o7 G910 220.01
mark_wowels 1 127.59 16,443.10 o.04 5.28 127.89
mark_synizesis 1 7254 12,085 67 0.0z 3858 7254
convert_jiota_subscripts 1 26346 10,745.26 0.05 345 26346
mark_conzonarts 1 230.33 10,399.57 o.o7 334 230.33
mark_Achilleus 1 5778 10,299.57 00z 329 2778
mark_accusative_plurals 1 71.91 10,2435.30 0.0z 328 1.9
mark_finalvowels 1 14118 10,209.56 003 3.28 14118
mark_a_ge 1 71.07 10192.27 00z 327 71.07
find_dipthonos 1 6630 10,162.29 003 3.26 §6.30
mark_dubiousvowels 1 63.20 10,106.56 0.0z 325 6320 =
.| | »
|\isible: 93/93 | CPoemiew: Computetd eterfint) 7

Using the Function Detail window

Click the Function Detail
tool for data about a specific
function

The Function Detail window lets you display
performance data from the point of view of
an individual function

2]

The strlen function in this example has

shown up both in the function list and the

call graph. The function list shows this run of the program called it over 40,000
times. Referring to the call graph, you can see that all the expensive functions
in this part of the program call strlen.

ar_postin] =

make _work_copy

mark_woweelz
mark_synizesis E\
convert_iota_subscr..
mark_consonants =1

mark_Achilleus [

ComputeMeter|—|analyzEJarosody

64 Chapter - Getting Started: Quantify

This part of the code manipulates lines of text as strings. These functions apply
a collection of complex rules in sequence to each line in order to identify
patterns. But calling strlen so many times suggests that there is a
performance issue.

Click a to sort the list

E# Function List: homer_exe

. Functi Call Function F+D F time F+D time
strlen1s unction QS time time (% of Focus) Focus)
40,554

the most — By

expensive foiower 116133 116133
. . mark_position 73556 95 B41.80
single function ExtTextOuts, 507.00 6246

in the subtree

By itself, st rlen uses around 92% of the total subtree time, now that
SetWindowTextA has been discarded from the dataset.

Opening the Function Detail window gives you a different angle on the data for
strlen: specific information, in numerical and graphical format, about calls
to it from other functions.

y2 Function Detail: homer.exe

% of Focus | |Function: =trlen
Calls: 40,554
. Function time: 288 997 84 usec (92.75% of Foous)
Detailed data for F+D time: 11268 57 B4 usec (92.75% of Facus)
a function — Avg F time: 712 usec
Min F time: 551 usec
Max F time: 189919 usec
Module: CMMNTYS ystem324S CRTD DLL
Source File: [Mone)
Measurement: Timed

Hidden functions: (Mone)

Callers Caller Percent | Calls Prut|:i|:ng:‘ted ;I
DO‘{ble‘Cth aslice make_wark_copy 749 2928 20,763.99 =
in the Callers or — mark_syrizesiz | 46| 1,464 1201553 | — Data about the calls
Descendants pie chart to mark_wovwels 1 372 1,464 10,739.85 made to a function (b
di f data f convert_icta_sub.. i 363 1,464 10,4581.80 (y
1splay data for matk_Achillsus 353 1464 1020153 2| callers). ..
that function =
Descendants Descendant Percent | Calls Pro.::_uaga‘ted
ime
|— and by a function (to
descendants)
Ad
Callars: 17 | Descendants: 0 | stilen 4

As you examine this data, you might observe that most of the functions make
about the same number of calls to strlen. To see exactly what is going on,
you can look at your source code,

The basic steps 65

Line time shows
the time spent
in each line

L+D time shows
the time spent in the
line and the
functions it calls
(its descendants)

This line spends
most of its time
in descendant
functions

Using the Annotated Source window

The Annotated Source window shows
your code, annotated with line-by-line
performance data. Here is the code for
mark_consonants, one of the functions
that call strlen.

Click the Annotated Source
tool to relate performance data

to the source code

B C:\homer_prog\prosody.cpp H=E
Functions: Imark,consonamts[vo\d] j
Line L+D Percent of Percent of Line ;I
time time Function time | F+Dtime | number S
Function: nark_consonan
Called: =l
Function time 230.33 usec
F+D time: 10,399 .87 use
Distribution to Callers:
Called 1 tines. analyze prosody(char *)
0.o1 o.o1 0.01 0.o0
i
for (i=0;i¢SPECIMEN LENG
if ({specimen.work_copy[
specinen . work_copy[
specinen . work _copy[
specimen. work_copw[i]
specinen . work_copy[i]==']"

4

[Line: 202 of 1045

|Microseconds [Function A

Look at the data for the for statement. Its line + descendants time is much
greater than its line time alone, which means the line calls other functions
heavily. The only part of the line that could possibly represent a function call is
i<SPECIMEN LENGTH (specimen), and SPECIMEN LENGTH is in fact
defined in this program as a call to strlen. In effect, the program is calling
strlen every time it traverses one of these loops. And it’s the same for all the
other parallel functions.

This wastes computing time, since all the program needs to do is call strlen
once for each string, then cache the value. This is a case of unnecessary
recomputation, another common cause of a performance bottleneck.

Compare the modified program’s performance

The final step in improving your program's performance is to eliminate the
bottlenecks you’ve found with Quantify and to compare performance data
from two runs, to verify that your modifications have helped.

Assume now that you’ve eliminated all the Click the Compare Runs
strlen calls, and run the program again. IEI tool to see improvements
Compare the first run to the new run, to see

how the performance has improved.

66 Chapter - Getting Started: Quantify

The Diff call graph
highlights in green

paths and functions
whose performance
is improved

The total time for
ComputeMeter is
now around 12,000
microseconds, an
improvement of more
than 595,000
microseconds

i Rational Quantify - homer2_exe
Ele Edit Y“iew Seftings Window Help

D”|H| él@l E” |EB| @I ||I|«|ﬁ| AlEl“E%I I‘s, ll a ||M\cmsecnnds j IDDD j | «l*
m ECaIIEIaphz homer2.exe [Diff] !E

=] ES

Run@ 2% | m=el o e e eoeoemem—
£ Bl Cihomer2thomerthe B8] zoom f—— Higtiignt. [Pertomance Changss =
B Run @ 07/28/%
D Diff @ 07/28/38 el
™ [Resisterau]
| s

4] I3
K0 | | |Visible: 22/545 | Highlighted: 22/534 [strlen [CAWINNTYSpstem3Z\MSVCRTD. DLL] 4
Ready SCRAL 2

The Diff call graph highlights ComputeMeter, strlen, and
SetWindowTextA in green, meaning their performance is improved.

Open the Diff function list to get the numerical comparison.
The Diff function list shows

performance improvements as
negative values

B Function List: homer2_exe (Diff)

Function F+D !ime F+D time F+D time Ifunctio_n F time F time Ca_lls -
{Diff}y {Hew) {Base) time (Diff) {Base) {Hew) {Diff)

analyze_prosody T _506,939.23 301242 599,951 65 1214 8234 7020 0
OnhdeterParse -595,664 54 1267344 G085 337 .95 0.00 012 012 1]
Camp T il 1 24 64 0
Setyvindow Textd 306,965, 30720220 | -7 457 7 46199 ; 2,927
strlen -265,650.26 285,857 .54 | -285,850.26 | 288,057 .54 7.58| -40853
make_work_copy 72,845 47 173,630.44 4295 22001 177 08 0
mark_vowels -165,339.74 134.59 16547454 -30.81 127.69 a7.08 o
Cnlcdle -105 621 61 601 27977 70E,901.38 261.38| 782223 7848370 | 25586
Onilclle -896,932.31 B16,172.30 713,104 61 209513 259.52 2,354 65| 25566
mark_poztion -93,016.94 624 56 95 64180 -110.70 735.56 624 .56 o
Initin=tance -4 18637 72210533 ¥635,294.73 0.00 o.ro 070 [u]
UpdateRegistry -34,700.25 4,566 .06 11956654 -16.44 B00.GE 8441 o
Extracticona, -29.318.56 301465 3233321 333 102.33 105.66 o
PrivateExtracticonsiy -28,725.05 3065572 9936377 §24.09 BE46.13 747022 o
Azzertvalid -25,272.52 126,539.00 191,811.32 -47.17 265.25 2108 126 LI
| | »
|Wisible: 545/545 | CPoermiview:: Computeh stering i

You can save datasets as a Quantify data file (.qfy) to use for further analysis or
to share with other Quantify users. You can save data to a tab-delimited ASCII
text file (.txt) to use outside of Quantify, for example, in test scripts or in
Microsoft Excel. You can also copy data directly from the Function List
window to use in Excel.

The basic steps 67

Advanced features

Quantify provides powerful features that help you make maximum use of the
performance data. For example, you can:

Integrate Quantify with your development desktop
Select specific modules for instrumentation and profiling
Control data recording interactively

Highlight functions that share key attributes

Focus on critical data

Fine tune data collection

Integrate Quantify in your test environment

This section gets you started using these features to profile the important parts
of your code more efficiently, and to zero in on bottlenecks.

Integrating Quantify with your development desktop

Quantify’s integration—for example, with Microsoft Visual Studio, Rational
Robot, and Rational ClearQuestTM—puts powerful performance profiling
within easy reach while you develop your code using your favorite tools.

68 Chapter - Getting Started: Quantify

During installation, a Quantify menu is automatically added to Visual Studio

so you can profile your code at any time during development, without leaving
your development environment.

Ai Select the PurifyPlus > Quantify menu, then run your
+1| program

osoft Yisual C++ - [Rational Quantify Main Window]

2 Fie Edi View Inset Pojecl Buld Tesl Tooks Puily Quaniiy PueCoverage Window Helo
glzgd|: e o - | n/ER|HTEs j|‘£ﬁ,|
S R R EE

— = @ ‘
Zoom: l— Highlight: [Mode: Maximum Path to Raot <
. W’orkspace ‘cube’ 1 pro _I_I

= &8 cube files

181X

E| a S oures Fies |Alx\MnMain| % |Wg\ChuoseP\xelFormat‘
cube.cpp
cube.rc DiRainCRT Startup. wglCreateContext FreeLibrary
cubedoc.cpp
cubeview.cp
. mainfim.cpp exit wigMakeCurrant GetPixalF ormat
View and work

stdalx.cpp | main_6h.| s machilg
with performance oadStrings oFinish DescrinepixeFarmat
data directly within
Vlsual Studlo GdiDllinitislize: wylSwapBufters GetNearestPalettelind
CRTOLL _IMIT Dillinitizlize Bitet

o

| K1} | |
=ac @R Fil Visible: 217116 [Highlighted: 5/5

|LoadLibrary, [CNWwINNT\System32\KERNEL32.0LL]

Fle Edt Wew Project Buld Debug Tooks Puify Quantfy PursCoverage Window Hslip =
=
R = = N i = = e - ,
HlEei2EE 2@ HEAL &7, A
%‘ Untitled1.qfy C... Accessible.exe |0 EE R L2 E | PurifyPlus Navigator B ox
n =% Quantify
2 [| zoom Highlight: [Mede: Masimum PathtoRoat 3| = [CiiPragram Fiesticrosoft Visual
- = Bl Run @ 04/04/2002 14:44:01
g main_0. £l Runtime0d = — &8 Snapshot @ 04/04/2002 14:4
3 m Setmssible Main 2 . &8 Snapshot @ 04/04/2002 14:4
| [threaa_1]
4 »
2 AppDnmsm SetupDomai J—I——l
I 15 PurifyPlus Navigatar mml
cctor Solution Explorer R %
:_
T (oA Solution 'accessible’ {1 project)
B] Accessible
(5 References
N Accessible.cs
[wisible: 3171718 |Highlighted: 3/3 |Runtimenz [Rational]
Output 2 x
] 5] Gutput Properties 7 ox
| Resdy I I |

If you have Rational Robot installed, you can run a test script for a program
and profile the program at the same time, without leaving Robot. With Rational
ClearQuest, you can submit a performance defect, and attach a Quantify data
file (.qfy), as soon as you find slow code, without leaving Quantify.

More information? Look up integrating in the Quantify online Help index.

Advanced features 69

Using selective instrumentation

If you are working in C/C++ or Visual Basic native-compiled code, Quantify
offers you the option of selecting for instrumentation one or more modules or
.dll’s, rather than instrumenting all modules. This has the advantage of
automatically focusing your profiling data on the code you’re most concerned
with, and it also saves time when you run your code under Quantify.

For example, assume you are working on a plug-in application that is to be
loaded by Microsoft Internet Information Server (IIS). You don’t need to
instrument and profile all of IIS. All you need to do is instrument your plug-in,
and then run it as usual under IIS. Quantify collects performance data as your
plug-in runs, and presents this data to you when the plug-in exits.

To instrument your plug-in, select Settings > Default settings in Quantify to
display the Settings dialog, and then in the dialog select Modules to Instrument:
Selected Modules. Click on Configure to open the Module Instrumentation
dialog for specifying the name of your plug-in.

Module Instrumentation [Selective] L d=]
Click to add a module -to e 1%' 5 ||
the list Module | Measurementl Debugl Instrumentation Statel
[Line] Yes Tranzient
Selected modules must
have debug data
avaliable; an .exe module
also requires relocation
data
With transient
— Measurement Instrumentation State — ¥ Show full path names instrumentation, the
& Default ' Transient instrumented version of
' Line " Permanent the module is kept only
" Eunction ' Mone for the duration of one
 Time program run, and is then
replaced by the
uninstrumented original
Bestore All Modules | QK I Cancel | Help |

Run your plug-in as usual. Quantify collects and displays profiling data.

More information? Look up selective instrumentation in the Quantify online
Help index.

70 Chapter - Getting Started: Quantify

Controlling data recording interactively

As your program runs, you can monitor the performance of threads and fibers
and view general information about the run using the Run Summary window.

Start and stop Clear Take a data
recording data snapshot

a Rational Quantify - [Run Summary: homer.exe]
g File Edit Wiew Seftings Window Help = 5‘|L|

E—"‘|ﬂ| él@l EI IEE' @I |I|||*I‘|;ﬁ| A|E|| I‘%lﬁ'l IQ"EIE“Mi:msecnnds j IDDD j ‘ «l*

Threads | DEIalIsl Log | Messagesl PuwerTunel Files |

Current thread m main_11d e few [T [l EEEEEEEEEN ENEEEEEEEEEE
m thead f3 m—— ENEE NN EENEENEEEEEEEEEEE ENEEEEEEEEEE
status ——

Thread status
summary for
the run

Real-time
monitoring for all

the threads in
your program |Slatus Running |Elaussd Time; 00:00:44

Feady | SCRL 4

Running ® Walting /0 = Blocked Quantify = Exted

You can use the data recording tools to collect data for the entire program or
for just a section of it, so you get exactly the performance data you want. For
example, at any time you can stop recording, clear the data collected to that
point, and then resume recording. You can also take a snapshot of the current
data, enabling you to examine performance in stages.

You can also start and stop recording, clear data, and take snapshots
automatically from within your program by incorporating Quantify’s data
recording API functions in your code.

More information? Look up threads, recording data, and API functions in the
Quantify online Help index.

Advanced features 71

Select Functions with
Source, for example,
to highlight
functions

that have

annotated source

Functions with
source code
available are
enclosed in
rectangles

21 of the 484
functions in the
current dataset are
displayed in the
Call Graph

8 of the 86
functions with
source code

are displayed in the
Call Graph

Highlighting functions that share key attributes

You can highlight functions in the call graph to display specific performance
characteristics or to show calling relationships.

a Rational Quantify - [Call Graph: homer_exe]

Click to display the Highlight list

<= File Edit Wiew

Settings Window Help

|- slr| e

| Zoom

Highlight:

[None)

ARdNinhiain

SHGetFileInfoA H=— N

Initinstance Fef

OnMeterParse ol

Onldle Onf Mode: b
iF

|EBI @I "ll«lﬁl A|Z” f%|£l>| Ellg“Mlcrusscunds j IU.UU j ‘ = *l

[Mone]

Top 10: Calls

Top 10: Function time

Top 10: F+D time

Top 10: Awg F time

Top 10: Min F time

Top 10: Max F time

Top 10: First Use

Mode: All Descendants

Mode: Immediate: D escendants

Mode: All Callers

Mode: Immediate Callers
3 P

-

Funetiores that \wait or Block X

gistarClassObjec...

Ee_prosody

MNdrClientCall2 MiRequesi

Setiindoy

make_wark_copy [F strlen

Kl | 0
|V\slb\e. 217484 \H\ghhghtsd 040 |LuadL|braryW [C:SWwANNT S5 pstem324KERNEL32.DLL]
Ready SCRL

<= File Edit Wiew

a Rational Quantify - [Call Graph: homer_exe]

Settings Window Help

=18 x|

=[] Szl e

|EBI @I "ll«lﬁl A|Z” f%|£l>| I'(:"', Ellg“Mlcrusscunds =l IU.UU

il €=

| Zoom

- |— Hichiight: |

[

Functions with Source

[AfdinMain

[SHGetFileinfod, F—— N

Initinstance Registerall-=

etGetCannectionyy

CoRegisterclassOhjec

[onmeterParse] e—— [Computemster|

= MdrClientCall2 MiReguest

LoadLibranfh. SetWindow

Onldle Onldle

make_wark_copy|LF sirlen

Kl | 0
|V\slb\e. 217484 \H\ghhghtsd 8486 |W|nMamCF|T5larlup [C:\homer_progshomer. exe]
Ready SCRL

More information? Look up highlighting in the Quantify online Help index.

72 Chapter - Getting Started: Quantify

You can hide or

delete individual
functions, all functions
ina

module, or entire
subtrees. Hide functions
or subtrees

to roll up their time to
their callers; delete
them to discard their
time completely

Focusing your data

Use Quantify’s filter commands to remove a selected function, or all functions
in a module, from the current dataset. Alternatively, use subtree commands to
focus on or remove a specific function and all its descendants from the current
dataset. Simply right-click a function in the Call Graph, Function List, or
Function Detail window.

— Hide Method LeakSample, <init =
Subtree 3 Hide Class LeakSample
: el 5 Delete Method LeakSanmple. <init>
Expa: | oFaptse , Delete Class LeakSample
e el i [Last Filber EEeratian
Colars 3
Method Mame. .. Filter Managet...
Source File L
— « DataBrowser... Cirl+8 The Filter Manager offers additional filtering
options
Filter v
ES E?Cus snSubliee 1 Select Focus on Subtree

Expand/Collapse » g::::t:gb::t?ee to delete all functions except
. s M

Line Scale Factors Undo Hide Sublres the subtree

LCalars 3

Method Mame. .. Beset to _Foat.

Saurce e

v Data Browser. .. Chrl+E

Quantify has undo capabilities for all filter and subtree commands, to easily
return to any previous dataset configuration.

The Call Graph window also provides a series of expand and collapse
commands that work with subtrees. Unlike the filter and subtree commands,
however, these commands affect only the Call Graph display; they do not
change the current dataset.

More information? Look up filtering data and subtrees in the Quantify online
Help index.

Fine-tuning data collection

Using the Quantify PowerTune options, you can specify how you want
Quantify to measure your program’s performance. Quantify’s default
measurement levels are based on what is appropriate in most situations, but
with PowerTune you can control how specific modules are measured.

Advanced features 73

Why is this useful? It allows you to significantly speed up the run-time
performance during profiling. You can, for example, select Time as your
default measurement level, and then select Line for the specific modules that
you’re currently investigating.

Settings for C:\homer_proghhomer.exe

PowerTune | Files I Run Timel

1]

— Default Measurement
Select a default

measurement level ———

" Eunction
C Time

Click Configure to
display the Module
Instrumentation dialog
and specify
measurement levels for

— Modules ta Instrument

& Al Modules

" Selected Modules

Configure. .. |

| e ety Module Instrumentation

specific modules

Select one or more modules. .. ———

then set their measurement level ———

Module

| |nstrument | Debug |A

chwinntaystem 32 pertd. i
chwinntapstem32hadvapi32. dil
o hwinntapstem32sntdL dil
chwinnthapstem32imicod 2d.dll
chwwinnthapstem32hgdid2 dil
chwinntaystem32user32 di
chwwinnthapstem32hkemel32.dIl
chwinntaystem 32 mavertd. dl
Swinnthaystem32imicd 2d. dll
= -

— Measurement
& Default
- Line

" Eunction

C Time

Llear Cache |

o]

[System]
[System]
[System]
[Time]
[System]
[System]
[System]
[Time]
[Time]
[Line]

¥ Show full path names

Cancel |

Mo
Mo
Mo

Mo

es
es
es

Help

|

Quantify measures performance at several levels of detail:

» Line. At this level, Quantify counts the number of times each line executes
during a run, then computes performance data based on the number of
cycles needed for one execution. Line level, which requires debug line
information, results in the most accurate and detailed data possible, but
does take the most time to collect.

» Function. This level provides the same level of accuracy as line-level
measurement, but less detail. Function level is useful when you don’t need
to know how individual lines perform, but still want precise, repeatable
data for functions.

74 Chapter - Getting Started: Quantify

» Time. Quantify collects data for timed functions by starting and stopping a
timer when each function begins and ends. The data is accurate for the
current run, but is influenced by microprocessor state and memory effects.
The overhead for collecting timed data, however, is very low.

More information? Look up measurement types in the Quantify online Help
index.

Integrating Quantify in your test environment

By integrating Quantify into your test environment, you have a tool that detects
changes in performance in your nightly tests, giving you an immediate
heads-up as soon as things start to go wrong.

You can easily run Quantify from an existing makefile, batch file, or Perl script
by adding the command:

Quantify /SaveData Exename.exe

to run your program under Quantify. The /SaveData option generates
performance data in a format for viewing and comparing with previous runs of
the program in the Quantify graphical interface.

Note that the /SelectModuleList option is also available to help focus
your testing. Refer to Using selective instrumentation on page 70.

NET managed code, and Visual Basic programmers: For managed code and
Visual Basic p-code programs, the command line must include the /Net switch.
For example, if you have a test script that runs managed code, change the line
that runs it to:

Quantify /SaveData /Net Exename.exe

More information? For details, and additional command-line options, look up
command line and scripts in the Quantify online Help index.

Now try out Quantify on your own code. Remember
that Quantify’s online Help contains detailed
information to assist you.

&

s

R 7\‘\“““\0\\\“
Bt

f\‘:“\w‘\‘\\\‘““

v

Advanced features 75

76 Chapter - Getting Started: Quantify

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation, North Castle Drive
Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION ‘AS IS’ WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice

77

78 Chapter - Notices

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
Department BCEB

20 Maguire Road
Lexington, MA 02421
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of
these programs. You may copy, modify, and distribute these sample programs
in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBMis
application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. (¢) Copyright IBM Corp. _enter the year or years_.
All rights reserved.

Additional legal notices are described in the legal information.html file that is
included in your Rational software installation.

Trademarks

AIX, ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS,
ClearGuide, ClearQuest, DB2, DB2 Universal Database, DDTS, Domino,
IBM, Lotus Notes, MVS, Notes, OS/390, Passport Advantage, ProjectConsole,
PureCoverage, Purify, PurifyPlus, Quantify, Rational, Rational Rose, Rational
Suite, Rational Unified Process, RequisitePro, RUP, S/390, SoDA, SP1, SP2,
Team Unifying Platform, WebSphere, XDE, and z/OS are trademarks of
International Business Machines Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product or service names may be trademarks or service marks
of others.

79

80 Chapter - Notices

Index

Symbols
.cfy files
PureCoverage 48
Purify, coverage data 19, 20
.NET managed code, see managed code
.pey files (Purify, C/C++) 20
pft files (Purify, C/C++) 15
pfy files (Purify, C/C++) 19
.pmy files
Purify, managed code 34
txt files
PureCoverage 49, 54
Purify, C/C++ 19
Purify, managed code 34
Quantify 67
/Java option
PureCoverage 54
/Net option
PureCoverage 54
Purify 38
Quantify 75
/Save* options
PureCoverage 54
Purify, C/C++ 23
Purify, managed code 38
Quantify 75
A
ABW error (Purify, C/C++) 15
Annotated Source window
PureCoverage 47
Purify (coverage data) 18
Quantify 66
API functions
PureCoverage 53

Purify, C/C++ 24
Purify, managed code 39
Quantify 71
array bounds write error (Purify, C/C++) 15
ASCII text files (.txt)
PureCoverage 49, 54
Purify, C/C++ 20
Purify, managed code 38
Quantify 67
Auto Merge (PureCoverage) 48
B
basic steps
improving code coverage 43
improving program performance 58
Purify’ing C/C++ code 9
Purify’ing managed code 27
batch files for automated testing
PureCoverage 54
Purify, C/C++ 23
Purify, managed code 38
Quantify 75
Break on Error tool (Purify, C/C++) 21
C
C/C++ code
monitoring coverage 43
profiling performance 59
Purify’ing 9
cache files
Purify, C/C++ 10
call graph (Purify, managed code)
filter commands 36
highlighting related methods 35
overview 29
subtree commands 36
call graph (Quantify)
filter commands 73
for comparing runs 66
highlighting related functions 72

initial display 60
line width 62
subtree commands 61, 73
call stack (Purify, C/C++) 15, 16
callers of a function, listed (Quantify) 65
calling paths, call graph (Quantify) 62
ClearQuest integration
PureCoverage 50
Purify, C/C++ 24
Quantify 69
code
editing (Purify, C/C++) 17
editing (Purify, managed code) 30
collapsing call graph subtrees
Purify, managed code 36
Quantify 73
colors
in annotated source (PureCoverage) 47
in annotated source (Purify, coverage data) 18
in call graph (Quantify) 66
command-line interface
Purify, C/C++ 23
Purify, managed code 38
commands (Purify, C/C++)
Embed Data Browsers 22
commands (Purify, managed code)
Expand/Collapse 36
filter commands 36
subtree commands 36
undoing 36
commands (Quantify)
Expand/Collapse 61, 73
filter commands 73
subtree commands 61, 73
undoing 73
comparing
program runs (Purify, C/C++) 19
program runs (Purify, managed code) 29

program runs (Quantify) 66

snapshots (Purify, managed code) 29
Controlling managed code memory profiling with the Purify API 39
Coverage Browser window (PureCoverage) 44
coverage data (PureCoverage)

controlling with API functions 53

filtering 46

limiting collection 53

merged for multiple runs 48

saving from the command line 54

saving from the user interface 48

sharing 48
coverage data (Purify, C/C++)

collecting 10, 23

saving 19
coverage data files (.cfy)

PureCoverage 48

Purify 19
coverage levels

customizing (PureCoverage) 51

setting default levels (PureCoverage) 51
coverage monitoring (Purify, C/C++)

/Coverage option 23

description 8

saving coverage data 19

turning on 10

using coverage data 17-19
Create Filter command (Purify, C/C++) 14
customizing

coverage levels (PureCoverage) 51

data collection level (Quantify) 73

data display (PureCoverage) 45
D
data, see coverage data, error data, memory profiling data, and performance data
Data Browser window (Purify)

coverage data (C/C++) 18

error data (C/C++) 10-19

memory profiling data (managed code) 29-31

object list (managed code) 33
data recording
changing default level (Quantify) 73
controlling (Quantify) 71
controlling programatically (Purify, managed code) 39
debug data
and instrumentation (Purify, C/C++) 10, 20, 28
and line-level coverage (PureCoverage) 43
and line-level profiling (Quantify) 59
debugging, just-in-time (Purify, C/C++) 21
default instrumentation levels, setting
PureCoverage 51
Purify, C/C++ 20
Quantify 73
deleting call graph subtrees
Purify, managed code 36
Quantify 63, 73
descendants of a function, listed (Quantify) 65
diff call graph (Quantify) 66
diff function list (Quantify) 66
diff’ing snapshots
equivalent results with API (Purify, managed code) 39
Purify, managed code 29
displaying filtered messages (Purify, C/C++) 15
E
editing source code
Purify, C/C++ 17
Purify, managed code 30
Embed Data Browsers command (Purify, C/C++) 22
Error View tab, Data Browser window (Purify, C/C++) 10
errors (Purify, C/C++)
analyzing 15
breaking on errors 21
correcting 17
saving error data 19
See also messages (Purify, C/C++)
excluding modules (PureCoverage) 51
exit messages (Purify, C/C++) 12

expanding call graph subtrees
Purify, managed code 36
Quantify 61, 73
F
F+D (Function + Descendants) time (Quantify) 63
File View tab (Purify, coverage data) 18
files
.cfy (PureCoverage) 48
.cfy (Purify, C/C++) 20
.pcy (Purify, C/C++) 20
pft (Purify, C/C++) 15
pfy (Purify, C/C++) 19
.pmy (Purify, managed code) 34
.txt (PureCoverage) 49
Axt (Purify, C/C++) 19
.txt (Purify, managed code) 34
caching after instrumentation (Purify, C/C++) 10
filters
filter groups (Purify, C/C++) 15
Filter Manager (PureCoverage} 46
Filter Manager (Purify, C/C++) 15
Filter Manager (Purify, managed code) 37
Filter Manager (Quantify) 73
overview (Purify, Java) 35
overview (Purify, managed code) 13
saved in .pft files (Purify, C/C++) 15
sharing (Purify, C/C++) 15
undoing filter commands (Purify, managed code) 36
undoing filter commands (Quantify) 73
focusing on subtrees
Purify, NET 36
Quantify, .NET 73
Function Detail window
Purify, managed code 31
Quantify 65
Function level profiling (Quantify) 74
function list view
Purity, coverage data 18

Purify, managed code 31
Function List window
for a single run (Quantify) 63
for comparing runs (Quantify) 66
sorting data (Quantify) 63
using (PureCoverage) 45
function time (Quantify) 63
function-level coverage
described (PureCoverage) 44
setting (PureCoverage) 51
function-level instrumentation (Purify) 20
functions
PureCoverage API 53
Purify API (C/C++) 24
Purify API (managed code) 39
Quantify API 71
G
garbage collector
Purify, managed code 26
graphs
call graph (Purify, managed code) 29
call graph (Quantify) 60, 66, 72
memory usage graph (Purify, managed code) 29
object reference (Purify, managed code) 33
green highlighting in call graph (Quantify) 66
groups, filter (Purify, C/C++) 15
H
handles in use at exit (Purify, C/C++) 12
hiding call graph subtrees
Purify, managed code 36
Quantify 73
hiding Purify C/C++ error messages
See filters
highlighting
green in call graphs (Quantify) 66
performance improvements (Quantify) 66
related functions (Quantify) 72
related methods (Purify, managed code) 35

I
instrumentation
customizing (PureCoverage) 51
customizing (Purify, C/C++) 21
default levels (Purify, C/C++) 20
described (PureCoverage) 43
described (Purify, C/C++) 10
selective (PureCoverage) 52
selective (Quantify) 70
integration
Microsoft Visual Studio (PureCoverage) 50
Microsoft Visual Studio (Purify, C/C++) 77-20
Microsoft Visual Studio (Purify) 28
Microsoft Visual Studio 6 (Purity, C/C++) 9-??
Rational ClearQuest (PureCoverage) 49
Rational ClearQuest (Purify, C/C++) 24
Rational ClearQuest (Quantify) 68
Rational Robot (PureCoverage) 49
Rational Robot (Purify, C/C++) 24-25
Rational Robot (Quantify) 68
interactive snapshots (PureCoverage) 53
J
Java (PureCoverage)
running from the command line 54
supported languages 41
just-in-time debugging (Purify, C/C++) 21
L
L+D (Line + Descendants) time (Quantify) 66
languages and applications supported
Purity, C/C++ 8
leaks (Purify)
managed code 26
See also memory leaks (Purify)
levels of measurement (Quantify) 74
limiting coverage data collection (PureCoverage) 53
line colors
in annotated source (PureCoverage) 47
in annotated source (Purify coverage data) 18

Line level measurement (Quantify) 74
Line time (Quantify) 66
line width, in call graph (Quantify) 62
line-level coverage (PureCoverage)
annotated source 47
described 44
setting 51
line-level instrumentation (Purify, C/C++) 20
M
makefiles for automated testing
PureCoverage 54
Purify, C/C++ 23
Purify, managed code 38
Quantify 75
managed code (PureCoverage)
running from the command line 54
supported languages 41
managed code (Purify)
examining objects 32—-34
filtering memory profiling data 36
memory leaks 26
memory usage graph 29
Purify’ing managed code 27
saving memory profiling data 34
measurement levels (Quantify) 74
memory leaks (Purify)
C/C++ leaks reported at exit 12
managed code memory leaks 26
PurifyNewLeaks API function (C/C++) 24
memory profiling data (Purify)
filtering (managed code) 36, 37
saving (managed code) 34
memory usage graph
Purify, managed code 29
menu, shortcut (Purify, C/C++) 12

merging data from multiple runs (PureCoverage) 48

messages (Purify, C/C++)
analyzing 15

expanding 15
filtering 13
redisplaying filtered 15
See also errors (Purify, C/C++)
method-level coverage (PureCoverage), see function-level coverage (PureCoverage)
methods, highlighting by category
Purify, managed code 35
Microsoft Visual Studio integration
PureCoverage 49
Purify 28
Quantify 68
minimal instrumentation (Purify, C/C++) 20
Module View tab (Purify coverage data) 18
modules
controlling coverage levels (PureCoverage) 51
controlling instrumentation (Purify, C/C++) 21
controlling instrumentation level (Quantify) 73
excluding from coverage (PureCoverage) 51
filtering by module (Purify, managed code) 36
filtering by module (Quantify) 73
monitoring program performance (Quantify) 71
monitoring program runs (Quantify) 71
N
Navigator
PureCoverage 48
Purify, C/C++ 19
Purify, managed code 29
negative values in function list (Quantify) 66
O
Object Detail window
Purify, managed code 33
Object List View tab
Purify, managed code 33
object references
and managed code memory leaks 26
objects, examining
Purify, managed code 3234

P
performance data (Quantify)
comparing runs 66
controlling recording 71
filtering 73
for all dataset functions 63
for individual lines 66
for single functions 65
improvements highlighted 66
saving from the command line 75
Perl scripts for automated testing
PureCoverage 54
Purify, C/C++ 23
Purify, managed code 38
Quantify 75
pie charts, Function Detail window
Purify, managed code 32
PowerCheck tab (Purify, C/C++) 20
PowerCov options (PureCoverage) 51
PowerTune (Quantify) 73
precise instrumentation (Purify, C/C++) 20
problems
managed code 26
procedure-level coverage (PureCoverage), see function-level coverage (PureCoverage)
profiling program performance (Quantify) 71
programming languages and components supported
Purify 7
Purify, C/C++ 8
programs
instrumenting (PureCoverage) 43
profiling performance (Quantify) 71
rerunning (Purify) 19
running from Microsoft Visual Studio (PureCoverage) 50
running from Microsoft Visual Studio (Purify, C/C++) 9
running from Microsoft Visual Studio (Purify, managed code) 28
running managed code programs (Purify) 27
running under debugger (Purify, C/C++) 21
PureCoverage

in PurifyPlus 1
tips for developers 2
tips for testers 3
using 43
Purity
in PurifyPlus 1
tips for developers 2
tips for testers 3
using (C/C++) 9
using (managed code) 27
Purify data files
C/C++20
managed code 34
Purify’ing
C/C++ code 9
managed code 27
PurifyPlus, described 1
Q
Quantify
in PurifyPlus 1
tips for developers 2
tips for testers 3
using 58
QuickFilter command (Purify, C/C++) 14
R
Rational ClearQuest integration
PureCoverage 50
Purify 24
Quantify 69
Rational PureCoverage
in PurifyPlus 1
tips for developers 2
tips for testers 3
using 43
Rational Purify
in PurifyPlus 1
tips for developers 2
tips for testers 3

using (C/C++) 9
using (managed code) 27
Rational PurifyPlus, described 1
Rational Quantify
in PurifyPlus 1
tips for developers 2
tips for testers 3
using 58
Rational Robot integration
PureCoverage 50, 54
Purify, C/C++ 24-25
Quantify 69
Rational Software technical publications, contacting 5
Rational Software technical support, contacting 5
recording data, controlling
PureCoverage 53
Quantify 71
relocation data, and instrumentation
Purify, C/C++ 10, 20, 28
Robot integration
PureCoverage 50, 54
Purify, C/C++ ?7-25
Quantify 69
Run Summary window
PureCoverage 44
Quantify 71
running programs
from the command line (Purify, C/C++) 23
from the command line (Purify) 38
from Visual Studio (PureCoverage) 50
from Visual Studio (Purify, C/C++) 9
from Visual Studio (Purify, managed code) 28
in the Purify standalone interface (Purify, C/C++) 22
in the Purify standalone interface (Purify) 37
PureCoverage 43
Purify, managed code 28
Quantify 58
rerunning (Purify, C/C++) 19

runs, comparing
Purify, C/C++ 19
Purify, managed code 29
Quantify 66
S
saving data
from the command line (PureCoverage) 54, 75
from the command line (Quantify) 75
from the command line(Purify, C/C++) 23, 38
from the user interface (PureCoverage) 48
from the user interface (Purify, C/C++) 19
from the user interface(Purify, managed code) 34
scaling of line widths, in Quantify call graph 62
scripts for automated testing
PureCoverage 54
Purify, C/C++ 23
Purify, managed code 38
Quantify 75
selective instrumentation
PureCoverage 52
Quantify 70
settings for data collection
PureCoverage 44
Quantify 59
sharing
data files (PureCoverage) 48
filters (Purify, C/C++) 15
shortcut menu
Purify, Java 12
Purify, managed code 36
snapshots
coverage dava (PureCoverage) 53
memory use (Purify, managed code) 28
sorting data
PureCoverage 45
Quantify 63
source code
displaying (PureCoverage) 47

displaying (Quantify) 66
editing (Purify, C/C++) 17
editing (Purify, managed code) 30
stack, call (Purify, C/C++) 16
standalone Purify interface (C/C++) 22
standalone Purify interface (managed code) 37
starting
PureCoverage 43
Purify, C/C++ 9, 22, 37
Purify, managed code 28
Quantify 58
status line, Quantify windows 72
strategies for using Rational PureCoverage 42
subtrees (Purify, managed code)
deleting 36
expanding and collapsing 36
focusing on 36
undoing subtree commands 36
subtrees (Quantify call graph)
deleting 63, 73
expanding and collapsing 73
focusing on 73
undoing subtree commands 73
supported languages and components
Purity, C/C++ 8
system resources and memory leaks
Purify, managed code 27
T
technical publications, contacting 5
technical support, contacting 5
tests
using PureCoverage in automated tests 54
using PureCoverage in unit tests 3
using Purify in automated tests 23, 25
using Purify in unit tests 3
using Quantify in automated tests 75
using Quantify in unit tests 3
text files (.txt)

PureCoverage 49, 54
Purify, C/C++ 20
Purify, managed code 34
Quantify 67

thread status, monitoring (Quantify) 71

Time measurement (Quantify) 75

tool tips, call graph
Purify, managed code 30

U

undoing filter and subtree commands
Purify, managed code 36
Quantify 73

unembedding Purify (C/C++) 22

v

Visual C/C++, running programs
PureCoverage 43
Purify 9
Quantify 59

Visual Studio integration
PureCoverage 49
Purify (managed code) 28
Purify, C/C++ 9
Quantify 68

W

what-ifs, in Quantify call graph 63

windows and tabs
Annotated Source (PureCoverage) 47
Annotated Source (Quantify) 66
Call Graph (Purify, managed code) 29, 35
Call Graph (Quantify) 60, 66, 72
Coverage Browser (PureCoverage) 44
Data Browser (Purify, C/C++) 10-14, 15-18
Data Browser (Purify, managed code) 29-31, 33
Diff Call Graph (Quantify) 66
Diff Function List (Quantify) 66
File View (Purify, coverage data) 18
Function Detail (Purify, managed code) 31, 32
Function Detail (Quantify) 65

Function List (PureCoverage) 45

Function List (Quantify) 63, 66

Function List View (Purify Coverage data) 18
Function List View (Purify, managed code) 31
Module View (Purify, coverage data) 18
Navigator (Purify, C/C++) 19

Navigator (Purify, managed code) 29

Object Detail (Purify, managed code) 33
Object List View (Purify, managed code) 33
Run Summary (PureCoverage) 44

Run Summary (Quantify) 71

	Welcome to PurifyPlus
	IBM Rational PurifyPlus: What it is
	Tips for development engineers
	Find memory errors early
	Improve code coverage

	Tips for test engineers
	Find the internal errors in your code
	If performance improves . . .

	Other PurifyPlus resources
	Contacting IBM customer support

	Getting Started: Purify
	Purify for C/C++ developers and testers
	What it does
	Find errors before they occur
	Check every component in your program
	Look for errors in the right places
	Use Purify from the start

	The basic steps
	Running a C/C++ program with Purify
	Seeing all your errors at a glance
	When identical errors repeat
	Focusing on critical errors first
	Working with filters
	Analyzing Purify error data
	Correcting errors
	Checking code coverage with Purify
	Comparing program runs
	Saving Purify data

	Advanced features
	Customizing instrumentation
	Using just-in-time debugging
	Using Purify standalone
	Testing C/C++ code with the command-line interface
	Extending error checking with Purify API functions
	Using IBM Rational product integrations

	Purify for .NET managed code developers and testers
	What it does
	Memory leaks in managed code
	Object references that are no longer needed
	System resources that are not freed
	How Purify can help

	The basic steps
	Running your managed code program with Purify
	Taking snapshots of memory use
	Comparing snapshots to identify problem methods
	Diagnosing leaks with the Function List View tab
	Focusing on a method with the Function Detail window
	Looking for unneeded objects
	Getting from a suspicious method to its objects
	Examining object details
	Looking at all allocated objects together
	Saving Purify memory profiling data

	Advanced features
	Highlighting methods that share key attributes
	Focusing your data
	Using Purify standalone
	Integrating Purify into your managed code test environment
	Controlling managed code memory profiling with the Purify API

	Getting Started: PureCoverage
	What it does
	Check every component in your program
	Use PureCoverage throughout the engineering cycle

	The basic steps
	Running a program
	Getting the big picture
	Focusing coverage data with filters
	Identifying unexercised lines
	Modifying your test run
	Rerunning your program
	Saving coverage data

	Advanced features
	Integrating PureCoverage with your development desktop
	Fine-tuning data collection
	Using Selective instrumentation
	Zeroing in on key program areas
	Taking interactive snapshots
	Using PureCoverage API functions
	Integrating PureCoverage in your test environment

	Getting Started: Quantify
	What it does
	The basic steps
	Running a program
	Analyze the performance data
	Compare the modified program’s performance

	Advanced features
	Integrating Quantify with your development desktop
	Using selective instrumentation
	Controlling data recording interactively
	Highlighting functions that share key attributes
	Focusing your data
	Fine-tuning data collection
	Integrating Quantify in your test environment

	Notices
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

