
Build a J2C Application for a CICS COBOL copybook: Same input
and output

Time required

To complete this tutorial, you will need approximately 30 minutes. If you decide to explore other facets of
the J2C Java bean wizard while working on the tutorial, it could take longer to finish.

Prerequisites

In order to complete this tutorial end to end, you should be familiar with:

� J2EE and Java programming
� COBOL programming language
� CICS ECI server technology

Learning objectives

This tutorial is divided into several exercises that must be completed in sequence for the tutorial to work
properly. This tutorial teaches you how to use the J2C Java bean wizard to connect to a CICS ECI server.
While completing the exercises, you will:

� Use the J2C Java bean wizard to create a J2C application that interfaces with a CICS transaction
using an External Call Interface (ECI).

� Create a Java method, getCustomer, which accepts a customer number and returns the customer's
information

� Create a JSP to deploy the application on a WebSphere application server

When you are ready, begin Exercise 1.1: Using the J2C Java bean wizard to select the Resource Adapter

1 of 14taderc99 Tutorial

Exercise 1.1: Selecting the resource adapter

This tutorial will lead you through the detailed steps to generate a J2C application that interfaces with a
CICS transaction using an External Call Interface (ECI). The service is built from a CICS COBOL function,
getCustomer, which accepts a customer number and returns the customer's information, as shown in this
diagram.

Before you can begin this tutorial, you must first obtain the required resources:
� Connection to a CICS ECI server: In this tutorial, your application interacts with a CICS program on

a server. Specifically, you need to set up a CICS transaction gateway on a machine to access the
server. You also need to perform some setup work on the CICS server machine, where you want the
CICS to execute. These steps are not covered.

� A copy of the COBOL file taderc99.cbl. You may locate this file in your product installation
directory: \rad\eclipse\plugins\com.ibm.j2c.cheatsheet.content_6.0.0
\Samples\CICS\taderc99. If you wish to store it locally, you can copy the code from here:

taderc99.cbl

 identification division.
 program-id. TADERC99.
 environment division.
 data division.
 working-storage section.
 LINKAGE SECTION.
 01 DFHCOMMAREA.
 02 CustomerNumber PIC X(5).
 02 FirstName PIC A(15).
 02 LastName PIC A(25).
 02 Street PIC X(20).
 02 City PIC A(20).
 02 Country PIC A(10).
 02 Phone PIC X(15).
 02 PostalCode PIC X(7).
 procedure division.
 start-para.
 IF CustomerNumber EQUAL '12345'
 move 'Alan' to FirstName
 move 'Turing' to LastName
 move '1150 Eglinton Ave.' to Street
 move 'New York' to City
 move 'USA' to Country
 move '(416) 444-4444' to Phone
 move ' 94041' to PostalCode
 ELSE IF CustomerNumber EQUAL '44444'
 move 'Enrico' to FirstName
 move 'Fermi' to LastName
 move '11 Maple Ave.' to Street
 move 'Austin' to City
 move 'USA' to Country
 move '(416) 444-4444' to Phone
 move ' 10121' to PostalCode
 ELSE
 move 'Mary' to FirstName

2 of 14taderc99 Tutorial

 move 'Poppins' to LastName
 move '51 Sweets Dr.' to Street
 move 'Chicago' to City
 move 'USA' to Country
 move '(416) 444-4444' to Phone
 move ' 30326' to PostalCode
 END-IF.
 EXEC CICS RETURN
 END-EXEC.

� A clean workspace.

Using the J2C Java bean wizard to select the resource adapter

Switching to the J2EE Perspective

If the J2EE icon, , does not appear in the top right tab of the workspace, you need to switch to the J2EE
perspective.

1. From the menu bar, select Window > Open Perspective > Other. The Select Perspective window
opens.

2. Select J2EE.
3. Click OK. The J2EE perspective opens.

Connecting to the CICS ECI server

1. In the J2EE perspective, select File > New > Other.
2. In the New page, select J2C > J2C Java Bean. Click Next

Note: If you do not see the J2C option in the wizard list, you need to Enable J2C Capabilities.
1. From the menu bar, click Window > Preferences.
2. On the left side of the Preferences window, expand Workbench.
3. Click Capabilities. The Capabilities pane is displayed. If you would like to receive a prompt

when a feature is first used that requires an enabled capability, select Prompt when
enabling capabilities.

4. Expand Enterprise Java.
5. Select Enterprise Java. The necessary J2C capability is now enabled. Alternatively, you can

select the Enterprise Java capability folder to enable all of the capabilities that folder contains.
To set the list of enabled capabilities back to its state at product install time, click Restore
Defaults.

6. To save your changes, click Apply, and then click OK. Enabling Enterprise Java capabilities
will automatically enable any other capabilities that are required to develop and debug J2C
applications.

3. In the Resource Adapters page, under View by, select JCA version. Expand 1.5, and select
ECIResourceAdapter (IBM:6.0.0) . Click Next.

4. In the Connection Properties page, select Nonmanaged connection check box. (For this tutorial,
you will use the non-managed connection to directly access the CICS server, so you do not need to
provide the JNDI name.) Accept the default Connection class name of
com.ibm.connector2.cics.ECIManagedConnectionFactory. In the blank fields, provide
connection information. Required fields are indicated by an asterisk (*):

� Server name: (Not required) The name of the CICS Transaction Gateway server.
� Connection URL*: (Required) The server address of the CICS ECI server
� Port number: (Not required) The number of the port that is used to communicate with the

CICS Transaction Gateway. The default port is 2006.
� User name: (Not required) The user name for the connection.
� Password: (Not required) The password for the connection.

You may obtain the connection information from your CICS Server system administrator.
5. When you have provided the required connection information, click Next.

3 of 14taderc99 Tutorial

Now you are ready to begin Exercise 1.2: Setting up the Web project and Java Interface and
Implementation.

4 of 14taderc99 Tutorial

Exercise 1.2: Setting up the Web project and Java Interface and
Implementations

Before you begin, you must complete Exercise 1.1: Selecting the resource adapter.

Exercise 1.2 steps you through the creation of a J2C application. In this exercise you will
� Create a J2C Java Bean
� Create a dynamic Web project

Creating a J2C Java bean

All work done in the workbench must be associated with a project. Projects provide an organized view of the
work files and directories, optimized with functions based on the type of project. In the workbench, all files
must reside in a project, so before you create the J2C Java bean, you need to create a project to put it in.

1. In the New J2C Java Bean page, type the value CustomerProj in the Project Name field.
2. Click the New button beside the Project Name field to create the new project.
3. In the New Source Project Creation page, select Web project, and click Next.
4. In the New dynamic Web Project page, click Show Advanced.
5. Ensure that the following values are selected:

� Name: CustomerProj
� Project location: accept default
� Servlet version: 2.4
� Target server: WebSphere Application Server v6.0
� EAR Project: CustomerProjEAR
� Context Root: CustomerProj

6. Click Finish.
7. A dialog box may appear asking if you would like to switch to the Dynamic Web perspective. Click

Yes.
8. In the New J2C Java Bean page, ensure that the following values appear:

� In the Package name field, type sample.cics
� In the Interface name field, type Customer.
� In the Implementation name field, type CustomerImpl.

9. Click Finish.

Now you are ready to begin Exercise 1.3: Creating the Java method.

5 of 14taderc99 Tutorial

Exercise 1.3: Creating the Java method

Before you begin, you must complete Exercise 1.2: Setting up the Web Project and Java Interface and
Implementations .

Creating a Java method

You will now create a Java method that will use the COBOL importer to map the data types between the
COBOL source and the data in your Java method.

1. In the Snippets view, select J2C. Right click Add Java method to J2C Java bean.
2. In the Java method name field, type getCustomer for the name of the operation. Click Next.

Creating the input and output data mapping between COBOL and Java

In this step, you will import the taderc99.cbl (COBOL) file that is needed to create your application. The
taderc99.cbl file is located in <RSDP_installdir>\rad\eclipse\plugins\com.ibm.j2c.cheatsheet.content_6.0.0
\Samples\CICS\taderc99, where <RSDP_installdir> is the directory where this product is installed. The
COBOL file contains the program that runs on the CICS server. It has the definition of the structure to be
passed to the CICS server via the communications area (COMMAREA). This structure represents the
customer records being returned from the CICS application. Before you can work with a file, you must
import it from the file system into the workbench.

1. In the Specify the input/output type of the Java Method page, click New.
2. In the Data Import page, ensure that the Choose mapping field is COBOL_TO_JAVA.
3. Click Browse beside the Cobol file field.
4. Locate the taderc99.cbl file in the file system, and click Open.
5. Click Next.
6. In the COBOL Importer page, select a communication data structure.

� Select Win32 for Platform Name.
� Select ISO-8859-1 for Code page
� Click Query.
� Select DFHCOMMAREA for Data structures.

7. In the Saving properties page,
� Select Default for Generation Style.
� Click Browse.
� Select the Web project CustomerProj. ClickOpen.
� In the Package Name field, enter sample.cics.data
� In the Class Name field, enter CustomerInfo. Click Finish.

8. In the Java method page, select Use Input for output. Click Finish.
9. On the Java Method page, click Finish to complete the operation.

10. In the functionName field, type the COBOL program id (TADERC99). Click Next.

Now you are ready to begin Exercise 1.4: Deploying the application.

6 of 14taderc99 Tutorial

Exercise 1.4: Deploying the application

Before you begin, you must complete Exercise 1.3: Creating the Java method.

Creating a JSP
1. In the Deployment Information page, select Create J2EE resource.
2. In the J2EE Resource Type, select JSP. Click Next.
3. In the JSP Creation page, select Generate simple JSPs with default input modes.
4. In the JSP folder field, enter a JSP Folder name. Click Finish.
5. In the J2EE perspective, open Servers view, Right click New > Server.
6. Select WebSphere Application Server V6 Server. Click Next

NOTE: If you do not see the WebSphere Application Server V6 Server, go to the View by field,
and select name.

7. Accept the default port number; if it is already in use, modify the port settings.
8. Click Next.
9. Select CustomerProjEAR from Available projects. Click Add.

10. Click Finish.
11. Start the server.
12. When server is successfully started, right click on TestClient.jsp and select Run on Server.
13. A browser window with the Test Client will be launched. Click on the getCustomer method.

� Enter 12345 in customer_id

� Click Invoke. The customer information will appear in the output console.

7 of 14taderc99 Tutorial

Creating a Faces JSP to deploy the J2C Java bean

This section outlines the steps for deploying your J2C Java bean through a faces JSP.

1. Expand the CustomerProj project, and find the WebContent folder.
2. Right click on WebContent folder in your CustomerProj project and select New > Other > Web >

Faces JSP file.
3. Give your new faces JSP the name Test.
4. Accept defaults for all other fields.
5. Click Finish.

Adding the Java bean to a Faces JSP

1. Once you have created the Faces JSP file, the page should open Test.jsp in the Design page of the
editor. If it is not in the Design page, expand the WEB-INF folder under the WebContent folder.
Right click on Test.jsp, click Open With, and click on Page Designer. Test.jsp will open in the
Design page of the editor.

2. The Palette view should appear on the right panel. If it does not appear, in the top menu, click on
Window > Show view > Palette.

3. In the Data folder of the Palette view, click on JavaBean option of the Palette.
4. Drag and drop the JavaBean to the Test.jsp Design window; the Add JavaBean wizard will open.
5. Select Add new JavaBean.
6. In the Name field, type customerLookup.

7. Click the open book icon, , beside the Class field. The Class Selection dialog will appear. Type
CustomerImpl in the search field and click on the found class. Click OK.

8. In the Class Selection page, type CustomerImpl in the Search field
9. Uncheck Add input/output controls to display the JavaBean on the web page.

10. Click Finish.
11. You will see CustomerImpl in the Page Data view.

Adding input and output controls to the Faces JSP

8 of 14taderc99 Tutorial

1. Right click on customerLookup Java Bean in the Page Data view, and click Add New JavaBean
Method.

2. From the list of available methods, click on getCustomer .
3. Click OK.
4. Expand customerLookup Java Bean in the Page Data view, and select the getCustomer() method.
5. Drag and drop the getCustomer() method onto the JSP's canvas.
6. The Insert JavaBean wizard will appear. The Configure Date Controls page allows you to select

data fields.
7. In the Create controls for: field, select Inputting data.
8. In the Fields to display field, select None, to clear the form.
9. In the Fields to display field, select the field that has the label arg.customerNumber..

10. Accept defaults for other fields.
11. Click Next.
12. In the Configure Data Controls page, select Create controls for displaying the results.
13. In the Fields to display field, select None, to clear the form.
14. In the Fields to display field, select the output fields LastName, FirstName, Street, and PostalCode.
15. Click Finish.
16. Save your Faces JSP by pressing Ctrl-S or by clicking File > Save in the toolbar.

Testing the Faces JSP

1. Select the Servers tab. Start the test server, if it is not already running. To start the server, right-click
WebSphere Application Server v6.0, and click Start.

2. Right click on Test.jsp (the faces JPS that you just created) in the Project Explorer view.
3. Select Run > Run on Server.
4. Select WebSphere Application Server v6.0 and click Finish
5. The browser will open to Test.jsp. In the CustomerNumber field, type 12345.

6. Click Submit.
7. You will see this output displayed in the browser:

9 of 14taderc99 Tutorial

Testing the application using the TestCustomer program

1. Expand the CustomerProj > Java Resources > JavaSource.
2. Right click on the sample.cics package.
3. Select New > class.
4. Type TestCustomer in the Name field.
5. In the Java editor window, replace all the code in your workspace with the following code:

TestCustomer.java

/***
 * Licensed Materials - Property of IBM
 *
 * com.ibm.j2c.cheatsheet.content
 *
 * Copyright IBM Corporation 2004. All Rights Reserved.
 *
 * Note to U.S. Government Users Restricted Rights: Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 ***/
/*
 * Created on Aug 30, 2004
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package sample.cics;
import sample.cics.data.*;

/**
 * @author ivyho
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public class TestCustomer {

 public static void main(String[] args) {

10 of 14taderc99 Tutorial

 try {

 CustomerInfo input = new CustomerInfo();
 input.setCustomerNumber("12345");

 CustomerImpl proxy = new CustomerImpl();
 CustomerInfo output = proxy.getCustomer(input);
 System.out.println("\nCustomerNo:"+output.getCustomerNumber()+"\ncustomer First Name:"+output.getFirstName()+"\ncustomer Last Name:"+ output.getLastName()+ "\nAddress:" +output.getStreet()+" \nCity:" + output.getCity()+" \nCountry:"+output.getCountry() +" \nphone:"+output.getPhone());

 input.setCustomerNumber("44444");

 proxy = new CustomerImpl();
 output = proxy.getCustomer(input);

 System.out.println("\nCustomerNo:"+output.getCustomerNumber()+"\ncustomer First Name:"+output.getFirstName()+"\ncustomer Last Name:"+ output.getLastName()+ "\nAddress:" +output.getStreet()+" \nCity:" + output.getCity()+" \nCountry:"+output.getCountry() +" \nphone:"+output.getPhone());

 }catch (Exception e)
 {
 e.printStackTrace();
 }

 }
}

6. In the Project Explorer view, right click on the TestCustomer.java file. Select Run > Run As
Application.

You will see the following in the console:

11 of 14taderc99 Tutorial

Congratulations! You have completed the CICS Taderc99 Tutorial.

Finish your tutorial by reviewing the materials in the Summary.

12 of 14taderc99 Tutorial

Summary
This tutorial has taught you how to use the J2C Java bean wizard to connect to a CICS ECI server.

13 of 14taderc99 Tutorial

Completed learning objectives

If you have completed all of the exercises, you should now be able to

� Use the J2C Java bean wizard to create a J2C application that interfaces with a CICS transaction
using an External Call Interface (ECI).

� Create a Java method, getCustomer, which accepts a customer number and returns the customer's
information

� Create a JSP to deploy the application on a WebSphere application server

14 of 14taderc99 Tutorial

