




IBM Rational DOORS

Rational DOORS API Manual

Release 9.2



Before using this information, be sure to read the general information under the 
"Notices" chapter on page 57.

This edition applies to IBM Rational DOORS, VERSION 9.2, and to all 
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1993, 2009 
US Government Users Restricted Rights—Use, duplication or disclosure 
restricted by GSA ADP Schedule Contract with IBM Corp.



Rational DOORS API Manual     iii

Table of contents

Chapter 1: About this manual                                                                         1
Typographical conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Chapter 2: Introduction                                                                                    5
Rational DOORS APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
Rational DOORS and external data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Chapter 3: The Rational DOORS C API                                                          7
About the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Object and library files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Extending the Rational DOORS C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

New DXL types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
apiInstall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
BEGIN_FN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
P_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
END_DECLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
RETURN_  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
END_FN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
BEGIN_FOR_DO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
PROCESS_DO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
END_FOR_DO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Rational DOORS C API entry points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
apiError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
apiWarn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
apiMainProg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
apiInitLibrary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12



Table of contents

iv    Rational DOORS API Manual

apiFinishLibrary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
apiParse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
apiConnectSock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
apiSend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
apiSendTimesout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
apiSendFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
apiExitOnError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
apiQuietError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
apiGetErrorState  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
apiGetIPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
apiSetIPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
apiDeleteIPC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Chapter 4: Using the DXL server                                                                  17
About the DXL server interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Starting the server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
dxlips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
dxlipf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Using the DXL server in batch mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Chapter 5: DXL API integration features                                                   21
General functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

addr_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
eval_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
return_  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
evalTop_. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
initDXLServer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
replyAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
setAPIClientTimeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
ipcHostname  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Interprocess communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24



Rational DOORS API Manual           v

Table of contents

client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
accept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
recv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

DXL contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Impact on triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Chapter 6: Interactive interfacing with a complex external tool      27
Integrating Rational DOORS with user tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Integrating Rational DOORS using Rational DOORS URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Examples of Rational DOORS URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Example tool to be interfaced to Rational DOORS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

C API for example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Making a language like DXL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
Compiling TXL with Microsoft Developer Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Completing the Rational DOORS active link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Rational DOORS passive link  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Working with OLE objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Listing of tds.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

Chapter 7: Contacting support                                                                     53
Contacting IBM Rational Software Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Submitting problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Other information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

Chapter 8: Notices                                                                                            57
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59



Table of contents

vi    Rational DOORS API Manual



Rational DOORS API Manual     1

1 About this manual
Welcome to IBM® Rational® DOORS® 9.2, a powerful tool that helps you to 
capture, track and manage your user requirements.
This manual describes how to integrate IBM Rational DOORS with other 
applications. It describes how you can create links between Rational DOORS 
and external tools; it focuses on the overall strategy for creating tool interfaces.
This manual assumes that you know how to program in C and DXL (DOORS 
eXtension Language).

Typographical conventions
The following typographical conventions are used in this manual:

Each function or macro is first introduced by name, followed by a declaration or 
the syntax, and a short description of the operation it performs. These are 
supplemented by brief examples where appropriate.
In declarations and syntax, parentheses (( )) are literal language elements, square 
brackets ([ ]) enclose optional items; braces ({ }) enclose alternatives, which are 
separated by pipe symbols (|); and ellipsis (...) indicate that arguments can be 
repeated. Where square brackets or pipe symbols form part of the syntax they 
are shown in bold.

Typeface or 
Symbol

Meaning

Bold Important items, and items that you can select, including 
buttons and menus: “Click Yes to continue”.

Italics Book titles.

Courier Commands, files, and directories; computer output: “Edit your 
.properties file”.

> A menu choice: “Select File > Open”. This means select the 
File menu, and then select the Open option.



About this manual

2    Rational DOORS API Manual

Terminology
The following terminology is used in this manual:

Related Documentation
The following table describes where to find information in the documentation 
set:

Term Description

API Application Programming Interface. Normally a set of 
functions and data structure declarations provided by an 
application program as a means of making its facilities and 
data available to other programs. In the context of Rational 
DOORS, DXL can often be used to do the tasks for which 
other tools would need an object library type interface. For 
tighter integration, Rational DOORS also supplies a C-based 
API to create a DXL like layer around the target tool.

Rational DOORS 
C API

An API written in C which enables a C program to make its 
own DXL like language or communicate with Rational 
DOORS using IPC.

DXL DOORS eXtension Language

IPC Inter Process Communication. A system of message passing 
between processes, such as between Rational DOORS and a 
CASE tool.

TDS Toy Database Server; An example C-based API provided to 
illustrate the use of the Rational DOORS C API in linking 
external tools to Rational DOORS.

For information on See

What’s new in version 9.2 of Rational 
DOORS

The Rational DOORS readme file

How to install Rational DOORS Rational DOORS Installation Guide

How to set up licenses to use Rational 
DOORS

Rational Lifecycle Solutions Licensing 
Guide



Rational DOORS API Manual           3

Related Documentation

These documents are on the Rational Information Center at 
http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/index.jsp.

How to use Rational DOORS Getting Started with Rational DOORS
Using Rational DOORS

How to write requirements Get it Right the First Time

How to set up and manage Rational 
DOORS

Managing Rational DOORS

The DXL programming language DXL Reference Manual

How to integrate Rational DOORS with 
other applications

Rational DOORS API Manual

For information on See



About this manual

4    Rational DOORS API Manual



Rational DOORS API Manual     5

2 Introduction
This chapter outlines how DXL can be used to link Rational DOORS with 
external tools. It contains the following topics:

• Rational DOORS APIs

• Rational DOORS and external data

• Strings

Rational DOORS APIs
Rational DOORS provides application programming interfaces (APIs) for 
extending capability, customizing, and linking to other tools. The main interface 
is the DOORS eXtension Language (DXL).
DXL provides a comprehensive set of facilities for making links between 
Rational DOORS and external applications, such as CASE tools or 
configuration management databases. Links can range from simple file format 
import or export, through to complex manipulations of externally managed data 
using interprocess communication (IPC). For example:

• DXL can be used to convert Rational DOORS data into the file format 
accepted by a user’s word processor.

• A two way interactive link can be established between a set of Rational 
DOORS requirements and their realization in a CASE tool database.

The Rational DOORS C API supports multi-platform tool integrations 
requiring IPC. It also supports the creation of languages like DXL for the tool 
being linked to.
For integrations that are to run only on Windows® platforms, DXL supports 
OLE automation, both as a client and a server application.
File format import or export can be accomplished with a moderate level of 
programming experience. The DXL server can be used by anyone able to 
understand simple DXL commands. OLE automation can be used by those with 
moderate knowledge of DXL and Visual Basic. Complex tool linkage requires 
both competence in the interfacing facilities provided by the target system and 
an understanding of the facilities of the Rational DOORS C API.



Introduction

6    Rational DOORS API Manual

Rational DOORS and external data
Rational DOORS can read and write several commonly used file formats, for 
example, FrameMaker and Rich Text Format (RTF). However, it is impossible to 
anticipate and support every file format that might be used. 
Therefore, the facilities Rational DOORS uses for file import and export are 
available to the user; you access them through DXL.
Importing and exporting files is a task whose complexity depends on the 
complexity of the input format to be parsed. If you already have a parser, you can 
extend its capability using the techniques described in “Using the DXL server,” 
on page 17 and “Interactive interfacing with a complex external tool,” on page 
27.
When developing translation programs, you can use the Rational DOORS 
source code as a starting point. The code is in:

$DOORSHOME/lib/dxl/standard/import

and
$DOORSHOME/lib/dxl/standard/export

Strings
An important aspect of building a successful DXL application, such as an 
importer, is string handling. Rational DOORS has an internal data structure, 
called the string table, which stores single copies of ASCII strings used in 
Rational DOORS. Any string created by a DXL program resides in the string 
table for the duration of the current Rational DOORS session. You should 
therefore avoid constructs like:

line = line ch ""

where line is a string being constructed out of individual characters ch. This is 
a very inefficient construct because every temporary value stored in line is made 
persistent in the string table.
Instead of concatenating characters into a string variable, you should use the 
Buffer data type because buffers do not consume string table space, for 
example:

Buffer Buf
Buf += ch



Rational DOORS API Manual     7

3 The Rational DOORS C API
This chapter describes the Rational DOORS C API. A series of macros and 
functions allow you to perform integration tasks like those in this manual. Refer 
also, to the file $DOORSHOME/include/doors/ api.h. 
This chapter contains the following topics:

• About the API

• Object and library files

• Extending the Rational DOORS C API

• Rational DOORS C API entry points

About the API
The Rational DOORS C API allows you to create a language like DXL around 
an existing tool. It also provides the inter-process communication facilities 
needed to establish a link with Rational DOORS.

Object and library files
The following library files are necessary:

$DOORSHOME/bin/dxlapi.dll
$DOORSHOME/bin/dxlapi.lib

The .lib file is required by the client C application at link time, while the .dll file 
must be on the path of the client application at run time.

Extending the Rational DOORS C API
This section defines the macros used to extend the Rational DOORS C API 
interpreter with new functions and data types to create a language like DXL.

New DXL types

When you extend the core DXL language with new operations, you often need 
new data types which can be passed to the C functions that implement the 
operations on them. You define new data types using the struct facility, for 
example:

struct Table {}

This declaration introduces the new type Table.



The Rational DOORS C API

8    Rational DOORS API Manual

Introducing new data types is the only valid use of the keyword struct.

apiInstall

Syntax
apiInstall(proto, 
           fn)

Operation

Registers a new function with the API’s interpreter. The argument proto is a 
string containing a valid DXL function prototype, for example:

"void create(string)"

The argument fn is the name of a C function.
The interpreter calls fn when the function in proto is executed. The C function 
fn must be declared using BEGIN_FN, END_DECLS, and END_FUNCTION.
When used to install a for loop, proto must be in the form:

void ::do(elementType&, 
          parentType, 
          void)

BEGIN_FN

Syntax
BEGIN_FN(fn, 
         ins, 
         outs)

Operation

Starts a function declaration. The argument fn is the name of the function being 
declared; it must be the same as the fn argument passed to the corresponding 
call to the apiInstall function.
The argument ins is the number of input parameters allocated to the DXL 
function prototype by the corresponding call to apiInstall.
The argument outs is the return type allocated to the DXL function prototype 
by the corresponding call to apiInstall. The values can be 0 for a void 
function, or 1 for all other return types.



Rational DOORS API Manual           9

Extending the Rational DOORS C API

P_

Syntax
P_(type, 
  var)

Operation

Declares a parameter that is accessible with a function declared by BEGIN_FN and 
END_FN.
The parameter type is the type of the parameter. The parameter var is the 
variable name of the parameter.
Parameters and variables manipulated by the DXL interpreter must be no larger 
than a C type long or pointer (whichever is larger). For further information on 
DXL interpreter data, see “DXL API integration features,” on page 21.

END_DECLS

Syntax
END_DECLS

Operation
Ends declarations of parameters using P_, and other declarations of local variables after a call to BEGIN_FN.

RETURN_

Syntax
RETURN_(value)

Operation

Sets the return value after a call to BEGIN_FN. The parameter value is the value 
to be returned from the function declared using BEGIN_FN and END_FN.

END_FN

Syntax
END_FN

Operation

Ends a function declaration started by BEGIN_FN.



The Rational DOORS C API

10    Rational DOORS API Manual

BEGIN_FOR_DO

Syntax
BEGIN_FOR_DO(name, 
             pt, 
             p, 
             et, 
             scan)

Operation

Starts the declaration of a for..do loop, corresponding to the loop installed by 
the apiInstall function.
The argument name is the name of the loop. The argument pt is the type of the 
parent of the loop. The argument p is a variable that stores the parent. The 
argument et is the type of the elements to be scanned. The argument scan is a 
variable that holds each scanned element in turn.

PROCESS_DO

Syntax
PROCESS_DO(scan)

Operation

Continues a BEGIN_FOR_DO declaration.
The argument scan must be the variable passed to BEGIN_FOR_DO as scan.

END_FOR_DO

Syntax
END_FOR_DO

Operation

Completes a BEGIN_FOR_DO declaration.

Example

This example extends the Rational DOORS C API for a new language, TXL. It 
declares a function tdsCreate, which appears as create in a TXL script. It takes 
a TXL string parameter (a char* in C) and returns a TXL Table value (a Table* 
in C).



Rational DOORS API Manual           11

Rational DOORS C API entry points

apiInstall("void create(string)",tdsCreate)
BEGIN_FN(tdsCreateFn,1,1)  
    P_(char*,name);  
    Table* tab;  
    END_DECLS;  
    tab = tdsCreate(name);  
    RETURN_(tab);  
END_FN

This example creates a for..do loop. Entry is the TXL data type representing a 
C Entry* variable, and is the type of the scan variable. Table is the TXL data 
type representing a C Table* variable, and is the parent of the scan.

BEGIN_FOR_DO(tdsDoFn,Table*,tab,Entry*,scan) 
    tdsDo(tab,scan) { 
      PROCESS_DO(scan); 
    } 
END_FOR_DO
apiInstall("void ::do(Entry&, Table, void)",  
             tdsDoFn);

Given these declarations you can run the TXL script:
Table tab = create "my table"
tab["1"] = "one"
Entry e
for e in tab do { 
    print (key e) "\n" 
}

The PROCESS_DO macro causes the code:
print (key e) "\n"

to be executed for each Entry e. The code:
tdsDo(tab,scan)

of tdsDoFn, causes scan to be set to each Entry* in tab, which in turn appears 
as e in the TXL script.

Rational DOORS C API entry points
In the entry points that follow, the parameters of external function declarations 
are shown within #if and #endif statements.

apiError
extern void apiError();
#if 0  
    char *format; 
    ... 
#endif



The Rational DOORS C API

12    Rational DOORS API Manual

Causes the calling program to exit and issue an error message. The parameter 
format is a printf style format. If only one parameter is used, the character % 
must appear as %%.

apiWarn
extern void apiWarn(); 
#if 0  
    char *format; 
    ... 
#endif

Issues a warning message. The parameter format is a printf style format. If 
only one parameter is used, the character % must appear as %%.

apiMainProg
extern void apiMainProg(); 
#if 0  
   int argc;  
   char* argv[];  
   char* name;  
   char* ext;  
   char* include;  
   void (*init)();  
   void (*done)();  
#endif

Sets up a Rational DOORS active link main program.
The arguments argc and argv are the normal C main program parameters.
The argument name is the name of the resulting language (for example, TXL). A 
null value causes the default core DXL Interpreter (CDI) to be used.
The argument ext is the file extension used by scripts (for example, .txl). A 
null value causes the default, .cdi, to be used.
The argument include is a separate path of places to search for source and 
include files. A null value defaults to the current directory.
The function init should contain all the initialization needed for the server.
The function done should do all the final winding down for the server.

apiInitLibrary
extern void apiInitLibrary(); 
#if 0  
   char* n;  
   char* ext;  



Rational DOORS API Manual           13

Rational DOORS C API entry points

   char* include;  
#endif

Initializes the API when apiMainProg is not being used. The parameters are as 
described in apiMainProg.

apiFinishLibrary
extern void apiFinishLibrary();
#if 0 
#endif

Winds down the API.

apiParse
extern void apiParse(); 
#if 0  
    char *format; 
    ... 
#endif

Parses and executes the parameters in the API’s interpreter. The parameter 
format is a printf style format. If only one parameter is used, the character % 
must appear as %%.
For examples of the use of apiParse, see “Listing of tds.c,” on page 49.

apiConnectSock
extern void apiConnectSock();
#if 0  
    unsigned short portNum;  
    char* hostAddr; 
#endif

apiSend
extern void apiSend(); 
#if 0  
    char *format; 
    ... 
#endif

Sends the specified string down the connection made with apiParse or 
apiConnectSock as a DXL script to be executed by Rational DOORS. The 
parameter format is a printf style format. If only one parameter is used, the 
character % must appear as %%.
A subsequent call to replyAPI, causes apiSend to execute the string passed to 
replyAPI using the API’s interpreter.



The Rational DOORS C API

14    Rational DOORS API Manual

apiSendTimesout 
extern void apiSendTimesout(); 
#if 0  
    int tmt; 
    char *format; 
    ... 
#endif

Like apiSend, but the tmt parameter is the number of seconds it waits for the 
reply. The parameter format is a printf style format. If only one parameter is 
used, the character % must appear as %%.

apiSendFile
extern void apiSendFile(); 
#if 0  
   char *f;  
#endif

A file variant of apiSend, which sends the file pointed to by f as a DXL script to 
be executed by Rational DOORS.

apiExitOnError
extern void apiExitOnError()
#if 0  
   int onOff; 
#endif

Sets whether the API functions exit whenever there is an error. By default, the 
functions exit, but you can prevent that using this function.

apiQuietError
extern void apiQuietError()
#if 0  
   int onOff; 
#endif

Sets whether the API functions produce error messages on the command line. 
By default, the functions produce command line error messages, but you can 
prevent that using this function.

apiGetErrorState
extern int apiGetErrorState()
#if 0  
#endif

Returns the error that occurred most recently. Possible return values are:



Rational DOORS API Manual           15

Rational DOORS C API entry points

DOORS_API_OK 
DOORS_API_PARSE_BAD_DXL 
DOORS_API_SEND_BAD_DXL 
DOORS_API_CONNECT_FAILED 
DOORS_API_ERROR

apiGetIPC
extern void *apiGetIPC()
#if 0  
#endif

Returns a pointer to the IPC channel currently being used by the API.

apiSetIPC
extern int apiSetIPC()
#if 0  
   void *newIPC; 
#endif

Sets the IPC channel for use by the API. Returns 1 if newIPC was set; otherwise, 
returns 0. Returns 0 if newIPC is null or not connected.

apiDeleteIPC
extern void apiDeleteIPC()
#if 0  
   void *IPC; 
#endif

Deletes the specified IPC channel.



The Rational DOORS C API

16    Rational DOORS API Manual



Rational DOORS API Manual     17

4 Using the DXL server
This chapter describes how to use the DXL server, which allows external 
applications to send DXL programs to Rational DOORS for execution. It 
contains the following topics:

• About the DXL server interface

• Using the DXL server in batch mode

About the DXL server interface
The DXL server allows programs external to Rational DOORS to send DXL 
messages to Rational DOORS for execution. For example, a Windows 
Command prompt could send messages to Rational DOORS.
The DXL server interface consists of two programs: 

dxlips
dxlipf

The dxlips and dxlipf programs use TCP/IP port and host sockets to 
connect to Rational DOORS. 

Note  The DXL server can only be launched from an interactive 
Rational DOORS session. It is not supported from batch 
DXL programs. The behavior of the DXL server can be 
emulated from batch DXL using the DXL program 
described later in this chapter.

If an external tool allows commands to be invoked from within its user interface, 
these programs can be used to communicate with Rational DOORS. An 
example of such an external tool is a CASE tool that has a user-defined menu.
Rewrite these programs for your own tool.

Starting the server

On all platforms, executing the following DXL from the DXL Interaction 
window starts the TCP/IP server on port 5093 (the default port):

evalTop_ "initDXLServer server 5093"

Alternatively, the line:
initDXLServer server 5093

could be included in startup.dxl.



Using the DXL server

18    Rational DOORS API Manual

Note  In practice, do not hard code port numbers. Instead make 
sure that they can be configured by the user.

After initializing the server, you can use the server interface commands. This 
level of tool integration does not directly support receiving replies from Rational 
DOORS.
The commands dxlips and dxlipf are simple utilities that use the Rational 
DOORS C API facilities described in “The Rational DOORS C API,” on page 
7. The source code is supplied in $DOORSHOME/api.

dxlips
The dxlips program is supplied with Rational DOORS in $DOORSHOME/bin.
It takes a single string command-line argument, which is sent to Rational 
DOORS and interpreted as a DXL program.
Rational DOORS and dxlips can be run on different machines. They 
communicate through a TCP/IP socket with a default port number given by the 
environment variable DXLPORTNO on a host indicated by DXLIPHOST. The server 
always runs on the same host as Rational DOORS.

Example

This example of dxlips causes the date on which the current Rational DOORS 
session started to be printed in the Rational DOORS DXL Interaction window’s 
output pane.

%DOORSHOME%\bin\dxlips "print session"

dxlipf

The dxlipf program operates in the same way as dxlips, except that the 
command-line argument specifies the name of a file which contains a DXL 
program to be sent to Rational DOORS.

system

Rational DOORS allows external tools to be called using the DXL command 
system, which is described fully in the DXL Reference Manual.

Usage
system("C:\winnt\system32\command /c dir") 

You can call the system command several times in the same script. Each time it is 
called a new process is forked to run the command. 



Rational DOORS API Manual           19

Using the DXL server in batch mode

If you run more than twenty processes, the behavior is undefined. To avoid this, 
ensure that each group of fewer than twenty system commands has adequate 
time to complete before you move on to the next group.
One way to do this is to place an ack command between each group of calls.

Using the DXL server in batch mode
Rational DOORS has two modes of operation: interactive mode, where there is 
a graphical user interface, and batch mode where Rational DOORS runs with 
no graphical user interface. 
To run Rational DOORS in batch mode, at the prompt type:

doors -batch dxlfile

The built in DXL server started by the initDXLServer function cannot be used 
in batch mode. As an alternative, to emulate the built in server, you can use the 
following script modified to meet the requirements of the interface being 
written:

// batchserver.dxl
IPC ipc = server 5093
string request
/* add functions for your interface here */
while (true) {
  if (accept(ipc)){ 
    if (!recv(ipc,request)) { 
      warn "Server has disconnected" 
      break 
    } 
  }else{ 
    warn "error accepting client connection" 
    break 
  }
  print "request: "
  print request
  print "\n"
  errors=false
  if (request=="shutdown_"){ 
    send(ipc,"done_") 
    break 
  } 
  if (request=="errors_") 
    break  
  if (request=="quit_") 
    continue
  ans = eval_ request



Using the DXL server

20    Rational DOORS API Manual

  if (ans=="errors in eval_ string") { 
    print "errors in request\n" 
  }
  send(ipc,"done_")
  disconnect(ipc)
}



Rational DOORS API Manual     21

5 DXL API integration features
This chapter describes DXL features required by the integration engineer. They 
are omitted from the DXL Reference Manual because they are potentially 
hazardous.
This chapter contains the following topics:

• General functions

• Interprocess communications

• DXL contexts

General functions

addr_

Syntax
addr_(y)

Operation

Takes arguments of any type and returns them in any context, for example:
bool x  = addr_ 1
bool y  = addr_ 0
print x " " y "\n"

Prints true false.

Note  This function is extremely hazardous, as it allows the type 
system of DXL to be violated. Use it with care, if you must 
override DXL types.

eval_

Syntax
string eval_(string)

Operation

This function causes its parameter to be executed by the DXL interpreter, within 
a private context. Declarations made within the execution do not persist after the 



DXL API integration features

22    Rational DOORS API Manual

execution is complete. The result is a string which can be set using the return_ 
function.

return_

Syntax
void return_(string)

Operation

When used within a string passed to eval_, makes its argument the result of the 
call to eval_.

evalTop_

Syntax
string evalTop_(string)

Operation

Like eval_, but executes within the outermost context of the DXL interpreter, 
thus making any declarations persist. When an evalTop_ call appears in a DXL 
script its argument is not executed until the enclosing script has finished 
executing. 
The following script produces an error:

evalTop_("int a_ = 3")
print a_

When you place a variable or function in the top context, take care to avoid 
clashes with variables in other DXL programs. The name of such a variable 
should have a prefix that is the name of the tool in which it is used, and a suffix 
of an underscore. For example, for TDS you could use TDS_IPC_.

initDXLServer

Syntax
void initDXLServer(IPC dxlsrvr)

Operation

Initializes the DXL server, using a TCP/IP socket to communicate. The IPC 
channel can be initialized by the server function.



Rational DOORS API Manual           23

Interprocess communications

replyAPI

Syntax
void replyAPI(string reply)

Operation
Sends the passed string back to the DXL server. This is useful in code that is called by DXL server clients using the apiSend 
function.

setAPIClientTimeout

Syntax
void setAPIClientTimeout(int tmt)

Operation

Sets the time limit for the replyAPI function to wait for an acknowledgement 
from the DXL server.

ipcHostname

Syntax
string ipcHostname(string hostAddr)

Operation

Returns the name of the host with IP address hostAddr.

ipcAddress

Syntax
string ipcAddress(string hostName)

Operation

Returns the IP address of the host named hostName.

Interprocess communications
The following functions provide interprocess communication operations:



DXL API integration features

24    Rational DOORS API Manual

server

Syntax
IPC server(int portno)

Operation

Establishes a server connection to port number portno.

client

Syntax
IPC client(int portno, 
           string host)

Operation

Establishes a client connection to IP address portno at host.

accept

Syntax
bool accept(IPC chan)

Operation

Waits for a client connection. This is used by servers.

send

Syntax
bool send(IPC chan, 
          string message)

Operation

Sends the string message down the IPC channel chan.

recv

Syntax
bool recv(IPC chan, 
       {string|Buffer} &response 
        [,int tmt])



Rational DOORS API Manual           25

DXL contexts

Operation

Waits for a message to arrive in channel chan and assigns it to string or buffer 
variable response.
The optional third argument defines a time-out, tmt seconds, for a message to 
arrive in channel chan. If tmt is zero, this function waits forever. It only works if 
the caller is connected to the channel as a client or a server.

DXL contexts
To avoid over-use of resources, every function and variable declared in DXL has 
a finite lifetime. When it is no longer being used the memory that it was allocated 
is freed. The lifetime of a variable depends on the lifetime of the context in 
which it is declared.
If you attempt to access variables and functions outside their lifetimes, the results 
are undefined, but may cause Rational DOORS to fail. There are two types of 
context:

• Top context

Code included in startup.dxl or executed by the evalTop_ function is in 
the top context.

• Local context

Code run from a menu, the DXL Interaction window or a call to the eval_ 
function, runs in its own local context.

Programs run in local contexts can access names declared in the top context. A 
local context is deleted when all dialog boxes created by the program run from 
the context are closed down. A program that is run in a local context and does 
not create any dialog boxes has its resources reclaimed after it terminates.
A common mistake is shown in the following scripts.
First script:

evalTop_("DB db_");

Second script:
void callback(DBE b){ 
  ack "button pressed" 
}
db_ = create "Test DB"
DBE b = button(db_, "Fail", callback)

Third script:
show db_



DXL API integration features

26    Rational DOORS API Manual

By the time the third script is run, the memory occupied by the dialog box db 
and its callback function has been freed and the behavior is undefined. To make 
these scripts work, the second script must run in the top context.

Impact on triggers

Dynamic triggers are governed by the same context rules as variables and 
functions. When you set a dynamic trigger in a DXL script, it is deleted when the 
script finishes, and you do not see its effect. There are two ways to make the 
dynamic trigger survive:

• Place it in the top context using the evalTop_ function, taking care to avoid 
name clashes. 

• When the trigger is related to a DXL dialog box, keep the dialog box open.

Consider the following script:
bool dynTrig(Trigger t){ 
    ack "closing" 
    return true 
}
trigger(module, close, 10, dynTrig)
DB db = create "test"
show db

With a formal module open, run the script. Close the formal module and the 
trigger fires. Close the test dialog box and then re-open the formal module. Run 
the script again. Close the test dialog box and then close the formal module. The 
trigger does not fire.
In the first case the trigger fired because the context of the DXL script it was 
declared in was still open. In the second case the context had been closed when 
the dialog box was closed, so the trigger was no longer present and so did not 
fire.



Rational DOORS API Manual     27

6 Interactive interfacing with a complex 
external tool

This chapter describes how to build interfaces between Rational DOORS and 
other tools, such as CASE tools or other complex packages. It contains the 
following topics:

• Integrating Rational DOORS with user tools

• Integrating Rational DOORS using Rational DOORS URLs

• Example tool to be interfaced to Rational DOORS

• Working with OLE objects

• Listing of tds.c

Integrating Rational DOORS with user tools 
The powerful requirements analysis, manipulation and presentation facilities 
provided by Rational DOORS can be exploited to an even greater extent if 
Rational DOORS is tightly coupled to the other tools present in the user’s own 
environment. Rational DOORS uses its extension language, DXL, to provide the 
basis for such links, together with the Rational DOORS C API which enables 
users to build DXL-like languages around existing tools and also provides the 
interprocess communication facilities needed to establish a link with Rational 
DOORS. Using the extension language to build an interface layer around both 
Rational DOORS and user tools is a powerful and flexible tool linkage strategy. 
The strategy is shown in the following diagram.



Interactive interfacing with a complex external tool

28    Rational DOORS API Manual

Programs are represented by boxes and code libraries by parallelograms. Light 
headed arrows between boxes are C function calls. Heavy headed arrows are IPC 
communications. Both types of call can be used to read or write data in both 
directions. The arrowhead direction indicates who initiates the call.
The left half of the diagram represents a connection to an external tool A that 
provides an API (a set of functions that can be called in to input or output data 
to or from the tool. The program DOORS A interface interfaces with tool A’s 
API and communicates with Rational DOORS via an IPC channel. In this 
configuration the external tool is acting as a server and Rational DOORS as its 
client (a Rational DOORS active link).
The right half of the diagram represents tool connections where Rational 
DOORS is expected to serve calls from the external tool (a Rational DOORS 
passive link). In this configuration, Rational DOORS acts as the server (using the 
DXL server) and the external tool acts as the client.
Both types of link make use of the Rational DOORS C API, as do Rational 
DOORS and the server utilities. Most of the code required to establish a link 
between tools is written using either DXL or, in the case of an active link, a 

�������
�	


�����

���������

����������� ���

������

�������
���������

���������

���

������

��������	
 ��

���

������



Rational DOORS API Manual           29

Integrating Rational DOORS using Rational DOORS URLs

DXL-like language created for the external tool’s API (AXL). The Rational 
DOORS C API supports the construction of this language and its interpreter.
The overall strategy for a Rational DOORS active link is:
1. Using the Rational DOORS C API, create a DXL-like language to interface 

to the target tool’s API. These bindings form the major part of the Rational 
DOORS active link.

2. Create DXL scripts for execution by Rational DOORS that implement the 
command set of the desired link. This typically involves writing DXL 
functions that send data to the external tool, and writing DXL functions that 
can be called by the external tool to send results back to Rational DOORS.

3. Create scripts for execution in the Rational DOORS active link (AXL scripts 
in this example) that implement the command set of the desired link.

4. Run the Rational DOORS active link as a server process. Commands made 
available by stages 2 and 3 can now be executed from Rational DOORS, 
typically through DXL generated menus and forms.

The overall strategy for a Rational DOORS passive link is:
1. Determine what messages need to be sent to and from Rational DOORS. 

Render these messages as DXL function calls.

2. Create DXL scripts that implement the bodies of the function call messages 
of Step 1. Functions to be executed on the external tool (client) side need to 
be installed as DXL extensions using the Rational DOORS C API.

3. Link (in the C object library sense) the Rational DOORS API to the external 
tool.

4. Start a Rational DOORS DXL server to handle requests from the external 
tool.

To illustrate the tool linkage strategy the following section uses an example target 
application: the Toy Database Server (TDS). The example shows the 
development of both a Rational DOORS active and a Rational DOORS passive 
link.

Integrating Rational DOORS using Rational DOORS URLs
This section is for integrators who want to refer to Rational DOORS resources.
A Rational DOORS URL has the following syntax:

doors://<hostport>/?<search_specification>



Interactive interfacing with a complex external tool

30    Rational DOORS API Manual

• Where <hostport> is the host name and port number of the Rational 
DOORS database server that contains the Rational DOORS resource. For 
example, server.domain:36677. 

Note  You must provide the port number.

• <search_specification> defines the resource. It is a comma-separated 
list of search elements. The search elements and their meanings are as 
follows:

Search element Meaning

dbid=<unreserved> The identifier of a database. This is mandatory in 
version 1 of the URL.

version=<version> <version> is an <unreserved> that represents the 
version of the URL syntax. The version numbering 
scheme is non-zero natural numbers from 1.
In Rational DOORS 9.2, the version number of all 
Rational DOORS URLs will be 1. That is:
version=1

prodID=<nat> <nat> is a <reserved> that is the decimal 
representation of a natural number.
This is used to indicate the product that generated the 
URL. the current permitted values is:

• 0 - Rational DOORS

container=<unreser

ved>[":"<version>]

The identifier of a container (for 
example, project, folder or module) within 
the database. Notice that this identifier 
may include version information where 
<version> ::= <unreserved>

object=<unreserved

>

The identifier of an object (within a document 
container).
In case of Rational DOORS 9.2 URLs, the object is 
denoted by its Absolute Number attribute. For 
example object=23.



Rational DOORS API Manual           31

Example tool to be interfaced to Rational DOORS

Examples of Rational DOORS URLs 

• A database URL. Opening a database URL causes the root of the database 
to be displayed in the database explorer.
doors://greenback:36677/?version=2&prodID=0&urn=urn:telelogic::
1-49d22a0e60b71ecc-A

• A project URL. Opening a project URL causes the project to be made 
current in the database explorer.
doors://greenback:36677/?version=2&prodID=0&urn=urn:telelogic::
1-49d22a0e60b71ecc-P-00000020

The -P- in the URL denotes a project.

• A folder URL. Opening a folder URL causes the folder to be made current 
in the database explorer.
doors://greenback:36677/?version=2&prodID=0&urn=urn:telelogic::
1-49d22a0e60b71ecc-F-00000046

The -F- in the URL denotes a folder.

• A module URL. Opening a module URL causes the module to be opened in 
the default edit mode with the default view displayed.
doors://greenback:36677/?version=2&prodID=0&urn=urn:telelogic::
1-49d22a0e60b71ecc-M-000000a0

The -M- in the URL denotes a module.

• An object URL. Opening an object URL causes the containing module to be 
opened in the default edit mode with the default view displayed and the 
specified object selected. The normal view changing rules apply if the object 
is not displayed in the view.
doors://greenback:36677/?version=2&prodID=0&urn=urn:telelogic::
1-49d22a0e60b71ecc-O-4-000000a0

The -O- in the URL denotes an object.

Example tool to be interfaced to Rational DOORS
TDS is a very simple table manipulation package. Tables can be created and 
deleted, and their entries created and deleted. Although a small program, it 
exercises all the major features of a more complex Rational DOORS link 
program.



Interactive interfacing with a complex external tool

32    Rational DOORS API Manual

C API for example

The C API for TDS is for use with a Rational DOORS active link. It is the set of 
C data structures and entry points that it provides to be called by interfacing 
programs.

/* 
*   Data Structures: 
*/
typedef struct Table_ Table; 
typedef struct Entry_ Entry;
struct Table_ {  
   string name;  
   Entry* es;  
   Table* next; 
   int size;  
};
struct Entry_ {  
   string key;  
   string data;  
   Entry* next;  
};

A table of type Table is simply a linked list of entries of type Entry. All tables 
are linked together.
APIs often have exit codes defined as function results, as in this example:

#define StatusOK 0 
#define StatusBadDeleteEntry 1
#define StatusBadDeleteTable 2

The two macros below define traversal macros for the two data structures:
#define tdsDo(table,e) for (e=table->es; e != NULL; e = e->next)
#define tdsTabDo(t) for (t=AllTables; t != NULL; t = t->next)

All tables are linked and accessible from this variable:
externvar Table* AllTables;

To describe the remaining functions of the C API for TDS, the parameters of 
external function declarations are shown within #if and #endif statements.

Entry Point Use

extern Table* tdsCreate();

#if 0 
   string s; 
#endif

Creates a table with name s.



Rational DOORS API Manual           33

Example tool to be interfaced to Rational DOORS

This completes the API for TDS. The implementation of this interface is in 
$DOORSHOME/api/tdsfns.c.

extern Entry* tdsEntry();

#if 0  
   Table* t;  
   string key;  
   bool create;  
#endif

Looks up the entry according to key in 
table t. If the entry does not exist and 
create is true then create it.

extern void tdsPut();

#if 0  
   Entry* e; 
   string data; 
#endif

Associate the string data with the entry e.

extern string tdsGet();

#if 0 
   Table* t; 
   string key; 
#endif

Returns the data for the given table t and 
key. If key does not exist, returns a null 
string.

extern int tdsDeleteEntry();

#if 0 
   Table* t; 
   string key; 
#endif

Deletes the entry specified by t and key.

extern int tdsDeleteTable();

#if 0 
   Table* t; 
#endif

Deletes the given table.

extern void tdsInfo(); A diagnostic routine.

extern void tdsInit(); An initialization routine.

extern void tdsFinish(); A final housekeeping entry point.

Entry Point Use



Interactive interfacing with a complex external tool

34    Rational DOORS API Manual

Making a language like DXL

Using the interface presented in “C API for example,” on page 32, you can now 
make a language like DXL to drive the interface: a Rational DOORS active link. 
From the basis of the core DXL language, you can add TDS specific data types 
and commands. For this exercise, the resulting language is called TXL, and the 
extension .txl is used on files containing TXL scripts.
The program $DOORSHOME/api/tds.c fully implements a DXL-like interface to 
TDS. All the Rational DOORS C API entry points are described in “The 
Rational DOORS C API,” on page 7. The complete source for tds.c is given in 
“Listing of tds.c,” on page 49. Extracts from this program illustrate how to build 
the language.

Including files

After some comments, the program begins with the following include 
statements:

#include <doors/api.h>  /* API services */
#include "tds.h"  /* this file's entry points */
#include "tdsfns.h"     /* the TDS API */

The first include statement is the normal way of accessing the Rational DOORS 
C API from within a C program. The makefile given for TDS (also in 
$DOORSHOME/api) shows one way of specifying where to find both the include 
file and the necessary API object file.

Declaring functions

After including the necessary .h files, tds.c continues with:
BEGIN_FN(tdsCreateFn,1,1) 
   P_(char*,name); 
   Table* tab;    
   END_DECLS; 
   tab = tdsCreate(name); 
   RETURN_(tab); /* return the created table */ 
END_FN

The macro BEGIN_FN takes three parameters: the name of the C function to be 
registered with the API, the number of input parameters and the number of 
results (either 0, corresponding to void, or 1).
The line P_(char*,name) specifies that the first parameter is of type char* and 
is called name. After specifying all parameters (there are no more in this 
example), you must also declare any variables to be used in the function being 
defined. END_DECLS marks the end of declarations, and is always needed. The 
body of the function calls tdsCreate with the passed name and returns the 



Rational DOORS API Manual           35

Example tool to be interfaced to Rational DOORS

result. The macro RETURN_ indicates what the DXL-like function should return 
when executed, but does not return from the function. END_FN ends the 
declaration of the new DXL-like function.

Installing functions

Later in tds.c there are the following lines:
apiParse("struct Table {}; struct Entry {};");
apiInstall ("Table create (string)", 
              tdsCreateFn);

This is the second part of registering a new function for a DXL-like language. 
The first parameter of apiInstall is the prototype of the new function, which 
must match the information supplied for numbers of parameters and results 
given to BEGIN_FN. The second parameter is the name of the function created 
using BEGIN_FN. In the DXL-like language you are building, the function is 
called create.
The function apiParse parses and runs its parameter. In this case it is the 
definition of two new data types for TXL: Table and Entry. Refer to “DXL API 
integration features,” on page 21 for more information.
The program tds.c continues by specifying many more DXL-like commands in 
this way. Effectively, it makes a link from a C function (here tdsCreate), to the 
Rational DOORS C API’s interpreter, using an intermediate function (here 
tdsCreateFn).

Declaring and installing a for loop

Later in tds.c there is:
BEGIN_FOR_DO(tdsDoFn,Table*,tab,Entry*,scan) 
     tdsDo(tab,scan) { 
        PROCESS_DO(scan); 
    } 
END_FOR_DO

This fragment should be considered paired with the later:
apiInstall("void ::do (Entry&, Table, void)", 
                         tdsDoFn);

The macro BEGIN_FOR_DO allows you to provide a DXL-like for loop for TXL. 
Its parameters are:

• The name of the function: tdsDoFn

• The type of the parent of the loop: Table* 

• A variable in which the parent is to be placed; the parent is some variable 
from which you can initialize the loop



Interactive interfacing with a complex external tool

36    Rational DOORS API Manual

• The type of the elements of the loop: Entry*

• A variable in which each element in turn is to be placed

The tdsDo macro is defined in “C API for example,” on page 32.
The macro PROCESS_DO makes the currently scanned element available to the 
body of the loop.
The call to apiInstall defines a function that returns void and has three 
parameters. The first parameter is a reference type for the scanned element; the 
second parameter is the parent; the third parameter is void. The installation of a 
for loop must always be in this format.

Main program

The final step in making a DXL-like language is the main program:
/* main.c 
 * The main program of the DXL-like  
 * language, TXL  */
#include <doors/api.h>
#include <stdio.h>
#include "tds.h"
extern char* getenv();
int main (argc, argv) 
    int argc; 
    char* argv[]; 
{
    static char path[255];
    sprintf(path,"%s/lib/txl",  
                       getenv("DOORSHOME"));
    apiMainProg(argc, argv, "TXL", ".txl", path,  
                       tdsInitAPI, tdsFinishAPI); 
    return 0; 
}
/* end of main.c */

apiMainProg has the following parameters:

• The normal C main argument, argc

• The normal C main argument, argv 

• The name of the language being built, TXL, as a string

• A default file extension, .txl, as a string

• A default search path for source and include files, path

• An initialization function (called by apiMainProg)

• A termination function (called by apiMainProg)



Rational DOORS API Manual           37

Example tool to be interfaced to Rational DOORS

The file tds.c implements a small, but powerful, DXL-like language for TDS. 
The command line arguments for the language are the file names of scripts 
containing TXL programs. 

Building the object file

To build the object file, see “Compiling TXL with Microsoft Developer Studio,” 
on page 38.

Executing a TXL script

After the object file has been created, the following TXL program can be 
executed:
Example TXL script:

void printTab (Table t) {  
    Entry e 
    print "(" (name t) ":\n" 
    for e in t do        // the tdsDoFn loop  
        print (key e) " : " (data e) "\n" 
    print ")\n"  
}
void printAll () { 
    Table t  
    for t in All do  
        printTab t  
}
void doDelete (Table t, string key) {  
    int status
    delete (t, key) 
    if (status !=StatusOK)  
        warn "no record for " key " in " (name t) 
}//doDelete
Table t = create "english2french"  
// the tdsCreateFn  function 
t["one"]      =  "un"  
t["two"]      =  "deux"  
t["three"]    =  "trois"  
t["four"]     =  "quatre"  
t["five"]     =  "cinq"  
t["six"]      =  "six"  
t["seven"]    =  "sept"  
t["eight"]    =  "huit"  
t["nine"]     =  "neuf"  
t["ten"]      =  "dix"  
print t["three"] "\n"  
print "----------\n"  
printTab t  



Interactive interfacing with a complex external tool

38    Rational DOORS API Manual

doDelete (t, "two")  
print "-----------\n"  
printTab t 
info

A similar script is in $DOORSHOME/lib/txl/tds.txl.

Compiling TXL with Microsoft Developer Studio
This section describes how to build txl.exe using Microsoft® Developer 
Studio. The executable file can be built using any C compiler and you should 
adapt these instructions for your own environment.

1. Select File > New > Project workspace, and then choose Console 
Application with the name txl in directory %DOORSHOME%/api. 
(%DOORSHOME% is the directory pointed to by HOME in your doors.ini file.) 

2. Select Insert > Files into project. Add tdsfns.c, tds.c, and main.c.

3. Select, Build > Setting > Link. In the dialog box add dxlapi.lib to the 
Object library modules field, and dxlapi.dll to the path. 

4. Select Tools > Options, then select the Directories tab. Add 
%DOORSHOME%/include to the include files directories and 
%DOORSHOME%/bin to the library files directories.

5. Press F7 to build txl.exe.

Completing the Rational DOORS active link

Now that you have a DXL-like language for TDS, you can use it to build a 
command server for Rational DOORS.
DXL includes IPC facilities that allow messages to be passed between DXL 
interpreters. Rational DOORS can send messages to the TXL interpreter to be 
executed, and vice versa. This is a simple and effective example of a client/server 
architecture.
To complete the Rational DOORS active TDS link:
1. Using the DXL library (click Tools > Edit DXL > Browse), locate the 

Rational DOORS client for TDS. The source is in $DOORSHOME/lib/dxl/ 
example:

The code in apiinit.dxl initializes the TDS server; the code in 
apistart.dxl starts the TDS interaction window.

2. Run apiinit and then apistart. The Rational DOORS/TDS Link 
window is displayed. 



Rational DOORS API Manual           39

Example tool to be interfaced to Rational DOORS

It has the following buttons:

The start server button executes $DOORSHOME/api/txl.exe, with the same 
arguments as above.
The server uses a simple protocol. It opens up an IPC server on the named 
socket, and waits for connections from Rational DOORS clients. Rational 
DOORS makes a connection via the start server command, which is issued 
by the start server button. The messages sent by Rational DOORS are 
implemented in the included file t2d.txl, which is in the same directory as 
server.txl.
Code in server.txl

// TDS server
IPC ipc = server port     // port is passed in by api.inc
bool debug=false          // true => diagnostic output
bool errors=false         // have we had an error?
void dprint(string s) {   // diagnostic routine 
    if (debug) print s 
}
void toDoors (string s) {  
// send message, must be acknowledged
    dprint "toDoors(" s ")\n"
    if (!send(ipc, s)) 
        unixerror "toDoors/send"

Button Function

start server Starts the TDS server as a process in an xterm or DOS 
shell.

add current 
heading

Sends the current Rational DOORS object heading, and the 
name of the user who created the object, to TDS for 
inclusion in a TDS table as key and data.

delete current 
heading

Sends the current Rational DOORS object heading as a key 
to delete an entry in a TDS table.

print table Prints the TDS table, and sends each entry to Rational 
DOORS for display in a popup window.

shutdown server Shuts down the TDS server, causing the xterm or DOS 
shell to exit.

close Closes the window.



Interactive interfacing with a complex external tool

40    Rational DOORS API Manual

    if (!recv(ipc, s)) 
        unixerror "toDoors/recv"
    dprint "Ack: " s "\n"
    if (s!="OK") eval_ s
}//toDoors
void done () {      
// send "done" message, no acknowledge needed
    dprint "done\n"
    if (errors) 
        // client has already disconnected 
        errors=false 
    else { 
        if (!send(ipc, "done_")) 
            unixerror "done/send" 
    }
}//done
void sendError (string mess) {    
// let Rational DOORS know about an error
    if (errors) 
        return
    if (!send(ipc, "errors_")) 
        unixerror "error/send"
    if (!recv(ipc, s)) // the ack 
        unixerror "toDoors/recv"
    if (!send(ipc, mess)) 
        unixerror "error/send"
}//sendError
string request
string res
#include <t2d>
checkIPC ipc          
// must be provided in client specific part
print "Ready to accept commands from DOORS\n"
if (!accept ipc)  
    unixerror "unexpected failure waiting for 
                DOORS client"
while (true) { 
    if (!recv(ipc,request)) { 
        warn "DOORS has disconnected" 
        break 
    }
    dprint "request: " request "\n"
    errors=false
    if (request=="shutdown_") 
        break  // no acknowledge needed
    ans = eval_ request
    if (ans=="errors in eval_ string") { 
        print "errors in request\n" 



Rational DOORS API Manual           41

Example tool to be interfaced to Rational DOORS

        done 
    }
    if (request=="shutdown_") 
        break  // no acknowledge needed 
}//while (true)
closeDown             
// must be provided in client specific part
// tds/doors interface
#include <utils>
/* 
  data 
*/
Table doors = create "doorsTable"
/* 
  the following commands are sent by doors for execution by tds 
*/
void associate(string s1, s2) {  
    print "receiving key \"" s1 "\" with data \"" 
            s2 "\"\n"  
    doors[s1] = s2  
    done  
}
void delete(string s1) {  
    int status = delete(doors,s1) 
    print "deleting \"" s1 "\"\n"
    if (status ! = StatusOK)  
        sendError "Heading \"" s1 "\" not in table"  
    else  
        done                
        // don't do "done" if we have an error 
}
void list() {  
    Entry e  
    int i=0  
    printTab doors
    for e in doors do {  
        i++  
        toDoors "fromTds(\"" (key e) "\", \"" 
                  (data e) "\")"  
    }//for
    if (i==0) { 
        sendError "no entries" 
        return     // no done needed  
    } 
    done  
}
/* server needs these two entrypoints */
void checkIPC(IPC ipc) {  
    if (null ipc)  



Interactive interfacing with a complex external tool

42    Rational DOORS API Manual

        unixerror "unexpected failure creating 
                     TDS server "socket" 
}//checkIPC
void closeDown() {  
    print "server shutdown \ n"  
}

Initializing the client

The Rational DOORS client side of the link is initialized by apiinit.dxl, 
which is in $DOORSHOME/dxl/example/apiinit.dxl. It contains the following 
statement:

evalTop_ "#include <example/api.inc>"

The internal DXL evalTop_ makes any definitions available to further 
executions of DXL programs. 
Except for startup.dxl, a DXL program runs in its own private context. Refer 
to “DXL API integration features,” on page 21 for an explanation of DXL’s 
context rules. 
The file api.inc contains the following:

/* 
  Rational DOORS API Demo 
  $DOORSHOME/lib/dxl/example/api.inc 
*/
#include <utils/unique>
IPC tdsIPC = null
string tdsName = "DOORS/TDS"
int port = 5097
string host = "127.0.0.1"
string dhome = getenv "DOORSHOME"
bool tdsDebug=false
void tdsDprint(string s) { 
    if (tdsDebug) cout << s 
}
void tdsError (string mess) { 
    tdsDprint mess 
    ack tdsName ": " mess 
    halt 
}
void ackRecv() { 
    if (!send(tdsIPC, "ack")) 
        tdsError "ackRecv_ failed" 
}
void tdsSend (string request) { 
    string response, res 
    tdsDprint ">> " request "\n"



Rational DOORS API Manual           43

Example tool to be interfaced to Rational DOORS

    if (!send(tdsIPC, request))  
       // tdsSend client request 
        tdsError "tdsSend failed"
    if (request=="quit_" || request=="shutdown_") 
        return
    while (true) { 
        if (!recv(tdsIPC, response)) 
            tdsError "recv failed" 
        tdsDprint "< " response "\n"
        if (response=="done_")  
            // computation completed 
            break
        if (response=="errors_") {  
            // error message 
            ackRecv
        if (!recv(tdsIPC, response)) 
            tdsError "recv failed" 
            tdsError "tds server failure:  " 
                       response 
        }
        res = eval_ response
        if (res=="")  
            res = "OK"
        tdsDprint "> " res "\n"
        if (!send(tdsIPC, res))  
             // need response until "done" sent 
             tdsError "tdsSend failed"
    }
}
bool connected () { 
    if (null tdsIPC) { 
        tdsIPC = client(port,host)
        if (null tdsIPC) { 
            ack "not connected yet" 
            return false 
        } 
    } 
    return true 
}
/* Dialogue box stuff */
DB TDS=null
DBE tdsB1, tdsB2, tdsB3, tdsB4, tdsB5
bool TDSIsShowing = false
void finishTDS(int status) { 
    tdsIPC = null 
}
void tdsF1(DBE dbe) { 
    if (!(null tdsIPC)) { 
        ack "server socket already exists" 



Interactive interfacing with a complex external tool

44    Rational DOORS API Manual

    } else{ 
        if (platform == "WIN32") { 
            if (!fileExists_(dhome "/api/txl.exe")){ 
                ack("You must first make txl.exe 
                     in $DOORSHOME/api. \nSee 
                     the DOORS API Manual for 
                     details.") 
                return 
            }//!fileExists_
            system(dhome "/api/txl  " dhome 
                   "/lib/txl/server.txl int port = " port " ") 
        }else{ 
            if (!fileExists_(dhome "/api/txl")){ 
                ack("You must first make txl in 
                     $DOORSHOME/api. \nSee the 
                     DOORS API Manual for 
                     details.") 
                return 
            }//!fileExists_
            system("xterm -e " dhome " /api/txl  " 
                   dhome "/lib/txl/server.txl  int 
                  port = " port  " ", finishTDS) 
        } 
    }//else 
}//tdsF1
void tdsF2(DBE dbe) { 
    string h =  
           (current Object)."Object Heading" ""
    string b = (current Object)."Created By" ""
    if (connected) 
        tdsSend "associate(\"" h "\", \"" b "\")" 
}
void tdsF3(DBE dbe) { 
    string h = (current Object)."Object Heading" 
                 ""
    if (connected) 
        tdsSend "delete \"" h "\"" 
}
void tdsF4(DBE dbe) { 
    if (connected) 
        tdsSend "list" 
}
void tdsF5(DBE dbe) { 
    if (connected) { 
        tdsSend "shutdown_"  
        tdsIPC = null 
    } 
}



Rational DOORS API Manual           45

Example tool to be interfaced to Rational DOORS

void closeCB(DB db){ 
    TDSIsShowing = false 
    hide db 
}
void initTDS () { 
    TDS = create "DOORS/TDS Link Control"
    tdsB1 = button(TDS, "start server", tdsF1)
    tdsB2 = button(TDS, "add current heading", 
            tdsF2) 
    tdsB3 = button(TDS, "delete current heading", 
             tdsF3)
    tdsB4 = button(TDS, "print table", tdsF4)
    tdsB5 = button(TDS, "shutdown server", tdsF5)
    close(TDS,true, closeCB)
}
// TDS required methods  -- no acknowledge necessary
void fromTds (string key, data) { 
    ack "message from TDS (" key ", " data ")" 
}
// all installed
ack "API Demo installed"

Starting the client

The DOORS/TDS client is started with the file apistart.dxl, which contains:
if (!TDSIsShowing){ 
     initTDS 
}
TDSIsShowing = true
show TDS

Protocol

The protocol for the exchange of messages is as follows:

1. Rational DOORS starts the server process.

2. Rational DOORS sends a message to the TXL process running server.txl 
by calling tdsSend.

3. server.txl accepts the Rational DOORS client.

4. If the message is quit_, tdsSend takes no further action, and server.txl 
waits for the next client.

5. If the message is shutdown_, tdsSend takes no further action, and 
server.txl exits, causing the xterm or DOS shell to exit.

6. Any other message is executed by server.txl as a TXL program. 

7. tdsSend then expects a reply. 



Interactive interfacing with a complex external tool

46    Rational DOORS API Manual

8. If the reply is errors_, report an error.

9. If the reply is done_, stop.

10. If the reply is anything else, execute it as a DXL program and wait for a 
further message from server.txl.

This simple protocol allows either side to send code to the other for execution, 
but Rational DOORS must always be the initiator. This is the main characteristic 
of a Rational DOORS active link.
The server and client code can be reused, with minor modification, as the basis 
for any other tool server (Rational DOORS active link).

Rational DOORS passive link
A passive link is where the application, for example, TDS, wishes to drive 
Rational DOORS rather than act as a server. To do this, use the Rational 
DOORS C API’s services to drive the DXL server or its batch emulation.
The programs dxlips, dxlipf and dxlfile (described in “Using the DXL 
server,” on page 17) are examples of Rational DOORS passive link programs; 
their source is in $DOORSHOME/api. Rational DOORS can only reply to their 
messages with core DXL messages.

1. Run the file api2init.dxl, which is in $DOORSHOME/lib/dxl/ example.

2. To start the DXL server using TCP/IP sockets run the DXL shown in 
“Using the DXL server,” on page 17.

3. From a shell, run $DOORSHOME/bin/dxlips “reply” for TCP/IP sockets.

This causes all the headings of the first formal module in the current project to 
be printed in the shell. The definition of reply in api2init.dxl is as follows:

/* Example function used to illustrate the  
DXL server.  
*/
void reply() {  
    ack "reply" 
    Object o 
    string s 
    Module mnull
    for s in current Project do {  
        if (type module s  "Formal") {  
            m = edit(s,false)  
            break  
        }  
    }//for loop
    if (null m)    
        ack "no formal modules"  



Rational DOORS API Manual           47

Example tool to be interfaced to Rational DOORS

    else  
        for o in m do  
            replyAPI "print \"" (o."Object 
                       Heading" "") "\n\"" 
}//reply

The replyAPI function sends a message back to dxlips to be executed as a 
core DXL program.
Source of dxlips.c

/* dxlips.c */ 
/*
 Copyright (c) 1993-2000 Telelogic AB. 
 See Rational DOORS manuals for copying conditions. 
 Copy this file to a different location before 
 modifying it. 
*/
/* 
   Use TCP/IP sockets to connect to DXL server 
   from DXL interaction window execute: 
   evalTop_ "initDXLServer server 5093"  
   to initialize server. 
*/
#include <doors/api.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define DXLDEFPORTNO 5093
#define DXLDEFIPHOST "127.0.0.1"
extern char* getenv();
int main (argc, argv) 
    int argc; 
    char* argv[]; 
{ 
    char* portnos = getenv("DXLPORTNO");  
    /* string of portno */
    char* host = getenv("DXLIPHOST");
    unsigned short portno;
    if (argc < 2) 
        apiError("usage: dxlips \"message\"");
    if (portnos==NULL) 
        portno = DXLDEFPORTNO; 
    else 
        portno = atoi(portnos);
    if (host==NULL) 
        host = DXLDEFIPHOST;
    apiInitLibrary((char*)NULL,(char*)NULL, 
                    (char*)NULL);



Interactive interfacing with a complex external tool

48    Rational DOORS API Manual

    printf("portno = %d, host = %s\n",  
             portno, host);
    apiConnectSock(portno, host);
    apiSend(argv[1]);
    if (apiErrorState == DOORS_API_OK && 
         strcmp(argv[1],"shutdown_")!=0) 
        apiSend("quit_");
    apiFinishLibrary();
    return 0; 
}
/* end of dxlips.c */

It is part of apiSend’s job to wait to see whether Rational DOORS uses 
replyAPI. Refer to “DXL API integration features,” on page 21 for more 
information.

Registering methods

You can make a more useful passive link by registering methods with the 
Rational DOORS API, which can be executed by the reply. This allows a passive 
link program to retrieve data from Rational DOORS and manipulate it. The 
program activeIP.c is the same as dxlips.c except that it has the definition:

BEGIN_FN(myRepFn,1,0)  
    P_(char*,r);  
    END_DECLS;  
    printf("\"%s\" and again \"%s\"\n", r, r);  
END_FN

and the line:
apiInstall("void myReply(string)", myRepFn);

The file api2init.dxl also defines the function reply2, which is the same as 
reply except for the line:

replyAPI "myReply \"" (o."Object Heading") "\"".

Execute:
activeIP "reply2"

to see that data from Rational DOORS can be extracted and manipulated by the 
Rational DOORS passive link program activeIP.
The replyAPI function can present a possible hazard to Rational DOORS if the 
client side of the DXL server is not expecting a reply. For example, replyAPI 
could have been accidentally executed when there is no client currently 
connected. For this reason, a time limit of 20 seconds is given for the client to 
respond; this time limit can be changed with the setAPIClientTimeout 
function.



Rational DOORS API Manual           49

Working with OLE objects

The protocol between clients, the DXL server and Rational DOORS is robust 
against errors in any of the messages. The reply3 function, installed by 
api2init.dxl, deliberately returns a bad message to the DXL client, which 
recovers from the error and prints a message, as does Rational DOORS. To see 
the effect, try the following:

activeIP "reply3"

The reply4 function, installed by api2init.dxl, causes dxlips to execute a 
small script that prints today’s date. To see the effect, try  the following:

dxlips "reply4"

All Rational DOORS passive links should follow closely the example set in this 
section. The interface should consist of a well-defined set of commands 
implemented as DXL functions that are then called by the external tool via 
dxlips (or a similar program). This minimizes the traffic through the IPC 
channel and will lead to a cleaner interface between the tools.

Working with OLE objects
Rational DOORS supports OLE from DXL both as an automation server which 
can implement a Rational DOORS passive link, and as an OLE client which can 
implement a Rational DOORS active link. 
Refer to the DXL Reference Manual for details of these DXL features. 
For further information, reference Rational DOORS’s Microsoft Office import 
and export tools, which provide code examples of these features, and can be 
found using the Library option in the DXL Interaction window.

Listing of tds.c
/* 
 Copyright (c) 1993-2000 Telelogic AB. 
 See Rational DOORS manuals for copying conditions. 
 Copy this file to a different location before 
 modifying it. 
*/
/* This module implements a DXL-like language for 
   TDS. 
   TDS (Toy Database System) serves as an example 
   of how to integrate external tools with Rational DOORS. 
*/
#include <doors/api.h>     /* API services */
#include "tds.h"   /* this file's entry points */
#include "tdsfns.h"        /* the TDS API */
/* start declaring TDS API driven functions */



Interactive interfacing with a complex external tool

50    Rational DOORS API Manual

BEGIN_FN(tdsCreateFn,1,1) 
    P_(char*,name); 
    Table* tab; 
    END_DECLS; 
    tab = tdsCreate(name); 
    RETURN_(tab);  /* return the created table */ 
END_FN
BEGIN_FN(tdsEntryFn,2,1) 
    P_(Table*,tab); 
    P_(char*,key); 
    Entry* e; 
    END_DECLS; 
    e = tdsEntry(tab,key,TRUE); 
    RETURN_(e); 
END_FN
BEGIN_FN(tdsPutFn,2,0) 
    P_(Entry*, e); 
    P_(char*,data); 
    END_DECLS; 
    tdsPut(e,data); 
END_FN
BEGIN_FN(tdsGetFn,2,1) 
    P_(Table*,tab); 
    P_(char*,key); 
    char* data; 
    END_DECLS; 
    data = tdsGet(tab, key); 
    RETURN_(data); 
END_FN
BEGIN_FN(tdsGetKeyFn,1,1) 
    P_(Entry*, e); 
    END_DECLS; 
    RETURN_(e->key); 
END_FN
BEGIN_FN(tdsGetDataFn,1,1) 
    P_(Entry*, e); 
    END_DECLS; 
    RETURN_(e->data); 
END_FN
BEGIN_FN(tdsGetNameFn,1,1) 
    P_(Table*, t); 
    END_DECLS; 
    RETURN_(t->name); 
END_FN
BEGIN_FN(tdsDeleteEntryFn,2,1) 
    P_(Table*,tab); 
    P_(char*,key); 
    int status; 
    END_DECLS; 



Rational DOORS API Manual           51

Listing of tds.c

    status = tdsDeleteEntry(tab,key); 
    RETURN_(status); 
END_FN
BEGIN_FN(tdsDeleteTableFn,1,1) 
    P_(Table*,tab); 
    int status; 
    END_DECLS; 
    status = tdsDeleteTable(tab); 
    RETURN_(status); 
END_FN
BEGIN_FN(tdsInfoFn,0,0) 
    END_DECLS; 
    tdsInfo(); 
END_FN
BEGIN_FOR_DO(tdsDoFn,Table*,tab,Entry*,scan) 
   tdsDo(tab,scan) 
       PROCESS_DO(scan); 
END_FOR_DO
BEGIN_FOR_DO(tdsDoAllFn,Table*,tab,Table*,scan) 
   tdsTabDo(scan) 
       PROCESS_DO(scan); 
END_FOR_DO
/**********************************************
 ** tdsInitAPI
*/
global void tdsInitAPI(void) 
{ 
    tdsInit();
    /* Declare the XTC types for TDS */
    apiParse("struct Table {};  
              struct Entry {};  
               Table All=null;");
    /* Declare Status constants */
    apiParse("const int StatusOK = addr_(%d) ;", 
              StatusOK);
    apiParse("const int StatusBadDeleteEntry = 
              addr_(%d) ;", StatusBadDeleteEntry);
    apiParse("const int StatusBadDeleteTable = 
              addr_(%d) ;", StatusBadDeleteTable);
    /* Declare the API entry points */
    apiInstall("Table create (string)", 
                 tdsCreateFn);
    apiInstall("Entry ::[] (Table, string)", 
                 tdsEntryFn);
    apiInstall("void ::= (Entry, string)", 
                 tdsPutFn);
    apiInstall("string ::[] (Table,string)", 
                 tdsGetFn);



Interactive interfacing with a complex external tool

52    Rational DOORS API Manual

    apiInstall("string key (Entry)", 
                 tdsGetKeyFn);
    apiInstall("string data (Entry)", 
                 tdsGetDataFn);
    apiInstall("string ::* (Entry)", 
                 tdsGetDataFn);
    apiInstall("string name (Table)", 
                 tdsGetNameFn);
    apiInstall("int delete (Table,string)", 
                 tdsDeleteEntryFn);
    apiInstall("int delete (Table)", 
                 tdsDeleteTableFn);
    apiInstall("void info ()", tdsInfoFn);
    apiInstall("void ::do (Entry&, Table, void)", 
                 tdsDoFn);
    apiInstall("void ::do (Table&, Table, void)", 
                 tdsDoAllFn);
}  /* tdsInitAPI */
/* 
  tdsFinishAPI 
*/
global void tdsFinishAPI(void) 
{ 
    tdsFinish(); 
}  /* tdsFinishAPI */



Rational DOORS API Manual     53

7 Contacting support
This chapter contains the following topics:

• Contacting IBM Rational Software Support

• Prerequisites

• Submitting problems

• Other information

Contacting IBM Rational Software Support
If the self-help resources have not provided a resolution to your problem, you 
can contact IBM Rational Software Support for assistance in resolving product 
issues.

Note  If you are a heritage Telelogic customer, you can go to 
http://support.telelogic.com/toolbar and download the 
IBM Rational Telelogic Software Support browser toolbar. 
This toolbar helps simplify the transition to the IBM Rational 
Telelogic product online resources. Also, a single reference 
site for all IBM Rational Telelogic support resources is 
located at 
http://www.ibm.com/software/rational/support/telelogic/

Prerequisites
To submit your problem to IBM Rational Software Support, you must have an 
active Passport Advantage® software maintenance agreement. Passport 
Advantage is the IBM comprehensive software licensing and software 
maintenance (product upgrades and technical support) offering. You can enroll 
online in Passport Advantage from 
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html.

• To learn more about Passport Advantage, visit the Passport Advantage 
FAQs at 
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_
quickguides.html.

• For further assistance, contact your IBM representative.

To submit your problem online (from the IBM Web site) to IBM Rational 
Software Support, you must additionally:



Contacting support

54    Rational DOORS API Manual

• Be a registered user on the IBM Rational Software Support Web site. For 
details about registering, go to 
http://www-01.ibm.com/software/support/.

• Be listed as an authorized caller in the service request tool.

Submitting problems
To submit your problem to IBM Rational Software Support:

1. Determine the business impact of your problem. When you report a 
problem to IBM, you are asked to supply a severity level. Therefore, you 
need to understand and assess the business impact of the problem that you 
are reporting.

Use the following table to determine the severity level.

2. Describe your problem and gather background information, When 
describing a problem to IBM, be as specific as possible. Include all relevant 
background information so that IBM Rational Software Support specialists 
can help you solve the problem efficiently. To save time, know the answers 
to these questions:

• What software versions were you running when the problem occurred?

To determine the exact product name and version, use the option 
applicable to you: 

Severity Description

1 The problem has a critical business impact: You are unable to 
use the program, resulting in a critical impact on operations. 
This condition requires an immediate solution.

2 This problem has a significant business impact: The program 
is usable, but it is severely limited.

3 The problem has some business impact: The program is 
usable, but less significant features (not critical to 
operations) are unavailable.

 4 The problem has minimal business impact: The problem 
causes little impact on operations or a reasonable 
circumvention to the problem was implemented.



Rational DOORS API Manual           55

Submitting problems

• Start the IBM Installation Manager and select File > View 
Installed Packages. Expand a package group and select a package 
to see the package name and version number. 

• Start your product, and click Help > About to see the offering 
name and version number. 

• What is your operating system and version number (including any 
service packs or patches)? 

• Do you have logs, traces, and messages that are related to the problem 
symptoms? 

• Can you recreate the problem? If so, what steps do you perform to 
recreate the problem? 

• Did you make any changes to the system? For example, did you make 
changes to the hardware, operating system, networking software, or 
other system components? 

• Are you currently using a workaround for the problem? If so, be 
prepared to describe the workaround when you report the problem.

3. Submit your problem to IBM Rational Software Support. You can submit 
your problem to IBM Rational Software Support in the following ways:

• Online: Go to the IBM Rational Software Support Web site at 
https://www.ibm.com/software/rational/support/ and in the Rational 
support task navigator, click Open Service Request. Select the 
electronic problem reporting tool, and open a Problem Management 
Record (PMR), describing the problem accurately in your own words.

For more information about opening a service request, go to 
http://www.ibm.com/software/support/help.html

You can also open an online service request using the IBM Support 
Assistant. For more information, go to 
http://www-01.ibm.com/software/support/isa/faq.html.

• By phone: For the phone number to call in your country or region, go 
to the IBM directory of worldwide contacts at 
http://www.ibm.com/planetwide/ and click the name of your country 
or geographic region. 

• Through your IBM Representative: If you cannot access IBM 
Rational Software Support online or by phone, contact your IBM 
Representative. If necessary, your IBM Representative can open a 
service request for you. You can find complete contact information for 
each country at http://www.ibm.com/planetwide/.



Contacting support

56    Rational DOORS API Manual

If the problem you submit is for a software defect or for missing or inaccurate 
documentation, IBM Rational Software Support creates an Authorized Program 
Analysis Report (APAR). The APAR describes the problem in detail. Whenever 
possible, IBM Rational Software Support provides a workaround that you can 
implement until the APAR is resolved and a fix is delivered. IBM publishes 
resolved APARs on the IBM Rational Software Support Web site daily, so that 
other users who experience the same problem can benefit from the same 
resolution.

Other information
For Rational software product news, events, and other information, visit the 
IBM Rational Software Web site on http://www.ibm.com/software/rational/.



Rational DOORS API Manual     57

8 Notices
© Copyright IBM Corporation 1993, 2009
US Government Users Restricted Rights - Use, duplication, or disclosure 
restricted by GSA ADP Schedule Contract with IBM Corp.
This information was developed for products and services offered in the U.S.A. 
IBM may not offer the products, services, or features discussed in this document 
in other countries. Consult your local IBM representative for information on the 
products and services currently available in your area. Any reference to an IBM 
product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, 
program, or service that does not infringe any IBM intellectual property right 
may be used instead. However, it is the user’s responsibility to evaluate and verify 
the operation of any non-IBM product, program, or service. 
IBM may have patents or pending patent applications covering subject matter 
described in this document. The furnishing of this document does not grant you 
any license to these patents. You can send written license inquiries to:  
 
IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY 10504-1785 
U.S.A.  
 
For license inquiries regarding double-byte character set (DBCS) information, 
contact the IBM Intellectual Property Department in your country or send 
written inquiries to:  
 
IBM World Trade Asia Corporation 
Licensing 
2-31 Roppongi 3-chome, Minato-ku 
Tokyo 106-0032, Japan  
 
The following paragraph does not apply to the United Kingdom or any 
other country where such provisions are inconsistent with local law: 
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES 
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 



Notices

58    Rational DOORS API Manual

THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
Some states do not allow disclaimer of express or implied warranties in certain 
transactions. Therefore, this statement may not apply to you. 
This information could include technical inaccuracies or typographical errors. 
Changes are periodically made to the information herein; these changes will be 
incorporated in new editions of the publication. IBM may make improvements 
and/or changes in the product(s) and/or the program(s) described in this 
publication at any time without notice. 
Any references in this information to non-IBM Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of those 
Web sites. The materials at those Web sites are not part of the materials for this 
IBM product and use of those Web sites is at your own risk. 
IBM may use or distribute any of the information you supply in any way it 
believes appropriate without incurring any obligation to you. 
Licensees of this program who wish to have information about it for the 
purpose of enabling: (i) the exchange of information between independently 
created programs and other programs (including this one) and (ii) the mutual use 
of the information which has been exchanged, should contact:  
 
Intellectual Property Dept. for Rational Software 
IBM Corporation 
1 Rogers Street 
Cambridge, Massachusetts 02142 
U.S.A. 
 
Such information may be available, subject to appropriate terms and conditions, 
including in some cases, payment of a fee. 
The licensed program described in this document and all licensed material 
available for it are provided by IBM under terms of the IBM Customer 
Agreement, IBM International Program License Agreement or any equivalent 
agreement between us. 
Any performance data contained herein was determined in a controlled 
environment. Therefore, the results obtained in other operating environments 
may vary significantly. Some measurements may have been made on 
development-level systems and there is no guarantee that these measurements 
will be the same on generally available systems. Furthermore, some 
measurements may have been estimated through extrapolation. Actual results 



Rational DOORS API Manual           59

Trademarks

may vary. Users of this document should verify the applicable data for their 
specific environment. 
Information concerning non-IBM products was obtained from the suppliers of 
those products, their published announcements or other publicly available 
sources. IBM has not tested those products and cannot confirm the accuracy of 
performance, compatibility or any other claims related to non-IBM products. 
Questions on the capabilities of non-IBM products should be addressed to the 
suppliers of those products.
This information contains examples of data and reports used in daily business 
operations. To illustrate them as completely as possible, the examples include the 
names of individuals, companies, brands, and products. All of these names are 
fictitious and any similarity to the names and addresses used by an actual 
business enterprise is entirely coincidental. 
If you are viewing this information softcopy, the photographs and color 
illustrations may not appear. 
Additional legal notices are described in the legal_information.html file that is 
included in your software installation.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of 
International Business Machines Corp., registered in many jurisdictions 
worldwide. Other product and service names might be trademarks of IBM or 
other companies. A current list of IBM trademarks is available on the Web at 
www.ibm.com/legal/copytrade.html.
Microsoft and Windows are trademarks of Microsoft Corporation in the United 
States, other countries, or both.
Other company, product or service names may be trademarks or service marks 
of others.



Notices

60    Rational DOORS API Manual


	Table of contents
	About this manual
	Typographical conventions
	Terminology
	Related Documentation

	Introduction
	Rational DOORS APIs
	Rational DOORS and external data
	Strings

	The Rational DOORS C API
	About the API
	Object and library files
	Extending the Rational DOORS C API
	New DXL types
	apiInstall
	BEGIN_FN
	P_
	END_DECLS
	RETURN_
	END_FN
	BEGIN_FOR_DO
	PROCESS_DO
	END_FOR_DO
	Example

	Rational DOORS C API entry points
	apiError
	apiWarn
	apiMainProg
	apiInitLibrary
	apiFinishLibrary
	apiParse
	apiConnectSock
	apiSend
	apiSendTimesout
	apiSendFile
	apiExitOnError
	apiQuietError
	apiGetErrorState
	apiGetIPC
	apiSetIPC
	apiDeleteIPC


	Using the DXL server
	About the DXL server interface
	Starting the server
	dxlips
	dxlipf
	system

	Using the DXL server in batch mode

	DXL API integration features
	General functions
	addr_
	eval_
	return_
	evalTop_
	initDXLServer
	replyAPI
	setAPIClientTimeout
	ipcHostname

	Interprocess communications
	server
	client
	accept
	send
	recv

	DXL contexts
	Impact on triggers


	Interactive interfacing with a complex external tool
	Integrating Rational DOORS with user tools
	Integrating Rational DOORS using Rational DOORS URLs
	Examples of Rational DOORS URLs

	Example tool to be interfaced to Rational DOORS
	C API for example
	Making a language like DXL
	Compiling TXL with Microsoft Developer Studio
	Completing the Rational DOORS active link
	Rational DOORS passive link

	Working with OLE objects
	Listing of tds.c

	Contacting support
	Contacting IBM Rational Software Support
	Prerequisites
	Submitting problems
	Other information

	Notices
	Trademarks


