IBM® Rational® DOORS

The DXL Reference Manual

IBM Rational DOORS
DXL Reference Manual

Release 9.5

Before using this information, be sure to read the general information under the "Notices" chapter on page 915.

This edition applies to IBM Rational DOORS, VERSION 9.5, and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright IBM Corporation 1993, 2012
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

Aboutthismanual............ 1
Typographical CONVENTIONS e e e 1
Related docUmMENtatioN.ot 2
Introduction. e 3
Developing DXL PrOgramsot e e ettt 3
Browsing the DXL lbrary 5
Localizing DXL . . .o 6
Language fundamentals 7
LeXical CONVENTIONS et 10
CONSEANES . . vt 12
0 1=T 01) T 14
TS . e 15
DECIaratioNS o 15
T] (7] [0 1P 18
R3] L] 1] £ 20
BasSiC fUNCHIONS\t 23
New in DXL for Rational DOORS 9.0.................... 27
DISCUSSIONS . . . oottt 27
DISCUSSION Ty P . o v vttt ettt e e e e e e 27
PrOPEIIS . .ttt 28
1T] £ 30
OPEIALIONS . . ettt e 32
I 10 =] 34
EXAMIDIE . 35
DS I PIONS .\ vt ettt 37
VIBW DESCHIPIIONS .ttt ettt 37
Attribute Type DesCriptioNSt 37
Attribute Definition Descriptions 39
11 T 40
HT ML . o 40
HTML Control. . ..o e 41
HTML Edit Control. 51
MISCEIIANEOUS o oot 53
New in DXL for Rational DOORS 9.1.................... 55
RegUIAr EXPIeSSIONSttt et e e 55
New in DXL for Rational DOORS 9.2.................... 57
Additional authentication. 57
Dialog boX UPAates.o 58
N W CONSTANTS 59

DXL Reference Manual

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

DXL Reference Manual

Partitions UPAatest 60
Requirements Interchange Format (RIF). e 61
New in DXL for Rational DOORS 9.3 71
Converting a symbol characterto Unicode 71
Dialog box fUNCLIONSo 72
Operations 0N tYPe SEANGottt e e 72
Embedded OLE objects and the OLE clipboard 74
OLE Information FUNCLIONS.o e 74
DISCUSSIONS . . ettt ettt 75
RIF DD 78
Rational DOORS URLS e e 78
B OrS L 79
Compound FILErSo 81
LocaliZINg DXL . . o 82
FINding liNKS. . ..o 83
LiNKS . o 85
New in DXL for Rational DOORS 94 87
Attribute definitions. 87
AT UL B DS . . o o 88
RICh Xt StrINGS . . .o 89
New in DXL for Rational DOORS 9.5 91
OLE ODJeCtS. . e 91
OSLC LIiNK DISCOVEIY . . . o ot e e et et e e e e e e e e e e e 92
Database ProPertieS. . . .ot 93
Rational DIreCtOry SEIVETttt e e 96
Fundamental types and functions 99
Operations 0N all tyPesSo 99
Operations on type boolo 101
Operations ON tYPe CNar\ttt 102
Operations ON tYPe N, . ..o 105
Operations ON tYPe rEal.\ttt 108
Operations 0N tYPe StIINGo ottt e 112
General language facilities 119
Files and Streams 119
Configuration file @CCESS\ v\ttt 127
DS, . . 133
SKIP LISES . . o oo 140
RegUIAr XPrESSIONSttt 144
TeXt DUTTOIS . o 148
ATy S et e 158

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Operating system interface 163
Operating system COMMANGS.o oot ettt e 163
WINOWS FEISEIY . . e e e e e 170
INterprocess COMMUNICALIONS\ttt ettt e e e e 173
System clipboard functions 176
Customizing Rational DOORS. 179
C0lOr SCNBIMES. et 179
Database EXplorer Options. 181
LOCAIES. . . 183
(00T = - - 190
Message Of the day o 193
Database PrOPEItiES . . ottt 195
Rational DOORS databaseaccess 197
Database PrOPEItIESttt e e 197
Group and user manipulation 214
Group and USEr ManagemMENTt.o vttt ettt et e e e 222
LD AP 229
LDAP Configurationt 230
LDAP server information 233
LDAP data configuration. 236
Rational DireCtory SEIVEro e 241
Rational DOORS hierarchy 247
About the Rational DOORS hierarchy e 247
Item aCCeSS CONLIOISo e 248
Hierarchy clipboard 249
Hierarchy information 252
Hierarchy manipulation 256
IS . o 258
FOlOerS. . o 261
PO BCES . . o 264
Looping Within ProjeCSo o o e 269
ModUles 271
Module acCess CONTIOIS.ot 271
ModUle FEFEIENCESottt 272
Module information 275
Module manipulation 279
Module display State 284
BaSEIINGS . . .o 287
Baseline Set Definition.o 295
BaSEliNg SEtS . . .ot 304
HiStOrY. o 313
Descriptive Mmodules. 323
Recently opened modules. o 326

DXL Reference Manual

Vi

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

DXL Reference Manual

MOdUIE Properties 328
Electronic Signatures 333
SIgNALUNE By S . . o ottt et 333
Controlling Electronic Signature ACLot 333
Electronic Signature Data Manipulation. 337
EXAMIPIES .. 342
ObjeCtS ... 351
ADOUL OB TS, . ..o 351
OhjeCt aCCESS CONIOIS. 351
Finding ODJectS. 353
CUITENE ObDJECT . . . oo 358
Navigation from an Object 359
ObECt MANAGEMENT. . . .ot 362
Information about ObJeCtS.ot 366
SelECtiNg OBJECES. . . .\ttt e 368
ODbJeCt SEAICNING oo 369
Miscellaneous object functions. 371
LiNKS .. 375
About links and link module descriptors 375
LiNK Creationo 376
Link aCCess CONLIOLo e e 376
FINding lINKS.o 377
Versioned liNKS. 383
LiNK Management 386
Default link module. 392
LiNKSES e 392
External LinksS 395
OSLC LINK DISCOVEIY . . . o ottt e e e e e et e e e e e e e e 399
Rational DOORS URLS e e 400
Attributes 409
ALHOULE ValUBS . . .o oo 409
Attribute value access CONTIOIS i 416
Multi-value enumerated attributes 417
Attribute definitions. 419
Attribute definition access CONLIOIS v 430
AT UL B PES . . o o 432
Attribute type acCess CONTIOIS.\ttt 438
Attribute type manipulation 439
DXL attribute 445
Accesscontrols 449
CONtrOlliNG ACCESS .+ o o vttt et 449

Chapter 20

Chapter 21

Chapter 22

Chapter 23

LOCKING . . e 458
EXamMpIe PrOgrams 459
Dialog boxes 463
CONS o 463
MESSAGE DOXES . . . o et 466
Dialog box fUNCLIONS 469
Dialog box elements. 481
Common element OPEratioNS. 482
Simple elements for dialog boXes 502
Choice dialog boX €lementsot 517
VIBW BlEMENES . . . oo 522
Text editor elementS. 530
BULIONS . . oo 533
CANVASES . . o oottt et e 537
COMPIEX CANVASES. .« .« v v v et e ettt ettt et e e e e e e 551
TO0IDATS .o 562
C0l0rS e 567
Simple placement o 573
Constrained Placement. 576
PrOgIESS DAl . .\ ot 582
DBE F8SIZING. . . v vttt 585
HTML CONErOl. . . oo e 586
HTML Edit Control. e 596
Templates 599
Template fUNCLIONS. o 599
TempIate EXPrESSIONS\ttt 600
Rational DOORS window control 603
The DXL Library and AddinS Menus 603
Module StatuS Dars 605
Rational DOORS built-in WINdOWS.o e e 606
MOdUIE MENUS . . . e e 608
Display control 623
B OrS. o 623
Compound fItErso 634
Filtering on multi-valued attributes 636
SOrtiNg MOAUIESttt 637
NS . L ot 641
VIBW 8CCESS CONLIOIS.ottt ettt e e e e e e e e 652
View definitions 654
COIUMINS . o 664
SCrolling fUNCHIONSo o 671
LaYOUL DXL oottt 672

DXL Reference Manual

Vii

viii

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

Chapter 30

DXL Reference Manual

Partitions. 677
Partition CONCEPES ... e 677
Partition definition management. 677
Partition definition CONteNts 680
Partition Management 686
Partition information. 689
ParTItION BCCESS. . . . v vttt ettt e 694
Requirements Interchange Format (RIF) 697
RIF BXPO T . . o 697
RIF IMPOIt . . . 697
RIF DD . 699
VBIgE . o 699
RIFdefinition. 700
EXAMIPIES . .. 703
OLEObjeCts ... oo 709
Embedded OLE objects and the OLE clipboard 709
OLE Information FUNCLIONS.o 719
PictUre ObJECE SUPPOIT . . . et 726
Automation Client SUPPOIt 737
Controlling Rational DOORS from applications that support automation. 746
TrIgOErS . o v e 751
INtrOdUCHION 10 HriggerS . . o o ettt e e 751
THIggEr CONSEANES . . .\ ottt sttt et e e e e e 756
Trigger definition. 758
Trigger manipulation 761
Drag-and-drop trigger functions. 768
Page setup functions. 779
Page attributes StatUSot 779
Page dimenSIONS 780
Document attribULeS oo 783
Page setup information 786
Page Setup Managementttt 789
Tables ... 791
Table CONCEPL. . . 791
Table CONSIANTS 791
Table management. 792
Table Manipulation e 796
Table attributes 804
Richtext i 807
RICh teXE PrOCESSING.ottt 807

Chapter 31

Chapter 32

Chapter 33

Chapter 34

Chapter 35

Chapter 36

RICh teXt SEINGS . . o oo 814
Enhanced character SUPPOIt 826
IMPOrting MCh teXt . .. 829
DIAgNOSTIC POIMS o oottt 830
Spelling Checker. 835
Constants and general fuNCtions 835
Language and Grammar.ttt e e e e e e e e 844
SPelling DICtIONArY\ttt 853
Miscellaneous SPellingo 856
Spelling\Dictionary EXamples.o 858
Database Integrity Checker 861
Database INtegrity TYPESottt e e e e e 861
Database INtegrity PermMS\ttt e 862
DISCUSSIONS . . . ot 871
DISCUSSION TY S . o oo ettt e e e e e e 871
o 0] =] T 871
O a0 S, . o 874
OPEIAtIONS ettt 875
I 10 -] P 879
DiSCUSSIONS ACCESS CONEIOIS oottt et ettt e e e 880
EXAMIDIE . 882
General functions 885
Error handlingo 885
ArChiVe and rESTOTEot 888
LOCKING . . o 901
HTML fUNCLIONS.o e e 908
HTML REID. oo 910
Broadcast MeSSagingovt it 910
Converting a symbol character to Unicode.t e 910
Character codes and their meanings 913
NOtICES . . .ot 915
INdeX. . . 919

DXL Reference Manual

DXL Reference Manual

About this manual

Welcome to version 9.5 of IBM® Rational® DOORS®, a powerful tool that helps you to capture, track and manage your
user requirements.

DXL (DOORS eXtension Language) is a scripting language specially developed for Rational DOORS. DXL is used in
many parts of Rational DOORS to provide key features, such as file format importers and exporters, impact and traceability
analysis and inter-module linking tools. DXL can also be used to develop larger add-on packages such as CASE tool
interfaces and project management tools. To the end user, DXL developed applications appear as seamless extensions to
the graphical user interface. This capability to extend or customize Rational DOORS is available to users who choose to
develop their own DXL scripts.

The DXL language is for the more technical user, who sets up programs for the end-user to apply. DXL takes many of its
fundamental features from C and C++. Anyone who has written programs in these or similar programming languages
should be able to use DXL.

This book is a reference manual for DXL for version 9.5 of Rational DOORS. Refer to it if you wish to automate simple or
complex repetitive tasks, or customize your users’ Rational DOORS environment. It assumes that you know how to write C
or C++ programs.

Typographical conventions

The following typographical conventions are used in this manual:

Typeface or Symbol [Meaning

Bold Important items, and items that you can select, including buttons and menus:
“Click Yes to continue”.

Italics Book titles.

Couri er Commands, files, and directories; computer output: “Edit your
. properti es file”.

> A menu choice: “Select File > Open”. This means select the File menu, and
then select the Open option.

Each function or macro is first introduced by name, followed by a declaration or the syntax, and a short description of the
operation it performs. These are supplemented by examples where appropriate.

DXL Reference Manual

d

Related documentation

The following table describes where to find information in the Rational DOORS documentation set:

For information on

See

Rational DOORS

How to set up licenses to use Rational
DOORS

How to write requirements

How to integrate Rational DOORS with other
applications

The Rational DOORS Information Center

Rational Lifecycle Solutions Licensing Guide

Get it Right the First Time

Rational DOORS API manual

DXL Reference Manual

Chapter 1
Introduction

This chapter describes the DXL Interaction window, DXL library, and the basic features of DXL. It covers the following
topics:

« Developing DXL programs
» Browsing the DXL library
e Localizing DXL

e Language fundamentals

» Lexical conventions

* Constants

e ldentifiers

» Types

e Declarations

« Expressions

» Statements

e Basic functions

Developing DXL programs

You can use the DXL Interaction window to develop small DXL programs.

For large-scale program development, you should use a third party editing tool when coding, and then load your code into
the DXL Interaction window to execute and debug it. You can set up a menu option in Rational DOORS to run your third
party editing tool.

To use the DXL Interaction window:

DXL Reference Manual

1. In either the Database Explorer or a module window, click Tools > Edit DXL.

il %L interactien - DOORS

DL impt

Fan I Fonk

| Lizead ||f-:\-r-1.s |?:r.'rl= || Chse_iPHm |

2. Either type or load your program into the DXL input pane.

To load the contents of a file, click Load. To load a program from the DXL library, click Browse.

3. To run the program in the DXL input pane, click Run.

Any error messages that are generated are displayed in the DXL output pane.

To see the next error message, click Next error. The contents of the DXL input pane scroll to the line of source code

that caused the error displayed in the DXL output pane.

4. To print the contents of the DXL input pane with line numbers, click Print.

5. To save the contents of the DXL input pane to file, click Save As.

Right-click anywhere in the DXL input pane to display a pop-up menu with the sub-menus File, Edit, and Search. The
Edit sub-menu options have standard Windows functions. The File sub-menu options are described in the following

table:
File Description
Load Loads the contents of a text file into the DXL input pane. You can also use

drag-and-drop to load a file directly from Windows Explorer.

DXL Reference Manual

File Description

Save Saves changes you made to the text in the DXL input pane.

Save as Saves the contents of the DXL input pane to another file.

New Clears the DXL input pane. If you have made changes to the text that have not

yet been saved, you are asked if you want to save them.

The Search sub-menu options are described in the following table:

Search Description

Search Finds a string of text in the DXL input pane. The search is case-sensitive.

Again Repeats the search.

Replace Replaces one string of text with another. You can replace text strings one at a
time or all at once.

Goto line Moves the cursor to the start of a specified line. (This is useful when debugging

DXL programs because errors are indicated against line numbers.)

Browsing the DXL library

The DXL libraryisinthe/ | i b/ dxI folder in the Rational DOORS home directory.

You can browse the DXL library when you are:

.

Using the DXL Interaction window, by clicking the Browse button to find a program to run.

Creating a DXL attribute, by clicking the Browse button to find a program to use for the attribute (see “DXL
attribute,” on page 445).

Creating a layout DXL column, by clicking the Browse button to find a program to use for the layout DXL column
(see “Layout DXL,” on page 672).

DXL Reference Manual

You see the DXL Library window. The DXL programs and the buttons you see depend on where you were when you
clicked the Browse button.

5%

._.i vin HTHL tamat

(1| Espost comme o tab-separgted spresdshest and dalsbae dain
_'| E gt iriachids b F i hlab s

_] E et rapchusles b ol Besd

_.i Eswit ATF

= [OLE epot lo Morosolt Dfice Paoducts

_| [O0RS Dtk rslidlace

_] Ewpecat mocadulbs usingg sasdormasion bo Ewosl 57

(5] Expail moduls unrg sdomaton o Fowsstpoinl lamb
& 0 Vasos ublibes hoe imporing datambo DO0RS

|0 Some sxenpls prograns whech Brhete vamss [HL (eahmeg n
s tipiion
HTML ouslgndd e prodaced By thiv ocip ~

Sl dada i Bos Cuanei Vit felates disf sl o Cthedese | sl
b enporesd o HTH L und=y e follossng oondiions

i The "Tiljert Teed" atirbebe [0 the man’ cobmeg w8l be iendered az

MORMAL last

A deplsed siidtater sl be rendened in ITALIC in Hhe fom t
(s J[P J[Cowe J[_Heo]

Button Action

Run Runs the selected program in your DXL Interaction window.

Edit Edits the selected program.

Print Prints the selected program.

Localizing DXL

Rational DOORS uses ICU resource bundles for accessing translated strings. DXL perms are available to access ICU
resource bundles containing translated strings for customized DXL. For information about creating ICU resource bundles,
see http://userquide.icu-project.org/locale/localizing.

Put the language resource files in a directory whose name is taken as the bundl e nane, under
$DOORSHOVE/ | anguage,for example $DOORSHOVE/ | anguage/ myResour ce/ de_DE. r es. There are two
bundles already shipped with Rational DOORS, cor e and DXL.)

DXL Reference Manual

LS_

Declaration
string LS (string key, string fallback, string bundle)

Operation

Returns the string from resource bundle that is identified by key. If the string identified by key is not found in the resource
bundle, the fallback string is returned.

Example

de.txt file contains;

de {
Keyl{" Ausgehend"}
Key2{" Ausgehende Li nks"}
Key3{" Nor nal ansi cht"}
Key4{"Kl artext"}

}

From the command line, generate a resource bundle, for example genrb de.txt, and copy the resource bundle to
$DOORSHOVE/ | anguage/ myResour ce/ , where nyResour ce is the name of your resource bundle. The localized
strings can then be accessed using the LS perm, for example in the DXL editor, type:

print LS ("Keyl", "Ausgehend not found", "nmyResource") "\n"

print LS ("Key2", "Ausgehende Links not found", "nmyResource") "\n"
print LS ("Key3", "Normal ansicht not found", "nmyResource") "\n"
print LS ("Key4", "Klartext not found", "nmyResource") "\n"

The output is:

Ausgehend

Ausgehende Li nks

Nor mal ansi cht

Kl art ext

Language fundamentals

DXL is layered on an underlying programming language whose fundamental data types, functions and syntax are largely
based on C and C++. To support the needs of script writing, there are some differences. In particular, concepts like main
program are avoided, and mandatory semicolons and parentheses have been discarded.

DXL Reference Manual

Auto-declare

In DXL there is a mechanism called auto-declare, which means that a user need not specify a type for a variable. For
example, in the script:

i =5
print i
the interpreter declares a new variable and deduces from the assignment that its type isi nt .

Because DXL is case-sensitive, there is a potential hazard when relying on this mechanism to type variables. If you make a
mistake when typing a variable name, the interpreter assumes that a new variable is being used, which creates errors that are
hard to find.

This feature can be disabled by adding the line:
XFLAGS _ &=~Aut oDecl are_
to the bottom of the file $DOORSHOME/ | i b/ dx| / st art up. dxI .

Syntax

The syntactic style is more like natural language or standard mathematical notation. Consider the function:
string del eteUser(string nane)

This can be called as follows:

del et eUser "Susan Brown"

The lack of semicolons is possible through DXL's recognition of the end of a line as a statement terminator, except when it
follows a binary operator. This means you can break an expression like 2+3 over a line by making the break after the + sign.
A comment ending in a dash (/ / -) also enables line continuation.

As in C, == is used for equality, while = is used for assignment. Unlike C or Pascal, concatenation of symbols is a valid
operation.

Parsing

Statement or expression parsing is right associative and has a relatively high precedence. Parenthesis has the highest
precedence.

Because sqrt is defined as a function call that takes a single type real argument:
sgrt 6.0

is recognized as a valid function call, whereas in C it is:

sqrt(6.0)

So, the C statement:

print(sqrt(6.0))

can be:

DXL Reference Manual

print sqgrt 6.0
in DXL.
The following script declares a function max, which takes two type int arguments:

int max(int a, b) {
if a<bthen return b else return a

}

print max(2, 3)

The call of max is parsed as pri nt (max(2, 3)), which is valid. The statement:

print max 2,3

would generate errors. Because the comma has a lower precedence than concatenation, it is parsed as:
((print max(2)), 3)

If in doubt, use the parentheses, and separate statements for concatenation operations.

Naming conventions

As a general rule, DXL reserves identifiers ending in one or more underscores (_, __) forits own use. You should not use
functions, data types or variables with trailing underscores, with the exception of those documented in this manual.

Names introduced as data types in DXL, suchasi nt, string, Modul eand Obj ect, must not be used as
identifiers. The fundamental types such asi nt and st ri ng are in lower case. Rational DOORS specific types all start
with an upper case letter to distinguish them from these, and to enable their lower case versions to be used as identifiers.

Loops

In DXL, loops are treated just like any other operator, and are overloaded, that is, declared to take arguments and return
values of more than one type. The loop notation used is as follows:

for variable in sonething do {

}

The for loops all iterate through all values of an item, setting variable to each value in turn.

Note: When using for loops, care must be taken when deleting items within the loop and also opening and closing items
within a for loop. For example, if var i abl e is of type Modul e and sonet hi ng is of type Project, and
within the for loop a condition is met that means one of the modules will be deleted, this should not be done
within the for loop as it can lead to unexpected results. A recommended method is to use a skip list to store the
modules and to do any manipulation required using the contents of the skip list.

DXL Reference Manual

10‘

Lexical conventions

Semicolon and end-of-line

DXL diverges from C in that semicolons can be omitted in some contexts, with end-of-line (newline) causing statement
termination. Conversely, newline does not cause statement termination in other contexts. This is a useful property;
programs look much better, and in practice the rules are intuitive. The rules are:

« Any newlines or spaces occurring immediately after the following tokens are ignored:

) s ? . = (+ * [
& - ! ~ / % << >> <>
< > <= >= == I = n | &&
and |] or AN += -= * = /= 7=
<<= >>= &= | = A= <- D= =>

-> \

« Any newlines before an el se ora) are ignored. All other newlines delimit a possibly empty statement.
« Multiple consecutive areas of white space containing newlines are treated as single newlines.

« The recognition of a newline can be avoided by prefixing it with an empty / / comment or a comment ending in - .

Comments

The characters / * start a comment that terminates with the characters */ . This style of comment does not nest.

The characters / / start a comment that terminates at the end of the line on which it occurs. The end-of-line is not
considered part of the comment unless the comment is empty or the final character is - . This latter feature is useful for
adding comments to a multi-line expression, or for continuing a concatenation expression over two lines.

Notably, comments that immediately follow conditional statements can cause code to behave unexpectedly.
The following program demonstrates some comment forms:

/* Some coment exanples (regular C comment) */

int a /1l a C++ style conmment

int b=1+ // W need a trailing - at the end -

2 /1 to prevent a syntax error between "+" and the new ine
print //
"hello" // the // after print causes the following newine to be
/1 ignored

/*

DXL Reference Manual

int C // this whole block is commented out

Identifiers

An identifier is an arbitrarily long sequence of characters. The first character must be a letter; the rest of the identifier may
contain letters, numerals or either of the following two symbols:

DXL is case sensitive (upper- and lower-case letters are considered different).

The following words are reserved for use as keywords, and must not be used otherwise:

and bool br eak by case char
const continue default do el se enum
for if in int nodul e obj ect
or pragna r eal return si zeof static
struct string switch t hen uni on voi d
whi | e

The following keywords are not currently supported in user programs, but are reserved for future use:
case const def aul t enum

struct switch uni on

A keyword is a sequence of letters with a fixed syntactic purpose within the language, and is not available for use as an
identifier.

File inclusion

To include files into DXL scripts, you can use either of the following:
#include "file"
#include <file>

Absolute or relative path names can be used. Relative paths must be based on one of the following forms depending on the

platform:
$DOORSHOVE/ | i b/ dxl (UNI' X)
$DOORSHOVE \ |i b\ \ dxI (W ndows)

DXL Reference Manual

where DOORSHOVE is defined in a UNIX® environment variable, or on Windows platforms in the registry. The
Windows-style file separator (\) must be duplicated so that DXL does not interpret it as a meta-character in the string.

If the addi ns directory is defined in a UNIX environment variable or the Windows registry, this directory is also searched,
so relative path names can be with respect to the addi ns directory.

Note: The UNIX shell file name specification form ~user / is not supported.

Pragmas

Pragmas modify the background behavior of the DXL interpreter, for example:
pragnma runLim int cyc

sets the time-out interval cyc as a number of DXL execution cycles. The time-out is suppressed if cyc is set to zero, as
shown in the following example:

pragma runLim O /1 no limt

pragnma runLim 1000000 // explicit limt

There is also a pragma for setting the size of the DXL runtime stack, which is used as follows:

pragma stack, 10000

The default value is set to 1,000,000.

If running the DXL from the DXL editor, when the timeout limit is reached a message is displayed asking if you want to:
e Continue - script execution continues with the same timeout limit.

« Continue doubling the timeout - script execution continues with double the current timeout limit.

e Halt execution - DXL is halted with a run-time error.

If running in batch mode, it is good practise to execute scripts in the DXL editor initially to detect any errors or timeouts.
Pragma runLim,0 should be used in instances of timeouts.

Constants

Integer constants

An integer constant consisting of a sequence of digits is interpreted as octal if it begins with a O (digit zero); otherwise it is
interpreted as decimal.

A sequence of digits preceded by Ox or 0Xis interpreted as a hexadecimal integer.

A sequence of Os or 1s preceded by Ob is interpreted as a binary number, and converted to an integer value.

DXL Reference Manual

Character constants

A character constant is a character enclosed in single quotes, asin ' x' . The value of a character constant is defined to be of

type char .
Certain non-graphic characters, the single quote and the backslash, can be represented according to the following escape
sequences:
Character Escape sequence
newline \n
horizontal tab \t
backspace \b
carriage return \r
form-feed \ f
backslash \\
single quote \'
bit pattern \ ddd
any other character \c

The escape \ ddd consists of the backslash followed by 1, 2, or 3 octal digits.

Any other character that is escaped is passed straight through.

Type real constants

Atype r eal consists of an integer part, a decimal point, a fraction part, an e or E, and an integer exponent. The integer
and fraction part both consist of a sequence of digits.

You can omit either the integer part or the fraction part, but not both. You can omit either the decimal point or the
exponent with its e or E. You can add a sign to the exponent.

Example
1.0

0.1

lel0

1. 2E30

DXL Reference Manual

14

The null constant

The constant nul | is used as a polymorphic value to indicate a null value. You can use it for any derived type (see
“Derived types,” on page 15). You can use it for both assignment to variables and conditional tests on variables.
Example

oj ect obj = null

if (null obj) {
ack "This object is enpty"
}

Strings

A string literal, of type st r i ng and storage class st at i c, is a sequence of characters surrounded by double quotes, as in
"appl e".

Within a string the double quote (*) must be preceded by a backslash (\). For example “ Pear \ " ” is the string Pear ” in
quotes. In addition, you can use the same escape sequences as described in “Character constants,” on page 13, including the
newline character.

Identifiers

Identifiers denote variables, functions, types and values. You can introduce an identifier into a program by declaration or by
immediate declaration. Immediate declaration is when an undeclared identifier is used as the left hand side of an assignment
statement.

Variables

Variables represent regions of computer memory. The meaning of the value stored in a variable is determined by the type of
the identifier used to access the variable.

Unassigned variables contain the unassigned pattern, which is checked on all references. In this way, errors with unassigned
variables are avoided, and an accurate error message is reported.

Scope

Once declared, an identifier has a region of validity within the program known as its scope.

In general, identifiers are in scope following their declaration within the current block, and are available within nested
blocks. Identifiers can be hidden by re-declaration in nested blocks. For example, the following code printsa 4 and thena 3
in the output pane of the DXL Interaction window.

int i =3

DXL Reference Manual

if (true){
int i =4
print i "\n"

}

print i "\n

Types

Fundamental types

DXL has the following base types:
Base type Description

bool Denotes the domain of values t r ue and f al se, which are provided as
predefined constants.

char Is similar to the C character type.

int Is the only integer type provided in DXL. On all platforms, integers are signed,
and have a precision of 32 bits.

r eal Is like the double type in C, with a precision of 64 bits.

voi d Is the type with no values; its main use is in declaring functions that do not
return a result.

string Is similar to the derived C type char *.

Derived types

DXL supports arrays, functions and references. An internal class facility provides new non-fundamental types, referred to as
built-in types, such as Obj ect , Modul e and Tenpl at e. DXL does not support class creation by user programs.

Declarations

Declarations are the mechanism used to associate identifiers with variables, functions or values.

Declarators

DXL follows C in its declarator syntax. However, only the simple forms should be necessary in DXL programs.

DXL Reference Manual

15

DXL extends C style arrays by enabling a variable to define the bounds of the array. The number of elements in an array is
available by using the si zeof function.

Unlike C, DXL arrays can have only one dimension.
In addition to the normal C declarator forms, DXL provides the C++ reference declarator &

DXL uses the ANSI C method of supplying a function’s formal parameters in the declarator itself with each argument given
as a fully specified type.

The following script gives some example declarations:

int i, j, kK /1 declare 3 integers

int n=4 /1 declare an integer and initialize it
bool a[2] /1 declare an array of type bool of size 2
int b[n] /1 declare an integer array of size n

print sizeof a // prints "2"

Note: A declaration of the form ‘int n = {1,2,3}' is not supported.

Immediate declaration

Immediate declaration is a DXL extension from C, which means that the first use of an undeclared variable is also a
declaration. It must be used in a context where an unambiguous value is given to it, for example the left hand side of an
assignment statement:

i =2

print i

Once declared, the identifier must be used consistently.

Function definitions

DXL functions are very close to the style of ANSI C functions. The following script gives some examples:
/1 define a function to find the nmaxi num of two integers

int i

int max(int a, b) {

returna<b?b: a
} /] max

/1 This function applies f to every element in a,
/1 using an accunul ation variable r that is initialized to base.

int apply_accunul ate(int base, int a[], int f(int, int)) {
int r = base
for (i =0; i < sizeof a; i++) {
r = f(r, afi])
}

DXL Reference Manual

return r

} // apply_accunul ate

int a[5]
print "Filling an array:\n\n"
for (i =0; i < sizeof a; i++) {

a[i] = random 1000
print a[i] "\n"

} /] for
print "l argest nunber was:

print apply_accumul ate(0, a, nax)
/1 print largest elenent in a

Line 3 defines the function max, which has two parameters of type i nt and returns a type i nt . One difference from
ANSI C is that the parameter type specifier i nt need not be repeated before the b parameter.

Line 10 declares a function parameter f . Note that f 's parameters do not include redundant identifiers.

Operator functions

You can redefine DXL operators by prefixing the operator with : : to turn it into an identifier.

Example
This example defines a multiplication operator that applies to strings and integers.
string ::*(string s, int n) {

string x = ""
int i

for in0: n-1do {

Ix =X s

}

return x

}
print ("apple " * 4)
This prints out:
appl e appl e appl e appl e
If you wish to overload the concatenation operator, which is normally represented by a space, use the symbol . . .

string ::..(real r, int n) {
string s = ""
int i

/1 concatenate the string to a space n tines

DXL Reference Manual

17

for i in 0:n-1 do {

s=s fr
}
return s

}

print (2.45 3) "\n" /[l try it out

The program prints the string:
2.450000 2.450000 2.450000

Expressions

This section outlines the major differences between C and DXL expressions. The operations defined on DXL fundamental
types are explained in “Fundamental types and functions,” on page 99.

Reference operations

DXL supports C++ style reference operations. References are like var parameters in Pascal or Ada, which means they
provide an alias to a variable, not a copy. To declare a reference variable its name must be preceded by an ampersand (&).

Example

This example is a program to swap two integers. In C you have explicitly to pass the address of the variables to be swapped
and then de-reference them within the body of the function. This is not required in DXL.

/1 swap two integers
void swap (int &, &b) {

int tenp
tenp = a; a=Db; b=tenp
}
int x =2
int& z = /1 z is now an alias for x
int y=3
print x " "y "\n"
swap(z, vy) /1 equivalent to swap(Xx,y)
print x " "y "\n"

This program prints the string:

23
32

DXL Reference Manual

19

Overloaded functions and operators

Most functions and operators can be declared to take arguments and return values of more than one type.

Example
This example overloads a commonly used identifier pr i nt to provide an object printer.
/1 Overload print to define an Qbject printer
void print(Cbject o) {
string h = o."(hject Headi ng"
stringt = o."(hject Text"
print h ":\n\n" t "\n"
}

print current Object

Function calls

DXL enables calls of functions defined without parameters to omit the empty parenthesis, except where the call appears as
a function argument or any other context where a function name is valid. Function calls with single arguments can also omit
the parenthesis, but beware of concatenation’s high precedence when the argument passed is an expression.

Note: When overloading functions, ensure that the first declaration of the function does not have a void parameter, e.g
voi d print(voi d). This may lead to unexpected results. Furthermore, function calls of the form voi d
print(int i=0, int g=0) should also not be used.

Example

void notto() { /| paraneterless

print "A stitch in tine saves nine.\n"
} // notto
int square(int x) {
return x*x
} /1 square
notto /1 call the function

print square 9 /1 two function calls

Casts

Because of DXL's overloading facility, it is easy to write expressions that have more than one possible interpretation; that is,
they are ambiguous. Casts are used to pick which interpretation is required. Casts in DXL come in two forms:

expressi on type

DXL Reference Manual

20

(type expression)

In the first form, the type name can appear after the expression, as in:

0 = current hject

In the second form, the type may come first, but the whole expression must be within parenthesis:

o0 = ((bject current)

Range

A range expression extracts a substring from a string, or substring from a buffer, and is used in regular expression matching.
It has two forms:

int from: int to
int from: int to by int by

Examples are given with the functions that use ranges.

Statements

This section describes how to construct statements in DXL.

Compound statements

Compound statements are also referred to as blocks.

Several statements can be grouped into one using braces { . . . }.

Conditional statements

Thei f statement takes an expression of type bool , which must be in parenthesis. If the expression evaluatesto t r ue, it
executes the following statement, which can be a block. If the expression evaluates to f al se, an optional el se statement
is executed.

As an alternative form, the parenthesis around the condition can be dropped, and the keyword t hen used after the
condition.
Example
int i =2, j =2
if (i <3) {
i +=2
} else {
i += 3

}

DXL Reference Manual

if i ==j thenj =22

The t hen form does not work with a condition that starts with a component in parenthesis, for example:
if (2 +3) ==4 then print "no"

generates a syntax error.

DXL also supports the C expression form:

2+ 3==5272print "yes" : print "no"

Loop statements

DXL has three main loop (iteration) statements. It supports the C forms:
for (init; cond; increnment) statenent
whil e (cond) statenent
and a new form:
for typel vl in type2 v2 do
where t ypel andt ype2 are two types, possibly the same; v1 is a reference variable and v2 is a variable, which can be a
range expression (see “Range,” on page 20). This form is heavily used in DXL for defining type-specific loops.
Example
int x
int a=2
int b=3
for (x=1; x <= 11; x+=2) {
print x
}
while (a==2 and b==3) {
print "hello\n";

a=3

}

for x in1: 11 by 2 do {
print x

}

In this example, the first loop is a normal C f or loop; the second is a normal C whi | e loop. Note that DXL offers the
keyword and as an alternative to &&.

The last form in the example uses a range statement, which has the same semantics as the first C-like loop.

Break statement

The br eak statement causes an immediate exit from a loop. Control passes to the statement following the loop.

DXL Reference Manual

22

Example

int i =1

while (true){
print i++

if (i==10){
br eak
YI1oif (i==10)

}/1 while (true)

Continue statement

The cont i nue statement effects an immediate jump to the loop’s next test or increment statement.

Example
int i =1
while (true)({
if (i==4) { // don't show 4
i ++
conti nue
YA f (i==4)
print i++
if (i==10){
br eak
Yoo f (i ==10)
Y}/ while (true)

Return statement

The r et ur n statement either exits a void function, or returns the given value in any other function.

Note: Care should be taken when using the return statement. For example, assigning a value to a variable where the
assignment is a function, and that function returns no value, can lead to unexpected values being assigned to the
variable.

Example

/1 exit void function

void print(Cbject o) {

if (null o)
return string h = o."Obj ect Headi ng"
print h "\n"

} /1 print

DXL Reference Manual

/1 return given val ue

int double(int x) {
return x + X /1 return an integer
} /1 double

print double 111

Null statement

The null (empty) statement has no effect. You can create a null statement by using a semicolon on its own.
Example
int a=3

if (a<2); elseprint a

Basic functions

This section defines some basic functions, which can be used throughout DXL.

of
This function is used as shown in the following syntax:
of (ar gunent)
Returns the passed argument, which can be of any type. It has no other effect. It is used to clarify code.
Example
if end of cin then break
sizeof

This function is used as shown in the following syntax:

si zeof (array[])

Returns the number of elements in the array, which can be of any type.
Example

string strs[] = {"one", "two", "three"}

int ints[] = {1, 2, 3, 4}

print sizeof strs /[l prints 3

print sizeof ints [/l prints 4

DXL Reference Manual

23

24

halt

Declaration
voi d hal t ()

Operation

Causes the current DXL program to terminate immediately. This is very useful if an error condition is detected in a
program.

Example

if (null current Mdule) {
ack "programrequires a current nodul e"
hal t

checkDXL

Declaration
string checkDXL[File](string code)

Operation
Provides a DXL mechanism for checking DXL code.

The check DXL function analyzes a DXL program and returns the string that would have been produced in the DXL
Interaction window had it been run on its own.

The checkDXLFi | e function analyzes a file and returns the error message that would have been produced in the DXL
Interaction window had the file been run.
Example

string errors =
checkDXL("int j =3 \n print k +j")

if (!null errors)
print "Errors found in dxl string:\n" errors
ll\nll

would produce the following in the DXL Interaction window’s output pane.

Errors found in dxl string:

-E- DXL: <Line:2> incorrect argunents for (+)

-E- DXL: <Line:2> incorrect argunents for function (print)

-E- DXL: <Line: 2> undeclared variable (k)

DXL Reference Manual

sort

Declaration
void sort(string stringArray[])

Operation

Sorts the string array st r i ngAr r ay. The sort function handles string arrays containing non-ASCII characters, as do the

string and Buffer comparison operators.

Example
int noOfHeadings = 0
oject o

for oin current Mddule do {
string oh = o."Cbject Headi ng"
if (!'null oh) noCf Headi ngs++

}

string headi ngs[noOf Headi ngs]

int i =0

for oin current Mddule do {
string oh = o."Chject Headi ng"
if (!'null oh) headings[i++] = oh

}

sort headings
for (i = 0; i < noOfHeadings; i++) print headings[i]

n\ nn

activateURL

Declaration
voi d activateURL(string url)

Operation
This is equivalent to clicking on a URL in a formal module.

batchMode, isBatch

Declaration
bool bat chMbde()
bool isBatch()

DXL Reference Manual

25

26

Operation

Both functions return t r ue if Rational DOORS is running in batch mode, and f al se if Rational DOORS is running in
interactive mode.

DXL Reference Manual

27

Chapter 2

New in DXL for Rational DOORS 9.0

This chapter describes features that are new in Rational DOORS 9.0:
« Discussions

¢ Descriptions

e Filtering

« HTML

¢ Miscellaneous

Discussions

« Discussion Types
* Properties

e Iterators

¢ Operations

e Triggers

e Example

Discussion Types

Discussion

Represents a discussion.

Comment

Represents a comment in a discussion.

DiscussionStatus

Represents the status of a discussion. The possible values are Open and Cl osed.

DXL Reference Manual

28‘

Properties

The following tables describe the properties available for the discussion and comment types. Property values can be
accessed using the . (dot) operator, as shown in the following syntax:

vari abl e. property

where:
vari abl e is a variable of type Di scussi on or Corment
property is one of the discussion or comment properties
Discussion

Property Type Extracts

st atus Di scussi onStatus The status of the discussion: whether it is open or
closed.

sunmary string The summary text of the discussion, which may be
null

creat edBy User The user who created the discussion, if it was
created in the current database. Otherwise it
returns null.

cr eat edByName string The name of the user who created the discussion,
as it was when the discussion was created.

cr eat edByFul | Name string The full name of the user who created the
discussion, as it was when the discussion was
created.

createdOn Dat e The date and time the discussion was created.

cr eat edDat aTi nest anp Dat e The last modification timestamp of the object or
module that the first comment in the discussion
referred to.

| ast Modi fi edBy User The user who added the last comment to the
discussion, or who last changed the discussion
status

| ast Modi fi edByNane string The user name of the user who added the last

comment to the discussion, or who last changed
the discussion status.

DXL Reference Manual

29

Property Type Extracts

| ast Modi fi edByFul | Nane string The full name of the user who added the last
comment to the discussion, or who last changed
the discussion status.

| ast Mbdi fi edOn Dat e The date and time the last comment was added, or
when the discussion status was last changed.

| ast Modi fi edDat aTi mestanp Date The last modification timestamp of the object or

firstVersion

| ast Ver si on

firstVersionl ndex

| ast Ver si onl ndex

Modul eVer si on

Modul eVer si on

string

string

module that the last comment in the discussion
referred to.

The version of the module the first comment was
raised against.

Note: If acomment is made against the current
version of a module and the module is
then baselined, this property will return a
reference to that baseline. If the baseline
is deleted, it will return the deleted
baseline.

The version of the module the latest comment was
raised against. See note for the f i r st Ver si on
property above.

The baseline index of the first module version
commented on in the discussion. Can be used in
comparisons between module versions.

The baseline index of the last module version
commented on in the discussion. Can be used in
comparison between module versions.

DXL Reference Manual

Comment

Property Type Extracts
t ext string The plain text of the comment.
nodul eVer si onl ndex string The baseline index of the module version against which the

comment was raised. Can be used in comparisons between
module versions.

st at us Di scussi onSt at us The status of the discussion in which the comment was made.
nodul eVer si on Modul eVer si on The version of the module against which the comment was
raised.

Note: If acomment if made against the current version of a
module and the module is then baselined, this
property will return a reference to that baseline. If the
baseline is deleted, it will return the deleted baseline.

onCurrent Ver si on bool True if the comment was raised against the current version of
the module or an object in the current version.

changedSt at us bool Tells whether the comment changed the status of the
discussion when it was submitted. This will be true for
comments that closed or re-opened a discussion.

dat aTi nest anp Dat e The last modified time of the object or module under
discussion, as seen at the commenting users client at the time
the comment was submitted.

creat edBy User The user that created the comment. Returns null if the user is
not in the current user list.

cr eat edByNamne string The user name of the user who created the comment, as it was
when the comment was created.

cr eat edByFul | Name string The full name of the user who created the comment, as it was
when the comment was created.

creat edOn Dat e The data and time when the comment was created.
di scussi on Di scussi on The discussion containing the comment.
Iterators

DXL Reference Manual

31

for Discussion in Type

Syntax
for disc in Type do {

}
where:
di sc is a variable of type Di scussi on
Type is a variable of type Cbj ect , Modul e, Pr oj ect or
Fol der
Operation

Assigns the variable di sc to be each successive discussion in Ty pe in the order they were created. The first time it is run
the discussion data will be loaded from the database.

The Modul e, Fol der and Pr oj ect variants will not include discussions on individual objects.

The Fol der and Pr oj ect variants are provided for forward compatibility with the possible future inclusion of
discussions on folders and projects. They perform no function in Rational DOORS 9.0.

for Comment in Discussion

Syntax

for coomin disc do {

}
where:

comm is a variable of type Conmrent

di sc is a variable of type Di scussi on
Operation

Assigns the variable commto be each successive comment in di sc in chronological order. The first time it is run on a
discussion in memory, the comments will be loaded from the database. Note that if a discussion has been changed by a
refresh (e.g. in terms of the last Comment timestamp) then this will also refresh the comments list.

The discussion properties will be updated in memory if necessary, to be consistent with the updated list of comments.

DXL Reference Manual

32‘

Operations

create(Discussion)

Declaration
string create(target, string text, string summary, D scussion& disc)

Operation

Creates a new Di scussi on aboutt ar get , which can be of type Cbj ect or Modul e. Returns null on success, error
string on failure. Also add t ext as the first comment to the discussion.

addComment

Declaration
string addComment (Di scussi on disc, target, string text, Coment& conm)

Operation

Adds a Conmrent about t ar get to an open Di scussi on. Note thatt ar get must be an Gbj ect or Mbdul e that
the Di scussi on already relates to. Returns null on success, error string on failure.

closeDiscussion

Declaration

string cl oseDi scussi on(Di scussion disc, target, string text, Coment& comm

Operation

Closes an open Di scussi on di sc by appending a closing comment, specified int ext . Note thatt ar get must be an
oj ect or Mbdul e that di sc already relates to. Returns null on success, error string on failure.

reopenDiscussion

Declaration

string reopenDi scussion(Di scussion disc, target, string text, Conment& conmm

Operation

Reopens a closed Di scussi on di sc and appends a new comment, specified int ext . Note that t ar get must be an
oj ect or Mbdul e that di sc already relates to. Returns null on success, error string on failure.

DXL Reference Manual

33

deleteDiscussion

Declaration
string del et eDi scussi on(Di scussion d, Mdule nm Qoject 0)

Operation

Deletes the specified module or object discussion if the user has the permission to do so. Returns null on success, or an
error string on failure.

sortDiscussions

Declaration

voi d sortDi scussi ons({Mdul e m Obj ect o| Project p|Folder f}, property, bool
ascendi ng)

Operation

Sorts the discussions list associated with the specified item according to the given pr oper t y, which may be a date, or a
string property as listed in the discussions properties list. String sorting is performed according to the lexical ordering for the
current user’s default locale at the time of execution.

If the discussion list for the specified item has not been loaded from the database, this perm will cause it to be loaded.

The Fol der and Pr oj ect forms are provided for forward compatibility with the possible future inclusion of discussions
on folders and projects. They perform no function in 9.0.

getDiscussions

Declaration
string getDi scussi ons({Mdul e m Obj ect o| Project p|Folder f})

Operation

Refreshes from the database the Di scussi on data for the specified item in memory. Returns null on success, or an error
on failure.

getObjectDiscussions

Declaration
string get vj ect Di scussi ons(Mdule m

Operation

Refreshes from the database all Di scussi ons for all objects in the specified module. Returns null on success, or an error
on failure

DXL Reference Manual

getComments

Declaration
string get Coment s(Di scussi on d)

Operation
Refreshes from the database the comments data for the specified Di scussi on in memory. Returns null on success, or an
error on failure.

Note: The Di scussi on properties will be updated if necessary, to be consistent with the updated comments list.

mayModifyDiscussionStatus

Declaration
bool mayModi f yDi scussi onSt at us(Di scussion d, Mdule m

Operation
Checks whether the current user has rights to close or re-open the specified discussion on the specified module.

baselinelndex

Declaration
string baselinel ndex(Mdul e n)

Operation

Returns the baseline index of the specified Modul e, which may be a baseline or a current version. Can be used to tell
whether a Corment can be raised against the given Modul e data in a given Di scussi on.

Note: A Comment cannot be raised against a baseline index which is less than the | ast Ver si onl ndex property of
the Di scussi on.

Triggers

Trigger capabilities have been expanded so that triggers can now be made to fire before or after a Di scussi on ora
Comment is created.

As follows:

pre post

Comment X X

DXL Reference Manual

35

pre post

Di scussi on X X

comment

Declaration

Coment conment (Tri gger t)

Operation
Returns the Conmrent with which the supplied Tr i gger is associated, null if not a Conment trigger.

discussion

Declaration
Di scussi on di scussion(Trigger t)

Operation
Returns the Di scussi on with which the supplied Tr i gger is associated, null if not a Di scussi on trigger.

dispose(Discussion/Comment)

Declaration
voi d di spose({Di scussi on& d| Conment & c})

Operation
Disposes of the supplied Commrent or Di scussi on reference freeing the memory it uses.

Can be called as soon as the reference is no longer required.

Note: The disposing will take place at the end of the current context.

Example

/!l Create a Discussion on the current Module, with one foll owup Conment...
Modul e m = current

Di scussion disc = null

create(m"This is nmy\nfirst comment.","First summary", di sc)

Comment cnt

DXL Reference Manual

36

addComment (disc, m "This is the\nsecond comment.", cmnt)

/1 Display all Discussions on the Mdul e

for disc in mdo

{
print disc.summary " (" disc.status ")\n"
User u = disc. createdBy
string s = u.nane
print "Created By: " s "\n"
print "Created By Name: \"" disc.createdByName "\"\n"
print "Created On: " stringCOf(disc.createdOn) "\ n"
u = disc.|astMdifiedBy
S = u.nane
print "Last Mod By: " s "\n"
print "Last Mbdd By Nane: \"" disc.|astMdifiedByName "\"
print "Last Mod On " stringCf (disc.|astMdifiedOn) "\n"
print "First version: " (fullNane disc.firstVersion)
(versionString disc.firstVersion) "]\n"
print "Last version: " (fullNane disc.lastVersion) " ["
(versionString disc.lastVersion) "]\n"
Comment ¢
for ¢ in disc do
{
print "Comrent added by " (c.createdByNane) " at " //-
(stringO>f(c.createdOn)) ":\n"
print "Mdule Version: " (full Nane c.nodul eVersion) " ["
(versionString c.nodul eVersion) "]\n"
print "Data tinmestanmp: " (stringOf c.dataTi nestanp) "\n"
print "Status: " c.status " (" (c.changedStatus ? "Changed" //-
"Unchanged”) ")\n"
print "On current: " c.onCurrentVersion "\n"
print c.text "\n"
}
}

DXL Reference Manual

Descriptions

This section describes the DXL support in Rational DOORS for the new description functionality.
« View Descriptions
e Attribute Type Descriptions

e Attribute Definition Descriptionss

View Descriptions

setViewDescription

Declaration
voi d set Vi ewDescription(Viewbef vd, string desc)

Operation
Sets the description for a view where vd is the view definition handle.

getViewDescription

Declaration
string getVi ewDescription(Vi ewDef vd)

Operation
Returns the description for a view where vd is the view definition handle.

Attribute Type Descriptions

setDescription

Declaration
AttrType setDescription(AttrType at, string desc, string &errMess)

Operation
Sets the description for the specified attribute type. Returns null if the description is not successfully updated.

DXL Reference Manual

37

modify

Declaration

AttrType nmodi fy(AttrType at, string name, string codes[], int values, int
colors, string descs[], [int arrMaps[],] string &errMess)

Operation

Modifies the supplied attribute type with the corresponding values and descriptions. Can be used to update the descriptions
of old enumeration types.

The optional ar r Maps argument specifies existing index values for enumeration values, taking into consideration their
re-ordering.

create

Declaration

AttrType create(string name, string codes[], int values[], int colors[], string
descs[], string &errMess)

Operation

The new descs[] argument enables the creation of a new enumeration based attribute type, whose enumerations use
those descriptions. Returns null if creation is not successful.

description property

Both attribute types themselves, and the enumeration values they may contain, have anew descr i pt i on property. It can
be accessed by using the dot (.) operator.

Example
AttrType at
string desc

int i

//To get the description of the attribute type

desc = at.description

/1 To get the description of the enuneration values with index i

desc = at.description[i]

DXL Reference Manual

39

Attribute Definition Descriptions

description property

Attribute definitions can now contain adescri pt i on property. It can be accessed by using the dot (.) operator.
Example

Modul e m = current

AttrDef ad = find(m "AttrNanme")

print ad.description

description(create)

Attribute definition descriptions can be specified during their creation.

Example
AttrDef ad = create object (description “My description”) (type “string”) //-
(default “defvalue”)(attribute "AttrName")

description(modify)

Attribute definition descriptions can be altered by using the modify perm is one of the following ways. Note the new
set Descri pti on property constant.

Examplel

Modul e m = current

AttrDef ad = find(m "AttrNanme")

nodi fy (ad, nodule (description “New Description”)(type “string”) //-
(default “New default”)(attribute “New Nane”))

Example2

Modul e m = current

AttrDef ad = find(m "AttrName")

nodi fy (ad, setDescription, “New description text”)

DXL Reference Manual

40‘

Filtering

This section describes the DXL support in Rational DOORS for the new module explorer filtering functionality added in
Rational DOORS 9.0.

applyFiltering

Declaration
voi d appl yFil tering(Mdul e)

Operation

Sets the module explorer display to reflect the current filter applied to the specified module.

unApplyFiltering

Declaration
voi d unAppl yFil teri ng(Mdul e)

Operation

Switches off filtering in the module explorer for the specified module.

applyingFiltering

Declaration
bool appl yingFiltering(Mdule)

Operation

Returns a boolean indicating whether filtering is turned on in the module explorer for the specified module.

HTML

This section describes the DXL support the HTML functionality added in Rational DOORS 9.0.
e HTML Control
e HTML Edit Control

DXL Reference Manual

41

HTML Control

The section describes the DXL support for the HTML control added in Rational DOORS 9.0.

Note: Some of the functions listed below take an ID string parameter to identify either a frame or an HTML element. In
each of these methods, frames or elements nested within other frames are identified by concatenating the frame
IDs and element I1Ds as follows: <t op frame 1 D>/[<sub frane ID>/...]<el enent |D>.

In methods requiring a frame ID, passing nul | into this parameter denotes the top level document.

These methods refer to all frame types including IFRAME and FRAME elements.

htmlView

Declaration

DBE htm View(DB parentDB, int width, int height, string URL, bool

bef ore_navi gate_cb(DBE el enent, string URL, string franme, string postData), void
docurent _conpl et e_cb(DBE el enent, string URL), bool navigate_error_cb(DBE

el ement, string URL, string frane, int statusCode), void progress_ch(DBE

el ement, int percentage))

Operation
Creates an HTML view control where the arguments are defined as follows:

parentDB The dialog box containing the control.

wi dt h The initial width of the control.

hei ght The initial height of the control.

URL The address that will be initially loaded into the control. Can be

null to load a blank page (about:blank).

DXL Reference Manual

42

parentDB

bef ore_navi gate_cb

docunent _conpl ete_ch

navi gate_error_chb

progress_cb

DXL Reference Manual

The dialog box containing the control.

Fires for each document/frame before the HTML window/frame
navigates to a specified URL. It could be used, amongst other
things, to intercept and process the URL prior to navigation,
taking some action and possibly also navigating to a new URL.

The return value determines whether to cancel the navigation.
Returning f al se cancels the navigation.

Its arguments are defined as follows:
e el ement: The HTML control itself

e URL: The address about to be navigated to.

« frame: The frame for which the navigation is about to take
place.

e post Dat a: The data about to be sent to the server if the
HTTP POST transaction is being used.

Fires for each document/frame once they are completely loaded
and initialized. It could be used to start functionality required after
all the data has been received and is about to be rendered, for
example, parsing the HTML document.

Its arguments are defined as follows:
e el ement: The HTML control itself

¢ URL: The loaded address.

Fires when an error occurs during navigation. Could be used, for
example, to display a default document when internet connectivity
is not available.

The return value determines whether to cancel the navigation.
Returning f al se cancels the navigation.

Its arguments are defined as follows:
¢ el enent s: The HTML control itself.

e URL: The address for which navigation failed.
e frame: The frame for which the navigation failed.
¢ stat usCode: Standard HTML error code.

Used to notify about the navigation progress, which is supplied as
a percentage.

43

set(html callback)

Declaration

voi d set (DBE HTM.Vi ew, bool event_cb(DBE el enent, string ID, string tag, string
event _type))

Operation

Attaches a callback to HTML control el enent that receives general HTML events. The | Dargument identifies the
element that sourced the event, the t ag argument identifies the type of element that sourced the event, and the
event _t ype argument identifies the event type. Note that the only event types currently supported are cl i ck and
dbl cli ck.

If this function is used with an incorrect DBE type, a DXL runtime error occurs.

set(html URL)

Declaration
voi d set (DBE HTMLVi ew, string URL)

Operation
Navigates the given HTMLVi ewto the given URL.

Can only be used to navigate the top level document and cannot be used to navigate nested frame elements.

setURL

Declaration
void setURL(DBE HTMLView, string ID, string URL)

Operation
Navigates the frame identified by | D to the given URL. The ID may be null.

getURL

Declaration
string get URL(DBE HTM.Vi ew, string ID)

Operation
Returns the URL for the currently displayed frame as identified by its | D. The 1D may be null.

DXL Reference Manual

get(HTML view)

Declaration
string get (DBE HTM.Vi ew)

Operation
Returns the URL currently displayed in the given HTM_Vi ew;, if there is one.

get(HTML frame)

Declaration
Buf fer get (DBE HTM.View, string |ID)

Operation
Returns the URL for the currently displayed frame as identified by its | D.

set(HTML view)

Declaration
string set (DBE HTM.Vi ew, Buffer HTM.)

Operation

Sets the HTML fragment to be rendered inside the <body> tags by the HTML view control directly. This enables the
controls HTML to be constructed dynamically and directly rendered.

setHTML

Declaration
string set HTML(DBE HTM.Vi ew, string ID, Buffer HTM.)

Operation

Sets the HTML fragment to be rendered inside the <body> tags by the HTML view controls frame as identified by ID.
This enables the HTML of the given document or frame to be constructed dynamically and directly rendered.

Note: The contents of the frame being modified must be in the same domain as the parent HTML document to be
modifiable. A DXL error will be given on failure (for example, if the wrong type of DBE is supplied).

DXL Reference Manual

45

getHTML

Declaration
Buf f er get HTM_(DBE HTM.Vi ew, string |D)

Operation
Returns the currently rendered HTML fragment inside the <body> tags of the document or frame as identified by its | D.

getBuffer

Declaration
Buf f er get Buf f er (DBE HTM.Vi ew)

Operation
Returns the currently rendered HTML.

getinnerText

Declaration
string getlnnerText (DBE HTM.Vi ew, string |ID)

Operation
Returns the text between the start and end tags of the first object with the specified | D.

setlnnerText

Declaration
voi d setlnnerText (DBE HTMLVi ew, string ID, string text)

Operation
Sets the text between the start and end tags of the first object with the specified | D.

getinnerHTML

Declaration
string getlnnerHTM_(DBE HTM.Vi ew, string |D)

Operation
Returns the HTML between the start and end tags of the first object with the specified | D.

DXL Reference Manual

setinnerHTML

Declaration
voi d setlnner HTM_(DBE HTM.Vi ew, string ID, string htm)

Operation
Sets the HTML between the start and end tags of the first object with the specified | D.

Note: Thei nner HTM. property is read-only on the col , col Gr oup, franSet , ht m , head, styl e, t abl e,
t Body, t Foot ,t Head,titl e, andt r objects.

getAttribute

Declaration
string getAttribute(DBE el enent, string ID, string attribute)

Operation

Retrieves the value for the requested attribute of the first object with the specified value of the | Dattribute. If the attribute
does not exist, null is returned.

Returns null on success. Returns error string on failure, for example if the wrong type of DBE is passed in.

setAttribute

Declaration
void setAttribute(DBE el enent, string ID, string attribute)

Operation

Sets the value of the requested attribute for the first object with the specified value of the | Dattribute. If the attribute does
not exist, it is added to the object.

Displays a DXL error on failure, for example if the wrong type of DBE is passed in.

Example

DB dl g
DBE htnl Ctrl
DBE htm Btn
DBE ht ni

voi d onTabSel ect (DBE whi chTab) {

DXL Reference Manual

void

void

voi d

voi d

void

void

int selection = get whichTab

onSet HTM_(DBE but t on) {

Buffer b = create

string s = get(htm Crl)
print s

b =s

set(htm, b)

delete b

onCet | nner Text (DBE butt on) {
string s = getlnnerText(htm,
confirn(s)

onGet | nner HTML(DBE but t on) {
string s = getlnnerHTM_(htm ,
confirn(s)

onGet Attri but e(DBE button){
string s = getAttribute(htm,
confirn(s)

onSet | nner Text (DBE butt on) {
Buffer b = create

string s = get(htm Crl)

setl nnerText (htm, "Text", s)

onSet | nner HTML(DBE but t on) {

"Text")

"Text")

"Text",

"Align")

DXL Reference Manual

47

Buffer b = create
string s = get(htm Crl)
setl nnerHTM_(htm , "Text", s)

voi d onSet Attri but e(DBE button)({
Buffer b = create

string s = getAttribute(htm, "Text", "Align")

if (s =="left"){
s = "center"
}
else if (s == "center"){
s = "right"
}
else if (s == "right"){
s = "left”
}
setAttribute(htm, "Text", "align", s)

bool onHTM.Bef or eNavi gat e(DBE dbe, string URL, string frame, string body)
string buttons[] = {"OK"}

string nessage = "Before navigate - URL: " URL "\r\nFrane: " frane
"\r\nPostData: " body "\r\n"

print nessage ""

return true

voi d onHTM.DocConpl et e(DBE dbe, string URL){
string buttons[] = {"OK"}
string nmessage = "Docunment conmplete - URL: " URL "\r\n"
print nessage ""

string s = get(dbe)

DXL Reference Manual

print "url: s "\r\n"

bool onHTM.Error (DBE dbe, string URL, string frame, int error){
string buttons[] = {"X"}

string nessage = "Navigate error - URL: " URL "; Frame: " frame "; Error: "
error "\r\n"

print nessage

return true

voi d onHTM_Progress(DBE dbe, int percentage){
string buttons[] = {"OK"}
string nmessage = "Percentage conplete: " percentage "%r\n"
print nessage

return true

dlg = create("Test", styleCentered | styleThenmed | styl eAutoparent)

htm Grl = text(dlg, "Field:", "<htm ><body>\r\n<p id=\"Text\"
align=\"center\">Wl come to DOORS <i >ERS</i ></ b></ p>\r\ n</body></ht i >",
200, false)

htm Btn = button(dl g, "Set HTM....", onSet HTM.)

DBE getlnner TextBtn = button(dlg, "Get Inner Text...", onGetlnnerText)
DBE get | nner HTMLBtn = button(dl g, "Get Inner HTM....", onGetlnner HTM.)
DBE get AttributeBtn = button(dlg, "Get Attribute...", onGetAttribute)
DBE setlnnerTextBtn = button(dlg, "Set Inner Text...", onSetlnnerText)
DBE set|nner HTMLBtn = button(dlg, "Set Inner HTM....", onSetlnner HTM.)
DBE setAttributeBtn = button(dlg, "Set Attribute...", onSetAttribute)
DBE franeCtrl = franme(dl g, "A Frane", 800, 500)

string strTabLabel s[] = {"One", " Two"}
DBE tab = tab(dlg, strTablLabels, 800, 500, onTabSel ect)

DXL Reference Manual

49

50

htm Crl->"top"->"form'
htm Crl->"left"->"fornt
htm Crl->"right"->"unattached"
htm Ctrl->"bottont->"unattached"

htm Bt n->"top"->"spaced"->htm Ctrl
htm Btn->"| eft"->"form'

htm Bt n->"ri ght"->"unattached"

ht m Bt n->"bot t on{' - >" unat t ached"

get | nner Text Bt n->"t op"->"spaced"->htm Ctrl
getl nner Text Bt n->"| ef t"->"spaced"->ht m Bt n
get |l nner Text Bt n->"ri ght"->"unatt ached"

get I nner Text Bt n- >"bot t ont' - >" unat t ached"

get | nner HTMLBt n- >"t op" - >" spaced"->htm Ct r |

get I nner HTMLBt n- >"| ef t " - >" spaced" - >get | nner Text Bt n
get I nner HTMLBt n- >"ri ght"->"unat t ached"

get | nner HTMLBt n- >" bot t oni' - >" unat t ached"

get Attri buteBtn->"top"->"spaced"->htnm Ctrl

get AttributeBtn->"left"->"spaced"->get | nner HTMLBt n
get Attri buteBtn->"right"->"unattached"

get Attri but eBt n->"bottont->"unattached"

set | nner Text Bt n->"t op"->"spaced"->htm Bt n
setlnnerTextBtn->"left"->"al i gned"->get | nner TextBtn
set | nner Text Bt n->"ri ght"->"unatt ached"

set | nner Text Bt n->"bott ont' - >"unat t ached"

set | nner HTMLBt n- >"t op" - >" spaced" - >ht ml Bt n

set |l nner HTMLBt n->"1 eft" - >"spaced" - >set | nner Text Bt n
set | nner HTMLBt n->"ri ght "->"unat t ached"

set | nner HTMLBt n- >"bot t oni' - >" unat t ached"

DXL Reference Manual

set AttributeBtn->"top"->"spaced"->htm Btn
set AttributeBtn->"left"->"spaced"->setl nner HTM.Bt n
set AttributeBtn->"right"->"unattached"

set Attri buteBt n->"bottont->"unattached"

frameCirl ->"top"->"spaced"->set | nner Text Bt n
frameCrl->"left"->"forn
frameCirl->"right"->"fornt

frameCirl ->"bottom ->"forn

tab->"top"->"inside"->frameCrl
tab->"1eft"->"inside"->franeCtrl
tab->"right"->"inside"->frameCrl

tab->"botton'->"i nside"->frameCrl

htm = htrl View(dl g, 800, 500, "http://news. bbc.co.uk", onHTM.Bef or eNavi gat e,
onHTMLDocConpl et e, onHTM.Error, onHTM.Progress)

ht Ml ->"t op"->"i nsi de"->tab
htm ->"l ef t"->"i nsi de"->tab
htm ->"right"->"insi de"->tab
ht m - >"bottonm'->"i nsi de"->t ab

realize(dl g)
show(dl g)

HTML Edit Control

The section describes the DXL support for the HTML edit control added in Rational DOORS 9.0.

The control behaves in many ways like a rich text area for entering formatted text. It encapsulates its own formatting
toolbar enabling the user to apply styles and other formatting.

DXL Reference Manual

51

52

htmlEdit

Declaration
DBE htm Edit (DB parentDB, string |abel, int width, int height)

Operation
Creates an HTML editor control inside par ent DB.

htmIBuffer

Declaration
Buf f er get Buffer (DBE editControl)

Operation

Returns the currently rendered HTML fragment shown in the control. The fragment includes everything inside the <body>
element tag.

set(HTML edit)

Declaration
voi d set (DBE editControl, Buffer HTM)

Operation

Sets the HTML to be rendered by the edit control. The HTML fragment should include everything inside, but not
including, the <body> element tag.

Example

DB MyDB = create "hell o"
DBE MHtm = htm Edit (M/DB, "HTM. Editor", 400, 100)

void nycb (DB dl g){

Buf fer b = getBuffer MyHtni
string s = stringd» b

ack s

DXL Reference Manual

apply (M/DB, "GetHTM.", nycb)
set (MyHEM, "Initial Text")
show MyDB

Miscellaneous

delete(regexp)

Declaration
voi d del et e(Regexp)

Operation

New in Rational DOORS 9.0 this perm deletes the supplied regular expression and frees the memory used by it.

getTDSSOToken

Declaration
string get TDSSOToken(string& ssoToken)

Operation
Fetches a RDS single sign-on token for the current session user.

Returns null on success, or an error on failure.

getURL(SSO)

Declaration
string get URL({dat abase| Modul e| ModNane_| Modul eVer si on| Obj ect | Fol der| \\-
Project|lten} [, bool incSSOToken])

Operation

The new optional boolean parameter provides the ability to include the current session user single sign-on token in the
URL.

backSlasher

Declaration
buf f er backSl asher (Buffer b)

DXL Reference Manual

53

54

Operation

This function takes a buffer and converts all forward-slash characters (/) to back-slash characters (\), eliminates any
repeated back-slash characters, and removes any trailing back-slash characters.

Example
string s = "\\directory////file "

Buffer b = create

b =s
b = backSl asher (b)
print b ""

DXL Reference Manual

Chapter 3

New in DXL for Rational DOORS 9.1

This chapter describes features that are new in Rational DOORS 9.1:

¢ Regular Expressions

Regular Expressions

regexp2

Declaration

Regexp regexp2(string expression)

Operation

Creates a regular expression. Its behavior will not be changed to match the legacy behavior of r egexp() . Should be used
in all new regular expression code.

DXL Reference Manual

55

56

DXL Reference Manual

Chapter 4

New in DXL for Rational DOORS 9.2

This chapter describes features that are new in Rational DOORS 9.2:
« Additional authentication

¢ Dialog box updates

* New constants

e Partitions updates

¢ Requirements Interchange Format (RIF)

Additional authentication

getAdditionalAuthenticationEnabled

Declaration
bool get Addi ti onal Aut henti cati onEnabl ed()

Operation

Returns t r ue if enhanced security users need to perform additional authentication during login. Only relevant when
authentication is being controlled via RDS.

getAdditionalAuthenticationPrompt

Declaration
string get Additional Aut henti cati onPronpt ()

Operation

Returns the label under which additional authentication is requested, if enhanced security is enabled, for example the label
for the second “password” field. Only relevant when authentication is being controlled via RDS.

getSystemLoginConformityRequired

Declaration
bool get Syst eniLogi nConform tyRequi red()

DXL Reference Manual

58

Operation

Returns t r ue if enhanced security users have there system login verified when logging in. Only relevant when
authentication is being controlled via RDS.

getCommandLinePasswordDisabled

Declaration
bool get ConmandLi nePasswor dDi sabl ed()

Operation

Return t r ue if the - P command line password argument is disabled by default.

setCommandLinePasswordDisabled

Declaration
string set ConmandLi nePasswor dDi sabl ed(bool)

Operation

Sets whether the - P command line password argument is disabled by default. Supplying t r ue disables the option by
default.

Dialog box updates

toolBarComboGetEditBoxSelection

Declaration
string tool Bar ConbhoGet Edi t BoxSel ecti on(DBE t ool bar, int index)

Operation
Returns the selected text from the editable combo box int ool bar where i ndex is the combo box index.

toolBarComboCutCopySelectedText

Declaration
voi d t ool Bar ComboCut CopySel ect edText (DBE t ool bar, int index, bool cut)

DXL Reference Manual

59

Operation

Cuts, or copies, the selected text in the editable combo box in t ool bar at locationi ndex. If cut ist r ue, the selected
text is cut to the clipboard. Otherwise, it is copied.

toolBarComboPasteText

Declaration
voi d t ool Bar ConmboPast eText (DBE t ool bar, int index)

Operation

Pastes text from the clipboard into the combo box located at i ndex int ool bar . Replaces selected text if there is any.

hasFocus

Declaration
bool hasFocus(DBE t ool bar)

Operation

Returns t r ue if the supplied t ool bar DBE contains an element that currently has the keyboard focus. Otherwise,
returns false.

setDXLWindowAsParent

Declaration
voi d set DXLW ndowAsPar ent (DB di al 0Q)

Operation

Sets the DXL interaction window to be the parent of di al og. If there is no DXL interaction window, the parent is set to
nul | .

New constants

mayUseCommandLinePassword

Declaration
bool mayUseComuandLi nePassword

DXL Reference Manual

60

Operation

Boolean property of a User . When command line passwords are disabled by default, this returns t r ue if they have been
enabled for the given User . Otherwise, returns f al se.

additionalAuthenticationRequired

Declaration

bool additi onal Aut henti cati onRequi red

Operation

Boolean property of a User . Returns true if the User needs to perform additional authentication during login. Only
relevant when authentication is performed via RDS.

iconAuthenticatingUser

Declaration

I con iconAut henti catingUse

Operation

The icon used to represent a user required to perform additional authentication during login.

Partitions updates

addAwayModule

Declaration
string addAwayModul e(PartitionDefinition pd, string nodNane[, string partNane])

Operation
Used to add a formal module to a partition in the away database.

The new, optional parameter can be used to specify the partition name where it may vary from the definition name.

addAwayLinkModule

Declaration

string addAwayLi nkModul e(PartitionDefinition pd, string nmodNane[, string
part Nane])

DXL Reference Manual

61

Operation
Used to add a link module to a partition in the away database.

The new, optional parameter can be used to specify the partition name where it may vary from the definition name.

Requirements Interchange Format (RIF)

exportPackage

Declaration
string exportPackage(RifDefinition def, StreamR fFile, DB parent, bool & cancel)

Operation

Exports def to the XML file identified by Ri f Fi | e. The stream must be have been opened for writing using “wri t e
(fil ename, CP_UTF8) . If par ent is null then a non-interactive operation is performed. Otherwise, progress bars

will be displayed.
If an interactive export is performed, and is cancelled by the user, cancel will besettot rue.

importRifFile

Declaration

string inportRifFile(string RifFilename, Folder parent, string targetNane,
string targetDesc, string Ri fDef Nane, string RifDefDescription, DB parent)

Operation

Performs a non-interactive import of Ri f Fi | eNane, placing the imported modules in a new folder in the specified
par ent . The new folder name and description are specified by t ar get Nane and t ar get Desc.

rifMerge

Declaration
string rifMerge(Riflnport mmgQhj, DB parent)

Operation
Performs a non-interactive merge using the information in nr gQObj .

RifDefinition

AR f Definiti on isthe object in which a package to be exported in RIF format is defined.

DXL Reference Manual

62

Properties are defined for use with the . (dot) operator and a Ri f Def i ni t i on handle to extract information from a
definition, as shown in the following syntax:

vari abl e. property

where:
vari abl e is a variable of type Ri f Defi ni ti on.
property is one of the following properties.

The following tables list the Ri f Def i ni t i on properties and the information they extract or specify

String property Extracts
nane The name of the definition.
description The description of the definition.

rifDefinitionldentifer The unique ID of the RIF definition (this is shared between databases, unlike the
name and description).

boolean property Extracts

createdLocal ly Returns t r ue if the definition was created in the local database, as opposed to being

imported.
canModi fy Returns true if the correct user can modify the definition.
Project property Extracts
pr oj ect The project which contains the definition.

RifModuleDefinition

AR f Modul eDefi ni ti on isan object which contains the details of how a module should be exported, as part of a
RIF package.

Properties are defined for use with the . (dot) operator and Ri f Mbdul eDef i ni t i on handle to extract information
from, a definition record, as shown in the following syntax:

vari abl e. property

where:
vari abl e is a variable of type Ri f Modul eDef i ni ti on.
property is one of the properties below.

DXL Reference Manual

The following tables list the Ri f Modul eDef i ni t i on properties and the information they extract or specify:

String property

Extracts

dat aConfi gVi ew

ddcVi ew

The name of the view used to define which data in the module will be included in the RIF
export.

The name of the view used to define what data can be edited when the exported RIF package
is imported into another database.

bool property

Extracts

createdLocal ly

Whether the module was added to the RifDefinition in the current database or not.

ModuleVersion
property

Extracts

nodul eVer si on

The ModuleVersion reference for the given Ri f Modul eDef i ni ti on.

Ddcmode property

Extracts

ddcMbde

The type of access control used to define whether the module, or its contents, will be
editable in each database once it has been exported.

DdcMode constants

DdcMode constants define the type of access control used define whether a module, or its contents, will be editable in each
of the local and target database once the export has taken place. The following table details the possible values, and their

meanings.
Constant Meaning
ddcNone Module will be editable in both source and target databases.
ddcReadOnl y Module will be editable in only the source database.

ddcBybj ect
ddcByAttribute
ddcFul | Modul e

Selected objects in the module will be made read-only in the source database.
Selected attributes in the module will be made read-only in the source database.

Module will not be editable.

Rifimport

AR fl nmport isan object which contains information on a RIF import. These are created by import operations, and are
persisted in a list in the stored Ri f Defi ni ti on.

DXL Reference Manual

63

Properties are defined for use with the . (dot) operator and a Ri f | npor t handle to extract information from, or specify
information in an import record, as shown in the following syntax:

vari abl e. property

where:
vari abl e is a variable of type Ri f | nport.
property is one of the properties.

The following tables list the Riflmport properties and the information they extract or specify -

bool property Extracts

nergeStart ed Returns true when a merge operation is started.

nmer geConpl et ed Returns true when the merge has been completed.

nmer geRequi r ed Returns true when an import is a valid candidate for merging.

nmer geDi sabl ed Returns true if the merge has been disabled due to lock removal.

User property Extracts

i mport edBy Returns the user who performed the import.

nmer gedBy Returns the user who preformed the merge.

Folder property Extracts

f ol der Returns the folder containing the imported data. On import, a DXL script is expected to

iterate through the contents of this folder, merging all items which have RIF 1Ds, and which
are persisted in this folder.

Date property Extracts

export Ti nme Returns the time the export was performed. Note that this is the timestamp derived from the
creationTime element of the header in the imported RIF package. Merges should be
performed in the order in which the data was exported, rather than the order in which the
packages were imported.

i mport Ti me Returns the date that the import folder was created.

nmer geTi me Returns the date that the merge of the import folder was completed, or started if it has not
yet been completed.

DXL Reference Manual

65

RifDefinition property Extracts

definition Returns the RifDefinition with which the import is associated.

for RifDefinition in Project

Syntax
for rifDef in proj do {

}
Operation

Assigns r i f Def to be each successive Ri f Defi niti oninProject proj.

for RifModuleDefinition in RifDefinition

Syntax
for rifMdDef in rifDef so {

}
Operation
Assigns ri f ModDef to be each successive Ri f Modul eDefinitioninRi fDefinitionrifDef.

for Riflmport in RifDefinition

Syntax
for riflnp in rifDef do {

}
Operation
Assigns ri f 1 p to be each successiveri f I nport inRi fDefinitionrifDef.

Examples

The following example dumps all information about all RIF definitions in the current project to the screen. It then
conditional exports one of the packages.

DXL Reference Manual

66

RifDefinition rd
Ri f Modul eDefinition rnd
Streamstm= wite ("C\\Public\\rifExport.xm", CP_UTF8)
string s = ""
bool b
Project p = current
Proj ect p2
Modul eVer si on nv
DB nyDB = nul |
DdcMbde ddcm
for rd in p do {
print rd.name "\n"
print rd. description "\n"
print rd.rifDefinitionldentifier "\n"

if (rd.createdLocally) {

print "Local DB\n"

if (rd.canModify) {

print "May be nodified by current user\n"

p2 = rd. proj ect

print full Namre p "\n"

for rmd in rd do {

print "\ nMdul es present in definition :\n"

DXL Reference Manual

mv = rnd. nodul eVer si on

print full Name mv "\t"

print rnd.dataConfigView "\t"
print rnd.ddcView "\t"

if (rmd.createdLocal ly) {

print "Home DB.\n"

ddcm = rnd. ddcMode

if (ddcm == ddcFul | Mbdul e){

print "Module will not be editable once definition is exported.\n"

} else if (ddecm == ddcBybj ect) {

print "Selected objects will be |l ocked in the | ocal database once the
definition is exported.\n"

} else if (ddcm == ddcByAttribute)

print "Selected attributes will be | ocked in the | ocal database once
the definition is exported.\n"

} else if (ddecm == ddcReadOnl y) {

print "Module will only be editable in the |ocal database once
definition is exported.\n"

} else if (ddcm == ddcNone){

DXL Reference Manual

print "Module will be fully editable in both |ocal and target
dat abases when definition is exported.\n"

if (rd.name == "Ri fDef1"){

s = export Package (rd, stm nyDB, b)

if (s !=""){

print "Error occurred : s "\n"

}

The following example dumps all information about all RIF imports in the current project. It then merges those imports
where required.

Ri flnport ri

RifDefinition rd

Project p = current

User inporter, nerger

string inporterName, nergerNane, res
Fol der f

Skip dates = create

for rd in p do {

for ri inrd do {

rd =ri.definition

print rd.name "\n"

DXL Reference Manual

f = ri.fol der
print "Located in : " full Nane f

print "\n"

importer = ri.inportedBy

i mporterNane = inporter. name
print "lnmported by : " inporterName "
print "lnported on : " ri.inmportTime "

if (ri.mergeStarted && !ri. mergeConpl eted) ({

print "Merge started on : " ri.mergeTime "

} else if (ri.nmergeConpleted) {

print "Merge conpleted on : " ri.nmergeTine "

if (ri.mergeRequired) {
print "Merge required.\n"
res =rifMerge (ri, null)
print "Merging result : " res "\n"

} else {

nerger = ri.mergedBy

print "Merged by : " nergerNane "\n"

if (ri.mergeDisabled) {

DXL Reference Manual

70

DXL Reference Manual

print
}
print

"Merge disabl ed,

u\ nn

| ocks renoved. \n"

Chapter 5

New in DXL for Rational DOORS 9.3

This chapter describes features that are new in Rational DOORS 9.3:
e Converting a symbol character to Unicode

» Dialog box functions

» Operations on type string

¢ Embedded OLE objects and the OLE clipboard
* OLE Information Functions

+ Discussions

* RIFID

» Rational DOORS URLs

 Filters

e Compound Filters

* Localizing DXL

» Finding links

e Links

Converting a symbol character to Unicode

symbolToUnicode

Declaration
char synbol ToUni code(char synbol Char, bool convertAl | Synbol s)

Operation

Converts a symbol character to its Unicode equivalent. If conver t Al | Synbol s is false, only symbols with the Times
New Roman font equivalents are converted.

DXL Reference Manual

71

72‘

Dialog box functions

addAcceleratorKey

Declaration

voi d addAccel erat orKey(DB db, void dxl Cal | back(), char accel erator, int
nodi fi er KeyFl ags)

Operation

Adds an accelerator key accel er at or to the dialog db with the callback function dxI Cal | back() and the passed-in
nodi fi er KeyFl ags. nodi fi er KeyFl ags is used in conjunction with the accel er at or parameter to change
which key should be pressed with the accelerator key. Possible values for it are mrodKeyNone, nodKeyCt r |,
nodKeyShi ft and nul | .

The specified DXL callback fn dx| Cal | back() executes for the specified keystroke combination being pressed when
the DXL dialog box db is active.

Only call this perm after the dialog box db has been realized, otherwise a DXL run-time error will occur.

Example
void fn()
{

print "callback fires\n"
}
DB db = create("testD al og", styl eStandard)

realize db

/1 The callback fn() will be executed on pressing Shift+F7 when the dialog db is
active.

addAccel erat orKey(db, fn, keyF7, nobdKeyShift)

Operations on type string

unicodeString

Declaration

string unicodeString(RTF_string__ str, bool convertAll Synbols, bool
returnAsPl ai nText)

DXL Reference Manual

73

Operation

Returns the value of the specified rich text string as RTF or plain text. If the attribute contains characters in Symbol font,
these characters are converted to the Unicode equivalents.

If convert Al | Synmbol s is true, all symbol character are converted. If false, only Unicode characters that have a good
chance of being displayed are used. See the synmbol ToUni code perm for a description of which characters are
converted.

The value is returned as plain text if r et ur nAsPl ai nText is true. Otherwise the value is returned as RTF.

escape

Declaration

string escape(string str, char escapeChar, string escapeChars)

Operation

Escapes all the characters in st r which are in escapeChar s, with the escapeChar character. This also escapes
escapeChar itself.

Example

escape("hello world", '/', "I") returns "he/l/lo wor/|d"

escape("hello world #1", "#, "l h") returns "#he#l #l o wor#l d ##1"
stripPath

Declaration

string stripPath(string path, bool isEscaped)

Operation
Removes the path part from path, using forward slash as the path separator.

If i sEscaped is true, the slash character can be used as a literal character rather than a path separator by preceding the
character with a backslash.

Example
stripPath("abc/def/ghi", b) returns "ghi", where b is true or false.
stripPath("abc/def\\/ghi", true) returns "def/ghi"

DXL Reference Manual

74‘

Embedded OLE objects and the OLE clipboard

olePasteSpecial

Declaration
string ol ePast eSpeci al (string attrRef, bool displayAslcon)

Operation

Copies an OLE object from the clipboard and appends it to at t Ref . The boolean displayAslcon, when setto t r ue will
display the OLE object as an icon in the object. Returns null on success and displays an error message on failure.
Example

ohject o = current

ol ePast eSpeci al (0. "obj ect text", false)

OLE Information Functions

oleSetHeightandWidth

Declaration
ol eSet Hei ght andW dt h(string attrRef, int height, int width, int index)

Operation
Sets the height and width of the OLE object within attrRef at the specified index.

Example
hject o = current hject
ol eSet Hei ght andW dt h(o. "Obj ect Text", 150, 150, 1)

DXL Reference Manual

Discussions

isDiscussionColumn

Declaration

bool isDi scussi onCol um(Col um c)

Operation

Returns true if the column is a discussion column, otherwise false.

setDiscussionColumn

Declaration

voi d set Di scussi onCol um(Col um ¢, string s)

Operation

Sets the filter on the discussion column based on the supplied discussion DXL filename.

Example
Col um c¢
for ¢ in current Mdul e do
{
if (isDiscussionColum(c))
{
string s = dxl Fil enane(c)
if (s !=null)

{

Modul e m = edit("/ TestDi scussions ", true)
/1 Open a nmodul e, with some discussions init.

if (m!=null)

{

Col um cNew = insert(colum 3)

title(cNew, "My copy Discussion")
string hone = getenv("HOVE")

string fullPath = home "\\" s

string contents = readFil e(full Path)

DXL Reference Manual

//Call dxI PERM on that colum before setting the discussion colum. The
/1 discussion colum is also a nodified version of LAYQUT dxl .

dxl (cNew, contents)

set Di scussi onCol um(cNew, s)
wi dt h(cNew, 100)

refresh(m false)

canModifyDiscussions

Declaration
bool canModi fyDi scussions({Mdule nm Itemi| string s}[, {User |string}])

Operation

Returns true if a given user or named user (current user if the parameter is not supplied) is allowed to create a discussion or
a comment on a discussion for the given module, item or named module. The use of item is intended for use when the

| t emrepresents a module.

canEveryoneModifyDiscussions

Declaration
bool canEveryoneMdi fyDi scussions({Mdule n Itemi})

Operation
Returns true if the discussions access list for the given module or item contains the special "Everyone™ group.

addUser

Declaration
voi d addUser (Itemi, {User u| string s})

Operation

Adds the user or named user to the Discussion Access List for an | t em The updated list is not saved in the database until
saveD scussi onAccessLi st is called.

DXL Reference Manual

7

addGroup

Declaration
void addG oup(ltemi, {Goup g| string s})

Operation

Adds the group or named group to the Discussion Access List for an | t em The updated list is not saved in the database
until saveDi scussi onAccessLi st is called.

removeUser

Declaration
voi d RemoveUser(ltemi, {User u| string s})

Operation

Remove the user or named user from the Discussion Access List for an | t em The updated list is not saved in the database
until saveDi scussi onAccessLi st is called.

removeGroup

Declaration
void removeG oup(ltemi, {Goup g| string s})

Operation

Remove the group or named group from the Discussion Access List for an | t em The updated list is not saved in the
database until saveDi scussi onAccessLi st is called.

saveDiscussionAccessList

Declaration
string saveDi scussi onAccessList(ltemi)

Operation

This perm saves the discussion access list for the given item to the database. This perm is only successful for an
administrator or a user with manage database privileges. If the call is successful, a null value will be returned, otherwise a

string with an error message will be returned.

DXL Reference Manual

78‘

RIF ID

getRiflD

Declaration
string getRi fl1D(Object o)

Operation
Returns a string with the RIF ID for object o. If the object does not have a RIF 1D, an empty string is returned.

getObjectByRifID

Declaration
nj ect get Obj ectByRifl D(Mbdule m string s)
Operation

Returns the object within module mwith a RIF ID of s. If the module does not contain an object with the input RIF ID,
null is returned.

Rational DOORS URLSs

getResourceURL

Declaration
string getResourceURL(Module | Object | Database__ | ModuleVersion|ModName___| Folder | Project| Item)

Operation
Returns the resource URL of the passed in item.

getResourceURLConfigOptions

Declaration
void getResourceURLConfigOptions(string &dwaPr ot ocol , string &dwaHost , int &dwaPor t)

DXL Reference Manual

79

Operation

Gets the dwaPr ot ocol , dwaHost , and dwaPor t DBAdmin options configured for this database. The
dwaPr ot ocol , dwaHost , and dwaPor t parameters contain the values upon return.

decodeResourceURL

Declaration

string decodeResourceURL(string resourceURL, string &protocol, string& dbHost, int& dbPort, string& repositoryld,
string& dbName, string& dbld, Item&, ModuleVersion&, string& viewName, int& objectAbsno)

Operation

Breaks down a passed-in resource URL into its constituent parts and passes back the information as may be applicable into
the reference parameters.

Returns nul | on success, error message on failure.

Filters

getSimpleFilterType_

Declaration
int getSinpleFilterType (Filter)

Operation

Returns the type of the simple filter; attribute, link, object, or column. Please note that the returned value corresponds to the
index of the appropriate tab page on the filter dialog. If the specified filter is not a simple filter, -1 is returned.

getAttributeFilterSettings

Declaration

bool getAttributeFilterSettings_(Mdule,
Filter,
string& attributeNaneg,
i nt & conpari sonType,
string& conpari sonVal ue,
bool & mat chCase,
bool & useRegexp)

DXL Reference Manual

80

Operation

Gets details of the specified attribute filter in the return parameters. The function returns f al se if the filter is not a valid
attribute filter.

The conpar i sonType paramenter returns the internal index of the comparison. This is different to the index that is
used in the associated combo box on the filter dialog. The translation is performed by the DXL code.

getLinkFilterSettings_

Declaration
bool getLinkFilterSettings_(Mdule,
Filter,
bool & nmust Have,
int& |linkType,
string& |inkiMbdul eNane)
Operation
Gets details of the specifed link filter in the return parameters. The function returns f al se if the filter is not a valid link
filter.

The | i nkType parameter returns a value that maps directly to the appropriate combo box.

The | i nkModul eNarre parameter returns an asterisk if links are allowed through any module, or the module name.

getObjectFilterSettings_

Declaration
bool gethjectFilterSettings_(Mdule,

Filter,

int& objectFilterType)
Operation

Gets details of the specified object filter in the return parameter. The function returns f al se if the filter is not a valid
object filter.

The obj ect Fi | t er Type parameter returns a value that maps directly to the radio group on the dialog.

getColumnFilterSettings_

Declaration
bool get Col unmFilterSettings_(Mdul e,
Filter,

DXL Reference Manual

string& col unmNane,
string& conpari sonVal ue,
bool & mat chCase,

bool & useRegExp)

Operation

Gets details of the specified column filter in the return parameters. The function returns f al se if the filter is not a valid
column filter.

Compound Filters

These perms can be used to decompose compound filters into their component parts for analysis, and potential
modification or replacement.

getCompoundFilterType_

Declaration
i nt get ConpoundFilterType_ (Filter)

Operation

Returns an integer value indicating the type of the specified filter.

It returns one of the following new DXL constant values for compound filter types:
int filterTypeAnd

int filterTypeOr

int filterTypeNot

Itreturns - 1 for a simple filter. The test for a negative value suffices to indicate that the filter is not compound, as the new
constants are all positive values.

If no filter is supplied, a run-time DXL error is generated.

getComponentFilter_

Declaration
Filter getComponentFilter_(Filter, int index)

Operation
Returns an integer value indicating the type of the specified filter.

It returns one of the following new DXL constant values for compound filter types:

DXL Reference Manual

82

int filterTypeAnd
int filterTypeOr
int filterTypeNot

This perm returns a component filter that is part of the supplied compound filter. If the compound filter is of type
filterTypeNot, the index must be zer o, or the perm returns nul | . If the compound filter is of type
filterTypeOr orfilterTypeAnd,anindex of O or 1 returns the first or second sub-filter, and any other index
value returns nul | .

If the supplied filter is not a compound filter, the perm returns nul | .

If no filter is supplied, a run-time DXL error is generated.

Localizing DXL

Rational DOORS uses ICU resource bundles for accessing translated strings. DXL perms are available to access ICU
resource bundles containing translated strings for customized DXL. For information about creating ICU resource bundles,
see http://userguide.icu-project.org/locale/localizing.

Put the language resource files in a directory whose name is taken as the bundl e nane, under
$DOORSHOVE/ | anguage,for example $DOORSHOVE/ | anguage/ myResour ce/ de_DE. r es. There are two
bundles already shipped with Rational DOORS, cor e and DXL.)

LS.

Declaration
string LS (string key, string fallback, string bundle)

Operation

Returns the string from resource bundle that is identified by key. If the string identified by key is not found in the resource
bundle, the fallback string is returned.

Example

de.txt file contains;

de {
Key1{" Ausgehend"}
Key2{" Ausgehende Li nks"}
Key3{" Nor mal ansi cht"}
Key4{"Kl artext"}

DXL Reference Manual

83

From the command line, generate a resource bundle, for example genrb de.txt, and copy the resource bundle to
$DOORSHOVE/ | anguage/ myResour ce/ , where nyResour ce is the name of your resource bundle. The localized
strings can then be accessed using the LS _ perm, for example in the DXL editor, type:

print LS ("Keyl", "Ausgehend not found", "nmyResource") "\n"
print LS ("Key2", "Ausgehende Links not found", "myResource") "\n"
print LS ("Key3", "Normal ansicht not found", "nyResource") "\n"
print LS ("Key4", "Klartext not found", "myResource") "\n"
The output is:
Ausgehend
Ausgehende Li nks
Nor mal ansi cht

Kl art ext

Finding links

for each incoming link

Syntax

for LinkRef in each(Chject tgtObject) <- (string
I'i nkModul eNane) do {

}. ..
where:
Li nkRef is a variable of type Li nk or Li nkRef
t gt Ohj ect is a variable of type Cbj ect
i nkModul eNane is a string variable
Operation

Assigns the variable Li nkRef to be each successive incoming link arriving at object t gt Cbj ect via link module named
I i nkModul eNanre. The string | i nkiMbdul eNane can be a specific link module name, or the string " *" meaning any
link module.

Iterates through all incoming link references including those from baselines and soft-deleted modules.

Note: This loop only assigns to Li nkRef incoming link values for which the source object is loaded; unloaded links are
not detected.

DXL Reference Manual

Example
Li nkRef |

for | in each(current Qoject) <- "*" do {
string user = |."Created By"
print user "\n"

for each source

Syntax

for srcMbdNanme in each(Object tgtObject) <- (string
I i nkModNane) do {

}
where:
sr cModNane is a string variable
t gt Ohj ect is a variable of type Cbj ect
I'i nkModNare is a string variable
Operation

Assigns the variable sr cModNan® to be the unqualified name of the source module of each successive incoming link
arriving at object t gt Gbj ect via link module named | i nkModul eNarre. The string | i nkModul eName can be a
specific link module name, or the string " * " meaning any link module.

Includes links from baselines and soft-deleted modules, returning the name of the source module (without baseline version
numbers).

Note: This loop assigns to mrodNane values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the f or al | i ncomi ng | i nks loop.

Example

This example prints the unqualified name of all the source modules for incoming links to the current object:
ohject o = current

string srchMdName

for srcMbdNane in each o<-"*" do print srcMdName "\ n"

DXL Reference Manual

85

for each source reference

Syntax

for srcMdRef in each(Cbject tgtChject) <- (string
I i nkModNane) do {

} ce
where:
sr cModRef is a variable of type ModNane_
t gt Ohj ect is a variable of type Cbj ect
I i nkModNare is a string variable
Operation

Assigns the variable sr cMbdRef to be the reference of the source module of each successive incoming link arriving at
object t gt Gbj ect via link module named | i nkivbdul eNane. The string | i nkMbdul eNane can be a specific link
module name, or the string " ** meaning any link module.

Includes links from baselines and soft-deleted modules.

Note: This loop assigns to mrodNane values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the f or al | i ncomi ng | i nks loop.

Example

ModNanme_ sr cModRef

for srcMbdRef in each o<-"*" do
read(ful | Name(srcMdRef), false)

Links

getlegacyURL

Declaration
string getLegacyURL(object o)

Operation

This perm returns the legacy Rational DOORS URL. The legacy URL contains the protocol as "doors". This URL can then
be decoded using decodeURL.

DXL Reference Manual

86

Example

Modul eVer si on mv

i nt obj ect Absno
Itemi

string dbHost = null
int dbPort

string dbName
string dblD = null

string obj Ul = getURL(current Object)

string | egacyUrl

string errorMsg

errorMsg = getlLegacyURL(obj Url, |egacyUrl)
if(!null errorMsg)

{
print errorMg "\n"
}
el se
{
errorMsg = decodeURL(I| egacyUrl, dbHost, dbPort, dbNane, dblD,
obj ect Absno)
}
if(!'null errorMsg)
{
print errorMsg "\n"
}
el se
{
print "Original URL - " objUl "\nDB Host - " dbHost "\n"
print "DB Port - " dbPort "\nDB Nanme - " dbNanme "\nDB Id -
"\ nAbsol ute Nunber - " objectAbsno "\n"
}

DXL Reference Manual

dbl d

n,

Chapter 6

New in DXL for Rational DOORS 9.4

This chapter describes features that are new in Rational DOORS 9.4:

e Create and modify attributes that map to URIs.

« Set the URI for the specified attribute type.

¢ Get the URI for the specified attribute type or for a named enumeration value or for a enumeration index.

e Set the indent for the first line of a paragraph of formatted rich text.

Attribute definitions

Attribute definition properties

Properties are defined for use with the . (dot) operator and an attribute definition handle to extract information from an
attribute definition, as shown in the following syntax:

(AttrDef ad).property

The following property is now supported:

String property Extracts

uri The URI of an attribute definition.

create(attribute definition)

Syntax

AttrDef create([nodul e| object]
[property val ue]...
[(default defVal)]
attribute(string attrNane))

Operation

Creates a new attribute definition called at t r Nanme from the call to at t ri but e, which is the only argument that must
be passed to cr eat e. The optional arguments modify cr eat e, by specifying the value of attribute properties. The
arguments can be concatenated together to form valid attribute creation statements.

The keywords nodul e and obj ect specify that the attribute definition that is being created applies to modules or
objects, respectively.

DXL Reference Manual

87

The default property specifies the default value for the attribute definition that is being created as def Val . This property
should always be specified within parenthesis to avoid parsing problems. The value must be given as a string, even if the
underlying type is different. Rational DOORS converts the value automatically.

As required, you can specify other properties. The defaults are the same as the Rational DOORS user interface. The
following property is now supported:

String property Specifies

uri The URI of an attribute definition.

modify(attribute definition)

Declaration

AttrDef nodify(AttrDef old,
[set property val ue,]
AttrDef new)

Operation

Modifies an existing attribute definition by passing it a new attribute definition. The optional second argument enables you
to set a single property. The following property is now supported:

String property Sets
uri The URI of an attribute definition.
Example

AttrDef ad = create object type "Integer" attribute "cost"
ad = nodi fy(ad, object type "Integer" attribute "Costing")
ad = nodi fy(ad, setH story, true)

ad = nodi fy(ad, setDefault, "123")

ad = nodi fy(ad, setUR, "http://ww. webaddress. cont')

Attribute types

setURI

Declaration
AttrType setURI (AttrType at, string URI, string &errMess)

DXL Reference Manual

89

AttrType setURI (AttrType at, string name, string URI, string &errMess)
AttrType setURI (AttrType at, int index, string URI, string &errMess)

Operation

Sets the URI for the specified attribute type. Returns a modified attribute type. If there is an error, the message is returned
in the final string parameter. The URI can be set for a specified enumeration value or enumeration index.

Example

AttrType at

string errorMsg

string index[] = { "first", "second", "third" }

at = setURI (at, "http://ww. webaddress. cont', errorMsg)

at = setURI (at, index[0], "http://ww. webaddress. cont', errorMsQ)

getURI

Declaration

string uri (AttrType at)

string uri (AttrType at, string namne)
string uri (AttrType at, int index)

Operation

Gets the URI for the specified attribute type or for a named enumeration value or for a enumeration index.

Rich text strings

applyTextFormattingToParagraph

Declaration

string appl yText Formatti ngToPar agraph(string s, bool addBullets,
int indentLevel, int paraNunber, [int firstlndent])

Operation

Applies bullet and/or indent style to the given text, overwriting any existing bulleting/indenting.
e IfaddBul | et sistrue, adds bullet style.

e Ifi ndent Level is nonzero, adds indenting to the value of i ndent Level . The units for indentLevel are twips =
twentieths of a point.

DXL Reference Manual

90

e If par aNumber is zero, the formatting is applied to all the text. Otherwise it is only applied to the specified paragraph
number.

e If the optional parameter f i r st | ndent is specified, then this sets the first line indent. If the value is negative then
this sets a hanging indent. The units are in points.

The input string s must be rich text. For example, fromstring s = richText o."Object Text".

Returns a rich text string which describes the text with the formatting applied.

Example
ohj ect o = current
string s = o0."(hject text"

0."Object text" = richText (applyTextFormattingToParagraph(richText
s,true, 0,0))

Adds bullet style to all of the current object’s text.

DXL Reference Manual

Chapter 7

New in DXL for Rational DOORS 9.5

This chapter describes features and documentation that are new in Rational DOORS 9.5:
« Embed an OLE object in a Rational DOORS formal object in a text attribute.

» Modify expiry time for OSLC external links cache.

» Documentation for password perms.

¢ Updated documentation for Rational DOORS database access using the Rational Directory Server.

OLE objects

oleinsert

Declaration
bool ol elnsert(oject o,[attrRef],string fil eNane,[bool insertAslcon])

where the optional parameter at t r Ref is in the following format: (Obj ect 0). (string attrNane)

Operation

Embeds the file f i | eNane as an OLE object in the Rational DOORS formal object o in a text attribute. If the optional
parameter at t r Ref is specified, then the OLE object is embedded in the user-defined text attribute. If no parameter is
specified, then the OLE object is embedded in the system Object Text attribute.

If the optional parameter i nser t Asl con is specified, then if t r ue, the OLE object is displayed as an icon, else it is
displayed as content. If no parameter is specified, then the default is to display the OLE object as content.

The function returns t r ue on successful insertion of the OLE object. Otherwise, it returns f al se.

An OLE package is created if a file has no associated applications that support OLE. OLE packages even allow executable
files to be embedded into documents. It is then possible to execute such a file from within the document.

Example

/ *

this code segnent enbeds an existing word docunent into the current fornal

obj ect

*/

string docNane = "c:\\docs\\details.doc"

oj ect obj = current

DXL Reference Manual

91

92

if (olelnsert(obj, obj."ny_text", docNane))
print "Successfully enbedded docunent\n”

} else {
print "Problemtrying to enbed docunment\n"

}

OSLC Link Discovery

When OSLC (external) links are discovered the results are stored in DOORS in a database-wide cache so that future
sessions that open modules with those links open faster. When a user opens a module, the cache is checked first for any
external links. If the data in the cache has not yet expired then the cached external links are shown; else, a new query is
executed to discover any OSLC (external) links and the cache is then updated with the results. The cache has a default
expiry time of 5 minutes after which the external links are considered to be out of date. This expiry time can be modified.

getCachedExternalLinkLifeTime

Declaration
i nt get CachedExt ernal Li nkLi feTi ne()

Operation

Returns the life time (expiry time) of the cached external links in seconds.

setCachedExternalLinkLifeTime

Declaration
string set CachedExt ernal Li nkLi feTine(int lifetine)

Operation
Sets the life time (expiry time) of the cached external links to lifetime seconds.
If the value lifetime is zero then this will disable link discovery.

Returns an error if the user does not have the manage database privilege; otherwise, returns null.

DXL Reference Manual

93

Database properties

getReconfirmPasswordRequired

Declaration
bool get Reconfi r mPasswor dRequi red()

Operation
Returns t r ue if a reconfirmation password is required after a specified timeout period; otherwise, returns f al se.

setReconfirmPasswordRequired

Declaration

voi d set ReconfirnPasswor dRequi red(bool required)

Operation
Sets whether a reconfirmation password is required after a specified timeout period, depending on the value of r equi r ed.

This perm only operates if the current user has the Manage Database privilege.

getReconfirmPasswordTimeout

Declaration
i nt get ReconfirnmPasswordTi meout ()

Operation
Returns the timeout period (in minutes) before the reconfirmation password dialog appears.

setReconfirmPasswordTimeout

Declaration

voi d set ReconfirmnPasswor dTi neout (i nt timeout)

Operation
Sets the timeout period to t i meout minutes before the reconfirmation password dialog appears.

This perm only operates if the current user has the Manage Database privilege.

DXL Reference Manual

getRequireLettersinPassword

Declaration

bool get RequirelLetterslnPassword()

Operation
Returns t r ue if a password is required to contain at least one alphabetic character; otherwise, returns f al se.

setRequireLettersinPassword

Declaration
string set RequirelLettersl nPassword(bool required)

Operation
If r equi r ed is true, then a password is required to contain at least one alphabetic character.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireNumberinPassword

Declaration
bool get Requi r eNunber | nPasswor d()

Operation
Returns t r ue if a password is required to contain at least one number; otherwise, returns f al se.

setRequireNumberinPassword

Declaration
string set Requi reNunber | nPasswor d(bool required)

Operation
If required is t r ue, a password is required to contain at least one number.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireSymbollnPassword

Declaration
bool get Requi reSynbol | nPasswor d()

DXL Reference Manual

95

Operation
Returns t r ue if a password is required to contain at least one non-alphanumeric character; otherwise, returns f al se.

setRequireSymbolinPassword

Declaration
string set Requi reSynbol | nPasswor d(bool requi red)

Operation
If required is t r ue, a password is required to contain at least one non-alphanumeric character.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMinPasswordGeneration

Declaration
int get M nPasswordGeneration()

Operation
Returns the minimum number of password generations before a password can be reused.

setMinPasswordGeneration

Declaration

string set M nPasswor dGenerati on(int num

Operation

Sets the minimum number of password generations before a password can be reused to num The minimum number
cannot exceed the in-built maximum limit of 12 generations before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordGenerationLimit

Declaration
i nt get MaxPasswor dGenerati onLimt ()

Operation

Returns the in-built maximum limit of password generations before a password can be reused. This maximum limit is set to
12.

DXL Reference Manual

96

getMinPasswordAgelnDays

Declaration
i nt get M nPasswor dAgel nDays()

Operation
Returns the minimum number of days before a password can be reused.

setMinPasswordAgelnDays

Declaration
string set M nPasswor dAgel nDays(i nt days)

Operation

Sets the minimum number of days before a password can be reused to days. The minimum number cannot exceed the
in-built maximum limit of 180 days before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordAgeLimit

Declaration
i nt get MaxPasswor dAgeLimt ()

Operation
Returns the in-built maximum limit of days before a password can be reused. This maximum limit is set to 180 days.

Rational Directory Server

getTDPortNo

Declaration
int get TDPort No()

Operation
Returns the Rational Directory Server port number.

DXL Reference Manual

97

setTDPortNo

Declaration
string set TDPortNo(int i)

Operation
Sets the Rational Directory Server port number.

Returns an error string if the current user is not the Administrator.

DXL Reference Manual

98

DXL Reference Manual

Chapter 8
Fundamental types and functions

This chapter describes the functions and operators that can be used on the fundamental types of the core language
underlying DXL:

e Operations on all types
» Operations on type bool
e Operations on type char
e Operations on type int
» Operations on type real

e Operations on type string

Operations on all types

The concatenation operator and the functions print and null can be used with all fundamental types.

Concatenation (base types)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
bool b <space> string s
real r <space> string s
char c <space> string s
int i <space> string s

string sl <space> string s2

For type A space character

bool Concatenates string s onto the evaluation of b (t r ue or f al se), and returns the resulting string.
real Concatenates string s onto real number r, and returns the resulting string.

char Concatenates the string s onto the character ¢ and returns the result as a string.

int Concatenates the string s onto the integer ¢ and returns the result as a string.

string Concatenates string s2 onto string s 1 and returns the result as a string.

DXL Reference Manual

100

Concatenation must be used when printing derived types. An example of a derived type is 0. ” Gbj ect text”, where o
is an object. If a string is not concatenated to the end of the print statement, a DXL error will occur, in this case.

Example

print "square root of 2 is " (sqrt 2.0) "\n"
char nl = "\n'

print "line one" nl "line tw"

print (getenv "DOORSHOVE"') "/Iib/dxl"
print o."Cbject text" ""

print (base types)

Declaration

voi d print(bool x)
void print(real r)
void print(char c)
void print(int i)

void print(string s)

Operation
For type Prints
bool The string t r ue in the DXL output window if x is t r ue; otherwise prints f al se.
real The passed real number r in the DXL output window, using a precision of 6 digits after the radix
character.
char The character ¢ in the DXL output window.
int Integer i in the DXL output window, with a trailing newline.
string The string s in the DXL output window without a trailing newline.
Example

print (2.2 * 2.2) /1 prints 4.840000
print 'a'

print "Hello world\n"

null

The null function either returns the null value for the type, or tests whether a variable has the null value for its type.

DXL Reference Manual

101

Declaration
type null ()
bool null (type x)

Operation

The first form returns the following values depending on the value of t ype:

Type Return value

bool fal se

char character of ASCII code 0
int 0

real 0.000000

string a null string (")

The second form returns t r ue if x has a null value as follows:

Type Null value

bool fal seornull

char nul |

i nt Oornul |

real Any 0 value with any number of decimal places or nul |
string “* ornull

You can use the value nul | to assign a null value to any type, including type bool and char.
Example

string enpty = null

print null enpty /'l prints true

Operations on type bool

Just as C++ has introduced a separate type bool (for boolean), so has DXL.

See also “Concatenation (base types),” on page 99, the pr i nt function, and the nul | function.

DXL Reference Manual

102

Type bool constants

The following constants are declared:
const bool true

const bool on

const bool false

const bool off

The boolean value t r ue is equivalent to on; the value f al se is equivalent to of f .

Note: For boolean values you cannot use 1 and 0.

Boolean operators

The operators &%, | | ,and ! perform logical AND, OR, and NOT operations, as shown in the following syntax:
bool x && bool y

bool x || bool y

' bool x

These operators use lazy evaluation.

The && operator returns t r ue only if x and y are both t r ue; otherwise, it returns f al se. If x is f al se, it does not
evaluate y.

The | | operator returnst r ue if X ory ist r ue; otherwise, it returns f al se. If x ist r ue, it does not evaluate y.

The ! operator returns the negation of x.

Type bool comparison

Type bool relational operators can be used as shown in the following syntax:

bool x == bool y

bool x != bool y

The == operator returns t r ue only if x and y are equal; otherwise, it returns f al se.

The ! = operator returns t r ue only if x and y are not equal; otherwise, it returns f al se.

Operations on type char

See also “Concatenation (base types),” on page 99, the pr i nt function, and the nul | function.

DXL Reference Manual

103

Character comparison

Character relational operators can be used as shown in the following syntax:
char chl == char ch2
char chl != char ch2
char chl < char ch2
char chl > char ch2
char chl <= char ch2
char chl >= char ch2

These operators return t r ue if chl is equal, not equal, less than, greater than, less than or equal to, or greater than or
equal to ch2.

Character extraction from string

The index notation, [], can be used to extract a single character from a string, as shown in the following syntax:
string text[int n]
This returns the n" character of string t ext , counting from 0.

Example

This example prints h in the DXL Interaction window’s output pane:
string s = "hell 0"

char ¢ = s[0]

print c

Character classes

The set of functions whose names start with i s can be used to check whether a character belongs to a specific class.

Declaration

bool isal pha(char ch)
bool isupper(char ch)
bool islower(char ch)
bool isdigit(char ch)
bool isxdigit(char ch)
bool isal num(char ch)
bool isspace(char ch)

DXL Reference Manual

104

bool ispunct(char ch)
bool isprint(char ch)
bool iscntrl(char ch)
bool isascii(char ch)

bool isgraph(char ch)

Operation
These functions return t r ue if the character ch is in the named character class:

Class Description
al pha ‘at - 'z2" 'A - 'Z
upper ‘A - ' Z
| ower ‘a' - 'z’
di git 'or - Qo
xdi gi t 0 - "9 tal - ft A - T
al num ‘at - 'z" A - 'Z2 0 - 19
space Y Y (Y ((R YRR ¢
punct any character except <space> and alpha numeric
characters

print a printing character
cntrl any character code between 0 and 31, and code 127
ascii any character code between 0 and 127
gr aph any visible character

Example

print isalpha 'x' // prints true

print isalpha ' ' // prints false

charOf
Declaration

char charOf (i nt ascii Code)

Operation

Returns the character whose ASCII code is asci i Code.

DXL Reference Manual

Example

const char nl

charG 10

intOf (char)

Declaration

i nt(char ch)

Operation

Returns the ASCII code of character ch.

Example
i nt Of

print

a

[l prints 97

Operations on type int

Atypei nt value in DXL has at least 32 bits.

See also “Concatenation (base types),” on page 99, the pr i nt function, and the nul | function.

Arithmetic operators (int)

Arithmetic operators can be used as shown in the following syntax:

~int x

-int x

nt
nt
nt
nt
nt
nt

nt

X

X

X

X

X

X

X

+ i

nt

nt

int

int

nt

int

int

y

< KK K K K

These operators perform integer arithmetic operations for addition, subtraction, multiplication, division, remainder, bitwise

OR, bitwise AND, bitwise NOT, and negation.

DXL Reference Manual

105

106

Assignment (int)

Assignment operators can be used as shown in the following syntax:
int x = inty

int x += int
int x -=int
int x *=int
int x /=int

int x % int

< K K K KK K

int x |=int
int x & int vy

These operators assign integer values to variables of type i nt assignment. The last seven variations combine an arithmetic
operation with the assignment.

Example

int y =20

y *=3

print y /1 print 60
y =17

print y Il print 8
y % 3

print y [l print 2

Unary operators

Unary operators can be used to increment or decrement variables before or after their values are accessed, as shown in the
following syntax:

int x++
int x--
int ++x
int --x

The first two operators return the value of the variable before incrementing or decrementing a variable. The second two
return the value after incrementing or decrementing a variable.

Note: You can overload these operators.

DXL Reference Manual

Example

nt

= 40

print ++i

print

print

i ++

[l prints 41
[l prints 41
[l prints 42

Minimum and maximum operators

Two operators can be used to obtain the minimum or maximum value from a pair of integers, as shown in the following
syntax:

int x <?2inty

int x >?int vy

These operators return the minimum or maximum of integers x and y.

Example

print

(3 <? 2)
print (3 >? 2)

/1 prints 2
/1 prints 3

Integer comparison

Integer relational operators can be used as shown in the following syntax:

nt
nt
nt
nt
nt

nt

X

X

X

X

X

X

== int
I=int
< int
> int
<= int
>= jnt

y
y
y
y
y

y

These operators returnt r ue if x is equal, not equal, less than, greater than, less than or equal to, or greater than or equal to
y.

Example

print

(2 1= 3)

[l prints true

isValidint

Declaration

bool

isvValidlnt(string val ue)

DXL Reference Manual

107

108

Operation
Returnst r ue if val ue is a valid integer; otherwise, returns f al se. The value passed must not be just spaces, e.g. “

If a null string is passed, a DXL run-time error occurs.

random(int)

Declaration

int random(i nt max)

Operation
Returns a random integer value x suchthat 0 <= x < nax
Example

print random 100 // prints an integer in the range 0 to 99

Operations on type real

Atype r eal value in DXL is like a type doubl e in C, with a precision of 64 bits.

See also “Concatenation (base types),” on page 99, the pr i nt function, and the nul | function.

Type real pi

The only constant of type r eal that is declared in DXL is pi :
const real pi

This supplies a constant value of 3.141593.

Arithmetic operators (real)

Arithmetic operators can be used as shown in the following syntax:
real x + real y

real x - real

y
real x * real y
real x / real y

y

real x ™ real

-real x

DXL Reference Manual

109

Operation

These operators perform arithmetic operations on type r eal variables for addition, subtraction, multiplication, division,
exponentiation, and negation.

Example
print (2.2 + 3.3) /1 prints 5.500000

Assignment (real)

Assignment operators can be used as shown in the following syntax:
real x = real y
real x +=real y
real x -=real y
real x *=real y
real x /=real y

These operators perform type r eal assignment. The last four variations combine an arithmetic operation with the
assignment.

Example
real x = 1.1
print (x += 2.0) /1 prints 3.1

After the print statement, the variable x is assigned the value 3. 1.

Convert to real

The assignment operator = can be used to convert an integer to a real number, as shown in the following syntax:
real r =int i

Operation

Convertsi into atyper eal, assigns it to the type r eal variable r, and returns this value.

Example

real r =5

print r /1 prints 5.000000

Type real comparison

Type real relational operators can be used as shown in the following syntax:

real x ==real y

DXL Reference Manual

110

real x !'= real
real x < real

real x > real

< K K K

real x <= real
real x >=real y

These operators return t r ue if X is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to y.

Example

print (2.2 < 4.0) [l prints true

intOf (real)

Declaration
int intOf(real r)

Operation

Rounds r of type r eal to the nearest integer.

Example
print intOf 3.2 [l prints 3

realOf

Declaration
real real Of(int i)
real real O (string s)

Operation

Convertstypeint i ortypestring s intoatypereal value, and returns it.

Example

print real O 4 /1 prints 4.000000
real x = real & "3.2"

print x /1 prints 3.200000

DXL Reference Manual

Cos

Declaration

real cos(real angle)

Operation

Returns the cosine of angl e in radians.

sin

Declaration

real sin(real angle)

Operation

Returns the sine of angl e in radians.
tan

Declaration

real tan(real angle)

Operation

Returns the tangent of angl e in radians.
exp

Declaration

real exp(real x)

Operation

Returns the natural exponent of type real x.
log

Declaration

real log(real x)

Operation
Returns the natural logarithm of type real x.

DXL Reference Manual

111

112

pow

Declaration
real pow(real x,
real vy)
Operation
Returns type r eal X raised to the power y (same as X\y).

sqrt

Declaration

real sqrt(real x)

Operation

Returns the square root of x.

random(real)

Declaration

real random()

Operation

Returns a random value X, such that 0 <=x < 1.

Operations on type string

A DXL type st ri ng can contain any number of characters.

See also “Concatenation (base types),” on page 99, the pr i nt function, and the nul | function.

String comparison

String relational operators can be used as shown in the following syntax:
string sl == string s2
string sl !'= string s2

string sl < string s2

DXL Reference Manual

113

string s1 > string s2

string sl <= string s2

string sl >= string s2

These operators return t r ue if s1 is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to s2. Case is significant.
Example

print ("aaaa" < "a" /1 prints "fal se"

print ("aaaa" > "a" /1 prints "true"

print ("aaaa" ==

print ("A" > "a"

)
)

a") /1 prints "false"
) /1 prints "fal se"
)

print ("MDonal d" < "Man" /1 prints "fal se"

Substring extraction from string

The index notation, [], can be used to extract a substring from a string, as shown in the following syntax:
string text[range]

Operation

Returns a substring of t ext as specified by r ange, which must be in the formi nt : i nt .

The r ange argument is specified as the indices of the first and last characters of the desired substring, counting from 0. If
the substring continues to the end of the string, the second index can be omitted.

Example

string str = "l ama string constant”

print str[0:3] [l prints "I ant

print str[2:3] [l prints "ant

print str[5:] [/l prints "a string constant”
cistrcmp

Declaration

int cistrcnp(string si,
string s2)

Operation
Compares strings s1 and s2 without regard to their case, and returns:

0 if s1 == s2

DXL Reference Manual

114

1 if sl > 52

-1 if sl < s2

Example

print cistrcnp("aAa", " AaA") [l prints O
print cistrcnp("aAa","aA") [l prints 1
print cistrcnp("aAa", "aAaa") [l prints -1

length

Declaration

int length(string str)
Operation

Returns the length of the string st r.

Example
print length "123" // prints 3

lower, upper

Declaration

string lower(string str)

string upper(string str)

Operation

Converts and returns the contents of st r into lower or upper case.

Example
string m xed = "aaaBBBBcccc"

print | ower mnixed /1 prints "aaabbbbcccc
print upper mnixed /1 prints " AAABBBBCCCC'

soundex

Declaration

string soundex(string str)

DXL Reference Manual

115

Operation
Returns the soundex code of the string st r . Initial non-alphabetic characters of st r are ignored.

Soundex codes are identical for similar-sounding English words.

Example
Both these examples print R265 in the DXL Interaction window’s output pane.
print (soundex "requirements")

print (soundex "reekw renents")

backSlasher

Declaration
buf f er backSl asher (Buffer b)

Operation

This function takes a buffer and converts all forward-slash characters (/) to back-slash characters (\), eliminates any
repeated back-slash characters, and removes any trailing back-slash characters.

Example

string s = "\\directory////file "
Buffer b = create

b =-s

b = backSl asher (b)

print b ""

findPlainText

Declaration

bool findPlainText(string s, string sub, int &ffset, int & ength, bool
mat chCase[, bool reverse])

Operation

Returns true if string s contains the substring sub.

Both s and sub are taken to be plain text string. Use f i ndRi chText to deal with strings containing RTF markup.
If mat chCase is true, string s must contain string sub exactly with matching case; otherwise, any case matches.

The function returns additional information in of f set and | engt h. The value of of f set is the number of characters
in s to the start of the first match with string sub. The value of | engt h contains the number of characters in the
matching string.

DXL Reference Manual

116

If r ever se is specified and is true, then the search is started at the end of the string, and the returned values of of f set
and | engt h will reflect the last matching string in s.

Example

string s = “This shall be a requirenent”
string sub = “shall”

int offset = null

int length = null

bool matchCase = true

bool reverse = true

if (findPlainText (s, sub, offset, |ength, natchCase, reverse)){

print offset “ : “ length ““ \\prints “5 : 5"

unicodeString

Declaration

string unicodeString(RTF_string__ str, bool convertAll Synbols, bool
returnAsPl ai nText)

Operation

Returns the value of the specified rich text string as RTF or plain text. If the attribute contains characters in Symbol font,
these characters are converted to the Unicode equivalents.

If convert Al | Synmbol s is true, all symbol character are converted. If false, only Unicode characters that have a good
chance of being displayed are used. See the synmbol ToUni code perm for a description of which characters are
converted.

The value is returned as plain text if r et ur nAsPl ai nText is true. Otherwise the value is returned as RTF.

escape

Declaration
string escape(string str, char escapeChar, string escapeChars)

Operation

Escapes all the characters in st r which are in escapeChar s, with the escapeChar character. This also escapes
escapeChar itself.

DXL Reference Manual

117

Example

escape("hello world", /', "I") returns "he/l/lo wor/|d"

escape("hello world #1", "#', "I h") returns "#he#l #l o wor#l d ##1"
stripPath

Declaration

string stripPath(string path, bool isEscaped)

Operation

Removes the path part from path, using forward slash as the path separator.

If i sEscaped is true, the slash character can be used as a literal character rather than a path separator by preceding the
character with a backslash.

Example

stripPath("abc/def/ghi", b) returns "ghi", where b is true or fal se.

stripPath("abc/def\\/ghi", true) returns "def/ghi"

DXL Reference Manual

118

DXL Reference Manual

119

Chapter 9
General language facilities

This chapter introduces basic functions and structures defined by DXL’s run-time environment, as follows:
¢ Files and streams

¢ Configuration file access

e Dates

e Skip lists

* Regular expressions

e Text buffers

e Arrays

Files and streams

This section describes DXL'’s features for manipulating files. For information on creating a directory, see the nkdi r
function.

The main data type introduced is the St r eam which uses C++ like overloadings of >> and << to read and write files.
Streams are not a fundamental type inherited from DXL’s C origins, so the type name St r eambegins with an upper case
letter.

Standard streams

Declaration
Stream& cin
St ream& cout

Stream& cerr

Operation

Following C++'s naming scheme for UNIX standard streams, these variables are initialized by Rational DOORS to
standard input, output and error.

On UNIX platforms, you can use ci n to read input that has been piped into Rational DOORS, and cout to pipe data out
from Rational DOORS. Similarly, you can send user defined error messages (or any other desired output) to standard error
using cerr.

DXL Reference Manual

120

Read from stream

The operator >> can be used to read strings or data from a configuration area stream, or fill a buffer, as shown in the
following syntax:

file >> string s
file >> char ¢
file >> real r

file >> int i

file >> Buffer b

where:

fileisafile of type Stream

The first form reads a line of text from the configuration area stream file into string s, up to but not including any newline.

The next three forms read the data from the configuration area stream file, and return the result as a stream, to enable
chained reads. Real and integer constants are expected to be the last items on a line, while characters, including newlines, are
read one at a time up to and including the end of file.

The second form reads from the configuration area stream file into buffer b until it is full at its current size, or the end of
the file is reached. Returns the configuration area stream. This function can read multiple lines.

Example
char c
real r
int i

Streaminput = read "data.dat"

input >> ¢ > r >> |

Read line from stream

Two operators can be used to read a single line from a stream to a buffer, as shown in the following syntax:
file -> Buffer b

file >= Buffer b

where:

fileisafile of type Stream

Operation

The - > operator reads a single line from the stream f i | e, and copies it to the buffer, skipping any leading white space. If
the line is empty besides white space, the buffer is emptied. Returns the stream.

DXL Reference Manual

121

The >= operator reads a single line from the stream f i | e, and copies it to the buffer in its entirety. If the line is empty, the
buffer is emptied. Returns the stream.

Write to stream

The operator << can be used to write strings, single characters or buffers to a stream, as shown in the following syntax:
file << string s

file << char ¢

file << Buffer b

where:

fileisafile of type Stream

Writes the string s, the character ¢, or the buffer b to the stream file. To write other data types to a stream, first convert
them to a string by concatenating the empty string or a newline.

Example
Stream out = wite tenpFil eNane
out << 1.4 "\n"

Stream al pha = wite tenpFil eNane

alpha << 'a' << 'b'" << '¢'
canOpenFile
Declaration

bool canQpenFil e(string pathnane,
bool forWite)

Operation

Returns t r ue when the file pathname can be opened; otherwise, returnsf al se. If for Wit eissettot r ue, the file is
opened for write and the current contents of the file are cleared. If f or Wi t e issetto f al se the file is opened read only
and the existing contents are unchanged.

read, write, append(open file)

Declaration
Streamread(string fil enanme)
Streamwite(string fil enane)

Stream append(string fil enane)

DXL Reference Manual

122

Operation

Opens a file f i | ename for reading, writing or appending, and returns a stream. File 1/0O operations only succeed if the
user has permission to create or access the files specified.

To open a binary file, you must call the bi nar y function after the r ead, wr i t e or append. The syntax is therefore:
read [binary] filenane

wite [binary] filenane

append [binary] fil ename

You can use the St at DXL functions to check whether the 1/0 functions in this section can succeed (see “user, size,
mode,” on page 168).

Example

/1 ASClI file

Stream output = wite tenpFil eNane

/'l binary file

Streaminmage = read binary pictureFil eNane

close(stream)

Declaration

voi d cl ose(Stream s)

Operation

Closes the stream s.

flush

Declaration

void flush(Stream s)

Operation

Flushes the output stream s. Character 1/0 can be buffered; this command forces any such buffers to be cleared.
readFile

Declaration

string readFile(string fil enane)

Operation

Returns the contents of the file f i | enarmre as a string.

DXL Reference Manual

123

Note: The Codepages function also has a readFile operator. For information about Codepages and readFile, see
“readFile,” on page 192.

goodFileName

Declaration

string goodFil eName(string fil enane)

Operation

Returns a legitimate file name of the passed file, f i | ename, with respect to any restrictions imposed by the current
platform. This will only apply to the filename up to the ‘. * character. The string after the *. * is ignored.

Example
This example prints the file name Test _r esul t s in the DXL output window:

print goodFil eNane "Test results"”

tempFileName

Declaration
string tenpFil eName()

Operation

Returns a string, which is a legal file name on the current platform, and is not the name of an existing file. On UNIX
platforms, returns a file name like / t np/ DOORSaaouef ; on Windows platforms, returns a file name like
C: \ TEMP\ DP2. This file can be used for temporary storage by DXL programs.

currentDirectory

Declaration
string currentDirectory()

Operation
Returns the path name of the current working directory.

copyFile

Declaration

string copyFile(string sourceFil eNane,
string destFil eNane)

DXL Reference Manual

124

Operation

Copies file sour ceFi | eNane to dest Fi | eNane. If the operation succeeds, returns nul | ; otherwise, returns an
error message.

Example

copyFile("filel", "file2")

deleteFile

Declaration

string deleteFile(string fil enane)

Operation
Deletes the file named f i | enane. If the operation succeeds, returns nul | ; otherwise, returns an error message.

renameFile

Declaration

string renanmeFil e(string old, string new)

Operation
Renames the file called ol d to new. If the operation succeeds, returns nul | ; if it fails, returns an error message.

end(stream)

Declaration

bool end(Stream s)

Operation

Returns t r ue if the stream has no more characters pending. The test should be made after a r ead, but before the read
data is used:

Example
while (true) {
input >> str /1l read a line at a tine; var set up

if (end input) break // test after read but before

print str "\n" /1 variable str is used

DXL Reference Manual

125

format

Declaration

void format(Stream s, string text, int wdth)

Operation

Outputsstri ngt ext to St r eams, formatting each word of the text with a ragged right margin in a column of wi dt h
characters. If a word is too long for the specified column, it is continued on the next line.
Example

Streamout = wite tenpFileNane

format (out, "DXL Reference Manual ", 5)

cl ose out

This generates the following in the temporary file:

DXL

Ref er

ence

Manua

I

for file in directory

Syntax
for s in directory "pathnane" do {

}
where:
pat hnane is the path of the directory
S is a string variable
Operation

Sets the string s to be each successive file name found in the directory pat hnane.

Example
This example prints a list of the files in directory C: \ :
string x = "c:\\"

string file

DXL Reference Manual

126

for file in directory x do {

print file "\n"

Files and streams example program

This example creates a temporary file, writes some data to it, saves it, renames it, reads from the new file, and then deletes it:
/1 file (Stream) DXL exanple
] *
exanple file I/O program
*/
string filenane = tenpFileNane // get a scratch file
print "Witing to " filename "\n"
Streamout = wite filenane
out << "x' "" /[l wite a char (via a string)
out << 1.001 "\n" // a real (must be last thing on line)
out << 42 "\n" /1 an int (nust be last thing on |ine)

out << "hello world\na second |ine\n"
/1 a string

cl ose out /Il wite a file to read back in again

string ol dNane = fil enane

filename = tenpFileName // get a new file nane
renaneFi | e(ol dName, filenanme) // nmove the file we wote earlier
print "Reading from" filenane "\n"

Streaminput = read fil ename

char ¢ /| declare sone variable

real r

int i

i nput >> ¢

input >>r

input >> i

print c r" " i "\n" /1 check data type read/wites
string str /1 do rest line by line

while (true) {
i nput >> str /!l read a line at a tine

DXL Reference Manual

127

if (end of input) break
print str "\n" /1 str does not include the new ine

}

print readFile filenane /1 read the whole lot into a string
cl ose input

deleteFile fil enane /! delete the file

Configuration file access

This section describes the DXL features for manipulating configuration files. The data types used are Conf Type and
Conf St r eam Many of these functions have a parameter Conf Type ar ea. The arguments that can be passed as
Conf Type ar ea are as follows:

e conf User
« conf SysUser
e« conf System
« confTenp

The conf User argument means the file is situated in an area specific to the current Rational DOORS user, or to the
current system user if a project is not open.

The conf SysUser argument means the file is situated in the configuration area for system users. This argument remains
constant regardless of whether the user is logged into the project. For example, the Rational DOORS Tip Wizard uses a
conf SysUser file to store whether a user has opted to show Tips on startup.

The conf Syst emargument means the file is situated in a shared area accessible by all users.
The conf Tenp argument is similar to conf Syst em but is generally used for storing temporary files.

If the function does not supply an ar ea argument, conf User is used.

Read from stream

The operator >> can be used to read strings or data from a configuration area stream, or fill a buffer, as shown in the
following syntax:

file >> string s

file > Buffer b

where:

fil eisafile of type Conf St r eam

The first form reads a line of text from the configuration area stream f i | e into string s, up to but not including any
newline.

The second form reads from the configuration area stream f i | e into buffer b until it is full at its current size, or the end of
the file is reached. Returns the configuration area stream. This function can read multiple lines.

DXL Reference Manual

128

Read line from stream

Two operators can be used to read a single line from a configuration stream to a buffer, as shown in the following syntax:
file -> Buffer b

file >= Buffer b

where:

fil eisafile of type Conf St r eam

Operation

The - > operator reads a single line from the configuration area stream f i | e, and copies it to the buffer, skipping any
leading white space. If the line is empty besides white space, the buffer is emptied. Returns the stream.

The >= operator reads a single line from the configuration area stream f i | e, and copies it to the buffer in its entirety. If
the line is empty, the buffer is emptied. Returns the stream.

Write to stream

The operator << can be used to write strings, single characters or buffers to a stream, as shown in the following syntax:
file << string s

file << char ¢

file << Buffer b

where:

fil eisafile of type Conf St r eam

Writes the string s, the character ¢, or the buffer b to the configuration area stream f i | e. To write other data types to a
configuration area stream, first convert them to a string by concatenating the empty string or a newline.

Example
Conf Stream out = write tenpFil eNanme
out << 1.4 "\n"

Conf Stream al pha = wite tenpFil eNane

alpha << 'a' << 'b'" << 'c¢'
confMkdir
Declaration

voi d conf Mkdi r(string dirName
[, Conf Type area])

DXL Reference Manual

129

Operation
Creates the directory, di r Namre, in either the default or the specified configuration area, ar ea.

confDeleteDirectory

Declaration
string confDel eteDirectory(string pathname, ConfType conf)

Operation

Deletes the named directory in the specified Conf Ty pe area (conf Syst emor conf User). On success it returns null;
on failure it returns an error string.

confRead

Declaration

Conf Stream conf Read(string fil eName
[, Conf Type area)])

Operation

Opens the specified file for reading, and returns the file handle. The file can be in either the default or the specified
configuration area.

Detects the encoding of conf files by checking for the presence of a UTF-8 Byte Order Marker (BOM) at the start of the
file. If it finds one, it assumes that the file is encoded in UTF-8. Otherwise, it assumes that the file is encoded according to
the legacy codepage for the database. In either case, any values subsequently read from the file using the ConfStream >>
operator or others are converted to Unicode, so the encoding of the file should not affect the functionality of any DXL
scripts that use this perm.

confWrite

Declaration

Conf Stream confWite(string fil eName
[, Conf Type area])

Operation

Opens the specified file for writing, and returns the file handle. The file can be in either the default or the specified
configuration area.

Any conf files created by this perm are encoded in UTF-8, enabling them to contain any Unicode strings.

DXL Reference Manual

130

confAppend

Declaration
Conf Stream conf Append(string fil eNane

[, Conf Type area])
Operation

Opens the specified file for appending, and returns the file handle. The file can be in either the default or the specified
configuration area.

This perm converts any non-UTF-8 files to UTF-8 encoding before opening them for append. This enables any Unicode
strings to be written to the file using the ConfStream << write operators.

confRenameFile

Declaration

string confRenaneFil e(string old,
string new
[, Conf Type area])

Operation
Renames the file ol d to newin either the default or the specified configuration area.

Returns an error message string if the operation fails.

confCopyFile

Declaration

string conf CopyFil e(string source,
string dest,
Conf Type ar ea)
Operation
Copies sour ce to dest in the specified configuration area. If the operation fails, it returns an error message.

confDeleteFile

Declaration

string confDel eteFile(string fil eNane
[, Conf Type area]

DXL Reference Manual

131

Operation
Deletes the specified file in either the default or the specified configuration area. If the operation fails, it returns an error
message.

confFileExists

Declaration
bool confFil eExi sts(string fil eName
[, Conf Type area])
Operation
Returns t r ue if the specified file exists in either the default or the specified configuration area; otherwise, returns f al se.

close(configuration area stream)

Declaration

voi d cl ose(Conf Stream s)

Operation

Closes the configuration area stream s.

end(configuration area stream)

Declaration
bool end(Conf Stream s)

Operation
Returns t r ue if the stream has no more characters pending. The test should be made after a r ead, but before the read
data is used:
Example
while (true) {
input >> str /1l read a line at a tine; var set up
if (end input) break // test after read but before
print str "\n" /1 variable str is used
}

DXL Reference Manual

132

for file in configuration area

Syntax

for s in confDirectory("dirnanme"[,area]) do {

}
where:
di r nane is the name of the directory in ar ea, or if ar ea is omitted, in
conf User
area is a constant of type Conf Type: conf User,
conf SysUser, conf Syst em conf Tenp, or
conf Proj User
S is a string variable
Operation

Sets the string s to be each successive file name found in the directory pat hnane.

Example
This example prints a list of the files in directory t est in conf User:
string file

for file in confDirectory("test") do {
print file "\n"

}

confUploadFile(source, dest [, conftype])

Declaration

string confUpl oadFil e(string source, string dest [, conftype])

Operation

Uploads a file from the location on the client machine specified by sour ce, to the file in the system conf area on the
database server, specified by dest . It returns null on success. If the dest string contains double-periods *. . " or specifies
an invalid directory, then the perm reports an error and returns null. Otherwise, if the upload fails, the perm returns an error
message.

The optional 3rd argument specifies the config area where the file should be sent. This defaults to the current user’s config
area (confUser). Files to be accessible to all users should be uploaded to the system config area, by specifying this argument
as “confSystem”.

Example
string message = conf Upl oadFi |l e("C:\\tenp\\nyprog. exe", "nyprog", conf Syst em

DXL Reference Manual

133

if (!'null nessage)

{

war ni ngBox(message)

confDownloadFile(source, dest [, conftype])

Declaration
string confDownl oadFil e(string source, string dest [, conftype])

Operation
Downloads a file from the location in the conf area on the database server, specified by dest , to the location on the client
machine specified by sour ce. It returns null on success. If the source string contains double-periods “. . ” then the perm

reports an error and returns null. Otherwise, if the download fails, the perm returns an error message.

The optional 3rd argument specifies the config area from which the file should be copied. This defaults to the current user’s
config area (confUser).

Example

string nmessage = conf Downl oadFi |l e("nmyprog", " C \\tenmp\\nmyprog2. exe", conf System
if (!'null nessage)

{

war ni ngBox(message)

Dates

This section describes DXL'’s features for manipulating dates.
Dates are not a fundamental type inherited from DXL'’s C origins, so the type name Dat e begins with an upper case letter.

DXL Dat e data limits are from 1 Jan 1970, to 31 Dec 2102.

Concatenation (dates)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
Date d <space> string s

Concatenates string s onto date d and returns the result as a string. It uses the long format date, or, if any operations
dealing in seconds have occurred, the short format date with time added.

DXL Reference Manual

134

Example
This example prints <01 January 1999>:
Date d = "1 Jan 99"

print "<"d">"

Assignment (date)

The assignment operator = can be used as shown in the following syntax:
Date d = string datestr

Converts the string dat est r into a date, assigns it to d, and returns it as a result. Issues an error message if dat est r is
not in a valid date format. Ordinal numbers, for example 4th, are not recognized. Apart from that limitation, all date
formats are valid, for example:

yyyy, dd nmmm
dd/ mmi yy
nmm dd/ yy

Time can be appended to a dates using the format hh: nm ss. ss, provided the date is in the format dd/ nm1 yy or
nmi dd/ yy.

Example

This example prints 04 Cct ober 1961:
Date d1 = "4 COct 1961"

print dil

Date comparison

Date relational operators can be used as shown in the following syntax:
Date d1 == Date d2
Date dl1 != Date d2
Date d1 < Date d2
Date d1 > Date d2
Date dl1 <= Date d2
Date d1 >= Date d2

These operators return t r ue if d1 is equal, not equal, less than, greater than, less than or equal to, greater than or equal to
d2.

Example
This example prints f al se in the DXL Interaction window’s output pane:
Date d1 = "4 Cct 1961"

DXL Reference Manual

135

Date d2 = "10 Nov 1972"
print (dl1 > d2)

print(date)

Declaration

void print(Date d)

Operation

Prints the date d in the DXL output window in long format, or, if any operations dealing in seconds have occurred, the
short format date with time added.

Example

This example prints 04 Cct ober 1961:

Date d1 = "4 Cct 1961"

print dil

today

Declaration
Dat e today()

Operation

Returns today’s date. The value includes the exact time, but it is not printed using:
print today

The function call:

intOF today

returns the integer number of seconds since 1 Jan 1970, 00:00:00 GMT.

Example
This example prints the current date and time:
print dateOf intCOf today

Note: Concatenating strings to the end of this statement may give unexpected results.

session

Declaration

Dat e session()

DXL Reference Manual

136

Operation

Returns the date on which the current Rational DOORS session began. The value includes the exact time in the same way
as the t oday function.

Example
This example prints the date the current Rational DOORS session started:

print session

intOf(date)

Declaration
int intOf(Date d)
Operation

Returns an integer corresponding to the number of seconds that have elapsed between the given date and 1 Jan 1970,
00:00:00 GMT.

When a Dat e data type is converted for dates on or after 1 Jan 2037, or before 1 Jan 1970, this function returns a result of
-1

Example
print intOf today

dateOf

Declaration
Dat e dateOf (i nt secs)

Operation
Returns the date and time that is calculated as secs seconds since 1 Jan 1970, 00:00:00 GMT.

Example

int mnute = 60

int hour = 60 * mnute
int day = 24 * hour
int year = 365 * day

int |leapYear = 366 * day

print dateOf ((year * 2) + |eapYear)

This generates the following in the DXL Interaction window’s output pane:

01/ 01/ 73 00: 00: 00

This is three years after 1 Jan 1970, 00:00:00 GMT, taking into account that 1972 was a leap year.

DXL Reference Manual

137

stringOf

Declaration
string stringOf(Date d[, Locale I]J[, string s])

Operation

This returns the string representation of the date value using the specified locale and format. If no locale is specified, the
current user locale is used. If no format string or a null format string is specified, then if the date value includes time
(hours:minutes:seconds), the default short date format for the locale will be used. Otherwise, a long date format will be
used. The default short date format will be either that specified by the user using set Dat eFor mat (Local e), or, if no
default short date format has been set by the user for the locale, the system default format.

date

Declaration
Date date(string s[, Locale I][,string s])

Operation

This returns the date value represented by the supplied string, interpreted according to the specified locale and format. The
default locale is the current user locale. If no format string is supplied, the input string is parsed using first the user’s default
short date format (if one has been specified for the locale), and then all the supported formats for the locale.

for string in shortDateFormats

Declaration
for string in shortDateFormats([Locale 1])

Operation

This iterator returns the short date formats supported for the specified locale. If no locale is specified, it returns the short
date formats supported for the current user locale.

The first format returned is the default short date format for the locale.

for string in longDateFormats

Declaration
for string in | ongDateFormats([Locale 1])

Operation

This iterator returns the long date formats supported for the specified locale. If no locale is specified, it returns the long date
formats supported for the current user locale.

DXL Reference Manual

138

The first format returned is the default long date format for the locale.

includesTime

Declaration
bool includesTi ne(Date d)

Operation

This returns t r ue if the specified date value includes time information as well as date.

dateOnly

Declaration
Date dateOnl y(Date d)

Operation
Returns a copy of the supplied date value, without any included time-of-day information (it returns a date-only value).

dateAndTime

Declaration
Dat e dat eAndTi ne(Date d)

Operation
Returns a copy of the supplied date value including time-of-day data.

Example

print today()

prints 6 June 2010

print dateAndTi ne(t oday)
prints 6/ 6/ 2010 13:42: 34

Example

The following example uses the new locale specific date format perms.

/1 dates.dxl - dates and formats exanpl e
//***
voi d test Format (Dat e dat eVal ue, Locale |loc, string format)

/1 DESCRI PTI ON: Checks that the stringOf and dateO™f perns are true

/1 i nverses for the specified format.

DXL Reference Manual

139

print " format " format ": " stringO(datevalue, loc, fornat) "\n"

} // testFornmat
//**
voi d test Dat e(Date dateVal ue, Local e |oc)
/1 Tests stringOh and dateOf using default formats, and all supported formats.
{

/1 Test default format

string stringForm = stringCf (dateVal ue, |oc)

print "Default format: " stringForm"\n"

/1 Test all supported formats

string format

print "Short formats:\n"

for format in shortDateFormats(loc) do
{

t est For nat (dat eVal ue, | oc, format)

}

print "Long formats:\n"

for format in | ongDat eFormats(loc) do

{

t est For nat (dat eVal ue, | oc, format)

/1 Test abbreviations.
print "Abbreviated nanes: " stringO(dateValue, loc, "ddd, d MW yy") "\n"
/] Test all full nanes.

print "Full nanmes: " stringCOf(dateVvalue, |oc, "dddd, d MW yyyy") "\n"

} // testDate

Locale | oc = userlLocal e

print "\ nLOCALE: " (nane loc) "\n"
print "\ nDATE ONLY:\n"

DXL Reference Manual

140

t est Dat e(t oday, | oc)
print "\ nDATE AND TI ME:\ n"
t est Dat e(dat eAndTi ne(t oday), | oc)

Skip lists

This section describes DXL'’s features for manipulating skip lists.

Skip lists are an efficient dictionary like data structure. Since DXL does not support a C like st r uct feature, many DXL
programs use skip lists as the building blocks for creating complex data structures.

Because DXL provides no garbage collection, it is important to delete skip lists that are no longer required, thereby freeing
allocated memory.

Skip lists are not a fundamental type inherited from DXL'’s C origins, so the type name Ski p begins with an upper case
letter.

create, createString(skip list)

Declaration
Skip create()
Skip createString()

Operation
Creates a new empty skip list and returns it.

It is very important, and it is the programmer’s responsibility to ensure that data and keys are consistently used when storing
and retrieving from a skip list. For example, you can cause program failure by inserting some data into a skip list as an
integer, then retrieving the data into a string variable and attempting to print it.

The keys used with the skip list can be of any type. However, comparison of keys is based on the address of the key, not its
contents. This is fine for elements that are always represented by a unique pointer, for example, objects, modules, or skip
lists, but care is needed with strings. This is because a string may not have a unique address, depending on whether it is
literal or a computed string stored in a variable.

There are two ways of avoiding this problem. The first is to use the cr eat eSt r i ng form of the function for a skip list
with a string key. The alternative is to ensure that all literal strings used as keys are concatenated with the empty string.

Example
Skip strKeys = create
put (strKeys, "literal"™ "", 1000)

DXL Reference Manual

141

delete(skip list)

Declaration
voi d del ete(Skip s)

Operation

Deletes all of skip list s. Variables that have been given as keys or data are not affected.

delete(entry)

Declaration
bool del ete(Skip s,
type key)
Operation
Deletes an entry in skip list s according to the passed key, which can be of any type. Variables that have been given as keys
or data are not affected. Returns f al se if the key does not exist.
Example

if (del ete(nunberCache, 1)) // delete absno 1
ack "del ete succeeded"

find(entry)

Declaration

bool find(Skip s,
typel key
[,type2 &data])

Operation

Returnst r ue if the passed key, of t ype1l, has an entry in skip list s. The optional third argument sets the entry found to
be dat a of t ype2. Both t ypel and t ype2 can be any type.

Example

if (find(numberCache, 1, 0)) {
string h = o."(hject Headi ng"
ack h

key

The key function is used only within the skip list f or loop, as shown in the following syntax:

DXL Reference Manual

142

(type key(Skip s))

Operation

Returns the key corresponding to the current element. The return value can be of any type, so a cast must precede the use of
key.

Example

oject o

for o in nunberCache do {
/1 must cast the key conmand.

int i = (int key numnber Cache)
print i
}
put
Declaration

bool put (Skip s,
typel key,
type2 data)

Operation

Returns t r ue if the passed key and dat a are successfully inserted into the skip list s. Duplicate entries are not allowed,
so the function returns f al se if an entry with the same key already exists. For this reason, an entry at an existing key
must first be deleted before its data can be changed.

Example
Skip s = create
put (s, 1, 20)

print put(s, 1, 30)
/1 prints 'false'
del ete(s, 1)

print put(s, 1, 30)

/1 prints "true', s(1l) is now 30

for data element in skip list

Syntax

for dataEl enent in skiplist do {

}...

DXL Reference Manual

where:
dat aEl ement is a variable of any type
ski pli st is a variable of type Ski p
Operation

Sets ent ry to be each successive t ype data element of | i st .

Example
oject o

for o in nunberCache do {
string h = o."(hject Headi ng"
print h "\n"

Skip lists example program

In this example a skip list is used to store a mapping from absolute numbers to the corresponding Rational DOORS object:

/1 skip l'ist exanple

/*
sinple skip list exanple: nmake a mapping
from absol ute nunbers to objects, allow ng
fast | ookup

*

/

Ski p nunber Cache = create // builds the skip list
oj ect o

i nt n=20 /1 count objects

for oin current Module do {
/1 cycle through all objects

int absno = o."Absol ute Nunber"
/1 get the nunber

put (nunber Cache, absno, 0)
/'l number is key, object is data

n++

Y1 for

/1 we now have a quick way of going from absol ute nunbers to objects:

if (n>0) {
int i

DXL Reference Manual

143

144

for i in 1:20 do {

int absno = 1 + random n

/'l choose an absno at
i f (find(nunberCache,

/] can we find it?
string heading = o."Obj ect Heading"

print "#"

Yoif
Y11 for
YOaf

absno "
heading \""

has

random

absno,

0)) {

headi ng "\"\n"

Regular expressions

This section describes DXL'’s features for using regular expressions.

Regular expressions are a mechanism for detecting patterns in text. They have many applications, including searching and

simple parsing.

Regular expressions are not a fundamental type inherited from DXL’s C origins, so the type name Regexp begins with an

upper case letter.

The following symbols can be used in Regexp expressions:

Meaning
* Z€ero or more occurrences
+ one or more occurrences

any single character except
new line

\ escape (literal text char)

n start of the string (if at start
of Regexp)

$ end of the string (if at end of
Regexp)

() Groupings

Example
a*
X+

*

AThe. *

end\\. $

(ref) +
(bind) *

Matches
any number of a characters, or none
one or more X characters

any number of any characters (any
string)

literally a . (dot) character

any string starting with The or
starting with The after any new
line(see also [] below)

any string ending with end.

at least one ref string then any
number of bind strings

DXL Reference Manual

145

(Continued)
[1 character range (letters or [sS]hall. any string containing shall or Shall
digits) *\\. $ and ending in a literal dot (any
requirement sentence)

[~abc] any character except a, b, or ¢
[a-zA-Z] any alphabetic character
[0-9] any digit

| Alternative (dat | doc) either the string dat or the string doc

Note: The regular expression escape character must itself be escaped in a DXL string. For example, to have the regular
expression \ ., you must have\\ . inthe DXL string.

Many of the functions for regular expressions use the data type Regexp.

Application of regular expressions

The space character is an operator that applies a regular expression to a string or buffer; it is shown as <space> in the
following syntax:

Regexp reg <space> string text
Regexp reg <space> Buffer b

Operation

Returns t r ue if there is a match.

Example
Regexp line = regexp2 ".*"
while (line txtl) {

}

match

The mat ch function returns a range for a match of a regular expression within a string or buffer, as shown in the following
syntax:

Regexp r = regexp "x(optionsl)y(options2)..."

{string|Buffer} str = "string"
str[match n]

where:

r str are variables

DXL Reference Manual

146

Xy are literal characters in a regular expression
optionsl are regular expression matching options
options2
string is a string or buffer
n is an integer

Operation

When n=0, returns the range of st r i ng. When n=1, returns the range of the match for opt i ons1; when n=2, returns
the match for opt i ons2, and so on. The value for n is restricted to the range 0-9.

Example

This example detects and decomposes URLS:

Regexp URL = regexp2 "(HTTP| http|ftp| FTP| filelFILE):// ([~ \\),;>\"]*)"
string txt3 = "The ABC URL is http://ww. abc.com it nay be..."

if (URL txt3) {

print txt3[match 0] "\n" /1 whol e match
print txt3[match 1] "\n" /1 first section in ()
print txt3[match 2] "\n" /'l second section in ()
}
matches
Declaration

bool matches(string reg,
string text)

Operation

Returnst r ue if t ext matches r eg. For repeated use, declaring and building a regular expression is more efficient.

Example
string txt = "xxxxyesuuuu"

if (matches("(yes|no)", txt)) print txt[match O]

regexp

Declaration
Regexp regexp(string reg)

DXL Reference Manual

147

Operation

Returns a new regular expression, specified by string r eg. For legacy support only, should not be used in new code.
Replaced by regexp2().

Example

/1 matches any |ine except new ine

Regexp line = regexp2 ".*"

start, end(of match)

Declaration

int start(int n)
int end(int n)
Operation

Return the position of the first and last characters of the nt h match from a call to mat ch. The value for n is restricted to
the range 0-9.

Example
int firstNaneLen = end 1

delete(regexp)

Declaration
voi d del et e(Regexp)

Operation

This perm deletes the supplied regular expression and frees the memory used by it.

regexp2

Declaration

Regexp regexp2(string expression)

Operation

Creates a regular expression. Its behavior will not be changed to match the legacy behavior of r egexp() . Should be used
in all new regular expression code.

DXL Reference Manual

148

Regular expressions example program

/'l regul ar expression DXL exanple
/*
exanpl es of regul ar expressi on DXL
*/
Regexp line = regexp2 ".*"
/1 matches any character except newine

string txtl = "line 1\nline 2\nline 3\n"
/1 3 1line string

while (!null txtl & line txtl) {
print txtl[match 0] "\n"
// match O is whole of match

txtl = txtl[end 0 + 2:] /1 nove past newl ine
}

/1 The follow ng regul ar expression detects and deconposes URLs
Regexp URL = regexp2 "(HTTP| http|ftp| FTP| filelFILE):// ([~ \\),;>\"]*)"
string txt3 = "The ABC URL is http://ww. abcinc.com and may be..."

if (URL txt3) {
print txt3[match 0] "\n" /1 whol e match

print txt3[match 1] "\n" /1 first bracketed section
print txt3[match 2] "\n" /1 second.

print start 1 /1 position 15 in txt3 (fromO0)
print end 1 I 18

print start 2 I 22

print end 2 I 34

Text buffers

The following functions enable the manipulation of DXL buffers. Buffers are a speed and memory efficient way of
manipulating text within DXL applications. Their use is particularly encouraged in parsers and importers.

You should explicitly delete buffers with del et e as soon as they are no longer needed in a script.

Buffers are not a fundamental type inherited from DXL'’s C origins, so the type name Buf f er begins with an upper case
letter.

Because DXL provides no garbage collection, it is important to delete buffers that are no longer required, thereby freeing
allocated memory.

DXL Reference Manual

149

Assignment (buffer)

The assignment operator = can be used as shown in the following syntax:
Buffer b = string s

or

Buffer b = h.ol dval ue

Operation

The first form sets the contents of buf f er b to that of the st ri ng s. You can use a range in the assignment.

The second form sets the contents of the buf f er to the history property ol dVal ue. The buffer should be deleted after
use.

Note: If you want to assign a buffer to a buffer, you must use the form Buf f er b=stri ngOf (a), otherwise, the
address of a is given to b instead of its value.

Append operator

The append operator += can be used as shown in the following syntax:
Buffer b += string s

Buf fer b += char c

Buffer b += Buffer b

Operation
Appends the string, character, or buffer to the buffer b.

Example
This example prints onelt wox in the DXL Interaction window’s output pane:
Buffer bufl = create

Buffer buf2 = create

bufl = "one"
buf2 = "two"
buf1 += "1"
bufl += buf2
bufl += 'x'

Concatenation (buffers)

The space character is the concatenation operator, which is shown as <space> in the following syntax:

DXL Reference Manual

150

Buffer b <space> string s

Concatenates string s onto the contents of buffer b and returns the result as a string. You can use a range in the
concatenation.

Example

Buffer b = create

b = "aaa"

print b "zzz" [l prints "aaazzz"

Buffer comparison

String relational operators can be used as shown in the following syntax:
Buf fer bl == Buffer b2
Buf fer bl != Buffer b2
Buffer bl < Buffer b2
Buf fer bl > Buffer b2
Buf fer bl <= Buffer b2
Buffer bl >= Buffer b2

These operators return t r ue if b1 is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to b2. Case is significant.

Example
Buffer bl = create

Buffer b2 = create

bl = "aaa"

b2 = "aza"

print (bl==b2) " " (bl!=b2) " " (blb2) " "
print (blb2) " " (bl<=b2) " " (bl>=b2) "\n"

/1 prints "false true true false true fal se"

Read and write operators

The >> operator can be used to read a stream into a buffer and return the stream (see “Read from stream,” on page 120).
The << operator can be used to write a buffer to a stream and return the stream (see “Read line from stream,” on page 120).

The - >and >= operators can be used to read a single line from a file to a buffer, (see “Write to stream,” on page 121).

DXL Reference Manual

151

Character extraction from buffer

The index notation, [], can be used to extract a single character from a buffer, as shown in the following syntax:
Buf fer b[int n]

This returns the n'™ character of buffer b, counting from 0.

Example

This example prints a in the DXL Interaction window’s output pane:

Buffer b = "abc"

char ¢ = b[0]

print ¢

Substring extraction from buffer

The index notation, [], can be used to extract a substring from a buffer, as shown in the following syntax:

Buf f er b[range]

Operation
Returns a range of b as specified by r ange, which must be in the formi nt : i nt .

The r ange argument is specified as the indices of the first and last characters of the desired range, counting from 0. If the
range continues to the end of the buffer, the second index can be omitted. This function returns a buffer or string
depending on the type assigned.

Example
Buf fer buf = create
buf = "abcdefg"

string s = buf[2: 3]
print s /'l prints cd
Buf fer b = buf[4:5]
print b [l prints ef
combine
Declaration
voi d conbi ne(Buffer bil,
Buf fer b2,
int start

[,int finish])

DXL Reference Manual

152

Operation

Concatenates a substring of b2 onto the contents of b1. The substring is from st art tofi ni sh, oriffi ni shis
omitted, from st ar t to the end of the buffer. This function provides a performance advantage over the assignment to
buffer using the range option.

Example

Buffer bl = create, b2 = create

bl = "zzz
b2 = "abcdef"

conbi ne(bl, b2, 3, 4)

print stringOf bl [l prints "zzzde"

contains

Declaration

int contains(Buffer b,
char ch
[,int offset])

int contains(Buffer b,
string word,
int offset)

Operation

The first form returns the index at which the character ch appears in buffer b, starting from 0. If present, the value of
of f set controls where the search starts. For example, if of f set is 1, the search starts from 2. If of f set is not
present, the search starts from 0. If ch does not appear after of f set , the function returns - 1.

The second form returns the index at which string wor d appears in the buffer, starting from 0, provided the string is
preceded by a non-alphanumeric character. The value of the mandatory of f set argument controls where the search
starts. If wor d does not appear after of f set , the function returns - 1.

getDOSstring

Declaration
Buf f er get DOSstri ng(Buffer b)

Operation

Returns a copy of the supplied Buffer, with a carriage-return character inserted before any newline character that is not
already preceded by a carriage return.

DXL Reference Manual

153

create(buffer)

Declaration

Buf fer create([int initSize])

Operation

Creates a buffer. A buffer has no intrinsic limit on its size; when a buffer becomes full it extends itself, if memory permits.
The argument i ni t Si ze specifies the initial size of the buffer. If no initial size argument is passed, this function creates a
buffer that uses a default initial size of 255.

delete(buffer)

Declaration
voi d del ete(Buffer &b)

Operation
Deletes the buffer b, and sets the variable b to nul | .

firstNonSpace

Declaration

int firstNonSpace(Buffer b)

Operation

Returns the index of the first non-space character in buffer b, or - 1 if there is none.

keyword(buffer)

Declaration

int keyword(Buffer b,
string word,
int offset)
Operation

Returns the index at which string wor d appears in buffer b, starting from character of f set , provided that the string is
neither preceded nor followed by a non-alphanumeric character. If wor d does not appear, the function returns - 1.

This function is used to accelerate parsing of programming languages.

DXL Reference Manual

154

length(buffer get)

Declaration
int length(Buffer b)

Operation
Returns the length of the buffer.

length(buffer set)
Declaration
voi d | engt h(Buffer b,
int |en)
Operation

Sets the length of a buffer. This is normally used for truncating buffers, but can also be used to lengthen them.

The DXL program is responsible for the content of the buffer.

Example

Buf fer buf = create

buf = "abcd"

| engt h(buf, 2)

print "<" (stringOF buf) ">" [/ prints "ab"

set(char in buffer)

Declaration

voi d set (Buffer b,
int n,
char ch)

Operation

Sets the character at position n of buffer b to character ch.

Example

if (nane[n] ==".") set(name, n, ';")

DXL Reference Manual

155

setempty

Declaration
voi d setenmpty(Buffer b)

Operation

Empties buffer b, but does not reclaim any space.

setupper, setlower

Declaration
voi d setupper (Buffer b)

voi d set!| ower (Buffer b)

Operation

These functions convert the case of buffer b to upper or lower case.

stringOf(buffer)

Declaration
string stringO(Buffer b)

Operation

Returns the contents of buffer b as a string.

Example

Buffer b = create

b = "aaaa"

print stringtf b /1 prints "aaaa"

Buffers and regular expressions

Regular expressions can be applied to buffers in the same way as strings (see “Application of regular expressions,” on page
145). The regular expression functions st art , end(of mat ch), and mat ch can also be used with buffers.

Example
Buf fer buf = create
buf = "aaaabbccccc"

Regexp re = regexp2 "a*"

DXL Reference Manual

156

re buf /1 apply regul ar expression

print buf[match 0] /1 prints "aaaa"

search
Declaration
bool search(Regexp re,
Buf fer b,
int start

[,int finish])

Operation

Searches part of b using r e. The search starts at st ar t and continues until f i ni sh, or if f i ni sh is omitted, from
st art to the end of the buffer.

This function provides a performance advantage over the concatenation of regular expression to buffer with the range
option.

Note that the mat ch, end and st ar t regular expression functions can be used to return offsets relative to st ar t, not
the start of the buffer.

It is possible when using this perm along with a complex regular expression, and a very large Buffer, that valid code will
produce a run-time error detailing an “incorrect regular expression”.

Text buffers example program

/1 buffer DXL exanple

/*
exanpl e use of DXL buffers - place a border
around a multi-line piece of text, e.g.:

| the quick brown |

| fox junped over |

| the lazy dog |
*/

Buf f er process(Buffer source) {
Regexp line = regexp2 ".*" /1 matches up to new ine

int from=0
int mx =0
Buf fer boxed = create, horiz = create

while (search(line, source, from) {
/!l takes a line at a tinme from source

DXL Reference Manual

int offset = end O
/1 end of the nmatch within source

string match = source[from fromtof f set]

from+= offset + 2
/1 move 'from over any new ine

if (null match) /1 we are done
br eak

max = max >? | ength match
/1 remenber max line length

}
if (max==0) { // no strings nmatched
boxed = "++\ n++"
} else {
horiz = "+" /] build a horizontal |ine
int i
for i in 1:max+2 do /1 allowtwo spaces
horiz +="'-'

horiz += "'+

horiz +='\n'

from= 0 /'l reset offset
boxed += horiz

while (search(line, source, from) {
/'l rescan buffer

int offset = end O

string match =
source[from fromtof f set]

if (null match)
br eak

from+= offset + 2

boxed += "'|' // add the vertical bars

boxed += '

boxed += match

for i inl1l: max - length match + 1 do

boxed += '
/1 add space to side of box

boxed += "]’

boxed += '\n'
}

boxed += horiz

DXL Reference Manual

157

158

return boxed

}

Buf fer text = create

text = "The qui ck brown" /1 build a test string
text +="\n'

text += "fox junped over"

text += '\n'

text += "the lazy dog"

cout = wite "buffer.tnp”

cout << process text /] print result

Arrays

This section describes a dynamically sized two-dimensional array data type. An example of its use is in the Rational DOORS
ASCII output generator in the tools library. As with skip lists, you must retrieve data into variables of the same data type as
they were put into the array, or program failure may occur.

Because DXL provides no garbage collection, it is important to delete DXL'’s dynamic arrays that are no longer required,
thereby freeing allocated memory.

Dynamic arrays are not a fundamental type inherited from DXL'’s C origins, so the type name Ar r ay begins with an upper
case letter.

create(array)

Declaration

Array create(int x,
int y)

Operation

Creates a dynamically sized array of initial bounds (x,y). Following C conventions, the minimum co-ordinate is (0,0), and
the maximum co-ordinate is (x-1,y-1). If an assignment is made to an array element outside these initial bounds, the array is
automatically resized. When viewing arrays with the pr i nt Char Ar r ay function, the X axis grows left to right across the
page, while the Y axis grows down the page.

Both arguments to create must be greater than or equal to 1.

Example

This example creates an array with 50 elements in the X direction accessed from (0,0) to (49,0), and only one element in the
Y direction:

Array firstArray = create(50, 1)

DXL Reference Manual

159

delete(array)

Declaration
voi d del ete(Array a)

Operation

Deletes array a; stored contents are not affected.

get(data from array)

Declaration

type get(Array a,
int x,
int y)

Operation

Returns the data, of any type, stored in array a at position (x, y). You must retrieve the data into a variable of the same type
as used when the data was put into the array. To ensure that this works unambiguously in the way intended, you should use
a cast prefix to the get command.

Arrays are not just for fundamental types like strings and integers. You can store any DXL type in them, for example,
objects, modules, skip lists, and even other arrays.

Example

This example uses a cast prefix to get :

Array a = create(10, 10)

string str

int i

put(a, "a string", 3, 4)

put (a, 1000, 3, 5)

str = (string get(a,3,4)) // cast get as string

print str "\n" /[l prints "a string"
i = (int get(a, 3, 5)) /] cast get as int
print i /1 prints "1000"

This example stores an array in an array:

Array a = create(4,1)

Ooj ect obj = first current Modul e
Modul e nod = current

Skip skp = create

DXL Reference Manual

160

Array arr = create(1,1)
put(a, obj, 0, 0)

put(a, nod, 1, 0)
put (a, skp, 2, 0)
put(a, arr, 3, 0)
put(arr,"l was nested in a!", 0, 0)

hj ect obj Ref
Modul e nodRef
Ski p skpRef
Array arrRef

(Onj ect get(a,0,0))
(Modul e get(a, 1,0))
(Skip get(a, 2,0))
(Array get(a, 3,0))
(string get(arrRef, 0, 0))

print str /[l prints "I was nested in al!"

string str

get(string from array)

Declaration

string get(Array a,
int x,
int vy,

int |en)

Operation

Retrieves | en characters as a string from a starting at position (x,y). This is the matching get command for put St ri ng.

Example

Array a = create(10, 10)
putString(a, "a string", 2, 2)
string sone = get(a, 4, 2, 3)

print some "\n" [l prints "str"

put(data in array)

Declaration

void put(Array a,
type data,
int X,
int y)

DXL Reference Manual

161

Operation

Puts dat a, of any type, into array a at position (X,y). If the new position is outside a’s current bounds, a is resized to
accommodate the new element.

putString
Declaration
void putString(Array a,
string s,
int x,
int y)

Operation

Puts the string s into the array a in such a way that its character contents are placed in X-direction adjacent elements
starting at (x,y). The original, or any other desired string can be rebuilt by using the argument string form of get (a, X,
y, | en).The 3-argument form of get can be used to retrieve individual characters. Attempting to retrieve a character as
a string causes program failure.

printCharArray
Declaration
void printCharArray(Array a,
Stream s,
int x1,
int yi,
int x2,
int y2)
Operation
Sends the section of array a defined by the passed co-ordinates x1,y1 and x2,y 2, to the stream s.
Example
Array a = create(20,5)
int x,y
for yinO: 4 do /1 populate an array with a

for x in 0 : 19 do // block of # characters.
put(a, "#', X, Vy)

Streamout = wite "array.tnmp" // open a stream
printCharArray(a, out, 0, 0, 19, 4) // wite original block
out << "\n"

put String(a, "abc", 3, 1) /1 insert a string

DXL Reference Manual

162

printCharArray(a, out, 0, 0, 19, 4)
/'l view change

out << "\n"

cl ose out

DXL Reference Manual

Chapter 10
Operating system interface

This chapter describes three major packages of functions that allow Rational DOORS to communicate with the host
operating system:

e Operating system commands
« Windows registry
e Interprocess communications

e System clipboard functions

Operating system commands

This section defines functions that interact with the operating system under which Rational DOORS is being run. For a
DXL program to be portable between platforms, care is needed when using these facilities. The functions that use the

St at data type work on the st at API provided by the operating system, which enables DXL programs to determine the
status of files and directories.

platform

Declaration
string platform))

Operation

Returns the name of the current Rational DOORS platform, currently one of:

Solaris Sun
WIN32 All Windows platforms

This function can be used to make programs portable between platforms.

Example

string fil eGoodName_(string root, extpc, extunix) {
if (platform== "WN32")
return currentDirectory "\\"
goodFi | eNane root extpc

DXL Reference Manual

163

164

el se
return (getenv "HOVE"') "/"
goodFi | eNane root extunix

}

The function f i | eGoodNarre_, defined in $DOORSHOME/ | i b/ dxI /utils/ fileops. dxl usespl atfor mto
construct an appropriate file name for the current operating system. Using such functions enables DXL programs to be
useful on all platforms. Literal file names in programs may not be portable. The path / t np/ dxI / myf i | e may work on a
WIN32 platform, but c: \ t enp\ dxI \ nyfi | e cannot work on a UNIX platform.

getenv

Declaration

string getenv(string var)

Operation
Returns the current value of the environment variable var , as set in the operating system. Both Windows and UNIX
platforms support this mechanism.

Note: You should know about your operating system’s environment variables before using this function. If necessary,
consult the operating system documentation.

Example

print getenv("HOVE")

print getenv("DATA")

print getenv(" DOORSHOVE")

print getenv(" DOORSDATA")

The first two examples return the corresponding variable values in the registry.

The second two examples return the corresponding variable values used in a command-line shortcut to start Rational
DOORS, if set. Otherwise, returns the values set in the registry.

hostname

Declaration

string hostname()

Operation

Returns a string, which is the name of the current host system.

DXL Reference Manual

165

fullHostname

Declaration
string full Host nane(voi d)

Operation

Gets the fully qualified hostname of the machine on which the perm is executed.

mkdir

Declaration
voi d nkdir(string dirNane
[,string osParny)
Operation
Creates directory di r Nane.
Optional argument osPar mcan contain information that is dependent on the operating system, such as the UNIX octal
file access mask.
Example
The following example creates a typical UNIX path name, and sets the access rights:
nmkdir ("/usr/devel oprment/ phasel”, "0755")
The following example creates a Windows path, for which there are no access rights:
nkdi r (" C:\\ DOORS\\ DXLExanpl e\\ ", "")

setenv

Declaration

voi d setenv(string var,
string s)

Operation

Sets the registry variable var to s in the registry section
HKEY_CURRENT_USER\ Sof t war e\ Tel el ogi c\ DOORS\ <DOCRS ver si on>\ Conf i g, where <DOCRS
ver si on> is the version number of the current version of Rational DOORS installed.

Before using this function, you should be familiar with your operating system’s registry variables. If necessary, consult your
operating system documentation.

DXL Reference Manual

166

setServerMonitor

Declaration

voi d set Server Moni t or (bool on)

Operation

On Windows platforms only, when on ist r ue, activates the Rational DOORS Server Monitor. This inserts an icon in the
Windows task bar that monitors client server communications.

serverMonitorlsOn

Declaration
bool serverMonitorlsOn()

Operation
On Windows platforms only, returns t r ue if the Rational DOORS Server Monitor is active. Otherwise, returns f al se.

username

Declaration
string username()

Operation

Returns a string that contains the operating system defined user name under which Rational DOORS is being run. This may
not be the same as the Rational DOORS user name returned by door snane, depending on the current project’s setup.

system

Declaration
voi d systen(string conmmand)

Operation

On Windows platforms only, passes the string commrand to the operating system for execution, and continues the current
DXL program. Using pl at f or min conjunction with this function prevents an error message on UNIX platforms.
Example

if (platform=="WN32")
syst em " not epad”

Note that if the command to be executed is a built in DOS command, such as del , you need, for example:

system "c:\\wi ndows\\ comand. exe /c del tenp.txt"

DXL Reference Manual

167

Declaration
voi d system(string comrand,
voi d chil dCB(int)
[,void parentCB()])

Operation
On UNIX platforms only, passes the string command to the operating system for execution.

Unlike the Windows sy st emfunction, these functions terminate the current execution path of the calling DXL program.
One or two callback functions must be provided. In the first form, only a function chi | dCB is needed. This function is
called when the operating system finishes execution of command. In the second form, par ent CB is also provided; this is
called concurrently with the operating system’s processing of comand, enabling the calling DXL program to continue
work while the command is being executed.

Example

void ch(){
print "system command executing\n"

}

void nul I CB(int status){
}
if (platform=="WN 32"){
systen("E \\wi nnt\\syst enB2\\ command. exe")
cb

} el sef
system ("xterni, nullCB, cb)

}

create(status handle)

Declaration
Stat create(Streams)

Stat create(string fil enane)

Operation

Returns a status handle for the stream or file name, which is used in the other St at functions.

delete(status handle)

Declaration
void del ete(Stat s)

Operation
Deletes the handle s.

DXL Reference Manual

168

accessed, modified, changed(date)

Declaration

Dat e accessed(Stat s)
Date nodified(Stat s)
Dat e changed(Stat s)

Operation
Returns the accessed, modified or changed date of the stream or file identified by the handle.

directory, symbolic, regular

Declaration
bool directory(Stat s)
bool synbolic(Stat s)

bool regul ar(Stat s)

Operation

Returns t r ue if the stream or file identified by the handle is a directory, a symbolic link, or a regular file respectively.

Example

Stat s

string filenanme = "/etc"
s = create filenane

if (!'null s & directory s)
ack filenane " is a directory!"

user, size, mode

Declaration

string user(Stat s)
int size(Stat s)
int node(Stat s)
Operation

Returns the user name (PC file on windows), size, or mode of the stream or file identified by the handle.

DXL Reference Manual

169

The following constant integers are used with the i nt node(St at) function as bit-field values (using standard UNIX
st at semantics).

Constant Meaning
S_ISUID set user id on execution
S_ISGID set group id on execution
S_IRWXU read, write, execute permission: owner
S_IRUSR read permission: owner
S_IWUSR write permission: owner
S_IXUSR execute/search permission: owner
S_IRWXG read, write, execute permission: group
S_IRGRP read permission: group
S_IWGRP write permission: group
S_IXGRP execute/search permission: group
S_IRWXO read, write, execute permission: other
S _IROTH read permission: other
S_IWOTH write permission: other
S_IXOTH execute/search

Example

The following example shows how to emulate the formatting of part of the UNIX command |'s -1I.
string filename = "/etc"
Stat s = create filenane

if ('null s) {
int nodes = node s

print (nbdes&S ISUD =0 ? "'s" : '-")
print (nodes&S IRUSRI=0 ? 'r' -1)
print (nmodes&S |WSR =0 ? 'wW -1)
print (nmodes&S | XUSRI =0 ? ' x' -1)
print (nobdes&S IRGRP!I=0 ? 'r' : '-")
print (nmodes&S | WERP!I=0 ? 'W -1)
print (nmodes&S | XGRP!'=0 ? 'x' : '-")

DXL Reference Manual

170

print (nmodes&S IROTH =0 ? 'r' : '-")
print (nodes&S IWOTH =0 ? 'wW : '-")
print (nodes&S | XOTH =0 ? 'x' : '-")

print "\t" fil enane

Status handle functions example

This exanple is taken from $DOORSHOVE/ | i b/ dxI/utils/fileops.dxl.

bool fileExists (string filenane) {
Stat s

s = create fil enane

if (null s) return false
delete s

return true

}

It is used by several of the DXL Library tools to determine whether a file exists.

Windows registry

getRegistry

Declaration
string getRegistry(string keyNane,
string val ueNane)
Operation
Returns a string representation of the named value of the specified Windows registry key.
The keyNane argument must be a fully specified registry key, beginning with any one of the following:
HKEY_ CURRENT USER
HKEY_LOCAL_MACHI NE
HKEY CLASSES_ROOT
HKEY USERS

If val ueNare is null, returns the default value for the key. If the key does not exist, the value does not exist, or the
operating system is not a Windows platform, returns nul | .

DXL Reference Manual

171

Example

string s = "HKEY_CURRENT_USER\ \ SOFTWARE\ \ M cr osof t
Ofice\\9.3\\ Conmon\\ Local Tenpl at es"

print getRegistry(s, null) "\n"
string s = "HKEY_CURRENT_USER\\ SOFTWARE\ \ M crosoft O fi ce\\ 95\ \ WORD\ \ OPTI ONS*
print getRegistry(s, "DOC PATH') "\n"

setRegistry

Declaration

string setRegistry(string keyNane,
string val ueNane,
{string|int} val ue)

Operation

Sets the named value of the specified registry key to have the value supplied and the appropriate registry type, as follows:

Type of value Registry type

string val ue REG SZ

i nteger val ue REG_DWORD

The key is created if one does not already exist. If val ueNarre is null, the default key value is set.

The keyNane argument must be a fully specified registry key, beginning with any one of the following:
HKEY_ CURRENT _USER

HKEY_LOCAL_MACHI NE

HKEY_CLASSES_ROOT

HKEY USERS

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

string s = "HKEY_CURRENT_USER\\ SOFTWARE\ \ XYZ I nc.\\ The Product\\ Verification"
/1 Set default value of key

string errMess = setRegistry(s, null, "Default string val ue")

/1 Set named string val ue

errMess = setRegistry(s, "Configuration Paraneter”, "Is enabled")

/1 Set named integer val ue

DXL Reference Manual

172

checkStringReturn setRegistry(s, "Usage count", 1234)

deleteKeyRegistry

Declaration

string del et eKeyRegi stry(string keyNane)

Operation

Deletes the named key from the registry, therefore extreme caution should be used.

The keyNane argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT _USER

HKEY_LOCAL_MACHI NE

HKEY_CLASSES_ROOT

HKEY USERS

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns nul | .

Example

/1 Cdear up keys created

string errMess = del et eKeyRegi stry "HKEY_CURRENT_USER\\ -
SOFTWARE\\ XYZ I nc.\\ The Product\\Verification"

errMess = del et eKeyRegi stry "HKEY_CURRENT_USER\\ SOFTWARE\ \ XYZ | nc.\\ The
Product "

errMess = del et eKeyRegi stry "HKEY_CURRENT_USER\ \ SOFTWARE\\ XYZ I nc."

deleteValueRegistry

Declaration

string del et eVal ueRegi stry(string keyNane,
string val ueNane)

Operation

Deletes the named value from the specified registry key. If val ueNarre is null, deletes the default value for the key.

Note: Use caution when calling this function.

The keyNane argument must be a fully specified registry key, beginning with any one of the following:
HKEY_CURRENT _USER

HKEY _LOCAL_NMACHI NE

DXL Reference Manual

173

HKEY_CLASSES ROOT
HKEY _USERS
This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns nul | .

Example

string s = "HKEY_CURRENT_USER\\ SOFTWARE\\ XYZ I nc.\\ -
The Product\\Verification"

/'l Del ete named val ue

string errMess = del et eVal ueRegi stry(s, "Usage count")

/| Delete default val ue

err Mess = del et eVal ueRegi stry(s, null)

Interprocess communications

There are two forms of interprocess communications (IPC):

e The first uses TCP/IP. It can be used with the UNIX and Windows operating systems on all supported platforms.
e The second uses sockets, where a file is used to pass messages. It works only on UNIX platforms.

For examples of how to use DXL IPC functions, see the Rational DOORS APl Manual.

Windows programs can also use OLE Automation functions to communicate with other programs.

ipcHostname

Declaration
string ipcHost nane(string i pAddress)

Operation
Resolves the IP address i pAddr ess to its host name.

Example
This example prints | ocal host in the DXL Interaction window’s output pane.
print ipcHostname("127.0.0.1")

DXL Reference Manual

174

server

Declaration
| PC server(string socket)

| PC server(int port)

Operation
The first form establishes a server connection to the UNIX socket socket .

The second form establishes a server connection to the port number por t on all platforms. In the case that supplied port
number is 0, an ephemeral port number is allocated by the operating system. To fetch this ephemeral port number, use

get Por t () on the resulting IPC.

getPort

Declaration
int getPort(IPC channel)

Operation

Fetches the port associated with the specified IPC. Useful when the IPC is allocated an ephemeral port by the operating
system (see | PC server (int)).

Declaration
IPC client(string socket)
IPCclient(int ip,
string host)
Operation
The first form establishes a client connection to the UNIX socket socket .

The second form establishes a client connection to the IP address i p at host on all platforms.

accept

Declaration
bool accept (I PC

Operation
Waits for a client connection at the server end of the connection.

DXL Reference Manual

175

send

Declaration

bool send(IPC chan,
string nmessage)

Operation

Sends the string message down IPC channel chan.

recv
Declaration
bool recv(IPC chan,
{string|Buffer} &response
[,int tnt])
Operation
Waits for a message to arrive in channel chan and assigns it to string or buffer variable r esponse.
The optional third argument defines a time-out, t mt seconds, for a message to arrive in channel chan. If t nt is zero,
these functions wait forever. They only work if the caller is connected to the channel as a client or a server.
disconnect

Declaration

voi d di sconnect (1 PC chan)

Operation
Disconnects channel chan.

delete(IPC channel)

Declaration
voi d del ete(l PC chan)

Operation
Deletes channel chan (can be a server or a client).

DXL Reference Manual

176 ‘

System clipboard functions

copyToClipboard

Declaration
bool copyTod i pboard(string s)

Operation

Copies a plain text string (not RTF) to the clipboard. On success, returnst r ue.

setRichClip

Declaration
void setRichCip(RTF_string__ s, string styleName, string fontTable)
void setRi chCip(Buffer buff, string styleNane, string fontTable)

void setRichdip(RTF_string__ s, string styleNane, string fontTable, bool
keepBul | ets, bool keepl ndents)

void setRichdip(Buffer buff, string styleName, string fontTable, bool
keepBul | et s, bool keepl ndents)
Operation

First form sets the system clipboard with the rich text obtained by applying the style st yl eNanre to the string s, using the
font table f ont Tabl e supplied, which should include a default font. Font numbers in the string s will be translated to the
supplied font table f ont Tabl e.

Second form is same as the first but the source is a buffer buf f rather than an RTF_string__.

Third form sets the system clipboard with the rich text obtained by applying the style st ylI eNane to the string s, using
the font table f ont Tabl e supplied. If keepBul | et s is f al se, any bullet characters are removed from string s. If
keepl ndent s is f al se, any indentation is removed from string s. If keepBul | et s and keepl ndent s are both
t r ue, the behavior is exactly the same as the first form.

Fourth form is same as the third but the source is a buffer buf f rather than an RTF_string__.

Example 1

The following code:

string s = "hell 0"

string fontTable = "\\deffO{\\fonttbl {\\f1 Tines New Roman;}}"
setRichdip(richText s, "Normal", fontTable)

puts the following rich text string onto the system clipboard:

DXL Reference Manual

177

{\rtfl \deffO{\fonttbl {\f1 Tinmes New Roman;}}{\styl esheet {\s1 Nornal;}}{\sl
hel | o\ par}}

Example 2

string bulletedString =
"{\\rtfl\\ansi\\ansi cpgl252\\ def f O\ \ def | ang1033{\\fontthbl {\\fO\\fsw ss\\fcharse
t0 Arial;}{\\fI\\fnil\\fcharset2 Synbol ;}}

\\vi ewki nd4\\ucl\\ pard\\fO\\fs20 Some text w th\\par

\\pard{\\pntext\\f2\\"' B7\\ tab} {*\\ pn\\ pnl vl bl t\\ pnf 1\ \ pni ndent O{\ \ pnt xt b\ \' B7
FINAEi-720\\ 10 720 bull et 1\\par

{\\pntext\\f21\\' B7\\tab}bul |l et 2\\ par
\\pard bullet points in it.\\par

\\ par

pr

string fontTable = "\\deffO{\\fonttbl {\\fO\\fswi ss\\fcharsetO
Arial;}{\\f1\\fnil\\fcharset2 Synbol;}}"

setRichdip(richText bulletedString, "Normal", fontTable)

/1 the previous call puts

["{\rtf1 \deffo{\fonttbl {\fO\fsw ss\fcharsetO Arial;}{\f1\fnil\fcharset2
Synbol ; }}{\styl esheet {\sl1 Normal;}}{\sl Sone text with\par {\f1\'b7\tab}bull et
I\par {\f1\'b7\tab}bullet 2\par bullet points in it.\par \par}}"

/1 on the clipboard

setRichdip(richText bulletedString, "Normal", fontTable, false, false)

/1 the previous call puts

I "{\rtf1 \deffo{\fonttbl {\fO\fsw ss\fcharsetO Arial;}{\f1\fnil\fcharset2
Synbol ; }}{\styl esheet {\sl1 Normal;}}{\sl Sone text with\par bullet 1\par bullet
2\par bullet points in it.\par \par}}"

/1 on the clipboard -- note no bullet synbols (\'b7) in the markup

DXL Reference Manual

178

DXL Reference Manual

179

Chapter 11

Customizing Rational DOORS

This chapter explains how you can customize Rational DOORS:

.

Color schemes

Database Explorer options
Locales

Codepages

Message of the day

Database Properties

Color schemes

This section defines constants and functions for setting the Rational DOORS color scheme.

Display Color Schemes

The following constants are defined as database display schemes for use with the functions below:
or i gi nal DOORSCol o[u] r Schene

noder nDOORSCol of u] r Schene

hi ghCont r ast OneCol o[u] r Schene

hi ghCont r ast TwoCol o[u] r Schemne

hi ghCont r ast Bl ackCol o[u] r Schene

hi ghCont r ast Wi t eCol o[u] r Schene

getDefaultColorScheme

Declaration
i nt get Def aul t Col o[u] r Scheme()

Operation

Returns the default color scheme used by the Database Explorer The possible values for col or Schene are listed above.

DXL Reference Manual

180

setDefaultColorScheme

Declaration
voi d set Def aul t Col o[u] r Schene(i nt col or Schene)

Operation

Sets the default color scheme used by the Database Explorer. Schemes can be created and modified using the Display tab
in the Options dialog box (from the Tools > Options menu in the Database Explorer. The possible values for

col or Schene are listed above:

optionsExist

Declaration
bool optionsExist(string scheneNane)

Operation
Returns t r ue if a color scheme exists under schemeNamne; otherwise, returns f al se.

resetColors

Declaration

voi d reset Col ors([int col or Schene])

Operation
If no argument is supplied, resets to the default color scheme otherwise resets to col or Scheme, which can any of the
values listed above.

resetColor

Declaration
voi d reset Col or (i nt col orl ndex

[,int col or Schemne])
Operation

Resets the color specified by col or | ndex to the default, or if the second argument is supplied, to col or Scherre,
which can be any of the values listed above.

DXL Reference Manual

181

Database Explorer options

This section defines constants and functions for customizing the Database Explorer.

Font constants

Declaration
i nt Headi ngsFont
int TextFont

i nt G aphi csFont

Operation
These constants define the font in the get Font Set t i ngs and set Font Set t i ngs functions.

getFontSettings

Declaration

voi d get Font Settings(int |evel,
i nt usedln,
int &size,
int & amly,
bool &bol d,

bool &italic)
Operation

Passes back settings for the font usedI n for objects at heading level | evel . The value of usedl n can be
Headi ngFont, Text Font, or Gr aphi csFont . The last four arguments pass back the point size, font family,
whether the font is bold, and whether the font is italic.

setFontSettings
Declaration
voi d set Font Settings(int |evel,
i nt usedln,
int size,
int famly,
bool bol d,

bool italic)

DXL Reference Manual

182

Operation

Sets the point size, font family, whether the font is bold, and whether the font is italic for the font usedI n for objects at
heading level | evel . The value of usedl| n can be Headi ngFont , Text Font , or G aphi csFont .

refreshExplorer

Declaration
voi d refreshExpl orer(Mdule m

Operation
Refreshes the Database Explorer window for module m

synchExplorer

Declaration
voi d synchExpl orer (Mdule m

Operation
Refreshes the Rational DOORS Module Explorer window to reflect changes to the current object selected in the module
display.

refreshDBExplorer

Declaration
voi d refreshDBExpl orer()

Operation

Refreshes the Database Explorer window to reflect changes to the current folder or the display state. If the current
folder/project is changed using DXL, this perm will not change the currently open item to reflect this. This is used to only
refresh the contents of the currently selected item.

setShowFormalModules, setShowDescriptiveModules, setShowLinkModules

Declaration
voi d set ShowFor nmal Mbdul es(bool expressi on)
voi d set ShowDescri pti veModul es(bool expression)

voi d set ShowLi nkModul es(bool expression)

DXL Reference Manual

183

Operation

Shows formal, descriptive, or link modules in the Database Explorer if expr essi on ist r ue. Hides formal, descriptive,
or link modules if expr essi onis f al se.

showFormalModules, showDescriptiveModules, showLinkModules(get)

Declaration

bool showFor mal Modul es()

bool showDescri pti veMdul es()
bool showLi nkMbdul es()

Operation
Returns t r ue if the Database Explorer is set to show formal, descriptive, or link modules; otherwise returns f al se.

getSelectedItem

Declaration
Item get Sel ectedl tem()

Operation
Return the item currently selected in the Database Explorer.

Locales

getDateFormat

Declaration
string getDat eFormat ([Locale |],[bool isShortFormat])

Operation

When called with no arguments, this returns the current default short date format. This may be selected for the current user
locale, using the Windows Control Panel. If the boolean argument is supplied and is f al se, the default long date format is
returned.

DXL Reference Manual

184

Locale type

Operation
This type represents any valid user locale value. It can take any of the values supported by the client system.

The perms that take a Locale argument will all return a DXL run-time error if they are supplied with a null value.

for Locale in installedLocales

Declaration

for Locale in installedLocal es

Operation
This iterator returns all the Locale values installed on the client system.

Example
Local e | oc

for loc in installedLocal es do

{

print id(loc) ": " nane(loc) "\n

for Locale in supportedLocales

Declaration

for Locale in supportedLocal es

Operation
This iterator returns all the Locale values supported on the client system.

userLocale

Declaration

Local e userLocal e()

Operation

This returns the current user locale on the client system.

DXL Reference Manual

name

Declaration

string nane(Locale |)

Operation

This returns the name (in the current desktop language) of the specified Locale.

language

Declaration
string | anguage(Locale |)

Operation

This returns the English name of the Locale language.

region

Declaration
string region(Locale |)

Operation

This returns the English name of the country/region of the Locale.

id

Declaration

int id(Locale I)

Operation

This returns the integer identifier value for the Locale. This is a constant for any given Locale.
locale

Declaration

Local e locale(int i)

DXL Reference Manual

185

186

Operation

This returns the Locale for the specified identifier value. It returns null if the integer value is not a valid supported locale
identifier.

installed

Declaration

bool installed(Locale I)

Operation
This returns t r ue if the Locale is installed on the client machine. Otherwise it returns f al se.

attributeValue

Declaration
bool attributeValue(AttrDef attr, string s[, bool bl])

Operation

Tests whether the supplied string represents a valid value for the specified attribute definition. If the third argument is
supplied and set to t r ue, the function will return t r ue if the attribute base type is date and the string is a valid date string
for the user’s current Locale setting.

locale

Declaration
AttrDef.local e()

Operation
Use to access the locale of the specified At t r Def . It returns null if there is no locale specified by the attribute definition.

Example
AttrDef ad = find(current Mdule, "Object Text")
Locale |loc = ad.local e

print "Object Text locale is " name(loc) "\n"setlLocal e

getLegacylocale

Declaration
Local e get LegacylLocal e(voi d)

DXL Reference Manual

187

Operation

Returns the legacy data locale setting for the database. This determines the locale settings that are used to display legacy
attribute data. If none is set, this returns null, and legacy attribute values are displayed according to the settings for the
current user locale.

setLegacyLocale

Declaration

string setlLegacylLocal e(Locale |)

Operation

This enables users with Manage Database privilege to set the Legacy data locale for the database (as explained above).
set LegacyLocal e(nul |) removes the Legacy data locale setting for the database. Returns null on success, and an
error string on failure, including when it is called by a user without Manage Database privilege.

Single line spacing constant

Declaration
int single

Operation
This constant is used to specify single line spacing.

Line spacing constant for 1.5 lines

Declaration

int onePointFive

Operation
This constant is used to specify 1.5 lines line spacing.

setLineSpacing

Declaration
voi d setLineSpaci ng(int |ineSpacing)

Operation

Sets line spacing for the current locale.

Example
set Li neSpaci ng(si ngl e)

DXL Reference Manual

188

getLineSpacing

Declaration
i nt getLineSpacing()

Operation

Retrieves the line spacing for the current locale.

Example
if (getlLineSpacing() == onePointFive)
{
print "Line spacing is set to One and a half lines.\n"
}

setLineSpacing

Declaration

voi d setLi neSpaci ng(Local e | ocal e, int |ineSpacing)

Operation

Sets line spacing for the desired locale.

getLineSpacing

Declaration

i nt getLineSpacing(Local e |ocale)

Operation

Retrieves the line spacing for the desired locale.

getDefaultLineSpacing

Declaration
i nt get Def aul t Li neSpaci ng(voi d)

Operation

Returns the default line spacing for the user’s current locale. For example, it will return si ngl e when the line spacing is
European, onePoi nt Fi ve when the line spacing is Japanese, Chinese, or Korean, and so on.

DXL Reference Manual

189

getFontSettings

Declaration

voi d get FontSettings(int level, int usedln, int &size, string & anily, bool
&bol d, bool & talic, Locale |ocale)

Operation

Gets the current user’s font-related display options for the locale provided. The usedl n parameter can be one of the
following constants: Headi ngsFont , Text Font or G- aphi csFont .

Example

int pointSize

string fontFanmily

bool bold, italic

get Font Settings(2, TextFont, pointSize, fontFamly, bold, italic, userlLocale)

print fontFamly ", " pointSize ", " bold ", " italic "\n"
setFontSettings
Declaration
voi d setFont Settings(int level, int usedln, int size, string fam |y, bool bold,

bool italics, Locale |ocale)

Operation

Sets the current user’s font-related display options for the locale provided.

for string in availableFonts do

Declaration
for string in avail abl eFonts do {}

Operation
Iterator over the specified avai | abl eFont s.

Example
string fontNane

for fontName in avail abl eFonts do {

DXL Reference Manual

190

Provides access to the names of each of the available fonts.

Codepages

Constants

Constants for codepages

The following constants denote codepages:

e constint CP_LATIN1 // ANSI Latin-1

e constint CP_UTF8 // Unicode UTF-8 encoding

e constint CP_UNICODE // UTF-16 little-endian encoding (= CP_UTF16_LE)
e constint CP_UTF16_LE // UTF-16 little-endian encoding
e constint CP_UTF16_BE // UTF-16 big-endian encoding
e constint CP_JAP // Japanese (Shift-JIS)

e constint CP_CHS // Simplified Chinese (GB2312)

e constint CP_KOR // Korean (KSC 5601)

e constint CP_CHT // Traditional Chinese (Big 5)

for int in installedCodepages

Declaration

for int in install edCodepages do

Operation
This iterator returns the values of all the codepages installed in the client system.

for int in supportedCodepages

Declaration
for int in supportedCodepages do

Operation

This iterator returns the values of all codepages supported by the client system. Some of these may not be currently
installed.

DXL Reference Manual

191

currentANSIcodepage

Declaration
i nt current ANSI codepage()

Operation

Returns the current default ANSI codepage for the client system. For example, in Western Europe and North America this
will typically return 1252, equivalent to ANSI Latin-1.

codepageName

Declaration
string codepageNane(int codepage)
Operation

This returns the name of the specified codepage. Note that this returns an empty string for any codepage that is not installed
on the system.

read

Declaration

Streamread(string fil enane, int codepage)

Operation

Opens a stream onto the specified filename; content of file decoded from the specified codepage.

write

Declaration

Streamwite(string fil enane, int codepage)

Operation

Opens a stream onto the specified filename; content of file encoded to the specified codepage.

append

Declaration
Stream append(string filenane, int codepage)

DXL Reference Manual

192

Operation
Opens a stream for append onto the specified filename; content of file encoded to the specified codepage.

readFile

Declaration

string readFile(string filename, int codepage)

Operation

Reads string from specified file; content is decoded from the specified codepage.

Note: The Files function also has a readFile operator. For information about Files and readFile, see “readFile,” on page
122.

isValidChar

Declaration
bool isValidChar(char c, int codepage)

Operation
Returns t r ue only if the supplied character can be represented in the specified codepage.

convertToCodepage

Declaration
{string|Buffer} convertToCodepage(int codepage, {string|Buffer& utf8string)

Operation
Returns a version of the supplied string or buffer, encoded according to the specified codepage. The supplied string is
assumed to be encoded in UTF-8 (the default encoding for all Rational DOORS strings).

Note: Only UTF-8 strings will print and display correctly in Rational DOORS V8.0 and higher. This perm is intended for
use in exporting string data for use in other applications.

Example
string latinlstr = covert ToCodepage(CP_LATI N1, “fir Elise")

convertFromCodepage

Declaration
{string|Buffer} convertFronCodepage(int codepage, {string|Buffer& cpString)

DXL Reference Manual

193

Operation

Converts a string or buffer from the specified codepage to the Rational DOORS default UTF-8 encoding. Once a
non-UTF-8 string is converted to UTF-8, it can be displayed and printed by Rational DOORS, including 8-bit (non-ASCII)
characters.

Example

int port=5093

int iTimeCQut=10

I PC i pcServer Conn=server (port)

string inputStr

if (!'accept(ipcServerConn))

{
print "No connection\n";
}
el se while (recv (ipcServerConn, inputStr, iTinmeQut))
{
i nput Str = convert Fr onCodepage(current ANSI codepage(), inputStr)
print inputStr "\n";
}

Message of the day

setMessageOfTheDay

Declaration
string set MessageX TheDay(string nmessage)

Operation

This is used to set the message of the text in the database. Returns null if successful, returns an error if the user does not
have the manage database privilege.

setMessageOfTheDayOption

Declaration
string set MessageX™ TheDayOpti on(bool setting)

DXL Reference Manual

194

Operation

Used to turn the message of the day on or off . Returns an error if the user does not have the manage database privilege,
otherwise returns null.

getMessageOfTheDay

Declaration
string get MessageO TheDay/()

Operation

Returns the message of the day if one is set, otherwise returns null.

getMessageOfTheDayOption

Declaration
bool get MessageO TheDayOpti on()

Operation
Used to determine whether the message of the day is enabled. Returns true if it is enabled, otherwise returns false.

Example
string sl1, s2, nmessage

nmessage = "Hello and wel come to DOORS!"

if (getMessageO TheDayOption()){
print "Current nessage of the day is : " (getMessageO TheDay())
} else {
print "No nessage of the day is set, setting nmessage and turning on."
sl = set MessageO TheDay(nessage)
if (!'null s1){
print "There was an error setting the nmessage of the day : " sl
} else {
s2 = set MessageOf TheDayOpti on(true)
if (!'null s2){
print "There was an error turning on the nessage of the day :" s2

DXL Reference Manual

195

Database Properties

setLoginFailureText

Declaration

string setlLoginFailureText(string nsg)

Operation

Sets the string as the pretext for login failure Emails sent through Rational DOORS. Returns null on success or failure error
message.

getLoginFailureText

Declaration
string getLogi nFail ureText (voi d)

Operation
Gets the string used for login failure Emails sent through Rational DOORS.

setDatabaseMailPrefixText

Declaration
string setDatabaseMil Prefi xText (string nmsg)

Operation
Sets the string as the pretext for Emails sent through Rational DOORS. Returns null on success or failure error message.

getDatabaseMailPrefixText

Declaration
string get Dat abaseMi |l Prefi xText (voi d)

Operation
Gets the string used in Emails sent through Rational DOORS.

DXL Reference Manual

196

setEditDXLControlled

Declaration
string set Edit DXLControl | ed(bool)

Operation
Activates or de-activates the database wide setting determining whether the ability to edit DXL will be controlled. Returns
null on success, or an error on failure.

getEditDXLControlled

Declaration
bool get Edi t DXLContr ol | ed(voi d)

Operation
Used to determine if the ability to edit DXL is controlled in the database. Returns t r ue if the ability to edit DXL can be
denied.

DXL Reference Manual

Chapter 12
Rational DOORS database access

This chapter covers:

e Database properties

« Group and user manipulation
* Group and user management
« LDAP

« LDAP Configuration

* LDAP server information

« LDAP data configuration

< Rational Directory Server

Database properties

This section defines functions for Rational DOORS database properties. DXL defines the data type Logi nPol i cy,

which can take either of the following values:
vi aDOORSLogi n
vi aSyst enlogin

These values control how users log in to Rational DOORS, using the Rational DOORS user name or the system login

name.

getDatabaseName

Declaration
string get Dat abaseNane()

Operation
Returns the name of the Rational DOORS database.

setDatabaseName

Declaration
bool set Dat abaseNanme(string newNane)

DXL Reference Manual

197

198

Operation

Sets the name of the Rational DOORS database to newNane. If the operation succeeds, it returns t r ue; otherwise, it
returns f al se. The operation fails if the name contains any prohibited characters.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns false.

getAccountsDisabled

Declaration
bool get Account sDi sabl ed()

Operation
If standard and custom user accounts for the current database are disabled, returns t r ue; otherwise, returns f al se.

Example

if (getAccountsDi sabled()) {
print "Only those with May Manage Power can
log in"

setAccountsDisabled

Declaration

voi d set Account sDi sabl ed(bool di sabl ed)

Operation
Disables or enables standard and custom user accounts for the current database, depending on the value of di sabl ed.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.
Note: AsaveDirectory() command must be used for this to take effect.

Example
This example disables all standard and custom user accounts:
set Account sDi sabl ed(fal se)

saveDirectory()

getDatabaseldentifier

Declaration
string getDatabaseldentifier()

DXL Reference Manual

199

Operation
Returns the unique database identifier generated by Rational DOORS during database creation.

getDatabasePasswordRequired

Declaration
bool get Dat abasePasswor dRequi red()

Operation
Returns t r ue if passwords are required for the current Rational DOORS database; otherwise, returns f al se.

setDatabasePasswordRequired

Declaration
voi d set Dat abasePasswor dRequi r ed(bool required)

Operation
Sets passwords required or not required for the current database, depending on the value of r equi r ed.

This perm only operates if the current user is the Administrator, otherwise an error message is displayed.

getReconfirmPasswordRequired

Declaration
bool get Reconfi r mPasswor dRequi red()

Operation
Returns t r ue if a reconfirmation password is required after a specified timeout period; otherwise, returns f al se.

setReconfirmPasswordRequired

Declaration
voi d set ReconfirnPasswor dRequi red(bool required)

Operation
Sets whether a reconfirmation password is required after a specified timeout period, depending on the value of r equi r ed.

This perm only operates if the current user has the Manage Database privilege.

DXL Reference Manual

200

getReconfirmPasswordTimeout

Declaration

i nt get ReconfirnmPasswordTi meout ()

Operation
Returns the timeout period (in minutes) before the reconfirmation password dialog appears.

setReconfirmPasswordTimeout

Declaration
voi d set ReconfirnPasswor dTi neout (i nt tinmeout)

Operation
Sets the timeout period to t i meout minutes before the reconfirmation password dialog appears.

This perm only operates if the current user has the Manage Database privilege.

getRequireLettersinPassword

Declaration
bool get RequirelLetterslnPassword()

Operation
Returns t r ue if a password is required to contain at least one alphabetic character; otherwise, returns f al se.

setRequireLettersinPassword

Declaration
string set RequirelLettersl nPassword(bool required)

Operation
If r equi r ed is true, then a password is required to contain at least one alphabetic character.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireNumberinPassword

Declaration
bool get Requi r eNunber | nPasswor d()

DXL Reference Manual

201

Operation
Returns t r ue if a password is required to contain at least one number; otherwise, returns f al se.

setRequireNumberinPassword

Declaration
string set Requi reNunber | nPasswor d(bool requi red)

Operation
If required is t r ue, a password is required to contain at least one number.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getRequireSymbollnPassword

Declaration
bool get Requi reSynbol | nPasswor d()

Operation
Returns t r ue if a password is required to contain at least one non-alphanumeric character; otherwise, returns f al se.

setRequireSymbolinPassword

Declaration
string set Requi reSynbol | nPasswor d(bool requi red)

Operation
If required is t r ue, a password is required to contain at least one non-alphanumeric character.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getDatabaseMinimumPasswordLength

Declaration
i nt get Dat abaseM ni nunPasswor dLengt h()

Operation
Returns the minimum number of characters required for a password on the current database.

DXL Reference Manual

202

setDatabaseMinimumPasswordLength

Declaration
voi d set Dat abaseM ni mumPasswor dLengt h(i nt | engt h)

Operation

Sets the length of password required for the current database to | engt h characters. The value can be any non-negative
integer.

This perm only operates if the current user has the Manage Database privilege.

getMinPasswordGeneration

Declaration

int getM nPasswordGeneration()

Operation
Returns the minimum number of password generations before a password can be reused.

setMinPasswordGeneration

Declaration

string set M nPasswor dGeneration(int num

Operation

Sets the minimum number of password generations before a password can be reused to num The minimum number
cannot exceed the in-built maximum limit of 12 generations before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordGenerationLimit

Declaration
i nt get MaxPasswor dGener ati onLimt ()

Operation

Returns the in-built maximum limit of password generations before a password can be reused. This maximum limit is set to
12.

DXL Reference Manual

getMinPasswordAgelnDays

Declaration
int getM nPasswor dAgel nDays()

Operation
Returns the minimum number of days before a password can be reused.

setMinPasswordAgelnDays

Declaration
string set M nPasswor dAgel nDays(i nt days)

Operation

Sets the minimum number of days before a password can be reused to days. The minimum number cannot exceed the
in-built maximum limit of 180 days before a password can be reused.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is returned.

getMaxPasswordAgeLimit

Declaration
i nt get MaxPasswor dAgeLimt ()

Operation
Returns the in-built maximum limit of days before a password can be reused. This maximum limit is set to 180 days.

getDatabaseMailServer

Declaration
string get Dat abaseMi | Server (voi d)

Operation
Returns as a string the name of the SMTP mail server for Rational DOORS.

setDatabaseMailServer

203

Declaration
voi d set Dat abaseMai | Server (string server Nane)

DXL Reference Manual

204

Operation
Sets the mail server for the current database to ser ver Nane.

This perm only operates if the current user has the Manage Database privilege.

getDatabaseMailServerAccount

Declaration
string get Dat abaseMi | Server Account (voi d)

Operation
Returns as a string the name of the mail account that appears to originate messages from Rational DOORS.

setDatabaseMailServerAccount

Declaration
voi d set Dat abaseMai | Ser ver Account (string account Nane)

Operation
Sets to account Nane the mail account that appears to originate messages from Rational DOORS.

This perm only operates if the current user has the Manage Database privilege.

getLoginPolicy

Declaration
Logi nPol i cy get Logi nPolicy()

Operation

Returns the login policy (either vi aDOORSLogi n orvi aSyst ermLogi n) for the current database. These values control
how users log in to Rational DOORS, using the Rational DOORS name or the system login name.

setLoginPolicy

Declaration
voi d set Logi nPol i cy(Logi nPolicy policy)

Operation

Sets the login policy for the current database to pol i cy, which can be either vi aDOORSLogi n or

vi aSyst enlogi n.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.

DXL Reference Manual

205

getDisableLoginThreshold

Declaration
i nt getDi sabl eLogi nThreshol d()

Operation

Returns the number of times a user account tolerates a failed login. If the number of login failures to any single account
exceeds this value, Rational DOORS disables that account. Nobody can use a disabled account.

If the return value is zero, there is no limit. See also the get Fai | edLogi nThr eshol d function.

setDisableLoginThreshold

Declaration
voi d set Di sabl eLogi nThreshol d(int attenpts)

Operation

Sets the number of times a user account tolerates a failed login. If the number of login failures to any single account exceeds
this value, Rational DOORS disables that account. Nobody can use a disabled account.

If at t enpt s is zero, there is no limit. See also the set Fai | edLogi nThr eshol d function.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.

getFailedLoginThreshold

Declaration
i nt getFail edLogi nThreshol d()

Operation

Returns the number of times Rational DOORS tolerates a login failure. If this threshold is exceeded, Rational DOORS
closes.

If the return value is zero, there is no limit. See also the set Di sabl eLogi nThr eshol d function.

setFailedLoginThreshold

Declaration
voi d set Fai |l edLogi nThreshol d(int attenpts)

Operation
Sets the number of times Rational DOORS tolerates a login failure. If this threshold is exceeded, Rational DOORS closes.

If at t enpt s is zero, there is no limit. See also the set Di sabl eLogi nThr eshol d function.

DXL Reference Manual

206

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.

getLoginLoggingPolicy

Declaration
bool getLogi nLoggi ngPol i cy(bool type)

Operation

If Rational DOORS is keeping track of logins of the specified type, returns t r ue; otherwise, returns f al se. If type is
t r ue, returns the policy for successful logins; otherwise, returns the policy for login failures.

To set the logging policy, use the set Logi nLoggi ngPol i cy function.

Example
This example indicates whether Rational DOORS is keeping track of login failures.

get Logi nLoggi ngPol i cy(fal se)

setLoginLoggingPolicy

Declaration

voi d set Logi nLoggi ngPol i cy(bool type,
bool status)

Operation

Sets the logging policy for login events of the specified type. If st at us ist r ue, logging of the specified type is enabled;
otherwise, it is disabled. If t ype ist r ue, sets the policy for successful logins; otherwise, sets the policy for login failures.

To find out the current logging policy, use the get Logi nLoggi ngPol i cy function.
Example

This example causes Rational DOORS not to log successful logins.

set Logi nLoggi ngPol i cy(true, false)

setMinClientVersion

Declaration
string setMnCientVersion(string s)

Operation

Sets the minimum client version that can connect to the current database. The string argument must be of the format n. n,
n. n. norn.n. n. n,where each n is a decimal integer. The integer values represent Major version, Minor version, Service
Release and Patch number respectively. The Service Release and Patch numbers are optional, and default to zero.

DXL Reference Manual

207

This perm only operates if the current user has the Manage Database privilege, otherwise it returns an appropriate error
string. It also returns an error string if the string argument is not of the correct format, or represents a client version higher
than the current client.

getMinClientVersion

Declaration
string getM nCient Version(void)

Operation

Returns a string representing the minimum client version that can connect to the current database, in the format n. n,
n. n.norn.n.n.n. Theformatis explained inset M nCl i ent Ver si on. If no minimum client version has been set
for the database, this perm returns a NULL string.

setMaxClientVersion

Declaration
string set MaxClientVersion(string s)

Operation

Sets the maximum client version that can connect to the current database. The string argument must be of the format n. n,
n. n. norn. n. n. n,where each n is a decimal integer. The integer values represent Major version, Minor version, Service
Release and Patch number respectively. The Service Release and Patch numbers are optional.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns an appropriate error
string. It also returns an error string if the string argument is not of the correct format, or represents a client version lower

than the current client.

getMaxClientVersion

Declaration
string get MaxC i ent Ver si on(voi d)

Operation

Returns a string representing the maximum client version that can connect to the current database, in the format n. n,
n. n.norn.n.n.n. Theformatis explained inset M nCl i ent Ver si on. If no minimum client version has been set
for the database, this perm returns a null string.

doorsinfo

Declaration

string doorsinfo(int i)

DXL Reference Manual

208

Operation
A new valid value for the integer argument is defined (i nf oSer ver Ver si on).

This returns the version of the database server to which the client is currently connected.

Example
string serverVersion = doorslnfo(infoServerVersion)

print "database server version is serverVersion "\n

addNotifyUser

Declaration
voi d addNoti fyUser (User user)

Operation

Adds user to the list of users to be notified by e-mail of attempts to log in. If user does not have an e-mail address, no
notification takes place.

deleteNotifyUser

Declaration
voi d del eteNoti fyUser(User user)

Operation

Deletes user from the list of users to be notified by e-mail of attempts to log in.

createPasswordDialog

Declaration
string createPasswordDi al og(DB parent,

bool &conpl et ed)
Operation

Displays a dialog box containing password and password confirmation fields as well as OK and Cancel buttons. The parent
argument is needed for the Z-order of the elements.

If confirmation is successful, returns a null string; otherwise, returns an error message.

If the user clicks OK, sets conpl et ed to t r ue. If the user clicks Cancel, sets completed to f al se. Rational DOORS
stores the entered password temporarily for the next user account created with the addUser function. It is not stored as
plain text, and is lost if Rational DOORS shuts down before a new account is created.

Example

See the section “Creating a user account example,” on page 212.

DXL Reference Manual

209

changePasswordDialog

Declaration

string changePasswor dDi al og(DB parent,
User user,
bool masquer ade,
bool &conpl et ed)
Operation

Displays a dialog box containing password and password confirmation fields as well as OK and Cancel buttons. The
par ent argument is needed for the Z-order of the elements.

If confirmation is successful, returns a null string; otherwise, returns an error message.

If the user clicks OK, sets conpl et ed to t r ue. If the user clicks Cancel, sets completed to f al se. Rational DOORS
stores the entered password temporarily. It is not stored as plain text, and is lost if Rational DOORS shuts down before the
password is copied using the copyPasswor d function.

A user without the mayEdi t User Li st power must confirm his existing password, otherwise the function returns an
error message. A user with this power is not prompted for an existing password, unless masquer ade ist r ue.
Example

This example copies a new password to the user account for which it was created.

User u = find("John Smith")

bool conpl et ed

string s = changePasswordDi al og(confirm u,
fal se, conpl et ed)

if (conpleted & (null s)){
copyPasswor d()

}

saveUser Recor d(u)

saveDirectory()

confirmPasswordDialog

Declaration

bool confirnPasswordD al og(DB parent,
bool &conpl et ed)

Operation

Displays a dialog box containing a password confirmation field as well as OK and Cancel buttons. The title of the dialog
box is always Confirm password - DOORS. The par ent argument is needed for the Z-order of the elements.

If confirmation is successful, returns t r ue; otherwise, returns f al se.

DXL Reference Manual

210

If the user clicks OK, sets completed to t r ue. If the user clicks Cancel, sets completed to f al se.

Example

bool bPasswordOK = fal se, bConpleted = fal se

/1 query user

bPasswor dOK = confi r nPasswor dDi al og(dbExpl orer, bConpl et ed)
/'l check status

if (bConpleted == true)

{

}

print "Confirned"

copyPassword

Declaration
bool copyPassword()

Operation

Copies the password created using the function to the account for which the password was created. Returns null on success
and an error message on failure.

Example

This example copies a new password to the user account for which it was created.

User u = find("John Smith")

bool conpl et ed

string s = changePasswordDi al og(dbExpl orer, u, false, conpleted)

if (conpleted & & (null s)){
copyPasswor d()

}

getAdministratorName

Declaration
string get Adm ni stratorNanme()

Operation
Returns the name of the administrator for the Rational DOORS database.

DXL Reference Manual

211

sendEMailNotification

Declaration

{bool | string} sendEMail Notification(string fronDescription,
string target Address,
string subject,
string nessage)

string sendEMai | Notification(string fronDescription,
Ski p target Addr esses,
[, Skip ccAddresses]
[, Skip bccAddresses]
string subject,
string nessage)

Operation

Issues a notification e-mail to the specified address or addresses. The communication takes place using SMTP, and depends
on the appropriate Database Properties fields being correctly set up prior to its use (SMTP Mail Server and Mail Account).

The user can set the description of the sender, the subject matter, and message contents using f r onDescri pti on,
subj ect and message. If f ronDescri pti on is a null string, Rational DOORS defaults to a standard text:

DOORS Mai | Server
The following standard text is sent in front of the specified message:

The following is a notification nessage from DOORS - please do not reply as it
was sent from an unattended mail box.

The variant returning a boolean is for legacy use and returns t r ue if the SMTP communication was successful; otherwise,
returns f al se. Others variants return an error string on failure.

sendEMailMessage

Declaration

{bool | string} sendEMai | Message(
string fromDescription,
string target Address,
string subject,
string nessage)

string sendEMai | Message(
string fromDescription,
Ski p target Address,
[, Skip ccAddresses]

DXL Reference Manual

212

[, Skip bccAddresses]
string subject,
string nessage)

Operation
Performs the same function as sendEMai | Noti fi cat i on, but without prepending text to the message.

Creating a user account example

This example creates a new user account named John Smi t h, having j ohns as its login name, with whatever password
is entered in the dialog box.

/'l prevent dxl timeout dialog

pragma runLim O

/1 globals

bool g_bPasswordOK = true

/] user details

const string sUserNane = "John Snmith"
const string sUserlLogin = "johns"

/1 only relevant if password is required

i f (getDatabasePasswordRequired() == true) {
bool bConfirnmConpleted = fal se
/1 query user

g_bPasswor dOK =
confirnPasswor dDi al og(dbExpl orer,
bConf i r nConpl et ed)

/1l check status

if (bConfirmConpleted == fal se) {
/1 adjust accordingly
g_bPasswordCOK = fal se

}

// check status

if (g_bPasswordOK == true) {
/1 only relevant if nanme doesn't exist
/1 as group or user

i f (existsUser(sUserNane) == fal se &&
exi stsG oup(sUser Nane) == fal se) {
bool bCreateConpl eted = fal se
/1 query user

DXL Reference Manual

213

string sErrorMsg =
cr eat ePasswor dDi al og(dbExpl orer,
bCr eat eConpl et ed)

/! check status

if (sErrorMsg == null &&
bCr eat eConpl eted == true) {
/1 add new user

if (addUser (sUser Nane, sUserlLogin) ==
nul I') {
/'l save new user |ist
if (saveDirectory() == null) {
/'l refresh
if (loadDirectory() == null) {
/1 inform user

i nf oBox("User '"sUserNanme"'
was added successfully.\n")

} else {
/'l warn user
war ni ngBox (" Failed to | oad
user list.\n")

}

} else {
/'l warn user
war ni ngBox("Fail ed to save
user list.\n")
}
} else {
/'l warn user
war ni ngBox (" Fail ed to add user
""sUser Nane"'.\n")

} else {
/] warn user
war ni ngBox(sError Msg)

}

} else {

/'l warn user
war ni ngBox(" The nane ' "sUser Nang"'
al ready exists as either a DOORS User or
G oup.\n")

DXL Reference Manual

214 ‘

Group and user manipulation

Group and user manipulation functions and f or loops use the following DXL data types: Gr oup, User , G oupLi st ,
User Li st,and User Not i f yLi st . These types have the following permitted values:

Type Constant Meaning

G ouplLi st grouplLi st Provides access to all groups defined in the
database. This is the only constant of type
G oupli st.

User Li st user Li st Provides access to all users (with the

exception of the Administrator account) who
have an account in the database. This is the
only constant of type User Li st .

User Not i fyLi st user Not i fyLi st Provides access to all users who must be
notified by e-mail of attempts to log in. This
is the only constant of type
User Not i fyLi st.

find

Declaration

User find()

{G oup| User} find(string nane)

Operation

The first form returns a handle of type User to the currently logged in user.

The second form returns a handle of type Gr oup or type User for the group or user name. A call to this function where
nane does not exist causes a DXL run-time error. To check that a user or group exists, use the exi st sGr oup,
exi st sUser functions.

findByID

Declaration
User findBylD(string identifier)

Operation

Returns a handle of type User for the specified i denti fi er, or null if the user does not exist but the identifier is valid.
If the specified identifier is badly formed, a DXL run-time error occurs.

You can extract the identifier for a user from a variable of type User with thei denti f i er property (see “Group and
user properties,” on page 222).

DXL Reference Manual

215

existsGroup, existsUser

Declaration
bool existsG oup(string namne)

bool existsUser(string namne)

Operation
If the named group or user exists, returns t r ue; otherwise, returns f al se.

loadUserRecord

Declaration
string | oadUser Record(User user)

Operation

Loads the details of user user from the database.

Example

User u = find("boss")
| oadUser Recor d(u)
string e = u. emil

print e

ensureUserRecordLoaded

Declaration

string ensureUser Recor dLoaded(User user)

Operation
If the user’s record for user has not already been loaded, calls the | oadUser Recor d function.

saveUserRecord

Declaration

string saveUser Record(User user)

Operation

Saves the details of user user to the database.

DXL Reference Manual

216

Note: AsaveDirectory() command should be used to commit the changes to the database

Example

User u = find("boss")
| oadUser Recor d(u)
string e = u.emil

if (null e) {
u.emanil = "boss@wrk"

}

saveUser Record (u)

saveDirectory()

loadDirectory

Declaration
string | oadDirectory()

Operation

Loads the group and user list from the database. All changes made since the last load or save are lost. If the operation
succeeds, returns null; otherwise, returns an error message.

saveDirectory

Declaration

string saveDirectory()

Operation
Saves all changes to groups, users, and login policies in the database. If the call fails, returns an error message.

Note: This perm places a temporary lock on the users directory. If used in a continuous manner, for example, repeatedly
inaf or loop, this could cause conflicts for another user trying to login.

for user in database

Syntax
for user in userList do {

}...

where:

user is a variable of type User

DXL Reference Manual

217

If the database is configured to use an LDAP directory, use:

for user in userList(“pattern”) do {

} .
Operation

Assigns the variable user to be each successive non-administrator user in the database.

For LDAP, if the pattern specified is *, then the loop returns the entire set of users that are available in the LDAP
directory. This operation might require some time, depending on the number of users in the LDAP directory.
Example

This example prints a list of users in the database:

User user

for user in userList(“*”) do {
string uNanme = user. nane
print uName "\n"

for group in database

Syntax
for group in groupList do {

}...

where:

gr oup is a variable of type G- oup

If the database is configured to use an LDAP directory, use:
for group in groupList(“pattern”) do {

}
Operation
Assigns the variable gr oup to be each successive group in the database.

For LDAP, if the pattern specified is *, then the loop returns the entire set of groups that are available in the LDAP
directory. This operation might require some time, depending on the number of groups in the LDAP directory.

Example
This example prints a list of groups in the database:

G oup group

DXL Reference Manual

218

for group in groupList("*") do {
string gName = group. nane
print gName "\ n"

for user in group

Syntax
for user in group do {
}
where:
user is a variable of type User
group is a variable of type Gr oup
Operation

Assigns the variable user to be each successive non-administrator user in the specified group.

Example
This example prints a list of users in group devel oprent :
User user
G oup devel opnent = find("devel opnent")

for user in devel opnent do {
string uNanme = user.nane
print uName "\ n"

for group in IdapGroupsForUser

Declaration
for g in | dapG oupsForUser(u) do {

}

where:
g is a variable of type Gr oup
u is a variable of type User

DXL Reference Manual

219

Operation

Iterate over all groups of which the user passed to the | dapG- oupsFor User function is a member. Note that this
iterator is only effective when Rational DOORS is configured for LDAP, not for the Rational Directory Server.
Example

User u = find(“fred”)

Goup g

for g in | dapG oupsforUser(u) do {

for user in notify list

Syntax
for user in userNotifyList do {

}...

where:
user is a variable of type User

Operation
Assigns the variable user to be each successive user in the list of users to be notified by e-mail of login activity.

copyPassword

Declaration
string copyPassword()

Operation

This is the same as the existing copyPasswor d() perm. It performs an identical operation, transferring the shadow
password to the real password but instead of returning a boolean indicating success or failure, it returns NULL on success
and a message on failure. The existing perm can fail resulting in a reported error in the DXL output display if an exception
is thrown. The new perm will catch exceptions and pass the message back to the DXL code for it to display as a pop-up
dialog.

fullName

Declaration
User El enent _ ful | Name()

DXL Reference Manual

220

Operation

This can be used to get the full name of the user.
Example
User u = find()

string nane = u.full Nanme

mayEditDXL

Declaration
User El enent _ mayEdi t DXL()

Operation
Indicates whether the specified user is able to edit and run DXL programs.

Example
User u = find
bool useDXL = u. mayEdit DXL

synergyUsername

Declaration
User El enent _ syner gyUser nane()

Operation
This can be used to retrieve the user’'s SYNERGY/Change user name.
This attribute value is only available when Rational DOORS is configured to use the Rational Directory Server.

This value is not writable; its value is set when the syst enmlLogi nNane is set.

Example:

User u = find("Test")

string s = u.synergyUsernane
User u = find("Test")

u. synergyUser nane = "testuser"

//this generates an error

DXL Reference Manual

221

forename

Declaration

User El enent _ forenane()

Operation
This can be used to get or set the user’s forename.
This attribute value is only available when Rational DOORS is configured to use the Rational Directory Server.

Setting this value has the side effect of setting the f ul | Nane of the user to the concatenation of forename and surname.
This is only relevant when configured to use the Rational Directory Server.

Example
User u = find("Test")

string s = u.forenane

User u = find("Test")

u.forenane = "Tont
surname

Declaration

User El enent _ sur nane()

Operation

This can be used to get or set the user’s surname.

This attribute value is only available when Rational DOORS is configured to use the Rational Directory Server.

Setting this value has the side effect of setting the f ul | Name of the user to the concatenation of forename and surname.
This is only relevant when configured to use the Rational Directory Server.

Example
User u = find("Test")

string s = u.surnane

User u = find("Test")

u. surnane = "Thunb"

DXL Reference Manual

222 ‘

Group and user management

Group and user management functions use the DXL data types G- oup, User , and User d ass.

User class constants

Type User C ass can have one of the following values:

Constant Meaning

adm ni strator User type administrator
standard User type standard

dat abaseManager User type database manager
pr oj ect Manager User type project manager
custom User type custom

Group and user properties

Properties are defined for use with the . (dot) operator and a group or user handle to extract information from, or specify
information in a group or user record, as shown in the following syntax:

vari abl e. property

where:
vari abl e is a variable of type G- oup or User
property is one of the user or group properties

The following tables list the group properties and the information they extract or specify (for further details on specifying
information see the set Gr oup function):

String property Extracts

name name

Boolean property Extracts

Di sabl ed whether the group is disabled

The following tables list the user properties and the information that they extract or specify.

DXL Reference Manual

Note: The string properties and Boolean properties in the following tables do not apply to the following DXL
statements. These statements only use one property, the Bool ean property Di sabl ed:

« for property in user account

e isAttribute(user)

e delete(user property)

e get(user property)

e set(user property)

For further details on specifying information, see the setUser function.

String property

Extracts

addr ess
emai |

identifier

description
name

password

syst eniLogi nNane
t el ephone

ful | Narme

postal address
e-mail address

identifier: a string containing a hexadecimal number, which is created
by Rational DOORS

description

name

password (write-only)

system login name (not Rational DOORS user name)
telephone number

full name

Boolean property

Extracts

Di sabl ed

emai | CPUpdat es

mayAr chi ve

whether the account is disabled

whether the user of the CP system can be notified by
e-mail when the status of a proposal changes, for
example when it is accepted or rejected

whether the user can archive and restore modules and
projects

mayCr eat eTopLevel Fol ders whether the user can create folders at the root of the

mayEdi t G ouplLi st

mayEdi t User Li st

database
whether the user can edit, create and delete groups

whether the user can edit, create, and delete user
accounts and groups

DXL Reference Manual

223

224

Boolean property

Extracts

may Manage

mayPartition

passwor dChanged

passwor dMayChange

mayUseConmmandLi nePasswor d

addi ti onal Aut henti cati onR
equi red

whether the user can manage the Rational DOORS
database

whether the user can transfer the editing rights for a
module to a satellite database (see the chapters on
partitions in Using Rational DOORS and
Managing Rational DOORS)

whether the password has been changed since the
account was created

whether the user is permitted to change the password

if database restrictions are enabled, whether the user
may use the command line password switch

whether the user is required to perform additional
when logging in (RDS only)

Integer property

Extracts

passwor dLi feti nme

passwor dM ni muniengt h

lifetime of password (0 means unlimited lifetime)

minimum number of characters in password for this
user (non-negative integer)

Type UserClass property Extracts

cl ass class of user; this can be one of the values in “User class
constants,” on page 222

for property in user account

Syntax
for Bool ean property Disabled in user do {
}
where:
Boolean property Extracts
Di sabl ed whether the user is disabled

DXL Reference Manual

225

Operation
Assigns Bool ean property “Di sabl ed” to each successive user.

isAttribute(user)

Declaration
bool isAttribute(User user, Bool ean property D sabl ed)

Operation
Returns t r ue if the specified user contains the Bool ean property Di sabl ed; otherwise, returns f al se.

delete(user property)

Declaration
voi d del ete(User user, Bool ean property D sabl ed)

Operation
Deletes the Bool ean property Di sabl ed within user . You cannot delete properties of other types.

This action takes effect after saveUser Recor d has been called. It is then permanent and cannot be reversed.

get(user property)

Declaration
string get(User user, Bool ean property Di sabl ed)

Operation

Returns the value of the Bool ean property Di sabl ed within user . If the property does not exist, a DXL
run-time error occurs. If successful, returns a null string; otherwise, returns an error message.

set(user property)

Declaration

voi d set(User user, Bool ean property Disabled, string val ue)

Operation
Updates the value of the Bool ean property Di sabl ed within user . If the property does not exist it is created.

DXL Reference Manual

226

setGroup
Declaration
string setGoup(Goup id,
property,
{string| bool} val ue)
Operation

Updates the value of the specified standard property (from the String property table) within the group i d.

If successful, returns a null string; otherwise, returns an error message.

setUser
Declaration
string setUser(User user,
property,
{string|int|bool} val ue)
Operation

Updates the value of the specified standard property (from the String property table) within user .

If successful, returns a null string; otherwise, returns an error message.

addGroup

Declaration
string addG oup(string nane)

Operation

Creates group nane. If the operation is successful, returns a null string; otherwise, returns an error message.

deleteGroup

Declaration
string del eteG oup(G oup group)

Operation
Deletes group gr oup from the Rational DOORS database. It does not affect underlying users.

This action takes effect after the user directory has been refreshed using the saveDi r ect or y function. It is then
permanent and cannot be reversed.

DXL Reference Manual

227

If the operation is successful, returns a null string; otherwise, returns an error message.

addUser

Declaration

string addUser (string nane,
string uid)

string addUser (string name,
string password
string uid)

Operation

The first form creates a user account with the specified nane, and system login, ui d. If the operation succeeds returns a
null string; otherwise, returns an error message. This function must be used after a call to the

cr eat ePasswor dDi al og function, so that the password is set to an initial value. The user must change the password
on first use. If there has been no previous call to the cr eat ePasswor dDi al og function, the password is set to a null
string.

The second form is only supported for compatibility with earlier releases. It is deprecated because passwords are passed as
plain text.

This action takes effect after the user directory has been refreshed using the saveDi r ect or y function.

Example
See the section “Creating a user account example,” on page 212.

deleteUser

Declaration

string del et eUser (User user)

Operation

Deletes the user account for user from the Rational DOORS database. Appropriate e-mails are also issued to the same
people who are notified of unsuccessful logins.

This action takes effect after the user directory has been refreshed using the saveDi r ect or y function. It is then
permanent and cannot be reversed.

If the operation is successful, returns a null string; otherwise, returns an error message.

addMember

Declaration

voi d addMenber (G oup group,
User user)

DXL Reference Manual

228

Operation
Adds user user to group gr oup.
This action takes effect after the user directory has been refreshed using the saveDi r ect or y function.

deleteMember

Declaration

bool del et eMenber (G oup group,
User user)

Operation

Deletes user user from group gr oup. If the operation succeeds, returns t r ue; otherwise, returns f al se.

This action takes effect after the user directory has been refreshed using the saveDi r ect or y function.

deleteAllIMembers

Declaration
bool del et eAl | Menber s(G- oup group)

Operation
Deletes all users from group gr oup.
This action takes effect after the user directory has been refreshed using the saveDi r ect or y function.

member

Declaration

bool menber (G oup group,
User user)

Operation
If user user is amember of group gr oup, returns t r ue; otherwise returns f al se.

stringOf(user class)

Declaration
string stringO(Userd ass userd ass)

Operation
Returns a string representation of the specified user class. This can be one of the following values:

DXL Reference Manual

229

" Admi ni strator"

" St andar d”

" Dat abase Manager"
"Project Manager"
" Cust ont

LDAP

savelLdapConfig()

Declaration
string savelLdapConfi g()

Operation
Save the LDAP configuration to the database. Returns empty string on success, error message on failure.

loadLdapConfig()

Declaration
string | oadLdapConfi g()

Operation
Load the LDAP configuration from the database. Returns empty string on success, error message on failure.

getUselLdap()

Declaration
bool get UseLdap()

Operation
Gets the value of the flag which determines if we are using LDAP for storage of user and group information.

setUselLdap()

Declaration
string set UseLdap(bool usinglLdap)

DXL Reference Manual

230

Operation

Sets the value of the flag which determines if we are using LDAP for storage of user and group information. Only the
Administrator can set this value. Returns empty string on success, error message on failure.

updateUserList()

Declaration
string updateUserList()

Operation

Update the Rational DOORS user list from the LDAP user list. Creates standard users for all the users permitted by LDAP
if they do not already exist in the Rational DOORS database, and updates user name and system login name for existing
users.

Note: This operation can take a long time, particularly if no group of Rational DOORS users has been specified (see
set Door sUser G- oupDN).

updateGroupList()

Declaration
string updat eG ouplLi st ()

Operation

Update the Rational DOORS group list from the LDAP group list. Creates Rational DOORS groups for all the groups
permitted by LDAP if they do not already exist in the Rational DOORS database, and updates group name for existing

groups.

Note: This operation can take a long time, particularly if no group of Rational DOORS groups has been specified (see
set Door sG oupGr oupDN).

LDAP Configuration

findUserRDNFromName

Declaration
string findUser RDNFromNane(string nanme, bool &unique, string &uid)

Operation

Search for nane in the LDAP directory, in the attribute specified by name for Rational DOORS user names, in the
Rational DOORS user subtree.

DXL Reference Manual

231

If found, return the distinguished name of the entry, relative to the Rational DOORS user root. Also sets the unique flag
t r ue if only one matching entry was found, and fills in the uid string with the system login name obtained from the
matching entry. If not found, returns NULL. Only the Administrator can run this function.

findUserRDNFromLoginName

Declaration
string findUser RDNFronmLogi nName(string uid, bool &unique, string &nane)

Operation
Search for uid in the LDAP directory, in the attribute specified for system login names, in the Rational DOORS user
subtree.

If found, return the distinguished name of the entry, relative to the Rational DOORS user root. Also sets the unique flag
t r ue if only one matching entry was found, and fills in the name string with the Rational DOORS user name obtained
from the matching entry. If not found, returns NULL. Only the Administrator can run this function.

findGroupRDNFromName

Declaration
string findG oupRDNFronmName(string name, bool &unique)

Operation

Search for name in the LDAP directory, in the attribute specified for Rational DOORS group names, in the Rational
DOORS group subtree.

If found, return the distinguished name of the entry, relative to the Rational DOORS group root. Also sets the unique flag
t r ue if only one matching entry was found. If not found, returns NULL. Only the Administrator can run this function.

findUserInfoFromDN

Declaration
string findUserlnfoFronDN(string dn, string &uame, string &uid)

Operation
Search for an entry with distinguished name dn in the LDAP directory.

If found, fills in the name and uid with the Rational DOORS user name and system login name obtained from the matching
entry. Returns NULL. Only the Administrator can run this function.

DXL Reference Manual

232

checkConnect

Declaration
string checkConnect ()

Operation

Check the current LDAP configuration by attempting to connect to the specified server/port as the user specified by
Rational DOORS bind dn with the Rational DOORS bind password. Returns NULL on success, error message on failure.

checkDN

Declaration
string checkDN(string dn)

Operation

Check that the given dn is a valid entry in the directory specified by the current LDAP configuration. This can be run to
check that the user root, group root, user group dn, and group group dn have been set to existing values. Only the
Administrator can run this function.

Example

Ldapltemitem

for itemin | dapG oupLi st do

{
print itemnane "\n"
print itemdn "\n"
print itemuid "\n"
}

for itemin | dapUserlList do

{
print itemnane "\n"
print itemdn "\n"
print itemuid "\n"
}

DXL Reference Manual

233

LDAP server information

getLdapServerName

Declaration
string getLdapServer Name()

Operation
Gets the name of the LDAP server.

setLdapServerName(string)

Declaration

string setLdapServerName(string nane)

Operation

Sets the name of the LDAP server. Only the Administrator can set this value. Returns empty string on success, error
message on failure.

getPortNo

Declaration
int getPortNo()

Operation
Gets the port number of the server used for storage of user and group information.

setPortNo

Declaration
string setPortNo(int portNo)

Operation

Sets the port number of the server used for storage of user and group information. Only the Administrator can set this
value. Returns empty string on success, error message on failure.

DXL Reference Manual

234

getDoorsBindNameDN

Declaration
string get Door sBi ndNanmeDN()

Operation
Gets the dn of the user we use to bind to the LDAP server.

setDoorsBindNameDN

Declaration
string set Door sBi ndNameDN(stri ng nane)

Operation
Sets the dn of the user we use to bind to the LDAP server. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

setDoorsBindPassword

Declaration

string set Door sBi ndPasswor d(string pass)

Operation
Sets the password we use to bind to the LDAP server. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

Note: There is no get Door sBi ndPasswor d as DXL does not need to know this.

setDoorsBindPasswordDB

Declaration
string set Door sBi ndPasswor dDB(DB par ent W ndow)

Operation

This presents the user with a password dialog box. If the user enters the same valid password in both fields of the dialog
box, the set Door sBi ndPasswor d() functionality is executed.

This returns null on success, and an error string on failure (either if the user does not enter the same valid password in both
fields of the dialog box, or if the setting of the password option failed).

DXL Reference Manual

235

getDoorsUserRoot

Declaration
string get Door sUser Root ()

Operation
Gets the identifier of the directory subtree used for storage of user information.

setDoorsUserRoot

Declaration
string set DoorsUser Root (string ident)

Operation
Sets the identifier of the directory subtree used to search the LDAP server for users. Only the Administrator can set this
value. Returns empty string on success, error message on failure.

getDoorsGroupRoot

Declaration
string get Door sG oupRoot ()

Operation
Gets the identifier of the directory subtree used for storage of group information.

setDoorsGroupRoot

Declaration
string set DoorsG oupRoot (string ident)

Operation

Sets the identifier of the directory subtree used to search the LDAP server for groups. Only the Administrator can set this
value. Returns empty string on success, error message on failure.

getDoorsUserGroupDN

Declaration
string get DoorsUser GroupDN()

DXL Reference Manual

236

Operation
Gets the dn of the LDAP group used to specify permitted Rational DOORS users.

setDoorsUserGroupDN

Declaration
string set DoorsUser G oupDN(string dn)

Operation

Sets the dn of the LDAP group used to specify permitted Rational DOORS users. Only the Administrator can set this
value. Returns empty string on success, error message on failure.

getDoorsGroupGroupDN

Declaration
string get Door sG oupG oupDN()

Operation
Gets the dn of the LDAP group used to specify permitted Rational DOORS groups.

setDoorsGroupGroupDN

Declaration
string set DoorsG oupG oupDN()

Operation

Sets the dn of the LDAP group used to specify permitted Rational DOORS groups. Only the Administrator can set this
value. Returns empty string on success, error message on failure.

LDAP data configuration

getDoorsUsernameAttribute

Declaration
string get DoorsUsernaneAttri bute()

Operation
Gets the name of the LDAP attribute to be used for a Rational DOORS user name.

DXL Reference Manual

237

setDoorsUsernameAttribute

Declaration
string setDoorsUsernaneAttribute(string nane)

Operation

Sets the name of the LDAP attribute to be used for a Rational DOORS user name. Only the Administrator can set this
value. Returns empty string on success, error message on failure.

getLoginNameAttribute

Declaration
string getLogi nNameAttri bute()

Operation
Gets the name of the LDAP attribute to be used for the system login name.

setLoginNameAttribute

Declaration
string setlLogi nNameAttri bute(string nane)

Operation

Sets the name of the LDAP attribute to be used for the system login name. Only the Administrator can set this value.
Returns empty string on success, error message on failure.

getEmailAttribute

Declaration
string getEmail Attribute()

Operation
Gets the name of the LDAP attribute to be used for the user’s email address.

setEmailAttribute

Declaration
string setEmail Attribute(string email)

DXL Reference Manual

238

Operation
Sets the name of the LDAP attribute to be used for the user’s email address. Only the Administrator can set this value.
Returns empty string on success, error message on failure.

getDescriptionAttribute

Declaration
string getDescriptionAttribute()

Operation
Gets the name of the LDAP attribute to be used for the user’s description.

setDescriptionAttribute

Declaration
string setDescriptionAttribute(string nane)

Operation

Sets the name of the LDAP attribute to be used for the user’s description. Only the Administrator can set this value.
Returns empty string on success, error message on failure.

getTelephoneAttribute

Declaration
string getTel ephoneAttri bute()

Operation
Gets the name of the LDAP attribute to be used for the users’s telephone number.

setTelephoneAttribute

Declaration
string setTel ephoneAttri bute(string phone)

Operation

Sets the name of the LDAP attribute to be used for the users’s telephone number. Only the Administrator can set this value.
Returns empty string on success, error message on failure.

DXL Reference Manual

239

getAddressAttribute

Declaration
string get AddressAttribute()

Operation
Gets the name of the LDAP attribute to be used for the users’s address.

setAddressAttribute

Declaration
string set AddressAttribute(string address)

Operation

Sets the name of the LDAP attribute to be used for the users’s address. Only the Administrator can set this value. Returns
empty string on success, error message on failure.

getGroupObjectClass

Declaration
string get GoupChjectd ass()

Operation

Gets the name of the LDAP object class to be used to identify groups. Typically this value will be
gr oupdf Uni queNanes.

setGroupObjectClass

Declaration
string set GoupChjectd ass(string class)

Operation

Sets the name of the LDAP object class to be used to identify groups. Only the Administrator can set this value. Returns
empty string on success, error message on failure.

getGroupMemberAttribute

Declaration
string get GoupMenberAttribute()

DXL Reference Manual

240

Operation
Gets the name of the LDAP attribute to be used to identify group members. Typically this value will be uni queMenber .

setGroupMemberAttribute

Declaration
string set GoupMenberAttribute(string name)

Operation

Sets the name of the LDAP attribute to be used to identify group members. Only the Administrator can set this value.
Returns empty string on success, error message on failure.

getGroupNameAittribute

Declaration
string get GoupNameAttribute()

Operation
Gets the name of the LDAP attribute to be used for a group’s name. Typically this value will be cn.

setGroupNameAttribute

Declaration
string set GoupNanmeAttri bute(string group)

Operation

Sets the name of the LDAP attribute to be used for a group’s name. Only the Administrator can set this value. Returns
empty string on success, error message on failure.

Group and user properties

Declaration
string | dapRDN

If we have a user u, pri nt u. | dapRDN prints the user's LDAP relative distinguished name, which may be empty if
LDAP is not being used.

The Administrator can set a user's LDAP rdn with

u. | dapRDN = new val ue.

DXL Reference Manual

241

string utf8(ansiString)

Declaration
string utf8(string ansi String)

Operation

This returns the UTF-8 format conversion of an ANSI string argument ansi St ri ng. LDAP servers use UTF-8
encoding, whereas Rational DOORS data is stored in ANSI format. This affects the encoding of extended characters, such
as accented letters, which are encoded in UTF-8 as 2-byte sequences.

string ansi(utf8String)

Declaration
string ansi(string utf8String)

Operation

This returns the ANSI format conversion of a UTF-8 string argument ut f 8St r i ng. LDAP servers use UTF-8 encoding,
whereas Rational DOORS data is stored in ANSI format. This affects the encoding of extended characters, such as
accented letters, which are encoded in UTF-8 as 2-byte sequences.

Rational Directory Server

After using any of the following functions to modify the Rational Directory Server, use the saveLdapConfig() function to
save the modifications.

getUseTelelogicDirectory

Declaration
bool get UseTel el ogi cDirectory()

Operation
Returns a flag indicating whether Rational Directory Server support is enabled.

setUseTelelogicDirectory

Declaration
string setUseTel el ogi cDi rectory(bool b)

DXL Reference Manual

242

Operation
Enables or disables Rational Directory Server support.
Returns an error string if the current user is not the administrator.

Returns an error message if the argument ist r ue and ordinary LDAP is already enabled.

getTDServerName

Declaration
string get TDSer ver Nane()

Operation
Returns the Rational Directory Server name.

setTDServerName

Declaration
string set TDServer Nane(string s)

Operation
Sets the Rational Directory Server name.

Returns an error string if the current user is not the administrator.

getTDPortNo

Declaration
i nt get TDPort No()

Operation
Returns the Rational Directory Server port number.

setTDPortNo

Declaration
string set TDPortNo(int i)

Operation
Sets the Rational Directory Server port number.

Returns an error string if the current user is not the Administrator.

DXL Reference Manual

243

getTDBindName

Declaration
string get TDBi ndName()

Operation
Returns the Rational Directory Server Administrator bind (login) name.

setTDBindName

Declaration
string set TDBi ndNane(string s)

Operation
Sets the Rational Directory Server administrator bind (login) name.

Returns an error string if the current user is not the administrator.

setTDBindPassword

Declaration
string set TDBi ndPassword(string s)

Operation
Sets the Rational Directory Server administrator bind (login) password.

Returns an error string if the current user is not the administrator.

setTDBindPassword

Declaration
string set TDBi ndPasswor d(DB bi nd_pass)

Operation
Sets the Rational Directory Server administrator bind (login) password from the specified database.

getTDUseDirectoryPasswordPolicy

Declaration
bool get TDUseDi r ect or yPasswor dPol i cy()

DXL Reference Manual

244

Operation
Returns a flag indicating whether the directory should handle all password policy issues.

setTDUseDirectoryPasswordPolicy

Declaration
string set TDUseDir ect or yPasswor dPol i cy(bool TD dir)

Operation
Enables or disables support for the directory password policy.

Returns an error string if the current user is not the administrator.

getAdditionalAuthenticationEnabled

Declaration
bool get Addi ti onal Aut henti cati onEnabl ed()

Operation

Returns t r ue if enhanced security users need to perform additional authentication during login. Only relevant when
authentication is being controlled via RDS.

getAdditionalAuthenticationPrompt

Declaration
string get Additi onal Aut henti cati onPronpt ()

Operation

Returns the label under which additional authentication is requested, if enhanced security is enabled, for example the label
for the second “password” field. Only relevant when authentication is being controlled via RDS.

getSystemLoginConformityRequired

Declaration
bool get Syst enlLogi nConf orm tyRequi red()

Operation

Returns t r ue if enhanced security users have there system login verified when logging in. Only relevant when
authentication is being controlled via RDS.

DXL Reference Manual

245

getCommandLinePasswordDisabled

Declaration
bool get ConmandLi nePasswor dDi sabl ed()

Operation
Return t r ue if the - P command line password argument is disabled by default.

setCommandLinePasswordDisabled

Declaration
string get CommandLi nePasswor dDi sabl ed(bool)

Operation

Sets whether the - P command line password argument is disabled by default. Supplying t r ue disables the option by
default.

DXL Reference Manual

246

DXL Reference Manual

247

Chapter 13

Rational DOORS hierarchy

This chapter describes features that are relevant to items, folders, and projects within the Rational DOORS hierarchy.
Features specific to modules and objects are described in the following chapters:

¢ About the Rational DOORS hierarchy
» Item access controls

e Hierarchy clipboard

e Hierarchy information

» Hierarchy manipulation

e ltems
* Folders
* Projects

« Looping within projects

About the Rational DOORS hierarchy

Within a Rational DOORS database there are items, which can be folders, projects, and modules. A project is a special
type of folder. The database root is also a folder.

In DXL, the Rational DOORS hierarchy is represented by the data types | t em Fol der, Pr oj ect, and a call to the
nodul e function. Open modules are also represented by the Modul e data type.

Functions that operate on items have equivalents for folders, projects and modules.

Modules and folders are in general referenced by their unqualified names (without paths). However, DXL scripts can
specify fully qualified names, which are distinguished by the inclusion of one or more slash (/) characters. These names can
be either relative to the current folder, for example:

../ fol der/nodul e

or absolute (with a leading slash), for example:

/ f ol der/ modul e

Create functions fail if an invalid (non-existent) path is specified.

Functions common to all hierarchy items are described in “Hierarchy clipboard,” on page 249, “Hierarchy information,” on
page 252, and “Hierarchy manipulation,” on page 256.

Functions specific to items of type Item are described in “Items,” on page 258.
Functions specific to folders are described in “Folders,” on page 261.

Functions specific to projects are described in “Projects,” on page 264.

DXL Reference Manual

248

Functions specific to modules are described in “Modules,” on page 271.

Item access controls

This section describes functions that report on access rights for items.

canCreate(item)

Declaration
bool canCreate({ltemi|Fol der f})

Operation

Returns t r ue if the current Rational DOORS user has create access to the item or folder specified by the argument.
Otherwise, returns f al se.

canControl(item)

Declaration
bool canControl ({Itemi| Fol der f})

Operation

Returns t r ue if the current Rational DOORS user can change the access controls on the item or folder specified by the
argument. Otherwise, returns f al se.

canRead(item)

Declaration
bool canRead({ltemi | Fol der f})

Operation

Returns t r ue if the current Rational DOORS user can read the item or folder specified by the argument. Otherwise,
returns f al se.

canModify(item)

Declaration
bool canModify({ltemi|Fol der f})

DXL Reference Manual

249

Operation

Returns t r ue if the current Rational DOORS user can modify the item or folder specified by the argument. Otherwise,
returns f al se.

canDelete(item)

Declaration
bool canDelete({ltemi|Fol der f})

Operation

Returns t r ue if the current Rational DOORS user can delete the item or folder specified by the argument. Otherwise,
returns f al se.

Hierarchy clipboard

This section defines functions for the hierarchy clipboard. Passing a nul | argument of type | t em Fol der , or
Pr oj ect to any function, or a null string to a call to the module function results in a run-time DXL error. The term item
means a variable of type | t em type Fol der, or type Pr oj ect , or a call to the modul e function.

clipCut

Declaration
string clipCut(ltemi)
Operation

Places a write lock on the item specified by the argument, and adds it to the clipboard as part of a set of cut items. If the
write lock fails, or if the user does not have delete access to the item and its descendants (if any), the call to cl i pCut fails.

If the previous operation was not a cut, this function first clears the clipboard. If the item is deleted, returns an error
message.

No other user can open the cut item until it has been pasted or the cut has been undone.

clipCopy

Declaration
string clipCopy(ltemi)

DXL Reference Manual

250

Operation

Places a share lock on the item specified by the argument, and adds it to the clipboard as part of a set of copied items. If the
share lock fails, or if the user does not have read access to the item, the call to cl i pCopy fails. Any descendants of the
item to which the user does not have read access are not included as part of the set of items placed on the clipboard.

If the previous operation was a paste, this function first clears the clipboard. If the previous operation was a cut, this
function first performs an undo. If the item is deleted, returns an error message.

No other user can move, delete or rename the item until it has been pasted or the copy has been undone.

clipClear

Declaration

string clipd ear([bool force])

Operation

If the last operation was not a cut, unlocks and clears the clipboard contents. If the last operation was a cut, the result
depends on the value of f or ce as follows:

fal se the call fails

true purges the contents of the clipboard from the database.

If you omit f or ce, its value is assumed to be f al se.

clipPaste

Declaration
string clipPaste(Fol der fol derRef)

Operation

Pastes the contents of the clipboard to f ol der Ref . If the user does not have create access to the destination, the call to
cl i pPast e fails. If f ol der Ref is deleted, returns an error message.

If the previous operation was a cut, moves the contents of the clipboard from their original location, and places a share lock
on them. Otherwise, unlocks the originals, and makes copies of them in f ol der Ref . In this case, any projects have Copy

of in front of their names, because duplicate project names are not allowed. If this still results in duplicate names, Copy n

of is used, where n is the lowest number >= 2 that prevents duplication. This function uses the same naming convention
to avoid duplication when copying items into their original folder.

The items pasted from the clipboard remain share locked until the clipboard is cleared. This is done automatically when the
client closes down, or when the user opens any module in the clipboard for exclusive edit, or deletes, renames, or moves any

item in the clipboard.

DXL Reference Manual

251

clipUndo

Declaration
string clipUndo({ltemi)

Operation
If the last operation was a cut or copy, unlocks and clears the clipboard contents.

clipLastOp

Declaration
int cliplLastOp()

Operation

Returns an integer indicating the last operation performed on the hierarchy clipboard. The returned value can be of: Cut ,
Copy, O ear, Past e, Undo.

itemClipboardIsEmpty

Declaration
bool itenC i pboardl sEnpty()

Operation
If there are no items in the hierarchy clipboard, returns t r ue; otherwise, returns f al se.

inClipboard

Declaration
bool indipboard({ltemi]|Folder f|Project p|Mdule nf ModNarme_ nodRef})

Operation
If the item specified by the argument is in the hierarchy clipboard, returns t r ue; otherwise, returns f al se.

DXL Reference Manual

252 ‘

Hierarchy information

This section defines functions that provide information about items, folders, projects, or modules. The term ittm means a
variable of type | t em type Fol der, type Pr oj ect or type ModNane_. You can also reference an open module using
the data type Modul e. Passing a nul | argument of type | t em Fol der, Pr oj ect, Modul e or ModNane_ to any
function results in a run-time DXL error.

folder, project, module(state)

Declaration
bool folder(string fol der Nane)
bool project(string projectNane)

bool nodul e(string nodul eNane)

Operation

Returns t r ue if the argument is the name of a folder, project, or module to which the current user has read access;
otherwise, returns f al se.

Because a project is a special class of folder, the f ol der function returns t r ue for projects as well as other folders.

description

Declaration
string description({ltemi|Folder f|Project p|Mdule n ModNanme_ nodRef})

Operation
Returns the description of the item specified by the argument.

Example
print description current Mdule

name(item)

Declaration
string name({ltemi| Fol der f|Project p|Mdule nf ModName_ nodRef})

Operation
Returns the unqualified name of the item specified by the argument.

Example
print nanme current Modul e

DXL Reference Manual

253

fullName(item)

Declaration
string full Nanme({ltemi| Fol der f|Project p|Mdule niMdNane_ nodRef})

Operation

Returns the full name of the item specified by the argument, including the path from the nearest ancestor project, or if not
inside a project, from the root folder.

path(item)

Declaration
string path({ltemi| Fol der f|Project p|Mdule niMdNane_ nodRef})

Operation

Returns the full name of the parent of the item specified by the argument from the nearest ancestor project, or if not inside
a project, from the root folder.

getParentFolder(item)

Declaration
Fol der get Parent Fol der ({lItem i | Fol der f| Project p|Mdul e n ModName_ nodRef})

Operation
Returns the folder containing the item specified by the argument. If the argument is the root folder, returns nul | .

getParentProject(item)

Declaration
Proj ect getParentProject({ltemi|Folder f|Project p|Mdule n MbodNarme_ nodRef})

Operation

Returns the nearest ancestor project for the item specified by the argument, or null if there is none. If the item is a project,
this function does not return the project itself, but the nearest one above (or null if there is none).

isDeleted(item)

Declaration
bool isDeleted({ltemi|Folder f|Project p|MdName_ nodRef})

DXL Reference Manual

254

Operation

If the item specified by the argument is marked as deleted or soft deleted, or if it does not exist, or if the user does not have
read access to it, returns t r ue; otherwise, returns f al se.

setShowDeletedltems(bool)

Declaration
voi d set ShowDel et edl t ens(bool show)

Operation

If bool showis setto t r ue, deleted items will be visible in the Database Explorer. Setting showto f al se hides all
deleted items.

type
Declaration
string type({ltemi| Fol der f|Mdul e mn ModName_ nodRef})
Operation
Returns the type of the item specified by the argument as a string. Possible values are shown in the following table.
Return value Item Folder Module
" Fol der™ y y n
" Project"” y y n
"Formal " y n y
" Li nk" y n y
"Descriptive" y n y
Example
print type(item"/")
uniquelD

Declaration
string uniquel D({Itemi| Fol der f|Project p|MdName_ nodRef| Mbdul e n})

DXL Reference Manual

255

Operation

Returns a unique identifier for the specified item, which lasts for the lifetime of the item, and is never reused. The unique
identifier does not change when the item is moved or renamed. If the item is copied, the copy has a different identifier.

A call to this function where i does not exist causes a DXL run-time error.

gualifiedUniquelD

Declaration
string qualifiedUniquel D({Itemi| Fol der f|Project p|MdNane_ nane| Modul e n})

Operation

Returns a representation of a reference to the specified | t em Fol der, Pr oj ect, Modul e or ModNane__, which
uniquely identifies that object amongst databases.

Provided that supported mechanisms for the creation of Rational DOORS databases are used, these unique identifiers can
be treated as globally unique; no two objects in any two databases will have the same qualifiedUniquelD.

See also uniquel D, which returns an unqualified representation of a reference.

getReference

Declaration

string getReference(ltemreferrer, Itemreferee)

Operation

Returns a reference to the referee from the referrer. This reference is invariant under archive/restore (both inter-database
and intra-database) and copy/paste. Such a reference is to be used in preference to the referee’s index, unless the reference
is intended to be variant under such operations.

itemFromReference

Declaration
ItemitenFronReference(ltemreferrer, string ref)

Operation

Returns the item to which r ef refers from the specified referrer. r ef must be a string that was obtained using the
get Ref er ence() perm. If the reference cannot be resolved, the returned item will satisfy null.

Example

Make a reference from the current module to an item named “a”
Itemi = itemfull Name current Modul e
Itemj = item"a"

DXL Reference Manual

256

Il rj is areference toj fromi

string rj = getReference(i, j)

print rj "\n"

This reference will never change when i and j are moved, copied (together), archived, and restored (together).
Copyiand j to getii and jj

Itemj = itenFronReference(i, rj) // get itemthat rj refers

Itemjj = itenFronReference(ii, rj) // get itemthat rj refers

Typically these would be used when generating traceability. The DXL that generates the layout DXL or attribute DXL
would call get Ref er ence and then insert the returned value into the layout DXL or attribute DXL code as the value
passed to i t enfFr onRef erence().

Hierarchy manipulation

This section defines functions for item manipulation. All creation functions are specific to the type of item being created,
but you can delete, undelete, purge, move, and rename items of all types using the Item handle. The term item means a
variable of type | t em type Fol der, type Pr oj ect or type ModNane_. You can also reference an open module using
the data type Modul e. Passing a null argument of type | t em Fol der, Pr oj ect, Modul e or ModName_ to any
function results in a run-time DXL error.

delete(item)

Declaration
string delete({ltemi|Fol der f|Project p})

string del et e(ModNane_ &nodRef
[, bool hardDel ete])

bool del et e(ModNane_ &nrodRef)

Operation

Marks the item specified by the argument as deleted. If the item is already marked as deleted, or if the user does not have
delete access to it, the call fails.

The first and second forms return a null string on success; otherwise, an error message.

In the second form, the module is not purged if har dDel et e issettof al se. If har dDel et e ist r ue or missing, the
module is purged. If the operation succeeds and the module is purged, also sets the ModNane_ argument to nul | .

DXL Reference Manual

The third form is retained for compatibility with earlier releases. It returns t r ue on success; otherwise, f al se. This is
equivalent to har dDel et e(modul e) (the module need not be soft deleted). If the operation succeeds, also sets the
ModNane_ argument to nul | .

For a folder or project, the user must also have delete access to all the undeleted folders, projects, and modules in it.

undelete(item)

Declaration
string undelete({Itemi| Fol der f|Project p|MdNanme_ nodRef})
bool undel et e(ModNane_ nodRef)

Operation

Marks the item specified by the argument as undeleted. If the item is not marked as deleted, or if the user does not have
delete access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.
The second form is retained for compatibility with earlier releases. It returns t r ue on success; otherwise, f al se.

For a folder or project, this function also marks as undeleted all folders, projects, and modules in it, to which the user has
delete access.

Example
undelete item"ny fol der”

purge(item)

Declaration
string purge({ltem & | Fol der &f | Project &p| ModName_ &nodRef})
bool purge(MdNane_ &odRef)

Operation

Purges the item specified by the argument from the database. If the operation succeeds, sets the argument to nul | . If the

item is not marked as deleted, or if the user does not have delete access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.

The second form is retained for compatibility with earlier releases. It returns t r ue on success; otherwise, f al se.
For a folder or project, the user must also have delete access to all the undeleted folders, projects, and modules in it.

For a ModNarme__ argument, the function deletes all incoming and outgoing links before purging the module.

Example
purge item"ny fol der”

or

DXL Reference Manual

257

258

Itemi = item"ny folder"
purge i

move(item)
Declaration

string nmove({ltemi| Fol der f|Project p|ModName_ nodRef}, Fol der destination)

Operation

Moves the item specified by the first argument to folder dest i nat i on. The folder can be any folder except the database
root.

If the user does not have delete access to the item, or create access to the destination folder, the call fails.
If the operation succeeds, returns a null string; otherwise, returns a string describing the error.
Example

nove(item "My Mdul e", folder "/new projects")

rename(item)

Declaration

string rename({ltemi| Fol der f|Project
p| ModNane_ nodRef},
string nane,
string description)

bool renane(ModNane_ nodRef)
Operation

Renames the item specified by the first argument to name and associates it with descr i pt i on. The name argument
must be an unqualified name. If the user does not have modify access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.
The second form is retained for compatibility with earlier releases. It returns t r ue on success; otherwise, f al se.
Example

renanme(fol der "my folder”, "public", "for review")

ltems

This section defines functions and f or loops for items, which make use of the | t emdata type. Passing a nul | argument
of type | t emto any function results in a run-time DXL error.

DXL Reference Manual

259

See also the functions in “Hierarchy clipboard,” on page 249, “Hierarchy information,” on page 252, and “Hierarchy
manipulation,” on page 256.

item(handle)

Declaration
Itemiten(string itemNane)

Operation

If i t emNane is the name of an item to which the current user has read access, returns a handle of type | t em otherwise,
returns nul | .

itemFromID(handle)

Declaration
ItemitenFrom D(string uniquel D)

Operation

If uni quel Dis the ID of an item to which the current user has read access, returns a handle of type | t em otherwise,
returns nul | .

for item in folder

Syntax
for itenmRef in folder do {

}
where:

it enRef is a variable of type | t em

f ol der is a variable of type Fol der
Operation

Assigns i t enRef to be each successive undeleted item (for which the user has read access) in f ol der . Items in
sub-folders are not included.

Example
Itemi
for i in current Folder do {

print (name i) "\n"

}

DXL Reference Manual

260

for all items in folder

Syntax
for itenRef in all folder do {

}
where:

it enRef is a variable of type | t em

f ol der is a variable of type Fol der
Operation

Assigns i t enRef to be each successive item (for which the user has read access) in f ol der , including deleted items.
Items in sub-folders are not included.

Example
Fol der f = current
ItemitenRef

for itenRef in f do {
print full Nanme(itenRef) "\n"

for all items in project

Syntax
for itenRef in project do {
}
where:
it enRef is a variable of type | t em
pr oj ect is a variable of type Pr oj ect
Operation

Assigns i t enRef to be each successive undeleted item (for which the user has read access) in pr oj ect , looping
recursively through contained folders and projects.

DXL Reference Manual

261

Example
ItemitenRef

for itenRef in current Project do
print nanme(itenRef) "\n"

Folders

This section defines functions for folders.

See also the functions in “Hierarchy clipboard,” on page 249, “Hierarchy information,” on page 252, and “Hierarchy
manipulation,” on page 256.

Setting current folder

The assignment operator = can be used as shown in the following syntax:
current = Fol der fol der

Makes f ol der the current folder, provided the user has read access to the folder. See also, the cur r ent (f ol der)
function.

To set the current folder to the database root, use:
current = folder "/"

For large DXL programs, when you set the current folder, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrent Fol der
becomes
(current Fol derRef __) = newCurrent Fol der

Note that this cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
folder.

current(folder)

Declaration

Fol der current()

Operation
Returns a handle on the current folder.
The current folder can be a project.

The current folder has two important implications:

DXL Reference Manual

262

* When you specify an item name, it is interpreted relative to the current folder.

« When you set the current folder using the assignment operator, you lock that folder and its ancestors, so that it cannot
be renamed, deleted or moved.

The project or folder that is opened in the Database Explorer is similarly locked. 1f you open a DXL window or run
another DXL script, that has its own current folder. The current folder for the DXL window is initially the current
folder of its parent.

If all folders are closed, the database root becomes the current folder.

Example
Fol der f = current

folder(handle)

Declaration
Fol der fol der(string fol der Nane)
Fol der folder(ltemitenRef)

Operation

If the argument specifies a folder to which the current user has read access, returns a handle of type Fol der ; otherwise,
returns nul | .

The string "/" identifies the database root.

Example
This example sets the current folder to the database root:

current = folder "/"

convertProjectToFolder

Declaration
string convert Project ToFol der (Proj ect projectRef, Folder &fol derRef)

Operation

Converts the project pr oj ect Ref to a folder f ol der Ref . If the operation succeeds, sets pr oj ect Ref tonul |,
makes the folder argument valid, and returns a null string; otherwise, returns an error message. If the user does not have
control access to the project or the create projects power (through may Cr eat eTopLevel Fol der s), the call fails.
Example

Project p = project "/Construction Project"”

Fol der f

string s = convertProject ToFol der(p, f)

DXL Reference Manual

263

if (null s)

print "Converted project
el se

print "Error: " s

nanme(f) "to folder."

convertFolderToProject

Declaration

string
convert Fol der ToPr oj ect (Fol der fol der Ref,

Proj ect &project Ref)
Operation

Converts the folder f ol der Ref to a project pr oj ect Ref . If the operation succeeds, sets f ol der Ref tonul |,
makes the project argument valid, and returns a null string; otherwise, returns an error message. If the user does not have
control access to the folder or the create projects power (through may Cr eat eTopLevel Fol der s), the call fails.
Example

Fol der f = folder "/Construction Project/test records”

Project p

string s = convertFol der ToProj ect (f, p)

if (null s)

print "Converted folder " nane(p) "to project.”
el se

print "Error: " s

create(folder)

Declaration

Fol der create(string nane,
string description)

string create(string nane, description desc, Folder& f)

Operation

Creates a folder with the given nane and descr i pti on. The nane argument can be an absolute or relative name, and
may include the path. If the user does not have create access to the parent folder, the call fails.

The second form of the perm performs the same function as the first, but returns any error message, and passes the created
folder back via the last argument.

DXL Reference Manual

264

closeFolder

Declaration
string cl oseFol der ()

Operation

Changes the current folder to refer to the parent of the current folder. If the operation succeeds returns a null string;
otherwise, returns a string describing the error.

Example
cl oseFol der ()

Projects

This section defines operators, functions and f or loops for projects, which make use of the Pr oj ect data type. Passing a
nul | argument of type Pr oj ect to any function results in a run-time DXL error.

See also the functions in “Hierarchy clipboard,” on page 249, “Hierarchy information,” on page 252, and “Hierarchy
manipulation,” on page 256.

Setting current project

The assignment operator = can be used as shown in the following syntax:
current = Project project

Makes pr oj ect the current folder, and the current project, provided the user has read access to the folder. See also, the
current (project) function.

If the current folder is a project, it is also the current project. If the current folder is not a project, the current project is the
nearest project containing the current folder. If the current folder is not contained in a project, the current project is null.

For large DXL programs, when you set the current project, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrent Proj ect
becomes

(current Fol derRef __) = newCurrentProject

Note: This cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
project.

Example

current = project "/M/ Project”

DXL Reference Manual

265

current(project)

Declaration

Proj ect current()

Operation

Returns a handle on the nearest ancestor project of the current folder, or nul | if the current folder is not in any project.

Example
Modul e m
/1 check project is open

if (null current Project) {
ack "No project is open"

hal t
}
for min current Project do {

print "Mdule " m"Nane" " is open"
}

project(handle)

Declaration
Proj ect project(string projectNange)
Operation

If pr oj ect Nane is the absolute or relative name of a project to which the current user has read access, returns a handle
of type Pr oj ect to the project; otherwise, returns null.

for project in database

Syntax
for project in database do {

}...

where:
pr oj ect is avariable of type Pr oj ect

Operation

Assigns pr oj ect to be each successive project (for which the user has read access) in the database, excluding deleted
projects. Compare with f or al | projects in database.

DXL Reference Manual

266

Example
This example prints a list of projects in the database:
Project p

for p in database do {
print(name p) "\n"

}

for all projects in database

Syntax

for name in database do {

}...

where:

narre is a string variable

Operation

Assigns the string nare to be each successive project name (for which the user has read access) in the database, including
deleted projects. Compare with f or project in database.

Example

This example prints a list of projects in the database:

string s

for s in database do {
print s "\n"

}

getinvalidCharlnProjectName

Declaration
char getlnvalidCharl nProject Nanme(string s)

Operation
Returns any character in string s that would be invalid in a project name.

isDeleted(project name)

Declaration
bool isDel eted(string projectNane)

DXL Reference Manual

267

Operation

If pr oj ect Name is a project that has been deleted but not purged, or if it does not exist, or if the user does not have read
access to it, returns t r ue; otherwise, returns f al se.

This function is retained only for compatibility with earlier releases. New programs should use the i sDel et ed(i t em)
function.

Example

Project p = project "Test Project

if (!'null p & !isDeleted p)
current = p

isValidName

See “isValidName,” on page 278.

create(Project)

Declaration

Proj ect create(string proj Nane,
string description

[,string adni nUser

[,string password,

string | ogi nsystem
int passwordPolicy,

int adm nPol i cy,
string &ressage]])

string create(string nane, description desc, Project& p)

Operation

Creates a project, pr oj Narre, having descri pti on. The adm nUser and following arguments are retained for
compatibility with earlier releases; in Rational DOORS 6.0, the values of these arguments are ignored. However, a call to
cr eat e that uses any of the legacy arguments sets the current folder to the new project (for compatibility with legacy DXL
scripts, which expect the new project to be opened).

You must assign this function to a variable of type Pr oj ect , otherwise, it tries to create a linkset between modules
proj Nane and descri pti on.

Administrator power is required for this function.

The second form of the perm performs the same function as the original perm, but returns any error message, and passes
the created project back via the last argument.

Example

Project p = create("Test Project”, "Play area for
DOORS")

DXL Reference Manual

268

closeProject

Declaration
voi d cl oseProject ()

Operation

Sets the parent of the current project to be the new current folder. In Rational DOORS 6.0, closing a project means
changing the current folder.

Example
cl oseProj ect ()

openProject

Declaration
string openProject(string proj Name
[,string user,
string pass])
Operation

Sets the named project as the current folder. The user and passwor d arguments are retained for compatibility with
earlier releases. In Rational DOORS 6.0 these arguments are ignored.

If the project opens successfully, returns nul | ; otherwise returns an error message. If the project does not exist, or the user
does not have read access to it, the call fails.

Example
string ness = openProject("Denp", "Catrina Magali", "aneblr")

doorsVersion

Declaration

string doorsVersion()

Operation

Returns the version of the current Rational DOORS executable as a string.

Example
print doorsVersion

DXL Reference Manual

Looping within projects

The following sections describe the for loops available for looping within projects:

.

.

for all items in project

for open module in project

for all modules in project

for in-partition in project

for out-partition in project

for partition definition in project

for trigger in project

DXL Reference Manual

269

270

DXL Reference Manual

Chapter 14
Modules

This chapter describes features that operate on Rational DOORS modules:

.

Module access controls
Module references
Module information
Module manipulation
Module display state
Baselines

Baseline Set Definition
Baseline Sets

History

Descriptive modules
Recently opened modules

Module Properties

Module access controls

This section describes functions that report on access rights for a module. The module has to be open in exclusive edit
mode.

canCreate(module)

Declaration
bool canCreate(Mdule m

Operation

Returns t r ue if the current Rational DOORS user has create access to module m otherwise, returns f al se.

canControl(module)

Declaration
bool canControl (Module m

DXL Reference Manual

271

272

Operation

Returns t r ue if the current Rational DOORS user can change the access controls on module m otherwise, returns
fal se.

canModify(module)

Declaration
bool canModi fy(Mdule m

Operation

Returns t r ue if the current Rational DOORS user can modify module m otherwise, returns f al se.f

canDelete(module)

Declaration
bool canDel et e(Modul e m

Operation

Returns t r ue if the current Rational DOORS user can delete module m otherwise, returns f al se.

Module references

This section defines functions and for loops that make use of the Modul e data type.

See also the functions in “Hierarchy clipboard,” on page 249.

Setting current module

The assignment operator = can be used as shown in the following syntax:
current = Modul e nodul e
Makes modul e the current module. See also, the cur r ent (nodul e) function.

For large DXL programs, when you set the current module, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrent Modul e
becomes
(current Mdul eRef __) = newCurrent Modul e

DXL Reference Manual

273

Note: This cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
module.

current(module)

Declaration
Modul e current ()

Operation

Returns a reference to the current module. In some contexts cur r ent could be ambiguous, in which case it should be
followed by Mbdul e in a cast.

Example

print (current Modul e)."Description" "\n"

module(handle)

Declaration
Modul e nodul e(Item itenRef)
ModNanme_ nodul e(string nodRef)

Operation

The first form returns a handle of type Modul e fori t enRef if i t enRef is an open module. Otherwise, it returns
nul | .

The second form returns a handle of type ModNarme__ for the named module, whether it is open or closed.

for module in database

Syntax
for min database do {

where:

mis a variable of type Modul e

Operation
Assigns the variable mto be each successive open module (for which the user has read access) in the database.

DXL Reference Manual

274

for open module in project

Syntax

for min project do {

}
where:
m is a variable of type Mbdul e
pr oj ect is a variable of type Pr oj ect
Operation

Assigns the variable mto be each successive open module (for which the user has read access) in pr oj ect . This loop
includes modules in sub folders as well as those in the top level of the project. It does not include modules in projects that
are contained in the project. This only works on the user’s computer.

Example
Modul e m
int count =0

for min current Project do {
print m"Name" "\n"
count ++

}

if (count==0)
print "no nodules in current project\n"

for all modules in project

Syntax
for nodul eNanme in project do {

}
where:
nodul eNane is a string variable
pr oj ect is a variable of type Pr oj ect

DXL Reference Manual

275

Operation

Assigns the variable mrodul eNane to be each successive module name (for which the user has read access) in pr oj ect .
This loop includes open or closed modules but only at the top level of the project. This is no longer everything contained in
the project. This only works on the user’s computer.

Example
string nodNane

for nodName in current Project do
print nodName "\n"

for Module in Folder do

Syntax

for min folder do {

}
where:
m is a variable of type Mbdul e
f ol der is a variable of type Fol der
Operation

This provides access to all open modules that have the specified folder as their parent.

Example

Modul e m

Fol der f = current
for min f do {

print "Module " (name n) " is open "\n

Module information

This section defines functions that return information about Rational DOORS modules.

See also the functions in “Hierarchy information,” on page 252.

DXL Reference Manual

276

Module state

Declaration

bool basel i ne(Mdul e m

bool exi sts(MdNane_ nodRef)
bool open(ModNane_ nodRef)
bool unsaved(Mdul e m

Operation

Each function returns t r ue for a condition defined by the function name as follows:

Function Returns true if

basel i ne module mis a baseline; otherwise, returns f al se

exi sts module nodRef exists in the current project; otherwise, returns f al se
open module modRef is open in any mode; otherwise, returns f al se
unsaved module mhas not been saved since changes were made; otherwise returns
fal se
Example
string s = "/proj 1/ SRD'
Itemi = items
if (exists nmobdule s) print "and the systemrequirenents ... \n"

if (open nmodule s) print "SRD is open\n”

version

Declaration
string version(Mdule m

Operation
Returns the version of open module mas a string.

Example

print (version current Module)

DXL Reference Manual

277

canRead, canWrite(module)

Declaration
bool canRead(Mdul e m
bool canWite(Mdule m

Operation
Returns whether the current Rational DOORS user has read or write access to the top of open module m

getSelectedCol

Declaration
int getSel ectedCol (Mdule m

Operation

Returns the integer identifier for the currently selected column in m If the specified module is not displayed, or no column
is selected, returns - 1.

isRead, isEdit, isShare

Declaration

bool isRead(Mdule m
bool isEdit(Mdule m
bool isShare(Mdule m

Operation
Returns whether module mis open for reading, for editing or in shared mode. Otherwise, returns f al se.

These functions only return values for modules opened by the current user in the current session.

Example
Modul e m
for min current Project do {
if (isEdit m
print m"Name" " is open edit\n"
}

DXL Reference Manual

278

getinvalidCharinModuleName

Declaration
char getl nval i dChar | nvMbdul eNanme(string s)

Operation

Returns any character in string s that would be invalid in a module name.

isValidDescription

Declaration
bool isValidDescription(string descString)

Operation
Returnst r ue if descSt ri ng is a legal description for a project, module, view or page layout; otherwise, returns f al se.

Example
This example returns t r ue.
bool b = isValidDescription("Test Description")

isValidName

Declaration
{char| bool} isValidNanme(string nameString)

Operation

By default, returns the first illegal character of nameSt r i ng. If you force a type bool , returnst r ue if nameSt ri ng is
a legal name for a project, module, view or page layout; otherwise, returns f al se.

Example

This example returns &, the first illegal character in the name:

char ¢ = isValidName("ill egal &Nane")

This example returns t r ue:

char ¢ = isValidNanme("I| egal Nane")

isValidPrefix

Declaration
bool isValidPrefix(string prefixString)

DXL Reference Manual

279

Operation

Returnst rue if prefi xSt ri ng is a legal prefix for an object; otherwise returns f al se.

Example
This example returns t r ue:
bool b = isValidPrefix("PREFIX-1")

isVisible

Declaration
bool isVisible(Mdule m

Operation

Returns t r ue if module mis open for display on the screen. Otherwise, returns f al se.

Module manipulation

This section defines the functions for creating modules and performing database administration tasks on modules other
than descriptive modules, which are covered in “Descriptive modules,” on page 323.

See also the functions in “Hierarchy manipulation,” on page 256.

create(formal module)

Declaration

Modul e create(string nane,
string desc,
string prefix,
int absno

[, bool display])

string create(string name, description desc, prefix pref, int absnum Modul e& nm

Operation

Creates a formal module with name nane, description desc, object prefix pr ef i x and starting absolute number
absno. The nane argument can be an absolute or relative path. The optional last argument controls whether the module
is displayed in the user interface after it has been created.

The second form creates a formal module. However, in the case of an error which causes no module to be created, the error
message is returned instead of generating a run-time DXL error.

DXL Reference Manual

280

create(descriptive module)

Declaration

string create(string nane, description desc, prefix pref, int absnum string
filename, Modul e& m

Operation

Creates a Descriptive module. When an error occurs, which causes no module to be created, the error message is returned
instead of generating a run-time DXL error.

create(link module)

Declaration

Modul e create(string nane,
string desc,
i nt mappi ng

[, bool display])

string create(string nane, description desc, int nmapping, Mdule& m
const int nanyToMany

const int nanyToOne

const int oneToMany

const int oneToOne

Operation

Creates a link module with name nan®e, description desc, and a mapping. The nane argument can be an absolute or
relative path. The mappi ng argument can take one of the following values: many ToMany, nany ToOne, oneToMany
or oneToOne. As with the creation of a formal module, the optional last argument controls whether the module is
displayed in the user interface after it has been created.

The second form of the perm creates a Link module, similar to the perm Modul e cr eat e(hanme, descri ption,
mappi ng) , but returns error messages instead of generating a run-time DXL error.

close(module)

Declaration
bool cl ose(Mdule m

[, bool save])
Operation

Closes the open module m with the option of saving changes. If save is t r ue, the user is prompted to save before
closing. If save is f al se, closes the module without saving. If the module is closed, the call fails.

DXL Reference Manual

281

If the operation fails, returns f al se. If mis a link module, cl ose only succeeds if there are no loaded linksets and no
other module is currently referring to the link module. Any open link modules that mrefers to are also closed.

The Rational DOORS object clipboard is cleared when a module is closed.

Do not access the module handle after the module has been closed.

downgrade

Declaration
bool downgrade(Mdule m

Operation

Sets the open mode for module mto read only, if it is open in edit or shareable mode. This enables other users to open it in
shared mode, or one at a time in exclusive edit mode. If the operation succeeds, returns t r ue; otherwise, returns f al se.
If the module is closed, the call fails. When using this perm, the save perm should be used prior to downgr ade, so that
any changes to the module are preserved.

This function is not equivalent to checking whether the current user can modify the given object.

downgradeShare

Declaration
bool downgr adeShare(Mdul e m

Operation

Sets the open mode for module mto shareable, if it is open in edit mode. This enables other users to open it in shared mode
or read mode. If the operation succeeds, returns t r ue; otherwise, returns f al se. If the module is closed, the call fails.

This function is not equivalent to checking whether the current user can modify the given object.

printModule

Declaration
voi d print©Mdul e(Mdule m

Operation
Opens the print dialog box for the open module m

Example
printModul e current Modul e

DXL Reference Manual

282

read, edit, share(open module)

Declaration

Modul e read(string nane
[, bool disp[, bool |oadStandardView])

Modul e edit(string nane
[,bool disp[, bool silent[, bool |oadStandardViewj]])

Modul e share(string nane
[,bool disp[, bool silent[, bool |oadStandardViewj]])
Operation

These functions return a module handle for the module named nare. The name argument can be an absolute or relative
path. The r ead function opens the module for reading, edi t for unshared editing, and shar e for shared editing. The
optional di sp flag enables the visibility of the opened module to be specified; the module is displayed in a window if

di spistrue or omitted.

The optional parameter silent specifies whether the user should be prompted when the module cannot be opened in the
desired mode because of locks. If this parameter is not supplied it is assumed to be false.

Using the optional parameter loadStandardView means you can force the standard view to be loaded as the default. If this
parameter is not supplied it is assumed to be false.

Note: If amodule is open in a particular mode, that same module must not be opened in another mode, if the statement
doing this is within a f or loop.

Example
Module m = edit("/Car/ Car user reqts", false)

save(module)

Declaration
voi d save(Mdule m

Operation

Saves open module m

copy(module)

Declaration

bool copy(ModName_ nodRef,
string newNane,
string newbDesc)

DXL Reference Manual

283

Operation

Copies module nodRef to new name newNarre, with description newbDes c, within the same folder or project. All
outgoing links are copied, but incoming links are not copied, and linksets are not updated.

hardDelete(module)

Declaration
bool har dDel et e(ModNane_ &nrodRef)

Operation

Removes module modRef from the database (compare with the sof t Del et e(nodul e) function); the module cannot
be recovered with undel et e(i t em) following this operation.

If the operation succeeds, sets the argument to nul | , and returns t r ue; otherwise, returns f al se. If the user does not
have delete access to the item, or if the module is open, the call fails.

The function har dDel et e should be used instead of the del et e(i t em) function, for all new programs.

Note: soft Del et e must be used on a module before using har dDel et e.

softDelete(module)

Declaration
bool softDel et e(ModNane_ nodRef)

Operation

Marks module nodRef as deleted. The module is not actually deleted until it is purged. Modules marked for deletion can
be recovered using the undel et e(i t em) function.

When used interactively, a user who tries to use this function on a module with links has to confirm or cancel the operation.
In batch mode no confirmation is required.

formalStatus

Declaration
voi d fornmal Status(Mdul e, String status)

Operation

Displays the supplied string in the third area of the status bar in the specified module, which must be a formal module. If
the module is not a formal module a DXL run-time error is generated.

DXL Reference Manual

284

autolndent

Declaration
bool aut ol ndent (Modul e)

voi d aut ol ndent (bool)

Operation

The first form returns true if auto-indentation for the main column in the specified module is currently turned on, otherwise
it returns false.

The second form sets the auto-indentation status of the current module. The current module should be a formal module,
otherwise a run-time DXL error will occur.
Example

print autolndent current

Module display state

This section defines functions for getting and setting the display attributes of Rational DOORS modules.

level(module get)

Declaration
int level (Mdule m

Operation
Returns the display level of module m which is between 0 (all levels) and 10.

level(module set)

Declaration

void level (int i)

Operation

Sets the display level of the current module. Argument i must be between 0 (all levels) and 10.

DXL Reference Manual

Get display state

Declaration

bool filtering(Mdule m
bool graphi cs(Mdul e m
bool outlini ng(Mdule m
bool showPi ctures(Mdule m
bool showTabl es(Mbdul e m
bool sorting(Mdule m

Operation

Returns the current display state of attributes in open module m graphics, filtering, outlining, visibility of pictures, visibility

of tables, or sorting.

Example

Modul e m = current

int storelevel = level m
bool storeG aphics = graphics m

bool storeFiltering = filtering m
bool storeQutlining = outlining m
bool storeSorting = sorting m
functi onThat ChangesDi spl ay

/1 now restore old settings

| evel storelevel

graphi cs storeG aphics

filtering storeFiltering
outlining storeQutlining

sorting storeSorting

if (showTables current) {

print "table contents are visible"

}

if (!showPictures current) {
ack "Pictures are not visible"

}

DXL Reference Manual

285

286

Set display state

Declaration

void filtering(bool onCfif)

voi d graphi cs(bool onOf)

voi d |inksVisible(bool onOif)
void outlin{e|ing}(bool onCf)
voi d showPi ct ures(bool onCOff)
voi d showTabl es(bool onOf)

voi d sorting(bool onOf)

Operation

Turns on or off in the current module the attributes: filtering, graphics, visibility of links, outlining, visibility of pictures,
visibility of tables and sorting.

Example

graphics on
graphics true
graphi cs of f
showPi ctures true

showTabl es fal se

refresh

Declaration
voi d refresh(Mdule m

Operation

Refreshes the display for open module m Rational DOORS refreshes the current module after the termination of a DXL
script. However, scripts that change the displays of other modules, or that create dialog boxes, need to manage display
updates explicitly with this function.

bringToFront

Declaration
string bringToFront ([Modul e])

DXL Reference Manual

287

Operation

If a module is supplied it will bring that module window to the front of other windows. If a module is not supplied it will
bring the Database Explorer window to the front. Note that this will not bring windows to the front of modal dialogs.

Baselines

This section defines functions that operate on Rational DOORS formal module baselines. The file:
$DOCORSHOVE/ | i b/ dxI / Exanpl e/ basel i ne. dxI
contains a baseline comparison program, which uses the functions described in this section.

Many of the functions use the data type Basel i ne.

Note: When retrieving information, e.g. annotation, from a baseline you must use them withinaf or baseline in
nodul e loop.

baseline

Declaration

Basel i ne baseline(int ngjor,
int mnor,
string suffix)
Operation

Returns a baseline handle for the combination of the specified maj or and i nor version numbers and suf f i x string. If
the baseline does not have a suffix, use nul | . This is only used to get a baseline handle for use in the baseline | oad perm.
It cannot be used to retrieve information about that baseline, for example annotation information.

Example

Basel ine b = baseline(1,0,"al pha")

baselineExists

Declaration

bool baselineExi sts(Mdule m
Basel i ne b)

Operation

Returns t r ue when baseline b exists in module m otherwise returns f al se.

Example
print baselineExi sts(current Mdule, b)

DXL Reference Manual

288

create(baseline)

Declaration

void create([Module m]
Basel i ne b,
string annot)
Operation

Creates a baseline for module mas specified by baseline handle b and annotation string annot . If the first argument is
omitted, it uses the current module.

When this function is used to create a baseline, the module where the baseline is being created will be closed.

Use the next Maj or, next M nor functions to instantiate the baseline handle.

delete(baseline)

Declaration

voi d del ete([Module m]
Basel i ne b)

Operation
This enables deletion of baselines in formal modules. The first argument defaults to the current module.

Example
Baseline b = baseline(0, 1, "")
if (baselineExists(current Mddule, b)) del ete(b)

Get baseline data

Declaration

int nmaj or(Baseline b)

int mnor(Baseline b)

string suffix(Baseline b)
string annot ati on(Basel i ne b)
string user(Baseline b)

Dat e dateOf (Basel i ne b)

Operation

These functions return the various data fields associated with baseline b. All these functions are included in the “Baselines
example program,” on page 291. They must be used withinaf or basel i ne i n nodul e loop.

DXL Reference Manual

getMostRecentBaseline

Declaration
Basel i ne
get Most Recent Basel i ne(Modul e m
[, bool I astbaseline])
Operation
Returns the last baseline. If | ast basel i ne issettot r ue, it returns the version number of the last baseline even if it
has been deleted. Otherwise, it returns the last baseline that still exists.
Example
Modul e m = current
Basel ine b = get Most Recent Basel i ne(m

print(major b)"."(mnor b)(suffix b)"
"(annotation b)"\n"

getinvalidCharlnSuffix

Declaration
char getlnvalidCharlnSuffix(string s)

Operation
Returns any character in string s that would be invalid in a baseline suffix.

load

Declaration

Modul e | oad([Modul e m]
Basel i ne b,
bool displ ay)

Operation

Loads baseline b of module m and if the last argument is on or t r ue, displays it. If the first argument is omitted, it uses
the current module.

Example
This example loads baseline 1.0 (without a suffix) of the current module, without displaying it.

| oad(basel ine(1,0,null), false)

DXL Reference Manual

289

290

nextMajor, nextMinor

Declaration
Basel i ne nextMajor([string suffix])

Basel i ne nextM nor([string suffix])

Operation
Returns the next major or minor baseline, with or without a suffix.

Example
creat e(next Maj or, "al pha review')

create(next Maj or "A", "al pha review')

Declaration

Basel i ne suffix(string suffix)
Operation

Returns a new suffix version of the last baseline.

Can be used to baseline handle for the current version of a module.

Example

create(suffix "AA", "no annotation")

for baseline in module

Syntax

for b in nmodule do {

}
where:
b is a variable of type Basel i ne
nodul e is a variable of type Mbdul e
Operation

Assigns the baseline b to be each successive baseline found for module nodul e.

DXL Reference Manual

201

Example
Baseline b

for b in current Mdule do {
print (major b) "." (mnor b) (suffix b) "
‘'t

print (user b) "\t " (dateO b) "\n"
(annotation b) "\n"

Baselines example program

/1 baseline DXL Exanpl e

/*
Exanpl e of basel i ne DXL
*/

Baseline b
Modul e old = current
for b in current Mdule do {

print(major b)"."(mnor b)(suffix b)"
"(annotation b)"\n"

| oad(b, true)

br eak /1 just load first one

}

current = old /'l reset

if (confirm"create exanple baseline?") {
creat e(next Maj or, "annotation hel ps expl ain
project history")

/1 current Module is closed by create.

module(handle)

Declaration

ModNane_ nodul e(Modul eVer si on nodver)

Operation

This returns a handle of type ModName_ for the given Modul eVer si on nodver . This gives access to information like
name, description, etc. It returns null if the Modul eVer si on does not reference an existing module to which the user has
read access.

DXL Reference Manual

292

data(for ModuleVersion)

Declaration
Modul e dat a(Modul eVer si on nodver)

Operation

This returns the data for the given Modul eVer si on if the user has it open, loaded into memory. Otherwise, it returns
null.

load(ModuleVersion)

Declaration
Modul e | oad(Modul eVer si on nodver, bool display)

Operation

This loads the data (read-only mode) for the given Modul eVer si on, if it references a current version or baseline to
which the user has read access. If the display argument is t r ue, then the baseline will be displayed. The perm returns the
data on success, and null on failure. If the Modul eVer si on argument is null, the perm will return null.

moduleVersion(handle)

Declaration
Modul eVer si on nodul eVer si on(Modul e m
Modul eVer si on nodul eVer si on(ModNane_ nodRef [, Basel i ne b])

Modul eVer si on nodul eVersi on(string index [, Baseline b])

Operation
The first form returns the Modul eVer si on reference for the given module version. The module version must be open.

The second form returns the Mbdul eVer si on reference for the given ModNane_/ Basel i ne combination. The
reference is to the current version of the module if the Baseline argument is omitted.

The third form returns the Modul eVer si on reference for the given index/Baseline combination. The reference is to the
current version if the Baseline argument is omitted.

isBaseline(ModuleVersion|Module)

Declaration
bool isBaseline(Mdul eVersi on nodver| Mdule m

DXL Reference Manual

293

Operation
This returns t r ue if, and only if, the given Modul eVer si on or module represents a baseline of a module.

baselinelnfo(current Module)

Declaration
Basel i ne basel i nel nfo(Mdul e m

Operation
This returns the baseline designation information of the specified open module m Returns null if mis a current version.

baseline(ModuleVersion)

Declaration
Basel i ne basel i ne(Mbdul eVer si on nodver)

Operation

This returns a baseline handle with the major, minor and suffix settings extracted from the Modul eVer si on nodver
supplied as an argument. The user, date and annotation will not be initialized. Returns null if rodver corresponds to a

current version.

baselineExists(ModuleVersion)

Declaration
bool basel i neExi st s(Modul eVer si on nodver)

Operation

This returns t r ue if, and only if, the baseline referenced by the Modul eVer si on nbdver argument exists in the
database and can be read by the user.

name(ModuleVersion)

Declaration
string nane(Mdul eVersi on nodver)

Operation

Returns the name of the module referenced by Modul eVer si on nodver . Returns null if nodver does not refer to a
module to which the user has read access.

DXL Reference Manual

294

fullName(ModuleVersion)

Declaration
string full Name(Modul eVersi on nodver)

Operation

Returns the full name, including path, of the module referenced by Modul eVer si on nodver . Returns null if nrodver
does not refer to a module to which the user has read access.

versionString(ModuleVersion)

Declaration
string versionString(Mdul eVersion nodver)

Operation

Returns the version 1D specified in the Modul eVer si on nodver , in the format <major>.<minor> where there is no
suffix, or <major>.<minor>(<suffix>). If modver specifies a current version, this perm returns null.

delete(Baseline)

Declaration
voi d del ete([Module m] Baseline b)

Operation
Deletes the specified baseline in a formal module. First argument defaults to the current module.

getMostRecentBaseline(Module)

Declaration
Basel i ne get Most Recent Basel i ne(Modul e nf, bool del eted])

Operation

Updated the get Mbst Recent Basel i ne perm to take an optional 2nd argument which if t r ue directs the perm to
return the version number of the last baseline even if it has been deleted. Otherwise, it returns the last baseline which still

exists.

DXL Reference Manual

295

Baseline Set Definition

for BaselineSetDefinition in Folder

Declaration
for baseSetDef in f
where:

baseSet Def is a variable of type
Basel i neSet Definition

f is a variable of type Fol der

Operation

This will return all Baseline Set Definitions baseSet Def whose descriptions are held in the given Folder f , which might
also be a Project, to which the user has Read access. The Folder’s Baseline Set Definition list is read from the database at the
start of this iterator.

for BaselineSetDefinition in ModName_

Declaration
for baseSet Def in nodRef

where:

baseSet Def is a variable of type Basel i neSet Defi nition

nodRef is a variable of type ModNane_
Operation
This returns all of the Baseline Set Definitions to which the user has Read access, which include the specified module in
their lists.

create(BaselineSetDefinition)

Declaration
string create(Folder f, string name, string desc, BaselineSetDefinition &bsd)

DXL Reference Manual

296

Operation

This enables a user with Create access in the Folder to create a new Baseline Set Definition bsd with the given name and
description. The new Baseline Set Definition will initially inherit its access controls from the folder. The name must
conform to the constraints which apply to folder names, and must be unique across the other Baseline Set Definitions in
that same folder. The description desc might be an empty string.

The newly created Baseline Set Definition is returned in the supplied bsd parameter.

The returned string will be non-null in the case that the Baseline Set Definition could not be created :
e If the name clashes with the name of some other Baseline Set Definition on that Folder

e Somei/o or lock error

« Insufficient access

In this case, no Baseline Set Definition will be created (the bsd reference will be set to null)

rename(BaselineSetDefinition)

Declaration
string renane(BaselineSetDefinition bsd, string newNane)

Operation

This enables a user with Modify access to change the name of the Baseline Set Definition bsd. It returns null on success,
and an error message on failure, including insufficient access, or the Baseline Set Definition not being locked for edit, or the
name not being unique in that Folder.

name(BaselineSetDefinition)

Declaration
string nane(Basel i neSet Definition bsd)

Operation
This returns the name of the given Baseline Set Definition bsd.

setDescription(BaselineSetDefinition)

Declaration
string setDescription(BaselineSetDefinition bsd, string desc)

Operation

This enables a user with Modify access to change the description of the Baseline Set Definition. It returns null on success,
and an error message on failure, including insufficient access.

A lock on the Baseline Set Definition is required to change the description of that Baseline Set Definition. This lock must be
acquired using the lock() perm.

DXL Reference Manual

297

description(BaselineSetDefinition)

Declaration
string description(BaselineSetDefinition bsd)

Operation

This returns the description text for the given Baseline Set Definition bsd. If the Baseline Set Definition’s information has
not been read, this will cause the information to be read from the database.

for module in BaselineSetDefinition

Declaration
for nodRef in bsd do {

}
where:
nodRef is a variable of type ModNane_
bsd is a variable of type
Basel i neSet Definition
Operation

This returns references to all modules (to which the user has Read access) which are included in the Baseline Set Definition
bsd. If the Baseline Set Definition information has not been read, this will cause the information to be read from the
database. Modules that have been deleted (but not purged) are included in the list of modules returned by this iterator.

addModule(BaselineSetDefinition)

Declaration
string addModul e(ModNanme_ nodRef, Basel i neSet Definition bsd)

Operation

This enables a user with Modify access to add a module to the Baseline Set Definition’s list, if the Baseline Set Definition
bsd islocked by the user. It will return a string on error, for example if the user does not have Modify access to the
Baseline Set Definition or a lock on the Baseline Set Definition.

DXL Reference Manual

298

removeModule(BaseLineSetDefinition)

Declaration
string renoveMdul e(ModName_ nodRef, Basel i neSet Definition bsd)

Operation

This enables a user with Modify access to remove a module from the Baseline Set Definition’s list, if the Baseline Set
Definition bsd is locked by the user.

delete(BaselineSetDefinition)

Declaration
string del et e(Basel i neSet Definition &bsd)

Operation

This enables a user with Delete access to delete a Baseline Set Definition from its parent folder. Once a Baseline Set
Definition has been deleted, it cannot be undeleted. On success, the argument Baseline Set Definition will be set to null. A
Baseline Set Definition cannot be deleted if another user has it locked for editing.

lock(BaselineSetDefinition)

Declaration
string | ock(BaselineSetDefinition bsd)

Operation

If the user has Modify access to the Baseline Set Definition bsd, this places an exclusive editing lock on it, and reads the
information on the Baseline Set Definition from the database. It also ensures that there is a share-lock on its parent folder.
Only one session can have a lock at any one time on a Baseline Set Definition, and only a session with a lock can save or
modify the Baseline Set Definition, or create a Baseline Set from it. A Baseline Set Definition cannot be modified without it
being locked.

Moreover, changes will not be saved to the database until and unless the user performs a save
(Basel i neSet Defi ni tion).

Notice that it is the responsibility of the programmer to call unlock (Basel i neSet Def i ni ti on) in order to release a
Baseline Set Definition lock acquired by lock (Basel i neSet Def i ni ti on).

unlock(BaselineSetDefinition)

Declaration
string unl ock(Basel i neSet Definition bsd)

DXL Reference Manual

299

Operation

This unlocks a locked Baseline Set Definition bsd, and unlocks its parent Folder if that is not held locked for some other
reason. If changes have been made and not saved since the Baseline Set Definition was locked, the Baseline Set Definition
information will be read again from the database.

save(BaselineSetDefinition)

Declaration
string save(BaselineSetDefinition bsd)

Operation

This saves the user’s Baseline Set Definition information to the database, as long as the user has an editing lock on the
Baseline Set Definition. It returns null on success, and an error message on failure.

read(BaselineSetDefinition)

Declaration
string read(BaselineSetDefinition bsd)

Operation
This reads the current Baseline Set Definition bsd information from the database, and does not require a lock.

If the Baseline Set Definition is locked, and unsaved changes have been made to it, those changes will be lost when read() is
called.

isanyBaselineSetOpen(BaselineSetDefinition)

Declaration
bool isAnyBasel i neSet Open(Basel i neSet Defi nition bsd)

Operation

Returns t r ue if the BaselineSetDefinition has an open baseline set associated with it, and f al se if it does not. A null
argument results in a run-time error.

get(BaselineSetDefinition)

Declaration
AccessRec get (BaselineSetDefinition bsd, string user, string &message)

DXL Reference Manual

300

Operation

On success, this returns the access record for the Baseline Set Definition bsd for the specified user. If user is null, the
default access will be returned. The &ressage string is null on success, and set to an error message on failure.

inherited(BaselineSetDefinition)

Declaration
string inherited(BaselineSetDefinition bsd)

Operation
This enables the user to set the Baseline Set Definition bsd to inherit its access controls from its parent Folder.

specific(BaselineSetDefinition)

Declaration
string specific(BaselineSetDefinition bsd)

Operation

If the Baseline Set Definition bsd has inherited access rights, this gives it specific access rights, with their initial values
inherited from its parent Folder.

isAccesslnherited(BaselineSetDefinition)

Declaration
string i sAccesslnherited(BaselineSetDefinition bsd, bool & nherited)

Operation

This sets the inherited argument t r ue or f al se depending on whether the Baseline Set Definition’s access rights are
inherited. It returns null on success, and an error message on failure.

set(BaselineSetDefinition)

Declaration
string set(BaselineSetDefinition bsd, Perm ssion ps, string user)

Operation

This sets a specific access permission for a given user . If user is null, then it sets a default access permission. It returns
null on success, and an error string on failure.

DXL Reference Manual

301

unset(BaselineSetDefinition)

Declaration
string unset(BaselineSetDefinition bsd, string user)

Operation

This removes specific access rights for the given user on BaselineSetDefinition bsd. If user is null, then it sets a
default access permission. It returns null on success, and an error string on failure.

unsetAll(BaselineSetDefinition)

Declaration
string unset Al'l (Base