

Rational Statemate
Code Generation Reference Manual

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to BM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Code Generation Basics . 1
Development Model. 2

Executable Model . 3

Generating Native Code . 3

Concepts and an Example . 5
Compilation Profile Concepts . 5

Profile Editor . 5
Module Structure. 6
Scope Definition . 6
Connection to the Workarea . 6
Descendants . 6
Testbenches . 6
Concurrency . 7
Graphical Back Animation (GBA) . 7

Inserting Handwritten Code . 7

Creating a Sample Profile . 8
Invoking the Profile Editor . 8
Defining Code Modules. 11
Assigning Behavior to the Module. 11
Selecting Code Parameters . 13
Generating Code. 14

Architecture of Generated C Code . 17
Code Libraries . 18

Tasks View of the Code . 19
Module Execution . 19
Multi-Threading . 20
Asynchronous Timer . 20
Using Simulated Time Model . 21
Implementing a Function to Get External Inputs . 22
Extracting the Time . 22
Rational Statemate iii

Table of Contents
Main Task: Partition and Flow Control for C. 22
Activating the generated modules (the “state machines”) . 25
Updating double buffer assignments. 25
Evaluating the callback list . 26
Entering the wait state. 26
Structure of a Behavioral Module . 27
Interface Section . 27
Status Types . 27
 State Variable Definition. 27
Definitions of Data/Control Elements . 28
Definition of Fictive Events/Conditions . 28
Definition of Truth-Table Elements . 28
Schedule Timeouts Procedure . 28
Action Procedures. 29
State Enter/Exit Procedures . 29
State EXEC Procedures . 29
Module Initialization Procedure . 30
Module Execution Procedure . 30

Structure Of The Generated Code . 31
Structure of the Output Source Files . 31
Control Files . 32
Implementation of Subroutines . 33
User Supplemented Files (User_activities Stubs File) . 33
Interface Modules . 34
Makefiles and Compilation Scripts . 34
Info File . 35

Compiling Generated C Code . 37
Library Location . 37

Compilation Command . 38

Supplementing the Rational Statemate Model with C Code . 38

Details of Compilation and Linking . 39
UNIX Compilation Environment. 39
PC Compilation Environment . 39
Locating Rational Statemate Libraries . 40
Using make to Link and Compile. 40
Makefile Settings. 40
Adding Files to the Prototype . 41
Executable Image . 42
Exporting an Executable Image . 43
Building the Runtime Modules on Foreign Platforms . 44
Supported Platforms . 44
iv Code Generation Reference Manual

Table of Contents
Unsupported Platforms . 45
Implementation of the Timing Control . 45
Implementation of Tasking Services . 45

Adding User-Written Code . 47
Supplementing the Model with Subroutines. 48

Entering Handwritten Code . 49
Using Subroutines. 49
Disabling Subroutines . 49

Supplementing the Model with a Procedure. 50
Using Globals . 52
Producing a Template for a Procedure . 53
Filling in the Procedure’s Template . 55
Subroutine Binding . 56

Supplementing the Model with a Task . 57
Using Globals . 59
Using the Template for a Task . 61
Filling in the Task’s Template . 63

Synchronizing Tasks. 64
Tasks. 64
Synchronization. 64

Scheduler Package . 66
Status of a Task . 66
Scheduling Policy . 67
Restrictions . 67

Binding Callbacks . 68
Callback Binding . 68
Callback Statement . 69
Disabling Callbacks. 69
Callback Example . 70

Referencing Model Elements . 73
Referencing Events. 73
Where Elements are Defined . 74
Accessing an Element Value . 74

Mapping Rational Statemate Types into C . 75
Bit-Array Functions . 77
Rules for Mapping into C. 80

Running User Code on Solaris 2.9 or 2.10 . 81

Adding STM Code Modules . 83
Rational Statemate v

Table of Contents
Generating Modules of Code . 84

Setting Module Parameters . 85

Generated Procedures and Files . 87
Generated Procedures . 87
Generated Files. 87

Sample Code Module . 88
example.c . 89
Generated Makefile . 90
Modified Makefile . 91
my_main.c. 92

Debugger . 95
Generating Prototype Code With Debugging Facilities. 96

A Debugging Session . 96
Prototype Behavior In Debugging Session . 97

Debugger Command Conventions . 98

Reference to Rational Statemate Objects . 99
Rational Statemate Objects Classes and Subclasses . 99
States . 100
Activities . 100
Events, Conditions and Data-items. 101
User-Defined Types . 101
Actions . 101
Flow Lines . 101
Transitions. 101
Names and Synonyms . 102

Referring to Unnamed Objects. 103
Unnamed Activities and States . 103
Unnamed Events and Conditions . 104

Resolving Name Ambiguity . 104
Wildcard Abbreviation (*). 105
Subobjects Operator (^) . 105
Referencing Multiple Rational Statemate Objects in Commands . 106
Referencing Records and Unions in the Rational Statemate Debugger (Pdb) . 106
Referencing Queues in the Rational Statemate Debugger (Pdb) . 107
Keywords . 108

Debugger Commands . 109
Activating the Debugger . 109
Quitting the Debugger . 109
Entering Debugger Commands. 110
vi Code Generation Reference Manual

Table of Contents
The HELP Facility . 111
Starting and Controlling Execution . 112
STEP Command . 112
GO Command . 113
Interrupting Prototype Execution. 114
HISTORY Command. 114
LIST Command . 115
SHOW Command . 116
SHOW SCHEDULE Command. 118
SET OBJECT Command. 119
PUT QUEUE Command . 121
UPUT QUEUE Command . 121
FLUSH QUEUE Command . 121
TRACE Command . 122
SET TRACE Command. 123
SET TRACE SCHEDULE Command . 125
SHOW TRACE Command . 126
CANCEL TRACE Command. 127
SET TIME Command . 128
CANCEL TIME Command. 128

The Set File, Set Output And Cancel
Output Commands . 129

SET FILE Command . 129
SET OUTPUT Command . 130
CANCEL OUTPUT Command . 133
Breakpoints . 134
SET BREAK Command . 135
DO Clause. 136
SHOW BREAK Command . 138
CANCEL BREAK Command. 139

Rapid Embedded Prototyping Basics . 141
Background . 141

Goals of Embedded Rapid Prototyping. 142
Embedded Rapid Prototyping Process Model. 143
The Embedded Prototyping System . 146

Embedded Rapid Prototyping in Rational Statemate . 147

Target Requirements . 149
Describing Different Target Platforms. 150

Compilation Profile Management . 151
Creating the Profile . 153
Rational Statemate vii

Table of Contents
Detailed View of I/O Card Description File . 159

Target Management. 161
I/O Card Description File Management . 165

Describing Signal Mapping to I/O Cards . 165
Signal Mapping to I/O: Semantics. 168

Target Trace Facilities: Description. 169
Target Trace Facilities: Semantics . 171

Data Types Introduced to the Intrinsics Library. 171
Data Types Related to the Data Items . 171
Report Elements for Output Mapping and Tracing . 173
Report Elements for Input Mapping . 173
Report Elements for Generic Charts . 174

Data Types Related to I/O Cards . 174

Remote Connection to Different Tools: Panels, GBA, Tracing: Description 175

BSP Configuration. 176

Environment, Directories, Libraries, Files . 177
Getting Ready: Connecting the Target to the Host . 178

Compiling Embedded C Code . 179
Code Generation Sample Model Description . 179

Report and Card Elements Declarations. 180

Initialization . 180

Step Execution. 182

Input Mapping . 183

Starting Code Generation . 184

Compiling Generated Code . 185
Compilation and Linkage. 185
Downloading and Execution . 185
Remote Panel . 187
GBA. 188
Trace Facility . 189

Required User-written Code . 191
Card Initialization. 191

Card Driver . 191

Card Closure . 192
viii Code Generation Reference Manual

Table of Contents
Simple Embedded Code Example . 193
Use Case . 193

I/O Driver Functions . 194

Target Description File . 198

dSPACE Support . 201
The dSPACE Package . 202

Unsupported Rational Statemate Functionality . 202
Unsupported I/O Signals . 203

Before You Begin . 203
Editing the Batch File . 203
Compiling the Run-Time Libraries. 203

Using the dSPACE Interface. 205
Normal Use . 205
Remote Debugger Mode. 206

Generating TRC Files . 207

I/O Driver Configuration Settings. 208
Setting the Timer Frequency. 208
Setting the I/O Polling Rate. 208

Driver Tasks . 209
Initialization Tasks. 209
Model Execution Tasks for the Driver . 209

Signals . 210
Signal Types . 210

Port Names. 210
Mapping Rational Statemate Variables to dSPACE Signals . 212

Implementing User Tasks . 213

ERP CANoe Interface . 215
Specifying Profile Settings . 215

Code Generation . 218

Module Interface Code . 219

Using the Generated Code . 220

Double Buffering . 221
Double-Buffered Statechart . 221
Rational Statemate ix

Table of Contents
Optimizing Double Buffers . 223

Ada Code Generation . 227
Code Libraries . 228

Tasks View of the Code . 230
Module Execution . 230
Multi-Threading . 230
Asynchronous Timer . 231
Using Simulated Time Model . 231

Main Task—Partition and Flow Control for Ada . 232
Executing a Single Step . 234
Activating the Generated Modules (the “State Machines”) . 235
Updating Double Buffer Assignments . 235
Evaluating the Callback List . 236
Entering the Wait State . 236
Structure of a Behavioral Module . 237

Package Specification. 237
Context Clauses . 237
Interface Section Documents Inputs and Outputs. 238
Definitions of Data and Control Elements of the Module. 238
Definition of Fictive Events . 238
Definition of Activities . 238
Generic Instances in the Module. 239
Definition of Compound Elements. 239
Procedures for Initialization and Execution of the Module . 239

Package Body . 240
Definitions of State Status Types and Variables . 240
Schedule Timeouts Procedure . 240
Body Stubs for Basic Activities . 240
Functions Implementing the Compound Elements . 241
Action Procedures. 241
State Enter/Exit Procedures . 241
State Execution Procedures . 242
Module Initialization Procedure . 242
Module Execution Procedure . 243

File Structure In Ada: Control Files . 244
Behavioral Modules. 244
Top Level Module . 244
Main Procedure. 245
User Supplemented Files . 245
Transmitter Template . 245
Interface Modules . 245
x Code Generation Reference Manual

Table of Contents
Info File . 246

dSPACE DS1103 ERP I/O Driver . 247
Implementing the Driver . 248

General Driver File . 248
Driver Interface Functions . 248
Driver-Specific Files . 249

Handling I/O Signals . 250
The stm_ds1103_global_initialize() Function . 250
The stm_ds1103_init_ADC() Function . 252
The stm_ds1103_get_driver_func() Function . 253
The stm_ds1103_drv_ADC() Function . 253

Reserved C Words . 255

Index . 259
Rational Statemate xi

Table of Contents
xii Code Generation Reference Manual

Code Generation Basics
IBM Rational Statemate is a systems design automation tool for the development of reactive
systems. In analyzing a design concept, a systems designer uses the Rational Statemate graphics
editor to build and validate a graphical model of the system being developed, together with its user
interface. The designer then analyzes the model on a workstation to verify its behavior using both
static and dynamic analysis of the model’s design concepts. Having validated the concept in this
way,

Rational Statemate is then used to generate a C-based or Ada-based prototype of the design, based
on the model, which can then be run on an appropriate host. The generation of prototype code in C
or Ada is the subject of this document. There are three software code generator options:

 C (K&R or ANSII standard)
 Ada
 Embedded C

Standard C code has long been the preferred language for system designers and software
developers. It was the original language generated by Rational Statemate. The C code generated by
Rational Statemate is compatible with a variety of modern C/C++ compilers, including GCC,
Visual C/C++, and Borland C/C++. Consult the release notes for your version of Rational
Statemate for the latest compatibility list. Part 2 of this manual goes into extensive detail on the
process of generating C code for a Native Host Environment (as opposed to the Rapid Prototyping
environment discussed below).

Ada is another language supported by Rational Statemate. Generating Ada code has few
differences from the process used to generate C code. Therefore, Ada specific information is
discussed in Ada Code Generation of this manual. Consult the release notes for your version of
Rational Statemate for the latest compiler compatibility list.

The Embedded C option is a central part of the Embedded Rapid Prototyping capability. This
allows code generation to be taken to the next logical step: compilation and linking for use in an
Embedded Prototyping Development System used to test the model designed in Rational
Statemate in a prototype system environment. Rapid Prototyping allows a more function use case
testing environment for moving the validation of the system design closer toward the end product.
This guide also focuses on the details of Rapid Prototyping Code Generation.
Rational Statemate 1

Code Generation Basics
Development Model
Rational Statemate facilitates a design process that begins with the construction of a graphical
model of a design concept. This design concept is expressed as a set of charts, including
statecharts, activity charts, and module charts. The designer creates this graphical representation
of the desired product based on a written specification.

Rational Statemate takes these charts and integrates them into a comprehensive formal model of a
system that not only communicates the design intent clearly and precisely, but serves as a solid
foundation for meaningful analysis and simulation. The designer creates these charts using
Rational Statemate’s language-sensitive and intuitive graphics editors. The editors all work in
essentially the same way, though each is optimized for the type of chart being created.

The Properties editor facilitates the precise definition of the type and structure of all data and
control elements. It also allows creation of user defined types, including records, unions, queues,
and arrays. The properties can also be used to add information such as comments, descriptions,
and attributes to all of the elements in the model.

Once the model is built, it can be verified through simulation. A successful simulation suggests a
good working model. The Check Model tool performs a more exhaustive verification to ensure
that the model is complete and consistent.

Chart Design Focus Shows

Statecharts Behavior How each function performs its job. The logic, ordering,
and stimulus/response of each function.

Activity Charts Function How the functionality of the system is decomposed. The
interfaces between functional units.

Module Charts Structure How the system is partitioned structurally. The interfaces
between structural units.
2 Code Generation Reference Manual

Executable Model
Executable Model
As a designer creates a model, Rational Statemate builds a formal mathematical representation of
the model that can be dynamically analyzed on a computer at any time. In conjunction with
debugging and analysis tools, the model can be refined even further. Dynamic Testing can be used
to eliminate many logical problems that might otherwise not be found until the system is built and
in the field.

The end result is a system design embodied in a formally defined working model of the system’s
functionality. This model can then be compiled using C or Ada source code generated by Rational
Statemate, including the model’s graphical interface panels. This compiled code can be run
independently of Rational Statemate on another code-compatible computer.

Alternately, the Rapid Prototyping C code generator can be used to create code suitable for
compilation/linking/downloading into a embedded prototyping development system. This would
then allow the testing of the model within a prototype use-case environment.

Code Generation, and subsequent compilation, is the focus of this manual. The Rational Statemate
code generators are consistent in their interface and basic functionality. This interface and
functionality are the focus of the balance of this document.

Generating Native Code
Generating code for a native environment is the simplest code generation task. The more complex
task of generating code for an embedded development system environment is inherently more
complex and is presented later in this manual.

The more complex a simulation model becomes, the more difficult it can be to “step through” the
animated model. The ability to generate and compile code that will execute all or part of the
simulation makes the over-all design process more efficient. Individual portions of the larger
model can be refined to a point of design stability and stored as compiled code modules. These
modules can be linked into a larger and more complex model as though they were “black boxes,”
thereby limiting the “under development” elements of the larger model that must be tested and
refined.

It is also conceivable that an entire design can be compiled into an executable file that can be run
on a system other than the development system. This allows sharing the model with others
interested in the end result of the design effort.

Code generation within Rational Statemate follows a rather consistent process. This process is
described in the following flow chart. It is important to note that most of the process occurs within
the Code Generation Profile Editor window. However, it is also necessary to access the Workarea
Browser in order to select the specific Activity Charts and Panels that are to be brought into the
scope of the generated code.
Rational Statemate 3

Code Generation Basics
Speed Button Bar

Module Hierarchy Display

Misc. Messages

Help Messages

Menu Bar
4 Code Generation Reference Manual

Concepts and an Example
This section describes the major Code Generator concepts that you need to know and provides an
example that demonstrates how to generate code.

Compilation Profile Concepts
The behavioral model consists of many Statecharts and Activity-charts that you may want to
segment into smaller components. With the Code Generator’s Profile Editor, you can define the
scope of the compilation profile that you want to compile into C or Ada. You can also customize
the generated code by specifying several translation alternatives.

Profile Editor

The Profile Editor allows you to specify which charts to generate code from as well as select the
parameters that control their style. Use the Profile Editor to define a compilation profile by:

 Defining code modules
 Assigning behavior (Statecharts and Activity-charts) to the modules
 Selecting preferences and settings
 Customizing the profile by adding testbenches and panels
 Generating host code (K&R C, ANSI C) (Ada is also supported; refer to Ada Code

Generation).

Use a profile to save the scope and code generation options, then store it in a workarea where it can
be retrieved, edited, and used over and over again for subsequent code generation runs. The profile
can also be saved to the databank where it becomes part of a formal release or configuration item.
Rational Statemate 5

Concepts and an Example
Module Structure

A module is a collection of Statecharts and Activity-charts that comprise a component.

 In C, a module signifies a single source file with its local data and functions.
 In Ada, a module signifies a library package.

Scope Definition

The Scope Definition, which is in the Profile Editor’s main window, shows the Module structure
of the profile in a tree format or as a list. Both views show the charts assigned to each module and
how they were assigned.

Connection to the Workarea

The process of assigning behavior to the profile structure consists of three stages:

 What charts do you want. (Select the charts from the Workarea.)
 Where do you want them. (Select the module you want to assign the behavior to.)
 How do you want to assign them. (Select the method of assigning the behavior.)

Descendants

Descendants refer to all the subactivities that are lower than the current chart, down to the last
state and primitive activity.

Testbenches

Testbenches (called Watchdogs in earlier versions of Rational Statemate) are separate Statecharts
created outside the specification of the system being developed.

Testbenches trap a specific behavior to test a design’s inputs and outputs. It’s a “snapshot of a
scenario.” Testbenches also serve as debuggers, and they are visible to all signals in the design
without having to draw discrete flows.

Note
Testbenches cannot test generics.
6 Code Generation Reference Manual

Inserting Handwritten Code
Concurrency

How does Rational Statemate translate concurrent activities into a sequential language? Even
though one procedure in the generated code may call another, if both are executed in the same
cycle, they are concurrent.

Sometimes it seems natural to implement concurrent activities as different threads (tasks), but it is
also possible to implement them as a single threaded program. Writing a single or multi-threaded
embedded application is a design decision that does not affect performance or modularity. Since
the underlying architecture is sequential, a multi-threaded program is actually a set of sequential
pieces managed by a sequential handler.

So why is multi-threading needed at all? A multi-threading capability is needed only if a designer
wants to add threads that run “concurrently” with the generated modules that execute as a single
thread, denoted as the “main task.”

Graphical Back Animation (GBA)

The Rational Statemate Simulator highlights the charts as they are executed. Once you generate
code, you lose that graphical feedback. Generating code with the GBA (Graphical Back
Animation) option provides graphical highlighting similar to Simulation, but from generated code.

Inserting Handwritten Code
Code Generator’s modular code architecture enables you to integrate handwritten code (also
known as “user-written code”) with Rational Statemate-generated code in two ways:

 The profile’s scope can include stubs for handwritten code. A stub is an empty module
where you can insert user-written code into Rational Statemate-generated code.

 The new method of supplementing code offers the following advantages:
 Enables you to include code directly into your design.
 Eliminates the need for special calls and services to integrate handwritten code.
 Stores the code in the model’s database so it is common to both simulation and

code generation.
 Automatically includes the user-written code whenever you run simulation or

code generation.
For information on these methods, refer to Required User-written Code.

Note
Rational Statemate supports the stub method for compatibility reasons, but it is
recommended that you use the new method for supplementing code.
Rational Statemate 7

Concepts and an Example
Creating a Sample Profile
This section shows how to create a sample profile and generate code for it.

Invoking the Profile Editor

Use the following steps to access the Profile Editor and create a new profile.

1. Select the C code generator from the main window.

Note
If you are developing ADA, Embedded C, or MicroC code, you need to select the
appropriate icon.

Click for C
Click for MicroC
Click for Embedded C
Click for Ada
8 Code Generation Reference Manual

Creating a Sample Profile
The appropriate Profile Editor appears as shown in the following figure.

2. Select File > New Profile. The New/Open Compilation Profile dialog appears.
Rational Statemate 9

Concepts and an Example
3. Name the new profile in the Profile Name text box and select OK. For example, in
previous figure, the profile is given the name: REAR_DEFOG.

The Profile Editor enables all the menu selections and displays the profile name in the
title bar.
10 Code Generation Reference Manual

Creating a Sample Profile
Defining Code Modules

Code module can be structured as desired to meet the needs of the model being simulated. Use the
following steps to define the structure of modules that reflects the way you want the code
organized. Note that each module may contain one chart, several charts, or a portion of a chart.

1. Click Create Module or select Edit > Create Module.

The Create Module window opens.
.

2. Enter the name of the new module and click OK.

Note
For the example presented here, the name the module is REAR_DEFOG_MOD.

Assigning Behavior to the Module

Use the following steps to select charts from the workarea and assign them to the module you
want.

1. Click Add Chart to Module or select Edit > Add With Descendants.

The Chart Tree windows opens.
Rational Statemate 11

Concepts and an Example
2. Select the chart(s) you want to assign to the module. For example, select the Activity-chart
REAR_DEFOG_SS.

Note: To select charts with their descendants in a hierarchy, select only the parent.
The Code Generator adds your selection to the profile with its descendants.

3. Select the File > Save menu item to save the profile in your workarea.
12 Code Generation Reference Manual

Creating a Sample Profile
Selecting Code Parameters

Use the Options menu to specify how you want the code generated.

Option Description

Global Profile Settings Allows you to change settings for all modules in the current profile. Use
this feature to select the following:

• Language (For the C Code Generator, you can select K&R C or
ANSI C.)

• Modularity Style
• Double-Buffer Optimization
• Generation of main
• With Debugger
• Graphical Back Animation
• Infinite Loop Limit
• Packages/Headers for External Subroutines

Module Settings For the selected module, you can either create a separate file for each
Statechart or set parameters.

Time Settings Control time expressions settings (real, synchronous, or asynchronous)
and in what units.

Activity Style Specifies software or hardware. If you select software, activities can be
started and stopped. If you select hardware, activities are always active.

Makefile Settings Allows you to set flags for compilation and include libraries.

Panels Display Allows you to have panel display on other workstations connected to the
network.

Preferences
Management

Allows you to select general preferences.
Rational Statemate 13

Concepts and an Example
Generating Code

Before generating code, you may wish to run Check Profile to verify that the profile complies with
the scoping rules. For example, Check Profile makes sure that the settings are legal and do not
conflict with each other. The Code Generator also checks the profile when you generate code.

Complete the following steps to check the profile and generate code.

1. Select Compile > Check Profile.

Note: You must correct any errors before generating code, but you can continue to
generate code with warnings and information messages.

2. Select Compile > Generate Code.

Note: The default location for this operation is a sub-directory named according to
your current profile name, i.e., it is inside the “prt” sub-directory of your
current workarea.

3. Select Compile > File Management.

The SW Code Management dialog appears
.

14 Code Generation Reference Manual

Creating a Sample Profile
File Management offers the following options:

– Show—Displays a listing of the generated code.
– Delete—Deletes the selected file.
– Copy—Copies the selected file after you re-name it. (Works the same way as

Save as in the File menu.)
– Export—Saves the file to another workarea or directory.
– Print—Prints the generated code.

4. To view generated code, select a file and then click Show.

The selected file appears in the xless editor similar to the example in the following figure.

5. Select Quit and then Dismiss.

6. Select one of the following:

 File > Close to close this profile and leave the Profile Editor open.
 File > Exit to close this profile and close the Profile Editor.

The Profile Editor automatically closes any related windows that you left opened and displays a
dialog asking if you want to save any unsaved changes to the profile.
Rational Statemate 15

Concepts and an Example
.

16 Code Generation Reference Manual

Architecture of Generated C Code
This section describes the architecture of the generated C code including how the Code Generator
structures the modules.

The Rational Statemate Code Generator generates fully functional code, based on the Activity-
charts and Statecharts in the Rational Statemate model. The generated modules are partitioned
according to a compilation profile, which allows you to generate code for a complete Rational
Statemate model or just a part of one.

Each generated module reflects the state, timing, and scheduling logic of the model that is included
in the compilation profile. This allows a suitable set of components to be built that reflect the
system logic (behavior).

The generated code uses runtime modules for timing and scheduling. Requests are generated to the
timing module for timeouts and scheduled events, and to the scheduler module to control
handwritten tasks that are connected to basic and external activities. In addition, the data elements
are double buffered, so data assignments are synchronized to prevent racing conditions among the
“concurrent” behavioral components.

Note
In some cases where there are no racing conditions, you may want to disable double
buffering. For more information, refer to Optimizing Double Buffers.
Rational Statemate 17

Architecture of Generated C Code
Code Libraries
All of the runtime modules are actually a set of compiled libraries. These libraries can be reused
for other projects because they are supplied in source code form which allows modifications based
on project-specific requirements. The runtime modules actually provide an interface between the
generated behavioral logic and the underlying Operating System (OS).

Porting the generated behavioral components to a particular environment primarily means
tailoring the runtime library to use the specific services provided by the operating system. The
target operating system can even be a Real-Time OS kernel. The runtime library can even be
modified to provide an alternative functionality which does not normally exist in the target OS.

Note
Tailoring the runtime libraries is a usually one-time effort. Once completed, the generated
components can be compiled and linked without being modified any further.

The detailed process of generating code for an embedded target system is discussed in detail later
in this manual. However, there are many basic OS concepts that are more easily introduced using
the more limited scope of an embedded operating system. The following figure shows the layered
software components of the typical embedded application. The final executable image is normally
built from some permanent pre-compiled modules (such as the RTOS kernel) and the generated/
compiled modules that are dependent on the application.

OS Services: Memory Management (3)

Timer Service

Multi-Threading Services (4)

timer scheduler

1 2

double callback

main

Permanent CodeGenerated Code

application code

behavioral logic + user code
18 Code Generation Reference Manual

Tasks View of the Code
The key components include the following:

 The Scheduler Component is Optional - It is needed only if the user specifies that basic or
external activities should be implemented as tasks or desires to link a graphic panel into the
executable.

 Callback Handler. - This component will be used only if the user selects to attach
callback routines to behavioral logic components.

 Memory Management - The runtime module’s timer, double-buffering and callback
handlers utilize dynamic memory allocations. Under certain assumptions it is possible to
tailor them to use only static allocation, if a memory management package is not available
or memory resources are limited.

 Multi-Threading (Tasking) Support - This support provides a mechanism for creating task
threads and switching between them. This service is needed only if the user wishes to
implement environment tasks or basic activities as tasks. This issue is discussed in greater detail
in the Software Code Generator Interface Manual.

Tasks View of the Code
One of the major issues that confuse many users is how concurrent activities and states are
actually translated into a sequential language. Concurrency within the languages of Rational
Statemate is represented explicitly between orthogonal states (AND states), and implicitly between
separate (concurrent) activities. Sometimes it is natural to implement them as different threads
(tasks), but it is also possible to implement them as a single threaded program.

Writing an application as a single thread or multi-threaded is actually a design decision. Since the
underlying architecture is sequential, a multi-threaded program is actually a set of sequential
pieces managed by a sequential scheduler.

Module Execution

The modules of the generated code are sequential. They are executed cyclically with each iteration
evaluating the next step of processing. In terms of simulation, executing the code is equivalent to
executing a “go-step” repeatedly, while changing the environment asynchronously. The main
difference is that the clock is incremented in real time, so timeouts will happen according to the
time taken to execute the code.
Rational Statemate 19

Architecture of Generated C Code
Multi-Threading

So why is multi-threading needed at all? Multi-threading is used to allow the user to implement
basic activities as independent processes, without having to comply with the “one cycle at a time”
method. It also allows writing additional environment processes outside the system model, to
process inputs, to drive outputs or for simulating the environment. Therefore, a multi-threading
capability is needed only if the user wishes to add threads that run “concurrently” with the
generated modules that execute as a single thread, denoted as the “main task.”

Asynchronous Timer

Another component in the process view of the code is the asynchronous timer. The main task
issues timer requests to be notified about timeouts and scheduled actions. The timer module
asynchronously notifies the main task when timeout events are occurring. An example is shown in
the following figure.

 In some applications there will be no basic activities implemented as tasks. In those cases,
the only processes that exist are the main task and the asynchronous timer. If basic-
activity tasks exist, the main task issues tasking control calls such as start, suspend, etc.

 There are cases where the user implements environment tasks, but none of the basic-
activities are implemented as a task. In these cases, the generated-code (the main task)
does not use any tasking services. The code does not need a multi-threading adaptor
unless the user connects a panel to the executable.
20 Code Generation Reference Manual

Tasks View of the Code
Using Simulated Time Model

Generated code uses the real-time model by default. In this model, timeouts and scheduled actions are
treated very similarly to other inputs. The system clock keeps time and generates interrupts that are
processed along with the other inputs.

When using this time model, it is possible for the code to miss a timeout or scheduled action due to
heavy loading of the processor or an extremely small request for a timeout. In such a situation, the
generated code may actually behave slightly different than a simulation of the same model.

An additional time model is provided called the simulated-time model. The purpose of this model is to
force the generated code to behave in the same manner as the simulated model. It does this at the cost of
the real-time nature of the generated code.

The simulated-time model may be either asynchronous or synchronous. In the asynchronous time
model, time is consumed only for timeout statements and scheduled actions; otherwise, it runs in
real-time. In the synchronous time model, transitions are made on a clock. Every transition
consumes one clock period and every step consumes one clock cycle.

In order to meet all timeouts regardless of duration and CPU loading, the code would be required
to run at an arbitrarily fast speed. Since this is not possible, code which is compiled using the
simulated-time model, does not adhere to the system clock. Rather, it keeps its own artificial time, much
the same as a simulator. The code executes model steps until it reaches a stable status. It then advances
the internal clock to the necessary value to execute the next timeout or scheduled action.

-- The main loop, loops forever

int main(argc, argv)
int argc;
char **argv;

{
while (TRUE) {

-- Execute a step --
-- Advance internal time keeper to next
relevant time --
-- Apply timeouts and scheduled actions. --
Rational Statemate 21

Architecture of Generated C Code
Implementing a Function to Get External Inputs

To retrieve external inputs, you can create separate tasks within the Rational Statemate model.
This process is described in Adding User-Written Code.

Use the tasks to read inputs from the environment (possibly from the keyboard or an input file),
and use the value setting functions to insert the changes into the Rational Statemate model. In
order to simulate the passage of time, the delay function should be used between inputs.

The outputs can be captured using the event callback mechanism, or they can be polled using a
separate task.

Extracting the Time

The function sched_time (double) returns the simulated time. It can be used by the handwritten code
to decide when to stimulate the model or to generate reports.

Main Task: Partition and Flow Control for C
This section describes how different generated modules are put together into a single thread, and
what is the control flow of the main task. The whole execution starts with an initialization phase,
where all components are initialized: the timer, the threads scheduler (if needed) and basic activity
tasks are created. In addition the user_init procedure is called.

The user_init procedure resides in a file called user_activities.c. When you generate code,
the Code Generator automatically creates the user_activities.c file and the user_init
procedure. Prior to executing the model, you may initialize values in the user_init procedure.

After the initialization phase, the main-task starts processing in a cyclic manner, where every cycle
corresponds to a single “go-step.” In every cycle, all the concurrent state machines are traversed,
process their inputs and generate outputs, issue timing requests and take the necessary state
transitions.
22 Code Generation Reference Manual

Main Task: Partition and Flow Control for C
This is how the main program looks:

int main(argc, argv)

 int argc;

 char **argv;

{

pr_initialize();

while(TRUE) {

if (pr_make_step()) /*if system is in stable status,
pr_pause;it enters the pause mode, waiting

 for external inputs */

}

}

The C function pr_make_step returns TRUE when system is in a stable status.

The main program is written as a task, which calls all the state machines within the profile.
pr_initialize is the initialization procedure, and pr_make_step completes a single-step of the whole
system. Note the user-tasks, including basic activities are processing independently, as well as the
asynchronous timer.

The following diagram shows the calling sequence within the main task:
Rational Statemate 23

Architecture of Generated C Code
The C procedure pr_make_step follows:

boolean pr_make_step()

{

 boolean step_has_changes = FALSE;

incr_stepN(); /* increment step counter */

sched_disable(); /* disable async timer interrupts
during execution of step */

lo_main(); /* step execution */

step_has_changes = update(); /* perform all deferred
assignments */

garbage_collect() ; /* clearing intra-step allocations */

sched_enable() ; /* enable accepting of elapsed
timeouts */

scheduler(); /* yield control to other ready
 tasks, including panel driver */

if (!step_has_changes) /* no changes:
return TRUE; system is in a stable status */

pr_initialize

pr_make
step

lo_main

handle
callbacks*

sched_pause
wait

moduleN

user
callback1

handle
combinational
assignments

handle
panel graphics

other
inits

user_init

main

main
loop

module1

user
callbackN
24 Code Generation Reference Manual

Main Task: Partition and Flow Control for C
pge_start_graphics(); /* start critical section of panel
 updates */

call_cbks(FALSE); /* evaluate callbacks,

including panel outputs */

pge_end_graphics(); /* end critical section of panel
 updates */

return FALSE; /* step finished;

system status is not stable */

}

The pr_make_step procedure activates all the functions that complete the execution of a step.

Activating the generated modules (the “state machines”)

lo_main is a generated procedure, that “glues” together all the specific modules as partitioned by
the compilation-profile. It calls the top level procedures of these modules:

lo_main()
{
 <module1>_EXEC_all();
 <module2>_EXEC_all();

 <moduleN>_EXEC_all();
}

Note
The lo_main is actually the scheduler of the generated components. It applies a fair non-
prioritized round-robin scheduling policy, similar to the interpretive simulator. However, it
is possible to introduce priority scheduling by modifying lo_main.

Updating double buffer assignments

The update function executes all the deferred assignments into the actual data objects, based on the
update list. As a by-product, the function can determine whether the system is still processing data
or it has reached a stationary condition. If the update list is empty, it means that the system
executed an idle step. The step_has_changes flag indicates whether the step has ongoing
processing, or the previous execution cycle was actually an idle step.
Rational Statemate 25

Architecture of Generated C Code
Evaluating the callback list

If you define callbacks, they are checked at this point. When an element gets a new value, its
callback procedure is called. Note that if no hooks are set, the handle to the callback
(call_cbks_p) handler remains null, and it is not called at all.

Entering the wait state

If the system executes an idle step, it is in a stationary condition. At this point, the main task
releases the CPU by calling a system service that blocks it from running until some external
stimulus occurs. The external stimulus can be either an event/data change, or a timeout.

The decision whether to enter a wait state or not should be handled carefully, since once the main
task blocks itself, only external input will wake it. Therefore, the pr_pause procedure that actually
blocks the cannot be uninterrupted to prevent the following scenario:

This scenario leads to a deadlock condition. Since the timeout is ignored by the system, the main
task has already “decided” to hibernate itself but has not yet done so and the “wake” call is lost.
The pr_pause procedure will apply the test-and-wait in a mutually exclusive manner.

The pr_pause procedure will be discussed later, since it is dependent on the underlying operating
system.

main_task timer

WAIT

Main task enters a wait
mode, instead of reacting to
the timeout

{A timeout expired; hence.. .}

but if it does not sleep yet; so
this is a wasted call

GENERATE_TIMEOUT

TRY_TO_WAKE_MAIN_TASK

2

3

{ }

{ }
4

CHECK_FOR_WAIT

Checks for changes in last two
steps or if timeout expires.
If none, it decides to sleep.

1

{ }
26 Code Generation Reference Manual

Main Task: Partition and Flow Control for C
Structure of a Behavioral Module

In this example, the module is called light.c:

#include “types.h”
#include “<gds_name>.h”

#include “light.h”
#include “<compilation_profile_name>main.h”

#include “user_activities.h”

Headers of other modules:

 types.h — Basic type definitions for condition, events, data-items etc.
 <gds_name>.h — If you used Global Definition Sets in the design, the GDSs will have

corresponding header files in the generated code. They are included by all modules in the
code.

 light.h — Header file for the local module.
 <compilation_profile_name>main.h - Definition of all intermodules shared data. Note

that all the data elements shared by more than one module are defined in the main module.
 user_activities.h - Prototypes for the user-written activities for which stubs were

requested in the profile.

Interface Section

This section documents the inputs and outputs flowing into/out of the module. It is useful for
reusability purposes to understand the interface of the module.

/* Inputs */
/* event CAR; */
/* event ADVANCE; */

 /* Outputs */
/* condition YELLOW_C; */

Status Types

Every non-basic or-state has a status variable that indicates what substate is currently active. The
status type is actually an enumerated type, defined at the beginning of the module.

typedef enum {nota_Chart_TMODES, st_LIGHT_MODES} tp_Chart_TMODES_states;

 State Variable Definition
tp_Chart_TMODES_states st_Chart_TMODES_isin = nota_Chart_TMODES;
Rational Statemate 27

Architecture of Generated C Code
Definitions of Data/Control Elements

In this section all the LOCAL data-items, events and conditions are defined. The word LOCAL
means that the elements are not used outside the module scope. Note that activities are also
allocated a status variable of type activity, which is an enumerated type that contains the possible
activity statuses.

activity acy_INPUT_TASK = nonactive;
condition GREEN_C = FALSE;

Definition of Fictive Events/Conditions

The fictive events are events not explicitly defined in the model. Thus, they can be thought of as
“Statemate-generated events.” They are essentially timeout events, enter/exit state events, and in-
state conditions. Fictive events are generated only when necessary, i.e., only if the model uses
en(STATE) and the enst_STATE event is generated.

event enst_CHANGE1 = FALSE;
event tmenst_CHANGE3 = FALSE;

Definition of Truth-Table Elements

The following lists the code generated out of a Truth-Table:

 The expression of the format: “if(<Boolean>==true)” is generated as “if(<Boolean>).”
 The expression of the format: “if(<Boolean>==false)” is generated as “if(!<Boolean>).”
 The expression of the format “if(true)” generates the expression under the “if” without an

“if” statement.

Schedule Timeouts Procedure

This procedure executes every execution-cycle, and evaluates what timeouts should be triggered in
the particular module. All timeout triggers are evaluated, and the necessary timeouts are
SCHEDULED using the timing module service sc_tmo.

static void schedule_timeouts()
{
 if (enst_CHANGE3)
 sc_tmo(&tmenst_CHANGE3, 0.3 * SEC);

 } /* schedule_timeouts */
28 Code Generation Reference Manual

Main Task: Partition and Flow Control for C
Action Procedures

In some cases actions are translated into procedures (depending on the modularity style). In this
case, a C procedure represents the Rational Statemate action DO_BLACK.

void exec_DO_BLACK()
{
 setc(&YELLOW_C, FALSE);

} /* exec_DO_BLACK */

State Enter/Exit Procedures

Depending on the modularity style, the enter/exit (including history enter) sequences are grouped
into procedures. The example shows the default entering sequence (i.e. entering via a transition
that goes to the edge of the state) for the NIGHT state:

 Change parent status variable to NIGHT.
 Generate the event en(NIGHT) represented as enst_NIGHT.

void entdef_st_NIGHT()
{
 st_LIGHT_MODES_isin = st_NIGHT;
 gen(&enst_NIGHT);

} /* entdef_st_NIGHT */

State EXEC Procedures
void EXEC_st_LIGHT_MODES()
{
 switch(st_LIGHT_MODES_isin)
 {
 case st2_NIGHT :
 EXEC_st2_NIGHT();
 break;
 case st2_STD_BY :

 }
} /* EXEC_st_LIGHT_MODES */

void EXEC_st_Chart_TMODES()
{
 switch (st_Chart_TMODES_isin) {
 case nota_Chart_TMODES :
 case st_LIGHT_MODES :
 EXEC_st_LIGHT_MODES();
 break;
 default:
 }
} /* EXEC_st_Chart_TMODES */
Rational Statemate 29

Architecture of Generated C Code
The EXEC procedure is actually the heart of the behavioral logic as described in the statecharts. Every
non-basic state has an EXEC procedure that activates all the state-logic within a single execution cycle.
The EXEC procedure will take care of in state transition, static reactions, and activation of substate EXEC
procedures.

The traversal is done hierarchically, starting at the very top state in the module, going down
towards the basic states. In case of an “and” state, the orthogonal components are traversed
sequentially one after the other but on the same semantic step utilizing the double-buffering
mechanism.

Module Initialization Procedure

The module initialization procedure is called once the executable is started, before running
through any execution cycle. It initializes all local data of the module. The procedure also
establishes tasks that implement basic activities if there are such:

void light_init()
{
 tp_acy_INPUT_TASK=
 sched_create_task(user_code_for_input_task,
 0,stop_acy_INPUT_TASK);
}

The init procedure is one of the two procedures that the module exports, and it is called by the
lo_init procedure.

Module Execution Procedure
void light_EXEC_all()
{
 schedule_timeouts();
 EXEC_st_Chart_TMODES();
} /* light_EXEC_all */

This procedure activates a single execution cycle (step), once being called by lo_main in the main
module. It activates the schedule_timeouts procedure to schedule potential timeouts, and most
importantly, is activating the hierarchical traversal of the state EXEC procedures by activating the EXEC
procedure of the top-level Statechart.
30 Code Generation Reference Manual

Structure Of The Generated Code
Structure Of The Generated Code
The Code Generator writes the generated source code into a designated directory in the workarea.
The organization of the code directories in the workarea is as follows:

For every code generation, the code is placed in a subdirectory of the “prt” directory based on the
compilation profile name (unless you specify another Output Directory.

In the figure above, <WORKAREA> stands for the root of the workarea directory, and <Compilation
Profile 1>, <Compilation Profile 2>, and <Compilation Profile 3> represent directories
corresponding to different profile names.

Structure of the Output Source Files

The generated files can be partitioned into six categories:

 Control Modules - These files carry the model’s logic and scheduling and are the most
significant part of the model.

 Modules for Subroutines Defined in Model - For each subroutine, a separate file is
generated.

 User Supplemented Code (templates) - These files contain hooks and frames used to
interface the behavioral model with the environment or any other user-supplemented
modules. As opposed to subroutines, this code is not stored in the model.

 Interface Modules - Interface code for panels and the Debugger.
 Makefiles and Compilation Scripts - These are scripts used to automate the process of

building an application (compile & link) from the source files.
 The Info File - Contains cross reference information.

<WORKAREA>

prt

<Compilation Profile 1> <Compilation Profile <Compilation Profile 2>
Rational Statemate 31

Architecture of Generated C Code
Control Files

There are two types of control files: behavioral modules and a top-level module.

Behavioral Modules
The behavioral modules are the heart of the code and implement the logic as described by the
statecharts and mini-specs. The specification is partitioned into behavioral modules in the
compilation profile. For each specified module, two files are generated based on the user-defined
module name.

The following header file exports all the specification objects defined in the module (for use by
other modules), and the module execution procedure.

<module_name>.h

The following module body defines all the local objects (events, conditions, data-items), and the
procedures that implement the logic of the statecharts and mini-specs.

<module_name>.c

The Top Level Module
The top-level module identified as <compilation_profile_ name>main.c “wraps” all
the behavioral modules into a single behavioral unit. It also defines all the global elements, i.e.,
those elements used by more than one module. It defines two procedures:

 lo_init - Initialization of all the participating modules
 lo_main - Execution of a single step of all modules.

The header file exports the global elements, the initialization and the execution procedures. The
file name is:

<compilation_profile_name>main.h
32 Code Generation Reference Manual

Structure Of The Generated Code
Implementation of Subroutines

This section describes how the Code Generator implements subroutines in the model’s database.

For information on how to supplement generated code with subroutines, refer to Adding User-
Written Code.

For each subroutine that the model uses (i.e., either called or referenced in the callback or user-
added code bindings), a separate file is generated. This file, named <subroutine_name>_ sc.c
contains a code that implements the subroutine.

The Code Generator implements the subroutine in one of the following ways:

 Handwritten code (in C or Ada), which is stored in the model
 Translation of Rational Statemate Action Language, Procedural Statechart, or Truth Table

(when a subroutine is implemented using one of these languages)
In the following cases, the Code Generator only produces a template for the subroutine:

 No implementation at all is given for the subroutine in the model.
 Some implementation exists, but it is disabled by setting the “Select Implementation”

option in the Properties window to “None.”
 Selected implementation does not match the Code Generator’s target language. For

example, if your model has a C-code implementation of a subroutine and you are
generating Ada, the Code Generator will ignore it.

In addition to *_sc.c files, the Code Generator creates a file called
<profile_name>_envelopes.c. This file contains “envelopes” for all the subroutines in the
scope. The envelopes ensure that the Rational Statemate execution rules are properly mapped into
those of C or Ada.

User Supplemented Files (User_activities Stubs File)

The stub method adds code to the generated C or Ada code by modifying the user_activities
files. For more information on this method, refer to the Software Code Generator Interface
Manual.

The Code Generator automatically creates the following two files:

user_activities.c (user_activities.c_temp)

user_activities.h (user_activities.h_temp)

These files include all the stubs generated for the basic activities according to the compilation
profile. Once the user-activities stubs file exists in the output directory, it is not overwritten, and a
file user_activities.c_temp is generated. The stub file includes a corresponding header file, which
is also not overwritten.
Rational Statemate 33

Architecture of Generated C Code
Interface Modules

Debugger Symbol Table File
This file is generated only when the debug option is enabled. It includes symbolic information
about the original model that is used by the debugger.

<profile_name>.dbg

Panel Interface Files
The following files are generated only if there are panels attached to your code. This is actually the
code that glues the panel to the behavioral modules.

panel_transmitter.c

panel_displays.dat

Makefiles and Compilation Scripts

The following files compile and link the code on UNIX platforms where the “make” utility is
available:

 Makefile
 User_Makefile
34 Code Generation Reference Manual

Structure Of The Generated Code
Info File

The info file (format below) contains information about the translation process, the relevant
portion of the model, and the generated modules.

<profile_name>.info

This file contains the following information:

 Compilation Profile Parameters
 Errors and Warnings
 Cross Reference Table - The cross reference table contains all the elements in the code

and the original elements they represent. This information is useful when supplementing
the generated code. In cases where the same name is used for different model, this cross-
reference table is the only way to identify which code-element maps to the spec-element.

 Interface Report - The interface report is a graphical diagram that shows the flow of
information and control among the behavioral modules, and among the environment and
the rest of the model
Rational Statemate 35

Architecture of Generated C Code
36 Code Generation Reference Manual

Compiling Generated C Code
This section describes the procedure and environment for compiling, linking, and porting compiled
C code.

The Rational Statemate code generator supports the generation of both ANSI C and the traditional
Kernighan & Ritchie style of C code. Select between these two styles of C when you define the
Global Profile Settings in the compilation profile. Refer to Selecting Code Parameters for more
information.

Library Location
The source files for the Kernighan & Ritchie C libraries are stored in $STM_ROOT/etc/prt/c.

The source files for ANSI C libraries are stored in $STM_ROOT/etc/prt/ansic.

The Code Generator allows a mix of different styles of C. For example, if the target language is
K&R C, the Code Generator includes any subroutines implements in ANSI C, or vice versa. In
these cases, in addition to Makefile for the target language, the Code Generator produces another
file for compiling the subroutines that were implemented in a different style of C. This file is called
C_Makefile or ANSIC_Makefile respectively.
Rational Statemate 37

Compiling Generated C Code
Compilation Command
The default compiler statements for each of the supported Rational Statemate platforms are listed
in the following table:

:

If the C compiler you are using differs from the default for your platform, then customize it by
editing the Makefile and User_Makefile. These files are produced when the code is generated.

Supplementing the Rational Statemate Model with C
Code

When supplementing the Rational Statemate model with handwritten C code, the additional
compilation statements will be automatically added to the User_Makefile. This file is produced
when the code is generated.

The following is an example of the User_Makefile for ANSI C generated code.

CC = acc

OBJECTS = user_activities_out.o

CFLAGS = -o -ansi -pedantic -Wstrict-prototypes

-I$STM_ROOT/etc/prt/ansic

-I$STM_ROOT/etc/prt/ansisched

all : out_lib.a

out_lib.a : $(objects)

ar rvu out_lib.a $(objects)

ranlib out_lib.a

Add all objects that require compiling to the elements list.

Sun SunOS acc

Sun Solaris acc

HP HPUX cc -Aa -D_HPUX_SOURCE

Windows NT cl
38 Code Generation Reference Manual

Details of Compilation and Linking
Details of Compilation and Linking
This section describes the UNIX and PC compilation environments.

UNIX Compilation Environment

The prototype executable consists of three components:

 Code generated by the Code Generator that reflects the Rational Statemate model.
 Additional user-provided source files and libraries.
 Runtime library modules (refer to the following table).

:

PC Compilation Environment

Refer to the Rational Statemate Administrator’s Guide for the supported Windows compilation
environment.

.

File Description

Code Generator Intrinsics:

libintrinsic.a for K&R C

libaintrinsic.a for ANSI C

Scheduler Library (not always needed):

libscheduler.a for real time

libsim_scheduler.a for simulated time

Debugger Module:

libdbg.a needed only when using debug
facilities

Library Description

libdbg.lib Debugger library

libintrinsics.lib Intrinsics library

libscheduler.lib Scheduler library

libsim_scheduler.lib Scheduler for simulated-time
library

libpgertl.lib Panels run-time library
Rational Statemate 39

Compiling Generated C Code
Locating Rational Statemate Libraries

The libraries for your Rational Statemate platform are pre-compiled and located in $STM_ROOT/
lib. If you wish to compile and link your prototype on a platform that is not your Rational Statemate
platform, you will have to compile these libraries from the provided sources in $STM_ROOT/etc/prt/c.

Sources for building of scheduler and sim_scheduler libraries are located in the $STM_ROOT/etc/
sched.

For ANSI C, sources are located in the $STM_ROOT/etc/prt/ansic and $STM_ROOT/etc/
ansisched.

Using make to Link and Compile

The compile and link phase compiles the generated code and handwritten code into a library called
out_lib.a, and links it with the runtime modules and the user-specified libraries into an executable
prototype.

Every time you modify your specification and generate code, you have to follow this procedure.
The mechanism that manages this process is the make.

The advantage of make on “flat” compilations is that it can manage incremental compilation. That
is, compiling only what is necessary due to the latest changes.

The input to make are two dependency files: Makefile and User_Makefile. They contain lists of files
and dependencies that determine what has to be re-compiled after every change in the source files.

The Makefile lists all the generated files that should remain intact. The User_Makefile compiles
the user_activities template and additional files added by the user.

Makefile Settings

You can enter the compilation command, flags, and libraries you want linked to the prototype by
selecting Options > Makefile Settings. Refer to Selecting Code Parameters for more information.
40 Code Generation Reference Manual

Details of Compilation and Linking
Adding Files to the Prototype

The following is an example of the User_Makefile on UNIX.

CC = acc

OBJECTS = user_activities_out.o

CFLAGS = -o -I$$STM_ROOT/etc/prt/c\
-I$$STM_ROOT/etc/sched -DPRT

all : out_lib.a

out_lib.a : $(objects)

ar rvu out_lib.a $(objects)
ranlib out_lib.a

Assume that you wish to add a file myfile.c and a header myfile.h to the prototype. The
User_Makefile should look like:

CC = acc

OBJECTS = user_activities_out.o myfile.o

CFLAGS = -o -I$$STM_ROOT/etc/prt/c\
-I$$STM_ROOT/etc/sched -DPRT

all : out_lib.a

out_lib.a : $(objects)

ar rvu out_lib.a $(objects)
ranlib out_lib.a

myfile.o : myfile.h
Rational Statemate 41

Compiling Generated C Code
The following is an example of the User_Makefile on a PC.

CC = cl

OBJECTS = user_activities.obj

CFLAGS = /nologo /MTd /W3 /Zd /Os

/I “$(STM_ROOT)\etc\prt\c”

/I “$(STM_ROOT)\etc\sched”

/D “PRT”

/D “LIB4WIN_NT”

all : tmp_out_lib.lib

tmp_out_lib.lib : $(OBJECTS)

lib $(OBJECTS) /OUT:tmp_out_lib.lib

user_activities.obj : user_activities.h\

garage_c_profmain.h\

garage_door.h

Executable Image

The resulting executable files are created:

 Without the Debugger option selected in the profile:
<profile_name>

 With the Debugger option selected in the profile:
<profile_name>_dbg
42 Code Generation Reference Manual

Details of Compilation and Linking
Exporting an Executable Image

To export a Rational Statemate-generated executable so it will run in a different directory or even
on a different computer, you just have to copy the contents of the output directory. At a minimum,
you have to copy the following files:

 Executable image — <profile_name> or <profile_name>_dbg depending on whether
the Debugger was requested in the profile.

 If the Debugger was requested in the profile, select the following files

 If the compilation profile contains a panel, select the following files
:

Note
To run the code on an operating system other than the one it was originally created on, you
must compile the source code as well as all of the Rational Statemate libraries for that
particular operating system.

<profile_name>_dbg This file contains a symbol table needed to run the code with
the Debugger. If this file is not copied, you can still run the
executable, but Debugger facilities will not be available to
you.

help.dat Needed only if during execution you wish to use Debugger’s
online help.

<panel_name>.pnl This file is an ASCII representation of the panel.

stm_color_base Contains information on colors to be used during the panel
execution.

panels_displays.dat Needed when the profile specifies that the panel is to be
displayed on a non-default terminal (for example., not the one
executing the code).
Rational Statemate 43

Compiling Generated C Code
Building the Runtime Modules on Foreign Platforms

The runtime modules consist of four libraries:

 libscheduler.a - timing and multi-threading
 libsim_scheduler.a - timing and multi-threading for simulated time mode
 libintrinsics.a - double buffers and callbacks support
 libdbg.a - the debugger.

The sources for the libraries are located in two different directories:

 The sources for the scheduler are in $STM_ROOT/etc/sched.
 The sources for the intrinsics and the debugger are in $STM_ROOT/etc/prt/c.

Supported Platforms

If you wish to build the libraries on any of the Rational Statemate supported platforms, there are
scripts that will compile and create the libraries in the source directories.

In the scheduler directory there is a script that builds the scheduler library for a supported
platform. Specify the platform in the script’s argument. The following example creates a shell on
the Solaris platform:

create_sched sol

The intrinsics library is created with the following script, which is located in STM_ROOT/etc/prt/
c. The following example creates an intrinsics library on the Solaris platform:

create_intrinsics sol

The debugger library is created with the following script, which is located in STM_ROOT/etc/prt/
c. The following example creates a debugger library on the Solaris platform:

create_dbg sol

44 Code Generation Reference Manual

Details of Compilation and Linking
Unsupported Platforms

The scheduler library, which supports tasking (multi-threading) and timing services, is platform
dependent. If you do not use tasking in your user_activities, which is the common case, then
you have to customize the software interrupts (signals) used for the timing services.

Implementation of the Timing Control

All the timing mechanisms are implemented in the file timer.c. The scheduler uses the UNIX signal
mechanism to implement these software interrupts. If your system is UNIX compliant, then you do not
have to modify the code. If your system does not support these calls, you have to replace the set
timer calls with other software interrupt calls available on your system.

Implementation of Tasking Services

You have to implement the tasking system if you choose to:

 Implement primitive activities as tasks
 Use environment tasks

The heart of the multi-threading system is the context switching mechanism between threads. This
mechanism is not fully supported by C and involves machine-level coding. The context switching
is done by the context_switch routine, which you have to implement.

On some systems, the C setjmp, longjmp mechanisms perform context switching (on some
systems longjmp refuses to jump to higher stack addresses), but the initial thread setting must be
done in machine code. On some systems, there are vendor supported multi-threading libraries (for
example, lightweight processes on SUNOS) that provide library services for these purposes.
Rational Statemate 45

Compiling Generated C Code
46 Code Generation Reference Manual

Adding User-Written Code
This section describes supplementing Rational Statemate-generated code with handwritten code
(also called “user-written” code) You may include handwritten code as part of your Rational
Statemate model, and this code become part of the generated code, as well as part of simulation.

In cases where most of the code you are using is handwritten or from third parties, refer to Adding
STM Code Modules.

The Code Generator enables you to extend the Rational Statemate model by supplementing the
model with handwritten code. This means that you can implement those elements and aspects of
the system’s behavior that have not been explicitly defined by the controlling Statecharts and mini-
specs.

You may want to use this feature to accomplish the following:

 Describe a particular function programmatically.
 Interface to your own or a third party’s library.
 Use code that already exists.

There are several ways to supplement the generated code:

 Attach existing code to the model through the Properties Editor and select one or more
languages in which to implement it (K&R C, ANSI C, or Ada).

 Write new code directly in Rational Statemate using the Rational Statemate Action
Language.

 Use a graphic to define a function or procedure in a Procedural Statechart.
 Create a Truth Table to implement a subroutine, define a “named action,” or describe an

activity’s behavior.
These methods enable you to add code that is used by both the Simulator and the Code Generator.
Rational Statemate stores the code in the model’s database and automatically includes it when you
run simulation or code generation.
Rational Statemate 47

Adding User-Written Code
Supplementing the Model with Subroutines
The following sections explain how to add handwritten subroutines (functions, procedures, or
tasks) to your Rational Statemate model.

The method for adding all three subroutines in the Properties Editor is similar. The major
difference is that functions require a Return Type.

Note
In addition to storing subroutines in the Properties Editor, you can also store their formal
parameters.
48 Code Generation Reference Manual

Supplementing the Model with Subroutines
Entering Handwritten Code

Rational Statemate does not check your handwritten code. It is your responsibility to ensure that
the code is legal and compilable. You can use with, use, include statements or any other
mechanism supported by the language to reference packages or include files. Rational Statemate
makes no attempt to interpret the code; it merely passes it on to the appropriate compiler.

To add your handwritten code to the template correctly, make sure you abide by the rules in the
following sections:

 Referencing model elements in the code (Refer to Referencing Model Elements).
 Mapping Rational Statemate types (primitive or user-defined) into C types for variables

and subroutine parameters (Refer to Mapping Rational Statemate Types into C).
 Using synchronization services in tasks (Refer to Synchronizing Tasks).

Using Subroutines

After you define a subroutine in the Properties, it becomes part of Rational Statemate and is stored
as part of the model. Then, you can use the subroutine in the following ways:

 Called in Rational Statemate actions and expressions.
 Bound to a primitive activity of the modeled system, thus providing their implementation.
 Bound to an external activity to describe behavior of the environment.
 Bound as a callback to a textual or graphical element in the model, and called when the

element changes its value or status.

Disabling Subroutines

To disable a subroutine, open the Properties Editor and select Select Implementation > None.

Rational Statemate does not implement the subroutine, and only generates a template (empty stub).
Rational Statemate 49

Adding User-Written Code
Supplementing the Model with a Procedure
This section explains how to add a handwritten procedure to your Rational Statemate model by
showing the following:

 Windows and how to complete them
 Template that Rational Statemate produces
 Template filled in with an example of handwritten code

Note
Rational Statemate also provides templates for functions and tasks. The subroutine’s
template is a result of mapping the declarations into its C representation. This includes
mapping the parameter types and, in the case of functions, the returned value.

Complete the following steps to add a handwritten procedure:

1. Click in the Properties Editor.

The New Element window opens.
.

2. Enter the name of the new element.

3. Select its Chart Name.

4. Select Subroutine as the Element Type.

The Properties Editor appears with the name of the new subroutine.
50 Code Generation Reference Manual

Supplementing the Model with a Procedure
5. Define the Type as a Procedure.

6. Enter the procedure’s parameters if you want to store them.

7. Select a parameter and click Properties.

The Parameter window opens.
Rational Statemate 51

Adding User-Written Code
Using Globals

If you wish to use the same parameters for multiple activities, you may want to define them as
globals. If so, click Globals Usage.

The global Usage window displays:

Globals are elements that are external to the subroutine, but are not listed as parameters. The
reading or writing of global data is called a side effect.

Writing more than once to a global element is considered racing. However, this racing differs from
general racing where you have no way of determining which value will be assigned. In this case,
the final value will be the resulting value of the global element. Therefore, it is your responsibility
to ensure that the subroutine writes to global elements only a single time during its execution.

Note
It is strongly recommended that you do not write global data in a function called in a trigger
expression. Side effects written as part of a trigger will behave differently between
simulation and code.
52 Code Generation Reference Manual

Supplementing the Model with a Procedure
Producing a Template for a Procedure

To produce a template for a procedure, open the Implementation menu to select a language for
the code. This example uses K&R C.

.

Rational Statemate 53

Adding User-Written Code
Rational Statemate opens an editor and provides a template for you to attach your handwritten
code (refer to the following figure).
54 Code Generation Reference Manual

Supplementing the Model with a Procedure
Filling in the Procedure’s Template

The following example shows the template filled in with handwritten code for a complete
procedure.
Rational Statemate 55

Adding User-Written Code
Subroutine Binding

To connect subroutines, open the Properties Editor for an activity and click Subroutine Binding
(refer to the following figure).

The User-Added Code Binding window opens when you enter the name of the
subroutine, which is to be bound to the activity (refer to the following figure).
56 Code Generation Reference Manual

Supplementing the Model with a Task
Supplementing the Model with a Task
This section explains how to add a handwritten task to your Rational Statemate model by showing
the following:

 Windows and how to complete them
 Template that the Code Generator produces
 Template filled in with an example of handwritten code

Note
Rational Statemate also provides templates for functions and procedures. The subroutine’s
template is a result of mapping the declarations into its C representation. This includes
mapping the parameter types and, in the case of functions, the returned value.

Complete the following steps to add a handwritten task:

1. Select File > New in the Properties Editor.

2. Name the new element (in this example IO_RECEIVER), then select its Chart Name.

3. Select Subroutine as the Element Type. The New Element window opens.

The Properties Editor window opens with the name of the new subroutine.
Rational Statemate 57

Adding User-Written Code
4. Define the subroutine Type as a Task (refer to the following figure).

5. Enter the task’s parameters if you want to store them in the . Select a parameter and click
on Properties to display the Parameter window..
58 Code Generation Reference Manual

Supplementing the Model with a Task
Using Globals

If you use the same parameters for multiple activities, you may want to define them as globals. If
so, click Globals Usage.
Rational Statemate 59

Adding User-Written Code
Globals are elements that are external to the subroutine, but are not listed as parameters. The
reading or writing of global data is called a side effect.

Writing more than once to a global element is considered racing. However, this racing differs from
general racing where you have no way of determining which value will be assigned. In this case,
the final value will be the resulting value of the global element. Therefore, it is your responsibility
to ensure that the subroutine writes to global elements only a single time during its execution.

Note
It is strongly recommended that you do not write global data in a function called in a trigger
expression. Side effects written as part of a trigger will behave differently between
simulation and code.
60 Code Generation Reference Manual

Supplementing the Model with a Task
Using the Template for a Task

Select the Implementation tab to select a language for the code. Each available option is listed in
the menu as shown in the following figure.

Note
This example uses K&R C.

Rational Statemate opens an editor and provides a template for your use to attach your handwritten
code as shown in the following figure.
Rational Statemate 61

Adding User-Written Code
62 Code Generation Reference Manual

Supplementing the Model with a Task
Filling in the Task’s Template

The following figure shows an example of the template filled in with handwritten code for a
complete task.

Note
The edited template must be saved when completed.
Rational Statemate 63

Adding User-Written Code
Synchronizing Tasks
This section discusses how primitive activities are integrated into the generated code.

User-written procedures are called when the system starts the corresponding activity (i.e.,
st!(<activity>)). In general, the user code and the generated code share the CPU time. That is, when the
user code is executed, the Statechart’s code (or other user activities) are suspended.

Tasks

The task mechanism allows you to integrate continuous or synchronized code into the primitive
activity. For this purpose, the Code Generator provides a special library that extends the C
language to support tasking or multi-threading. (Refer to Scheduler Package, for details). Tasks
can be bound to either a primitive or an external activity.

The scheduler package allows you to define C functions as concurrent routines or co-routines. An
activity that you choose to implement as a task is started by the control code as a co-routine, which
is executed concurrently with the rest of the prototype. Since we are dealing with serial machines,
concurrency means that the control is switched between these co-routines without interrupting
their thread of control. That is, when the co-routine gets the control back, it resumes executing
with the exact context it was before.

This mechanism allows the activity to use delay statements, wait for events, and perform
continuous calculations without blocking the rest of the code from continuing execution. When a
task is executed, however, the rest of the code is frozen. Thus, synchronization points are
introduced. They allow the rescheduling of other tasks (or the control code) to proceed and actions
(stop, suspend) to take effect.

Synchronization

There are three types of synchronization calls:

 wait_for_event(event)
 task_delay(delay_time)
 scheduler()

Each of these calls will suspend the calling task and reschedule another task or the main_task
(statechart) on a round-robin basis.

The wait_for_event call suspends the activity until the specified event is generated. It is a way to
synchronize the activity with other activities either user-implemented or statechart-controlled. When the
event is generated, the code resumes execution after the wait call.
64 Code Generation Reference Manual

Synchronizing Tasks
Example:

 void sense_start()
 {
 while (1) {

wait_for_event(SENSE);
 /* here you are supposed to check status.*/
 printf(“Time generated\n”);
 }
 } /* end sense_start */

The task_delay statement delays the activity for the time specified in the call. It is useful to implement
polling processes that periodically perform checks on a time basis.

Example:

void poll_input()
{

 while (1) {
 mouse_input = read_input_from_mouse();
 if (mouse_input) {
 . . Do Something . . .
 }
 task_delay(0.1); /* delay 0.1 seconds */
 }

}

The scheduler() call is used when you have a calculation which is too long to be executed non-
preemptively. For example, if you have to multiply two 10000x10000 matrices, you do not want the rest
of the system to be blocked all that time.

The scheduler() call will allow other activities to proceed and the calling activity will resume
execution in the next available time slot unless a stop or suspend command was issued. The call
should be placed in a loop in which one cycle can be executed without preemption, but an outer
loop may take too long.

Note
No synchronization call should be used by a procedure-implemented activity.

Example:

 void multiply()
 {
 for (i = 1; i<=10000; i++) {
 for (j = 1; j<=10000; j++) {
 /* internal loop is short
 enough to complete */
 }
 scheduler();
 }
 }
Rational Statemate 65

Adding User-Written Code
Scheduler Package
The user can specify that some of the primitive activities are to be implemented as tasks in the
Profile Editor. The tasks are actually C functions started as co-routines. The Statechart code itself
is a task, which runs concurrently with the other running tasks.

Controlling all those tasks is the responsibility of statecharts, which issue different actions to the
different activities (i.e., start, stop, suspend, resume). All this is handled by a scheduler package,
which is supplied with the Code Generator and is available on Rational Statemate platforms only.
This package supports multi-tasking programming within the context of a single process.

Below we describe how the user may add his own tasks, apart from those created for each task-like
primitive activity, and how to use the scheduler for controlling them.

Status of a Task

Each task may be in one of four states:

 Current - The task is executing
 Ready - The task is ready for execution
 Delayed - The task is waiting for some event to occur
 Stopped - The task is not active

The calls that change the status of a task are described in the following section.
66 Code Generation Reference Manual

Scheduler Package
Scheduling Policy

The context switch between tasks is done only in the following synchronization points:

 When a task explicitly calls the scheduler. This is done by calling the following routine:

scheduler()

 If there are other ready tasks - one of them (chosen in a round-robin manner) becomes
current, while the calling task becomes ready. If there is no other task ready, the calling
task continues its execution.
 When a task issues a delay request by calling task_delay. The calling task then

becomes delayed.
 When a task calls a wait_for_event service. The calling task then becomes

delayed.
wait_for_event(EVENT)

event *EVENT;

 After the task function performs a return, it stops.

Restrictions

Any call to process blocking functions (for example, sleep, scanf) of the operating system from a
task will hibernate not only the calling task, but the whole process. Using fork() and signals is also
not allowed, since it might confuse the scheduler.
Rational Statemate 67

Adding User-Written Code
Binding Callbacks
Callbacks are a powerful mechanism that enable you to connect user-actions or procedures to any
change in a Rational Statemate element during execution. This mechanism is very useful when you
wish to tie your external environment to the behavior represented by the generated code.

Callback Binding

To connect elements such as events, conditions, data items, and user-defined types, use the
following procedure:

1. Select the element in the Properties Editor

2. Select the Implementation > Callback Binding .

Note
The following figure is an example of a Callback Binding
68 Code Generation Reference Manual

Binding Callbacks
Callback Statement

The connection and binding statement syntax for callbacks consists of:

proc_name(<“element_identifier”>,param_1,param_2)

Where the <element_identifier> is required when and only when the callback is
connected to an aggregate element. An aggregate element is an array, record, union, user-defined
type, or any element referenced in a generic or instance. The <element_identifier> specifies what
part of the aggregate element the callback is to be connected.

Disabling Callbacks

To disable a callback, change the Enable option in the Callback Binding dialog to Disable. This
causes the Code Generator to generate code, but it “breaks” the code’s connection with the
element.
Rational Statemate 69

Adding User-Written Code
Callback Example

The following example illustrates the Rational Statemate callback utility. It shows two subroutines
that are bound to the callback DAR. Every time the DAR element changes, Rational Statemate
executes both of these subroutines.

To create a subroutine, start with the steps shown in Supplementing the Model with Subroutines.

The following figures show the code for the subroutines. The first one is the PRINT1INT
procedure; the second one is the PRINT_NTH_INT procedure.
70 Code Generation Reference Manual

Binding Callbacks
Rational Statemate 71

Adding User-Written Code
72 Code Generation Reference Manual

Referencing Model Elements
Referencing Model Elements
Communication between the handwritten code and the generated code is accomplished through the
semantics of the following information elements:

 Events
 Conditions
 Data-items
 User-defined types

It is important to understand how to access the values of these elements and how to modify them.
Each element has the following representation in the C target language:

 Conditions are represented as bytes
 Data-items are represented as integers, reals, strings or unsigned
 User-defined types are derived from primitive data-types

When you wish to pass structured elements (such as records and unions) from Rational Statemate
to your handwritten code, you must define these elements as user-defined types.

When you write code in the template, refer to all elements by the names you assigned in the model.
This applies to parameters of the subroutine, its local and global variables, to names of types,
constants, and any other subroutines that you may use for the implementation.

Note
Write all element names in uppercase.

Referencing Events

Events are primitive elements and are special in the sense that software languages do not support
them directly. Events are not allowed in subroutines as inputs, outputs, local variables, or
accessible as global elements.

Events, in relation to handwritten code, are used in the following manner:

 Callbacks - You can associate a callback with a Rational Statemate event.
 Tasks - You can use the wait_for_event command to react to a Rational Statemate event.
Rational Statemate 73

Adding User-Written Code
Where Elements are Defined

An element can be local to a module or global to a profile. The element is globally defined when it
is referenced by more than one module, for example, defined in the top-level module. Each
module “exports” all its local elements as externals in its header file.

This allows other user modules to access them. If you want to reference an element you must refer
to its scope by including the appropriate header file. An example is shown below.

Example:

If you want to reference (for example) an element BAUD_RATE in module display, you should
include the header file “display.h” to make the element visible.

/* my module */

#include “display.h”

.

.

br = BAUD_RATE ;

.

.

Accessing an Element Value

Since the element is a simple language element, it can be easily accessed by referring to its name.

Example:

my_data = XXX + YYY ;
74 Code Generation Reference Manual

Mapping Rational Statemate Types into C
Mapping Rational Statemate Types into C
The following table shows how Rational Statemate maps primitive types into corresponding C
types:

Note
All Rational Statemate elements of type string are translated into allocated C elements.

Rational Statemate Types C Type

Conditions char (byte 0-false, 1-true)

Integer int

Real double

Bit bit_array[1]

Bit array unsigned int

User Type struct

Record struct

Union struct

Enumerated Types typedef

Records Records become C constructs. For example, a record INVOICE_TYPE
might become a structure defined as:
typedef struct INVOICE_TYPE {
char NAME[80+1];
char ITEM[80+1];
real AMOUNT;
 } INVOICE_TYPE;

Note that the name INVOICE_TYPE is normally named the same as the
User-Defined Type name. If, however, the Rational Statemate model
contains multiple textual elements with the same name, the C code names
will be modified to make all the names unique. This name mapping
information is listed in the .info file.

Unions Unions become C unions with a declaration that is similar to the construct
definition for records.

Arrays Elements of all arrays in C are enumerated starting from 0. In Rational
Statemate, there is no such restriction.
Rational Statemate 75

Adding User-Written Code
Enumerated Types An Enumerated Type is a user-defined type with a finite number of values.
Enumerated values and other textual items cannot have the same name
within the same scope. For example, data-item SUN cannot be declared in
the same chart where an enumerated value SUN is declared.
Enumerated range and indices of arrays are not supported in C. The C code
generator shall approximate this capability in the generated code.
There are two constant operators and five general operators for enumerated
types:

Constant Operators en_first(T)
en_last(T)

First enumerated value of T
Last enumerated value of T

Parameters to these constant operators are user-defined types that were
defined as enumerated types.

General Operators en_succ([T’]VAL)

en_pred([T’]VAL)

en_ordinal([T’]VAL)

en_value(T,I)

en_image([T’]VAL)

Successor enumerated value of
T
Predecessor enumerated value
of T

Ordinal position of VAL in T
Value of the i’th element in T
String representation of VAL in T

Parameters to these operators are either enumerated values (literals) or
variables. The T’VAL notation is used for non-unique literals.

Bit Arrays Bit-arrays are stored in unsigned ints. Since unsigned ints can hold a
maximum of 32 bits, bit-arrays larger than 32 bits are stored in arrays of
unsigned ints. Arrays of bit-arrays are stored in two dimensional arrays of
unsigned ints. Notice that multiple bit-arrays smaller than 32 bits are NOT
packed into the unsigned int.

Data-Items* Results in these
structures

BA1 is array 1 to 10 of Bit-array 31 to 0 bit_array BA1[10][1]

BA2 is array 1 to 10 of Bit-array 48 to 0 bit_array BA2[10][2]

BA3 is array 1 to 10 of Bit-array 3 to 0 bit_array BA3[10][1]

* In $STM_ROOT/etc/prt/c/types.h you will find the statement:
typedef unsigned int bit_array
76 Code Generation Reference Manual

Mapping Rational Statemate Types into C
Bit-Array Functions
bit_array *AND(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

 bit_array *ba1;
 int l_ba1;
 int from1;
 int to1;
 bit_array *ba2;
 int l_ba2;
 int from2;
 int to2;

 bit_array *NOT (ba1, l_ba1, from1, to1)
 bit_array *ba1;
 int l_ba1;
 int from1;
 int to1;

bit_array *OR(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

 bit_array *ba1;
 int l_ba1;
 int from1;
 int to1;
 bit_array *ba2;
 int l_ba2;
 int from2;
 int to2;

bit_array *XOR(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

 bit_array *ba1;
 int l_ba1;
 int from1;
 int to1;
 bit_array *ba2;
 int l_ba2;
 int from2;
 int to2;
Rational Statemate 77

Adding User-Written Code
The following bit array function names are mapped through macros to their internal names,
because these names are used by Ada runtime libraries, therefore they cannot be defined as
functions in the intrinsics. (These same intrinsics are used by C and Ada environment.) It is
important to include the types.h header containing these macros.

#define ASHR ashr
#define LSHL lshl
#define LSHR lshr
#define BITS_OF bits_of
#define CONCAT_BA concat_ba
#define EXPAND_BIT expand_bit
#define SIGNED signed_b
#define MINUS minus_b
#define NAND nand_b
#define NOR nor_b
#define NXOR nxor

The functions are:

bit_array *concat_ba
(ba1,l_ba1, from1, to1, ba2, l_ba2, from2,to2)

bit_array *ba1;

int l_ba1;
 int from1;
 int to1;

bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *lshr(ba, len_ba, from, to, shift)

bit_array *ba;
int len_ba;
int from;

int to;
int shift;

bit_array *lshl(ba, len_ba, from, to, shift)
bit_array *ba;
int len_ba;
int from;
int to;
int shift;

int signed_b(ba_val, len, from, to)
bit_array *ba_val;
int len;
int from;
int to;

bit_array *ashr(ba, len_ba, from, to, shift)
bit_array *ba;
78 Code Generation Reference Manual

Mapping Rational Statemate Types into C
int len_ba;
int from;
int to;
int shift;

bit_array *nand_b(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *nor_b(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *nxor(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;

int l_ba2;
int from2;
int to2;

Use the following functions to convert between integer and bit-array types:

bit_array *int2ba(int_val)
int int_val;

int ba2int(ba, len, from, to)
bit_array *ba;
int len;
int from;
int to;
Rational Statemate 79

Adding User-Written Code
Rules for Mapping into C

The following table summarizes the rules of mapping into C for:

 Types of parameters for procedures and functions
 Returned type of functions

Note

 The first level of all arrays should be defined as User-defined type in order to restrict
the “second” dimension.

 Unrestricted strings and bit-arrays are not allowed as returned type of a function.
 Numeric Input parameters can be mixed up i.e., integer, real and bit-arrays can be mixed

when used as actual and formal parameters.

Type Function Type In Param Out/InOut Param

Primitive (*) int f(); int P; int *P;

UDT defined as Primitive UDT f(); UDT P; UDT *P;

Record/Union rec *f(); REC *P; REC *P;

String char *f(); char *P; char *P;

UDT defined as String char *f(); UDT P; UDT P;

Bit BIT_ARRAY *f(); BIT_ARRAY *P; BIT_ARRAY *P;

Bit-array BIT_ARRAY *f(); BIT_ARRAY *P; BIT_ARRAY *P;

UDT defined as Bit-array BIT_ARRAY *f(); BIT_ARRAY *P; UDT *P;

UDT Array of Primitive int *f(); UDT P; UDT P;

UDT Array of String -- Illegal -- UDT P; UDT P;

UDT Array of Bit-array -- Illegal -- UDT P; UDT P;

UDT array of direct R/U -- Illegal -- UDT P; UDT P;

UDT array of UDT2 UDT2 *f(); UDT P; UDT P;

Array of Primitive -- Illegal -- int *P; int *P;

Array of Record/Union -- Illegal -- -- Illegal -- -- Illegal --

Array of String -- Illegal -- char *P; char *P;

Array of Bit-array -- Illegal -- BIT_ARRAY *P; BIT_ARRAY *P;

(*) Primitive type is one of: integer, real, condition, or enumerated type. In the above matrix,
integers are taken as example.
80 Code Generation Reference Manual

Running User Code on Solaris 2.9 or 2.10
Running User Code on Solaris 2.9 or 2.10
Running user code on Solaris 2.9 or 2.10 needs a special treatment regarding the libraries
libscheduler.so and libsim_scheduler.a.

These libraries should be replaced with the following ones - libscheduler2_9.so and
libsim_scheduler2_9.a.or libscheduler2_10.so and libsim_scheduler2_10.a.

 Running Generated Code

In order to compile and run generated code on Solaris 2.9 or 2.10, the Solaris target file
should be modified by replacing the following library options:
 lscheduler2_9 or lscheduler2_10
 libsim_scheduler2_9a or libsim_scheduler2_10a

 Running a Simulation with User Code

No change is required. The correct library is selected automatically according to the
operating system.

 Compiling Runtime Libraries

Runtime libraries for Solaris 2.9/2.10 must be compiled on a Solaris 2.9 or 2.10 system. In
addition, the following compilation flags are required:

“-D_MAKECONTEXT_V2_SOURCE -DSOLARIS_29”

or

“-D_MAKECONTEXT_V2_SOURCE -DSOLARIS_210”
Rational Statemate 81

Adding User-Written Code
82 Code Generation Reference Manual

Adding STM Code Modules
To obtain a working prototype of the system, you can extend your handwritten code with Rational
Statemate code modules. Use this option when most of your model consists of handwritten code,
but you want to supplement it with some Rational Statemate-generated code.

Note
When the majority of your model consists of Rational Statemate-generated code, refer to
Adding User-Written Code.

This section explains how to generate Rational Statemate (or STM) code modules. The module’s
format makes it easier to take the generated code out of Rational Statemate and incorporate it into
your handwritten code.

Normally, Rational Statemate-generated code consists of an entire executable that includes the
main, scheduling, data management, interrupt handling, and all other necessary services. Since you
are supplying these services, you only need a self-contained module. This option generates a
module of code rather than the entire executable.

These modules are as follows:

 Callable from the handwritten code
 Accept and return values
 Perform either a step or a super step when started

Modules, however, do not communicate or synchronize with any other Rational Statemate
modules. Your handwritten main body must perform the communication or synchronization
functions between Rational Statemate-generated modules.
Rational Statemate 83

Adding STM Code Modules
Generating Modules of Code
Complete the following steps to generate a self-contained module instead of an entire executable:

1. Select the Options > Global Profile Settings menu item from the Profile Editor’s main
menu.

The Global Profile Settings window opens.

2. Select Module Procedures Only from the Generation of main field.

3. Click OK.

Note
Because the modules are not executables, the Code Generator disables Main Setting, With
Debugger, and Graphical Back Animation. The Panels button in the Profile Editor main
screen is also disabled.
84 Code Generation Reference Manual

Setting Module Parameters
Setting Module Parameters
After selecting Module Procedures Only, you can set the parameters for an individual module.

Complete the following steps to set parameters:

1. Select a module in the profile.

2. Select Options > Module Settings from the Profile Editor’s main menu.

The Module Settings window opens.

Note: Because you selected Module Procedures Only in the previous procedure, the
Code Generator disables Separate File per Statechart, and enables
Parameter Setting.

3. Click Parameter Setting. The Parameters for Module xx window opens.

Note: The order in which you enter the parameters is very important since this is the
order in which they appear in the <module_name>_init function.
Rational Statemate 85

Adding STM Code Modules
4. Enter the Type (Data-Item, Condition, Event) and Mode (IN, OUT, IN/OUT) parameters
for the selected elements.

5. Click Choose to select additional parameters. The Selection of Module Parameters
window opens
86 Code Generation Reference Manual

Generated Procedures and Files
Generated Procedures and Files
When you generate code with Module Procedures Only, each module generates the following
procedures and files.

Generated Procedures

Modules generate the following procedures:

 <module_name>_init() initializes the module. If the module is already active, calling it
again re-initializes it. This procedure accepts all the elements that communicate with the
module as parameters. Calling the module with these parameters performs the actual-to-
formal binding.

 <module_name>_exec() calls the module and executes either a single or a super step
depending on how the module is called.

 <module_name>_status() returns the module’s status which can be in one of the
following states:
 return module_stable
 return module_terminated
 return module_working

Generated Files

Modules generate the following files:

 <module_name>.c - Contains the code for the module, all the procedures listed above,
and the declarations for all the textual elements in the procedures.

 <module_name>.h - Is the include file that includes all types and external declarations
defined within the MODEL scope of the related module.

 <procedure_name>.c - Contains the code for functions/ procedures. This is consistent
with the rest of the generated code where separate files are generated for each function
and procedure used within the related model scope.

 TOP_<module_name>.h - Contains declarations of types defined outside (above), but
used within the module scope.
Rational Statemate 87

Adding STM Code Modules
Sample Code Module
The code samples show what the code looks like when you perform the following tasks:

 Generate code with Module Procedures Only selected. Refer to example.c.
 Generate the makefile. Refer to Generated Makefile.

 Generate the makefile and then modify it to work with your handwritten code. Refer to
Modified Makefile for more information.

 Include the main in your code. Refer to my_main.c for more information.
The Statechart in the following figure describes the sample module.
88 Code Generation Reference Manual

Sample Code Module
example.c

The following code sample illustrates how the generated code looks when you select Module
Procedures Only.

/* */

/* Created: 16-MAY-1997 */

/* Compilation Profile: prof1 */

/* File Name: example.c */

/* */

 .

 .

 .

void example_init_module(instance, _INPUT_VALUE, _COUNTER, _CONTINUE)

 sw_module_ptr *instance;

 int *_INPUT_VALUE;

 int *_COUNTER;

 int *_CONTINUE;

{

 .

 .

 .

} /* example_init_module */

sw_module_status example_exec(instance, single_step)

 sw_module_ptr instance;

 boolean single_step;

{

 .

 .

 .

} /* example_exec */
Rational Statemate 89

Adding STM Code Modules
sw_module_status example_get_status(instance)

 sw_module_ptr instance;

{

 .

 .

 .

}

Generated Makefile

The following shows the generated makefile.

all : out_lib.a

CC = cc

OBJECTS = \

job_man_dictionary.o\

example.o\

init_queue_tail_sc.o\

job_priority_sc.o\

remove_job_sc.o\

empty_queue_sc.o

CFLAGS = -O -I$$STM_ROOT/etc/prt/c -I$$STM_ROOT/etc/sched -DPRT -
Dsparc

out_lib.a :$(OBJECTS)

ar rvu out_lib.a $(OBJECTS)

ranlib out_lib.a

example.o :example.h
90 Code Generation Reference Manual

Sample Code Module
Modified Makefile

The following shows the makefile that has been modified to work with handwritten code.

all : my_main

CC = cc

OBJECTS = \

example.o \

my_main.o

CFLAGS = -g -I$$STM_ROOT/etc/prt/c -I$$STM_ROOT/etc/sched -DPRT -
Dsparc

out_lib.a :$(OBJECTS)

ar rvu out_lib.a $(OBJECTS)

ranlib out_lib.a

my_main : out_lib.a Makefile

 $(CC) $(CFLAGS) -o $@ \

 my_main.o example.o \

 -L$$STM_ROOT/lib -lintrinsics -lscheduler -lm

my_main.o :

example.o :example.h
Rational Statemate 91

Adding STM Code Modules
my_main.c

The following shows a sample .c file that you would have to write. It contains the main for
example.

/* my_main.c */

#include <stdio.h>

#include “types.h”

#include “example.h”

main()

{

 int CONTINUE=0;

 int ACTUAL_DI=0;

 int COUNTER_INIT=0;

 sw_module_ptr MODULE_HANDLE=0;

 sw_module_status MODULE_STATUS;

 example_init_module(
&MODULE_HANDLE,
&CONTINUE,
&ACTUAL_DI,
&COUNTER_INIT);

 while (MODULE_STATUS != module_terminated)

 {

 printf(“Enter value to initialize counter (99=quit)\n”);

 scanf (“%d”, &COUNTER_INIT);

 CONTINUE=1;

These include files enable you to:
• Print
• Access Rational Statemate’s type

definitions ($STM_ROOT/etc/
prt/c/types.h)

• Access the model’s type
definitions

These variables map to the model’s
parameters.

These are the handle and
status variables for this
model.

This call initializes the module and
“binds” or “maps” the parameters
that you defined when you created
the profile.

Loop until module terminates.

Get an initial value for the counter.
Notice that to set the input
parameters, there are no Statemate-
specific calls.
92 Code Generation Reference Manual

Sample Code Module
while ((MODULE_STATUS == module_working) || CONTINUE)

 {

 MODULE_STATUS = example_exec(MODULE_HANDLE, 1);

 printf (“Counter value = %d \n”, ACTUAL_DI);

 printf (“Module Status - %d \n\n”, MODULE_STATUS);

 }

 }

 printf(“ Statemate module has terminated \n”);

}

Loop as long as the module is
working or the CONTINUE variable is
true. Set CONTINUE after changing
the inputs to the module.

Execute a single step. The second
parameter is true (1) for a single
step, and false (0) for a superstep.

Print the desired variable and status.
Notice that there are no Statemate-
specific calls.

To reach this point, the module must
return a module_terminated status,
which means it reached a
termination connector.
Rational Statemate 93

Adding STM Code Modules
94 Code Generation Reference Manual

Debugger
The Code Generator Debugger helps you find errors in the specification in a manner similar to
symbolic debuggers used for conventional high-level programming languages.

The Debugger can locate specification errors in terms of the Rational Statemate specification
objects (states, activities, events, conditions, and data-items), rather than in terms of the generated
code. In fact, most users of the prototype code do not know the structure and content of the code.

This section explains how to:

 Control the execution by stopping at chosen breakpoints (e.g., when selected events occur)
 Monitor the execution by examining the current status of states and activities, values of

events, conditions, and data-items and by inspecting scheduled timeouts
 Affect execution by modifying event, condition, and data-item values
 Create execution trace files for off-line analysis by choosing specification objects to be

traced
The Debugger has an interactive command language through which you control the debugging
session. Predefined command sequences can be stored in files and started during the session.

The Debugger also has an online help facility. It provides information on command syntax and
usage.
Rational Statemate 95

Debugger
Generating Prototype Code With Debugging Facilities
To enable the Debugger and produce prototype code with debugging facilities, check the With
Debugger option under the Options menu. Refer to Selecting Code Parameters for more information.

Compilation and link of the generated code result in an executable file called
<profilename>_dbg. By default, the Code Generator stores this file in your workarea under the “prt”
subdirectory.

A program generated with the Debugger facility consumes more memory and is slower to execute.
Therefore, at the point in the specification development that you no longer need the debug facility,
you may want to generate a prototype without the Debugger to obtain code with better
performance.

A Debugging Session

A debugging session consists of alternating modes of operation when the prototype is executing
and when the prototype pauses its execution and allows debugging commands to be entered. When
the prototype is executing, it behaves as defined in the specification. When the execution pauses,
you may enter debugging commands.

The executing prototype enters the debug mode in the following cases:

 When you first invoke the debugging prototype
 When a breakpoint event occurs
 After completing a specified number of steps through the execution
 By explicitly interrupting the execution with Control-C
96 Code Generation Reference Manual

Generating Prototype Code With Debugging Facilities
Prototype Behavior In Debugging Session

Switching from execution mode to debug mode and entering debugging commands can have
unintended side effects in a real-time system. This is because, in debug mode, input events are not
processed and the Debugger commands may put the system into a status that could not have
otherwise been reached. More specifically, during the time the debugging prototype is in debug
mode, the following takes place:

 Controls of all nonprimitive activities remain in their current state configurations
 Each primitive activity remains at one of its synchronization points
 All changes of events, conditions and data-items produced by the specification’s

environment are ignored. In debug mode, these elements can be changed only via
debugging commands.

 System time is not advanced. As a consequence, time-out events and scheduled actions are
delayed. They progress in time only when the execution is not in debug mode.

Note that in many practical situations, you may have enough control of the actual environment to
avoid the loss of events and values. For example, assume that the interaction with the prototype is
performed via a graphic control panel and events are generated by clicking the mouse on graphical
buttons. In this situation, no events are generated and lost if you refrain from clicking any of the graphical
buttons while in the debug mode.

Also, if necessary, you can explicitly enter the events and other value changes that are needed to
get correct prototype behavior manually, via the appropriate Debugger commands (SET EVENT,
SET CONDITION, and SET DATA_ITEM). This must be done with caution since all these events
and value changes are considered as happening simultaneously, at the first step that follows the
resumption of the execution.

Switching from execution mode to debug mode does not, by itself, cause any change in the current
status. Entering debug mode is different from the Rational Statemate suspend action. In particular,
conditions of type hanging(A) do not become true. Similarly, resuming the execution does not
make these conditions false.
Rational Statemate 97

Debugger
Debugger Command Conventions
The Debugger commands, which are described in detail later in this section, are divided into four
groups.

Session Control

Monitoring and Modifying Object Values

Creating Trace Files

QUIT Exits the debug mode.

GO Starts or resumes execution of the prototype.

STEP Executes a number of steps of the prototype.

LOAD Reads and executes Debugger command files.

SET OUTPUT Logs a transcript of the session to a file and/or the
terminal.

HISTORY Re-executes previously entered commands.

HELP Provides on-line help for Debugger commands.

LIST Lists the specification objects.

SHOW Displays the status of the objects.

SET Modifies the status of the objects.

PUT, UPUT, FLUSH Modifies the status of queues.

SET TRACE Instructs the Debugger to report every time an
object changes its status.

SHOW TRACE Shows which objects are being traced.

CANCEL
TRACE

Cancels a previously requested trace.

SET TIME Puts time stamps in trace messages.

CANCEL TIME Cancels time stamps in trace messages.
98 Code Generation Reference Manual

Reference to Rational Statemate Objects
Handling Breakpoints

Reference to Rational Statemate Objects
This section describes how to refer to Rational Statemate objects in Debugger commands.

Rational Statemate Objects Classes and Subclasses

Different Rational Statemate objects can be manipulated in different ways in the debugging
prototype. In Rational Statemate specifications there are nine basic classes of objects:

Action Activity Condition
Data-item Event Flow Line
State Transition User-Defined Type

Some classes of Rational Statemate objects are further subclassified. Some Debugger commands
work only with specific subclasses. The following table summarizes the classes and subclasses:

SET BREAK Instructs the Debugger to pause the
specification’s execution and enter debug mode
when a specified event occurs.

SHOW BREAK Shows which breakpoints are active.

CANCEL BREAK Cancels previously set breakpoints.
Rational Statemate 99

Debugger
States

You can review the model’s current state by typing the SHOW STATE command. You cannot
change the configuration to be a set of specific states by directly naming those states.

Subclasses: Basic/Non-Basic - a state is basic if it is not decomposed into substates.

Activities

The status of activities can be inspected while in debug mode via the SHOW ACTIVITY
command. There is no direct way to start, stop, suspend and resume an activity from the Debugger.

Subclasses: Primitive/Non-Primitive - an activity is considered primitive in one of the following
cases:

 It is part of the lowest level of decomposition in the activity-chart, i.e. it does not contain
any subactivities and has no controlling statechart.

 It contains subactivities and/or has a controlling statechart but the user has requested that
it be treated as a stub when creating the prototype.

For primitive activities, the Code Generator generates only templates. These templates must be
completed manually with the code describing their behavior.

CLASS SUBCLASS
ACCESSIBLE IN

DEBUGGING
PROTOTYPE

Activity Primitive
Non-Primitive

Yes

Condition External
Internal

Yes

Data-item External
Internal

Yes

Event External
Internal

Yes

State Basic
Non-basic

Yes

Action No

Flow-line No

Transition No

User-Defined Type Yes
100 Code Generation Reference Manual

Reference to Rational Statemate Objects
Events, Conditions and Data-items

You can refer to events, conditions and data-items by name, and inspect the values of any event,
condition or data-item (with the exception of structured data-items). You can modify the values of
any primitive condition or data-item as well as generate any primitive event. An event that is
generated is said to be active.

Subclasses: External/Internal - Events, conditions and data-items produced by an external or
primitive activity are external. If produced by a control activity, then they are internal. Note that it is
possible for an event, condition or data-item to be both internal and external. When you modify the
value of an item that does not come from the environment, then you are cheating and changing the
model’s behavior. If you change data coming from the environment, then you are simulating the
environment.

User-Defined Types

User-Defined Types can be accessed by name. The SHOW and the LIST commands can be used
to view the type and its structure. User-Defined Types cannot be modified from the Debugger.

Actions

There is no way to invoke a Rational Statemate action by its name. Most of the action syntax is
available through the appropriate SET command. Only scheduled actions and actions on activities
cannot be issued from the Debugger.

Flow Lines

Flow lines in activity-charts are not modeled in the prototype. Flow lines signify that data from
one activity are available to another activity; they do not model a specific channel through which
the data flow. Therefore, though the data that flows through the flow lines is accessible to the
Debugger, the flow lines themselves are not. The existence of flow lines in the activity-chart
determines the externality of the element and whether it is available for use by the environment
and primitive activities.

Transitions

You cannot command the prototype to perform a particular transition. However, you can set the
proper events, conditions and data-items so that the trigger of a transition leading from a currently
active state becomes enabled - and the transition is taken in the following step. Also, there is no
query of available transitions or relevant object.
Rational Statemate 101

Debugger
Names and Synonyms

In Debugger commands, you refer to all objects by name. If the object has a synonym, then you
can also refer to it by synonym. For example, if an event POWER_ON has the synonym P_ON, you
may generate this event with either of the following commands:

SET EVENT power_on:=true

SET EVENT p_on:= true

You may also refer to a particular element by its name in one command and its synonym in another
command.

You can use the name of the chart the objects belongs to as a prefix to its name with a separating
colon.

For example:

SET EVENT ews:p_on:=true

Whenever names are displayed, either in trace messages or in the output of the Debugger, this last
convention, including the chart name, is used.

If a synonym also exists, it is printed in parentheses next to the name. For example, in response to
the input:

Pdb > LIST EVENT

you would get:

List of events

. . .

ews:power_on(p_on)

. . .
102 Code Generation Reference Manual

Referring to Unnamed Objects
Referring to Unnamed Objects
Rational Statemate objects need not be assigned a name. This is an acceptable practice in many
situations. For example:

 Orthogonal components of an and-state may not have a name since you usually refer to
substates of such components but not to the components themselves.

 Expressions are often used in transition triggers without giving names to events and
conditions they represent. For example, a transition may be triggered by the event
entered(S) without this event having a defined name.

Note
Recall that an instance state or an instance activity has no explicit name (for example, was
labeled as @CHART_NAME), then this element is given a default name CHART_NAME. Hence,
such elements are not considered as unnamed in the following discussion.

Unnamed Activities and States

For all charts that you did not name, the Debugger assigns internal names. This allows you to
reference them when using Debugger commands. Internal names of unnamed states and activities
are constructed as follows:

STATE#id_number

ACTIVITY#id_number

Using the Debugger command LIST STATE results in the following display:

ews:ST_OUT
ews:STATE#1201
ews:ST_IN

ews:STATE#1202

Since the hierarchy of the states is used in formatting the output of the LIST STATE command, it
is easy to see that the unnamed state within ST_OUT has the internal name STATE#1201.

You can use the internal name to reference the state or activity. For example:

Pdb > SET BREAK bp entered(STATE#1201)
Rational Statemate 103

Debugger
Unnamed Events and Conditions

Unnamed basic events and conditions may be referred to exactly as in the specification. For
example, you may define a breakpoint on a basic event:

Pdb > SET BREAK user stopped(A)

even if this event was not referenced at all in the prototyping scope.

Resolving Name Ambiguity
Two or more elements may have the same name. For example, the specification might contain an
and-state ON with two orthogonal components READING and MONITORING, each of them containing a
substate called WAIT. Another example is two events with the same name E defined in two different
charts.

Many Debugger commands operate on a group of elements (LIST, SHOW and the different
TRACE commands). If such a command is given with a non-unique object name, then it is applied to all
the objects with that name.

However, there are commands which expect the argument to be uniquely defined. If these
commands are given a non-unique object name, they are ignored and an error message is
displayed. To make the reference unambiguous, you can either use the chart name as described
above and/or prefix the object’s name with its ancestor(s) name(s) separated by periods, up to a
point where the full pathname given is unique.

In our example of the ON state, we could uniquely identify the two orthogonal components in a show
state command by entering the following:

Pdb > SHOW STATE reading.wait

Pdb > SHOW STATE monitoring.wait

In another example, to uniquely identify a specific event E, precede it with the name of the chart in
which it is defined:

Pdb > SET EVENT chart1:e:=true
104 Code Generation Reference Manual

Resolving Name Ambiguity
Wildcard Abbreviation (*)

In all Debugger commands, you can abbreviate the names of objects and breakpoints.

To abbreviate, you type a wildcard symbol (*) anywhere in the name. The symbol means that any
sequence of characters may replace it. The specified command is then applied to all objects, whose
names match the pattern. For example, the command sets a trace on all the states whose names
begin with the letter “s” including the state whose name is S.:

Pdb > SET TRACE STATE s*

The following command sets a trace for all states whose names begin with the letter “a” and end
with the letter “t” and which belong to charts whose names begin with the letter “e”.:

Pdb > SET TRACE STATE e*:a*t

The command deletes all breakpoints whose names contain the letter “b” immediately followed by
the letter “p”.:

Pdb > CANCEL BREAK *bp*

Note
The use of SET BREAK requires explicit use of the breakpoint name. No wildcards are
permitted.

Subobjects Operator (^)

To apply a Debugger command to a hierarchical object (activity or state) and all its descendants,
type the subobjects operator “^” character immediately after the name of the state or activity.

For example, in response to the command:

Pdb > SHOW STATE S^

the Debugger lists the state S and all its currently active substates.
Rational Statemate 105

Debugger
Referencing Multiple Rational Statemate Objects in Commands

As already mentioned above, many of the commands can operate on more than one Rational
Statemate object. In addition to the above ways of specifying more than one item (the use of non-
unique names, wildcards and subobjects operator), you may just list the object names separated by
commas. Spaces on either side of the comma are optional.

Some examples follow:

Pdb > SHOW STATE x1, x2, x3

Pdb > SET TRACE CONDITION p*, cc, *a*, *w*:*

Pdb > LIST ACTIVITY act1^, act2

Referencing Records and Unions in the Rational Statemate Debugger
(Pdb)

User-Defined Types can be referenced in generated code debug using the standard form of naming
conventions described earlier in this section. Use of partial names is allowed. For example, if an array of
20 invoices was defined, where invoice is a record, the command:

SHOW data INVOICE(0..2)

might produce the output

(array of INVOICE_TYPE) USAGE_TEST:INVOICE(0) .NAME = ’Fred B’
.ITEM = ’Biscuit’
.AMOUNT = 2.45

(1) .NAME = ’Joe M’
.ITEM = ’Milk’
.AMOUNT = 0.69

(2) .NAME = ’Jim M’
.ITEM = ’Toothpaste’
.AMOUNT = 1.55

and the command:

SHOW data INVOICE(0).NAME

might produce the result

(array of INVOICE_TYPE) USAGE_TEST:INVOICE(0).NAME = ’Fred B’

Union structures are displayed in the same way, but fields that are not current may show unusual
values. It is only the field that had its value assigned most recently that shows a valid result.
106 Code Generation Reference Manual

Resolving Name Ambiguity
The command interface has been extended to allow types to be shown, so using the previous
example, the command...

SHOW TYPE INVOICE

would give the result:

USAGE_TEST:INVOICE is array (0..19) of Record
INVOICE_TYPE

 end of record

and the command...

LIST TYPE INVOICE_TYPE

will give the result:

INVOICE_TYPE record
NAME is string(80)
ITEM is string(80)
AMOUNT is real

 end of record

Referencing Queues in the Rational Statemate Debugger (Pdb)

Commands to allow queues to be displayed and modified in the debug environment are:

PUT <QUEUE_name> QUEUE_element_value
UPUT <QUEUE_name> QUEUE_element_value
FL <QUEUE_name>

The existing command SHOW DATA can be applied to queues, and lists the elements of the
queue. The queue element tagged number 1 is the top of the queue, and the highest number is the
end of the queue.
Rational Statemate 107

Debugger
Keywords

There are no reserved words in the Debugger. It is clear from the context whether a word is used as
an object name or a Debugger keyword. For example:

Pdb > SET BREAK br_label go

Here, “go” is obviously the name of an event and not a command keyword.

However, in some of the Debugger commands there are cases where both a Debugger keyword
and an object name may be given. This occurs in all the SHOW, LIST and TRACE commands -
where you can give either an object name or a keyword that denotes a subclass of Rational Statemate
objects (for example, “basic,” primitive, etc.) as an argument.

If an object exists whose name is the same as a keyword, and the user wishes to specify this object
in a command, its name must be specified within quotes. For example:

Pdb > SET TRACE ACTIVITY PRIMITIVE

means trace all the primitive activities, while

Pdb > SET TRACE ACTIVITY “PRIMITIVE”

means trace all the activities whose name is PRIMITIVE.

Generally, each of the keywords used in Debugger commands may be abbreviated. If the
abbreviation is ambiguous, then an error message is displayed followed by the list of possible
meaning for abbreviation. For example:

Pdb > L

causes the following response:

Ambiguous keyword abbreviation: L. Possible meanings:

LIST

LOAD
108 Code Generation Reference Manual

Debugger Commands
Debugger Commands
The following sections describe the debugger commands.

Activating the Debugger

You activate the debugging prototype by invoking the executable file called profileg_name_dbg.

The Debugger responds:

Welcome to Debugger of Generated Code

A prompt is displayed to show that the Debugger is ready to accept Debugger commands:

1 Pdb >

Each prompt is preceded by its sequence number, thus enabling the identification of every
command entered during the debugging session. This allows you to easily re-enter these
commands using the HISTORY option.

You may then start the execution of the prototype by typing the GO or STEP command.

Quitting the Debugger

To terminate a debugging session, use the QUIT command:

Pdb > QUIT

This stops the execution of the prototype code. To also stop those tasks that you might have added
in the user-written code, the command performs a call to the profile_name_user_quit routine.
This routine resides in the file user_activities. Before creating the debugging prototype, you may
want to edit this routine’s template.
Rational Statemate 109

Debugger
Entering Debugger Commands

You can enter Debugger commands any time the Debugger prompt is displayed:

 At the beginning of the debugging session
 When the execution reaches a breakpoint
 After the prototype finishes executing a step command
 When prototype execution is interrupted via the Ctrl-C interrupt

There are two ways of entering commands. One way is by interactively typing them at the
terminal’s keyboard. Each command can be up to 256 characters long. No special symbol is
required in order to continue the command on a new line. You can use abbreviations of command
keywords. Complete the command by pressing carriage return.

Another way of entering commands is via pre-existing command files. If there is a sequence of
Debugger commands that you frequently use, you can collect them in a file and invoke the file
from the Debugger using the LOAD command:

Pdb > LOAD file_name

The Debugger reads the commands in the given file and executes them. After reading the last
command of the file, the Debugger displays its prompt - at which point you can type in more
commands.

You may LOAD as many command files in one session as you desire. Command files can themselves load
other command files, up to a nested level of ten calls.

The argument file_name can be a full pathname explicitly specifying the directory in which the file
resides. If no pathname is provided, the Debugger searches for the file in the current directory (the one
from which the debugging prototype was started).
110 Code Generation Reference Manual

Debugger Commands
The HELP Facility

The Debugger comes with its own on-line help. When the Pdb prompt is displayed, you can get a list
of available commands, their syntax, and usage. To activate the help facility and display a table of
topics and commands for which help information is available, simply type:

Pdb > HELP

Help is organized hierarchically, from overall help to topics and from each topic to the commands
that belong to it. After choosing a topic, the Help facility displays a general explanation of the
topic and lists its corresponding commands. You can get further information about an individual
command by referring to its name.

If you know exactly which topic or command you want help, you can avoid successively going
through all hierarchical steps. Instead, ask for the needed help directly from the Debugger
command level. For example:

Pdb > HELP TRACE

gives you general information on the topic of tracing, while:

Pdb > HELP CANCEL TRACE

provides specific information on the CANCEL TRACE command.

TOPIC COMMANDS

Break SET BREAK, CANCEL BREAK, SHOW BREAK

Execution GO, STEP, INTERRUPT, QUIT

Help HELP

History HISTORY number, !number, !text, !!

Input LOAD

Output SET FILE, SET OUTPUT, CANCEL OUTPUT

Time SET TIME, CANCEL TIME

Trace SET TRACE, CANCEL TRACE, SHOW TRACE

Values SET OBJECT, SHOW OBJECT, SHOW SCHEDULE.
PUT QUEUE, FLUSH QUEUE

CE Evaluation SET CE_UPDATE, CANCEL CE_UPDATE

List SHOW CE_UPDATE

Notes LIST OBJECT
Rational Statemate 111

Debugger
Starting and Controlling Execution

As mentioned earlier, when you activate the debugging prototype you get the prompt Pdb >. The
debugging prototype is in the debug mode and execution of the prototype has not yet started. At
this moment:

 Selected conditions, data-items, and events are initialized in accordance with the
definitions you put into the program_name_user_init routine.

 All activities of the model, as well as states of their controlling statecharts are non-active.
For all objects not initialized in the program_name_user_init routine, the following holds:

 Events are not generated.
 Conditions have the initial value “false.”
 Numeric data-items have the initial value zero.
 String data-items are empty.

Use the STEP and GO commands to start or resume execution of the prototype whenever the
debugging prototype is in debug mode. The main function of STEP is to execute a number of steps
and stop at the beginning of the next step. The main function of GO is to execute the prototype
until suspension at the next breakpoint. There is also the interrupt option providing immediate
suspension of the execution.

STEP Command

The STEP command provides the most elementary way of advancing and suspending the
execution. You need not define any breakpoints. As a reaction to this command, the model
executes the specified number of steps, passing from its current configuration to another, where
the execution is again suspended. The command is entered as follows:

Pdb > STEP number

If no number is specified, one step is taken.

In particular, you can start the proper run of the code by using STEP as the first execution command
in the debugging sessions. As a result, the model enters its default configuration and performs all actions
attached to the corresponding default transitions.
112 Code Generation Reference Manual

Debugger Commands
GO Command

The GO command instructs the prototype to execute. If the prototype was suspended, GO resumes
execution. The syntax of the GO command is:

Pdb > GO

As a result, a series of successive steps is executed until a breakpoint is encountered. The
Debugger then displays a message:

Stopped at breakpoint BP_NAME on event :
EVENT_NAME

Several messages may appear when several events, on which you have set breakpoints, occur
simultaneously (in the same step).

You can use GO not only to resume execution after the prototype was suspended, but to start prototype
execution. You usually begin the debugging session by defining the required breakpoints and then issue
the GO command. The difference between using the STEP command for this purpose is that, here, the
execution is not suspended after entering the default configuration.

The GO command can also be used without any breakpoints. This option is useful when you want to
perform a prototype run containing debugging facilities without suspension of the execution, check of
object’s status, etc. Though any run of such code causes activation of the Debugger, you can perform
such a run by typing GO as the first and only command in the session.

In all cases, when you issue a GO command, the execution continues until one of the following
occurs:

 A breakpoint is reached
 An interrupt is issued
 The root activity terminates on its own
Rational Statemate 113

Debugger
Interrupting Prototype Execution

Interrupting the prototype execution causes it to immediately pause, thus enabling the Debugger to
read and execute debugging commands. The execution of the controlling statecharts is paused, as
are all primitive activities, each of which pauses at its next synchronization point.

When interrupted, the prototype execution is not stopped in the middle of a step but finishes the
current step and only then the Debugger prompt appears, allowing you to enter debugging
commands. When this is done, you can resume the execution of the prototype using the GO or
STEP commands.

To interrupt the prototype execution, use Ctrl-C. Issuing an interrupt while the Debugger prompt
is displayed does not produce any results.

For example, suppose that the specification enters a loop of transitions in which there are no
breakpoints and you decide that you want to trace certain objects while in the loop. You can
interrupt the prototype, turn on traces to the desired objects and then resume execution.

HISTORY Command

The HISTORY command allows you to easily invoke any previously entered Debugger command.
Each time the Debugger prompt appears, a sequential number is displayed. You can later use this number
to reference the command entered at the prompt. To see the list of commands used in the session, perform
the following:

Pdb > HISTORY

The Debugger then displays the most recently entered commands, up to a maximum of 20, with
their reference numbers.

To re-enter a specific command, enter the following:

Pdb > !command_number

where command_number is the command reference number.

For example, if, in the course of the debugging session, you gave the command:

90 Pdb > SET CONDITION cstop := true

You could re-execute this command later by entering:

103 Pdb > !90
114 Code Generation Reference Manual

Debugger Commands
To re-enter the last performed command, enter:

Pdb > !!

Another way to execute a previous command is to enter:

Pdb > !text

where text is a text string uniquely matching a previously entered command.

For example, if, after the command number 90, no command starting with the letter “s” was given,
then you can execute this command by entering:

Pdb > !s

LIST Command

The LIST command instructs the Debugger to output a list of objects belonging to the prototyped
specification. You can choose whether to list all the objects in the specification, or to select only those of
a certain class, subclass or name. The listing does not show the values or status of the objects in the
current prototype execution. It merely lists those objects that are within the prototyping scope.

The LIST command can be used in each of four basic forms:

Pdb > LIST

Pdb > LIST object_class

Pdb > LIST object_class subclass

Pdb > LIST object_class list_of_objects

For example, the following are valid LIST commands:

Pdb > LIST EVENT EXTERNAL

Pdb > LIST DATA input_value, y*

Pdb > LIST ACTIVITY

The order in which the information is displayed is hierarchical for activities and states and
alphabetical for events, conditions and data-items. Remember that the command shows all objects in
the system, regardless of their current status in the execution.

For example, the command: Pdb > LIST ACTIVITY PRIMITIVE lists the names of all
primitive activities in the specification, regardless of which ones are currently active.
Rational Statemate 115

Debugger
Similarly, if you type:

Pdb > LIST STATE NON_BASIC

the Debugger lists all the non-basic states in all the controlling statecharts in the prototype scope—
not only those states which belong to the current configuration.

When applied to non-graphical objects (events, conditions, data-items), the LIST command
displays the requested information and, in addition, marks all compound objects as in the
following example:

Pdb > LIST EVENT S*

(c) chart1: signal

 chart2: switch

(c) chart2: scroll

The compoundness attribute allows you to easily identify those elements to which command SET
OBJECT cannot be applied.

SHOW Command

In the Debugger, you can monitor the status and value of objects using the SHOW command.
Unlike the LIST command, SHOW displays the actual value or status of the Rational Statemate object
at the current execution point. Thus, at a breakpoint, you can examine the values of different objects such
as data-items, conditions and records to check if their actual values correspond to the expected values.

Using the SHOW command, you can modify the values of conditions and data-items, or generate and
reset events. When you resume the execution of the prototype, the new values take effect.

You can also check which time-outs and scheduled actions are currently pending with the SHOW
SCHEDULE command.

The SHOW command can be used in the same basic form as the LIST command:

Pdb > SHOW

Pdb > SHOW object_class

Pdb > SHOW object_class subclass

Pdb > SHOW object_class SHOW_of_objects

This provides great flexibility in limiting your request to only the information that you need.
116 Code Generation Reference Manual

Debugger Commands
SHOW with no arguments gives you the most complete information about the current status of the
system. This information includes the following:

 Current step number.
 Status of all activities (active, suspended, nonactive), organized by the activity’s hierarchy.

Descendants of nonactive activities are not shown explicitly, since they are all nonactive.
 Current state configurations of all controlling statecharts of active and suspended

activities, ordered according to activity and state hierarchies.
 Current values of all conditions, in alphabetical order.
 Current values of all data-items, in alphabetical order.
 Currently active events, in alphabetical order.

The second form of the SHOW command provides you with information on all objects of the selected
class. To get this information, use one of the following commands:

 SHOW ACTIVITY
 SHOW STATE
 SHOW CONDITION SHOW DATA_ITEM
 SHOW EVENT
 SHOW TYPE

Additionally, the current step number is displayed by entering the SHOW STEP command.

The third form of SHOW allows you to restrict the displayed information to a subclass of a particular
object class. For example:

Pdb > SHOW ACTIVITY PRIMITIVE

Pdb > SHOW STATE NON_BASIC

Pdb > SHOW EVENT EXTERNAL

The fourth form of SHOW restricts the information to specific objects of a certain class. You provide a
list of object names as a command argument. You may use wildcard abbreviations and the subobjects
operator.
Rational Statemate 117

Debugger
For example:

Pdb > SHOW DATA signal_level, y*

would display the values of the data-item signal_level, as well as the values of all data-items
beginning with the letter “y”.

Pdb > SHOW ACTIVITY act*^

displays the status of each activity that starts with letters “act” and all of their descendants, until it
reaches nonactive activities.

SHOW SCHEDULE Command

The SHOW SCHEDULE command shows you which timeouts and scheduled actions are pending
and how much time remains until the expiration of each one. A timeout is pending from the moment
the event which triggers it is generated, until its delay time elapses.

It is important to remember that the timeouts measure the elapsed time while the prototype is
actually executing. Therefore, when the debugging prototype is in the debug mode, the system
time is frozen. The measuring of elapsed time resumes when the prototype execution is resumed.

For each pending timeout and scheduled action, the Debugger displays the:

 Name of the timeout or scheduled action, if it has a name in the specification.
 Name of the event on which the timeout is defined (the timeout’s trigger), in case this

event was given a name, and if not, its expression.
 Original length of the timeout, both in time units and seconds.
 Amount of time remaining until the timeout or scheduled action elapses
118 Code Generation Reference Manual

Debugger Commands
SET OBJECT Command

To change the current value of a condition or a data-item, or to change the current status of an
event, use one of the following three forms of the SET command:

Pdb > SET CONDITION condition_name := boolean_expression

Pdb > SET DATA_ITEM data_item_name := data_expression

Pdb > SET EVENT event_name := event_expression

Note that the command is applicable only to primitive objects; you cannot change the value or the
status of a compound object.

On the right-hand side of an assignment, you can put any legal Rational Statemate expression
whose type corresponds to that of the object on the left-hand side. The value on the right-hand side
of the assignment is evaluated, and assigned to the object whose value is being set.

Examples:

Pdb > SET CONDITION c1 := true

Pdb > SET DATA_ITEM int_var := 5*y

Pdb > SET DATA_ITEM str_var := “new string”

Pdb > SET EVENT e1 := e2 or e3

To generate event e independently of other elements’ statuses, type:

Pdb > SET EVENT e := true

or

Pdb > SET EVENT e

To turn off or, reset event e, type:

Pdb > SET EVENT e := false

The SET command does not impose the redefinition of the system’s object. In the example above that
sets event e1, the current statuses of e2 and e3 are examined immediately, and if either event is
generated, then e1 becomes generated this time only. Later in the run, having e2 or e3 generated does not
cause e1 to be generated. Thus, e1 remains primitive and is not redefined by the command as a
compound event.
Rational Statemate 119

Debugger
The SET OBJECT command is a very powerful command to use in debugging sessions when you
discover an error in the specification, and you want to continue debugging, without first correcting the
specification. This command can be combined with the breakpoint operations to temporarily correct
mistakes in the specification.

Suppose, for example, that there is a static reaction on entering state S which refers to condition C
defined as:

C = (X=1)

and the correct definition should have been:

C = (X=1 and Y>0)

You can then enter the following:

Pdb > SET BREAK bp entered (s)

DO SET COND c:=(x=1 and y>0); GO END

The prototype then behaves as if the error is fixed, allowing you to concentrate on looking for
other problems. Later you should correct the definition of C using the Properties Editor.
120 Code Generation Reference Manual

Debugger Commands
PUT QUEUE Command

To add an element to the “back” of a queue, use the following command:

Pdb>put QUEUE_NAME VALUE

The VALUE must be a legal data-item for that queue. The put command places the value at the end of
the queue opposite from where the next get retrieves values. Using put and get commands in a Rational
Statemate model, treats the queue as a first-in/first-out (FIFO) type of queue.

UPUT QUEUE Command

To add an element to the “front” of a queue, use the following command:

Pdb>uput QUEUE_NAME VALUE

The VALUE must be a legal data-item for that queue. The uput command places the value at the end of
the queue where the next GET retrieves values. Using uput and GET in a Rational Statemate model,
treats the queue as a last-in/last-out (LIFO) type of queue.

FLUSH QUEUE Command

To completely empty a queue use the following command:

Pbd> flush QUEUE_NAME

This insures that the queue is completely empty at the end of the upcoming model step. If queue
put (or uput) statements are executed, either within the model or through the Pdb debugger,
within the same step as the FLUSH, the FLUSH command takes precedence.
Rational Statemate 121

Debugger
TRACE Command

The Debugger can provide a trace of the prototype execution. If the trace mode is on, the Debugger
issues a message whenever a change occurs in the system. You can restrict the Debugger and have
it report only certain types of changes. The trace is a history of how the system performed in its
actual execution.

The TRACE facility reports whenever a traced object changes value or status. Specifically, it
reports:

 Starting, stopping, suspending and resuming activities
 Entering and exiting of states
 Generating events
 Changing values of conditions
 Changing values of data-items

You can optionally have each trace message contain a time stamp specifying when the reported
change occurred.

Since the definition of the system’s behavior is based on the notion of step, it might be useful in the
course of debugging to see step bounds. For this, you use an additional trace option - step trace. In
this case, messages are issued upon starting and ending each step.

By storing a trace in a file, you can perform a post-run analysis and check whether the actual
behavior matches the expected one. Since the trace refers to specification objects, it is easy to
interpret the results of the code run in terms of the original Rational Statemate specification.
122 Code Generation Reference Manual

Debugger Commands
SET TRACE Command

The SET TRACE command has six forms:

Pdb > SET TRACE
Pdb > SET TRACE object_class
Pdb > SET TRACE object_class subclass
Pdb > SET TRACE object_class list_of_objects
Pdb > SET TRACE STEP
Pdb > SET TRACE SCHEDULE

Similar to the LIST and SHOW commands, the SET TRACE command can be started on all system
objects or restricted to only specified objects. The rules of naming object classes, subclasses and object
lists are the same as in the LIST and SHOW commands.

For example, the command:

Pdb > SET TRACE EVENT INTERNAL

sets a trace for all internal events and conditions.

Another command:

Pdb > SET TRACE STATE sampling^, c*, disconnected

sets a trace for sampling and all its substates, all states beginning with the letter “c” and the state
disconnected.

The Debugger displays trace messages on the terminal screen and/or stores them in a file (when
used in conjunction with the SET FILE command).

Format of Trace Messages
The format of the trace messages is shown in the following examples:

Activity trace:

Activity ews:SET_UP started

Activity ews:SET_UP stopped

State trace:

State ews:OFF entered

State ews:OFF exited
Rational Statemate 123

Debugger
Condition trace:

Condition ews:IN_CONNECTED changed value to
TRUE

Condition ews:IN_CONNECTED changed value to
FALSE

Data-item trace:

Event ews:SET_UP generated

Event ews:HALT reset

Step trace:

/---------------------\starting step 1

\---------------------/ending step 1

Timeout events are a special case. Each timeout event causes two trace messages. The first
message is printed when the timeout is triggered and the second message is printed when the
timeout expires and the corresponding timeout event is generated.

For example, suppose that the specification contains an event TMO defined as “timeout(E,5)”
where E is external and that tracing of events is requested. Assuming that the time unit specified is
2.5 seconds, whenever event E occurs, the following message appears:

Event ews:E generated

Timeout ews:TMO on event ews:E started for 5
time units (12.5 seconds)

and then, after 5 time units elapse and the timeout occurs:

Timeout ews:TMO on event ews:E ended after 5
time units (12.5 seconds)
124 Code Generation Reference Manual

Debugger Commands
SET TRACE SCHEDULE Command

The SET TRACE SCHEDULE command traces scheduled actions. Scheduled actions are a
special case similar to timeouts. Each scheduled action causes two trace massages. One when it is
scheduled, and one when the scheduled time is up and the action which was scheduled is executed.

Schedule Trace:

Schedule action CHART1:D1 of PROCESS_ONE
started for 200 time units

Schedule action CHART2:COMM of FFT started
for 5 time units

Schedule action CHART2:COMM of FFT ended
after 5 time units

Schedule action CHART1:D1 of PROCESS_ONE
ended after after 200 time units
Rational Statemate 125

Debugger
SHOW TRACE Command

To see what objects are currently traced, you use the SHOW TRACE command in one of the
following forms:

Pdb > SHOW TRACE
Pdb > SHOW TRACE object_class
Pdb > SHOW TRACE object_class subclass
Pdb > SHOW TRACE object_class list_of_objects
Pdb > SHOW TRACE STEP

The Debugger presents a list of all the traced objects of the requested class. For example, in
response to the first of the previous commands, the following could be displayed:

Activities traced:
system:SAMPLE_DEVICE
system:SET_UP

Conditions traced:
Data-items traced:

ews:SAMPLED_DATA
Events traced:

system:DISCONNECT
ews:OUT_OF_RANGE
ews:RESET
system:TIME_CLICK

States traced:
ews:MONITORING

Step trace: OFF

In each group of objects, the names are displayed in alphabetical order. An empty group means no
object of the corresponding class was traced, as in the case of conditions in the above example. For
step trace, its current status is either OFF or ON.

If you requested a trace and used abbreviations to specify which objects to trace, the list shows the
actual names of all the objects being traced, rather than the original abbreviation.

For example:

Pdb > SET TRACE EVENT s*
Pdb > SHOW TRACE EVENT

This produces:

Events traced:

ews:SAMPLED

system:STUCK

ews:SWITCHING
126 Code Generation Reference Manual

Debugger Commands
CANCEL TRACE Command

The CANCEL TRACE command allows you to turn tracing off for some or all objects previously set
by one of the SET TRACE commands. You may turn tracing back on by re-entering the appropriate
SET TRACE command.

Specify which traces to cancel by using the same syntax as when they were set (using SET
TRACE). For example, here are some valid commands to cancel traces:

Pdb > CANCEL TRACE

Pdb > CANCEL TRACE ACTIVITY

Pdb > CANCEL TRACE EVENT INTERNAL

Pdb > CANCEL TRACE CONDITION
disconnected, c*

Pdb > CANCEL TRACE STATE sampling^

Pdb > CANCEL TRACE STEP

The commands to cancel traces do not have to exactly correspond to the commands that turned
them on. For example:

Pdb > SET TRACE EVENT e*g, power_on, s*

Pdb > CANCEL TRACE EVENT energizing,
submerging

Pdb > CANCEL TRACE EVENT *g

would leave a trace on for the event power_on and all events that begin with “s” and do not end
with “g”. Request to cancel a trace that was not set is ignored.
Rational Statemate 127

Debugger
SET TIME Command

The SET TIME command tells the Debugger to put time stamps on each trace message and specifies
the format of these stamps. A time stamp shows the elapsed time since the prototype execution began. As
noted previously, time is not incremented when the prototype being debugged is in the debug mode.

This command has three forms:

 Pdb > SET TIME
 Pdb > SET TIME SECONDS
 Pdb > SET TIME FORMATTED

The first two forms are the same with format SECONDS being default. Time stamps are printed in
this case as SS.LLL, where SS is seconds and LLL is milliseconds.

For example:

AT 00:00:01:530 : Data-item ews:FAC changed
value to 1

AT 00:02:03:890 : Condition ews:C changed
value to FALSE

CANCEL TIME Command

To disable display of time stamps within the all trace messages, use the CANCEL TIME
command:

Pdb > CANCEL TIME

To renew time stamps in the trace messages later in the debugging session, you may re-enter the
SET TIME command.
128 Code Generation Reference Manual

The Set File, Set Output And Cancel Output Commands
The Set File, Set Output And Cancel
Output Commands

You can record a transcript of the entire debugging session (or any portion) in a log file. This
transcript includes the Debugger commands you entered during the session. It also includes the
corresponding Debugger output and trace messages. You can control whether the Debugger output
is written only to this file or also displayed at your terminal. The appropriate commands are:

 SET FILE
 SET OUTPUT
 CANCEL OUTPUT

The saved transcript can be used for off-line analysis of a prototype’s execution. It can also be used
as a Debugger batch (command) file, since the Debugger is able to extract commands from the
saved transcript. This batch file can be loaded using the LOAD command in a later execution of the
same or a corrected debugging prototype. This saves you from having to recreate the same scenarios that
were already tested in previous runs. It also facilitates comparison of two runs. In this way you can easily
check that a specification error detected in the first run has been properly corrected for the second run.

SET FILE Command

The SET FILE command specifies the name of the file in which the debugging session is to be
recorded. This file is called the log file. To actually start the recording, use the SET OUTPUT
command. The command is started as:

Pdb > SET FILE file_name

As an argument, you enter any string which is a legal file_name for your environment. If no
file_name is given, the default name becomes debug.log.

The file name can be a full pathname explicitly specifying the directory in which the file resides.
Otherwise the file is created in the directory from which the prototype was run. You must have
appropriate write privileges in this directory.

When you use multiple SET FILE commands in the same session, the recording is written into the log
file specified in the most recently entered command. Moreover, in such a case, you lose the ability to log
information into the former file since the file is recreated each time the SET FILE command is issued.
Rational Statemate 129

Debugger
SET OUTPUT Command

The SET OUTPUT command determines where the output transcript is written.

The command has three forms:

 Pdb > SET OUTPUT FILE
 Pdb > SET OUTPUT TERMINAL
 Pdb > SET OUTPUT

In the first case, the transcript is written to the file whose name was specified in the SET FILE
command. If the SET FILE command was not yet issued, then the file debug.log is used.

The second form directs the output to the terminal. This impacts trace messages only, since the
transcript of user commands and corresponding Debugger responses are always displayed at the
terminal.

Note
If you do not use the SET OUTPUT command, trace messages are sent to the terminal, but
not to any file. Therefore, it is reasonable to use the SET OUTPUT TERMINAL command
only after the commands CANCEL OUTPUT and CANCEL OUTPUT TERMINAL to
renew the full display of the Debugger output on the screen.

Finally, the form SET OUTPUT without any parameters directs output to both the file and the
terminal.

Format of a Log File
Each record in a log file is one of the following:

 Command entered in the debugging session.
 Immediate response of the Debugger to the command (for commands such as SHOW,

LIST, HISTORY, HELP).
 Trace messages.
 Breakpoint occurrence message.

Only entered commands and various forms of the Debugger’s responses are recorded in the log
file. Outputs produced by the prototype code itself (and printed on the screen and/or in a file) are
not recorded in the log file.

While commands are recorded as entered, all Debugger messages are preceded by a double
hyphen “--.”
130 Code Generation Reference Manual

The Set File, Set Output And Cancel Output Commands
For example, the following commands were entered in the debugging session:

Pdb > SET OUTPUT

Pdb > SET BREAK br reset

Pdb > SET TRACE EVENT

Pdb > GO

Pdb > SHOW DATA *bound

Pdb > SET DATA lower-bound := 25.0

The transcript of the session is recorded in the file debug.log and appears as follows:

SET BREAK br reset
SET TRACE EVENT
GO
-- Event ews:EXECUTE generated
-- Event ews:GO generated
-- Stopped at breakpoint BR on event: ews:RE
 SET
SHOW DATA *bound
-- Current values of data_items:
-- system:LOWER_BOUND = 20.5
-- system:UPPER_BOUND = 84.7
SET DATA lower_bound := 25.0

Using a Log File
One possible use of the log file is for an off line analysis of the prototype run. You use the saved
transcript to see what events occurred in the run and in which order. Relationships between various
other elements can also be examined. For example, you can check whether two specific activities
were ever active simultaneously in the run. Such post-run analysis is very helpful in localizing
errors in the specification.

You can also use the log file as a command file in another run of the same or corrected debugging
prototype. For this, you simply refer to the log file’s name in the LOAD command. For example:

Pdb > LOAD debug.log

As a result, the Debugger reads and performs in turn all commands recorded in the file. The
Debugger easily extracts the commands from the entire transcript since they are not marked by a
double hyphen. Thus, you can save a debugging scenario and then re-use it in several runs of the
prototype.
Rational Statemate 131

Debugger
Recording Comments in a Log File
Whenever the executing prototype pauses and enters the debug mode, you may enter not only
Debugger commands, but also comments. Comments have absolutely no influence on the
execution. However, they are recorded into the log file as part of the debugging session transcript.
This option supports a better understanding of the saved transcript contents in a post-run analysis.
You can use comments to:

 Describe the scenario of the environment’s behavior under which you are going to check
the system’s reactions

 Explain your motivation for entering various commands, especially those which change
values of specification elements

 Express your immediate impression concerning certain aspects of the observed prototype
behavior

Comments are extremely helpful when the transcript is not analyzed immediately after the run or
by persons other than those performing the run.

A comment is a free text string starting with a hyphen. You enter it when the Debugger prompt is
displayed:

Pdb > - free_text

Comments are recorded in the log file literally, including the hyphen.

To illustrate the use of comments, suppose that in the above example of the debugging session, you
entered the following comments between the commands SHOW DATA and SET DATA:

Pdb > - ***** The difference between the bounds

Pdb > - ***** shouldn’t exceed 60.0

Then the corresponding portion of the log file appears as:

SHOW DATA *bound
- Current values of data_items:
- system: LOWER_BOUND = 20.5
- system:UPPER_BOUND = 84.7
- ***** The difference between the bounds
- ***** shouldn’t exceed 60.0
SET DATA lower_bound := 25.0
132 Code Generation Reference Manual

The Set File, Set Output And Cancel Output Commands
CANCEL OUTPUT Command

To stop recording the debugging session, you use the CANCEL OUTPUT command in one of the
following three forms:

 Pdb > CANCEL OUTPUT FILE
 Pdb > CANCEL OUTPUT TERMINAL
 Pdb > CANCEL OUTPUT

The first command stops recording into the most recently used logging file (either specified by a
SET FILE command or debug.log).

The second command stops displaying trace messages on the terminal.

Finally, the third command halts the logging of the session in the file and at the terminal.

Remember that in all cases, the commands and Debugger’s responses continue to be displayed.

For example, you enter:

Pdb > SET OUTPUT

This causes all the output of the Debugger to be written into the file debug.log as well as
displaying it on the screen. If later in the session, you invoke:

Pdb > CANCEL OUTPUT TERMINAL

then, from that moment (until changed by other commands), the session log is only written into the
file.
Rational Statemate 133

Debugger
Breakpoints

Breakpoints specify which events cause the prototype execution to pause and enter the debug
mode. You can trigger a breakpoint on every event and condition used in the specification.

The normal cycle for working with breakpoints is:

 SET the breakpoints where you want the execution to pause.
 Execute the prototype with the GO command to advance from one breakpoint to another.
 When a specified breakpoint occurs, inspect and/or modify the prototype using the

SHOW, SET or other Debugger commands.
 Repeat the cycle.

When stopping at a breakpoint, you can enter any Debugger command and define new
breakpoints, or check the status and values of objects. Also, when setting a breakpoint, you can
associate it with a sequence of commands which are performed automatically when the breakpoint
occurs, with or without actually stopping the prototype execution.

At any moment in the debugging session, you can ask for a list of all the currently active
breakpoints and cancel any of them.
134 Code Generation Reference Manual

The Set File, Set Output And Cancel Output Commands
SET BREAK Command

You define a breakpoint with the SET BREAK command:

 Pdb > SET BREAK breakpoint_label trigger_expression

The execution is suspended each time the event specified by the trigger_expression occurs
that is after the step in which the event was generated and before the step in which it is actually sensed.

The breakpoint label is used to refer to the breakpoint in the SHOW BREAK and CANCEL
BREAK commands.

In cases where the label is used more than once, the latter one takes effect, overriding the previous
definition of the breakpoint.

The second argument of the SET BREAK command is any legal Rational Statemate trigger
expression using the same syntax used for transitions. These consist of the:

 Named events and conditions defined in the specification of the prototyped system
 Unnamed basic events and conditions (except the “timeout” “read” and “written” events)

referring to the specification’s objects
For example:

Pdb > SET BREAK label_1 TRUE(ACTIVE(A))

As a result, the execution is suspended each time the activity A is activated, while after:

Pdb > SET BREAK label_2 ENTERED(S) or
E [ACTIVE(A)]

it is suspended when either the system enters the state S or event E occurs and activity A is active at
the same moment.

Finally, after:

Pdb > SET BREAK label_3 [ACTIVE(A)]

the execution is first suspended when A is activated, and then, after each successive step in which A
remains active. This differs from the case of the breakpoint label_1 above which occurs only when A is
activated but not in the next steps unless A is reactivated.
Rational Statemate 135

Debugger
DO Clause

With each breakpoint, you can associate a sequence of Debugger commands to be performed each
time the breakpoint is reached. You can also specify whether you want the prototype execution to
pause after performing these commands, or to continue. To define the command associated with
the breakpoint, use the DO clause when setting the breakpoint:

Pdb > SET BREAK label trigger_expression

DO sequence_of_commands END

The DO clause can contain any sequence of Debugger commands separated by semicolons.

For example, each time event e1 occurs, you want to stop and check the current values of conditions
and data-items. Instead of retyping in the same commands on each arrival of the breakpoint, you enter
them only once when defining the breakpoint:

Pdb > SET BREAK bp_1 e1 DO SHOW COND;

SHOW DATA END

Immediately upon reaching the breakpoint, the Debugger suspends the execution and displays the
requested values:

Stopped at breakpoint BP_1 on event: E1

Current values of conditions:

chart1:CONNECTED = FALSE

chart2:NORMAL = TRUE

Current values of data-items:

chart2:X = 1

chart3:Y = 2.3

It then places the debugging prototype into debug mode. After examining the values, you may
perform more Debugger commands.

If you want to perform the DO clause without suspension of the execution, you put GO as the last
command in the DO sequence.

For example:

Pdb > SET BREAK bp_1 e1 DO SHOW COND; SHOW DATA; GO END

differs from the previous one in that the execution is not stopped after displaying the values. You
would not be able to enter more commands at breakpoint bp_1.
136 Code Generation Reference Manual

The Set File, Set Output And Cancel Output Commands
If in a DO clause, the GO is followed by other commands, they are ignored by the Debugger.

DO clauses can, themselves, set breakpoints. This may result in nesting of DO clauses, as follows:

Pdb > SET BREAK bp_2 d2 DO SET BREAK bp_3 e3

DO SHOW DATA x END END

There are no restrictions on the depth of nesting.

A breakpoint can be reached only after the end of the step in which its trigger occurred. This is also
the point where the DO clause is initiated. At this time, all that occurred during the last step is
available in the DO clause.

At each step, all breakpoints are checked according to the alphabetical order of their labels.
Consider, for example, triggers of two breakpoints named a and b which occurred in the same step. If
the first has a GO command in its DO clause, the second breakpoint is not reached.
Rational Statemate 137

Debugger
SHOW BREAK Command

To see the list of all active breakpoints, use the SHOW BREAK command in one of two forms:

 Pdb > SHOW BREAK
 Pdb > SHOW BREAK breakpoint_list

The first form allows you to see the list of all active breakpoints. The Debugger displays each
active breakpoint, the corresponding trigger_expression, and the DO clause, as in the following
example:

Breakpoint LABEL_1 on event : TRUE(ACTIVE(A))
Breakpoint NEW on event: E1 or E2
Breakpoint LABEL_3 on event: [ACTIVE(A)]
Breakpoint BP_! on event: E1

reaction: SHOW COND; SHOW DATA

The second form displays only selected breakpoints. For example, in response to:

Pdb > SHOW BREAK lab*, bp_1

the Debugger displays the following list:

Breakpoint LABEL_1 on event: TRUE(ACTIVE(A))
Breakpoint LABEL_3 on event: [ACTIVE(A)]
Breakpoint BP_1 on event: E1

reaction: SHOW COND; SHOW DATA
138 Code Generation Reference Manual

The Set File, Set Output And Cancel Output Commands
CANCEL BREAK Command

To delete breakpoints that become unnecessary for controlling the prototype execution, use the
CANCEL BREAK command with a list of breakpoint labels as the argument.

For example:

Pdb > CANCEL BREAK label*, new

deletes all breakpoints whose name starts with “label” and also the breakpoint “new.”

Note
Canceling a breakpoint does not mean that the effect of its associated DO clause is also
automatically cancelled.

Consider again the following breakpoint definition:

Pdb > SET BREAK bp_2 e2 DO SET BREAK bp_3 e3
DO SHOW DATA x END END

Suppose that bp_2 is cancelled after it was reached at least once, that is, after its DO clause was
executed. Then breakpoint bp_3 remains active, until explicitly cancelled by another command.

Another example:

Pdb > SET BREAK bp_4 e4 DO SET TRACE ACTIVITY;
CANCEL BREAK bp_4; GO END

Here, activity tracing is started after the first occurrence of event e4, and continues until explicitly
cancelled.

To delete all breakpoints, enter:

Pdb > cancel break *
Rational Statemate 139

Debugger
140 Code Generation Reference Manual

Rapid Embedded Prototyping Basics
Rational Statemate allows designers to graphically model, simulate, analyze and verify the
functionality and behavior of complex embedded systems. However, the ultimate verification of
any embedded development project is to run the specification in the form of code on a prototype
target system, typically a development system designed to allow convenient hardware and
software modifications as the project develops. To facilitate this, Rational Statemate has been
enhanced to allow the rapid development of code based on the simulated model that can be
downloaded into a prototype target development system. The sections in the rest of this manual
describe how to use these new Embedded Rapid Prototyping features.

Background
The major reason for Rational Statemate users to perform Embedded Rapid Prototyping is to
verify that the model functions properly in a real world environment. Today with Rational
Statemate, when a model is tested it must simulate the environment that the system ultimately
interacts with. Often the environment is very complex and difficult to completely describe via
modeling, test vector files or programs. In the final analysis, the most accurate description of the
target environment that insures the accuracy of the specification is only found by bringing the
specification (i.e. model) to the actual target environment. This is the essence of Embedded Rapid
Prototyping.

The following figure illustrates one such application of embedded rapid prototyping. Here, the
engineer is able to run the Rational Statemate software on a laptop computer placed within the
passenger compartment of a test vehicle. The laptop is linked to a convenient rack mounted
embedded prototyping system located in the back of the vehicle. This embedded development
system uses standard CPU hardware and embedded operating system (frequently a Real Time
Operating System, or RTOS) with a mix of standard and specialized I/O interface cards connected
(by cable or bus) to, and acting as the control components for, some prototype subsystem of the
test vehicle.
Rational Statemate 141

Rapid Embedded Prototyping Basics
The Rational Statemate model is used to generate code which is compiled and downloaded to the
development system. When executed, the prototype code’s features can be observed both in the
target hardware and in the Rational Statemate software. When a change needs to be made, the
engineer simply changes the Rational Statemate model, regenerates code, compiles and downloads
it to the target system. The next test is then ready to begin. This process can be repeated as many
times as necessary until the model has been refined to the point where an accurate and complete
specification can be finalized.

Goals of Embedded Rapid Prototyping

There are three things that must be verified when running such an embedded prototype:

 The basic specified functionality is correct for the target system.
 The interaction between functions is correct.
 The time lines for the execution of these functions is correct.

Engineer

Embedded Prototyping System Hardware & RTOS

Laptop Computer
Running Rational Statemate
& RTOS Development
Software

Target
Subsystem
142 Code Generation Reference Manual

Background
Embedded Rapid Prototyping Process Model

The Process Model for embedded rapid prototyping is slightly different than the classic Rational
Statemate model. The following figure shows the process as a flow chart. Each step in the
flowchart is described below.

1. Modeling and Simulation - First you create a functional system model using Rational
Statemate. Next, you simulate this model to verify that the functionality is correct. If
during simulation any errors are found, you correct these errors in the model and re-
simulate. This simulation/model correction loop continues until you are satisfied that the
model functions correctly.

2. Embedded Rapid Prototype - The code and prototyping unit now is hooked up to the target
hardware (or in some cases a test bed).

START

Create Function
System Model
with Rational

Statemate

Verify System
Model with

Rational
Statemate

Go To A
No Errors

Er
ro

rs
Rational Statemate 143

Rapid Embedded Prototyping Basics
A

Profile
Configuration of

Prototyping
System

Generate Code

Compile
Generated Code

Download to the
Prototyping

Development
System

Go To B

Connect
Prototyping

Development
System to Target

Hardware
144 Code Generation Reference Manual

Background
3. At this point in the process, you next move to verify this functionality in an environment
that is closer to the actual product environment than that which was used for simulation.
This requires the use of a hardware/software prototyping system which can be hooked up
to the actual target product’s hardware and act as its control system. See the sidebar
discussion in The Embedded Prototyping System regarding embedded prototyping
systems.

a. The first step in moving to the prototyping unit is to capture information (target O/S,
I/O mapping) which is specific to the prototyping unit.

b. Next, code is generated from the model.

c. The code and prototype unit information is then compiled and downloaded to the
embedded rapid prototyping unit.

4. Analysis is performed on the execution runs to verify that the functionality, behavior and
timing for executing the functions are correct.

B

Execute
Prototype Code

and Analyze
Results

Analysis

DoneAcceptable

Not
Acceptable

Go To Start
Rational Statemate 145

Rapid Embedded Prototyping Basics
If any changes need to be made, the model is updated and resimulated as needed. Code is re-
generated, compiled and downloaded to the embedded prototyping system. This updated prototype
is then again executed and analyzed. This iterative cycle continues until the user is satisfied with
the results of the test runs. At that time the specification (based on the model) will be handed off to
software designers for implementation of the production version of software. This code can be
tested against the test criteria generated from the model to verify that it meets functional
specifications.

The next three main sections will examine each step of this process in detail, as well as related
design issues. Simple Embedded Code Example presents a example of a small rapid embedded
prototyping project to demonstrate how all of these elements come together.

The Embedded Prototyping System

The embedded prototyping system will vary from product to product (and
even from project to project) but will typically consist of a processor-
based hardware development system. Such a system requires four major
elements:

• boot source code
• device drivers
• some I/O interfacing capability
• custom software needed to interface the application code and real

time operating system (RTOS) to the target hardware
Such systems may be rack mounted in a bus-based card cage, or be self-
contained on a single board computer with I/O components added/
modified as necessary. It could even be a totally custom development
system. The Board Support Package (BSP) is the name typically given to
such a prototyping system because it encompasses more than just the
development system hardware.
146 Code Generation Reference Manual

Embedded Rapid Prototyping in Rational Statemate
Embedded Rapid Prototyping in Rational Statemate
Rational Statemate implements four major features relating to embedded rapid prototyping:

 Retargetable to different target platforms
 Flexible signal mapping to any I/O card
 Target trace facilities for debugging
 Remote connection to different support tools such as:

 Panels
 Graphical Back Animation (GBA)

Note
Embedded Rapid Prototyping is essentially an extension to the standard Rational Statemate
C code generator (refer to Generating Native Code) All other standard features of Rational
Statemate remain unchanged.
Rational Statemate 147

Rapid Embedded Prototyping Basics
148 Code Generation Reference Manual

Target Requirements
The most significant variable in any embedded application is the nature of the target hardware and
its operating system. Because the Rational Statemate rapid embedded prototyping capability is
designed to work with many different target hardware/OS combinations, it is necessary to
communicate the nature of the target hardware/OS so that appropriate code can be generated. This
section examines how to communicate this information to Rational Statemate.

The many possible configurations of target system hardware and software requires a means to
configure Rational Statemate to the specific details of the system used. The following items are
critical to successfully generate and compile working code:

 RTOS boot file
 Driver software
 I/O port assignments

 Terminal communications capability to monitor test system’s operation
Other items may be necessary for a specific prototype, but these are required by virtually all
systems.

To configure Rational Statemate for this kind of information requires three specific items:

 A communications link for data upload/download between the Rational Statemate host
system and the prototype development system; commonly an ethernet link, an RS-232C
link, or an RS-485 link

 A target file that specifies details of the target RTOS and hardware environment
 An I/O file that specifies the configuration of all I/O port assignments
Rational Statemate 149

Target Requirements
Describing Different Target Platforms
The Embedded Rapid Prototyping Code Generator supports an open set of user defined targets. All
target-related parameters are defined and maintained in an ASCII file named <OS name>.rtrg in
the prt/rprt directory. Files are currently provided for the following targets:

 Unix
 Solaris
 Windows
 VxWorks

This selection of the target platform and all other parameters for a specific project are created and
maintained using the Rapid Prototyping Compilation Profile Editor.

To start the editor, click this icon, found on Rational Statemate’s main screen.

The following is an example of the Profile Editor screen.
150 Code Generation Reference Manual

Describing Different Target Platforms
Compilation Profile Management

Compilation Profiles for embedded rapid prototyping projects function in much the same way as
they do in normal C and Ada projects (refer to Generating Native Code and Ada Code Generation
for more information). Descriptions of most of the menu items and speed buttons are provided in
the on-line help files. A summary of the Profile Editor’s menus is illustrated in the following
figure.

Typically, Compilation Profiles must be tailored to the requirements of a specific target system and
the prototyping system interfacing to it. Many of these parameters may be standardized and (if this
is the case) should be available from your project leader. Otherwise, you will need access to
information relating to the exact configuration of the prototyping system and the target hardware.

Misc.

Project
Name

Speed
Buttons

Messages

Help Information

Displays Module Hierarchy as Tree Structure
Rational Statemate 151

Target Requirements
152 Code Generation Reference Manual

Describing Different Target Platforms
Creating the Profile

Each of the following tasks must be performed to create a successful profile.

Scope Definition
To define the scope, the user must declare the modules, add the charts, and add the panels into the
scope using the workarea browser.

Target Definition
The list of targets contains the .rtrg file names detected in the <workarea>/rprt directory. If it is
necessary to add, replace or delete some flags, libraries, compiler name, etc. or add custom
modules (e.g. objects or/and libraries), you must change the .rtrg file appropriately.

For example, an I/O card driver object file may be added into the #Intrinsics library:
paragraph. It would then appear something like:

#Intrinsics library:"$(STM_ROOT)/lib/VxWorks/libintrinsics$(CPU).a :/tmp/io/
rprt/onyx.o"

If the full path of the target output directory differs from the host output directory path (for
example, if the host directory is Unix-like /stmw.qa/qa_20 and the same target directory on
Windows is q:\qa_20), you would need to fill out the Target Directory field of the Global Profile
settings dialog form.

Using Remote Panels
It is possible to use remote panels by setting the toggle button With Remote Panel Server on the
Global Profile Settings dialog form.

Note
Resetting this button does not cause deletion of panel(s) from scope.
Rational Statemate 153

Target Requirements
Input/Output Mapping
I/O mapping is the main feature of the Rapid Prototyping Code Generator. It allows you to map the
textual elements of a Rational Statemate model into the input/output signals of I/O card.

The mapping process consists of the following steps:

1. I/O card description file creation

2. I/O card driver functions creation

3. I/O mapping

4. Polling rate selection

5. Input card task(s) parameters set

The two first steps are usually made only at the beginning of the process. The other steps may be
performed every time, when you want to change something in the model or in run time execution
of the model.

Writing the I/O card description and driver code are correlated processes. In fact, the .crd file is
input information for the driver functions, so the content of this file depends on the needs of the
driver. For example, the port offset field contains some string. In the example (the
onyx_mm_dio.crd file shown in the following figure), every element of the #port list paragraph
corresponds with some port of the card. However, it is sometimes only necessary to take one bit of
the real port and to map it to some condition. In this case, it is more comfortable to declare every
pin as a separate virtual port and to use the #port offset field to declare the two information
elements: real port offset and pin number of the port. Then the driver can unpack this field and
read the two values as specified. It might look like the following string:

#port offset:"1:5"

where 1 is the port offset, and 5 is the pin number.

Although such a driver tends to be a little more complicated, this approach sometimes makes sense
because it allows for the simplification of the model.
154 Code Generation Reference Manual

Describing Different Target Platforms
Example of the Driver Functions
The following is the real driver functions which are implemented
to support the ONYX—MM-DIO I/O card from Diamond Systems Corp.

#include <vxWorks.h>

#include <stdio.h>

#include <stdlib.h>

#include <syslib.h>

#include "types.h"

#include "symbols.h"

#include "string.h"

#define DIO_1A 0

#define DIO_1B 1

#define DIO_1C 2

#define DIO_1CR 3

#define DIO_2A 4

#define DIO_2B 5

#define DIO_2C 6

#define DIO_2CR 7

int onyx_base_addr; /* The card base address , converted into int
format */

/* -- generic card initializer for both input and output mapping */

void onyx_init(card_desc_p card_p)

{ int addr;

sscanf(card_p->base_addr,"%x",&onyx_base_addr);

printf ("base_addr = 0x%x\n",onyx_base_addr);

sysOutByte(onyx_base_addr+ DIO_2A,0x00); /* Reset of output
registers before setting of 2A port to be output */
Rational Statemate 155

Target Requirements
sysDelay();

addr = onyx_base_addr+DIO_1CR;/* control register 1CR address
*/

 /* Port 1A , 1B and 1C set to OUTPUT/MODE 0 */

sysOutByte(addr, 0x80);

printf ("Ports 1A , 1B and 1C set to OUTPUT/MODE 0\n");

sysDelay();

addr = onyx_base_addr + DIO_2CR; /* control register 2CR address
*/

sysOutByte(addr,0x9B); /* Port 2A , 2B and 2C set to INPUT/MODE 0 */

printf ("Ports 2A , 2B and 2C set to INPUT/MODE 0\n");

}

/* -- generic card driver for both input and output mapping */

void onyx_in(report_link elem)

{

 genptr new_value = (genptr)elem->received_val;

 int b, offset;

 sscanf(elem->pin_offset,"%d",&offset);

 b = sysInByte(onyx_base_addr+offset); /* input from 2A port */

 switch(elem->elem_type) {

 case el_integer:

 case el_enumer:

case el_bit_array:

(int)new_value = b;

break;

case el_condition:

case el_event:

*(char *)new_value = b;

break;

case el_real:
156 Code Generation Reference Manual

Describing Different Target Platforms
case el_real:

(double)new_value = b;

break;

default:

 (int)new_value = 0;

break;

 }

}

#define OUTPUT_BUF_SIZE 16

double output_buf;

void onyx_out(report_link elem)

{

 void *actual_val = (void*) &output_buf;

 int offset;

 sscanf(elem->pin_offset,"%d",&offset);

switch(elem->elem_type) {

 case el_integer:

 case el_enumer:

 case el_bit:

 case el_bit_array:

 if (elem->pin_inverse)

 (*(int*)actual_val) = ~(*(int*)elem->elem_value);

 else

 (*(int*)actual_val) = (*(int*)elem->elem_value);

 sysOutByte(onyx_base_addr+ offset, *(char*)actual_val); /* a=> output
to 1A port */

 break;

 case el_real:

 (*(double*)actual_val) = (*(double*)elem->elem_value);

 …

 break;
Rational Statemate 157

Target Requirements
I/O mapping itself is performed using the I/O Mapping dialog form shown above in the following
figure. It contains the mapping matrix and the Polling Rate pop down menu. Note that there are
four fields in every line of the matrix.

The name is selected by using the Choose window or by typing in the name directly from the
keyboard.

The I/O card field may be filled out by placing the mouse cursor over the cell in the desired row
and column and pressing the right mouse button. Then, a pop-down menu appears containing the
current list of .crd files detected in the <workarea>/rprt directory.

When the card name is chosen, the user can choose the port name in the next field of the matrix.
This is done in the same manner as the previous field. The pop-down menu presents the list of
available ports.

When the port name is chosen, the I/O field is automatically filled out by the proper value for this
port. Usually there is no need to change it, because this value is an inseparable part of the I/O card
and is installed in the init_driver function or built-in.

After the I/O mapping is done, it’s time to set the parameters of the INPUT tasks, (if input
mapping exists).
158 Code Generation Reference Manual

Describing Different Target Platforms
You can define one or two tasks for the polling of I/O cards. The second task is needed only if
there are more than a few I/O cards, all participating in the input mapping, and with different
polling rates. In this case, the code generator separates all of the I/O cards into two groups: one
group with high a polling rate and the other with a low polling rate. The mapped elements
belonging to the first group are polled by the HINPUT_TASK, and the mapped elements from the
second group are polled by the LINPUT_TASK. The actual polling rate values can be set using the
Target Task Settings window shown in the following figure.

Detailed View of I/O Card Description File

Key Word Type of Possible
Values Description

#card name string The name of the I/O card.

#card polling rate integer The size of time interval (in ticks) that should pass
between two consecutive card read operations.

#card number of ports integer The number of ports in the card. The port list should
contain exactly this number of elements.

#card base address string The hexadecimal string defining the real address of
the I/O card on the bus. For example: “0x240”.

#card init function string The name of the function that initializes the I/O
card. It is called once when the program starts

#card driver function string The name of the driver function that actually reads
data to, or writes data from the card.

#card closure function string The name of the function that shuts down the card
when it is no longer needed. This routine performs
any housekeeping tasks that the I/O card might
require.
Rational Statemate 159

Target Requirements
Trace Settings
The trace settings option enables you to trace data items of basic type, conditions, events, states
and activities without using the Rational Statemate debugger in a less intrusive manner.

The selection of the traced elements is done using three matrices in the Trace Settings window of
the Options menu.The trace of every selected element can be turned off or on.

In addition, there is a pop-down menu that sets the format of the trace file or disables it. There are
two formats of trace file:

 Compact format
 PDB-like format

You can supply your own function, which will be called every time that the traced element is
changed. It allows creation of the trace file in the format appropriate to different tools.

The tracing text data is written to the <output directory>/<profile name>.trc file by the
Remote Server that receives the messages from the TRACE_TASK via TCP/IP socket
communication, which usually has lower priority than the other tasks. It reads the trace lines from
the buffer, where they were put during execution between two sequential steps in the TRACE_TASK.
It means that the buffer size, which the user can change, should be big enough. The buffer size is
set in the Target Task Settings window.

In fact, polling rate, priority and buffer size are interconnected. If the priority is low (e.g. 255 is the
lowest available priority for VxWorks), the buffer size should be as big as possible. If the polling

#Port list list of strings The list of port descriptors. Fields that constitute the
port description are described below.

#Port name string The name of the port, it appears in the GUI when
users have selected a card in the I/O mapping
settings dialog, and they are choosing the port for
each I/O mapped model element.

#Port inverse logic yes/no If yes, the value read from or written to the port will
be inverted bitwise.
If no, the card driver function reads the value
directly.

#Port default mode in_mode/out_mode The default input/output configuration mode of the
port.

#Port default buffer yes/no If yes, the output to the port is buffered.

#Port offset string The offset of the register, relative to the port’s base
address. It is expressed as a hexadecimal string.

Key Word Type of Possible
Values Description
160 Code Generation Reference Manual

Target Management
rate is big (i.e. it is a number of ticks of the delay between two sequential steps in a task loop), the
buffer size and the priority should be higher.

The run-time trace process is controlled by two conditional expressions: start trace and stop
trace. The first is evaluated at the beginning of the step in model, and the second at the end of the
step. The empty start trace field is equal to TRUE. The empty stop trace field is equal to FALSE.
This makes the trace continuous.

Target Task Settings
The new dialog can be started by the Target Task Settings… button.

Every line in this dialog corresponds to one task. Each task is created to support one of the
following features:

 Remote Panel client task
 Remote GBA client task
 Trace task
 One or two Input Card task(s)

Each line contains the task name, the priority, the polling rate and the buffer size fields.

Any of these lines will appear/disappear if the proper feature is enabled/disabled:

 With Remote Panel Server
 Graphical Back Animation (GBA)
 Trace Enable (and there is at least one item to be traced)
 Input mapping list is not empty

Note
If the Single Polling Rate is set, only one task will appear in the dialog list; otherwise, two
tasks will be created.

You can establish the priority, polling rate, and the buffer size for any of these tasks. But be very
careful, because improper settings may cause unpredictable behavior of the generated code. For
example, if the priority of one of the tasks is too high, the other tasks won’t work and the generated
code will hang. Too small a buffer size may cause the buffer to overflow and physically adjacent
data would be lost.

Target Management
This section describes the target description file in detail. Some of the keywords are actually
strings that basically are copied to the makefile created along with the generated code. Their type
Rational Statemate 161

Target Requirements
is “makefile string.” The user of this feature should have certain basic knowledge about Makefile
language.

In particular, if the user wants to put $STM_ROOT as part of the value of string or makefile string
keywords, the $ (for a Unix target) sign would be duplicated, like “$$STM_ROOT” or write
“$(STM_ROOT).”

Some of the keywords contain OS paths. The user should be aware about proper directory
separator character.

Key Word
Type of

Possible
Values

Sample Value Description

#Link command makefile
string

"LINK = $(CC)" Linker command on the target
OS

#System libraries makefile
string

"SYS_LIBS = -lm" Standard system libraries for the
target OS

#Library extension string Extension of precompiled library
files

#Executable extension string Extension of executable files

#Output file keyword string Name of the parameter that
toggles the name of the output
file for target OS C compiler

#Intrinsics library string Where the Rational Statemate
intrinsics libraries are put in the
given Rational Statemate
installation

#Scheduler library string Where the (Statemate)
scheduler libraries are

#Simulated scheduler
library

string Where the (Statemate) simulated
scheduler libraries are

#Debugger library: string Where the (Statemate) debugger
libraries are

#GBA library string Where the Rational Statemate
GBA library is put in the given
Statemate installation

#Panel library string Where the Rational Statemate
Panel library is put in the given
Statemate installation

#Additional libraries string Additional, perhaps user-
supplied, libraries that should
participate in the linking of final
executable
162 Code Generation Reference Manual

Target Management
Note
The internal double quote character should be replaced by the single quote character. For
example, the line “ /D “PRT” should be replaced with “ /D ‘PRT”.

#Object extension string Extension of object file on the
target OS

#Archiv command string Command that should be run
when building the output_lib.a
(on UNIX) library

#File deleting
command

string Self explanatory. It is important
that this command is not
supposed to be interactive.

#Make command makefile
string

"$(MAKE) -f" Self explanatory

#Main file directory string Name of the directory where the
final executable should be put

#CPU name string Self explanatory

#Ranlib command string Self explanatory

#K&R C compiler
name

makefile
string

"CC = gcc" Self explanatory

#K&R C compiler flags makefile
string

"CFLAGS = -g" Self explanatory

#ANSI C compiler
name

makefile
string

"CC = gcc" Self explanatory

#ANSI C compiler
flags

makefile
string

"CFLAGS = -g" Self explanatory

#Link flags string Linker-specific flags

#ADA compiler name string Self explanatory

#ADA compiler flags string Self explanatory

#ADA linker name string Self explanatory

#ADA linker flags string Ada linker specific flags

#Download script
name

string Name of the script/command
that should be run to download
the final executable to the target
OS

#Remote exec name string Name of the script/command
that executes the final
executable on the target OS

Key Word
Type of

Possible
Values

Sample Value Description
Rational Statemate 163

Target Requirements
You can manually change or create a new <target name>.rtrg file based on your project’s
specific target prototyping development system.

Only the structure of the file and the names of the paragraphs should be unchangeable. So, the best
way to change or create a new *.rtrg file is to copy the current file under a new name (e.g. the
name of your target) and to change only the values in each line of the file that is affected by the
new target.

Note
Each line of the *.rtrg file is terminated by a “hard return,” which means that each line is
effectively a paragraph. This is important to the accurate parsing of the *.rtrg file.

Every line in the *.rtrg file affects a certain part of the makefile, which is created during code
generation, or the running of the generated/compiled code.

Pay attention to the #Run script name line. Its value, if it is not empty, concatenates with the name
of executable and runs as a shell command after the user selects the Run Code option of the
Compile menu. So, users can write their own batch files that will take as a parameter the name of
the executable and do any required operation. Such a technique is used to download and execute
the generated code in a remote manner (refer to Downloading and Execution)

The content of the vxworks.rtrg file is listed for reference in Target Description File.

It is necessary to define the nature of the Target for the prototyping system. The initial step in this
process is done using the dialog screen shown in the following figure. It is started using the File >
Target Management menu item from the Profile Editor. The Target Management window opens.
164 Code Generation Reference Manual

Describing Signal Mapping to I/O Cards
There are several predefined targets presented in this dialog screen for you to choose from. Select
the desired target by clicking on it. The selection is highlighted.

Note
No special license is required for targeting to the different platforms.

Because the rapid prototyping code generator supports an open set of user-defined targets, the list
of supported targets can be supplemented with new targets or variations of existing targets. This is
possible because each target selection corresponds to a target definition file using the naming
format <OS name>.rtrg. All of the target related parameters are defined in that file. The buttons
along the right hand side of the dialog screen allow for management of this file.

Advanced users or project teams may decide to modify the target description files. Always work
with a copy of a working file if at all possible. Save it under an appropriate name and document
your changes so you can back up if something doesn’t work like you expected it to.

Note
The target definition file is similar to the file used for the standard C Code Generator, which
uses a different extension (.trg). The file is an ASCII text file.

Note that the targets listed here are the files’ prefix. All of the targets listed are those that are found
(i.e, *.trg/*.rtrg files) in the prt/rprt directory.

I/O Card Description File Management

The I/O Card Management window of the File menu should be run for this purpose. For the
description of the file structure, refer to the previous table and the sample code in I/O Driver
Functions.

Describing Signal Mapping to I/O Cards
The embedded rapid prototyping code generator supports mapping of basic data items and
conditions, relevant to the current scope, to an open set of user defined I/O locations in the
prototyping hardware. There is no support for events, user- defined types, array elements, records
and fields in a record (except for enumerated types, which are regarded as integers).

The definition of an I/O card is done using an ASCII file, with the extension “. crd”. This .crd file
contains the definition of the I/O card’s configuration, including:

 available channels or ports
 card base address
Rational Statemate 165

Target Requirements
 channel/port offsets
 driver function name
 initialization function name

Note: It is assumed that an I/O card will require initialization in order to set it up for
the desired port configuration, control mode, data handling, etc.

 closure function name
 minimal polling rate

The compilation profile editor’s Options menu lists a menu item for I/O Mapping. This menu item
invokes the I/O Mapping dialog (see the following figure). This dialog presents a mapping matrix
that is used to identify the basic identity and type for each I/O card included in the system. Using a
selection mechanism similar to that used in the Simulator, this mapping matrix guides the user in
selecting data items relevant to the current scope and saves selected filled lines in the <profile
name>.rgenset file. It does this by displaying a drop-down list of available selections when you
right-click on the matrix cell for a given row and column.

As previously discussed, the mapping matrix dialog contains the following fields:

Name String Describing the Name of the Port

I/O card name Displays all of the files named *.crd in the <workarea>/rprt files
directory

Port Displays all of the available ports described in the selected card
166 Code Generation Reference Manual

Describing Signal Mapping to I/O Cards
Note
A single I/O card can have multiple ports. Each should be assigned a meaningful name.

At the bottom left corner of the window is a button labeled Single Polling Rate allows selection of
one of two modes:

 Single polling rate
 Double polling rate

The definition of the polling rates is done using another menu item, Files >I/O Card
Management.

I/O Specifies the In/Out mode of the port
Rational Statemate 167

Target Requirements
Signal Mapping to I/O: Semantics

There are two issues here: one is inputs, the other outputs.

 Inputs:

Whenever a signal is mapped to an input port it is regarded in a function named
top_do_inputs(), if the Single polling rate is selected, or in two functions named
top_do_high_inputs() and top_do_low_inputs(), if the Double polling rate is
selected. In case of two polling rates, each input signal is handled only in one of
top_do_high_inputs() or top_do_low_inputs() according to the polling rate specified
in the card definition file:
 All input signals whose polling rate is lower than the high polling rate is handled

in the top_do_low_inputs()function.
 Others, whose polling rate is larger or equal to the high polling rate, are handled in

the top_do_high_inputs() function. Those functions are started from separate
tasks (one for top_do_high_inputs(), the other for top_do_high_inputs() in
case of two polling rates, and one task in case of single polling rate). The new
values are in effect in the following step.

 Outputs:

There are three categories of data items:
 Whenever a non-Double Buffered element is assigned with a value, a call to the

output device is done immediately.
 Whenever a Static Double Buffered element is assigned with a value, a call to the

output device is done at the end of the current step. The call will be from the
generated code, near the place where it swaps the next/current values. In order to
trace the writing event, a flag will be added to the generated code, near the
definition of the current/next variables.

 Whenever a Dynamic Double Buffered element is assigned with a value, a call to
the output device is done at the end of the current step from the update() function
inside of RT library.
168 Code Generation Reference Manual

Target Trace Facilities: Description
Target Trace Facilities: Description
The rapid prototyping compiler supports tracing of basic primitive data items, conditions and
events. The user-defined types, array elements, records, and fields in a record are not supported.
Enumerated types are regarded as integers.

Tracing is done through a buffer, meaning that the code, while running, sends report text to a
buffer. That report buffer is automatically flushed to the <profile>.trc file in the output
directory.

In the compilation profile editor, the menu item Options > Trace Settings… invokes the Tracing
dialog.

The Tracing dialog contains the following items:

 Trace format
 Trace for: States/Textual Elements/Activities
 Start Trace text field
 Stop Trace text field

The trace file <profile_name>.trc is written into the current directory where the generated code
is running. Its format depends on what the user has selected, such as:

 Compact format
 PDB-like format
 User-supplied format

In the latter case, the user defines the name of the trace function that is called every time the traced
element value changes. The function has the following definition:

char * user_func (report_link elem).

It returns a text message string which is then output to the <profile_name>.trc file.

Both the Start Trace/Stop Trace fields are for defining trigger expressions. The goal here is to
support compound expressions that are composed of panel bindings-like basic elements.

Using a selection mechanism similar to that for the Simulator, right-clicking on a row/column field
results in a pop-up list of available selections relevant to the current scope.
Rational Statemate 169

Target Requirements
Each row contains two fields:

 An editable text string identifying the data item name
 The trace mode (trace of the element is enabled or disabled)

Note
It is also possible to start/stop tracing using two API functions: enable_trace(), and
disable_trace().
170 Code Generation Reference Manual

Data Types Introduced to the Intrinsics Library
Target Trace Facilities: Semantics

Trace messaging is implemented is similar to the mechanism applied to the I/O output reporting.
Whenever the tracing is On, meaning the Start Event occurred, a report line is added to the report
buffer and subsequently output to a text file:

 If a non Double Buffered element is assigned with a value, the trace will be done
immediately.

 If a Static Double Buffered element is assigned with a value, the trace will be done at the
end of the current step. The trace function will be called from the generated code, near the
place where it swaps the next/current values. In order to trace the writing event, a flag is
added to the generated code, near the definition of the current/next variables.

 If a Dynamic Double Buffered element is assigned with a value, the trace function will be
called at the end of the current step from the update() function.

Data Types Introduced to the Intrinsics Library
This section includes the following information:

 Data Types Related to the Data Items

 Report Elements for Output Mapping and Tracing

 Report Elements for Input Mapping

 Report Elements for Generic Charts

Data Types Related to the Data Items

For each element that is either traced or has I/O mapping associated with it, the instance of the
following data structure is generated:

typedef struct report_elem {

 /* -- general */

 char* elem_name; /* -- name of the reported element */

 char* inst_name; /* -- name of the generic instance */

 genptr elem_value; /* -- pointer to the value of the

 -- __model__ element */

 el_enum elem_type; /* -- type of the reported element */

 int str_len; /* -- if non-zero - length of the
 string */

 genptr user_data; /* -- user defined misc data */

 /* -- tracing */
Rational Statemate 171

Target Requirements
 rep_funcp trace_func; /* -- trace function pointer */

 boolean immediate; /* -- if TRUE bypass the list */

 /* -- input/output mapping */

 /* -- common for both in and out */

 card_desc_p card_p; /* -- the card associated with this model --
element */

 char* pin_offset; /* -- offset off the base */

 char* pin_name; /* -- name of the pin */

 int pin_number; /* -- pin position within pin
 array of card_p, starting
 from 0 */

 /* -- input mapping specific */

 rep_funcp in_func; /* -- for input mapping */

 genptr received_val; /* -- buffer for storing the new value of -- the
model element received from the -- card */

 genptr new_value; /* -- double buffering info: -- if ZNIL then DB
is dynamic -- else the read value is directly -- written to *new_value */

 /* -- output mapping specific */

 rep_funcp out_func; /* -- for output mapping */

 boolean pin_inverse; /* -- if TRUE inverse the reported value bitwise
*/

 boolean buffered; /* -- if TRUE output is buffered */

 /* -- list management */

 report_link next_elem; /* -- next element of the list of reported
elements */

} report_elem;

This declaration is copied from types.h of the Intrinsics library. The variable of this type is called
“report element”. It contains all information about data item and its tracing and
I/O mapping specifics that at the moment seems necessary. The purpose of user_data field is to
provide users with the capability to add whatever data they desire. It is important because report
elements are visible to the code that should be written by the user.

Each report element that is associated with a pin of a I/O card has its card_p field non ZNIL. This
allows Rational Statemate to serve I/O mapping requirements in a per-element fashion.
172 Code Generation Reference Manual

Data Types Introduced to the Intrinsics Library
Report Elements for Output Mapping and Tracing

For each place where data item is changed, Rational Statemate generates the following
instrumentation: { X = 5; add_report(&rep_X); }. By calling the add_report() function, the
report element corresponding to X to the list of elements that were changed during the current step
is added. At the end of this step, a special function passes the list and calls functions that do the
actual tracing and/or out mapping. If immediate field of report element is true, the add_report()
function bypasses the list mechanism and calls immediately to the function that does the tracing.

If at the current step the tracing is switched off, the add_report() function does nothing. The list
of the report elements is static; that is, there is no dynamic memory allocation. The list
management is done statically by manipulating the next_elem field of the report element.

All buffered tracing messages are sent to the trace buffer. The buffer has a fixed, predefined size.
The same moment the buffer becomes full, its contents are out and cleaned up. The same is done at
the end of each step, regardless of whether the buffer is full. This process is run in the low-priority
task.

In output mapping, the buffered field of the report element dictates the way the output message is
handled. Either it is buffered in the manner similar to tracing, or it is sent to the output card
immediately.

Report Elements for Input Mapping

If there are model elements that require input mapping, Rational Statemate generates the tree-like
structure of input mapping functions that is similar to the tree of init() functions in the model.
Each such function calls to the in_func() field of those report elements that belong to the current
scope.

There are three fields of report element that control the input mapping mechanism:

 elem_value - The pointer to the actual value of the element. It is used in the input mapping
if the model element that corresponds to this report element is dynamically double
buffered and the set*() function must be called.

 new_value - The double buffering information. If this pointer is ZNIL, the model element
is dynamically double buffered. Otherwise, the value received from the card is directly
assigned to the variable in the code referenced by this pointer.

 received_val - The buffer where the data read from the card is stored until it is assigned to
the model element. This field is part of API between user-written card driver and
generated code. The card driver should put there the value that it reads from the card.
Rational Statemate 173

Target Requirements
Report Elements for Generic Charts

If a traced or I/O mapped element is passed to some generic chart as a parameter, its report element
is also passed to the generic chart as well. In this case, an additional parameter of the generic chart
is generated. All other attributes of data item in the generic are generated for the report element as
well. This includes a macro for accessing the report element, its declaration, and so on.

Suppose now that user decides to do tracing or I/O mapping for some local variable in some
generic chart. In this case, the user must provide the full name of the data item (including the
instance name) for every instance of the generic in the model. In this case, a report element is
generated within the generic and the context-switching mechanism ensures that each instance has a
separate report element. The generated code ensures also that such report elements are initialized
separately for each instance of the generic.

Data Types Related to I/O Cards
The following data structure describes the I/O card:

typedef struct card_desc_elem {

 card_drvp card_drv; /* -- card driver function */

 card_funcp card_init; /* -- card init functions */

 card_funcp card_close; /* -- card closing function */

 char* base_addr; /* -- base of the target memory
 location */

 report_link* pin_array; /* -- array of pins of this card/
 array of associated model
 elements */

 genptr user_data; /* -- user-defined misc data */

} card_desc_elem;

This declaration is also copied from types.h file of the Intrinsics library. The variable of this type
is called “card element”. It contains all the information about the I/O card. The purpose of the
user_data field is to allow users to add whatever data they want to the card element, because card
elements are visible to user-written functions.
174 Code Generation Reference Manual

Remote Connection to Different Tools: Panels, GBA, Tracing: Description
Each card element contains information about all its ports. It is represented as an array of report
elements, each of which describes a single port of the card. Thus, the cross-referenced data
structure is built in the generated code. Each report element involved in I/O mapping has a pointer
to its card element, whereas each card element has an array of pointers to the report elements that
are its I/O ports. This data relation is static and is initialized in the init() functions generated in
the code.

It is assumed that each card is controlled by three functions that do the following:

 Initializes the card.
 Serves as a driver. Its purpose is basically to read data from, and write to, the card.
 Closes the communication with the card.

Remote Connection to Different Tools: Panels, GBA,
Tracing: Description

Rational Statemate rapid prototyping includes provisions that allow data exchange between the
executable that runs on the target, and a host. This is done while trying to minimize any negative
effects on the regular execution flow of the embedded code.

All communications between the executable embedded code and the host tools is done through
special, statically allocated buffers. As low-priority tasks, they are started periodically and/or
according to other criteria, sending the communication buffer’s contents to the host. The user
should run the remote panel server or Remote GBA server on the host machine before running the
generated code on the target system.

Note
Remote panels are not supported.
Rational Statemate 175

Target Requirements
BSP Configuration
Before configuring of the BSP, the user should change the config.h file based on the following
information:

 Network board type
 I/O network bus base address
 IRQ level
 Target name
 Target IP address

After changing the configuration file, the user can run WindConfig (part of the Tornado
development environment) to add or delete the options for the BSP build target.

The user must build the following:

 bootrom_uncp
 VxWorks

 VxWorks.sym
Refer to the VxWorks Programmer’s Guide for a detailed explanation of how to do this.
176 Code Generation Reference Manual

Environment, Directories, Libraries, Files
Environment, Directories, Libraries, Files
Just as with other Rational Statemate features, there are environment variables that must be
properly set. These include:

The following libraries and object files can be used by the linker for the build of the target
executable:

 libintrinsicsI80486.a

 libdbgI80486.a

 librpgertlI80486.a

 libgbaI80486.a

 libschedulerI80486.a

 libsim_schedulerI80486.a

 real_mainI80486.o

 real_main_dbgI80486.o

 sync_mainI80486.o

 sync_main_dbgI80486.o

 async_mainI80486.o

 async_main_dbgI80486.o

They are placed into the %STM_ROOT%\lib\VxWorks directory. If an alternate location is desired, it
is necessary to change the appropriate lines in the vxworks.rtrg file. This file is created
automatically when the workarea is created and is located in the <workarea>\rprt directory.

Note
The rprt directory also contains the profile files (.rgenset), the target description files
(.rtrg), and I/O card description files (.crd).

WIND_BASE Tornado home directory.

WIND_HOST_TYPE Host OS type (x86-win32,
sun4-solaris2).

STM_ROOT Rational Statemate home directory.

PATH The path. It should be added by:

%WIND_BASE%\host\%WIND_HOST_TYPE%\bin
Rational Statemate 177

Target Requirements
Getting Ready: Connecting the Target to the Host

Depending on the specifics of the prototyping system’s hardware implementation, it is necessary
to establish a communications link between the target and the host. This is usually a serial
interface such as an RS-232/485 port or an ethernet port.

If you are using the WindRiver® Tornado development environment, run the FTP server as
described in the Tornado User’s Guide. Here is the example of the .sh file, which can be used for
this purpose:

cd %WIND_BASE\host/%WIND_HOST_TYPE%\bin

wftpd32.exe & -- The Windows FTP Daemon running

wtxregd.exe –V -- Tornado registry daemon running

You should add the name and IP network address of the host and target into the file called hosts,
which is located into the \winnt\system32\drivers\etc directory (further details can be found
in the Tornado User’s Guide.
178 Code Generation Reference Manual

Compiling Embedded C Code
Once the target requirements have been defined and the model designed, code can then be
generated and compiled. This section describes these steps, as well as general considerations of
coding for an embedded prototyping system.

Code Generation Sample Model Description
The following sections describe how to generate code using a sample model. This sample model
uses a single I/O card on an x86 prototyping development system running the VxWorks RTOS.
The following figure illustrates the I/O card configuration.

BUS

VxWORKS

APPLICATION CODE

PC104 (x86 CPU)

FLASHER

LIGHT

BRAKE LIGHT

FOG LIGHT

BACKUP LIGH

FLASHER SWITCH

LIGHT SWITCH

BRAKE LIGHT SWITCH

FOG LIGHT SWITCH

BACKUP LIGHT SWITCH

ONYX-MM-DIO

OUTPUTSINPUTS

Download

HOST PC
Rational Statemate 179

Compiling Embedded C Code
Report and Card Elements Declarations
The following code is generated in r2main.c:

card_desc_elem card_card_1_desc;

report_link pins_card_1_desc[2];

card_desc_elem card_card_2_desc;

report_link pins_card_2_desc[2];

Corresponding extern declarations are generated in r2main.h. As you can see, this profile
includes two I/O cards. Each of these cards has two pins. The number of pins is exactly the number
of elements in pins_*arrays.

Initialization
The following is a sequence of initialization actions required for I/O mapping:

 Initialize all card description elements. At this stage, the pin_array field is set so
correspondence between card elements and their pin arrays is established.

 Initialize all pin arrays by 0.
 For every module, initialize report elements that belong to the module. At the same

moment, the corresponding element of the pin array is set to be a pointer to the current
report element. The pin arrays are completely initialized. The card_p field of the report
element is also initialized. The cross-referenced data structure is built.

 Call the card initialization routines provided by the user. Note that at this moment, all data
structures related to the I/O mapping in the code are built.
180 Code Generation Reference Manual

Initialization
The following portions of r2main.c and m1.c illustrate these points:

r2main.c:

void lo_init()

{

 init_card_desc(&card_card_1_desc,
 card_generic_driver, card_generic_init,
 “card_1",pins_card_1_desc);

 init_card_desc(&card_card_2_desc,
 card_generic_driver,card_generic_init,
 “card_2",pins_card_2_desc);

 memset(pins_card_1_desc,0,2*sizeof(report_link));

 memset(pins_card_2_desc,0,2*sizeof(report_link));

 m1_init();

 dbg_init();

 (*card_card_1_desc.card_init)(&card_card_1_desc);

 (*card_card_2_desc.card_init)(&card_card_2_desc);

}

m1.c:

 int X_IN1;

 report_elem rep_X_IN1;

 int X_IN2;

 report_elem rep_X_IN2;

 int X_OUT1;

 report_elem rep_X_OUT1;

 int X_OUT2;

 report_elem rep_X_OUT2;

 ...

void m1_init()

{

 init_int(&X_IN1,0);

 init_report(&rep_X_IN1,"A2:X_IN1","",&X_IN1,
 el_enumer,0,trace_f,FALSE,&card_card_1_desc,
 "0x0012","1",2,input_mapf,NULL,NULL,FALSE,FALSE);

 init_int(&X_IN2,0);

 init_report(&rep_X_IN2,"A2:X_IN2","",&X_IN2,
 el_enumer,0,NULL,FALSE,&card_card_2_desc,
 "0x0012","1",2,input_mapf,NULL,NULL,FALSE,FALSE);

 init_int(&X_OUT1,0);
Rational Statemate 181

Compiling Embedded C Code
 init_report(&rep_X_OUT1,"A2:X_OUT1","",&X_OUT1,
 el_enumer,0,trace_f,FALSE,
 &card_card_1_desc,"0x0013","2",1,NULL,
 NULL,output_mapf,FALSE,FALSE);

 init_int(&X_OUT2,0);

 init_report(&rep_X_OUT2,"A2:X_OUT2","",&X_OUT2,
 el_enumer,0,NULL,FALSE,&card_card_2_desc,
 "0x0013","2", 1,NULL,NULL,output_mapf,
 FALSE,FALSE);

 init_activity(&A1,activ,FALSE,0,0,0,0,0,"A1",FALSE);

}

Step Execution
The pr_make_step() function does the following:

 At the beginning of each step, it determines whether tracing should be enabled.
 The function that goes through the list of report elements that were changed during the

current step and produces the output mapping and trace messages is called.
 At the end of each step, the stop trace condition is checked; if it holds, tracing is disabled.

The generated code is as follows:

r2main.c:

boolean pr_make_step()

{

 boolean step_has_changes = FALSE;

 incr_stepN();

 if (X_OUT1 > 0)

 enable_trace();

 lo_main();

 step_has_changes = update();

 garbage_collect() ;

 if (!step_has_changes && (!deb_was_update()))

 return TRUE;

 if (call_cbks_p)

 (*call_cbks_p)(FALSE);
182 Code Generation Reference Manual

Input Mapping
 update();

 do_report();

 if (X_OUT2 < 0)

 disable_trace();

 return FALSE;

}

Input Mapping
You must build a tree-like structure of functions to perform input mapping. In the example, there is
only one module other than main, so it looks like this:

r2main.c:

void do_inputs()

{

 m1_do_inputs();

}

m1.c:

void m1_do_inputs()

{

 input_mapf(&rep_X_IN1);

 input_mapf(&rep_X_IN2);

}

The input_mapf() function does the following:

 Prepares a place in memory for the value to be read.
 Calls to the card driver function to read the new value of the data item from the card.
 According to the type of data item and double buffer settings within the report element,

assigns the read value to the corresponding model element.
Rational Statemate 183

Compiling Embedded C Code
Starting Code Generation
Code is generated from the profile editor main screen. From an open profile, select the Compile >
Check Profile menu item to confirm that the profile is complete and ready to generate code. If an
error is reported, it must be reconciled before code can be generated.

To generate code, select the Compile > Generate Code menu item or click on the Generate Code
speed button. This initiates the code generator and causes a text box to appear. It displays messages
about the progress of code generation.

Once code is successfully generated, it is ready for compilation.
184 Code Generation Reference Manual

Compiling Generated Code
Compiling Generated Code
The compilation and linking of code is totally dependant on the specified target. This means that
the user must supply the suitable compiler/linker for the desired target.

Compilation and Linkage.

The environment variables WIND_BASE, WIND_HOST_TYPE, and PATH must be set properly before
running Rational Statemate.

The compile/link process can be started indirectly from within the profile editor. This is done by
using a make file, which is initiated from the Compile > Make Code menu item or by clicking
Compile Generated Code .

This method allows the make file to be modified to accommodate the unique requirements of a
specific compile/link process, including the downloading of compiled code into a target embedded
prototyping system.

Downloading and Execution

After the target is booted and the generated code is compiled, you can run the executable. If you
intend to run the model directly on the embedded prototyping system target, you should start the
target server on the host machine, load the executable, and start it on the target.

The target server can be started from the command line using the following command:

tgtsvr -V <target name>

Load the executable using the following command:

ld 1, 0, “<executable name>”

Run the executable using the following command:

vxmain

If you intend to run the model using the WindSh remote shell, you must complete the following:

1. Start the target server.

2. Run WindSh.

3. Redirect the standard I/O files to the virtual console window.

4. Download and execute the model on the target.
Rational Statemate 185

Compiling Embedded C Code
These actions can be done using the run_windsh batch file, whose full name (including path)
should be printed into the #Run script name paragraph of the <target>.rtrg file. It looks
something like the following:

#Run script name:”%STM_ROOT%\bin\run_windsh <target name>”,

In the command, <target name> is the name or TCP/IP address of the target machine.

Note
The files run_windsh.bat and run_windsh.csh are located in the encrypted VxWorks
distribution file.

The run_windsh batch file has two input parameters (target name and executable name) and looks
like the following:

For Windows host platforms:

#Creating of the file for model executable download and execution

echo ioGlobalStdSet(0,vf0) >> run_model.bat- reopening of the virtual I/O
channel 0

echo ioGlobalStdSet(1,vf0) >> run_model.bat- designation of standard input
file

echo ioGlobalStdSet(2,vf0) >> run_model.bat - designation of standard error
file

echo logFdAdd(vf0)" >> run_model.bat- sending logging output to
the virtual channel 0

echo ld 1,0, "%2" >> run_model.bat- download of the
executable

echo vxmain >> run_model.bat- model execution
starting

start tgtsvr %1 –C –c%WIND_BASE%/target/config/pc486/vxworks - target
server starting

#WindSh running

windsh -n -s run_model.bat %1 > null
186 Code Generation Reference Manual

Compiling Generated Code
For UNIX platforms (Solaris):

#Creating of the file for model executable download and execution

#! /bin/csh -f

echo 'vf0=open("/vio/0",2,0)' > run_model.csh

echo "ioGlobalStdSet(0,vf0)" >> run_model.csh

echo "ioGlobalStdSet(1,vf0)" >> run_model.csh

echo "ioGlobalStdSet(2,vf0)" >> run_model.csh

echo "logFdAdd(vf0)" >> run_model.csh

echo 'ld 1,0, "'$2'"' >> run_model.csh

echo "vxmain" >> run_model.csh

windsh -n -s run_model.csh $1

Now the model system is ready for debugging.

Remote Panel

The following figure shows the remote panel dialog.

Target
Output
Directory

Remote
Panel
Feature
Select
Rational Statemate 187

Compiling Embedded C Code
To open this panel, click Options > Global Profile Settings.

If the mode is set, the code generator creates a proper makefile and additional elements in the
generated code. In addition, when you run generated and linked code using the Compile >
RunCode menu item, the profile editor sends the request to the main of Rational Statemate in
order to run the Remote Panel/Trace Server. If the Target [output] Directory field is not empty,
the Profile Editor copies the rcomm.cfg file (created by the Remote Server) into the target output
directory where the code was generated. This configuration file contains the host name, the input
port and output port addresses, and the debug level number.

The target output directory is defined by the appropriate entry in the Global Profile settings form.
It should be the same directory defined in the file selection box during code generation, but in
terms of the target file system. For example, the host output directory has the following path:

d:\tmp\io\rprt\io

The target output directory would be:

/tmp/io/rprt/io

If the target directory field is empty, the executable looks for the rcomm.cfg file in the workarea
directory. It should normally be seen from the target exactly with the same name as in the host
machine.

Next, run the generated code using the remote execution script whose name is defined in the
<target OS>.rtrg file.

GBA

The Graphic Back Animation (GBA) mechanism’s configuration functions are similar to those of
the remote panel feature. It uses the configuration file gba.cfg, which is created when the GBA
server runs. This file contains the following information:

 Host name
 Port address
 Debug level number (used for debugging purposes only)

After the configuration file is created by the GBA server, the Profile Editor copies it, and then
deletes it from the workarea. This file is needed only in the first running of the generated code. If
you subsequently run the same configuration of the host and target, there is no need to recopy this
file. Generated code can use the existing file, so you can run it manually using the RunCode
command from the Profile Editor.

To start the GBA server, use the Tools > Open GBA menu item of the Profile Editor.
188 Code Generation Reference Manual

Compiling Generated Code
Trace Facility

If some variables (states, data items, conditions, or activities) are selected to be traced, the trace
task is created automatically when generated code executes. This trace task uses the Remote
Server to output the trace message data into the <profile name>.trc file, located in the target
output directory. Its reporting mechanism is the same as that used for the Remote Panel feature.
The basic mechanism allows the trace message data to be sent to the trace buffer, whose length is
user-definable in the dialog called by the Options > Trace Settings menu item.

You can also define the format of the trace in this dialog. The format information is written into the
.trc file.

If you select the User Supplied function name, every time the variable value is changed, this
function is called instead of the standard trace function normally supplied by the libintrinsics
library.
Rational Statemate 189

Compiling Embedded C Code
190 Code Generation Reference Manual

Required User-written Code
User-written code is the term applied to any custom code added to the generated code and included
in the subsequent compilation. It is also called handwriiten code. This code may include
modifications to the generated code, pretested and prequalified code modules, or special test or use
case routines.

The interface between the I/O cards and the generated code is the responsibility of the user. This
means that the user must supply at least three functional modules/routines:

 I/O card initialization routines
 I/O hardware driver routines
 I/O card shut-down/closure routines

The card element data structure contains a descriptive paragraph with the details of the API that
generated code provides to its user. The card is a pointer to these three functions.

Card Initialization
The card initialization function should have one parameter, which is a pointer to the card element
structure. When this function is called from the generated code, all internal data structures of the
generated code are initialized properly.

Card Driver
The card driver function should have two parameters. The first is a pointer to the report element
structure. The second is an integer that defines whether to perform input or output mapping. It is
recommended that you use the constants STM_IN_MAP and STM_OUT_MAP (defined in the file
types.h of the Intrinsics library) for this purpose. When you perform input mapping, the driver
should put the received value into the received_val field of its first argument. Note that
information about the corresponding card is available from the card_p field of the report element.
Rational Statemate 191

Required User-written Code
Card Closure
The card closure function has one parameter—a pointer to the card element structure. Its purpose
is to perform the necessary actions upon finishing the work with the card. Refer to Ada Code
Generationfor an example.
192 Code Generation Reference Manual

Simple Embedded Code Example
Because of the highly hardware dependant nature of embedded code, the following example is not
provided within the software. Nevertheless, this section examines a simple example application in
terms of the hardware target and procedures necessary for setting up the system so that code can be
generated and downloaded into the target.

Use Case
The use case example that is the subject of the sample code presented here is a simple tail light
controller for an automobile. It is uses an x86 CPU based prototyping development system
equipped with a PC104 bus and one digital I/O card (i.e. ONYX-MM-DIO). The development
system is equipped with an ethernet controller which is used as the serial link to the host system.
The RTOS is VxWorks and the compiler/linker/debugger is integrated into the Tornado
development environment. Rational Statemate is hosted on a Pentium laptop where all model and
code development is performed, as well as all remote terminal functions. The following figure
illustrates the basic system configuration, including I/O functions.
Rational Statemate 193

Simple Embedded Code Example
I/O Driver Functions
The following code sample is taken from a working driver file implemented to support the ONYX-
MM-DIO I/O card from Diamond Systems Corp.

Example Code:

#include <vxWorks.h>

#include <stdio.h>

#include <stdlib.h>

#include <syslib.h>

#include "types.h"

#include "symbols.h"

#include "string.h"

BUS

VxWORKS

APPLICATION CODE

PC104 (x86 CPU)

FLASHER

LIGHT

BRAKE LIGHT

FOG LIGHT

BACKUP LIGHT

FLASHER SWITCH

LIGHT SWITCH

BRAKE LIGHT SWITCH

FOG LIGHT SWITCH

BACKUP LIGHT SWITCH

ONYX-MM-DIO

OUTPUTSINPUTS

Download

HOST PC
194 Code Generation Reference Manual

I/O Driver Functions
#define DIO_1A 0

#define DIO_1B 1

#define DIO_1C 2

#define DIO_1CR 3

#define DIO_2A 4

#define DIO_2B 5

#define DIO_2C 6

#define DIO_2CR 7

int onyx_base_addr; /* The card base address , converted into int format */

/* -- generic card initializer for both input and output mapping */

void onyx_init(card_desc_p card_p)

{ int addr;

sscanf(card_p->base_addr,"%x",&onyx_base_addr);

printf ("base_addr = 0x%x\n",onyx_base_addr);

sysOutByte(onyx_base_addr+ DIO_2A,0x00); /* Reset of output registers before
setting of 2A port

to be output */

sysDelay();

addr = onyx_base_addr+DIO_1CR;/* control register 1CR address
*/

 /* Port 1A , 1B and 1C set to OUTPUT/MODE 0 */

sysOutByte(addr, 0x80);

printf ("Ports 1A , 1B and 1C set to OUTPUT/MODE 0\n");

sysDelay();

addr = onyx_base_addr + DIO_2CR; /* control register 2CR address
*/

sysOutByte(addr,0x9B); /* Port 2A , 2B and 2C set to INPUT/MODE 0 */

printf ("Ports 2A , 2B and 2C set to INPUT/MODE 0\n");

}

/* -- generic card driver for both input and output mapping */
Rational Statemate 195

Simple Embedded Code Example
void onyx_in(report_link elem)

{

 genptr new_value = (genptr)elem->received_val;

 int b, offset;

 sscanf(elem->pin_offset,"%d",&offset);

 b = sysInByte(onyx_base_addr+offset); /* input from 2A port */

 switch(elem->elem_type) {

 case el_integer:

 case el_enumer:

case el_bit_array:

(int)new_value = b;

break;

case el_condition:

case el_event:

*(char *)new_value = b;

break;

case el_real:

(double)new_value = b;

break;

default:

 (int)new_value = 0;

break;

 }

}

#define OUTPUT_BUF_SIZE 16

double output_buf;

void onyx_out(report_link elem)

{

 void *actual_val = (void*) &output_buf;

 int offset;

 sscanf(elem->pin_offset,"%d",&offset);

196 Code Generation Reference Manual

I/O Driver Functions
switch(elem->elem_type) {

 case el_integer:

 case el_enumer:

 case el_bit:

 case el_bit_array:

 if (elem->pin_inverse)

 (*(int*)actual_val) = ~(*(int*)elem->elem_value);

 else

 (*(int*)actual_val) = (*(int*)elem->elem_value);

 sysOutByte(onyx_base_addr+ offset, *(char*)actual_val); /* a=> output
to 1A port */

 break;

 case el_real:

 (*(double*)actual_val) = (*(double*)elem->elem_value);

 …

 break;

 case el_condition:

 case el_event:

 if (elem->pin_inverse)

 (*(char*)actual_val) = ~(*(char*)elem->elem_value);

 else

 (*(char*)actual_val) = (*(char*)elem->elem_value);

 sysOutByte(onyx_base_addr+ offset,*(char*)actual_val);

break;

 default:

 break;

 }

 }

void onyx_driver(report_link elem, int map_mode)

{

 if (map_mode == STM_OUT_MAP) {

 onyx_out(elem);

 }

 else if (map_mode == STM_IN_MAP) {

 onyx_in(elem);
Rational Statemate 197

Simple Embedded Code Example
 }

}

/* -- generic card closing function */

void onyx_close(card_desc_p card_p)

{

 /* Some RESET calls for I/O card */

 printf("Card has been closed\n");

}

Target Description File
This section describes details of the target description file. Some of the key words are actually
strings that are basically copied to the Makefile that is created along with the generated code. For
clarity, we call their type: makefile string. To use this feature, you should have certain basic
knowledge about Makefile language and syntax. Examples of possible values for important key
words are included in the sample code listing.

In particular, if you want to use $STM_ROOT as part of the value of a string or a makefile string key
word, it is necessary to use a duplicate $ sign to correctly express the variable type. For example:
“$$STM_ROOT”

Note that some of the keywords contain OS path information. You should be aware of the correct
directory separator character to use for the target operating system.

The internal double quote character shown here should be replaced by the single quote character.
For example, the line “ /D “PRT” “ should be “ /D ‘PRT’ “.

Example Code:

The following example is taken from the vxworks.rtrg file for the target OS: VxWorks.

{

 #UNIX-like target OS:yes

 #Link command:"LINK = $(LD)"

 #System libraries:""

 #Library extension:".a"

 #Executable extension:""

 #Output file keyword:"-o "
198 Code Generation Reference Manual

Target Description File
 #Intrinsics library:"$(STM_ROOT)/lib/VxWorks/libintrinsics$(CPU).a"

 #Scheduler library:"$(STM_ROOT)/lib/VxWorks /libscheduler$(CPU).a"

 #Simulated scheduler library:"$(STM_ROOT)/lib/VxWorks /
libsim_scheduler$(CPU).a"

 #Debugger library:"$(STM_ROOT)/lib/VxWorks /libdbg$(CPU).a"

 #GBA library:"$(STM_ROOT)/lib/VxWorks /libgba$(CPU).a"

 #Panel library:"$(STM_ROOT)/lib/VxWorks /libpgertl$(CPU).a"

 #Remote panel library:"$(STM_ROOT)/lib/VxWorks /librpgertl$(CPU).a"

 #Additional libraries:""

 #Object extension:".o"

 #Archiv command:"$(AR) $(ARFLAGS) "

 #File existing command:""

 #File deleting command:"$(RM) "

 #Make command:"$(MAKE) -f"

 #Main file directory:"$(STM_ROOT)/lib/VxWorks/"

 #CPU name:"CPU = I80486"

 #Ranlib command:""

 #K&R C compiler name:""

 #K&R C compiler flags:

"STM_CFLAGS = -O -I$(STM_ROOT)/etc/prt/c -I$(STM_ROOT)/etc/sched -DPRT -
DVxWorks"

"TOOL = gnu"

"include $(WIND_BASE)/target/h/make/defs.bsp"

"include $(WIND_BASE)/target/h/make/make.(CPU)(TOOL)"

"include $(WIND_BASE)/target/h/make/defs.$(WIND_HOST_TYPE)"

"include $(WIND_BASE)/target/h/make/rules.bsp"

"INCLUDE_QUALIFIER=-I"

"CC_OPTIM += $(STM_CFLAGS)"

 #ANSI C compiler name:""

 #ANSI C compiler flags:

"STM_CFLAGS= -O -I$(STM_ROOT)/etc/prt/ansic -I$(STM_ROOT)/etc/ansisched -
DPRT - VxWorks"

"TOOL = gnu"

"include $(WIND_BASE)/target/h/make/defs.bsp"

"include $(WIND_BASE)/target/h/make/make.(CPU)(`TOOL)"

"include $(WIND_BASE)/target/h/make/defs.$(WIND_HOST_TYPE)"

"include $(WIND_BASE)/target/h/make/rules.bsp"
Rational Statemate 199

Simple Embedded Code Example
"INCLUDE_QUALIFIER=-I"

"CC_OPTIM += $(STM_CFLAGS)"

 #Link flags:"-r "

 #Make script name:""

 #Run script name:"%STM_ROOT%\misc\VxWorks\run_windsh mary"

 }
200 Code Generation Reference Manual

dSPACE Support
The Rational Statemate Embedded Rapid Prototyper (ERP) supports dSPACE models DS1102 and
DS1103. The dSPACE DS110* models are single-board solutions—the processor and I/O are
located on the same card.

The dSPACE interface enables you to do the following:

 Generate C code from the Rational Statemate model, compile the code, and download it to
the dSPACE machine with a single click.

 Map model elements to the board I/Os.
 Automatically generate dSPACE TRC files for use with dSPACE ControlDesk layouts.

This section describes the required driver configuration and sample usage. The topics are as
follows:

 The dSPACE Package

 Before You Begin

 Using the dSPACE Interface

 Generating TRC Files

 I/O Driver Configuration Settings

 Driver Tasks

 Signals

 Port Names

 Implementing User Tasks
Rational Statemate 201

dSPACE Support
The dSPACE Package
The dSPACE package includes the following:

 Run-time library source code and batch files (which must be compiled on your machine).
The libraries are linked with the generated code and the resulting executable is
downloaded to the target. Refer to Before You Beginfor more information.

 I/O driver library source code and batch file. The library performs the I/O calls according
to the ERP I/O mapping definitions. Refer to I/O Driver Configuration Settings for more
information.

 Automatic generation of TRC files, which are used for variable binding in the
ControlDesk. Refer to Generating TRC Files for more information.

Unsupported Rational Statemate Functionality

Currently, the following Rational Statemate functionality is not supported on the dSPACE
hardware:

 Graphical Back Animation (GBA) and the remote panel
 User tasks

When you define tasks, keep the following in mind:
 There is a special format for writing user tasks for dSPACE, which is different

from the one used for other targets. Therefore, you should modify existing models
in order to execute them on the dSPACE machine.

 The main benefit of a task (running concurrently to the model) is effectively lost
on the dSPACE hardware—the behavior is no different from a normal Rational
Statemate subroutine defined as a procedure or function.

For more information, refer to Implementing User Tasks.
 Continuous diagrams (VISSIM)
 Simulated synchronous and simulated asynchronous time model
 Double polling rate
202 Code Generation Reference Manual

Before You Begin
Unsupported I/O Signals

The following I/O signals are not supported on the dSPACE model DS1103 hardware:

 PWM3 generation (synchronized 3 PWM signals)
 PWMSV generation
 CAN
 Synchronized reading of A/D converter (ADC) signals
 Serial interface
 Slave ADC

Refer to Signals for the list of supported signals.

Before You Begin
Before you begin using the dSPACE interface, perform the following tasks:

1. Edit the run_stmm.bat file.

2. Compile the run-time libraries.

Editing the Batch File

To use ERP on dSPACE hardware, you must edit the batch file %STM_ROOT%\bin\run_stmm.bat.
Refer to the dSPACE section of the file for the list of necessary changes.

Compiling the Run-Time Libraries

The following sections describe how to compile the run-time libraries for the dSPACE boards.

 DS1102

 DS1103
Rational Statemate 203

dSPACE Support
DS1102
To compile the run-time libraries for the DS1102 board, complete the following:

1. Open a DOS shell.

2. Set the environment variable STM_ROOT.

3. Execute the following file:

%STM_ROOT%\etc\prt\c\create_DS1102_intrinsics.bat

4. Execute the following file:

%STM_ROOT%\etc\sched\create_DS1102_sched.bat

DS1103
To compile the run-time libraries for the DS1103 board, complete the following:

1. Open a DOS shell.

2. Execute the following batch file:

%STM_ROOT%\etc\rapid\build_DS1103_libs.bat
<Statemate installation dir>

For example:

%STM_ROOT\etc\rapid\build_DS1103_libs.bat C:\IBM Rational\stmm\4.6

When you execute the batch file, the following libraries and object files are created:

%STM_ROOT%\lib\dspace\DS<xxxx>\libintrinsics.lib

%STM_ROOT%\lib\dspace\DS<xxxx>\libscheduler.lib

%STM_ROOT%\etc\rapid\ds<xxxx>\obj\stm_ds1103.lib

%STM_ROOT%\lib\dspace\DS<xxxx>\real_main.obj

%STM_ROOT%\lib\dspace\DS<xxxx>\sync_main.obj

%STM_ROOT%\lib\dspace\DS<xxxx>\async_main.obj
204 Code Generation Reference Manual

Using the dSPACE Interface
To compile the remote debugger run-time libraries for the DS1103 board, complete the following:

1. Open a DOS shell.

2. Execute the following batch file:

%STM_ROOT%\etc\rapid\build_DS1103_libs_dbg.bat <Statemate installation
dir>

For example:

build_DS1103_libs_dbg.bat C:\IBM Rational\stmm\4.6

When you execute the batch file, the following libraries and object files are created:

%STM_ROOT%\lib\dspace\DS<xxxx>\libintrinsics_dbg.lib

%STM_ROOT%\lib\dspace\DS<xxxx>\libscheduler_dbg.lib

%STM_ROOT%\etc\rapid\ds<xxxx>\obj\libdbg.lib

%STM_ROOT%\lib\dspace\DS<xxxx>\real_main_dbg.obj

Using the dSPACE Interface
The following sections describe how to use both the normal dSPACE interface and remote
debugger mode.

Normal Use

To use the dSPACE interface, complete the following steps:

1. Open Rational Statemate and click the Embedded Rapid Prototyper icon.

2. Select Options > Global Profile Settings. The Global Profile Settings window is
displayed.

3. Enter stm_dspace.h in the Packages/Headers for External Subroutines field.

4. Unselect the options With Debugger, With Remote Panel Server, and Graphical Back
Animation.

5. Select the target in the Target field. For example, DS1103.

6. Click OK to dismiss the window.

7. Click Options > Time Settings >Time model in the Profile Editor.

8. Select Real Time.
Rational Statemate 205

dSPACE Support
9. Use the I/O mapping tool (refer to Describing Signal Mapping to I/O Cards) to map model
elements to I/O ports using the DS1103 card.

Refer to Setting the I/O Polling Rate for more information on I/O.

10. Generate, make, and run (load) the code. Two scripts are called in the process to make the
generate code and to load the executable.

Remote Debugger Mode

Remote debugger mode provides model-level debugging. The ERP interacts with the target using a
terminal program running on the host and communicating with the target via serial
communication.

Note the following restrictions:

 I/O is not supported in remote debugger mode.
 Remote debugger mode is not supported on the DS1102 board.

To use remote debugger mode, complete the following:

1. Open Rational Statemate and click the Embedded Rapid Prototyper icon.

2. Select Options > Global Profile Settings.The Global Profile Settings window is
displayed.

3. In the field Packages/Headers for External Subroutines, type stm_dspace.h.

4. Select the option With Debugger, but unselect With Remote Panel Server and
Graphical Back Animation.

5. In the Target field, select DS1103_DBG.

6. Click OK to dismiss the window.

7. In the Profile Editor, click Options > Time Settings>
Time model. Select Real Time.

8. Connect the PC COM port to the DS1103 panel Slave RS232 connector. Use a “simple
null modem without handshaking” cable.
206 Code Generation Reference Manual

Generating TRC Files
9. Use a terminal program (such as the Freeware console.exe) with the following settings:

 COM port—As actually connected
 Baud rate—9600 baud
 Parity—None
 Databits—8
 Stopbits—1
 Echo—No

10. Generate, make, and run (load) the code.

Generating TRC Files
The TRC file defines the variables that can be read to or written from the hardware by the dSPACE
ControlDesk at run time. The variables that are visible to the host are those defined in the C code
as global variables. (In the Rational Statemate generated code, all the model elements are actually
global variables.)

The variables are arranged in the TRC file in a hierarchy (groups) according to the model charts’
hierarchy. This arrangement enables you to easily navigate in the ControlDesk variables browser.

TRC file generation is enabled when the corresponding field in the target file (.rtrg) is set to yes,
as follows:

#Generate dSPACE TRC file:yes

For ease of use, the TRC file has a separate group for each chart. All the defined variables in a
chart are part of the same group in the TRC file.

In the Rational Statemate generated code, some variables are named differently from the model
name in order to solve a uniqueness problem. For those variables, the entry in the TRC file is the
Rational Statemate model name (defined as an alias to the “code name”).
Rational Statemate 207

dSPACE Support
I/O Driver Configuration Settings
Some information regarding the hardware configuration (such as the frequency or the resolution
for the PWM port, or the range of the value read from the ADC port) is available to the driver at
run time. Until the information exists in the card file, it is hardcoded in a part of the driver source
code.

A C structure that holds all the required information is instantiated in the file
stm_ds<xxxx>_config.c, where <xxxx> is the model number of the board. The structure is
initialized to labels defined in the corresponding header file stm_ds<xxxx>_config.h.

You must change the header file according to the actual card configuration, then compile the file
with the rest of the driver libraries. Instructions for modifying the header file are included in the
stm_ds<xxxx>_config.h file.

Setting the Timer Frequency

The timer interrupt frequency (timer resolution) is defined in the constant
DEFAULT_TIMER_RESOLUTION_MS in the file os_include.h. The minimum value for this integer
variable is 1; the default value is 10 milliseconds.

If you change this value, you must rebuild the run-time libraries to have your changes take effect.

Setting the I/O Polling Rate

You specify the I/O polling rate using the command Files > I/O Card Management > Polling
Rate. A polling rate value 100 means that the I/O ports will be polled 100 times per second.

For more information on polling rates, refer to Target Requirements.
208 Code Generation Reference Manual

Driver Tasks
Driver Tasks
The driver performs different tasks during initialization and model execution.

Initialization Tasks

During initialization, the driver performs the following tasks:

 Processes signal mapping information, which is read from the ERP data structure
 Configures I/O ports
 Calls the initialization functions

Model Execution Tasks for the Driver

When reading from an input port, the driver performs the following tasks:

 Calls the input function
 Normalizes the read value (to match the model value range)
 Writes the new value to the ERP data structure

When writing to an output port, the driver performs the following tasks:

 Reads a new value from the ERP data structure
 Determines whether the value is in-range (according to the driver configuration)
 Normalizes the value (to match the I/O port range)
 Calls the output function
Rational Statemate 209

dSPACE Support
Signals
The following sections list the supported signal types, and the mapping combinations of Rational
Statemate variables to signals on the dSPACE hardware.

Signal Types

The following tables lists the dSPACE signal types supported by the ERP driver. The signal type
names are used in the Rational Statemate ERP I/O mapping table. For example, if you map a
Rational Statemate variable to “ADC 1”, it is mapped to the first A/D converter pin on the
dSPACE board.

In the tables, “ADC” stands for A/D converter, “DAC” stands for D/A converter, and “IOP” stands
for input output port.

Note that the card file includes all the supported signals. You should change the in_port or
out_port for IOP signals only, because they can be configured as either digital input or digital
output.

Alternatively, you could make this change without editing the card file by following these steps:

1. Map an IOP signal.

2. Select In or Out in the I/O column of the I/O mapping table.

Port Names
The port names in the card file represent the port number in the dSPACE hardware.

For example, to map a Rational Statemate condition COND1 to port “IOP 1” as output, configure the
second digital port on the hardware to be an output port and map COND1 to it.

Similarly, to map a Rational Statemate bit array BITARR1 to port “IOP 1-3” as input, configure the
second to fourth digital ports on the hardware to be input ports, and map each element of BITARR1
to the corresponding ports on the hardware.

Note
Digital ports can be either input or output ports. You should configure the ports before using
them.

The driver issues a warning message whenever information might be lost. For example, if a
Rational Statemate integer is mapped to an A/D converter (real), the driver issues a warning.
210 Code Generation Reference Manual

Port Names
The following table lists the DS1103 signal types.

Port Type Port Name Channel

Digital I/O IOP 0 to 15

ADC 16-bit ADC 1 to 2

ADC 12-bit ADC 3 to 4

DAC 12-bit DAC 1 to 4

Encoder ENC 1 to 2

Encoder index ENCIDX 1 to 2

PWM PWM 1 to 6

Port Type Port Name Channel

ADC 16-bit ADC 1 to 16

ADC 12-bit ADC 17 to 20

DAC 14-bit DAC 1 to 8

Digital I/O IOP 0 to 31

Encoder position reading ENC_POS 1 to 7

Encoder position delta reading ENC_POSD 1 to 7

Encoder position writing ENC_POSW 1 to 7

Encoder counter reading ENC_CNT 1 to 7

Encoder counter fine reading ENC_FINE_CNT 7

Encoder counter writing ENC_CNTW 1 to 7

Encoder counter clearing ENC_CNTCL 1 to 7

Encoder index reading ENC_IDX 1 to 7

Slave PWM generation SLV_PWM 1 to 4

Slave PWM measuring period SLV_PWMD_PD 1 to 4

Slave PWM measuring duty SLV_PWMD_DT 1 to 4

Slave Digital I/O SLV_IOP 0 to 19

Slave frequency generation SLV_DF 1 to 4

Slave frequency measuring SLV_FD 1 to 4
Rational Statemate 211

dSPACE Support
Mapping Rational Statemate Variables to dSPACE Signals

The following table lists the mapping combinations of Rational Statemate variables (integer, real,
and so on) to signals on the DS1103 board. The table uses the following abbreviations for the
dSPACE I/O types:

 ADC—A/D converter
 DAC—D/A converter
 IOP—Input output port
 PWM—Pulse width modulation
 ENC—Encoder
 AI and AO—Analog input and output
 DI and DO—Digital input and output

Note
As noted in the table, a warning is issued by the driver when information might be lost.

dSPACE I/O Type STMM Integer STMM
Real

STMM
Bit

STMM
Condition

STMM
Bit

Array

ADC (AI) Yes (warning) Yes No No No

DAC (AO) Yes Yes No No No

IOP (DI) Yes Yes Yes Yes Yes

IOP (DO) Yes (warning) No Yes Yes No

ENC_POS Yes (warning) Yes No No No

ENC_POSD Yes (warning) Yes No No No

ENC_POSW Yes Yes No No No

ENC_CNT Yes Yes No No No

ENC_CNTW Yes No No No No

ENC_CNTCL Yes No Yes Yes No

ENC_IDX Yes No Yes Yes No

SLV_PWM Yes Yes No No No
212 Code Generation Reference Manual

Implementing User Tasks
Implementing User Tasks
User tasks originate from two sources—model subroutines that are defined as tasks, and activities
that are defined as tasks in the ERP Profile editor.

Normally, Rational Statemate user tasks can include some synchronization calls, including the
following:

 wait_for_event(<event>)
 task_delay(<delay_time>)
 scheduler()

The synchronization calls suspend task execution and call the Rational Statemate scheduler. The
task resumes execution when a specific event occurs; execution is resumed from the point at which
it was stopped.

Note the following when using tasks on dSPACE hardware:

 Do not use an endless while loop to wrap the task code.
 You should call the scheduler() routine as the last command within the task. Do not call

it anywhere else.
 Do not use calls to wait_for_event() and task_delay() in your task.

SLV_PWMD_PD Yes (warning) Yes No No No

SLV_PWMD_DT Yes (warning) Yes No No No

SLV_IOP (DI) Yes Yes Yes Yes Yes

SLV_IOP (DO) Yes (warning) No Yes Yes No

SLV_DF Yes Yes No No No

SLV_FD Yes (warning) Yes No No No
Rational Statemate 213

dSPACE Support
214 Code Generation Reference Manual

ERP CANoe Interface
The Rational Statemate ERP CANoe® interface uses a CANoe API (available in CANoe 3.0 build
43) and an enhanced version of the Rational Statemate Embedded Rapid Prototyper (ERP).

It is based on the ability to describe a CANoe node behavior by an external DLL. The code
generated by Rational Statemate is compiled and packed in a DLL, which is then executed by
CANoe.

The Rational Statemate model is generated in an enhanced Module Procedures Only mode. In this
mode, the model is wrapped within one function, and extra code is generated. The extra code maps
the model elements to CANoe environment variables. The extra code that is generated is called
module interface code.

This section describes how to use Rational Statemate with the CANoe environment. The topics are
as follows:

 Specifying Profile Settings

 Code Generation

 Module Interface Code

 Using the Generated Code

Specifying Profile Settings
Before generating the code, you must define the module interface (which model elements are read
to, or written from, the environment), and the mapping between a Rational Statemate model
element and the CANoe environment variable name.

Complete the following steps:

1. In the run_stmm.bat file, uncomment the following line:

set GEN_CANOE_IF_CODE=ON

2. Open Rational Statemate, and click the Embedded Rapid Prototyper icon.

3. Create a new profile (refer to Invoking the Profile Editor).
Rational Statemate 215

ERP CANoe Interface
4. Select Options > Global Profile Settings. The following window displays:

5. Select Module Procedures Only from the Generation of main: drop-down list.

6. Select Generate CANoe Interface.

7. Disable the following options:

 With Debugger
 With Remote Panel Server
 Graphical Back Animation

8. Specify a module and scope. Do not include a panel.

9. Click OK.

10. Select a module in the profile, then select Options > Module Settings > Parameter
Setting. The Parameters for Module <Name> window is displayed, as shown in the
following figure.
216 Code Generation Reference Manual

Specifying Profile Settings
11. Select the Type [Data-Item (integer, real, string, or binary), Event, or Condition], and
Mode (In or Out, but not In/Out) information for each parameter.

By default, if you have not specified values for the external symbols, Rational Statemate
uses the values of the attribute CANOE_ENV_VAR.

If you want to select additional parameters, click Choose.

12. Set the mapped CANoe environment variable name as the value of the CANOE_ENV_VAR
attribute in the Prioperties entry of the element (using the Attributes mechanism).

Note: Currently, the interface supports only one module. Repeat Step 10 for every
element defined as part of the module interface.

13. Generate the code.
Rational Statemate 217

ERP CANoe Interface
Code Generation
Currently, the external mapped symbol is read from the CANOE_ENV_VAR attribute.

The ERP CRD file includes a new message list section and a general port attribute list section. The
CRD template is as follows:

 {

 #card name:""

 #card polling rate:

 #card number of ports:

 #card base address:""

 #card init function:""

 #card driver function:""

 #card closure function:""

 #port list:

 {

 #port name:""

#port inverse logic:

#port default mode:

#port default buffer:

#port offset:""

 #port attribute list:

{

 #key:””

 #value:””

}

 }

 #message list:

 {

 #message name:””

#message id: “”

#message period:

#message size:

#signal list:

{

 #signal name:””
218 Code Generation Reference Manual

Module Interface Code
 #signal byte number:

 #signal starts at bit:

 #signal number of bits:

 #signal attribute list:

 {

 #key:””

 #value:””

 }

}

 }

 }

The message list is stored in the card_desc data structure, whereas the port attribute list is stored
in the report_elem data structure.

Module Interface Code
When you use the CANoe environment, Rational Statemate generates module interface code in the
module file. The C macros used are defined in the stmm.h header file. The macro calls create an
array that defines the mapping between a Rational Statemate model element and the CANoe
environment, which is accessible by CANoe at run time. Note that the init_module() and
exec_module() functions are called by CANoe.

The module interface code is as follows:

/******* CANoe interface code *******/

#include "private\stmm.h"

sw_module_ptr MODULE_HANDLE = 0;

condition stm_BREAK_PADDLE;

real stm_SPEED;

CN_ENVIRONMENT_MAP_BEGIN()

CN_ENVIRONMENT_ENTRY(&stm_BREAK_PADDLE,
 el_condition, STM_OUT_MAP, "EnvBreakActive")

CN_ENVIRONMENT_ENTRY(&stm_SPEED, el_real,
 STM_IN_MAP, "EnvDashboardEngSpeedDsp_")

CN_ENVIRONMENT_MAP_END()

void init_module()

{

Rational Statemate 219

ERP CANoe Interface
 speed_init_module(&MODULE_HANDLE,
 &stm_BREAK_PADDLE, &stm_SPEED);

}

sw_module_status exec_module()

{

 return speed_exec(MODULE_HANDLE, 1);

}

Using the Generated Code

The generated module files (<module>.c and <module>.h) should be part of a Microsoft®
Developer Studio® project, which includes source files and settings provided by Vector-Informatik
GmbH®.

When you link these modules, use the run-time library libschedulercn.lib instead of
libscheduler.lib. To generate this library, complete the following:

1. Set the STM_ROOT environment variable as it is set in the run_stmm.bat file before
running the batch file in the next step.

2. Run the \etc\sched\create_sched_cn.bat batch file.

For more information on using the CANoe interface, go to the Vector-Informatik Web site (http://
www.vector-informatik.de).
220 Code Generation Reference Manual

Double Buffering
This section shows examples where removing double buffers increases efficiency and other cases
where it may introduce errors.

Double-Buffered Statechart
The following Statechart helps to illustrate how the Double Buffer Analysis program works.

.

When you run the Double Buffer Analysis program on the above Statechart, it reports that you
only have to double buffer data items Y and T. There is no need to double buffer X and Z.

The Double Buffer Analysis program uses the following rules to arrive at its recommendations:

In general, you need double buffering in two cases:

 When assignment and accessing a data value occur concurrently (read-write racing).
 When two assignments to a data value occur concurrently (write-write racing).

In both cases, the obtained result may depend on the order of execution of concurrent components.
Rational Statemate 221

Double Buffering
For example, suppose that upon default the Statechart enters the states L1 and R1 (X = 6 and
Y = 10). Then, the execution of a step may produce these results:

 If orthogonal component LEFT is executed before component RIGHT, then at the end of
the step Y = 6 and Z = 7.

 If RIGHT is executed before LEFT, then at the end of the step Y = 6 and Z = 11.
Similarly, after performing a step that involves transition from L2 to L1 and transition from R2 to
R1, data-item T have value 5 or 4 depending on the order of the components execution.

With double buffering, values assigned during a step are deferred until the end of the step so that
all actions in the step are executed with values the data had at the beginning of the step. In this
case, at the end of the step Y = 6 and Z = 11.

Because of double-buffering, assignments are implemented in generated code through calls to
special services:

 seti(&Y, X);

 seti(&Z, Y+1);

rather than by direct C assignments:

 Y = X;

 Z = Y + 1;

The Double Buffer Analysis program also finds elements in the model for which double buffering
can be safely removed. For example, in the sample Statechart, the following elements do not need
double buffering:

 Data-item Z is an output only, i.e., it is only assigned a value in the model, but never used
in it. Therefore, there is no read-write racing. Since there is only one assignment to Z,
there is also no write-write racing.

 Data-item X has an assignment and use of X, but they both belong to the same component
and are never executed at the same step. Therefore, X does not need double buffering.
222 Code Generation Reference Manual

Optimizing Double Buffers
Optimizing Double Buffers
After running the Analyzer, complete the following steps to modify the compilation profile:

1. Select Options > Global Profile Settings in the Code Generator’s main window. The
Global Profile Settings window opens.

2. Click Double-Buffer Optimization. The Double Buffer Optimization window opens.
Rational Statemate 223

Double Buffering
3. Select Double Buffer Only Listed Elements. This enables you to choose the elements to
double buffer.

The Initialize Double-Buffer List fields become enabled.

4. Change With All Elements to From Saved List.

An drop-down list displays. You can select any list of elements that you saved including
the lists you created with the Analyzer.

5. Select the list that the Analyzer created when you selected With Double Buffering List
Name.
224 Code Generation Reference Manual

Optimizing Double Buffers
6. Click Initialize List and the element names appear in the Elements to be Double Buffered
list.

All assignments in the generated code are done in accordance with the selected list:

 All elements in this list are double-buffered.

For example, Rational Statemate assignment to an integer data-item such as X :=
5 is translated into the following call:

seti(&X,5);

 All elements not in this list use direct assignments in the natural C style; for the
above assignment this would be:

X = 5;

7. Select a memory allocation option for elements that are double buffered.

 Allocate Statically - Generally faster if there is a small number of elements.
 Allocate Dynamically - Generally faster if there is a large number of elements.

This is the default setting, which you can change in Options > Preferences
Management.
Rational Statemate 225

Double Buffering
226 Code Generation Reference Manual

Ada Code Generation
This section describes the architecture of the generated Ada code including how the Code
Generator structures the modules.

The Rational Statemate Code Generator generates fully functional code, based on the Statecharts
and Activity-charts in the Rational Statemate model. The generated modules are partitioned
according to a compilation profile, which allows you to generate code for a complete Rational
Statemate model or just a subsection of the model.

Each generated module reflects the state, timing, and scheduling logic of the model that is included
in the compilation profile. This allows a suitable set of components to be built that reflect the
system logic (behavior).

The generated code uses runtime modules for timing and scheduling. Requests are generated to the
timing module for timeouts and scheduled events, and to the scheduler module to control
handwritten tasks that are connected to basic activities. In addition, the data elements are double
buffered, so data assignments are synchronized to prevent racing conditions among the
“concurrent’ behavioral components.

Note
Ada is supported for regular code generation only, not ERP.
Rational Statemate 227

Ada Code Generation
Code Libraries
All the runtime modules are actually a set of compiled libraries. The libraries can be reused for
other projects as they are supplied in source code form. The runtime modules actually comprise an
interface between the generated behavioral logic and the underlying operating system.

Porting the generated behavioral components to a particular environment primarily means to tailor
the runtime library to use the specific services provided by the operating system/real-time kernel,
or in cases where none of them exist, to provide an alternative functionality.

Note
Tailoring the runtime libraries is a one-time effort. Once completed, the generated
components can be compiled and linked without being modified.

The following diagram shows the layers of software components in the embedded application. The
final executable image is built from some permanent modules, in addition to the generated
modules that are dependent on the application.

Generated Code
Permanent Code

application code
behavioral logic + user-code main

loop

timer scheduler
threading

double
buffering

OS services : Memory Management (3)
Timer Service
Multi-Threading services (4)

1 2
callback
handler
228 Code Generation Reference Manual

Code Libraries
 The scheduler component is optional - It is needed only if the user specifies that basic
activities should be implemented as tasks or desires to link a graphic panel into the
executable.

 Callback handler - Is used only if the user selects to attach callback routines to
behavioral logic components.

 Memory management - The runtime modules timer, double-buffering and callback
handlers utilize dynamic memory allocations. Under certain assumptions it is possible to
tailor them to use only static allocation, if a memory management package is not available
or memory resources are limited.

 Multi-threading (tasking) support - This support provides a mechanism for creating task
threads and switching between them. This service is needed only if the user wishes to
implement environment tasks or basic activities as tasks. This issue is discussed in greater detail
in this document.
Rational Statemate 229

Ada Code Generation
Tasks View of the Code
One of the major issues that confuse many users is how “concurrent” activities and states are
actually translated into a sequential language. Concurrency within the languages of Rational
Statemate is represented explicitly between orthogonal states (AND states), and implicitly between
separate (concurrent) activities. Sometimes it is natural to implement them as different threads
(tasks), but it is also possible to implement them as a single threaded program.

Writing an embedded application as a single thread or multi-threaded is actually a design decision.
Since the underlying architecture is sequential, a multi-threaded program is actually a set of
sequential pieces managed by a sequential scheduler.

Module Execution

The modules of the generated code are sequential. They are executed cyclically with each iteration
evaluating the next step of processing. In terms of simulation, executing the code is equivalent to
executing a “go-step” repeatedly, while changing the environment asynchronously. The main
difference is that the clock is incremented in real time, so timeouts happen according to the time
taken to execute the code.

Multi-Threading

So why is multi-threading needed at all? Multi-threading is used to allow the user to implement
basic activities as independent processes, without having to comply with the “one cycle at a time’
method. It also allows writing additional environment processes outside the system model, to
process inputs, to drive outputs or for simulating the environment. Therefore, a multi-threading
capability is needed only if the user wishes to add threads that run “concurrently’ with the
generated modules that execute as a single thread, denoted as the “main task’.
230 Code Generation Reference Manual

Tasks View of the Code
Asynchronous Timer

Another component in the process view of the code is the asynchronous timer. The main task
issues timer requests to be notified about timeouts and scheduled actions. The timer module
asynchronously notifies the main task when timeout events are occurring

.

 In some applications there are no basic activities implemented as tasks. In those cases, the
only processes that exist are the main task and the asynchronous timer. If basic-activity
tasks exist, the main task issues tasking control calls such as start, suspend, etc.

 There are cases where the user implements environment tasks, but none of the basic-
activities are implemented as a task. In these cases, the generated-code (the main task)
does not use any tasking services. The code does not need a multi-threading adaptor
unless the user connects a panel to the executable.

Using Simulated Time Model

The generated code uses the real-time model, by default. In this model, timeouts and scheduled
actions are treated very similarly to other inputs. The system clock keeps time and generates interrupts
which are processed along with the other inputs.

When using this time model, it is possible for the code to miss a timeout or scheduled action due to
heavy loading of the processor or an extremely small request for a timeout. In such a situation, the
generated code may actually behave slightly different than a simulation of the same model.

Rational Statemate also provides a simulated-time model. The purpose of the simulated-time model is
to force the generated code to behave in the same manner as the simulated model. It does this at the cost
of the real-time nature of the generated code.

Timer
ISR

timer-requests

Main Task

(Control
 Task)

Events, conditions
Data-items

Start
Stop
Suspend
Resume

User-Task1
Basic Activity

User-Task2
(User-Defined)

Inputs from
Environment

OS

scheduled
actions

timeouts
Rational Statemate 231

Ada Code Generation
In order to meet all timeouts regardless of duration and CPU loading, the code would be required
to run at an arbitrarily fast speed. Since this is not possible, code which is compiled using the
simulated-time model, does not adhere to the system clock. Rather, it keeps its own artificial time, much
the same as a simulator. An internal counter is kept. The code executes model steps until it reaches an idle
status. It then advances the internal clock to the necessary value to execute the next timeout or scheduled
action.

-- The main loop, loops forever
procedure main is

. . .
begin

INIT_FUNCTIONS_. . .
. . .
USER_ACTIVITIES.USER_INIT;

. . .
loop

-- Execute a step --
-- Advance internal time keeper to next
relevant step --
-- Apply timeouts and scheduled actions. -

end loop;
exception

. . .
end MAIN;

Main Task—Partition and Flow Control for Ada
In this section we describe how the different generated modules are put together into a single
thread, and what is the control flow of the main task. The whole execution starts with an
initialization phase, where all components are initialized: the timer, the threads scheduler (if
needed) and basic activity tasks are created. In addition the user_init procedure is called.

The user_init procedure resides in a file called user_activities.a. When you generate
code, the Code Generator automatically creates the user_activities.a file and the user_init
procedure. Prior to executing the model, you may initialize values in the user_init procedure.

After the initialization phase, the main-task starts processing in a cyclic manner, where every cycle
corresponds to a single “go-step.’ In every cycle, all the concurrent state machines are traversed,
process their inputs and generate outputs, issue timing requests and take the necessary state
transitions.
232 Code Generation Reference Manual

Main Task—Partition and Flow Control for Ada
This is how the Main procedure program looks:

begin
 PR_INITIALIZE;
 loop
 PR_MAKE_STEP;
 end loop;

exception

when NUMERIC_ERROR | CONSTRAINT_ERROR =>

REPORT_error(“NUMERIC_ERROR or CONSTRAINT_ERROR
exception raised”);
FINISHING;

when others =>

REPORT_error (“Fatal error: exception raised”);
FINISHING;

end MAIN;

The following diagram shows the calling sequence within the main task:

top_level.lo_init

make_a_
step

main

main
loop

user_init

other
inits

handle
callbacks*

wait4input

module1

user
callbackN

user
callback1

moduleN

LO_MAIN
Rational Statemate 233

Ada Code Generation
Executing a Single Step
procedure MAKE_A_STEP is
 NEED_GO : BOOLEAN;
begin
 INCREMENT_STEPN;
 -- advance steps counter
 if IS_SYNC_TIME = true then
 -- synchronous (simulated) time model is used
 if get_stepN >1 then
 INCR_TIME;
 -- in synchronous time model,
 -- time is advanced at each step
 -- except for the first step when model
 -- enters its default states
 end if;
 WAS_UPDATE := true;
 -- this means that each step
 -- involves some update
 WAIT4INPUT;
 end if;
 TOP_LEVEL.LO_MAIN;
 -- execution of step; all changes are
 -- buffered till the end of the step
 SEMAPHORE.LOCK;
 -- to process the last step’s changes,
 -- block the arrival of new external
 -- changes to the main task
 UPDATE_VALUES(NEED_GO);
 -- assign elements their new values,
 -- according to changes in the step
 WAS_UPDATE := WAS_UPDATE or DEB_WAS_UPDATE;
 -- true if there were changes in the
 -- previous step, or
 -- an element was changed between
 -- steps using the Debugger’s SET command
 if not NEED_GO and then (not WAS_UPDATE) then
 -- check whether to enter the wait mode;
 -- do it if there were no updates in
 -- 2 last steps
 SLEEPING := TRUE;

-- mark the main task as going
-- to enter the wait mode

 SEMAPHORE.RELEASE;
-- and now allow arrival of new
-- external changes to the main task

 WAIT4INPUT;
-- if meanwhile an external input was
234 Code Generation Reference Manual

Main Task—Partition and Flow Control for Ada
-- generated then accept it
-- otherwise enter the wait mode

 else
 SEMAPHORE.RELEASE;

-- allow arrival of new external changes
 end if;
 WAS_UPDATE := NEED_GO;
 TRANSMITTER.EVAL_CALLBACKS;

-- at the end of step, evaluate all
-- callbacks - according to hooks
-- requested in Compilation Profile,
-- and according to panel bindings

 GARBAGE_COLLECT;
-- free memory which was temporarily allocated

-- during step execution
 end MAKE_A_STEP;

Activating the Generated Modules (the “State Machines”)

LO_MAIN is a GENERATED procedure, that “glues’ together all the specific modules as
partitioned by the compilation-profile. Since LO_MAIN refers to specific procedures, it differs
between different models:

procedure LO_MAIN is
begin
 <module1>_EXEC_ALL;
 <module2>_EXEC_ALL;

 <moduleN>_EXEC_ALL;
end

Note
The LO_MAIN is actually the scheduler of the generated components. It applies a fair non-
prioritized round-robin scheduling policy, similar to the interpretive simulator. However, it
is possible to introduce priority scheduling by modifying this module.

Updating Double Buffer Assignments

The procedure UPDATE_VALUES executes all the deferred assignments into the actual data objects, based
on the update list. As a by-product, the procedure can determine whether the system is still processing
data or it has reached a stationary condition. If the update list is empty, it means that the system executed
an idle step. The step_has_changes flag indicates whether the step has ongoing processing, or the
previous execution cycle was actually an idle step.
Rational Statemate 235

Ada Code Generation
Evaluating the Callback List

If you sets hook for callback procedures, they are checked by EVAL_CALLBACKS. In case that one
of the callback hooks is “active’, the callback procedure is called.

Entering the Wait State

If the system has executed two consecutive idle steps, it is in a stationary condition. The reason for
executing two idle steps is that the negation of events might yield an active trigger after a single
idle state. If the system is idled for two steps, no negative event triggers can take place. At this
point, the main task releases the CPU by calling to a system service that blocks it from running
until some external stimulus occurs. The external stimulus can be either an event/data change, or a
timeout.

The decision whether to enter a wait state or not should be handled carefully, since once the main
task blocks itself, only external input wakes it.

This scenario leads to a deadlock condition. Since the timeout is ignored by the system, the main
task has already “decided” to hibernate itself but has not yet done so and the “wake-up” call is lost.
The use of the SEMAPHORE task allows for virtual exclusion test-and-block and therefore avoids
the deadlock.

but it does not sleep yet; so
this is a wasted call

TRY_TO_WAKE_MAIN_TASK3

{ }

main_task

CHECK_FOR_WAIT

timer

Checks for changes in last
two steps, or timeout ex-
pired. If none, it decides to
sleep.

WAIT

A timeout expired; hence. . .

GENERATE_TIMEOUT

1

4

2{ }
{ }

Main task enters a wait
mode, instead of reacting to
the timeout

{ }
236 Code Generation Reference Manual

Package Specification
Structure of a Behavioral Module

Each behavior module is translated into a package that contains objects and subprograms
implementing that module in Ada. Two files are generated for such a package: one for the package
specification and another for the package body.

The structure of the two files is explained for the module called RAIL_CROSS; the files are:

 rail_cross_.apackage specification
 rail_cross.a package body

Package Specification

Context Clauses

Basic type definitions and services for conditions, events,
data-items, etc.
with SYSTEM; use SYSTEM;
with INTRINSICS; use INTRINSICS ;

Services for timeouts and scheduled actions
with TIMEOUTS; use TIMEOUTS ;

Rational Statemate queues operations
with QUEUES; use QUEUES ;

Rational Statemate string operations
with STM_STRINGS; use STM_STRINGS ;

Rational Statemate operations for bit-arrays
with BIT_OPERATIONS; use BIT_OPERATIONS ;

Rational Statemate predefined functions
with STD_FUNCS; use STD_FUNCS ;

GDS containing the model’s global types and constants
with UNCHECKED_CONVERSION;
with RAIL_DICTIONARY; use RAIL_DICTIONARY;

Generic behavior modules instantiated in module RAIL_CROSS with TOP_LEVEL; use
TOP_LEVEL; elements shared by modules but not defined in GDS’s
with g_GEN_BARRIER;
with g_GEN_ROAD_CROSS;
with g_GEN_TRAIN;
Rational Statemate 237

Ada Code Generation
Interface Section Documents Inputs and Outputs
--Inouts
TIME1 : FLOAT64 ;
END_MEASURE1 : event ;

Definitions of Data and Control Elements of the Module

In this section all primitive (non-compound) local data-items, events, and conditions are defined.
“Local’ means elements not used outside the module scope.

ACK_BAR2_DOWN : event ;

IN_CRIT2 : condition ;

Definition of Fictive Events
ENMOVE_DOWN : event ;

tmDOWN_FINISHED: event ;

The fictive events are events not explicitly defined in the model. They are essentially timeout
events, enter/exit state events and in-state conditions. They are generated only when necessary; i.e.
only if there is a use of en(STATE) the ENSTATE event appears in the code. The above two events
appear because the model contains timeout event DOWN_FINISHED defined as
tm(en(MOVE_DOWN), 5).

Definition of Activities

Each activity in the module is represented by a data structure that contains information on the
activity’s current status, and on its hierarchical relations with other activities.

CHECK_TIME2 : ACTIVITY := dummy_act;

In addition, if in the Compilation Profile the user asks to implement a basic activity as task, then an
appropriate task declaration appears:

task CHECK_TIME1_TASK is

entry START;

end CHECK_TIME1_TASK ;
238 Code Generation Reference Manual

Package Specification
Generic Instances in the Module

Instances of generic charts in the module are translated into instances of the corresponding generic
packages:

package Inst_BARRIER2 is new
g_GEN_BARRIER(BAR2_DOWN,BAR2_UP,

ACK_BAR2_UP, ACK_BAR2_DOWN,
REPAIR_CLOSE2,REPAIR_OPEN2,
FAIL2_TRANSIENT,FAIL2_PERMANENT) ;

Definition of Compound Elements

Compound elements are translated into functions of the appropriate type. For example, for
compound condition:

function CAN_OPEN_CROSS return boolean;

Procedures for Initialization and Execution of the Module

Procedures for initialization of the module and execution of single step by all charts in the module.

procedure rail_cross_INIT;
procedure old_rail_EXEC_ALL;
Rational Statemate 239

Ada Code Generation
Package Body
For each behavioral module, its package body contains implementation of those items that are
declared in the package specification.

Definitions of State Status Types and Variables

Every non-basic OR-state has a status variable that indicates what substate is currently active. The
status type is an enumeration type that actually lists all substates of the OR-state. Status variable
gets value notaS (which is the default) when state S is not active.

type tpNORMAL_states is
(notaNORMAL, OPEN, CLOSED, MOVE_UP, MOVE_DOWN);

NORMAL_isin : tpNORMAL_states := not NORMAL;

Schedule Timeouts Procedure

This procedure executes every execution cycle, and evaluates what timeouts should be triggered in
the particular module. All timeout triggers are evaluated and the necessary timeouts are scheduled
using the service SC_TMO (from the run-time library package TIMEOUTS).

procedure SCHEDULE_TIMEOUTS is
begin

if ENMOVE_UP then
SC_TMO(tmUP_FINISHED’address,
FLOAT64(5) * SEC);

end if ;
end SCHEDULE_TIMEOUTS ;

Body Stubs for Basic Activities

For each basic activity selected to be stubbed out with the Profile Editor’s Make Procedure option,
a procedure is created:

procedure user_code_for_check_time1 is separate;
procedure user_code_for_check_time2 is separate;

A separate procedure body is then placed in file user_activities.a
where you can add your code to implement the activity.
240 Code Generation Reference Manual

Package Body
Functions Implementing the Compound Elements

 The function CAN_OPEN_CROSS return BOOLEAN is

begin
return(EXIT_CROSS1 or EXIT_CROSS2) and

(not (IN_CRIT1 or IN_CRIT2));
end CAN_OPEN_CROSS;

Action Procedures

In some cases (depending on the modularity style), actions are translated into procedures:

procedure EXEC_GET_TRAIN_SPEED is
begin

seti(TRAIN_SPEED’address,160);
end EXEC_GET_TRAIN_SPEED ;

State Enter/Exit Procedures

Depending on modularity style, the enter/exit (including history enter) sequences are grouped into
procedures:

procedure entdef_OPEN is
begin

NORMAL_isin := OPEN;
gen(ACK_BAR_UP’address);

end entdef_OPEN ;

This example shows the default entering sequence (i.e. entering via a transition that goes to the
edge of the state) for the OPEN state:

 Change parent status variable to OPEN
 Generate event ACK_BAR_UP; this reflects the static reaction
 Define in the model for state OPEN

entering/ACK_BAR_UP
Rational Statemate 241

Ada Code Generation
State Execution Procedures

The EXEC procedure is actually the heart of the behavioral logic as described in the statecharts. Every
non-basic state has an EXEC procedure that activates all the state-logic within a single execution cycle.
The EXEC procedure takes care of in state transition, static reactions, and activation of substate EXEC
procedures. The traversal is done hierarchically, starting at the very top state in the module and going
down towards the basic states. In case of an AND-state, the orthogonal components are traversed
sequentially one after the other.

procedure EXEC_BARRIER is
begin

case BARRIER_isin is
when NORMAL =>
if FAIL_PERMANENT then
exit_NORMAL;
BARRIER_isin := DAMAGED;
 else

 EXEC_NORMAL;
 end if;

when DAMAGED =>
. . .

end case ;
end EXEC_BARRIER ;

Module Initialization Procedure

The module “init” procedure is called once the executable is started, before running through any
execution cycle. It performs various initializations, as shown in the example:

procedure RAIL_CROSS_init is
begin

INIT_ACTIVITY(CHECK_TIME1’address,NONACTIVE,
FALSE,ZNIL,ZNIL,ZNIL);

⎯ initialization of the data structure
 ⎯ for an activity in the module

Inst_BARRIER2.g_GEN_BARRIER_init;
⎯ hierarchical call for initialization

⎯ of a generic instance in the module
 . . .
end RAIL_CROSS;

The “init” procedure is exported to the module (TOP_LEVEL) where it is called by procedure
LO_INIT that is responsible for initialization of the entire model.
242 Code Generation Reference Manual

Package Body
Module Execution Procedure

This procedure activates a single execution cycle (step), once being called by LO_MAIN in the main
module TOP_LEVEL. It activates the SCHEDULE_TIMEOUTS procedure to schedule potential
timeouts, the user-written code for basic activities, and most importantly, it activates the hierarchical
traversal of the state EXEC procedures by activating the EXEC procedures for all top-level statecharts
that belong to the module.

procedure rail_cross_EXEC_ALL is
begin

SCHEDULE_TIMEOUTS;
if STARTED(CHECK_TIME1) then

CHECK_TIME1_TASK.START;
end if;
EXEC_Chart_BARRIER;

 EXEC_Chart_RAIL_ROAD_CROSS;
 EXEC_Chart_TRAIN_MOVE;

end rail_cross_EXEC_all ;
Rational Statemate 243

Ada Code Generation
File Structure In Ada: Control Files

Behavioral Modules

The behavioral modules are the heart of the code and implement the state/transitions logic as
described by the statecharts. The specification is partitioned into behavioral modules in the
compilation profile. For each specified module, two files are generated based on the user-defined
module name.

The following module specification file exports all the specification objects defined in the module
(to use by other modules), and the module execution procedure.

<module_name>__.a

The following module body defines all the local objects (events, conditions, data-items), and the
procedures that implement the logic of the statecharts.

<module_name>.a

Top Level Module

The top-level module “wraps” all the behavioral modules into a single behavioral unit. It also
defines all the global elements, i.e., those elements used by more than one module. It defines two
procedures:

 LO_INIT - initialization of all the participating modules.
 LO_MAIN - execution of a single step of all modules.

The specification of the top-level module is identified below. It exports the global elements, the
initialization and the execution procedures.

<profile_name>main__.a

Implementation of these procedures is found in the module’s body:

<profile_name>main.a
244 Code Generation Reference Manual

File Structure In Ada: Control Files
Main Procedure

This is the main scheduler that activates the behavioral modules. It consists of the main unit that
instantiates all the other modules. In many cases where the generated code is not the backbone of
the application, you might want to replace the supplied main procedure with your own application
scheduler.

main.a (main_dbg.a in debugging mode)

User Supplemented Files

These files include all the stubs generated for the basic activities according to the compilation
profile. Once the user-activities stubs file exists in the output directory, it is not overwritten, and a
file user_activities.a_tmp is generated.

user_activities_.a (user_activities_.a_temp)

user_activities.a (user_activities.a.temp)

Transmitter Template

This file contains the hooks for the elements specified in the Profile with the “Hooks” option.
Since you can modify the file, it is not overwritten. Instead, the file
user_transmitter.temp is generated.

Interface Modules

 The Symbol_table file is generated only when the debug option is enabled in the Profile
Editor (Options > Global Profile Settings). It includes symbolic information about the
original model that is used by the debugger.

<profile_name>.dbg

 The PGE Interface file is generated only if your code uses PGE to build mockup panels.
This is actually the code that glues the panel to the behavioral modules:

 panel_transmitter.a
Rational Statemate 245

Ada Code Generation
Info File
<profile_name>.info

The info file contains information about the translation process, the relevant portion of the model
and the generated modules.

The info file contains the following information:

 Compilation profile parameters
 Errors and warnings
 Cross reference table—This table contains all the elements in the code and the names of

the original elements they represent. This information is useful when supplementing the
generated code. In cases where the same name is used in different charts, this cross-
reference table is the only way to identify which code-element maps to the spec-element.

 Interface report—The interface report is a graphical diagram that shows the flow of
information and control among the behavioral modules, and among the environment and
the rest of the model.
246 Code Generation Reference Manual

dSPACE DS1103 ERP I/O Driver
This section explains how the DS1103 I/O driver is designed. It is intended for advanced users who
want to enhance the DS1103 driver, or to port the driver to other dSPACE hardware. The topics are
as follows:

Note
The Rational Statemate Embedded Rapid Prototyper (ERP) also supports dSPACE model
DS1102.

The Rational Statemate Embedded Rapid Prototyper (ERP) supports dSPACE models DS1102 and
DS1103. The dSPACE DS110 models are single-board solutions meaning the processor and I/O
are located on the same cards.

The dSPACE interface enables you to:

 Generate C code from the Rational Statemate model, compile the code, and download it to
the dSPACE system with a single click.

 Map model elements to the board I/Os.
 Generate dSPACE TRC files for use with dSPACE ControlDesk layouts.
Rational Statemate 247

dSPACE DS1103 ERP I/O Driver
Implementing the Driver
The driver consists of two parts. The first part describes the general infrastructure that can be used
with other boards besides model DS1103. This infrastructure is defined in the file stm_dspace.c.
It reads the signal mapping and selects the correct I/O function to be called by the driver function.

The second part, defined in stm_ds1103.c, deals with items specific to the dSPACE DS1103
board. The following sections describe each of these parts in detail.

General Driver File

To support a new card DS<xxxx> (where <xxxx> is the model number of the card), you must
modify some sections of the stm_dspace.c file. Specifically, you must change the sections that
use preprocessor directives in order to switch between the different cards ("#ifdef DS<xxxx>
…"). In these sections, add calls to the functions stm_ds<xxxx>_global_initialize(),
stm_ds<xxxx>_get_driver_func(), and stm_ds<xxxx>_close_connection().

Driver Interface Functions

The dSPACE driver interface functions are declared in the file stm_dspace.h. The driver includes
three functions:

 stm_dspace_init() - This function is called only once. It configures and initializes the
signals defined in the ERP I/O mapping table. If mapping is invalid, a warning or an error
message is generated (and sent to the dSPACE ControlDesk).

 stm_dspace_driver() - This function is called whenever data is read from, or written to,
an I/O port. Therefore, this function is called very often and affects overall efficiency.

 stm_dspace_close() - This function should be called before closing the connection with
the hardware.

The stm_dspace_init() Function
The stm_dspace_init() function parses the pin names and splits them into tokens. For example,
“IOP 1-3” is a valid reference for an array of pins on the DS1103 board. The name is interpreted in
the following way:

 IOP - The type of the signal
 “1” and “3” - The boundaries of the bit array

After pin name processing is performed, the function stm_dspace_global_initialize() is
called. This function calls the initialization function of the special part of the driver.
248 Code Generation Reference Manual

Implementing the Driver
The stm_dspace_get_driver_func() function selects the appropriate I/O access function. The
function pointer is saved in the Rational Statemate element data structure and is used by the driver
function.

The stm_dspace_driver() Function
The stm_dspace_driver() function is called with an element data structure as an argument. The
function executes the function pointed to by the drv_func field of the element data structure.

The stm_dspace_close() Function
The stm_dspace_close() function calls stm_dspace_close_connection(), which in turn calls
the specific driver function.

Driver-Specific Files

In addition to the stm_ds<xxxx>.c file, there are four other files that contain driver-specific
information:

 stm_ds<xxxx>_types.h - Contains types definitions
 stm_ds<xxxx>_conf.h - Contains the driver configuration information
 stm_ds<xxxx>_conf.c - Contains the card configuration data structure
 stm_ds<xxxx>_msg.h -Contains error message handling and warning information
Rational Statemate 249

dSPACE DS1103 ERP I/O Driver
Handling I/O Signals
As an example, this section describes how to handle an A/D converter (ADC) signal on a DS1103
board. The following functions are used to handle I/O signals:

stm_ds1103_global_initialize()

stm_ds1103_init_ADC()

stm_ds1103_get_driver_func()

stm_ds1103_drv_ADC()

These functions are declared in the file stm_dspace_1103.c.

The stm_ds1103_global_initialize() Function

The stm_ds1103_global_initialize() function “attaches” some data structure to the
user_data field of the Rational Statemate report_elem data structure.

The global variable stm_ds1103_conf_var is of type stm_ds1103_conf, which is defined as
follows:

typedef struct stm_ds1103_conf {

 stm_ds1103_ADC_type adc_t;

 stm_ds1103_ADC_signal adc[20];

 stm_ds1103_DAC_signal dac[8];

 stm_ds1103_SLAVE_PWM_type slave_pwm_t;

 stm_ds1103_SLAVE_PWM_signal slave_pwm[8];

 stm_ds1103_SLAVE_DF_type slave_df_t;

 stm_ds1103_SLAVE_DF_signal slave_df[4];

 stm_ds1103_SLAVE_FD_signal slave_fd[4];

 stm_ds1103_SLAVE_PWMD_signal slave_pwmd[4];

 stm_ds1103_SLAVE_IOP_type slave_iop_t;

} stm_ds1103_conf;

This data structure, defined in the file stm_ds1103_types.h, stores the user-defined card
configuration. To change the card configuration, edit the file stm_ds1103_conf.h (as documented
within the file itself).

As you can see in the stm_ds1103_conf structure declaration, there are 20 separately configured
channels in an ADC signal. Therefore, the data structure includes an array of 20 elements of type
stm_ds1103_ADC_signal.
250 Code Generation Reference Manual

Handling I/O Signals
The stm_ds1103_ADC_signal data structure is defined as follows:

typedef struct stm_ds1103_ADC_signal {

 stm_ds1103_ADC_type *type;

 double minimum;

 double maximum;

 double norm_const_A;

 double norm_const_B;

} stm_ds1103_ADC_signal;

The fields of the stm_ds1103_ADC_signal structure are as follows:

 type - Points to a common part for all ADC signals. This part is used by the driver
function for storing information regarding the current status of the ADC.

The relevant structure declaration is as follows:
typedef struct stm_ds1103_ADC_type {

 long active_channel;

} stm_ds1103_ADC_type;

 minimum and maximum - Specify the range of the receiving signals.
 norm_const_A and norm_const_B - Used for normalization of the signal. This is

necessary because the card returns values between –1.0f and 1.0f only.
The global variable conf stores lists of pointers to the I/O- mapped Rational Statemate elements.
Each list stores the elements, which are mapped to the same signal type. It is used for configuration
check and initialization.

After pin processing, the driver calls the initialization routines. The ADC signals are initialized by
the stm_ds1103_init_ADC() function.

The following figure shows the result of the data structure allocation and attachment process
performed by the initialization function.
Rational Statemate 251

dSPACE DS1103 ERP I/O Driver
The stm_ds1103_init_ADC() Function

The stm_ds1103_init_ADC() function performs the following tasks:

 Checks the validity of the port number
 Checks whether the signal is mapped as input in Rational Statemate
 Checks the Rational Statemate variable type against the port type
 Manages the MUX mask
 Calls the initialization function

The ADC channels are numbered from 1 to 20. If there is an invalid channel number, mapping is
cancelled and the driver generates an error message. For example, in the Rational Statemate I/O
mapping table, an element is specified as an input or output signal. Because the ADC signal is an
input port, if there is a contradiction with the definition in Rational Statemate, an error message is
generated and mapping is cancelled.

report_elem

...
void* user_data

stm_dspace_pin_info

char* signal_type
char* id
char* flags
funcp drv_func
void* user_data
report_elem* elem

stm_ds1103_pin_info

int signal_type
int channel
void* flag
int init_error
void* type_info

stm_ds1103_ADC_signal

stm_ds1103_ADC_type *type;
double minimum;
double maximum;
double norm_const A;
double norm_cont B;

stm_ds1103_ADC_type

long active_channel;

stm_dspace_pin_info
252 Code Generation Reference Manual

Handling I/O Signals
Model elements that are mapped to an ADC signal should be of type real or integer. In every other
case, the driver generates an error message. Refer to Signal Types for information about Rational
Statemate to dSPACE mapping.

Note that the first 16 channels are organized in 4 multiplexers. Every multiplexer has to be
initialized with a selected channel. Multiplexer number 1 handles channels 1 to 4, multiplexer
number 2 handles channels 5 to 8, and so on.

The stm_ds1103_get_driver_func() Function

The stm_ds1103_get_driver_func() function returns an I/O access function, which is used by
the driver function. For example, for an ADC port, stm_ds1103_get_driver_func() returns the
function stm_ds1103_drv_ADC().

If the pin signal type is not supported by the driver, the function returns a NULL value. If an error
occurs during initialization, the function returns the dummy function stm_ds1103_drv_error().

The stm_ds1103_drv_ADC() Function

The stm_ds1103_drv_ADC() function is used by the model for I/O access. It is called at a defined
polling rate. The implementation of this function should be very efficient.

The stm_ds1103_drv_ADC() function performs the following tasks:

 Changes the multiplexer channel (if necessary)
 Reads the value from the hardware
 Normalizes the value according to the user-defined variable range
 Stores the value in the Rational Statemate element structure

The first 16 ADC pins of the DS1103 hardware are handled by 4 multiplexers. The function
changes the multiplexer active channels as necessary. The multiplexers’ active channels are stored
in the variable active_channel.

After setting the multiplexer, the function reads the value of the specified ADC channel. The read
value, which is always between –1.0f and 1.0f, is translated to the user-defined range (specified in
the file stm_ds1103_conf.c) using two previously calculated constants. The result is stored in the
Rational Statemate element data structure.
Rational Statemate 253

dSPACE DS1103 ERP I/O Driver
254 Code Generation Reference Manual

Reserved C Words
This section lists the reserved words for the C programming language. If you use any of these
words as names of elements, Rational Statemate renames the elements during code generation. For
example, if you name a condition “AFTER,” when you generate the code, Rational Statemate
automatically renames the element (“AFTER_”) so there is no conflict. The following table lists
the reserved words.

ABS ABSOLUTE ACOS ACOSD

AFTER ALIAS ALL AND

ARCHITECTURE ARCSIN ARCTAN ARCCOS

ARRAY ASCII_TO_CHAR ASIN ASHL

ASHR ASIND ATAN ATAND

ATAN2 ATAN2D AT ATOM

BA_LEN BASETYPES BEGIN BITS_OF

BOOL BOOLEAN BUFFER BUS

BYTE CALLBACK CASE CHAR

CHAR_TO_ASCII COMPOUND CONCAT_BA CONFIGURATION

CONST COS COSINE COSH

COSD COUNTER DECIMAL DELAY

DELETE DELTA DIGITS DISCONNECT

DO DOMAIN DUPLICATE ELSE

ELSIF END ENTERED ENTITY

ENTRY ERROR EXCEPTION EXIT

EXITED EX_ENTERED EXP EXPORT

EXPAND_BIT FALSE FROZEN FILE

FLOAT FOR FS GENERATE

GOTO GUARDED HANGING HEX

HR IF IN INFINITE

INOUT INT INTERFACE INTERNAL_RESET
Rational Statemate 255

Reserved C Words
INT_MAX INT_MIN IS ISR

LABEL LIBRARY LIMITED LINKAGE

LONG LONG_MAX LONG_MIN LOOP

LOG LOG2 LOG10 MAP

MAX_INT MAX MAXINDEX MAXLONG

MAX_DIGITS MEMORY_SIZE MIN MINUTE

MINUS MIN_INT MOD MS

MUX NAME NOTA NONACTIVE

NAND NEW NEXT NOR

NXOR NAND NOT NS

NULL OPERATING OF ON

OPEN OR OTHERS OVERFLOW

OUT PANEL_ TRANSMITTER PS PORT

PRAGMA PRIORITY PRIVATE PROC

PROCESS QACTIVE OUT Q_PUT

Q_UPUT OVERFLOW RAISE RANGE

RECORD REGISTER REM RENAMES

REPORT RETURN REVERSE ROUND

SEC SELECT SEVERITY SHORT

SIN SIND SINE SING

SINH SIGNAL SIGNED SQRT

STORAGE_UNIT STRING STRING_INDEX STRING_EXTRACT

STRING_LENGTH STRING_TO_INT SUBTYPE SUCCESS

SYSTEM_NAME TANGENT TANH TAND

TAN2D TASK TERMINATE TEXT

TICK TRUE TRUNC TRY_AGAIN

THEN TO TRANSPORT TRY

TYPE TYPES UNITS UNTIL
256 Code Generation Reference Manual

UNION USE USER_ACTIVITIES US

VARIABLE VOID WAIT WAIT_TIMEOUT

WHEN WHILE WINDOWS WITH

WORD XOR
Rational Statemate 257

Reserved C Words
258 Code Generation Reference Manual

Index
A
Action language 33
Activities 100

concurrent 7, 230
debug mode 100
trace 123
unnamed 103

Activity charts 2
Ada language 1, 33

cross reference table 246
errors and warnings 246
file structure 246
interface report 246
symbol_table file 245

Animation
GBA 13
graphical back 7, 188

ANSI C 37
Applications

embedded 18, 228
multi-threaded embedded 19, 230
single-threaded embedded 19, 230

Arrays 75
Asynchronous timer 20, 231
Attributes

CANOE_ENV_VAR 217
data items in report 174
mechanism 217

B
Batch files

for dSPACE 203
Behavioral module

control files 32, 244
structure 27

Bit-array functions 77
Breakpoints

in debugging 99, 134
BSP 176
Buffering 221

C
C code

accessing an element value 74
adding files to prototype 41
behavioral modules 32
bit arrays 76
compilation profile parameters 35
defining elements 74
environments unsupported 44
errors and warnings 35
file structure 32
generator 165
interface report 35
makefiles 34
prototype executable 39
referencing events 73
referencing model elements 73
restrictions 67
runtime modules 44
scheduler package 66
scheduling policy 67
supplemented files 33
synchronizing calls 64
task status 66
tasking services 45
tasks 64
timing control 45
top level modules 32
unsupported platforms 45
value elements 74

C language 1, 33
compiling generated code 185
reserved words 255
starting code generation 184

Callbacks 26, 33
binding 68
disabling 69
example 70
handler 19, 229
in generated code 68
list 26

Cancel Break command 139
Cancel Output command 129, 133
Cancel Time command 98, 128
Cancel Trace command 127
CANoe

generated code 218
interface 216
Rational Statemate 259

Index
mapping Rational Statemate 217
settings 215
using generated code 220

CANOE_ENV_VAR 217
Card

closure 192
driver 191
initialization 191

Channels
ADC 252
available 165
numbering 252

Check Profile 14
Code

adding Rational Statemate modules 83
adding user-written 47
C libraries 40
compiling generated C 185
debugging 139
examples 88
generated on PC 39
generation 1, 14, 96, 104, 105
generation debugger commands 109
generation for prototype behavior 97
generation for Rational Statemate objects 99
generation for unnamed objects 103
generation in C 184
generation keywords 108
handwriiten 7
handwritten 47, 49, 191
module interface 219
module parameters 85
parameters 13
required user-written 191
subroutines 48, 49
task view of 19, 230
user supplemented 31
user-written 191

Commands
Cancel Break 139
Cancel Output 129, 133
Cancel Time 98, 128
Cancel Trace 127
Go for debugging 113
History for debugging 114
List for debugging 115
Put for debugging 98
put queue for debugging 121
Set command for debugging 98
Set Trace for debugging 98
set trace for debugging 123
Show for debugging 98
show for debugging 116
show object debugging 119
show schedule for debugging 118
Step for debugging 98
trace messages format for debugging 123

Compilation profile 5
Compile

run-time libraries 203
Compilers 1

statements 38
Concurrency 7, 19, 64, 230
Conditions 101
Control files 32
Control modules 31
Cross reference tables 35

D
Data/Control Elements 28
Data-items 101

trace in debugging 124
Debugger

handling breakpoints 99
option 42

Debugging
activating 109
Cancel Break command 139
Cancel Time command 98
Cancel Trace command 127
code 139
command conventions 98
commands 109, 127, 128
condition trace 124
creating trace files 98
entering commands 110
execution mode 97
facilities 96
flush queue command 121
format of trace messages 123, 124
Go command 113
Help command 98
help facility for 111
history 114
History command 114
interrupting prototype execution 114
List command 115
modifying objects 98
monitoring object values 98
Put command 98
put queue command 121
Quit command 98, 109
quitting 109
referencing records and unions 106
remote 206
schedule trace 125
session 96
Set command 98
set object command 119
set output 130
set time 128
Set Trace command 98
set trace command 123
260 Code Generation Reference Manual

Index
Show command 98
show command 116
show schedule command 118
show trace 126
starting and controlling execution 112
state trace 123
Step command 98
timeout events 124
trace messages for formatting 123
tracing data-items 124
uput queue command 121

Descendants 6
DO clause 136
Double buffering 171, 221

dynamic 168
non-double buffered element 168
static 168

Drivers 248
card 191
general file 248
I/O card 175
input/output 194
interface functions 248
specific files 249
tasks 209

dSPACE 201
channel numbering 252
compiling the run-time libraries 203
driver tasks 209
handling I/O signals 250
hardware configuration 208
I/O polling rate 208
implementing the driver 248
mapping variables to signals 212
package 202
port names 210
remote debugger mode 206
signal types 210
timer frequency 208
TRC files 207
using the interface 205

dSPACE restrictions 202

E
Editors

profile 6
properties 2

Elements
non-double buffered 168

Embedded applications 228
Envelopes 33
ERP

dSPACE support 201
Errors and warnings

Ada 246
C code 35

Events 101
referencing 73
timeout for debugging 124

Executable image 42, 43

F
Fictive Events/Conditions 28
Files

adding to prototypes 41
behavioral modules control 244
control for behavior modules 32
control modules for source 31
driver specific 249
driver-specific 249
general driver 248
I/O card description 159
info 35
make 40
panel interface 34
PGE interface 34
run_stmm.bat 203, 215
source for info file 31
source for interface modules 31
source for makefiles & compilation scripts 31
source for user supplemented modules 31
stmm.h 219
structure of source 31
target description 198, 200
trace 98, 123, 127, 169
trace for debugging 98
TRC 207
user_activities 33
Windows batch 186

Files target definition 165
Flags

for compilation 13, 81
step_has_changes 25

Functions
bit-array 77
driver interface 248
I/O driver 194, 195, 198
I/O driver closing 198
I/O driver initializer 195
I/O driver Reset calls 198
scheduler 213
stm_ds1103_drv_ADC() 253
stm_ds1103_get_driver_func() 253
stm_ds1103_init_ADC() 252
stm_dspace_driver() 248, 249

G
GBA 13, 161, 188

definition 7
remote client task 161
remote server 175
Rational Statemate 261

Index
Generics
not with testbenches 6

Global definition sets 27
Globals 52

using subroutines 52
Graphical back animation (GBA) 13, 188

H
Handwritten code 191

adding 47
inserting 7
procedure 50

HP HPUX 38

I
I/O card

Data Types 174
initialization 175
IRQ level 176
management 167
multiple ports 167
network bus base address 176
Signal Mapping 165

I/O mapping 171, 174, 175
I/O Mapping option 166
I/O polling rate

dSPACE 208
I/O signals

handling on dSPACE hardware 250
unsupported on dSPACE 203

info file 246
Input/Output

mapping 154
Input/output

card description file 159
driver functions 194, 198

Interfaces
CANoe 216
module code 219
modules 34, 245
report 246
source files 31
symbol_table file 34

K
Keywords

code generation 108
keywords in debugging 108

L
Libraries

C code 40

runtime modules 44
Limitations 202
linker

libraries 177
object files 177

log file
formatting 130
loading 131
recording comments 132
use of 131

M
Main program

sample code 23
main task

Ada calling sequence 233
C calling sequence 23

main_task 64
Makefiles 34, 40, 198

settings 40
user 34, 40

mapping types into C 75
Mapping variables to signals 212
mapping variables to signals 212
memory management 19, 229
model elements, modifying values 73
Models

development 2
executable 3

Module charts 2
Module interface code 219
Modules

runtime 44
multiplexer 253
multi-tasking support 19, 229
multi-threading support 19, 229

N
Names

resolving ambiguity 104

O
object values

modifying 98
monitoring 98

objects
classes/subclasses 99
keywords 108
multiple 106
states, unnamed 103
unnamed events and conditions 104

Operators
constant 76
general 76
262 Code Generation Reference Manual

Index
Output
cancel command 129, 133

P
Panel interface files 34
Panels

remote 153, 187
Parameters

card initialization 191
code 13
code module 85
compilation profile 35
for running Windows batch file 186

Parameters for Module dialog 85
PC104 bus 193
PGE interface files 34, 245
Platforms

foreign 44
supported 44
target 150
unsupported 45

polling 166, 167, 168
dSPACE hardware 208

port names 210
Ports 165

digital 210
Procedural Statechart 33
procedures

adding to model 50
call_cbks_p 26
exec_DO_BLACK 29
lo_init 30, 32
lo_main 25, 32
Module Initialization 30
pr_make_step 24
pr_pause 26
producing a template 53
schedule_timeouts 28
State EXEC 29

profile
sample 8

Profile Editor
scope definition 6

Profiles 153
Check 14
compilation 5, 151
compilation parameters 35
editor 15

Properties editor 2
Properties window 33
prototype

behavior 97
debugging session 96
interrupting execution 114

Prototypes
adding files to 41

prototyping development system 193

Q
queues

referencing in Debugger 107

R
Rapid Prototyping

Compilation Profiles 151
Data Types 171
environment variables 177
I/O card description files 177
Profile Editor 150
profile files 177
Report Elements 173
Signal Mapping 168
target description files 177
Target Management 164

Rapid prototyping
code generation 1

Rational Statemate
Action Language 33
adding code modules 83
referencing model elements 73

Rational Statemate objects
actions 101
classes/subclasses 99
conditions 101
data-items 101
events 101
flow lines 101
manipulating 99
names and synonyms 102
nine classes 99
states 100
transitions 101

records 75
Remote debugger mode

and dSPACE 206
Remote panels 153
Report

elements 174
Reports

Ada interface 246
C code interface 35

Requirements 149
Routines

use case 191
RTOS 149
run_stmm.bat file 203
run-time libraries

dSPACE 203
runtime module libraries 18
Runtime modules 44
Rational Statemate 263

Index
S
Scheduler

Ada component 229
C component 19
function 213
package 66
sequential 230
synchronization call 64

Scope 153
scope definition 6
Scripts

for intrinsics library 44
on supported platforms 44

Sequential language 7
Sequential scheduler 19, 230
SET BREAK command in debugging 135
SET FILE command 129
SET OUTPUT command 130
SET TIME command in debugging 128
SET TRACE SCHEDULE command in debugging 125
Settings

CANoe 215
target task 160, 161
trace 160

SHOW BREAK command in debugging 138
SHOW TRACE command in debugging 126
signal types 210
Simulated Time Model 21
Simulation 47
State machines

concurrent 22, 232
State Variable Definition 27
Statecharts 2

double-buffered 221
States 103
Status Types 27
step trace in debugging 124
stm_ds1103_ADC_signal structure 251
stm_ds1103_ADC_type structure 251
stm_ds1103_conf structure 250
stm_ds1103_conf_var 250
stm_ds1103_drv_ADC() function 253
stm_ds1103_get_driver_func() function 253
stm_ds1103_global_initialize() function 250
stm_ds1103_init_ADC() function 251, 252
stm_ds1103_types.h file 250
stm_dspace.c file 248
stm_dspace_close() function 248, 249
stm_dspace_driver() function 248, 249
stm_dspace_init() function 248
stmm.h file 219
Stub Files 33
subobjects 105
subobjects operator (^) 105
Subroutines 31, 48, 49, 50

binding 56

disabling 49
implementation 33
rules and restrictions 80
supplementing model 48
template 33
using globals 52

Sun Solaris 38
Sun SunOS 38
synchronization calls 64
Synchronization points 67

T
Tables

cross reference 35, 246
truth 28, 47

Target 153
definition file 165
description file 198
file management 165
management 161
platforms 150
requirements 149
task settings 160, 161
trace facilities 169, 171
user defined 165

task_delay 64
task_delay() function 213
tasking services 45
Tasks

adding to model 57
context switch between 67
driver 209
implementing user 213
scheduling 66
synchronizing 64

Testbenches 6
threads 7
Time

simulated 22
Timeout

procedures 28
timer frequency 208
Timers

asynchronous 20, 231
timing

control in C 45
Tornado 193
Trace 160

canceling files 127
facility 189
files 98, 123, 169
messages 123

tracing 169, 174
API functions 170

TRC files 207
trigger expressions 169
264 Code Generation Reference Manual

Index
Truth table 28, 33, 47
Types

enumerated 76
user-defined 101

U
Unions 75
UNIX 41

compilation environment 39
download and execution 187
make utility 34
signal mechanism 45

Use cases 193
routines 191
testing 1

V
Variables

mapping to CANoe 217
VxWorks 150, 176, 193, 198
vxworks.rtrg 198

W
wait_for_event 64
wait_for_event() function 213
Watchdogs 6
Wildcards

abbreviation 105
Windows

compilation environment 39
download and execution 186

Words
list of reserved C 255

Workareas 31
Rational Statemate 265

Index
266 Code Generation Reference Manual

	Code Generation Basics
	Development Model
	Executable Model
	Generating Native Code

	Concepts and an Example
	Compilation Profile Concepts
	Profile Editor
	Module Structure
	Scope Definition
	Connection to the Workarea
	Descendants
	Testbenches
	Concurrency
	Graphical Back Animation (GBA)

	Inserting Handwritten Code
	Creating a Sample Profile
	Invoking the Profile Editor
	Defining Code Modules
	Assigning Behavior to the Module
	Selecting Code Parameters
	Generating Code

	Architecture of Generated C Code
	Code Libraries
	Tasks View of the Code
	Module Execution
	Multi-Threading
	Asynchronous Timer
	Using Simulated Time Model
	Implementing a Function to Get External Inputs
	Extracting the Time

	Main Task: Partition and Flow Control for C
	Activating the generated modules (the “state machines”)
	Updating double buffer assignments
	Evaluating the callback list
	Entering the wait state
	Structure of a Behavioral Module
	Interface Section
	Status Types
	State Variable Definition
	Definitions of Data/Control Elements
	Definition of Fictive Events/Conditions
	Definition of Truth-Table Elements
	Schedule Timeouts Procedure
	Action Procedures
	State Enter/Exit Procedures
	State EXEC Procedures
	Module Initialization Procedure
	Module Execution Procedure

	Structure Of The Generated Code
	Structure of the Output Source Files
	Control Files
	Behavioral Modules
	The Top Level Module

	Implementation of Subroutines
	User Supplemented Files (User_activities Stubs File)
	Interface Modules
	Debugger Symbol Table File
	Panel Interface Files

	Makefiles and Compilation Scripts
	Info File

	Compiling Generated C Code
	Library Location
	Compilation Command
	Supplementing the Rational Statemate Model with C Code
	Details of Compilation and Linking
	UNIX Compilation Environment
	PC Compilation Environment
	Locating Rational Statemate Libraries
	Using make to Link and Compile
	Makefile Settings
	Adding Files to the Prototype
	Executable Image
	Exporting an Executable Image
	Building the Runtime Modules on Foreign Platforms
	Supported Platforms
	Unsupported Platforms
	Implementation of the Timing Control
	Implementation of Tasking Services

	Adding User-Written Code
	Supplementing the Model with Subroutines
	Entering Handwritten Code
	Using Subroutines
	Disabling Subroutines

	Supplementing the Model with a Procedure
	Using Globals
	Producing a Template for a Procedure
	Filling in the Procedure’s Template
	Subroutine Binding

	Supplementing the Model with a Task
	Using Globals
	Using the Template for a Task
	Filling in the Task’s Template

	Synchronizing Tasks
	Tasks
	Synchronization

	Scheduler Package
	Status of a Task
	Scheduling Policy
	Restrictions

	Binding Callbacks
	Callback Binding
	Callback Statement
	Disabling Callbacks
	Callback Example

	Referencing Model Elements
	Referencing Events
	Where Elements are Defined
	Accessing an Element Value

	Mapping Rational Statemate Types into C
	Bit-Array Functions
	Rules for Mapping into C

	Running User Code on Solaris 2.9 or 2.10

	Adding STM Code Modules
	Generating Modules of Code
	Setting Module Parameters
	Generated Procedures and Files
	Generated Procedures
	Generated Files

	Sample Code Module
	example.c
	Generated Makefile
	Modified Makefile
	my_main.c

	Debugger
	Generating Prototype Code With Debugging Facilities
	A Debugging Session
	Prototype Behavior In Debugging Session

	Debugger Command Conventions
	Reference to Rational Statemate Objects
	Rational Statemate Objects Classes and Subclasses
	States
	Activities
	Events, Conditions and Data-items
	User-Defined Types
	Actions
	Flow Lines
	Transitions
	Names and Synonyms

	Referring to Unnamed Objects
	Unnamed Activities and States
	Unnamed Events and Conditions

	Resolving Name Ambiguity
	Wildcard Abbreviation (*)
	Subobjects Operator (^)
	Referencing Multiple Rational Statemate Objects in Commands
	Referencing Records and Unions in the Rational Statemate Debugger (Pdb)
	Referencing Queues in the Rational Statemate Debugger (Pdb)
	Keywords

	Debugger Commands
	Activating the Debugger
	Quitting the Debugger
	Entering Debugger Commands
	The HELP Facility
	Starting and Controlling Execution
	STEP Command
	GO Command
	Interrupting Prototype Execution
	HISTORY Command
	LIST Command
	SHOW Command
	SHOW SCHEDULE Command
	SET OBJECT Command
	PUT QUEUE Command
	UPUT QUEUE Command
	FLUSH QUEUE Command
	TRACE Command
	SET TRACE Command
	Format of Trace Messages

	SET TRACE SCHEDULE Command
	SHOW TRACE Command
	CANCEL TRACE Command
	SET TIME Command
	CANCEL TIME Command

	The Set File, Set Output And Cancel Output Commands
	SET FILE Command
	SET OUTPUT Command
	Format of a Log File
	Using a Log File
	Recording Comments in a Log File

	CANCEL OUTPUT Command
	Breakpoints
	SET BREAK Command
	DO Clause
	SHOW BREAK Command
	CANCEL BREAK Command

	Rapid Embedded Prototyping Basics
	Background
	Goals of Embedded Rapid Prototyping
	Embedded Rapid Prototyping Process Model
	The Embedded Prototyping System

	Embedded Rapid Prototyping in Rational Statemate

	Target Requirements
	Describing Different Target Platforms
	Compilation Profile Management
	Creating the Profile
	Scope Definition
	Target Definition
	Using Remote Panels
	Input/Output Mapping

	Detailed View of I/O Card Description File
	Trace Settings
	Target Task Settings

	Target Management
	I/O Card Description File Management

	Describing Signal Mapping to I/O Cards
	Signal Mapping to I/O: Semantics

	Target Trace Facilities: Description
	Target Trace Facilities: Semantics

	Data Types Introduced to the Intrinsics Library
	Data Types Related to the Data Items
	Report Elements for Output Mapping and Tracing
	Report Elements for Input Mapping
	Report Elements for Generic Charts

	Data Types Related to I/O Cards
	Remote Connection to Different Tools: Panels, GBA, Tracing: Description
	BSP Configuration
	Environment, Directories, Libraries, Files
	Getting Ready: Connecting the Target to the Host

	Compiling Embedded C Code
	Code Generation Sample Model Description
	Report and Card Elements Declarations
	Initialization
	Step Execution
	Input Mapping
	Starting Code Generation
	Compiling Generated Code
	Compilation and Linkage.
	Downloading and Execution
	Remote Panel
	GBA
	Trace Facility

	Required User-written Code
	Card Initialization
	Card Driver
	Card Closure

	Simple Embedded Code Example
	Use Case
	I/O Driver Functions
	Target Description File

	dSPACE Support
	The dSPACE Package
	Unsupported Rational Statemate Functionality
	Unsupported I/O Signals

	Before You Begin
	Editing the Batch File
	Compiling the Run-Time Libraries
	DS1102
	DS1103

	Using the dSPACE Interface
	Normal Use
	Remote Debugger Mode

	Generating TRC Files
	I/O Driver Configuration Settings
	Setting the Timer Frequency
	Setting the I/O Polling Rate

	Driver Tasks
	Initialization Tasks
	Model Execution Tasks for the Driver

	Signals
	Signal Types

	Port Names
	Mapping Rational Statemate Variables to dSPACE Signals

	Implementing User Tasks

	ERP CANoe Interface
	Specifying Profile Settings
	Code Generation
	Module Interface Code
	Using the Generated Code

	Double Buffering
	Double-Buffered Statechart
	Optimizing Double Buffers

	Ada Code Generation
	Code Libraries
	Tasks View of the Code
	Module Execution
	Multi-Threading
	Asynchronous Timer
	Using Simulated Time Model

	Main Task-Partition and Flow Control for Ada
	Executing a Single Step
	Activating the Generated Modules (the “State Machines”)
	Updating Double Buffer Assignments
	Evaluating the Callback List
	Entering the Wait State
	Structure of a Behavioral Module

	Package Specification
	Context Clauses
	Interface Section Documents Inputs and Outputs
	Definitions of Data and Control Elements of the Module
	Definition of Fictive Events
	Definition of Activities
	Generic Instances in the Module
	Definition of Compound Elements
	Procedures for Initialization and Execution of the Module

	Package Body
	Definitions of State Status Types and Variables
	Schedule Timeouts Procedure
	Body Stubs for Basic Activities
	Functions Implementing the Compound Elements
	Action Procedures
	State Enter/Exit Procedures
	State Execution Procedures
	Module Initialization Procedure
	Module Execution Procedure

	File Structure In Ada: Control Files
	Behavioral Modules
	Top Level Module
	Main Procedure
	User Supplemented Files
	Transmitter Template
	Interface Modules
	Info File

	dSPACE DS1103 ERP I/O Driver
	Implementing the Driver
	General Driver File
	Driver Interface Functions
	The stm_dspace_init() Function
	The stm_dspace_driver() Function
	The stm_dspace_close() Function

	Driver-Specific Files

	Handling I/O Signals
	The stm_ds1103_global_initialize() Function
	The stm_ds1103_init_ADC() Function
	The stm_ds1103_get_driver_func() Function
	The stm_ds1103_drv_ADC() Function

	Reserved C Words
	Index

