
Creating a J2C Application to process an IMS transaction with
input and output data containing arrays

Time required

To complete this tutorial, you will need approximately 30 minutes. If you decide to explore other facets of
the J2C Java bean wizard while working on the tutorial, it could take longer to finish.

Prerequisites

In order to complete this tutorial end to end, you should be familiar with:

� J2EE and Java programming
� Basic IMS Transaction Manager (IMS TM) concepts

Learning objectives

This tutorial is divided into several exercises that must be completed in sequence for the tutorial to work
properly. This tutorial teaches you how to use the J2C Java Bean wizard to create a Java bean that runs a
transaction in IMS. While completing the exercises, you will:

� Use the J2C Bean wizard to create a J2C Java bean that runs an IMS transaction.
� Create a Java method for the bean, runInOut.java, to run the IMS transaction.
� Create a test proxy Java class, TestInOutProxy.class, to build the input message for the IMS

transaction, invoke the J2C Java bean method that runs the IMS transaction, then display the output
data returned by the IMS transaction.

NOTE: The test Java class was created for an English locale; you may have to make modifications in
the code for other locales.

When you are ready, begin Exercise 1.1: Selecting the resource adapter

1 of 11Inoutarray Tutorial

Exercise 1.1: Selecting the resource adapter

This tutorial will lead you through the detailed steps to generate a J2C application that processes an IMS
transaction with input and output data containing arrays.

Before you can begin this tutorial, you must first obtain the required resources:
� Information about your IMS environment: In this tutorial, your application interacts with an

application program in IMS. You need to obtain information such as the host name and port number
of IMS Connect and the name of the IMS datastore where the transaction will run. Contact your IMS
systems administrator for this information. In addition, you need to perform some setup work in IMS if
you want to run this sample. This information is provided below.

� A copy of the COBOL file InEqualsOut.cbl You may locate this file in your product installation
directory: \rad\eclipse\plugins\com.ibm.j2c.cheatsheet.content_6.0.0
\samples\IMS\InOutArray. If you wish to store it locally, you can copy the code from here:
InEqualsOut.cbl.

 IDENTIFICATION DIVISION.
 program-id. pgm1.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.

 LINKAGE SECTION.

 01 IN-OUT-MSG.
 05 WS-LL PIC S9(3) COMP VALUE +0.
 05 WS-ZZ PIC S9(3) COMP VALUE +0.
 05 WS-TRCD PIC X(5).
 05 INDX PIC 99.
 05 WS-CUSTOMER OCCURS 1 TO 8 TIMES
 DEPENDING ON INDX.
 15 WS-CUST-NUMBER PIC X(5).
 15 WS-CUST-NAME PIC X(20).
 05 WS-FUNC-CODE PIC X(6).

 PROCEDURE DIVISION.

� A clean workspace.

This tutorial uses COBOL data structures to describe the IMS transaction input and output messages. The
input and the output messages are identical and contain an array of customer elements, followed by a
single field containing a function code. The array can have a maximum of eight elements, but for this tutorial
only three elements are input to the IMS application program and only four elements are returned by the
IMS application program.

The IMS transaction that is used by this tutorial is not one of the IMS Installation Verification Programs. It
uses DFSDDLT0, an IMS application program that issues calls to IMS based on control statement
information. The DFSDDLT0 control statements for this tutorial are provided below. However, you must
configure your environment for DFSDDLT0 and provide the necessary JCL if you wish to run the tutorial.
This tutorial uses SKS2 as the transaction code for the DFSDDLT0 application.

DFSDDLT0 control statements

S11 1 1 1 1 TP 1
L GU
E OK

2 of 11Inoutarray Tutorial

E Z0088 DATA SKS2 03CN001Cathy Tang CN002Haley Fung X
 CN003Steve Kuo 123456
WTO IC4JINOU: Single segment received from JITOC
L GN
E QD
WTO IC4JINOU: End of input segments from JITOC
L ISRT JITOC53
L Z0113 DATA TRNCD04CN001Cathy T. CN002Haley F. X
 CN003Steve K. CN004Kevin F. 65432X
 1
E OK
WTO IC4JINOU: Single segment inserted - 3 elements !!!!!!!!!!!!!
L GU

Selecting the resource adapter

Switching to the J2EE Perspective

If the J2EE icon, , does not appear in the top right tab of the workspace, you need to switch to the J2EE
perspective.

1. From the menu bar, select Window > Open Perspective > Other. The Select Perspective window
opens.

2. Select J2EE.
3. Click OK. The J2EE perspective opens.

Connecting to the IMS server

1. In the J2EE perspective, select File > New > Other.
2. In the New page, select J2C > J2C Java Bean. Click Next

Note: If you do not see the J2C option in the wizard list, you need to Enable J2C Capabilities.
1. From the menu bar, click Window > Preferences.
2. On the left side of the Preferences window, expand Workbench.
3. Click Capabilities. The Capabilities pane is displayed. If you would like to receive a prompt

when a feature is first used that requires an enabled capability, select Prompt when
enabling capabilities.

4. Expand Enterprise Java.
5. Select Enterprise Java. The necessary J2C capability is now enabled. Alternatively, you can

select the Enterprise Java capability folder to enable all of the capabilities that folder contains.
To set the list of enabled capabilities back to its state at product install time, click Restore
Defaults.

6. To save your changes, click Apply, and then click OK. Enabling Enterprise Java capabilities
will automatically enable any other capabilities that are required to develop and debug J2C
applications.

3. In the Resource Adapters Selection page, , select either the J2C 1.0 or J2C 1.5 IMS resource
adapter. For this tutorial select IMS Connector for Java (IBM: 9.1.0.1.1). Click Next.

4. In the Connection Properties page, de-select the Managed Connection check box and select
Nonmanaged connection. (For this tutorial, you will use a non-managed connection to directly
access IMS.) Accept the default Connection class name of
com.ibm.connector2.ims.ico.IMSManagedConnectionFactory. In the blank fields, enter
all the required connection information. Required fields, indicated by an asterisk (*), include the
following:
For TCP/IP connection:

� Host name: (Required) The IP address or host name of IMS Connect.
� Port Number: (Required) The number of the port used by the target IMS connect.

For local option connection:
� IMS Connect name: (Required) The name of the target IMS connect.

For both:

3 of 11Inoutarray Tutorial

� Data Store Name: (Required) The name of the target IMS datastore.
You may obtain the connection information from your IMS system administrator. When you have
provided the required connection information, click Next.

Now you are ready to begin Exercise 1.2: Setting up the Web project and Java Interface and
Implementations .

4 of 11Inoutarray Tutorial

Exercise 1.2: Setting up the Web project and Java Interface and
Implementations

Before you begin, you must complete Exercise 1.1: Selecting the resource adapter.

Exercise 1.2 steps you through the creation of a J2C application. In this exercise you will
� Create a J2C Java Bean
� Create a dynamic Web project

Creating a J2C Java bean

All work done in the workbench must be associated with a project. Projects provide an organized view of the
work files and directories, optimized with functions based on the type of project. In the workbench, all files
must reside in a project, so before you create the J2C Java bean, you need to create a project to put it in.

1. In the New J2C Java Bean page, type the value InOutArray in the Java Project Name field.
2. Click the New button beside the Java Project Name field to create the new project.

Creating a dynamic Web project

1. In the New Source Project Creation page, select Web project, and click Next.
2. In the New Dynamic Web Project page, click Show Advanced.
3. Ensure that the following values are selected:

� Name: InOutArray
� Project location: accept default
� Servlet version: 2.4
� Target server: WebSphere Application Server v6.0
� EAR Project: InOutArrayEAR
� Context Root: InOutArray

4. Click Finish.
5. A dialog box may appear asking if you would like to switch to the Dynamic Web perspective. Click

Yes.
6. On the J2C Java Bean Output Properties page:

� Type sample.ims in the Package Name field.
� Type InOut in the Interface Name field.
� Type InOutImpl in the Implementation Name field.

7. Click Next.

Now you are ready to begin Exercise 1.3: Creating a Java Method.

5 of 11Inoutarray Tutorial

Exercise 1.3: Creating a Java method

Before you begin, you must complete Exercise 1.2: Setting up the Web Project and Java Interface and
Implementations .

Exercise 1.3 leads you through the creation of a Java method. In this exercise you will
� Create a Java method
� Create the input and output data mapping between COBOL and Java

Creating a Java method
1. In the Project Explorer view, expand the project InOutArray in Dynamic Web Projects.
2. Right-click on InOutImpl.java in JavaSource and select Source > Add method to J2C Java bean.
3. In the Java Method page click Add.
4. In the Java method name field, type runInOut for the name of the method.
5. Click Next.

Creating the input data mapping between COBOL and Java
1. Beside the Input type field of the Java Method page, click New.
2. In the Data Import page, ensure that the Choose mapping field is COBOL_TO_JAVA. Click

Browse beside the Cobol file field.
3. Browse to find the file location of the InEqualsOut.cbl file (You can find a copy in your product

installation folder: \rad\eclipse\plugins\com.ibm.j2c.cheatsheet.content_6.0.0
\Samples\IMS\InOutArray).

4. Click Open.
5. Click Next.
6. In the COBOL Importer page, click Show Advanced.

� Select the following options:

� Click Query to load the data.
� A list of data structures is shown. Select IN-OUT-MSG in the Data structures field.
� Click Next .

7. In the Saving Properties page,
� Select Default for Generation Style.
� Click Browse beside the Project Name and choose the Web project InOutArray.
� In the Package Name field, type sample.ims.data.
� In the Class Name field, accept the default INOUTMSG. Click Finish.

8. In the Java Method page, select Use input type for output.
9. Click Finish.

10. Click Finish to complete the definition of the method.
11. In the Java Methods page, click Finish.

Now you are ready to begin Exercise 1.4: Creating a Java proxy class to test your application.

Parameter Value

Platform Name Z/OS

codepage 037

Floating point format name IBM 390 Hexadecimal

External decimal sign EBCDIC

Endian name Big

Remote integer endian name Big

Quote name DOUBLE

Trunc name STD

Nsymbol name DBCS

6 of 11Inoutarray Tutorial

Exercise 1.4: Creating a Java test class to test your application

Before you begin, you must complete Exercise 1.3: Creating a Java method.

Exercise 1.4 leads you through the creation of a Java test class to test your application. In this exercise you
will

� Create a Java test class.
� Edit the class using the code supplied below.
� Run the test class to test your application.

Creating a Java test class
1. Expand the InOutArray project, expand the Java Resources section and select the sample.ims

package.
2. Right click and select New. Select the class option to create a new Java class.
3. In the Java class name, type TestInOutProxy. Note that the TestInOutProxy class is provided as

an example only; you may need to change the transaction code to your IMS machine specifications.
Consult your IMS administrator for the transaction code. You can locate this statement
input.setWs__trcd("SKS7 "); in the code to make the changes.

4. Ensure that the Source Folder field contains InOutArray/JavaSource and that the Package
name field contains sample.ims.data.

5. Click Finish.
6. Double-click TestInOutProxy to open the file in the Java editor.
7. Copy all the code provided below, and paste it into the TestInOutProxy.java class. Replace any

existing code in the editor.

TestInOutProxy.java

/*
 * Created on 4-Oct-2004
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package sample.ims;
import sample.ims.data.*;
import com.ibm.connector2.ims.ico.IMSDFSMessageException;

/**
 * @author ivyho
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public class TestInOutProxy
{
 public static void main (String[] args)
 {
 try
 {
 // ---
 // Create the formatHandler, then create the input
 // message bean from the formatHandler.
 // ---
 INOUTMSG input = new INOUTMSG();

 int sz = input.getSize();
 System.out.println("\nInitial size of input message is: " + sz);

 // ---

7 of 11Inoutarray Tutorial

 // Don't set the length (LL) field yet... wait until
 // input message has been adjusted to reflect only
 // the number of array elements actually sent.
 // ---
 input.setWs__zz((short) 0);
 input.setWs__trcd("SKS7 ");

 // ---
 // Construct an array and populate it with the elements
 // to be sent to the IMS application program. In this
 // case three elements are sent.
 // ---
 Inoutmsg_ws__customer[] customers = new Inoutmsg_ws__customer[3];

 Inoutmsg_ws__customer aCustomer1 = new Inoutmsg_ws__customer();
 aCustomer1.setWs__cust__name("Cathy Tang");
 aCustomer1.setWs__cust__number("CN001");
 customers[0] = aCustomer1;

 Inoutmsg_ws__customer aCustomer2 = new Inoutmsg_ws__customer();
 aCustomer2.setWs__cust__name("Haley Fung");
 aCustomer2.setWs__cust__number("CN002");
 customers[1] = aCustomer2;

 Inoutmsg_ws__customer aCustomer3 = new Inoutmsg_ws__customer();
 aCustomer3.setWs__cust__name("Steve Kuo");
 aCustomer3.setWs__cust__number("CN003");
 customers[2] = aCustomer3;

 // ---
 // Set the array on the input message.
 // ---
 input.setWs__customer(customers);
 input.setIndx((short) 3);

 System.out.println("\nInitial value of INDX is: " + input.getIndx());

 // ---
 // Reallocate the buffer to the actual size
 // ---
 byte[] bytes = input.getBytes();
 int size = input.getSize();
 byte[] newBytes = new byte[size];
 System.arraycopy(bytes, 0, newBytes, 0, size);

 // ---
 // Set the bytes back into the format handler and set
 // the length field of the input message, now that
 // we know the actual size.
 // ---
 input.setBytes(newBytes);
 input.setWs__ll((short) size);
 System.out.println("\nAdjusted size of input message is: " + size);
 System.out.println("\nAdjusted size of INDX is: " + input.getIndx());

 // ---
 // Set fields that follow the array after the input
 // message has been adjusted.
 // ---
 input.setWs__func__code("123456");

 InOutImpl proxy = new InOutImpl();

8 of 11Inoutarray Tutorial

 INOUTMSG output = new sample.ims.data.INOUTMSG();
 output = proxy.runInOut(input);

 short outndx = output.getIndx();
 System.out.println("\nOutput value of INDX is: " + outndx);

 Inoutmsg_ws__customer outArray[] = output.getWs__customer();

 for (int i = 0; i < outndx; i++)
 {
 System.out.println(
 "\n"
 + outArray[i].getWs__cust__name()
 + outArray[i].getWs__cust__number());
 }
 }
 catch (Exception e)
 {
 if (e instanceof IMSDFSMessageException)
 {
 System.out.println(
 "\nIMS returned message: "
 + ((IMSDFSMessageException) e).getDFSMessage());
 }
 else
 {
 System.out.println(
 "\nIMS Connector exception is: " + e);
 }
 }
 }
}

8. Press Ctrl-S to save the changes

Testing the Application
1. Expand the InOutArray project and the sample.ims package.
2. Right click on the TestInOutProxy.java class and expand the Run icon. Select Run As > Java

Application
3. You should see the following output on the console:

9 of 11Inoutarray Tutorial

Congratulations! You have completed the Input Output Array Tutorial.

Finish your tutorial by reviewing the materials in the Summary.

10 of 11Inoutarray Tutorial

Summary

Completed learning objectives

If you have completed all of the exercises, you should now be able to

� Use the J2C Java Bean wizard to create a J2C Java bean that runs on IMS.
� Create a Java method for the bean, runInOut.java, to run the IMS transaction.
� Create a test Java class, TestInOutProxy.class, to test the J2C Java bean.

11 of 11Inoutarray Tutorial

