

© Copyright IBM Corp. 2004, 2009

1|

Data Collection Guide

© Copyright IBM Corp. 2004, 2009

2|

Before using this information, be sure to read the general information under the “Notices” section
on page 116.

This edition applies to VERSION 4.0, Rational Dashboard and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright 2004, 2009

U.S. Government Users Restricted Rights - Use, duplication, or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

© Copyright IBM Corp. 2004, 2009

3|

TABLE OF CONTENTS

Table of Contents
1. Introduction .. 5

1.1. Overview ... 5

1.2. What is Measurement? .. 5

1.3. IBM Rational Dashboard High Level Features .. 6

2. Terminology ... 7

3. Overview of the Collection Process ... 13

3.1. The Big Picture .. 13

3.1.1. Control Flow in the Collection Process ... 15

3.1.2. Data Flow in the Collection Process ... 16

3.2. Components of Collection .. 17

3.2.1. Interfaces – What To Collect and How To Process 17

3.2.2. Databases – Where to Store Data .. 26

3.2.3. Schedules - When to Collect ... 27

3.3. Item List, Item Details and Units .. 28

3.3.1. Overview of Items Concept .. 28

3.3.2. The Item List ... 29

3.3.3. Item Data .. 32

3.4. Overview of Queries and Graphs ... 34

3.5. Writing Queries .. 34

3.5.1. Sample Queries ... 35

3.5.2. Query Tags .. 36

3.5.3. Using Multi-Series Queries ... 38

3.5.4. Setting Up a Snapshot Grid to Show Tabular Data 46

3.5.5. Understanding the !FIELD! Tag in the Collector 51

3.5.6. Understanding the !SETTAG! in the Collector 52

4. Collector Reference and Commands ... 58

4.1. Menu Command Reference ... 58

4.1.1. File Menu .. 58

4.1.2. Collection Menu ... 60

4.1.3. Sources Menu ... 60

4.1.4. Tools Menu ... 62

4.2. Command Line Reference .. 62

4.2.1. Command Line Parameters .. 63

4.2.2. Collecting All Sources for Current Date .. 64

4.2.3. Collecting One Source for a Past Date .. 64

4.2.4. Collecting One Source for Multiple Dates in the Past 65

4.3. Technical References .. 65

4.3.1. Collector List File Format .. 66

© Copyright IBM Corp. 2004, 2009

4|

4.3.2. Collector Connection List Format ... 66

4.3.3. Replacement Tags in GetDetails Query .. 68

4.3.4. Date-Stamped File Names .. 69

5. Collector Operations ... 71

5.1. Configuring the Web Services .. 71

5.2. Running a Collection ... 71

5.3. Testing a Data Source ... 74

5.4. Populating a Basic Unit from The Library ... 76

5.5. Configuring and Editing the Organizational Tree 77

5.6. Configuring Data Sources ... 79

5.6.1. Pre-Requisites for Data Sources ... 79

5.6.2. Configuring a CSV Source ... 80

5.6.3. Configuring an HP Quality Center Source .. 82

5.6.4. Configuring an IBM Rational ClearQuest Source 82

5.6.5. Configuring a Microsoft Access Source .. 84

5.6.6. Configuring a Microsoft Excel Source ... 85

5.6.7. Configuring a Microsoft Project Desktop 2003 Source 87

5.6.8. Configuring a Microsoft Project Server 2003 Source 88

5.6.9. Configuring a Microsoft Project Server 2007 Source 89

5.6.10. Configuring a Multi-Source SQL Source ... 89

5.6.11. Configuring an ODBC Database Source .. 90

5.6.12. Configuring an Oracle SQL Database Source 90

5.6.13. Configuring a IBM Rational Change Source 91

5.6.14. Configuring a IBM Rational DOORS Source 92

5.6.15. Configuring a IBM Rational Synergy Source 94

5.6.16. Configuring an XML ADO.NET Source... 95

6. Portal Operations ... 97

6.1. Define a Unit ... 98

6.2. Set the Default Schedule for the Unit .. 100

6.3. Assign Collected Items .. 102

6.3.1. Assign Sub-Tab with By Date Options .. 102

6.3.2. Assign Sub-Tab with By Source Options ... 103

6.4. Assign Information Needs to your Unit .. 106

6.5. Refresh Data within the Unit .. 109

6.6. See Your Graphs ... 111

7. Other Resources ... 112

8. Contact Information .. 113

Notices ... 117

© Copyright IBM Corp. 2004, 2009

5|

1. Introduction

This document provides an overview of data collection using IBM Rational Dashboard.

1.1. Overview

Today’s organizations strive to meet the demands of their market while delivering
quality products in a timely manner. To achieve this end, managers are required to
review an overwhelming and often conflicting volume of reports to meet deadlines.
Without adequate plans and the ability to evaluate the performance of a program or
project against that plan, it would be increasingly difficult to make proper adjustments,
learn from previous mistakes, and ensure that the project meets its ultimate goal and
achieve business success.

IBM Rational Dashboard is a performance measurement application, accessible via a
web browser. It allows executives, software managers, and project managers to keep
track of the development of their applications, their resources, and the delivery of their
products. It provides solutions for measurement and metrics, collects data from
disparate teams and applications, and presents intuitive summary charts of key
information in a single view. This consolidated view allows users to analyze trends, to
manage by exception, and to drill down for more information when necessary.

IBM Rational Dashboard has built-in data collection interfaces for common file formats
(such as CSV and Excel), databases (such as ODBC, Microsoft SQL and Oracle), as well as
commercial applications (such as Microsoft Project, IBM Rational Change, Synergy, and
DOORS). It has the ability to display up-to-date project status information in a graphical
multi-level format from all these applications so that managers can focus on decision
making rather than manually gathering data and compiling reports to ensure the success
of their business.

1.2. What is Measurement?

Measurement is the process used by managers to monitor and control the processes,
resources, and products that are part of their program. The purpose of measurement is
to:

 Characterize (baseline performance)

 Evaluate (actual vs. plan)

 Predict (estimation and prediction)

© Copyright IBM Corp. 2004, 2009

6|

 Improve (process improvement)

Managers need a mechanism to document expectations and plans for key aspects of
their program, have confidence that the product will be delivered on time, and ensure
that past mistakes will not reoccur. Engineering tools do not provide a way to setup a
plan line, evaluate processes against the plan, and do management by exception, which
is why measurement applications like IBM Rational Dashboard are necessary for a
project’s success.

Primary software measurement guidance is provided by ISO/IEC Software Measurement
Processes, DOD PSM Practical Software and Systems Measurement and CMMI. These
processes tell organizations how well they are doing in specific areas. They do not
outline how to do measurement and which measurements must be deployed. They
simply provide an organization with general guidelines in reaching compliance.

IBM Rational Dashboard helps in all process areas of deploying measurement: from
planning to setting up your project accurately to monitoring to controlling. It helps
establish measurement objectives; define measures; data collection procedures;
analysis procedures; collect data; helps analyze and store data and results; and
communicate the results to your team.

1.3. IBM Rational Dashboard High Level Features

IBM Rational Dashboard is a performance measurement application that provides a
number of key features to managers, allowing them to control and monitor their
projects, including:

 Standard items that simplify and speed up the deployment of popular standards
and maturity models

 Automated extraction and analysis of data

 Dashboards based on lifecycle phase, ensuring managers have the most relevant
and up-to-date information

 Delivery of Dashboards to managers using a standard web browser

 Extensive tailoring capabilities to support organizational-specific processes,
products and measurement requirements

 Security features to control access to data

 A set of licensed interfaces for data collection

 Three types of user licenses (executives, managers and administrators)

© Copyright IBM Corp. 2004, 2009

7|

2. Terminology

Organization Tree
The Organization Tree is located on the left side of the main Status Tab. IBM Rational
Dashboard utilizes a single tree for organizing information to provide managers with a
controlled method of accessing data. This Organization Tree contains a hierarchy of
Folders, Sub-folders and Units. Folders can be nested to represent the structure of the
organization and the projects managed. Units represent departments, programs,
projects or any group of resources that needs to be managed.

Folder
A Folder is a hierarchical container in the Organization Tree for Units and other Folders.
When a Folder is selected in the Status Tab, a summary of the status of each Unit
contained within the Folder is displayed. A Folder is typically used to represent a logical
group within the organization (e.g. a department responsible for a number of projects).

Unit
A Unit in the IBM Rational Dashboard correlates to a project. You can create as many
Units as you like and arrange them in the organization tree to form the management
cockpit by which managers can monitor what is important to them. There are two types
of units, basic and summary. Summary units provide a roll-up or aggregation of status
contained in basic units.

Units contain data (Managed Items) collected by managers for a specific purpose.
Managers assign Information Needs (e.g. Requirements Stability) to Units to provide a
pre-defined way to access and display measurement data. Information Needs can be
assigned individually or via a Unit Template (available when the Unit is first created).

Unit Template
Unit Templates provide a quick and easy way to deploy a new Unit re-using common
Information Needs and other Unit properties.

Unit Templates are ideal for projects that need to manage similar information. For
example, if an organization is tracking five projects, with each project collecting the
same data on cost, schedule, and requirements, then an administrator could create a
Unit Template including Information Needs, Attributes, Phases, Roles and a default
Schedule to meet the needs of all of the projects. When creating the Unit associated
with their project a manager can then simply assign the Unit Template thereby ensuring
that data collected for that project is displayed consistently.

© Copyright IBM Corp. 2004, 2009

8|

IBM Rational Dashboard contains several pre-defined Unit Templates, including the
DOORS Template containing Information Needs relevant to requirements management
and IBM Rational Change/Synergy templates containing Information Needs relevant to
change and configuration management. Unit Templates are managed though the Library
Tab.

Form
A form is a set of data, such as a set of risks or actions items, of interest to a manager.
Forms are provided in the Portal to reduce or eliminate the need to store project data in
other locations, such as spreadsheets. A unit may have any number of forms (including
zero) as needed by management policy. Managers may create new form data records
and review them as needed. Each form and form data record has a color-coded status to
speed review and problem resolution.

Item
An Item is a piece of collected data, for example a project schedule file, a risk plan, a
DOORS module or a Synergy release. A Managed Item is an Item that has been assigned
to a Unit. Managed Items support the Information Needs for the Unit and are related to
the sources of collected data through Interfaces. From the Managed Item, you can drill
down to corresponding graphs which show different representations of the information
collected.

Information Need
An Information Need is a collection of Graphs, series, status (current actual, target and
alarm), and measurement guidance that a manager needs to assess one aspect of a
project status. For example, if a manager wanted to control progress of project
requirements, the Information Need would be a collection of graphs, series, and
guidance that shows requirements progress.

Multiple Information Needs can be assigned to a Unit. A typical Unit for a software
project would likely include the following Information Needs: schedule, requirements,
cost, defects, testing, risk, configuration management, software size, and productivity.

IBM Rational Dashboard is shipped with a library of Information Needs and you can also
create your own via the Library Tab.

Dimensions
A Dimension allows status captured in Information Needs to be organized in user-
defined categories. For example, the Information Needs could support three company
standards such as a company management policy, a compliance standard, and a
maturity model level. In this case, there would be three Dimensions corresponding to
each of the three company standards.

© Copyright IBM Corp. 2004, 2009

9|

A Dimension consists of one or more Dimension Elements, where each Element
represents a sub-category of status. In our example, the Dimension “Company
Management Policy” could be created with three Dimension elements (“Quality”,
“Productivity”, and “Product size”). Dimensions and their associated Dimension
Elements are created via the Library Tab.

Dimension Elements are assigned to Information Needs via the Library Tab. Each
Information Need can have one or more Dimension Elements assigned to it. For
example, the Information Need “Requirements Progress” could be assigned the
Dimension Element “Requirements Management” which is part of the “Software CMMI
Maturity Level 2” Dimension. When an Information Need is assigned to a Unit, the
associated Dimensions and Dimension Elements are automatically created within the
unit from the definitions in the Library. Users are able to view Unit status by Information
Need and Dimension Element.

Through Dimensions, IBM Rational Dashboard can support any number of standards,
policy, maturity model, quality model, or compliance documents. For example, a
Dimension can be created for company development policy, ISO-9000, one of the
maturity levels in the SEI’s CMMI, a government regulation, or an industry practice.
Each one of these documents becomes a Dimension, and the major elements, sub-
categories or process areas become a Dimension Element. The Portal then displays the
status provided by the associated Information Needs against the related Dimension and
Dimension Elements.

Graphs
Graphs are defined and associated with Information Needs via the Library Tab. The
predefined Information Needs have a set of associated Graphs which can be used “as is”
or re-configured to meet your requirements. You can also create and associate new
Graphs with existing or new Information Needs.

When a Managed Item is assigned to a Unit, Graphs are automatically created for the
Item based on the Information Needs associated with that Unit.

Users can tailor the appearance of graphs, enter data, or expand the definition of
graphs. The Portal allows users to perform data entry (for manual data entry only) and
change all visual aspects of the graph using the built-in graph formatting pages.

Interface
Interfaces provide instructions for one or more data sets to collect and the fields within
each data set, as well as a set of queries which generate metric/series values. The Portal
includes pre-defined Interfaces (such as Microsoft Project, IBM Rational Doors, IBM

© Copyright IBM Corp. 2004, 2009

10|

Rational Change, and IBM Rational Synergy) which contain data definitions for the
attributes required for the pre-defined Information Needs.

To support tailoring, you can modify existing interfaces or create a new one to match an
interface to the processes and tools in use at your organization. Each Interface has a set
of fields describing what data is to be collected from the (external) application.

Interfaces are managed from the Collection Tab and are intended primarily for those
users responsible for data collection.

GANTT View
The Gantt view provides a compact, color coded status summary of the Items within a
Unit. With the Gantt view, a manager can review the plan and progress for the Unit,
including start date, end date, and status for each Managed Item. This provides a quick
summary of past performance, current status, and future plans.

Phases
Phases are periods between a Unit's start and end date which can be used for labeling
graphs. For example, typical project phases are: Plan, Requirements, Build, Test, and
Deploy. Seeing Phase titles is useful to managers and other stakeholders to indicate
what Phase the Unit is currently in, what Phases have completed, and what Phases are
up coming.

Each Phase has a title, start and end date, where the Phase dates cannot overlap with
another Phase. There is no limit to how many can be created, but practically, five to
seven Phases.

Schedules
Schedules play an important part in defining when data is collected and how it is
displayed. An administrator can create as many schedules as needed by your
organization. A schedule is simply a named collection of periods. Each schedule period
consists of a start date, an end date, and a collect date. The collect date is either the
same as the end date or after. There are two primary uses for schedules: collection and
display.

The Collector uses the collect date for a schedule to determine when to actually collect
item data. For example, if you assign an Excel document (as an item) to a Unit, and that
item uses a weekly schedule, then the Collector will process the Excel data for only one
day of each week regardless of how many times the Collector runs. The specific day
would, in this example, be based on the collect date. So, if you had set all the periods in
the weekly schedule to start on Monday, end on Sunday, and collect on Sunday, the
Collector will collect the Excel data on Sunday.

© Copyright IBM Corp. 2004, 2009

11|

Schedules are also used for displaying data. Each schedule-based graph has a schedule
assigned to it. Event-based graphs don't use schedules. The graph schedule defines the
possible data points for each series in the graph. For example, the most common
application of a schedule is as the X-axis in a run graph. Along the bottom of the run
graph are the periods of the schedule, each period having a data value for each series.
Notice that in a run graph, you can select a date range of the available data to see, for
example, only this year or a rolling date range (e.g. 12 months back and 3 months
forward). The data is still maintained for the entire schedule, though some of it is hidden
based on the date range.

Status
The status of Units, Items, Dimensions, and Graphs are all driven by the Alarm series
assigned to Graphs. All status in Portal is based on the worst-case status of Alarms, the
period of performance, and the alarm color ranking.

Period of Performance
The last completed period in the schedule is used to determine Status. The Alarm series
on a graph typically displays the full history of Status but only the last completed period
is used for the Unit, Item, Dimension, or Graph status indicators. For example: A Graph
with a monthly schedule is reporting from January 1, 2006 to December 1, 2006. The
current date is May 15, 2006. Even if data has already been inserted for May, the last
completed period is April. The alarm color reported in April is the status that will be
used.

Worst-case
Status in IBM Rational Dashboard is reported using the worst-case value, starting at the
Graph level and rolling up to the Unit.

Some Graphs may have more than one Alarm series. In this case, an option is available
to use a specified Alarm series to report Status or to use the worst-case indicator across
all Alarm series on the Graph. For example: a Graph may have one Alarm series that
reports the status of the actual data compared to the plan data. Additional Alarm series
could be added to report missing data, a value out of range or a data pattern. These
additional Alarm series may not directly indicate status and would not be used in
reporting.

Alarm Color Ranking
Alarm colors ranking determine a value or the “good” or “bad” worth of a color. To
quickly inform users the current health of their project, the status colors are displayed
on the GANTT, Unit, Item, Dimension, and Graph views as well as an individual graphs as
alarm series.

© Copyright IBM Corp. 2004, 2009

12|

Alerts
Alerts are the mechanism for notifying a user that something they are interested in has
changed. Alerts help mangers administer the system and manage their projects. An alert
is a notification that explains what happened and includes a URL to go see, fix, and/or
review an event. Alerts save time by pin-pointing problem areas. There are two parts to
the alert system: Alert Registration and Alert Notification.

An Alert Registration is an indication that a user wants to see a specific Alert. A user
selects one of the available Alert Event Types, along with any parameters, and adds it to
their list of Registrations. The application then keeps track of the events that each user
has registered for and generates Alert Notifications when the user clicks the process
button.

The Alert Notification List is a table of Alerts that have occurred and that are ready for
review by the user. Users can view individual Alerts by clicking on the Alert in the Alert
Notification List. Once an Alert is selected, the information regarding the alert will
display below. Five descriptive fields are displayed to inform the user why the alert was
triggered:

 Source - displays the collector that was used for the collection.

 Event - displays the alert event.

 Date/Time - indicates when the failure took place.

 URL - displays the URL that failed.

 Description - details the reason the alert was triggered.

The user may clear an Alert to remove it from the list.

© Copyright IBM Corp. 2004, 2009

13|

3. Overview of the Collection Process

Data collection is one of the key aspects of the measurement process. Configuring and
monitoring data collection involves a number of concepts explained in this section. In
IBM Rational Dashboard, collection tasks are performed in the Collector, a Windows
application, and in the Portal.

3.1. The Big Picture

In starting to understand collection, let’s first consider how data “naturally” exists in a
data source. In almost all cases, data is grouped logically into sets. For example, with
Microsoft Project Server, the sets of data are called schedules. In IBM Rational Doors
they are called “modules”. In defect tools, the sets might be called “releases”. In IBM
Rational Dashboard, we generally call these “items”. An item is a set of data which can
be identified in an external data source. From the previous examples, a project
schedule, a requirements module and a software release are all examples of items.

Both the Collector and Portal rely on this concept of items. There are numerous tools
and functionality that automates handling items and the data that is contained within
an item. The Collector is responsible for collecting items, and the Portal is responsible
for assigning items to units and for updating graphs which are attached to items. The
general flow of an item plus associated data is shown in the following figure.

Using the Collector, a user creates a “data source” which allows the Collector to utilize
the appropriate API/interfacing mechanism to retrieve a list of items. The Collector then
sends this list of items to the Portal. Using the Portal, a user assigns an item to a unit
(remember that a unit represents a project or program). From this point on, when the
Collector collects data from that data source, it will collect data for the item according
to the schedule that was defined in the Portal. Using this general approach, IBM
Rational Dashboard is able to collect data from external tools and update graphs on a
periodic basis.

© Copyright IBM Corp. 2004, 2009

14|

From the above figure, notice that in addition to the “Item + Data” in the Portal, there is
also an “Information Need” within each unit. In addition to the concept of an “item”,
IBM Rational Dashboard also uses the concept of an “information need” to represent
the visual data that should be displayed in a Unit. For example, the Library in the Portal
might contain an information need called “Requirements Volatility” that contains graphs
and indicators that aid in tracking and monitoring the volatility of project requirements.

In the Portal, when a user assigns an item to a unit, the Portal will determine whether
there are any information needs which have been configured for that kind of item. The
Portal can determine this because the Collector actually tags each item with the type of
interface that the item was collected from. When the item is assigned, the Portal checks
to see if any information needs have been configured for that interface. If there are,
then the Portal creates the graphs defined for that information need within the unit
AND wires up the graphs to the item so that live data is shown in the graph.

The relationship between information needs and interfaces is shown in the following
figure.

© Copyright IBM Corp. 2004, 2009

15|

This subsection describes how the collection processed is controlled. “Control” means
the mechanisms that determine which external data sources are used, and which
objects in IBM Rational Dashboard are involved in the collection process. The concept
of “control” also involves deciding when to collect data and for which objects to collect
data.

Control flow involves the following steps:

1. The users runs the Collector to perform data collection process by selecting one
or more data sources to run and selecting a date to be used as the collection
date.

2. The Collector requests from the Portal the interface associated with the selected
data source. This step ensures that the Collector knows the required fields to
collect for the selected data source.

3. The Collector initializes the selected data source(s), validating parameters and
checking the system configuration for required components and files (when
possible).

4. The Collector requests that the selected data source connect to the external
application and retrieve a list of containers and items. (Note: some external
applications do not support the concept of containers.) This is the “current list
of items.”

5. The Collector requests from the Portal a list of items that have been previously
(this is the “previous list of items”) found for the associated data source. This list
indicates contains all items and identifies those items that have a schedule
period where the period collect date matches the selected collect date.

6. The Collector compares the current list of items to the previous list of items. The
Collector then determines which of the current list of items are new, that is,
have not been found/collected before.

3.1.1. Control Flow in the Collection Process

© Copyright IBM Corp. 2004, 2009

16|

7. The Collector then builds a list of items to be collected, which contains new
items and those that have a schedule period whose collection date matches the
selected collect date.

8. For each item in the list of items to be collected, the Collector requests that the
selected data source connect to the external application and collect data for the
fields specified in the interface. The Collector generates whatever script or
interface mechanism is required to perform this task.

9. For each item in the list of items to be collected, the Collector sends to the Portal
the data for the associated item.

10. The Collector requests that the Portal perform a data refresh of all units that
contain items that were collected (i.e. contained in the list of items to be
collected). The Portal performs a refresh for the selected collection date.

11. The Collector sends the Portal a run log that identifies the data source(s)
collected (in case there was more than one) and summary information about the
items and data found during the collection, as well as any errors encountered.

12. The Portal builds a list of units that use each item sent by the Collector, and
refreshes the graphs which use those items. The Portal saves all refreshed data.

This subsection describes the flow of data through the process of collection.

Data flow involves the following steps:

1. Each interface in the Portal Collection tab contains a definition of which
transform database will be used to store data, and a list of field sets that define
a table (in the transform database), attributes/fields in the external application
and the name of a transform table field to store the attributes. Notice that the
interface definition

2. As the Collector is run and performs the collection process, it returns a list of
items that were found from each data source. This list is shown in the assign sub-
tab of the Status page where each item is assigned to one or more basic units
(which represent projects or programs).

3. In the Status tab, the Portal is used to assign a schedule to each item assigned to
a unit. If the unit is using “basic scheduling mode, then all items and graphs are
using the same schedule. If the unit is using advanced schedule mode, then each
item and graph could have a different schedule.

4. As the Collector obtains a list of items for each data source, and then collects
data for each one, it forwards the data to Web Services after each item is
collected.

3.1.2. Data Flow in the Collection Process

© Copyright IBM Corp. 2004, 2009

17|

5. For each item from the Collector, the Web Services process the data from the
Collector row by row. The Web Services validate the connection information for
the transform database and opens a connection to the associated transform
database.

6. The Web Services uses the definition of the associated Interface (from the
Portal) to map each attribute/field in the data set to a table field in the
transform database. The Web Services coerces the data type in the
attribute/field into that of the transform database table field. The Web Services
also inserts default values when a null value is detected in the data.

7. The Collector then requests that the Web Services performs a data refresh for all
affected items, which causes the Web Services to open each affected basic unit
and refresh the data in the order that was specified in the Unit Properties.
Refresh includes evaluating and running the queries, then the equations in data
series, then any region equations and then finally the equations in alarm series.

3.2. Components of Collection

An interface describes what data to collect, where to store the collected data and how
to analyze (i.e. query) the stored data in order to generate one or more data points.
Each interface is associated with an external application or file format, called an
interface type, such as Microsoft Project, IBM Rational Doors or a set of CSV files.

The main communication between the Portal and the Collector is defined by Interfaces.
An Interface essentially tells the collector what to collect and how to use the
information once it is collected. You create an interface for each external application
you’re using and for each variation of fields within the same external application.

For example, in DOORS, different projects may be using differently structured DOORS
modules to capture requirements (e.g. different attributes, types or values). These
projects could require different Interfaces to support the same Information Need (e.g.
Requirements Progress).

Before data can be collected, there must be an Interface describing the data to be
collected that can be provided for to the Collector. The Collector reads the interface
definition, generates the appropriate integration, validates that the data is available and
then collects data from the external application. This mechanism results in not having
to perform any script or software development in order to gather data for the
measurement process.

3.2.1. Interfaces – What To Collect and How To Process

© Copyright IBM Corp. 2004, 2009

18|

More information on how interfaces are used is contained in the next section.

3.2.1.1. General Properties of the Interface

Each interface contains the following general properties.

Name description

Title a unique name that identifies the interface within the Portal

interface type indicates the type of external application, database or file format
that this interface will be used to process data

database server selects a SQL database (defined on the Admin tab) where data will
be stored. Notice that the table within the selected database is
specified in each field set (since there may be more than one field
set within an interface)

The interface type must be selected from a list of available types within the Portal. The
list of available interface types is read-only and cannot be modified except by update of
the Portal and Collector software. New releases often contain new interface types, so
check with the support site for new/modified interface types.

To simplify creating a new interface, the Portal allows you to copy the field sets, fields
and queries from an existing interface that you select. When you copy an existing
interface, all the field sets, fields and queries that exist in the current interface are
deleted and the new ones created from the selected interface. Some comments on
using the copy interface:

 Before using the copy command, you should select the interface type and save
the interface.

 You cannot change an interface type after the initial save, but you can use the
copy command to copy one interface into another one of a different type.

3.2.1.2. Overview of Field Sets

The Field Set defines what source attributes or fields are to be collected and where the
resulting data is stored. The field set consists of the following:

 A title

 A database table where the data for this field set will be stored

 A replacement tag

 A list of fields

© Copyright IBM Corp. 2004, 2009

19|

The interface provides the database server and the table name is defined in the field
set. Each field set should use a different database table name to ensure that data is not
combined. When the interface is saved (and the “add” and “update” checkboxes are
selected), the Portal will create the specified field set table, and then verify that each
field in the list of fields.

The field set definition is used by the Collector when collecting data from a data source.
For example, you may decide to collect field1, field2 and field3 and store this data in
table called ‘Defects’. In this case, the field set could be called “Defect Set”, the table
“Defects” and there would be three fields defined in the field set.

An interface may contain more than one field set. The purpose of having multiple field
sets is to allow the collection of multiple sets of data from the same source. For
example, you would define two field sets to collect both cost and resource data from
Microsoft project, or defect and workspace data from IBM Rational Synergy. The
Collector will collect as many sets of data for each interface as defined by the number of
field sets.

3.2.1.3. Overview of a Field Set Parameter Replacement Tag

Each field set in an interface has an optional parameter replacement tag, which can save
a text string. The parameter replacement tag is a mechanism to pass data from the
portal to the collector at collection run time. The use of this tag is optional -- many field
sets do not use them. When the parameter replacement tag is used, the value set in the
interface is passed to the Collector which inserts the parameter replacement tag text
into the ‘Get Details SQL’ field in place of the !SETTAG! reserved word. A different
parameter replacement tag can be entered for each field set in an interface.

For example, the parameter replacement tag is used with a IBM Rational Synergy
interface to differentiate between the ccm queries used for each of the five field sets.
When the Collector collects for a IBM Rational Synergy data source, it will process each
one of the five sets individually. When the Collector gets the details for the first field
set, it replaces !SETTAG!, saved in the ‘Get Details SQL’ field, with the parameter
replacement tag text for the first IBM Rational Synergy field set. When the Collector
gets the details for the second field set, it replaces !SETTAG! with the parameter
replacement tag text for the second IBM Rational Synergy field set. It proceeds in this
manner until all five field sets for the interface have been processed.

The parameter replacement tag is also beneficial for other tool types where it is
necessary to collect multiple sets of information from the same database.

© Copyright IBM Corp. 2004, 2009

20|

3.2.1.4. Overview of a Field

Each field set consists of one or more fields. The field performs three purposes, as
follows:

1. Identifies the name of an attribute, field or common in an external application
that is required for data collection

2. Describes the data type and validation criteria for the field
3. Identifies a database table column (in an IBM Rational Dashboard transform

database) where this field is to be stored

Each field that you create will be extracted from an external application (unless the “Do
not collect?” option is selected, which is described below). The source attribute name
must exactly match the name given to the attribute in the external application. For
example, if the field in Microsoft Project Server 2003 is called “task_act_start”, then this
field must be defined the same. In IBM Rational Doors for example, some object
attributes have spaces in the name, such as “Object Heading” – the field in IBM Rational
Dashboard should be entered with the embedded space. Do not use leading or trailing
spaces or other white space. The order in which the fields are defined does not matter.

Each field also contains a table field name. This is the name of the SQL table field where
the resulting data will be stored. Each field in the external application is stored in a table
field whose name is specified here. The table field name allows you to use more
meaningful or descriptive names (instead of the name used by the external application)
In addition, the table field name insulates your queries from name changes in the
external application, since all the queries are written against the table field name and
not the external attribute names.

Using the “null” option controls whether the transform database table will be defined to
allow a null value or not. If a null value is not allowed, then the external application
must provide a value or you must select the option to provide a default value. If the
value from the external application is null and no default is provided, then the entire
record (that is, the data for all fields) will fail when it is inserted.

The field contains an option for “Do not collect?” – this option is used to define and
validate your interface, fields and queries in manageable pieces. For example, you
might define all the fields in your external application and then set all but two of them
to “Do not collect?”. Once you have validated the collection of data and checked the
queries, you could turn on other fields using the “Do not collect?” option. For example,
you might then work on the date fields in your external application. By using this flag,
you can methodically work through all the aspects of an integration.

© Copyright IBM Corp. 2004, 2009

21|

A field set with no fields is simply a place-holder. If this field set is run by the Collector,
no data will be collected. Except in initial setup, you should define one or more fields in
a field set.

When the interface is saved (using the “Save” button at the bottom left of the page, IBM
Rational Dashboard will make sure that the fields in the interface are contained in the
transform database.

3.2.1.5. Interface Queries

In addition to fields, each interface contains a set of queries. There is one set of queries
for all field sets and fields in the interface. An interface query defines the processing
needed to generate a data point. A query is the first opportunity in the Portal to analyze
data and generate a data point.

To allow the rules for generating a data point to be modified, queries use the SQL
language. SQL is a fairly simple language to use and provides excellent capabilities for
data analysis. Also, the Portal provides a query builder that helps develop basic SQL
queries, and also an editor for writing complex SQL queries.

There are two types of queries, described in the following table.

Type Purpose

Single series Generates a data point in a schedule based graph

 Generates a set of records in a snapshot grid

Multi series Generates a set of series (dynamically) based on the contents of the data,
and then generates a data point for each series

During data processing, Web Services will automatically execute the queries that are
associated with each interface. For example, the Collector finds a list of items from an
interface and sends them to the Portal. An administrator will assign that item to a unit.
In the Unit, the information needs associated with the item contain graphs whose series
are queries. Once this set of assignments is made (items to a unit, and queries to an
interface), IBM Rational Dashboard takes care of running the queries automatically as
new item data is collected.

© Copyright IBM Corp. 2004, 2009

22|

3.2.1.6. Query Builder

The query builder allows you to quickly and easily build queries that have a fairly basic
definition. As shown below, the Edit Query page provides various selectable options to
build a SQL query statement.

The first line, “1 Data from:”, displays the name of the table in the first field set in the
interface.

The second line, “2 Result is”, allows you to specify whether the records resulting from
the SQL query should be the count of the records, or the sum of a selected field.

The “count” option is the most common, where you are interested in counting the
number of data records that match a set of filter criteria (in SQL these appear in the
“WHERE” clause). When you select “count”, the resulting value is the number of
records that match.

The “sum” option is used when the value you want is the sum of one of the fields in
your data set. You create needed filter criteria (to select the appropriate records) and

© Copyright IBM Corp. 2004, 2009

23|

the “sum” a single field to create the resulting value. For example, you could apply the
“sum” option to the field “planned_hours” to generate the total number of planned
hours for a period. If you need to sum more than one field, you must use the Query Edit
sub-tab and enter the SQL in by hand.

The third line, “3 Filters are:”, lets you add common filters to the SQL query.

The option “the current item” adds a WHERE clause term to the SQL statement that
selects only records that were collected from one item, the item assigned to the current
unit.
The option “the current period” adds a WHERE clause term to the SQL statement that
selects only the records that were collected during one collection period.

The “4 With terms:” section allows you to add additional terms tot eh SQL WHERE
CLAUSE using the “AND” operator. To add a term, you select a field from the drop down
titled “Add a new term”. Then, you select a comparison operator and provide a value. A
value can be provided by either entering a value into the edit box either or by selecting
a tag and then pressing the “Insert” button. To place the new term into the query, press
the “Add” button on the left.

To use an “OR” operator, you must use the Query Edit sub-tab.

© Copyright IBM Corp. 2004, 2009

24|

3.2.1.7. Query Edit Page

The Query Edit page, accessible from the Query Edit sub-tab, allows you to directly enter
or modify the SQL for an interface query. The figure below shows the Query Edit sub-tab
for the query created in the Query Builder.

3.2.1.8. Query Test Page

The Query Test page allows you to test an interface query, and to explore the database
table used by the interface. In order to test a query, the query should be run against a
table that contains data. To get actual data, you must select a unit and item that uses
the same interface that contains the selected query. As shown in the screen below, the
Test Query sub-tab requires that you select a unit and item before trying to test the
query.

© Copyright IBM Corp. 2004, 2009

25|

Once you have pressed the “Run” button, the query test page is shown, as depicted
below. The buttons on the top left labeled “Show” allow you to explore the data that is
in the specified table. These buttons help you see what data was collected, for which
dates and items and which collectors collected the data. These buttons save you time
when testing or debugging a query.

Notice that all the common query tags are shown in two columns on the left, along with
the original SQL. You may modify any of the tag values by simply changing the
appropriate edit box. To see the original query with tags replaced, you must press the

© Copyright IBM Corp. 2004, 2009

26|

“Generate” button. This creates a SQL statement where all tags have been replaced.
The figure below shows the query with the tags replaced.

Then, you can press the “Run” button to actually run the query. The results are shown
on the “results” sub-tab, either as a single record in the case of a query with a
“count(*)” or “sum(field)” term, or a data table in the case of a query that returns
records such as a query for a snapshot grid.

Databases are used to store the data required for the Portal and Web Services. There
are two default IBM Rational Dashboard databases:

1. Portal database
2. Transform database

A portal database stores the data needed to run the Portal and Web Services, such as
accounts, units, security, alerts, graphs and processed graph data. There should only be
one Portal database for each IBM Rational Dashboard installation. When using a Web
Farm, multiple IBM Rational Dashboard Portal servers should share the same Portal
database.

3.2.2. Databases – Where to Store Data

© Copyright IBM Corp. 2004, 2009

27|

A transform database acts as a data mart, storing data collected from external
applications by the Collector. The transform database is used by the Portal as its source
of data when performing data calculations or analysis. For example, when using a Defect
Growth information need, collected defect data is stored in a transform database, which
is then counted to construct (for example) the number of new defects during the last
month. The resulting “counted” data is stored in a portal database.

The structure of a Transform database is maintained by the Portal. As you define data in
the Portal (by adding fields to interfaces for example), tables and fields are
automatically added, modified or dropped from the Transform database. You can turn
off this feature in the Portal user interface if you want to maintain the Transform
database manually.

You may define more than one transform database to separate data based on any
appropriate factors, including capacity, performance or security. Initially, you should use
just one transform database. Over time, you can add transform databases. The only
limitation of using multiple transform databases is that you cannot combine data which
resides in different transform databases, unless you manually create Views.

Schedules are important in determining when data is going to be collected from a
source. You may create schedules with any frequency; common options are to have
collections on a daily, weekly, or monthly frequency. Each period for a schedule consists
of the starting and ending dates for the period and the date that the data is actually
being collected or a ‘collection date’. If a collection is run for a source, but it is not a
date that any schedule has a collection date for, then no data will be collected. A
schedule must be set for an item when it is created and must relate to when the data is
going to be collected.

Performance Measurement data is generally gathered on a periodic basis (e.g. weekly or
monthly, over the life of a project or a program). Each period has a start date and an
end date. In IBM Rational Dashboard, the collection of periods and dates is called a
schedule. Schedules can be defined monthly, weekly, daily, or individual dates may be
added as needed.

IBM Rational Dashboard schedules are defined by administrators and available to all
users to assign to a unit or an item. Some schedules may be regular (monthly or weekly)
and others may be more irregular (a schedule based on project milestones or phases).

3.2.3. Schedules - When to Collect

© Copyright IBM Corp. 2004, 2009

28|

Figure 22

3.3. Item List, Item Details and Units

This subsection provides a high level walkthrough of the concept of an “item” and how
it is used within a Unit.

On the left hand side of the Status page is the Organization Tree, containing your
organization structure, grouped into folders, sub-folders, and units. Your Organization
Tree should represent a structure that is familiar and easily recognized by your
managers. Included with the Portal, sample folders and units (Figure 1) show predefined
Information Needs and utilize the “demo data” within the portal.

3.3.1. Overview of Items Concept

© Copyright IBM Corp. 2004, 2009

29|

Figure 1

The sample Units are visible to users whose Accounts have been assigned the standard
“Sample View” Role via the Admin.

On the Unit Properties page, basic units are displayed in folders in the Organization tree.
In the Tree, the basic unit is displayed as a colored circle while the summary unit is
displayed as a colored sigma sign. In the Software Management Samples folder, click on
the Sample Unit (Figure 2).

3.3.2. The Item List

© Copyright IBM Corp. 2004, 2009

30|

Figure 2

There are several methods to drill into more detail for the Sample Unit, as follows:

 The details icon (the left-most of three icons located above the text Information
Need, on the right hand side)

 An information need hyperlink (in the Information need column)

 A dimension hyperlink (in the dimension column)

 A form hyperlink (in the form column)
The Unit page provides commands to navigate, configure and secure a unit, as well as
enter plan, actual, analysis/notes and form data.

By pressing the Details icon, the Unit Status Page first displays the Gantt View (Figure 3).
The Views panel (on the left-hand side) provides a number of other commands to
review status and progress.

© Copyright IBM Corp. 2004, 2009

31|

Figure 3

Unit data is presented in a variety of ways with views. This flexibility tailors the data
presentation to the manger’s style of managing instead of forcing the manager to rely
on a prescribed way of receiving information. Use the navigation bar to review each of
the available views: Gantt, By Dimension, By Information Need, By Interface, By Item, By
Graph, and By Alarm Status.

Click on the different types of view on the navigation bar in the left pane to explore the
different views available (Figure 4).

Figure 4

IBM Rational Change Item

IBM Rational Change Item

© Copyright IBM Corp. 2004, 2009

32|

Unit Dashboards are created automatically as items and information needs are assigned
to a basic unit. Every item assigned to the unit has its own dashboard, with the graphs
in the dashboards being defined by the information needs that were assigned.

Click the Dashboards panel on the left and then click the IBM Rational Change Item. All
graphs associated with the relevant Information Needs will be displayed in the
Dashboards panel (Figure 17).

Figure 5

Take a moment to look at the graphs.

Once you’re done, click on MS Project Item in the Dashboards panel on the left side and
you will see graphs similar to those on Figure 18.

3.3.3. Item Data

IBM Rational Change Item

IBM Rational Change Item

© Copyright IBM Corp. 2004, 2009

33|

Figure 6

And finally, click on DOORS Requirements Item in the Dashboards panel. All Graphs
associated with the relevant Information Needs will be displayed in the Managed Item
Dashboard (Figure 19).

Figure 7

IBM Rational Change Item

IBM Rational Change Item

© Copyright IBM Corp. 2004, 2009

34|

3.4. Overview of Queries and Graphs

Click on the Requirements Volatility graph in the DOORS Requirements items to view
the graph in more in-depth detail on the Graph Display Page (Figure 20).

Figure 8

On the Graph Display Page you see three icons on top of the graph, representing the
three options available to modify this graph.

The first icon (ruler icon) allows the user to manage the format and visual layout of the
graph. The second icon (keyboard icon) allows the user to define and enter data for the
graph. The third icon (refresh) allows the user to refresh the graph for the most current
data and status available.

Notice in our sample graph, Requirements Volatility, we have an alarm for Volatility, a
planned series, and several series based on collected data. The flexibility in graph
formatting, as well as the large selection of graph types, allows a manager to view status
and data in a manner which is most productive for their management style.

3.5. Writing Queries

This section provides technical information for developing queries defined within an
interface in the IBM Rational Dashboard portal.

IBM Rational Change Item

© Copyright IBM Corp. 2004, 2009

35|

This subsection contains sample SQL queries that demonstrate various SQL techniques
for counting data in a transform database.

The following query counts the number of records in a table:

SELECT count(*) FROM ReqData

The following query counts everything in a table where the table name is determined
just before the query is run with the %TABLE% tag:

SELECT count(*) FROM %TABLE%

The following query counts all objects for a single period:

SELECT count(*) from %TABLE% where (g_collectdate = %COLDATE%)

The following query counts all objects for a single period in a single module:

SELECT count(*) from %TABLE% where (g_collectdate = %COLDATE%) and
(g_itemid = %ITEMID%)

The following query counts all objects that were created during a single period

SELECT count(*) from %TABLE% where (g_collectdate = %COLDATE%) and
(created_on >= %STARTDATE%) and (created_on <= %ENDDATE%) and
(g_itemid = %ITEMID%)

The following query counts requirements that were edited in a single period

SELECT count(*) FROM %TABLE% WHERE (g_collectdate=%COLDATE%)
and (ObjType=’R’) and (modified_date IS NOT NULL) and
(modified_date >= %STARTDATE%) and (modified_date <= %ENDDATE%)
and (g_itemid = %ITEMID%)

3.5.1. Sample Queries

© Copyright IBM Corp. 2004, 2009

36|

Text in the form “%ZZZ%” is called a tag, and allow a query to be written such that they
can apply to as many needs as possible (without having to write a new query for every
possible variation of your analysis). Each tag is evaluated at run-time and replaced with
the appropriate value.

Note that a query containing a tag, such as %TABLE% is not a valid SQL command – if
you run a query which contains a tag in a SQL query tool, the SQL statement will
generate an error. The Portal Query Test page allows you to run SQL statements
containing tags. In addition, it helps you uncover valid values for tags and also to
substitute different values for the tags.

The following table describes allowable tags:

Tag Purpose Notes

%TABLE% database table
name

The table name of the first field set in the
interface. If there is one field set, this tag
can be used in all queries.
If there is more than one field set (and
more than one table in the interface),
then this tag contains the name of the
first table.

Example:
SELECT … FROM %TABLE%

%COLDATE% collection date of
schedule period

This tag allows queries to use the
collection date of the schedule period
being evaluated. This tag can be
compared to field in the table, for
example to select records before or after
the current collection date.
This tag is usually compared to the
g_collectdate field, whose data is
automatically populated by IBM Rational
Dashboard when each record is stored.

Example:
SELECT COUNT(*) FROM %TABLE%

3.5.2. Query Tags

© Copyright IBM Corp. 2004, 2009

37|

WHERE g_collectdate=%COLDATE%

%STARTDATE% Start date of
schedule period

This tag allows queries to use the start
date of the schedule period being
evaluated. This tag can be compared to
data field(s) in the table, for example to
select records before or after the start of
the schedule period.
When used with the start date tag, you
can select records of interest in the
current period.

Example:
SELECT COUNT(*) FROM %TABLE%
WHERE change_date BETWEEN
%STARTDATE% and %ENDDATE%

 %ENDDATE% End date of
schedule period

This tag allows queries to use the end
date of the schedule period being
evaluated. This tag can be compared to
data field(s) in the table, for example to
select records before or after the end of
the schedule period.
When used with the start date tag, you
can select records of interest in the
current period.

Example:
SELECT Count(*) FROM %TABLE% WHERE
change_date BETWEEN %STARTDATE%
AND %ENDDATE%

%UNITID% Unit id Integer identifier of the current unit

%ITEMID% item id Integer identifier of the current item
This tag is used to select records
applicable to one item. Commonly, a
single table in a transform database is
used to store data for multiple items, for
example requirement objects from
multiple DOORS modules, or tasks from
multiple Microsoft Project schedules.

Example:
SELECT COUNT(*) FROM MsPTasks

© Copyright IBM Corp. 2004, 2009

38|

WHERE g_itemid=%ITEMID% AND
task_actual_start > task_plan_start

%GRAPHSTARTDATE% start date of graph The period start date of the first schedule
period in a graph
Typically used to allow a SLIP chart to
determine the correct value for actual
series data points

Example:
SELECT DATEDIFF(day,
%GRAPHSTARTDATE%,
schedule_end_date) AS DaysToDelivery
FROM %TABLE%

%A()% attribute value Retrieves an attribute value from the
current unit

Example:
%A(Project Cost)%

A multi-series query is used to simplify setting up a graph that has more than one series
which uses similar queries. For example, consider a graph of requirements by allocation
type where there are four types of allocation (“none”, “software”, “hardware” and
“firmware”). The graph would have four series, one series for each of the allocation
type, and look like the following:

3.5.3. Using Multi-Series Queries

© Copyright IBM Corp. 2004, 2009

39|

The query used for each series would be very similar (almost identical), except that each
query would contain a slightly different WHERE clause such as “WHERE
Allocation=’none’”, “WHERE Allocation=’software’” and so on. In this example, you can
see that it would be time consuming to set up four series and then four single-series
queries for the allocation types. The multi-series query simplifies this scenario.

In IBM Rational Dashboard , queries are SQL database statements that create numeric
values from data stored in a transform database. Queries are run at the end of the data
collection process (after data has been inserted and updated in the database) and also
when a refresh is performed through the user interface. When the query is executed, it
returns a numeric value which is stored in the Portal database and (usually) plotted as a
series value on a graph.

There are two types of queries: single-series query and multi-series query. The most
common, the single-series query, returns one value (for a single series) when it is run.
To use a single-series query, you create a data series and assign a single-series query as
the source of data. The single-series query returns one numeric value per period as the
query is run for each period. For example, the “number of new defects” is a common
single-series query which calculates the count of new defects created during each
period.

© Copyright IBM Corp. 2004, 2009

40|

3.5.3.1. How the Multi-Series Query Works

The multi-series query performs the counting operation of the single-series query but
also creates other series in the graph where it is defined. In the above example, multi-
series would create 4 series, one for each allocation type. A multi-series query is
assigned to a series in the graph, and the “real” allocation type series are created
automatically when the multi-series is run. The series created by the multi-series are
called “reference series”. It is recommended that you only have one multi-series query
per graph.

Compared to the single series query, the multi-series requires a little more
configuration, as there must be rules for determining how to create the reference
series. The edit page for the multi-series query supports two options for determining
how to create the reference series:

 Query database for series

 Specify series in a list

Query Database for Series - When the “query database for series” is used, the multi-
series will create as many series as there are different (in SQL query language “distinct”)
values in the database field where the data is stored. In this option, you must specify a
secondary SQL statement that determines the distinct values. Using the example of
requirements by allocation type, the multi-query series would query the database for
the allocation types that are currently in the database. For each distinct allocation type
found, a new series is created in the graph. For example, consider the following
collected data:

Allocation Requirement Title

Software Capture system events in memory log

Software Periodically check available memory

Hardware Provide warm restart button

With data shown above, notice that the multi-series query will find and create two
distinct series, for “software” and “hardware”. Even though we know there are four
possible allocation types, the multi-series query found 2, since the data only contains
those 2. As additional data is collected (and requirement records are added with
additional allocation types), the multi-series query will create additional series for them.

When the list of values dynamically grows and you want to see them all in a graph, this
option, “query database for series” is the best choice.

© Copyright IBM Corp. 2004, 2009

41|

Specify Series in List – This option allows you to specify the list of reference series for
the multi-series query. Each time the multi-series query is run, the reference series in
the list will be created in the corresponding graph. If you change the list of reference
series, the graphs will be updated next time data collection is performed or the graph is
refreshed.
In this option, you enter a list of the reference series. Each reference series consists of a
series name and a value. Each entry in the list becomes a series in the graph that
contains the multi-series query.

Since the list specifies the reference series to expect, there is the chance that the data in
the associated table contains more than just the values you specify. For example, if we
enter the four allocation types in our example, the table could contain a data value for
“operator” (which was not in our list of four in this example). To detect data such as
this, the multi-series query supports something called the “other” series. When this
option is enabled (using a checkbox titled “Include ‘other’ series?”), the multi-series
query will create a series titled ‘other’ and include a count of data items that were not
counted using the reference series. When this option is used, you must enter a SQL
statement that selects and counts the records to be considered ‘other’.

When the list of values does not change often, this option, “specify series in list” is the
best choice.

© Copyright IBM Corp. 2004, 2009

42|

3.5.3.2. Example Multi-Series Query Using Database Values

A multi-series query is created as a query in an interface – an interface such as the ‘IBM
Rational Doors’ interface typically contains both single-series and multi-series queries as
shown below.

After you press the “Add” button for adding a multi-series query, you will see the “Edit
Query” page, as shown below for the “Requirements Allocation” query which is a multi-
series query in the “IBM Rational Doors” interface.

© Copyright IBM Corp. 2004, 2009

43|

Note that there is one replacement tag, %MULTIVALUE% which is not used for a single
series query. Since the purpose of the multi-series is to simplify creating and counting
multiple series when they differ by only one term – it is the %MULTIVALUE%
replacement tag that performs this function. When the SQL query for a multi-series
query is run, it will be run multiple times, one for each reference series with the value of
the %MULTIVALUE% tag replaced by the corresponding value from the reference series.

To understand how this works, let’s walk through using the requirements allocation
example. For this example, assume the list of reference series is obtained by querying
the database. The SQL statement to do this is contained in the edit box labeled “Query
for list of unique values for series” and is run before the multi-series query to obtain the

© Copyright IBM Corp. 2004, 2009

44|

list of reference series. From the image above, the SQL statement to get a list of
allocation status values is as follows:
 SELECT DISTINCT Allocation from %TABLE%

In this SQL statement, the “DISTINCT” keyword will return a list of unique values for the
data in the Allocation field. This list becomes the reference series for our multi-series
query. In this example, assume that the query returns the following list of string values
for the allocation field:
 “None”, “Software”, “Hardware”, “Firmware”

Once the list of reference series is obtained, the multi-series query in the wizard will be
run. For this example, the “raw” SQL for the multi-series query uses the following:

SELECT COUNT(*) FROM %TABLE% WHERE
Allocation=’%MULTIVALUE%’ AND
CreatedOn<=%ENDDATE% AND
g_item=%ITEMID%

So, using the results of the first query (which returns the list of reference series), IBM
Rational Dashboard will execute the multi-series query four times, one for each of the
four reference values. The resulting queries looking like the following:
SELECT COUNT(*) FROM DoorsReq WHERE Allocation=’none’ AND
CreatedOn<=’20080601’ AND g_item=123
SELECT COUNT(*) FROM DoorsReq WHERE Allocation=’software’ AND CreatedOn
<=’20080601’ AND g_item=123
SELECT COUNT(*) FROM DoorsReq WHERE Allocation=’hardware’ AND CreatedOn
<=’20080601’ AND g_item=123
SELECT COUNT(*) FROM DoorsReq WHERE Allocation=’firmware’ AND CreatedOn
<=’20080601’ AND g_item=123
(Other tag values, such as %ITEMID%, have sample data.)

The resulting graph will have four series automatically added, for a total of five with the
multi-series query (which is also technically a series). Each of the four reference series
will have a value set for the corresponding collection period. The graph may contain
other series, such as equations and alarms that analyze the data in the multi-series
query.

For example, the requirement by allocation type graph may contain a data series with a
source of equation that uses the equation graphsum(“\”), which provides a sum of all
actual data series in the graph. As reference series are added and removed, the
graphsum equation adds up all available series, and does not require any maintenance.

© Copyright IBM Corp. 2004, 2009

45|

3.5.3.3. Example Multi-Series Query With Specified Series List

When using the option for “specify series”, you are able to:

 Provide a series title rather than using the value which comes from the database

 Limit the series which are created to those that you want or expect

 Specify a single value to use when substituting the %MULTIVALUE% tag

 Automatically generate an ‘other’ series which counts the number of records

which are not in the list

As shown below, the example from above has been modified to use the “specify series”
option rather than the “query database for series” option.

Notice that at the bottom of the screen, there are four reference series specified for
“none”, “software”, “hardware” and “firmware”. Along with each reference series,
there is a value which will be used for the %MULTIVALUE% tag. The values in the “field
value” column are string values but do not contain the enclosing single quote mark. (In
the SQL language, when you check whether a field contains a string value, you would
enter fieldname=’value’, with the value surrounded by single quote marks.) This is

© Copyright IBM Corp. 2004, 2009

46|

because the term shown at item 4 (in the image next to “4. With Terms”) is defined as
Allocation = ‘%MULTIVALUE%’ which provides the enclosing quote marks.

Notice that the first reference series in the list contains a title of “none” but uses a
different value “na”. This allows you to substitute a value to search for different than
the series title. You could also substitute a more readable or shorter title for the series if
needed.

The operation of the multi-series query is much the same as the previous example,
except instead of running the first query to obtain a list of distinct values, the values are
simply extracted from the reference series list.

Tabular data can be displayed through a graph type called a Snapshot Grid. The
snapshot grid is a data table which displays a set of records of interest to managers. An
example of an inspection grid is shown below:

Any data records (in one of the data mart databases) can be displayed in a Snapshot
Grid. For example, if an information need contained a run graph of software inspections
held each week, you could define a snapshot grid to show the details for all completed
inspections.

A snapshot grid is actually a type of graph, with the graph type set to Snapshot grid. In
the Library for example, the snapshot grid is one of the available Graph types (as shown
in the figure below). You can add any number of snapshot grids to an Information Need
in the Library tab.

3.5.4. Setting Up a Snapshot Grid to Show Tabular Data

© Copyright IBM Corp. 2004, 2009

47|

To display a snapshot grid, follow three steps:

1. Create a SQL query in an interface (Collect tab)
2. Create a snapshot grid in an Information Need (Library tab)
3. Assign the Information need to your Unit (Status tab)

Once the snapshot grid and associated query is defined, you assign an information need
to your unit and appropriate data (that is, data which meets the conditions of your
query) will be displayed. Detailed instructions for each step are below.

3.5.4.1. Step 1: Creating a SQL Query within an Existing Interface.

To add a SQL Query to the Interface, follow these steps:
1. Click on the Collection tab.
2. In the gray panel, click on Interfaces.
3. Click on the edit button for the Interface in which you want to add a snapshot

grid.
4. In the Edit Interface page, click on the queries tab.
5. Click on add (add a new single series query to this interface) button.
6. Enter a Title for the snapshot grid query.
7. Enter the query by using the query builder or the query edit tab.
8. Save your changes.

© Copyright IBM Corp. 2004, 2009

48|

In the above diagram, notice that the fields (or columns) are defined using the “as”
clause so that the headings in the snapshot grid have a more readable/understable
column heading.

3.5.4.2. Step 2: Adding a Snapshot Grid to an Information Need.

To add a snapshot grid to your information need, follow these steps:
1. Click on the library tab. Click on the Edit button for the Information Need where

you want to add the data table.
2. Click on the graphs tab in the Information Need. Click on the add button.
3. In the graph tab, enter the following information:

a. Title - enter the name for the snapshot grid.
b. Type – select snapshot grid from the drop down. (This action will cause

the page to reload with only the graph tab available).
c. Frequency – click on the Schedule-driven option.
d. Measure – click on the measure that is associated with the information

need.
e. Options – check the box to engage the option.

4. Save your changes.

© Copyright IBM Corp. 2004, 2009

49|

3.5.4.3. Step 3: Assigning the Information Need to your Unit

To see the Snapshot Grid in your Dashboard, follow these steps:
1. Click on the Status tab and click on the Unit in which you wish to add the

snapshot grid.
2. Click on the Details icon to open Unit.
3. In the navigation panel on the left side, click on the Definition group and then

the Information Needs command.
4. From the drop down list, select the Information Need that contains the snapshot

grid.
5. Select the Interface associated that contains the query for the snapshot grid.
6. Check boxes: Assign information need to existing items and Perform refresh

after assignment.
7. Click on the assign button.
8. The new Information Need will be listed in a grid directly below the Information

Need Definition.

© Copyright IBM Corp. 2004, 2009

50|

9. In the navigation bar on the left hand side, click the Dashboard group and then
click the command that contains the information need.

10. In the Dashboard, under Snapshot Grids, click on the link. This will open the
snapshot grid.

Each dashboard contains a set of graphs, followed by a list of snapshot grids. Each item
in the list is a hyperlink that will open the selected grid. In the image below, there is one
snapshot grid, called “Inspection Grid” in the “InspectionInfo” dashboard.

Once you click on the hyperlink for the grid, the snapshot grid for inspection data will be
displayed as shown below (if you used the same SQL query as provided above).

3.5.4.4. Writing Queries for Snapshot Grids

When setting up a measurement program, it often helpful to see a table of supporting
data that explains what caused the behavior of a series. For example, if the series

© Copyright IBM Corp. 2004, 2009

51|

“number of tasks started late” goes up one month unexpectedly, then a manager may
want to see which tasks are late. In IBM Rational Dashboard, a snapshot grid can display
data in a tabular form, such as a list of late tasks. Snapshot grids can be added to
information needs, along with graphs, to provide supporting details for managers.

A snapshot grid uses a single query as its data source. The query is added to the
interface, along with other single-value queries. The snapshot grid query uses the same
format and tags as other queries. The query for a snapshot grid must define the data
columns (or fields) in the order that you want them to appear in the snapshot grid, and
also order the resulting records in the desired fashion. Unlike a single-value query for a
data series, the query for a snapshot grid does not use a SUM, COUNT or other
aggregate function to return a single value.

For example, below is a snapshot query that returns the tasks which started late in the
last period.

SELECT task_title, task_start_date as PlannedStart, task_act_start as ActualStart FROM
%TABLE% WHERE g_itemid=%ITEMID% AND (task_start_date BETWEEN %STARTDATE%
AND %ENDDATE%) and task_start_date < task_act_start ORDER BY task_start_date

The query returns all records in a schedule that were planned to start in the last period
and were started late (that is, the actual start is after the planned start date). Since the
column names are used as headers in the snapshot grid, the “AS” clause is used to
provide more readable headers than the column names. Finally, the “ORDER BY” clause
sorts the records by planned start date from the earliest (i.e. start of the period) to the
latest (i.e. end of the period).

When the Collector is run, it obtains the interface definition for each data source that is
being run. The interface definition contains a list of field sets, where each field set
contains a table name, a field set replacement tag and a list of fields. The Collector then
builds whatever interface code/script/API is required for the data source and runs a
process to collect the desired data. For example, when collecting from IBM Rational
Doors, the Collector collects object attributes using DXL. When collecting from a SQL
database, the Collector collects data base fields (sometimes called columns) using a SQL
statement.

Consider when the Collector runs to collect data from a SQL, Oracle or ODBC database:
after the Collector obtains a list of items, the Collector must collect data for each item
by generating a SQL statement. This SQL statement must request the fields that were

3.5.5. Understanding the !FIELD! Tag in the Collector

© Copyright IBM Corp. 2004, 2009

52|

defined in the interface. To simplify the coding of the SQL statement, the Collector
provides a replacement tag that looks like !FIELDS!. This tag is replaced with a comma
separated list of all the field names that were defined in the interface.

Looking at an example of the !FIELDS! tag, if an interface for a SQL database contains
three fields (TaskName, StartDate and EndDate), the Collector could be configured with
a “Get Details” query that looks like the following:

SELECT !FIELDS! FROM TaskTable WHERE ProjectId=!ITEM!

The two tags above, !FIELDS! and !ITEM!, are filled in at run-time by the Collector, to
look like the following (though the ITEM value depends on actual data):

SELECT TaskName, StartDate, EndDate FROM TaskTable WHERE ProjectId=1

The !FIELDS! tag is very useful when the syntax of the collection allows for a comma
separated field list, as is the case with a SQL statement.

In an interface, the field set replacement tag is an optional field in a field set. Each field
set has it’s a replacement tag, a table name and a set of fields. During collection, field
set information is passed to the Collector. Some parameters in a data source are
replaced at run-time by the field set replacement tag. In particular, the replaceable
parameters are the “getlist” and “getdetails” queries from each type of interface.

In the Collector data source, you may enter the text !SETTAG!, which signals that the
Collector should replaced the text !SETTAG! with the text entered into the that was
entered into the Portal. You may use the !SETTAG! to replace either part of the data
source parameter, as in:
 SELECT * FROM ProjectList WHERE !SETTAG!

Or, you may use the !SETTAG! to replace the entire parameter, as in:
 !SETTAG!

If there are errors with this tag replacement, you should consult the Collector log file for
more details.

3.5.6.1. Using the Field Set Replacement Tag for SQL Joins

When you need to combine data from more than one table, you are typically
performing what is called a join query. In a join query, you must use an identifier (which

3.5.6. Understanding the !SETTAG! in the Collector

© Copyright IBM Corp. 2004, 2009

53|

is usually not human readable) to look up a readable or descriptive string from another
table. The other table(s) is frequently referred to as a look-up table.

To use a JOIN statement, you use the field set replacement tag, !SETTAG!. The !SETTAG!
is basically a method to write more advanced SQL statements without being
encumbered by the simplicity of the !FIELDS! tag. An example, presented in the next
subsections, walks through how to configure and run a SQL join using the !SETTAG!.

3.5.6.2. A Sample Database

In this sample, the external application is a Microsoft SQL database. The database
contains a table called “IssueData”, from which we would like to collect data. The
IssueData table has four fields and there are four records in the table, as shown below.

Notice that the table has a “ProjectId” field but we cannot tell the Project name or title.
Also, there is a “PriorityCode” field but we cannot tell what the priority is (such as low,
medium or high).

The database also has two lookup tables, one for the project title and one for the
priority title. Both tables contain an Id field and a text field. The project look-up table is
shown below.

© Copyright IBM Corp. 2004, 2009

54|

Similar to the project table, a priority look-up table is shown below. The priority table is
not used in the sample (described in subsequent paragraphs), but can be used as a
follow-on to expand the sample from a two-table to a three-table join.

3.5.6.3. Configuring an Interface to Perform a Join

The IBM Rational Dashboard Portal provides the means to define an interface, the field
sets within the interface and the fields within each field set. An interface called “Sample
SQL Join” is shown below with the default field set being configured to perform a SQL
join on one table.

In the interface (above), the fields defined for the field set named “Default Set” are
shown in the following table.

© Copyright IBM Corp. 2004, 2009

55|

Collect ? Source Attribute Table Field Type

Yes IssueTitle IssueTitle integer

Yes ProjectId ProjectId integer

Yes ProjectTitle ProjectName string 50

No PriorityCode PriorityCode integer

No Priority Priority string 10

Notice that the PriorityCode and Priority attributes are defined in the interface but
marked as “Do not collect”.

In the interface above, the Parameter Replacement Field (i.e. !SETTAG!) contains a
complete SQL statement, which is valid on the source (with the exception of the !ITEM!
tag which is filled in by the Collector at run-time):
SELECT i.IssueTitle, i.ProjectId, p.ProjectTitle
FROM IssueData as i, luProjects as p
WHERE (i.ProjectId = p.ProjectId) AND (i.ProjectID = !ITEM!)

In the SQL statement above, notice that the ProjectId field from the IssueData table is
joined to the ProjectId field of the luProjects table so that the query can return the
ProjectTitle as a field. This type of SQL statement is called a two-table join.

To finish the sample, let’s look at how the Collector is configured.

3.5.6.4. Configuring the Collector to Perform a Join

To configure the collector for a join, you must remove the !FIELDS! tag and use the
!SETTAG!. As shown in the image below, the “Get details SQL” textbox is simply filled in
with “!SETTAG!”

© Copyright IBM Corp. 2004, 2009

56|

The “Get list SQL” generally does not change as a result of using either the !FIELDS! or
!SETTAG! in the details SQL. For example, in the above source, the Get List SQL is:
SELECT ProjectId as Id, ProjectTitle as Title FROM luProjects

3.5.6.5. The Resulting Joined Data

The results of the join query using the SETTAG is shown below. The resulting data is
stored in a table called “JoinResults”, as specified in the Interface Definition (see
previous image).

© Copyright IBM Corp. 2004, 2009

57|

The ProjectId and IssueTitle fields were captured directly from the IssueData table. The
ProjectTitle field data was captured from the luProjects table, using a JOIN clause in the
SQL statement to obtain the correct value from the lookup table. Queries in this
Interface can use any of these fields to filter, sort or select records of interest.

Notice that the JoinResults table contains a number of fields that start with “g_”. These
global fields are created automatically for you and are used by IBM Rational Dashboard .
The Collector inserts the correct data for these fields as it collects data.

© Copyright IBM Corp. 2004, 2009

58|

4. Collector Reference and Commands

The first subsection describes the menu commands available in the Collector user
interface. The second subsection describes the command line commands.

4.1. Menu Command Reference

4.1.1.1. Connect Command

This command initiates a Collector attempt to connect to the web services. Once
connected, the Collector will indicate with the text "connected" in the status bar at the
bottom of the main window. If the web service connection cannot be made, the
Collector will display a message box containing any reason and will change the status
bar text to "disconnected".

You can test the connection to Web Services using the Options command.

4.1.1.2. Disconnect

This command disconnects the Collector from any previous web service connection.

4.1.1.3. Options

The options command provides a method for configuring the connection to the Portal
and web services.

The Portal URL is the server and virtual web name of the Portal (which is an ASP.NET
application installed on IIS). The format of the Portal URL is:

http://<servername>/Portal/

The Web Services URL is the server and virtual web of the Web Services (which are
ASP.NET web services installed on IIS). The format of the web service URL is:

4.1.1. File Menu

© Copyright IBM Corp. 2004, 2009

59|

http://<servername>/webservice/

Available options:

 connect automatically to web services when the Collector starts

 use basic credentials other than the current Windows user when connecting

 collect data for after finding a new item during collection

If you make changes to these options, press Apply to save them before pressing the
Test button.

The "Test" button verifies that using the last saved set of options, the Collector can
communicate with web services.

4.1.1.4. Logging

This command displays the logging information which has been captured in the
logfile.txt. You may empty the contents of the log file by pressing the clear button. Also,
you may rename or copy the log file to another name using the Windows File Explorer.
More information about Collector logging can be found in The Collection Log topic.

The Collector configuration file contains settings which control the operation of logging.
The Collector uses Nlog for logging. Consult the Nlog web site for information on how to
configure and control. The Nlog configuration is located in the
Collector.vshost.exe.config file in the folder where the collector is installed.

4.1.1.5. Exit

This command exits the Collector. If the Collector is connected to web services, they are
disconnected.

© Copyright IBM Corp. 2004, 2009

60|

4.1.2.1. Control Command

This command displays a window which allows collection to be started and stopped.
When starting collection, you may select all data sources or a single data source to run.
In addition, you may specify a date range to collect (selected date to present), which is
useful for collecting historic data.

Once collection is started, you may press the stop button to cease collection. The
Collector must complete the current operation, so it may not appear to stop
immediately. Do not terminate the application or terminate the Collector process (using
the Task Manager) until the Collector has stopped processing.

During collection, some commands are disabled. These commands are re-enabled after
collection.

4.1.2.2. Progress Command

This command displays the progress of current collection. This window displays current
progress, showing the number of interfaces completed as well the number of items
found. When collection is complete, totals, including the number of bytes stored in the
database, are shown.

You may use the View Log File link at the bottom of the page to view informational
messages, warnings or errors encountered during collection.

4.1.3.1. Add Source Command

This command allows you to add a new data source. For each 'untyped' source, you
must select a Portal interface which provides the fields or attributes to validate and
collect from the external tool. You must have a connection to web services, otherwise
you cannot select a Portal interface for your new data source.
The DOORS data source is a 'typed' source, which requires a type identifier to be
specified in the Portal interface and does not require an interface to be selected when

4.1.2. Collection Menu

4.1.3. Sources Menu

© Copyright IBM Corp. 2004, 2009

61|

configuring the data source in the Collector.

Finally, the associated interface must be licensed or it will not be shown in the Collector.
Once you press the Add button, the edit window is displayed.

4.1.3.2. Edit Source Command

This command allows you to view or enter data for each data source. Each data source
type in the Collector has a unique set of parameters.

Once you have entered data for the source, you must press the save button. If there are
any errors in the entered data, a message is displayed in the status bar at the bottom of
the main window.

For more information on configuration of individual data sources, please see the Source
Details section for the desired data source.

© Copyright IBM Corp. 2004, 2009

62|

4.1.4.1. Version Command

This window displays the current application and web services version. In addition, the
license status (licensed or unlicensed) of each supported data source is displayed.

4.1.4.2. Portal Links Command

This window provides quick links to pages in the Portal that are regularly used in
configuring or performing collection. If the Portal URL has not been configured using
the Options command, then the links on this page will not function correctly.

4.1.4.3. Support Resources Command

This windows displays contact information for various support resources. Your sales and
support team may also have provided you with contact information for contacting
support or see the Getting Help topic.

4.2. Command Line Reference

The Collector provides a command line interface which starts collection without having
to click on shortcuts and menu items. The command line interface allows the Collector
to be run from a DOS command window or batch file or scheduled using the Windows
Scheduler. For example, the command line can be scheduled to run each evening to
collect for the current day.

When run in command line mode, the Collector does not display a user interface or
popup information windows on the screen. During command line mode, the Collector
writes into a log file (see section on “Collector Logging” for more information). If the
Collector encounters a critical error while processing, it will log the error to the log and
display the user interface.

Only one instance of the Collector should be run at a time – please exit the Collector
user interface before starting the command line.

4.1.4. Tools Menu

© Copyright IBM Corp. 2004, 2009

63|

The Collector requires at least one parameter (the “/source” parameter), and allows for
two others. When the Collector finds the '/source' parameter on the command line, the
Collector runs in command mode. The command line has the following format:

Collector.exe /source=all; /date=today;

In the example above, the Collector executable is run with two parameters (/source and
/date). Each parameter has a parameter value and is terminated with a “;”.

The parameters supported by the Collector are shown in the following table.

Parameter Description and Example

/source specify either “all” or the name of one data source in the collector
Examples:
/source=all;
/source=Excel Cost Data;

/date specify the collection date or the value “today”. The value “today”
indicates that the current date is used as the date of collection. See note
below about the format of the date string.
Examples:
/date=today;
/date=11/24/2008; (for mm/dd/yyyy date format)
/date=24/11/2008; (for dd/mm/yyyy date format)

/fromdate specify the starting date of a date range. The date range starts with the
value specified in this option and ends with the current date. See note
below about the format of the date string.
Example:
/ fromdate =10/20/2008; (for mm/dd/yyyy date format)
/ fromdate =20/10/2008; (for dd/mm/yyyy date format)

Note on date format:
The parameter /date and /fromdate accept a date string as a parameter value. The
format of the date string is interpreted using the “current culture” of Windows. For the
American/United States culture, the date string will usually be interpreted as
“MM/dd/YYYY”. For French and English/United Kingdom cultures, the date string is
usually interpreted as “dd/MM/YYYY”.

4.2.1. Command Line Parameters

© Copyright IBM Corp. 2004, 2009

64|

To collect all data sources in the Collector using today’s date as the collection date, use
the following command:

Collector.exe /source=all; /date=today;

The “/source” parameter specifies that “all” sources should be collected. The Collector
will run any data source that was configured with the “Include when running all
sources?” option. This option is set or cleared in the Edit Source window of the
collector, as shown in the following figure.

The “/date” parameter specifies that the current system date (indicated by “today”)
should be used as the collection date. For more information on collection dates and
schedules, please see the

The Collector allows you to collect for one source at a time using the “/source”
parameter. In addition, you may specify a collection date on the command line, rather
than using the current system, date as the collection date. An example of collecting one
source for a past collection date is shown below:

Collector.exe /source=CSV Test; /date=30/1/2006;

4.2.2. Collecting All Sources for Current Date

4.2.3. Collecting One Source for a Past Date

© Copyright IBM Corp. 2004, 2009

65|

In the example above, notice that the “/source” parameter specifies the name of a data
source that has been specified in the Collector.

The “/date” parameter specifies a date in “dd/mm/yyyy” format that is used by the
collector as the collection date. Essentially, the Collector queries the specified data
source such as “What data do you have for the date of 30/1/2006?” Notice that some
data sources are not sensitive to the collect date. This means that if you vary the
collection date value, you receive the same information.

The Collector allows you to collect for one source at a time using the “/source”
parameter. In addition, you may specify a collection period, rather than one date period,
using the “/fromdate” parameter. An example of collecting one source for multiple
dates in the past is shown below:

Collector.exe /source=CSV Test; /fromdate=1/1/2007;

In the example above, notice that the “/source” parameter specifies the name of a data
source; the “/fromdate” specifies that collection should occur starting from 1 January
2006 and continuing to today’s date.

When “/fromdate” is specified on the command line, the Collector will determine which
dates are valid collection dates, and then request data from the data source for each
collection date. The Collector is provided the collection dates through the Web Services,
which returns a list of assigned items that have been collected by the data source, along
with the associated schedule.

For example, is an item called “Defect.csv” has been collected using the source “CSV
Test” and assigned to a unit with a monthly schedule, then the “/fromdate” will result in
every monthly collection date from 1 January 2007 to the present system date being
collected.

4.3. Technical References

This section describes various formats and syntax of capabilities used within the
Collector.

4.2.4. Collecting One Source for Multiple Dates in the Past

© Copyright IBM Corp. 2004, 2009

66|

A list file provides a method for selecting files to be accessed during a collection. A list
file is used when you do not want to use every file in a folder. A list file must be placed
in a folder accessible to the Collector, and contains a list of files which themselves can
be located in another folder.

The Collector opens the list file and then reads each line to determine which file to
open. Lines that start with a semi-colon are treated as comments and are ignored. Non-
comment lines should be comma separated with two values. Possible line formats are
shown below:

; comment

file id, file_name

΄file id΄, ΄file name΄

file id, ΄file name΄

΄file id΄, file name

You may use either a single or double quote to surround the value as long as you use
the same one to end the value as you do to start.

The file name can be either:

 a file name (e.g. “demo.csv”)

 a folder and file name (e.g. “c:\Data\Projects\Alpha\Defects.csv”).

In the first case (i.e. only a file name), then the current folder (where the list file is
located) is used.

A sample list file is shown below:
; three CSV files
DefectsMajor, Defects_Major.csv
DefectsMinor1 , C:\Datacenter\Project1\Defects_Minor_1.csv
DefectsMinor2 , C:\Datacenter\Project2\RevA\Defects_Minor_2.csv

A connection list file provides a method for specifying the name of multiple SQL
databases to the Collector. Similar to the previous list file, the connection list allows a

4.3.1. Collector List File Format

4.3.2. Collector Connection List Format

© Copyright IBM Corp. 2004, 2009

67|

data source to access multiple databases, treating each database as a collected item.

The connection list file is a comma separated value file, where each line is either a
comment or a line with two values, as follows:

; comment

connection id, connect string

΄connection id΄, ΄connect string΄

connection id, ΄connect string΄

΄connection id΄, connect string

You may use either a single or double quote to surround the value as long as you use
the same one to end the value as you do to start.

The “connection id” is a text string up to 50 characters that acts as a title.

The “connect string” is a text string consisting of the database type plus the connection
syntax. The database type must be one of the following:

 “mssql” – for Microsoft Server 2005 or 2008 database

 “oracle” – for Oracle Database server

 “odbc” – for an ODBC data source
The connection syntax must be valid for the database type.

A sample connection list file is shown below:
; list file with three entries

“Project A”, “mssql;server=MSSQL;uid=sa;pwd=go;Database=ProjA_DB;”

“Project B”, “odbc;dsn=ProjB_ActionSQLDB;”

“Project C”, “oracle; Data Source=Oracle8i;Integrated Security=yes"

For an odbc database type, the following are valid values:
"odbc;Driver={SQL
Server};Server=(local);Trusted_Connection=Yes;Database=AdventureWorks;"
"odbc;Driver={Microsoft Access Driver (*.mdb)};DBQ=c:\bin\Northwind.mdb"
"odbc;DSN=dsnname"

For additional information on connection string syntax, please consult Microsoft .NET
documentation (search for the term “ConnectionString”) in the following topics:

 System.Data.SqlClient

 System.Data.Odbc

© Copyright IBM Corp. 2004, 2009

68|

 System.Data.OracleClient

To simplify the flexibility of the Collector, the Collector provides a set of replacement
tags. When the replacement tag is encountered in a getlist or getdetail query, the
replacement tag is removed from the query and replaced with the appropriate value.

Below is a list of the replacement tags.

!SETTAG!
During collection, the collector replaces the reserved word !SETTAG! with the text in
each interface field set’s Parameter Replacement Tag field. The field set Parameter
Replacement Tag is located on the 'field' subtab of the Edit Interface screen. Each field
set has a unique field set tag whose value is entered into the portal and then provided
to the collector, which replaces this tag with the value from the Portal field set.

For Excel data sources, this tag is configured in the portal with the worksheet name, sell
range and processing flags that are provided to the Collector at run time. When an excel
interface in the Portal is configured with these parameters, they are passed to the
Collector at run time. If you do not want to use configuration data from the Portal for an
Excel collection, you can disable (uncheck) the option to “Use configuration data from
Portal” when configuring the data source in the collector.

!ITEM!
As the collector processes each item found by the GetList query, the !ITEM! reserved
word is replaced in the GetDetails query by the unique item identifier of the item. The
item tag is usually an integer or string value that is unique among all the items collected
from a single data source. This tag allows the collector to sub-select data from a data
source so that only the data for a specific item is returned.

!RELEASE!
This tag is the same as the !ITEM! tag (above). This tag is provided only for backwards
compatibility with IBM Rational Synergy and IBM Rational Change sources created in
version 3.0.
It is recommended that the “!ITEM!” tag be used instead.

!PROJECT!
This tag is the same as the !ITEM! tag (above). This tag is provided only for backwards

4.3.3. Replacement Tags in GetDetails Query

© Copyright IBM Corp. 2004, 2009

69|

compatibility with Ms Project Server 2003 data sources created in version 3.0.
It is recommended that the “!ITEM!” tag be used instead.

!FIELDS!
The !FIELDS! reserved word is replaced by a comma-separated list of the fields in the
current interface field set. For example, if the interface field set contains fields for title,
status, priority,
the date found, and the responsible party, the !FIELDS! replacement string might look
like this: 'Title,Status,Priority,DateFound,ResponPerson'. The fields are the database
field names from the interface field set.

!THEFIELDS!
This tag is provided only for backwards compatibility with IBM Rational Synergy and IBM
Rational Change sources created in version 3.0.
It is recommended that the “!FIELDS!” tag be used instead.

!SCHEMA!
The !SCHEMA! tag is used for Oracle collections where the data is stored in multiple
schemas. This allows the user to collect using the same interface from multiple projects
at once from databases, such as QualityCenter, where each project has a different
Schema name, but the same table names and database structure. The schema value is
extracted from the user interface or from a connection list file during collection.

!COLLECTDATE!
This tag is replaced with current collection date, in ISO SQL standard format. For
example, if the Collector was run on 20 January 2003, the !COLLECTDATE! tag would be
replaced with the text ‘20030120’.

Several of the data sources provide an option for selecting what is called “Date stamped
files”. Date-stamped files allow you to keep historic versions of your files in the same
folder by using a naming convention which includes a date. The following list of files
represents a single set of data for multiple periods (from 1 January 2009 to 1 April
2009):

Projecta_defects_20090101.xml
Projecta_defects_20090201.xml
Projecta_defects_20090301.xml
Projecta_defects_20090401.xml

4.3.4. Date-Stamped File Names

© Copyright IBM Corp. 2004, 2009

70|

Date stamped files are file names which contain a base name substring and a date sub-
string, where the date substring has the format YYYYMMDD. You may keep all historic
and current files in the same folder however you must name them using this format.

When the Collector scans a folder with date-stamped files, it first removes the date
stamp from the file name to obtain the item name. For example, a file called
“project_risks20080601.csv” contains an item name of “projects_risks.csv”. The
Collector will scan the folder and return all unique items to the Portal as items to be
assigned and then collected.

During collection, the Collector compares the collection date specified by the user to the
date part of the file name. In the previous example of “project_risks20080601.csv”, the
date stamp is “20080601” for 1 June 2008. If the Collector was run for the collection
date of 1 June 2008, then this date-stamped file would be collected.

© Copyright IBM Corp. 2004, 2009

71|

5. Collector Operations

This section describes operations performed using the collector.

5.1. Configuring the Web Services

This subsection describes how to check and configure the connection between the
Collector and web services.

5.2. Running a Collection

This subsection describes the steps for collecting data from one external application, in
this case IBM Rational Doors. Please note that there are detailed procedures for other
interfaces available in separate Walkthrough documents.

1. Open the Collector

IBM Rational DOORS Source

© Copyright IBM Corp. 2004, 2009

72|

2. Select collect “One Source”

3. Select the desired source from the drop down menu beside 'One Source'.

4. Select the date or dates you want to collect. The default is to collect for today's date.

You may also select the button for 'Specified Date' and choose a date from the calendar
next to it. This will collect for the date that you specify.

You may also select the button for 'From Specified Date to Today' and choose a date
from the calendar next to that button. This will collect for valid collection dates
between the date you specify and today's date. Note that the date you select here must
be before today's date.

The 'From Specified Date to Today' option is designed to allow backfill of existing data to
existing, assigned items. This option will run collection only for valid schedule collection
dates in schedules that are in use by assigned items. This option is not intended for use
in new systems, as no collection dates will be found if no items are currently assigned.

IBM Rational DOORS Source

© Copyright IBM Corp. 2004, 2009

73|

When collecting for the first time, use either the 'Today' or the 'Specified Date' option.

6. Click the Start button

The Progress page shows the progress of the current collection. There are two sections
of the Progress page, the Summary section and the Details section.

The Summary Section has information about the full collection. It has the start and end
times, the total number of items collected, the total number of lines inserted to the
database and the total number of errors that occurred during the collection. If it is an
"All Sources" run, it also shows information on how many sources have been completed.
Aside from the start time, this information is only updated when the collection is
completed.

The Details Section has information about both the full collection of the current source
and information for the individual items that are being collected. This section is
updated in synchronization with the collection process.

© Copyright IBM Corp. 2004, 2009

74|

If additional information is needed, specifically about errors and collections, check the
Collector Log file by pressing the link “View Log File” at the bottom of the page for more
information.

5.3. Testing a Data Source

Within the Collector, there is an option for the user to test the items from which the
Collector will be retrieving data without completely running the collection. This test
button returns results that show which items will be collected from the source, and, if
there are items that are not going to be collected by the Collector, it returns the reason
why the items won't be collected. This is useful when sources are just being set up for
collection, and the user wants to check configurations to assure that the data they're
hoping to collect will be collected. It is also useful to determine whether items have
been assigned and if their collect dates are correctly set up.

Using the Test Button, it is possible to see what the Collector would collect from a
source before running the Collection. The steps to run the test are as follows.
1. Open the Collector.
2. Click on the Edit button to see the sources.

© Copyright IBM Corp. 2004, 2009

75|

3. Once the source has been configured, click the Test button to test the collection.
4. Review the results to review which items would be collected when the collection is

run.

There are 5 columns:

 item name reported by the data source

 whether the item is assigned to a unit in the Portal

 whether the item will be collected

 whether the item appears to be new item (i.e. not collected previously)

 notes indicate whether the item is a basic item or a container of items

There are several points about how the Collector handles items:

 If an item is new, the Collector will report the item to the Portal so that it can be
assigned. See note below about data for new items.

 If an item is not new and not assigned to a unit, the Collector will not collect data
for the item.

 If an item is not new and assigned, but the date for which the collection is run is
not a collect date for the item, it will not be collected.

 If the item is not new and assigned and today is a/the collection date of the item
(based on the schedule used within the unit where the item is assigned), then

IBM Rational DOORS Source

© Copyright IBM Corp. 2004, 2009

76|

the Collector will collect data for the item
Notes

In the File -> Options form, there is an option for “Collect data for new items?”. This
option is normally disabled, so that when the Collector finds a new item from a data
source, it does not collect data for it. When testing in development or test
environments, you may want the Collector to collect data for new items so that you can
immediately start developing and validating queries and equations. This option though
is not generally useful in production environment as it results in data being collected the
first time the item is found even though it is not a collection date which could make
query values wrong because data is not actually on the collection dates.

5.4. Populating a Basic Unit from The Library

The Collector gathers data from an external tool. Once collected, the data is organized
together with Information Needs and analyzed by managers in the Organization Tree.

Below is a high-level textual description of the flow:

 The Collector gathers data from outside sources and stores it in the Portal
Database.

 Interfaces allow users to define the data coming in from the Collector and
associated Queries

 An Interface query is assigned to a series in a Library graph to link the data
obtained by the Collector and the series used in Graphs

 Information Needs are a set of Graphs, series, status and measurement guidance
that can be associated with a Unit. A Unit represents a real world item (e.g. a
project) and a Unit can be associated with multiple Information Needs

 The Organization Tree allows users to display and analyze data for different Units
arranged hierarchically

© Copyright IBM Corp. 2004, 2009

77|

Figure 8

The first time that a collection is run, the collector will retrieve all items that could
possibly have data collected. These items are considered ‘new’. In order to collect data,
for new or existing items, the collector will check whether the item has been assigned to
a unit and whether the day of collection is one of the scheduled collection dates.

If a new item is added to the tool (such as a new module or new release) after the first
collection has been run, data will be collected for the new item.

5.5. Configuring and Editing the Organizational Tree

The Organization Tree defines the structure of Units. It can be edited by clicking the Edit
sub-tab on top of the organization tree.

Collector

Interface

Library

Information Need

Organization Tree

Graphs

Queries

© Copyright IBM Corp. 2004, 2009

78|

Figure 9

1. Select the folder in which you want to create a new folder. In this example, the B-

F400 Project Folder.
2. Click on the add folder button on the top of the tree
3. On the right hand side of the page, select the level you want to create the folder at:

 Same level as selected folder – this will place the folder on the same level as the
folder selected in the organizational tree.

 Subfolder of the selected folder – this will place the folder on level below the
selected folder in the organizational tree.

4. Enter the Title. Enter a title name for the new folder (e.g. JIM Project)
5. Click add. This will create a new folder in the designated location

Once the folder has been added, you may (optionally) add descriptive and other
information to it.

With the Edit sub-tab still showing, the folder created in the last step is displayed.
1. Enter Description. Enter a description that describes the folder (optional)
2. Enter Reference URL. Enter an URL that is tied or related to the folder (optional)
3. Click Save.

© Copyright IBM Corp. 2004, 2009

79|

Figure 10

5.6. Configuring Data Sources

This section describes the options and parameters for each type of data source.

Note that you may be able to define or update a data source even though you do not
have a license to run/perform collection.

The table below describes the software or applications which must be required (if any)
for each data source. Because the Collector itself is a .NET Windows application, the
Microsoft .NET Framework is already installed.

Data Source Connect Method Required Components

CSV file access none (uses .NET)

HP Quality Center database for Oracle databases, the Oracle
client

IBM Rational ClearQuest database for Oracle databases, the Oracle
client

Microsoft Access file access none (uses .NET)

Microsoft Excel OLE Microsoft Excel 2003 or 2007

Microsoft Project Desktop
2003

OLE Microsoft Project 2003 or 2007

Microsoft Project Server
2003

database none (uses .NET)

Microsoft Project Server
2007

database none (uses .NET)

5.6.1. Pre-Requisites for Data Sources

© Copyright IBM Corp. 2004, 2009

80|

Multi-Source SQL database for Oracle database, the Oracle
client

ODBC database for Oracle databases, the Oracle
client

Oracle database the Oracle client

IBM Rational Change command line IBM Rational Change client for
Windows

IBM Rational Doors command line IBM Rational Doors client for
Windows

IBM Rational Synergy command line IBM Rational Synergy client for
Windows

XML ADO.NET file access none (uses .NET)

Before running a collection, you should verify that the applicable software or
component is installed and functioning correctly. For example, before collecting data
from IBM Rational Synergy, you should make sure that the Synergy client starts and
connects to the appropriate server.

The CSV interface collects data from text files which have values separated by a comma,
tab, semicolon or colon. The CSV file must contains one logical record on each line of
the file – a record is not allowed to span more than one line.

The first line in each file must be a header which contains the names of the fields (or
columns) in the file. The field names in the first line are matched with the field names
defined in the Portal interface. All fields in the CSV file do not have to be present in the
Portal interface. However, every field defined in the Portal interface (which is set to be
collected) must be present in the CSV file.

All lines in the file must have the same number of fields. Each field is an unquoted
value, a single-quoted value or a double-quoted value. If a text or string value contains
the separator character, then the value must be quoted.

5.6.2. Configuring a CSV Source

© Copyright IBM Corp. 2004, 2009

81|

This source requires the following parameters:

Parameter Description

File selection One of:

 all files in folder

 a listing file

 data-stamped files in folder

Folder name Name of the folder containing files OR the folder and file name
of the list file. (See Notes below)

Separator Delimiter character between fields, one of:

 comma

 semi-colon

 colon

 hyphen

 tab

File encoding Encoding of the file, one of:

 System (use the current system default encoding)

 UTF-7

 UTF-8

 Unicode

Notes:

The list file capability was modified in version 3.6.1 to allow either a folder name or a
folder and file name. For example, if you select just a folder for the list file parameter,
then the list file is called “(selected folder)\list.txt”. Alternatively, once you select a
folder name using the UI, you may type in the text “\myfiles.txt” to indicate the name of
the list file is called “(selected folder)\myfiles.txt”.

Date stamped files are file names which contain a base name substring and a date
substring, where the date substring has the format YYYYMMDD. When you specify date-
stamped files, you may keep all historic and current files in the same folder however you
must name them using this format. An example of a date-stamped file name is
“defects_projectA_20080601.csv”. The collection date specified by the user is
compared to the date substring (in this case “20080601”) to determine if the data

© Copyright IBM Corp. 2004, 2009

82|

should be collected. So, if the Collection were run for the collection date 1 June 2008,
then the sample file would be collected.

The HP Quality Center interface collects data from database used by Quality Center to
store test and other project data. Because Quality Center uses a different database for
each project, you must create and maintain a connection file, which identifies each
database and provides connection information for each one.

This source requires the following parameters:

Parameters Description

Connection list The name of a file containing a list of connection strings

See Notes below.

Get Details SQL A SQL statement to get detail records for a single item from
each Test Director database.

The SQL statement must contain a "!FIELDS!" tag that is
replaced with a comma separated list of field names.

The SQL may contain a "!ID!" tag that is replaced by the
item id.

Notes:

The format of a connection list is defined in the section titled “Connection List File
Format”.

This interface provides data collection from one or more ClearQuest (CQ) database
servers. Because CQ is a highly configurable tool, you should define the CQ interface in
the Portal to support your CQ deployment. This data source uses one of Microsoft,
Oracle or ODBC to connect to the CQ database. For Oracle, you must have the Oracle
client installed.

5.6.3. Configuring an HP Quality Center Source

5.6.4. Configuring an IBM Rational ClearQuest Source

© Copyright IBM Corp. 2004, 2009

83|

This source requires the following parameters.

Parameter Description

Method for list How to obtain the list of items to collect data for. One of:

 SQL statement

 Connection list file

Database Type One of:

 Microsoft

 Oracle
ODBC

Server/Data Source The computer name where the SQL server is running or the
Oracle data source name (when list method is SQL)

Database The name of the database

Username SQL named user

Password SQL Password

Get List SQL SQL statement to get a list of managed items

The SQL statement must return a field called "id" and one
called "title".

Folder containing list
file

The folder where the list file is located (used when method
for list is list file)
See Notes below.

Get Details SQL SQL statement to get detail records for a single item

The SQL statement must contain a "!FIELDS!" tag that is
replaced with a comma separated list of field names.

The SQL may contain a "!ID!" tag that is replaced by the
item id.

Notes:

The format of a connection list is defined in the section titled “Connection List File
Format”.

© Copyright IBM Corp. 2004, 2009

84|

The Microsoft Access Database interface collects data from Access files created using
Office 2000, Office XP or Office 2003. This interface uses the .NET ADO.NET interface for
opening an MDB file. Microsoft Access is not required in order to use this interface.

This source requires the following parameters:

Parameter Description

Files to scan One of:

 a single MDB file

 all files in folder

 a listing file

 date-stamped files in folder

If you select "selected file", then you must specify the
"Folder and file name" parameter and the "Folder name"
parameter is disabled.

If you select "all files in folder" or "use a listing file", then
you must specify the "Folder name" parameter.

Folder and name of
Access file

name of the folder and MDB file

Folder name name of the folder containing MDB files

Get List SQL A SQL statement to get a list of managed items from the
MDB file.

The SQL statement must return a field called "id" and one
called "title".

Used only if file selection is "a single MDB file"

Get Details SQL A SQL statement to get detail records for a single item from
the MDB file.

The SQL statement must contain a "!FIELDS!" tag that is
replaced with a comma separated list of field names.

The SQL may contain a "!ID!" tag that is replaced by the
item id.

5.6.5. Configuring a Microsoft Access Source

© Copyright IBM Corp. 2004, 2009

85|

Notes:

The list file capability was modified in version 3.6.1 to allow either a folder name or a
folder and file name. For example, if you select just a folder for the list file parameter,
then the list file is called “(selected folder)\list.txt”. Alternatively, once you select a
folder name using the UI, you may type in the text “\myfiles.txt” to indicate the name of
the list file is called “(selected folder)\myfiles.txt”.

Date stamped files are file names which contain a base name substring and a date
substring, where the date substring has the format YYYYMMDD. When you specify
date-stamped files, you may keep all historic and current files in the same folder
however you must name them using this format. An example of a date-stamped file
name is “defects_projectA_20080601.csv”. The collection date specified by the user is
compared to the date substring (in this case “20080601”) to determine if the data
should be collected.

The MDB cannot require login security or user name/password to open.

Currently, Access 2007 files (ie “MDBX” files) cannot be opened.

The Microsoft Excel interface extracts data from an Excel file. This interface supports
Office 2000, XP, 2003 and 2007. This interface requires Excel 2003 or 2007 to be
installed on the same machine as the collector. The interface opens each selected Excel
file, and reads a cell range from each specified worksheet.

In the Collector, you may only specify one worksheet and cell range to collect from.
However, if you enable the option (available in data sources created with 3.6.1 or later)
to “Use Portal values?”, then you may collect data from multiple worksheets in the
same file. When editing an Excel interface in the Portal, each field set defines a
(potentially) different worksheet to collect data.

5.6.6. Configuring a Microsoft Excel Source

© Copyright IBM Corp. 2004, 2009

86|

This source requires the following parameters:

Parameter Description

File selection One of:

 all files in folder

 a listing file

 data-stamped files in folder

Folder name name of the folder containing Excel files

Worksheet name name of the worksheet where the data resides

Orientation of data Eight horizontal or vertical

Horizontal orientation means that data is read from left to
right, with each column being a data record, and the fields
(in the Portal interface) are row numbers.

Vertical orientation means that data is read from top to
down, with each row being a data record, and the fields
(in the Portal interface) are column letters.

Cell range A cell range like "A2:M100" which specifies the data cells
to be collected.

The cell range should be configured as small as is
practically possible.

Stop On Blank Collector will stop if all collected data values are blank or
null for a row or column.

Use Portal values Indicates that the instructions for a worksheet,
orientation, cell range, and stop-on-blank will be provided
by the Portal.

Notes:

The Collector ignores records where all the fields contain a blank or null value. So, you
may use the cell range to define a larger cell range than your current data set.

The “Stop on Blank” option (entered in the Collector or Portal user interface) will cause
the Collector to stop collecting data as soon as a row or column is encountered where
all collected cells are blank. This means that a row or column could have data in cells

© Copyright IBM Corp. 2004, 2009

87|

that are not being collected but since this data is not a collected cell, the Collector does
not consider it.

This data source extracts task and resource data from Microsoft Office 2003 Project
desktop. The interface uses the Microsoft Office Project 2003 ActiveX/COM object to
open the project (i.e. MPP) files. This requires that Microsoft Project 2003 be installed
on the same computer as the Collector. This source can collect task only information
from Project files.

This source requires the following parameters.

Parameter Description

File selection One of:

 all files in folder

 a listing file

 data-stamped files in folder

See Notes below.

Folder name Name of the folder containing files OR the folder and file
name of the list file.

See Notes below.

Notes:

The list file capability was modified in version 3.6.1 to allow either a folder name or a
folder and file name. For example, if you select just a folder for the list file parameter,
then the list file is called “(selected folder)\list.txt”. Alternatively, once you select a
folder name using the UI, you may type in the text “\myfiles.txt” to indicate the name of
the list file is called “(selected folder)\myfiles.txt”.

Date stamped files are file names which contain a base name substring and a date
substring, where the date substring has the format YYYYMMDD. When you specify
date-stamped files, you may keep all historic and current files in the same folder
however you must name them using this format. An example of a date-stamped file
name is “defects_projectA_20080601.csv”. The collection date specified by the user is
compared to the date substring (in this case “20080601”) to determine if the data
should be collected.

5.6.7. Configuring a Microsoft Project Desktop 2003 Source

© Copyright IBM Corp. 2004, 2009

88|

This data source extracts task and resource data from Microsoft Project Server 2003.
The interface uses a Microsoft SQL database connection to the Project Server 2003
database. The Project Server 2003 client tools, COM or API objects are required.

This source can collect different types of information from Project Server, for example
tasks and resources. This is done by configuring the interface in the Portal with field sets
that define which tables within the Project Server database to use.

This source requires the following parameters.

Parameter Description

Get projects SQL SQL statement to get a list of items.

The SQL statement must return a field called "id" and one
called "title".

Get details SQL SQL statement to get detail records for a single item.

The SQL statement must contain a "!FIELDS!" tag that is
replaced with a comma separated list of field names.

Server The computer name where the SQL Server is running

Database name The name of the database

Username SQL named user name

Password Password for the named user

Notes:

The user name and password is for a SQL database, not a user name and password for a
Project Server account. If needed, contact your database or Project Server administrator
to obtain a user name and password the Project Server database. Unless the Collector is
installed on the same machine as the SQL database, the user name must be a named
SQL account.

5.6.8. Configuring a Microsoft Project Server 2003 Source

© Copyright IBM Corp. 2004, 2009

89|

Not implemented in 3.6.1.

The Multi-source data source collects data from multiple databases, where the list of
database is contained in a special text file called a “connection list”. Each line in the
connection list file contains the connection information for three different types of
databases: Microsoft, Oracle and ODBC. The connection list may contain connection
information for any type or number of databases.

This source requires the following parameters.

Parameter Description

Connection List
The folder and file name of a file which contains a list of
connection strings.

Get Details SQL SQL statement which returns records for a single item.
This SQL statement is run for each entry in the list file.

The SQL statement must contain a "!FIELDS!" tag that is
replaced with a comma separated list of field names.

The SQL may contain a "!ITEMID!" tag that is replaced by
the item id.

Notes

The format of a connection list is defined in the section titled “Connection List File
Format”.

5.6.9. Configuring a Microsoft Project Server 2007 Source

5.6.10. Configuring a Multi-Source SQL Source

© Copyright IBM Corp. 2004, 2009

90|

The ODBC data source provides data collection from any data source name (DSN)
defined in the ODBC control panel. ODBC supports a wide variety of databases and file
formats. Windows provides a control panel application to configure each ODBC DSN.

This data source requires the following parameters.

Parameter Description

DSN Name
Data source name (DSN) defined in the ODBC control
panel. A DSN is a system, user or file source.

Get List SQL SQL statement that returns a list of items.

The SQL statement must return a field called "id" and one
called "title".

Get Details SQL SQL statement which returns records for a single item.

The SQL statement must contain a "!FIELDS!" tag that is
replaced with a comma separated list of field names.

The SQL may contain a "!ITEMID!" tag that is replaced by
the item id.

To verify the DSN, you should use the test or verify function to make sure that the DSN
is configured correctly. You should verify that your system has the correct pre-
requisites installed.

This data source provides data collection from an Oracle 9 or 10 SQL server. This data
source uses the .NET 2.0 data client library to access the native Oracle Client library. You
must have the Oracle client installed on the same machine as the Collector to use this
data source.

5.6.11. Configuring an ODBC Database Source

5.6.12. Configuring an Oracle SQL Database Source

© Copyright IBM Corp. 2004, 2009

91|

This source requires the following parameters:

Parameter Description

Get List SQL A SQL statement to get a list of managed items.

The SQL statement must return a field called "id" and
one called "title".

Get Details SQL A SQL statement to get detail records for a single item.

The SQL statement must contain a "!FIELDS!" tag that is
replaced with a comma separated list of field names.

The SQL may contain a "!ID!" tag that is replaced by the
item id.

TNS Name An Oracle TNS name defined on the host computer

Username Oracle user name

Password Oracle password

This source requires an IBM Rational Change Windows client be installed and configured
before attempting collection. To set up and run an IBM Rational Change collection, IBM
Rational Synergy must be enabled to run the “ccm” Command Line Interface (CLI).
Please refer to Synergy help files to enable the CLI.

This source requires the following parameters.

Parameter Description

CCM query client
path

The location of the ccm.exe file on the current computer.
Click the button to the side to browse for the file on the
computer. The default value in the collector is the default
value for IBM Rational Synergy 6.4 installations.

Database path The location of the database that is being collected.

User name A user name for a database administrator who would have

5.6.13. Configuring a IBM Rational Change Source

© Copyright IBM Corp. 2004, 2009

92|

access to all of the releases and CRs that need to be
collected.

Password Password for the user supplied

Get List Query CLI command to retrieve list of items

Get Details Query CLI command to get details for each item returned by the
Get List Query

Notes:

The "Get List Query" and "Get Details Query" are CLI commands to retrieve items and
item details. The default values select all of the releases in the database, and then
collect all problems (defects or enhancements) from each release.

The Get List query can be written to return a list of objects found in the IBM Rational
Change database. The Get Details query is run for each object found by the Get List
query. When the Get Details query executes, the Get List object replaces the '!ITEM!'
tag.

The Get Details query usually includes the '!FIELDS!' tag to allow the list of fields to be
dynamically created based on the fields entered by the user in the Portal. The '!FIELDS!'
tag is replaced at run-time with a comma separated list of fields taken from the Portal
interface.

Any query-able object and details may be collected from IBM Rational Change.

This source allows the Collector to scan projects and modules, as well as collect module
data from IBM Rational DOORS. This source requires that the DOORS Windows Client
be installed and configured on the same machine as the Collector before attempting
collection.

5.6.14. Configuring a IBM Rational DOORS Source

© Copyright IBM Corp. 2004, 2009

93|

This source requires the following parameters.

Parameter Description

Path to client The location of the DOORS client on the current machine.
Click the button to the side to browse for the file on the
computer.

DOORS User name The name of a DOORS Administrator, someone who has
access to all of the projects and modules from which data
needs to be collected

Password The DOORs user password

Database The port number and the server name in the format <port
number>@<server>.

Collect attribute A boolean value that indicates if a module should be
collected.

See Notes below.

Type attribute A DOORS attribute used to delineate between Portal
Interfaces and the different attributes that the user would
want to collect for different modules.

See Notes below.

Notes:

This source uses a set of DXL scripts located in Scripts\DOORS subfolder of the Collector.
You may tailor these scripts if needed. It is recommended that you configure collection
with the standard scripts before attempting to tailor them.

The "Collect Attribute" and "Type Attribute" must be added to the DOORS database as
module level attributes in order for modules and module data to be collected by the
default DXL scripts included with the Collector.

The “Collect Attribute” should be a boolean value. The Collector will only collect those
modules that have the Collect Attribute set to true.

The “Type Attribute” is used to select an interface from the Portal to use for each
different module type. For example, you may want requirements metrics from

© Copyright IBM Corp. 2004, 2009

94|

requirements modules and test metrics from DOORS test modules. This attribute value
is used to select the associated DOORS interface in the Portal.

This source requires a IBM Rational Synergy Windows client be installed and configured
before attempting collection. To set up and run an IBM Rational Synergy collection, IBM
Rational Synergy must be enabled to run the “ccm” Command Line Interface (CLI).
Please refer to Synergy help files to enable the CLI.

This source requires the following parameters.

Parameter Description

CCM query client
path

The location of the ccm.exe file on the current computer.
Click the button to the side to browse for the file on the
computer. The default value in the collector is the default
value for IBM Rational Synergy 6.4 installations.

Database path The location of the database that is being collected.

User name A user name for a database administrator who would have
access to all of the releases and CRs that need to be
collected.

Password Password for the user supplied

Get List Query A ccm CLI command to retrieve list of items

See Notes below.

Get Details Query A ccm CLI command to get details for each item returned
by the Get List Query

See Notes below

Notes:

The "Get List Query" and "Get Details Query" are CLI commands to retrieve items and
item details. The default values select all of the releases in the database, and then
collect all problems (defects or enhancements) from each release.

5.6.15. Configuring a IBM Rational Synergy Source

© Copyright IBM Corp. 2004, 2009

95|

The Get List query can be written to return a list of objects found in the IBM Rational
Change database. The Get Details query is run for each object found by the Get List
query. When the Get Details query executes, the Get List object replaces the '!ITEM!'
tag.

The Get Details query usually includes the '!FIELDS!' tag to allow the list of fields to be
dynamically created based on the fields entered by the user in the Portal. The '!FIELDS!'
tag is replaced at run-time with a comma separated list of fields taken from the Portal
interface.

Any query-able object and details may be collected from IBM Rational Change.

This data source allows XML files which use the .NET 2.0 ADO.NET xml schema to be
collected. Each XML file should have been produced by an application that produces
XML files using the.NET XML schema (also called the “recordset schema”) At present,
other XML formats are not accepted (though we do plan on implementing a general-
purpose XML with XSLT capability)

This source requires the following parameters:

Parameter Description

File selection One of:

 all files in folder

 a listing file

 data-stamped files in folder

See Notes below.

Folder name Name of the folder containing files OR the folder and file name
of the list file.

See Notes below.

File encoding Encoding of the file, one of:

 System (use the current system default encoding)

 UTF-7

 UTF-8

 Unicode

5.6.16. Configuring an XML ADO.NET Source

© Copyright IBM Corp. 2004, 2009

96|

Notes:

The list file capability was modified in version 3.6.1 to allow either a folder name or a
folder and file name. For example, if you select just a folder for the list file parameter,
then the list file is called “(selected folder)\list.txt”. Alternatively, once you select a
folder name using the UI, you may type in the text “\myfiles.txt” to indicate the name of
the list file is called “(selected folder)\myfiles.txt”.

Date stamped files are file names which contain a base name substring and a date
substring, where the date substring has the format YYYYMMDD. When you specify
date-stamped files, you may keep all historic and current files in the same folder
however you must name them using this format. An example of a date-stamped file
name is “defects_projectA_20080601.csv”. The collection date specified by the user is
compared to the date substring (in this case “20080601”) to determine if the data
should be collected. So, if the Collection were run for the collection date 1 June 2008,
then the sample file would be collected.

© Copyright IBM Corp. 2004, 2009

97|

6. Portal Operations

Once IBM Rational Dashboard has been installed and your Administrator has established
Interfaces for the Collector(s), security and default settings, managers can create and
track their own project in IBM Rational Dashboard. This chapter shows you how to
setup a basic Project (Unit), assign collected Items and Information Needs to it and
display the resulting Graphs.

It is quite simple to get started. Let’s follow these steps to create a new project:

1. Create a Folder
2. Create a new Unit within the Folder
3. Set a default Schedule for the Unit
4. Assign collected Items
5. Assign Information Needs to your Unit
6. Refresh the data within the Unit
7. See your Graphs

© Copyright IBM Corp. 2004, 2009

98|

6.1. Define a Unit

Ensure that you select the folder in which you want to create a new basic unit (Figure
11).

1. Click on the Edit sub-tab.
2. Click on the add Unit button.

Figure 11

3. Enter a Title for the Unit (e.g. Project A1)
4. Select the Owner of the Unit (e.g. your login account)
5. Select “basic unit” in this example.

 A basic unit uses manual and collected data to update the graphs and status of
its information needs.

 A summary unit uses data from basic units to update the status of its
information needs.

6. Select a Unit Template (if any) to be applied (e.g. DOORS Template). If you don’t
specify a Unit template at Unit creation then Information Needs will need to be
manually assigned to the Unit later.

7. Set the Start Date and End Date for the Unit (e.g. Jan 1, 2008 and Dec 31, 2008)
8. Set the “For demonstration only?” checkbox

 The purpose of the “For demonstration only?” option is to create the Unit with
the sample data built into the IBM Rational Dashboard. In the event that you do
not have any collected data in the repository and you would simply like to
browse the IBM Rational Dashboard to become familiar with its interface check
this box.

 If you do have collected data and would like to use that data, leave this box
unchecked.

© Copyright IBM Corp. 2004, 2009

99|

9. Click add

Figure 12

Once the Unit has been created:
1. Enter Description. Enter a description for the Unit (optional)
2. Enter State of Unit. Select one of these states:

 inactive – Unit is being configured for use but data will not be collected

 active – Unit currently active and data is collected and updated for the Unit
(default)

 completed – Unit has completed, no further action

 suspended - Unit collection and refresh processing will not be performed

 demonstration - Unit is not for actual project management - sample data is
generated for all graphs and no collection is performed

3. Click Save

© Copyright IBM Corp. 2004, 2009

100|

6.2. Set the Default Schedule for the Unit

You may need to specify a default Schedule for the Unit. The default Schedule is applied
to all items assigned to the Unit. If you specified a Unit Template that contains a default
Schedule, then you can skip this step. The standard “DOORS Unit Template” does not
have a default schedule. The standard “Sample Unit Template” does have a default
schedule.

1. Select the view sub-tab on the Status tab
2. Ensure the desired Unit is selected (Figure 13)

Figure 13

3. Click the details button (the vertical bar icon)
4. Click on the Definition Panel on the left-hand side (Figure 14)
5. Click on Unit Properties
6. Choose the basic schedule mode radio button and Monthly Schedule 2008 – 2009

from the drop-down list
7. Click save

© Copyright IBM Corp. 2004, 2009

101|

Figure 14

© Copyright IBM Corp. 2004, 2009

102|

6.3. Assign Collected Items

The assign sub-tab is used to assign collected items to the Unit. Once you click on assign,
you will see two sub-tabs on the right hand side: by date and by source each containing
an Item List. The Item List (on the right side) will be empty until a collection is
performed. If there are no items shown, then you must run a collection prior to this
step.

Please refer to the IBM Rational Dashboard online help for further information on how
to run a collection from a source application most relevant to your project.

You can either assign items using the by date sub-tab or the by source sub-tab. Both are
explained in the following subsections.

The “By Date” options (Figure 15) allow you to select items that have been collected by
using their collect date.

Figure 15

Collect Date: Select one of the following options:

 today – show items collected today

 yesterday – show items that were collected yesterday

6.3.1. Assign Sub-Tab with By Date Options

© Copyright IBM Corp. 2004, 2009

103|

 last 5 days – show all items collected in the last 5 days

 all – show all collected items

Collector: Select the collector from the drop down list
Show: Once the Collect Date and Collector are selected, click the show button to display
the corresponding items in the Item List.

For some Interfaces, e.g. DOORS, “containers” could also be listed. Containers are
collections of items, e.g. DOORS projects, and, if selected, may assign multiple items to
the Unit.

Ensure that you select a basic unit on the left (below, the “Project A1” unit) and an item
on the right (below, the “Defects.xls” item), and then press the Assign button from the
right side.

Assign: Click on the item(s) you wish to assign to the Unit in the Item List and click the
assign button. The item(s) will be added to the Assigned Items list below the
Organization Tree

The operation of the “by source” assignment is similar to “by date” assignment, but
differs in the method for locating collecting items. The “By Source” options allow you to
review and optionally assign items that were collected from a selected data source.

6.3.2. Assign Sub-Tab with By Source Options

© Copyright IBM Corp. 2004, 2009

104|

Figure 16

Status: Click on a radio button to choose the Status of those items to be displayed:

 all – Displays all of the items for the specified Collector and Interface.

 unassigned – Displays all unassigned items for the specified Collector and
Interface

 assigned – Displays all of the assigned items for the specified Collector and
Interface

 ignored – Displays all of the items that have been marked as ignored for the
specified Collector and Interface

Collector: choose the Collector from the drop down list

Interface: choose the Interface from the drop down list

Select either “show items” or “show containers” radio button, to show the list of
individual collected Items (for example DOORS modules) or a list of collected
Containers.

© Copyright IBM Corp. 2004, 2009

105|

Depending on the storage structure of data within the source, containers may not be
present in the collected data. Assigning a Container to a Unit results in the assignment
of all Items within the container. For example, if you assign a DOORS Project (which is a
container) to a unit, then all modules within the DOORS project are assigned to the unit.

Show: Click on the show button to display the Item List

Ensure the Unit you wish to assign items to is selected in the organization tree

Select item(s) in the Item List and click the assign button to add them to the Unit.
To remove an item from the list of items, select the item from the Item List and click the
ignore button. Once the item has been marked as “ignored,” it will no longer display in
the Item List.

Assigned items will display in the Assigned Items list below the Organization Tree.
To remove an assigned item, select the item from the Assigned Items list and click on
the un-assign button. The item will be removed from the list on the left side.

If your Item List is empty, then either the collection has not run or hasn’t run
successfully.

© Copyright IBM Corp. 2004, 2009

106|

6.4. Assign Information Needs to your Unit

If a Unit Template was applied when creating the Unit then Information Needs may
have already been automatically added to the Unit. The standard DOORS Template
contains two Information Needs (Requirements Progress and Requirements Stability). If
you specified this template (or another one which contains Information Needs) when
the Unit was created then you may skip this step.

To add Information Need(s) to a Unit they must already exist, either by default (shipped
with the Portal) or have been created in the Library tab.

1. Click on the Status tab (view sub-tab)
2. Click on the Unit in the Organization Tree. Unit Properties will appear on the right

pane

Figure 17

3. Click on the details button to view the Unit Status page
4. On the Unit Status page, click the Definition panel on the left navigation pane

© Copyright IBM Corp. 2004, 2009

107|

Figure 18

5. Click the Information Needs command (Figure 19)

Figure 19

From the Information Need Definition page on the right-hand side:
6. Select the Information Need (choose one such as Requirements Progress) from the

drop down list
7. Select the Interface from the drop down list
8. Check the ‘Assign information need to existing items?’ box
9. Check the ‘Perform refresh after assignment?’ box

© Copyright IBM Corp. 2004, 2009

108|

10. Click the assign button to add the Information Need to the Unit

© Copyright IBM Corp. 2004, 2009

109|

6.5. Refresh Data within the Unit

The next step is to ensure that the data and graphs contained within the Unit are
refreshed and up-to-date.

1. Select the view sub-tab on the Status tab
2. Ensure the Unit is selected (Figure 20)

Figure 20

3. Click the details button
4. Click the Definition panel to expand the commands in that panel
5. Click the Unit Properties command (Figure 21)

© Copyright IBM Corp. 2004, 2009

110|

Figure 21

6. Click the refresh button to display the Refresh page (Figure 22).

Figure 22

7. Select the start and end date for the refresh
8. Click the refresh button

© Copyright IBM Corp. 2004, 2009

111|

6.6. See Your Graphs

Unless the Unit has been created with demonstration data, an Information Need and
one or more collected Items must be assigned to the Unit before any Graphs will
display.

If a Unit Template was applied when creating the Unit, then Information Needs may
have already been automatically added to the Unit.

From the Unit Status page, select on your Item in the Dashboards panel in the left hand
navigation bar. Providing that the data collection has successfully completed, the data
should now show in the Graphs. If data is not displaying, please consult your
administrator.

Figure 23

© Copyright IBM Corp. 2004, 2009

112|

7. Other Resources

IBM Rational Dashboard provides a framework for performance measurement and
compliance tracking during normal project execution. A common compliance model is
the Maturity Model framework from SEI. A built-in Software CMMI Level 2 Dimension
tracks the Information Needs against CMMI Level 2 KPAs. The Dimension reports CMMI
Level 2 compliance using the Information Needs and status generated during normal
project execution. Using the built-in Information Needs and Dimensions, project
management compliance becomes a by-product of effective ongoing management using
Dashboard.

In IBM Rational Dashboard, a Dimension corresponds to one of the organization’s
written sources for compliance. Managers may create as many Dimensions as needed
based on their organizational strategy. Within a single compliance source, typically
number of sub areas exists. For example, in a maturity model, several process areas
exist such as requirements management or software quality. Dimensions were created
in IBM Rational Dashboard to reflect each of these process areas.

The Library contains a set of software project management best practice Information
Needs for common engineering process, such as requirements engineering and
configuration management. These Information Needs can become a part of templates
used to quick-start project performance measurement for a customer organization.

For instructions on how to create and add Information Needs and Dimensions, please
refer to the online help.

© Copyright IBM Corp. 2004, 2009

113|

8. Contact Information

This chapter contains the following topics:

 Contacting IBM Rational Software Support

 Prerequisites

 Submitting problems

 Other information

Contacting IBM
Rational Software
Support

If the self-help resources have not provided a resolution to your problem, you can
contact IBM Rational Software Support for assistance in resolving product issues.

Note: If you are a heritage Telelogic customer, you can go to

http://support.telelogic.com/toolbar and download the IBM
Rational Telelogic Software Support browser toolbar. This toolbar
helps simplify the transition to the IBM Rational Telelogic product
online resources. Also, a single reference site for all IBM Rational
Telelogic support resources is located at
http://www.ibm.com/software/rational/support/telelogic/

Prerequisites

To submit your problem to IBM Rational Software Support, you must have an
active Passport Advantage® software maintenance agreement. Passport
Advantage is the IBM comprehensive software licensing and software
maintenance (product upgrades and technical support) offering. You can enroll
online in Passport Advantage from
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html.

o To learn more about Passport Advantage, visit the Passport Advantage
FAQs at
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_
quickguides.html.

o For further assistance, contact your IBM representative.

To submit your problem online (from the IBM Web site) to IBM Rational
Software Support, you must additionally:

http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_%20quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_%20quickguides.html

© Copyright IBM Corp. 2004, 2009

114|

o Be a registered user on the IBM Rational Software Support Web site. For
details about registering, go to http://www-
01.ibm.com/software/support/.

o Be listed as an authorized caller in the service request tool.

Submitting
Problems

To submit your problem to IBM Rational Software Support:

1. Determine the business impact of your problem. When you report a
problem to IBM, you are asked to supply a severity level. Therefore, you
need to understand and assess the business impact of the problem that
you are reporting.

Use the following table to determine the severity level.

Severity Description

1 The problem has a critical business impact:
You are unable to use the program,
resulting in a critical impact on operations.
This condition requires an immediate
solution.

2 This problem has a significant business
impact: The program is usable, but it is
severely limited.

3 The problem has some business impact:
The program is usable, but less significant
features (not critical to operations) are
unavailable.

 4 The problem has minimal business impact:
The problem causes little impact on
operations or a reasonable circumvention
to the problem was implemented.

2. Describe your problem and gather background information, When
describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Rational Software Support specialists
can help you solve the problem efficiently. To save time, know the answers
to these questions:

o What software versions were you running when the problem
occurred?

To determine the exact product name and version, use the option
applicable to you:

o Start the IBM Installation Manager and select File > View Installed
Packages. Expand a package group and select a package to see
the package name and version number.

http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/

© Copyright IBM Corp. 2004, 2009

115|

o Start your product, and click Help > About to see the offering
name and version number.

o What is your operating system and version number (including any
service packs or patches)?

o Do you have logs, traces, and messages that are related to the
problem symptoms?

o Can you recreate the problem? If so, what steps do you perform
to recreate the problem?

o Did you make any changes to the system? For example, did you
make changes to the hardware, operating system, networking
software, or other system components?

o Are you currently using a workaround for the problem? If so, be
prepared to describe the workaround when you report the
problem.

3. Submit your problem to IBM Rational Software Support. You can submit
your problem to IBM Rational Software Support in the following ways:

o Online: Go to the IBM Rational Software Support Web site at
https://www.ibm.com/software/rational/support/ and in the Rational
support task navigator, click Open Service Request. Select the
electronic problem reporting tool, and open a Problem Management
Record (PMR), describing the problem accurately in your own words.

For more information about opening a service request, go to
http://www.ibm.com/software/support/help.html

You can also open an online service request using the IBM Support
Assistant. For more information, go to http://www-
01.ibm.com/software/support/isa/faq.html.

o By phone: For the phone number to call in your country or region, go
to the IBM directory of worldwide contacts at
http://www.ibm.com/planetwide/ and click the name of your country
or geographic region.

o Through your IBM Representative: If you cannot access IBM Rational
Software Support online or by phone, contact your IBM
Representative. If necessary, your IBM Representative can open a
service request for you. You can find complete contact information for
each country at http://www.ibm.com/planetwide/.

If the problem you submit is for a software defect or for missing or inaccurate documentation, IBM
Rational Software Support creates an Authorized Program Analysis Report (APAR). The APAR
describes the problem in detail. Whenever possible, IBM Rational Software Support provides a
workaround that you can implement until the APAR is resolved and a fix is delivered. IBM publishes
resolved APARs on the IBM Rational Software Support Web site daily, so that other users who
experience the same problem can benefit from the same resolution.

http://www.ibm.com/planetwide/

© Copyright IBM Corp. 2004, 2009

116|

Other

Information
For Rational software product news, events, and other information, visit
the IBM Rational Software Web site on
http://www.ibm.com/software/rational/.

© Copyright IBM Corp. 2004, 2009

117|

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send written
license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions. Therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2004, 2009

118|

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk. IBM may use or
distribute any of the information you supply in any way it believes appropriate without incurring any
obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental. If you are viewing this information softcopy, the photographs
and color illustrations may not appear.

© Copyright IBM Corp. 2004, 2009

119|

Trademarks
IBM, the IBM logo, ibm.com, DOORS, Passport Advantage, and Rational are trademarks or registered
trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at www.ibm.com/legal/copytrade.html.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of others.

http://www.ibm.com/legal/copytrade.html

