IBM® Rational® DOORS

The DXL Reference Manual

IBM Rational DOORS
DXL Reference Manual
Release 9.3

Before using this information, be sure to read the general information under the "Notices" chapter on page 895.

This edition applies to IBM Rational DOORS, VERSION 9.3, and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright IBM Corporation 1993, 2011
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

Aboutthismanual............ciiiiiiii ittt e e ennnenas 1

Typographical CONVENHONS u et ettt et ettt et 1
Related documentation.\ttt 2
Introduction. i i e 3
Developing DXL programsottt 3
Browsing the DXL Iibrary 5
Localizing DXLo oo 6
Language fundamentals 7
Lexical CONVENTIONS . .\ v\ttt ettt e e e e e e e e et et et ettt et et e 10
(703 0] 725 o - 12
LN tifaers &« ottt e 14
0 o T PP 15
DeClarationsottt e 15
BXPIessIONS. . ..ot 18
83 ' 3 o X PP 20
Basic fUNCHOMNS .« . o\ttt e e e e 23

DaSCUSSIONS .« ottt 27
Discussion TYPEs . ..ot 27
Properties 28
Tterators. ... 030
LT 1 T o NG 22
Example 35
DESCIIPHONS o v e et 37
View DeSCIiPtiOnsttt 37
Attribute Type Descriptionsottt 37
Attribute Definition Descriptionsuuu i 39
L T 40
H ML . 40
HTML Control. . ..o 41
HTML Edit Control. e 51
Miscellaneouso o 53

New in DXL for Rational DOORS 9.1....................... 55
Regular BXPressions ot 55

New in DXL for RationalDOORS 9.2....... ..o iinnnn. 57

Additional authentication.ttt e e 57
Dialog box updates. 58
INEW CONSTANES + + v vttt vttt ettt e et e e et e e e e e e e et e e e e e e e et et 59

DXL Reference Manual

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

DXL Reference Manual

Partitions updates 60
Requirements Interchange Format RIF).o i 61

New in DXL for Rational DOORS 9.3..... ...t i it i i e e e 71

Converting a symbol character to Unicodeooo i i i i i i 7
Dialog box functions. 72
Operations ON tYPE SLING . . . oottt e ettt ettt ettt ettt 72
Embedded OLE objects and the OLE clipboard i, 74
OLE Information Functions. i i 74
DiScuSSIONS ... 75
RIFID .o e 78
Rational DOORS URLSs o e 78
FAIters « oo 79
Compound FIlters 81
Localizing DXL 82
Finding links.o oo 83
LnKS . 85

Fundamental typesand functions 87

Operations o0 all tYPES 87
Operations on type ool 89
Operations on type charo 90
OPerations ON tYPE INL. . ..ottt ettt ettt et ettt et 93
Operations on type real.t 96
Operations ON tYPE SLING . .. vttt e ettt ettt et 100

General language facilities.ceeon.... 107

Files and Streams 107
Configuration file ACCESSottt 115
Dates. .. 121
SKIP LISTS . oo oot 128
Regular eXpressionsottt 132
Text bufferso 136
ALTAYS . oo oot 146
Operating systeminterfaceccoiiinnnn, 151
Operating system COMMANdSttt 151
WiANAOWS TE@ISTIY . . . oot 158
Interprocess CommUNICAtIONSttt 161
System clipboard functions. 164

Customizing RationalDOORSciiiiinnnas 167

Color SChEMES 167
Database Explorer Optionsooo i 169
LOCALES « o vt 171
COdEPagEes . .o\ttt 178

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Message of the day o 181

Database Properties 183
Rational DOORS databaseaccess........................ 185
Database Propertiest 185
Group and user manipulation 198
Group and User MANAZEMEIIE. u vttt ettt ettt et 206
LA 213
LDAP Configurationoiiiiiiit ittt 214
LDAP server information i 217
LDAP data configuration.ttt 220
Rational Directory Server. 225

Rational DOORS hierarchy..................coivv..... 231

About the Rational DOORS hierarchy 231
Ttem access CONrols o 232
Hierarchy clipboard 233
Hierarchy Information it 236
Hierarchy manipulation 240
Jtems . 242
Folders. . ..o 245
Projects . o oo 248
Looping Withinl PrOJECTSttt 253

Modulesc i ittt ittt e reannssnnnsannnrennnss2DD

Module aCCESS CONLIOLS. . o o\ttt et e e e e et e e e e e 255
Module tefErenCES . ..o\ttt e 256
Module INfOrmation . ..o\ vttt et e e e 259
Module manipulation 263
Module display state 268
Baselines oo e 271
Baseline Set Definition.t 279
Baseline Sets . ..ot e 288
History. . oo 297
Descriptive modules. 0307
Recently opened modules. 0310
Module Properties 312

ElectronicSignatures.................cciiiieiiinn ... 317

SINATULE LYPES oo oottt ettt ettt 317
Controlling Electronic Signature ACL oo o i i ... 317
Electronic Signature Data Manipulation........... ..o 00321
Examples.o o . 00320

0] = o €= ¢ 1.1
ADBOUL ODJECES « . 335

DXL Reference Manual

Vi

Chapter 15

Chapter 16

Chapter 17

Chapter 18

DXL Reference Manual

Object access CONLIOIS. i i ... 335
Finding objects. . .. oottt 337
CULLENE ODJECE .« v vt vttt e et e e e e e e e e e e 342
Navigation from an object 343
ODbject MANAGEMENL. © . . ettt ettt ettt ettt e ettt 346
Information about objects. 350
Selecting ObJECS. . .. v vttt 352
Object SEarchinngot 353
Miscellaneous object fUNCHONS v vttt e 355

I 1 7 359

About links and link module descriptors00 359
Link Creation v it e e a2 3060
Link access CONtrolt e 360
Finding links.o 361
Versioned HNnKS. .. oottt e e e e 367
Link managementt 370
Default link module. i 376
External Links o 379
Rational DOORS URLS . ..ottt ettt et e e e e e e e e e e 383

Attributes ...t i e i e 391

AttIDULE VAIUES .« . ottt e e 391
Attribute value access CONtrolso v .ttt ... 398
Multi-value enumerated attributesot 399
Attribute definitions. oot 401
Attribute definition access CONTIOLS . ..\ v vttt e e et et et e ettt 412
ADULE TYPES . o oo oo 414
Attribute type acCess CONLIOISottt 419
Attribute type manipulation 421
DXL attribute . ..o 427
Accesscontrolscciiiiiiiiiinaa it a e 429
CoNIOING ACCESS .+ . v v v vttt ettt et 429
LOCKING. © v 438
Example programs.o 439

Dialogboxesciiiiiiiiieeiiinneerrnnnnenan.. 443

Teons. .o 443
Message bOXES 446
Dialog box functions.o i 449
Dialog box elements 401
Common element OPELAtiONS v vttt e e e ettt et e e e 462
Simple elements for dialog boxes 482
Choice dialog box €lements.ttt 497
View €lementsuu 502

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Text editor elements. o 510
Buttons 513
CaANVASES © . oottt ettt 517
COMPIEX CANVASES. « . oo ettt ettt ettt ettt e et ettt 532
TOOIDALS . . oo 542
COlOLS vt 547
Simple placement 553
Constrained PlaCEMENT. u vttt ettt 556
Progress bar 562
DBE resizing. . . oot 565
HTML Control. . ..o oo e 566
HTML Edit Control. e 576

Templates ...ttt tiieaesennnaeaa.. D79

Template FUNCHOMS. . .. oottt e e e 579
Template eXPresSiONSo v v vttt ittt 580

Rational DOORS windowecontrol.......... ..o ivnrennn. 583

The DXL Library and Addins menus i 583
Module Status Darsottt 585
Rational DOORS built-in Windows.ot e 586
MoOdULE MENUS .\ ottt et et e e e e e e e e 588

Displaycontrolcciiiiiiiii it i iineinnennns 603

Bl erS. « vttt e e 603
Compound fIltersot 614
Filtering on multi-valued attributes 615
Sorting modules 616
VW S . ettt e e e e e e e e 620
VIEW 2CCESS CONTIOIS. « o v vttt ettt e e e e et et et e e e et 631
View definitionsottt e e e 634
COIUMINS .« ottt e e e e e e e e 643
Scrolling funCtionsottt 650
Layout DXL . oo 651
Partitionst i i i ettt a s 657
Partition COMCEPES. . v vttt t ettt ettt ettt ettt 657
Partition definition management i 657
Partition definition COMLENTS . ..o\ttt ettt e e ettt et et ettt e 660
Partition management. i 666
Partition Informationttt e e 669
P tIION ACCESS + v v vt et et ettt e e e e e e e e e 674

DXL Reference Manual

vii

viii

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

DXL Reference Manual

RIF DD oo 679
MErge . ot 679
RIF definition.o u e 680
Examples 683

OLEobjectsciiiiii it it et iarenannnas 689

Embedded OLE objects and the OLE clipboardo o .. 689
OLE Information Functions. o 699
Picture object SUPPOLt.o oot 706
Automation CHent SUPPOLTttt ettt et 717
Controlling Rational DOORS from applications that support automation 726

Triggers.cciiiiiieiinernnnsnnssnnssnnssnnsnnnsnns 131

Introduction to trgEersottt 731
THIGEEr CONSTANES .« o oottt ettt et ettt et ettt i 736
Trigger defINItON.ot i it 738
Trigger Manipulation 741
Drag-and-drop trigger functions. ittt 748

Pagesetupfunctions...............ccciiiiiiiinnnna.. 7159

Page attributes Statusottt 759
Page dimensions o 760
Document attributes 763
Page setup information 766
Page setup MANAZEMENL\ttt ettt et 769

Tables ...ttt i innnsnnnnsnnnssnnnssnnnnnnnnnss 171

Table CONCEPL. . ..ottt 771
Table CONSTANTS .+ o v vttt ettt e et e e e e e e e e e et e e e e 771
Table MANAZEMENL.ottt 772
Table manipulation 776
Table attributes . ..ot 784

RichtexXt.t i st e i st eenesnannennn 787

Rich text Processing.oovi ittt 787
Rich text StrNES . oot 794
Enhanced character SUPPOTt.uiit i 806
Importing rich text.o o 809
Diagnostic PErmIS. . ..ottt 810

SpellingCheckerciiiiiiii it ie e rnaeennnnns 815

Constants and general functions. 815
Language and Grammar o i 824
Spelling Dictionary. o 833
Miscellaneous Spelling.ottt 836
Spelling\Dictionary EXampleso vttt ontt ettt 838

Chapter 30

Chapter 31

Chapter 32

Chapter 33

Chapter 34

Database IntegrityChecker..........ccciiiiiiiiinnnnn. 841
Database Integrity TYPESot 841
Database Integrity Perms. 842
Discussionso il 851
Discussion Types 851
Properties 851
Tterators. .. 854
LT 1 T o 855
THIGEEIS - o oottt et 859
Discussions aCCess CONLIOLSo v v vttt e e e e e 860
Example 862
Generalfunctions...............iiiiii i, 865
Errorhandling 865
Archive and FESTOLE\ttt 868
LOCKING . e 881
HTML functions.ottt ettt e 888
HIMLBEIp. .o 890
Broadcast Messagingottt 890
Converting a symbol character to Unicode. o i i 890
Character codes and theirmeanings..................... 893
Notices........ciiiiii i i e 895
Index. ... 899

DXL Reference Manual

DXL Reference Manual

About this manual

Welcome to version 9.3 of IBM® Rational® DOORS®, a powerful tool that helps you to capture, track and manage your
user requirements.

DXL (DOORS eXtension Language) is a scripting language specially developed for Rational DOORS. DXL is used in
many parts of Rational DOORS to provide key featutes, such as file format importers and exporters, impact and traceability
analysis and inter-module linking tools. DXI. can also be used to develop larger add-on packages such as CASE tool
interfaces and project management tools. To the end user, DXL developed applications appear as seamless extensions to
the graphical user interface. This capability to extend or customize Rational DOORS is available to users who choose to
develop their own DXL scripts.

The DXL language is for the more technical user, who sets up programs for the end-user to apply. DXL takes many of its
fundamental features from C and C++. Anyone who has written programs in these or similar programming languages
should be able to use DXL.

This book is a reference manual for DXL for version 9.3 of Rational DOORS. Refer to it if you wish to automate simple or
complex repetitive tasks, or customize your users’ Rational DOORS environment. It assumes that you know how to write C
or C++ programs.

Typographical conventions

The following typographical conventions are used in this manual:

Typeface or Symbol [Meaning

Bold Important items, and items that you can select, including buttons and menus:
“Click Yes to continue”.

1talics Book titles.

Courier Commands, files, and directories; computer output: “Edit your
.properties file”.

> A menu choice: “Select File > Open”. This means select the File menu, and
then select the Open option.

Each function or macro is first introduced by name, followed by a declaration or the syntax, and a short description of the
operation it performs. These are supplemented by examples where appropriate.

DXL Reference Manual

d

Related documentation

The following table describes where to find information in the Rational DOORS documentation set:

For information on

See

Rational DOORS

How to set up licenses to use Rational
DOORS

How to write requirements

How to integrate Rational DOORS with other
applications

The Rational DOORS Information Center

Rational Lifecycle Solutions Licensing Guide

Get it Right the First Time

Rational DOORS API mannal

DXL Reference Manual

Chapter 1
Introduction

This chapter describes the DXL Interaction window, DXL library, and the basic features of DXL. It covers the following
topics:

* Developing DXL programs
* Browsing the DXL library
¢ Localizing DXL

* Language fundamentals

* Lexical conventions

* Constants

* Identifiers

* Types

* Declarations

* Expressions

* Statements

¢ Basic functions

Developing DXL programs

You can use the DXL Interaction window to develop small DXL programs.

For large-scale program development, you should use a third party editing tool when coding, and then load your code into
the DXL Interaction window to execute and debug it. You can set up a menu option in Rational DOORS to run your third
party editing tool.

To use the DXL Interaction window:

DXL Reference Manual

1. In either the Database Explorer or a module window, click Tools > Edit DXL.

@ DXL Interaction - DOORS =3
DL input

D=L output

Prit... ” Load... ” Save fs... ” Browse... ” Cloze ” Help

2. Either type or load your program into the DXL input pane.

To load the contents of a file, click Load. To load a program from the DXL library, click Browse.
3. To run the program in the DXL input pane, click Run.

Any error messages that are generated are displayed in the DXL output pane.

To see the next error message, click Next error. The contents of the DXL input pane scroll to the line of source code
that caused the error displayed in the DXL output pane.

4. To print the contents of the DXL input pane with line numbers, click Print.
5. To save the contents of the DXL input pane to file, click Save As.

Right-click anywhere in the DXL input pane to display a pop-up menu with the sub-menus File, Edit, and Search. The
Edit sub-menu options have standard Windows functions. The File sub-menu options are described in the following

table:
File Description
Load Loads the contents of a text file into the DXL input pane. You can also use

drag-and-drop to load a file directly from Windows Explorer.

DXL Reference Manual

File Description

Save Saves changes you made to the text in the DXL input pane.

Save as Saves the contents of the DXL input pane to another file.

New Clears the DXL input pane. If you have made changes to the text that have not

yet been saved, you are asked if you want to save them.

The Search sub-menu options are described in the following table:

Search Description

Search Finds a string of text in the DXL input pane. The search is case-sensitive.

Again Repeats the search.

Replace Replaces one string of text with another. You can replace text strings one at a
time or all at once.

Goto line Moves the cursor to the start of a specified line. (This is useful when debugging

DXL programs because errors are indicated against line numbers.)

Browsing the DXL library

The DXL libraty is in the /1ib/dx1 folder in the Rational DOORS home directory.

You can browse the DXL library when you are:

Using the DXL Interaction window, by clicking the Browse button to find a program to run.

Creating a DXL attribute, by clicking the Browse button to find a program to use for the attribute (see “DXL

attribute,” on page 427).

Creating a layout DXL column, by clicking the Browse button to find a program to use for the layout DXI. column
(see “Layout DXL,” on page 651).

DXL Reference Manual

You see the DXL Library window. The DXL programs and the buttons you see depend on where you were when you
clicked the Browse button.

#] Browse Tools - DOORS E|E”z|
4 .

ormal m n HT kL Format
| Export comma or tab-separated spreadsheet and database data
| Export module ta Frametd aker
| Export module ta plain text
| Export RTF
OLE export to Microzoft Office Products

DOORS Outlook interface

Export module using automation to Excel 97

Export module using automation to Powerpoint family
[Warious utiliies for importing data into DOORS

[Seme example programs which illustrate various DXL features

| £

Degcription

HTML output az produced by this zcript

All data in the curment Wiew [whether default or athenwize] will
be exported inta HTML under the fallowing conditions.

o The "Object Text" attribute [or the 'main’ column) will be rendered az
NORMAL text.

o &l dizolaved attributes will be rendered in ITALIC in the form:

|

| £

| Pun || Edi. |[Pirt. |[Clese |[Heb

Button Action

Run Runs the selected program in your DXL Interaction window.
Edit Edits the selected program.

Print Prints the selected program.

Localizing DXL

Rational DOORS uses ICU resource bundles for accessing translated strings. DXL perms are available to access ICU
resource bundles containing translated strings for customized DXL. For information about creating ICU resource bundles,

see http://userguide.icu-project.org/locale/localizing.

Put the language resource files in a directory whose name is taken as the bundle name, under

$DOORSHOME/language,for example SDOORSHOME /language/myResource/de DE. res. There are two

bundles already shipped with Rational DOORS, core and DXL.)

DXL Reference Manual

LS_

Declaration
string LS (string key, string fallback, string bundle)

Operation

Returns the string from resource bundle that is identified by key. If the string identified by key is not found in the resource
bundle, the fallback string is returned.

Example

de.txt file contains;

de {
Keyl{"Ausgehend"}
Key2{"Ausgehende Links"}
Key3{"Normalansicht"}
Key4{"Klartext"}

}

From the command line, generate a resource bundle, for example genrb de.txt, and copy the resource bundle to
$DOORSHOME/language/myResource/, where myResource is the name of your resource bundle. The localized
strings can then be accessed using the LS perm, for example in the DXL editor, type:

print LS ("Keyl", "Ausgehend not found", "myResource") "\n"

print LS ("Key2", "Ausgehende Links not found", "myResource") "\n"
print LS ("Key3", "Normalansicht not found", "myResource") "\n"
print LS ("Key4", "Klartext not found", "myResource") "\n"

The output is:

Ausgehend

Ausgehende Links

Normalansicht

Klartext

Language fundamentals

DXL is layered on an undetlying programming language whose fundamental data types, functions and syntax are largely
based on C and C++. To support the needs of script writing, there are some differences. In particular, concepts like main
program are avoided, and mandatory semicolons and parentheses have been discarded.

DXL Reference Manual

Auto-declare

In DXL there is a mechanism called auto-declare, which means that a user need not specify a type for a variable. For
example, in the script:

i=5
print i

the interpreter declares a new variable and deduces from the assignment that its type is int.

Because DXL is case-sensitive, there is a potential hazard when relying on this mechanism to type variables. If you make a
mistake when typing a variable name, the interpreter assumes that a new variable is being used, which creates errors that are

hard to find.
This feature can be disabled by adding the line:
XFLAGS &=~AutoDeclare

to the bottom of the file $SDOORSHOME /1ib/dx1/startup.dxl.

Syntax

The syntactic style is more like natural language or standard mathematical notation. Consider the function:
string deleteUser (string name)

This can be called as follows:

deleteUser "Susan Brown"

The lack of semicolons is possible through DXI’s recognition of the end of a line as a statement terminator, except when it
follows a binary operator. This means you can break an expression like 243 over a line by making the break after the + sign.
A comment ending in a dash (/ /=) also enables line continuation.

As in C, == is used for equality, while = is used for assignment. Unlike C or Pascal, concatenation of symbols is a valid
operation.

Parsing

Statement or expression parsing is right associative and has a relatively high precedence. Parenthesis has the highest
precedence.

Because sqrt is defined as a function call that takes a single type real argument:
sqrt 6.0

is recognized as a valid function call, whereas in C it is:

sqrt (6.0)

So, the C statement:

print (sqrt (6.0))

can be:

DXL Reference Manual

print sqgrt 6.0
in DXL
The following script declares a function max, which takes two type int arguments:

int max(int a, b) {
if a < b then return b else return a

}

print max (2, 3)

The call of max is parsed as print (max (2, 3)), which is valid. The statement:

print max 2,3

would generate errors. Because the comma has a lower precedence than concatenation, it is parsed as:
((print max(2)),3)

If in doubt, use the parentheses, and separate statements for concatenation operations.

Naming conventions

As a general rule, DXL reserves identifiers ending in one or more underscores (_,) for its own use. You should not use
functions, data types or variables with trailing underscores, with the exception of those documented in this manual.

Names introduced as data types in DXL, such as int, string, Module and Object, must not be used as
identifiers. The fundamental types such as int and string are in lower case. Rational DOORS specific types all start
with an upper case letter to distinguish them from these, and to enable their lower case versions to be used as identifiers.

Loops

In DXL, loops are treated just like any other operator, and are overloaded, that is, declared to take arguments and return
values of more than one type. The loop notation used is as follows:

for variable in something do {

}

The for loops all iterate through all values of an item, setting variable to each value in turn.

Note: When using for loops, care must be taken when deleting items within the loop and also opening and closing items
within a for loop. For example, if variableis of type Module and something is of type Project, and
within the for loop a condition is met that means one of the modules will be deleted, this should not be done
within the for loop as it can lead to unexpected results. A recommended method is to use a skip list to store the
modules and to do any manipulation required using the contents of the skip list.

DXL Reference Manual

10‘

Lexical conventions

Semicolon and end-of-line

DXL diverges from C in that semicolons can be omitted in some contexts, with end-of-line (newline) causing statement
termination. Conversely, newline does not cause statement termination in other contexts. This is a useful property;
programs look much better, and in practice the rules are intuitive. The rules are:

* Any newlines or spaces occurring immediately after the following tokens are ignored:

; ’ ? : = (+ * [
& - ! ~ / % << >> <>
< > <= >= == I= ” | &&
and || or AN += = *— /= o
<<= >>= &= |= = <- 1= => ..
. -> HR \

* Any newlines before an else ora) are ignored. All other newlines delimit a possibly empty statement.
* Multiple consecutive areas of white space containing newlines are treated as single newlines.

* The recognition of a newline can be avoided by prefixing it with an empty // comment or a comment ending in -.

Comments

The characters /* start a comment that terminates with the characters * /. This style of comment does nof nest.

The characters // start a comment that terminates at the end of the line on which it occurs. The end-of-line is not
considered part of the comment unless the comment is empty or the final character is —. This latter feature is useful for
adding comments to a multi-line expression, or for continuing a concatenation expression over two lines.

Notably, comments that immediately follow conditional statements can cause code to behave unexpectedly.
The following program demonstrates some comment forms:

/* Some comment examples (regular C comment) */

int a // a C++ style comment

int b = 1 + // We need a trailing - at the end -

2 // to prevent a syntax error between "+" and the newline
print //
"hello" // the // after print causes the following newline to be
// ignored

/*

DXL Reference Manual

int C // this whole block is commented out

I[dentifiers

An identifier is an arbitrarily long sequence of characters. The first character must be a letter; the rest of the identifier may
contain letters, numerals or either of the following two symbols:

DXL is case sensitive (upper- and lower-case letters are considered different).

The following words are reserved for use as keywords, and must not be used otherwise:

and bool break by case char
const continue default do else enum
for if in int module object
or pragma real return sizeof static
struct string switch then union void
while

The following keywords are not currently supported in user programs, but are reserved for future use:
case const default enum
struct switch union

A keyword is a sequence of letters with a fixed syntactic purpose within the language, and is not available for use as an
identifier.

File inclusion

To include files into DXL scripts, you can use either of the following:
#include "file"
#include <file>

Absolute or relative path names can be used. Relative paths must be based on one of the following forms depending on the

platform:
$DOORSHOME/1ib/dx1 (UNIX)
$DOORSHOME\\1ib\\dx1l (Windows)

DXL Reference Manual

where DOORSHOME is defined in a UNIX® environment variable, or on Windows platforms in the registry. The
Windows-style file separator (\) must be duplicated so that DXL does not interpret it as a meta-character in the string.

If the addins directory is defined in a UNIX environment variable or the Windows registry, this directory is also searched,
so relative path names can be with respect to the addins directory.

Note: The UNIX shell file name specification form ~user/ is not supported.

Pragmas

Pragmas modify the background behavior of the DXL interpreter, for example:
pragma runLim, int cyc

sets the time-out interval cyc as a number of DXL execution cycles. The time-out is suppressed if cyc is set to zero, as
shown in the following example:

pragma runLim, O // no limit

pragma runLim, 1000000 // explicit limit

There is also a pragma for setting the size of the DXL runtime stack, which is used as follows:

pragma stack, 10000

The default value is set to 1,000,000.

If running the DXL from the DXL editor, when the timeout limit is reached a message is displayed asking if you want to:
* Continue - script execution continues with the same timeout limit.

* Continue doubling the timeout - script execution continues with double the current timeout limit.

* Halt execution - DXL is halted with a run-time error.

If running in batch mode, it is good practise to execute sctipts in the DXL editor initially to detect any errors or timeouts.
Pragma runlim,0 should be used in instances of timeouts.

Constants

Integer constants

An integer constant consisting of a sequence of digits is interpreted as octal if it begins with a 0 (digit zero); otherwise it is
interpreted as decimal.

A sequence of digits preceded by 0x or 0X is interpreted as a hexadecimal integer.

A sequence of Os or 1s preceded by Ob is interpreted as a binary number, and converted to an integer value.

DXL Reference Manual

Character constants

A character constant is a character enclosed in single quotes, as in ' x '. The value of a character constant is defined to be of

type char.
Certain non-graphic characters, the single quote and the backslash, can be represented according to the following escape
sequences:
Character Escape sequence
newline \n
hotizontal tab \t
backspace \b
carriage return \r
form-feed \f
backslash AR
single quote \!
bit pattern \ddd
any othet character \c

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits.

Any other character that is escaped is passed straight through.

Type real constants

A type real consists of an integer part, a decimal point, a fraction part, an e or E, and an integer exponent. The integer
and fraction part both consist of a sequence of digits.

You can omit either the integer part or the fraction part, but not both. You can omit either the decimal point or the
exponent with its e or E. You can add a sign to the exponent.

Example
1.0

0.1

lelO
1.2E30

DXL Reference Manual

The null constant

The constant null is used as a polymorphic value to indicate a null value. You can use it for any derived type (see
“Derived types,” on page 15). You can use it for both assignment to variables and conditional tests on variables.

Example
Object obj = null

if (null obj) {
ack "This object is empty"

Strings

A string literal, of type st ring and storage class static, is a sequence of characters surrounded by double quotes, as in
" appl e",

Within a string the double quote () must be preceded by a backslash (\). For example “Pear\”” is the string Pear” in
quotes. In addition, you can use the same escape sequences as described in “Character constants,” on page 13, including the
newline character.

|dentifiers

Identifiers denote variables, functions, types and values. You can introduce an identifier into a program by declaration or by
immediate declaration. Immediate declaration is when an undeclared identifier is used as the left hand side of an assignment
statement.

Variables

Variables represent regions of computer memory. The meaning of the value stored in a variable is determined by the type of
the identifier used to access the variable.

Unassigned variables contain the unassigned pattern, which is checked on all references. In this way, errors with unassigned
vatiables are avoided, and an accurate error message is reported.

Scope

Once declared, an identifier has a region of validity within the program known as its scope.

In general, identifiers are in scope following their declaration within the current block, and are available within nested
blocks. Identifiers can be hidden by re-declaration in nested blocks. For example, the following code prints a 4 and then a 3
in the output pane of the DXL Interaction window.

int i = 3

DXL Reference Manual

if (true) {
int i = 4
print 1 "\n"

}

print 1 "\n"

Types

Fundamental types

DXL has the following base types:
Base type Description

bool Denotes the domain of values t rue and false, which are provided as
predefined constants.

char Is similar to the C character type.
int Is the only integer type provided in DXL. On all platforms, integers atre signed,

and have a precision of 32 bits.
real Is like the double type in C, with a precision of 64 bits.

void Is the type with no values; its main use is in declaring functions that do not
return a result.

string Is similar to the derived C type char*.

Derived types

DXL supports arrays, functions and references. An internal class facility provides new non-fundamental types, referred to as
built-in types, such as Object, Module and Template. DXL does not support class creation by user programs.

Declarations

Declarations are the mechanism used to associate identifiers with variables, functions or values.

Declarators

DXL follows C in its declarator syntax. However, only the simple forms should be necessary in DXL programs.

DXL Reference Manual

DXL extends C style arrays by enabling a variable to define the bounds of the array. The number of elements in an atray is
available by using the sizeof function.

Unlike C, DXL arrays can have only one dimension.
In addition to the normal C declarator forms, DXL provides the C++ reference declarator &.

DXL uses the ANSI C method of supplying a function’s formal parameters in the declarator itself with each argument given
as a fully specified type.

The following script gives some example declarations:

int i, j, k // declare 3 integers

int n = 4 // declare an integer and initialize it
bool al[2] // declare an array of type bool of size 2
int b[n] // declare an integer array of size n

print sizeof a // prints "2"

Note: A declaration of the form ‘int n = {1,2,3}’ is not supported.

Immediate declaration

Immediate declaration is a DXL extension from C, which means that the first use of an undeclared variable is also a
declaration. It must be used in a context where an unambiguous value is given to it, for example the left hand side of an
assignment statement:

i=2

print i

Once declared, the identifier must be used consistently.

Function definitions

DXL functions are very close to the style of ANSI C functions. The following script gives some examples:
// define a function to find the maximum of two integers

int i

int max(int a, b) {

return a < b ? b : a

}// max

// This function applies f to every element in a,
// using an accumulation variable r that is initialized to base.

int apply accumulate(int base, int a[], int f(int, int)) {
int r = base
for (i = 0; i < sizeof a; i++) {
r = f(r, ali])

}

DXL Reference Manual

return r
} // apply accumulate
int a[5]

print "Filling an array:\n\n"

for (i = 0; i < sizeof a; i++) {
al[i] = random 1000
print a[i] "\n"

} // for

print "largest number was:

print apply accumulate (0, a, max)
// print largest element in a

Line 3 defines the function max, which has two parameters of type int and returns a type int. One difference from
ANSI C is that the parameter type specifier int need not be repeated before the b parameter.

Line 10 declares a function parameter £. Note that £’s parameters do not include redundant identifiers.

Operator functions

You can redefine DXL operators by prefixing the operator with : : to turn it into an identifier.

Example

This example defines a multiplication operator that applies to strings and integers.
string ::*(string s, int n) {
string x = ""
int 1
for 1 in 0 : n-1 do {
X =X s

return x
}
print ("apple " * 4)
This prints out:

apple apple apple apple

If you wish to overload the concatenation operator, which is normally represented by a space, use the symbol . . .
string ::..(real r, int n) {

string s = ""

int 1

// concatenate the string to a space n times

DXL Reference Manual

for i in 0:n-1 do {

S=S I

return s
}
print (2.45 3) "\n" // try it out
The program prints the string:

2.450000 2.450000 2.450000

Expressions

This section outlines the major differences between C and DXL expressions. The operations defined on DXL fundamental
types are explained in “Fundamental types and functions,” on page 87.

Reference operations

DXL supports C++ style reference operations. References are like var parameters in Pascal or Ada, which means they
provide an alias to a variable, not a copy. To declare a reference variable its name must be preceded by an ampersand (&).

Example

This example is a program to swap two integers. In C you have explicitly to pass the address of the variables to be swapped
and then de-reference them within the body of the function. This is not required in DXL.

// swap two integers
void swap (int &a, &b) {

int temp

temp = a; a = b; b = temp
}

int x = 2

int& z = x // z is now an alias for x
int y =3

print x " " y "\n"

swap (z, y) // equivalent to swap (x,Vy)
print x " " y "\n"

This program prints the string:

23
32

DXL Reference Manual

Overloaded functions and operators

Most functions and operators can be declared to take arguments and return values of more than one type.
Example
This example overloads a commonly used identifier print to provide an object printer.
// Overload print to define an Object printer
void print (Object o) {
string h = o0."Object Heading"
string t = o0."Object Text"
print h ":\n\n" t "\n"
}

print current Object

Function calls

DXL enables calls of functions defined without parameters to omit the empty parenthesis, except where the call appears as
a function argument or any other context where a function name is valid. Function calls with single arguments can also omit
the parenthesis, but beware of concatenation’s high precedence when the argument passed is an expression.

Note: When overloading functions, ensure that the first declaration of the function does not have a void parameter, e.g
void print (void). This may lead to unexpected results. Furthermore, function calls of the form void
print (int i1i=0, int g=0) should also not be used.

Example

void motto () { // parameterless
print "A stitch in time saves nine.\n"

} // motto

int square(int x) {

return x*x

} // square

motto // call the function

print square 9 // two function calls
Casts

Because of DXL’s overloading facility, it is easy to write expressions that have more than one possible interpretation; that is,
they are ambiguous. Casts are used to pick which interpretation is required. Casts in DXI. come in two forms:

expression type

DXL Reference Manual

20

(type expression)
In the first form, the type name can appear after the expression, as in:
o = current Object

In the second form, the type may come first, but the whole expression must be within parenthesis:

o = (Object current)

Range

A range expression extracts a substring from a string, or substring from a buffer, and is used in regular expression matching.
It has two forms:

int from : int to
int from : int to by int by

Examples are given with the functions that use ranges.

Statements

This section describes how to construct statements in DXIL..

Compound statements

Compound statements are also referred to as blocks.

Several statements can be grouped into one using braces { . . . }.

Conditional statements

The if statement takes an expression of type bool, which must be in parenthesis. If the expression evaluates to true, it

executes the following statement, which can be a block. If the expression evaluates to false, an optional el se statement
is executed.

As an alternative form, the parenthesis around the condition can be dropped, and the keyword then used after the
condition.

Example
int i =2, j =2
if (i< 3) {

i 4= 2
} else {
i += 3

DXL Reference Manual

if 1 == j then j = 22

The then form does not work with a condition that starts with a component in parenthesis, for example:
if (2 + 3) == 4 then print "no"

generates a syntax errof.

DXL also supports the C expression form:

2 + 3 ==5 72 print "yes" : print "no"

Loop statements

DXL has three main loop (iteration) statements. It supports the C forms:

for (init; cond; increment) statement

while (cond) statement

and a new form:

for typel vl in type2 v2 do

where typel and type2 are two types, possibly the same; v1 is a reference variable and v2 is a variable, which can be a
range expression (see “Range,” on page 20). This form is heavily used in DXL for defining type-specific loops.
Example

int x

int a=2

int b=3

for (x=1; x <= 11; x+=2) {

print x

}

while (a==2 and b==3) {
print "hello\n";
a =3

}

for x in 1 : 11 by 2 do {
print x

}

In this example, the first loop is a normal C for loop; the second is a normal C while loop. Note that DXL offers the
keyword and as an alternative to &&.

The last form in the example uses a range statement, which has the same semantics as the first C-like loop.

Break statement

The break statement causes an immediate exit from a loop. Control passes to the statement following the loop.

DXL Reference Manual

22

Example

int 1 =1

while (true) {
print i++

if (i==10) {
break
}// if (i==10)

}// while (true)

Continue statement

The continue statement effects an immediate jump to the loop’s next test or increment statement.
Example
int 1 =1

while (true) {

if (i==4) { // don't show 4
it++
continue

y// if (i==4)

print i++

if (i==10){
break

}y// 1if (i==10)
}// while (true)

Return statement

The return statement either exits a void function, or returns the given value in any other function.

Note: Care should be taken when using the return statement. For example, assigning a value to a variable where the
assignment is a function, and that function returns no value, can lead to unexpected values being assigned to the
variable.

Example
// exit void function
void print (Object o) {

if (null o)
return string h = o0."Object Heading"

print h "\n"
} // print

DXL Reference Manual

// return given value

int double (int x) {
return x + x // return an integer
} // double

print double 111

Null statement

The null (empty) statement has no effect. You can create a null statement by using a semicolon on its own.

Example
int a = 3

if (a < 2) ; else print a

Basic functions

This section defines some basic functions, which can be used throughout DXL.

of
This function is used as shown in the following syntax:
of (argument)
Returns the passed argument, which can be of any type. It has no other effect. It is used to clarify code.
Example
if end of cin then break
sizeof

This function is used as shown in the following syntax:
sizeof (arrayl])

Returns the number of elements in the array, which can be of any type.

Example

string strs[] = {"one", "two", "three"}
int ints[] = {1, 2, 3, 4}

print sizeof strs // prints 3
print sizeof ints // prints 4

DXL Reference Manual

23

24

halt

Declaration
void halt ()

Operation

Causes the current DXL program to terminate immediately. This is very useful if an error condition is detected in a
program.

Example

if (null current Module) {
ack "program requires a current module"
halt

checkDXL

Declaration
string checkDXL[File] (string code)

Operation
Provides a DXL mechanism for checking DXL code.

The checkDXL function analyzes a DXL program and returns the string that would have been produced in the DXL
Interaction window had it been run on its own.

The checkDXLF1ile function analyzes a file and returns the error message that would have been produced in the DXT.
Interaction window had the file been run.

Example

string errors =
checkDXL ("int j = 3 \n print k + j")

if (!null errors)
print "Errors found in dxl string:\n" errors
"\n"

would produce the following in the DXL Interaction window’s output pane.

Errors found in dxl string:

-E- DXL: <Line:2> incorrect arguments for (+)

-E- DXL: <Line:2> incorrect arguments for function (print)

-E- DXL: <Line:2> undeclared variable (k)

DXL Reference Manual

sort

Declaration

void sort(string stringArrayl])

Operation

Sorts the string array st ringArray. The sort function handles string arrays containing non-ASCII characters, as do the
string and Buffer compatison operators.

Example
int noOfHeadings = 0
Object o

for o in current Module do {
string oh = o0."Object Heading"
if (!'null oh) noOfHeadings++

}

string headings[noOfHeadings]

int 1 = 0

for o in current Module do {
string oh = o0."Object Heading"
if (!null oh) headings[i++] = oh

}

sort headings

for (i = 0; i < noOfHeadings; i++) print headings[i] "\n"

activateURL

Declaration

void activateURL (string url)

Operation

This is equivalent to clicking on a URL in a formal module.

batchMode, isBatch

Declaration
bool batchMode ()

bool isBatch ()

DXL Reference Manual

26

Operation

Both functions return true if Rational DOORS is running in batch mode, and false if Rational DOORS is running in
interactive mode.

DXL Reference Manual

27

Chapter 2

New in DXL for Rational DOORS 9.0

This chapter describes features that are new in Rational DOORS 9.0:
* Discussions

* Descriptions

e Filtering

« HTML

¢ Miscellaneous

Discussions

¢ Discussion Types
* Properties

* Iterators

e Operations

e Triggers

* Example

Discussion Types

Discussion

Represents a discussion.

Comment

Represents a comment in a discussion.

DiscussionStatus

Represents the status of a discussion. The possible values are Open and Closed.

DXL Reference Manual

28‘

Properties

The following tables describe the properties available for the discussion and comment types. Property values can be
accessed using the . (dot) operator, as shown in the following syntax:

variable.property

where:
variable is a variable of type Discussion or Comment
property is one of the discussion or comment properties
Discussion

Property Type Extracts

status DiscussionStatus The status of the discussion: whether it is open or
closed.

summary string The summary text of the discussion, which may be
null

createdBy User The user who created the discussion, if it was
created in the current database. Otherwise it
returns null.

createdByName string The name of the user who created the discussion,
as it was when the discussion was created.

createdByFullName string The full name of the user who created the
discussion, as it was when the discussion was
created.

createdOn Date The date and time the discussion was created.

createdDataTimestamp Date The last modification timestamp of the object or
module that the first comment in the discussion
referred to.

lastModifiedBy User The user who added the last comment to the
discussion, or who last changed the discussion
status

lastModifiedByName string The user name of the user who added the last

comment to the discussion, or who last changed
the discussion status.

DXL Reference Manual

29

Property

Type

Extracts

lastModifiedByFullName

lastModifiedOn

lastModifiedDataTimestamp

firstVersion

lastVersion

firstVersionIndex

lastVersionIndex

string

Date

Date

ModuleVersion

ModuleVersion

string

string

The full name of the user who added the last
comment to the discussion, or who last changed
the discussion status.

The date and time the last comment was added, or
when the discussion status was last changed.

The last modification timestamp of the object or
module that the last comment in the discussion
referred to.

The version of the module the first comment was
raised against.

Note: If a comment is made against the current
version of 2 module and the module is
then baselined, this property will return a
reference to that baseline. If the baseline
is deleted, it will return the deleted
baseline.

The version of the module the latest comment was
raised against. See note for the firstVersion
property above.

The baseline index of the first module version
commented on in the discussion. Can be used in
comparisons between module versions.

The baseline index of the last module version
commented on in the discussion. Can be used in
comparison between module versions.

DXL Reference Manual

Comment

Property Type Extracts

text string The plain text of the comment.

moduleVersionIndex string The baseline index of the module version against which the
comment was raised. Can be used in comparisons between
module versions.

status DiscussionStatus The status of the discussion in which the comment was made.

moduleVersion ModuleVersion The version of the module against which the comment was
raised.

Note: If a comment if made against the current version of a
module and the module is then baselined, this
property will return a reference to that baseline. If the
baseline is deleted, it will return the deleted baseline.

onCurrentVersion bool True if the comment was raised against the current version of
the module or an object in the current version.

changedStatus bool Tells whether the comment changed the status of the
discussion when it was submitted. This will be true for
comments that closed or re-opened a discussion.

dataTimestamp Date The last modified time of the object or module under
discussion, as seen at the commenting users client at the time
the comment was submitted.

createdBy User The user that created the comment. Returns null if the user is
not in the current user list.

createdByName string The user name of the user who created the comment, as it was
when the comment was created.

createdByFullName string The full name of the user who created the comment, as it was
when the comment was created.

createdOn Date The data and time when the comment was created.

discussion Discussion The discussion containing the comment.

lterators

DXL Reference Manual

for Discussion in Type

Syntax
for disc in Type do {

where:
disc is a variable of type Discussion
Type is a vatiable of type Object, Module, Project or
Folder
Operation

Assigns the variable disc to be each successive discussion in Type in the order they were created. The first time it is run
the discussion data will be loaded from the database.

The Module, Folder and Project variants will not include discussions on individual objects.

The Folder and Project variants are provided for forward compatibility with the possible future inclusion of
discussions on folders and projects. They perform no function in Rational DOORS 9.0.

for Comment in Discussion

Syntax

for comm in disc do {

where:
comm is a variable of type Comment
disc is a vatiable of type Discussion
Operation

Assigns the variable comm to be each successive comment in disc in chronological order. The first time it is run on a
discussion in memory, the comments will be loaded from the database. Note that if a discussion has been changed by a
refresh (e.g. in terms of the last Comment timestamp) then this will also refresh the comments list.

The discussion properties will be updated in memory if necessary, to be consistent with the updated list of comments.

DXL Reference Manual

32‘

Operations

create(Discussion)

Declaration

string create(target, string text, string summary, Discussioné& disc)

Operation

Creates a new Discussion about target, which can be of type Object or Module. Returns null on success, error
string on failure. Also add text as the first comment to the discussion.

addComment

Declaration

string addComment (Discussion disc, target, string text, Commenté& comm)

Operation

Adds a Comment about target to an open Discussion. Note that target must be an Object or Module that
the Discussion already relates to. Returns null on success, etror string on failure.

closeDiscussion

Declaration

string closeDiscussion (Discussion disc, target, string text, Comment& comm)

Operation

Closes an open Discussion disc by appending a closing comment, specified in text. Note that target must be an
Object or Module that disc already relates to. Returns null on success, error string on failure.

reopenDiscussion

Declaration

string reopenDiscussion (Discussion disc, target, string text, Comment& comm)

Operation

Reopens a closed Discussion disc and appends a new comment, specified in text. Note that target must be an
Object or Module that disc already relates to. Returns null on success, error string on failure.

DXL Reference Manual

33

deleteDiscussion

Declaration

string deleteDiscussion (Discussion d, Module m|Object o)

Operation
Deletes the specified module or object discussion if the user has the permission to do so. Returns null on success, or an

error string on failure.

sortDiscussions

Declaration
void sortDiscussions ({Module m|Object o|Project p|Folder f}, property, bool
ascending)

Operation

Sorts the discussions list associated with the specified item according to the given property, which may be a date, or a
string propetty as listed in the discussions properties list. String sorting is performed according to the lexical ordering for the

current uset’s default locale at the time of execution.
If the discussion list for the specified item has not been loaded from the database, this perm will cause it to be loaded.

The Folder and Project forms are provided for forward compatibility with the possible future inclusion of discussions
on folders and projects. They perform no function in 9.0.

getDiscussions

Declaration
string getDiscussions ({Module m|Object o|Project p|Folder f})

Operation
Refreshes from the database the Discussion data for the specified item in memory. Returns null on success, or an error

on failure.

getObjectDiscussions

Declaration

string getObjectDiscussions (Module m)

Operation
Refreshes from the database all Di scussions for all objects in the specified module. Returns null on success, or an error

on failure

DXL Reference Manual

getComments

Declaration

string getComments (Discussion d)

Operation
Refreshes from the database the comments data for the specified Discussion in memory. Returns null on success, or an

error on failure.

Note: The Discussion properties will be updated if necessary, to be consistent with the updated comments list.

mayModifyDiscussionStatus

Declaration

bool mayModifyDiscussionStatus (Discussion d, Module m)

Operation

Checks whether the current user has rights to close or re-open the specified discussion on the specified module.

baselinelndex

Declaration

string baselinelIndex (Module m)

Operation

Returns the baseline index of the specified Module, which may be a baseline or a current version. Can be used to tell
whether a Comment can be raised against the given Module data in a given Discussion.

Note: A Comment cannot be raised against a baseline index which is less than the lastVersionIndex property of

the Discussion.

Triggers

Trigger capabilities have been expanded so that triggers can now be made to fire before or after a Discussion ora

Comment is created.

As follows:

pre post

Comment X X

DXL Reference Manual

35

pre post

Discussion X X

comment

Declaration

Comment comment (Trigger t)

Operation

Returns the Comment with which the supplied Trigger is associated, null if not a Comment trigger.

discussion

Declaration

Discussion discussion (Trigger t)

Operation

Returns the Discussion with which the supplied Trigger is associated, null if not a Discussion trigger.

dispose(Discussion/Comment])

Declaration

void dispose ({Discussioné& d|Commenté& c})

Operation

Disposes of the supplied Comment or Discussion reference freeing the memory it uses.

Can be called as soon as the reference is no longer required.

Note: The disposing will take place at the end of the current context.

Example

// Create a Discussion on the current Module, with one follow-up Comment...

Module m = current
Discussion disc = null

create(m,"This is my\nfirst comment.","First summary",disc)

Comment cmt

DXL Reference Manual

36

addComment (disc, m, "This is the\nsecond comment.", cmt)

// Display all Discussions on the Module
for disc in m do
{
print disc.summary " (" disc.status ")\n"
User u = disc.createdBy
string s = u.name
print "Created By: " s "\n"
print "Created By Name: \"" disc.createdByName "\"\n"
print "Created On: " stringOf (disc.createdOn) "\n"
u = disc.lastModifiedBy
S = u.name

print "Last Mod By: " s "\n"

print "Last Mod By Name: \"" disc.lastModifiedByName "\"\n"

print "Last Mod On " stringOf (disc.lastModifiedOn) "\n"

print "First version: " (fullName disc.firstVersion) "
(versionString disc.firstVersion) "]\n"

print "Last version: " (fullName disc.lastVersion) " ["
(versionString disc.lastVersion) "]\n"

Comment c

for ¢ in disc do

{

print "Comment added by " (c.createdByName) " at " //-
(stringOf (c.createdOn)) ":\n"

print "Module Version: " (fullName c.moduleVersion) "
(versionString c.moduleVersion) "]\n"

print "Data timestamp: " (stringOf c.dataTimestamp) "\n"
print "Status: " c.status " (" (c.changedStatus ? "Changed"

"Unchanged") ")\n"

print "On current: " c.onCurrentVersion "\n"
print c.text "\n"

}

DXL Reference Manual

37

Descriptions

This section desctibes the DXL support in Rational DOORS for the new desctiption functionality.
* View Descriptions
e Attribute Type Descriptions

* Attribute Definition Descriptionss

View Descriptions

setViewDescription

Declaration

void setViewDescription (ViewDef vd, string desc)

Operation

Sets the description for a view where vd is the view definition handle.

getViewDescription

Declaration

string getViewDescription (ViewDef vd)

Operation

Returns the description for a view where vd is the view definition handle.

Attribute Type Descriptions

setDescription

Declaration
AttrType setDescription (AttrType at, string desc, string &errMess)

Operation

Sets the description for the specified attribute type. Returns null if the description is not successfully updated.

DXL Reference Manual

modify

Declaration

AttrType modify (AttrType at, string name, string codes[], int values, int
colors, string descs[], [int arrMaps/[],] string &errMess)

Operation

Modifies the supplied attribute type with the corresponding values and descriptions. Can be used to update the descriptions
of old enumeration types.

The optional arrMaps argument specifies existing index values for enumeration values, taking into consideration their
re-ordering.

create

Declaration

AttrType create(string name, string codes[], int values[], int colors[], string
descs[], string &errMess)

Operation

The new descs [] argument enables the creation of a new enumeration based attribute type, whose enumerations use
those descriptions. Returns null if creation is not successful.

description property

Both attribute types themselves, and the enumeration values they may contain, have a new description property. It can
be accessed by using the dot (.) operator.

Example
AttrType at
string desc

int i

//To get the description of the attribute type

desc = at.description

//To get the description of the enumeration values with index i

desc = at.description[i]

DXL Reference Manual

39

Attribute Definition Descriptions

description property

Attribute definitions can now contain a description property. It can be accessed by using the dot (.) operator.
Example

Module m = current

AttrDef ad = find(m, "AttrName")

print ad.description

description(create)

Attribute definition descriptions can be specified during their creation.
Example
AttrDef ad = create object (description “My description”) (type “string”) //-

(default “defvalue”) (attribute "AttrName")

description(modify)

Attribute definition descriptions can be altered by using the modify perm is one of the following ways. Note the new
setDescription property constant.

Examplel
Module m = current
AttrDef ad = find(m, "AttrName")

w

modify (ad, module (description “New Description”) (type “string”) //-

(default “New default”) (attribute “New Name”))

Example2
Module m = current
AttrDef ad = find(m, "AttrName")

modify (ad, setDescription, “New description text”)

DXL Reference Manual

40‘

Filtering

This section describes the DXL support in Rational DOORS for the new module explorer filtering functionality added in
Rational DOORS 9.0.

applyFiltering

Declaration
void applyFiltering (Module)

Operation

Sets the module explorer display to reflect the current filter applied to the specified module.

unApplyFiltering

Declaration
void unApplyFiltering (Module)

Operation

Switches off filtering in the module explorer for the specified module.

applyingFiltering

Declaration
bool applyingFiltering (Module)

Operation

Returns a boolean indicating whether filtering is turned on in the module explorer for the specified module.

HTML

This section desctibes the DXL support the HTML functionality added in Rational DOORS 9.0.

* HTML Control
« HTML Edit Control

DXL Reference Manual

41

HTML Control

The section desctibes the DXL support for the HTML control added in Rational DOORS 9.0.

Note: Some of the functions listed below take an ID string parameter to identify either a frame or an HTML element. In
each of these methods, frames or elements nested within other frames are identified by concatenating the frame
IDs and element IDs as follows: <top frame ID>/[<sub frame ID>/...]<element ID>.

In methods requiring a frame ID, passing null into this parameter denotes the top level document.

These methods refer to all frame types including IFRAME and FRAME elements.

htm(View

Declaration

DBE htmlView (DB parentDB, int width, int height, string URL, bool

before navigate cb(DBE element, string URL, string frame, string postData), void
document complete cb(DBE element, string URL), bool navigate error cb (DBE
element, string URL, string frame, int statusCode), void progress_cb (DBE
element, int percentage))

Operation

Creates an HTML view control where the arguments are defined as follows:

arentDB The dialog box containing the control.

P g g

width The initial width of the control.

height The initial height of the control.

URL The address that will be initially loaded into the control. Can be

null to load a blank page (about:blank).

DXL Reference Manual

42

parentDB

before navigate cb

document complete cb

navigate error cb

progress cb

DXL Reference Manual

The dialog box containing the control.

Fires for each document/ frame before the HTML window/ frame
navigates to a specified URL. It could be used, amongst other
things, to intercept and process the URL prior to navigation,
taking some action and possibly also navigating to a new URL.

The return value determines whether to cancel the navigation.
Returning false cancels the navigation.

Its arguments are defined as follows:

* element: The HTML control itself
e URL: The address about to be navigated to.

* frame: The frame for which the navigation is about to take
place.

* postData: The data about to be sent to the server if the
HTTP POST transaction is being used.

Fires for each document/frame once they are completely loaded
and initialized. It could be used to start functionality required after
all the data has been received and is about to be rendered, for
example, parsing the HTML document.

Its arguments are defined as follows:

¢ element: The HTML control itself
¢ URL: The loaded address.

Fires when an error occurs during navigation. Could be used, for
example, to display a default document when internet connectivity
is not available.

The return value determines whether to cancel the navigation.
Returning false cancels the navigation.

Its arguments are defined as follows:

¢ elements: The HTML control itself.
* URL: The address for which navigation failed.
e frame: The frame for which the navigation failed.

¢ statusCode: Standard HTML error code.

Used to notify about the navigation progress, which is supplied as
a percentage.

43

set(html callback])

Declaration

void set (DBE HTMLView, bool event cb(DBE element, string ID, string tag, string
event type))

Operation

Attaches a callback to HTML control element that receives general HTML events. The ID argument identifies the
clement that sourced the event, the tag argument identifies the type of element that sourced the event, and the
event type argument identifies the event type. Note that the only event types currently supported are c1ick and
dblclick.

If this function is used with an incorrect DBE type, a DXL runtime error occurs.

set(html URL)

Declaration

void set (DBE HTMLView, string URL)

Operation
Navigates the given HTMLView to the given URL.

Can only be used to navigate the top level document and cannot be used to navigate nested frame elements.

setURL

Declaration

void setURL(DBE HTMLView, string ID, string URL)

Operation
Navigates the frame identified by ID to the given URL. The ID may be null.

getURL

Declaration
string getURL (DBE HTMLView, string ID)

Operation
Returns the URL for the currently displayed frame as identified by its ID. The ID may be null.

DXL Reference Manual

get(HTML view)

Declaration
string get (DBE HTMLView)

Operation
Returns the URL currently displayed in the given HTMLV1i ew, if there is one.

get(HTML frame)

Declaration
Buffer get (DBE HTMLView, string ID)

Operation

Returns the URL for the currently displayed frame as identified by its ID.

set(HTML view)

Declaration
string set (DBE HTMLView, Buffer HTML)

Operation
Sets the HTML fragment to be rendered inside the <body> tags by the HTML view control directly. This enables the
controls HTML to be constructed dynamically and directly rendered.

setHTML

Declaration
string setHTML (DBE HTMLView, string ID, Buffer HTML)

Operation

Sets the HTML fragment to be rendered inside the <body> tags by the HTML view controls frame as identified by ID.
This enables the HTML of the given document or frame to be constructed dynamically and directly rendered.

Note: The contents of the frame being modified must be in the same domain as the parent HTML document to be
modifiable. A DXL error will be given on failure (for example, if the wrong type of DBE is supplied).

DXL Reference Manual

45

getHTML

Declaration
Buffer getHTML (DBE HTMLView, string ID)

Operation
Returns the currently rendered HTML fragment inside the <body> tags of the document or frame as identified by its ID.

getBuffer

Declaration
Buffer getBuffer (DBE HTMLView)

Operation
Returns the currently rendered HTML.

getlnnerText

Declaration
string getInnerText (DBE HTMLView, string ID)

Operation

Returns the text between the start and end tags of the first object with the specified ID.

setlnnerText

Declaration
void setInnerText (DBE HTMLView, string ID, string text)

Operation

Sets the text between the start and end tags of the first object with the specified ID.

getlnnerHTML

Declaration
string getInnerHTML (DBE HTMLView, string ID)

Operation
Returns the HTML between the start and end tags of the first object with the specified ID.

DXL Reference Manual

setlnnerHTML

Declaration
void setInnerHTML (DBE HTMLView, string ID, string html)

Operation
Sets the HTML between the start and end tags of the first object with the specified ID.

Note: The innerHTML property is read-only on the col, colGroup, framSet, html, head, style, table,
tBody, tFoot, tHead, title, and tr objects.

getAttribute

Declaration
string getAttribute (DBE element, string ID, string attribute)

Operation
Retrieves the value for the requested attribute of the first object with the specified value of the ID attribute. If the attribute

does not exist, null is returned.

Returns null on success. Returns error string on failure, for example if the wrong type of DBE is passed in.

setAttribute

Declaration
void setAttribute (DBE element, string ID, string attribute)

Operation
Sets the value of the requested attribute for the first object with the specified value of the ID attribute. If the attribute does

not exist, it is added to the object.

Displays a DXL error on failure, for example if the wrong type of DBE is passed in.

Example

DB dlg
DBE htmlCtrl
DBE htmlBtn

DBE html

void onTabSelect (DBE whichTab) {

DXL Reference Manual

void

void

void

void

void

void

int selection = get whichTab

onSetHTML (DBE button) {

Buffer b = create

string s get (htmlCtrl)
print s

b =-s

set (html, b)

delete b

onGetInnerText (DBE button) {
string s = getlInnerText (html,

confirm(s)

onGetInnerHTML (DBE button) {
string s = getInnerHTML (html,

confirm(s)

onGetAttribute (DBE button) {
string s = getAttribute (html,

confirm(s)

onSetInnerText (DBE button) {
Buffer b = create

string s = get (htmlCtrl)

setInnerText (html, "Text", s)

onSetInnerHTML (DBE button) {

"Text")

"Text")

"Text" ,

"Align")

DXL Reference Manual

47

Buffer b = create
string s = get (htmlCtrl)

setInnerHTML (html, "Text", s)

void onSetAttribute (DBE button) {
Buffer b = create
string s = getAttribute (html, "Text", "Align")
if (s == "left"){
s = "center"
}
else if (s == "center"){
s = "right"
}
else if (s == "right") {

s = "left"

setAttribute (html, "Text", "align", s)

bool onHTMLBeforeNavigate (DBE dbe, string URL, string frame, string body) {

string buttons[] = {"OK"}
string message = "Before navigate - URL: " URL "\r\nFrame: " frame
"\r\nPostData: " body "\r\n"

print message ""

return true

void onHTMLDocComplete (DBE dbe, string URL) {
string buttons[] = {"OK"}
string message = "Document complete - URL: " URL "\r\n"
print message ""

string s = get (dbe)

DXL Reference Manual

print "url: " s "\r\n"

bool onHTMLError (DBE dbe, string URL, string frame, int error) {
string buttons[] = {"OK"}

string message = "Navigate error - URL: " URL "; Frame: " frame "; Error: "
error "\r\n"

print message ""

return true

void onHTMLProgress (DBE dbe, int percentage) {
string buttons[] = {"OK"}
string message = "Percentage complete: " percentage "%$\r\n"
print message

return true

dlg = create("Test", styleCentered | styleThemed | styleAutoparent)

htmlCtrl = text(dlg, "Field:", "<html><body>\r\n<p id=\"Text\"
align=\"center\">Welcome to DOORS <i>ERS</i></p>\r\n</body></html>",
200, false)

htmlBtn = button(dlg, "Set HTML...", onSetHTML)

DBE getInnerTextBtn = button(dlg, "Get Inner Text...", onGetInnerText)
DBE getInnerHTMLBtn = button(dlg, "Get Inner HTML...", onGetInnerHTML)
DBE getAttributeBtn = button(dlg, "Get Attribute...", onGetAttribute)
DBE setInnerTextBtn = button(dlg, "Set Inner Text...", onSetInnerText)
DBE setInnerHTMLBtn = button(dlg, "Set Inner HTML...", onSetInnerHTML)
DBE setAttributeBtn = button(dlg, "Set Attribute...", onSetAttribute)
DBE frameCtrl = frame(dlg, "A Frame", 800, 500)

string strTabLabels[] = {"One","Two"}

DBE tab = tab(dlg, strTablLabels, 800, 500, onTabSelect)

DXL Reference Manual

50

htmlCtrl->"top"->"form"
htmlCtrl->"left"->"form"
htmlCtrl->"right"->"unattached"

htmlCtrl->"bottom"->"unattached"

htmlBtn->"top"->"spaced"->htmlCtrl
htmlBtn->"left"->"form"
htmlBtn->"right"->"unattached"

htmlBtn->"bottom"->"unattached"

getInnerTextBtn->"top"->"spaced"->htmlCtrl
getInnerTextBtn->"left"->"spaced"->htmlBtn
getInnerTextBtn->"right"->"unattached"

getInnerTextBtn->"bottom"->"unattached"

getInnerHTMLBtn->"top"->"spaced"->htmlCtrl
getInnerHTMLBtn->"left"->"spaced"->getInnerTextBtn
getInnerHTMLBtn->"right"->"unattached"

getInnerHTMLBtn->"bottom"->"unattached"

getAttributeBtn->"top"->"spaced"->htmlCtrl
getAttributeBtn->"left"->"spaced"->getInnerHTMLBtn
getAttributeBtn->"right"->"unattached"

getAttributeBtn->"bottom"->"unattached"

setInnerTextBtn->"top"->"spaced"->htmlBtn
setInnerTextBtn->"left"->"aligned"->getInnerTextBtn
setInnerTextBtn->"right"->"unattached"

setInnerTextBtn->"bottom"->"unattached"

setInnerHTMLBtn->"top"->"spaced"->htmlBtn
setInnerHTMLBtn->"left"->"spaced"->setInnerTextBtn
setInnerHTMLBtn->"right"->"unattached"

setInnerHTMLBtn->"bottom"->"unattached"

DXL Reference Manual

setAttributeBtn->"top"->"spaced"->htmlBtn
setAttributeBtn->"left"->"spaced"->setInnerHTMLBtn
setAttributeBtn->"right"->"unattached"

setAttributeBtn->"bottom"->"unattached"

frameCtrl->"top"->"spaced"->setInnerTextBtn
frameCtrl->"left"->"form"
frameCtrl->"right"->"form"

frameCtrl->"bottom"->"form"

tab->"top"->"inside"->frameCtrl
tab->"left"->"inside"->frameCtrl
tab->"right"->"inside"->frameCtrl

tab->"bottom"->"inside"->frameCtrl

html = htmlView(dlg, 800, 500, "http://news.bbc.co.uk", onHTMLBeforeNavigate,
onHTMLDocComplete, onHTMLError, onHTMLProgress)

html->"top"->"inside"->tab
html->"left"->"inside"->tab
html->"right"->"inside"->tab

html->"bottom"->"inside"->tab

realize (dlg)
show (d1lg)

HTML Edit Control

The section desctibes the DXL support for the HTML edit control added in Rational DOORS 9.0.

The control behaves in many ways like a rich text area for entering formatted text. It encapsulates its own formatting
toolbar enabling the user to apply styles and other formatting.

DXL Reference Manual

51

52

htmlEdit

Declaration
DBE htmlEdit (DB parentDB, string label, int width, int height)

Operation

Creates an HT'ML editor control inside parentDB.

htmlBuffer

Declaration
Buffer getBuffer (DBE editControl)

Operation

Returns the currently rendered HTML fragment shown in the control. The fragment includes everything inside the <body>

clement tag.

set(HTML edit)

Declaration
void set (DBE editControl, Buffer HTML)

Operation

Sets the HTML to be rendered by the edit control. The HTML fragment should include everything inside, but not
including, the <body> element tag.

Example

DB MyDB = create "hello"
DBE MyHtml = htmlEdit (MyDB, "HTML Editor", 400, 100)

void mycb (DB dlg) {
Buffer b = getBuffer MyHtml

string s = stringOf b

ack s

DXL Reference Manual

53

apply (MyDB, "GetHTML", mycb)
set (MyHtml, "Initial Text")

show MyDB

Miscellaneous

delete(regexp)

Declaration

void delete (Regexp)

Operation
New in Rational DOORS 9.0 this perm deletes the supplied regular expression and frees the memory used by it.

getTDSSOToken

Declaration

string getTDSSOToken (string& ssoToken)

Operation
Fetches a RDS single sign-on token for the current session user.

Returns null on success, or an error on failure.

getURL(SSO)

Declaration
string getURL ({database|Module|ModName |ModuleVersion|Object|Folder| \\-

Project|Item} [, bool incSSOToken])

Operation

The new optional boolean parameter provides the ability to include the current session user single sign-on token in the
URL.

backSlasher

Declaration
buffer backSlasher (Buffer b)

DXL Reference Manual

54

Operation

This function takes a buffer and converts all forward-slash characters (/) to back-slash characters (\), eliminates any
repeated back-slash characters, and removes any trailing back-slash characters.

Example

string s = "\\directory////file "
Buffer b = create

b =s

b = backSlasher (b)

print b ""

DXL Reference Manual

55

Chapter 3

New in DXL for Rational DOORS 9.1

This chapter describes features that are new in Rational DOORS 9.1:

* Regular Expressions

Regular Expressions

regexp2

Declaration

Regexp regexp?2 (string expression)

Operation
Creates a regular expression. Its behavior will not be changed to match the legacy behavior of regexp () . Should be used

in all new regular expression code.

DXL Reference Manual

56

DXL Reference Manual

Chapter 4

New in DXL for Rational DOORS 9.2

This chapter describes features that are new in Rational DOORS 9.2:
* Additional authentication

* Dialog box updates

* New constants

* Partitions updates

* Requirements Interchange Format (RIF)

Additional authentication

getAdditionalAuthenticationEnabled

Declaration
bool getAdditionalAuthenticationEnabled()

Operation

Returns true if enhanced security users need to perform additional authentication during login. Only relevant when

authentication is being controlled via RDS.

getAdditionalAuthenticationPrompt

Declaration
string getAdditionalAuthenticationPrompt ()

Operation

Returns the label under which additional authentication is requested, if enhanced security is enabled, for example the label

for the second “password” field. Only relevant when authentication is being controlled via RDS.

getSystemLoginConformityRequired

Declaration
bool getSystemLoginConformityRequired ()

DXL Reference Manual

57

58

Operation
Returns true if enhanced security users have there system login verified when logging in. Only relevant when

authentication is being controlled via RDS.

getCommandLinePasswordDisabled

Declaration

bool getCommandLinePasswordDisabled ()

Operation

Return true if the =P command line password argument is disabled by default.

setCommandLinePasswordDisabled

Declaration

string setCommandLinePasswordDisabled (bool)

Operation
Sets whether the —P command line password argument is disabled by default. Supplying t rue disables the option by
default.

Dialog box updates

toolBarComboGetEditBoxSelection

Declaration
string toolBarComboGetEditBoxSelection (DBE toolbar, int index)

Operation

Returns the selected text from the editable combo box in toolbar where index is the combo box index.

toolBarComboCutCopySelectedText

Declaration
void toolBarComboCutCopySelectedText (DBE toolbar, int index, bool cut)

DXL Reference Manual

59

Operation
Cuts, or copies, the selected text in the editable combo box in toolbar atlocation index. If cut is true, the selected

text is cut to the clipboard. Otherwise, it is copied.

toolBarComboPasteText

Declaration
void toolBarComboPasteText (DBE toolbar, int index)

Operation
Pastes text from the clipboard into the combo box located at index in toolbar. Replaces selected text if there is any.

hasFocus

Declaration

bool hasFocus (DBE toolbar)

Operation
Returns true if the supplied toolbar DBE contains an element that currently has the keyboard focus. Otherwise,

returns false.

setDXLWindowAsParent

Declaration
void setDXLWindowAsParent (DB dialogq)

Operation
Sets the DXL interaction window to be the parent of dialog. If there is no DXL interaction window, the parent is set to

null.

New constants

mayUseCommandLinePassword

Declaration

bool mayUseCommandLinePassword

DXL Reference Manual

60

Operation
Boolean property of a User. When command line passwords are disabled by default, this returns t rue if they have been
enabled for the given User. Otherwise, returns false.

additionalAuthenticationRequired

Declaration

bool additionalAuthenticationRequired

Operation
Boolean property of a User. Returns true if the User needs to perform additional authentication during login. Only

relevant when authentication is performed via RDS.

iconAuthenticatingUser

Declaration

Icon iconAuthenticatingUse

Operation

The icon used to represent a user requited to perform additional authentication during login.

Partitions updates

addAwayModule

Declaration

string addAwayModule (PartitionDefinition pd, string modName[, string partName])

Operation
Used to add a formal module to a partition in the away database.

The new, optional parameter can be used to specify the partition name where it may vary from the definition name.

addAwayLinkModule

Declaration
string addAwayLinkModule (PartitionDefinition pd, string modName[, string
partName])

DXL Reference Manual

61

Operation
Used to add a link module to a partition in the away database.

The new, optional parameter can be used to specify the partition name where it may vary from the definition name.

Requirements Interchange Format (RIF)

exportPackage

Declaration
string exportPackage (RifDefinition def, Stream RifFile, DB parent, bool& cancel)

Operation

Exports def to the XML file identified by Ri fF1ile. The stream must be have been opened for writing using “write
(filename, CP _UTF8)”.1f parent is null then a non-interactive operation is performed. Otherwise, progress bars

will be displayed.

If an interactive export is performed, and is cancelled by the user, cancel will be set to true.

importRifFile

Declaration

string importRifFile(string RifFilename, Folder parent, string targetName,
string targetDesc, string RifDefName, string RifDefDescription, DB parent)

Operation

Performs a non-interactive import of R1 fFileName, placing the imported modules in a new folder in the specified
parent. The new folder name and description are specified by targetName and targetDesc.

rifMerge

Declaration
string rifMerge (RifImport mrgObj, DB parent)

Operation

Performs a non-interactive merge using the information in mrgObj.

RifDefinition

ARifDefinition is the object in which a package to be exported in RIF format is defined.

DXL Reference Manual

62

Properties are defined for use with the . (dot) operator and a R1fDefinition handle to extract information from a
definition, as shown in the following syntax:

variable.property

where:
variable is a variable of type RifDefinition.
property is one of the following properties.

The following tables list the RifDefinition properties and the information they extract or specify

String property Extracts
name The name of the definition.
description The desctiption of the definition.

rifDefinitionIdentifer The unique ID of the RIF definition (this is shared between databases, unlike the
name and description).

boolean property Extracts

createdLocally Returns true if the definition was created in the local database, as opposed to being
imported.

canModify Returns true if the correct user can modify the definition.

Project property Extracts

project The project which contains the definition.

RifModuleDefinition

A RifModuleDefinition isan object which contains the details of how a module should be exported, as part of a
RIF package.

Properties are defined for use with the . (dot) operator and RifModuleDefinition handle to extract information
from, a definition record, as shown in the following syntax:

variable.property

where:
variable is a vatiable of type RifModuleDefinition.
property is one of the properties below.

DXL Reference Manual

63

The following tables list the R1 fModuleDefinition properties and the information they extract or specify:

String property Extracts

dataConfigView The name of the view used to define which data in the module will be included in the RIF
export.

ddcView The name of the view used to define what data can be edited when the exported RIF package
is imported into another database.

bool property Extracts

createdLocally Whether the module was added to the RifDefinition in the current database or not.

ModuleVersion Extracts

property

moduleVersion The ModuleVersion reference for the given RifModuleDefinition.

Ddcmode property Extracts

ddcMode The type of access control used to define whether the module, or its contents, will be

editable in each database once it has been exported.

DdcMode constants

DdcMode constants define the type of access control used define whether a module, or its contents, will be editable in each

of the local and target database once the export has taken place. The following table details the possible values, and their

meanings.
Constant Meaning
ddcNone Module will be editable in both source and target databases.
ddcReadOnly Module will be editable in only the source database.
ddcByObject Selected objects in the module will be made read-only in the source database.
ddcByAttribute Selected attributes in the module will be made read-only in the soutce database.
ddcFullModule Module will not be editable.
Riflmport

A RifImport is an object which contains information on a RIF import. These are created by import operations, and are
persisted in a list in the stored R1fDefinition.

DXL Reference Manual

64

Properties are defined for use with the .

(dot) operator and a RifImport handle to extract information from, or specify

information in an import record, as shown in the following syntax:

variable.property

where:
variable

property

is a variable of type RifImport.

is one of the properties.

The following tables list the Riflmport properties and the information they extract or specify :

bool property Extracts

mergeStarted Returns true when a merge operation is started.

mergeCompleted Returns true when the merge has been completed.

mergeRequired Returns true when an import is a valid candidate for merging.

mergeDisabled Returns true if the merge has been disabled due to lock removal.

User property Extracts

importedBy Returns the user who performed the import.

mergedBy Returns the user who preformed the merge.

Folder property Extracts

folder Returns the folder containing the imported data. On import, a DXL script is expected to
iterate through the contents of this folder, merging all items which have RIF IDs, and which
are persisted in this folder.

Date property Extracts

exportTime Returns the time the export was performed. Note that this is the timestamp derived from the
creationTime element of the header in the imported RIF package. Merges should be
performed in the order in which the data was exported, rather than the order in which the
packages were imported.

importTime Returns the date that the import folder was created.

mergeTime Returns the date that the merge of the import folder was completed, or started if it has not

yet been completed.

DXL Reference Manual

65

RifDefinition property Extracts

definition Returns the RifDefinition with which the import is associated.

for RifDefinition in Project

Syntax
for rifDef in proj do {

}

Operation

Assigns rifDef to be each successive R1fDefinitionin Project proj.

for RifModuleDefinition in RifDefinition

Syntax
for rifModDef in rifDef so {

}

Operation
Assigns rifModDef to be each successive R1fModuleDefinitioninRifDefinition rifDef.

for Riflmport in RifDefinition

Syntax
for rifImp in rifDef do {

}

Operation

Assigns rifImp to be each successive rifImport inRifDefinition rifDef.

Examples

The following example dumps all information about all RIF definitions in the current project to the screen. It then

conditional exports one of the packages.

DXL Reference Manual

66

RifDefinition rd
RifModuleDefinition rmd
Stream stm = write ("C:\\Public\\rifExport.xml", CP UTF8)
string s = ""
bool b
Project p = current
Project p2
ModuleVersion mv
DB myDB = null
DdcMode ddcm
for rd in p do {
print rd.name "\n"
print rd.description "\n"
print rd.rifDefinitionIdentifier "\n"

if (rd.createdLocally) {

print "Local DB\n"

if (rd.canModify) {

print "May be modified by current user\n"

p2 = rd.project

print fullName p "\n"

for rmd in rd do {

print "\nModules present in definition :\n"

DXL Reference Manual

67

mv = rmd.moduleVersion

print fullName mv "\t"

print rmd.dataConfigView "\t"

print rmd.ddcView "\t"

if (rmd.createdLocally) {

print "Home DB.\n"

ddcm = rmd.ddcMode

if (ddcm == ddcFullModule) {

print "Module will not be editable once definition is exported.\n"

} else if (ddcm == ddcByObject) {

print "Selected objects will be locked in the local database once the
definition is exported.\n"

} else if (ddcm == ddcByAttribute) {

print "Selected attributes will be locked in the local database once
the definition is exported.\n"

} else if (ddcm == ddcReadOnly) {

print "Module will only be editable in the local database once
definition is exported.\n"

} else if (ddcm == ddcNone) {

DXL Reference Manual

68

print "Module will be fully editable in both local and target
databases when definition is exported.\n"

if (rd.name == "RifDefl") {

s = exportPackage (rd, stm, myDB, b)

if (S 1= nu){

print "Error occurred : " s "\n"

}

The following example dumps all information about all RIF imports in the current project. It then merges those imports
where required.

RifImport ri

RifDefinition rd

Project p = current

User importer, merger

string importerName, mergerName, res
Folder f

Skip dates = create

for rd in p do {

for ri in rd do {

rd = ri.definition

print rd.name "\n"

DXL Reference Manual

69

f = ri.folder
print "Located in : " fullName f

print "\n"

importer = ri.importedBy

importerName = importer.name
print "Imported by : " importerName "\n"
print "Imported on : " ri.importTime "\n"

if (ri.mergeStarted && !ri.mergeCompleted) {

print "Merge started on : " ri.mergeTime "\n"

} else if (ri.mergeCompleted) {

print "Merge completed on : " ri.mergeTime "\n"

if (ri.mergeRequired) {

print "Merge required.\n"

res = rifMerge (ri, null)

print "Merging result : " res "\n"
} else {

merger = ri.mergedBy

print "Merged by : " mergerName "\n"

if (ri.mergeDisabled) {

DXL Reference Manual

70

DXL Reference Manual

print "Merge disabled,
}

print "\n"

locks removed.\n"

Chapter 5

New in DXL for Rational DOORS 9.3

This chapter describes features that are new in Rational DOORS 9.3:

Converting a symbol character to Unicode
Dialog box functions

Operations on type string

Embedded OLE objects and the OLE clipboard
OLE Information Functions

Discussions

RIF ID

Rational DOORS URLs

Filters

Compound Filters

Localizing DXL

Finding links

Links

Converting a symbol character to Unicode

symbolToUnicode

Declaration

char symbolToUnicode (char symbolChar, bool convertAllSymbols)

Operation

Converts a symbol character to its Unicode equivalent. If convertAllSymbols is false, only symbols with the Times

New Roman font equivalents are converted.

DXL Reference Manual

7

72‘

Dialog box functions

addAcceleratorKey

Declaration

void addAcceleratorKey (DB db, void dxlCallback(), char accelerator, int
modifierKeyFlags)

Operation

Adds an accelerator key accelerator to the dialog db with the callback function dx1Callback () and the passed-in
modifierKeyFlags. modifierKeyFlags is used in conjunction with the accelerator parameter to change
which key should be pressed with the accelerator key. Possible values for it are modKeyNone, modKeyCtrl,
modKeyShift and null.

The specified DXL callback fn dx1Callback () executes for the specified keystroke combination being pressed when
the DXL dialog box db is active.

Only call this perm after the dialog box db has been realized, otherwise a DXL run-time error will occur.

Example
void fn ()
{
print "callback fires\n"
}
DB db = create("testDialog", styleStandard)

realize db

// The callback fn() will be executed on pressing Shift+F7 when the dialog db is
active.

addAcceleratorKey (db, fn, keyF7, modKeyShift)

Operations on type string

unicodeString

Declaration

string unicodeString (RTF string str, bool convertAllSymbols, bool
returnAsPlainText)

DXL Reference Manual

73

Operation

Returns the value of the specified rich text string as RTF or plain text. If the attribute contains characters in Symbol font,

these characters are converted to the Unicode equivalents.

If convertAllSymbols is true, all symbol character are converted. If false, only Unicode characters that have a good
chance of being displayed are used. See the symbolToUnicode perm for a description of which characters are
converted.

The value is returned as plain text if returnAsPlainText is true. Otherwise the value is returned as RTF.

escape

Declaration

string escape(string str, char escapeChar, string escapeChars)

Operation

Escapes all the characters in str which are in escapeChars, with the escapeChar character. This also escapes
escapeChar itself.

Example

escape ("hello world", '/', "1") returns "he/l1/lo wor/1d"

escape ("hello world #1", '#', "1h") returns "#he#l#lo wor#ld ##1"

stripPath

Declaration
string stripPath(string path, bool isEscaped)

Operation
Removes the path part from path, using forward slash as the path separator.

If isEscaped s true, the slash character can be used as a literal character rather than a path separator by preceding the
character with a backslash.

Example
stripPath ("abc/def/ghi", b) returns "ghi", where b is true or false.

stripPath ("abc/def\\/ghi", true) returns "def/ghi"

DXL Reference Manual

74‘

Embedded OLE objects and the OLE clipboard

olePasteSpecial

Declaration
string olePasteSpecial (string attrRef, bool displayAsIcon)

Operation
Copies an OLE object from the clipboard and appends it to at tRef. The boolean displayAslcon, when set to t rue will

display the OLE object as an icon in the object. Returns null on success and displays an error message on failure.
Example
Object o = current

olePasteSpecial (o."object text", false)

OLE Information Functions

oleSetHeightandWidth

Declaration
oleSetHeightandWidth (string attrRef, int height, int width, int index)

Operation
Sets the height and width of the OLE object within attrRef at the specified index.

Example
Object o = current Object
oleSetHeightandWidth (o."Object Text"™, 150, 150, 1)

DXL Reference Manual

Discussions

isDiscussionColumn

Declaration

bool isDiscussionColumn (Column c)

Operation

Returns true if the column is a discussion column, otherwise false.

setDiscussionColumn

Declaration

void setDiscussionColumn (Column ¢, string s)

Operation

Sets the filter on the discussion column based on the supplied discussion DXL filename.

Example
Column c
for ¢ in current Module do
{
if (isDiscussionColumn (c))
{
string s = dxlFilename (c)
if (s != null)
{
Module m = edit ("/TestDiscussions ", true)
//Open a module, with some discussions in it.
if (m !'= null)
{
Column cNew = insert (column 3)
title(cNew, "My copy Discussion™)
string home = getenv ("HOME")

string fullPath = home "\\" s ""

string contents = readFile (fullPath)

DXL Reference Manual

75

//Call dx1 PERM on that column before setting the discussion column. The

//discussion column is also a modified version of LAYOUT dxl.
dx1 (cNew, contents)
setDiscussionColumn (cNew, s)
width (cNew, 100)

refresh (m, false)

canModifyDiscussions

Declaration
bool canModifyDiscussions ({Module m| Item i| string s} [, {User |string}l])

Operation

Returns true if a given user or named user (current user if the parameter is not supplied) is allowed to create a discussion or
a comment on a discussion for the given module, item or named module. The use of item is intended for use when the

Item represents a module.

canEveryoneModifyDiscussions

Declaration

bool canEveryoneModifyDiscussions ({Module m| Item 1i})

Operation

Returns true if the discussions access list for the given module or item contains the special "Everyone" group.

addUser

Declaration

void addUser (Item i, {User ul| string s})

Operation
Adds the user or named user to the Discussion Access List for an Ttem. The updated list is not saved in the database until

saveDiscussionAccessList is called.

DXL Reference Manual

7

addGroup

Declaration
void addGroup (Item i, {Group g| string s})

Operation
Adds the group or named group to the Discussion Access List for an Item. The updated list is not saved in the database
until saveDiscussionAccessList is called.

removeUser

Declaration

void RemoveUser (Item i, {User ul| string s})

Operation
Remove the user or named user from the Discussion Access List for an ITtem. The updated list is not saved in the database

until saveDiscussionAccessList is called.

removeGroup

Declaration

void removeGroup (Item i, {Group g| string s})

Operation

Remove the group or named group from the Discussion Access List for an ITtem. The updated list is not saved in the

database until saveDiscussionAccessList is called.

saveDiscussionAccessList

Declaration

string saveDiscussionAccessList (Item 1)

Operation

This perm saves the discussion access list for the given item to the database. This perm is only successful for an
administrator or a user with manage database privileges. If the call is successful, a null value will be returned, otherwise a

string with an error message will be returned.

DXL Reference Manual

78‘

RIF 1D

getRiflD

Declaration
string getRifID(Object o)

Operation

Returns a string with the RIF ID for object o. If the object does not have a RIF ID, an empty string is returned.

getObjectByRifID

Declaration
Object getObjectByRifID (Module m, string s)

Operation
Returns the object within module m with a RIF ID of s. If the module does not contain an object with the input RIF ID,

null is returned.

Rational DOORS URLs

getResourceURL

Declaration
string getResourceURL(Module | Object| Database__ | ModuleVersion| ModName___| Folder | Project | Item)

Operation

Returns the resource URL of the passed in item.

getResourceURLConfigOptions

Declaration

void getResourceURLConfigOptions(string &dwaProtocol, string &dwaHost, int &dwaPort)

DXL Reference Manual

79

Operation

Gets the dwaProtocol, dwaHost, and dwaPort DBAdmin options configured for this database. The
dwaProtocol, dwaHost, and dwaPort parameters contain the values upon return.

decodeResourceURL

Declaration

string decodeResourceURL(string resourceURL, string &protocol, string& dbHost, int& dbPort, string& repositoryld,
string& dbName, string& dbld, Item&, ModuleVersion&, string& viewName, int& objectAbsno)

Operation
Breaks down a passed-in resource URL into its constituent parts and passes back the information as may be applicable into

the reference parameters.

Returns null on success, error message on failure.

Filters

getSimpleFilterType_

Declaration
int getSimpleFilterType (Filter)

Operation

Returns the type of the simple filtet; attribute, link, object, or column. Please note that the returned value corresponds to the
index of the appropriate tab page on the filter dialog. If the specified filter is not a simple filter, -1 is returned.

getAttributeFilterSettings_

Declaration

bool getAttributeFilterSettings (Module,
Filter,
string& attributeName,
int& comparisonType,
string& comparisonValue,
bool& matchCase,

bool& useRegexp)

DXL Reference Manual

80

Operation
Gets details of the specified attribute filter in the return parameters. The function returns £alse if the filter is not a valid
attribute filter.

The comparisonType paramenter returns the internal index of the comparison. This is different to the index that is
used in the associated combo box on the filter dialog. The translation is performed by the DXL code.

getLinkFilterSettings_

Declaration

bool getLinkFilterSettings (Module,
Filter,
bool& mustHave,
int& I1inkType,

stringé& linkModuleName)

Operation

Gets details of the specifed link filter in the return parameters. The function returns false if the filter is not a valid link
filter.

The 1inkType parameter returns a value that maps directly to the appropriate combo box.

The 1inkModuleName parameter returns an asterisk if links are allowed through any module, or the module name.

getObjectFilterSettings_

Declaration
bool getObjectFilterSettings (Module,
Filter,

int& objectFilterType)

Operation

Gets details of the specified object filter in the return parameter. The function returns false if the filter is not a valid
object filter.

The objectFilterType parameter returns a value that maps directly to the radio group on the dialog.

getColumnFilterSettings_

Declaration
bool getColumnFilterSettings (Module,

Filter,

DXL Reference Manual

81

string& columnName,
string& comparisonValue,
bool& matchCase,

bool& useRegExp)

Operation

Gets details of the specified column filter in the return parameters. The function returns false if the filter is not a valid

column filter.

Compound Filters

These perms can be used to decompose compound filters into their component parts for analysis, and potential

modification or replacement.

getCompoundFilterType_

Declaration
int getCompoundFilterType (Filter)

Operation

Returns an integer value indicating the type of the specified filter.

It returns one of the following new DXL constant values for compound filter types:
int filterTypeAnd

int filterTypeOr

int filterTypeNot

It returns -1 for a simple filter. The test for a negative value suffices to indicate that the filter is not compound, as the new

constants are all positive values.

If no filter is supplied, a run-time DXL error is generated.

getComponentFilter_

Declaration

Filter getComponentFilter_(Filter, int index)

Operation
Returns an integer value indicating the type of the specified filter.

It returns one of the following new DXL constant values for compound filter types:

DXL Reference Manual

82

int filterTypeAnd
int filterTypeOr
int filterTypeNot

This perm returns a component filter that is part of the supplied compound filter. If the compound filter is of type
filterTypeNot, the index must be zero, or the perm returns null. If the compound filter is of type
filterTypeOror filterTypeAnd, anindex of 0 or 1 returns the first or second sub-filter, and any other index
value returns null.

If the supplied filter is not a compound filter, the perm returns null.

If no filter is supplied, a run-time DXL error is generated.

Localizing DXL

Rational DOORS uses ICU resource bundles for accessing translated strings. DXI. perms are available to access ICU
resource bundles containing translated strings for customized DXIL. For information about creating ICU resource bundles,

see http://userguide.icu-project.org/locale/localizing.

Put the language resource files in a directory whose name is taken as the bundle name, under
$DOORSHOME/ language,for example $SDOORSHOME /language/myResource/de DE. res. There are two
bundles already shipped with Rational DOORS, core and DXL.)

LS.

Declaration

string LS (string key, string fallback, string bundle)

Operation

Returns the string from resource bundle that is identified by key. If the string identified by key is not found in the resource
bundle, the fallback string is returned.

Example

de.txt file contains;

de {
Keyl{"Ausgehend"}
Key2{"Ausgehende Links"}
Key3{"Normalansicht"}

Key4 {"Klartext"}

DXL Reference Manual

83

From the command line, generate a resource bundle, for example genrb de.txt, and copy the resource bundle to
$DOORSHOME /language/myResource/, where myResource is the name of your resource bundle. The localized
strings can then be accessed using the LS perm, for example in the DXL editor, type:

print LS ("Keyl",

print LS ("Key2",

print LS ("Key3",

print LS ("Key4",
The output is:

Ausgehend

Ausgehende Links
Normalansicht

Klartext

"Ausgehend not found", "myResource") "\n"
"Ausgehende Links not found", "myResource") "\n"
"Normalansicht not found", "myResource") "\n"
"Klartext not found", "myResource") "\n"

Finding links

for each incoming link

Syntax

for LinkRef in each(Object tgtObject)
do {

1linkModuleName)
}
where:
LinkRef
tgtObject

1inkModuleName

Operation

<- (string

is a variable of type Link or LinkRef
is a variable of type Object

is a string variable

Assigns the variable LinkRef to be each successive incoming link arriving at object tgtObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, or the string " * " meaning any

link module.

Iterates through all incoming link references including those from baselines and soft-deleted modules.

Note:
not detected.

This loop only assigns to LinkRe f incoming link values for which the source object is loaded; unloaded links are

DXL Reference Manual

Example

LinkRef 1
for 1 in each(current Object) <- "*" do {
string user = 1."Created By"

print user "\n"

for each source

Syntax

for srcModName in each (Object tgtObject) <- (string
linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a variable of type Object
1inkModName is a string variable
Operation

Assigns the variable srcModName to be the unqualified name of the source module of each successive incoming link
arriving at object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a
specific link module name, or the string " *" meaning any link module.

Includes links from baselines and soft-deleted modules, returning the name of the source module (without baseline version
numbers).

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example

This example prints the unqualified name of all the source modules for incoming links to the cutrent object:
Object o = current

string srcModName

for srcModName in each o<-"*" do print srcModName "\n"

DXL Reference Manual

85

for each source reference

Syntax

for srcModRef in each (Object tgtObject) <- (string
linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a vatiable of type Object
1inkModName is a string variable

Operation

Assigns the variable srcModRef to be the reference of the source module of each successive incoming link arriving at
object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a specific link
module name, or the string " * " meaning any link module.

Includes links from baselines and soft-deleted modules.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example
ModName srcModRef
for srcModRef in each o<-"*" do

read (fullName (srcModRef), false)

Links

getlegacyURL

Declaration
string getlLegacyURL (object o)

Operation

This perm returns the legacy Rational DOORS URL. The legacy URL contains the protocol as "doors". This URL can then
be decoded using decodeURL.

DXL Reference Manual

Example

ModuleVersion mv

int objectAbsno

Item i

string dbHost = null
int dbPort

string dbName

string dbID = null

string objUrl = getURL (current Object)

string legacyUrl

string errorMsg

errorMsg = getLegacyURL (objUrl, legacyUrl)
if(!null errorMsgqg)

{

print errorMsg "\n"

else

errorMsg = decodeURL (legacyUrl, dbHost, dbPort, dbName, dbID, i, mv,
objectAbsno)

}

if(!'null errorMsq)

{

print errorMsg "\n"

else
{

print "Original URL - " objUrl "\nDB Host - " dbHost "\n"

print "DB Port - " dbPort "\nDB Name - " dbName "\nDB Id - " dbId
"\nAbsolute Number - " objectAbsno "\n"

}

DXL Reference Manual

Chapter 6
Fundamental types and functions

This chapter describes the functions and operators that can be used on the fundamental types of the core language
underlying DXT.:

* Operations on all types
* Operations on type bool
e Operations on type char
* Operations on type int

* Operations on type real

* Operations on type string

Operations on all types

The concatenation operator and the functions print and null can be used with all fundamental types.

Concatenation (base types)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
bool b <space> string s
real r <space> string s
char ¢ <space> string s
int 1 <space> string s

string sl <space> string s2

For type A space character

bool Concatenates string s onto the evaluation of b (true or false), and returns the resulting string.
real Concatenates string s onto real number r, and returns the resulting string.

char Concatenates the string s onto the character ¢ and returns the result as a string.

int Concatenates the string s onto the integer ¢ and returns the result as a string.

string Concatenates string s2 onto string s1 and returns the result as a string.

DXL Reference Manual

88

Concatenation must be used when printing derived types. An example of a derived typeis 0. ”Object text”, where o
is an object. If a string is not concatenated to the end of the print statement, a DXL error will occur, in this case.

Example
print "square root of 2 is " (sqgrt 2.0) "\n"
char nl = '"\n'

print "line one" nl "line two"
print (getenv "DOORSHOME") "/lib/dx1"

print o."Object text" ""

print (base types)

Declaration

void print (bool x)
void print (real r)
void print (char c¢)
void print (int 1)

void print (string s)

Operation
For type Prints
bool The string true in the DXL output window if x is t rue; otherwise prints false.
real The passed real number r in the DXL output window, using a precision of 6 digits after the radix
character.
char The character ¢ in the DXL output window.
int Integer 1 in the DXL output window, with a trailing newline.
string The string s in the DXL output window without a trailing newline.
Example
print (2.2 * 2.2) // prints 4.840000
print 'a'

print "Hello world\n"

null

The null function either returns the null value for the type, or tests whether a variable has the null value for its type.

DXL Reference Manual

Declaration
type null ()

bool null (type x)

Operation

The first form returns the following values depending on the value of type:

Type Return value

bool false

char character of ASCII code 0
int 0

real 0.000000

string a null string ("")

The second form returns true if x has a null value as follows:

Type Null value

bool falseornull

char null

int Oornull

real Any 0 value with any number of decimal places or null
string "W ornull

You can use the value null to assign a null value to any type, including type bool and char.

Example

string empty

null

print null empty // prints true

Operations on type bool

Just as C++ has introduced a separate type bool (for boolean), so has DXL.

See also “Concatenation (base types),” on page 87, the print function, and the null function.

DXL Reference Manual

89

Type bool constants

The following constants are declared:
const bool true

const bool on

const bool false

const bool off

The boolean value true is equivalent to on; the value false is equivalent to of £.

Note: For boolean values you cannot use 1 and 0.

Boolean operators

The operators &&, | |,and ! perform logical AND, OR, and NOT operations, as shown in the following syntax:
bool x && bool y

bool x || bool y

'bool x

These operators use lazy evaluation.

The && operator returns true only if x and y are both true; otherwise, it returns false. If xis false, it does not
evaluate y.

The | | operator returns true if x or y is true; otherwise, it returns false. If xis true, it does not evaluate y.

The ! operator returns the negation of x.

Type bool comparison

Type bool relational operators can be used as shown in the following syntax:

bool x == bool y

bool x != bool y

The == operator returns true only if x and y are equal; otherwise, it returns false.

The != operator returns true only if x and y are not equal; otherwise, it returns false.

Operations on type char

See also “Concatenation (base types),” on page 87, the print function, and the null function.

DXL Reference Manual

Character comparison

Character relational operators can be used as shown in the following syntax:
char chl == char ch2
char chl != char ch2
char chl < char ch2
char chl > char ch2
char chl <= char ch2
char chl >= char ch2

These operators return true if chl is equal, not equal, less than, greater than, less than or equal to, or greater than or
equal to ch2.

Character extraction from string

The index notation, [], can be used to extract a single character from a string, as shown in the following syntax:

string text[int n]
This returns the n™ character of string text, counting from 0.

Example

This example prints h in the DXL Interaction window’s output pane:

string s = "hello"
char ¢ = s[0]
print c

Character classes

The set of functions whose names start with 1s can be used to check whether a character belongs to a specific class.

Declaration

bool isalpha (char ch)
bool isupper (char ch)
bool islower (char ch)
bool isdigit (char ch)
bool isxdigit (char ch)
bool isalnum(char ch)

bool isspace (char ch)

DXL Reference Manual

92

bool
bool
bool
bool
bool

ispunct (char
isprint (char
iscntrl (char
isascii (char

isgraph (char

Operation

ch)
ch)
ch)
ch)
ch)

These functions return t rue if the character ch is in the named character class:

Class Description

alpha 'a' = 'z' 'A'" - 'Z2'

upper 'AY - 'Z"

lower 'a' = 'z'

digit 0" - '9"

xdigit 0" - '9' 'a' - 'f' '‘A' - 'F!

alnum 'a' = 'z' 'A'" - 'z' '0' - '9'

space U\t "\nt' "\mt' "\3" "\k!'

punct any character except <space> and alpha numeric
characters

print a printing character

cntrl any character code between 0 and 31, and code 127

ascii any character code between 0 and 127

graph any visible character

Example

print isalpha 'x'

print isalpha ' '

// prints true

// prints false

charOf

Declaration

char charOf (int asciiCode)

Operation

Returns the character whose ASCII code is asciiCode.

DXL Reference Manual

Example

const char nl =

charOf 10

intOf (char)

Declaration

int (char ch)

Operation
Returns the ASCII code of character ch.

Example

print intOf

g

// prints 97

Operations on type int

A type int value in DXL has at least 32 bits.

See also “Concatenation (base types),” on page 87, the print function, and the null function.

Arithmetic operators (int)

Arithmetic operators can be used as shown in the following syntax:

int
int
int
int
int
int

int

X

X

X

X

+ int y

~int x

-int x

int
int
int
int
int

int

Y

R R R K

These operators perform integer arithmetic operations for addition, subtraction, multiplication, division, remainder, bitwise

OR, bitwise AND, bitwise NOT, and negation.

DXL Reference Manual

93

Assignment (int)

Assignment operators can be used as shown in the following syntax:
int x = int y

int x += int
int x -= int
int x *= int
int x /= int

int x %= int

NN R R KR K

int x |= int
int x &= int y

These operators assign integer values to variables of type 1nt assignment. The last seven variations combine an arithmetic
operation with the assignment.

Example
int y = 20
y *=3

print y // print 60

print y // print 8

print y // print 2

Unary operators

Unary operators can be used to increment or decrement variables before or after their values are accessed, as shown in the
following syntax:

int x++
int x--
int ++x
int --x

The first two operators return the value of the variable before incrementing or decrementing a variable. The second two
return the value after incrementing or decrementing a variable.

Note: You can overload these operators.

DXL Reference Manual

Example

int i

40

print ++1i

print i++

print

i

// prints 41
// prints 41
// prints 42

Minimum and maximum operators

Two operators can be used to obtain the minimum or maximum value from a pair of integers, as shown in the following

syntax:

int x <? int y

int x >? int y

These operators return the minimum or maximum of integers x and y.

Example
print (3 <? 2)
print (3 >? 2)

// prints 2
// prints 3

Integer comparison

Integer relational operators can be used as shown in the following syntax:

int x
int x
int x
int x
int x

int x

1=

>=

int
int
int
int
int

int

Y

NN R OKR

Y

These operators return true if x is equal, not equal, less than, greater than, less than or equal to, or greater than or equal to

y.

Example

print (2 !'= 3) // prints true
isValidInt

Declaration

bool isValidInt (string value)

DXL Reference Manual

95

96

Operation
Returns true if value is a valid integer; otherwise, returns false. The value passed must not be just spaces, e.g.

If a null string is passed, a DXL run-time error occurs.

random(int)

Declaration

int random(int max)

Operation

Returns a random integer value x such that 0 <= x < max

Example

print random 100 // prints an integer in the range 0 to 99

Operations on type real

A type real value in DXL is like a type double in C, with a precision of 64 bits.

See also “Concatenation (base types),” on page 87, the print function, and the null function.

Type real pi

The only constant of type real thatis declared in DXL is pi:
const real pi

This supplies a constant value of 3.141593.

Arithmetic operators (real)

Arithmetic operators can be used as shown in the following syntax:
real x + real y

real x - real
real x * real
real x / real
real

real x

-real x

DXL Reference Manual

Operation

These operators petform arithmetic operations on type real variables for addition, subtraction, multiplication, division,
exponentiation, and negation.

Example
print (2.2 + 3.3) // prints 5.500000

Assignment (real)

Assignment operators can be used as shown in the following syntax:
real x = real y
real x += real y
real x -= real y
real x *= real y
real x /= real y

These operators petform type real assignment. The last four variations combine an atithmetic operation with the
assighment.

Example
real x = 1.1
print (x += 2.0) // prints 3.1

After the print statement, the variable x is assigned the value 3. 1.

Convert to real

The assignment operator = can be used to convert an integer to a real number, as shown in the following syntax:

real r = int 1

Operation

Converts 1 into a type real, assigns it to the type real variable r, and returns this value.

Example
real r = 5

print r // prints 5.000000

Type real comparison

Type real relational operators can be used as shown in the following syntax:

real x == real y

DXL Reference Manual

real x != real
real x < real

real x > real

NONONN

real x <= real
real x >= real y

These operators return true if x is equal, not equal, less than, greater than, less than or equal to, or greater than or equal

to y.
Example
print (2.2 < 4.0) // prints true
intOf (real)

Declaration

int intOf (real r)
Operation

Rounds r of type real to the nearest integer.

Example
print intOf 3.2 // prints 3

realOf

Declaration
real realOf (int 1)

real realOf (string s)

Operation

Converts type int 1 ortype string s into atype real value, and returns it.

Example
print realOf 4 // prints 4.000000
real x = realOf "3.2"

print x // prints 3.200000

DXL Reference Manual

cos

Declaration

real cos(real angle)

Operation

Returns the cosine of angle in radians.
sin

Declaration

real sin(real angle)

Operation

Returns the sine of angle in radians.
tan

Declaration

real tan(real angle)

Operation

Returns the tangent of angle in radians.
exp

Declaration

real exp(real x)

Operation

Returns the natural exponent of type real x.
log

Declaration

real log(real x)

Operation

Returns the natural logarithm of type real x.

DXL Reference Manual

99

100

pow

Declaration

real pow(real x,
real y)

Operation

Returns type real x raised to the power y (same as x"y).

sqrt

Declaration

real sqgrt(real x)

Operation

Returns the squate root of x.

random(real)

Declaration

real random/()

Operation

Returns a random value x, such that 0 <=x < 1.

Operations on type string

A DXL type string can contain any number of characters.

See also “Concatenation (base types),” on page 87, the print function, and the null function.

String comparison

String relational operators can be used as shown in the following syntax:
string sl == string s2
string sl != string s2

string sl < string s2

DXL Reference Manual

101

string sl > string s2
string sl <= string s2
string sl >= string s2

These operators return true if s1 is equal, not equal, less than, greater than, less than or equal to, or greater than or equal
to s2. Case is significant.

Example

print ("aaaa" < "a") // prints "false"
print ("aaaa" > "a") // prints "true"
print ("aaaa" == "a") // prints "false"
print ("A" > "a") // prints "false"
print ("McDonald" < "Man") // prints "false"

Substring extraction from string

The index notation, [], can be used to extract a substring from a string, as shown in the following syntax:
string text[range]

Operation

Returns a substring of text as specified by range, which must be in the form int:int.

The range argument is specified as the indices of the first and last characters of the desired substring, counting from 0. If
the substring continues to the end of the string, the second index can be omitted.

Example

string str = "I am a string constant"

print str[0:3] // prints "I am"

print str([2:3] // prints "am"

print str[5:] // prints "a string constant"
cistrcmp

Declaration

int cistrcmp(string sI,
string s2)

Operation

Compares strings s1 and s2 without regard to their case, and returns:

0 if s1 == 52

DXL Reference Manual

102

1 if s1 > §2

-1 if s1 < §2

Example

print cistrcmp ("alAa","AaA") // prints 0
print cistrcmp ("aAa","aA") // prints 1
print cistrcmp ("akAa","aRaa") // prints -1

length

Declaration
int length(string str)

Operation

Returns the length of the string str.

Example
print length "123" // prints 3

lower, upper

Declaration

string lower (string str)
string upper (string str)
Operation

Converts and returns the contents of str into lower or upper case.

Example
string mixed = "aaaBBBBcccc"
print lower mixed // prints "aaabbbbcccc"

print upper mixed // prints "AAABBBBCCCC"

soundex

Declaration

string soundex (string str)

DXL Reference Manual

Operation

Returns the soundex code of the string st r. Initial non-alphabetic chatracters of str are ignored.
Soundex codes are identical for similar-sounding English words.

Example

Both these examples print R265 in the DXL Interaction window’s output pane.

print (soundex "requirements")

print (soundex "reekwirements")

backSlasher

Declaration
buffer backSlasher (Buffer b)

Operation

This function takes a buffer and converts all forward-slash characters (/) to back-slash characters (\), eliminates any
repeated back-slash characters, and removes any trailing back-slash characters.

Example

string s = "\\directory////file "
Buffer b = create

b =s

b = backSlasher (b)

print b ""

findPlainText

Declaration

bool findPlainText (string s, string sub, int &offset, int &length, bool
matchCase[, bool reverse])

Operation

Returns true if string s contains the substring sub.

Both s and sub are taken to be plain text string. Use findRichText to deal with strings containing RTF markup.
If matchCase is true, string s must contain string sub exactly with matching case; otherwise, any case matches.

The function returns additional information in offset and 1ength. The value of offset is the number of characters
in s to the start of the first match with string sub. The value of Iength contains the number of characters in the

matching string.

DXL Reference Manual

103

104

If reverse is specified and is true, then the search is started at the end of the string, and the returned values of offset
and Iength will reflect the last matching string in s.

Example
string s = “This shall be a requirement”
string sub = “shall”

int offset = null

int length = null

bool matchCase = true

bool reverse = true

if (findPlainText (s, sub, offset, length, matchCase, reverse)) {

print offset ™ : ™ length “™ \\prints “5 : 5”

unicodeString

Declaration

string unicodeString (RTF string str, bool convertAllSymbols, bool
returnAsPlainText)

Operation

Returns the value of the specified rich text string as RTF or plain text. If the attribute contains characters in Symbol font,
these characters are converted to the Unicode equivalents.

If convertAllSymbols is true, all symbol character are converted. If false, only Unicode characters that have a good
chance of being displayed are used. See the symbolToUnicode perm for a description of which characters are

converted.

The value is returned as plain text if returnAsPlainText is true. Otherwise the value is returned as RTF.

escape

Declaration

string escape(string str, char escapeChar, string escapeChars)

Operation

HEscapes all the characters in str which are in escapeChars, with the escapeChar character. This also escapes
escapeChar itself.

DXL Reference Manual

105

Example
escape ("hello world", '/', "1") returns "he/l/lo wor/1ld"

escape ("hello world #1", '#', "1h") returns "#he#l#lo wor#ld ##1"

stripPath

Declaration

string stripPath(string path, bool isEscaped)
Operation

Removes the path part from path, using forward slash as the path separator.

If isEscapediis true, the slash character can be used as a literal character rather than a path separator by preceding the
character with a backslash.

Example
stripPath ("abc/def/ghi", b) returns "ghi", where b is true or false.
stripPath ("abc/def\\/ghi", true) returns "def/ghi"

DXL Reference Manual

106

DXL Reference Manual

107

Chapter 7
General language facilities

This chapter introduces basic functions and structures defined by DXI.’s run-time environment, as follows:
¢ Files and streams

* Configuration file access

* Dates

e Skip lists

* Regular expressions

* Text buffers

e Arrays

Files and streams

This section desctribes DXL’s features for manipulating files. For information on creating a directory, see the mkdir
function.

The main data type introduced is the St ream, which uses C++ like overloadings of >> and << to read and write files.
Streams are not a fundamental type inherited from DXL’s C origins, so the type name Stream begins with an upper case
letter.

Standard streams

Declaration
Stream& cin
Streamé& cout

Streamé& cerr

Operation

Following C++’s naming scheme for UNIX standard streams, these variables are initialized by Rational DOORS to
standard input, output and error.

On UNIX platforms, you can use cin to read input that has been piped into Rational DOORS, and cout to pipe data out
from Rational DOORS. Similatly, you can send user defined error messages (or any other desired output) to standard error
using cerr.

DXL Reference Manual

108

Read from stream

The operator >> can be used to read strings or data from a configuration area stream, or fill a buffer, as shown in the
following syntax:

file >> string s
file >> char c¢
file >> real r

file >> int 1

file >> Buffer b

where:

fileisafile of type Stream

The first form reads a line of text from the configuration area stream file into string s, up to but not including any newline.

The next three forms read the data from the configuration area stream file, and return the result as a stream, to enable
chained reads. Real and integer constants are expected to be the last items on a line, while characters, including newlines, are
read one at a time up to and including the end of file.

The second form reads from the configuration area stream file into buffer b until it is full at its current size, or the end of
the file is reached. Returns the configuration area stream. This function can read multiple lines.

Example
char c
real r
int i
Stream input = read "data.dat"

input >> ¢ >> r >> i

Read line from stream

Two operators can be used to read a single line from a stream to a buffer, as shown in the following syntax:
file -> Buffer b

file >= Buffer b

where:

fileisafile of type Stream

Operation

The —> operator reads a single line from the stream f£11e, and copies it to the buffer, skipping any leading white space. If
the line is empty besides white space, the buffer is emptied. Returns the stream.

DXL Reference Manual

109

The >= operator reads a single line from the stream £11e, and copies it to the buffer in its entirety. If the line is empty, the
buffer is emptied. Returns the stream.

Write to stream

The operator << can be used to write strings, single characters or buffers to a stream, as shown in the following syntax:
file << string s

file << char c¢

file << Buffer b

where:

fileisafile of type Stream

Writes the string s, the character ¢, or the buffer b to the stream file. To write other data types to a stream, first convert
them to a string by concatenating the empty string or a newline.

Example

Stream out = write tempFileName
out << 1.4 "\n"

Stream alpha = write tempFileName

alpha << 'a' << 'b' << '¢!

canOpenFile

Declaration
bool canOpenFile (string pathname,

bool forWrite)

Operation

Returns t rue when the file pathname can be opened; otherwise, returns false. If forWriteis set to true, the file is
opened for write and the current contents of the file are cleared. If forWriteissetto false the file is opened read only
and the existing contents are unchanged.

read, write, append(open file)

Declaration
Stream read(string filename)
Stream write(string filename)

Stream append(string filename)

DXL Reference Manual

110

Operation

Opens a file £ilename for reading, wtiting or appending, and returns a stream. File I/O operations only succeed if the
user has permission to create or access the files specified.

To open a binary file, you must call the binary function after the read, write or append. The syntax is therefore:
read [binary] filename

write [binary] filename

append [binary] filename

You can use the Stat DXL functions to check whether the I/O functions in this section can succeed (see “uset, size,
mode,” on page 150).

Example

// ASCII file

Stream output = write tempFileName

// binary file

Stream image = read binary pictureFileName

close(stream)

Declaration

void close (Stream s)

Operation

Closes the stream s.

flush

Declaration

void flush (Stream s)

Operation

Flushes the output stteam s. Character I/O can be buffered; this command forces any such buffers to be cleared.

readFile

Declaration

string readFile(string filename)

Operation

Returns the contents of the file £ilename as a string.

DXL Reference Manual

111

Note: The Codepages function also has a readFile operator. For information about Codepages and readFile, see
“readFile,” on page 180.

goodFileName

Declaration

string goodFileName (string filename)

Operation

Returns a legitimate file name of the passed file, £ilename, with respect to any restrictions imposed by the current
platform. This will only apply to the filename up to the .’ character. The string after the .” is ignored.

Example

This example prints the file name Test results in the DXL output window:

print goodFileName "Test results"

tempFileName

Declaration

string tempFileName ()

Operation

Returns a string, which is a legal file name on the current platform, and is not the name of an existing file. On UNIX
platforms, returns a file name like /tmp/DOORSaaouef; on Windows platforms, returns a file name like
C:\TEMP\DP2. This file can be used for temporary storage by DXL programs.

currentDirectory

Declaration

string currentDirectory ()

Operation

Returns the path name of the current working directory.

copyFile

Declaration

string copyFile(string sourceFileName,
string destFileName)

DXL Reference Manual

112

Operation

Copies file sourceFileName to destFileName. If the operation succeeds, returns null; otherwise, returns an

error message.

Example
copyFile ("filel", "file2")

deleteFile

Declaration

string deleteFile(string filename)

Operation

Deletes the file named filename. If the operation succeeds, returns null; otherwise, returns an error message.

renameFile

Declaration

string renameFile(string old, string new)

Operation

Renames the file called 01d to new. If the operation succeeds, returns null; if it fails, returns an error message.

end(stream)

Declaration
bool end(Stream s)

Operation
Returns true if the stream has no more characters pending. The test should be made after a read, but before the read
data is used:
Example
while (true) {
input >> str // read a line at a time; var set up
if (end input) break // test after read but before

print str "\n" // variable str is used

DXL Reference Manual

113

format

Declaration

void format (Stream s, string text, int width)

Operation

Outputs string text to Stream s, formatting each word of the text with a ragged right margin in a column of width
characters. If a word is too long for the specified column, it is continued on the next line.

Example

Stream out = write tempFileName

format (out, "DXL Reference Manual", 5)
close out

This generates the following in the temporary file:

DXL

Refer

ence

Manua

1

for file in directory

Syntax

for s in directory "pathname" do {

}

where:
pathname is the path of the directory
s is a string variable
Operation

Sets the string s to be each successive file name found in the directory pathname.
Example

This example prints a list of the files in directory C: \:

string x = "c:\\"

string file

DXL Reference Manual

114

for file in directory x do {

print file "\n"

Files and streams example program

This example creates a temporary file, writes some data to it, saves it, tenames it, reads from the new file, and then deletes it:

// file (Stream) DXL example

/*
example file I/0 program

*/

string filename = tempFileName // get a scratch file

print "Writing to " filename "\n"

Stream out = write filename

out << 'x' "» // write a char (via a string)

out << 1.001 "\n" // a real (must be last thing on line)
out << 42 "\n" // an int (must be last thing on line)

out << "hello world\na second line\n"
// a string

close out // write a file to read back in again
string oldName = filename
filename = tempFileName // get a new file name

renameFile (oldName, filename) // move the file we wrote earlier

print "Reading from " filename "\n"

Stream input = read filename

char ¢ // declare some variable
real r

int 1

input >> c

input >> r

input >> i

print ¢ ™ " r " " i "\n" // check data type read/writes
string str // do rest line by line

while (true) {
input >> str // read a line at a time

DXL Reference Manual

115

if (end of input) break
print str "\n" // str does not include the newline

}

print readFile filename // read the whole lot into a string
close input

deleteFile filename // delete the file

Configuration file access

This section describes the DXL features for manipulating configuration files. The data types used are ConfType and
ConfStream. Many of these functions have a parameter ConfType area. The arguments that can be passed as
ConfType area are as follows:

e confUser

e confSysUser
e confSystem
¢ confTemp

The confUser argument means the file is situated in an area specific to the current Rational DOORS user, or to the
current system user if a project is not open.

The confSysUser argument means the file is situated in the configuration area for system users. This argument remains
constant regardless of whether the user is logged into the project. For example, the Rational DOORS Tip Wizard uses a
confSysUser file to store whether a user has opted to show Tips on startup.

The confSystem argument means the file is situated in a shared area accessible by all users.
The confTemp argument is similar to confSystem, but is generally used for storing temporary files.

If the function does not supply an area argument, confUser is used.

Read

from stream

The operator >> can be used to read strings or data from a configuration area stream, or fill a buffer, as shown in the
following syntax:

file >> string s

file >> Buffer b

where:

fileisafile of type ConfStream

The first form reads a line of text from the configuration area stream f1i1e into string s, up to but not including any

newline.

The second form reads from the configuration area stream f1 1e into buffer b until it is full at its current size, or the end of
the file is reached. Returns the configuration area stream. This function can read multiple lines.

DXL Reference Manual

116

Read line from stream

Two operators can be used to read a single line from a configuration stream to a buffer, as shown in the following syntax:
file -> Buffer b

file >= Buffer b

where:

fileisa file of type ConfStream

Operation

The —> operator reads a single line from the configuration area stream £1le, and copies it to the buffer, skipping any
leading white space. If the line is empty besides white space, the buffer is emptied. Returns the stream.

The >= operator reads a single line from the configuration area stream £1ile, and copies it to the buffer in its entirety. If
the line is empty, the buffer is emptied. Returns the stream.

Write to stream

The operator << can be used to write strings, single characters or buffers to a stream, as shown in the following syntax:
file << string s

file << char c¢

file << Buffer b

where:

fileisa file of type ConfStream

Writes the string s, the character ¢, or the buffer b to the configuration area stream f£1Ie. To write other data types to a
configuration area stream, first convert them to a string by concatenating the empty string or a newline.

Example

ConfStream out = write tempFileName
out << 1.4 "\n"

ConfStream alpha = write tempFileName

alpha << 'a' << 'b' << '¢!

confMkdir

Declaration

void confMkdir (string dirName
[,ConfType areal)

DXL Reference Manual

117

Operation

Creates the directoty, dirName, in either the default ot the specified configuration area, area.

confDeleteDirectory

Declaration

string confDeleteDirectory(string pathname, ConfType conf)

Operation

Deletes the named directory in the specified ConfType atea (confSystem or confUser). On success it returns null;

on failure it returns an error string.

confRead

Declaration

ConfStream confRead(string fileName
[,ConfType areal)

Operation
Opens the specified file for reading, and returns the file handle. The file can be in either the default or the specified

configuration area.

Detects the encoding of conf files by checking for the presence of a UTF-8 Byte Order Marker (BOM) at the start of the
file. If it finds one, it assumes that the file is encoded in UTF-8. Otherwise, it assumes that the file is encoded according to
the legacy codepage for the database. In either case, any values subsequently read from the file using the ConfStream >>
operator or others are converted to Unicode, so the encoding of the file should not affect the functionality of any DXL

scripts that use this perm.

confWrite

Declaration

ConfStream confWrite(string fileName
[,ConfType areal)

Operation

Opens the specified file for writing, and returns the file handle. The file can be in either the default or the specified

configuration area.

Any conf files created by this perm are encoded in UTF-8, enabling them to contain any Unicode strings.

DXL Reference Manual

118

confAppend

Declaration

ConfStream confAppend (string fileName
[,ConfType areal)

Operation
Opens the specified file for appending, and returns the file handle. The file can be in either the default or the specified
configuration area.

This perm converts any non-UTF-8 files to UTF-8 encoding before opening them for append. This enables any Unicode
strings to be written to the file using the ConfStream << write operators.

confRenameFile

Declaration

string confRenameFile(string old,
string new
[,ConfType areal)

Operation

Renames the file 01d to new in either the default or the specified configuration area.

Returns an error message string if the operation fails.

confCopyFile

Declaration

string confCopyFile(string source,
string dest,
ConfType area)

Operation

Copies source to dest in the specified configuration area. If the operation fails, it returns an error message.

confDeleteFile

Declaration

string confDeleteFile(string fileName
[,ConfType areal

DXL Reference Manual

119

Operation
Deletes the specified file in either the default or the specified configuration area. If the operation fails, it returns an ertor

message.

confFileExists

Declaration
bool confFileExists (string fileName
[,ConfType areal)

Operation

Returns true if the specified file exists in either the default or the specified configuration area; otherwise, returns false.

close(configuration area stream)

Declaration

void close (ConfStream s)

Operation

Closes the configuration atea stream s.

end(configuration area stream)

Declaration

bool end(ConfStream s)

Operation
Returns true if the stream has no more characters pending. The test should be made after a read, but before the read

data is used:

Example

while (true) {
input >> str // read a line at a time; var set up
if (end input) break // test after read but before
print str "\n" // variable str is used

DXL Reference Manual

120

for file in configuration area

Syntax
for s in confDirectory("dirname"[,areal) do {
}
where:
dirname is the name of the directory in area, or if area is omitted, in
confUser
area is a constant of type ConfType: confUser,
confSysUser, confSystem, confTemp, or
confProjUser
s is a string variable
Operation

Sets the string s to be each successive file name found in the directory pathname.

Example
This example prints a list of the files in ditectory test in confUser:
string file

for file in confDirectory("test") do {
print file "\n"

confUploadFile(source, dest [, conftype])

Declaration

string confUploadFile(string source, string dest [, conftypel)

Operation

Uploads a file from the location on the client machine specified by source, to the file in the system conf area on the
database server, specified by dest. It returns null on success. If the dest string contains double-petiods " . ." ot specifies
an invalid directory, then the perm reports an error and returns null. Otherwise, if the upload fails, the perm returns an error
message.

The optional 3rd argument specifies the config area where the file should be sent. This defaults to the current user’s config
area (confUser). Files to be accessible to all users should be uploaded to the system config area, by specifying this argument
as “confSystem”.

Example

string message = confUploadFile ("C:\\temp\\myprog.exe", "myprog", confSystem)

DXL Reference Manual

121

if (!'null message)

{

warningBox (message)

confDownloadFile(source, dest [, conftype])

Declaration

string confDownloadFile (string source, string dest [, conftypel)

Operation

Downloads a file from the location in the conf area on the database server, specified by dest, to the location on the client
machine specified by source. It returns null on success. If the source string contains double-periods “. .” then the perm
reports an error and returns null. Otherwise, if the download fails, the perm returns an error message.

The optional 3rd argument specifies the config area from which the file should be copied. This defaults to the current user’s
config area (confUser).

Example

string message = confDownloadFile ("myprog","C:\\temp\\myprog2.exe", confSystem)
if (!'null message)

{

warningBox (message)

Dates

This section describes DXLs features for manipulating dates.
Dates are not a fundamental type inherited from DXL’s C origins, so the type name Date begins with an upper case letter.

DXL Date data limits are from 1 Jan 1970, to 31 Dec 2102.

Concatenation (dates)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
Date d <space> string s

Concatenates string s onto date d and returns the result as a string. It uses the long format date, or, if any operations
dealing in seconds have occurred, the short format date with time added.

DXL Reference Manual

122

Example
This example prints <01 January 1999>:
Date d = "1 Jan 99"

print nengusn

Assignment (date])

The assignment operator = can be used as shown in the following syntax:
Date d = string datestr

Converts the string datestr into a date, assigns it to d, and returns it as a result. Issues an error message if datestris
not in a valid date format. Ordinal numbers, for example 4th, are not recognized. Apart from that limitation, all date
formats are valid, for example:

yyyy, dd mmm
dd/mm/yy
mm/dd/yy

Time can be appended to a dates using the format hh:mm:ss. ss, provided the date is in the format dd/mm/yy or
mm/dd/yy.

Example
This example prints 04 October 1961:
Date dl = "4 Oct 1961"

print dl

Date comparison

Date relational operators can be used as shown in the following syntax:
Date dl == Date dZ2
Date dl != Date d2
Date dl < Date d2
Date dl > Date d2
Date dl <= Date d2
Date dl >= Date d2

These operators return true if d1 is equal, not equal, less than, greater than, less than or equal to, greater than or equal to
dz2.

Example
This example prints false in the DXL Interaction window’s output pane:

Date dl = "4 Oct 1961"

DXL Reference Manual

123

Date d2 = "10 Nov 1972"

print (dl1 > d2)

print(date)

Declaration
void print (Date d)

Operation

Prints the date d in the DXL output window in long format, or, if any operations dealing in seconds have occurred, the
short format date with time added.

Example
This example prints 04 October 1961:
Date dl = "4 Oct 1961"
print dl
today

Declaration

Date today()

Operation

Returns today’s date. The value includes the exact time, but it is not printed using:
print today

The function call:

intOf today

returns the integer number of seconds since 1 Jan 1970, 00:00:00 GMT.

Example
This example prints the current date and time:

print dateOf intOf today

Note: Concatenating strings to the end of this statement may give unexpected results.

session

Declaration

Date session()

DXL Reference Manual

124

Operation

Returns the date on which the current Rational DOORS session began. The value includes the exact time in the same way
as the today function.

Example
This example prints the date the current Rational DOORS session started:

print session

intOf(date)

Declaration
int intOf (Date d)

Operation

Returns an integer corresponding to the number of seconds that have elapsed between the given date and 1 Jan 1970,
00:00:00 GMT.

When a Date data type is converted for dates on or after 1 Jan 2037, or before 1 Jan 1970, this function returns a result of
-1.

Example
print intOf today

dateOf

Declaration
Date dateOf (int secs)

Operation

Returns the date and time that is calculated as secs seconds since 1 Jan 1970, 00:00:00 GMT.

Example

int minute = 60

int hour = 60 * minute
int day = 24 * hour
int year = 365 * day

int leapYear = 366 * day

print dateOf ((year * 2) + leapYear)

This generates the following in the DXL Interaction window’s output pane:

01/01/73 00:00:00

This is three years after 1 Jan 1970, 00:00:00 GMT, taking into account that 1972 was a leap year.

DXL Reference Manual

125

stringOf

Declaration
string stringOf (Date d[, Locale 1][, string s])

Operation

This returns the string representation of the date value using the specified locale and format. If no locale is specified, the
cutrent user locale is used. If no format string or a null format string is specified, then if the date value includes time
(hours:minutes:seconds), the default short date format for the locale will be used. Otherwise, a long date format will be
used. The default short date format will be either that specified by the user using setDateFormat (Locale), or, if no
default short date format has been set by the user for the locale, the system default format.

date

Declaration

Date date(string s[, Locale I1][,string s])

Operation

This returns the date value represented by the supplied string, interpreted according to the specified locale and format. The
default locale is the current user locale. If no format string is supplied, the input string is parsed using first the user’s default
short date format (if one has been specified for the locale), and then all the supported formats for the locale.

for string in shortDateFormats

Declaration

for string in shortDateFormats ([Locale 11])

Operation

This iterator returns the short date formats supported for the specified locale. If no locale is specified, it returns the short

date formats supported for the current user locale.

The first format returned is the default short date format for the locale.

for string in longDateFormats

Declaration

for string in longDateFormats ([Locale 17)

Operation

This iterator returns the long date formats supported for the specified locale. If no locale is specified, it returns the long date

formats supported for the current user locale.

DXL Reference Manual

126

The first format returned is the default long date format for the locale.

includesTime

Declaration

bool includesTime (Date d)

Operation

This returns true if the specified date value includes time information as well as date.

dateOnly

Declaration
Date dateOnly (Date d)

Operation

Returns a copy of the supplied date value, without any included time-of-day information (it returns a date-only value).

dateAndTime

Declaration
Date dateAndTime (Date d)

Operation

Returns a copy of the supplied date value including time-of-day data.

Example

print today ()

prints 6 June 2010

print dateAndTime (today)
ptints 6/6/2010 13:42:34

Example

The following example uses the new locale specific date format perms.

// dates.dxl - dates and formats example

//*****‘k*‘k***

void testFormat (Date datevValue, Locale loc, string format)
// DESCRIPTION: Checks that the stringOf and dateOf perms are true

// inverses for the specified format.

DXL Reference Manual

127

print " format " format ": " stringOf (dateValue, loc, format) "\n"

} // testFormat

//**

vold testDate (Date dateValue, Locale loc)
// Tests stringOf and dateOf using default formats,
{

// Test default format

string stringForm = stringOf (dateValue, loc)

print "Default format: " stringForm "\n"

// Test all supported formats
string format
print "Short formats:\n"
for format in shortDateFormats (loc) do
{
testFormat (dateValue, loc, format)
}
print "Long formats:\n"
for format in longDateFormats (loc) do
{

testFormat (dateValue, loc, format)

// Test abbreviations.

and all supported formats.

print "Abbreviated names: " stringOf (dateValue, loc, "ddd, d MMM yy") "\n"
// Test all full names.
print "Full names: " stringOf (datevalue, loc, "dddd, d MMMM yyyy") "\n"

} // testDate
Locale loc = userLocale
print "\nLOCALE: " (name loc) "\n"

print "\nDATE ONLY:\n"

DXL Reference Manual

128

testDate (today, loc)
print "\nDATE AND TIME:\n"

testDate (dateAndTime (today), loc)

Skip lists

This section describes DXL’s features for manipulating skip lists.

Skip lists are an efficient dictionary like data structure. Since DXL does not support a C like struct feature, many DXL
programs use skip lists as the building blocks for creating complex data structures.

Because DXL provides no garbage collection, it is important to delete skip lists that are no longer required, thereby freeing
allocated memoty.

Skip lists are not a fundamental type inherited from DXIL’s C origins, so the type name Skip begins with an upper case
letter.

create, createString(skip list)

Declaration
Skip create()

Skip createString/()

Operation
Creates a new empty skip list and returns it.

Itis very important, and it is the programmer’s responsibility to ensure that data and keys are consistently used when storing
and retrieving from a skip list. For example, you can cause program failure by inserting some data into a skip list as an
integer, then retrieving the data into a string variable and attempting to print it.

The keys used with the skip list can be of any type. However, comparison of keys is based on the address of the key, not its
contents. This is fine for elements that are always represented by a unique pointer, for example, objects, modules, or skip
lists, but care is needed with strings. This is because a string may not have a unique address, depending on whether it is
literal or a computed string stored in a variable.

There are two ways of avoiding this problem. The first is to use the createString form of the function for a skip list
with a string key. The alternative is to ensure that all literal strings used as keys are concatenated with the empty string.

Example
Skip strKeys = create

put (strKeys, "literal" "", 1000)

DXL Reference Manual

delete(skip list)

Declaration
void delete (Skip s)

Operation

Deletes all of skip list s. Variables that have been given as keys or data are not affected.

delete(entry)

Declaration
bool delete(Skip s,
type key)
Operation
Deletes an entry in skip list s according to the passed key, which can be of any type. Vatiables that have been given as keys
or data are not affected. Returns false if the key does not exist.
Example

if (delete (numberCache, 1)) // delete absno 1
ack "delete succeeded"

find(entry)

Declaration

bool find(Skip s,
typel key
[,type2 &datal)

Operation

Returns true if the passed key, of typel, has an entry in skip list s. The optional third argument sets the entry found to
be data of typeZ. Both typel and typeZ can be any type.

Example

if (find(numberCache, 1, o)) {
string h = o0."Object Heading"
ack h

key

The key function is used only within the skip list for loop, as shown in the following syntax:

DXL Reference Manual

129

130

(type key(Skip s))

Operation

Returns the key corresponding to the current element. The return value can be of any type, so a cast must precede the use of
key.

Example

Object o

for o in numberCache do {
// must cast the key command.
int i = (int key numberCache)
print i

put

Declaration

bool put (Skip s,
typel key,
type2 data)

Operation

Returns true if the passed key and data are successfully inserted into the skip list s. Duplicate entries are not allowed,
so the function returns false if an entry with the same key already exists. For this reason, an entry at an existing key
must first be deleted before its data can be changed.

Example

Skip s = create
put(s,1,20)

print put(s, 1, 30)
// prints 'false'
delete(s, 1)

print put(s, 1, 30)

// prints 'true', s(l) is now 30

for data element in skip list

Syntax

for dataElement in skiplist do {

DXL Reference Manual

where:

dataElement is a variable of any type
skiplist is a variable of type Skip
Operation

Sets entry to be each successive type data element of 1ist.

Example
Object o

for o in numberCache do {
string h = o0."Object Heading"
print h "\n"

Skip lists example program

In this example a skip list is used to store a mapping from absolute numbers to the corresponding Rational DOORS object:

// skip list example
/*

simple skip list example: make a mapping
from absolute numbers to objects, allowing
fast lookup

*/

Skip numberCache = create // builds the skip list
Object o

int n=20 // count objects

for o in current Module do {
// cycle through all objects

int absno = o."Absolute Number"
// get the number

put (numberCache, absno, o)
// number is key, object is data

n++

}// for

// we now have a quick way of going from absolute numbers to objects:

if (n > 0) {
int i

DXL Reference Manual

131

132

for i in 1:20 do {
int absno =

if

(find (numberCache,

1 + random n
// choose an absno at random

// can we find it?

string heading

print "#" absno " has
heading \"" heading "\"\n"

y// if
}// for
y// if

absno,

o)) {

o0."Object Heading"

Regular expressions

This section describes DXLs features for using regular expressions.

Regular expressions are a mechanism for detecting patterns in text. They have many applications, including searching and

simple parsing.

Regular expressions are not a fundamental type inherited from DXI’s C origins, so the type name Regexp begins with an

upper case letter.

The following symbols can be used in Regexp expressions:

Meaning
Z€1rO0 Of MOre occurrences
+ one or more occurrences

any single character except
new line

\ escape (literal text char)

start of the string (if at start
of Regexp)

$ end of the string (if at end of
Regexp)

Groupings

Example

ax*
X+

*

“"The.*

end\\.

(ref)
(bind)

$

+

*

Matches
any number of a characters, or none
one or mote x characters

any number of any characters (any
string)

literally a . (dot) character

any string starting with The or
starting with The after any new
line(see also [] below)

any string ending with end.

at least one ref string then any
number of bind strings

DXL Reference Manual

133

(Continued)
[1] character range (letters or [sS]hall. any string containing shall or Shall
digits) *\\.$ and ending in a literal dot (any
requirement sentence)

[~abc] any character except a, b, or ¢
[a-zA-7] any alphabetic character
[0-9] any digit

| Alternative (dat |doc) cither the string dat or the string doc

Note: The regular expression escape character must itself be escaped in a DXL string. For example, to have the regular
expression \ ., you must have \\ . in the DXL string.

Many of the functions for regular expressions use the data type Regexp.

Application of regular expressions

The space character is an operator that applies a regular expression to a string or buffer; it is shown as <space> in the
following syntax:

Regexp reg <space> string text
Regexp reg <space> Buffer b
Operation

Returns true if there is a match.

Example

Regexp line = regexp2 ".*"

while (line txtl) {

match

The match function returns a range for a match of a regular expression within a string or buffer, as shown in the following
syntax:

Regexp r = regexp "x(optionsl)y(optionsZ2)..."
{string|Buffer} str = "string"
str[match n]

where:

r str are variables

DXL Reference Manual

134

Xy are literal characters in a regular expression
optionsl are regular expression matching options
options2
string is a string or buffer
n is an integer

Operation

When n=0, returns the range of string. When n=1, returns the range of the match for optionsl;when n=2, returns
the match for options2, and so on. The value for n is restricted to the range 0-9.

Example

This example detects and decomposes URLs:

Regexp URL = regexp2 " (HTTP|http|ftp|FTP|file|FILE):// ([~ \\),;>\"]1*)"
string txt3 = "The ABC URL is http://www.abc.com; it may be..."

if (URL txt3) {

print txt3[match 0] "\n" // whole match
print txt3[match 1] "\n" // first section in ()
print txt3[match 2] "\n" // second section in ()
}
matches

Declaration

bool matches (string reg,
string text)

Operation
Returns true if text matches reg. For repeated use, declaring and building a regular expression is more efficient.

Example
string txt = "xxxxyesuuuu"

if (matches (" (yes|no)", txt)) print txt[match 0]

regexp

Declaration

Regexp regexp(string reqg)

DXL Reference Manual

135

Operation

Returns a new regular expression, specified by string reg. For legacy support only, should not be used in new code.
Replaced by regexp2().

Example

// matches any line except newline

Regexp line = regexp2 ".*"

start, end(of match)

Declaration
int start (int n)
int end(int n)

Operation

Return the position of the first and last characters of the nth match from a call to mat ch. The value for n is restricted to

the range 0-9.

Example

int firstNamelen = end 1

delete(regexp)

Declaration

void delete (Regexp)

Operation

This perm deletes the supplied regular expression and frees the memory used by it.

regexp2

Declaration

Regexp regexp? (string expression)

Operation

Creates a regular expression. Its behavior will not be changed to match the legacy behavior of regexp () . Should be used

in all new regular expression code.

DXL Reference Manual

136

Regular expressions example program

// regular expression DXL example

/*
examples of regular expression DXL

*/

Regexp line = regexp2 ".*"

// matches any character except newline

string txtl = "line 1\nline 2\nline 3\n"
// 3 line string

while (!'null txtl && line txtl) {
print txtl[match 0] "\n"
// match 0 is whole of match

txtl = txtl[end 0 + 2:] // move past newline
}

// The following regular expression detects and decomposes URLs

Regexp URL = regexp2 " (HTTP|http|ftp|FTP|file|FILE):// ([~ \\),;>\"]1*)"

string txt3 = "The ABC URL is http://www.abcinc.com, and may be..."
if (URL txt3) {

print txt3[match 0] "\n" // whole match

print txt3[match 1] "\n" // first bracketed section

print txt3[match 2] "\n" // second.

print start 1 // position 15 in txt3 (from O0)

print end 1 // 18

print start 2 // 22

print end 2 // 34

Text buffers

The following functions enable the manipulation of DXL buffers. Buffers are a speed and memory efficient way of
manipulating text within DXL applications. Their use is particularly encouraged in parsers and importers.

You should explicitly delete buffers with delete as soon as they are no longer needed in a script.

Buffers ate not a fundamental type inherited from DXL’s C origins, so the type name Buf fer begins with an upper case
letter.

Because DXL provides no garbage collection, it is important to delete buffers that are no longer required, thereby freeing
allocated memoty.

DXL Reference Manual

137

Assignment (buffer)

The assignment operator = can be used as shown in the following syntax:
Buffer b = string s
or

Buffer b = h.oldvalue

Operation
The first form sets the contents of buffer b to that of the string s. You can use a range in the assignment.
The second form sets the contents of the buf fer to the history property o1ldValue. The buffer should be deleted after

use.

Note: If you want to assign a buffer to a buffer, you must use the form Buffer b=stringOf (a), otherwise, the
address of a is given to b instead of its value.

Append operator

The append operator += can be used as shown in the following syntax:
Buffer b += string s
Buffer b += char c¢

Buffer b += Buffer b

Operation
Appends the string, character, or buffer to the buffer b.

Example
This example prints oneltwox in the DXL Interaction window’s output pane:
Buffer bufl = create

Buffer buf2 = create

bufl = "one"
buf2 = "two"
bufl += "1"

bufl += buf2
bufl += 'x'

Concatenation (buffers)

The space character is the concatenation operator, which is shown as <space> in the following syntax:

DXL Reference Manual

138

Buffer b <space> string s

Concatenates string s onto the contents of buffer b and returns the result as a string. You can use a range in the
concatenation.

Example
Buffer b = create
b = "aaa"

print b "zzz" // prints "aaazzz"

Buffer comparison

String relational operators can be used as shown in the following syntax:
Buffer bl == Buffer b2
Buffer bl != Buffer b2
Buffer bl < Buffer b2
Buffer bl > Buffer b2
Buffer bl <= Buffer b2
Buffer bl >= Buffer b2

These operators return true if bl is equal, not equal, less than, greater than, less than ot equal to, or greater than or equal
to b2. Case is significant.

Example
Buffer bl = create

Buffer b2 = create

bl = "aaa"

b2 = "aza"

print (bl==b2) " " (bl!=b2) " " (blb2) "™ "
print (blb2) "™ " (bl<=b2) " " (bl>=b2) "\n"

// prints "false true true false true false"

Read and write operators

The >> operator can be used to read a stream into a buffer and return the stream (see “Read from stream,” on page 108).
The << operator can be used to write a buffer to a stream and return the stream (see “Read line from stream,” on page 108).

The -> and >= operators can be used to read a single line from a file to a buffer, (see “Write to stream,” on page 109).

DXL Reference Manual

139

Character extraction from buffer

The index notation, [], can be used to extract a single character from a buffer, as shown in the following syntax:

Buffer b[int n]

This returns the n™ character of buffer b, counting from 0.
Example

This example prints a in the DXL Interaction window’s output pane:
Buffer b = "abc"

char ¢ = b[0]

print c

Substring extraction from buffer

The index notation, [], can be used to extract a substring from a buffer, as shown in the following syntax:

Buffer b[range]

Operation
Returns a range of b as specified by range, which must be in the form int:int.

The range argument is specified as the indices of the first and last characters of the desired range, counting from 0. If the
range continues to the end of the buffer, the second index can be omitted. This function returns a buffer or string
depending on the type assigned.

Example

Buffer buf = create

buf = "abcdefg"

string s = buf[2:3]

print s // prints cd
Buffer b = buf[4:5]

print b // prints ef

combine

Declaration

void combine (Buffer bl,
Buffer b2,
int start
[,int finish])

DXL Reference Manual

140

Operation

Concatenates a substring of b2 onto the contents of b1. The substring is from start to finish,orif finishis
omitted, from start to the end of the buffer. This function provides a performance advantage over the assignhment to
buffer using the range option.

Example

Buffer bl = create, b2 = create
bl = "zzz"

b2 = "abcdef"

combine (bl, b2, 3, 4)

print stringOf Dbl // prints "zzzde"

contains

Declaration

int contains (Buffer b,
char ch
[,int offset])

int contains (Buffer b,
string word,
int offset)

Operation

The first form returns the index at which the character ch appears in buffer b, starting from 0. If present, the value of
offset controls whete the search starts. For example, if offset is 1, the search starts from 2.If offset is not
present, the search starts from 0. If ch does not appear after offset, the function returns —1.

The second form returns the index at which string word appears in the buffer, starting from 0, provided the string is
preceded by a non-alphanumeric character. The value of the mandatory of fset argument controls where the search
starts. If word does not appear after of fset, the function returns —1.

getDOSstring

Declaration
Buffer getDOSstring (Buffer b)

Operation

Returns a copy of the supplied Buffer, with a carriage-return character inserted before any newline character that is not
already preceded by a carriage return.

DXL Reference Manual

141

create(buffer)

Declaration

Buffer create([int initSizel)

Operation
Creates a buffer. A buffer has no intrinsic limit on its size; when a buffer becomes full it extends itself, if memory permits.
The atgument 1nitSize specifies the initial size of the buffer. If no initial size argument is passed, this function creates a

buffer that uses a default initial size of 255.

delete(buffer)

Declaration
void delete (Buffer &b)

Operation

Deletes the buffer b, and sets the variable b to null.

firstNonSpace

Declaration

int firstNonSpace (Buffer b)

Operation

Returns the index of the first non-space character in buffer b, or —1 if there is none.

keyword(buffer)

Declaration

int keyword (Buffer b,
string word,
int offset)

Operation
Returns the index at which string word appears in buffer b, starting from character offset, provided that the string is
neither preceded nor followed by a non-alphanumeric character. If word does not appear, the function returns —1.

This function is used to accelerate patsing of programming languages.

DXL Reference Manual

142

length(buffer get)

Declaration
int length (Buffer b)

Operation
Returns the length of the buffer.

length(buffer set)

Declaration

void length (Buffer b,
int Ien)

Operation
Sets the length of a buffer. This is normally used for truncating buffers, but can also be used to lengthen them.

The DXL program is responsible for the content of the buffer.

Example

Buffer buf = create
buf = "abcd"

length (buf, 2)

print "<" (stringOf buf) ">" // prints "ab"

set(char in buffer])

Declaration

void set (Buffer b,
int n,
char ch)

Operation

Sets the character at position n of buffer b to character ch.

Example

if (name[n] == '.') set(name, n, ';"'")

DXL Reference Manual

143

setempty

Declaration
void setempty (Buffer b)

Operation

Empties buffer b, but does not reclaim any space.

setupper, setlower

Declaration
void setupper (Buffer b)
void setlower (Buffer b)

Operation

These functions convert the case of buffer b to upper or lower case.

stringOf(buffer)

Declaration
string stringOf (Buffer b)

Operation

Returns the contents of buffer b as a string.

Example
Buffer b = create
b = "aaaa"

print stringOf b // prints "aaaa"

Buffers and regular expressions

Regular expressions can be applied to buffers in the same way as strings (see “Application of regular expressions,” on page
133). The regular expression functions start, end (of match), and match can also be used with buffers.

Example
Buffer buf = create
buf = "aaaabbccccc"

Regexp re = regexp2 "a*"

DXL Reference Manual

144

re buf // apply regular expression
print buf [match 0] // prints "aaaa"
search

Declaration

bool search (Regexp re,
Buffer b,
int start
[,int finish])

Operation

Searches part of b using re. The search starts at start and continues until finish, orif finish is omitted, from
start to the end of the buffer.

This function provides a performance advantage over the concatenation of regular expression to buffer with the range
option.
Note that the match, end and start regular expression functions can be used to return offsets relative to start, not

the start of the buffer.

It is possible when using this perm along with a complex regular expression, and a very large Buffer, that valid code will
produce a run-time error detailing an “incortect regular expression”.

Text buffers example program

// buffer DXL example
/*

example use of DXL buffers - place a border
around a multi-line piece of text, e.g.:

| the quick brown |
| fox jumped over |
| the lazy dog |

*/

Buffer process (Buffer source) {
Regexp line = regexp2 ".*" // matches up to newline

int from = 0

int max = 0
Buffer boxed = create, horiz = create
while (search(line, source, from)) {

// takes a line at a time from source

DXL Reference Manual

145

int offset = end 0
// end of the match within source

string match = source[from:fromt+toffset]

from += offset + 2
// move 'from' over any newline

if (null match) // we are done
break

max = max >? length match
// remember max line length

}

if (max==0) { // no strings matched
boxed = "++\n++"
} else {
horiz = "+" // build a horizontal line
int 1
for 1 in 1:max+2 do // allow two spaces
horiz += '-'

horiz += '+!

horiz += '\n'

from = 0 // reset offset
boxed += horiz

while (search(line, source, from)) {
// rescan buffer

int offset = end 0

string match =
source[from: fromt+toffset]

if (null match)
break

from += offset + 2

boxed += '|' // add the vertical bars
boxed += ' !

boxed += match

for i in 1 : max - length match + 1 do
boxed += ' '
// add space to side of box

boxed += "'

boxed += '\n'

}

boxed += horiz

DXL Reference Manual

146

return boxed

}
}
Buffer text = create
text = "The quick brown" // build a test string

text += '\n'

text += "fox jumped over"
text += '\n'

text += "the lazy dog"
cout = write "buffer.tmp"

cout << process text // print result

Arrays

This section describes a dynamically sized two-dimensional array data type. An example of its use is in the Rational DOORS
ASCII output generator in the tools library. As with skip lists, you must retrieve data into variables of the same data type as
they were put into the array, or program failure may occur.

Because DXL provides no garbage collection, it is important to delete DXI.’s dynamic atrays that are no longer required,
thereby freeing allocated memory.

Dynamic arrays are not a fundamental type inherited from DXI’s C origins, so the type name Array begins with an upper
case letter.

create(array)

Declaration

Array create (int x,
int vy)

Operation

Creates a dynamically sized array of initial bounds (x,y). Following C conventions, the minimum co-ordinate is (0,0), and
the maximum co-ordinate is (x-1,y-1). If an assignment is made to an array element outside these initial bounds, the array is
automatically resized. When viewing arrays with the printCharArray function, the X axis grows left to right across the
page, while the Y axis grows down the page.

Both arguments to create must be greater than or equal to 1.

Example

This example creates an array with 50 elements in the X direction accessed from (0,0) to (49,0), and only one element in the
Y direction:

Array firstArray = create(50,1)

DXL Reference Manual

147

delete(array)

Declaration

void delete (Array a)

Operation

Deletes array a; stored contents are not affected.

get(data from array)

Declaration

type get (Array a,
int x,
int y)

Operation

Returns the data, of any type, stored in atray a at position (%, y). You must retrieve the data into a vatiable of the same type
as used when the data was put into the array. To ensure that this works unambiguously in the way intended, you should use
a cast prefix to the get command.

Atrrays are not just for fundamental types like strings and integers. You can store any DXL type in them, for example,
objects, modules, skip lists, and even other arrays.

Example

This example uses a cast prefix to get:
Array a = create(10,10)
string str

int 1

put(a, "a string", 3, 4)
put(a, 1000, 3, 5)

str = (string get(a,3,4)) // cast get as string
print str "\n" // prints "a string"
i = (int get(a, 3, 5)) // cast get as int
print i // prints "1000"

This example stores an array in an array:

Array a = create(4,1)

Object obj = first current Module
Module mod = current

Skip skp = create

DXL Reference Manual

148

Array arr = create(l,1)
put(a, obj, 0, 0)
put(a, mod, 1, 0)
put(a, skp, 2, 0)
put(a, arr, 3, 0)

put (arr,"I was nested in a!"™, 0, 0)

Object objRef

(Object get(a,0,0))
Module modRef = (Module get(a,1,0))

Skip skpRef (Skip get(a,2,0))

Array arrRef (Array get(a,3,0))

string str (string get (arrRef, 0, 0))

print str // prints "I was nested in a!"

get(string from array)

Declaration

string get (Array a,
int x,
int y,
int lIen)
Operation

Retrieves 1en characters as a string from a starting at position (x,y). This is the matching get command for putString.

Example

Array a = create(10,10)
putString(a, "a string", 2, 2)
string some = get(a, 4, 2, 3)

print some "\n" // prints "str"

put(data in array)

Declaration

void put (Array a,
type data,
int x,
int y)

DXL Reference Manual

149

Operation

Puts data, of any type, into array a at position (x,y). If the new position is outside a’s current bounds, a is resized to

accommodate the new element.

putString

Declaration

void putString(Array a,
string s,
int x,
int y)

Operation

Puts the string s into the array a in such a way that its character contents are placed in X-direction adjacent elements
starting at (x,y). The original, or any other desired string can be rebuilt by using the argument string form of get (a, x,
y, len).The 3-argument form of get can be used to retrieve individual characters. Attempting to retrieve a character as

a string causes program failure.

printCharArray

Declaration

void printCharArray (Array a,
Stream s,

int xI,

int yI,

int x2,

int y2)

Operation

Sends the section of array a defined by the passed co-ordinates x1,y1 and x2,y2, to the stream s.

Example

Array a = create(20,5)

int x,y

for y in 0 : 4 do // populate an array with a

for x in 0 : 19 do // block of # characters.
put(a, "#', x, vy)

Stream out = write "array.tmp" // open a stream
printCharArray(a, out, 0, 0, 19, 4) // write original block
out << "\n"

putString(a, "abc", 3, 1) // insert a string

DXL Reference Manual

150

printCharArray(a, out, 0, 0, 19, 4)
// view change

out << "\n"

close out

DXL Reference Manual

Chapter 8
Operating system interface

This chapter describes three major packages of functions that allow Rational DOORS to communicate with the host
operating system:

* Operating system commands
* Windows registry
¢ Interprocess communications

* System clipboard functions

Operating system commands

This section defines functions that interact with the operating system under which Rational DOORS is being run. For a
DXL program to be portable between platforms, care is needed when using these facilities. The functions that use the
Stat data type work on the stat API provided by the operating system, which enables DXL programs to determine the
status of files and directories.

platform

Declaration

string platform()

Operation

Returns the name of the current Rational DOORS platform, currently one of:

Linux® Linux
Solaris Sun
WIN32 All Windows platforms

This function can be used to make programs portable between platforms.

Example

string fileGoodName (string root, extpc, extunix) {
if (platform == "WIN32")
return currentDirectory "\\"
goodFileName root extpc

DXL Reference Manual

152

else
return (getenv "HOME") "/"
goodFileName root extunix

}

The function fileGoodName |, defined in $DOORSHOME/1ib/dx1/utils/ fileops.dxlusesplatformto
construct an appropriate file name for the current operating system. Using such functions enables DXL programs to be
useful on all platforms. Literal file names in programs may not be portable. The path /tmp/dx1/myfile may work ona
WIN32 platform, but ¢ : \temp\dx1\myfile cannot work on a UNIX platform.

getenv

Declaration

string getenv(string var)

Operation

Returns the current value of the environment variable var, as set in the operating system. Both Windows and UNIX

platforms support this mechanism.

Note: You should know about your operating system’s environment variables before using this function. If necessary,
consult the operating system documentation.

Example

print getenv ("HOME")

print getenv ("DATA")

print getenv ("DOORSHOME")

print getenv ("DOORSDATA")

The first two examples return the corresponding variable values in the registry.

The second two examples return the corresponding variable values used in a command-line shortcut to start Rational
DOORS, if set. Otherwise, returns the values set in the registry.

hostname

Declaration

string hostname ()

Operation

Returns a string, which is the name of the current host system.

DXL Reference Manual

153

fullHostname

Declaration

string fullHostname (void)

Operation

Gets the fully qualified hostname of the machine on which the perm is executed.

mkdir

Declaration
void mkdir (string dirName
[,string osParm])
Operation
Creates ditectory dirName.
Optional argument os Parm can contain information that is dependent on the operating system, such as the UNIX octal
file access mask.
Example
The following example creates a typical UNIX path name, and sets the access rights:
mkdir ("/usr/development/phasel”, "0755")
The following example creates a Windows path, for which there are no access rights:

mkdir ("C:\\DOORS\\DXLExample\\", "")

setenv

Declaration

void setenv(string var,
string s)

Operation

Sets the registry variable var to s in the registry section
HKEY CURRENT USER\Software\Telelogic\DOORS\<DOORS version>\Config, where <DOORS
version>is the version number of the current version of Rational DOORS installed.

Before using this function, you should be familiar with your operating system’s registry variables. If necessary, consult your

operating system documentation.

DXL Reference Manual

154

setServerMonitor

Declaration

voild setServerMonitor (bool on)

Operation

On Windows platforms only, when onis true, activates the Rational DOORS Server Monitor. This inserts an icon in the
Windows task bar that monitors client server communications.

serverMonitorlsOn

Declaration

bool serverMonitorIsOn ()

Operation

On Windows platforms only, returns t rue if the Rational DOORS Server Monitor is active. Otherwise, returns false.

username

Declaration
string username ()

Operation

Returns a string that contains the operating system defined user name under which Rational DOORS is being run. This may
not be the same as the Rational DOORS user name returned by doorsname, depending on the current project’s setup.

system

Declaration

void system(string command)

Operation

On Windows platforms only, passes the string command to the operating system for execution, and continues the current
DXL program. Using platform in conjunction with this function prevents an error message on UNIX platforms.
Example

if (platform=="WIN32")
system "notepad"

Note that if the command to be executed is a built in DOS command, such as de 1, you need, for example:

system "c:\\windows\\command.exe /c del temp.txt"

DXL Reference Manual

155

Declaration

void system(string command,
void childCB(int)
[,void parentCB()])

Operation
On UNIX platforms only, passes the string command to the operating system for execution.

Unlike the Windows system function, these functions terminate the current execution path of the calling DXL program.
One ot two callback functions must be provided. In the first form, only a function chi1dCB is needed. This function is
called when the operating system finishes execution of command. In the second form, parentCB s also provided; this is
called concurrently with the operating system’s processing of command, enabling the calling DXL program to continue
work while the command is being executed.

Example

void cb () {
print "system command executing\n"

}

void nullCB(int status) {
}

if (platform == "WIN 32") {
system ("E: \\winnt\\system32\\command.exe")

cb
} else{
system ("xterm", nullCB, cb)

create(status handle)

Declaration

Stat create (Stream s)

Stat create(string filename)
Operation

Returns a status handle for the stream or file name, which is used in the other Stat functions.

delete(status handle)

Declaration

void delete (Stat s)

Operation
Deletes the handle s.

DXL Reference Manual

156

accessed, modified, changed|(date)

Declaration

Date accessed(Stat s)
Date modified (Stat s)
Date changed(Stat s)

Operation

Returns the accessed, modified or changed date of the stream or file identified by the handle.

directory, symbolic, regular

Declaration
bool directory(Stat s)
bool symbolic(Stat s)

bool regular (Stat s)

Operation

Returns true if the stream or file identified by the handle is a directory, a symbolic link, ot a regular file respectively.

Example

Stat s

string filename = "/etc"
s = create filename

if (!'null s && directory s)
ack filename " is a directory!"

user, size, mode

Declaration

string user (Stat s)
int size(Stat s)
int mode (Stat s)
Operation

Returns the user name (PC file on windows), size, or mode of the stream or file identified by the handle.

DXL Reference Manual

157

The following constant integers are used with the int mode (Stat) function as bit-field values (using standard UNIX
stat semantics).

Constant Meaning
S_ISUID set user id on execution
S_ISGID set group id on execution
S_IRWXU read, write, execute permission: owner
S_IRUSR read permission: owner
S_TWUSR write permission: owner
S_IXUSR execute/search permission: owner
S_IRWXG read, write, execute permission: group
S_IRGRP read permission: group
S_IWGRP write permission: group
S_IXGRP execute/search permission: group
S_IRWXO read, write, execute permission: other
S_IROTH read permission: other
S_IWOTH write permission: other
S_IXOTH execute/search

Example

The following example shows how to emulate the formatting of part of the UNIX command 1s -1.
string filename = "/etc"
Stat s = create filename

if (!'null s) {
int modes = mode s

print (modes&S ISUID!=0 ? 's' : '-'")
print (modes&S IRUSR!=0 ? 'r' : '-")
print (modes&S IWUSR!=0 2 'w' : '-")
print (modes&S IXUSR!=0 ? 'x' : '-")
print (modes&S IRGRP!=0 ? 'r' : '-")
print (modes&S IWGRP!=0 2 'w' : '-")

print (modes&S IXGRP!=0 ? 'x' : '-")

DXL Reference Manual

158

print (modes&S IROTH!=0 ? 'r' : '-'")
print (modes&S IWOTH!=0 ? 'w' : '-'")
print (modes&S IXOTH!=0 2 'x' : '-")

print "\t" filename

Status handle functions example

This example is taken from $DOORSHOME/lib/dxl/utils/fileops.dxl.

bool fileExists (string filename) {
Stat s

s = create filename

if (null s) return false
delete s

return true

}

It is used by several of the DXL Library tools to determine whether a file exists.

Windows registry

getRegistry

Declaration

string getRegistry(string keyName,
string valueName)

Operation

Returns a string representation of the named value of the specified Windows registry key.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

If valueName is null, returns the default value for the key. If the key does not exist, the value does not exist, or the
operating system is not a Windows platform, returns null.

DXL Reference Manual

159

Example

string s = "HKEY_CURRENT_USER\\SOFTWARE\\Microsoft
Office\\9.3\\Common\\LocalTemplates"

print getRegistry(s, null) "\n"
string s = "HKEY CURRENT USER\\SOFTWARE\\Microsoft Office\\95\\WORD\\OPTIONS"

print getRegistry (s, "DOC-PATH") "\n"

setRegistry

Declaration

string setRegistry(string keyName,
string valueName,
{stringl|int} value)

Operation

Sets the named value of the specified registry key to have the value supplied and the appropriate registry type, as follows:

Type of value Registry type

string value REG SZ

integer value REG_DWORD

The key is created if one does not already exist. If valueName is null, the default key value is set.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

string s = "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\The Product\\Verification"
// Set default value of key

string errMess = setRegistry(s, null, "Default string value")

// Set named string value

errMess = setRegistry (s, "Configuration Parameter", "Is enabled")

// Set named integer value

DXL Reference Manual

160

checkStringReturn setRegistry (s, "Usage count", 1234)

deleteKeyRegistry

Declaration

string deleteKeyRegistry(string keyName)

Operation

Deletes the named key from the registry, therefore extreme caution should be used.

The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

HKEY CLASSES ROOT

HKEY USERS

This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

// Clear up keys created

string errMess = deleteKeyRegistry "HKEY CURRENT USER\\-
SOFTWARE\\XYZ Inc.\\The Product\\Verification"

errMess = deleteKeyRegistry "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\The
Product"

errMess = deleteKeyRegistry "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc."

deleteValueRegistry

Declaration

string deleteValueRegistry(string keyName,
string valueName)

Operation

Deletes the named value from the specified registry key. If valueName is null, deletes the default value for the key.

Note: Use caution when calling this function.
The keyName argument must be a fully specified registry key, beginning with any one of the following:
HKEY CURRENT USER

HKEY LOCAL MACHINE

DXL Reference Manual

161

HKEY7CLAS SESiROOT
HKEY USERS
This function is only usable on Windows platforms.

If the operation fails, returns an error message; otherwise returns null.

Example

string s = "HKEY CURRENT USER\\SOFTWARE\\XYZ Inc.\\-
The Product\\Verification"

// Delete named value

string errMess = deleteValueRegistry (s, "Usage count")

// Delete default value

errMess = deleteValueRegistry (s, null)

Interprocess communications

There are two forms of interprocess communications (IPC):

* The first uses TCP/IP. It can be used with the UNIX and Windows operating systems on all supported platforms.
e The second uses sockets, where a file is used to pass messages. It works only on UNIX platforms.

For examples of how to use DXL IPC functions, see the Rational DOORS API Manual.

Windows programs can also use OLE Automation functions to communicate with other programs.

ipcHostname

Declaration

string ipcHostname (string ipAddress)

Operation

Resolves the IP address 1pAddress to its host name.

Example
This example prints localhost in the DXL Interaction window’s output pane.

print ipcHostname ("127.0.0.1")

DXL Reference Manual

162

server

Declaration
IPC server (string socket)

IPC server (int port)

Operation
The first form establishes a setrver connection to the UNIX socket socket.

The second form establishes a server connection to the port number port on all platforms. In the case that supplied port
number is 0, an ephemeral port number is allocated by the operating system. To fetch this ephemeral port number, use

getPort () on the resulting IPC.

getPort

Declaration
int getPort (IPC channel)
Operation

Fetches the port associated with the specified IPC. Useful when the IPC is allocated an ephemeral port by the operating

system (see IPC server (int)).

client

Declaration

IPC client (string socket)

IPC client (int ip,
string host)

Operation

The first form establishes a client connection to the UNIX socket socket.

The second form establishes a client connection to the IP address ip at host on all platforms.

accept

Declaration
bool accept (IPC)

Operation

Wiaits for a client connection at the server end of the connection.

DXL Reference Manual

163

send
Declaration
bool send(IPC chan,
string message)
Operation
Sends the string message down IPC channel chan.
recv
Declaration
bool recv (IPC chan,
{string|Buffer} &response
[,int tmt])
Operation
Waits for a message to atrive in channel chan and assigns it to string or buffer variable response.
The optional third argument defines a time-out, tmt seconds, for a message to arrive in channel chan. If tmt is zero,
these functions wait forever. They only work if the caller is connected to the channel as a client or a server.
disconnect

Declaration

void disconnect (IPC chan)

Operation

Disconnects channel chan.

delete(IPC channel

Declaration
void delete (IPC chan)

Operation

Deletes channel chan (can be a server or a client).

DXL Reference Manual

164‘

System clipboard functions

copyToClipboard

Declaration

bool copyToClipboard(string s)

Operation

Copies a plain text string (not RTF) to the clipboard. On success, returns true.

setRichClip

Declaration
void setRichClip (RTF string s, string styleName, string fontTable)
void setRichClip(Buffer buff, string styleName, string fontTable)

void setRichClip (RTF string s, string styleName, string fontTable, bool
keepBullets, bool keepIndents)

void setRichClip(Buffer buff, string styleName, string fontTable, bool
keepBullets, bool keepIndents)

Operation

First form sets the system clipboard with the rich text obtained by applying the style sty leName to the string s, using the
font table font Table supplied, which should include a default font. Font numbers in the string s will be translated to the
supplied font table fontTable.

Second form is same as the first but the source is a buffer buff rather than an RTF_string .

Third form sets the system clipboard with the rich text obtained by applying the style styleName to the string s, using
the font table fontTable supplied. If keepBulletsis false, any bullet characters are removed from string s. If
keepIndentsis false, any indentation is removed from string s. If keepBullets and keepIndents are both
true, the behavior is exactly the same as the first form.

Fourth form is same as the third but the soutce is a buffer buff rather than an RTF_string .

Example 1

The following code:

string s = "hello"

string fontTable = "\\deffO{\\fonttbl {\\fl Times New Roman;}}"
setRichClip (richText s, "Normal", fontTable)

puts the following rich text string onto the system clipboard:

DXL Reference Manual

{\rtfl \deffO{\fonttbl {\fl Times New Roman;}}{\stylesheet {\sl Normal;}}{\sl
hello\par}}

Example 2

string bulletedString =
"{\\rtfl\\ansi\\ansicpgl252\\deff0\\deflangl033{\\fonttbl {\\f0\\fswiss\\fcharse
£0 Arial; }{\\f1\\fnil\\fcharset2 Symbol;}}

\\viewkind4\\ucl\\pard\\f0\\fs20 Some text with\\par

\\pard{\\pntext\\£I\\'B7\\tab} {*\\pn\\pnlvlblt\\pnfl\\pnindentO {\\pntxtb\\ 'B7
}INNEL-720\\11720 bullet 1\\par

{\\pntext\\fI\\'B7\\tab}bullet 2\\par
\\pard bullet points in it.\\par
\\par

po

string fontTable = "\\deffO{\\fonttbl{\\fO\\fswiss\\fcharsetO
Arial; }{\\fI\\fnil\\fcharset2 Symbol;}}"

setRichClip (richText bulletedString, "Normal", fontTable)

// the previous call puts

// "{\rtfl \deffO{\fonttbl{\fO\fswiss\fcharset0 Arial;}{\fl\fnil\fcharset?2
Symbol; }}{\stylesheet {\sl Normal;}}{\sl Some text with\par {\fl\'b7\tabl}bullet
I\par {\fl\'b7\tablbullet 2\par bullet points in it.\par \par}}"

// on the clipboard

setRichClip (richText bulletedString, "Normal", fontTable, false, false)

// the previous call puts

// "{\rtfl \deffO{\fonttbl{\fO\fswiss\fcharset0 Arial;}{\fl\fnil\fcharset?2
Symbol; }}{\stylesheet {\sl Normal;}}{\sl Some text with\par bullet 1l\par bullet
2\par bullet points in it.\par \par}}"

// on the clipboard -- note no bullet symbols (\'b7) in the markup

DXL Reference Manual

165

166

DXL Reference Manual

Chapter 9

Customizing Rational DOORS

This chapter explains how you can customize Rational DOORS:

Color schemes

Database Explorer options
Locales

Codepages

Message of the day

Database Properties

Color schemes

This section defines constants and functions for setting the Rational DOORS color scheme.

Display Color Schemes

The following constants are defined as database display schemes for use with the functions below:

originalDOORSColo[u] rScheme

modernDOORSColo[u] rScheme

highContrastOneColo[u] rScheme

highContrastTwoColo[u] rScheme

highContrastBlackColo[u] rScheme

highContrastWhiteColo[u] rScheme

getDefaultColorScheme

Declaration

int getDefaultColo[u]rScheme ()

Operation

Returns the default color scheme used by the Database Explorer The possible values for colorScheme are listed above.

DXL Reference Manual

167

168

setDefaultColorScheme

Declaration

void setDefaultColo[u]rScheme (int colorScheme)

Operation
Sets the default color scheme used by the Database Explorer. Schemes can be created and modified using the Display tab
in the Options dialog box (from the Tools > Options menu in the Database Explorer. The possible values for

colorScheme are listed above:

optionsExist

Declaration

bool optionsExist (string schemeName)

Operation

Returns true if a color scheme exists under schemeName; otherwise, returns false.

resetColors

Declaration

void resetColors([int colorScheme])

Operation

If no argument is supplied, resets to the default color scheme otherwise resets to colorScheme, which can any of the

values listed above.

resetColor

Declaration

void resetColor (int colorIndex
[,int colorSchemel)

Operation
Resets the color specified by colorIndex to the default, or if the second argument is supplied, to colorScheme,

which can be any of the values listed above.

DXL Reference Manual

169

Database Explorer options

This section defines constants and functions for customizing the Database Explorer.

Font constants

Declaration

int HeadingsFont
int TextFont

int GraphicsFont

Operation

These constants define the font in the getFontSettings and setFontSettings functions.

getFontSettings

Declaration

void getFontSettings (int level,
int usedIn,
int &size,
int &family,
bool &bold,
bool &italic)

Operation

Passes back settings for the font usedIn for objects at heading level Ievel. The value of usedIn can be
HeadingFont, TextFont, or GraphicsFont. The last four arguments pass back the point size, font family,
whether the font is bold, and whether the font is italic.

setFontSettings

Declaration

void setFontSettings (int level,
int usedIn,
int size,
int family,
bool bold,
bool italic)

DXL Reference Manual

170

Operation
Sets the point size, font family, whether the font is bold, and whether the font is italic for the font usedIn for objects at
heading level 1evel. The value of usedIn can be HeadingFont, TextFont, or GraphicsFont.

refreshExplorer

Declaration

void refreshExplorer (Module m)

Operation

Refreshes the Database Explorer window for module m.

synchExplorer

Declaration

void synchExplorer (Module m)

Operation
Refreshes the Rational DOORS Module Explorer window to reflect changes to the current object selected in the module

display.

refreshDBExplorer

Declaration

void refreshDBExplorer ()

Operation

Refreshes the Database Explorer window to reflect changes to the current folder or the display state. If the current
folder/project is changed using DXL, this perm will not change the currently open item to reflect this. This is used to only

refresh the contents of the currently selected item.

setShowFormalModules, setShowDescriptiveModules, setShowLinkModules

Declaration
void setShowFormalModules (bool expression)
void setShowDescriptiveModules (bool expression)

void setShowLinkModules (bool expression)

DXL Reference Manual

171

Operation
Shows formal, descriptive, or link modules in the Database Explorer if expressionis true. Hides formal, descriptive,

or link modules if expressionis false.

showFormalModules, showDescriptiveModules, showLinkModules(get)

Declaration

bool showFormalModules ()

bool showDescriptiveModules ()
bool showLinkModules ()

Operation

Returns true if the Database Explorer is set to show formal, descriptive, or link modules; otherwise returns false.

getSelectedltem

Declaration
Item getSelectedItem()

Operation

Return the item currently selected in the Database Explorer.

Locales

getDateFormat

Declaration
string getDateFormat ([Locale 1], [bool isShortFormat])

Operation
When called with no arguments, this returns the current default short date format. This may be selected for the current user
locale, using the Windows Control Panel. If the boolean argument is supplied and is false, the default long date format is

returned.

DXL Reference Manual

172

Locale type

Operation
This type represents any valid user locale value. It can take any of the values supported by the client system.

The perms that take a Locale argument will all return a DXL run-time error if they are supplied with a null value.

for Locale in installedLocales

Declaration

for Locale in installedLocales

Operation

This iterator returns all the Locale values installed on the client system.
Example

Locale loc

for loc in installedLocales do

{

print id(loc) ": " name(loc) "\n"

for Locale in supportedLocales

Declaration

for Locale in supportedLocales

Operation

This iterator returns all the Locale values supported on the client system.

userlLocale

Declaration

Locale userLocale()

Operation

This returns the current user locale on the client system.

DXL Reference Manual

173

name

Declaration

string name (Locale 1)

Operation

This returns the name (in the current desktop language) of the specified Locale.

language

Declaration

string language (Locale 1)

Operation

This returns the English name of the Locale language.

region

Declaration

string region (Locale 1)

Operation

This returns the English name of the country/region of the Locale.

id

Declaration

int id(Locale 1)

Operation

This returns the integer identifier value for the Locale. This is a constant for any given Locale.
locale

Declaration

Locale locale(int 1)

DXL Reference Manual

174

Operation
This returns the Locale for the specified identifier value. It returns null if the integer value is not a valid supported locale

identifier.

installed

Declaration
bool installed(Locale 1)

Operation

This returns true if the Locale is installed on the client machine. Otherwise it returns false.

attributeValue

Declaration
bool attributevValue (AttrDef attr, string s[, bool bl])

Operation

Tests whether the supplied string represents a valid value for the specified attribute definition. If the third argument is
supplied and set to true, the function will return true if the attribute base type is date and the string is a valid date string

for the uset’s current Locale setting.

locale

Declaration
AttrDef.locale()

Operation

Use to access the locale of the specified At trDef. It returns null if there is no locale specified by the attribute definition.

Example
AttrDef ad = find(current Module, "Object Text")

Locale loc = ad.locale

print "Object Text locale is " name (loc) "\n"setLocale

getLegacylLocale

Declaration
Locale getlegacyLocale (void)

DXL Reference Manual

175

Operation

Returns the legacy data locale setting for the database. This determines the locale settings that are used to display legacy
attribute data. If none is set, this returns null, and legacy attribute values are displayed according to the settings for the

current user locale.

setlLegacylocale

Declaration

string setlegacyLocale (Locale 1)

Operation

This enables users with Manage Database privilege to set the Legacy data locale for the database (as explained above).
setLegacyLocale (null) removes the Legacy data locale setting for the database. Returns null on success, and an
error string on failure, including when it is called by a user without Manage Database privilege.

Single line spacing constant

Declaration

int single

Operation

This constant is used to specify single line spacing.

Line spacing constant for 1.5 lines

Declaration

int onePointFive

Operation

This constant is used to specify 1.5 lines line spacing.

setLineSpacing

Declaration

void setLineSpacing(int IlineSpacing)

Operation

Sets line spacing for the cutrent locale.

Example

setLineSpacing (single)

DXL Reference Manual

176

getLineSpacing

Declaration

int getLineSpacing()

Operation

Retrieves the line spacing for the current locale.

Example
if (getLineSpacing() == onePointFive)

{

print "Line spacing is set to One and a half lines.\n"

setLineSpacing

Declaration

void setlLineSpacing(Locale locale, int lineSpacing)

Operation

Sets line spacing for the desired locale.

getLineSpacing

Declaration

int getLineSpacing(Locale locale)

Operation

Retrieves the line spacing for the desired locale.

getDefaultLineSpacing

Declaration
int getDefaultLineSpacing(void)

Operation

Returns the default line spacing for the user’s current locale. For example, it will return single when the line spacing is
European, onePointFive when the line spacing is Japanese, Chinese, or Korean, and so on.

DXL Reference Manual

177

getFontSettings

Declaration

void getFontSettings (int level, int usedIn, int &size, string &family, bool
&bold, bool &italic, Locale locale)

Operation

Gets the cutrent uset’s font-related display options for the locale provided. The usedIn parameter can be one of the
following constants: HeadingsFont, TextFont or GraphicsFont.

Example

int pointSize

string fontFamily

bool bold, italic

getFontSettings (2, TextFont, pointSize, fontFamily, bold, italic, userLocale)

print fontFamily ", " pointSize ", " bold ", " italic "\n"

setFontSettings

Declaration

void setFontSettings (int level, int usedIn, int size, string family, bool bold,
bool italics, Locale locale)

Operation

Sets the current user’s font-related display options for the locale provided.

for string in availableFonts do

Declaration

for string in availableFonts do {}
Operation

Iterator over the specified availableFonts.

Example
string fontName

for fontName in availableFonts do {

DXL Reference Manual

178

Provides access to the names of each of the available fonts.

Codepages

Constants

Constants for codepages

The following constants denote codepages:

e constint CP_LATIN1 // ANSI Latin-1

* const int CP_UTF8 // Unicode UTF-8 encoding

* const int CP_UNICODE // UTF-16 little-endian encoding (= CP_UTF16_LE)
* constint CP_UTF16_LE // UTF-16 little-endian encoding
* constint CP_UTF16_BE // UTF-16 big-endian encoding
* constint CP_JAP // Japanese (Shift-]JIS)

* constint CP_CHS // Simplified Chinese (GB2312)

* const int CP_KOR // Korean (KSC 5601)

* const int CP_CHT // Traditional Chinese (Big 5)

forintin installedCodepages

Declaration

for int in installedCodepages do

Operation

This iterator returns the values of all the codepages installed in the client system.

forint in supportedCodepages

Declaration

for int in supportedCodepages do

Operation

This iterator returns the values of all codepages supported by the client system. Some of these may not be currently
installed.

DXL Reference Manual

179

currentANSIcodepage

Declaration
int currentANSIcodepage ()

Operation

Returns the current default ANSI codepage for the client system. For example, in Western Europe and North America this
will typically return 1252, equivalent to ANSI Latin-1.

codepageName

Declaration
string codepageName (int codepage)

Operation

This returns the name of the specified codepage. Note that this returns an empty string for any codepage that is not installed

on the system.

read

Declaration

Stream read(string filename, int codepage)

Operation

Opens a stream onto the specified filename; content of file decoded from the specified codepage.

write

Declaration

Stream write(string filename, int codepage)

Operation

Opens a stream onto the specified filename; content of file encoded to the specified codepage.

append

Declaration

Stream append(string filename, int codepage)

DXL Reference Manual

180

Operation

Opens a stream for append onto the specified filename; content of file encoded to the specified codepage.

readFile

Declaration

string readFile(string filename, int codepage)

Operation

Reads string from specified file; content is decoded from the specified codepage.

The Files function also has a readFile operator. For information about Files and readFile, see “readFile,” on page

110.

Note:

isValidChar

Declaration

bool isValidChar (char ¢, int codepage)

Operation

Returns true only if the supplied character can be represented in the specified codepage.

convertToCodepage

Declaration

{string|Buffer} convertToCodepage (int codepage, {string|Bufferé&} utf8string)

Operation
Returns a version of the supplied string or buffer, encoded according to the specified codepage. The supplied string is
assumed to be encoded in UTF-8 (the default encoding for all Rational DOORS strings).

Only UTF-8 strings will print and display correctly in Rational DOORS V8.0 and higher. This perm is intended for

use in exporting string data for use in other applications.

Note:

Example
string latinlstr = covertToCodepage (CP_LATIN1, “flir Elise”)

convertFromCodepage

Declaration

{string|Buffer} convertFromCodepage (int codepage, {string|Buffer&} cpString)

DXL Reference Manual

181

Operation

Converts a string or buffer from the specified codepage to the Rational DOORS default UTF-8 encoding. Once a
non-UTF-8 string is converted to UTF-8, it can be displayed and printed by Rational DOORS, including 8-bit (non-ASCII)
characters.

Example

int port=5093

int iTimeOut=10

IPC ipcServerConn=server (port)

string inputStr

if ('accept (ipcServerConn))
{
print "No connection\n";
}
else while (recv (ipcServerConn, inputStr, iTimeOut))
{
inputStr = convertFromCodepage (currentANSIcodepage (), inputStr)

print inputStr "\n";

Message of the day

setMessageOfTheDay

Declaration
string setMessageOfTheDay (string message)
Operation

This is used to set the message of the text in the database. Returns null if successful, returns an error if the user does not
have the manage database privilege.

setMessageOfTheDayOption

Declaration

string setMessageOfTheDayOption (bool setting)

DXL Reference Manual

182

Operation

Used to tutn the message of the day on or off . Returns an error if the user does not have the manage database privilege,
otherwise returns null.

getMessageOfTheDay

Declaration

string getMessageOfTheDay ()

Operation

Returns the message of the day if one is set, otherwise returns null.

getMessageOfTheDayOption

Declaration

bool getMessageOfTheDayOption ()

Operation

Used to determine whether the message of the day is enabled. Returns true if it is enabled, otherwise returns false.

Example
string sl, s2, message

message = "Hello and welcome to DOORS!"

if (getMessageOfTheDayOption()) {
print "Current message of the day is : " (getMessageOfTheDay())
} else {
print "No message of the day is set, setting message and turning on."
sl = setMessageOfTheDay (message)
if (!'null s1){
print "There was an error setting the message of the day : " sl
} else {
s2 = setMessageOfTheDayOption (true)
if (!'null s2){

print "There was an error turning on the message of the day :" s2

DXL Reference Manual

183

Database Properties

setLoginFailureText

Declaration

string setlLoginFailureText (string msqg)

Operation
Sets the string as the pretext for login failure Emails sent through Rational DOORS. Returns null on success or failure error

message.

getLoginFailureText

Declaration

string getlLoginFailureText (void)

Operation
Gets the string used for login failure Emails sent through Rational DOORS.

setDatabaseMailPrefixText

Declaration

string setDatabaseMailPrefixText (string msg)

Operation

Sets the string as the pretext for Emails sent through Rational DOORS. Returns null on success or failure error message.

getDatabaseMailPrefixText

Declaration

string getDatabaseMailPrefixText (void)

Operation
Gets the string used in Emails sent through Rational DOORS.

DXL Reference Manual

184

setEditDXLControlled

Declaration
string setEditDXLControlled (bool)

Operation
Activates or de-activates the database wide setting determining whether the ability to edit DXL will be controlled. Returns

null on success, or an error on failure.

getEditDXLControlled

Declaration
bool getEditDXLControlled (void)

Operation
Used to determine if the ability to edit DXL is controlled in the database. Returns true if the ability to edit DXL can be

denied.

DXL Reference Manual

185

Chapter 10

Rational DOORS database access

This chapter covers:

* Database properties

* Group and user manipulation
e Group and user management
* LDAP

* LDAP Configuration

* LDAP server information

* LDAP data configuration

* Rational Directory Server

Database properties

This section defines functions for Rational DOORS database properties. DXL defines the data type LoginPolicy,
which can take either of the following values:

viaDOORSLogin
viaSystemLogin

These values control how users log in to Rational DOORS, using the Rational DOORS user name or the system login
name.

getDatabaseName

Declaration

string getDatabaseName ()

Operation

Returns the name of the Rational DOORS database.

setDatabaseName

Declaration

bool setDatabaseName (string newName)

DXL Reference Manual

186

Operation

Sets the name of the Rational DOORS database to newName. If the operation succeeds, it returns t rue; otherwise, it
returns false. The operation fails if the name contains any prohibited characters.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns false.

getAccountsDisabled

Declaration

bool getAccountsDisabled ()

Operation

If standard and custom user accounts for the current database are disabled, returns t rue; otherwise, returns false.

Example

if (getAccountsDisabled()) {
print "Only those with May Manage Power can
log in"

setAccountsDisabled

Declaration

void setAccountsDisabled (bool disabled)

Operation

Disables or enables standard and custom user accounts for the current database, depending on the value of disabled.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is displayed.
Note: A saveDirectory () command must be used for this to take effect.

Example
This example disables all standard and custom user accounts:
setAccountsDisabled (false)

saveDirectory ()

getDatabaseldentifier

Declaration

string getDatabaseIdentifier ()

DXL Reference Manual

187

Operation

Returns the unique database identifier generated by Rational DOORS dutring database creation.

getDatabasePasswordRequired

Declaration

bool getDatabasePasswordRequired ()

Operation
Returns true if passwords are required for the current Rational DOORS database; otherwise, returns false.

setDatabasePasswordRequired

Declaration

void setDatabasePasswordRequired (bool required)

Operation

Sets passwords required or not required for the current database, depending on the value of required.

This perm only operates if the current user is the Administrator, otherwise an error message is displayed.

getDatabaseMinimumPasswordLength

Declaration

int getDatabaseMinimumPasswordLength ()

Operation

Returns the minimum number of characters required for a password on the current database.

setDatabaseMinimumPasswordLength

Declaration

void setDatabaseMinimumPasswordLength (int Iength)

Operation

Sets the length of password required for the current database to Iength characters. The value can be any non-negative
integer.

This perm only operates if the cutrent user has the Manage Database privilege.

DXL Reference Manual

188

getDatabaseMailServer

Declaration

string getDatabaseMailServer (void)

Operation
Returns as a string the name of the SMTP mail server for Rational DOORS.

setDatabaseMailServer

Declaration

void setDatabaseMailServer (string serverName)

Operation

Sets the mail server for the current database to serverName.

This perm only operates if the cutrent user has the Manage Database privilege.

getDatabaseMailServerAccount

Declaration

string getDatabaseMailServerAccount (void)

Operation

Returns as a string the name of the mail account that appears to originate messages from Rational DOORS.

setDatabaseMailServerAccount

Declaration

void setDatabaseMailServerAccount (string accountName)

Operation

Sets to accountName the mail account that appears to originate messages from Rational DOORS.

This perm only operates if the cutrent user has the Manage Database privilege.

getLoginPolicy

Declaration
LoginPolicy getLoginPolicy ()

DXL Reference Manual

189

Operation

Returns the login policy (either viaDOORSLogin or viaSystemLogin) for the current database. These values control
how users log in to Rational DOORS, using the Rational DOORS name or the system login name.

setLoginPolicy

Declaration
void setLoginPolicy(LoginPolicy policy)

Operation
Sets the login policy for the current database to policy, which can be either viaDOORSLogin or
viaSystemLogin.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.

getDisableLoginThreshold

Declaration
int getDisableLoginThreshold()

Operation

Returns the number of times a user account tolerates a failed login. If the number of login failures to any single account
exceeds this value, Rational DOORS disables that account. Nobody can use a disabled account.

If the return value is zero, there is no limit. See also the getFailedLoginThreshold function.

setDisableLoginThreshold

Declaration
void setDisablelLoginThreshold(int attempts)

Operation
Sets the number of times a user account tolerates a failed login. If the number of login failures to any single account exceeds
this value, Rational DOORS disables that account. Nobody can use a disabled account.

If attempts is zero, there is no limit. See also the setFailedLoginThreshold function.

This perm only operates if the current user has the Manage Database privilege, otherwise an error message is displayed.

getFailedLoginThreshold

Declaration
int getFailedLoginThreshold()

DXL Reference Manual

190

Operation
Returns the number of times Rational DOORS tolerates a login failure. If this threshold is exceeded, Rational DOORS

closes.

If the return value is zero, there is no limit. See also the setDisableLoginThreshold function.

setFailedLoginThreshold

Declaration

void setFailedLoginThreshold(int attempts)

Operation

Sets the number of times Rational DOORS tolerates a login failure. If this threshold is exceeded, Rational DOORS closes.
If attempts is zero, there is no limit. See also the setDisablelLoginThreshold function.

This perm only operates if the cutrent user has the Manage Database privilege, otherwise an error message is displayed.

getLoginLoggingPolicy

Declaration
bool getLoginLoggingPolicy (bool type)

Operation

If Rational DOORS is keeping track of logins of the specified type, returns t rue; otherwise, returns false. If type is
true, returns the policy for successful logins; otherwise, returns the policy for login failures.

To set the logging policy, use the setLoginLoggingPolicy function.
Example
This example indicates whether Rational DOORS is keeping track of login failures.

getLoginLoggingPolicy (false)

setLoginLoggingPolicy

Declaration
void setLoginLoggingPolicy (bool type,

bool status)
Operation

Sets the logging policy for login events of the specified type. If statusis true, logging of the specified type is enabled;
otherwise, it is disabled. If type is true, sets the policy for successful logins; otherwise, sets the policy for login failures.

To find out the current logging policy, use the getLoginLoggingPolicy function.

DXL Reference Manual

191

Example

This example causes Rational DOORS not to log successful logins.

setLoginLoggingPolicy (true, false)

setMinClientVersion

Declaration

string setMinClientVersion(string s)

Operation

Sets the minimum client version that can connect to the current database. The string argument must be of the format n. n,
n.n.norn.n.n.n,where each nis a decimal integer. The integer values represent Major version, Minor version, Service
Release and Patch number respectively. The Service Release and Patch numbers are optional, and default to zero.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns an appropriate error
string. It also returns an error string if the string argument is not of the correct format, ot represents a client version higher

than the current client.

getMinClientVersion

Declaration

string getMinClientVersion (void)

Operation

Returns a string representing the minimum client version that can connect to the cutrent database, in the format n. n,
n.n.notn.n.n.n. The formatis explained in setMinClientVersion. If no minimum client version has been set

for the database, this perm returns a NULL string.

setMaxClientVersion

Declaration

string setMaxClientVersion(string s)

Operation

Sets the maximum client version that can connect to the current database. The string argument must be of the format n. n,
n.n.norn.n.n.n,where each nis a decimal integer. The integer values represent Major version, Minor version, Service
Release and Patch number respectively. The Service Release and Patch numbers are optional.

This perm only operates if the current user has the Manage Database privilege, otherwise it returns an appropriate error
string. It also returns an error string if the string argument is not of the cortect format, or represents a client version lower

than the current client.

DXL Reference Manual

192

getMaxClientVersion

Declaration

string getMaxClientVersion (void)

Operation

Returns a string representing the maximum client version that can connect to the current database, in the format n. n,
n.n.notn.n.n.n. The formatis explained in setMinClientVersion. If no minimum client version has been set

for the database, this perm returns a null string.

doorsinfo

Declaration

string doorsInfo (int 1)

Operation

A new valid value for the integer argument is defined (infoServerVersion).

This returns the version of the database server to which the client is currently connected.

Example

string serverVersion = doorsInfo(infoServerVersion)

print "database server version is " serverVersion "\n"
addNotifyUser

Declaration

void addNotifyUser (User user)

Operation
Adds user to the list of users to be notified by e-mail of attempts to log in. If user does not have an e-mail address, no

notification takes place.

deleteNotifyUser

Declaration

void deleteNotifyUser (User user)

Operation

Deletes user from the list of users to be notified by e-mail of attempts to log in.

DXL Reference Manual

193

createPasswordDialog

Declaration
string createPasswordDialog (DB parent,

bool &completed)
Operation

Displays a dialog box containing password and password confirmation fields as well as OK and Cancel buttons. The parent
argument is needed for the Z-order of the elements.

If confirmation is successful, returns a null string; otherwise, returns an error message.

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false. Rational DOORS
stores the entered password temporarily for the next user account created with the addUser function. It is not stored as
plain text, and is lost if Rational DOORS shuts down before a new account is created.

Example

See the section “Creating a user account example,” on page 196.

changePasswordDialog

Declaration

string changePasswordDialog (DB parent,
User user,
bool masquerade,
bool &completed)
Operation

Displays a dialog box containing password and password confirmation fields as well as OK and Cancel buttons. The
parent argument is needed for the Z-order of the elements.

If confirmation is successful, returns a null string; otherwise, returns an error message.

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false. Rational DOORS
stores the entered password temporarily. It is not stored as plain text, and is lost if Rational DOORS shuts down before the
password is copied using the copyPassword function.

A user without the mayEditUserList power must confirm his existing password, otherwise the function returns an
error message. A user with this power is not prompted for an existing password, unless masqueradeis true.

Example

This example copies a new password to the user account for which it was created.
User u = find("John Smith")

bool completed

string s = changePasswordDialog(confirm, u,
false, completed)

DXL Reference Manual

194

if (completed && (null s)){
copyPassword ()

}
saveUserRecord (u)

saveDirectory ()

confirmPasswordDialog

Declaration

bool confirmPasswordDialog (DB parent,
bool &completed)

Operation

Displays a dialog box containing a password confirmation field as well as OK and Cancel buttons. The title of the dialog
box is always Confirm password - DOORS. The parent argument is needed for the Z-order of the elements.

If confirmation is successful, returns t rue; otherwise, returns false.

If the user clicks OK, sets completed to true. If the user clicks Cancel, sets completed to false.

Example

bool bPasswordOK = false, bCompleted = false

// query user

bPasswordOK = confirmPasswordDialog (dbExplorer, bCompleted)
// check status

if (bCompleted == true)
{

print "Confirmed"

copyPassword

Declaration
bool copyPassword()
Operation

Copies the password created using the function to the account for which the password was created. Returns null on success
and an error message on failure.

Example
This example copies a new password to the user account for which it was created.

User u = find("John Smith")

DXL Reference Manual

195

bool completed
string s = changePasswordDialog (dbExplorer, u, false, completed)

if (completed && (null s)){
copyPassword ()

getAdministratorName

Declaration

string getAdministratorName ()

Operation

Returns the name of the administrator for the Rational DOORS database.

sendEMailNotification

Declaration

{bool|string} sendEMailNotification(string fromDescription,
string targetAddress,
string subject,
string message)

string sendEMailNotification(string fromDescription,
Skip targetAddresses,
[, Skip ccAddresses]
[, Skip bccAddresses]
string subject,
string message)

Operation

Issues a notification e-mail to the specified address or addresses. The communication takes place using SMTP, and depends
on the appropriate Database Properties fields being correctly set up prior to its use (SMTP Mail Server and Mail Account).

The user can set the description of the sender, the subject matter, and message contents using fromDescription,
subject and message. If fromDescription isa null string, Rational DOORS defaults to a standard text:

DOORS Mail Server
The following standard text is sent in front of the specified message:

The following is a notification message from DOORS - please do not reply as it
was sent from an unattended mailbox.

The variant returning a boolean is for legacy use and returns true if the SMTP communication was successful; otherwise,
returns false. Others variants return an error string on failure.

DXL Reference Manual

196

sendEMailMessage

Declaration

{bool|string} sendEMailMessage (
string fromDescription,
string targetAddress,
string subject,
string message)

string sendEMailMessage (
string fromDescription,
Skip targetAddress,
[, Skip ccAddresses]
[, Skip bccAddresses]
string subject,
string message)

Operation

Performs the same function as sendEMailNotification, but without prepending text to the message.

Creating a user account example

This example creates a new user account named John Smith, having johns as its login name, with whatever password
is entered in the dialog box.

// prevent dxl timeout dialog

pragma runLim, O

// globals

bool g bPasswordOK = true

// user details

const string sUserName = "John Smith"
const string sUserLogin = "johns"

// only relevant if password is required

if (getDatabasePasswordRequired() == true) {
bool bConfirmCompleted = false
// query user

g _bPasswordOK =
confirmPasswordDialog (dbExplorer,
bConfirmCompleted)

// check status

DXL Reference Manual

if (bConfirmCompleted == false) {
// adjust accordingly
g bPasswordOK = false
}
}

// check status

if (g _bPasswordOK == true) {
// only relevant if name doesn't exist
// as group or user

if (existsUser (sUserName) == false &&
existsGroup (sUserName) == false) {
bool bCreateCompleted = false
// query user

string sErrorMsg =
createPasswordDialog (dbExplorer,
bCreateCompleted)

// check status

if (sErrorMsg == null &&
bCreateCompleted == true) {
// add new user

if (addUser (sUserName, sUserLogin) ==

null) {
// save new user list
if (saveDirectory () == null) {
// refresh
if (loadDirectory() == null) {
// inform user
infoBox ("User '"sUserName"'
was added successfully.\n")
} else {

// warn user
warningBox ("Failed to load
user list.\n")

}

} else {
// warn user
warningBox ("Failed to save
user list.\n")
}
} else {
// warn user
warningBox ("Failed to add user
'"sUserName"'.\n")

DXL Reference Manual

197

198

} else {
// warn user
warningBox (sErrorMsqg)

}

} else {
// warn user
warningBox ("The name '"sUserName"'
already exists as either a DOORS User or
Group.\n")

Group and user manipulation

Group and user manipulation functions and for loops use the following DX data types: Group, User, GroupList,
UserList, and UserNotifyList. These types have the following permitted values:

Type Constant Meaning

GroupList groupList Provides access to all groups defined in the
database. This is the only constant of type
GroupList.

UserList userList Provides access to all users (with the

exception of the Administrator account) who
have an account in the database. This is the
only constant of type UserList.

UserNotifyList userNotifyList Provides access to all users who must be
notified by e-mail of attempts to log in. This
is the only constant of type
UserNotifyList.

find

Declaration
User find()

{Group|User} find(string name)

Operation

The first form returns a handle of type User to the currently logged in user.

DXL Reference Manual

199

The second form returns a handle of type Group or type User for the group or user name. A call to this function where
name does not exist causes a DXL run-time etror. To check that a user or group exists, use the existsGroup,

existsUser functions.

findByID

Declaration

User findByID(string identifier)

Operation

Returns a handle of type User for the specified 1dentifier, or null if the user does not exist but the identifier is valid.
If the specified identifier is badly formed, a DXL run-time etror occurs.

You can extract the identifier for a user from a variable of type User with the identifier property (see “Group and

user properties,” on page 206).

existsGroup, existsUser

Declaration
bool existsGroup(string name)
bool existsUser (string name)

Operation

If the named group or user exists, returns true; otherwise, returns false.

loadUserRecord

Declaration

string loadUserRecord (User user)

Operation

Loads the details of user user from the database.

Example

User u = find("boss")
loadUserRecord (u)
string e = u.email

print e

DXL Reference Manual

200

ensureUserRecordLoaded

Declaration

string ensureUserRecordLoaded (User user)

Operation

If the user’s record for user has not already been loaded, calls the 1oadUserRecord function.

saveUserRecord

Declaration

string saveUserRecord (User user)

Operation

Saves the details of user user to the database.
Note: A saveDirectory () command should be used to commit the changes to the database

Example

User u = find("boss")
loadUserRecord (u)
string e = u.email

if (null e) {
u.email = "boss@work"

}
saveUserRecord (u)

saveDirectory ()

loadDirectory

Declaration

string loadDirectory ()

Operation

Loads the group and user list from the database. All changes made since the last load or save are lost. If the operation
succeeds, returns null; otherwise, returns an error message.

DXL Reference Manual

201

saveDirectory

Declaration

string saveDirectory ()

Operation

Saves all changes to groups, users, and login policies in the database. If the call fails, returns an error message.

Note: This perm places a temporary lock on the users directory. If used in a continuous manner, for example, repeatedly
in a for loop, this could cause conflicts for another user trying to login.

for user in database

Syntax

for user in userlList do {

}
where:

user is a variable of type User

Operation

Assigns the variable user to be each successive non-administrator user in the database.

Example
This example prints a list of users in the database:
User user

for user in userlList do {
string uName = user.name
print uName "\n"

for group in database

Syntax

for group in groupList do {

}
where:

group is a variable of type Group

DXL Reference Manual

202

Operation

Assigns the vatiable group to be each successive group in the database.

Example
This example prints a list of groups in the database:
Group group

for group in groupList do {
string gName = group.name
print gName "\n"

for userin group

Syntax

for user in group do {

}

where:
user is a vatiable of type User
group is a vatiable of type Group
Operation

Assigns the variable user to be each successive non-administrator user in the specified group.

Example

This example prints a list of users in group development:
User user

Group development = find("development")

for user in development do {
string uName = user.name
print uName "\n"

for group in ldapGroupsForUser

Declaration

for g in ldapGroupsForUser (u) do {

DXL Reference Manual

203

where:
g is a variable of type Group
u is a variable of type User
Operation

Iterate over all groups of which the user passed to the IdapGroupsForUser function is a member. Note that this
iterator is only effective when Rational DOORS is configured for LDAP, not for the Rational Directory Server.

Example
User u = find(“fred”)
Group g

for g in ldapGroupsforUser (u) do {

for user in notify list

Syntax

for user in userNotifyList do {

}
where:

user is a variable of type User

Operation

Assigns the variable user to be each successive user in the list of users to be notified by e-mail of login activity.

copyPassword

Declaration

string copyPassword()

Operation

This is the same as the existing copyPassword () perm. It performs an identical operation, transferring the shadow
password to the real password but instead of returning a boolean indicating success or failure, it returns NULL on success
and a message on failure. The existing perm can fail resulting in a reported error in the DXL output display if an exception
is thrown. The new perm will catch exceptions and pass the message back to the DXL code for it to display as a pop-up
dialog.

DXL Reference Manual

204

fullName

Declaration

UserElement fullName ()

Operation

This can be used to get the full name of the user.

Example
User u = find()

string name = u.fullName

mayEditDXL

Declaration
UserElement mayEditDXL ()

Operation

Indicates whether the specified user is able to edit and run DXL programs.

Example
User u = find

bool useDXL = u.mayEditDXL

synergyUsername

Declaration

UserElement synergyUsername ()

Operation
This can be used to retrieve the user’s SYNERGY/Change user name.
This attribute value is only available when Rational DOORS is configured to use the Rational Directory Server.

This value is not writable; its value is set when the systemLoginName is set.

Example:

User u = find("Test")

string s = u.synergyUsername
User u = find("Test")
u.synergyUsername = "testuser"

DXL Reference Manual

205

//this generates an error

forename

Declaration

UserElement forename ()

Operation
This can be used to get or set the user’s forename.
This attribute value is only available when Rational DOORS is configured to use the Rational Directory Setver.

Setting this value has the side effect of setting the fullName of the user to the concatenation of forename and surname.
This is only relevant when configured to use the Rational Directory Server.

Example

User u = find("Test")

string s = u.forename

User u = find("Test")

u.forename = "Tom"
surname

Declaration

UserElement surname ()

Operation

This can be used to get or set the user’s surname.

This attribute value is only available when Rational DOORS is configured to use the Rational Directory Setver.

Setting this value has the side effect of setting the fullName of the user to the concatenation of forename and surname.
This is only relevant when configured to use the Rational Directory Server.

Example
User u = find("Test")

string s = u.surname

User u = find("Test")

u.surname = "Thumb"

DXL Reference Manual

206 ‘

Group and user management

Group and user management functions use the DXL data types Group, User, and UserClass.

User class constants

Type UserClass can have one of the following values:

Constant Meaning
administrator User type administrator
standard User type standard
databaseManager User type database manager
projectManager User type project manager
custom User type custom

Group and user properties

Properties are defined for use with the . (dot) operator and a group or user handle to extract information from, or specify
information in a group or user record, as shown in the following syntax:

variable.property

where:
variable is a variable of type Group or User
property is one of the user or group properties

The following tables list the group properties and the information they extract or specify (for further details on specifying
information see the setGroup function):

String property Extracts

name name

Boolean property Extracts

disabled whether the group is disabled

DXL Reference Manual

The following tables list the user properties and the information they extract or specify (for further details on specifying
information see the setUser function):

String property Extracts

address postal address

email e-mail address

identifier identifier: a string containing a hexadecimal number, which is created

by Rational DOORS

description description

name name

password password (wtite-only)

systemLoginName system login name (not Rational DOORS user name)

telephone telephone number

fullName full name

Boolean property Extracts

disabled whether the account is disabled

emailCPUpdates whether the user of the CP system can be notified by
e-mail when the status of a proposal changes, for
example when it is accepted or rejected

mayArchive whether the user can archive and restore modules and
projects

mayCreateTopLevelFolders whether the user can create folders at the root of the
database

mayEditGroupList whether the user can edit, create and delete groups

mayEditUserList whether the user can edit, create, and delete user
accounts and groups

mayManage whether the user can manage the Rational DOORS
database

mayPartition whether the user can transfer the editing rights for a

module to a satellite database (see the chapters on
partitions in Using Rational DOORS and
Managing Rational DOORS)

DXL Reference Manual

207

208

Boolean property Extracts

passwordChanged whether the password has been changed since the
account was created

passwordMayChange whether the user is permitted to change the password

mayUseCommandLinePassword if database restrictions are enabled, whether the user
may use the command line password switch

additionalAuthenticationR whether the user is required to perform additional

equired when logging in (RDS only)

Integer property Extracts

passwordLifetime lifetime of password (0 means unlimited lifetime)
passwordMinimumLength minimum number of characters in password for this

user (non-negative integer)

Type UserClass property Extracts

class class of user; this can be one of the values in “User class
constants,” on page 206

for property in user account

Syntax

for property in user do {

}

where:

property is a string variable

user is a vatiable of type User
Operation

Assigns property to be each successive user defined string property for user (for which the current user has read
access).

DXL Reference Manual

209

isAttribute(user)

Declaration
bool isAttribute (User user,

string property)

Operation

Returns true if the specified user contains the specified string property; otherwise, returns false.

delete(user property)

Declaration
void delete (User user,

string property)

Operation

Deletes the specified user defined string property within user. You cannot delete properties of other types.

This action takes effect after saveUserRecord has been called. It is then permanent and cannot be reversed.

get(user property)

Declaration
string get (User user,
string property)
Operation
Returns the value of the specified user defined string property within user. If the property does not exist, a DXL run-time

Crror occuts.

If successful, returns a null string; otherwise, returns an error message.

set(user property])

Declaration

void set (User user,
string property,
string value)

Operation

Updates the value of the specified string property within user. If the property does not exist it is created.

DXL Reference Manual

210

setGroup

Declaration
string setGroup (Group id,
property,
{stringl|bool} value)
Operation
Updates the value of the specified standard property within the group id.

If successful, returns a null string; otherwise, returns an error message.

setUser

Declaration
string setUser (User user,
property,
{string|int|bool} wvalue)
Operation
Updates the value of the specified standard property within user.

If successful, returns a null string; otherwise, returns an error message.

addGroup

Declaration

string addGroup (string name)

Operation

Creates group name. If the operation is successful, returns a null string; otherwise, returns an error message.

deleteGroup

Declaration

string deleteGroup (Group group)

Operation

Deletes group group from the Rational DOORS database. It does not affect underlying users.

This action takes effect after the user directory has been refreshed using the saveDirectory function. Itis then

permanent and cannot be reversed.

DXL Reference Manual

211

If the operation is successful, returns a null string; otherwise, returns an error message.

addUser

Declaration

string addUser (string name,
string uid)

string addUser (string name,
string password
string uid)

Operation

The first form creates a user account with the specified name, and system login, uid. If the operation succeeds returns a
null string; otherwise, returns an error message. This function must be used after a call to the
createPasswordDialog function, so that the password is set to an initial value. The user must change the password
on first use. If there has been no previous call to the createPasswordDialog function, the password is set to a null

string.
The second form is only supported for compatibility with earlier releases. It is deprecated because passwords are passed as
plain text.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

Example

See the section “Creating a user account example,” on page 196.

deleteUser

Declaration

string deleteUser (User user)

Operation

Deletes the user account for user from the Rational DOORS database. Appropriate e-mails are also issued to the same

people who are notified of unsuccessful logins.

This action takes effect after the user directory has been refreshed using the saveDirectory function. It is then

permanent and cannot be reversed.

If the operation is successful, returns a null string; otherwise, returns an error message.

addMember

Declaration

void addMember (Group group,
User user)

DXL Reference Manual

212

Operation

Adds user user to group group.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

deleteMember

Declaration
bool deleteMember (Group group,
User user)

Operation

Deletes user user from group group. If the operation succeeds, returns t rue; otherwise, returns false.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

deleteAllMembers

Declaration
bool deleteAllMembers (Group group)

Operation

Deletes all users from group group.

This action takes effect after the user directory has been refreshed using the saveDirectory function.

member

Declaration
bool member (Group group,

User user)

Operation

If user useris a member of group group, returns t rue; otherwise returns false.

stringOf(user class)

Declaration

string stringOf (UserClass userClass)

Operation

Returns a string representation of the specified user class. This can be one of the following values:

DXL Reference Manual

213

"Administrator"
"Standard"
"Database Manager"
"Project Manager"

"Custom"

LDAP

savelLdapConfig()

Declaration
string savelLdapConfig()

Operation

Save the LDAP configuration to the database. Returns empty string on success, error message on failure.

loadLdapConfig()

Declaration
string loadLdapConfig()

Operation

Load the LDAP configuration from the database. Returns empty string on success, error message on failure.

getUseldapl()

Declaration
bool getUselLdap ()

Operation

Gets the value of the flag which determines if we are using LDAP for storage of user and group information.

setUselLdapl()

Declaration
string setUseldap (bool usingLdap)

DXL Reference Manual

214

Operation
Sets the value of the flag which determines if we are using LDAP for storage of user and group information. Only the
Administrator can set this value. Returns empty string on success, error message on failure.

updateUserList()

Declaration
string updateUserList ()

Operation

Update the Rational DOORS user list from the LDAP user list. Creates standard users for all the users permitted by LDAP
if they do not already exist in the Rational DOORS database, and updates user name and system login name for existing

users.

Note: This operation can take a long time, particulatly if no group of Rational DOORS users has been specified (see
setDoorsUserGroupDN).

updateGroupList()

Declaration
string updateGroupList ()

Operation

Update the Rational DOORS group list from the LDAP group list. Creates Rational DOORS groups for all the groups
permitted by LDARP if they do not alteady exist in the Rational DOORS database, and updates group name for existing

groups.

Note: This operation can take a long time, particulatly if no group of Rational DOORS groups has been specified (see
setDoorsGroupGroupDN).

LDAP Configuration

findUserRDNFromName

Declaration

string findUserRDNFromName (string name, bool &unique, string &uid)

Operation
Search for name in the LDAP directory, in the attribute specified by name for Rational DOORS user names, in the
Rational DOORS user subtree.

DXL Reference Manual

215

If found, return the distinguished name of the entry, relative to the Rational DOORS user root. Also sets the unique flag
true if only one matching entry was found, and fills in the uid string with the system login name obtained from the
matching entry. If not found, returns NULL. Only the Administrator can run this function.

findUserRDNFromLoginName

Declaration

string findUserRDNFromLoginName (string uid, bool &unique, string é&name)

Operation
Search for uid in the LDAP directory, in the attribute specified for system login names, in the Rational DOORS user
subtree.

If found, return the distinguished name of the entry, relative to the Rational DOORS user root. Also sets the unique flag
true if only one matching entry was found, and fills in the name string with the Rational DOORS user name obtained
from the matching entry. If not found, returns NULL. Only the Administrator can run this function.

findGroupRDNFromName

Declaration

string findGroupRDNFromName (string name, bool &unique)

Operation
Search for name in the LDAP directory, in the attribute specified for Rational DOORS group names, in the Rational
DOORS group subtree.

If found, return the distinguished name of the entry, relative to the Rational DOORS group root. Also sets the unique flag
true if only one matching entry was found. If not found, returns NULL. Only the Administrator can run this function.

findUserInfoFromDN

Declaration

string findUserInfoFromDN (string dn, string &name, string &uid)

Operation
Search for an entry with distinguished name dn in the LDAP directory.

If found, fills in the name and uid with the Rational DOORS user name and system login name obtained from the matching
entry. Returns NULL. Only the Administrator can run this function.

DXL Reference Manual

216

checkConnect

Declaration

string checkConnect ()

Operation

Check the current LDAP configuration by attempting to connect to the specified setver/port as the user specified by
Rational DOORS bind dn with the Rational DOORS bind password. Returns NULL on success, error message on failure.

checkDN

Declaration

string checkDN (string dn)

Operation

Check that the given dn is a valid entry in the directory specified by the current LDAP configuration. This can be run to
check that the user root, group root, user group dn, and group group dn have been set to existing values. Only the
Administrator can run this function.

Example
LdapItem item
for item in ldapGroupList do
{
print item.name "\n"
print item.dn "\n"

print item.uid "\n"

for item in ldapUserList do
print item.name "\n"

print item.dn "\n"

print item.uid "\n"

DXL Reference Manual

217

LDAP server information

getLdapServerName

Declaration

string getLdapServerName ()

Operation
Gets the name of the LDAP server.

setLdapServerName(string)

Declaration

string setLdapServerName (string name)

Operation

Sets the name of the LDAP server. Only the Administrator can set this value. Returns empty string on success, error

message on failure.

getPortNo

Declaration
int getPortNo ()

Operation

Gets the port number of the server used for storage of user and group information.

setPortNo

Declaration

string setPortNo (int portNo)

Operation

Sets the port number of the server used for storage of user and group information. Only the Administrator can set this

value. Returns empty string on success, etror message on failure.

DXL Reference Manual

218

getDoorsBindNameDN

Declaration
string getDoorsBindNameDN ()

Operation

Gets the dn of the user we use to bind to the LDAP setver.

setDoorsBindNameDN

Declaration

string setDoorsBindNameDN (string name)

Operation

Sets the dn of the user we use to bind to the LDAP server. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

setDoorsBindPassword

Declaration

string setDoorsBindPassword(string pass)

Operation

Sets the password we use to bind to the LDAP server. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

Note: Thereis no getDoorsBindPassword as DXL does not need to know this.

setDoorsBindPasswordDB

Declaration

string setDoorsBindPasswordDB (DB parentWindow)

Operation
This presents the user with a password dialog box. If the user enters the same valid password in both fields of the dialog
box, the setDoorsBindPassword () functionality is executed.

This returns null on success, and an error string on failure (either if the user does not enter the same valid password in both
fields of the dialog box, or if the setting of the password option failed).

DXL Reference Manual

219

getDoorsUserRoot

Declaration

string getDoorsUserRoot ()

Operation

Gets the identifier of the directory subtree used for storage of user information.

setDoorsUserRoot

Declaration

string setDoorsUserRoot (string ident)

Operation
Sets the identifier of the directory subtree used to search the LDAP server for users. Only the Administrator can set this

value. Returns empty string on success, etror message on failure.

getDoorsGroupRoot

Declaration

string getDoorsGroupRoot ()

Operation

Gets the identifier of the directory subtree used for storage of group information.

setDoorsGroupRoot

Declaration

string setDoorsGroupRoot (string ident)

Operation
Sets the identifier of the directory subtree used to search the LDAP server for groups. Only the Administrator can set this

value. Returns empty string on success, error message on failure.

getDoorsUserGroupDN

Declaration
string getDoorsUserGroupDN ()

DXL Reference Manual

220

Operation
Gets the dn of the LDAP group used to specify permitted Rational DOORS users.

setDoorsUserGroupDN

Declaration

string setDoorsUserGroupDN (string dn)

Operation
Sets the dn of the LDAP group used to specify permitted Rational DOORS users. Only the Administrator can set this

value. Returns empty string on success, etror message on failure.

getDoorsGroupGroupDN

Declaration

string getDoorsGroupGroupDN ()

Operation
Gets the dn of the LDAP group used to specify permitted Rational DOORS groups.

setDoorsGroupGroupDN

Declaration

string setDoorsGroupGroupDN ()

Operation
Sets the dn of the LDAP group used to specify permitted Rational DOORS groups. Only the Administrator can set this

value. Returns empty string on success, etror message on failure.

LDAP data configuration

getDoorsUsernameAttribute

Declaration

string getDoorsUsernameAttribute ()

Operation
Gets the name of the LDAP attribute to be used for a Rational DOORS user name.

DXL Reference Manual

221

setDoorsUsernameAttribute

Declaration

string setDoorsUsernameAttribute (string name)

Operation
Sets the name of the LDAP attribute to be used for a Rational DOORS user name. Only the Administrator can set this

value. Returns empty string on success, etror message on failure.

getLoginNameAttribute

Declaration
string getLoginNameAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the system login name.

setLoginNameAttribute

Declaration

string setLoginNameAttribute (string name)

Operation
Sets the name of the LDAP attribute to be used for the system login name. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

getEmailAttribute

Declaration
string getEmailAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the uset’s email address.

setEmailAttribute

Declaration

string setEmailAttribute(string email)

DXL Reference Manual

222

Operation
Sets the name of the LDAP attribute to be used for the uset’s email address. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

getDescriptionAttribute

Declaration
string getDescriptionAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the uset’s description.

setDescriptionAttribute

Declaration

string setDescriptionAttribute (string name)

Operation
Sets the name of the LDAP attribute to be used for the user’s description. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

getTelephoneAttribute

Declaration
string getTelephoneAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the users’s telephone number.

setTelephoneAttribute

Declaration
string setTelephoneAttribute (string phone)

Operation
Sets the name of the LDAP attribute to be used for the users’s telephone number. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

DXL Reference Manual

223

getAddressAttribute

Declaration
string getAddressAttribute ()

Operation

Gets the name of the LDAP attribute to be used for the users’s address.

setAddressAttribute

Declaration
string setAddressAttribute (string address)

Operation
Sets the name of the LDAP attribute to be used for the users’s address. Only the Administrator can set this value. Returns

empty string on success, error message on failure.

getGroupObjectClass

Declaration
string getGroupObjectClass ()

Operation
Gets the name of the LDAP object class to be used to identify groups. Typically this value will be
groupOfUniqueNames.

setGroupObjectClass

Declaration

string setGroupObjectClass (string class)

Operation
Sets the name of the LDAP object class to be used to identify groups. Only the Administrator can set this value. Returns

empty string on success, error message on failure.

getGroupMemberAttribute

Declaration
string getGroupMemberAttribute ()

DXL Reference Manual

224

Operation
Gets the name of the LDAP attribute to be used to identify group members. Typically this value will be uniqueMember.

setGroupMemberAttribute

Declaration

string setGroupMemberAttribute (string name)

Operation
Sets the name of the LDAP attribute to be used to identify group members. Only the Administrator can set this value.

Returns empty string on success, error message on failure.

getGroupNameAttribute

Declaration
string getGroupNameAttribute ()

Operation

Gets the name of the LDAP attribute to be used for a group’s name. Typically this value will be cn.

setGroupNameAttribute

Declaration
string setGroupNameAttribute (string group)

Operation
Sets the name of the LDAP attribute to be used for a group’s name. Only the Administrator can set this value. Returns

empty string on success, error message on failure.

Group and user properties

Declaration

string ldapRDN

If we have a user u, print u.ldapRDN prints the uset’s LDAP relative distinguished name, which may be empty if
LDAP is not being used.

The Administrator can set a uset’s LDAP rdn with

u.ldapRDN = new value.

DXL Reference Manual

225

string utf8(ansiString)

Declaration

string utf8(string ansiString)

Operation

This returns the UTF-8 format conversion of an ANSI string argument ansiString. LDAP servers use UTF-8
encoding, whereas Rational DOORS data is stored in ANSI format. This affects the encoding of extended characters, such

as accented letters, which are encoded in UTF-8 as 2-byte sequences.

string ansi(utf8String)

Declaration

string ansi(string utf8String)

Operation

This returns the ANSI format conversion of a UTF-8 string argument ut £8String. LDAP servers use UTF-8 encoding,
whereas Rational DOORS data is stored in ANSI format. This affects the encoding of extended characters, such as
accented letters, which are encoded in UTF-8 as 2-byte sequences.

Rational Directory Server

getUseTelelogicDirectory

Declaration
bool getUseTelelogicDirectory ()

Operation

Returns a flag indicating whether Rational Directory Server support is enabled.

setUseTelelogicDirectory

Declaration
string setUseTelelogicDirectory (bool b)

Operation
Enables or disables Rational Directory Server support.

Returns an error string if the current user is not the administrator.

DXL Reference Manual

226

Returns an error message if the argument is true and ordinary LDAP is already enabled.

getTDServerName

Declaration

string getTDServerName ()

Operation

Returns the Rational Directory Server name.

setTDServerName

Declaration

string setTDServerName (string s)

Operation
Sets the Rational Directory Server name.

Returns an error string if the current user is not the administrator.

getTDPortNumber

Declaration
int getTDPortNumber ()

Operation

Returns the Rational Directory Server port number.

setTDPortNumber

Declaration

string setTDPortNumber (int 1)

Operation
Sets the Rational Directory Server port number.

Returns an error string if the cutrent user is not the Administrator.

DXL Reference Manual

227

getTDBindName

Declaration
string getTDBindName ()

Operation

Returns the Rational Directory Server Administrator bind (login) name.

setTDBindName

Declaration

string setTDBindName (string s)

Operation
Sets the Rational Directory Server administrator bind (login) name.

Returns an error string if the current user is not the administrator.

setTDBindPassword

Declaration

string setTDBindPassword (string s)

Operation
Sets the Rational Directory Server administrator bind (login) password.

Returns an error string if the current user is not the administrator.

setTDBindPassword

Declaration

string setTDBindPassword (DB bind pass)

Operation

Sets the Rational Directory Server administrator bind (login) password from the specified database.

getTDUseDirectoryPasswordPolicy

Declaration

bool getTDUseDirectoryPasswordPolicy ()

DXL Reference Manual

228

Operation

Returns a flag indicating whether the directory should handle all password policy issues.

setTDUseDirectoryPasswordPolicy

Declaration
string setTDUseDirectoryPasswordPolicy (bool TD dir)

Operation
Enables or disables support for the directory password policy.

Returns an error string if the current user is not the administrator.

getAdditionalAuthenticationEnabled

Declaration
bool getAdditionalAuthenticationEnabled()

Operation
Returns true if enhanced security users need to perform additional authentication during login. Only relevant when

authentication is being controlled via RDS.

getAdditionalAuthenticationPrompt

Declaration
string getAdditionalAuthenticationPrompt ()

Operation

Returns the label under which additional authentication is requested, if enhanced security is enabled, for example the label
for the second “password” field. Only relevant when authentication is being controlled via RDS.

getSystemLoginConformityRequired

Declaration
bool getSystemLoginConformityRequired ()

Operation
Returns true if enhanced security users have there system login verified when logging in. Only relevant when

authentication is being controlled via RDS.

DXL Reference Manual

229

getCommandLinePasswordDisabled

Declaration

bool getCommandLinePasswordDisabled ()

Operation

Return true if the =P command line password argument is disabled by default.

setCommandLinePasswordDisabled

Declaration

string getCommandLinePasswordDisabled (bool)

Operation
Sets whether the —P command line password argument is disabled by default. Supplying t rue disables the option by
default.

DXL Reference Manual

230

DXL Reference Manual

231

Chapter 11

Rational DOORS hierarchy

This chapter describes features that are relevant to items, folders, and projects within the Rational DOORS hierarchy.
Features specific to modules and objects are described in the following chapters:

* About the Rational DOORS hierarchy
* Item access controls

e Hierarchy clipboard

* Hieratchy information

* Hierarchy manipulation

e Items

* Folders

e Projects

* Looping within projects

About the Rational DOORS hierarchy

Within a Rational DOORS database there are items, which can be folders, projects, and modules. A project is a special
type of folder. The database root is also a folder.

In DXL, the Rational DOORS hierarchy is represented by the data types Item, Folder, Project, and a call to the
module function. Open modules are also represented by the Module data type.

Functions that operate on items have equivalents for folders, projects and modules.

Modules and folders are in general referenced by their unqualified names (without paths). However, DXL scripts can
specify fully qualified names, which are distinguished by the inclusion of one or more slash (/) characters. These names can
be either relative to the current folder, for example:

../folder/module

or absolute (with a leading slash), for example:

/ folder/module

Create functions fail if an invalid (non-existent) path is specified.

Functions common to all hierarchy items are described in “Hierarchy clipboard,” on page 233, “Hierarchy information,” on
page 2306, and “Hierarchy manipulation,” on page 240.

Functions specific to items of type Item are described in “Items,” on page 242.
Functions specific to folders are described in “Folders,” on page 245.

Functions specific to projects are described in “Projects,” on page 248.

DXL Reference Manual

232

Functions specific to modules are described in “Modules,” on page 255.

ltem access controls

This section describes functions that report on access rights for items.

canCreatel(item)

Declaration

bool canCreate ({Item i|Folder f})

Operation

Returns true if the current Rational DOORS user has create access to the item or folder specified by the argument.
Otherwise, returns false.

canControl(item)

Declaration
bool canControl ({Item i|Folder f})

Operation

Returns true if the current Rational DOORS user can change the access controls on the item or folder specified by the
argument. Otherwise, returns false.

canRead(item)

Declaration

bool canRead({Item i|Folder f})

Operation

Returns true if the current Rational DOORS user can read the item or folder specified by the argument. Otherwise,
returns false.

canModify(item)

Declaration
bool canModify({Item i|Folder f})

DXL Reference Manual

233

Operation
Returns true if the current Rational DOORS user can modify the item or folder specified by the argument. Otherwise,

returns false.

canDelete(item])

Declaration
bool canDelete({Item i|Folder f})

Operation
Returns true if the current Rational DOORS user can delete the item or folder specified by the argument. Otherwise,

returns false.

Hierarchy clipboard

This section defines functions for the hierarchy clipboard. Passing a null argument of type Item, Folder, or
Project to any function, or a null string to a call to the module function results in a run-time DXL error. The term item
means a variable of type Item, type Folder, or type Project, or a call to the module function.

clipCut

Declaration
string clipCut (Item 1)

Operation

Places a write lock on the item specified by the argument, and adds it to the clipboard as part of a set of cut items. If the
write lock fails, or if the user does not have delete access to the item and its descendants (if any), the call to c1ipCut fails.

If the previous operation was not a cut, this function first clears the clipboard. If the item is deleted, returns an error
message.

No other user can open the cut item until it has been pasted or the cut has been undone.

clipCopy

Declaration
string clipCopy(Item 1)

DXL Reference Manual

234

Operation

Places a shate lock on the item specified by the argument, and adds it to the clipboard as part of a set of copied items. If the
share lock fails, or if the user does not have read access to the item, the call to c1ipCopy fails. Any descendants of the
item to which the user does not have read access are not included as part of the set of items placed on the clipboard.

If the previous operation was a paste, this function first clears the clipboard. If the previous operation was a cut, this
function first performs an undo. If the item is deleted, returns an error message.

No other user can move, delete or rename the item until it has been pasted or the copy has been undone.

clipClear

Declaration

string clipClear ([bool forcel)

Operation

If the last operation was not a cut, unlocks and clears the clipboard contents. If the last operation was a cut, the result
depends on the value of force as follows:

false the call fails

true purges the contents of the clipboard from the database.

If you omit force, its value is assumed to be false.

clipPaste

Declaration
string clipPaste (Folder folderRef)

Operation

Pastes the contents of the clipboatd to folderRef. If the user does not have create access to the destination, the call to
clipPaste fails. If folderRef is deleted, returns an error message.

If the previous operation was a cut, moves the contents of the clipboard from their original location, and places a share lock
on them. Otherwise, unlocks the originals, and makes copies of them in folderRef. In this case, any projects have Copy

of in front of their names, because duplicate project names are not allowed. If this still results in duplicate names, Copy n

of is used, where n is the lowest number >= 2 that prevents duplication. This function uses the same naming convention
to avoid duplication when copying items into their original folder.

The items pasted from the clipboard remain share locked until the clipboard is cleared. This is done automatically when the
client closes down, or when the user opens any module in the clipboard for exclusive edit, or deletes, renames, or moves any

item in the clipboard.

DXL Reference Manual

235

clipUndo

Declaration
string clipUndo ({Item 1)

Operation

If the last operation was a cut or copy, unlocks and clears the clipboard contents.

clipLastOp

Declaration
int clipLastOp ()
Operation

Returns an integer indicating the last operation performed on the hierarchy clipboard. The returned value can be of: Cut,

Copy, Clear, Paste, Undo.

itemClipboardIsEmpty

Declaration
bool itemClipboardIsEmpty ()

Operation

If there are no items in the hierarchy clipboard, returns true; otherwise, returns false.

inClipboard

Declaration
bool inClipboard({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

If the item specified by the argument is in the hierarchy clipboard, returns t rue; otherwise, returns false.

DXL Reference Manual

236 ‘

Hierarchy information

This section defines functions that provide information about items, folders, projects, or modules. The term e means a
variable of type Item, type Folder, type Project or type ModName . You can also reference an open module using
the data type Module. Passing a null argument of type Item, Folder, Project, Module or ModName to any
function results in a run-time DXL error.

folder, project, module(state)

Declaration
bool folder (string folderName)
bool project(string projectName)

bool module (string moduleName)

Operation

Returns true if the argument is the name of a folder, project, or module to which the current user has read access;

otherwise, returns false.

Because a project is a special class of folder, the folder function returns t rue for projects as well as other folders.

description

Declaration
string description({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the description of the item specified by the argument.

Example

print description current Module

namel(item)

Declaration
string name ({Item i|Folder f|Project p|Module m|ModName modRer})

Operation

Returns the unqualified name of the item specified by the argument.

Example

print name current Module

DXL Reference Manual

237

fullNamel(item)

Declaration
string fullName ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation
Returns the full name of the item specified by the argument, including the path from the nearest ancestor project, or if not

inside a project, from the root folder.

path(item)

Declaration
string path({Item i|Folder f|Project p|Module m|ModName modRef})

Operation
Returns the full name of the parent of the item specified by the argument from the nearest ancestor project, or if not inside

a project, from the root folder.

getParentFolder(item)

Declaration
Folder getParentFolder ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the folder containing the item specified by the argument. If the argument is the root folder, returns null.

getParentProject(item)

Declaration
Project getParentProject ({Item i|Folder f|Project p|Module m|ModName modRef})

Operation

Returns the nearest ancestor project for the item specified by the argument, or null if there is none. If the item is a project,
this function does not return the project itself, but the nearest one above (or null if there is none).

isDeleted(item)

Declaration
bool isDeleted({Item i|Folder f|Project p|ModName modRef})

DXL Reference Manual

238

Operation

If the item specified by the argument is marked as deleted ot soft deleted, or if it does not exist, or if the user does not have
read access to it, returns t rue; otherwise, returns false.

setShowDeletedltems(bool)

Declaration

void setShowDeletedItems (bool show)

Operation

If bool show is set to true, deleted items will be visible in the Database Explorer. Setting show to f£alse hides all
deleted items.

type
Declaration
string type({Item i|Folder f|Module m|ModName modRef})
Operation
Returns the type of the item specified by the argument as a string. Possible values are shown in the following table.
Return value Item Folder Module
"Folder" y y n
"Project" y y n
"Formal" y n y
"Link" y n y
"Descriptive" y n y
Example
print type(item "/")
uniquelD

Declaration
string uniquelID({Item i|Folder f|Project p|ModName modRef|Module m})

DXL Reference Manual

239

Operation

Returns a unique identifier for the specified item, which lasts for the lifetime of the item, and is never reused. The unique
identifier does not change when the item is moved or renamed. If the item is copied, the copy has a different identifier.

A call to this function where 1 does not exist causes 2 DXL run-time etrot.

qualifiedUniquelD

Declaration
string qualifiedUniqueID({Item i|Folder f|Project p|ModName name|Module m})

Operation

Returns a representation of a reference to the specified Item, Folder, Project, Module or ModName_, which
uniquely identifies that object amongst databases.

Provided that supported mechanisms for the creation of Rational DOORS databases are used, these unique identifiers can
be treated as globally unique; no two objects in any two databases will have the same qualifiedUniquelD.

See also uniquelD, which returns an unqualified representation of a reference.

getReference

Declaration

string getReference (Item referrer, Item referee)

Operation

Returns a reference to the referee from the referrer. This reference is invatiant under archive/restore (both inter-database
and intra-database) and copy/paste. Such a reference is to be used in preference to the referee’s index, unless the reference
is intended to be variant under such operations.

itemFromReference

Declaration

Item itemFromReference (Item referrer, string ref)

Operation

Returns the item to which ref refers from the specified referrer. ref must be a string that was obtained using the
getReference () perm. If the reference cannot be resolved, the returned item will satisfy null.

Example

Make a reference from the current module to an item named “a”

Item i = item fullName current Module

Item j = item "a"

DXL Reference Manual

240

// rj is a reference to j from i

string rj = getReference (i, 7Jj)

print rj "\n"

This reference will never change when i and j are moved, copied (together), archived, and restored (together).
Copyiand j to getii and jj

Item j = itemFromReference (i, rj) // get item that rj refers

Item jj = itemFromReference(ii, rj) // get item that rj refers

Typically these would be used when generating traceability. The DXL that generates the layout DXL or attribute DXL
would call getReference and then insert the returned value into the layout DXL or attribute DXL code as the value
passed to itemFromReference ().

Hierarchy manipulation

This section defines functions for item manipulation. All creation functions are specific to the type of item being created,
but you can delete, undelete, purge, move, and rename items of all types using the Item handle. The term item means a
variable of type Item, type Folder, type Project or type ModName . You can also reference an open module using
the data type Module. Passing a null argument of type Item, Folder, Project, Module or ModName to any
function results in a run-time DXL error.

delete(item)

Declaration
string delete({Item i|Folder f|Project p})

string delete (ModName &modRef
[,bool hardDelete])

bool delete (ModName &modRefr)

Operation

Marks the item specified by the argument as deleted. If the item is already marked as deleted, or if the user does not have
delete access to it, the call fails.

The first and second forms return a null string on success; otherwise, an error message.

In the second form, the module is not purged if hardDelete is setto false.If hardDelete is true or missing, the
module is purged. If the operation succeeds and the module is purged, also sets the ModName argument to null.

DXL Reference Manual

241

The third form is retained for compatibility with earlier releases. It returns t rue on success; otherwise, false. This is
equivalent to hardDelete (module) (the module need not be soft deleted). If the operation succeeds, also sets the
ModName argument to null.

For a folder or project, the user must also have delete access to all the undeleted folders, projects, and modules in it.

undelete(item)

Declaration
string undelete({Item i|Folder f|Project p|ModName modRef})

bool undelete (ModName modRef)

Operation

Marks the item specified by the argument as undeleted. If the item is not marked as deleted, or if the user does not have
delete access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.
The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.

For a folder or project, this function also marks as undeleted all folders, projects, and modules in it, to which the user has

delete access.

Example

undelete item "my folder"

purge(item)

Declaration
string purge ({Item &i|Folder &f|Project &p|ModName &modRef})

bool purge (ModName &modRef)

Operation

Purges the item specified by the argument from the database. If the operation succeeds, sets the argument to null. If the
item is not marked as deleted, ot if the user does not have delete access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.
The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.
For a folder or project, the user must also have delete access to all the undeleted folders, projects, and modules in it.

For aModName argument, the function deletes all incoming and outgoing links before purging the module.

Example
purge item "my folder"

or

DXL Reference Manual

242

Item i = item "my folder"

purge i

movel(item)

Declaration

string move ({Item i|Folder f|Project p|ModName modRef}, Folder destination)

Operation

Moves the item specified by the first argument to folder destination. The folder can be any folder except the database

root.

If the user does not have delete access to the item, or create access to the destination folder, the call fails.

If the operation succeeds, returns a null string; otherwise, returns a string describing the error.

Example

move (item "My Module", folder "/new projects")

renamelitem)

Declaration

string rename ({Item i|Folder f|Project
plModName modRef},
string name,
string description)

bool rename (ModName modRefr)

Operation

Renames the item specified by the first argument to name and associates it with description. The name argument
must be an unqualified name. If the user does not have modify access to the item, the call fails.

The first form returns a null string on success; otherwise, an error message.

The second form is retained for compatibility with earlier releases. It returns true on success; otherwise, false.

Example

rename (folder "my folder", "public", "for review")

ltems

This section defines functions and for loops for items, which make use of the Ttem data type. Passing a null argument

of type ITtem to any function results in a run-time DXL etror.

DXL Reference Manual

243

See also the functions in “Hierarchy clipboard,” on page 233, “Hierarchy information,” on page 236, and “Hierarchy
manipulation,” on page 240.

item(handle)

Declaration

Item item(string itemName)

Operation

If itemName is the name of an item to which the current user has read access, returns a handle of type I tem; otherwise,
returns null.

itemFromID(handle)

Declaration

Item itemFromID (string uniquelD)

Operation

If uniqueIDis the ID of an item to which the current user has read access, returns a handle of type I tem; otherwise,
returns nul 1.

for item in folder

Syntax

for itemRef in folder do {

}

where:
itemRef is a vatiable of type Item
folder is a variable of type Folder
Operation

Assigns 1 temRef to be each successive undeleted item (for which the user has read access) in folder. Items in
sub-folders are not included.

Example
Item i

for 1 in current Folder do {
print (name i) "\n"

DXL Reference Manual

244

for all items in folder

Syntax

for itemRef in all folder do {

}

where:
itemRef is a vatiable of type Item
folder is a variable of type Folder
Operation

Assigns 1 temRef to be each successive item (for which the user has read access) in folder, including deleted items.
Items in sub-folders are not included.

Example
Folder f = current

Item itemRef

for itemRef in f do {

print fullName (itemRef) "\n"

for all items in project

Syntax

for itemRef in project do {

}

where:
itemRef is a variable of type ITtem
project is a variable of type Project
Operation

Assigns 1 temRef to be each successive undeleted item (for which the user has read access) in project, looping
recutsively through contained folders and projects.

DXL Reference Manual

245

Example
Item itemRef

for itemRef in current Project do
print name (itemRef) "\n"

Folders

'This section defines functions for folders.

See also the functions in “Hierarchy clipboard,” on page 233, “Hierarchy information,” on page 236, and “Hierarchy
manipulation,” on page 240.

Setting current folder

The assignment operator = can be used as shown in the following syntax:
current = Folder folder

Makes folder the current folder, provided the user has read access to the folder. See also, the current (folder)
function.

To set the current folder to the database root, use:
current = folder "/"

For large DXL programs, when you set the current folder, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentFolder
becomes
(current FolderRef) = newCurrentFolder

Note that this cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
folder.

current(folder)

Declaration

Folder current ()

Operation
Returns a handle on the current folder.
The current folder can be a project.

The current folder has two important implications:

DXL Reference Manual

246

* When you specify an item name, it is interpreted relative to the current folder.

* When you set the current folder using the assignment operator, you lock that folder and its ancestors, so that it cannot
be renamed, deleted or moved.

The project or folder that is opened in the Database Explorer is similarly locked. If you open a DXL window or run
another DXL script, that has its own current folder. The current folder for the DXL window is initially the current
folder of its patent.

If all folders are closed, the database root becomes the current folder.

Example

Folder f = current

folder(handle)

Declaration
Folder folder (string folderName)

Folder folder (Item itemRef)

Operation

If the argument specifies a folder to which the current user has read access, returns a handle of type Folder; otherwise,
returns null.

The string "/" identifies the database root.
Example
This example sets the current folder to the database root:

current = folder "/"

convertProjectToFolder

Declaration
string convertProjectToFolder (Project projectRef, Folder &folderRef)

Operation

Converts the project projectRef to a folder folderRef. If the operation succeeds, sets projectRef tonull,
makes the folder argument valid, and returns a null string; otherwise, returns an error message. If the user does not have
control access to the project or the create projects power (through mayCreateTopLevelFolders), the call fails.

Example
Project p = project "/Construction Project"
Folder £

string s = convertProjectToFolder (p, f)

DXL Reference Manual

247

if (null s)

print "Converted project " name(f) "to folder."
else
print "Error: " s

convertFolderToProject

Declaration

string
convertFolderToProject (Folder folderRef,
Project &projectRef)

Operation

Converts the folder folderRef to a project projectRef. If the operation succeeds, sets folderRef to null,
makes the project argument valid, and returns a null string; otherwise, returns an error message. If the user does not have
control access to the folder or the create projects power (through mayCreateTopLevelFolders), the call fails.

Example
Folder f = folder "/Construction Project/test records"
Project p
string s = convertFolderToProject(f, p)
if (null s)
print "Converted folder " name(p) "to project."
else
print "Error: " s

create(folder)

Declaration

Folder create(string name,
string description)

string create (string name, description desc, Folderé& f)

Operation

Creates a folder with the given name and description. The name argument can be an absolute or relative name, and
may include the path. If the user does not have create access to the patrent folder, the call fails.

The second form of the perm performs the same function as the first, but returns any error message, and passes the created
folder back via the last argument.

DXL Reference Manual

248

closeFolder

Declaration

string closeFolder ()

Operation

Changes the current folder to refer to the parent of the current folder. If the operation succeeds returns a null string;
otherwise, returns a string describing the error.

Example

closeFolder ()

Projects

This section defines operators, functions and for loops for projects, which make use of the Project data type. Passing a
null argument of type Project to any function results in a run-time DXL error.

See also the functions in “Hierarchy clipboard,” on page 233, “Hierarchy information,” on page 236, and “Hierarchy
manipulation,” on page 240.

Setting current project

The assignment operator = can be used as shown in the following syntax:
current = Project project

Makes project the current folder, and the current project, provided the user has read access to the folder. See also, the
current (project) function.

If the current folder is a project, it is also the cutrent project. If the cutrent folder is not a project, the current project is the
nearest project containing the current folder. If the current folder is not contained in a project, the current project is null.

For large DXL programs, when you set the current project, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentProject
becomes
(current FolderRef) = newCurrentProject

Note: This cast only works for assighments to current. It is not useful for comparisons or getting the value of the current
project.

Example

current = project "/My Project"

DXL Reference Manual

249

current(project)

Declaration

Project current ()

Operation

Returns a handle on the nearest ancestor project of the current folder, or null if the current folder is not in any project.

Example
Module m
// check project is open

if (null current Project) {
ack "No project is open"
halt

}

for m in current Project do {
print "Module " m."Name" " is open"

project(handle)

Declaration

Project project(string projectName)

Operation

If projectName is the absolute or relative name of a project to which the current user has read access, returns a handle
of type Project to the project; otherwise, returns null.

for project in database

Syntax

for project in database do {

}
where:

project is a variable of type Project

Operation

Assigns project to be each successive project (for which the user has read access) in the database, excluding deleted
projects. Compare with for all projects in database.

DXL Reference Manual

250

Example
This example prints a list of projects in the database:
Project p

for p in database do {
print (name p) "\n"

for all projects in database

Syntax

for name in database do {

}

where:

name is a string variable

Operation

Assigns the string name to be each successive project name (for which the user has read access) in the database, including
deleted projects. Compare with for project in database.

Example
This example prints a list of projects in the database:
string s

for s in database do {
print s "\n"

getlnvalidCharlnProjectName

Declaration

char getInvalidCharInProjectName (string s)

Operation

Returns any character in string s that would be invalid in a project name.

isDeleted(project name)

Declaration

bool isDeleted(string projectName)

DXL Reference Manual

251

Operation

If projectName is a project that has been deleted but not purged, or if it does not exist, or if the user does not have read
access to it, returns true; otherwise, returns false.

This function is retained only for compatibility with earlier releases. New programs should use the isDeleted (item)
function.

Example

Project p = project "Test Project"

if (!'null p && !isDeleted p)
current = p

isValidName

See “isValidName,” on page 262.

create(Project)

Declaration

Project create(string projName,
string description
[,string adminUser
[,string password,
string loginsystem,
int passwordPolicy,
int adminPolicy,
string &messagell])

string create(string name, description desc, Projecté& p)

Operation

Creates a project, projName, having description. The adminUser and following arguments are retained for
compatibility with earlier releases; in Rational DOORS 6.0, the values of these arguments are ignored. However, a call to
create that uses any of the legacy arguments sets the current folder to the new project (for compatibility with legacy DXL
scripts, which expect the new project to be opened).

You must assign this function to a variable of type Project, otherwise, it tries to create a linkset between modules
projName and description.

Administrator power is required for this function.

The second form of the perm performs the same function as the original perm, but returns any error message, and passes
the created project back via the last argument.

Example

Project p = create("Test Project", "Play area for
DOORS")

DXL Reference Manual

252

closeProject

Declaration

void closeProject ()

Operation

Sets the parent of the cutrent project to be the new current folder. In Rational DOORS 6.0, closing a project means
changing the current folder.

Example

closeProject ()

openProject

Declaration
string openProject (string projName
[,string user,
string pass])
Operation

Sets the named project as the current folder. The user and password arguments are retained for compatibility with
carlier releases. In Rational DOORS 6.0 these arguments are ignored.

If the project opens successfully, returns nul1l; otherwise returns an error message. If the project does not exist, or the user
does not have read access to it, the call fails.
Example

string mess = openProject ("Demo", "Catrina Magali", "aneblr")

doorsVersion

Declaration

string doorsVersion ()

Operation

Returns the version of the cutrent Rational DOORS executable as a string.

Example

print doorsVersion

DXL Reference Manual

Looping within projects

The following sections describe the for loops available for looping within projects:

for all items in project

for open module in project

for all modules in project

for in-partition in project

for out-partition in project

for partition definition in project

for trigger in project

DXL Reference Manual

253

254

DXL Reference Manual

255

Chapter 12

Modules

This chapter describes features that operate on Rational DOORS modules:
* Module access controls

* Module references

* Module information

* Module manipulation

* Module display state

* Baselines

* Baseline Set Definition

* Baseline Sets

* History

* Descriptive modules

* Recently opened modules

* Module Properties

Module access controls

This section describes functions that report on access rights for a module. The module has to be open in exclusive edit
mode.

canCreate(module)

Declaration

bool canCreate (Module m)

Operation

Returns true if the current Rational DOORS user has create access to module m; otherwise, returns false.

canControl(module)

Declaration

bool canControl (Module m)

DXL Reference Manual

256

Operation

Returns true if the current Rational DOORS user can change the access controls on module m; otherwise, returns
false.

canModify(module)

Declaration
bool canModify (Module m)

Operation

Returns true if the current Rational DOORS user can modify module m; otherwise, returns false.f

canDelete(module)

Declaration

bool canDelete (Module m)

Operation

Returns true if the current Rational DOORS user can delete module m; otherwise, returns false.

Module references

This section defines functions and for loops that make use of the Module data type.

See also the functions in “Hierarchy clipboard,” on page 233.

Setting current module

The assignment operator = can be used as shown in the following syntax:
current = Module module
Makes module the current module. See also, the current (module) function.

For large DXL programs, when you set the current module, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentModule
becomes
(current ModuleRef) = newCurrentModule

DXL Reference Manual

257

Note: This cast only works for assignments to current. It is not useful for compatisons or getting the value of the current
module.

current(module)

Declaration
Module current ()

Operation

Returns a reference to the current module. In some contexts current could be ambiguous, in which case it should be
followed by Module in a cast.

Example

print (current Module) ."Description™ "\n"

module(handle]

Declaration
Module module (Item itemRef)

ModName module (string modRef)

Operation

The first form returns a handle of type Module for i temRef if i temRef is an open module. Otherwise, it returns
null.

The second form returns a handle of type ModName __ for the named module, whether it is open or closed.

for module in database

Syntax

for m in database do {
}
where:

mis a variable of type Module

Operation

Assigns the variable m to be each successive open module (for which the user has read access) in the database.

DXL Reference Manual

258

for open module in project

Syntax

for m in project do {

where:
m is a vatiable of type Module
project is a variable of type Project
Operation

Assigns the variable m to be each successive open module (for which the user has read access) in project. This loop
includes modules in sub folders as well as those in the top level of the project. It does not include modules in projects that
are contained in the project. This only works on the user’s computer.

Example
Module m
int count = 0

for m in current Project do {
print m."Name" "\n"
count++

}

if (count==0)
print "no modules in current project\n"

for all modules in project

Syntax

for moduleName in project do {

}

where:
moduleName is a string variable
project is a variable of type Project

DXL Reference Manual

259

Operation

Assigns the variable moduleName to be each successive module name (for which the user has read access) in project.
This loop includes open or closed modules but only at the top level of the project. This is no longer everything contained in
the project. This only works on the uset’s computer.

Example
string modName

for modName in current Project do
print modName "\n"

for Module in Folder do

Syntax

for m in folder do {

where:
m is a vatiable of type Module
folder is a variable of type Folder
Operation

This provides access to all open modules that have the specified folder as their parent.
Example

Module m

Folder f = current

for m in £ do {

print "Module " (name m) " is open "\n"

Module information

This section defines functions that return information about Rational DOORS modules.

See also the functions in “Hierarchy information,” on page 236.

DXL Reference Manual

260

Module state

Declaration

bool baseline (Module m)

bool exists(ModName modRef)
bool open (ModName modRef)
bool unsaved (Module m)

Operation

Each function returns true for a condition defined by the function name as follows:

Function Returns true if

baseline module m is a baseline; otherwise, returns false

exists module modRef exists in the current project; otherwise, returns false
open module modRef is open in any mode; otherwise, returns false
unsaved module m has not been saved since changes were made; otherwise returns
false
Example
string s = "/projl/SRD"
Item i = item s

if (exists module s) print "and the system requirements

if (open module s) print "SRD is open\n"

\nn

version

Declaration

string version (Module m)
Operation

Returns the version of open module m as a string.

Example

print (version current Module)

DXL Reference Manual

261

canRead, canWrite[module)

Declaration

bool canRead (Module m)
bool canWrite (Module m)
Operation

Returns whether the current Rational DOORS user has read or write access to the top of open module m.

getSelectedCol

Declaration
bool getSelectedCol (Module m)

Operation

Returns the integer identifier for the currently selected column in m. If the specified module is not displayed, or no column
is selected, returns —1.

isRead, isEdit, isShare

Declaration
bool isRead (Module m)
bool isEdit (Module m)

bool isShare (Module m)

Operation
Returns whether module m is open for reading, for editing or in shared mode. Otherwise, returns false.

These functions only return values for modules opened by the current user in the current session.

Example
Module m

for m in current Project do {
if (isEdit m)
print m."Name" " is open edit\n"

DXL Reference Manual

262

getlnvalidCharInModuleName

Declaration

char getInvalidCharInModuleName (string s)

Operation

Returns any character in string s that would be invalid in a module name.

isValidDescription

Declaration

bool isValidDescription (string descString)
Operation

Returns true if descStringis alegal description for a project, module, view or page layout; otherwise, returns false.

Example
This example returns true.

bool b = isValidDescription("Test Description")

isValidName

Declaration

{char|bool} isValidName (string nameString)

Operation

By default, returns the first illegal character of nameString. If you force a type bool, returns true if nameStringis
a legal name for a project, module, view or page layout; otherwise, returns false.

Example

This example returns &, the first illegal character in the name:

char ¢ = isValidName ("illegal&Name")

This example returns true:

char ¢ = isValidName ("legalName")

isValidPrefix

Declaration

bool isValidPrefix(string prefixString)

DXL Reference Manual

263

Operation
Returns true if prefixStringis alegal prefix for an object; otherwise returns false.
Example

This example returns true:

bool b = isValidPrefix ("PREFIX-1")

isVisible

Declaration
bool isVisible (Module m)

Operation

Returns true if module mis open for display on the screen. Otherwise, returns false.

Module manipulation

This section defines the functions for creating modules and performing database administration tasks on modules other
than descriptive modules, which are covered in “Descriptive modules,” on page 307.

See also the functions in “Hierarchy manipulation,” on page 240.

create(formal module)

Declaration

Module create (string name,
string desc,
string prefix,
int absno

[,bool displayl])

string create(string name, description desc, prefix pref, int absnum, Module& m)

Operation

Creates a formal module with name name, description desc, object prefix prefix and starting absolute number
absno. The name argument can be an absolute or relative path. The optional last argument controls whether the module
is displayed in the user interface after it has been created.

The second form creates a formal module. However, in the case of an error which causes no module to be created, the error
message is returned instead of generating a run-time DXL error.

DXL Reference Manual

264

create(descriptive module)

Declaration

string create(string name, description desc, prefix pref, int absnum, string
filename, Moduleé& m)

Operation

Creates a Descriptive module. When an error occurs, which causes no module to be created, the error message is returned

instead of generating a run-time DXL etror.

create(link module)

Declaration

Module create(string name,
string desc,
int mapping

[,bool displayl])

string create(string name, description desc, int mapping, Moduleé& m)
const int manyToMany
const int manyToOne
const int oneToMany

const int oneToOne

Operation

Creates a link module with name name, description desc, and a mapping. The name argument can be an absolute or
relative path. The mapping argument can take one of the following values: manyToMany, manyToOne, oneToMany
or oneToOne. As with the creation of a formal module, the optional last argument controls whether the module is
displayed in the user interface after it has been created.

The second form of the perm creates a Link module, similat to the perm Module create (name, description,
mapping), but returns error messages instead of generating a run-time DXL etror.

close(module]

Declaration

bool close (Module m
[,bool savel])

Operation

Closes the open module m, with the option of saving changes. If save is true, the user is prompted to save before
closing. If saveis false, closes the module without saving. If the module is closed, the call fails.

DXL Reference Manual

265

If the operation fails, returns false. If mis a link module, c1lose only succeeds if there are no loaded linksets and no
other module is currently referring to the link module. Any open link modules that m refers to ate also closed.

The Rational DOORS object clipboard is cleared when a module is closed.

Do not access the module handle after the module has been closed.

downgrade

Declaration
bool downgrade (Module m)

Operation

Sets the open mode for module m to read only, if it is open in edit or shareable mode. This enables other users to open it in
shared mode, or one at a time in exclusive edit mode. If the operation succeeds, returns true; otherwise, returns false.
If the module is closed, the call fails. When using this perm, the save perm should be used prior to downgrade, so that

any changes to the module ate preserved.

This function is not equivalent to checking whether the current user can modify the given object.

downgradeShare

Declaration
bool downgradeShare (Module m)

Operation

Sets the open mode for module m to shareable, if it is open in edit mode. This enables other users to open it in shared mode
or read mode. If the operation succeeds, returns t rue; otherwise, returns false. If the module is closed, the call fails.

This function is not equivalent to checking whether the current user can modify the given object.

printModule

Declaration
void printModule (Module m)

Operation

Opens the print dialog box for the open module m.

Example

printModule current Module

DXL Reference Manual

266

read, edit, share(lopen module)

Declaration

Module read(string name
[,bool disp[, bool loadStandardView]])

Module edit (string name
[,bool disp[, bool silent[, bool loadStandardView]]])

Module share(string name
[,bool displ[, bool silent[, bool loadStandardView]]])
Operation

These functions return a module handle for the module named name. The name argument can be an absolute or relative
path. The read function opens the module for reading, edit for unshared editing, and share for shared editing. The
optional disp flag enables the visibility of the opened module to be specified; the module is displayed in a window if
dispis true or omitted.

The optional parameter silent specifies whether the user should be prompted when the module cannot be opened in the
desired mode because of locks. If this parameter is not supplied it is assumed to be false.

Using the optional parameter loadStandardl iew means you can force the standard view to be loaded as the default. If this
parameter is not supplied it is assumed to be false.

Note: If a module is open in a particular mode, that same module must not be opened in another mode, if the statement
doing this is within a for loop.

Example

Module m = edit ("/Car/Car user reqts", false)

save(module)

Declaration

void save (Module m)

Operation

Saves open module m.

copy(module)

Declaration

bool copy (ModName modRef,
string newName,
string newDesc)

DXL Reference Manual

267

Operation

Copies module modRef to new name newName, with description newDesc, within the same folder or project. All
outgoing links ate copied, but incoming links are not copied, and linksets are not updated.

hardDelete(module]

Declaration
bool hardDelete (ModName &modRer)

Operation
Removes module modRef from the database (compate with the softDelete (module) function); the module cannot
be recovered with undelete (item) following this operation.

If the operation succeeds, sets the argument to null, and returns t rue; otherwise, returns false. If the user does not

have delete access to the item, or if the module is open, the call fails.

The function hardDelete should be used instead of the delete (item) function, for all new programs.

Note: softDelete mustbe used on a module before using hardDelete.

softDelete(module)

Declaration
bool softDelete (ModName modRef)

Operation

Marks module modRef as deleted. The module is not actually deleted until it is purged. Modules marked for deletion can
be recovered using the undelete (item) function.

When used interactively, a user who tries to use this function on a module with links has to confirm or cancel the operation.

In batch mode no confirmation is required.

formalStatus

Declaration

void formalStatus (Module, String status)

Operation
Displays the supplied string in the third area of the status bar in the specified module, which must be a formal module. If

the module is not a formal module a DXL run-time error is generated.

DXL Reference Manual

268

autolndent

Declaration
bool autoIndent (Module)

void autoIndent (bool)

Operation

The first form returns true if auto-indentation for the main column in the specified module is currently turned on, otherwise
it returns false.

The second form sets the auto-indentation status of the current module. The current module should be a formal module,
otherwise a run-time DXL error will occut.

Example

print autoIndent current

Module display state

This section defines functions for getting and setting the display attributes of Rational DOORS modules.

level(module get)

Declaration

int level (Module m)

Operation

Returns the display level of module m, which is between 0 (all levels) and 10.

level[module set)

Declaration

void level (int 1)

Operation

Sets the display level of the current module. Argument 1 must be between 0 (all levels) and 10.

DXL Reference Manual

269

Get display state

Declaration

bool filtering (Module m)
bool graphics (Module m)
bool outlining (Module m)
bool showPictures (Module m)
bool showTables (Module m)

bool sorting (Module m)

Operation

Returns the current display state of attributes in open module m: graphics, filtering, outlining, visibility of pictures, visibility
of tables, or sorting.

Example

Module m = current

int storelevel = level m
bool storeGraphics = graphics m
bool storeFiltering = filtering m

bool storeOutlining outlining m
bool storeSorting = sorting m
functionThatChangesDisplay

// now restore old settings

level storeLevel

graphics storeGraphics

filtering storeFiltering
outlining storeOutlining

sorting storeSorting

if (showTables current) {
print "table contents are visible"

}

if (!showPictures current) {
ack "Pictures are not visible"

DXL Reference Manual

270

Set display state

Declaration

void filtering(bool onOff)
void graphics (bool onOff)
void linksVisible (bool onOff)
void outlin{el|ing} (bool onOff)
void showPictures (bool onOff)
void showTables (bool onOff)

void sorting(bool onOff)

Operation

Turns on or off in the current module the attributes: filtering, graphics, visibility of links, outlining, visibility of pictures,
visibility of tables and sorting.

Example
graphics on
graphics true
graphics off
showPictures true

showTables false

refresh

Declaration

void refresh (Module m)

Operation

Refreshes the display for open module m. Rational DOORS refreshes the current module after the termination of a DXIL
script. However, scripts that change the displays of other modules, or that create dialog boxes, need to manage display
updates explicitly with this function.

bringToFront

Declaration

string bringToFront ([Module])

DXL Reference Manual

271

Operation

If a module is supplied it will bring that module window to the front of other windows. If a module is not supplied it will
bring the Database Explorer window to the front. Note that this will not bring windows to the front of modal dialogs.

Baselines

This section defines functions that operate on Rational DOORS formal module baselines. The file:
SDOORSHOME/1ib/dx1l/Example/baseline.dxl
contains a baseline comparison program, which uses the functions described in this section.

Many of the functions use the data type Baseline.

Note: When retrieving information, e.g. annotation, from a baseline you must use them withina for baseline in
module loop.

baseline

Declaration

Baseline baseline (int major,

int minor,

string suffix)

Operation
Returns a baseline handle for the combination of the specified ma jor and minor version numbers and suffix string. If
the baseline does not have a suffix, use null. This is only used to get a baseline handle for use in the baseline 1oad perm.
It cannot be used to retrieve information about that baseline, for example annotation information.
Example

Baseline b = baseline (1,0, "alpha")

baselineExists

Declaration

bool baselineExists (Module m,
Baseline b)

Operation

Returns t rue when baseline b exists in module m; otherwise returns false.

Example

print baselineExists (current Module, b)

DXL Reference Manual

272

create(baseline)

Declaration

void create ([Module m,]
Baseline b,
string annot)
Operation

Creates a baseline for module m as specified by baseline handle b and annotation string annot. If the first argument is

omitted, it uses the current module.
When this function is used to create a baseline, the module where the baseline is being created will be closed.

Use the nextMajor, nextMinor functions to instantiate the baseline handle.

delete(baseline)

Declaration
void delete([Module m,]
Baseline b)
Operation
This enables deletion of baselines in formal modules. The first argument defaults to the current module.
Example
nn)

Baseline b = baseline (0, 1,

if (baselineExists (current Module, b)) delete (b)

Get baseline data

Declaration

int major (Baseline b)

int minor (Baseline b)

string suffix (Baseline b)
string annotation (Baseline b)
string user (Baseline b)

Date dateOf (Baseline b)

Operation

These functions return the various data fields associated with baseline b. All these functions are included in the “Baselines
example program,” on page 275. They must be used within a for baseline in module loop.

DXL Reference Manual

getMostRecentBaseline

Declaration

Baseline
getMostRecentBaseline (Module m
[,bool lastbaselinel)

Operation

Returns the last baseline. If 1astbaseline is set to true, it returns the version number of the last baseline even if it

has been deleted. Otherwise, it returns the last baseline that still exists.

Example
Module m = current
Baseline b = getMostRecentBaseline (m)

print (major b)"." (minor b) (suffix b)"
" (annotation b)"\n"

getlnvalidCharInSuffix

Declaration
char getInvalidCharInSuffix(string s)

Operation

Returns any character in string s that would be invalid in a baseline suffix.

load

Declaration

Module load([Module m,]
Baseline b,
bool display)

Operation

Loads baseline b of module m; and if the last argument is on or true, displays it. If the first argument is omitted, it uses

the current module.

Example

This example loads baseline 1.0 (without a suffix) of the current module, without displaying it.

load (baseline(1,0,null), false)

DXL Reference Manual

273

274

nextMajor, nextMinor

Declaration
Baseline nextMajor ([string suffix])

Baseline nextMinor ([string suffix])

Operation

Returns the next major or minor baseline, with or without a suffix.

Example
create (nextMajor, "alpha review")

create (nextMajor "A", "alpha review")

Declaration

Baseline suffix(string suffix)

Operation
Returns a new suffix version of the last baseline.
Can be used to baseline handle for the current version of a module.

Example

create (suffix "AA", "no annotation")

for baseline in module

Syntax

for b in module do {

where:
b is a vatiable of type Baseline
module is a variable of type Module
Operation

Assigns the baseline b to be each successive baseline found for module module.

DXL Reference Manual

275

Example
Baseline b

for b in current Module do {

print (major b) "." (minor b) (suffix b) "
\t"

print (user b) "\t " (dateOf b) "\n"
(annotation b) "\n"

Baselines example program

// baseline DXL Example
/*

Example of baseline DXL
*/
Baseline b
Module old = current

for b in current Module do {

print (major b)"." (minor b) (suffix b)"
" (annotation b)"\n"

load (b, true)

break // just load first one
}
current = old // reset
if (confirm "create example baseline?") {

create (nextMajor, "annotation helps explain
project history")

// current Module is closed by create.

module(handle]

Declaration

ModName module (ModuleVersion modver)

Operation

This returns a handle of type ModName_ for the given ModuleVersion modver. This gives access to information like
name, description, etc. It returns null if the ModuleVersion does not reference an existing module to which the user has

read access.

DXL Reference Manual

276

datalfor ModuleVersion])

Declaration

Module data (ModuleVersion modver)

Operation

This returns the data for the given ModuleVersion if the user has it open, loaded into memory. Otherwise, it returns

null.

load(ModuleVersion)

Declaration

Module load(ModuleVersion modver, bool display)

Operation

This loads the data (read-only mode) for the given ModuleVersion, if it references a current version or baseline to
which the user has read access. If the display argument is t rue, then the baseline will be displayed. The perm returns the
data on success, and null on failure. If the ModuleVersion argument is null, the perm will return null.

moduleVersion(handle)

Declaration
ModuleVersion moduleVersion (Module m)
ModuleVersion moduleVersion (ModName modRef[,Baseline b])

ModuleVersion moduleVersion(string index [,Baseline b])

Operation
The first form returns the ModuleVersion reference for the given module version. The module version must be open.

The second form returns the ModuleVersion reference for the given ModName /Baseline combination. The
reference is to the current version of the module if the Baseline argument is omitted.

The third form returns the ModuleVersion reference for the given index/Baseline combination. The reference is to the

current version if the Baseline argument is omitted.

isBaseline(ModuleVersion|Module)

Declaration

bool isBaseline (ModuleVersion modver| Module m)

DXL Reference Manual

277

Operation

This returns true if, and only if, the given ModuleVersion or module represents a baseline of a module.

baselinelnfo(current Module])

Declaration

Baseline baselineInfo (Module m)

Operation

This returns the baseline designation information of the specified open module m. Returns null if mis a cutrent version.

baseline(ModuleVersion)

Declaration

Baseline baseline (ModuleVersion modver)

Operation

This returns a baseline handle with the major, minor and suffix settings extracted from the ModuleVersion modver
supplied as an argument. The user, date and annotation will not be initialized. Returns null if modver corresponds to a

current version.

baselineExists(ModuleVersion)

Declaration

bool baselineExists (ModuleVersion modver)

Operation
This returns true if, and only if, the baseline referenced by the ModuleVersion modver argument exists in the

database and can be read by the user.

name(ModuleVersion)

Declaration

string name (ModuleVersion modver)

Operation
Returns the name of the module referenced by ModuleVersion modver. Returns null if modver does not refer to a

module to which the user has read access.

DXL Reference Manual

278

fullName(ModuleVersion)

Declaration

string fullName (ModuleVersion modver)

Operation
Returns the full name, including path, of the module referenced by ModuleVersion modver. Returns null if modver

does not refer to a module to which the user has read access.

versionString(ModuleVersion)

Declaration

string versionString (ModuleVersion modver)

Operation
Returns the version ID specified in the ModuleVersion modver, in the format <major>.<minor> where there is no
suffix, or <major>.<minor>(<suffix>). If modver specifies a current version, this perm returns null.

delete(Baseline)

Declaration

void delete ([Module m,] Baseline b)

Operation

Deletes the specified baseline in a formal module. First argument defaults to the current module.

getMostRecentBaseline(Module)

Declaration
Baseline getMostRecentBaseline (Module m[, bool deleted])

Operation

Updated the getMostRecentBaseline perm to take an optional 2nd argument which if t rue directs the perm to
return the version number of the last baseline even if it has been deleted. Otherwise, it returns the last baseline which still

exists.

DXL Reference Manual

279

Baseline Set Definition

for BaselineSetDefinition in Folder

Declaration
for baseSetDef in f

where:

baseSetDef is a variable of type
BaselineSetDefinition

£ is a variable of type Folder

Operation

This will return all Baseline Set Definitions baseSetDef whose descriptions are held in the given Folder £, which might
also be a Project, to which the user has Read access. The Folder’s Baseline Set Definition list is read from the database at the

start of this iterator.

for BaselineSetDefinition in ModName_

Declaration

for baseSetDef in modRef

where:

baseSetDef is a variable of type BaselineSetDefinition
modRef is a variable of type ModName
Operation

This returns all of the Baseline Set Definitions to which the user has Read access, which include the specified module in

their lists.

create(BaselineSetDefinition)

Declaration

string create (Folder f, string name, string desc, BaselineSetDefinition &bsd)

DXL Reference Manual

280

Operation

This enables a user with Create access in the Folder to create a new Baseline Set Definition bsd with the given name and
description. The new Baseline Set Definition will initially inherit its access controls from the folder. The name must
conform to the constraints which apply to folder names, and must be unique across the other Baseline Set Definitions in
that same folder. The description desc might be an empty string.

The newly created Baseline Set Definition is returned in the supplied bsd parameter.

The returned string will be non-null in the case that the Baseline Set Definition could not be created :
* If the name clashes with the name of some other Baseline Set Definition on that Folder

¢ Some i/o or lock error

* Insufficient access

In this case, no Baseline Set Definition will be created (the bsd reference will be set to null)

rename(BaselineSetDefinition)

Declaration

string rename (BaselineSetDefinition bsd, string newName)

Operation

This enables a user with Modify access to change the name of the Baseline Set Definition bsd. It returns null on success,
and an error message on failure, including insufficient access, or the Baseline Set Definition not being locked for edit, or the
name not being unique in that Folder.

name(BaselineSetDefinition)

Declaration

string name (BaselineSetDefinition bsd)

Operation

This returns the name of the given Baseline Set Definition bsd.

setDescription(BaselineSetDefinition)

Declaration

string setDescription (BaselineSetDefinition bsd, string desc)

Operation

This enables a user with Modify access to change the description of the Baseline Set Definition. It returns null on success,
and an error message on failure, including insufficient access.

Alock on the Baseline Set Definition is required to change the description of that Baseline Set Definition. This lock must be
acquired using the lock() perm.

DXL Reference Manual

281

description(BaselineSetDefinition)

Declaration

string description (BaselineSetDefinition bsd)

Operation

This returns the description text for the given Baseline Set Definition bsd. If the Baseline Set Definition’s information has
not been read, this will cause the information to be read from the database.

for module in BaselineSetDefinition

Declaration
for modRef in bsd do {

where:
modRef is a variable of type ModName
bsd is a vatiable of type
BaselineSetDefinition
Operation

This returns references to all modules (to which the user has Read access) which are included in the Baseline Set Definition
bsd. If the Baseline Set Definition information has not been read, this will cause the information to be read from the
database. Modules that have been deleted (but not purged) are included in the list of modules returned by this iterator.

addModule(BaselineSetDefinition)

Declaration
string addModule (ModName modRef, BaselineSetDefinition bsd)

Operation

This enables a user with Modify access to add a module to the Baseline Set Definition’s list, if the Baseline Set Definition
bsd islocked by the user. It will return a string on error, for example if the user does not have Modify access to the
Baseline Set Definition or a lock on the Baseline Set Definition.

DXL Reference Manual

282

removeModule(BaselLineSetDefinition)

Declaration

string removeModule (ModName modRef, BaselineSetDefinition bsd)

Operation

This enables a user with Modify access to remove a module from the Baseline Set Definition’s list, if the Baseline Set

Definition bsd is locked by the user.

delete(BaselineSetDefinition)

Declaration

string delete (BaselineSetDefinition &bsd)

Operation

This enables a user with Delete access to delete a Baseline Set Definition from its parent folder. Once a Baseline Set
Definition has been deleted, it cannot be undeleted. On success, the argument Baseline Set Definition will be set to null. A
Baseline Set Definition cannot be deleted if another user has it locked for editing.

lock(BaselineSetDefinition)

Declaration

string lock(BaselineSetDefinition bsd)

Operation

If the user has Modify access to the Baseline Set Definition bsd, this places an exclusive editing lock on it, and reads the
information on the Baseline Set Definition from the database. It also ensures that there is a share-lock on its parent folder.
Only one session can have a lock at any one time on a Baseline Set Definition, and only a session with a lock can save or
modify the Baseline Set Definition, or create a Baseline Set from it. A Baseline Set Definition cannot be modified without it

being locked.

Moreover, changes will not be saved to the database until and unless the user performs a save
(BaselineSetDefinition).

Notice that it is the responsibility of the programmer to call unlock (BaselineSetDefinition) in order to release a
Baseline Set Definition lock acquired by lock (BaselineSetDefinition).

unlock(BaselineSetDefinition)

Declaration

string unlock (BaselineSetDefinition bsd)

DXL Reference Manual

283

Operation

This unlocks a locked Baseline Set Definition bsd, and unlocks its parent Folder if that is not held locked for some other
reason. If changes have been made and not saved since the Baseline Set Definition was locked, the Baseline Set Definition

information will be read again from the database.

save(BaselineSetDefinition)

Declaration

string save (BaselineSetDefinition bsd)

Operation
This saves the uset’s Baseline Set Definition information to the database, as long as the user has an editing lock on the
Baseline Set Definition. It returns null on success, and an error message on failure.

read(BaselineSetDefinition)

Declaration

string read(BaselineSetDefinition bsd)

Operation

This reads the current Baseline Set Definition bsd information from the database, and does not require a lock.

If the Baseline Set Definition is locked, and unsaved changes have been made to it, those changes will be lost when read() is

called.

isanyBaselineSetOpen(BaselineSetDefinition)

Declaration

bool isAnyBaselineSetOpen (BaselineSetDefinition bsd)

Operation
Returns true if the BaselineSetDefinition has an open baseline set associated with it, and false if it does not. A null

argument results in a run-time error.

get(BaselineSetDefinition)

Declaration

AccessRec get (BaselineSetDefinition bsd, string user, string &message)

DXL Reference Manual

284

Operation
On success, this returns the access record for the Baseline Set Definition bsd for the specified user. If user is null, the
default access will be returned. The &message string is null on success, and set to an error message on failure.

inherited(BaselineSetDefinition)

Declaration

string inherited(BaselineSetDefinition bsd)

Operation

This enables the user to set the Baseline Set Definition bsd to inherit its access controls from its parent Folder.

specific(BaselineSetDefinition)

Declaration

string specific(BaselineSetDefinition bsd)

Operation
If the Baseline Set Definition bsd has inherited access rights, this gives it specific access rights, with their initial values

inherited from its parent Folder.

isAccesslnherited(BaselineSetDefinition)

Declaration

string isAccessInherited (BaselineSetDefinition bsd, bool &inherited)

Operation
This sets the inherited argument true or false depending on whether the Baseline Set Definition’s access rights are

inherited. It returns null on success, and an error message on failure.

set(BaselineSetDefinition)

Declaration

string set (BaselineSetDefinition bsd, Permission ps, string user)

Operation
This sets a specific access permission for a given user. If user is null, then it sets a default access permission. It returns

null on success, and an error string on failure.

DXL Reference Manual

285

unset(BaselineSetDefinition)

Declaration

string unset (BaselineSetDefinition bsd, string user)

Operation

This removes specific access rights for the given user on BaselineSetDefinition bsd. If user is null, then it sets a
default access permission. It returns null on success, and an error string on failure.

unsetAll(BaselineSetDefinition)

Declaration

string unsetAll (BaselineSetDefinition bsd)

Operation
This removes all specific access rights from the Baseline Set Definition bsd. It returns null on success, and an error

message on failure.

for access record in Baseline Set Definition

Declaration

for ar in bsd do {

where:
ar is a variable of type AccessRec
bsd is a vatiable of type
BaselineSetDefinition
Operation

This returns all the specific access right records for the specified Baseline Set Definition.

for access record in all Baseline Set Definition

Declaration
for ar in all bsd do {

DXL Reference Manual

286

where:

ar is a variable of type AccessRec

bsd is a variable of type BaselineSetDefinition
Operation

Iterates over the access records of the applicable ACL for the specified Baseline Set Definition.

Example 1
void createBSD()
// creates a BSD containing all the Formal modules in the current Folder
{
BaselineSetDefinition newBSD = null
string bsdName = (name current Folder) " modules"
string bsdDesc = "All modules in this folder"
string errmess
errmess = create(current Folder, bsdName, bsdDesc, newBSD)
if (!'null errmess)

{

errorBox "Unable to create a new Baseline Set Definition: " errmess
return
}
errmess = lock (newBSD)

if (!'null errmess)
{
errorBox "Cannot lock new Baseline Set Definition: " errmess

return

// Add modules
Item i
ModName mod
for i in current Folder do
{
if (type(i) == "Formal")

DXL Reference Manual

mod = module (fullName i)
{

if (!'null mod)

{

errmess = addModule (mod, newBSD)
if (!'null errmess)
{
errorBox "Could not add module " name (mod) ": " errmess
}
}
}
}
}
errmess = save (newBSD)
if (!'null errmess)
{
errorBox "Failed to save Definition: " errmess

unlock (newBSD)

createBSD

Example 2

void printBSDs ()

// prints a list of Baseline Set Definitions in the current Folder
// and a list of modules in each Baseline Set Definition

{

BaselineSetDefinition bsd
for bsd in current Folder do

{

print name (bsd) ": " description(bsd) "

DXL Reference Manual

287

288

string errmess = read(bsd)
if (!'null errmess)

{

print " [Could not read Definition: " errmess "]

}
else if (isEmpty (bsd))
{

print " [Empty Baseline Set Definition]

else

ModName mod
for mod in bsd do
{

print " " (fullName mod) "

}

print wn

printBSDs

Baseline Sets

for BaselineSet in BaselineSetDefinition

Declaration
for bs in bsd do {

DXL Reference Manual

289

where:

bs is a variable of type BaselineSet

bsd is a variable of type BaselineSetDefinition
Operation

This returns the Baseline Sets, in order of creation, which have been created from a given Baseline Set Definition.

isBaselinePresent(BaselineSet)

Declaration

bool isBaselinePresent (BaselineSet bs, ModName modRef)

Operation

This returns true if, and only if, a baseline of the module referenced by modRe £ is in the BaselineSet bs.

create(Baseline Set)

Declaration
string create(BaselineSetDefinition bsd, bool major, string suffix, string
annotation, BaselineSet é&bs)

Operation

This enables a user with Create access to create a new (Open) Baseline Set &bs from the Baseline Set Definition bsd. If
majoris true, the version of the Baseline Set will be a new major version number; else it will be a new minor version
number. This fails if the Baseline Set Definition is not locked by the user, or if there is already an Open baseline set for it.

The returned string will be null on success, with &bs assigned to the baseline set so created. Otherwise, the returned string
will be non-null and will contain some description of the failure, in this case &bs will be set to null.

major(BaselineSet)

Declaration

int major (BaselineSet bs)

Operation

This returns the major version number of a Baseline Set bs.

DXL Reference Manual

290

minor(BaselineSet)

Declaration

int minor (BaselineSet bs)

Operation

'This returns the minor version number of a Baseline Set bs.

suffix(BaselineSet)

Declaration

string suffix (BaselineSet bs)

Operation

This returns the suffix (might be null) in the version identifier of the Baseline Set bs.

versionlD(BaselineSet)

Declaration

string versionID(BaselineSet bs)

Operation

This returns the whole version identifier of the Baseline Set bs in the form major.minor[(suffix)].

annotation(BaselineSet)

Declaration

string annotation (BaselineSet bs)

Operation

This returns the comment annotation which has been stored with a Baseline Set bs.

user(BaselineSet)

Declaration

string user (BaselineSet bs)

Operation

This returns the name of the user who created the Baseline Set bs.

DXL Reference Manual

291

dateOf(BaselineSet])

Declaration
Date dateOf (BaselineSet bs)

Operation

This returns the date/time when the Baseline Set bs was created.

isOpen(BaselineSet])

Declaration

bool isOpen (BaselineSet bs)

Operation

This returns t rue for an Open Baseline Set bs, and false for a Closed one.

close(baselineSet)

Declaration

string close (BaselineSet bs)

Operation

This closes an Open Baseline Set bs. It requires the user to have a lock on the Baseline Set Definition, and returns null on
success, and an error message on failure (e.g. if the Baseline Set is not Open, or the user does not hold a lock on the Baseline

Set Definition).

setAnnotation(BaselineSet)

Declaration

string setAnnotation (BaselineSet bs)

Operation

This enables a user with Modify access to the Baseline Set Definition to change the annotation text on an Open Baseline Set
bs. It returns null on success, and an error string on failure (e.g. if BaselineSet is Closed). This should fail if the user

does not have a lock on the Baseline Set Definition.

DXL Reference Manual

292

addBaselines(BaselineSet)

Declaration
string addBaselines (Skip modList, BaselineSet bs)

Operation

This enables a user with Modify access to the Baseline Set Definition to baseline a set of modules and add the baselines to
an Open Baseline Set. The variable modList is a skip list containing values of type modName_. These modules must be
included in the Baseline Set Definition which defines the Baseline Set, and must not already be contained in the Baseline
Set. It returns null on success, and an error message on failure (e.g. if the BaselineSet is Closed). It fails without creating or
adding any baselines if the user cannot add all of them. It fails if the user does not hold a lock on the Baseline Set Definition.

for ModuleVersion in BaselineSet

Declaration

for modver in bs do {

where:
modver is a variable of type ModuleVersion
bs is a variable of type BaselineSet
Operation

This returns references to all of the baselines, to which the user has Read access, in the Baseline Set.

for ModuleVersion in all BaselineSet

Declaration

for modver in all bs do {

}

where:
modver is a variable of type ModuleVersion
bs is a variable of type BaselineSet

DXL Reference Manual

293

Operation

This returns references to all baselines in the Baseline Set and all modules which could have been included in the Baseline
Set, to which the user has Read access, and which have not been purged.

for BaselineSet in ModName_

Declaration

for bs in modRef do {

where:
bs is a variable of type BaselineSet
modRef is a variable of type ModName
Operation

This returns any open Baseline Sets to which the current version of the specified module can currently be baselined.

baselineSet(ModuleVersion)

Declaration

BaselineSet baselineSet (ModuleVersion modver)

Operation

This returns the Baseline Set, if there is one and the user has Read access to it, which contains the given ModuleVersion
modver.

Example 1
void printModuleBSDs ()
// prints a list of Baseline Set Definitions which include the current Module
// and a list of Baseline Sets created for each Definition
{

if (null current Module)

{

errorBox "This DXL must be run from a current Module."

return

DXL Reference Manual

294

DXL Reference Manual

BaselineSetDefinition bsd

ModName mod = module (current Module)

for bsd in mod do

{

print name (bsd) ": " description(bsd) "\n"

string errmess = read(bsd)
if (!'null errmess)

{

print " [Could not read Definition: " errmess "]"

}
else if (isEmpty (bsd))
{

print " [Empty Baseline Set Definition]"

else

BaselineSet bs
for bs in bsd do
{

print versionID(bs) ": " annotation(bs) ""
print "Created by " user(bs) " on " dateOf(bs) ""

ModuleVersion mv
for mv in bs do

{

print " " (fullName mv) " [" (versionString mv)

}

print "\n"

"] "

295

}
printModuleBSDs

Example 2
volid baselineModuleToSets ()

// Adds a new baseline of the current module to any open

// Baseline Set that can include it. Creates a new Baseline Set
// for definitions that include the module but do not have an
// open Baseline Set.

{
if (null current Module)
{
errorBox "This DXL must be run from a current Module."

return

string errmess

BaselineSetDefinition bsd
BaselineSet bs

ModName mod = module (current Module)
int skipIndex = 0

Skip moduleSkip = create

put (moduleSkip, skipIndex++, mod)

for bsd in mod do

{

print wn

if (!isAnyBaselineSetOpen (bsd))
{

print "Creating new Baseline Set: "

errmess = lock (bsd)
if (null errmess)

{

DXL Reference Manual

296

errmess = create(bsd, true, "new", "Created by
baselineModuleToSets ()", bs)

}

if (!'null errmess)
{

print "Failed to create Baseline Set: " errmess "

continue
}
unlock (bsd)

else

for bs in bsd do
{
if (isOpen bs)
{
break

if (isBaselinePresent (bs, mod))
{

print "Module is already in the Open Baseline Set."

else

errmess = addBaselines (moduleSkip, bs)
if (null errmess)
{

print "Added baseline to Baseline Set " versionID (bs)

DXL Reference Manual

297

else

print "Failed to add baseline to Baseline Set: " errmess

}

baselineModuleToSets

History

This section defines DXL functions for manipulating history records. Three main data types are introduced:

History a history record
HistoryType a type of history
HistorySession a summary of a module’s session history. Every time a Rational

DOORS module is opened in either edit or shareable mode, a session
summary is saved. You can access this information using the functions
that act on an object of type HistorySession.

You can only access objects of type History and HistoryType using the for history record in type
loop.

You can only access an object of type HistorySession using the for history session in module loop.

Constants (history type)

Declaration

const

const

const

const

const

const

const

HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType

HistoryType

unknown

createType
modifyType
deleteType
createAttr
modifyAttr

deleteAttr

DXL Reference Manual

298

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

const

HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType
HistoryType

HistoryType

Operation

These constants represent the different types of history record.

createObject
copyObject
modifyObject
deleteObject
unDeleteObject
purgeObject
clipCutObject
clipMoveObject
clipCopyObject
createModule
baselineModule
partitionModule
acceptModule
returnModule
rejoinModule
createlink
modifyLink
deletelink
insertOLE
removeOLE
changeOLE
pasteOLE
cutOLE

readLocked

Concatenation (history type)

The space character is the concatenation operator, which is shown as <space> in the following syntax:

HistoryType ht <space> string s

Concatenates the string s onto the history type ht, and returns the result as a string.

DXL Reference Manual

History properties

Properties are available for use in combination with the .

(dot) operator to extract information from a history record.

Notably, the properties which are available for individual history entry will depend on the type of that entry. The

syntax for using the properties is:

hr.property

where:
hr

property

is a variable of type History

is one of the history properties

The value of property can be one of the following:

String property Extracts

attrName attribute name of history record

author author of history record

newPosition new position of history record

position current position of history record

type type of history record; this can be one of the values listed in
“Constants (history type),” on page 297

typeName type name of history record

targetInitialName

linkInitialName

plainOldvalue
plainNewValue

plainOldUnicodeValue

plainNewUnicodeValue

the name of the target module at the time of link creation (only
available to the Administrator)

the name of the link module at the time of link creation (only
available to the Administrator)

plain text version of the old value
plain text version of the new value

plain text version of the old value, but with any Symbol
characters converted into the equivalent Unicode characters, so
that the value matches the displayed rich text value

plain text version of the new value, but with any Symbol
characters converted into the equivalent Unicode characters, so
that the value matches the displayed rich text value

DXL Reference Manual

299

300

Date property Extracts

date

date of history record

Integer property Extracts

absNo absolute number of history record
numberOfObjects number of objects in history record
oldAbsNo old absolute number of history record
sessionNo tracks the manipulation of history information
sourceAbsNo the absolute number of the source object
targetAbsNo the absolute number of the target object
ModuleVersion property Extracts

linkVersion the version of the link module
targetVersion the version of the target module

Any appropriate type property Extracts

newValue

oldvalue

new value of user defined attribute

old value of user defined attribute

Example

print
print
print
print
print
print
print

print

hr.
hr.
hr.
hr.
hr.

hr

hr.
hr.

DXL Reference Manual

type
date
author
attrName

typeName

.position

newPosition

numberOfObjects

301

print hr.absNo

print hr.oldAbsNo

print hr.sessionNo

Date histDatOld = hr.oldValue

Date histDateNew = hr.newValue

goodStringOf

Declaration
string goodStringOf (HistoryType ht)

Operation

Returns a string to represent the history type ht in the user interface, for example, "Create Object" for the
createObject history type.

stringOf(history type)

Declaration
string stringOf (HistoryType ht)

Operation

Returns the history type ht as a string.

print(history type)

Declaration
void print (HistoryType ht)

Operation

Prints the history type ht in the DXL Interaction window’s output pane.

for history record in type

Syntax
for hr in type do {

DXL Reference Manual

302

where:
hr is a variable of type History
type is a variable of type Module, object of type Object, or a call
to the function top
Operation

Assigns the variable hr to be the history records for modules, objects, ot top-level items. Top-level items are those module
history records that apply to the whole module, not individual objects. The syntax for looping through top-level items is as
follows:

for hr in top (module) do { ... }

where moduleis of type Module.

Example

This example prints out the type of each top level history record of the current module:
History h

for h in top current Module do print h.type

number(history session)

Declaration

int number (HistorySession hs)

Operation

Returns an identifier that is unique within the parent module for a patticular session, starting from 0.

when

Declaration

Date when (HistorySession hs)

Operation

Returns the timestamp for a particular session.

who

Declaration

string who (HistorySession hs)

DXL Reference Manual

Operation

Returns the name of the Rational DOORS user responsible for a particular session (who opened the module).

baseline(history session)

Declaration

string baseline (HistorySession hs)

Operation

If a baseline was created during a particular session, returns the details in the format version (suffix).

diff(buffer)

Declaration

string diff (Buffer result, Buffer source, Buffer target, string removeMarkup,

insertMarkup)

string diff (Buffer result, Buffer source, Buffer target)

string diff (Buffer result, Buffer source, Buffer target, bool fullRTF)

Operation
Computes the annotated difference, or "redlined difference” between soutce and target.
The result is valid only when a non-null string is returned.

Removals and insertions are annotated by removeMarkup and insertMarkup -- this must be well-formed RTF
strings onto which subsequent text might be concatenated. The standard values for these are "\cfl\strike " and
"\cf2\ul " (notice the spaces). See diff/3 for a perm which uses these defaults.

Three colors are defined and might be used within these commands: RED, GREEN and BLUE:
\cfl - RED

\cf2 - GREEN

\cf3 - BLUE

For the third form of the perm, When true, the RTF returned as a result is full RTF (containing the correct RTF header,
font table and color table). When false, the returned result is an RTF fragment, suitable for adding or inserting into a full

RTF stream.

Example

303

DB db = create

DBE textbox

richText (db,

"Show diff"

"stuff", "", 200, 200, true)

Buffer buffl create ()
Buffer buff2 create ()
Buffer resBuf create ()

DXL Reference Manual

304

buffl = "0ld Text"

buff2 = "New Text"

diff (resBuf, buffl, buff2, "\\cfl\\strike ", "\\cf3\\ul ")
realize db

useRTFColour (textbox, true)

set (textbox, tempStringOf resBuf)

show db

delete resBuf
delete buffl
delete buff2

Example
Buffer one = create
one = "one"
Buffer two = create
two = "two"
Buffer result = create

diff (result, one, two, false)
print stringOf (result) "\n\n"
diff (result, one, two, true)

print stringOf (result)

Output:

{\cfl\strike one} {\cf3\ul two}

{\rtf1\deff1000{\ fonttbl {\f1012\ fswiss\ fcharset177 Arial;} {\f1011\fswiss\fcharset162

Arial;} {\f1010\ fswiss\fcharset238 Arial;} {\f1009\ fswiss\fcharset204 Arial;} {\f1008\fswiss\fcharset161
Arial;} {\f1007\ fswiss\ fcharsetO Arial;} {\f1006\froman\fcharset177 Times New

Roman;} {\f1005\ froman\fcharset162 Times New Roman;} {\f1004\ froman\ fcharset238 Times New
Roman;} {\f1003\ froman\ fcharset204 Times New Roman;} {\f1002\froman\fchatset161 Times New
Roman;} {\f1001\ftech\fcharset2 Symbol;} {\f1000\froman\fcharsetO Times New Roman;} } { {\colortbl
;\red255\green0\bluel;\red0\green255\blue0;\red0\green0\blue255;} {\cf1\strike one} {\cf3\ul two}} }

DXL Reference Manual

305

Link History

The name of a module level boolean attribute which controls whether history for link creation and deletion is recorded.
Used as a normal attribute but with the addition of the reserved keyword.

Example
const string LINK HISTORY ATTRNAME = "Link History"

Module m = current

if (m != null){

// get the value
bool linkHistoryBefore = m. (reserved LINK HISTORY ATTRNAME)

// set the value

m. (reserved LINK HISTORY ATTRNAME) = !linkHistoryBefore

// get the value again

bool linkHistoryAfter = m. (reserved LINK HISTORY ATTRNAME)

print "Before: " linkHistoryBefore "\n"

print "After: " linkHistoryAfter "\n"

lastModifiedTime

Declaration
Date lastModifiedTime ({Module|Object|Link})

Operation

Returns the date the supplied item was last modified, including the time of the modification.

DXL Reference Manual

306

for history session in module

Syntax

for hs in module do {

where:
hs is a vatiable of type HistorySession
module is a variable of type Module
Operation

Assigns the variable hs to be each successive history session record for the specified module.

Example
HistorySession hs
// process module

for hs in current Module do
{
// identifier, date and user
print number (hs) ", " when(hs) ", " who(hs)

string sBaseline = baseline (hs)
// only relevant if baseline info exists

if (sBaseline != null)
{
// baseline name
print " - '" sBaseline "': "

}

print "\n"

History example program

// history DXL Example

/*
Example history DXL program.
Generate a report of the current Module's
history.

*/

// print a brief report of the history record

DXL Reference Manual

void print (History h) {
HistoryType ht = h.type

print h.author "\t" h.date "\t" ht "\t"

if (ht == createType ||
ht == modifyType ||
ht == deleteType) { // attribute type
print h.typeName
} else if (ht == createAttr |
ht == modifyAttr |
ht == deleteAttr) {

// attribute definition
print h.attrName

} else if (ht == createObject |
ht == clipCopyObject ||
ht == modifyObject) { // object

print h.absNo

if (ht==modifyObject) {
// means an attribute has changed

string oldV = h.oldValue
string newV = h.newValue

print " (" h.attrName ":" oldv " -> "
newV ") "

}
print "\n"

}

// Main program

History h

print "All history\n\n"

for h in current Module do print h

print "\nHistory for current Object\n\n"
for h in current Object do print h
print "\nNon object history\n\n"

for h in top current Module do print h

Descriptive modules

This section defines DXL functions for Rational DOORS desctiptive modules.

DXL Reference Manual

307

308

create(descriptive module)

Declaration

Module create(string name,
string description,
string prefix,
int absno,

string filename)
Operation

Creates a new descriptive module based on a valid module name and an accessible text file.

If the operation succeeds, returns a reference to the new module; otherwise, returns null.

Example

Module m = create ("Source", "source documentation","S",1,"c:\\docs\\source.txt")

markUp

Declaration
Object markUp (Object o,

int firstchar,

int lastchar)

Operation
Marks up a range of object text in a descriptive module, as defined by firstchar and lastchar.
If the operation succeeds, returns a reference to the newly marked up object; otherwise, returns a reference to the unmarked
up object.
If firstcharis1 or less, the range begins at the first character.

If 1astchar is greater than the number of characters in the specified object, the range ends with the last character in the
object.

If firstchar is greater than the number of characters in the object, or if Iastchar is less than 1, or less than
firstchar, the extracted object contains no text.

Example
This example marks up the 2nd, 3rd and 4th characters in the current object:

markUp (current Object, 2, 4)

DXL Reference Manual

309

undoMarkUp

Declaration
void undoMarkUp (Object o)

Operation

Changes a descriptive module object o from being a marked up object to being an unmarked up object. If o does not refer

to a marked-up object, the function has no effect.

Example

undoMarkUp (current object)

setUpExtraction

Declaration
bool setUpExtraction (Module m,

string formal,
string link)
Operation

Sets up the descriptive module m for the extraction of marked up objects to the formal module formal, with links
between the source objects and the extractions stored in the link module 11ink.

For a successful operation formal must be open in edit mode, and 1ink must be available for editing.
If the operation is successful, it returns t rue; otherwise, it returns false.

Example

print setUpExtraction (current Module, "Formal mod", "DOORS Links")

extractAfter

Declaration

void extractAfter (Object source)

Operation

Extracts the marked-up object source to a new object after the current object in the formal module as specified by

setUpExtraction.

If the extraction has been incorrectly set up, the function displays a run-time error message is displayed and performs no

extraction.

If the extraction is successful, the new object in the formal module becomes the cutrent object.

DXL Reference Manual

310

Example

Module desc = create("Desc mod", "descriptive module", "D", 1, "c:\\info.txt")

Object obj=markUp (current Object 2,22)

edit "Formal module"

setUpExtraction (desc, "Formal module", "Link module")
extractAfter (obj)

extractBelow

Declaration

void extractBelow (Object source)

Operation

Performs the same operation as extractAfter, but inserts the new object below the current object in a formal module.

Example

Module desc = create ("Desc mod", "descriptive module", "D", 1, "c:\\info.txt")
Object obj=markUp (current Object 2,22)

edit "Formal module"

setUpExtraction (desc, "Formal module", "Link module")
extractBelow (obj)

Recently opened modules

This section defines DXL functions to access and manipulate the list of recently opened modules.

recentModules

recentModules is a new data type representing the list of recently opened modules.

addRecentlyOpenModule(ModuleVersion)

Declaration
void addRecentlyOpenModule (ModuleVersion ModVer)

Operation

Adds an entry into the recently opened modules list for the supplied module version.

DXL Reference Manual

311

addRecentlyOpenModule(string])

Declaration
void addRecentlyOpenModule (string)

Operation

Constructs a module version from the supplied string, then adds an entry in the recently opened modules list for that

module version.

removeRecentlyOpenModule(ModuleVersion)

Declaration

void removeRecentlyOpenModule (ModuleVersion ModVer)

Operation

Removes the entry for the supplied module version from the recently opened modules list.

for {string|ModuleVersion} in recentModules

Operation

Loops through the list of recently opened modules and returns the string representing uniquelD, including baseline version
string, or ModuleVersion, for each module.

Syntax

for {str|mv} in recentModules do {

where:
str is a variable of type string
mv is a variable of type ModuleVersion
recentModules is the list of recently opened modules
Example

// This example loops through the list of recently opened modules. It checks for
// the presence of two modules, if the first is found it is removed, if the
//second is found it is added.

ModuleVersion modl = moduleVersion ("00000023")

DXL Reference Manual

312

ModuleVersion mod2 = moduleVersion ("00000021")

ModuleVersion mod

bool foundl = false
bool found2 = false

for mod in recentModules do {

if (mod == modl) {
foundl = true
} else if (mod == mod2) {

found2 = true

if (foundl) {

removeRecentlyOpenModule modl

if (!found2) {

addRecentlyOpenModule mod2

Module Properties

ModuleProperties

ModuleProperties isa new data type representing the properties of a module. It consists of type definitions, attribute
definitions, and module attribute values. As with object and module types the . (dot) operator can be used to extract
attribute value

DXL Reference Manual

313

getProperties

Declaration

string getProperties (ModuleVersion mv, ModuleProperties &mp)

Operation
Loads type definitions, attribute definitions and module attribute values from the specified ModuleVersion into the
specified ModuleProperties.

find(attribute definition in ModuleProperties)

Declaration

AttrDef find(ModuleProperties mp, string AttrName)

Operation

Returns the attribute definition from the specified ModuleProperties whose name matches the supplied string.

for string in ModuleProperties

Syntax

for str in modprops do {

where:
str is a variable of type String
modprops is a variable of type
ModuleProperties
Operation

Assigns str to be the name of each successive module attribute in modprops.

for AttrType in ModuleProperties

Syntax

for at in modprops do {

DXL Reference Manual

314

where:
at is a variable of type AttrType
modprops is a vatiable of type
ModuleProperties
Operation

Assigns at to be each successive module attribute type definition in modprops.

Example
ModuleProperties mp

ModuleVersion mv

string mname = "/My Project/Modulel"
string s

mv = moduleVersion (module mname)
string errl = getProperties (mv, mp)

if (!null errl){

print errl "\n"

AttrType at

print "Module Types: \n"

for at in mp do {

print "\t - " (at.name) "\n"

print "\nModule Attributes: \n"
for s in mp do {
prirlt "\t - n s " B "

val = mp.s""

DXL Reference Manual

315

print val "\n"

DXL Reference Manual

316

DXL Reference Manual

Chapter 13
Electronic Signatures

This chapter contains the following topics:
* Signature types

* Controlling Electronic Signature ACL

* Electronic Signature Data Manipulation

* Examples

Signature types

struct Signaturelnfo {}

A new type representing signature information.

struct SignatureEntry {}

A new type representing individual signatures. A SignatureEntry is aggregated into exactly one SignatureInfo
object.

Controlling Electronic Signature ACL

All access control operations operate on the Electronic Signature information that has been read from the database.
Therefore, read operations return results reflecting what was in effect when the data was last refreshed from the database.
The data is refreshed by calling getSignatureInfo.

Write operations might result in changes to the access controls, but the access control perms do not commit those changes
to the database. Instead, the DXL programmer must explicitly save any changes in order for them to be committed.

SignaturelnfoSpecifier__ specifier(Signaturelnfo)

Declaration

SignatureInfoSpecifier specifier(Signaturelnfo si)

DXL Reference Manual

317

318

Operation

This converter has a Ref implementation. It is an interface selector. It is used for getting and setting permissions for users to
change the signature label specifier type for a baseline It uses the same perms that are used for setting permissions to change
the SignatureInfo itself (the rest of the signature configuration). The label specifier is an enumerated type defined in
the module, which can have values like signed off, rejected, etc.

For example, if you have a SignatureInfo variable, say sigInfo, which has been initialized using
getSignaturelInfo, to give you a handle on the signature configuration for a particular baseline, then you get access
controls on the signature list using:

e string username

* string access

e AccessRec ac = get(sigInfo, username, access)
Access controls on the label specifier can be retrieved using:

e AccessRec ac2 = get(specifier sigInfo, username, access)

hasPermission(Signaturelnfo, Permission)

Declaration

bool hasPermission (SignatureInfo si, Permissioné& p)

Operation

Returns true if the current user has permission p to the Signatory ACL of the SignatureInfo object si.

hasPermission(SignaturelnfoSpecifier__, Permission)

Declaration

bool hasPermission(SignatureInfoSpecifier sis, Permission& p)

Operation

Returns true if the current user has permission p to the Specifier ACL of the SignatureInfo object si. The
specifier () permis used to casta SignatureInfo objectinto a SignatureInfoSpecifier object.

hasPermission(string, Signaturelnfo, Permission)

Declaration

bool hasPermission(string name, SignatureInfo si, Permissioné& p)

Operation

Returns true if the string name has permission p to the Signatory ACL of the SignatureInfo object si.

DXL Reference Manual

319

hasPermission(string, SignaturelnfoSpecifier__, Permission)

Declaration

bool hasPermission(string name, SignaturelInfoSpecifier sis, Permission& p)

Operation

Returns true if the string name has permission p to the Specifier ACL of the SignatureInfo object si. The
specifier () permis used to casta SignatureInfo objectinto a SignatureInfoSpecifier object.

::do(AccessRec&, Signaturelnfo, void)

Declaration

void ::do(AccessRec& ar, SignaturelInfo si, void)

Operation

Tterator over Signatory ACL of the SignatureInfo object si.

::do(AccessRec&, SignaturelnfoSpecifier__, void)

Declaration

void ::do(AccessRecé& ar, SignaturelInfoSpecifier sis, void)

Operation

Iterator over Specifier ACL of the SignatureInfo object si.

set(Signaturelnfo, Permission, string name)

Declaration

string set (SignatureInfo si, Permission& p, string name)

Operation

Sets the Signatory ACL so that string name has Permission p.

set(SignaturelnfoSpecifier__, Permission, string name)

Declaration

string set(SignatureInfoSpecifier sis, Permission& p, string name)

DXL Reference Manual

320

Operation

Sets the Specifier ACL so that string name has Permission p.

unset(Signaturelnfo, string name)

Declaration

string unset (SignatureInfo si, string name)

Operation

Sets the Signatory ACL so that string name has the default access.

unset(SignaturelnfoSpecifier__, string name)

Declaration

string unset (SignatureInfoSpecifier sis, string name)

Operation

Sets the Specifier ACL so that string name has the default access.

unsetAll(Signaturelnfo)

Declaration

string unsetAll (SignaturelInfo si)

Operation

Sets Signatory ACL so that all agents have the default access

unsetAll(SignaturelnfoSpecifer__)

Declaration

string unsetAll (SignatureInfoSpecifer sis)

Operation

Sets the Specifier ACL so that all agents have the default access

AccessRec get(Signaturelnfo, string name, string& error)

Declaration

AccessRec get (SignatureInfo si, string name, string& error)

DXL Reference Manual

321

Operation

Returns the access record from the Signatory ACL for string name. Returns a non-null string if there is an ertor.

Electronic Signature Data Manipulation

getSignaturelnfo(Signaturelnfo si&, ModName_ document, int major, int minor, string suffix)

Declaration

string getSignaturelnfo(SignatureInfo si&, ModName document, int major, int
minor, string suffix)

Operation
Returns in s1 (destructively modifying its contents) a signature information object on the specified baseline document
(module, with version information). In case of error, a non-null string will be returned, otherwise the null string will be

returned.
If the baseline does not exist, this generates an error.

If the baseline does exist, a valid SignatureInfo object will be assigned to si and populated with data read from the
database. The isConfigured () method will return true. If the baseline does not have a SignatureInfo object
associated with it, a new one is created. The isConfigured () method returns false, and the SignatureInfo
will contain some default values which are dependant on the last configuration specified for that module.

If there is signature information contained in the database for this baseline, that data will be read from the database and si
will then reflect that data, at the time of the call to getSignatureInfo. Changes subsequently made to the database by
other sessions will not be reflected in s1 until a further call to getSignatureInfo is made.

Since this perm destructively modifies the contents of s1, any changes that have been made to si (for example, a call to
setLabelSpecifier), are lost. Changes to a SignatureInfo object might be committed to the database by the
save perm.

isBaselineSignatureConfigured(Signaturelnfo)

Declaration

bool isBaselineSignatureConfigured (SignatureInfo si)

Operation

Returns whether the Signaturelnfo has been configured (if signature Access Controls or signatures have been saved for the
associated baseline). See getSignatureInfo () for more details.

Note: This perm does not refresh the SignatureInfo object from the database.

DXL Reference Manual

322

getLabelSpecifier(Signaturelnfo)

Declaration

string getlLabelSpecifier (SignatureInfo si)

Operation

Returns the signature label specifier. Does not refresh the signature information from the database.

setLabelSpecifier(Signaturelnfo si, string newLabel)

Declaration

string setlLabelSpecifier (SignatureInfo si, string newLabel)

Operation

Sets the signature label specifier of the supplied s to be the supplied newLabe 1. This might fail and return a non-null
error message if the current user does not have modify access conferred by the Specifier ACL.

This change to the label specifier is not committed to the database until the save (SignatureInfoé&) method is
called.

appendSignatureEntry(Signaturelnfo si, string label, string comment)

Declaration

string appendSignatureEntry(SignaturelInfo si, string label, string comment)

Operation

Appends the signature of the current user to the database signature information of the baseline associated with si. This
perm is only available when there is a user interface. It will return an error string otherwise. It prompts the user to reconfirm
their user name and password, and if this reconfirmation is successful, appends and commits this new signature entry to any
existing signatures that might be present in the database.

The label argument will be stored with the signature, and might be used to classify the signature. The baseline signature
DXL constrains the user to select the label from the enumeration values of the module’s label specifier type.

The labelOptions argument is intended to contain a newline-separated list of labels available to the user at the time of
sign off, as enforced by the calling DXL code.

The comment argument is intended to store any comments that the signatory wishes to record with the signature.
This perm returns an error when Rational DOORS is running in batch mode.

A side-effect of this perm is to refresh si (as would getSignatureInfo) so that it reflects the data that has been
committed to the database. As a consequence, any SignatureEntry objects derived from si will be invalidated. Also,
any non-committed changes to s1 will be lost (use the save perm to commit changes before appending a signature).

Since this operation refreshes s1, it is possible that the right to sign a baseline will be lost due to a change to the Signatory
ACL. In this case an error message will be returned.

DXL Reference Manual

323

save(Signaturelnfo si, int &code)

Declaration

string save (SignatureInfo si, int é&code)

Operation

Save signature information si to the database. Returns a non-null string if it fails, in which case the value of code will be set
to indicate the reason for failure.

On success, this perm writes the specified signature information to the database. Any changes that were made to this
signature information since it was refreshed (via getSignatureInfo) will be committed to the database.

It is not necessaty to call save in order to commit changes made by calls to appendSignatureEntry. This perm
commits those changes before it returns.

Changes made to signature information that do require an explicit call to save () are:
e setlLabelSpecifier()
Any change to access controls
Returned error codes:
* out of sequence commit
* other error

An out-of-sequence commit code arises when an attempt is made to commit changes based on an out-of-date read of the
signature information. The code will be set to "2" in all other failure cases.

A side-effect of this perm is to refresh s1 (as would getSignatureInfo) so that it reflects the data that has been
committed to the database. As a consequence, any SignatureEntry objects derived from si will be invalidated.

::do(SignatureEntry&, Signaturelnfo, void)

Declaration

void ::do(SignatureEntry& sigentry, SignaturelInfo si, void)

Operation
Tterator over each signature entry in the SignatureInfo object si. The signature entries so obtained are read-only.

The entities will be enumerated in the order in which they were appended to the SignatureInfo.

Note: This order is independent from the stored dates of the entries.

The signature entries so obtained will be invalidated by execution of any of the following perms on the same
SignatureInfo object

e getSignaturelnfo
* save

* appendSignatureEntry

DXL Reference Manual

324

As a result, these should not be called when SignatureEntry objects remain in scope.

getUserName(SignatureEntry)

Declaration

string getUserName (SignatureEntry sigentry)

Operation

Returns the signatory’s user name for the given signature entry.

getUserFullName

Declaration
string getUserFullName (SignatureEntry sigentry)

Operation

Returns the signatory’s full user name for the given signature entry.

getEmail(SignatureEntry)

Declaration
string getEmail (SignatureEntry sigentry)

Operation

Returns the e-mail address of the signatory for the given signature entry.

Date getDate(SignatureEntry)

Declaration
Date getDate (SignatureEntry sigentry)

Operation

Returns the signing date for the given signature entry.

Note: This function returns the GMT date/time of the signature and, when formatted to a string, will show the signature

time in the time zone of the viewer, not of the signatory.

DXL Reference Manual

325

Date getLocalDate(SignatureEntry)

Declaration
Date getLocalDate (SignatureEntry sigentry)

Operation

Returns the signing date of the given signature entry, offset to compensate for the time zones of the signatory and viewer.

getFormattedLocalDate(SignatureEntry)

Declaration
string getFormattedLocalDate (SignatureEntry sigentry)

Operation
Returns a string representing the date and time of the specified signature in the time zone of the signatory, not the current

viewert.

getLabel(SignatureEntry)

Declaration
string getLabel (SignatureEntry sigentry)

Operation

Returns the label, if any, for the given signature entry.

getLabelOptions(SignatureEntry)

Declaration
string getlLabelOptions (SignatureEntry sigentry)

Operation

Returns a formatted string representing the choices of label entry available to the signatory at the time of signing.

getComment(SignatureEntry)

Declaration

string getComment (SignatureEntry sigentry)

DXL Reference Manual

326

Operation

Returns the comment contained in a signature entry. This might be the empty string.

allAttributesReadable(SignatureEntry)

Declaration
bool allAttributesReadable (SignatureEntry sigentry)

Operation

Returns a boolean indicating if the signatory had read access to all attributes on the signed baseline.

getlsValid(SignatureEntry)

Declaration
bool getlIsValid(SignatureEntry sigentry)

Operation

Returns a boolean value indicating whether the signature hash is still valid for the stored signature entry. This might be used
to verify the integrity of signature data.

Examples

Add a signature to the latest baseline of the current module

// Example signatures code - add a signature to the latest baseline of the
current module.

Baseline thisBaseline = getMostRecentBaseline (current Module)
if (null thisBaseline || (null load(thisBaseline, true)))

{

warningBox "No baseline available"

halt

DB signatureDB
DBE addTypeChoice, addAddBtn, addCommentsText

DXL Reference Manual

SignatureInfo sigInfo

int enumCount = 0

int majorVersion = major (thisBaseline)
int minorVersion = minor (thisBaseline)
string suffix = suffix(thisBaseline)

//******k************‘k*********‘k*‘k*‘k****‘k*‘k********************

void addAddCB (DBE x)

!/
!/
//

//
!/
{

DESCRIPTION : Callback for "OK" button on add signature
dialog. Calls appendSignatureEntry perm to prompt the user
to re-authenticate.

On error, presents a warning box to the user.

RETURNS : void

string labelString = get (addTypeChoice)
string commentString = get (addCommentsText)
string optionsString = ""
int 1
for (i = 0; 1 < enumCount; i++)
{

if (1 > 0)

{

optionsString = optionsString "\n"
}
optionsString = optionsString get (addTypeChoice, i)

string message =

appendSignatureEntry(sigInfo, labelString, optionsString, commentString)

if (!'null message)
{

warningBox (signatureDB, "Signature not added: " message "")

}

} // addAddCB

DXL Reference Manual

327

328

// First, read the SignatureInfo for the baseline..

string message = getSignaturelnfo(sigInfo,module (fullName current
Module) ,majorVersion,minorVersion, suffix)

if (!null message)
{
warningBox ("getSignatureInfo failed: " message "")

halt

// Create the dialog to allow the user to select a label and add a comment.
signatureDB = create ("Add Signature",styleFixed)

string labelType = getlLabelSpecifier(sigInfo)

AttrType at = null

enumCount = 0

// Get current list of labels from the current version of the module
if (!'null labelType)
{

Module currentVersion = read(fullName current Module, false)

if (!'null currentVersion)
{
at = find(current Module, labelType)
}
if (null at)
{
warningBox ("Cannot find label specifier type \"" labelType "\".")
halt
}
else if (at.type "" != "Enumeration")
{
warningBox ("Label specifier is not an enumerated type.")

halt

DXL Reference Manual

329

else

enumCount = at.size

string labelChoices[enumCount]

if (enumCount > 0)

{

// Get alternative labels from the enumerated type.
int index

for (index = 0; index < enumCount; index++)

{

labelChoices[index] = at.strings[index]

// Create the choice element for the user to select a label.
addTypeChoice = choice(signatureDB, "Signature Label: ",labelChoices, 0,20, false)
if (enumCount == 0)

{

inactive addTypeChoice

addCommentsText = text (signatureDB, "Comments:","",400,150,false)

addAddBtn = button (signatureDB, "OK",addAddCB, styleStandardSize)

show signatureDB

list signatures in the latest baseline

// Signatures example code : list signatures in the latest baseline

// of the current module

DXL Reference Manual

330

if (null current Module)
{
warningBox "Must run from an open module."

halt

Baseline b = getMostRecentBaseline (current Module)
if (null b || (null load(b,true)))
{
warningBox "No baseline available"
halt
}
string dummy[] = {}

DB signaturesDB = create("Baseline Signatures Example",styleFixed)

SignatureInfo signatureInfo = null

DBE timeCombo, sigListView, commentText
DBE labellLabel, labellList, closeBtn
string timeChoices[] = {"signatory's","current"}

DBE timeLabel

static int SIGNATORY COL = 0
static int DATE COL = 1

static int LABEL COL = 2

//******k************‘k*******‘k*‘k*‘k*‘k****‘k*‘k********************

void listSignature (SignatureEntry sigEntry, int i, bool localTimes)
// DESCRIPTION : adds an entry in the listView for a given signatureEntry
// RETURNS : void
{
insert (siglListView, i, getUserName (sigEntry),null, iconUser)

if (localTimes)

DXL Reference Manual

331

set (sigListView, i, DATE COL, (dateOf intOf getLocalDate (sigEntry)) "")

else

set (sigListView,i,DATE COL, (dateOf intOf getDate (sigEntry)) "")

}
set (sigListView, i, LABEL COL,getLabel (sigEntry))

//******************************k*k***
void refreshlListView (void)
// DESCRIPTION : Populates sigListView with the info in signaturelInfo
// RETURNS : void
// ERROR CONDITIONS : null signatureInfo - returns without any action
{
if (null signaturelInfo)

{

return
}
int i = get (timeCombo)
bool localTimes = (i == 0)

int entryNumber

empty sigListView

entryNumber = 0

SignatureEntry sigEntry

for sigEntry in signaturelInfo do

{
listSignature (sigEntry,entryNumber, localTimes)
entryNumber++

}

} // void refreshlListView (void)

DXL Reference Manual

332

//**

void closeDB (DB x)
// DESCRIPTION : close function for the signature dialog. Hides it.
// RETURNS : void
{
hide signaturesDB

halt

//**

void closeDB (DBE Xx)

// DESCRIPTION : close function for the signature dialog. Hides it.
// RETURNS : void

{

closeDB (signaturesDB)

//*******k***********k**

void refreshSigsDB()

// DESCRIPTION : refreshes the signatures list with the signature info from
// the database, in the specified baseline.

// RETURNS : void

{

ModName thisModule = module (fullName current Module)

string message = getSignaturelnfo(signaturelInfo, thisModule, major (b),
minor (b), suffix (b))

set (commentText,"")
set (labelList,"")
if (!null message)
{

warningBox (signaturesDB, "Cannot display signatures for this baseline:
" message "\nThe baseline signature dialogue will be closed.")

DXL Reference Manual

closeDB (signaturesDB)

else

refreshlListView ()

}
} // refreshSigsDB

//******k************‘k*********‘k*‘k*‘k****‘k*‘k********************

void timeComboCB (DBE x)

// DESCRIPTION : Callback for the time-zone selection combo
// RETURNS : void

{

refreshListView ()

//**

void sigDeselectCB(DBE x, int selectedEntry)

// DESCRIPTION : Deselect callback for listView - null-op.
// RETURNS : void

{

}

//*******k***********k**

void sigSelectCB(DBE x, int selectedEntry)
// DESCRIPTION : Selection callback for signatures list
// RETURNS : void
{
int indexScan = 0
SignatureEntry sigEntry
for sigEntry in signaturelInfo do

{

DXL Reference Manual

333

334

if (indexScan == selectedEntry)

{
set (commentText, getComment (sigEntry))
set (labellist, getLabelOptions (sigEntry))
break

}

indexScan++

}
} // sigSelectCB

// DEFINE MAIN DIALOG

sigListView = listView (signaturesDB, 0,405, 8, dummy)

set (siglListView, sigSelectCB, sigDeselectCB, sigSelectCB)
timeCombo=choice (signaturesDB, "Display time at",timeChoices, 0,9, false)
set (timeCombo, timeComboCB)

beside signaturesDB

timeLabel = label (signaturesDB, "location.")

below signaturesDB

commentText = text (signaturesDB, "Comments:","",100,100, true)

labellist = text(signaturesDB, "Available labels:","",160,100, true)

// BUTTONS

close (signaturesDB, true, closeDB)

realize signaturesDB
insertColumn (sigListView, SIGNATORY COL,"Signatory",150,iconNone)
insertColumn (sigListView, DATE COL,"Date / Time",150,iconNone)

insertColumn (sigListView, LABEL COL, "Label", 100, iconNone)

refreshSigsDB ()

show signaturesDB

DXL Reference Manual

Chapter 14

Objects

This chapter describes features that operate on Rational DOORS objects:

About objects

Object access controls
Finding objects

Current object

Navigation from an object
Object management
Information about objects
Selecting objects

Object searching

Miscellaneous object functions

About objects

Functions manipulate Rational DOORS objects via the Object data type. An important property of a Rational DOORS
formal module is that the objects within the module are structured as a tree; the functions for creating and navigating
objects therefore use the following tree terminology:

parent the object immediately above an object
child any object immediately below an object
sibling any object that shares a parent with another object

Object DXL can be found in nearly every example DXL program given in this manual or in the DXL library.

Object access controls

This section describes functions that report on access rights for an object. For all except the canRead (object)

function, the module must be open for exclusive edit.

DXL Reference Manual

335

336

canCreate(object)

Declaration

bool canCreate (Object o)

Operation
Returns true if the current Rational DOORS user has create access to object o; otherwise, returns false.

canControl(object)

Declaration
bool canControl (Object o)

Operation
Returns true if the current Rational DOORS user can change the access controls on object o; otherwise, returns false.

canRead(object)

Declaration
bool canRead (Object o)

Operation
Returns true if the current Rational DOORS user can read object o; otherwise, returns false.

canModify(object)

Declaration
bool canModify (Object o)

Operation

Returns true if the current Rational DOORS user can modify object o; otherwise, returns false.

canDelete(object)

Declaration
bool canDelete (Object o)

Operation
Returns true if the current Rational DOORS user can delete object o; otherwise, returns false.

DXL Reference Manual

337

canLock(object)

Declaration

bool canLock (Object o)

Operation

Returns true if the current Rational DOORS user can lock object o, which must be in a lockable section. It returns
false for the following conditions:

o is null

o is contained within a module that is currently open read-only

o is contained within a module that is cutrently open for exclusive edit
o is not contained within a formal module

the user does not have create or modify access to the object at the start of 0 ' s editable section

canUnlock(object)

Declaration

bool canUnlock (Object o)

Operation

Returns true if the current Rational DOORS user can unlock object o, which must be in a lockable section. It returns

false for the following conditions:

o is null

o is contained within a module that is cutrently open read-only

o is contained within a module that is currently open for exclusive edit
0 is not contained within a formal module

the user does not currently have o locked

Finding objects

This section defines functions that allow DXL programs to navigate through the objects in a module.

object(absno)

Declaration

Object object (int absno[,Module m])

DXL Reference Manual

338

Operation

Returns the object with the specified absolute number. If no module argument is supplied, the cutrent module is searched.

all
This function is used in a for loop operating on modules, as shown in the following syntax:
all (Module module)
Returns a handle for module (see the for object in all loop).

document
This function is used in a for loop operating on modules, as shown in the following syntax:
document (Module module)
Returns a handle for module (see the for object in document loop).

entire

This function is used in a for loop operating on modules, as shown in the following syntax:
entire (Module module)

Returns a handle for module (see the for object in entireloop).

module(containing object)

Declaration
Module module (Object o)

Operation

Returns the module that contains object o.

top

This function is used in for loops operating on projects and modules, as shown in the following syntax:
top (Module module)

Returns a handle for module (see the loops for history record in typeand for object in top).

DXL Reference Manual

for object in all

Syntax

for o in all (module) do {

where:
o is a vatiable of type Object
module is a variable of type Module
Operation

Assigns the variable o to be each successive object in module. It includes table and row header objects and the cells.

This loop respects the current display set; an object is only returned if it is displayed under the current filter, level setting,
and so on. Deleted objects are included when they are visible and excluded when they are not visible. This is the case for all
deleted objects except deleted table header objects, which are always displayed. Object numbering depends on whether
deleted objects are displayed. If they are displayed, they are numbered. If they are not displayed, they are not numbered.

Example
Object o

for o in all current Module do {
print identifier o "\n"

for object in entire

Syntax

for o in entire (module) do {

where:
o is a vatiable of type Object
module is a vatiable of type Module
Operation

Assigns the variable o to be each successive object in module regardless of its deleted state or the current display set. It
includes table and row header objects and the cells.

DXL Reference Manual

339

340

for object in document

Syntax

for o in document (module) do {

where:
o is a vatiable of type Object
module is a variable of type Module
Operation

Assigns the variable o to be each successive object in module. Itis equivalent to the for object in module loop,
except that it includes table header objects, but not the row header objects nor cells.

Example
Object o

for o in document current Module do {
print identifier o "\n"

for object in module

Syntax
for o in module do {
}
where:
o is a variable of type Object
module is a variable of type Module
Operation

Assigns the vatiable o to be each successive object in module in depth first order, including the cells only of any Rational
DOORS native tables. Depth first order is the order in which objects are displayed down the page in a formal module.

This loop respects the current display set; an object is only returned if it is displayed under the current filter, level setting,
and so on. Deleted objects are included when they are displayed and excluded when they are not displayed. Object
numbering depends on whether deleted objects are displayed. If they are displayed, they are numbered. If they are not
displayed, they are not numbered.

DXL Reference Manual

341

Example
Object o

for o in (current Module) do
print (o."Object Heading") "\n"

for object in object

Syntax

for o in parent do {

where:
o is a variable of type Object
parent is an object of type Object

Assigns o to each successive child of object parent.

This loop ignores filters, such that even if objects are filtered, they are still returned by this function. Deleted objects ate
included when they are displayed and excluded when they are not displayed.

Example
Object o
Object po = current

for o in po do {
print (o."Object Heading") " is a child of "
print (po."Object Heading") "\n"

for object in top

Syntax

for o in top (module) do {

where:
o is a variable of type Object
module is a variable of type Module

Assigns o to each successive top-level object in module, including table headers. Top-level objects are those at level 1.

DXL Reference Manual

342

This function accesses all top level objects regardless of the current display set, which is different from the for object
in module loop. Deleted objects are included, if they are displayed. Object numbering depends on whether deleted
objects are displayed. If they are displayed, they are numbered. If they ate not displayed, they are not numbered.

Example
Object o
Module m = current

for o in top m do {
print o."Created On" "\n"

Current object

This section defines functions that are concerned with getting or setting the current object in a Rational DOORS module.

Setting current object

The assignment operator = can be used as shown in the following syntax:
current = Object object
Makes object the current object. See also, the current (object) function.

For large DXL programs, when you set the current object, cast the current on the left hand side of the assignment to the
correct type. This speeds up the parsing of the DXL program, so when your program is first run, it is loaded into memory
quicker. It does not affect the subsequent execution of your program. So:

current = newCurrentObject
becomes
(current ObjectRef) = newCurrentObject

Note: This cast only works for assignments to current. It is not useful for comparisons or getting the value of the current
object.

Example
current = first current Module
current = below current

current = create last below current

current(object]

Declaration

Object current ([Module m])

DXL Reference Manual

Operation

Returns a reference to the current object of module m, or the current module if m is omitted.
Example

Object o = current

Module m = edit "Car user reqgts"

Object o = current m

Navigation from an object

This section defines functions that allow navigation across a Rational DOORS module relative to a given object.

Specific object

The index notation, [], can be used to find a specific object, as shown in the following syntax:
Object ol[int n]
Module m[int n]

This returns the nth child of object o counting from 1, or the nth top-level child of module m, counting from 1.

gotoObject

Declaration
Object gotoObject (int absno, Module m)

Operation

Changes the display of the specified module so that the object with the specified absolute number is brought into the
display, and made current. This perm will change the current view in order to ensure that this object can be displayed.

Returns the Object with that absolute number.

Vertical navigation

Declaration

Object first (Object o)
Object last (Object o)
Object next (Object o)

Object parent (Object o)

DXL Reference Manual

343

344

Object previous (Object o)
Object first (Module m)

Object last (Module m)

Operation

The first five functions take an object argument o, and return an object, which is the object in the position relative to © as
stated by the function:

first returns the first child of object o
last returns the last child of object o
parent returns the parent of object o

previous returns the ptevious object from object o in a depth first tree search (the same
orderas for o in module do)

next returns the next object from object o in a depth first tree seatch (the same order
as for o in module do)

If navigation is attempted to somewhere where no object exists, returns null.
These functions are used for vertical navigation of a Rational DOORS module.

The last two functions return the first and last objects of module min a depth first tree search, that is the first and last
objects as they appear in a displayed module.

Example

This example finds objects relative to the passed object argument:
Object o = current

Object co = first o

if (null co) {
print "Current object has no children.\n"

} else {
if ((last o) == co) {
print "current has one child: " (o."Object
Heading") "\n"
print (identifier o) " == " (identifier
parent co) "\n"

}

if (null o[31])
print "current object does not have 3rd
child\n"

if (null previous o)
print "Current object is first in module.\n"

DXL Reference Manual

345

if (null next o)
print "Current object is last in module.\n"

if (!null next o) {
Object here = previous next o
print (identifier o) " and " (identifier
here) " are the same\n"

}

This example finds objects in the current module:
Object ol = first current Module
Object 02 = last current Module

int count=1

while (ol != 02) {
count++
ol = next ol

}
print count " objects displayed in module\n"

ol = (current Module) [3]
// get 3rd top level object

print identifier ol

Horizontal navigation

These functions are similar to the vertical navigation functions, but take as an argument a call to the function sibling,
which returns a handle to allow navigation between sibling objects (children of the same parent).

Declaration

Object first(sibling(Object o))
Object last(sibling(Object o))
Object next(sibling(Object o))

Object previous(sibling (Object o))

Operation

These functions return an object at the current level of hierarchy: first siblingand last sibling return the
first and last objects. Function first sibling works with the current display set, so hierarchies might disappear as the display
set changes during navigation.

The functions are used for horizontal navigation of a Rational DOORS module.
Example
Object o = current

Object po = parent o

DXL Reference Manual

346

if ((null previous sibling o) &&
(null next sibling o)) {
print (o."Object Heading") " is the only
child of "™ // -(po."Object Heading") "\n"

print "and " (identifier first sibling o) "
== " //- (identifier first sibling o) " ==
" (identifier o) "\n"

Object management

This section defines the functions for creating, moving and deleting objects.

Note: The creation of tables, table rows, columns and cells is handled by special-purpose functions, which are described
in “Tables,” on page 771.

create(object]

Declaration

Object create (Module m)

Object create (Object o)

Object create(after (Object o))

Object create (before (Object o))
Object create(below (Object o))

object create(first (below (Object o0)))

Object create(last (below(Object 0)))

Operation

These functions create an object, whose position is controlled by the argument passed to the function, as follows:

Argument syntax New object is

Module m The first object in module m; any existing objects at level 1
are moved after the new object

Object o At the same level and immediately after the object o

after (Object o) At the same level and immediately after the object o (same
as without after)

below (Object o) The first child of object o

DXL Reference Manual

347

Argument syntax New object is

first (below (Object The first child of object o (same as without first)
0))

last (below (Object o)) The last child of object o

In each case, the function returns the created object.

Example

This example creates newo at the same level and immediately after o.
Object o = current

Object newo = create o

which is equivalent to:

Object o = current

Object newo = create after o

This example creates newo at the same level and immediately before o.
Object o = current

Object newo = create before o

This example creates newo as the first child of o.

Object o = current

Object newo = create below o

which is equivalent to:

Object o = current

Object newo = create first below o

This example creates newo as the last child of o.

Object o = current
o = create last below o
move(object)

Declaration

void move (Object ol,
Object 02)

void move (Object ol,
below (Object 02))

void move (Object ol,
last (below (Object 02)))

DXL Reference Manual

348

Operation
These functions move an object to a position, which is controlled by the second argument passed to the function, as
follows:

Argument syntax Moves

Object o2 object 01 and its descendants to be immediately after object

o2

below (Object o02) object 01 and its descendants to be the first child below 02

last (below (Object object 01 and its descendants to be the last child below 02

02))
Example

This example moves the last object in the module to be the first child of the first object:
Object p = first current Module
Object o = last current Module

move (o, below p)

This example moves the last object in the module to be the last child of the first object:
Object p = first current Module

Object o = last current Module

move (o, last below p)

canDelete

Declaration
string canDelete (Object o)

Operation

Returns null if object o can be deleted; otherwise returns a string "object has descendants". The
softDelete (object) function works on an object that has descendants.

flushDeletions

Declaration
void flushDeletions ()

Operation

Flushes any deletions performed by a DXL program. Normally Rational DOORS structures are only marked for deletion
when the DXL program exits; this command makes any pending deletions happen immediately. Do not flush deletions
inside a for loop, because the loop might depend on the presence of an object.

DXL Reference Manual

349

hardDelete(object)

Declaration
void hardDelete (Object o)

void delete (Object o)

Operation
Removes object o; the object cannot be recovered with undelete following this operation. If the operation fails, returns

an error message (see also the canDelete function).

The form delete is provided for backwards compatibility only. The function hardDelete should be used for all new

programs.

sectionNeedsSaved

Declaration

bool sectionNeedsSaved (Object o)

Operation
Returns true if o is contained within an object hierarchy that has been modified but not saved. Otherwise, returns

false.

softDelete(object)

Declaration
void softDelete (Object o[, bool checkLinks])

Operation

Marks object as deleted. The object is not actually deleted until it is purged. Objects marked for deletion can be recovered
using the undelete (object) function. If the optional argument checkLinks is set to true, then an error will be given if

any of the objects children have incoming links.

undelete(object)

Declaration
string undelete (Object o)

Operation

Restores object 0. On success returns null. On error, the error condition is returned to the user.

DXL Reference Manual

350

purgeObjects_

Declaration

string purgeObjects (Module mod)

Operation

Removes all soft deleted objects from module mod. Once executed, these objects cannot be recovered. The name ends in

> >

to discourage casual use.

Information about objects

This section defines functions that return information about objects.

Object status

Declaration

bool canRead (Object o)
bool canWrite (Object o)
bool leaf (Object o)

bool isDeleted (Object o)
bool isFiltered(Object o)
bool isOutline (Object o)
bool isSelected(Object o)
bool isVisible (Object o)

bool modified (Object o)

Operation

Each function teturns true for a condition that is defined by the function name:

Function Returns true if

canRead the user has read access to object 0

canWrite the user has write access to object o

leaf object o has no children, or has children objects that are deleted, but not
displayed

isDeleted object 0 has been soft deleted

DXL Reference Manual

351

Function Returns true if

isFiltered object o is accepted in the current filter

isOutline object o would appear in outline mode

isSelected object o is selected

isVisible object o is part of the current display set

modified object o has been modified since the last baseline of the module
getColumnBottom

Declaration
Object getColumnBottom (Object o)

Operation

Returns the bottom cell of the table column that contains o; otherwise, returns null.

getColumnTop

Declaration
Object getColumnTop (Object o)

Operation

Returns the top cell of the table column that contains o; otherwise, returns null.

level(object get)

Declaration

int level (Object o)

Operation

Returns the object level of object o. Level 1 is the top level of the module.

identifier

Declaration

string identifier (Object o)

DXL Reference Manual

352

Operation

Returns the identifier, which is a combination of absolute number and module prefix, of object o as a string.

number

Declaration

string number (Object o)

Operation

Returns the hierarchical object number (for example 2.1 .1-0. 1) of object 0 as a string.

Selecting objects

This section defines functions concerned with selecting objects.

getSelection

Declaration
Object getSelection (Module m)

void getSelection (Module m,
Object é&start,
Object &finish)
Operation
The first form gets the first object of a selection in module m.

The second form gets the current selection in module m, and sets object vatiables start and £1nish to the beginning

and end of it.

The start and end objects must be siblings.

setSelection

Declaration
void setSelection (Object o)
void setSelection (Object start,

Object finish)

Operation

The first form makes object o the start and finish of the current selection.

DXL Reference Manual

353

The second form sets the selection in the current module to begin at object start and end at object finish.

The start and end objects must be siblings.

deselect

Declaration
void deselect (Object o)

void deselect (Module m)

Operation

Deselects object o or the current selection in module m.

Object searching

This section defines functions that are used by Find/Replace when highlighting an object, or an object’s attribute.

setSearchObject

Declaration

void setSearchObject (Object, int columnIndex)

Operation

Used by Find/Replace to mark either a specific attribute of the object in a column by surrounding it in a coloted box (the
same color as an outgoing link). This indicates which specific part of the object has been matched by the find operation. If
no valid/visible column is supplied, the object is matked by lines above and below the entite object.

Example
Object o = object (4)
int mainColumn = 1

setSearchObject (0o, mainColumn)

getSearchObject

Declaration

Object getSearchObject (Module, int &columnIndex)

Operation

Returns the object and column number of the highlighted attribute in the given module.

DXL Reference Manual

354

Example
Module m = current
int col

Object o = getSearchObject (m, col)

clearSearchObject

Declaration
void clearSearchObject (Object)

void clearSearchObject (Module)

Operation

Clears the highlighting put in place by setSearchObject. Currently, if an object is provided, that object need not be
the highlighted object, but this could change.

Example
Object o = current

clearSearchObject (o)

highlightText

Declaration
bool highlightText (Object, int start, int stop, int colIndex, bool isHeading)

Operation

Highlights text in the given module, in the given column from cursor position start to cursor position stop.

Example
//Highlights the first 10 characters of the current objects heading
highlightText (current Object, 10, 20, 1, true)

getinPlaceColumnlindex

Declaration

int getInPlaceColumnIndex (Module)

Operation

Returns the column index where in-place editing is taking place.

DXL Reference Manual

355

Miscellaneous object functions

This section defines functions that affect the display of an object or use the clipboard.

inplaceEditing

Declaration
bool inplaceEditing (Module m)

Operation

This returns true if the module mis a formal module which is currently displayed and in-place edit mode is activated for a
displayed attribute.

object

Declaration
Object object (int i[,Module m])

Operation

Returns the object with the specified absolute number. If no Module argument is supplied, the current module is searched.
Example
Object o = object (4)

print identifier o

Clipboard general functions

Declaration

bool cut ()

bool copyFlat ()

bool copyHier ()

bool pasteSame ()

bool pasteDown ()

bool clearClipboard()
bool clipboardIsEmpty ()

bool clipboardIsTransient ()

DXL Reference Manual

356

Operation

Each function performs an action or status check defined by the function name as follows:

Function Action

cut Cuts the current object and all of its children, and stores
them on the clipboard. If the operation succeeds, returns
true; otherwise, returns false.

copyFlat Copies the current object to the clipboard. If the operation
succeeds, returns true; otherwise, returns false.

copyHier Copies the current object and all of its children to the
clipboard. If the operation succeeds, returns true;
otherwise, returns false.

pasteSame Pastes the clipboard contents after the current object, at the
same level as the current object. If the operation succeeds,
returns true; otherwise, returns false.

pasteDown Pastes the clipboard contents one level down from the
cutrent object. If the operation succeeds, returns true;
otherwise, returns false.

clearClipboard Clears the clipboatd. If the operation succeeds, returns
true; otherwise, returns false. The Rational DOORS
object clipboard is also cleared when a module is closed.

clipboardIsEmpty Returns true if the clipboard is empty. Returns false if
the clipboard is not empty.

clipboardIsTransient Returns true if the clipboard contains transient data (the
result of a cut or copy operation). Returns false if the
clipboard does not contain transient data.

splitHeadingAndText

Declaration
string splitHeadingAndText (Object)

Operation

Splits the Object Heading and Object Text of the given object. The heading will be moved to a new object, and the heading
of the given object will be emptied. The given object will be demoted to become the first child of the new object. Returns a
null string on success or an etror message on failure.

Example

Object o = current

string s = splitHeadingAndText (o)

DXL Reference Manual

357

if (null s){
print “Object split successfully.”

} else {
print “Error splitting object

”

getCursorPosition

Declaration

int getCursorPosition (Module, bool &isHeading)

Operation

If no attributes in the given module are activated for in-place editing then -1 is returned. Otherwise it returns the position of
the cursor in the attribute currently being edited, if that attribute is the Object Heading then i sHeading will be set to
true, otherwise it will be set to false.

Example
bool isHeading

nww

print getCursorPosition (current Module, isHeading)

DXL Reference Manual

358

DXL Reference Manual

359
Chapter 15

Links

This chapter describes features that operate on Rational DOORS links:
* About links and link module descriptors

* Link creation

* Link access control

* Finding links

* Versioned links

¢ Link management

e Default link module

* Linksets

* External Links

¢ Rational DOORS URLs

About links and link module descriptors

The underlying database architecture of Rational DOORS links affects the way in which link DXL must be written. Link
modules store linksets, not actual links. Link modules can be placed in any folder in the hierarchy except the database root
folder, but they are normally placed in the folder containing the source module.

Links are stored in the module corresponding to the source of the link. This means that the user must have write permission
in the source module to create or modify a link.

This causes an asymmetry in DXL programs that handle links. Any code trying to access an incoming link must have the
source module loaded. Outgoing links are always immediately available in a formal module. However, the target module
might not be open, in which case the target function returns null.

Rational DOORS links are represented in DXL in by the Link data type.

A folder or project can specify the link modules to be used when a link is created between a pair of modules, the source of
which is in the folder. This source/target module pairing is called a link module desctiptor, which is represented by the
LinkModuleDescriptor data type.

Note: To obtainatype LinkModuleDescriptor handle, you mustuse the for link module descriptor
in folder loop.

DXL Reference Manual

360

Each pairing contains the name of the link module, a description, and a boolean flag overridable. The
overridable flag specifies whether that link module must be used for links between the specified source and target
module. If overridableis false, newly created links must be in that link module; specifying a different link module at
the time a link is created causes a run-time error. If overridableis true, you can specify a different link module. The
modules referenced in the link module descriptor might but need not already exist at the time the link module is specified.

Link creation

This section defines the operators used to create links.

Link operators

Two operators create links, as shown in the following syntax:
Object source -> [string linkModuleName ->] Object target
Object target <- [string linkModuleName <-] Object source

The —> operator creates an outgoing link from object source to object target via link module 1inkModuleName.
If 1inkModuleName is omitted the link goes via the default link module (see “Default link module,” on page 376.

The <- operator creates an incoming link from object source to object target via link module 1inkModuleName.
If 1inkModuleName is omitted the link goes via the default link module.

These operators are also used in the for loops defined in “Finding links,” on page 361.

Example

This example creates a link from the current object of the current module to the first object of module target via the link
module tested by.

(current Object) -> "tested by" -> (first read "target")

This example creates a link to the current object of the current module from the first object of module source via the link
module tested by. Because links are stored in the source module, you must open source for editing to allow the link
to be created.

(current Object) <- "tested by" <- (first edit "source")

Link access control

This section describes a function that reports on access rights for links.

DXL Reference Manual

361

canDelete(link])

Declaration
bool canDelete(Link 1})

string canDelete (Link 1})

Operation
The first form returns t rue if the current Rational DOORS user can delete link 1. Otherwise, returns false.

The second form returns a null string if the current Rational DOORS user can delete link 1. Otherwise, it returns an error

message.

Finding links

This section defines for loops that allow DXL programs to navigate through the links in a module. Links are referred to by
the Link or LinkRef data type.

for all outgoing links

Syntax

for outLink in (Object srcObject) -> (string
linkModuleName) do {

}

where:
outLink is a variable of type Link
srcObject is a vatiable of type Object
linkModuleName is a string variable
Operation

Assigns the variable outLink to be each successive outgoing link from object srcObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, or the string " * " meaning

any link module.

Example
Link 1

DXL Reference Manual

362

for 1 in (current Object) -> "*" do {
string user = 1."Created By"
print user "\n"

for all incoming links

Syntax

for inLink in (Object tgtObject) <- (string
linkModuleName) do {

}

where:
inLink is a variable of type Link or LinkRef
tgtObject is a variable of type Object
linkModuleName is a string variable

Operation

Assigns the variable 1nLink to be each successive incoming link arriving at object tgtObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, or the string " * " meaning any
link module.

Note: This loop only assigns to 1nLink incoming link values for which the source object is loaded; unloaded links are
not detected.

Example
Link 1

for 1 in (current Object) <- "*" do {
string user = 1."Created By"
print user "\n"

for each incoming link

Syntax

for LinkRef in each (Object tgtObject) <- (string
linkModuleName) do {

DXL Reference Manual

363

where:
LinkRef is a variable of type Link or LinkRef
tgtObject is a variable of type Object
linkModuleName is a string variable

Operation

Assigns the variable LinkRef to be each successive incoming link arriving at object tgtObject via link module named
linkModuleName. The string 1inkModuleName can be a specific link module name, or the string " * " meaning any
link module.

Iterates through all incoming link references including those from baselines and soft-deleted modules.

Note: This loop only assigns to LinkRef incoming link values for which the source object is loaded; unloaded links are
not detected.

Example
LinkRef 1

for 1 in each(current Object) <- "*" do {
string user = 1."Created By"
print user "\n"

for all sources

Syntax

for srcModName in (Object tgtObject) <- (string
linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a variable of type Object
linkModName is a string variable
Operation

Assigns the variable srcModName to be the unqualified name of the source module of each successive incoming link
arriving at object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a

wakn

specific link module name, or the string meaning any link module.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

DXL Reference Manual

364

Example

This example prints the unqualified name of all the source modules for incoming links to the cutrent object:
Object o = current

string srcModName

for srcModName in o<-"*" do print srcModName "\n"

for each source

Syntax

for srcModName in each (Object tgtObject) <- (string
linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a vatiable of type Object
linkModName is a string variable
Operation

Assigns the variable srcModName to be the unqualified name of the source module of each successive incoming link
arriving at object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a

"ok n

specific link module name, or the string meaning any link module.

Includes links from baselines and soft-deleted modules, returning the name of the source module (without baseline version

numbers).

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example

This example prints the unqualified name of all the source modules for incoming links to the current object:
Object o = current

string srcModName

for srcModName in each o<-"*" do print srcModName "\n"

DXL Reference Manual

for all source references

Syntax

for srcModRef in (Object tgtObject) <- (string
linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a vatiable of type Object
1inkModName is a string variable

Operation

Assigns the variable srcModRef to be the reference of the source module of each successive incoming link arriving at
object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a specific link

module name, or the string " * " meaning any link module.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example
ModName srcModRef
for srcModRef in o<-"*" do

read (fullName (srcModRef), false)

for each source reference

Syntax

for srcModRef in each (Object tgtObject) <- (string

linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a variable of type Object
linkModName is a string variable

DXL Reference Manual

365

366

Operation

Assigns the vatiable srcModRef to be the reference of the source module of each successive incoming link arriving at
object tgtObject via link module named 1inkModuleName. The string 1inkModuleName can be a specific link
module name, or the string " *"" meaning any link module.

Includes links from baselines and soft-deleted modules.

Note: This loop assigns to modName values for all incoming links, whether the source is loaded or not. This can be used
to pre-load all incoming link sources before using the for all incoming links loop.

Example
ModName srcModRef
for srcModRef in each o<-"*" do

read (fullName (srcModRef), false)

for all link references

Syntax

for linkRef in (Object tgtObject) <- (string
linkModName) do {

}

where:
linkRef is a variable of type LinkRef
tgtObject is a variable of type Object
linkModName is a string variable
Operation

Assigns the vatiable 1inkRef to be the link reference of each successive incoming link artiving at object tgtObject via
link module named 1inkModuleName. The string 1inkModuleName can be a specific link module name, or the
string " * " meaning any link module.

for link module descriptor in folder

Syntax

for linkModDesc in f do {

DXL Reference Manual

367

where:
linkModDesc is a variable of type LinkModuleDescriptor
£ is a variable of type Folder

Operation

Assigns the vatiable 1inkModDesc to be each successive link module desctiptor in folder £.

Versioned links

for all outgoing links

Declaration

for outLink in all (Object srcObject) -> (string linkModName) do {

}

where:
outLink is a variable of type Link
srcObject is a variable of type Object

linkModName is a vatiable of type string

Operation

This will iterate through all outgoing links, including links to baselines.

for all incoming links

Declaration

for inLink in all ((Object tgtObject) <- (string linkModuleName)) do {

}

where:
inLink is a variable of type Link or LinkRef
tgtObject is a variable of type Object

DXL Reference Manual

368

linkModuleName isa string variable

Operation

These will iterate through all incoming links, including links from baselines.

for all source links

Declaration
for srcModName in (Object tgtObject) <- (string linkModName) do {

}

where:
srcModName is a string variable
tgtObject is a vatiable of type Object

linkModName isa string variable

This would include links from baselines, returning the name of the source module, without baseline version numbers.

for all source link references

Declaration
for srcModRef in (Object tgtObject) <- (string linkModName) do {

}

where:
srcModRef is a variable of type ModName
tgtObject is a variable of type Object

linkModName isa string variable

Operation
This would include links from baselines.

DXL Reference Manual

369

sourceVersion

Declaration

ModuleVersion sourceVersion (Link|LinkRef 1)

Operation

This will return document version information for the source module of the specified Link or LinkRef. The new
ModuleVersion type gives access to ModName and Baseline information, via new perms detailed in the rest of

this section.

targetVersion

Declaration

ModuleVersion targetVersion (Link 1)

Operation

This will return document version information for the target module of the specified Link.

echoed outlinks

Declaration
bool echo (Link 1)

Operation

This returns true for an echoed outlink. An echoed outlink is any outgoing link in a module baseline which does not have
a corresponding inlink in the target module leading back to this baseline. Any outgoing link in a baseline will be an echoed
link unless it is a link to the same module or a link to another module in the same Baseline Set.

echoed inlinks

Declaration
bool echo (LinkRef 1)

Operation

This returns true for an echoed inlink. An echoed inlink is any incoming link in a module baseline which does not have a
corresponding outlink in the source module leading back to this baseline. Any incoming link in a baseline will be an echoed
link unless it is a link from the same module or a link from another module in the same Baseline Set.

DXL Reference Manual

370

getSourceVersion(Linkset)

Declaration

ModuleVersion getSourceVersion (Linkset 1s)

Operation

Returns some description of the version of the document in the source of a linkset 1s.

Link management

This section defines functions for managing links. Links are referred to by the Link or LinkRef data type.

addLinkModuleDescriptor

Declaration

string addLinkModuleDescriptor (Folder f£,
string source,
string target,
bool overrideable,
[bool mandatory, |
string linkmod,
string desc)

Operation

Creates a new link module desctiptor for the link between source and target, via link module 11inkmod, in folder £.
If the link module does not exist when this function is called, desc is the description of the link module created. Folder £
must be the folder that contains the module source.

If the operation succeeds, returns a null string; otherwise, returns an error message.

This function checks for duplicate source/target pairings. If the new link module descriptor would create a duplicate,
it returns a message.

The overrideable parameter specifies whether the link module descriptor will be overrideable.
The optional mandatory parameter specifies whether the link module descriptor will be mandatory.

For further information on link module descriptors, see “About links and link module descriptors,” on page 359.

DXL Reference Manual

371

removeLinkModuleDescriptor

Declaration

string removelLinkModuleDescriptor (Folder f, string s, string ¢t)

Operation

Deletes one link module descriptor defined for source s and target ¢, in folder £. If there is more than one s/t pair, the
duplicates remain.

If the operation succeeds, returns a null string; otherwise, returns an error message.

For further information on link module descriptors, see “About links and link module descriptors,” on page 359.

setLinkModuleDescriptorsExclusive

Declaration
void setLinkModuleDescriptorsExclusive (Folder f, ModName m, bool flag)

Operation

Setting the boolean variable f1ag to true has the same effect as selecting the only allow outgoing links as specified in
the above list option in the user interface.

Example
Folder f = current
ModName m = module ("/A Project/A Module")

setLinkModuleDescriptorsExclusive (f, m, true)

getLinkModuleDescriptorsExclusive

Declaration

bool getLinkModuleDescriptorsExclusive (Folder f, ModName)

Operation

Returns t rue if the only allow outgoing links as specified in the above list user interface option is set for the specified
document. The specified document must be a child of the specified folder.

getDescription

Declaration

string getDescription (LinkModuleDescriptor linkModDesc)

DXL Reference Manual

372

Operation
Returns the description of the link module in the specified link module descriptor.
If the operation succeeds, returns a string; otherwise, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 359.

getName

Declaration
string getName (LinkModuleDescriptor IlinkModDesc)

Operation
Returns the name of the specified link module descriptor.
If the operation succeeds, returns a string; otherwise, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 359.

getSourceName

Declaration

string getSourceName (LinkModuleDescriptor IinkModDesc)

Operation
Returns the name of the source in the specified link module descriptor.
If the operation succeeds, returns a string; otherwise, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 359.

getTargetName

Declaration
string getTargetName (LinkModuleDescriptor linkModDesc)

Operation

Returns the name of the target in the specified link module descriptor.
If the operation succeeds, returns a string; otherwise, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 359.

DXL Reference Manual

373

getOverridable

Declaration
bool getOverridable (LinkModuleDescriptor linkModDesc)

Operation
Returns whether the specified link module descriptor is overridable.
If the operation fails, returns null.

For further information on link module descriptors, see “About links and link module descriptors,” on page 359.

setOverridable

Declaration

void setOverridable (LinkModuleDescriptor linkModDesc, bool overridable)

Operation

If overridableis true, sets 1inkModDesc to overridable; otherwise sets 1 inkModDesc to not overridable.
If 1inkModDesc is already overridable, the call fails. You can obtain the value of the override setting using the
getOverridable function.

For further information on link module descriptors, see “About links and link module descriptors,” on page 359.

getMandatory

Declaration
bool getMandatory (LinkModuleDescriptor linkModDesc)

Operation

Returns whether the specified link module descriptor is mandatory.

If the operation fails, returns null.

setMandatory

Declaration

void setMandatory (LinkModuleDescriptor linkModDesc, bool mandatory)

Operation

If mandatory is true it sets 1 inkModDesc to mandatory; otherwise sets 1inkModDesc to not mandatory.

If 1inkModDesc is already mandatory, the call fails.

DXL Reference Manual

374

delete(link]

Declaration
void delete (Link 1)

Operation

Marks link 1 for deletion. The delete only takes effect when the DXL script ends, or when the f1ushDeletions
function is called.

module(link)

Declaration
Module module (Link 1)

Operation

Returns the link module handle of link 1, where linksets are stored as objects.

source

Declaration

string source ({Link|LinkRef} 1)
ModName source ({Link|LinkRef} 1I)
Object source(Link 1)

Operation

The first form returns the unqualified name of the module that is the source of 1, which can be of type Link or
LinkRef.

The second form returns a reference to the module that is the source of 1, which can be of type Link or LinkRef.

The third form returns the source object of link 1.

Example

Object o = current
LinkRef lref
ModName srcModRef

for lref in o<=-"*" do {
srcModRef = source lref
read (fullName (srcModRef), true)

DXL Reference Manual

375

sourceAbsNo

Declaration

int sourceAbsNo ({Link|LinkRef} 1)

Operation

Returns the absolute number of the object that is the source of 1, which can be of type Link or LinkRef.

target

Declaration

string target (Link 1)
ModName target (Link 1)
Object target (Link 1)

Operation

The first form returns the unqualified name of the module that is the target of link 1.

The second form returns a reference to the module that is the target of link 1.

The third form returns the target object of link 1. Returns null if the target module is not loaded, in which case your
program can load the module and re-run target.

Example

Object o = current

Link 1nk

ModName targetMod

for 1nk in o->"*" do {
targetMod = target 1lnk
read (fullName (targetMod), true)

targetAbsNo

Declaration
int targetAbsNo (Link 1)

Operation

Returns the absolute number of the object that is the target of 1.

DXL Reference Manual

376 ‘

Default link module

This section defines functions that operate on the default link module, which is used by drag-and-drop operations from the
Rational DOORS user interface.

getDefaultLinkModule

Declaration

string getDefaultLinkModule ([ModName srcRef,
ModName trgRef])

Operation

Returns the name of the default link module.

Example

print getDefaultLinkModule (module ("Functional
Requirements"),module ("User Requirements"))

setDefaultLinkModule

Declaration
void setDefaultlLinkModule (string linkModName)

Operation

Sets the name of the default link module.

Linksets

This section defines functions that apply to linksets. Linksets are referred to by the Linkset data type.

create(linkset)

Declaration

Linkset create ([Module linkMod,]
string source,
string target)

DXL Reference Manual

377

Operation

Creates a linkset between modules specified by the strings source and target, in the link module 1inkMod. If
1inkMod is omitted, creates a linkset in the current module. If the link module is open for display, the display updates to
show this linkset.

delete(linkset)

Declaration
void delete (Linkset 1s)

Operation
Deletes the linkset 1s. If the linkset is currently being displayed, the link module resets to displaying no linkset.

getSource getTarget

Declaration

string getSource (Linkset Is,
Object &o)

string getTarget (Linkset Is,
Object &o)

Operation
The first function gets the current source object in linkset 15, and sets object variable o to it.
The first function gets the current target object in linkset 15, and sets object variable o to it.

Either function returns null if it succeeds; otherwise, returns an error message.

linkset

Declaration
Linkset linkset (Object 1s)

Operation

Converts a link module’s object 1s into a linkset handle, which can be used with the operations 1oad and delete.

Example

In this example, m must be a link module, which means that the objects it contains are linksets. To make this explicit the

function 1inkset is called.
Module m = current
Object o

Linkset 1ls = linkset o

DXL Reference Manual

378

delete 1s

load

Declaration
string load(Linkset 1s)

Operation

Load the linkset 1s. If the associated link module is open for display, the display updates to show this linkset.

setSource, setTarget

Declaration

string setSource(Linkset Is,
Object o)

string setTarget (Linkset Is,
Object o)

Operation

Sets either the source or the target object in the linkset 1, as displayed in the link module window matrix view, to be object
o. They depend on the module being visible.

If the operation succeeds, returns null; otherwise, returns an error message.

side1

Declaration
Object sidel (Module IinkMod)

Operation

Returns the object that is currently selected on sidel (the source side) of the linkset. Depends on the module being

visible.

Note: When using this perm just after opening the module 1inkMod, the refresh perm should be used beforehand

side2

Declaration
Object side2 (Module IinkMod)

Operation

Returns the object that is cutrently selected on side?2 (the target side) of the linkset. Depends on the module being visible.

DXL Reference Manual

379

Note: When using this perm just after opening the module 1inkMod, the refresh perm should be used beforehand

unload

Declaration

void unload(Linkset 1s)
void unload (Module linkMod)
Operation

Unloads a loaded linkset specified by either the linkset handle 1s, if it is current, or the cutrent linkset of the link module

1inkMod.

getTargetModule

Declaration
ModName getTarget (Linkset 1s)

Operation

Returns the target module reference for the specified linkset.

External Links

ExternalLink

ExternalLink is a new data type representing the end of an external link. An external link is a one way link to the
resource it references. No corresponding link is created in the linked resource.

ExternalLinkDirection

Declaration

ExternallLinkDirection extLinkDir

Operation

Used to describe the direction of an external link. Valid values are inward and outward.

DXL Reference Manual

380

ExternalLinkBehavior

Declaration

ExternalLinkBehaviour extLinkBeh

Operation

Used to describe the behavior of an external link. Valid values are none and openAsURL.

ExternalLink current

Operation

Fetches the current external link. This perm will return non-null only when called from within attribute DXL executing
against an external link. In all other cases it will be null.

Example

External extLink = current

create(external link])

Declaration

string create (Object o,
string description,
string name,
ExternallinkDirection extLinkDir,
ExternallinkBehaviour extLinkBeh,
string body,
ExternallLink& extLink)

Operation

Creates an external link on the specified object. The object must be locked and be modifiable by the current session. On
success, null is returned and the new link is returned in the ExternalLink& variable.

canDelete(external link])

Declaration
bool canDelete (ExternallLink extLink)
string canDelete (Externallink extLink)

Operation

This perm should always return false. If applied to a link from a baseline, an error string will be returned.

DXL Reference Manual

381

source

Declaration

Object source (Externallink extLink)

Operation

Returns information concerning the object having this external link for external links marked as out. For external links
marked as in, the perm returns null.

for all outgoing external links

Declaration
for extLink in (Object o) -> string ““
where:

extLink is a variable of type Externallink

Operation

Iterates over all external outgoing links on the object 0. The supplied string parameter must be the empty string.

for all incoming external links

Declaration
for extLink in (Object o) <- string “%
where:

extLink is a variable of type ExternalLink

Operation
Iterates over all external incoming links on the object 0. The supplied string parameter must be the empty string.
Example

The following example demonstrates the external link behavior. It must be executed from within a module that has at least

one object.
ExternallLink el,ell,el2,el3
//Create 3 external links

print create(current Object, "Descriptionl", "Namel", outward, none,
"https://www.ibm.com", ell)

print create (current Object, "Description2", "Name2", outward, openAsURL,
"https://www.ibm.com/software/support/", el2)

DXL Reference Manual

382

print create (current Object, "Description3", "Name3", inward, openAsURL,
"https://www.ibm.com/software/support", el3)

follow(ell) //This will fail - follow behavior is 'none'.
update ("IBM Web Site",name(ell),direction(ell), openAsURL, body(ell), ell)
follow(ell)

Object o = current
//Iterate over outward links
for el in o->"" do

{

print "Created on " el."Created On" " Last modified on " el."Last Modified
Ol’l" n \I'l"
}
//Iterate over inward links - changing External Link data
for el in o<-"" do

{
string elName = name (el)
string elDesc = description(el)
ExternallinkDirection elDir = direction(el)
ExternallinkBehaviour elBehaviour= behaviour (el)
string elBody = body(el)
if (elBehaviour == none)
{
elName = "New name"
}

update (elDesc, elName, elDir, elBehaviour, elBody, el)

for el in o<-"" do
{
string elName = name (el)

print "'" elName "' created on " el."Created On" " Last modified on "
el."Last Modified On" "\n"

DXL Reference Manual

if (behaviour (el) == openAsURL)
{
print "Opening up '" body(el) "' \n"
print follow(el) "\n"
update ("IBM Support Web Site",name(el),direction(el),
body(el), el)
break

behaviour (el),

Rational DOORS URLs

getURL

Declaration

string getURL (Database d[, bool incSSOToken])

string getURL (Module m[, bool incSSOToken])

string getURL (ModName modNam[, bool incSSOToken])

string getURL (ModuleVersion modVer|[, bool incSSOToken])

string getURL (Object o[, bool incSSOToken])

string getURL (Folder f[, bool incSSOToken])

string getURL (Project pl[, bool incSSOToken])

string getURL (Item i[, bool incSSOTokenl])

Operation
Returns the Rational DOORS URL of the given parameter.

If the optional boolean parameter is true, the returned URL will include the current session user single sign-on token.

getTDSSOToken

Declaration
string getTDSSOToken (string& ssoToken)

Operation

Fetches a RDS single sign-on token for the current session user.

DXL Reference Manual

383

384

Returns null on success, or an error on failure.

decodeURL

Declaration

string decodeURL (string url, string& dbHost, int& dbPort, stringé& dbName,
string& dbId, Itemé& i, ModuleVersion& modVer, int& objectAbsno)

Operation

This perm decodes the given Rational DOORS URL and returns in its output parameters enough details to validate the
URL url against the cutrent database and navigate to the item or module specified by that URL.

The output Item 1 and ModuleVersion modVer will be null if the URL refers to the database root node.
The output ModuleVersion will be null if the URL refers to a project or folder.
The objectAbsno variable will be -1 unless the URL specifies navigation to a particular object.

The function returns null if the URL is successfully decoded, or an error string if the referenced Item cannot be found or
the user does not have read access to the referenced Item.

This perm only works on legacy Rational DOORS URL:s. This perm does not work when the re-director is enabled for
Rational DOORS, for example when the URLs have been transformed using the -utlPrefix switch in dbadmin.

In this case, convert the URLSs to legacy URLs using the perm getLegacyURL ().
Example

The following example demonstrates the Rational DOORS URL behavior. The current example returns the details for the
current Object selected in a module. The second last line of the example can be changed to return details for the
corresponding item.

string urlInfo(string url)

// DESCRIPTION: Returns a string describing the target of the specified URL
string.

{
string result = null
ModuleVersion mv
int objectAbsno

Item i

string dbHost = null
int dbPort

string dbName
string dbID = null

DXL Reference Manual

385

result = decodeURL (url, dbHost, dbPort, dbName, dbID, i, mv, objectAbsno)

if (null result)

{
if (dbID != getDatabaseIdentifier)
{
result = "The dbID does not match the current database.”

}

else if (null i)

{

result = "Database: " dbName ""

}

else if (null mv)

{
// we're going to the top level node

result = (type i) ": " (fullName i) ": " (description i)

else

// it's a module or baseline

Module m = null

if (isBaseline (mv))
{

result = "Baseline: " (fullName mv) " [" (versionString mv) "]:
" (description module mv)

}

else

result = "Module: " (fullName mv) ": " (description module mv)

if (objectAbsno >= 0)

DXL Reference Manual

386

per the rights

DXL Reference Manual

if

}
if
{

(isBaseline (mv))

m = load(mv, true)

string mode = getenv ("DOORSDEFOPENMODE")
if (mode == "READ ONLY" || mode == "r")
{
m = read(fullName (mv))
}
else if (mode == "READ WRITE SHARED" || mode == "s")
{

m = share (fullName (mv))

else

// Check the rights for the user and open the module as

if (canModify(i))

3
I

edit (fullName (mv))

3
Il

read (fullName (mv))

(null m)

// Something went wrong

result = result "\nCould not open module " (fullName mv) ".

387

else

current = m

Object o = gotoObject (objectAbsno, m, true)
if (null o)

{

result = result "\nCould not locate object " objectAbsno

else

result = result "\nObject " objectAbsno ""

if (!null o."Object Heading" && length(o."Object Heading" "")
> 0)

{

result = result "\nObject Heading: " o."Object Heading™ ""
}
if (!'null o."Object Text" && length(o."Object Text" "") > 0)
{

result = result "\nObject Text: " o."Object Text" ""

}

return result

string obj url = getURL(current Object)

print urlInfo (obj url)

DXL Reference Manual

388

getlegacyURL

Declaration

string getlLegacyURL (object o)

Operation

This perm returns the legacy Rational DOORS URL. The legacy URL contains the protocol as "doors". This URL can then
be decoded using decodeURL

Example

ModuleVersion mv

int objectAbsno

Ttem i

string dbHost = null
int dbPort

string dbName

string dbID = null

string objUrl = getURL (current Object)

string legacyUrl

string errorMsg

errorMsg = getLegacyURL (objUrl, legacyUrl)
if(!'null errorMsq)

{

print errorMsg "\n"

else

errorMsg = decodeURL (legacyUrl, dbHost, dbPort, dbName, dbID, i, mv,
objectAbsno)

}

if (!null errorMsgqg)
{
print errorMsg "\n"

else

print "Original URL - " objUrl "\nDB Host - " dbHost "\n"

DXL Reference Manual

389

print "DB Port - " dbPort "\nDB Name - " dbName "\nDB Id - " dbId
"\nAbsolute Number - " objectAbsno "\n"
}
validateDOORSURL

Declaration
string validateDOORSURL (string url)

Operation

This perm takes a Rational DOORS URL and performs a basic check that the URL structure is correct and required
elements are present.

The function returns NULL if the URL is successfully validated, or an error string if there is a problem.

Example
Object o = current
string url = getURL o

string s = validateDOORSURL (url)

if (null s){
print “URL is valid”
} else {

”

print “Error in URL s

isDefaultURL

Declaration
bool isDefaultURL(string URL)

Operation

Returns true if the supplied URL does not have an explicitly specified protocol.

Example
string url = "www.google.com"

string fullURL

if (isDefaultURL (url)) {
fullURL = "http://" url

DXL Reference Manual

390

}
print fullURL

getResourceURL

Declaration
string getResourceURL(Module | Object | Database__ | ModuleVersion| ModName__ | Folder | Project | Item)

Operation

Returns the resource URL of the passed in item.

getResourceURLConfigOptions

Declaration

void getResourceURLConfigOptions(string &dwaProtocol, string &dwaHost, int &dwaPort)

Operation

Gets the dwaProtocol, dwaHost, and dwaPort DBAdmin options configured for this database. The
dwaProtocol, dwaHost, and dwaPort parameters contain the values upon return.

decodeResourceURL

Declaration

string decodeResourceURL(string resourceURL, string &protocol, string& dbHost, int& dbPort, string& repositoryld,
string& dbName, string& dbld, Item&, ModuleVersion&, string& viewName, int& objectAbsno)

Operation

Breaks down a passed-in resource URL into its constituent parts and passes back the information as may be applicable into

the reference parameters.

Returns null on success, error message on failure.

DXL Reference Manual

391

Chapter 16

Attributes

This chapter describes the use of Rational DOORS attributes from DXL
* Attribute values

* Attribute value access controls

* Multi-value enumerated attributes

¢ Attribute definitions

e Attribute definition access controls

e Attribute types

* Attribute type access controls

* Attribute type manipulation

DXL attribute

Attribute values

This section defines constants, operators and functions for working with attribute values. Attribute values are one of the
most important aspects of Rational DOORS.

Many example DXL programs in this manual or in the DXL library use attribute values.

maximumAttributeLength

Declaration

int maximumAttributeLength

Operation

Defines a constant, which equates to the maximum number of characters in a string attribute.

Attribute value extraction

Attribute names are available for use in combination with the . (dot) operator to extract the value of attributes. The syntax
for using the attribute names is:

(Object o). (string attrName)

(Module m) . (string attrName)

DXL Reference Manual

392

(Link 1).(string attrName)

(ModuleProperties mp) . (string attrName)

where:
o is an object of type Object
m is a vatiable of type Module
1 is a variable of type Link
mp is a variable of type ModuleProperties
attrName is a string identifying the attribute

This means that you can write:

o0."Object Heading"

m."Description"

1."Created By"

when you want to refer to the values of a named attribute of object o, module m or link 1.

A selected attribute can be assigned the value of a DXL variable (see “Assignment (to attribute),” on page 393). Conversely,
a DXL variable can be assigned the value of an attribute (see “Assignment (from attribute),” on page 392).

Concatenation (attribute)

The space character is the concatenation operator, which is shown as <space> in the following syntax:
attrRef <space> string s
Concatenates string s onto attrRef and returns the result as a string.

Unlike assignment, the attribute can be of any type, because Rational DOORS automatically converts the value to a string.

Example

string s = "Created On " (current
Object) ."Created On"™ "\n"

Assignment (from attribute)

The assignment operator = can be used as shown in the following syntax:
bool b = attrRef

int i = attrRef

real r = attrRef

string s = attrRef

Date d = attrRef

DXL Reference Manual

393

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1).(string attrName)

Operation
These assign the value of the referenced attribute at trRef to bool b, int i,real r,string s,orDate d.

Boolean assignment is slightly unusual in that it enables the retrieval of the value of an enumeration attribute with two
elements, such as an attribute of type Boolean. The first element in the enumeration maps to £alse; the second element
maps to true.

All assignments return the result of the assignment.

Example

Object o = current

Module m = current

Link 1

int 1 = o."Absolute Number"
real r

if (exists attribute "Cost")
r = o."Cost"

else
r = 0.0

string s = o."Created By"

Date d = o."Created On"

bool b = o."OLE"

print 1 " " r " " s "™ " d" " b "\n"

for 1 in o->"*" do {
string sl = 1l."Last Modified By"
print sl "\n"

}

string desc = m."Description"
print desc "\n"

int 12, i3

i3 = i2 = o."Absolute Number"

Assignment (to attribute])

The assignment operator = can be used as shown in the following syntax:

attrRef = bool b

DXL Reference Manual

394

attrRef = int 1

attrRef = real r

attrRef string s

attrRef = Buffer b

attrRef = Date d

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation
Assigns bool b, int i, real r,string s,Buffer b,orDate d to the attribute reference attrRef.

Again, boolean assignment enables the setting of an enumeration attribute that has two elements in its definition, such as an

attribute of type Boolean.

Example

Object o = current

0."Object Heading" = "Front Matter"
o."Integer Attribute" = 2
o."Accepted" = false

canRead, canWrite(attribute)

Declaration

bool canRead (Module m,
string attrName)

bool canWrite (Module m,
string attrName)

bool canRead (attrRef)

bool canWrite (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

The first two forms return whether the current Rational DOORS user can read or write values of the attribute name

attrName in module m.

DXL Reference Manual

395

The third and fourth forms allow you to use the dot notation directly.

Example

// Test current user permission
Module m

const string ACreatedBy = "Created By"

if (!canWrite (m, ACreatedBy) &&
canRead (m, ACreatedBy)) {
print "I can only read.\n"

}

// Use dot notation

Object o = current

const string ACreatedBy = "Created By"

if (!canWrite o.ACreatedBy && canRead o.ACreatedBy) {
print "I can read the attribute but I cannot
write to it.\n"

type(attribute)

Declaration

string type (Module m,
string attrName)

string type (attrRef)

where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

The first form returns the name of the type of the attribute named at t rName in module m.

The second form enables you to use the dot notation directly.

Example

// Use dot notation

print (type (current Object)."Object Heading") "\n"
// Use module

print (type (current Module,"Object Heading")) "\n"

DXL Reference Manual

396

for module attributes in module

Syntax

for attribute in attributes (module) do {

}

where:

attribute is a string variable

module is a variable of type Module
Operation

Assigns the string at tribute to be each successive attribute that is defined for module.
Example
string modAttrName

for modAttrName in attributes (current Module) do
print modAttrName "\n"

for object attributes in module

Syntax

for objAttrName in module do {

}

where:

objAttrName is a string variable

module is a vatiable of type Module
Operation

Assigns the string objAt trName to be each successive attribute that is defined for objects in module.
Example
string objAttrName

for objAttrName in (current Module) do print objAttrName "\n"

DXL Reference Manual

397

unicodeString

Declaration

string unicodeString (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1).(string attrName)
Operation

Returns the value of the specified attribute as plain text. If the attribute contains rich text including characters in Symbol

font, then these characters are converted to the Unicode equivalents.

Example
Object o = current
string s = unicodeString (o."Object Text")

print s "\n"

getBoundedUnicode

Declaration

string getBoundedUnicode (attrRef, int maxSize)
where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Returns a plain text value derived as in unicodeString (attrRef), but limited to a maximum number of characters

as specified by the maxSize argument.

Example

Object o = current

string s = getBoundedUnicode (o."Object Text", 11)

print s "\n"

DXL Reference Manual

398 ‘

Attribute value access controls

This section describes functions that report on access tights for an attribute value.

canCreate(attribute)

Declaration

bool canCreate (Module m,
string attrName)

bool canCreate (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

The first form returns t rue if the current Rational DOORS user can create values of the attribute that is named

attrName in module m. Otherwise, returns false.

The second form enables you to use the dot notation ditectly.

canControl(attribute)

Declaration

bool canControl (Module m,
string attrName)

bool canControl (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

The first form returns true if the current Rational DOORS user can change the access controls on the attribute that is

named attrName in module m. Otherwise, returns false.

The second form enables you to use the dot notation directly.

DXL Reference Manual

399

canModify(attribute)

Declaration

bool canModify (Module m,
string attrName)

bool canModify (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

The first form returns t rue if the current Rational DOORS user can modify values of the attribute that is named

attrName in module m. Otherwise, returns false.

The second form enables you to use the dot notation ditectly.

canDelete(attribute])

Declaration

bool canDelete (Module m,
string attrName)

bool canDelete (attrRef)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1) . (string attrName)
Operation

The first form returns true if the current Rational DOORS user can delete values of the attribute that is named

attrName in module m. Otherwise, returns false.

The second form enables you to use the dot notation directly.

Multi-value enumerated attributes

This section defines functions that apply to multi-value enumerated attributes.

DXL Reference Manual

400

Assignment (enumerated option)

The assignment operators += and —= can be used as shown in the following syntax:
attrRef += string s

attrRef -= string s

where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1) . (string attrName)

Operation

Adds or removes an enumerated option from the value of the attribute.

Example

This example adds "Australia" to the list of values of the attribute "Country" of the current object, and removes
"Borneo".

Object o = current

o."Country" += "Australia"

o."Country" —-= "Borneo"

isMember

Declaration

bool isMember (attrRef,
string s)

where attrRef is in one of the following formats:
(Object o). (string attrName)
(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Returns true if the option specified as s is present in the multi-value attribute.
Example

if (isMember ((current Object) ."Country", "Australia")) {

addRequirement ("Right-hand drive model
needed")

DXL Reference Manual

401

Attribute definitions

This section defines functions and a for loop that manipulate Rational DOORS attribute definitions. The fundamental
type that is used is At trDe f, which is a handle on an attribute definition.

Note: Reloading a module (for example, changing edit modes) in a DXL script removes any attribute definition values
cutrently assigned to variables in that script. If a module is reloaded, reassign the attribute definitions.

Attribute definition properties

Properties are defined for use with the . (dot) operator and an attribute definition handle to extract information from an

attribute definition, as shown in the following syntax:

(AttrDef ad) .property

The following tables list the properties and the information they extract:

String property Extracts

dx1 DXL text of an attribute that uses DXL attribute.
name The name of an attribute definition.

typeName The name of the type of an attribute definition.
description The description of the attribute definition.

Boolean property

Extracts

canWrite

defval

dx1l

hidden

inherit

module

multi

Whether the user can delete the attribute definition.

Whether the attribute definition is for an attribute that has a default
value.

Whether the attribute definition is for an attribute that has its value
generated by DXL.

Whether the attribute definition is for an attribute that is hidden. This
function is provided only for forward compatibility with future
releases of Rational DOORS.

Whether the attribute definition is for an attribute that is inherited.
Whether the attribute definition is defined for the module.

Whether the attribute definition is of the multi-value enumeration

type.

DXL Reference Manual

402

Boolean property Extracts

nobars Whether the attribute definition is for an attribute that does not alter
change bars.

nochanges Whether the attribute definition is for an attribute that does not
change modification status attributes.

nohistory Whether the attribute definition is for an attribute that does not
generate history.

object Whether the attribute definition is defined for objects.
system Whether the attribute is system defined.
useraccess Whether users can update the value of the attribute.

For example, for a system attribute such as "Last Modified On" it
returns false, because users can never update it, regardless of access
controls. For an attribute such as "Object Heading" it returns true,
because users can update its value provided they have appropriate
access controls.

Any type property Extracts

type An AttrType for the attribute type of the attribute definition.
Default property Extracts

defval The default value for the attribute definition; for correct operation,

always assign the result to a variable of the correct type for the
attribute.

Example

This example uses string properties:

// name

AttrDef ad = find(current Module, "Object Text")
print ad.name // prints Object Text
// typeName

AttrDef ad = find(current Module, "Created On")
print ad.typeName // prints Date

// dx1

DXL Reference Manual

AttrDef ad = find(current Module, "DXL initialized attribute")

if (ad.dxl) {
string dxlVal = ad.dxl
print dxlval "\n"

}

// useraccess
AttrDef ad
Module m = current

for ad in m do {
print ad.name "-" ad.useraccess "\n"

}

This example uses boolean properties:

// object

AttrDef ad = find(current Module, "Description")
print ad.object // prints false

// module

AttrDef ad = find(current Module, "Description")
print ad.module // prints true

// system

if (thisAttr.system) {
ack "System attribute: cannot delete"

}

// canWrite
AttrDef ad

Module m = current

for ad in m do{
print ad.name "-" ad.canWrite "\n"

}

This example uses the property type:

AttrDef ad = find(current Module, "Description")
AttrType at = ad.type

print at.name // prints String

This example uses the property defval for a default value of type string:

AttrDef ad = find(current Module, "Created Thru")
string def = ad.defval

print def // prints Manual Input

DXL Reference Manual

403

404

Concatenation (attribute definition)

The space character is the concatenation operator. All the individual elements of an attribute definition can be
concatenated.

create(attribute definition)

Syntax

AttrDef create ([module|object]
[property value]...
[(default defVal)]
attribute (string attrName))

Operation

Creates a new attribute definition called at t rName from the call to attribute, which is the only argument that must
be passed to create. The optional arguments modify create, by specifying the value of attribute properties. The
arguments can be concatenated together to form valid attribute creation statements.

The keywords module and object specify that the attribute definition that is being created applies to modules or
objects, respectively.

The default property specifies the default value for the attribute definition that is being created as defVal. This property
should always be specified within parenthesis to avoid parsing problems. The value must be given as a string, even if the
underlying type is different. Rational DOORS converts the value automatically.

As required, you can specify other properties. The defaults ate the same as the Rational DOORS user interface.

String property Specifies
dx1 The code that is associated with an attribute in dxIcode.
type The type of the attribute definition as typeName.
description The desctiption of the attribute definition.
Boolean property Specifies
changeBars Whether the attribute definition that is being created alters change bars.
date Whether the attribute definition that is being created alters dates.
hidden Whether the attribute definition that is being created is hidden.
Note that this function is only provided for forward compatibility with future releases of
Rational DOORS.
history Whether the attribute definition that is being created generates history.

DXL Reference Manual

405

Boolean property Specifies
inherit Whether the attribute definition that is being created is to be inherited.
multi A multi-valued attribute definition, if expression evaluates to t rue; otherwise a

single-valued attribute definition.

Example

This example builds an attribute named "Count" which has a default value of 0:
create (default "0") attribute "Count"

This example builds an integer attribute named "Cost" which applies to the module:
create module type "Integer" attribute "Total Cost"

This example builds an integer attribute named "Cost" which applies to the objects in the module, but not the
module itself:

create object type "Integer" attribute "Cost"
This example uses some of the other attribute definition functions:

create module type "String" (default "Help") history true //-
changeBars false date false inherit true //=
hidden false attribute "Usage"

This example creates an "Integer" attribute definition called "Cost2", which applies only to objects:
create attribute "Cost2"

This example creates a multi-valued attribute definition "attribute name", which uses the enumeration type
"enumeration name" and sets its default to two values: valuel and value2.

create type "enumeration name" (default "valuel\nvalue2") //-
multi true attribute "attribute name"

A newline character must be used to separate the different values.
This example defines code associated with attribute called "cost":
AttrDef ad = create object type "Integer" attribute "cost" //-

dx1l "int i = 10 \n obj.attrDXLName = i "

delete(attribute definition)

Declaration

string delete ([Module m,]

AttrDef ad)

Operation

Deletes the attribute definition ad from module m. If m is omitted, deletes ad from the current module.

DXL Reference Manual

406

Example

void deleteAttrDef (string s)
{

string err
AttrDef ad = find(current Module, s)
err = delete (ad)

if (err !="") ack err

1
deleteAttrDef "attribute name"

exists

Declaration

bool exists(attribute (string attributeName))

Operation

Returns t rue if the attribute named at tributeName exists in the current module.

Example

if (exists attribute "Cost")
print "Cost is already there.\n"

find(attribute definition)

Declaration

AttrDef find(Module m,
string attributeName)

Operation

Returns the attribute definition for the attribute named attributeName in module m.

Example
AttrDef ad = find(current Module, "Object Heading")

attributeValue

Declaration

bool attributeValue (AttrDef attrDef,
string s)

DXL Reference Manual

407

Operation
Returns true if the specified string contains valid data for the specified attribute definition. Returns false if the
specified string contains invalid data for the specified attribute.

isAttributeValuelnRange

Declaration

bool isAttributeValueInRange (AttrDef ad, attrRef)
whete attrRef can be one of:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

If the value of the attribute at trRef is within the range defined for Attribute Definition ad, then return true.

Otherwise, return false.

Note: For attributes based on types that are not ranged, always returns true.

getBoundedAttr

Declaration

string getBoundedAttr (attrRef attrdef,
int number)

where attrRef is in one of the following formats:

(Object o). (string attrName)

(Module m) . (string attrName)

(Link 1).(string attrName)

Operation

Returns the first number of characters of the value of attribute definition at trDef.

This is particularly useful when working with attribute values that could potentially be extremely large (for example,
encoded picture data) but the entire value is not required.

Example

Object o = current

print getBoundedAttr (o."Object Text", 3)

DXL Reference Manual

408

hasSpecificValue

Declaration

bool hasSpecificValue ({Link I1|Module m|Object o},
AttrDef attrDef)

Operation

Returns true if the attribute definition attrDef has a specific value for link 1, open module m, or object o. Otherwise,

returns false.

isVisibleAttribute

Declaration
bool isVisibleAttribute (AttrDef attrDef)

Operation
Returns true if the specified attribute is not a hidden attribute. Returns false if the specified attribute is a hidden

attribute.

Note: This only applies to object attributes. It return false when used with module attributes.

modify(attribute definition)

Declaration

AttrDef modify (AttrDef old,
[setproperty value,]
AttrDef new)

Operation
Modifies an existing attribute definition by passing it a new attribute definition. The optional second argument enables you

to set a single property, as follows:

String property Sets

setDefault The default string.

setDXL The attribute to DXL code contained in the string argument.
setName The attribute’s name in a string.

setDescription The attribute description.

DXL Reference Manual

Boolean property Sets
setBars Whether the attribute alters change bars.
setDates Whether the attribute alters dates.
setHidden Whether the attribute is hidden.
setHistory Whether the attribute generates history.
setInherit Whether the attribute is inherited.
setModule Whether the attribute definition is for modules.
setMulti Whether the attribute definition is a multi-valued enumeration type.
setObject Whether the attribute definition is for objects.
Locale property Sets
setLocale The attribute’s locale.

Example 1

AttrDef ad
ad

ad

create object type "Integer" attribute "cost"

modify(ad, object type "Integer" attribute "Costing")

modify(ad, setHistory, true)

ad = modify(ad, setDefault, "123")

Example 2

This example uses Locale properties

Locale loc
AttrDef ad
Modify (ad,

userLocale

find (current Module, "Object Text")

setLocale, loc)

for attribute definition in module

Syntax

for ad in {module|modProps} do {

DXL Reference Manual

409

410

where:

ad is a variable of type AttrDef

module is a variable of type Module

modProps is a vatiable of type ModuleProperties
Operation

Assigns the attribute definition ad to be each successive definition present in the module module, or modProps,
provided the definition applies to either modules or objects.

Example
AttrDef ad

for ad in current Module do {
print "Attribute: " ad.name "\n"

for module level attribute definition in {Module|ModuleProperties}

Syntax

for ad in attributes {mod|modprops} do {

where:
ad is a variable of type At trDef
mod is a variable of type Module
modprops is a variable of type
ModuleProperties
Operation

Assigns ad to be the name of each successive module level attribute definition in the supplied Module, or
ModuleProperties.

Attribute definition example program

// attribute definition DXL example

DXL Reference Manual

/*
Example of Attribute Definition DXL
*/

void print (AttrDef ad) { // print out some information on ad

]

print ad.name ":
print "type \"" ad.typeName "\""

// does ad apply to objects?

print (ad.object ? " object " : "")
// does ad apply to modules?

print (ad.module ? " module" : "")
print (ad.inherit ? " inherit"™ : "")
// are values inherited?

AttrType typ = ad.type

if (typ.name == "Integer" && ad.defval) {
// print any default int value
int d = ad.defval
print " default " 4 ""

}

if (ad.dxl) {
string dxlVal = ad.dxl
print " isDxl \"" dxlval "\""
// does ad use DXL attribute?
}

print "\n"
} // print
// main program
// create two new attributes
create object type "Integer" attribute "Cost"
create module type "Integer" attribute "Total Cost"
AttrDef ad
// print module attribute definitions
print "Module attribute definitions:\n\n"

for ad in current Module do
if (ad.module)
print ad

// print object attribute definitions

print "Object attribute definitions:\n\n"

DXL Reference Manual

411

412

for ad in current Module do
if (ad.object)
print ad
For a larger example of the use of At trType, AttrDef and Rational DOORS attributes, see
SDOORSHOME/1ib/dx1/utils/copyops . inc, which enables the copying of an attribute of an object in one
module to an object in another module. If the target module does not have the necessary attribute types and definitions,

they are automatically constructed.

Attribute definition access controls

This section describes functions that report on access rights for an attribute definition.

canCreateDef

Declaration
bool canCreateDef (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user has create access to the attribute definition attrDef.

canCreateVal

Declaration

bool canCreateVal (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user has create access to the value of the attribute definition at trDef.

canControlDef

Declaration
bool canControlDef (AttrDef attrDef)

Operation

Returns true if the current Rational DOORS user can change the access controls on the attribute definition at trDef.

DXL Reference Manual

413

canControlVal

Declaration
bool canControlVal (AttrDef attrDef)

Operation
Returns true if the current Rational DOORS user can change the access controls on the value of the attribute definition

attrDef.

canDeleteDef

Declaration
bool canDeleteDef (AttrDef attrDef)

Operation
Returns true if the current Rational DOORS user can delete the attribute definition at t rDe f. Otherwise, returns

false.

canDeleteVal

Declaration
bool canDeleteVal (AttrDef attrDef)

Operation
Returns true if the current Rational DOORS user can delete the value of the attribute definition at t rDe f. Otherwise,

returns false.

canCreateAttrDefs

Declaration
string canCreateAttrDefs (Module m)

Operation

Returns true if the current Rational DOORS user has create access for attribute definition in Module m..

DXL Reference Manual

414 ‘

Attribute types

This section defines the functions that manipulate the types of Rational DOORS attributes. The following types are used:
AttrType, which is a handle on an attribute type; and At t rBaseType, which is a handle on an attribute type’s base

type.

AttrBaseType can have the following values:

Scalar Ranged attrDate
Ranged attrInteger
Ranged attrReal
Simple attrText
Simple attrString
Simple attrUsername
Aggregate Enumeration attrEnumeration

They are used for determining the base type of an attribute type, for example, you might have an attribute type called "1
to 10" whose base type is an integer but has limits of 1 and 10.

Ranged types can have a maximum and minimum value.

Attribute type properties

Properties are defined for use with the . (dot) operator and an attribute type handle to extract information from an attribute

type, as shown in the following syntax:

(AttrType at) .property

The following tables list the properties and the information they extract:

String property

Extracts

name

strings[n]

description

description|s]

The name of an attribute type.

provides access to the names of an enumerated attribute type; the nth
clement (counting from 0). In the Rational DOORS user interface,
this is the ‘value’ of the enumerated type.

The description of the attribute type

The desctiptions of the values in an enumerated type.

DXL Reference Manual

Boolean property

Extracts

canWrite Whether the user can delete the attribute type.

system Whether the attribute type is system defined.

Integer property Extracts

colors[n] The nth element (counting from 0) of the array of colors that are used

colours[n]

maxValue

minValue

size

values [n]

in an enumeration attribute type.

The maximum value for an attribute type or tests for the presence of a
maximum value. Can also be of type Real or Date.

The minimum value for an attribute type or tests for the presence of a
minimum value. Can also be of type Real or Date.

The number of elements of an enumerated type.

The nth element (counting from 0) of the atray of values used in an
enumeration attribute type. In the Rational DOORS user intetface,
this is the ‘related number’ of the enumerated type.

Any type property Extracts

type The base type of an attribute type.
Example
// name

AttrType at = find(current Module, "Created Thru")

print at.name

// type

// prints "Created Thru"

AttrType at = find(current Module, "Integer")

print stringOf at.type

print at.type "\n"

// test for a minimum value

AttrType at = find(current Module, "Type with Min Int value")

DXL Reference Manual

415

416

if (at.minValue) {
// Enter here if type has a minimum value.
// The following is valid only if base type
// 1is integer.
// The operator is also defined for real and
// date

int i = at.minValue

}

// strings

AttrType t

t=find (current Module, "TableType")
print t.strings[1]

// size

AttrType at = find(current Module, "Boolean")
print at.size // prints "2"
// names

AttrType at = find(current Module, "Boolean")
print at.strings[0]

print at.strings[1]

// values

AttrType at = find(current, "Boolean")
print at.values[0]

print at.values|[1l]

// colors

AttrType at = find(current, "Boolean")
print at.colours[0]

print at.colors[1]

// canWrite and system

AttrType at

Module m = current

for at in m dof{
print at.name "- system: " at.system"; can
write: " at.canWrite "\n"

DXL Reference Manual

417

Concatenation (attribute base type)

The space character is the concatenation operator, which is shown as <space> in the following syntax:

AttrBaseType abt <space> string s

Concatenates the string s onto the attribute base type abt and returns the result as a string.

find(attribute type)

Declaration
AttrType find (Module m,
string typeName)

Operation

Returns an attribute type handle for the attribute type named typeName in the module m, or null if the type does not exist.

Example
AttrType at = find(current Module, "Boolean")

if (null at)
print "Failed\n"

isRanged

Declaration
bool isRanged (AttrType attrType)

Operation

Returns true if attrType is a range (can take minimum and maximum values). Otherwise, returns false.

isUsed

Declaration
bool isUsed (AttrType attrType)

Operation

Returns true if attrType is in use, in which case, its base type cannot be changed. Otherwise, returns false. For
information on changing an attribute type’s base type, see the modify (attribute type) function.

DXL Reference Manual

418

print(attribute base type)

Declaration
void print (AttrBaseType abt)

Operation

Prints the attribute base type abt in the DXL Interaction window’s output pane.

stringOf(attribute base type)

Declaration
string stringOf (AttrBaseType abt)

Operation

Returns attribute base type abt as a string.

getRealColorOptionForTypes

Declaration
bool getRealColo[u]rOptionForTypes ()

Operation

Returns true if the values contained within the color array of an At trType are real color identifiers. Returns false if

the values are logical color identifiers (the default).

setRealColorOptionForTypes

Declaration
void setRealColo[u]rOptionForTypes (bool
realColors)
Operation
If realColorsis true, sets the values contained within the color array of an At trType to real color identifiers. If

realColorsis false, sets the values to logical color identifiers (the default).

Note: The functions that create and modify an At trType expect arrays of real colors as arguments. Therefore, prior to
any calls being made to either create (attribute type) ormodify (attribute type), this
function must be called setting realColors to true.

DXL Reference Manual

419

setDescription

Declaration

AttrType setDescription(AttrType at, string desc, string &errMess)

Operation

Sets the description for the specified attribute type. Returns null if the description is not successfully updated.

for attribute type in module

Syntax

for at in Module m do {

where:
at is a variable of type AttrType
m is a variable of type Module
Operation

Assigns the variable at to be each successive attribute type definition found in module m.
Example
AttrType at

for at in current Module do {
print at.name "\n"

Attribute type access controls

This section describes functions that report on access rights for an attribute type.

canCreate(attribute type])

Declaration

bool canCreate (AttrType attrType)

DXL Reference Manual

420

Operation
Returns true if the current Rational DOORS user has create access to the attribute type attrType.

canControl(attribute type)

Declaration
bool canControl (AttrType attrType)

Operation
Returns true if the current Rational DOORS user can change the access controls on the attribute type at t rType.

canModify(attribute type)

Declaration
bool canModify (AttrType attrType)

Operation
Returns true if the current Rational DOORS user can modify the attribute type attrType.

canRead(attribute type)

Declaration
bool canRead (AttrType attrType)

Operation
Returns true if the current Rational DOORS user can read the attribute type at trType.

canDelete(attribute type)

Declaration
bool canDelete (AttrType attrType)

Operation
Returns true if the current Rational DOORS user can delete the attribute type at t rType. Otherwise, returns false.

canCreateAttrTypes

Declaration
string canCreateAttrTypes (Module m)

DXL Reference Manual

421

Operation

Returns true if the current Rational DOORS user has create access for attribute types in Module m..

Attribute type manipulation

This section defines functions for creating new attribute types, modifying, and deleting them.

To modify an attribute type, the user must have modify access to it (the canWrite property returns true). No changes
can be made in edit shareable mode or read-only mode. System types cannot be edited (the system property returns
true). For information on properties, see “Attribute type properties,” on page 414.

create(attribute type)

Declaration

AttrType create(string name,
AttrBaseType abt,
string &errmess)

AttrType create(string name,
{int |real|Date} min,
{int |real|Date} max,
string &errmess)

AttrType create(string name,

string codes|[1,
[int values|[1],
[int colors[1,1
[string descs[1,1

string &errmess)

Operation

If the operation fails, all forms of create return an error message in errmess.

The first form creates a new attribute type, of name name and base type abt.

The next form creates a new attribute type named name, of base type int, real or Date, for a range of min to max.

The last form creates enumeration types named name, using enumeration names codes, with optional values values,
colors colors and descriptions descs.

Note: This function expects arrays of real colors as arguments. Therefore, prior to any calls being made to create, the
setRealColorOptionForTypes function must be called setting realColors to true.

DXL Reference Manual

422

Example

// basic create

string errmess = ""

AttrType at = create("Cost", attrInteger, errmess)

if (!null errmess)
print "Attribute type creation failed\n"

// create enumeration type
string names|[] = {"Tested", "Under Test", "Not Tested"}

int values|[] = {1,2,3}

int colors/(] {-1, 20, 14}
string mess = ""
AttrType at = create("Test Status", names, values, colors, mess)

if (!'null mess)
print "Type creation failed\n"

delete(attribute type)

Declaration

bool delete (AttrType at,
string &errmess)

Operation

Deletes the At trType whose handle is at. If the operation fails, returns an error message in errmess.

modify(attribute type)

Declaration

AttrType modify (AttrType type,

string newName

[, string codes[1,
int values[],

int colors[1,
string descs|[]

[, int arrMaps([1,11
string &errmess)

AttrType modify (AttrType type,
AttrBaseType new,
string &errmess)

DXL Reference Manual

423

Operation

The first form, without any optional parameters, changes the name of the specified attribute type to newName. If supplied,
codes, values, colors and descs modify those properties of an existing enumerated type. In the user interface, the
term values maps to codes, and the term related numbers maps to values. If the type is being used by an attribute,
colors cannot be added where they were not previously assigned, and, arrMaps must be supplied in order to map old
values to the new ones.

The second form changes the base type of the specified attribute type. If type is in use the call fails.

Note: Color numbers now refer to real colors rather than logical colors. Enumerated attribute types in Rational DOORS
4 have their colors translated during migration.

For all forms, the errmess argument is currently not used, but is resetved for future enhancements. You can trap errors
using lastError and noError.

Note: This function expects arrays of real colors as arguments. Therefore, prior to any calls being made to modify, the
setRealColorOptionForTypes function must be called setting realColors to true.

Example

//This example adds “Invalid Test” to the end of the list of possible
enumeration values, leaving the remaining value intact.

AttrType modifyAndAdd (AttrType atTypeToEdit, string sTypeName, string
arrValues|[], int arrOrdinals[], int arrColours|[], stringé& sErrMsqg)

{
int arrMaps[atTypeToEdit.size + 1]

int i

for (i = 0; 1 < atTypeToEdit.size + 1; i++) {
arrMaps[i] = 1i;
}

return modify(atTypeToEdit, sTypeName, arrValues, arrOrdinals, arrColours,
arrMaps, sErrMsg)

}

setRealColorOptionForTypes (true)

AttrType at = find(current Module, "Test Status")
string new strings[at.size+l]

int new values[at.size+1]

int new colors[at.size+1]

DXL Reference Manual

424

int i=0

for(i = 0; 1 < at.size; 1i++)

{
new strings[i] = at.strings[i]
new values[i] = at.values[i]
new colors[i] = at.colors[i]

string errmsg

new_strings[at.size] = "highest" // This is name of new value for type
new values[at.size] = at.size

new colors[at.size] = -1

string at name = at.name

AttrType at new = modifyAndAdd(at, at name, new strings, new values, new colors,
errmsg)

AttrType modifyAndAdd (AttrType atTypeToEdit, string sTypeName, string
arrValues|[], int arrOrdinals[], int arrColours[], stringé& sErrMsgqg)

{
int arrMaps[atTypeToEdit.size + 1]

int i

for (i = 0; i < atTypeToEdit.size + 1; i++) {
arrMaps[i] = 1i;
}

return modify(atTypeToEdit, sTypeName, arrValues, arrOrdinals, arrColours,
arrMaps, sErrMsq)

}

setRealColorOptionForTypes (true)

AttrType at = find(current Module, "Test Status")

string new strings[at.size+l]

DXL Reference Manual

425

int new values[at.size+1]

int new colors[at.size+1]

int i=0

for(i = 0; 1 < at.size; i++)

{
new strings([i] = at.strings[i]
new values[i] = at.values[i]
new colors([i] = at.colors[i]

string errmsg

new strings[at.size] = "Invalid Test" // This is name of new value for type
new values[at.size] = at.size

new colorslat.size] = -1

string at name = at.name

AttrType at new = modifyAndAdd(at, at name, new strings, new values, new colors,
errmsqg)

setMaxValue

Declaration
bool setMaxValue (AttrType type,
{int|real|Date} maxValue,
bool maxApplies)
Operation

Specifies a maximum value for the ranged attribute type type, provided maxAppliesis true.

If the call succeeds, returns true; otherwise, returns false. If maxApplies is false, the maximum value is ignored,
and the function returns true.

If the specified maximum value is less than the minimum value, the call fails.

If the specified type is not a ranged type, or is not of the same type as maxValue, a run-time error occurs, which can be
trapped using lastError and noError.

Example

Module m = current

DXL Reference Manual

426

AttrType atype = find(m, "MyType")
string sBaseType = stringOf (atype.type)

if (sBaseType == "Integer")

{
// set a maximum of 100, and enable the
// maximum

setMaxValue (atype, 100, true)

setMinValue

Declaration

bool setMinValue (AttrType type,
{int|real|Date} minValue,
bool minApplies)

Operation
Specifies a minimum value for the ranged attribute type type, provided minAppliesis true.

If the call succeeds, returns true; otherwise, returns false. If minAppliesis false, the maximum value is ignored,
and the function returns true.

If the specified maximum value is less than the minimum value, the call fails.

If the specified type is not a ranged type, or is not of the same type as minValue, a run-time error occurs, which can be
trapped using lastError and noError.

Example

Module m = current

AttrType atype = find(m, "MyType")
string sBaseType = stringOf (atype.type)

if (sBaseType == "Integer")

{
//set a minimum of 10, and enable the minimum
setMinValue (atype, 10, true)

DXL Reference Manual

427

DXL attribute

DXL attribute is an option on the Define Attribute window, which enables you to write a DXL program that calculates the
value of the attribute being defined. The calculation only takes place the first time the attribute is accessed, ot if it is later
cleatred to null and is subsequently accessed again. This means the DXL code is not executed when the containing module is
opened, but when some event occurs that causes the attribute to be accessed. For example, the event could be because the
attribute is being displayed in a column, or because the user opens the Formal Object Editor window on an object with a
DXL attribute value.

DXL attribute provides a means of initializing an attribute using DXL, and then caching that value so that subsequent
attribute access does not involve recalculation. If the code resets the attribute to the null string, recalculation occurs on the
next access. Just setting the value to the null string is not sufficient to invoke recalculation. The attribute value must be
accessed after the reset to null, for a recalculation to take place.

For example, if attribute "Outgoing" is displayed in a Rational DOORS column, the initial value is calculated for each
"Outgoing" attribute as the user views it. If mote outgoing links are created, the attribute values do not change; to do
this, the recalculation must be forced, possibly from another DXL application that contains the following script fragment:

Object o

for o in current Module do
o0."Outgoing" = (string null)

nn

The (string null) ensures a null value, as compared to the integer 0, or the empty string

Note: The perm void refresh (Module m) should not be used in DXL attributes.

attrDXLName

Declaration
Object obj

const string attrDXLName

Operation

DXL attribute programs run in a context where the variable obj is already declared to refer to the object whose attribute
is being calculated.

The constant at t rDXLName can be used instead of a literal attribute name to refer to the attribute value that is being
calculated. This enables one piece of DXL attribute to be used for several attributes without being modified.

Example
obj.attrDXLName = today

DXL attribute example program

This example in SDOORSHOME/1ib/dx1l/attrib/impact.dxl:

// impact.dxl -- example of DXL attribute

DXL Reference Manual

428

/*

DXL attribute provides a means of initializing

an attribute using DXL, so that subsequent

accesses of the attribute do not involve

re-calculation.

This example of DXL attribute requires that an

integer attribute named "Outgoing" exists and

has been defined with the Rational DOORS GUI to use this
file as its DXL value.

"Outgoing" is set to the number of links

leaving its object.

*/
Link 1
int count = 0

// obj is the predeclared object whose attribute
// we are calculating

for 1 in obj->"*" do count++
// count outgoing links
obj."Outgoing" = count

// initialize the cached value
// resetting to (string null)
// in a DXL program

// will force re-calculation
// end of impact.dxl

DXL Reference Manual

Chapter 17

Access controls

This chapter describes access controls:

* Controlling access

* Locking

¢ Example programs

Controlling access

This section defines properties, operators, functions and for loops that work with access controls. Many of these elements
use the data types Permission and AccessRec.

Properties

The following properties of type Permission are used for setting access controls, using the assighment operator.

none

read This is automatically given for modify, create, delete, or control.

create Automatically confers read access. Automatically given for control.

modify Automatically confers read access. Automatically given for control.

delete Automatically confers read and modify access.

control Automatically confers read, modify and create access.

write This is a bitwise OR of modify, create and delete;itis only supported

for compatibility with earlier releases.

change Identical to control, this is only supported for compatibility with eatlier releases.

Operators

As with other data types, the assighment operator = is used to set a permission, as shown in the following syntax:

Permission p = permission

DXL Reference Manual

429

430

where:
p is a variable of type Permission
permission is a variable of type Permission

The | (pipe) operator performs bitwise OR operations on permissions as shown in the following syntax:
Permission x | Permission y
The & operator performs bitwise AND operations on permissions as shown in the following syntax:

Permission x & Permission y

The == relational operator performs comparison on permissions as shown in the following syntax:
Permission x == Permission y

Example

Permission all = read|create|modify|delete|control

Access status

Declaration

bool read (AccessRec ar)
bool create (AccessRec ar)
bool modify (AccessRec ar)
bool delete (AccessRec ar)
bool control (AccessRec ar)
bool write (AccessRec ar)

bool change (AccessRec ar)

Operation

Each of the first five functions returns t rue if the access record confers modify, create, delete, control, or read permission.
Both write and change are supported for compatibility with earlier releases; write returns true if the access record
confers modify permission, and change returns t rue if the access record confers control permission. If the specified
permission is not present, each function returns false.

Note: When using these functions with groups, any information returned for create permission is redundant as there is
no create permission on groups.

partition

Declaration

bool partition (AccessRec ar)

DXL Reference Manual

431

Operation

Returns true if the data that is associated with the access record has been partitioned out.

get, getDef, getVal

Declaration

AccessRec get ({Object o|Module m|Project p|
Folder f|Item i|View v|Group g},
[AttrType at,]
{string user|string group,
string &message)

AccessRec get{Def|Val} (Module m,
AttrDef ad,
{string user|string group},
string &message)

Operation

The first form returns the access record for object o, module m, project p, folder f, item i, view v, or group g for Rational
DOORS user with name user, or group with name group. Optionally, for a module, the access record can be for a
specific attribute type at.

The function getDef returns the access record for the attribute definition ad in module m.
The function getVal returns the access record for the attribute value of the attribute definition ad in module m.

For all these functions, the strings user or group, are the Rational DOORS user or group, to whom the access record
applies. If they are null, the function returns the default access record. If the operation succeeds, returns a null string in
message; otherwise, returns an error message.

If no specific access control setting has been made, these functions return null. However, a parent object or module setting
might be being inherited.

getlmplied

Declaration

string getImplied({Object o|Module m|Project p|Folder f|Item i}, Permission &ps)

Operation

Returns the permissions that are inherited by children of the resource when the user has create permission to the resource
(extra access propagated by create).

Returns the permissions inherited by children of object 0, module m, folder £, item 1, or view v. Optionally, when
specifying a module, the permissions can be for a specific attribute type at.

If the operation succeeds, returns a null string; otherwise, returns an error message.

DXL Reference Manual

432

If no specific extra access setting has been made, these functions return null. However, a parent object or module setting

might be being inherited.

inherited, inheritedDef, inheritedVal

Declaration

string inherited({Object o|Module m|Project p|Folder f|Item i|View v}
[,AttrType at])

string inherited{Def|Val} (Module m, AttrDef ad)

Operation
These functions set access control to be inherited rather than specific.

The first form does this for object 0, module m, project p, folder £, item 1, or view v. Optionally, for a module, the access

record can be for a specific attribute type at.

The inheritedDef function does this for the attribute definition ad in module m. The inheritedVval function
does it for the attribute value of the attribute definition ad in module m.

If the operation succeeds, returns null; otherwise, returns an error message.

isAccesslnherited

Declaration

string isAccessInherited({Object o|Project pl|Folder f|Item i|View v},
bool &inherited)

string isAccessInherited (Module m, [AttrType at,]bool &inherited)

string isAccessInherited{Def|Val} (Module m, AttrDef ad, bool &inherited)

Operation

Returns whether the access rights are inherited.

The first form does this for object o, project p, folder £, item 1, or view V.

The second form does this for module m. Optionally, the access record can be for a specific attribute type at.

The isAccessInheritedDef function does this for the attribute definition ad in module m. The
isAccessInheritedVal function does it for the attribute value of the attribute definition ad in module m.

If the operation succeeds, returns null; otherwise, returns an error message.

DXL Reference Manual

433

isDefault

Declaration

bool isDefault (AccessRec ar)

Operation

Returns true if ar is the default access record for a particular item; otherwise, returns false.

Example
AccessRec ar
// process module (exclude inherited rights)

for ar in current Module do
{
// only relevant if default
if (isDefault (ar) == true)
{
// .. do stuff

set, setDef, setVal

Declaration

string set ({Object o|Module m|Project p|Folder f|Item i|View v|Group g},
[AttrType at,]
Permission ps,
{string user|string group)

string set{Def|Val} (Module m,
AttrDef ad,
Permission ps,
{string user|string group)

Operation

The first form sets permission ps on object 0, module m, project p, folder £, item 1, view v or Group g, for Rational
DOORS user with name user, or group with name group. Optionally, for a module, the permission can be for a specific
attribute type at.

The function setDef sets the permissions for the access list of the attribute definition ad in module m.
The function setVal sets the permission of all values of the attribute definition ad in module m.

For all these functions, if user/group is null, the function modifies the default access control. If the operation succeeds,
it returns a null string; otherwise, it returns an error message. When retrieving access for an item and the user/group name
retrieved is being assigned to a string, ensure that an empty string is appended to the end of the assigned string.

DXL Reference Manual

434

In some circumstances it might be possible to add the Administrator user to a Rational DOORS access list. This should be
guarded against.

Example

set (current Object, read|modify|delete|control, doorsname)

setimplied

Declaration

string setImplied({Object o|Module m|Project pl|Folder f|Item 1i},
Permission ps)

Operation
Sets the extra access control propagated by create for children of the resource.
Sets permission ps on object 0, module m, project p, folder £, item 1, or view V.

If the operation succeeds, returns a null string; otherwise, returns an error message.

specific, specificDef, specificVal

Declaration

string specific({Object o|Module m|Project pl|Folder f|Item i|View v},
[AttrType at])

string specific{Def|Val} (Module m, AttrDef ad)

Operation

These functions set access control to be specific rather than inherited. The item is left with specific access rights, which are
identical to the inherited rights at the time the function is called. These functions have no effect if the access rights are
already specific.

The first form does this for object 0, module m, project p, folder £, item 1, or view v. Optionally, for a module, the access
rights can be for a specific attribute type at.

The specificDef function does this for the attribute definition ad in module m. The specificVal function does it
for the attribute value of the attribute definition ad in module m.

If the operation succeeds, returns null; otherwise, returns an error message. If the user does not have control access, the
call fails.

DXL Reference Manual

435

unset, unsetDef, unsetVal, unsetAll

Declaration

string unset ({Object o|Project p|Module m| Folder f|Item i|View v|Group g},
[AttrType at,]
{string user|string group})

string unset{Def|Val} (Module m,
AttrDef ad,
{string user|string group})

string unsetAll ({Object o|Project p|Module m| Folder f|Item i|View v|Group g},
[AttrType at,])

string unsetAll{Def|Val} (Module m, AttrDef ad)

Operation

The first form clears the permission set on object o, project p, folder £, item 1, View v, or Group g for Rational DOORS
user with name user, or group with name group.

The second form clears the permission set on module m. Optionally, clears the permission for a specific attribute type at.
The function unsetDef clears the permissions set for the access list of the attribute definition ad in module m.

The function unsetVal clears the permissions set for all values of the attribute definition ad in module m.

The function unsetAll clears all user permissions set for the specified argument.

The function unsetAl1Def clears user permissions set for the access list of the attribute definition ad in module m.
The function unsetAl1lVal clears user permissions set for all values of the attribute definition ad.

If user (or group) is null, the call fails. If the operation succeeds, returns the null string; otherwise, returns an error

message.

Note: Care should be taken when using these perms. The unsetting of the access controls is immediate, so if the user is
removing specific access controls for an item, they must ensure that the default user has control access before use.
Furthermore, care should be taken when using these perms in loops.

Example
Module m = current
string err = unset(m, "joe")

if (!'null err){
infoBox (err)

DXL Reference Manual

436

username

Declaration

string username (AccessRec a)

Operation

Returns the user name associated with the access record a. A null result means that access record a is the default record.

Example
string mess
AccessRec a = get(current Object, null, mess)

if (null mess) {
if (null a) {
print "default record"

} else {
print (username a) "\n"
}
} else {
print "error getting access record: " mess

for access record in type

Syntax

for ar in type do {

where:
ar is a vatiable of type AccessRec
type is a variable of type Module, Object, Folder, Item, View, AttrDef,
Group or AttrType
Operation

Assigns the variable ar to be each successive access record in type, excluding inherited access rights.

Example
AccessRec ar

for ar in current Object do {
string user = username ar

DXL Reference Manual

437

if (null user) {
print "default"
} else {
print user

}

print " can read? " (read ar) "\n"

for access record in all type

Syntax
for ar in all type do {

where:
ar is a vatiable of type AccessRec
type is a variable of type Module, Object, Folder, Item, View, AttrDef, or
AttrType
Operation

Assigns the variable ar to be each successive access record in type, including inherited access rights.

for access record in values

Syntax

for ar in values (AttrDef ad) do {

where:
ar is a variable of type AccessRec
ad is a variable of type At trDef
Operation

Assigns the vatiable ar to be each successive record found for the list of attribute values obtained by passing the attribute
definition ad to the function values.

Example
AccessRec ar

AttrDef ad = find(current, "Object Heading")

DXL Reference Manual

438

for ar in values ad do {
print (username ar) " can read " (read ar)
"\nll

Locking

This topic defines functions that are used in conjunction with access controls to implement shared access to modules.

In the context of access control, a section is defined as anything with a specific access control, along with everything that
inherits that access control.

The lock manager functions are described in “Locking,” on page 881.

isLockedByUser

Declaration

bool isLockedByUser (Object o)

Operation

Returns true if the specified object is locked by the current user when in edit shareable mode. Otherwise, returns false.

This function is not equivalent to checking whether the current user can modify the given object.

lock(object)

Declaration

string lock (Object o)

Operation

Locks object o. If the operation succeeds, returns null; otherwise, returns an error message.

This function only makes sense when o is in a module that has been opened shareable.

Example

if (isShare current) {
string mess = lock current Object

if (!'null mess)
print "lock failed: " mess "\n"

DXL Reference Manual

439

Unlock object functions

Declaration
bool unlockDiscard{All|Section} (Object o)

bool unlockSave{All|Section} (Object o)

Operation

These functions unlock sections. The functions unlockDiscardAll and unlockSaveAll unlock all sections in the
module containing o. The functions unlockDiscardSection and unlockSaveSection unlock the section
containing o.

The functions either discard changes or save changes before unlocking according to the function name.

If the operation is successful, returns true; otherwise, returns false.

Example programs

This section contains two example programs.

Setting access control example

This example shows how to set the default specific access rights, assuming the calling user has permission so to do.
// access control setting example

/*
Example Access control setting program.
Sets all objects in the current display set
(i.e. respecting filtering, outlining, level,
etc.) to have a specific access control, thus
enabling them to be locked in shareable mode.
Current module must be editable, and is then
reopened shareable.
*/
if (null current Module) {
ack "Please run this program from a module"

halt
} else if (!isEdit current) {
ack "current module must be editable to set
permissions"
halt
} else if ((level current Module)==0) {

ack "Please set a specific level display\n" //-
"all objects at this level will be made\n"

DXL Reference Manual

440

//=
"lockable by giving them a specific
default\n" //-
"access control"

halt

}

Object o

string modName = (current Module) ."Name" ""

for o in current Module do {
string err

if (level o != level current Module)
// just make selected level lockable
continue

// alter the default ACL record
err = set(o,read|modify|delete|control,null)

if (!'null err) {

ack "problem setting default ACL: " err
halt
}
}
save current // save our work

if (close current)
share modName

// open with new lockable sections

Reporting access control example

The following program illustrates some more access control features:
// access control example
/*
Example Access Control DXL
*/
if (null current Module) {

ack "Please run this program from a module"

halt
}

// function to display an ACL record:
bool showAcl (string user, AccessRec acl, string type)

string thisuser = (username acl)

DXL Reference Manual

if (thisuser != user) return false
print "User: " user " has "
bool something = false

if (read acl) {
something = true
print "read "

}

if (modify acl) {
something = true
print "modify "
}

if (delete acl) {
something = true
print "delete "
}

if (control acl) {
something = true
print "control "

}
if (!something) print "no "
print "powers on " type "\n"
return true
}
string user = doorsname
AccessRec acl
bool found = false

for acl in current Module do {

if (showAcl (user, acl, "current module"))

found = true
break

}
if (!found)

print "default permission in current module\n"

found = false

for acl in current Object do {

if (showAcl (user, acl, "current object"))

found = true
break

DXL Reference Manual

441

442

if (!found)
print "default power on current object\n"

string fail
fail = set (current Module, change, user)

if (!null fail)
print "Setting change failed for current
module: " fail "\n"

DXL Reference Manual

Chapter 18
Dialog boxes

This chapter describes DXL facilities for creating Rational DOORS dialog boxes, which are any windows that are
constructed by DXL. Throughout this manual, the term dialog box is used to mean Rational DOORS dialog box. This

chapter covers the following facilities:

Icons

Message boxes

Dialog box functions

Dialog box elements
Common element operations
Simple elements for dialog boxes
Choice dialog box elements
View elements

Text editor elements

Buttons

Canvases

Complex canvases

Toolbats

Colors

Simple placement
Constrained placement
Progress bar

DBE resizing

HTML Control

HTML Edit Control

An extensive example of all dialog box functions can be found in ddbintro.dx1 in the DXL example directory.

lcons

This section defines constants and functions for using icons within dialog boxes. The functions use the Icon data type.

DXL Reference Manual

443

444

Constants

Declaration

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

Icon

iconDatabase
iconProject
iconProjectCut
iconProjectDeleted
iconProjectOpen
iconProjectOpenDeleted
iconFormal
iconFormalCut
iconFormalDeleted
iconLink

iconLinkCut
iconLinkDeleted
iconDescriptive
iconDescriptiveCut
iconDescriptiveDeleted
iconFolder
iconFolderCut
iconFolderDeleted
iconFolderOpen
iconFolderOpenDeleted
iconDatabase
iconGroup
iconGroupDisabled
iconUser
iconUserDisabled
iconReadOnly

iconNone

iconAuthenticatingUser

DXL Reference Manual

445

Operation

These standard icon values can be used in functions where a value of type Icon is required. Icon constants starting
folder ate for tool bars; those starting i con are for list and tree views. Use the set (icon) function to specify an
icon. Use the same function with iconNone to remove an icon. You can also load icons from disk. For further
information, see the 1oad function.

Example

set (theTab, 0, iconDatabase)

load

Declaration

Icon load(string fileName)

Operation
Loads an icon from disk. The £ileName argument must be a full path.

For Windows platforms, if the file has an extension . ico, Rational DOORS assumes it is a Windows icon file; otherwise,
Rational DOORS assumes it is a Windows bitmap.

Masks only work with icon files, not with bitmaps. An icon file should represent an image of either 16x16 or 32x32 pixels.
The file should have no more than 8 bits per pixel (256 colors).

On UNIX platforms, icon files are . xpm (X PixMap) files; icons are Motif Pixmaps. For further information, see the XPM
documentation.

Example

Icon i = load("c:\\test.ico")

set (theTab, 0, 1)

destroyl(icon)

Declaration

void destroy(Icon iconName)

Operation

Frees up resources used by iconName. Use this when you destroy a dialog box; for further information, see the
destroy(dialog box) function.

Example

Icon ic = load("c:\\test.ico")
set (theTab, 0, ic)

// .. then on program close

destroy ic

DXL Reference Manual

448 ‘

Message boxes

This section defines functions that create message boxes. Message boxes provide a convenient way of informing users of
events, such as confirmations or errors. The functions use the DB data type.

acknowledge

Declaration

void ack[nowledge] ([DB box,]
string message)

Operation

Pops up a message box containing the message and an Acknowledge or OK button, depending on platform, in a manner
compatible with the rest of Rational DOORS. Execution of the DXL program is suspended until the user clicks
Acknowledge or OK.

The optional DB box argument positions the message box over a specific dialog box.

Example

ack "Invalid weight supplied for grommet"

errorBox

Declaration

void errorBox ([DB box,]
string message)

Operation

Pops up a message box containing the error and an Acknowledge or OK button, depending on platform, in a manner
compatible with the rest of Rational DOORS. Execution of the DXL program is suspended until the user clicks
Acknowledge or OK.

The optional DB box argument positions the message box over a specific dialog box.

Example

errorBox "Path does not exist"

infoBox

Declaration

void infoBox ([DB box,]
string message)

DXL Reference Manual

447

Operation

Pops up a message box containing information and an Acknowledge or OK button, depending on platform, in a manner
compatible with the rest of Rational DOORS. Execution of the DXL program is suspended until the user clicks
Acknowledge or OK.

The optional DB box argument positions the message box over a specific dialog box.

Example

infoBox "Insufficient space on specified drive"

warningBox

Declaration

void warningBox ([DB box,]
string message)

Operation

Pops up a message box containing the warning and an Acknowledge or OK button, depending on platform, in a manner
compatible with the rest of Rational DOORS. Execution of the DXL program is suspended until the user clicks
Acknowledge or OK.

The optional DB box argument positions the message box over a specific dialog box.

Example

warningBox "This deletes all files - continue?"

confirm

Declaration

bool confirm([DB box,]
string message,
int severity)

Operation

Pops up a confirmation box containing the message and buttons labeled Confirm and Cancel. The severity argument
controls the icon displayed in the message box; the value can be one of msgInfo (blue i), nsgWarning (ted X),
msgError (yellow !), or msgQuery (black ?). The DXL program is suspended until the user clicks one of the buttons,
when the function returns true for Confirm and false for Cancel.

Note: The use of ‘\t’ within the message string is not supported.

The optional box argument positions the message box over a specific dialog box.

Example

if (confirm "Delete all records?")
deleteRecords

DXL Reference Manual

448

query

Declaration

int query ([DB box,]
string message,
string[] buttons)

Operation

Displays a message box with the message and buttons with the labels provided in the string array. The DXL program is
halted until the user clicks one of the buttons, when the function returns with the index for that button.

The optional DB box argument positions the message box over a specific dialog box.

Example
string analyopts[] = {"Linear", "Quadratic",
"Spline"}
int mode = query("Select analysis model",
analyopts)

if (mode == 0) {
doLinearAnalysis

} else if (mode == 1) {
doQuadraticAnalysis

} else {
doSplineAnalysis

}

messageBox

Declaration

int messageBox ([DB box,]
string message,
string buttonsl|],
int severity)
Operation

Displays a message box with the message, and buttons with the labels provided in the string array. The severity
argument controls the title of the message box; the value can be one of msgInfo (blue i), nsgWarning (red X),
msgError (yellow!), or msgQuery (black ?). The DXL program is halted until the user clicks one of the buttons, when
the function returns with the index for that button.

The optional DB box argument positions the message box over a specific dialog box.

Example

string buttons[] = {"Yes", "No", "Cancel"}

DXL Reference Manual

449

int answer = messageBox ("Do you want save?",
buttons, msgQuery)

print answer

confirm("Really?", msgWarning)

Dialog box functions

This section defines functions for dialog boxes, which are built around the data type DB. Dialog boxes contain elements,
such as buttons, fields or labels, which are represented by the data type DBE.

addAcceleratorKey

Declaration

void addAcceleratorKey (DB db, void dxlCallback(), char accelerator, int
modifierKeyFlags)

Operation

Adds an accelerator key accelerator to the dialog db with the callback function dx1Callback () and the passed-in
modifierKeyFlags.modifierKeyFlags is used in conjunction with the accelerator parameter to change
which key should be pressed with the accelerator key. Possible values for it are modKeyNone, modKeyCtrl,
modKeyShift and null.

The specified DXL callback fn dx1Callback () executes for the specified keystroke combination being pressed when
the DXL dialog box db is active.

Only call this perm after the dialog box db has been realized, otherwise a DXL run-time error will occur.

Example
void fn ()
{
print "callback fires\n"
}
DB db = create("testDialog", styleStandard)

realize db

// The callback fn() will be executed on pressing Shift+F7 when the dialog db is
active.

addAcceleratorKey (db, fn, keyF7, modKeyShift)

DXL Reference Manual

450

baseWin

Declaration

void baseWin (DB box)

Operation
This function is only for use in batch mode.

Displays the dialog box and suspends execution of the DXL program. Execution continues in callbacks from the buttons
on the dialog box. No code should be placed after a call to baseWin, because it would never be executed.

block

Declaration
void block (DB modalBox)

Operation

Displays a modal dialog box. When a modal dialog box is displayed, the rest of the Rational DOORS interface is insensitive,
leaving only the given dialog box able to receive input. The interface remains in this state until either the dialog box is closed
or the release function is called.

Unlike show, DXL program execution is resumed after the call to block when the modal dialog box is released.

Example
block importantQuesBox

processResult

busy

Declaration
void busy (DB box)

Operation

Sets the window busy, displaying the waiting cursor and making it insensitive to input. Use the ready function to reset the
dialog box to normal.

Example

busy stressResultsBox

DXL Reference Manual

451

centered

Declaration

DB cent[e]lred(string title)

Operation

Creates a dialog box that is centered on the screen. Nothing appears on the screen until it is passed to either the block or
show (dialog box) function, when the dialog box window title bar contains title.

Example

DB splashBox = centered "Welcome to Example"

create(dialog box)

Declaration

DB create([{Module|DB} parent,]
string title
[,int options])

Operation

Creates a new, empty dialog box structure. Nothing appears on the screen until it is passed as an argument to show, when
the dialog box window title bar contains title.

The optional first argument creates a child window of the module or dialog box specified by parent. When a child
window is hidden, its parent is put in front of any other windows. The optional third argument defines the style of the
dialog box; it can have bitwise OR combinations of the following values:

Constant Meaning

styleStandard Appears like other Rational DOORS windows.

styleFixed Has no resizing capability.

styleCentered Appears in the center of the screen.

styleCentred Appears in the center of the screen.

styleFloating Appears above all other Rational DOORS windows.

styleNoBorder Has no title bar or resizing capability.

styleThemed Inherits themed styles into tabs

styleAutoParent Automatically set the parenting of controls based on layout
information

DXL Reference Manual

452

Example

DB parseBox = create("Sim File Parser", styleCentered|styleFixed)
label (parseBox, "Nothing in here yet")

show parseBox

createButtonBar

See “createButtonBar,” on page 595.

createltem

See “createltem,” on page 595.

createCombo

See “createCombo,” on page 600.

destroy(dialog box]

Declaration
void destroy (DB box)

Operation

Frees up resources used by box. The specified box should not be used after it has been destroyed without being
re-initialized. After using destroy, you should set box to null.

If the dialog box used icons, you should also destroy them using the load function.

Note: Destroy should not be used within a callback function for a DBE.

getPos

Declaration

void getPos (DB myWindow,
ints x,
int& y)

Operation

Returns in x and y the screen co-ordinates of the origin of the specified window.

DXL Reference Manual

453

getSize

Declaration

void getSize (DB myWindow,
int& w,
int& h)

Operation

Returns in h and w the height and width of the specified window. Dimensions are returned in pixels.

getTitle

Declaration
string getTitle (DB myWindow)

Operation

Returns the title of the specified window.

getBorderSize

Declaration

int getBorderSize (DB myWindow)

Operation

Returns the width in pixels of the border for the specified dialog box.

Example

DB DBox = create("Dialog Box", styleCentered|styleFixed)
int i = getBorderSize (DBox)

label (DBox, "Border size is " 1 "")

show DBox

getCaptionHeight

Declaration
int getCaptionHeight (DB myWindow)

DXL Reference Manual

454

Operation

Returns the height in pixels of the caption area for the specified dialog box.

Example
DB DBox = create("Dialog Box", styleCentered|styleFixed)
int 1 = getCaptionHeight (DBox)

label (DBox, "Caption height is " i "")

show DBox

help, gluedHelp

Declaration

void {gluedH|h}elp (DB box,
int index)

Operation

Adds a Help button to a dialog box box. When the user clicks the button, help is activated displaying the entry identified

by the index number.

The optional second argument associates the Help button with the named helpFile and an entry index in it. The help
file must be in the appropriate format for the platform and must be referenced by a full path name; a relative path does not
work in this case. This can be used to add user-defined help information to Rational DOORS.

When a dialog box has a large number of buttons, the gluedHe lp function is used to link the help button to the last

button, to prevent them from overlapping.

These functions can only refer to help entries in the standard Rational DOORS help file, DOORS . HLP. In addition the

following standard values can be used to obtain help system functions:

1 Contents page

2 Help on help

3 Search help
Example

help (simParse, 301)

help (simParse, "SIMPARSE.HLP", 1)

DXL Reference Manual

helpOn

Declaration

void helpOn (DB box,
[string helpFile,]
int index)

Operation

These functions are used in callbacks to activate the help system on a given topic. If the optional second argument is used,
the help file must be in the appropriate format for the platform and must be referenced by a full path name; a relative path

does not work in this case.

Example

void explainData (DBE key) {
helpOn (getParent key, "DATA.HLP",
} // explainData

1)

button (dataBox, "Explain", explainData)

hide(dialog box)

Declaration
void hide (DB box)

Operation

Removes dialog box box from the screen.

Example

hide thisBox

raise

Declaration

void raise (DB box)

Operation

Brings dialog box box to the top, over all other windows.

Example

raise tempBox

DXL Reference Manual

455

456

setFocus

Declaration

void setFocus (Module m)

Operation

Sets the windows focus on the module m.

ready

Declaration

void ready (DB box)
Operation

Used after a call to busy, this function makes dialog box box sensitive to input again, and removes the waiting cursor.

Example

ready graphBox

realize(pending)

Declaration

vold realize (DB box)

Operation

Creates and displays the dialog box without suspending execution of the DXL program. The dialog box only becomes
active when a show function is called, either for this dialog box or another.

This function is used where you wish to do something that can only be done once the dialog box internal structure has been
created, for example, add columns to a list view. Creating the internal structure is called realization.

Example

realize infoBox

realize(show)

Declaration

void realize (DB myWindow,
int x,
int y)

DXL Reference Manual

457

Operation

Creates the specified window and initializes its origin to the co-ordinates (x, y).

release

Declaration
void release (DB modalBox)

Operation

Hides the modal dialog box moda 1Box, and resumes execution of the DXL program after the call to block. The
Rational DOORS interface then becomes operative.

Example

release importantQuesBox

show(dialog box]

Declaration

void show (DB box)

Operation

Displays the dialog box and suspends execution of the DXL program. Execution only continues in callbacks from the
buttons on the dialog box. No code should appear after a show as it would never be executed.

Example

show splashBox

showing

Declaration

bool showing (DB box)

Operation

Returns true if box is displayed as a result of a call to show or realize.

Example

if (showing infoBox) { ... }

DXL Reference Manual

458

getParent

Declaration
{DB|DBE} getParent (DBE element)

Operation

Returns the parent dialog box or dialog box element of the specified dialog box element. This is useful in callback functions.
If the function that returns an object of type DBE is called, and the patent is not an object of type DBE, the function returns
null.

Example

void takeAction (DBE button) {
DB enclosedby = getParent button

// user code here
} // takeAction

setParent

Declaration

void setParent (DB box|DBE child,
{DB|DBE |[Module} parent)

Operation

Sets the parent of childto be parent.

The only type of DBE which can be the parent of another DBE, is a frame.

setPos

Declaration

void setPos (DB myWindow,
int x,
int y)

Operation

Sets the screen co-ordinates of the origin of the specified window to the co-ordinates (x, y).

DXL Reference Manual

459

setCenteredSize

Declaration

void setCenteredSize (DB box,
int width,
int height)
Operation

Sets the width and height of box to width and height pixels, independently of any styles used, such as
styleCenteredor styleFixed.

This function must be placed after a call to the realize (pending) function, and before any further call to either the
show (dialog box) or block functions.

Example

DB dlg = create("Test Window", styleCentered |
styleFixed)

realize dlg
// both width and height are specified in pixels
setCenteredSize (dlg, 300, 100)

show dlg

setSize

Declaration

void setSize (DB myWindow,
int w,
int h)
Operation

Sets the width and height of the specified window to the values in w and h. Dimensions are specified in pixels.

setTitle

Declaration

void setTitle (DB myWindow,
string newTitle)

Operation

Sets the title of the specified window to newT1it Ie. This function is used after the window is created.

DXL Reference Manual

460

setBaseWindowContext

Declaration

voild setBaseWindowContext ()

Operation
Used when displaying dialog boxes in batch mode. This enables the use of realize () for populating DBEs.

startConfiguringMenus

Declaration
void startConfiguringMenus ({DB box|DBE element})

Operation

Starts menu creation and configuration in box or element. To stop menu creation and configuration for a dialog box
element, use the stopConfiguringMenus function. For a dialog box, the menu configuration stops when the dialog

box is shown.

stopConfiguringMenus

Declaration

string stopConfiguringMenus (DBE element)

Operation

Disables menu creation and configuration functions for the specified dialog box element. To start menu creation and
configuration, use the startConfiguringMenus function.

topMost

Declaration
DB topMost (string title)
Operation

Creates a dialog box that always stays on top of all other windows. This can be used instead of the create (dialog

box) function.

Example

DB top = topMost "TOPMOST"
label (top, "I am on top!")

show top

DXL Reference Manual

461

hasFocus

Declaration
bool hasFocus (DBE toolbar)

Operation

Returns true if the supplied toolbar DBE contains an element that currently has the keyboard focus. Otherwise,
returns false.

setDXLWindowAsParent

Declaration
void setDXLWindowAsParent (DB dialogq)

Operation

Sets the DXL interaction window to be the parent of dialog. If there is no DXL interaction window, the parent is set to
null.

Dialog box elements

Dialog box elements define the components of a dialog box. These are called controls on Windows, and Widgets on
Motif, the most common user interface tool kit on UNIX.

Dialog box elements provide a wide range of capability, although all have the DBE data type. This manual groups the
functions for DXL dialog box elements into the following categories:

* Common element operations

¢ Simple elements for dialog boxes
* Choice dialog box elements

¢ View elements

e Text editor elements

¢ Buttons

¢ Canvases

e Complex canvases

DXL Reference Manual

462 ‘

Common element operations

This section defines element operations. Unless otherwise specified, these functions can be used with a11 dialog box
elements.

For dialog box elements, the set function has many different variants, all of which are defined in this section. There are
pointers to the appropriate set function from other sections within this chapter.

addMenu

Declaration

void addMenu (DBE element,
string title,
char mnemonic,

string entries[1,
char mnemonics|],
char hots[1,

string helpl 1,

string inactiveHelp[|

[, int noOfEntries,]

Sensitivity sensitive (int entryIndex),
void callback (int entryIndex))

Operation

Adds a menu to a menu bar, canvas, list view, or tree view. If element is a menu bar, the new menu appears after any
other menus. If element is a canvas, list view, or tree view, the new menu is activated by a right click. For further
information on creating the dialog box elements that can take menus, see the menuBar, canvas, 1istView, and
treeView functions.

The arguments passed are divided into two sets: those that define the menu, and those that define the menu entries, which
are specified as arrays. To use fixed-size arrays all containing the same number of elements, omit noOfEntries. To use
freely-defined arrays, specify the minimum number of elements in noOfEntries.

The arguments passed to the function are defined as follows:

element The menu bar or canvas in which the menu is to appear; this is returned
by a call to the menuBar or canvas function.

title The title of the menu, as it appears in the menu bar.

mnemonic The keyboard access character, normally shown underlined, which
activates the menu when pressed with ALT; the value ddbNone means
that there is no mnemonic.

entries The strings that appear in the menu.

DXL Reference Manual

mnemonics

hots

help

inactiveHelp

The keyboard access character for this option, normally shown
underlined, which activates the option when pressed with ALT; the
value ddbNone indicates that there is no mnemonic.

A hot key that directly activates the option when pressed with CTRL;
for example, if the value of hot s [3] is S, CTRL+S activates the third
option of the menu; the value ddbNone indicates that there is no hot
key.

String that is displayed in the status bar of the window, if one exists,
when the user passes the mouse over an active menu item.

String that is displayed in the status bar of the dialog box, if one exists,
when the user passes the mouse over an inactive menu item.

You can construct one level of cascading menus by placing a right angle bracket (>) character at the start of an option name,
indicating that it is a member of a sub-menu:

const string formatMenul[] = {"Size",

">Small",
">Normal",
">Large",
"Style",
">Bold",
">Italic"}

This constructs a cascading menu. The first cascading menu, Size, opens out, followed by the second cascading menu,

Style.

Finally, two callback functions are required: one to determine whether menu items are sensitive, and one that is called when

a menu option is activated.

The function sensitive (int entryIndex) is called for each option, each time the menu is displayed. The
function must return one of the following values:

Availability
ddbUnavailable
ddbAvailable

ddbChecked

Meaning
The menu option is grayed out.
The menu option is active.

The menu entry is active and has a check beside it.

When the user selects an option, callback (int entryIndex) is called with the index of the option, and your
program must perform the appropriate operation. For both sensitive and callback functions, entryIndex
starts at 0, and counts up, including cascading menu entries, so there is a direct correspondence between the array elements
and the index returned by the menu.

DXL Reference Manual

463

464

active

Declaration

void active (DBE element)

Operation

Sets an item active, restoring it from being grayed out and enabling users to interact with it. This is the opposite of the
inactive function. The active function can be used with any kind of dialog box element.

Example

if (gotFileName) active startLoader

inactive

Declaration

void inactive (DBE)

Operation

Sets an item inactive, displaying it in gray and preventing users from interacting with it. This is the opposite of the active
function. The inactive function can be used with any kind of dialog box element.

Example

if (dataNotComplete) inactive verify

hide

Declaration
void hide (DBE element)

Operation

Hides a single dialog box element.

Example
hide showAdminButtons

setGotFocus

Declaration

void setGotFocus (DBE element, void callback (DBE element))

DXL Reference Manual

465

Operation

Sets the callback function to call when element gets input focus. Currently, element must be a list view or tree view on

a Windows platform.

setLostFocus

Declaration
void setLostFocus (DBE element, void callback (DBE element))

Operation

Sets the callback function to call when element loses input focus. Currently, element must be a list view or tree view

on a Windows platform.

show(element])

Declaration

void show (DBE element)
Operation

Makes a single dialog box element visible again.

Example

show showAdminButtons

delete(option or item)

Declaration

void delete (DBE element, int index)

Operation

Deletes the option in element at the given index. The argument element can be a choice, tab strip, list, multi-list,
combo box, or list view. Positions start at zero; when an element is deleted, all the others are moved down. The last
element cannot be deleted in a tab strip. To delete all items in a list or list view, use the empty function.

Example

delete (components, obsoleteEntry)

delete(item in tree view])

Declaration
void delete (DBE treeView, string path)

DXL Reference Manual

466

Operation

Deletes the item pointed to by path, which must be an absolute path.

Example
delete (treeView, "Project/Modulel™)

empty

Declaration
void empty (DBE element)

Operation

Deletes all items in a list, multi-list, choice, combo box, list view or tree view.

Example
empty listViewl

insert(option or item)

Declaration

void insert (DBE element, int index, string value)

Operation

Inserts a new valueinto element at position index. The argument element can be a choice, tab strip, list, multi-list,
combo box, or list view. Positions start at zero; when a new element is inserted all the other values are moved up. This
function inserts duplicate values if they are specified.

Example

insert (months, 4, "May")

insert(item in list view)

Declaration

void insert (DBE listView, int row, string value, Icon icon)

Operation

Inserts a new item with the specified string value into the list view, at the zero based row number. The icon is the icon
that appears to the left of the string value on the specified row.

DXL Reference Manual

467

insert(item in tree view)

Declaration

void insert (DBE treeView, string path, Icon normal, Icon selected)

Operation

Inserts the item pointed to by path into treeView. The third and fourth arguments define icons for the item when it is
not selected and selected, respectively. To make the selected icon the same as the normal icon, use 1conNone as the value
for selected. For valid icon values, see “Icons,” on page 443.

Note that the slash character has a special meaning when included in a string to be inserted: it represents a parent-child
relationship. So adding “Headingl” then “Headingl/sub1” will add “Heading1” as a top-level entty, and “sub1” as a child
entry under it.

Example

insert (treeView, newFolder, iconFolder, iconFolderOpen)

noElems

Declaration

int noElems (DBE element)

Operation

Returns the number of options or items in element. The argument element can be a choice, tab strip, list, multi-list,
combo box, or list view.

Example

int noOfResources = noElems resourcelist

string listContents[noOfResources]

int i

for (i = 0; 1 < noOfResources; 1i++)
listContents = get (resourcelist, 1)

select(element])

Declaration

void select (DBE textElement, int start, int end)

Operation

Selects text only in a rich text or rich field dialog box element.

DXL Reference Manual

468

selected(element)

Declaration

bool selected(DBE element, int index)

Operation

Returns true if the option or item identified by index is selected; otherwise returns false. The argument element
can be a list, multi-list, or list view.

Example

if (selected(products, ownBrand))
print "Using own brand\n"

selected(item)

Declaration
bool selected(DBE treeView, string path)

Operation

Returns true if the item pointed to by path is selected; otherwise returns false. The argument path must be an
absolute path.

get(element or option)

Declaration

{string|int|bool} get (DBE element [,int index])

Operation

For a multi-list element, returns a value for the most recently selected/de-selected item. For all other elements, with one
argument, returns a value for the first or only selected element of the appropriate type. The optional second argument is
available only for a string return type and list views or choice dialog box elements. Use it to specify a given item in a list view
or a given position in a choice element. The return types and values for all dialog box elements are as follows:

Element Return Contents of most recently Return value
type selected/deselected option if no selection
canvas not
supported

DXL Reference Manual

Element Return Contents of most recently Return value
type selected/deselected option if no selection
check box int integer defining which element or elements are 0
checked; when converted to binaty, the value is a
bitmap for the selection of check boxes, for
example, 5 (101) means first and third boxes
checked
choice string contents of selection (chosen or typed) or null string
contents of specified choice
int index (position) of selected option except for -1
typed entries, which return —1 even if the typed
entry matches a selection. This is the preferred
method when the value being retrieved is to be
used elsewhere. The number should be used as
the index to retrieve the value from the original
string array.
field string contents of field null string
bool if the DBE is read only, returns true;
otherwise, returns false
file name string path in file selector null string
frame not
supported
list string contents of selected option or specified option null string
int index (position) of selected option -1
list view string value of selected item or specified item null string
int index of selected item
multi-list string contents of first selected option or specified null string
option
int index (position) of first selected option
radio box int index of the selected option in the array not applicable
rich field string contents of rich field null string
bool if the DBE is read only, returns true;
otherwise, returns
false
rich text string contents of rich text box null string

DXL Reference Manual

469

470

Element Return Contents of most recently Return value
type selected/deselected option if no selection
bool if the DBE is read only, returns true;

otherwise, returns
false

slider int integer in range specified -1

tab strip string name not applicable
int index (position) of currently selected tab not applicable

text string contents of text box null string
bool if the DBE is read only, returns true;

otherwise, returns
false

toggle bool true false

tree view string full path of selected item null string

You can find out the read-only status of a text or string DBE using get in a boolean expression.

Example
DB exBox = create "Use of Get"
DBE intIn = slider (exBox, "Integer:", 50, 0, 100)

DBE stringIn =
20)

field (exBox,

"String:", "Example",

void doGet (DB exBox) {

int 1 = get intIn
string s = get stringln
print 1 ", " s "\n"

} // doGet

apply (exBox, "Get", doGet)

show exBox

get(selected text)

Declaration

bool get (DBE textElement,

DXL Reference Manual

int &first, int &last)

471

Applies only to text dialog box elements. It returns true if there is a selected area of text; otherwise, returns false. If it
returns true, the integers return the start and finish indices of the selected text, starting from 0. For example, if the first
ten characters are selected, first and 1ast contain 0 and 9.

set(value or selection)

Declaration

void set (DBE element, {string]|int]|bool} value)

void set (DBE currDBE, Buffer b)

Operation

The first form sets either the value of an element or the status of the selected element as follows

The second form sets the content of the specified DBE to be the content of the Buffer.:

Element Type Action
canvas not supported
choice int Sets the selected option.
check box int Sets the selected option.
field string Sets the contents.
bool When true, sets field read only; otherwise, sets field read/write.
file name string Sets the contents.
frame string Sets the contents.
label string Sets the contents.
list int Sets the selected option.
list view int Sets the selected item.
multi-list int Sets the selected option.
text string Sets the contents.
bool When true, sets text read only; otherwise, sets text read/write.
radio box int Sets the selected item.
rich field string Sets the contents.
bool When true, sets field read only; otherwise, sets field read/write.
rich text string Sets the contents.
bool When true, sets text read only; otherwise, sets text read/write.

DXL Reference Manual

472

Element Type Action
slider int Sets the selected item.
status bar string Sets the contents.
tab strip string Sets the selected tab.
int Sets the selected tab.
toggle bool When true, sets toggle on; otherwise, sets toggle off.
tree view string Sets the selected item

Using set with —1 deselects any selection in a list, choice or radio button dialog box element.

If these functions are used with an incorrect type DBE, a DXL run-time error occuts.

Example
DB exBox = create "Use of Put"

DBE intOut = slider (exBox, "Integer:", 50, 0,
100)

DBE stringOut = field(exBox, "String:",
"Example", 20)

void doHigh (DB exBox) {

set (intOut, 100)

set (stringOut, "Max out")
} // doHigh
void doLow (DB exBox) {

set (intOut, 0)

set (stringOut, "")
} // doLow
apply (exBox, "Low", doLow)
apply (exBox, "High", doHigh)

show exBox

set(selected status)

Declaration

void set (DBE 1list, int index, bool selected)

DXL Reference Manual

473

Operation

Sets the status of a selected item within a list or list view. identified by index in a list or list view. Valid items are ranged
between position 0 and a number that can be obtained from:

noElems (DBE) -1

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

set(choice element values)

Declaration

void set (DBE choice, string choices|[] [,int noOfChoices])

Operation

Sets a new range of values into a choice element. You can supply a complete array of strings or a partially filled array with
the number of items supplied in the noOfchoices argument.

This works only with choice dialog box elements created with the choice function. If this function is used with an
incorrect type DBE, a DXL run-time error occurs.

Example

string attrNames[100]
int noOfAttrs = 0
string an

for an in current Module do
attrNames [noOfAttrs++]

an

set (attrChoice, attrNames, noOfAttrs)

set(item value)

Declaration

void set (DBE listView, int item, int column, string value)

Operation
Sets the value of a specific column item within a list view.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

set(status bar message])

Declaration

void set (DBE statusBar, int section, string message)

DXL Reference Manual

474

Operation
Sets the value of a particular section within a status bar.

If you use ddbFullStatus as section, the string is displayed in the full width of the status bar, as with menu help.
To return to normal display, specify ddbFullStatus with a null string for message.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

set(file selector)

Declaration

void set (DBE fileSelector, string exts, string descs)

Operation
Sets the file selector description(s) and extension(s) for a dialog box file selector.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

Example

DB b = create "File Selector DB"

DBE fs = fileName b

set (fs, "*.CSV", "Comma separated files")

show b

set(icon)

Declaration

void set (DBE element, int index, [int column,] Icon icon)

Operation

Sets the displayed icon for either a tab in a tab strip or item in a list view that is identified by index to have the specified
icon. The column argument must be passed for list views, but not for tab strips. For possible values of i con, see
“Icons,” on page 443. Use this function with 1conNone as the value for 1 con to remove an icon.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

Example

set (linkList, 2, iconLink)

set(select)

Declaration

void set (DBE element, void select (DBE))

DXL Reference Manual

475

Operation
Attaches a callback to any dialog box element other than a list view. The callback must be of the form:

void select (DBE option) {
}

which fires when option changes.

The exact semantics vary depending on the type of element, but in principle it means a single click. For field elements, the
callback only fires when the user clicks Return or Enter with the cursor in the field.

If this function is used with a list view, a DXL run-time error occuts.

Example
This example adds a callback to a radio box.
DB boatBox = create "Craft"

string boats[] = {"Dinghy", "Destroyer",
"Carrier", "Mine sweeper"}

DBE boatCheck = radioBox (boatBox, "Select
class:", boats, 3)

void toBuild(DBE option) {
int favorite = get option

ack (boatBox, "You are planning a new "
boats[favorite] "?2")
} // toBuild

set (boatCheck, toBuild)

show boatBox

set(key or mouse callback]

Declaration

void set (DBE canvas, void callback (DBE canv,
{char key|int button}
bool controlDown,
int x,
int y))

Operation

Attaches a callback to the specified canvas. The callback can be fired from character input or a mouse click, depending on
the second argument passed to the callback function.

For a character input callback you must supply the code for the key, whether the control key was down, and the mouse
position when the key was pressed. The key code is normally the ASCII character value, but might be one of a set of
predefined constants (see “Keyboard event constants,” on page 517).

DXL Reference Manual

476

For a mouse click callback you must supply the canvas identifier, the mouse button number, starting from 1 for the left
button, whether the control key was down, and the co-ordinates of the mouse at the time.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

Example

This example adds a callback to a canvas.

// character input callback

DB typeBox = create "Type Something"
int col =0

void redraw (DBE x) {
draw(x, 20, 20, "Type something!")
} // redraw

DBE can = canvas (typeBox, 300, 300, redraw)

void key (DBE can, char k, bool ctrl, int x,
int y) |
color (can, col)

if (k == keyF2) {
col++
} else if (k == keyF3) {
background (can, col++)
} else {
draw(can, x, y, k "")

}

if (col > 29) col =0
} // key
set (can, key)
show typeBox
// mouse button callback
DB drawBox = create "Test"

void redraw (DBE x) {
draw (x, 20, 20, "Hello!"™)
} // redraw

DBE can = canvas (drawBox, 300, 300, redraw)
int lastX = -1
int lastY = -1

int firstX
int firsty

int col = 0

DXL Reference Manual

477

void btn (DBE can, int bt, bool ctrl, int x,
int y) |
if (bt == 1) {
if (lastX > 0) {
line (can, lastX, lastY, x, V)

} else {
rectangle(can, x, vy, 1, 1)
firstX = x
firstY = vy
}
lastX = x
lastY =y
} else if (bt == 2) {
lastX = -1
} else if (bt == 3) {
col++

if (col > 29) col =0
color (can, col)

}
} // btn
set (can, btn)

show drawBox

set(select and activate])

Declaration

void set (DBE element, void select(DBE), void activate (DBE))

Operation

Attaches two callback functions to a list or tree view.

The first callback fires when an item is selected (a single click); the second fires when an item is activated (a double click).
Both callbacks must be of the form:

void callback (DBE item) {
}

If this function is used with an incorrect type DBE, a DXL run-time etror occurs.

Example

DB listBox = create "The Good Numbers"

string states[]={"New Jersey", "Virginia", "Texas", "California", "Europe"}

string phones[]={"201 442-4600", "703 904-4360", "817 588-3008", "408 879-2344",
"+44 1865 784285"}

DXL Reference Manual

478

DBE abcList = list(listBox, "ABC Offices:", 200, 4, states)
full listBox
DBE telNo = field(listBox, "Telephone:", "", 30, true)

void onSelection(DBE 1) {
int sel = get abclist

if (sel >= 0) {

set (telNo, phones[sel])
} else {

set (telNo, "")
}

} // onSelection

void onActivate (DBE 1) {
int sel = get abcList

if (sel >= 0) {
ack(listBoxk,

"Calling ABC in " states[sel] " on "
phones|[sel])
}

} // onActivate
set (abcList, onSelection, onActivate)

show listBox

set(list view callback]

Declaration

void set (DBE listView, void callback(DBE, int))

Operation

Attaches a callback to a check box within a list view, provided the list view was created with check boxes (using the
listViewOptionCheckboxes style). The callback must be of the form:

void select(DBE l1istView, int selected) {
}

which fires when the state of any check box changes. The selected argument identifies the item that changed.

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

DXL Reference Manual

479

set(select, deselect, and activate)

Declaration

vold set (DBE listView,
void select(DBE, int),
void deselect (DBE, int),
void activate(DBE, int))

Operation
Attaches three callback functions to a list view.

The first callback fires when an option is selected (a single click); the second fires when an option is deselected (a side effect
of a single click on another item); the third fires when an item is activated (a double click).

All callbacks must be of the form:

vold select(DBE listView, int selected) {

}

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

set(sort function)

Declaration

void set (DBE listView,
int columnIndex,
int dxlSortFn(string, string))

Operation

Attaches a sort function to a specific column within a list view. The callback must be of the form:

void dxlSortFn(string sl1, string s2) {
}

The sort function must return the following values:

Expression Returns
sl==s2 0
sl>s2 1
sl<s2 -1

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

DXL Reference Manual

480

set(tree view expand)

Declaration
void set (DBE treeView, bool expand(DBE, string))

Operation
Attaches a callback to a tree view. The callback fires when an attempt is made to expand a specific branch. The callback

must be of the form:

void expand(DBE treeView, string branch) {

}

The callback function must return the following values:

Meaning Returns
Allow expansion true
Refuse expansion false

If this function is used with an incorrect type DBE, a DXL run-time error occurs.

setFocus

Declaration

vold setFocus (DBE element)

Operation

Sets keyboard focus to the specified element.

getBuffer(DBE)

Declaration
Buffer getBuffer (DBE element)

Operation

Creates a new buffer object and returns it. The returned buffer contains the value of the specified DBE element.

Example

DB exBox = create "DBE example"

DBE stringIn = field(exBox, "String:", "Example", 20)
void doGet (DB exBox) {

Buffer b = create

DXL Reference Manual

b = getBuffer (stringln)
print b "\n"

} // doGet

apply (exBox, "Get", doGet)

show exBox

setFromBuffer(DBE, Buffer)

Declaration

void setFromBuffer (DBE element, Buffer b)

Operation

Sets the contents of the specified DBE element from the contents of the specified buffer b.

Example

DB exBox = create "DBE example"

DBE stringIn = field(exBox, "String:", "Example", 20)
Buffer b = create

b = "test setting DBE from buffer"

setFromBuffer (stringIn, Db)

show exBox

useRTFColour

Declaration

void useRTFColour (DBE dbe, bool useRTF)

Operation
If dbe dbe is a rich text box or a rich text field, then:

* If useRTFis true, the underlying editbox will use the rtf color markup instead of the default color for text in dialog
boxes

e If useRTFis false, the underlying editbox will use the default system color for text in dialog boxes
* If the dbe dbe is not rich text or a rich text field, nothing happens

* If the dbe dbe has not been realized, nothing happens

Example
DB test = create("Test text db")

DBE textdbe = richText (test, "test", "initial", 200, 200, false)

DXL Reference Manual

481

482

string colourstring =
"{\\rtfl\\ansi\\ansicpgl252\\deff0\\deflangl033{\\fonttbl {\\f0\\fswiss\\fcharse
t0 Arial;}}

{\\colortbl
;\\red255\\green0\\blue0; \\red255\\green0\\blue255; \\red0\\green0\\bluel28; }

\\viewkind4\\ucl\\pard\\f0\\£fs20 Some\\cfl text \\cf0 with \\cf2 different\\cf0
\\cf3 colors\\cf0 in it.\\par

\\par
}ll

realize test
useRTFColour (textdbe, true)
set (textdbe, colourstring)

show test

Simple elements for dialog boxes

This section defines functions for simple elements such as two-state options, with the exception of buttons, which are
defined in “Buttons,” on page 513. More complex elements that allow the user to choose from various options are defined
in “Choice dialog box elements,” on page 497.

label

Declaration

DBE label (DB box,
string label)

Operation

Creates a label element in dialog box box.

Example
DB infoBox = create "About SimParse"
label (infoBox, "SimParse V2.1")

show infoBox

DXL Reference Manual

483

separator(dialog box)

Declaration

DBE separator (DB box)

Operation

Places a full width separating line across dialog box box.

Example

This example creates a separator between the input slider and the output field. Dialog boxes normally include a separator,
which is automatically created, between the user-defined elements and the standard buttons.

DB exBox = create "Use of Separator"

DBE input = slider (exBox, "Input:", 50, 0, 100)
separator exBox

DBE output = field(exBox, "Output:", "", 30)

void calc (DB exBox) {

int i = get input

set (output, "Input was " i "")
} // calc
apply (exBox, calc)

show exBox

splitter

Declaration

DBE splitter (DB box,
DBE left,
DBE right,
int width)
Operation

Places a movable vertical separating line across dialog box box. The arguments define the left part of the dialog box, the
right part of the dialog box, and the width of the splitter in pixels. This is only supported for DBEs of type 1istView or
treeView.

Example

// constants

const string SARR DUMMY[] = {}
// constants

const int TREE WIDTH = 150

DXL Reference Manual

484

const int TREE HEIGHT = 10

const int LIST WIDTH = 300

const int LIST HEIGHT = 10

// dx1 dialogs

DB dlg = null

// dxl elements

DBE dbeTree, dbelList, dbeSplitter
// create dialog

dlg = create("Test", styleCentered)
// tree

dbeTree = treeView(dlg, 0, TREE WIDTH,
TREE HEIGHT)

dbeTree->"top"->"form"
dbeTree->"left"->"form"
dbeTree->"bottom"->"form"
dbeTree->"right"->"unattached"
// list

dbeList = listView(dlg, 0, LIST WIDTH,
LIST HEIGHT, SARR DUMMY)

dbelList->"top"->"aligned"->dbeTree
dbelist->"left"->"unattached"
dbelist->"bottom"->"form"
dbelList->"right"->"form"

// splitter

dbeSplitter = splitter(dlg, dbeTree, dbelList, 4)
dbeSplitter->"top"->"form"
dbeSplitter->"left"->"unattached"
dbeSplitter->"bottom"->"form"
dbeSplitter->"right"->"unattached"
realize dlg

{
// information is displayed over a single
// column

insertColumn (dbeList, 0, "Name", LIST WIDTH -
20, null)

DXL Reference Manual

485

show dlg

frame

Declaration

DBE frame (DB box,
string label
[,int width,
int height])

Operation

Creates a frame element in box, which can contain other elements. The 1abel is the title of the frame; width and height
specify the size of the frame in pixels. If width and height are omitted, the frame expands to fit the elements within it.

Example

This example creates a tab strip and frame, and places the frame inside a tab.
const string tabStrings[] = {"A", "B", "C"}

DB box = centered "Example"

DBE theTab

DBE theFrame

void tabCb (DBE xx) {
int 1 = get xx

if (1 == 0) {
show theFrame
} else {
hide theFrame

}
theTab = tab(box, tabStrings, 300, 300, tabCb)

// attach all the edges of the tabstrip to the
// form

theTab->"left"->"form"
theTab->"right"->"form"
theTab->"top"->"form"
theTab->"bottom"->"form"

theFrame = frame (box, "A frame", 100, 100)
// place the frame inside the tabstrip
theFrame->"left"->"inside"->theTab

theFrame->"right"->"inside"->theTab

DXL Reference Manual

486

theFrame->"top"->"inside"->theTab
theFrame->"bottom"->"inside"->theTab

realize box

// ensure widgets are showing for correct tab
tabCb theTab

show box

fileName

Declaration

DBE fileName (DB box,
[string label,]
[,string initFileName
[,string extension,
string description
[,bool readOnlylll)
Operation

Creates a window-wide element inside the specified dialog box for capturing a file name. As in other Rational DOORS
windows, there is a field for the file name and a button, Browse, to invoke a file selector window. Optionally, the element is
called 1abel.

When present, the 1nitFileName argument provides an initial value, which can be an absolute or relative path.

The fourth and fifth optional arguments allow you to specify a file extension and description, which fill the File of type
box. Note that not all platforms make use of this additional information.

When the readOnly argument is true, it checks the Open as read-only box. Note that not all platforms make use of
this additional information.

Example

// basic file name

DBE fn = fileName (loader, "input.dat")
// file spec and description added

DBE fn = fileName (load, "input.dat", "*.dat",
"Data files")

DXL Reference Manual

field

Declaration

DBE field (DB box,
string label,
string initial,
int width
[,bool readOnly])

Operation

Creates a single-line text-field element. The parameters define a label, an initial value, the number of characters that are

visible in the field, and whether the field is read only (Erue means read only). If the last argument is omitted, the function

creates a read-write field.

The width of the resulting element is independent of the default user interface font on the cutrent platform.

Example
DB fieldBox = create "Get Zip"
DBE zip = field(fieldBox, " Zipcode: ",

void unzip (DB fieldBox) {
string zipcode = get zip
print zipcode

} // unzip

apply (fieldBox, "Lookup", unzip)

show fieldBox

nu
4

12)

richField

Declaration

DBE richField (DB box,
string label,
string initial,
int width
[,bool readOnlyl])

DBE richField (DB box,
string label,
richText (string initial),
int width)

DBE richField (DB box,
string label,
richText (string initial),
int width,
bool readOnly)

DXL Reference Manual

487

488

Operation
Creates a single-line rich text field element.

In the first form, arguments define a label, an initial value, the number of characters in the field, and whether the field is read
only (true means read only). If the last argument is omitted, the function creates a read-write field.

The second form takes a rich text string for the initial value; it cannot create a read only field.

The third form takes a rich text string for the initial value. If readOnly is true, the function creates a read only field. If
readOnlyis false, the function creates a read-write field.

The width of the resulting element is independent of the default user interface font on the current platform.

Declaration

DBE slider (DB box,
string label,
int initial,
int min,

int max)

Operation

Creates a slider element for capturing integers. The arguments passed specify a label, the initial value and the minimum and
maximum values on the slider.

Sliders are best used for small ranges such as percentages. For larger numbers, or those without limits, it is better to use a
text field and the intOf function to convert the string value to an integer.

Example
DB percentBox = create "Your Feedback"
label (percentBox, "How strongly do you agree?")

DBE feelings = slider (percentBox, "Adjust
slider:", 50, 0, 100)

DBE output = field(percentBox, "Output:", "", 30,
true)

void calc (DB percentBox) {
int results = get feelings
print results
set (output, results "")

} // calc

apply (percentBox, "Commit", calc)

show percentBox

DXL Reference Manual

489

checkBox

Declaration

DBE {verticalC|c}heckBox (DB box,
string label,
string choices|[1,
int initial)
Operation
Creates a set of check boxes.

Check boxes offers users choices, each of which can independently be either on or off.

The checkBox function atranges the check boxes horizontally; the verticalCheckBox function arranges them
vertically. The options ate passed in string array choices. The initial and returned values ate bit maps indicating
whether each option is checked. If the first option is checked, bit 0 is 1, if the second is checked bit 1 is 1, and so on.

Example
DB pizzaBox = create "Pizzas"

string toppings[] = {"salami", "funghi",
"olives", "anchovies",
"frutti di mare",
"artichoke"}

int maxToppings = 5

DBE pizzaCheck = checkBox (pizzaBox, "Toppings:",
toppings, 5)

bool pizzasOrdered[] = {false, false, false,
false, false, false}

void processOrders (DB pizzaBox) {
int bitmap = get pizzaCheck
// bit-map of values

int remain
int i

for i in O:maxToppings do {

remain = bitmap % 2 // remainder
if (remain != 0) {
pizzasOrdered[i] = true

print toppings[i] ":"
pizzasOrdered[i] "\n"
} else {
pizzasOrdered[i] = false

}

bitmap = bitmap / 2 // integer division

DXL Reference Manual

490

}
} // processOrders
apply (pizzaBox, "Order Pizzas", processOrders)

show pizzaBox

radioBox

Declaration

DBE {verticalR|r}adioBox (DB box,
string label,
string choices|[1,
int initial)

Operation

Creates a set of radio boxes.

Radio boxes offers users choices that are mutually exclusive.

The radioBox function arranges the check boxes horizontally; the verticalRadioBox function arranges them
vertically. The options ate passed in string array choices. The initial and returned values are indexes into that array.

Example

DB dinnerBox = create ("Dinner")

string meals([] = {"Pizza", "Pasta", "Quiche",
"Burger", "Tachos"}

DBE dinnerRadio = radioBox (dinnerBox, "Main

Course: ", meals, 2)

void placeOrder (DB dinnerBox) {

int 1 = get dinnerRadio

string mealStr = meals([i]

ack "Ordering " mealStr " now!"
} // placeOrder

apply (dinnerBox, "Order", placeOrder)

show dinnerBox

toggle

Declaration

DBE toggle (DB box,
string label,
bool initial)

DXL Reference Manual

Operation

Creates a toggle button in box with the given label and initial value.

Example
DB parseBox = create "Simulator File Parser"

DBE binOpt = toggle (parseBox, "Use binary data",
false)

show parseBox

date
Declaration
DBE date (DB date db, int width, Date init, bool calendar)
Operation
Creates a date/time picker control. Width specifies the width in charactets of the displayed field. The vartiable init
specifies the initial date value displayed by the control. If a null date value is supplied, the current date and time is displayed.
If calendaris true, a drop-down calendar is made available in the control for selecting dates. Otherwise, up and down
buttons in the control allow the user to increment and decrement values in the selected field of the control.
You can type values into the various fields of the control, and use the cursor arrow keys to select fields and increment or
decrement values.
The date values are displayed according to Rational DOORS conventions: date/time values are displayed using the uset’s
default short date format for the current user locale, and a 24-hour clock format. Date-only values are displayed using the
user’s default long date format for the current user locale.

setLimits

Declaration
void setLimits (DBE date dbe, Date min, Date max)

void setLimits (DBE date dbe, AttrType type)

Operation

Sets the minimum and maximum limit values for a date/time picker control. If the curtent value displayed in the picker lies
outside either of the new limits, it is updated to equal that limit. If either one of the supplied values is null, then the relevant
min/max limit is not changed.

The second form sets the minimum and maximum limit values for a date/time picker control to match the limits defined
for the specified attribute type. The current displayed value is updated if necessary to lie within the limit or limits.

DXL Reference Manual

491

492

getDate

Declaration
Date getDate (DBE date dbe)

Operation
Returns the date value displayed in the specified DBE.

set

Declaration
void set (DBE date dbe, Date value)

void set (DBE date dbe, string value)

Operation
Updates the DBE to display the specified date value.

The second form of the perm is updated to put the string (interpreted according to the current user locale) into the date
DBE. No update occurs if the supplied string is not a valid date string.

get

Declaration
string get (DBE date dbe)

Operation
Returns the displayed string in a date DBE.

getBuffer

Declaration
Buffer getBuffer (DBE date dbe)

Operation
Returns the displayed string from a date DBE as a buffer.

setFromBuffer

Declaration
void setFromBuffer (DBE date dbe, Buffer b) / set (DBE,Buffer)

DXL Reference Manual

Operation

Updates the DBE to display the date represented by the string in the supplied buffer, interpreted according to the current
user locale. The DBE is not updated if the supplied string is not a valid date string.

Example

The following example uses the perms for the new data DBE element:

// DateTime Picker Test: gets and sets date values.

DB db = create "date/time picker test" // The Dialog

Date init = dateAndTime (today) // Initial value in control
label (db, "picker:")

beside db

DBE picker = date(db,20,init, true) // Define the control

// Callback for toggle...
void showTimeCB (DBE x)
{

if (get(x))

{

set (picker,dateAndTime (getDate picker))

else

set (picker,dateOnly (getDate picker))

// Toggle the showing of date+time or date-only
DBE showTime = toggle(db, "show time", includesTime (init))

set (showTime, showTimeCB)

// Text field to display values got from the control, and for
// sending to the control.
left db

DBE stringVal = field(db,"string field:","",20)

DXL Reference Manual

493

494

// Get the current value from the control, as a Date value.
void getDate (DBE x)
{
Date d = getDate (picker)
set (stringVal, stringOf (d))
}
button (db, "Get Date",getDate)
beside db

// Get the current value from the control, as a string.
void getString (DBE x)
{
string s = get (picker)
set (stringVal, s)
}
button (db, "Get string",getString)

// Get the current value from the control, as a Buffer.
void getDateBuffer (DBE x)
{
Buffer b = getBuffer (picker)
set (stringVal, b)
delete b
}
button (db, "Get Buffer",getDateBuffer)
left db

// Update the control using a Date value
void setDate (DBE x)
{
string s = get(stringVal)
Date d = date(s)
if (null d) warningBox "Not a valid date string!"

else set (picker,d)

DXL Reference Manual

set (showTime, includesTime (getDate picker))
}
button (db, "Set Date", setDate)

beside db

// Update the control using a string value
void setString (DBE x)
{

string s = get(stringVal)

set (picker, s)

set (showTime, includesTime (getDate picker))

}
button (db, "Set string", setString)

// Update the control using a Buffer value
void setDateBuffer (DBE x)
{
Buffer b = getBuffer(stringval)
setFromBuffer (picker,b)
set (showTime, includesTime (getDate picker))
delete b
}
button (db, "Set Buffer", setDateBuffer)
left db

Date minDate = null

Date maxDate = null

// Set the minimum value accepted by the date/time picker
void setMinVal (DBE x)
{

string s = get(stringVal)

minDate = date(s)

if (null minDate)

{

DXL Reference Manual

495

496

warningBox "Not a valid date string!"

}

else if (!'null maxDate && minDate > maxDate)

{

warningBox "Minimum date cannot be greater than maximum date."

else

setLimits (picker,minDate, maxDate)

}
button(db, "Set Min from field", setMinVal)
beside db

// Set the maximum value accepted by the date/time picker
void setMaxVal (DBE Xx)
{

string s = get(stringVal)

maxDate = date(s)

if (null maxDate)

{

warningBox "Not a valid date string!"

}

else if (!'null minDate && minDate > maxDate)
{

warningBox "Maximum date cannot be less than minimum date."
else

setLimits (picker,minDate, maxDate)

}
button (db, "Set Max from field", setMaxVal)
show db

DXL Reference Manual

497

Choice dialog box elements

This section defines functions and for loops that allow you to create elements that give the user a choice:
* A drop-down selector provides a simple choice.

* A combo box is an editable drop-down selector.

* A tab strip provides a simple choice where other options must be selected after the initial selection.

* Scrollable lists are a powerful mechanism for providing users with a large number of options.

These dialog box elements are all of type DBE.

choice

Declaration

DBE choice (DB box,
string label,
string choices| 1,
[int noOfChoices,]
int initial
[,int width,
bool canEdit])

Operation

Creates a drop-down selector. This shows only the current value until the user clicks in it, when the whole range is
displayed. The initial argument specifies which value is selected by default, counting from 0.

The string array choices must have been declared at a fixed size, with each element containing a string. The optional
noOfChoices argument specifies the number of elements of the choices array that contain real choices.

The optional width argument specifies the number of characters in the choice box. When used, this argument must be
followed by a boolean value to indicate whether the choice can be edited by the user. If canEdit is true, the choice box
is editable (a combo box). If width is 0, -1, or omitted, the standard width is used.

The width of the resulting element is independent of the default user interface font on the current platform. The width will
be consistent with the legacy behavior on Western platforms with regard to the resultant width calculated from the specified
number of characters.

Example

DB regBox = create "Edit Requirement"

string importance[] = {"Vital", "Useful",
"Convenient", "Useless"}

DBE regImport = choice(regBox, "Importance: ",

importance, 2)

DXL Reference Manual

498

void accept (DB regBox) {
int i = get reglmport
print importance([i]

} // accept

ok (regBox, "Accept", accept)

show regBox

tab

Declaration

DBE tab (DB box,
string choices|[]
[,int noOfChoices]
[,int width,
int height],
void (DBE theTab))
Operation

Creates a tab strip. This function behaves much like the list function.

The string array choices must have been declared at a fixed size, with each element containing a string. The optional
noOfChoices argument specifies the number of elements of the choices array that contain real choices.

The optional width and height arguments specify the initial size of the tab strip in pixels. If width and height are
not specified, the size is controlled by the elements the tab strip contains, or from the form if the tab strip is connected to it.
If the right edge of a tab strip is to remain unattached, you must specify a size. A tab strip with an initial size can stretch if
placement constraints are incompatible with the size specified.

You can place other dialog box elements inside a tab strip using the placement keyword inside, but you should not put
an element with no innate size (like a list box) inside a tab with no innate size. For further information on tab strip
placement, see “Attachment placement,” on page 558.

The callback function must identify which tab has been selected.

Example
DB box = create "Test"

vold tabSelected (DBE theTab) {
int 1 = get theTab
}

string items([] = {"a", "B", "C"}

DBE theTab = tab(box, items, 300, 400,
tabSelected)

theTab->"top"->"form"
theTab->"left"->"form"

theTab->"bottom"->"form"

DXL Reference Manual

theTab->"right"->"unattached"

list

Declaration

DBE list (DB box,
string label,
[int width,]
int visible,
string values|[]
[,int noOfValues])

Operation

Creates a list element containing the given values, from which the user can choose at most one item. If there are many or a
variable number of options, a list is better than a choice as it does not attempt to display more than the number of items
passed in the visible argument. If the width argument is present, the element is created at the specified size in pixels.
Otherwise, the list is created to use the full width of the dialog box.

You can supply either a complete array of strings, such as a constant array, or a partially filled array, with the number of
items supplied in the noOfValues argument. You can create a list with initially no entries by setting noOfValues to 0,
although you must still supply a valid string array.

Note that there is no initial selection; to do this, use the set (value or selection) function. You can also define
callbacks for lists.

Example
DB coffeeBox = create "Coffees"

string coffees[] = {"Mocha", "Sumatra Blue",
"Jamaica Mountain",
"Mysore", "Kenya", "Java"}

DBE coffeelist = list(coffeeBox, "Choose one
of:", 5, coffees)

void getCoffees (DBE coffeelist) {

int i = get coffeelist

if (i == 0) ack "Mmm, Mocha..."

if (i == 5) ack "Watch out for trademark
violations"

} // getCoffees
// run callback directly upon list selection
set (coffeelist, getCoffees)

show coffeeBox

DXL Reference Manual

499

500

multiList

Declaration

DBE multiList (DB box,
string label,
[int width,]
int visible,
string values|[]
[,int noOfValues])

Operation

Creates a list element containing the given values, from which the user can choose one or more items. In all other respects
this function is exactly the same as the 1ist function.

Example

DB attrShow = create "Attributes"

string attrNames[100]

int noOfAttrs = 0

string an

if (null current Module) {
ack "Please run this function from a module"
halt

}

for an in current Module do
attrNames [noOfAttrs++] = an

DBE attrList = multilList (attrShow, "Attributes:",
5, attrNames, noOfAttrs)

void printAttrs (DB box) {
string attrName

for attrName in attrList do {
print attrName " = " ((current
Object) .attrName) "\n"

}
} // printAttrs

apply (attrShow, "Print", printAttrs)
void clearSelection (DB box) {

int i

for i in 0:noOfAttrs do

set (attrList, i, false)
} // clearSelection

apply (attrShow, "Clear", clearSelection)

DXL Reference Manual

501

show attrShow

selectedElems

Declaration

int selectedElems (DBE listView)

Operation
Returns the number of elements currently selected in the specified list view.

Typically this is either 0, 1 or a positive integer (if the list view was created using the 1istViewOptionMultiselect
style).

If the DBE is not a list view, a run-time error occurs.

for value in list (selected items)

Syntax

for s in 1list do {

where:

s is a string variable

list is a multilist of type DBE
Operation

Assigns the string s to be each successive selected item in a multilist, 11 st.
Example
string at

for at in attrList do print at " is selected\n"

for position in list (selected items)

Syntax

for i in 1ist do {

DXL Reference Manual

502

where:
1 is an integer variable
list is a multilist of type DBE
Operation

Assigns the integer 1 to be the index of each successive selected item in a multilist, 11 st.

Example
int totalWeight = 0
int index

for index in components do
totalWeight += compWeights[index]

View elements

This section defines functions and for loops that allow you to create list views and tree views in your dialog boxes.

Drag-and-drop

Drag-and-drop operations are possible in list views and tree views, provided a callback function is specified when the list
view or tree view is created. The callback takes the form:

void callback (DropEvent dropEvent)

The DropEvent structure is unique to the source of the drag; it exists for only as long as the dialog box element being
dragged.

Properties are defined for use with the . (dot) operator and DropEvent structure to extract information about drop
events, as shown in the following syntax:

dropEvent.property

where:
dropEvent is a variable of type DropEvent
property is one of the drag-and-drop properties

The following tables list the properties and the information they extract:

String property Extracts

sourcePath The path of the source item of a drag operation; this is only valid
if sourceIsListView is true, otherwise, itis null.

DXL Reference Manual

String property

Extracts

targetPath

The path of the target item of a drag operation; this is only valid if
targetIsListViewis true, otherwise, itis null.

Boolean property

Extracts

sourcelsTreeView Whether the source of the drag is a tree view.

sourcelsListView Whether the source of the drag is a list view.

targetIsTreeView Whether the target of the drag is a tree view.

targetIsListView Whether the target of the drag is a list view.

Integer property Extracts

sourceIndex The index of the source item of a drag operation; this is only valid
if sourceIsListView is true, otherwise, itis —1.

targetIndex The index of the target item of a drag operation; this is only valid
if targetIsListView is true, otherwise, itis —1.

DBE property Extracts

source The source dialog box element of the drag operation; this is
always the element for which the callback was defined.

target The target dialog box element of the drag operation.

Example

DropEvent de

bool b = de.targetIsTreeView

DBE testList = de.source

DXL Reference Manual

503

504

listView

Declaration

DBE listView (DB box
[,void callback (DropEvent event],
int options,
int width,
int Iines,
string items|[]
[,int noOfItems])

Operation
Creates a list view having the specified width in pixels and with the specified number of lines.

The optional callback function enables the list view to participate in drag-and-drop events. When this list view is the source
of a drop operation, the callback fires and the DropEvent structure can be queried. For further information, see
“Drag-and-drop,” on page 502. If the callback function is not supplied, the user cannot use drag-and-drop in the list view.

The string array 1 tems must h