
Rational Software Corporation ®

RATIONAL ® CLEARCASE®

MANAGING SOFTWARE PROJECTS

VERSION: 2002.05.00 AND LATER

PART NUMBER: 800-025058-000

WINDOWS EDITION

Managing Software Projects
Document Number 800-025058-000 October 2001

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright
Copyright © 1992, 2001 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation

Permitted Usage
THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY TO
RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY PROHIBITED.
THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING
THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF
RATIONAL.

Trademarks
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, Rational
Suite ContentStudio, ClearCase, ClearCase MultiSite ClearQuest, Object Testing, Object-Oriented Recording,
Objectory, PerformanceStudio, PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational
Apex, Rational CRC, Rational PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational
Unified Process, Rational Visual Test, Requisite, RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestMate,
TestStudio, The Rational Watch, among others are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are used for identification purposes
only, and are trademarks or registered trademarks of their respective companies.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, Windows, the Windows logo,
Windows NT, the Windows Start logo are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Government Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media
and software product and its documentation, including without limitation, the warranties of merchantability
or fitness for a particular purpose or arising from a course of dealing, usage, or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents

Preface ..xxi

About This Manual ...xxi

Product-Specific Features ...xxi

Organization ...xxi

ClearCase Documentation Roadmap... xxii

ClearCase LT Documentation Roadmap .. xxiii

Typographical Conventions ... xxiv

Online Documentation ..xxv

Technical Support ..xxv

1. Choosing Between UCM and Base ClearCase ...1

1.1 Differences Between UCM and Base ClearCase ..1

Branching and Creating Views ..2

Using Components to Organize Files ...3

Creating and Using Baselines...3

Managing Activities...4

Enforcing Development Policies..4

Part 1: Working in UCM

2. Understanding UCM ..9

2.1 Overview of the UCM Process ...9

2.2 Creating the Project..12

Creating a PVOB ..12

Organizing Directories and Files into Components....................................13

Shared and Private Work Areas...14

Starting from a Baseline ..14

Setting Up the UCM-ClearQuest Integration...16

2.3 Setting Policies..17
Contents iii

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

2.4 Assigning Work ..18

2.5 Creating a Testing Stream ...18

2.6 Building Components ..19

MultiSite Consideration...19

2.7 Making a New Baseline ...20

2.8 Recommending the Baseline...21

2.9 Monitoring Project Status ..23

2.10 Overview of the UCM-ClearQuest Integration..23

Associating UCM and ClearQuest Objects ...24

UCM-Enabled Schema...25

State Types...25

Queries in a UCM-Enabled ClearQuest Schema..26

3. Planning the Project ..27

3.1 Using the System Architecture as the Starting Point27

Mapping System Architecture to Components..28

Deciding What to Place Under Version Control ..28

Mapping Components to Projects..29

Amount of Integration..29

Need for Parallel Releases..29

Example ..30

3.2 Organizing Components ...30

Deciding How Many VOBs to Use ..31

Identifying Additional Components ...32

Defining the Directory Structure..32

Identifying Read-Only Components ...34

3.3 Choosing a Stream Strategy ..35

3.4 Specifying a Baseline Strategy ..36

Identifying a Project Baseline..37

When to Create Baselines ..39

Identifying the Initial Baseline ..39

Ongoing Baselines ...39

Defining a Naming Convention ...40

Identifying Promotion Levels to Reflect State of Development40
iv Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Planning How to Test Baselines...40

3.5 Planning PVOBs ...41

Deciding How Many PVOBs to Use..41

Understanding the Role of the Administrative VOB..................................42

3.6 Identifying Special Element Types ..43

Nonmerging Elements...43

Nonautomerging Elements...44

Defining the Scope of Element Types ...44

3.7 Planning How to Use the UCM-ClearQuest Integration44

Mapping PVOBs to ClearQuest User Databases ...44

MultiSite Requirement ...45

Projects Linked to Same Database Must Have Unique Names..........45

Use One Schema Repository for Linked Databases.............................45

Deciding Which Schema to Use ...46

Overview of the UnifiedChangeManagement Schema.......................47

Enabling a Schema for UCM ...48

4. Setting Policies ...49

4.1 Components and Baselines...49

Modifiable Components..49

Default Promotion Level for Recommending Baselines49

4.2 Default View Types ...50

4.3 Deliver Operations...50

Allow Deliveries from Stream with Pending Checkouts51

Rebase Before Deliver..51

Deliver Operations to Nondefault Targets...51

Allow Deliveries from Streams in Other Projects53

Allow Deliveries That Contain Changes in Foundation Baselines....53

Allow Deliveries That Contain Changes Made to Components

Not in Target Stream ..54

Allow Deliveries That Contain Changes to Nonmodifiable

Components...55

4.4 UCM-ClearQuest Integration ...55

Check Before Work On..55
Contents v

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Check Before ClearCase Delivery ..55

Do ClearQuest Action After Delivery ...56

Check Mastership Before Delivery ..56

5. Setting Up a ClearQuest User Database ..59

5.1 Using the Predefined UCM-Enabled Schemas...59

5.2 Enabling a Schema to Work with UCM ..60

Requirements for Enabling Custom Record Types62

Setting State Types ...63

State Transition Default Action Requirements for Record Types64

5.3 Upgrading Your Schema to the Latest UCM Package65

5.4 Customizing ClearQuest Project Policies..65

5.5 Associating Child Activity Records with a Parent Activity Record66

Using Parent/Child Controls ...67

5.6 Creating Users...67

6. Setting Up the Project ...69

6.1 Creating a Project from Scratch ..70

Creating the Project VOB...70

Creating a Component for Storing the Project Baseline71

Creating Components for Storing Elements...72

Creating One Component Per VOB..72

Creating a VOB That Stores Multiple Components73

Creating the Project ..74

Defining Promotion Levels ..75

Creating an Integration View ...75

Creating the Composite Baseline That Represents the Project77

Creating the Directory Structure ..78

Importing Directories and Files from Outside ClearCase79

Making and Recommending a Baseline ..80

6.2 Creating a Project Based on an Existing ClearCase Configuration...........80

Creating the PVOB ...80

Making a VOB into a Component..80

Making a Baseline from a Label ...81
vi Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Creating the Project..81

Creating an Integration View ...82

6.3 Creating a Project Based on an Existing Project ..82

Using a Composite Baseline to Capture Final Baselines82

Reusing Existing PVOB and Components..82

Creating the Project..83

Creating an Integration View ...83

6.4 Enabling a Project to Use the UCM-ClearQuest Integration84

Migrating Activities ...84

Setting Project Policies...85

Assigning Activities ...86

Disabling the Link Between a Project and a ClearQuest User Database .87

Fixing Projects That Contain Linked and Unlinked Activities..................87

Detecting the Problem..88

Correcting the Problem ..88

How MultiSite Affects the UCM-ClearQuest Integration..........................88

Replica and Naming Requirements ...88

Transferring Mastership of the PVOB’s Root Folder...........................89

Transferring Mastership of the Project ..89

Linking Activities to ClearQuest Records ...89

Changing Project Policy Settings ..90

Changing the Project Name...90

6.5 Working with Rational Suite ..90

6.6 Creating a Development Stream for Testing Baselines90

6.7 Creating a Feature-Specific Development Stream.......................................92

7. Managing the Project ..93

7.1 Adding Components ...93

Making the Component Modifiable ..94

Synchronizing the View ..95

Updating Snapshot View Load Rules ...95

7.2 Building Components..96

Locking the Integration Stream..96
Contents vii

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Finding Work That Is Ready to Be Delivered...96

Completing Remote Deliver Operations...97

Undoing a Deliver Operation ...97

Building and Testing the Components..98

7.3 Creating a New Baseline..98

Making the New Baseline..99

Making a Baseline for a Set of Activities..100

Making a Baseline of One Component...100

Unlocking the Stream...100

7.4 Testing the Baseline..101

Fixing Problems ..101

7.5 Recommending the Baseline...102

7.6 Resolving Baseline Conflicts ...103

Conflicts Between a Composite Baseline and

a Noncomposite Baseline ..104

Conflicts Between Two Composite Baselines...104

7.7 Monitoring Project Status ..104

Comparing Baselines..105

Querying ClearQuest User Databases ...107

Using ClearCase Reports...108

7.8 Cleaning Up the Project ...110

Removing Unused Objects ..110

Projects ..110

Streams..110

Components ...111

Baselines..111

Activities ...111

Locking and Making Obsolete the Project and Streams111

8. Using Triggers to Enforce Development Policies ...113

8.1 Overview of Triggers ...113

Preoperation and Postoperation Triggers...114

Scope of Triggers ..115

Using Attributes with Triggers...116
viii Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

When to Use ClearQuest Scripts Instead of UCM Triggers.....................116

8.2 Sharing Triggers Between UNIX and Windows..116

Using Different Pathnames or Different Scripts ..117

Using the Same Script..117

Tips ...118

8.3 Enforce Serial Deliver Operations ...118

Setup Script ...118

Preoperation Trigger Script ..120

Postoperation Trigger Script...121

8.4 Send Mail to Developers on Deliver Operations.......................................121

Setup Script ...122

Postoperation Trigger Script...122

8.5 Do Not Allow Activities to Be Created on the Integration Stream.........124

8.6 Implementing a Role-Based Access Control System125

Preoperation Trigger Script ..126

8.7 Additional Uses for UCM Triggers ...127

9. Managing Parallel Releases of Multiple Projects ..129

9.1 Managing a Current Project and a Follow-On Project Simultaneously .129

Example ...130

Performing Interproject Rebase Operations...131

9.2 Incorporating a Patch Release into a New Version of the Project...........132

Example ...132

Delivering Work to Another Project..134

9.3 Using a Mainline Project ...134

9.4 Merging from a Project to a Non-UCM Branch...135

Part 2: Working in Base ClearCase

10. Managing Projects in Base ClearCase ...139

10.1 Setting Up the Project ..140

Creating and Populating VOBs..140

Planning a Branching Strategy...140
Contents ix

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Branch Names ..141

Branches and ClearCase MultiSite..141

Creating Shared Views and Standard Config Specs142

Recommendations for View Names ..142

10.2 Implementing Development Policies ..143

Using Labels ..143

Using Attributes, Hyperlinks, Triggers, and Locks...................................143

Global Types..144

Generating Reports...145

10.3 Integrating Changes ...145

11. Defining Project Views ...147

11.1 How Config Specs Work ...147

11.2 Default Config Spec..148

The Standard Configuration Rules ..148

Omitting the Standard Configuration Rules149

11.3 Config Spec Include Files ..149

11.4 Project Environment for Sample Config Specs ..150

11.5 Views for Project Development..151

View for New Development on a Branch ...152

Variation That Uses a Time Rule...152

View to Modify an Old Configuration ..152

Omitting the \main\LATEST Rule ..154

Variation That Uses a Time Rule...154

View to Implement Multiple-Level Branching ..154

View to Restrict Changes to a Single Directory ...156

11.6 Views to Monitor Project Status ...156

View That Uses Attributes to Select Versions ..156

Pitfalls of Using This Configuration for Development......................158

View That Shows Changes of One Developer ...159

Historical View Defined by a Version Label ..159

Historical View Defined by a Time Rule...160

11.7 Views for Project Builds...160

View That Uses Results of a Nightly Build...161
x Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Variations That Select Versions of Project Libraries162

View That Selects Versions of Application Subsystems...........................162

View That Selects Versions That Built a Particular Program...................163

Configuring the Makefile...163

Fixing Bugs in the Program ...164

Selecting Versions That Built a Set of Programs.................................164

11.8 Sharing Config Specs Between UNIX and Windows165

Pathname Separators ...165

Pathnames in Config Spec Element Rules ..165

Config Spec Compilation ..166

Example ...166

12. Implementing Project Development Policies ...167

12.1 Good Documentation of Changes Is Required ..167

12.2 All Source Files Require a Progress Indicator..168

12.3 Label All Versions Used in Key Configurations..169

12.4 Isolate Work on Release Bugs to a Branch..170

12.5 Avoid Disrupting the Work of Other Developers.....................................171

12.6 Deny Access to Project Data When Necessary ..172

12.7 Notify Team Members of Relevant Changes ...172

12.8 All Source Files Must Meet Project Standards ...174

12.9 Associate Changes with Change Orders ..174

12.10 Associate Project Requirements with Source Files....................................175

12.11 Prevent Use of Certain Commands ...177

12.12 Certain Branches Are Shared Among MultiSite Sites...............................178

12.13 Sharing Triggers Between UNIX and Windows..179

Using Different Pathnames or Different Scripts ..179

Using the Same Script..180

Notes ..180

13. Setting Up the Base ClearCase-ClearQuest Integration181

13.1 Overview of the Integration ...181

13.2 Configuring ClearQuest and ClearCase ...182

Adding ClearCase Definitions to a ClearQuest Schema183
Contents xi

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Installing Triggers in ClearCase VOBs..184

Quick Start for Evaluations ...185

Setting Environment Variables for the ClearQuest Web Interface ..185

Setting the Environment for the ClearQuest Perl API185

Editing the Configuration File ..186

Testing the Integration...186

Checking Performance...186

13.3 Using the Integration Query Wizard...187

14. Integrating Changes ..189

14.1 How Merging Works ...189

Using the GUI to Merge Elements ...191

Using the Command Line to Merge Elements ...192

14.2 Common Merge Scenarios ..193

Scenario: Selective Merge from a Subbranch..193

Scenario: Removing the Contributions of Some Versions........................195

Scenario: Merging All Project Work ..196

All Project Work Is Isolated on a Branch ...196

All Project Work Isolated in a View..196

Scenario: Merging a New Release of an Entire Source Tree.....................197

Scenario: Merging Directory Versions...200

14.3 Using Your Own Merge Tools..201

15. Using Element Types to Customize Processing of File Elements203

15.1 File Types in a Typical Project ..203

15.2 How ClearCase Assigns Element Types ...204

15.3 Element Types and Type Managers...205

Other Applications of Element Types ...207

Using Element Types to Configure a View ...207

Processing Files by Element Type...208

15.4 Predefined and User-Defined Element Types..208
xii Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

16. Using ClearCase Throughout the Development Cycle ..209

16.1 Project Overview ..209

16.2 Development Strategy ...211

Project Manager and ClearCase Administrator...211

Use of Branches ..211

Creating Project Views ..214

16.3 Creating Branch Types ..214

16.4 Creating Standard Config Specs ..215

16.5 Creating, Configuring, and Registering Views..215

16.6 Development Begins..216

Techniques for Isolating Your Work ...216

16.7 Creating Baseline 1...217

Merging Two Branches ...217

Integration and Test...218

Labeling Sources...218

Removing the Integration View...219

16.8 Merging Ongoing Development Work...219

Preparing to Merge ..220

Merging Work ..221

16.9 Creating Baseline 2...223

Merging from the r1_fix Branch...224

Preparing to Merge from the major Branch ...224

Merging from the major Branch...225

Decommissioning the major Branch ...227

Integration and Test...227

16.10 Final Validation: Creating Release 2.0...227

Labeling Sources...228

Restricting Use of the main Branch ...228

Setting Up the Test View...229

Setting Up the Trigger to Monitor Bug-fixing ...229

Fixing a Final Bug...230

Rebuilding from Labels ...230

Wrapping Up ..231
Contents xiii

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

A. Moving from View Profiles to UCM ...233

A.1 View Profiles and UCM...233

Feature Comparison...233

Branches and Streams...233

Moving Work Among Branches or Streams..234

VOBS and Components..234

Checkpoints and Baselines...234

A.2 How to Move View Profile Information to UCM235

Preparing Your View Profile Project ...235

Moving the View Profile Information ...235

B. ClearCase-ClearQuest Integrations ..237

B.1 Understanding the ClearCase-ClearQuest Integrations237

Managing Coexisting Integrations...238

Schema ...238

Presentation ...238

C. Customizing ClearCase Reports ...241

C.1 How ClearCase Reports Works..241

C.2 What You Can Customize in ClearCase Reports.......................................242

Run-Time Processing Sequence for Reports Programming Interface.....244

Configuring Shared Report Directories...247

Adding Report Procedures to Source Control248

Setting the Report Builder to the Customized Directory248

Default Directory Structure for ClearCase Reports...................................248

Populating the Report Builder Tree Pane ...249

C.3 Report Procedure Interface Specifications ..251

Interface Specification for All_Views.prl ...252

Interface Specification for test_null.prl ..252

Interface Specification for test2_null.prl ..253

Description Specification...253

Help ID Specification ...253

Parameters Specification..254
xiv Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Rightclick Specification ...256

Fields Specification ..257

field_type Conventions ..258

Parameter Choosers ...259

Path Chooser..260

UCM Targets Chooser..260

Type Chooser...260

Date/Time Chooser ..260

Text Chooser ..260

Viewing the Report ..261

Saving Report Data ..262

C.4 Report Programming Examples...263

Example 1: Adding a Column to Report Output264

Processing Logic..264

Interface Specification ..264

Changes Required...265

Modified Report Procedure...265

Example 2: Changing Report Directory Organization,

Report Description, and Report Output ...268

Processing Logic..269

Interface Specification ..269

Changes Required...270

Modified Report Procedure...270

Example 3: Changing Report Description, Parameter Types,

and Report Output...273

Processing Logic..274

Interface Specification ..274

Changes Required...275

Modified Report Procedure...275

Example 4: Changing the Shortcut Menu for the Right-Click

Handling Mechanism ..278

Interface Specification ..279

Changes Required...279
Contents xv

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Modified Report Procedure ...280

Example 5: Adding a New Command to the Report Viewer

Shortcut Menu...282

Interface Specification...283

Changes Required ...283

Modified Report Procedure ...283

C.5 Troubleshooting..287

Errors in the Interface Specification...288

C.6 Coding High-Level Languages Other Than ccperl....................................290

Index ..291
xvi Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winTOC.fm — September 14, 2001 4:49 pm

Figures

Figure 1 Branching Hierarchy in Base ClearCase...2

Figure 2 Project Manager, Developer, and Integrator Work Flows.............................11

Figure 3 VOB Containing Multiple Components ...13

Figure 4 Baselines of Two Components...15

Figure 5 Composite Baseline ...16

Figure 6 Rebase Operation...21

Figure 7 Promoting Baselines ..22

Figure 8 Association of UCM and ClearQuest Objects in Integration.........................24

Figure 9 Components Used by Transaction Builder Project ...30

Figure 10 Storing Multiple Components in a VOB ..31

Figure 11 Using a Read-Only Component...34

Figure 12 Using a Feature-Specific Development Stream ...36

Figure 13 Using a System-Level Composite Baseline ..38

Figure 14 Related Projects Sharing One PVOB ...42

Figure 15 Projects in Multiple PVOBs Linked to the Same ClearQuest Database.......45

Figure 16 Using the Same Schema Repository for Multiple ClearQuest Databases ...46

Figure 17 UCM Tab of Record Form for a UCM-Enabled Record Type47

Figure 18 Main Tab of Record Form for the BaseCMActivity Record Type.................48

Figure 19 Default and Nondefault Deliver Targets in a Stream Hierarchy..................52

Figure 20 Delivering Changes Made to a Foundation Baseline54

Figure 21 Associating a User Database with a UCM-Enabled Schema.........................60

Figure 22 Assigning State Types to a Record Type’s States..61

Figure 23 Navigating to Record Type’s State Transition Matrix....................................62

Figure 24 State Transitions of UCM-enabled BaseCMActivity Record Type...............64

Figure 25 Navigating to Integration Stream in Project Explorer....................................76

Figure 26 Using the Edit Baseline Dependencies GUI...78

Figure 27 Step 2 of New Project Wizard ..83

Figure 28 Enabling a Project to Work with a ClearQuest User Database85

Figure 29 Navigating to the UCMProjects Query ..86

Figure 30 Add Baseline Dialog Box ..94
Figures xvii

/vobs/doc/ccase/projlead/cc_proj.winLOF.fm — September 14, 2001 4:29 pm

Figure 31 Make Baseline Dialog Box...99

Figure 32 ClearCase Component Tree Browser ..105

Figure 33 Comparing Baselines ...106

Figure 34 Comparing Baselines by Activity ..107

Figure 35 ClearCase Report Builder..109

Figure 36 Preoperation and Postoperation Triggers ..115

Figure 37 Managing a Follow-on Release ..130

Figure 38 Incorporating a Patch Release ..133

Figure 39 Making a Change to an Old Version ...153

Figure 40 Multiple-Level Auto-Make-Branch ...155

Figure 41 Development Config Spec vs. QA Config Spec ...157

Figure 42 Checking Out a Branch of an Element ..158

Figure 43 Requirements Tracing..177

Figure 44 Versions Involved in a Typical Merge ..190

Figure 45 ClearCase Merge Algorithm...191

Figure 46 Selective Merge from a Subbranch ..194

Figure 47 Removing the Contributions of Some Versions ..195

Figure 48 Merging a New Release of an Entire Source Tree ...198

Figure 49 Data Handling: File Type, Element Type, Type Manager206

Figure 50 Project Plan for Release 2.0 Development ..210

Figure 51 Development Milestones: Evolution of a Typical Element..........................213

Figure 52 Creating Baseline 1...217

Figure 53 Updating Major Enhancements Development ..220

Figure 54 Merging Baseline 1 Changes into the major Branch222

Figure 55 Baseline 2 ...224

Figure 56 Element Structure After the Pre-Baseline-2 Merge226

Figure 57 Final Test and Release ...227

Figure 58 Change Sets in ClearQuest GUI ...239

Figure 59 Customizable Areas of Report Builder Interface..243

Figure 60 Customizable Interface for Report Viewer Window244

Figure 61 Run-Time Processing Sequence ...246

Figure 62 Report Builder User Interface...250

Figure 63 Report Viewer Window ..262

Figure 64 Report Builder Window with Invalid Parameters ..289
xviii Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winLOF.fm — September 14, 2001 4:29 pm

Tables

Table 1 Recommended Directory Structure for Components.....................................33

Table 2 State Types in UCM-Enabled Schema ..63

Table 3 Queries in UCM-Enabled Schema...108

Table 4 Files Used in a Typical Project ...204

Table 5 View Profile Features and Their UCM Counterparts...................................234

Table 6 Parameters Supplied with ClearCase Reports...254

Table 7 Fields Modifiers ...257

Table 8 Field Type Supplied with ClearCase Reports..258
Tables xix

/vobs/doc/ccase/projlead/cc_proj.winLOT.fm — September 14, 2001 4:29 pm

xx Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winLOT.fm — September 14, 2001 4:29 pm

Preface

Rational ClearCase, a configuration management system, is designed to help software

development teams track the objects used in software builds. You can use base ClearCase to

create a customized configuration management environment, or you can adopt the Unified

Change Management (UCM) process.

About This Manual

This manual shows project managers how to set up and manage a configuration management

environment for their development team using either UCM or the customizable features of base

ClearCase.

Product-Specific Features

This manual describes Rational ClearCase and Rational ClearCase LT. ClearCase LT does not

include all features available in ClearCase. In addition, some user interfaces are different in the

two products. This manual uses the following label to call out differences: PRODUCT NOTE. When

used outside of a PRODUCT NOTE section, ClearCase refers to both products.

Organization

The manual is divided into two parts:

➤ Part 1: Working in UCM. Read this part if you plan to use UCM to implement your team’s

development process.

➤ Part 2: Working in Base ClearCase. Read this part if you plan to use the base ClearCase

features to implement a customized development process for your team.
Preface xxi

ClearCase Documentation Roadmap

More Information

Command Reference
Quick Reference

Online documentation

 Administration

Installation Guide

Administrator’s Guide
(Rational ClearCase)

Administrator’s Guide
(Rational ClearCase MultiSite)

Platform Information
(See online help)

Project
Management

Managing Software Projects

Orientation

Introduction
Release Notes

Online Tutorials

Development

Developing Software

Build
Management

OMAKE Guide
(Windows platforms)

Building Software
xxii Managing Software Projects

ClearCase LT Documentation Roadmap

More Information

Command Reference
Online documentation

Administration

Installation Guide
Administrator’s Guide

Project
Management

Managing Software Projects

Orientation

Introduction
Release Notes

Online Tutorials

Development

See online help.
Preface xxiii

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
xxiv Managing Software Projects

Online Documentation

The ClearCase graphical interface includes a standard Windows help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or

the F1 key. Help > Help Topics provides access to the complete set of ClearCase online

documentation. For help on a particular context, press F1. Use the Help button on various dialog

boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase

commands, utilities, and data structures) with the cleartool man subcommand. Without any

argument, cleartool man displays the cleartool overview reference page. Specifying a command

name as an argument gives information about using the specified command. For example:

> cleartool man (display the cleartool overview page)

> cleartool man man (display the cleartool man reference page)

> cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s –help command option or help command displays individual subcommand syntax.

Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout –help are equivalent.

> cleartool uncheckout –help
Usage: uncheckout | unco [-keep | -rm] [-cact | -cwork] pname ...

Additionally, the online ClearCase Tutorial provides important information on setting up a user’s

environment, along with a step-by-step tour through ClearCase’s most important features. To

start the ClearCase Tutorial, choose Tutorial in the ClearCase folder off the Start menu.

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail
Preface xxv

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
xxvi Managing Software Projects

11 Choosing Between UCM and Base
ClearCase

Before you can start to use Rational ClearCase to manage the version control and configuration

needs of your development project, you need to decide whether to use the out-of-the-box Unified

Change Management (UCM) process or base ClearCase. This chapter describes the main

differences between the two methods from the project management perspective.

The rest of this manual is organized into two parts. Part 1 describes how to manage a project

using UCM. Part 2 describes how to manage a project using the various tools in base ClearCase.

1.1 Differences Between UCM and Base ClearCase

Base ClearCase consists of a set of powerful tools to establish an environment in which

developers can work in parallel on a shared set of files, and project managers can define policies

that govern how developers work together.

UCM is one prescribed method of using ClearCase for version control and configuration

management. UCM is layered on base ClearCase. Therefore, it is possible to work efficiently in

UCM without having to master the details of base ClearCase.

UCM offers the convenience of an out-of-the-box solution; base ClearCase offers the flexibility to

implement virtually any configuration management solution that you deem appropriate for

your environment.
1 - Choosing Between UCM and Base ClearCase 1

Branching and Creating Views

Base ClearCase uses branches to enable parallel development. A branch is an object that specifies

a linear sequence of versions of an element. Every element has one main branch, which represents

the principal line of development, and may have multiple subbranches, each of which represents

a separate line of development. For example, a project team may use the main branch for new

development work while using a subbranch simultaneously for fixing a bug.

Subbranches can have subbranches. For example, a project team may designate a subbranch for

porting a product to a different platform. The team may then decide to create a bug-fixing

subbranch off that porting subbranch. Base ClearCase allows you to create complex branch

hierarchies. Figure 1 illustrates a multilevel branch hierarchy. As a project manager in such an

environment, you need to ensure that developers are working on the correct branches.

Developers work in views. A view is a work area for developers to create versions of elements.

Each view includes a config spec, which is a set of rules that determines which versions of

elements the view selects.

Figure 1 Branching Hierarchy in Base ClearCase

0

1

2

3

main

0

1

2

r1_bugs

4

0

1

2

3

4

alpha_port

3

0

1

bug102
2 Managing Software Projects

As project manager, you tell developers which rules to include in their config specs so that their

views access the appropriate set of versions.

UCM uses branches also, but you do not have to manipulate them directly because it layers

streams over the branches. A stream is a ClearCase object that maintains a list of activities and

baselines and determines which versions of elements appear in a developer’s view. In UCM, a

project contains one integration stream, which records the project’s shared set of elements, and

multiple development streams, in which developers work on their parts of the project in isolation

from the team. The project’s integration stream uses one branch. Each development stream uses

its own branch. You can create a hierarchy of development streams, and UCM creates the

branching hierarchy to support those streams.

As project manager of a UCM project, you need not write rules for config specs. Streams

configure developers’ views to access the appropriate versions on the appropriate branches.

Using Components to Organize Files

As the number of files and directories in your system grows, you need a way to reduce the

complexity of managing them. In UCM you use components to simplify the organization of your

files and directories. The elements that you group into a component typically implement a

reusable piece of your system architecture. By organizing related files and directories into

components, you can view your system as a small number of identifiable components, rather

than one large set of directories and files.

Creating and Using Baselines

Both base ClearCase and UCM allow you to create baselines. UCM automates the creation

process and provides additional support for performing operations on baselines. A baseline
identifies the set of versions of files that represent a project at a particular milestone. For example,

you may create a baseline called beta1 to identify an early snapshot of a project’s source files.

Baselines provide two main benefits:

➤ The ability to reproduce an earlier release of a software project

➤ The ability to tie together the complete set of files related to a project, such as source files, a

product requirements document, a documentation plan, functional and design

specifications, and test plans
1 - Choosing Between UCM and Base ClearCase 3

In base ClearCase, you can create a baseline by creating a version label and applying that label

to a set of versions.

In UCM, baseline support appears throughout the user interface because UCM requires that you

use baselines. When developers join a project, they must first populate their work areas with the

contents of the project’s recommended baseline. This method ensures that all team members

start with the same set of shared files. In addition, UCM lets you set a property on the baseline

to indicate the quality level of the versions that the baseline represents. Examples of quality

levels include “project builds without errors,” “passes initial testing,” and “passes regression

testing.” By changing the quality-level property of a baseline to reflect a higher degree of

stability, you can, in effect, promote the baseline.

Managing Activities

In base ClearCase, you work at the version and file level. UCM provides a higher level of

abstraction: activities. An activity is a ClearCase object that you use to record the work required

to complete a development task. For example, an activity may be to change a graphical user

interface (GUI). You may need to edit several files to make the changes. UCM records the set of

versions that you create to complete the activity in a change set. Because activities appear

throughout the UCM user interface, you can perform operations on sets of related versions by

identifying activities rather than having to identify numerous versions.

Because activities correspond to significant project tasks, you can track the progress of a project

more easily. For example, you can determine which activities were completed in which baselines.

If you use the UCM-ClearQuest integration, you gain additional project management control,

such as the ability to assign states and state transitions to activities. You can then generate reports

by issuing queries such as “show me all activities assigned to Pat that are in the Ready state.”

Enforcing Development Policies

A key part of managing the configuration management aspect of a software project is

establishing and enforcing development policies. In a parallel development environment, it is

crucial to establish rules that govern how team members access and update shared sets of files.

Such policies are helpful in two ways:

➤ They minimize project build problems by identifying conflicting changes made by multiple

developers as early as possible.

➤ They establish greater communication among team members.
4 Managing Software Projects

These are examples of common development policies:

➤ Developers must synchronize their private work areas with the project’s recommended

baseline before delivering their work to the project’s shared work area.

➤ Developers must notify other team members by e-mail when they deliver work to the

project’s shared work area.

In base ClearCase, you can use tools such as triggers and attributes to create mechanisms to

enforce development policies. UCM includes a set of common development policies, which you

can set through the GUI or command-line interface (CLI). You can set these policies at the project

and stream levels. In addition, you can use triggers and attributes to create new UCM policies.
1 - Choosing Between UCM and Base ClearCase 5

6 Managing Software Projects

Part 1: Working in UCM

22 Understanding UCM

This chapter provides an overview of Unified Change Management (UCM), which is available

with Rational ClearCase. Specifically, it introduces the main UCM objects and describes the tasks

involved in managing a UCM project. Subsequent chapters describe in detail the steps required

to perform these tasks.

2.1 Overview of the UCM Process

In UCM, your work follows a cycle that complements an iterative software development process.

Members of a project team work in a UCM project. A project is the object that contains the

configuration information needed to manage a significant development effort, such as a product

release. A project contains one main shared work area and typically multiple private work areas.

Private work areas allow developers to work on activities in isolation. The project manager and

integrator are responsible for maintaining the project’s shared work area. Work within a project

progresses as follows:

1. You create a project and identify an initial set of baselines of one or more components. A

component is a group of related directory and file elements, which you develop, integrate, and

release together. A baseline is a version of one or more components.

2. Developers join the project by creating their private work areas and populating them with

the contents of the project’s baselines.

3. Developers create activities and work on one activity at a time. An activity records the set of

files that a developer creates or modifies to complete a development task, such as fixing a

bug. This set of files associated with an activity is known as a change set.
2 - Understanding UCM 9

4. When developers complete activities, and build and test their work in their private work

areas, they share their work with the project team by performing deliver operations. A deliver

operation merges work from the developer’s private work area to the project’s shared work

area.

5. Periodically, the integrator builds the project’s executable files in the shared work area, using

the delivered work.

6. If the project builds successfully, the integrator creates new baselines. In a separate work

area, a team of software quality engineers performs more extensive testing of the new

baselines.

7. Periodically, as the quality and stability of baselines improve, the integrator adjusts the

promotion level attribute of baselines to reflect appropriate milestones, such as Built, Tested,

or Released. When the new baselines pass a sufficient level of testing, the integrator

designates them as the recommended set of baselines.

8. Developers perform rebase operations to update their private work areas to include the set of

versions represented by the new recommended baselines.

9. Developers continue the cycle of working on activities, delivering completed activities,

updating their private work areas with new baselines.

Figure 2 illustrates the connection between the project management, development, and

integration cycles. This manual describes the steps performed by project managers and

integrators. See Developing Software for information about the steps performed by developers.
10 Managing Software Projects

Figure 2 Project Manager, Developer, and Integrator Work Flows

Project
manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

Developer Deliver
activities

Rebase
work area

Work on
activities

Join a
project

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
2 - Understanding UCM 11

2.2 Creating the Project

To create and set up a project, you must perform the following tasks:

➤ Create a repository for storing project information

➤ Create components that contain the set of files the developers work on

➤ Create baselines that identify the versions of files with which the developers start their work

To use UCM with Rational ClearQuest, you must perform additional setup steps.

Creating a PVOB

ClearCase stores file elements, directory elements, derived objects, and metadata in a repository

called a versioned object base (VOB). In UCM, each project must have a project VOB (PVOB). A

PVOB is a special kind of VOB that stores UCM objects, such as projects, activities, and change

sets. A PVOB must exist before you can create a project. Check with your site’s ClearCase

administrator to see whether a PVOB has already been created. For details on creating a PVOB,

see Creating the Project VOB on page 70.

Project
manager

Assign and
schedule
work

Monitor
project
status

Establish
policies

Create
project

Create a
PVOB

Create
components

Create
baselines

Set up ClearQuest
integration
12 Managing Software Projects

Organizing Directories and Files into Components

As the number of files and directories in your system grows, you need a way to reduce the

complexity of managing them. Components are the UCM mechanism for simplifying the

organization of your files and directories. The elements that you group into a component

typically implement a reusable piece of your system architecture. By organizing related files and

directories into components, you can view your system as a small number of identifiable

components, rather than as one large set of directories and files.

The directory and file elements of a component reside physically in a VOB. The component object

resides in a PVOB. Within a component, you organize directory and file elements into a directory

tree. In Figure 3, the directory trees for the GUI, Admin, and Reports components appear

directly under the VOB’s root directory. You can convert existing VOBs or directory trees within

VOBs into components, or you can create a component from scratch. For details on creating a

component from scratch, see Creating Components for Storing Elements on page 72. For details on

converting a VOB into a component, see Making a VOB into a Component on page 80.

Figure 3 VOB Containing Multiple Components

VOB
PVOB

Project A

Components
GUI

Admin
Reports

Project B
/Dev

GUI Admin Reports
2 - Understanding UCM 13

Shared and Private Work Areas

A work area consists of a view and a stream. A view is a directory tree that shows a single version

of each file in your project. A stream is a ClearCase object that maintains a list of activities and

baselines and determines which versions of elements appear in your view.

A project contains one integration stream, which records the project’s baselines and enables access

to shared versions of the project’s elements. The integration stream and a corresponding

integration view represent the project’s shared work area.

Each developer on the project has a private work area, which consists of a development stream

and a corresponding development view. The development stream maintains a list of the

developer’s activities and determines which versions of elements appear in the developer’s

view.

In the basic UCM process, the integration stream is the project’s only shared work area. You may

want to create additional shared work areas for developers who are working together on specific

parts of the project. You can accomplish this by creating a hierarchy of development streams. For

example, you can create a development stream and designate it as the shared work area for

developers working on a particular feature. Developers then create their own development

streams and views under the development stream for this feature. The developers deliver work

to and rebase their streams to recommended baselines in the feature’s development stream. See

Choosing a Stream Strategy on page 35 for details on development stream hierarchies.

When you create a project from the UCM GUI, ClearCase creates the integration stream for you.

If you create a project from the command-line interface, you need to create the integration stream

explicitly. Developers create their development streams and development views when they join

the project. See Developing Software for information on joining a project.

Starting from a Baseline

After you create project components or select existing components, you must identify and

recommend the baseline or baselines that serve as the starting point for the team’s developers. A

baseline identifies one version of every element visible in a component. Figure 4 shows baselines

named BL1 and BL2 that identify versions in component A and component B, respectively.

When developers join the project, they populate their work areas with the versions of directory

and file elements represented by the project’s recommended baselines. Alternatively, developers

can join the project at a feature-specific development stream level, in which case they populate
14 Managing Software Projects

their work areas with the development stream’s recommended baselines. This practice ensures

that all members of the project team start with the same set of files.

If your project team works on multiple components, you may want to use a composite baseline.

A composite baseline selects baselines in other components. In Figure 5, the ProjBL1 composite

baseline selects baselines BL1 and BL2 of components A and B, respectively. The Proj component

does not contain any elements of its own. It contains only the composite baseline that selects the

recommended baselines of the project’s components. By using a composite baseline in this

manner, you can identify one baseline to represent the entire project.

Figure 4 Baselines of Two Components

Integration stream

Component A

Baseline BL1

Component B

Baseline BL2

Element

Version

Element

Version
2 - Understanding UCM 15

Figure 5 Composite Baseline

Setting Up the UCM-ClearQuest Integration

You can use UCM without Rational ClearQuest, the change request management tool, but the

integration with ClearQuest adds significant project management and activity management

capabilities. When you set up a UCM project to work with ClearQuest, the integration links all

project activities to ClearQuest records. You can then take advantage of UCM-ClearQuest’s state

transition model and ClearQuest’s query, reporting, and charting features. These features allow

you to do the following:

➤ Assign activities to developers

➤ Use states and state transition rules to manage activities

➤ Generate reports based on database queries

➤ Select additional development policies to be enforced

To set up the UCM-ClearQuest integration:

1. Enable a ClearQuest schema to work with UCM or use a predefined UCM-enabled schema.

Component Proj

Component A

Component B

Baseline BL1

Baseline

Baseline BL2

ProjBL1
16 Managing Software Projects

2. Create or upgrade a ClearQuest user database to use the schema.

3. Enable your UCM project to work with ClearQuest.

See Overview of the UCM-ClearQuest Integration on page 23 for additional information about the

integration.

2.3 Setting Policies

UCM includes a set of policies that you can set to enforce development practices among

members of the project team. By setting policies, you can improve communication among project

team members and minimize the problems you may encounter when integrating their work. For

example, you can set a policy that requires developers to update their work areas with the

project’s latest recommended baseline before they deliver work. This practice reduces the

likelihood that developers will need to work through complex merges when they deliver their

work. For a description of all policies you can set in UCM, see Chapter 4, Setting Policies. You can

set policies on projects and streams.

In addition to the set of policies that UCM provides, you can create triggers on UCM operations

to enforce customized development policies. See Chapter 8, Using Triggers to Enforce Development
Policies for details about creating triggers.

Project
manager

Assign and
schedule
work

Monitor
project
status

Establish
policies

Create
project
2 - Understanding UCM 17

2.4 Assigning Work

This task is optional and is possible only if you use the UCM-ClearQuest integration. As project

manager, you are responsible for identifying and scheduling the high-level tasks for your project

team. In some organizations, the project manager creates activities and assigns them to

developers. In other organizations, the developers create their own activities. See Assigning
Activities on page 86 for details on creating and assigning activities in ClearQuest.

2.5 Creating a Testing Stream

In your role as integrator, you are responsible for building the work delivered by developers,

creating baselines, and testing those baselines. When you make baselines in the integration

stream, you lock the stream to prevent developers from delivering work. This practice ensures

that you work with a static set of files. It is acceptable to perform quick validation tests of the new

baselines in the integration stream. However, we recommend that you do not lock the integration

stream for a long time because you will create a backlog of deliveries. To perform more rigorous

testing, such as regression testing, you should create a development stream to be used solely for

testing baselines. See Creating a Development Stream for Testing Baselines on page 90 for details on

creating a testing stream.

Project
manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
18 Managing Software Projects

2.6 Building Components

Before you make new baselines, build the components in the integration stream by using the

current baselines plus any work that developers have delivered to the stream since you created

the current baselines. Lock the integration stream before you build the components to ensure that

you work with a static set of files. If the build succeeds, you can make baselines that select the

latest delivered work. If your project uses feature-specific development streams, perform this

task on those streams as well as on the integration stream.

MultiSite Consideration

PRODUCT NOTE: Rational ClearCase LT does not currently support Rational ClearCase MultiSite.

In most cases, developers complete the deliver operations that they start. If your project uses

ClearCase MultiSite, you may need to complete some deliver operations before you can build the

components. Many ClearCase customers use MultiSite, a product layered on ClearCase, to

support parallel software development across geographically distributed project teams.

MultiSite lets developers work on the same VOB concurrently at different locations. Each

location works on its own copy of the VOB, known as a replica.

To avoid conflicts, MultiSite uses an exclusive-right-to-modify scheme, called mastership. VOB

objects, such as streams and branches, are assigned a master replica. The master replica has the

exclusive right to modify or delete these objects.

In a MultiSite configuration, a team of developers may work at a remote site, and the project’s

integration stream may be mastered at a different replica than the developers’ development

streams. In this situation, the developers cannot complete deliver operations to the integration

stream. As integrator, you must complete these deliver operations. UCM provides a variation of

the deliver operation called a remote deliver. When UCM determines that the integration stream

is mastered at a remote site, it makes the deliver operation a remote deliver, which starts the

deliver operation but does not merge any versions. You then complete the deliver operation at

the remote site.

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
2 - Understanding UCM 19

For details on completing remote deliver operations, see Finding Work That Is Ready to Be Delivered
on page 96.

2.7 Making a New Baseline

To ensure that developers stay in sync with each other’s work, make new baselines regularly. A

new baseline includes the work developers have delivered to the integration stream since the last

baseline. If your project uses feature-specific development streams, perform this task on those

streams as well as on the integration stream. In some environments, the lead developer working

on a feature may assume the role of integrator for a feature-specific development stream. To

make a new baseline:

1. Make sure that the integration stream is locked to prevent developers from delivering work

while you create the baseline. Developers can continue to work on activities in their

development streams.

2. Verify the stability of the project by testing its components.

3. Make the baseline.

4. Unlock the integration stream so that developers can deliver work.

After your team of software quality engineers tests the new baseline more extensively and

determines that it is stable, make the baseline the recommended baseline. Developers then update

their work areas with the new baseline by performing a rebase operation, which merges files and

directories from the integration stream or feature-specific development stream to their

development streams.

Figure 6 illustrates a rebase operation from baseline BL1 to BL2. For details on making baselines,

see Creating a New Baseline on page 98.

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
20 Managing Software Projects

Figure 6 Rebase Operation

2.8 Recommending the Baseline

As work on your project progresses and the quality and stability of the components improve,

change the baseline’s promotion level attribute to reflect important milestones. The promotion

level attribute typically indicates a level of testing. For example, Figure 7 shows the evolution of

baselines through three levels of testing; the BL8 baseline is ready for production.

When baselines pass the level of testing required to be considered stable, make them the

recommended set of baselines. Developers then rebase their development streams to the

recommended baselines. You can set a policy that requires developers to rebase their

development streams to the set of recommended baselines before they deliver work. This policy

helps to ensure that developers update their work areas whenever a baseline passes an

acceptable level of testing.

Rebasing

Pat's development
work area

BL1 BL2

Integration stream
Pat's development
work area after rebase

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
2 - Understanding UCM 21

For details on recommending baselines, see Recommending the Baseline on page 102

Figure 7 Promoting Baselines

BL8

BL6

BL3

BL1

System tested

Integration tested

Production

Acceptance tested
22 Managing Software Projects

2.9 Monitoring Project Status

ClearCase provides several tools to help you track the progress of your project:

➤ The UCM-ClearQuest integration includes six ClearQuest queries, which you can use to

retrieve information about activities in your project. For example, you can see all activities

that are in an active state or all active activities assigned to a particular developer. In

addition, you can create customized ClearQuest queries.

➤ The Compare Baselines GUI compares any two baselines of a component and displays the

differences in activities and versions associated with each baseline. You can use this feature

to determine when a particular feature was included in a baseline.

➤ The Component Tree Browser displays the baseline history of a component. The GUI

includes a feature that lets you filter the display so that you see only specified streams or

baselines at or above a specified promotion level.

➤ The ClearCase Report Builder and Report Viewer let you generate and view reports specific

to your project environment. The Report Builder provides a set of reports organized by

ClearCase object, such as project, stream, element, and view. In addition, you can customize

the procedures used to generate and display reports.

See Monitoring Project Status on page 104 for details on using these tools.

2.10 Overview of the UCM-ClearQuest Integration

This section describes the following UCM-ClearQuest integration concepts:

➤ Association of UCM and ClearQuest objects

➤ UCM-enabled schema

➤ Queries

➤ State types

Project
manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project
2 - Understanding UCM 23

Associating UCM and ClearQuest Objects

Setting up the integration links UCM and ClearQuest objects. Figure 8 shows the bidirectional

linking of these objects.

Figure 8 Association of UCM and ClearQuest Objects in Integration

PVOB

Record 1

UCM_Project
Record 1

Activity 1

Project 1

ClearQuest User Database 1

Record 2

UCM_Project
Record 2

ClearQuest User Database 2

Project 2
24 Managing Software Projects

When you enable a project to link to a ClearQuest user database, the integration stores a reference

to that database in the project’s PVOB.

Every project enabled for ClearQuest is linked to a project record of record type UCM_Project in

the ClearQuest user database.

Every activity in a project enabled for ClearQuest is linked to a record in the database. An

activity’s headline is linked to the headline field in its corresponding ClearQuest record. If you

change an activity’s headline in ClearCase, the integration changes the headline in ClearQuest to

match the new headline, and the reverse is also true. Similarly, an activity’s ID is linked to the ID

field in its ClearQuest record.

It is possible for a ClearQuest user database to contain some records that are linked to activities

and some records that are not linked. Record 2 in Figure 8 is not linked to an activity. You may

encounter this situation if you have a ClearQuest user database in place before you adopt UCM.

As you create activities, the integration creates corresponding ClearQuest records. However, any

records that existed in that user database before you enabled it to work with UCM remain

unlinked. In addition, UCM does not link a record to an activity until a developer sets work to

that record.

UCM-Enabled Schema

In ClearQuest, a schema is the definition of a database. To use the integration, you must create

or upgrade a ClearQuest user database that is based on a UCM-enabled schema. A UCM-enabled

schema contains certain fields, scripts, actions, and state types. ClearQuest includes two

predefined UCM-enabled schemas, which you can use. You can also enable a custom schema or

another predefined schema to work with UCM. For details on UCM-enabled schemas, see

Deciding Which Schema to Use on page 46.

State Types

ClearQuest uses states to track the progress of change requests from submission to completion.

A state represents a particular stage in this progression. Each movement from one state to

another is a state transition. The integration uses a particular state transition model. To

implement this model, the integration uses state types. A state type is a category of states that

UCM uses to define state transition sequences. You can define as many states as you want, but

all states in a UCM-enabled record type must be based on one of the following state types:

➤ Waiting
2 - Understanding UCM 25

➤ Ready

➤ Active

➤ Complete

Multiple states can belong to the same state type. However, you must define at least one path of

transitions between states of state types as follows: Waiting to Ready to Active to Complete. For

details on state types, see Setting State Types on page 63.

Queries in a UCM-Enabled ClearQuest Schema

A UCM-enabled schema includes six queries. When you create or upgrade a ClearQuest user

database to use a UCM-enabled schema, the integration installs these queries in two subfolders

of the Public Queries folder in the user database’s workspace. These queries make it easy for

developers to see which activities are assigned to them and for project managers to see which

activities are active in a particular project. For details on these queries, see Querying ClearQuest
User Databases on page 107
26 Managing Software Projects

33 Planning the Project

This chapter describes the issues you need to consider in planning to use one or more UCM

projects as your configuration management environment in Rational ClearCase. We strongly

recommend that you write a configuration management plan before you begin creating projects

and other UCM objects. After you create your plan, see Chapter 6, Setting Up the Project for

information on how to implement it.

3.1 Using the System Architecture as the Starting Point

Essential to developing and maintaining high-quality software is the definition of the system’s

architecture. The Rational Unified Process states that defining and using a system architecture is

one of the six best practices to follow in developing software. A system architecture is the highest

level concept of a system in its environment. The Rational Unified Process states that a system

architecture encompasses the following:

➤ The significant decisions about the organization of a software system

➤ The selection of the structural elements and their interfaces of which the system is

composed, together with their behavior as specified in the collaboration among those

elements

➤ The composition of the structural and behavioral elements into progressively larger

subsystems

➤ The architectural style that guides this organization, these elements, and their interfaces,

their collaborations, and their composition
3 - Planning the Project 27

A well-documented system architecture improves the software development process. It is also

the ideal starting point for defining the structure of your configuration management

environment.

Mapping System Architecture to Components

Just as different types of blueprints represent different aspects of a building’s architecture (floor

plans, electrical wiring, plumbing, and so on), a good software system architecture contains

different views to represent its different aspects. The Rational Unified Process defines an

architectural view as a simplified description (an abstraction) of a system from a particular

perspective or vantage point, covering particular concerns and omitting entities that are not

relevant to this perspective.

The Rational Unified Process suggests using five architectural views. Of these, the

implementation view is most important for configuration management. The implementation

view identifies the physical files and directories that implement the system’s logical packages,

objects, or modules. For example, your system architecture may include a licensing module. The

implementation view identifies the directories and files that make up the licensing module.

From the implementation view, you should be able to identify the set of UCM components you

need for your system. Components are groups of related directory and file elements, which you

develop, integrate, and release together. Large systems typically contain many components. A

small system may contain one component.

Deciding What to Place Under Version Control

In deciding what to place under version control, do not limit yourself to source code files and

directories. The power of configuration management is that you can record a history of your

project as it evolves so that you can re-create the project quickly and easily at any point in time.

To record a full picture of the project, include all files and directories connected with it. These

include, but are not limited to the following:

➤ Source code files and directories

➤ Model files, such as Rational Rose files

➤ Libraries

➤ Executable files

➤ Interfaces

➤ Test scripts

➤ Project plans
28 Managing Software Projects

➤ Compilers, other developer tools, and system header files

➤ System and user documentation

➤ Requirements documents

Mapping Components to Projects

After mapping your system architecture to a set of components and identifying the full set of files

and directories to place under version control, you need to determine whether to use one project

or multiple projects. In general, think of a project as the configuration management environment

for a project team working on a specific release. Team members work together to develop,

integrate, test, and release a set of related components. For many systems, all work can be done

in one project. For some systems, work must be separated into multiple projects. In deciding how

many projects to use, consider the following factors:

➤ Amount of integration required

➤ Whether you need to develop and release multiple versions of the product concurrently

Amount of Integration

Determine the relationships between the various components. Related components that require

a high degree of integration belong to the same project. By including related components in the

same project, you can build and test them together frequently, thus avoiding the problems that

can arise when you integrate components late in the development cycle.

Need for Parallel Releases

If you need to develop multiple versions of your system in parallel, consider using separate

projects, one for each version. For example, your organization may need to work on a patch

release and a new release at the same time. In this situation, both projects use mostly the same

set of components. (Note that multiple projects can modify the same set of components.) When

work on the patch release project is complete, you integrate it with the new release project.

If you anticipate that your team will develop and release numerous versions of your system over

time, you may want to create a mainline project. A mainline project serves as a single point of

integration for related projects over a period of time. See Chapter 9, Managing Parallel Releases of
Multiple Projects for additional information about using a mainline project.
3 - Planning the Project 29

Example

Figure 9 shows the initial set of components planned for the Transaction Builder system. A team

of 30 developers work on the system. Because a high degree of integration between components

is required, and most developers work on several components, the project manager included all

components in one project.

Figure 9 Components Used by Transaction Builder Project

3.2 Organizing Components

After you map your system architecture to an initial set of components and determine which

projects will access those components, refine your plan by performing the following tasks:

➤ Decide how many VOBS to use

➤ Identify any additional components

➤ Define the component directory structures

➤ Identify read-only components

Transaction Builder Project

Customer GUI Admin GUI

Admin Security ReportingModeler
30 Managing Software Projects

Deciding How Many VOBs to Use

ClearCase lets you store multiple components in a VOB. If your project uses a small number of

components, you may want to use one VOB per component. However, if your project uses many

components, you may want to store multiple components in several VOBs. A VOB can store

many versions of many elements. It is inefficient to use a VOB to store one small component.

Keep in mind the following restrictions:

➤ A component’s root directory must be the VOB’s root directory or one level beneath it. A

component includes all directory and file elements under its root directory. For example, in

Figure 10, Libs cannot be a component.

➤ You cannot nest components. For example, in Figure 10, GUI, Admin, and Reports can be

components only if Dev is not a component.

➤ If you make a component at the VOB’s root directory, that VOB can never contain more than

that one component.

Figure 10 Storing Multiple Components in a VOB

VOB

/Dev

GUI Admin

Libs

Reports
3 - Planning the Project 31

Identifying Additional Components

Although you should be able to identify nearly all necessary components by examining your

system architecture, you may overlook a few. For example:

Defining the Directory Structure

After you complete your list of components, you need to define the directory structures within

those components. We recommend that you start with a directory structure similar to the one

shown in Table 1; then modify the structure to suit your system’s needs.

In Table 1, Component_1 through Component_n refers to the components that map to the set of

logical packages in your system architecture.

System component It is a good idea to designate one component for storing

system-level files. These items include project plans,

requirements documents, and system model files and other

architecture documents.

Project baseline

component

If you plan to use a composite baseline that selects baselines from

all of the project’s components, we recommend that you store the

composite baseline in its own component. See Identifying a Project
Baseline on page 37 for details.

Testing component Consider using a separate component for storing files related to

testing the system. This component includes files such as test

scripts, test results and logs, and test documentation.

Deployment component At the end of a development cycle, you need a separate

component to store the generated files that you plan to ship with

the system or deploy inhouse. These files include executable files,

libraries, interfaces, and user documentation.

Tools component In addition to placing source files under version control, it is a

good idea to place your team’s developer tools, such as

compilers, and system header files under version control.
32 Managing Software Projects

Table 1 Recommended Directory Structure for Components

Component Directories Typical contents

System plans Project plans, mission statement, and so on

requirements Requirements documents

models Rose files, other architecture documents

documentation System documentation

Component_1

through

Component_n

requirements Component requirements

models Component model files

source Source files for this component

interfaces Component public interfaces

binaries Executable and other binary files for this

component

libraries Libraries used by this component

tests Test scripts and related documents for this

component

Test scripts Test scripts

results Test results and logs

documentation Test documentation

Deployment binaries Deployed executable files

libraries Deployed libraries

interfaces Deployed interfaces

documentation User documentation
3 - Planning the Project 33

Identifying Read-Only Components

When you create a project, you must indicate whether each component is modifiable in the

context of that project. In most cases, you make them modifiable. However, in some cases you

want to make a component read-only, which prevents project team members from changing its

elements. Components can be used in multiple projects. Therefore, one project team may be

responsible for maintaining a component, and another project team may use that component to

build other components.

For example, in Figure 11, Project A team members maintain a set of library files. Project B team

members reference some of those libraries when they build their components. In Project A, the

cm_libs component is modifiable. In Project B, the same component is read-only. With respect

to the cm_libs component, Project A and Project B have a producer-consumer relationship.

Figure 11 Using a Read-Only Component

Tools compilers Developer tools such as Visual InterDev and

Rational Rose

headers System header files

Project baseline none Composite baseline that selects baselines from

all components in the project

Table 1 Recommended Directory Structure for Components

Component Directories Typical contents

Project A

cm_libs
modifiable

Project B

cm_libs
read-only
34 Managing Software Projects

3.3 Choosing a Stream Strategy

The basic UCM process uses the integration stream as the project’s sole shared work area.

Developers join the project by using the integration stream’s recommended baselines to populate

their development streams; deliver completed work to the integration stream where the

integrator incorporates the work into new baselines; and rebase their development streams to the

new recommended baselines. Depending on the size of your project and the number of

developers working on it, this process may be a good choice for your team.

Alternatively, you can use UCM’s development stream hierarchy feature to create multiple

shared work areas within a project. This approach supports a project organization that consists

of small teams of developers where each team develops a specific feature.

For example, in Figure 12, the project manager created a development stream called

Permissions_dev for two developers who are working on a permissions feature. The developers,

Pat and Pedro, joined the project at the Permissions_dev level rather than at the integration

stream level. They deliver completed work to the Permissions_dev stream. Periodically, the

integrator or lead developer responsible for managing the Permissions_dev stream incorporates

the delivered work into new baselines, and the developers rebase their development streams to

those new baselines.

When the two developers finish working on the permissions feature, they deliver their last work

to the Permissions_dev stream. The integrator incorporates their delivered work into a final set

of baselines and delivers those baselines to the integration stream.
3 - Planning the Project 35

Figure 12 Using a Feature-Specific Development Stream

3.4 Specifying a Baseline Strategy

After you organize the project’s components, determine your strategy for creating baselines of

those components. The baseline strategy must define the following:

➤ A project baseline

➤ When to create baselines

BL0

BL1

BL1

BL2

BLX

BLX BLX

Integration

Permissions_dev

Pat's_dev Pedro's_dev
36 Managing Software Projects

➤ How to name baselines

➤ The set of promotion levels

➤ How to test baselines

Identifying a Project Baseline

In your role as integrator, you are responsible for telling developers which baselines to use when

they join the project and when they rebase their development streams. You could keep track of a

list of baselines, one for each component. However, a more efficient practice is to use a composite

baseline to represent the project baseline. A composite baseline selects baselines from other

components.

For example, in Figure 13, Project A uses a composite baseline, PABL, to select baselines in the

GUI and Admin components. Project B also uses a composite baseline, PBBL. Baselines that are

selected by a composite baseline are referred to as members.

After you create a composite baseline to represent the project baseline, the next time you invoke

the make baseline operation on the component that contains the project baseline, UCM performs

the operation recursively. If a component that contributes to the composite baseline has changed

since its latest baseline, UCM creates a new baseline in that component. For example, assume that

developers made changes to files in the GUI component after the integrator created the BL1
baseline. The next time the integrator makes a new project baseline, UCM creates a new baseline

in the GUI component that incorporates the changed files, and the new project baseline selects

the new GUI baseline.

A composite baseline can select other composite baselines. For example, if your system is so large

that it consists of multiple projects, you may want to use a composite baseline to represent the

system baseline. In Figure 13, SystemBL is a composite baseline that selects the PABL and PBBL
baselines of Project A and Project B, respectively.

In addition to using a composite baseline to represent the project, you can use multiple

composite baselines within the same project. When working with multiple composite baselines,

you can encounter situations where two composite baselines select different baselines of the

same component. When this happens, you need to resolve the conflict by choosing one of the

member baselines. To avoid these conflicts, we recommend that you choose a simple baseline

design, rather than one that uses a complex hierarchy of composite baselines. See Resolving
Baseline Conflicts on page 103 for details about baseline conflicts.

Like all baselines, a composite baseline must belong to a component. However, that component

does not need to contain any of its own elements. For example, in Figure 13, the System_Comp,
3 - Planning the Project 37

ProjA_Comp, and ProjB_Comp components consist only of their composite baselines. When

you create a component to be used solely for housing a composite baseline, you can specify an

option that directs UCM to make the component without creating a root directory in a VOB. Such

a component can never contain its own elements.

Figure 13 Using a System-Level Composite Baseline

GUI Admin

ProjA_Comp

Project X

System component

SystemBL

PABL

BL1 BL2

Libs Core

ProjB_Comp

Project BProject A

PBBL

BL9 BL6
38 Managing Software Projects

When to Create Baselines

At the beginning of a project, you must identify the baseline or baselines that represent the

starting point for new development. As work on the project progresses, you need to create new

baselines periodically.

Identifying the Initial Baseline

If your project represents a new version of an existing project, you probably want to start work

from the latest recommended baselines of the existing project’s components. For example, if you

are starting work on version 3.2 of the Transaction Builder project, identify the baselines that

represent the released, or production, versions of its version 3.1 components.

If you are converting a base ClearCase configuration to a project, you can make baselines from

existing labeled versions. Check whether the latest stable versions are labeled. If they are not, you

need to create a label type and apply it to the versions that you plan to include in your project.

Ongoing Baselines

After developers start working on the new project and making changes, create baselines on the

integration stream and on any feature-specific development streams on a frequent (nightly or

weekly) basis. This practice has several benefits:

➤ Developers stay in sync with each other’s work.

It is critical to good configuration management that developers have private work areas

where they can work on a set of files in isolation. Yet extended periods of isolation cause

problems. Developers are unaware of each other’s work until you incorporate delivered

changes into a new baseline, and they rebase their development streams.

➤ The amount of time required to merge versions is minimized.

When developers rebase their development streams, they may need to resolve merge

conflicts between files that the new baseline selects and the work in their private work areas.

When you create baselines frequently, they contain fewer changes, and developers spend

less time merging versions.

➤ Integration problems are identified early.

When you create a baseline, you first build and test the project by incorporating the work

delivered since the last baseline. By creating baselines frequently, you have more

opportunities to discover any serious problems that a developer may introduce to the project
3 - Planning the Project 39

inadvertently. By identifying a serious problem early, you can localize it and minimize the

amount of work required to fix the problem.

Defining a Naming Convention

Because baselines are an important tool for managing a project, define a meaningful convention

for naming them. You may want to include some or all of the following information in a baseline

name:

➤ Project name

➤ Milestone or phase of development schedule

➤ Date created

For example: V4.0TRANS_BL2_June12

Identifying Promotion Levels to Reflect State of Development

A promotion level is an attribute of a baseline that you can use to indicate the quality or stability

of the baseline. ClearCase provides the following default promotion levels:

➤ Rejected

➤ Initial

➤ Built

➤ Tested

➤ Released

You can use some or all of the default promotion levels, and you can define your own. The levels

are ordered to reflect a progression from lowest to highest quality. You can use promotion levels

to help you recommend baselines to developers. The Recommended Baselines dialog box

displays baselines that have a promotion level equal to or higher than the one you specify. You

can use this feature to filter the list of baselines displayed in the dialog box. Determine the set of

promotion levels for your project and the criteria for setting each level.

Planning How to Test Baselines

Typically, software development teams perform several levels of testing. An initial test, known

as a validation test, checks to see that the software builds without errors and appears to work as
40 Managing Software Projects

it should. A more comprehensive type of testing, such as regression testing, takes much longer

and is usually performed by a team of software quality engineers.

When you make a new baseline, you need to lock the integration stream to prevent developers

from delivering additional changes. This allows you to build and test a static set of files. Because

validation tests are not exhaustive, you probably do not need to lock the integration stream for a

long time. However, more extensive testing requires substantially more time.

Keeping the integration stream locked for a long time is not a good practice because it prevents

developers from delivering completed work. One solution to this problem is to create a

development stream to be used solely for extensive testing. After you create a new baseline that

passes a validation test, your testing team can rebase the designated testing development stream

to the new baseline. When the baseline passes the next level of testing, promote it. When you are

confident that the baseline is stable, make it the recommended baseline so that developers can

rebase their development streams to it.

For information on creating a testing development stream, see Creating a Development Stream for
Testing Baselines on page 90. For information on testing baselines, see Testing the Baseline on

page 101.

3.5 Planning PVOBs

ClearCase stores UCM objects such as projects, streams, activities, and change sets in project

VOBs (PVOBs). PVOBs can also function as administrative VOBs. You need to decide how many

PVOBs to use for your system and whether to take advantage of the administrative capabilities

of the PVOB.

Deciding How Many PVOBs to Use

PRODUCT NOTE: This section does not apply to Rational ClearCase LT because that product

allows for only one PVOB per server.

Projects that use the same PVOB have access to the same set of components. If developers on

different projects need to work on some of the same components, use one PVOB for those

projects. For example, Figure 14 shows concurrent development of two versions of the

Webotrans product. While most members of the team work on the 4.0 release in one project, a

small group works on the 4.0.1 release in a separate project. Both projects use the same

components, so they use one PVOB.
3 - Planning the Project 41

Figure 14 Related Projects Sharing One PVOB

Consider using multiple PVOBs only when one or both of the following conditions applies:

➤ The projects do not share components, and you anticipate that they will never need to share

components.

➤ The projects are so large that PVOB capacity becomes an issue.

Understanding the Role of the Administrative VOB

An administrative VOB stores global type definitions. VOBs that are joined to the administrative

VOB with AdminVOB hyperlinks share the same type definitions without having to define them

in each VOB. For example, you can define element types, attribute types, hyperlink types, and so

on in an administrative VOB. Any VOB linked to that administrative VOB can then use those

type definitions to make elements, attributes, and hyperlinks.

If you currently use an administrative VOB, you can associate it with your PVOB when you

create the PVOB. ClearCase then creates an AdminVOB hyperlink between the PVOB and the

administrative VOB. Thereafter, when you create components, ClearCase creates AdminVOB
hyperlinks between the components and the administrative VOB so that the components can use

the administrative VOB’s global type definitions.

GUI Admin

V4.0_Webotrans

GUI Admin

V4.0.1_Webotrans

Webotrans
PVOB
42 Managing Software Projects

If you do not currently use an administrative VOB, do not create one. When you create

components, ClearCase makes AdminVOB hyperlinks between the components and the PVOB,

and the PVOB assumes the role of administrative VOB.

For details on administrative VOBs and global types, see the Administrator’s Guide for Rational

ClearCase or the Administrator’s Guide for Rational ClearCase LT.

3.6 Identifying Special Element Types

The concept of element types allows ClearCase to handle each class of elements differently. An

element type is a class of file elements. ClearCase includes predefined element types, such as file
and text_file, and lets you define your own. When you create an element type for use in UCM

projects, you can specify a mergetype attribute, which determines how deliver and rebase

operations handle merging of files of that element type.

When ClearCase encounters a merge situation during a deliver or rebase operation, it attempts

to merge versions of the element. ClearCase requires user interaction only if it cannot reconcile

differences between the versions. For certain types of files, you may want to impose different

merging behavior.

Nonmerging Elements

Some types of files never need to be merged. For these files, you may want to ensure that no one

attempts to merge them accidentally. For example, the deployment, or staging, component

contains the executable files that you ship to customers or install in-house. These files are not

under development; they are the product of the development phase of the project cycle. For these

types of files, you can create an element type and specify never merge behavior.

NOTE: If you fail to specify never merge behavior for these elements, developers may encounter

problems when they attempt to deliver work to the project’s integration stream. Developers

create executable files when they build and test their work prior to delivering it. If these files are

under version control as derived objects, they are included in the current activity’s change set.

During a deliver operation, ClearCase attempts to merge these executable files to the integration

stream unless the files are of an element type for which never merge behavior is specified.
3 - Planning the Project 43

Nonautomerging Elements

For some types of files, you may want to merge versions manually rather than let ClearCase

merge them. One example is a Visual Basic form file, which is a generated text file. Visual Basic

generates the form file based on the form that a developer creates in the Visual Basic GUI. Rather

than let ClearCase change the form file during a merge operation, you want to regenerate the

form file from the Visual Basic GUI.

For these types of files, you can create an element type and specify user merge behavior. For

information on creating element types, see Chapter 15, Using Element Types to Customize
Processing of File Elements, and the mkeltype reference page in the Command Reference.

Defining the Scope of Element Types

When you define an element type, its scope can be ordinary or global. By default, the element

type is ordinary; it is available only to the VOB in which you create it. If you create the element

type in an administrative VOB and define its scope as global, other VOBs that have AdminVOB
hyperlinks to that administrative VOB can use the element type. If you want to define an element

type globally, and you do not currently use a separate administrative VOB, define the element

type in the PVOB.

3.7 Planning How to Use the UCM-ClearQuest Integration

Before you can set up the UCM-ClearQuest integration, you need to make some decisions, which

fall into two general categories:

➤ How to map PVOBs to ClearQuest user databases

➤ Which schema to use for the ClearQuest user databases

Mapping PVOBs to ClearQuest User Databases

This section describes three issues that you need to consider in deciding how many PVOBs to use

for projects that link to ClearQuest user databases.
44 Managing Software Projects

MultiSite Requirement

If you use ClearCase MultiSite, all PVOB replicas must have access to the ClearQuest user

database.

Projects Linked to Same Database Must Have Unique Names

Although UCM allows you to create projects with the same name in different PVOBs, you cannot

link those projects to the same ClearQuest user database. Figure 15 illustrates this naming

requirement.

Figure 15 Projects in Multiple PVOBs Linked to the Same ClearQuest Database

Use One Schema Repository for Linked Databases

If some developers on your team work on multiple projects, we recommend that you store the

schemas for the ClearQuest user databases that are linked to those projects in one schema

repository, as shown in Figure 16. This allows developers to switch between projects easily. If you

store the schemas in different schema repositories, developers must use the ClearQuest

Maintenance Tool to connect to a different schema repository whenever they switch projects.

UCM_Project1

PVOB1

PVOB2

ClearQuest User
Database

Project1

Project2

Project3

UCM_Project2

UCM_Project3
3 - Planning the Project 45

Figure 16 Using the Same Schema Repository for Multiple ClearQuest Databases

Deciding Which Schema to Use

To use the integration, you must create or upgrade a ClearQuest user database that is based on

a UCM-enabled schema. A UCM-enabled schema meets the following requirements:

➤ The UnifiedChangeManagement package has been applied to the schema. A package

contains metadata, such as records, fields, and states, that define specific functionality.

Applying a package to a schema provides a way to add functionality quickly so that you do

not have to build the functionality from scratch.

➤ The UnifiedChangeManagement package has been applied to at least one record type. This

package adds fields and scripts to the record type, and adds the Unified Change
Management tab to the record type’s forms. Figure 17 shows the Unified Change
Management tab.

➤ The UCMPolicyScripts package has been applied to the schema. This package contains the

scripts for three ClearQuest development policies that you can enforce.

PVOB1

PVOB2

ClearQuest User
Database1

Project1

ClearQuest User
Database 2

Schema Repository

Schema1

Schema2

Project2
46 Managing Software Projects

ClearQuest includes two predefined UCM-enabled schemas: UnifiedChangeManagement and

Enterprise. You can start using the integration right away by using one of these schemas, or you

can use the ClearQuest Designer and the ClearQuest Package Wizard to enable a custom schema

or another predefined schema to work with UCM. You can also use one of the predefined

UCM-enabled schemas as a starting point and then modify it to suit your needs.

Figure 17 UCM Tab of Record Form for a UCM-Enabled Record Type

Overview of the UnifiedChangeManagement Schema

The UnifiedChangeManagement schema includes the following record types:

➤ BaseCMActivity
This is a lightweight record type that you can use to store information about activities that

do not require additional fields. Figure 18 shows the Main tab of the BaseCMActivity

record form. You may want to use this record type as a starting point and then modify it to

include additional fields and states.

➤ Defect
This record type is identical to the record type of the same name that is included in

ClearQuest’s other predefined schemas, with one exception: it is enabled to work with

UCM. The Defect record type contains more fields and form tabs than the BaseCMActivity

record type to allow you to record detailed information.

➤ UCMUtilityActivity
This record type is not intended for general use. The integration uses this record type when

it needs to create records for itself, such as when you link a project that contains activities to

a ClearQuest user database. You cannot modify this record type.
3 - Planning the Project 47

Figure 18 Main Tab of Record Form for the BaseCMActivity Record Type

Enabling a Schema for UCM

If you decide not to use one of the predefined UCM-enabled schemas, you need to do some

additional work to enable your schema to work with UCM. Before you can do this, you need to

answer the following questions:

➤ Which record types are you enabling for UCM? You do not need to enable all record types

in your schema, but you can link only records of UCM-enabled record types to activities.

➤ For each UCM-enabled record type:

➣ Which state type does each state map to? You must map each state to one of the four

UCM state types: Waiting, Ready, Active, Complete. See Setting State Types on page 63.

➣ Which default actions are you using to transition records from one state to another? See

State Transition Default Action Requirements for Record Types on page 64.

➣ Which policies do you want to enforce? The integration includes policies that you can

set to enforce certain development practices. You can also edit the policy scripts to

change the policies. See Chapter 4, Setting Policies for details.
48 Managing Software Projects

44 Setting Policies

UCM includes policies that you can set to enforce certain development practices within a project.

Some policies are available only if you enable the project to work with Rational ClearQuest. In

addition to the policies that UCM supplies, you can create your own policies by using triggers

on UCM operations. For information on using triggers, see Chapter 8, Using Triggers to Enforce
Development Policies.

4.1 Components and Baselines

This section describes the policies related to components and baselines.

Modifiable Components

In most cases, you want components to be modifiable. For information on when to use read-only

components, see Identifying Read-Only Components on page 34.

Default Promotion Level for Recommending Baselines

Recommended baselines are the set of baselines that project team members use to rebase their

development streams. In addition, when developers join the project, their development work

areas are initialized with the recommended baselines. When you recommend baselines, the
4 - Setting Policies 49

Recommend Baselines dialog box lists the latest baselines that have promotion levels equal to

or higher than the promotion level that you specify as the default promotion level for

recommending baselines.

4.2 Default View Types

When developers join a project, they use the Join Project Wizard to create their development

views, integration views, and development streams. They use a development view and a

development stream to work in isolation from the project team. They use an integration view to

build and test their work against the latest work delivered to the integration stream or

feature-specific development stream by other developers.

Rational ClearCase provides two kinds of views: dynamic and snapshot. Specify which type of

view to use as the default for development and integration views. When developers join the

project, they may choose to accept or reject the default view types. The Join Project Wizard uses

the default values the first time that a developer creates views for a project. Thereafter, the wizard

uses the developer’s most recent selections as the default view types.

PRODUCT NOTE: Rational ClearCase LT supports only snapshot views.

Dynamic views use the ClearCase multiversion file system (MVFS) to provide immediate,

transparent access to files and directories stored in VOBs. ClearCase maps a dynamic view to a

drive letter in Windows Explorer. Snapshot views copy files and directories from VOBs to a

directory on your computer.

We recommend that you use dynamic views as the default view type for integration views.

Dynamic views ensure that when developers deliver work to the integration stream or

feature-specific development stream, they build and test their work against the latest work that

other developers have delivered since the last baseline was created. Snapshot views require

developers to copy the latest delivered files and directories to their computer (a snapshot view
update operation), which they may forget to do.

4.3 Deliver Operations

This section describes the policies that affect deliver operations. You can set these policies to

apply to all streams within the project or you can set the policies on a per-stream basis. When a

developer starts a deliver operation, UCM checks the policy settings on the target stream and the
50 Managing Software Projects

project. If the target stream’s policy setting is different than its project’s policy setting, the

project’s setting takes precedence.

Allow Deliveries from Stream with Pending Checkouts

This policy allows developers to deliver work to the target stream even if some files remain

checked out in the source stream. If you do not set this policy, developers must check in all files

in their source streams before delivering work. You may want to require developers to check in

files to avoid the following situation:

1. A developer completes work on an activity, but forgets to check in the files associated with

that activity.

2. The developer works on other activities.

3. Having completed several activities, the developer delivers them to the target stream.

Because the files associated with the first activity are still checked out, they are not included

in the deliver operation. Even though the developer may build and test the changes

successfully in the development work area, the changes delivered to the target may fail

because they do not include the checked-out files.

Rebase Before Deliver

This policy requires developers to rebase their source streams to the target stream’s current

recommended baselines before they deliver work to the target stream. The goal of this policy is to

have developers build and test their work in their development work areas against the work

included in the most recent stable baselines before they deliver to the target stream. This practice

minimizes the amount of merging that developers must do when they perform deliver

operations.

Deliver Operations to Nondefault Targets

As shown in Figure 19, you can create a hierarchy of development streams. Such a hierarchy

allows you to designate a development stream as a shared area for developers working on a

particular feature. Developers who work on that feature deliver work to the feature-specific

development stream.
4 - Setting Policies 51

Figure 19 Default and Nondefault Deliver Targets in a Stream Hierarchy

Within a stream hierarchy, streams have an ancestor-descendant relationship. In Figure 19, the

integration stream and the Feature1 development stream are ancestors of the Developer1 and

Developer2 development streams. Feature1, Developer1, and Developer2 are descendants of

the integration stream. A stream’s immediate ancestor is its parent stream. A stream’s immediate

descendant is its child stream.

Because a project can contain a set of complex development stream hierarchies, a development

stream may deliver to numerous target streams within the project. In addition, streams may

deliver to streams in other projects. The default target for a deliver operation from a development

stream is that stream’s parent stream. Developers may also deliver to nondefault target streams.

BL0

BL1

BL1

BL2 BLX

BLX BLX

Integration

Feature1

Developer1 Developer2

Nondefault

Nondefault

DefaultDefault
52 Managing Software Projects

The arrows in Figure 19 illustrate default and nondefault deliver targets. The following policies

apply only to nondefault target streams.

Allow Deliveries from Streams in Other Projects

Set this policy to control whether streams accept deliveries from streams in other projects. See

Chapter 9, Managing Parallel Releases of Multiple Projects, for examples of when you may want to

deliver work from one project to another.

Allow Deliveries That Contain Changes in Foundation Baselines

UCM uses foundation baselines to configure a stream’s view. A view attached to a stream selects

the versions of elements identified by the stream’s foundation baselines plus the versions of

elements associated with any activities created in the stream. For example, in Figure 20, BL1 is

the foundation baseline for the Feature1 development stream. The BLX baseline is the

foundation baseline for the Developer1 development stream.

If the developer working in the Developer1 stream delivers work to the integration stream, the

deliver operation includes the activities created in the Developer1 stream plus the files

represented by the BLX foundation baseline. The integrator responsible for the integration

stream may want to receive work that the developer working in the Developer1 stream has

completed; however, the integrator may be unaware that the deliver operation also contains

changes made in the BLX baseline. You may want to set this policy to Disabled so that target

streams do not accept deliver operations that contain changes in the source stream’s foundation

baselines.

UCM contains two versions of this policy: one for interproject deliver operations, and one for

intraproject deliver operations.
4 - Setting Policies 53

Figure 20 Delivering Changes Made to a Foundation Baseline

Allow Deliveries That Contain Changes Made to Components Not in Target Stream

Set this policy to control whether streams accept deliveries that contain changes to components

that are not in the target streams’ configurations. If you set this policy to Enabled, UCM allows

the deliver operation, but the changes to any missing components are not included. UCM

contains two versions of this policy: one for interproject deliver operations, and one for

intraproject deliver operations.

BL0

BL1

BL1

BL2

BLX

BLX

Integration

Feature1

Foundation
baseline

Developer1

Activity

Foundation
baseline
54 Managing Software Projects

Allow Deliveries That Contain Changes to Nonmodifiable Components

Set this policy to control whether streams accept interproject deliveries that contain changes to

components that are not modifiable in the target stream’s project. If you set this policy to

Enabled, UCM allows the deliver operation, but the changes to any nonmodifiable components

are not included.

4.4 UCM-ClearQuest Integration

This section describes the policies that are available only when you enable the project to work

with ClearQuest. ClearQuest uses scripts to implement these policies. You can modify a policy’s

behavior by editing its script. See Customizing ClearQuest Project Policies on page 65.

Check Before Work On

ClearQuest invokes this policy when a developer attempts to work on an activity. The default

policy script checks to see whether the developer’s user name matches the name in the

ClearQuest record’s Owner field. If the names match, the developer can work on the activity. If

the names do not match, the Work On action fails.

The intent of this policy is to ensure that all criteria are met before a developer can start working

on an activity. You may want to modify the policy to check for additional criteria.

Check Before ClearCase Delivery

This default policy script is a placeholder: it does nothing. ClearCase invokes this policy when a

developer attempts to deliver an activity in a UCM-enabled project. We recommend that you edit

the script to implement an approval process to control deliver operations. For example, you may

want to add an Approved check box to the activity’s record type and require that the project

manager select it before allowing developers to deliver activities.
4 - Setting Policies 55

Do ClearQuest Action After Delivery

ClearCase calls this policy at the end of a deliver operation for each activity included in the

deliver operation. The default policy script uses the activity’s default action to transition the

activity to a Complete type state. If the default action requires entries in certain fields of the

activity’s record, and one of those fields is empty, the script returns an error and leaves the

deliver operation in an uncompleted state. This state prevents the developer from performing

another deliver operation, but it does not affect the current one. It does not roll back changes

made during the merging of versions.

To recover from an error, the developer needs to fill in the required fields in the activity’s record

and resume the deliver operation.

The integration runs this script for each activity in the deliver operation. The script may return

success for any number of activities before returning an error on an activity. For the successful

activities, the script may change their state when it invokes the default action. When you recover

from an error and rerun the deliver operation, the script looks at all activities again. For those

that succeeded previously, the script does not attempt to change state. If you modify the script,

be sure that it adheres to this behavior. ClearQuest returns an error if you attempt to change the

state of a record to its current state.

Check Mastership Before Delivery

The Do ClearQuest Action After Delivery project policy transitions activities to a Complete type

state when a deliver operation completes successfully. For that policy to work correctly in a

MultiSite environment, the activities being delivered must be mastered by the same replica that

masters the target stream. To ensure that this is the case, you can set the Check Mastership Before

Delivery policy.

The behavior of the Check Mastership Before Delivery policy depends on whether the deliver

operation is local or remote. If the deliver operation is local, meaning that the target stream is

mastered by the local PVOB replica, this policy causes the deliver operation to fail unless all

activities being delivered are mastered locally.

A remote deliver operation is one for which the target stream is mastered by a remote PVOB

replica. The developer starts the deliver operation, but ClearCase leaves the operation in a posted
state. The integrator at the remote site completes the deliver operation.
56 Managing Software Projects

For a remote deliver operation, the Check Mastership Before Delivery policy causes the

following behavior:

➤ If all activities in the deliver operation are mastered by the remote replica, ClearCase allows

the deliver operation to proceed.

➤ If the deliver operation contains activities that are mastered by the local replica, MultiSite

transfers mastership of those activities to the remote replica. After the integrator at the

remote site performs any required merges and completes the deliver operation, MultiSite

transfers mastership of the activities back to the local replica.

➤ If the deliver operation contains activities that are mastered by a third replica, the deliver

operation fails.
4 - Setting Policies 57

58 Managing Software Projects

55 Setting Up a ClearQuest User
Database

This chapter describes how to set up a ClearQuest user database so that you can use the

UCM-ClearQuest integration for your project. The steps in this chapter are typically completed

by the ClearQuest database administrator. Rational ClearQuest includes predefined schemas

that are ready for use with UCM. You can also enable a custom schema, or another predefined

schema, to work with UCM. For information about the decisions you need to make before setting

up the integration, see Planning How to Use the UCM-ClearQuest Integration on page 44.

5.1 Using the Predefined UCM-Enabled Schemas

The predefined UCM schemas, named UnifiedChangeManagement and Enterprise, include the

record type, field, form, state, and other definitions necessary to work with a UCM project. To set

up a ClearQuest user database to work with UCM:

1. Create a user database that is associated with one of the predefined UCM-enabled schemas.

In the ClearQuest Designer, click Database > New Database to start the New Database

Wizard.

2. Complete the steps in the wizard. Step 4 prompts you to select a schema to associate with the

new database. Scroll the list of schema names and select the new schema, as shown in

Figure 21.

3. Click Finish.
5 - Setting Up a ClearQuest User Database 59

Figure 21 Associating a User Database with a UCM-Enabled Schema

5.2 Enabling a Schema to Work with UCM

The predefined UCM schemas let you use the UCM-ClearQuest integration right away, but you

may prefer to design a custom schema to track your project’s activities and change requests, or

you may prefer to use a different predefined schema. To enable a schema to work with UCM:

1. Ensure that the schema does not contain a record type named UCM_Project, which is a

reserved name used by the UCM-ClearQuest integration.

2. In the ClearQuest Designer, click Package > Package Wizard to start the Package Wizard.

3. Although it is not necessary, you may want to use the Package Wizard to apply the

BaseCMActivity package to your schema. The BaseCMActivity package adds the

BaseCMActivity record type to your schema. The BaseCMActivity record type is a

lightweight activity record type. You may want to use the BaseCMActivity record type as a

starting point and then modify it to include additional fields, states, and so on. If you want

to rename the BaseCMActivity record type, be sure to do so before you create any records of

that type.

4. Apply the UnifiedChangeManagement package to the schema. Select

UnifiedChangeManagement, and click Next.

5. In the second page of the wizard, select your schema. Click Next.

6. The third page of the wizard prompts you to specify the schema’s record types. Select the

check boxes of the record types that you want to enable. Click Next. All selected record types

must meet the requirements listed in Requirements for Enabling Custom Record Types on

page 62.
60 Managing Software Projects

7. In the fourth page of the wizard, you must assign state types to the states for each record type

that you choose to enable. For each state, click in the adjacent state type cell to display the

list of available state types, as shown in Figure 22, and select one. To enable another record

type, click the arrow in the Record Type list to see the available record types. See Setting State
Types on page 63 for a description of the four state types, and the rules for setting them.

When you are finished, click Finish to check out the schema.

NOTE: In some cases,the Setup State Types page of the wizard does not appear. If that

happens, assign state types to the states by clicking Package > Setup State Types.

Figure 22 Assigning State Types to a Record Type’s States

8. Before you can check in your schema, you must set default actions for the states of each

enabled record type. Default actions are state transition actions that ClearQuest takes when

a developer begins to work on an activity or delivers an activity. In the ClearQuest Designer

workspace, navigate to the record type’s state transition matrix, as shown in Figure 23.
5 - Setting Up a ClearQuest User Database 61

Figure 23 Navigating to Record Type’s State Transition Matrix

Double-click State Transition Matrix to display the matrix. Right-click the state column

heading, and select Properties from its shortcut menu. Click the Default Action tab. Select

the default action. See State Transition Default Action Requirements for Record Types on page 64

for default action requirements. Before you can set default actions, you may need to add

some actions to the record type. To do so, double-click Actions to display the Actions grid,

and then click Edit > Add Action.

9. Validate the schema changes by clicking File > Validate. Fix any errors that ClearQuest

displays, and then check in the schema by clicking File > Check In.

10. In the ClearQuest Designer workspace, navigate to the record type’s Behaviors.

Double-click Behaviors to display the Behaviors grid. Verify that the Headline field is set to

Mandatory for all states. Verify that the Owner field is set to Mandatory for all Active state

types.

11. Validate the schema changes by clicking File > Validate. Fix any errors that ClearQuest

displays, and then check in the schema by clicking File > Check In.

12. Upgrade the user database so that it is associated with the UCM-enabled version of the

schema by clicking Database > Upgrade Database. Alternatively, create a new user database

that is based on the UCM-enabled version of the schema.

Requirements for Enabling Custom Record Types

Before you can apply the UnifiedChangeManagement package to a custom record type, the

record type must meet the following requirements:
62 Managing Software Projects

➤ It contains a field named Headline defined as a SHORT_STRING, and a field named

Owner defined as a REFERENCE to the ClearQuest-supplied users record type. The

Headline field must be at least 120 characters long.

➤ It does not contain fields with these names:

➣ ucm_vob_object
➣ ucm_stream
➣ ucm_stream_object
➣ ucm_view

➤ It contains an action named Modify of type Modify.

Setting State Types

The integration uses a state transition model to help you monitor the progress of activities. To

implement this model, the integration adds state types to UCM-enabled schemas. Table 2 lists

and describes the four state types. You must assign each state to a state type. You must have at

least one state definition of state type Waiting, one of state type Ready, one of state type Active,

and one of state type Complete.

Table 2 State Types in UCM-Enabled Schema

State type Description

Waiting The activity is not ready to be worked on, either because it has not

been assigned or it has not satisfied a dependency.

Ready The activity is ready to be worked on. It has been assigned, and

all dependencies have been satisfied.

Active The developer has started work on the activity but has not

completed it.

Complete The developer has either worked on and completed the activity,

or not worked on and abandoned the activity.
5 - Setting Up a ClearQuest User Database 63

State Transition Default Action Requirements for Record Types

Record types can include numerous state definitions. However, UCM-enabled record types must

have at least one path of transitions among state types as follows: Waiting to Ready to Active to

Complete. The transition from one state to the next must be made by a default action.

For example, Figure 24 shows the actions and default actions between the states defined in the

UCM-enabled BaseCMActivity record type included in the predefined UCM schema. The

default actions are identified with an asterisk (*). The state types are in uppercase letters enclosed

in brackets. The states appear immediately above their state types.

Figure 24 State Transitions of UCM-enabled BaseCMActivity Record Type

In addition to this single path requirement, states must adhere to the following rules:

➤ All Waiting type states must have a default action that transitions to another Waiting type

state or to either a Ready or Active type state.

➤ If a Ready type state has an action that transitions directly to a Waiting type state, that

Waiting type state must have a default action that transitions directly to that Ready type

state.

Submitted Ready Active Complete

[WAITING] [READY] [ACTIVE] [COMPLETE]

*Complete *Assign *Activate

Postpone

Postpone

Re-open
64 Managing Software Projects

➤ All Ready type states must have a default action that transitions to another Ready type state

or to an Active type state.

➤ All Ready type states must have at least one action that transitions directly to a Waiting type

state.

➤ For the BaseCMActivity record type, its initial state must be a Waiting type.

5.3 Upgrading Your Schema to the Latest UCM Package

If you have a UCM-enabled ClearQuest schema from a previous release of ClearQuest, you may

want to upgrade that schema with the latest revision of the UnifiedChangeManagement
package so that you can use new functionality. To upgrade the schema, perform the following

steps:

1. In the ClearQuest Designer, click Package > Upgrade Installed Packages to start the

Upgrade Installed Packages Wizard.

2. The first page of the wizard lists all schemas that have at least one package that needs to be

upgraded. Select the schema that you want to upgrade, and click Next.

3. The second page of the wizard lists the packages that will be upgraded. Click Upgrade to

accept the changes.

4. If the UnifiedChangeManagement package that you are upgrading from is earlier than

revision 3.0, you need to assign states to state types for each UCM-enabled record type.

5. Validate the schema changes by clicking File > Validate. Fix any errors that ClearQuest

displays, and then check in the schema by clicking File > Check In.

6. Upgrade the user database to associate it with the new version of the schema by clicking

Database > Upgrade Database.

5.4 Customizing ClearQuest Project Policies

To implement the project policies, the integration adds the following pairs of scripts to a

UCM-enabled schema:
5 - Setting Up a ClearQuest User Database 65

➤ UCM_ChkBeforeDeliver and UCM_ChkBeforeDeliver_Def
➤ UCM_ChkBeforeWorkOn and UCM_ChkBeforeWorkOn_Def
➤ UCM_CQActAfterDeliver and UCM_CQActAfterDeliver_Def

Each policy has two scripts: a base script and a default script. The default scripts have _Def
appended to their names and are installed by the UnifiedChangeManagement package. The

integration invokes the base scripts, which are installed by the UCMPolicyScripts package. The

base script calls the corresponding default script, which contains the logic for the default

behavior. To modify the behavior of a policy, remove the call to the default script from the base

script. Then add logic for the new behavior to the base script. Adhere to the rules stated in the

base script.

Each script has a Visual Basic version and a Perl version. The Visual Basic scripts have a UCM
prefix. The Perl scripts have a UCU prefix. For ClearQuest clients on Windows NT, the

integration uses the Visual Basic scripts. For ClearQuest clients on UNIX, the integration uses the

Perl scripts. If you modify a policy’s behavior and your environment includes ClearQuest clients

on both platforms, be sure to make the same changes in both the Visual Basic and Perl versions

of the policy’s script. Otherwise, the policy will behave differently for ClearQuest clients on

UNIX and Windows NT.

For descriptions of these policies, see UCM-ClearQuest Integration on page 55.

5.5 Associating Child Activity Records with a Parent Activity
Record

As project manager, you may assign activities for large tasks to developers. When the developers

research their activities, they may determine that they need to perform several separate activities

to complete one large activity.

For example, an “Add customer verification functionality” activity may require significant work

in the product’s GUI, the command-line interface, and a library. To more accurately track the

progress of the activity, you can decompose it into three separate activities.

By using the parent/child controls in ClearQuest, you can accomplish this decomposition and

tie the child activities back to the parent activity.
66 Managing Software Projects

Using Parent/Child Controls

In ClearQuest, you use controls to display fields in record forms. A parent/child control, when

used with a reference or reference list field, lets you link related records. By adding a

parent/child control to the record form of a UCM-enabled record type, you can provide the

developers on your team with the ability to decompose a parent activity into several child

activities.

To have ClearQuest change the state of the parent activity to Complete when all child activities

have been completed, you need to write a hook. See Administering Rational ClearQuest for an

example of such a hook.

5.6 Creating Users

Before you can assign activities to the developers on your project team, you must create user

account profiles for each developer in ClearQuest. To do so:

1. In ClearQuest Designer, click Tools > User Administration.

2. Click Add.

3. Complete the User Information dialog box.

See Administrator’s Guide for Rational ClearQuest and the ClearQuest Designer online help for

details on creating user profiles.
5 - Setting Up a ClearQuest User Database 67

68 Managing Software Projects

66 Setting Up the Project

This chapter describes how to set up a project so that a team of developers can work in the

Unified Change Management (UCM) environment. Before you set up a project, be sure to plan

the project. See Chapter 3, Planning the Project, for information on what to include in a

configuration management plan.

The chapter presents the following scenarios:

➤ Creating a project from scratch

➤ Creating a project based on an existing base ClearCase configuration

➤ Creating a project based on an existing project

➤ Enabling a project to use the UCM-ClearQuest integration

➤ Working with Rational Suite

➤ Creating a development stream reserved for testing new baselines

➤ Creating a feature-specific development stream
6 - Setting Up the Project 69

6.1 Creating a Project from Scratch

This section describes how to create and set up a new project that is not based on an existing

project or on an existing set of ClearCase VOBs.

Creating the Project VOB

PRODUCT NOTE: This task does not apply to ClearCase LT users. The ClearCase administrator

creates the PVOB during the installation.

To create a PVOB:

1. Click Start > Programs > Rational ClearCase Administration > Create VOB. The VOB

Creation Wizard appears.

2. In Step 1 of the VOB Creation Wizard, enter a name for the PVOB. Enter a comment to

describe the purpose of the PVOB. Leave the Create as a VOB-level component check box

clear. Although you can use one VOB as the PVOB and a component, we recommend against

doing so unless your project is very small and you anticipate that it will remain small. Select

the Create as a UCM project VOB check box.

Project
manager

Assign and
schedule
work

Monitor
project
status

Establish
policies

Set up
project

Create a
PVOB

Create
components

Create
integration view

Create directory
structure

Create
a project

Create project
baseline
70 Managing Software Projects

3. In Step 2, specify the PVOB’s storage directory. A PVOB storage directory is a directory tree

that serves as the repository for the PVOB’s contents. A PVOB’s storage directory contains

the same subdirectories as a VOB’s storage directory. (For details about VOB storage

directory structure, see the Administrator’s Guide for Rational ClearCase or the Administrator’s
Guide for Rational ClearCase LT.) You can choose one of the recommended locations or enter

the universal naming convention (UNC) path of a different location. Click Browse to search

the network for shared resource locations.

4. Step 3 prompts you to choose an administrative VOB to be associated with the PVOB.

Because you are creating a project from scratch and do not currently use an administrative

VOB, scroll to the top of the list and select none. When you create components, ClearCase

makes AdminVOB hyperlinks between the components and the PVOB, and the PVOB

assumes the role of administrative VOB.

Creating a Component for Storing the Project Baseline

This task is optional but we strongly recommend it. Using a composite baseline to represent the

project is easier than keeping track of a set of baselines, one for each component. Although you

can store a composite baseline and elements in the same component, it is cleaner to dedicate one

component for storing the project baseline. To ensure that nobody creates elements in this

component, create the component without a VOB root directory. A component that has no VOB

root directory cannot store its own elements. To create a component without a VOB root

directory:

1. In the ClearCase Explorer, click UCM and click Project Explorer. The Project Explorer is the

graphical user interface (GUI) through which you create, manage, and view information

about projects.

2. The left pane of the Project Explorer lists folders for all PVOBs in the local ClearCase domain.

Each PVOB has its own root folder. ClearCase creates the root folder using the name of the

PVOB. Navigate to the PVOB that you created.

3. ClearCase also creates a folder called Components, which contains entries for each

component in the PVOB. Right-click the Components folder and select Create Component
Without a VOB from its shortcut menu.

4. In the Create Component Without a VOB dialog box, enter a name and description for the

component. Click OK.
6 - Setting Up the Project 71

You may decide to use multiple composite baselines in your project. If you do, we recommend

that you still use one top-level composite baseline that selects the baselines of all components in

the project, either directly or indirectly through other composite baselines.

Creating Components for Storing Elements

This section describes how to create components for storing the files that your team develops.

PRODUCT NOTE: The process for creating components that store elements is slightly different for

Rational ClearCase and Rational ClearCase LT.

When you create a component, you must specify the VOB that stores the component’s directory

tree. You can store multiple components in a VOB, or you can create a VOB that stores one

component. See Deciding How Many VOBs to Use on page 31 for details about using one VOB to

store multiple components.

Creating One Component Per VOB

To create a VOB and its one component in ClearCase:

1. Start the VOB Creation Wizard.

2. In Step 1, enter a name for the component. Enter a comment to describe the purpose of the

component. Select the Create as a VOB-level component check box.

3. In Step 2, specify where to store the component. You can choose one of the recommended

locations or enter the UNC path of a different location. Click Browse to search the network

for shared resource locations.

4. Step 3 prompts you to identify the PVOB that will store the project information about the

component. Click the arrow to see the list of available PVOBs. Select the PVOB that you

previously created.

ClearCase creates the component with an initial baseline that points to the \main\0 version

of the component’s root directory.

To create a VOB and its one component in ClearCase LT:

1. Click Start > Programs > Rational ClearCase LT Server > ClearCase Create VOB. The VOB

Creation Wizard appears.
72 Managing Software Projects

2. In Step 1, enter a name for the component. Enter a comment to describe the purpose of the

component. Because ClearCase LT assumes that you are using UCM, the VOB Creation

Wizard creates the VOB as a component.

3. In Step 2, select one of the available storage locations for the VOB’s storage directory. This

page of the wizard lists the VOB storage locations created by your ClearCase administrator.

If only one VOB storage location exists, the VOB Creation Wizard skips this step and uses

that VOB storage location.

Creating a VOB That Stores Multiple Components

To create a VOB that can store multiple components in ClearCase:

1. Start the VOB Creation Wizard.

2. In Step 1, enter a name for the VOB. Enter a comment to describe the purpose of the VOB.

Clear the Create as a VOB-level component check box.

3. In Step 2, specify where to store the VOB. You can choose one of the recommended locations

or enter the UNC path of a different location. Click Browse to search the network for shared

resource locations.

4. Step 3 prompts you to identify the administrative VOB that is associated with the VOB you

are creating. Because you plan to use this VOB to store components, you do not need to use

an administrative VOB. Select none. When you create the components, you associate them

with a PVOB, which assumes the role of an administrative VOB.

To create a VOB that can store multiple components in ClearCase LT, use the cleartool mkvob
command. For example:

cleartool mkvob –nc –tag \myvob –stgloc stgloc1

To create a component and store it in the VOB:

1. Create a non-UCM view with the default config spec. In ClearCase Explorer, click Base
ClearCase, and click the Create View shortcut. Complete the steps of the View Creation

Wizard.

2. In the Command Prompt window, navigate to your view.

3. Use the cleartool mkcomp command. For example:

cleartool mkcomp –root \kmt_om_vob\admin_comp admin_comp@\kmt_om_pvob
6 - Setting Up the Project 73

This example creates the admin_comp component in the kmt_om_vob VOB. The

component’s root directory in the VOB is admin_comp. The component’s root directory

must be at or directly below the VOB root directory. If the component’s root directory is at

the VOB root directory, that VOB cannot store multiple components.

Creating the Project

This section shows how to create a project by using the Project Explorer and the New Project

Wizard. For information on creating a project from the command-line interface (CLI), see the

cleartool mkproject, mkstream, and mkfolder reference pages. To create a project:

1. In the left pane of ClearCase Explorer, click UCM and then click Project Explorer.

2. The left pane of the Project Explorer lists root folders for all PVOBs in the local ClearCase

domain. Each PVOB has its own root folder. ClearCase creates the root folder using the name

of the PVOB.

ClearCase also creates a folder called Components, which contains entries for each

component in the PVOB. Folders can contain projects and other folders. Select the root folder

for the PVOB that you want to use for storing project information.

3. Click File > New > Folder to create a project folder. You do not need to create a project folder,

but it is a good idea. As the number of projects grows, project folders are helpful in

organizing related projects.

4. In the left pane, select the project folder or root folder. Click File > New > Project. The New

Project Wizard appears.

5. In Step 1 of the New Project Wizard, enter a descriptive name for the project in the Project
Title box. Enter a comment in the Description box to describe the purpose of this project.

6. Step 2 asks whether you want to create the project based on an existing project. Because you

are creating a project from scratch, click No.

7. Step 3 asks you to choose the baselines that the project will use.

Click Add to open the Add Baseline dialog box. In the Component list, select one of the

components that you previously created. The component’s initial baseline appears in the

Baselines list. Select the baseline. Click OK. The baseline now appears in the list in Step 3.

Continue to use the Add Baseline dialog box until the project contains its full set of

foundation baselines.
74 Managing Software Projects

8. Step 4 prompts you to specify the development policies to enforce for this project. Select the

check boxes for the policies you want to enforce. See Chapter 4, Setting Policies for

information about each policy.

9. Step 5 asks whether to configure the project to work with the ClearQuest integration. To

enable the project to work with Rational ClearQuest, click Yes and select a ClearQuest user

database from the list. See Enabling a Project to Use the UCM-ClearQuest Integration on page 84

for details about the integration.

Defining Promotion Levels

ClearCase provides five baseline promotion levels. You can keep some or all of them, and you

can define your own promotion levels. To define the promotion levels that your project uses:

1. In the Project Explorer, select the PVOB root folder that contains your project, and then click

Tools > Define Promotion Level. All projects that use that PVOB have access to the same set

of promotion levels.

2. The Define Promotion Levels dialog box opens. To remove an existing promotion level,

select it and click Remove. To change the order of promotion levels, select a promotion level

and use the Move Up or Move Down buttons.

3. To add a new promotion level, click Add. The Add Promotion Level dialog box opens. Enter

the name of the new promotion level and click OK. The new promotion level appears in the

list of promotion levels in the Define Promotion Levels dialog box. Move it to the desired

place in the order.

4. When you finalize the set and order of promotion levels, select one to be the initial promotion

level for new baselines. The initial promotion level is the level assigned by default when you

create a baseline.

For information on defining promotion levels from the CLI, see the cleartool setplevel reference

page.

Creating an Integration View

When you create a project, ClearCase creates the project’s integration stream for you. To see and

make changes to the project’s shared elements, you need an integration view. To create an

integration view:
6 - Setting Up the Project 75

1. In the Project Explorer, navigate to the integration stream by moving down the object

hierarchy:

a. Root folder

b. Project folder

c. Project

d. Stream

Figure 25 illustrates this hierarchy.

Figure 25 Navigating to Integration Stream in Project Explorer

2. Select the integration stream and click File > New > View.

3. The View Creation Wizard opens. Accept the default values to create an integration view

attached to the integration stream. By default, the View Creation Wizard uses this

convention for the integration view name: username_project-name_integration.

ClearCase supports two kinds of views:

➣ Dynamic views, which use the ClearCase multiversion file system (MVFS) to provide

immediate, transparent access to files and directories stored in VOBs. ClearCase maps a

dynamic view to a drive letter in Windows Explorer.

➣ Snapshot views, which copy files and directories from VOBs to a directory on your

computer.

PRODUCT NOTE: Rational ClearCase LT supports only snapshot views.
76 Managing Software Projects

We recommend that you make the integration view a dynamic view to ensure that you

always see the correct version of files and directories that developers deliver to the

integration stream. With a snapshot view, you have to perform an update operation to copy

the latest delivered files and directories to your computer. For more information about

dynamic and snapshot views, see Developing Software.

Creating the Composite Baseline That Represents the Project

To create a composite baseline that represents the project by selecting a baseline from each

component that the project uses, perform the following steps:

1. In the Project Explorer, right-click the project’s integration stream to display its shortcut

menu. Click Edit Baseline Dependencies.

2. The Edit Baseline Dependencies dialog box displays a list of all components that the project

uses. Identify the component that will contain the composite baseline. Drag the other

components onto the component that will contain the composite baseline. For example, in

Figure 26 the om2_proj_comp component contains the composite baseline. The composite

baseline selects baselines from the admin2_comp and security2_comp components.

3. Click Apply. The Create Baseline Dependencies dialog box opens.

4. Enter the name that you want to use for the baselines that UCM creates for these

components.

5. Click OK.
6 - Setting Up the Project 77

Figure 26 Using the Edit Baseline Dependencies GUI

Creating the Directory Structure

Because you are creating the project from scratch, you need to create the directory elements

within the project’s components to implement the directory structure that you define during the

planning phase. See Defining the Directory Structure on page 32. To add a directory element to a

component:

1. In Windows Explorer, navigate to the integration view. Double-click the component to

display its contents. If the component is in a VOB that you created to store multiple

components, the component appears as a folder under the VOB.

2. Create a folder.

3. Right-click the folder to display the shortcut menu. Click ClearCase > Add to Source
Control.

4. When prompted, specify an activity to be associated with the addition of the new directory

element.
78 Managing Software Projects

For more information about creating directory and file elements, see Developing Software and the

mkelem reference page.

Importing Directories and Files from Outside ClearCase

If you have a large number of files and directories that you want to place under ClearCase

version control, you can speed the process by using the clearexport and clearimport
command-line utilities. These two utilities allow you to migrate an existing set of directories and

files from another version control software system, such as SourceSafe or PVCS, to ClearCase.

To migrate source files into a component:

1. Create and set a non-UCM view by using the View Creation Wizard. To start the View

Creation Wizard, from ClearCase Explorer click Base ClearCase > Create View.

2. From within the view, run clearexport to generate a data file from your source files.

3. From within the view, run clearimport to populate the component with the files and

directories from the data file.

4. In the component, create a baseline from a labeled set of versions. If the versions that you

want to include in the baseline are not labeled, create a label type and apply it to the versions.

See Making a Baseline from a Label on page 81 for details.

As an alternative, you can use clearexport and clearimport on VOBs, and then convert the VOBs

to components. See Creating a Project Based on an Existing ClearCase Configuration on page 80 for

details on converting VOBs into components.

To migrate directories and flat files that are not currently under any version control, use the

clearfsimport command-line utility. See the clearfsimport reference page for details.

For details on using clearexport and clearimport, see the Administrator’s Guide for Rational

ClearCase or the Administrator’s Guide for Rational ClearCase LT and the clearexport and

clearimport reference pages.

PRODUCT NOTE: ClearCase LT provides the Import Wizard, a GUI that you can use as an

alternative to the clearexport and clearimport commands. You can start the Import Wizard from

the Server Setup Wizard.
6 - Setting Up the Project 79

Making and Recommending a Baseline

After you create the directory structure and import files, create and recommend a new baseline

that selects those directory and file elements. Developers who join the project populate their

development streams with the versions identified by the recommended baseline. For details on

making baselines, see Creating a New Baseline on page 98. For details on recommending baselines,

see Recommending the Baseline on page 102.

6.2 Creating a Project Based on an Existing ClearCase
Configuration

If you have existing VOBs, you may want to convert them into components so that you can

include them in projects. This section describes how to set up a project based on existing VOBs.

Creating the PVOB

Use the VOB Creation Wizard, as described in Creating the Project VOB on page 70, to create the

PVOB. In Step 3, if you currently use an administrative VOB, select it in the list. ClearCase creates

an AdminVOB hyperlink between the PVOB and the administrative VOB. When you create

components, they use the existing administrative VOB. If you do not currently use an

administrative VOB, select none.

Making a VOB into a Component

To make a VOB into a component:

1. In the Project Explorer, select the PVOB. Click Tools > Import VOB. The Import VOB dialog

box opens.

2. In the Available VOBs list, select the VOB that you want to make into a component. Click

Add to move the VOB to the VOBs to Import list. You can add more VOBs to the VOBs to
Import list. If you change your mind, you can select a VOB in the VOBs to Import list and

click Remove to move it back to the Available VOBs list. When you are finished, click

Import.
80 Managing Software Projects

You may want to organize the contents of a VOB into multiple components. To make a directory

tree within a VOB into a component, use the cleartool mkcomp command. For example:

cleartool mkcomp –root \myvob\admin_comp admin_comp@\my_pvob

This command creates the admin_comp component in myvob. The admin_comp component

contains the admin_comp directory and all its subdirectories and files. The component’s root

directory must be at or directly below the VOB root directory. If the component’s root directory

is at the VOB root directory, that VOB cannot store multiple components.

Making a Baseline from a Label

After you convert an existing VOB into a component, to access the directories and files in that

component, you must create a baseline from the set of versions identified by a label type. To

create the baseline:

1. If the set of versions that you want to use are not already labeled, use the Apply Label Wizard

to make and apply a label type. To start the Apply Label Wizard, click Start > Programs >

Rational ClearCase > Apply Label. Alternatively, you can enter clearapplywizard at the

command prompt.

2. In the Project Explorer, select the PVOB. Click Tools > Import Label. Step 1 of the Import

Label Wizard appears.

3. In the Available Components list, select the component that contains the label from which

you want to create a baseline. Click Add to move that component to the Selected
Components list. If you change your mind, select a component in the Selected Components
list and click Remove to move the component back to the Available Components list.

4. In Step #2, select the label type that you want to import, and enter the name of the baseline

that you want to create for the versions identified by that label type. Then select the

baseline’s promotion level. NOTE: You cannot import a label type from a global label type

definition.

Creating the Project

Use the New Project Wizard to create the project as described in Creating the Project on page 74.
6 - Setting Up the Project 81

Creating an Integration View

Create an integration view as described in Creating an Integration View on page 75.

6.3 Creating a Project Based on an Existing Project

As you create new projects, you may need to create new versions of existing projects. For

example, suppose you have released version 3.0 of the Webotrans project and are planning for

version 3.1. You anticipate that version 3.1 will use the same components as version 3.0.

Therefore, you want to use the latest baselines in the version 3.0 components as the foundation

baselines for version 3.1 development.

Using a Composite Baseline to Capture Final Baselines

If the existing project contains numerous components, you may want to create a composite

baseline that selects the final baselines of those components before you create the new project.

This composite baseline serves as a single starting point for teams that want to start their work

from the final approved baselines of the existing project. To create such a composite baseline,

perform the following steps:

1. Create a component that does not have a root directory in a VOB. See Creating a Component
for Storing the Project Baseline on page 71.

2. Add the initial baseline of the component to the integration stream. See Adding Components
on page 93.

3. In the component, create a composite baseline that selects baselines of all other components

in the project. See Creating the Composite Baseline That Represents the Project on page 77.

4. Recommend the composite baseline. See Recommending the Baseline on page 102.

Reusing Existing PVOB and Components

Because your project is a new version of an existing project and uses the same components as the

existing project, do not create a new PVOB for this project. Continue to use the existing PVOB.
82 Managing Software Projects

Creating the Project

Start the New Project Wizard, as described in Creating the Project on page 74, to create the project.

In Step 2 of the wizard, select Yes to indicate that the project begins from the baselines in an

existing project. Then navigate to the project that contains those baselines. Figure 27 shows that

the new project is based on the baselines in the OM_proj1.0_Integration stream.

Figure 27 Step 2 of New Project Wizard

Step 3 lists the latest baselines in the project that you select in Step 2. If you created a composite

baseline to capture the final approved baselines in the existing project, select it. You can add

baselines from components that are not part of the existing project by clicking Add to open the

Add Baseline dialog box. Similarly, you can remove a baseline by selecting it and clicking

Remove.

Finish the remaining steps in the wizard as described in Creating the Project on page 74.

Creating an Integration View

When you create a new project, ClearCase creates a new integration stream for you. Therefore,

you need to create a new integration view to access elements in the integration stream. Create an

integration view as described in Creating an Integration View on page 75.
6 - Setting Up the Project 83

6.4 Enabling a Project to Use the UCM-ClearQuest Integration

Before you can connect a project to a ClearQuest user database, you must set up the database to

use a UCM-enabled schema. See Chapter 5, Setting Up a ClearQuest User Database.

To enable a project to work with a ClearQuest user database:

1. In the left pane of the Project Explorer, right-click the project to display its shortcut menu.

Click Properties to display its property sheet.

2. Click the ClearQuest tab and then select the Project is ClearQuest-enabled check box. Select

the user database that you want to link to the project. The first time that you enable a project,

ClearQuest opens its Login dialog box. Enter your user name, password, and the name of

the database to which you are linking the project.

3. Select the development policies that you want to enforce. See UCM-ClearQuest Integration on

page 55 for a description of these policies. Click OK when you are finished.

If you are creating a new project, you can enable the project to work with ClearQuest by selecting

Yes, use the ClearQuest database selected below and selecting the user database in Step 5 of the

New Project Wizard, as shown in Figure 28.

After you enable a UCM project to work with a ClearQuest user database, you may decide to link

the project to a different user database. You can switch databases by selecting a different one on

the ClearQuest tab of the project’s property sheet if no activities have been created.

Migrating Activities

If your project contains activities when you enable it to work with a ClearQuest database, the

integration creates records for each of those activities by using the UCMUtilityActivity record

type. If you want to store all of your project’s activities in records of some other record type,

enable the project when you create it, before team members create any activities. After the

migration is complete, any new activities that you create can link to records of any UCM-enabled

record type.
84 Managing Software Projects

Figure 28 Enabling a Project to Work with a ClearQuest User Database

Setting Project Policies

A UCM-enabled schema includes four policies that you can set from either ClearCase or

ClearQuest.

In ClearCase, set the policies by selecting check boxes on the ClearQuest tab of the project’s

property sheet, as shown in Figure 28.

To set policies from ClearQuest:

1. Start the ClearQuest client by clicking Start > Programs > Rational ClearQuest > Rational
ClearQuest. In the ClearQuest client workspace, navigate to the UCMProjects query, as

shown in Figure 29.

2. Double-click the query to display all UCM-enabled projects.
6 - Setting Up the Project 85

3. Select a project from the Results set. The project’s form appears.

4. On the form, click Actions and select Modify. Select the check boxes for the policies you

want to set.

For descriptions of the policies, see UCM-ClearQuest Integration on page 55.

Figure 29 Navigating to the UCMProjects Query

Assigning Activities

To create and assign activities in ClearQuest:

1. Start the ClearQuest client, and log on to the user database connected to the project.

2. Click Actions > New. The Choose a record type dialog box opens. Select a UCM-enabled

record type, and click OK.

3. The Submit form appears. Fill in the boxes on each tab. On the Main tab, you must fill in at

least the Headline and Owner boxes. On the Unified Change Management tab, select the

project. When you finish filling in the boxes, click OK. ClearQuest creates the record.

Project
manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project
86 Managing Software Projects

User account profiles must exist in ClearQuest for the developers to whom you assign activities.

See Creating Users on page 67 for details on creating user account profiles.

Disabling the Link Between a Project and a ClearQuest User Database

There may be times when you want to disable the link between a project and a ClearQuest user

database. To disable the links:

1. On the ClearQuest tab of the project’s property sheet, clear the Project is
ClearQuest-enabled check box.

2. Click OK on the ClearQuest tab. The integration disables the link between the project and

the ClearQuest database. The integration also removes any existing links between activities

and their corresponding ClearQuest records.

3. Display the project’s property sheet again, select the Project is ClearQuest-enabled check

box, and select another user database if you want to link the project to a different user

database.

NOTE: If you select the same user database that you just unlinked, the integration creates new

ClearQuest records for the project’s activities; it does not link the activities to the ClearQuest

records with which they were previously linked.

Fixing Projects That Contain Linked and Unlinked Activities

It is possible that after you enable a project to work with ClearQuest, some of the project’s

activities remain unlinked to ClearQuest records. Similarly, when you disable the link between

a project and ClearQuest, some activities may remain linked. Two scenarios can cause your

project to be in this inconsistent state:

➤ A network failure or a general system crash occurs during the enabling or disabling

operation and interrupts the activity migration.

➤ The project’s PVOB is in a ClearCase MultiSite configuration, and unlinked activities were

added by a MultiSite synchronization operation to the local PVOB’s project, which is

enabled to work with ClearQuest.
6 - Setting Up the Project 87

Detecting the Problem

If a developer attempts to take an action, such as modifying an unlinked activity in an enabled

project, the integration displays an error and disallows the action.

Correcting the Problem

To restore the project to a consistent state:

1. In the Project Explorer, display the project’s property sheet, and click the ClearQuest tab. If

you are using MultiSite, perform these steps at the remote site.

2. Click Ensure all Activities are Linked. The integration checks all the project’s activities. If

the project is enabled, the integration links any unlinked activities. The integration then

displays the following summary information:

➣ Number of activities that had to be linked.

➣ Number of activities that were previously linked.

➣ Number of activities that could not be linked because they are not mastered in the

current PVOB replica. In this case, the integration also displays a list of replicas on which

you must run the Ensure all Activities are Linked operation again to correct the

problem.

3. At each replica on the list described in Step #2, repeat Step #1 and Step #2.

How MultiSite Affects the UCM-ClearQuest Integration

If you use ClearCase MultiSite to replicate the PVOB or ClearQuest user database and schema

repository involved in the UCM-ClearQuest integration, you need to be aware of several

requirements. This section describes those requirements.

Replica and Naming Requirements

When you set up the UCM-ClearQuest integration, you establish a link between a project and a

ClearQuest user database. If you use MultiSite, the following requirements apply:

➤ Each site that has a PVOB replica that contains a linked project must have a replica of the

ClearQuest user database to which the project is linked and the user database’s schema
88 Managing Software Projects

repository. Similarly, each site that contains a linked ClearQuest user database replica must

contain a replica of the PVOB that contains the project to which the user database is linked.

➤ The name of the ClearQuest replica must match the name of the PVOB replica at the same

site.

Transferring Mastership of the PVOB’s Root Folder

The first time you enable a project within a PVOB to work with ClearQuest, your current PVOB

replica must master the PVOB’s root folder. If your current replica does not have mastership,

transfer mastership of the root folder by using the multitool chmaster command at the replica

that masters the root folder. The following example transfers mastership of the root folder from

the current replica to the lowell replica.

multitool chmaster lowell folder:RootFolder

See the Administrator’s Guide for Rational ClearCase MultiSite for details on transferring

mastership.

Transferring Mastership of the Project

Before you enable a project to work with ClearQuest, your current PVOB replica must master the

project. If your replica does not master the project, transfer mastership of the project by using the

multitool chmaster command at the replica that masters the project.

When you enable the project to work with ClearQuest, the integration creates a corresponding

project record in the ClearQuest user database and assigns mastership of that record to the

current replica of the ClearQuest user database. If a project record with the same name as the

project exists in the ClearQuest user database when you enable the project, and that project

record is not mastered by your current replica, you must transfer mastership of the project record

to your current replica.

Linking Activities to ClearQuest Records

If a project contains activities, when you enable that project to work with ClearQuest, the

integration creates corresponding ClearQuest records for the activities and links the records to

the activities. The integration cannot link activities that are mastered by remote replicas. See

Fixing Projects That Contain Linked and Unlinked Activities on page 87 for the procedure to link

activities that are mastered by a remote replica.
6 - Setting Up the Project 89

Changing Project Policy Settings

Before you can change a project’s policy settings from within ClearQuest, the ClearQuest project

record must be mastered. Similarly, before you can change a project’s policy settings from within

ClearCase, the project object must be mastered. After you change a project’s policy settings in the

current replica, the new settings do not take effect in streams in sibling replicas until you

synchronize the current replica with those replicas. See the Administrator’s Guide for Rational

ClearCase MultiSite for details on synchronizing replicas.

Changing the Project Name

The integration links a project name to the title field in the corresponding ClearQuest project

record. If you change the project name in ClearCase, the integration makes the same change to

the title field in the corresponding ClearQuest project record. Similarly, if you change the title in

ClearQuest, the integration makes the same change to the project name in ClearCase. Before you

can change the project name and title in a MultiSite environment, the project record and the

project object must both be mastered.

6.5 Working with Rational Suite

If you are using UCM with Rational Suite, you can store Rational RequisitePro projects, Rational

Rose models, and Rational Test datastores in UCM components and include them in baselines.

To enable this integration, use the Rational Administrator GUI to create and configure a Rational

project. A Rational project associates your UCM project with a RequisitePro project, Rose

models, and Rational Test datastores. For details on setting up this integration, see Using UCM
and Rational Suite.

6.6 Creating a Development Stream for Testing Baselines

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
90 Managing Software Projects

When you make a new baseline, we recommend that you lock the integration stream so that you

can build and test a static set of files. Otherwise, developers can inadvertently cause confusion

by delivering changes while you are building and testing. Locking the integration stream for a

short period of time is acceptable; locking the integration stream for several days can result in a

backlog of completed but undelivered activities. To avoid locking out developers for a long

period of time, you may want to create a development stream and use it for extensive testing of

baselines. If your project uses feature-specific development streams, you may want to create a

testing stream for each feature-specific development stream so that you can test the baselines

created in those streams.

To create a development stream:

1. In ClearCase Project Explorer, right-click the integration stream, and select Create Child
Stream from the shortcut menu.

The Create a Development Stream dialog box appears.

2. By default, ClearCase uses the set of recommended baselines when creating a development

stream. Because the new baseline has not been tested extensively, you probably have not yet

promoted it to the level associated with recommended baselines. To create the development

stream with baselines other than the recommended baselines, click Advanced Options.

The Change Baseline dialog box appears.

3. In the Change Baseline dialog box, select the component that contains the baseline you want

to test. Click Change.

A second Change Baseline dialog box appears, listing all baselines for the component.

4. Select the baseline that you want to test, and click OK. If you need to test the baseline of

another component, select it in the first Change Baseline dialog box and repeat the process.

When you are finished, click OK in the first Change Baseline dialog box.

5. In the Create a Development Stream dialog box, be sure that the Prompt me to create a View
for this stream check box is selected. Click OK.

The View Creation Wizard appears.

6. Complete the steps of the View Creation Wizard to create a view for the development stream.

Now the development stream is configured so that you can build and test the new baselines, and

developers can deliver changes to the integration stream without being concerned about

interfering with the building and testing process. For information on testing baselines, see Testing
the Baseline on page 101.
6 - Setting Up the Project 91

6.7 Creating a Feature-Specific Development Stream

The basic UCM process uses the integration stream as the project’s sole shared work area. You

may choose to organize your project into small teams of developers where each team develops a

specific feature. To support this type of organization, create a development stream to serve as the

shared work area for each team of developers. The developers who work on that feature create

their own development streams based on the recommended baselines in the feature-specific

development stream. See Choosing a Stream Strategy on page 35 for additional information about

feature-specific development streams.

To create a feature-specific development stream:

1. In ClearCase Project Explorer, right-click the integration stream, and select Create Child
Stream from the shortcut menu.

The Create a Development Stream dialog box appears.

2. By default, ClearCase uses the set of recommended baselines when creating a development

stream. To create the development stream with baselines other than the recommended

baselines, click Advanced Options and select the baselines from the Change Baseline dialog

box.

3. In the Create a Development Stream dialog box, be sure that the Prompt me to create a View
for this stream check box is selected. Click OK.

The View Creation Wizard appears.

4. Complete the steps of the View Creation Wizard to create a view for the development stream.

5. In ClearCase Project Explorer, right-click the feature-specific development stream, and select

Recommend Baselines.

6. In the Recommended Baselines dialog, click Add to display the Add Baseline dialog box.

Select the baselines that you want to recommend to developers who will work on this

feature. When developers create their own development streams, those streams will be

based on the recommended baselines. When you finish selecting the baselines, click OK in

the Recommended Baselines dialog.
92 Managing Software Projects

77 Managing the Project

After you create and set up a project, developers join the project, work on activities, and deliver

completed activities to the integration stream or feature-specific development stream. In your

role as integrator, you need to maintain the project so that developers do not get out of sync with

each other’s work. This chapter describes the following maintenance tasks:

➤ Adding components

➤ Building components

➤ Making new baselines

➤ Testing baselines

➤ Recommending baselines

➤ Monitoring project status

➤ Cleaning up the project

7.1 Adding Components

Over time, the scope of your project typically broadens, and you may need to add components.

To add a component to a stream:

1. In the left pane of ClearCase Explorer, click UCM and then click Project Explorer.

2. In the right pane of the Project Explorer, right-click the stream to display its shortcut menu.

Click Properties to open the stream’s Properties dialog box.

3. Click the Configuration tab, and then click Add. The Add Baseline dialog box opens.
7 - Managing the Project 93

4. In the Component list, select the component that you want to add. The component’s

baselines appear in the Baselines list. To add a baseline from another stream, click Change,

then select a stream from the Choose Stream dialog box. Figure 30 shows the baselines

available in the gui_comp component.

Figure 30 Add Baseline Dialog Box

5. In the Baselines list, select the baseline that you want to add to the project.

6. Click OK. The Add Baseline dialog box closes, and the baseline that you chose appears on

the Configuration tab.

7. Click OK to close the stream’s Properties dialog box.

The Rebase Stream Preview dialog box opens. To modify the stream’s configuration to

include the new foundation baseline, UCM needs to rebase the stream.

8. Click OK in the Rebase Stream Preview dialog box.

9. Click Complete to finish the rebase operation.

Making the Component Modifiable

By default, Rational ClearCase adds the component to the project as read-only. To make the

component modifiable within the project, perform the following steps:
94 Managing Software Projects

1. In the Project Explorer, select the project, and click File > Policies.

2. In the Components tab, click the check box next to the component.

3. Click OK.

Synchronizing the View

Before you can access the component that you added, you must synchronize your view with the

stream’s new configuration by performing the following steps:

1. In the Project Explorer, select the stream that contains the component you added, and click

File > Properties.

2. Click the Views tab. Select the view and click Properties.

3. On the General tab, click Synchronize with stream.

Updating Snapshot View Load Rules

If your view is a snapshot view, you need to edit the view’s load rules to include the components

that you add to the stream. A snapshot view’s load rules specify which components ClearCase

loads into the view. To edit the view’s load rules:

1. In the Project Explorer, select the stream, and click File > Properties to display the stream’s

property sheet.

2. In the property sheet, click the Load Rules tab.

3. Select the component or components that you added to the stream.

4. Click Add. Click OK to close the property sheet.

In addition, you need to know whether any developers working on the project use snapshot

views for their development views. When a developer who uses a snapshot view rebases to a

baseline that contains a new component, ClearCase updates the snapshot view’s config spec, but

it does not update the view’s load rules. When you add a component, notify developers who use

snapshot views that they need to update the load rules for their development views after they

rebase their development streams to the new baseline.
7 - Managing the Project 95

7.2 Building Components

Before you make new baselines in a stream, build the components by using the current baselines

plus any work that developers have delivered to the stream since you created the current

baselines. If the build succeeds, you can make baselines that select the latest delivered work.

Building components involves the following tasks:

➤ Locking the stream

➤ Finding remote deliver operations

➤ Completing remote deliver operations

➤ Undoing bad deliver operations

➤ Building and testing the components

Locking the Integration Stream

Before you build components in the integration stream or feature-specific development stream,

lock the stream to prevent developers from delivering work. This ensures that you are dealing

with a static set of files.

1. In the Project Explorer, select the stream.

2. Click File > Properties to display the stream’s property sheet.

3. Click the Lock tab.

4. Click Locked and then click OK.

Finding Work That Is Ready to Be Delivered

Before you build components, you may need to complete some deliver operations. In most cases,

developers complete their deliver operations. However, in a MultiSite configuration in which the

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
96 Managing Software Projects

target stream is mastered at a different replica than the developer’s source stream, the developer

cannot complete deliver operations. When ClearCase detects such a stream mastership situation,

it makes the deliver operation a remote deliver operation.

In a remote deliver operation, ClearCase starts the deliver operation but leaves it in the posted

state. It is up to you, as integrator, to find and complete deliver operations in the posted state.

Developers who have deliver operations in the posted state cannot deliver from or rebase their

source development streams until you complete or cancel their deliver operations.

PRODUCT NOTE: Rational ClearCase LT does not support ClearCase MultiSite.

To find all deliver operations that are in the posted state:

1. In the Project Explorer, select the project.

2. Click Tools > Find Posted Deliveries. If the project contains posted deliveries, the Find
Posted Deliveries dialog box appears and lists all streams within the project that contain

deliver operations in the posted state. For each posted deliver operation, the dialog box

shows the source stream and the target stream.

Completing Remote Deliver Operations

To complete remote deliver operations for a development stream:

1. Select the development stream from the list in the Find Posted Deliveries dialog box.

2. Click Deliver. The Deliver dialog box opens. Click Resume to resume the deliver operation.

Click Cancel to cancel the deliver operation. See Developing Software for details on

completing the deliver operation.

Undoing a Deliver Operation

At any time before developers complete the deliver operation, they can back out of it and undo

any changes made; but if they check in their versions to the integration view, they cannot undo

the changes easily. When this happens, you may need to remove the checked-in versions by

using the cleartool rmver –xhlink command.

NOTE: The rmver command erases part of your organization’s development history, and it may

have unintended consequences. Therefore, be very conservative in using this command,
7 - Managing the Project 97

especially with the –xhlink option. See the rmver reference page in the Command Reference for

details.

Note that removing a version does not guarantee that the change is really gone. If a successor

version was created or if the version was merged before you removed the version, the change

still exists. You may need to check out the file, edit it to remove the change, and check the file

back in.

Building and Testing the Components

After you lock the stream and complete any outstanding deliver operations, you are ready to

build and test the project’s executable files to make sure that the changes delivered by developers

since the last baseline do not contain any bugs. For information on performing builds, see

Building Software. Because you lock the stream when you build and test in it, we recommend that

you use a separate development stream for extensive testing of new baselines. Perform only

quick validation tests in the current stream so that it is not locked for an extended period of time.

See Testing the Baseline on page 101 for information about using a development stream for testing

new baselines.

7.3 Creating a New Baseline

As developers deliver work to the integration stream or feature-specific development stream, it

is important that you make new baselines frequently to record the changes. Developers can then

rebase to the new baselines and stay current with each other’s changes. Before you make the

baseline, make sure that the stream is still locked so that developers cannot deliver work to the

stream.

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
98 Managing Software Projects

Making the New Baseline

To make new baselines for all components in the stream:

1. In the Project Explorer, select the integration stream or feature-specific development stream

where you want to make the baseline.

2. Click Tools > Make Baseline. The Make Baseline dialog box opens, (Figure 31).

Figure 31 Make Baseline Dialog Box

3. Enter a name in the Baseline Root Name box. By default, ClearCase names the baseline by

appending the date to the project’s name. If the baseline is a composite baseline, ClearCase

uses the root name plus a unique suffix for each of the member baselines that contribute to

the composite baseline.

4. Choose the type of baseline to create.

An incremental baseline is a baseline that ClearCase creates by recording the last full baseline

and those versions that have changed since the last full baseline was created.

A full baseline is a baseline that ClearCase creates by recording all versions below the

component’s root directory.
7 - Managing the Project 99

Generally, incremental baselines are faster to create than full baselines; however, ClearCase

can look up the contents of a full baseline faster than it can look up the contents of an

incremental baseline.

5. Specify a view in which to perform the operation. Choose a view that is attached to the

stream where you want to make the baseline.

Making a Baseline for a Set of Activities

By default, all activities modified since the last baseline was made are included in the new

baseline. There might be times when you want to create a baseline that includes only certain

activities. To do so, click the Activities tab in the Make Baseline dialog box, and select the

activities that you want to go into the baseline.

Making a Baseline of One Component

To make a baseline for one specific component rather than all components in the stream, perform

the following steps:

1. In the Project Explorer, select the stream in which you want to create a new baseline. Click

File > Properties to display the stream’s property sheet.

2. Click the Baselines tab. Select a component, and click Make Baseline.

3. Fill in the fields of the Make Baseline dialog box, then click OK.

Unlocking the Stream

After you create a new baseline, unlock the integration or feature-specific development stream

so that developers can resume delivering work to the stream. To unlock the stream:

1. In the Project Explorer, select the stream.

2. Click File > Properties to display the stream’s property sheet.

3. Click the Lock tab.

4. Click Unlocked and then click OK.
100 Managing Software Projects

7.4 Testing the Baseline

To avoid locking the integration stream or feature-specific development stream for an extended

period of time, we recommend that you use a separate development stream for performing

extensive testing, such as system, regression, and acceptance tests, on new baselines. See Creating
a Development Stream for Testing Baselines on page 90 for information on creating a development

stream.

After you create a new baseline and verify that it builds and passes an initial validation test in

the integration stream, rebase the development stream:

1. In the Project Explorer, select the development stream and click Tools > Rebase Stream.

The Rebase Stream Preview dialog box opens.

2. By default, ClearCase rebases your development stream to the recommended baselines.

Because the new baseline has not been tested extensively, you probably have not yet

promoted it to the level associated with recommended baselines. To rebase to the baseline,

or baselines, you want to test, click Change.

The Change Rebase Configuration dialog box opens.

3. Select a component that contains a baseline you want to test. Click Advanced.

The Change Rebase Configuration dialog box opens, listing all baselines for the component.

4. Select the baseline that you want to test, and click OK.

5. Select another component in the Change Rebase Configuration dialog box and repeat the

process. When you finish selecting baselines, click OK to close the Change Rebase
Configuration dialog box.

6. Click OK in the Rebase Stream Preview dialog box to continue the rebase operation. See

online help or Developing Software for details on rebasing a development stream. When you

finish rebasing the development stream, you are ready to begin testing the new baselines.

Fixing Problems

If you discover a problem with a baseline while testing it, fix the affected files and deliver the

changes to the integration stream as follows:
7 - Managing the Project 101

1. From the development view attached to the development stream, check out the files you

need to fix. When you check out a file, you need to specify an activity.

2. Make the necessary changes to the files and check them in.

3. Build and test the changes in the development view.

4. When you are confident that the changes work, make a new baseline that incorporates the

changes in the development stream.

5. Deliver the new baseline to the integration or feature-specific development stream. When

you deliver the new baseline to the integration or feature-specific development stream, you

merge changes with work that developers have delivered since the last baseline was created.

For information about delivering baselines, see Chapter 9, Managing Parallel Releases of
Multiple Projects.

6. Change the set of recommended baselines for the integration stream or feature-specific

development stream to include the new baseline that you made in the testing stream. For

details about recommending a baseline in another stream, see Recommending the Baseline on

page 102.

7.5 Recommending the Baseline

As work on your project progresses and the quality and stability of the components improve,

change the baseline’s promotion level attribute to reflect a level of testing that the baseline has

passed, and recommend baselines that have passed extensive testing.

To change a baseline’s promotion level:

1. In the Project Explorer, right-click the stream to display its shortcut menu. Click Properties
to open the stream’s Properties dialog box.

2. Click the Baselines tab.

Integrator Make
baselines

Recommend
baselines

Build
components

Create a
testing stream
102 Managing Software Projects

3. In the Components list, select the component that contains the baseline you want to

promote. In the Baselines list, select the baseline. Click Properties. The baseline’s Properties
dialog box opens.

4. Click the arrow in the Promotion Level list to display all available promotion levels. Select

the new promotion level.

To recommend a baseline or set of baselines:

1. In the Project Explorer, select the stream. Click Tools > Recommend Baselines.

2. In the Recommended Baselines dialog box, you can filter the list of baselines displayed by

selecting a promotion level and clicking Set List. The dialog box then displays only baselines

at or above the selected promotion level.

3. To remove a baseline from the list, select it and click Remove. To add a baseline, click Add
and select the baseline in the Add Baseline dialog box.

4. To recommend a different baseline of a component, select the baseline and click Change. In

the Change Baseline dialog box, select the baseline that you want to recommend. To select

a baseline in another stream, such as a testing stream, click Change and navigate to the

stream in the Choose Stream dialog box.

5. When you finalize your list of recommended baselines, click OK in the Recommended
Baselines dialog box.

7.6 Resolving Baseline Conflicts

If your project uses composite baselines, you may encounter a situation where you must resolve

a conflict in a stream’s configuration between two different baselines of the same component.

Conflicts can occur during operations that involve baselines, such as the following:

➤ Making a baseline

➤ Adding a baseline to a stream’s configuration

➤ Recommending a baseline

➤ Rebasing a stream
7 - Managing the Project 103

Conflicts Between a Composite Baseline and a Noncomposite Baseline

The simpler of the two conflict cases is when a composite baseline conflicts with a noncomposite

baseline. For example, assume that a stream’s configuration includes a composite baseline that

selects baseline BL4 of component A, and that the composite baseline is the recommended

baseline. After testing a new baseline, BL5, of component A, you decide to recommend it. By

doing so, you override the member baseline, BL4, selected by the composite baseline. The

Recommended Baselines dialog box identifies BL5 as an override and BL4 as overridden. UCM

uses the same override and overridden identifiers in other GUIs.

Conflicts Between Two Composite Baselines

The more complex conflict case can occur when a stream’s configuration includes multiple

composite baselines where each composite baseline selects a baseline of the same component. A

stream cannot select two different baselines of the same component. If you attempt to perform

an operation that would cause this situation, UCM recognizes the conflict and forces you to

resolve it before completing the operation.

7.7 Monitoring Project Status

ClearCase provides several tools to help you track the progress of your project. This section

describes how to use those tools.

Project
manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project
104 Managing Software Projects

Comparing Baselines

The ClearCase Component Tree Browser is a GUI that displays the baseline history of a

component. You can use it to compare the contents of two baselines. To start the Component Tree

Browser:

1. Start the Project Explorer, and navigate to the component whose baseline history you want

to see.

2. Right-click the component to display its shortcut menu. Select Browse Baselines.

The Component Tree Browser opens, as shown in Figure 32.

Figure 32 ClearCase Component Tree Browser

The Component Tree Browser shows the lines of development for the component and each

stream that uses the component. In Figure 32, security_INITIAL is the initial baseline that was

created when the project manager created the security component.OM_proj2.0_09_06_01.1006
is the first baseline that the integrator created after creating the component. It is the foundation
baseline for the integration stream and the development stream named kmt_OM_proj2.0.
7 - Managing the Project 105

The deliverbl.kmt_OM_proj2.0.n entry is a baseline that ClearCase creates in the development

stream during deliver operations. The integration arrow from the development stream to the

integration stream represents a deliver operation. The OM_proj2.0_09_06_01.5976 baseline

includes the work from the deliver operation.

To compare two baselines, select a baseline by clicking its icon. Then click Tools > Compare >

with Another Baseline. Click the second baseline’s icon. The Compare Baselines window opens,

as shown in Figure 33. Alternatively, you can click Tools > Compare > with Previous Baseline
to compare a baseline with its immediate predecessor.

Figure 33 Comparing Baselines

The Compare Baselines window in Figure 33 shows the results of a comparison of two composite

baselines named OM_proj2.0_Integration_08_12_01 and OM_proj2.0_09_06_01. The Members
tab shows the baselines that contribute to each composite baseline.
106 Managing Software Projects

To see the activities included in each baseline, click Activities. In Figure 34, the first baseline

contains no activities because its member baselines are the initial baselines of the license and

security components.

To see the change sets associated with the activities, click Versions.

Figure 34 Comparing Baselines by Activity

Querying ClearQuest User Databases

If you use the UCM-ClearQuest integration, you can use ClearQuest queries to retrieve

information about the state of your project. When you create or upgrade a ClearQuest user

database to use a UCM-enabled schema, the integration installs six queries in two subfolders of

the Public Queries folder in the user database’s workspace. These queries make it easy for

developers to see which activities are assigned to them and for project managers to see which

activities are active in a particular project. Table 3 lists and describes the queries.
7 - Managing the Project 107

You can also create your own queries by clicking Query > New Query within the ClearQuest

client. In the Choose a record type dialog box that opens, select All_UCM_Activities if you want

the query to search all UCM-enabled record types.

Using ClearCase Reports

The ClearCase Reports applications (Report Builder and Report Viewer) allow you to generate

and view reports specific to your project environment. Use the Report Builder to select and

define a report’s parameters. Use the Report Viewer to see the report output.

PRODUCT NOTE: To start the ClearCase Report Builder:

Table 3 Queries in UCM-Enabled Schema

Query Description

ActiveForProject For one or more specified projects, selects all activities in an active

state type.

ActiveForStream For one or more specified streams, selects all activities in an active

state type.

ActiveForUser For one or more specified developers, selects all assigned

activities in an active state type.

MyToDoList Selects all activities in an active or ready state type assigned to the

developer running the query.

UCMProjects Selects all projects linked to the ClearQuest user database.

UCMCustomQuery1 This query is not intended to be used directly by users; the

integration uses it. When a developer checks out or checks in a

file, or adds a file to source control and is prompted to select an

activity, the integration calls this query to display the list of

activities available in the stream associated with the developer’s

view.

You can customize this query on a per-developer basis by

copying the query from the Public Queries folder to the

developer’s Personal Queries folder and using the Query editor.
108 Managing Software Projects

➤ In ClearCase, click Start > Programs > Rational ClearCase Administration > ClearCase
Report Builder.

➤ In ClearCase LT, click Start > Programs > Rational ClearCase LT Server > ClearCase
Report Builder.

The ClearCase Report Builder categorizes its reports based on object types, such as UCM projects

and streams. When you select a category in the left pane, the Report Builder lists the reports

available for that category in the upper right pane. When you select a report, the Report Builder

prompts you for parameters in the lower right pane. For example, in Figure 35, with the

Activities Delivered Since Date report selected, the Report Builder prompts for the name of an

integration stream and a date.

For details on using the Report Builder and the Report Viewer, see their online help.

ClearCase Reports includes a set of hooks into the Report Builder and Report Viewer

applications. These hooks, known as report procedures, implement all the operations necessary

to generate and view a specific report. The ClearCase Reports Programming Interface allows you

to customize report procedures. For details on doing so, see Appendix C, Customizing ClearCase
Reports.

Figure 35 ClearCase Report Builder
7 - Managing the Project 109

7.8 Cleaning Up the Project

When your team finishes work on a project and releases or deploys the new software, you should

clean up the project environment before creating the next version of the project. Cleaning up

involves removing any unused objects, and locking and hiding the project and its streams. This

process reduces clutter and makes it easier to navigate in the Project Explorer.

Removing Unused Objects

During the life of the project, you or a developer might create an object and then decide not to

use it. Perhaps you decide to use a different naming convention, and you create a new object

instead of renaming the existing one. To avoid confusion and reduce clutter, remove these

unused objects.

To delete a project, stream, component, or activity, select the object in the Project Explorer, and

click File > Delete. To delete a baseline, use the cleartool rmbl command.

Projects

You can delete a project only if it does not contain any streams. When you create a project with

the Project Creation Wizard, the wizard also creates an integration stream. Therefore, you can

delete a project only if you created it with the cleartool mkproject command, or if you first delete

the integration stream. For more information on removing projects, see the rmproject reference

page in the Command Reference.

Streams

You can delete a development stream or an integration stream only if all of the following

conditions are true:

➤ The stream contains no activities.

➤ No baselines have been created in the stream.

➤ No views are attached to the stream.

In addition, you cannot delete an integration stream if the project contains any development

streams. For more information on removing streams, see the rmstream reference page in the

Command Reference.
110 Managing Software Projects

Components

You can delete a component only if all of the following conditions are true:

➤ No baselines of the component other than its initial baseline exist.

➤ The component’s initial baseline does not serve as a foundation baseline for another stream.

For more information about removing components, see the rmcomp reference page in the

Command Reference.

Baselines

You can delete a baseline only if all of the following conditions are true:

➤ The baseline does not serve as a foundation baseline.

➤ The baseline is not a component’s initial baseline.

➤ A stream has not made changes to the baseline.

➤ The baseline is not used as the basis for an incremental baseline.

For more information about removing baselines, see the rmbl reference page in the Command
Reference.

Activities

You can delete an activity only if both of the following conditions are true:

➤ The activity has no versions in its change set.

➤ No view is currently set to the activity.

For more information about removing activities, see the rmactivity reference page in the

Command Reference.

Locking and Making Obsolete the Project and Streams

To prevent a project or a stream from appearing in the Project Explorer, lock the object and use

the obsolete option. The obsolete option hides the object.

1. In the Project Explorer, select the stream or project that you want to hide, and click File >

Properties to display its property sheet.

2. Click the Lock tab, and select Obsolete. Click OK.
7 - Managing the Project 111

To see objects that you have made obsolete, click View > Show Obsolete Items in the Project

Explorer.
112 Managing Software Projects

88 Using Triggers to Enforce
Development Policies

UCM provides a group of development policies that you can easily set in a project by using the

GUI or CLI. In addition, you can use triggers on certain UCM operations to enforce customized

development policies for your project team. This chapter describes how to create triggers and

shows how to use triggers to implement various development policies in UCM projects. For

additional information, see the cleartool mktrigger and mktrtype reference pages.

8.1 Overview of Triggers

A trigger is a monitor that causes one or more procedures or actions to be executed whenever a

certain ClearCase operation is performed. Typically, the trigger executes a Perl, batch, or shell

script. You can use triggers to restrict operations to specific users and to specify the conditions

under which they can perform those operations. You can use triggers with the following UCM

operations:

➤ chbl
➤ chfolder
➤ chproject
➤ chstream
➤ deliver
➤ mkactivity
➤ mkbl
➤ mkcomp
➤ mkfolder
➤ mkproject
8 - Using Triggers to Enforce Development Policies 113

➤ mkstream
➤ rebase
➤ rmbl
➤ rmcomp
➤ rmfolder
➤ rmproject
➤ rmstream
➤ setactivity
➤ setplevel

Preoperation and Postoperation Triggers

Triggers fall into one of two categories. Preoperation triggers fire, or execute their corresponding

procedures, before an operation takes place. Postoperation triggers fire after an operation occurs.

Use preoperation triggers to prevent users from performing operations unless certain conditions

apply. Use postoperation triggers to perform actions after an operation completes. For example,

you may want to place a postoperation trigger on the deliver operation to notify team members

whenever a developer delivers work to the project’s integration stream. Figure 36 illustrates the

timing of preoperation and postoperation triggers.
114 Managing Software Projects

Figure 36 Preoperation and Postoperation Triggers

Scope of Triggers

A trigger type defines a trigger for use within a VOB or PVOB. When you create a trigger type,

with the cleartool mktrtype command, you specify the scope to be one of the following:

➤ An element trigger type applies to one or more elements. You attach an instance of the trigger

type to one or more elements by using the cleartool mktrigger command.

➤ An all-element trigger type applies to all elements in a VOB.

➤ A type trigger type applies to type objects, such as attributes types, in a VOB.

preoperation trigger

user enters a
ClearCase
command

trigger defined
on this operation?

no

trigger does not fire,
ClearCase

command proceeds
trigger fires:
procedure

executes

check exit status of
trigger procedure

ClearCase
 operation
disallowed

ClearCase
operation
proceeds

postoperation trigger

no

yes

failure

success

user enters a
ClearCase
command

ClearCase
operation
completes

trigger definition
matches current

context?

trigger fires:
procedure

executes

 trigger does
not fire
8 - Using Triggers to Enforce Development Policies 115

➤ A UCM trigger type applies to a UCM object, such as a stream or a project, in a PVOB.

➤ An all-UCM-object trigger type applies to all UCM objects in a PVOB.

Using Attributes with Triggers

As you design triggers to enforce development policies, you may find it useful to use attributes.

An attribute is a name/value pair. An attribute type defines an attribute. You can apply an

attribute to an object, such as a stream or an activity, or to a version of an element. In your trigger

scripts, you can test the value of an attribute to determine whether to fire the trigger. For

example, you could define an attribute type called TESTED and attach a TESTED attribute to

elements to indicate whether they had been tested. Acceptable values would be Yes and No.

When to Use ClearQuest Scripts Instead of UCM Triggers

This chapter presents several use cases for UCM triggers. If your UCM project is enabled to work

with Rational ClearQuest, you can set the following policies, which are described in

UCM-ClearQuest Integration on page 55:

➤ Check Before Work On

➤ Check Before ClearCase Delivery

➤ Do ClearQuest Action After Delivery

➤ Check Mastership Before Delivery

Each of these policies has a ClearQuest global hook script associated with it, which you can edit

or replace in ClearQuest Designer to customize the policy for your environment. You can also

write your own ClearQuest hooks to enforce development policies. In general, if the policy you

want to enforce involves a ClearQuest action, use one of the ClearQuest policies listed above or

use ClearQuest hooks. If the policy you want to enforce involves a ClearCase action, use UCM

triggers.

8.2 Sharing Triggers Between UNIX and Windows

You can define triggers that fire correctly on both UNIX and Windows computers. The following

sections describe two techniques. With one, you use different pathnames or different scripts;

with the other, you use the same script for both platforms.
116 Managing Software Projects

Using Different Pathnames or Different Scripts

To define a trigger that fires on UNIX, Windows, or both, and that uses different pathnames to

point to the trigger scripts, use the –execunix and –execwin options with the mktrtype
command. These options behave the same as –exec when fired on the appropriate platform

(UNIX or Windows, respectively). On the other platform, they do nothing. This technique allows

a single trigger type to use different paths for the same script or to use completely different

scripts on UNIX and Windows computers. For example:

cleartool mktrtype –element –all –nc –preop checkin
–execunix /public/scripts/precheckin.sh –execwin \\neon\scripts\precheckin.bat
pre_ci_trig

NOTE: The command line example is broken across lines to make it easier to read. You must enter

it all on one line.

On UNIX, only the script precheckin.sh runs. On Windows, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers that specify only

–execunix always fail on Windows. Likewise, triggers that specify only –execwin fail on UNIX.

Using the Same Script

To use the same trigger script on Windows and UNIX platforms, you must use a batch command

interpreter that runs on both operating systems. For this purpose, Rational ClearCase includes

the ccperl program, a version of Perl that you can use on Windows and UNIX.

The following mktrtype command creates sample trigger type pre_ci_trig and names

precheckin.pl as the executable trigger script.

cleartool mktrtype –element –all –nc –preop checkin ^
–execunix "Perl /public/scripts/precheckin.pl" ^
–execwin "ccperl \\neon\scripts\precheckin.pl" ^
pre_ci_trig
8 - Using Triggers to Enforce Development Policies 117

Tips

➤ To tailor script execution for each operating system, use environment variables in Perl

scripts.

➤ To collect or display information interactively, you can use the clearprompt command.

8.3 Enforce Serial Deliver Operations

Because UCM allows multiple developers to deliver work to the same integration stream

concurrently, conflicts can occur if two or more developers attempt to deliver changes to the

same element. If one developer’s deliver operation has an element checked out, the second

developer cannot deliver changes to that element until the first deliver operation is completed or

canceled. The second deliver operation attempts to check out all elements other than the

checked-out one, but it does not proceed to the merge phase of the operation. The second

developer must either wait for the first deliver operation to finish or undo the second deliver

operation.

You may want to implement a development policy that eliminates the confusion that concurrent

deliveries can cause developers. This section shows three Perl scripts that prevent multiple

developers from delivering work to the same integration stream concurrently:

➤ Script 1 creates the trigger types and an attribute type.

➤ Script 2 is the preoperation trigger action that fires at the start of a deliver operation.

➤ Script 3 is the postoperation trigger action that fires at the end of a deliver operation.

Setup Script

This setup script creates a preoperation trigger type, a postoperation trigger type, and an

attribute type. The preoperation trigger action fires when a deliver operation starts, as

represented by the deliver_start operation kind (opkind). The postoperation trigger action fires

when a deliver operation is canceled or completed, as represented by the deliver_cancel and

deliver_complete opkinds, respectively.

The script runs on both UNIX and Windows platforms. Because the command-line syntax to run

the preoperation and postoperation scripts on Windows differs slightly depending on whether
118 Managing Software Projects

the PVOB resides on Windows or UNIX, the setup script uses an IF ELSE Boolean expression to

set the appropriate execwin command.

The mktrtype command uses the –ucmobject and –all options to specify that the trigger type

applies to all UCM objects in the PVOB, but the –stream option restricts the scope to one

integration stream.

The mkattype command creates an attribute type called deliver_in_progress, which the

preoperation and postoperation scripts use to indicate whether a developer is delivering work

to the integration stream.

perl script to set up triggers for enforcing serial delivery.
use Config;

define platform-dependent arguments.
my $PVOBTAG;
my $PREOPCMDW;
my $POSTOPCMDW;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';
$PREOPCMDW = '-execwin "ccperl

\\\\pluto\disk1\ucmtrig_examples\ex1\ex1_preop.pl"';
$POSTOPCMDW = '-execwin "ccperl

\\\\pluto\disk1\ucmtrig_examples\ex1\ex1_postop.pl"';
}
else {

$PVOBTAG = '/pvobs/cyclone_pvob';
$PREOPCMDW = '-execwin "ccperl

\\\\\\pluto\disk1\ucmtrig_examples\ex1\ex1_preop.pl"';
$POSTOPCMDW = '-execwin "ccperl

\\\\\\pluto\disk1\ucmtrig_examples\ex1\ex1_postop.pl"';
}

my $PREOPCMDU = '-execunix "Perl
/net/pluto/disk1/ucmtrig_examples/ex1/ex1_preop.pl"';
my $POSTOPCMDU = '-execunix "Perl
/net/pluto/disk1/ucmtrig_examples/ex1/ex1_postop.pl"';
my $STREAM = "stream:P1_int\@$PVOBTAG";
my $PREOPTRTYPE = "trtype:ex1_preop\@$PVOBTAG";
my $POSTOPTRTYPE = "trtype:ex1_postop\@$PVOBTAG";
my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";
8 - Using Triggers to Enforce Development Policies 119

set up the trigger types and attribute type.
print `cleartool mktrtype -ucmobject -all -preop deliver_start $PREOPCMDU
$PREOPCMDW -stream $STREAM -nc $PREOPTRTYPE`;
print `cleartool mktrtype -ucmobject -all -postop deliver_complete,
deliver_cancel $POSTOPCMDU $POSTOPCMDW -stream $STREAM -nc $POSTOPTRTYPE`;
print `cleartool mkattype -vtype integer -default 1 -nc $ATTYPE`;

Preoperation Trigger Script

This preoperation trigger action fires when a developer begins to deliver work to the specified

integration stream. The script attempts to attach an attribute of type deliver_in_progress to the

integration stream. If another developer is in the process of delivering work to the same stream,

the mkattr command fails and the script displays a message suggesting that the developer try

again later. Otherwise, the mkattr command succeeds and prevents other developers from

delivering to the integration stream until the current deliver operation finishes.

perl script that fires on deliver_start preop trigger.
use Config;

define platform-dependent arguments.
my $PVOBTAG;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';
}
else{

$PVOBTAG = '/pvobs/cyclone_pvob';
}
my $STREAM = $ENV{"CLEARCASE_STREAM"};
my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

try to create the attribute, capture the output.
$msg = 'cleartool mkattr -default $ATTYPE $STREAM 2>&1';

if the attribute already existed, a deliver is in progress, disallow this
delivery.
if (index($msg, "Error: Object already has an attribute") >= 0) {

print "***\n";
print "*** A deliver operation is already in progress. Please try again

later.\n";
print "***\n";
exit 1;

}

120 Managing Software Projects

the attribute was created, deliveries will be disallowed until postop fires.
exit 0

Postoperation Trigger Script

This postoperation trigger action fires when a developer cancels or completes a deliver operation

to the specified integration stream. This script removes the deliver_in_progress attribute that the

preoperation script attaches to the integration stream at the start of the deliver operation. After

the attribute is removed, another developer can deliver work to the integration stream.

perl script that fires on deliver_complete or deliver_cancel postop trigger.
use Config;

define platform-dependent arguments.
my $PVOBTAG;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';
}
else{

$PVOBTAG = '/pvobs/cyclone_pvob';
}
my $STREAM = $ENV{"CLEARCASE_STREAM"};
my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

remove the attribute to allow deliveries.
print `cleartool rmattr -nc $ATTYPE $STREAM`;
exit 0;

8.4 Send Mail to Developers on Deliver Operations

To improve communication among developers on your project team, you may want to create a

trigger type that sends an e-mail message to team members whenever a developer completes a

deliver operation. This section includes two scripts:

➤ Script 1 creates a trigger type that fires at the end of a successful deliver operation.

➤ Script 2 is the postoperation trigger action that sends e-mail messages to developers.
8 - Using Triggers to Enforce Development Policies 121

Setup Script

This script creates a postoperation trigger type that fires when a developer finishes a deliver

operation, as represented by the deliver_complete opkind. The mktrtype command uses the

–stream option to indicate that the trigger type applies only to deliver operations that target the

specified integration stream.

This is a Perl script to set up the triggertype
for e-mail notification on deliver.
use Config;

define platform-dependent arguments.
my $PVOBTAG;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';
$WCMD = '-execwin "ccperl

\\\\pluto\disk1\ucmtrig_examples\ex2\ex2_postop.pl"';
}
else {

$PVOBTAG = '/pvobs/cyclone_pvob';
$WCMD = '-execwin "ccperl

\\\\\\pluto\disk1\ucmtrig_examples\ex2\ex2_postop.pl"';
}
my $STREAM = "stream:P1_int\@$PVOBTAG";
my $TRTYPE = "trtype:ex2_postop\@$PVOBTAG";
my $UCMD = '-execunix "Perl
/net/pluto/disk1/ucmtrig_examples/ex2/ex2_postop.pl"';

print 'cleartool mktrtype -ucmobject -all -postop deliver_complete $WCMD $UCMD
-stream $STREAM -nc $TRTYPE`;

Postoperation Trigger Script

This postoperation trigger action fires when a developer finishes delivering work to the

integration stream. The script composes and sends an e-mail message to other developers on the

project team telling them that a deliver operation has just finished. The script uses ClearCase

environment variables to provide the following details about the deliver operation in the body

of the message:

➤ Project name

➤ Development stream that delivered work

➤ Integration stream that received delivered work
122 Managing Software Projects

➤ Integration activity created by the deliver operation

➤ Activities delivered

➤ Integration view used by deliver operation

Perl script to send mail on deliver complete.

##
Simple package to override the "open" method of Mail::Send so we
can control the mailing mechanism.

package SendMail;

use Config;
use Mail::Send;

@ISA = qw(Mail::Send);

sub open {
my $me = shift;
my $how; # How to send mail
my $notused;
my $mailhost;

On Windows use SMTP

if ($Config{'osname'} eq 'MSWin32') {
$how = 'smtp';
$mailhost = "localmail0.company.com";
}

else use defaults supplied by Mail::Mailer

Mail::Mailer->new($how, $notused, $mailhost)->open($me);
}

#
##
Main program

my @to = "developers\@company.com";
my $subject = "Delivery complete";
8 - Using Triggers to Enforce Development Policies 123

my $body = join '', ("\n",
"UCM Project: ", $ENV{CLEARCASE_PROJECT}, "\n",
"UCM source stream: ", $ENV{CLEARCASE_SRC_STREAM}, "\n",
"UCM destination stream: ", $ENV{CLEARCASE_STREAM}, "\n",
"UCM integration activity: ", $ENV{CLEARCASE_ACTIVITY}, "\n",
"UCM activities delivered: ", $ENV{CLEARCASE_DLVR_ACTS}, "\n",
"UCM view: ", $ENV{CLEARCASE_VIEW_TAG}, "\n"

);

my $msg = new SendMail(Subject=>$subject);

$msg->to(@to);
my $fh = $msg->open($me);
$fh->print($body);
$fh->close();
1; # return success

#
##

8.5 Do Not Allow Activities to Be Created on the Integration Stream

Anyone who has an integration view attached to the integration stream can create activities on

that stream, but the UCM process calls for developers to create activities in their development

streams. You may want to implement a policy that prevents developers from creating activities

on the integration stream inadvertently. This section shows a Perl script that enforces that policy.

The following mktrtype command creates a preoperation trigger type called

block_integration_mkact. The trigger type fires when a developer attempts to make an activity.

cleartool mktrtype -ucmobject -all -preop mkactivity -execwin "ccperl ^
\\pluto\disk1\triggers\block_integ_mkact.pl" -execunix "Perl ^
/net/jupiter/triggers/block_integ_mkact.pl" block_integration_mkact@\my_pvob

The following preoperation trigger script runs when the block_integration_mkact trigger fires.

The script uses the cleartool lsproject command and the CLEARCASE_PROJECT environment

variable to determine the name of the project’s integration stream. ClearCase creates an

integration activity to keep track of changes that occur during a deliver operation. The script uses

the CLEARCASE_POP_KIND environment variable to determine whether the activity being created

is an integration activity. If the mkactivity operation is the result of a deliver operation, the value

of CLEARCASE_POP_KIND, which identifies the parent operation, is deliver_start.
124 Managing Software Projects

If the value of CLEARCASE_POP_KIND is not deliver_start, the activity is not an integration activity,

and the script disallows the mkactivity operation.

Get the integration stream name for this project
my $istream = ‘cleartool lsproject -fmt "%[istream]p"
$ENV{"CLEARCASE_PROJECT"}‘;

Get the current stream and strip off VOB tag
$_ = $ENV{"CLEARCASE_STREAM"};
s/\@.*//;
my $curstream = $_;

If it’s the same as our stream, then it is the integration stream
if ($istream eq $curstream) {

Only allow this mkact if it is a result of a deliver
Determine this by checking the parent op kind
if ($ENV{"CLEARCASE_POP_KIND"} ne "deliver_start") {

print "Activity creation is only permitted in integration streams for
delivery.\n";
exit 1

}
}

exit 0

8.6 Implementing a Role-Based Access Control System

In a ClearCase environment, where users perform different roles, you may want to restrict access

to certain ClearCase operations based on role. This section shows a trigger definition and script

that implement a role-based access control system.

The following mktrtype command creates a preoperation trigger type called role_restrictions.

The trigger type fires when a user attempts to make a baseline, stream, or activity.

cleartool mktrtype -nc -ucmobject -all -preop mkstream,mkbl,mkactivity \
-execunix "perl /net/jupiter/triggers/role_restrictions.pl" \
-execwin "ccperl \\pluto\disk1\triggers\role_restrictions.pl" \
role_restrictions@\my_pvob
8 - Using Triggers to Enforce Development Policies 125

Preoperation Trigger Script

The following preoperation trigger script maps users to the following roles:

➤ Project manager

➤ Integrator

➤ Developer

The script maps the mkactivity, mkbl, and mkstream operations to the roles that are permitted

to perform them. For example, only users designated as project managers or integrators can

make a baseline.

The script uses the CLEARCASE_USER environment variable to retrieve the user’s name, the

CLEARCASE_OP_KIND environment variable to identify the operation the user attempts to

perform, and the CLEARCASE_POP_KIND environment variable to identify the parent operation. If

the parent operation is deliver or rebase, the script does not check permissions.

use strict;

sub has_permission
{

my ($user,$op,$pop,$proj) = @_;

#When performing a composite operation like 'deliver' or 'rebase',
#we don’t need to check permissions on the individual sub-operations
#that make up the composite.

return 1 if($pop eq 'deliver_start' || $pop eq 'rebase_start' ||
 ($pop eq 'deliver_complete' || $pop eq 'rebase_complete' ||
 ($pop eq 'deliver_cancel' || $pop eq 'rebase_cancel');

Which roles can perform what operations?
Note that these maps could be stored in a ClearCase attribute
on each project instead of hard-coded here in the trigger script
to give true per-project control.

my %map_op_to_roles = (
mkactivity => ["projectmgr", "integrator", "developer"],
mkbl => ["projectmgr", "integrator"],
mkstream => ["projectmgr", "integrator", "developer"],

);

Which users belong to what roles?
126 Managing Software Projects

my %map_role_to_users = (
projectmgr => ["kate"],
integrator => ["kate", "mike"],
developer => ["kate", "mike", "jones"],

);

Does user belong to any of the roles that can perform this operation?

my ($role,$tmp_user);

for $role (@{ $map_op_to_roles{$op} }) {
for $tmp_user (@{ $map_role_to_users{$role} }) {

if ($tmp_user eq $user) {
return 1;

}
}

}

return 0;
}

sub Main
{

my $user = $ENV{CLEARCASE_USER};
my $proj = $ENV{CLEARCASE_PROJECT};
my $op = $ENV{CLEARCASE_OP_KIND};
my $pop = $ENV{CLEARCASE_POP_KIND};

my $perm = has_permission($user, $op, $proj);

printf("$user %s permission to perform '$op' in project $proj\n",
$perm ? "has" : "does NOT have");

exit($perm ? 0 : 1);
}

Main();

8.7 Additional Uses for UCM Triggers

The examples shown in the previous sections represent just a few ways that you may use UCM

triggers to enforce development policies. Other uses for UCM triggers include the following:
8 - Using Triggers to Enforce Development Policies 127

➤ Creating an integration between UCM and a change request management (CRM) system.

Although we expect that most customers will use the out-of-the-box integration with

ClearQuest, you may want to integrate with another CRM system. To accomplish this, you

could do the following:

➣ Create a trigger type on mkactivity that creates a corresponding record in the CRM

database when a developer makes a new activity.

➣ Create a trigger type on setactivity that transitions the record in the CRM database to a

scheduled state when a developer starts working on an activity.

➣ Create a trigger type on deliver that transitions the record in the CRM database to a

completed state when a developer finishes delivering the activity to the integration

stream.

➤ Creating a trigger type on rebase that prevents developers from rebasing certain

development streams. You may want to enforce this policy on a development stream that is

being used to fix one particular bug.

➤ Creating a trigger type on setactivity that allows specific developers to work on specific

activities.
128 Managing Software Projects

99 Managing Parallel Releases of
Multiple Projects

The previous chapters describe how to manage a single project. However, you may need to

manage multiple releases of a project simultaneously. To do so, you need to merge changes from

one project to another. This chapter describes how to accomplish that merging in two common

scenarios:

➤ Managing a current project and a follow-on project simultaneously

➤ Incorporating a patch release into a new release of the project

This chapter also describes how to use base ClearCase tools to merge work from a UCM project

to a base ClearCase project.

9.1 Managing a Current Project and a Follow-On Project
Simultaneously

Given the tight software development schedules that most organizations operate within, it is

common practice to begin development of the next release of a project before work on the current

release is completed. The next release may add new features, or it may involve porting the

current release to a different platform.
9 - Managing Parallel Releases of Multiple Projects 129

Example

Figure 37 illustrates the flow of a current project, Webotrans 4.0, and a follow-on project,

Webotrans 4.1.

Figure 37 Managing a Follow-on Release

Create project

Project Webotrans 4.0

Project Webotrans 4.1

BL1

FCS

Beta

BL2

Beta

FCS

Rebase
integration stream

Activity

Integration stream
130 Managing Software Projects

In this example:

➤ The project manager for the follow-on project created the Webotrans 4.1 project based on

the Beta baselines of the components used in the Webotrans 4.0 project. Developers on both

project teams then continued to make changes, and the 4.0 and 4.1 integrators continued to

create new baselines that incorporate those changes.

➤ When the 4.0 team completed its work, the integrator created the final baselines, named

FCS. The 4.1 project manager then rebased the 4.1 integration stream to the FCS baselines.

Performing Interproject Rebase Operations

To rebase an integration stream to a set of baselines in another project’s integration stream,

perform the following steps:

1. In ClearCase Project Explorer, select the integration stream that you want to rebase.

2. Click Tools > Rebase Stream.

3. In the Rebase Stream Preview dialog box, click Advanced.

4. In the Change Rebase Configuration dialog box, select a component that contains the

baseline you want to use to rebase your stream. Click Change.

5. In the Change Baseline dialog box, click Change.

6. In the Choose Stream dialog box, navigate to the integration stream of the other project.

Select the integration stream and click OK. This updates the Change Baseline dialog box

with the set of baselines available in the other project’s integration stream.

7. In the Change Baseline dialog box, select the component. The Baselines list displays all

baselines available for the selected component in the other project’s integration stream.

Select the baseline to which you want to rebase your integration stream. Click OK. The

baseline that you selected now appears in the Change Rebase Configuration dialog box.

8. Repeat steps Step #4 through Step #7 until you finish selecting the set of baselines to which

you want to rebase your integration stream.

9. Click OK to close the Change Rebase Configuration dialog box. Click OK in the Rebase
Stream Preview dialog box.
9 - Managing Parallel Releases of Multiple Projects 131

10. ClearCase merges all nonconflicting changes automatically. If ClearCase encounters

conflicting changes, it prompts you to start Diff Merge, a tool with which you resolve

conflicting changes. For details on using Diff Merge, see the Diff Merge online help and

Developing Software.

Note that you can rebase your project’s integration stream only if the baseline to which you are

rebasing is a successor of your integration stream’s current foundation baseline. In the above

example, the FCS baseline is a successor to the Beta baseline, which is the current foundation

baseline for the Webotrans 4.1 integration stream.

9.2 Incorporating a Patch Release into a New Version of the Project

Another common parallel development scenario involves working on a patch release and a new

release of a project at the same time. This section describes this scenario.

Example

Figure 38 illustrates the flow of a patch release and a new release. In this example:

➤ Both the Webotrans 3.0 Patch and Webotrans 4.0 projects use the FCS baselines of the

components in the Webotrans 3.0 project as their foundation baselines. The purpose of the

patch release is to fix a problem detected after Webotrans 3.0 was released. Webotrans 4.0

represents the next major release of the Webotrans product.

➤ Development continues in both the 3.0 Patch and 4.0 projects, with the integrators creating

baselines periodically.

➤ The developers working on the 3.0 Patch project finish their work, and the integrator

incorporates the final changes in the BL2 baseline. The integrator then needs to deliver

those changes from the 3.0 Patch integration stream to the 4.0 integration stream so that the

4.0 project contains the fix.
132 Managing Software Projects

Figure 38 Incorporating a Patch Release

Create projects
Project Webotrans 3.0

Project Webotrans 3.0
Patch

Project Webotrans 4.0

FCS

BL1

BL2

FCS

merge

FCS

BL1

BL2
9 - Managing Parallel Releases of Multiple Projects 133

Delivering Work to Another Project

To deliver work from an integration stream in one project to an integration stream in another

project, perform the following steps:

1. In the source stream, make one or more baselines that incorporate the changes you want to

deliver. When you deliver work from an integration stream, you must deliver baselines.

2. Check the deliver policy settings for the target integration stream to confirm that it allows

deliveries from other projects. In the Project Explorer, select the target integration stream,

and click File > Policies. If the Allow interproject deliver to project or stream policy is not

enabled, ask the project manager to change the setting to enabled.

3. In the Project Explorer, select the source integration stream, and click Tools > Deliver
Baselines To Default or Deliver To Alternate Target. To determine the default deliver target

for the integration stream, select the stream and click File > Properties. The Deliver to box

on the General tab identifies the default deliver target. You can change the default deliver

target by clicking Change. The Deliver To Alternate Target option opens the Deliver from
Stream (alternate target) dialog box, which lets you select the target stream.

4. In the Deliver from Stream Preview dialog box, use Add, Change, and Remove to select the

baselines that you want to deliver. Make sure that the View box identifies a view that is

attached to the target integration stream. If necessary, click Change to select a different view.

Click OK to start the merge part of the deliver operation.

5. Rational ClearCase merges all nonconflicting changes automatically. If it encounters

conflicting changes, it prompts you to start Diff Merge, a tool with which you resolve

conflicting changes. For details on using Diff Merge, see the Diff Merge online help and

Developing Software.

6. When you finish merging files, click Complete to check in the changes.

9.3 Using a Mainline Project

If you anticipate that your team will develop and release numerous versions of your system, you

may want to create a mainline project. A mainline project serves as a single point of integration

for related projects over a period of time. It is not specific to any single release.

For example, assume the Webotrans team plans to develop and release new versions of their

product every six months. For each new version, the project manager could create a project
134 Managing Software Projects

whose foundation baselines are the final recommended baselines in the prior project’s

integration stream. For example, the foundation baselines of Webotrans 2.0 are the final

recommended baselines in Webotrans 1.0’s integration stream; the foundation baselines for

Webotrans 3.0 are the final recommended baselines in Webotrans 2.0’s integration stream, and so

on. This approach is referred to as a cascading projects design. The disadvantage to this approach

is that you must look at all integration streams to see the entire history of the Webotrans projects.

In the mainline project approach, the Webotrans project manager creates a mainline project with

an initial set of baselines, and then creates Webotrans 1.0 based on those initial baselines. When

developers finish working on Webotrans 1.0, the project manager delivers the final

recommended baselines to the mainline project’s integration stream. These baselines in the

mainline project’s integration stream serve as the foundation baselines for the Webotrans 2.0

project. When the Webotrans 2.0 team finishes its work, the project manager delivers the final

recommended baselines to the mainline project’s integration stream, and so on. The advantage

to this approach is that each project’s final recommended baselines are available in the mainline

project’s integration stream.

9.4 Merging from a Project to a Non-UCM Branch

You may be in a situation in which part of the development team works in a project, and the rest

of the team works in base ClearCase. If you are a longtime ClearCase user, you may decide to use

UCM initially on a small part of your system. This approach would allow you to migrate from

base ClearCase to UCM gradually, rather than all at once.

In this case, you need to merge work periodically from the project’s integration stream to the

branch that serves as the integration branch for the system. To do so, use a script similar to the

one shown here, which uses base ClearCase functionality to merge changes.

Sample Perl script for delivering contents of one UCM project to
a nonUCM project. Run this script while set to a view that sees the
destination branch.
#
Usage: Perl <this-script> <project-name> <project-vob>

use strict;

my $mergeopts = '–print';
my $project = shift @ARGV;
my $pvob = shift @ARGV;
my $bl;
9 - Managing Parallel Releases of Multiple Projects 135

chdir ($pvob) or die("can’t cd to project VOB '$pvob'");

print("######## Getting recommended baselines for project '$project'\n");

my @recbls = split(' ', ‘cleartool lsproject –fmt "%[rec_bls]p" $project‘);

foreach $bl (@recbls) {

my $comp = ‘cleartool lsbl –fmt "%[component]p" $bl‘;
my $vob = ‘cleartool lscomp –fmt "%[root_dir]p" $comp‘;

print("######## Merging changes from baseline '$bl' of $vob\n");

my $st = system("cleartool findmerge $vob –fver $bl $mergeopts");
$st == 0 or die("findmerge error");

}

exit 0;

The script finds the recommended baselines for the integration stream from which you are

merging. It then uses the cleartool findmerge command to find differences between the versions

represented by those recommended baselines and the latest versions in the target branch. For

details, see the findmerge reference page.

We recommend that you add error handling and other logic appropriate for your site to this

script before using it.
136 Managing Software Projects

Part 2: Working in Base ClearCase

1010 Managing Projects in Base
ClearCase

As a project manager, you are responsible for planning, staffing, and managing the technical

aspects of a software development project. You decide what will be worked on, assign work to

the project’s team members, establish the work schedule, and perhaps the policies and

procedures for doing the work.

When development is underway, you monitor progress and generate project status reports. You

may also approve the specific work items included in a build and subsequently a baseline.

You may also be the project integrator, responsible for incorporating work that each developer

completes into a deliverable and buildable system. You create the project’s baselines and

establish the quality level of those baselines.

Base ClearCase offers many features to make this work easier. Before development begins, you

need to complete several planning and setup tasks:

➤ Setting up the project environment

➤ Implementing development policies

➤ Defining and implementing an integration policy

This chapter introduces these topics. The remaining chapters cover the implementation details.

Chapter 16, Using ClearCase Throughout the Development Cycle, follows a project throughout the

development cycle to show how you can use Rational ClearCase.

Before reading this part of the manual, read Developing Software to become familiar with the

concepts of VOBs, views, and config specs.
10 - Managing Projects in Base ClearCase 139

10.1 Setting Up the Project

This section describes the planning and setup work you need to do before development begins.

Creating and Populating VOBs

If your project is migrating to ClearCase from another version control product or is adopting a

configuration and change management plan for the first time, you must populate the VOBs for

your project with an initial collection of data (file and directory elements). If your site has a

dedicated ClearCase administrator, he or she may be responsible for creating and maintaining

VOBs, but not for importing data into them.

The Administrator’s Guide for Rational ClearCase and the Administrator’s Guide for Rational

ClearCase LT include detailed information on these topics.

Planning a Branching Strategy

ClearCase uses branches to enable parallel development. A branch is an object that specifies a

linear sequence of versions of an element. Every element has one main branch, which represents

the principal line of development, and may have multiple subbranches, each of which represents

a separate line of development. For example, a project team can use two branches concurrently:

the main branch for new development work and a subbranch to fix a bug. The aggregated main
branches of all elements constitutes the main branch of a code base.

Subbranches can have subbranches. For example, a project team designates a subbranch for

porting a product to a different platform; the team then decides to create a bug-fixing subbranch

off that porting subbranch. ClearCase allows you to create complex branch hierarchies. Figure 1

on page 2 illustrates a multilevel branching hierarchy. As a project manager in such an

environment, you need to ensure that developers are working on the correct branches. To do that,

you must tell them which rules to include in their config specs so that their views access the

appropriate set of versions.

Chapter 11, Defining Project Views, describes config specs and branches in detail. Before you read

it, a little background on branching strategies may be helpful.

Branching policy is influenced by the development objectives of the project and provides a

mechanism to control the evolution of the code base. There are as many variations of branching
140 Managing Software Projects

policy as organizations that use ClearCase. But there are also similarities that reflect common

adherence to best practices. Some of the more common branch types and uses are presented here.

Task branches are short-lived, typically involve a small percentage of files, and are merged into

their parent branch after the task is completed. Task branches promote accountability by leaving

a permanent audit trail that associates a set of changes with a particular task; they also make it

easy to identify the task artifacts, such as views and derived objects, that can be removed when

they are no longer needed. If individual tasks don’t require changes to the same files, it is easy to

merge a task branch to its parent.

Private development branches are useful when a group of developers need to make a more

comprehensive set of changes on a common code base. By branching as much of the main branch

as needed, developers can work in isolation as long as necessary. Merging back to the main
branch can be simplified if, before merging, each developer merges the main branch to the

private branch to resolve any differences there before checking in the changed files.

Integration branches provide a buffer between private development branches and the main
branch and can be useful if you delegate the integration task to one person, rather than making

developers responsible for integrating their own work.

Branch Names

It’s a good idea to establish naming conventions that indicate the work the branch contains. For

example, rel2.1_main is the branch on which all code for Release 2.1 ultimately resides,

rel2.1_feature_abc contains changes specific to the ABC feature, and rel2.1_bl2 is the second

stable baseline of Release 2.1 code. (If necessary, branch names can be much longer and more

descriptive, but long branch names can crowd a version tree display.)

NOTE: Make sure that you do not create a branch type with the same name as a label type. This

can cause problems when config specs use labels in version selectors. For example, make all

branch names lowercase, and make all label names uppercase.

Branches and ClearCase MultiSite

PRODUCT NOTE: Rational ClearCase LT does not support ClearCase MultiSite.

Branches are particularly important when your team works in VOBs that have been replicated to

other sites with the ClearCase MultiSite product. Developers at different sites work on different

branches of an element. This scheme prevents collisions—for example, developers at two sites

creating version /main/17 of the same element. In some cases, versions of files cannot or should

not be merged, and developers at different sites must share branches. For more information, see

Certain Branches Are Shared Among MultiSite Sites on page 178.
10 - Managing Projects in Base ClearCase 141

Creating Shared Views and Standard Config Specs

As a project manager, you want to control the config specs that determine how branches are

created when developers check out files. There are several ways to handle this task:

➤ Create a config spec template that each developer must use. Developers can either paste the

template into their individual config specs or use the ClearCase include file facility to get

the config spec from a common source.

➤ Create a view that developers will share. This is usually a good way to provide an

integration view for developers to use when they check in work that has evolved in

isolation on a private branch.

NOTE: Working in a single shared view is not recommended because doing so can degrade

system performance.

➤ Use the ClearCase View Profiles mechanism to configure views that the project team will

use. The View Profile tools promote a specific model for the effective use of ClearCase.

Project teams that adhere to this model can take advantage of several areas of automated

support, significantly simplifying their ability to exploit some of the more advanced

features of ClearCase. For more information on View Profiles, see the online help.

PRODUCT NOTE: Rational ClearCase LT does not support view profiles.

➤ To ensure that all team members configure their views the same way, you can create files

that contain standard config specs. For example:

➣ \\vulcan\c\public\c_specs\abc contains the ABC team’s config spec

➣ \\vulcan\c\public\c_specs\xyz contains the XYZ team’s config spec

Store these config spec files in a standard directory outside a VOB, to ensure that all developers

get the same version.

Recommendations for View Names

You may want to establish naming conventions for views for the same reason that you do for

branches: it is easier to associate a view with the task it is used for. The ClearCase view-creation

tools suggest appropriate view names, but you may want to use something different. For

example, you can require all view names (called view-tags) to include the owner’s name and the

task (bill_V4.0_bugfix) or the name of the computer hosting the view (platinum_V4.0_int).
142 Managing Software Projects

10.2 Implementing Development Policies

To enforce development policies, you can create ClearCase metadata to preserve information

about the status of versions. To monitor the progress of the project, you can generate a variety of

reports from this data and from the information captured in event records.

Using Labels

A label is a user-defined name that can be attached to a version. Labels are a powerful tool for

project managers and system integrators. By applying labels to groups of elements, you can

define and preserve the relationship of a set of file and directory versions to each other at a given

point in the development lifecycle. For example, you can apply labels to these versions:

➤ All versions considered stable after integration and testing. Use this baseline label as the

foundation for new work.

➤ All versions that are partially stable or contain some usable subset of functionality. Use this

checkpoint label for intermediate testing or as a point to which development can be rolled

back in the event that subsequent changes result in regressions or instability.

➤ All versions that contain changes to implement a particular feature or that are part of a

patch release.

Using Attributes, Hyperlinks, Triggers, and Locks

Attributes are name/value pairs that allow you to capture information about the state of a

version from various perspectives. For example, you can attach an attribute named

CommentDensity to each version of a source file, to indicate how well the code is commented.

Each such attribute can have the value unacceptable, low, medium, or high.

Hyperlinks allow you identify and preserve relationships between elements in one or more

VOBs. This capability can be used to address process-control needs, such as requirements

tracing, by allowing you to link a source file to a requirements document.

Triggers allow you to control the behavior of cleartool commands and ClearCase operations by

arranging for a specific program or executable script to run before or after the command

executes. Virtually any operation that modifies an element can fire a trigger. Special environment
10 - Managing Projects in Base ClearCase 143

variables make the relevant information available to the script or program that implements the

procedure.

Preoperation triggers fire before the designated ClearCase command is executed. A preoperation

trigger on checkin can prompt the developer to add an appropriate comment. Postoperation

triggers fire after a command has exited and can take advantage of the command’s exit status.

For example, a postoperation trigger on the checkin command can send an e-mail message to the

QA department, indicating that a particular developer modified a particular element.

Triggers can also automate a variety of process management functions. For example:

➤ Applying attributes or attaching labels to objects when they are modified

➤ Logging information that is not included in the ClearCase event records

➤ Initiating a build and/or source code analysis whenever particular objects are modified

For more information on these mechanisms, see Chapter 12, Implementing Project Development
Policies.

A lock on an element or directory prevents all developers (except those included on an exception

list) from modifying it. Locks are useful for implementing temporary restrictions. For example,

during an integration period, a lock on a single object—the main branch type—prevents all users

who are not on the integration team from making any changes.

The effect of a lock can be small or large. A lock can prevent any new development on a particular

branch of a particular element; another lock can apply to the entire VOB, preventing developers

from creating any new element of type compressed_file or using the version label RLS_1.3.

Locks can also be used to retire names, views, and VOBs that are no longer used. For this

purpose, the locked objects can be tagged as obsolete, effectively making them invisible to most

commands.

Global Types

The ClearCase global type facility makes it easy for you to ensure that the branch, label, attribute,

hyperlink, and element types they need are present in all VOBs your project uses. The

Administrator’s Guide for Rational ClearCase and the Administrator’s Guide for Rational

ClearCase LT have more information about creating and using global types.
144 Managing Software Projects

Generating Reports

ClearCase creates and stores an event record each time an element is modified or merged. Many

ClearCase commands include selection and filtering options that you can use to create reports

based on these records. The scope of such reports can cover a single element, for a set of objects,

or for entire VOBs.

Chapter 12, Implementing Project Development Policies, provides more detail on using event

records and metadata to implement project policies. Event records and other metadata can also

be useful if you need to generate reports on activities managed by ClearCase (for example, the

complete history of changes to an element). ClearCase provides a variety of report-generation

tools. For more information on this topic, see the fmt_ccase reference page in the Command
Reference.

10.3 Integrating Changes

During the lifetime of a project, the contents of individual elements diverge as they are branched

and usually converge in a merge operation. Typically, the project manager periodically merges

most branches back to the main branch to ensure that the code base maintains a high degree of

integrity and to have a single latest version of each element from which new versions can safely

branch. Without regular merges, the code base quickly develops a number of dangling branches,

each with slightly different contents. In such situations, a change made to one version must be

propagated by hand to other versions, a tedious process that is prone to error.

As a project manager, you must establish merge policies for your project. Typical policies include

the following:

➤ Developers merge their changes to the main branch. This can work well when the number

of developers and/or the number of changed files is small and the developers are familiar

with the mechanics of merging. Developers must also understand the nature of other

changes they may encounter when the merge target is not the immediate predecessor of the

version being merged, which happens when several developers are working on the same

file in parallel.

➤ Developers merge their changes to an integration branch. This provides a buffer between

individual developers’ merges and the main branch. The project manager or system

integrator then merges the integration branch to the main branch.
10 - Managing Projects in Base ClearCase 145

➤ Developers must merge from the main branch to their development branch before merging

to the main branch or integration branch. This type of merge promotes greater stability by

forcing merge-related instability to the developers’ private branches, where problems can

be resolved before they affect the rest of the team.

➤ The project manager designates slots for developer merges to the main branch. This is a

variation on several of the mechanisms already described. It provides an additional level of

control in situations where parallel development is going on.

There are other scenarios as well. Chapter 14, Integrating Changes, describes merging in detail.
146 Managing Software Projects

1111 Defining Project Views

This chapter explains how config specs work and provides sample config specs useful for project

development work, for nondevelopment tasks such as monitoring progress and doing research,

and for running project builds. It also explains how to share config specs between Windows and

UNIX systems.

11.1 How Config Specs Work

When you create views for your project, you must prepare one or more config specs (configuration

specifications). Config specs allow you to achieve the degree of control that you need to have

over project work by controlling which versions developers see and what operations they can

perform in specific views. You can narrow a view to a specific branch or open it to an entire VOB.

You can also disallow checkouts of all selected versions or restrict checkouts to specific branches.

A config spec contains a series of rules that Rational ClearCase uses to select the versions that

appear in the view. When team members use a view, they see the versions that match at least one

of the rules in the config spec. ClearCase searches the version tree of each element for the first

version that matches the first rule in the config spec. If no versions match the first rule, ClearCase

searches for a version that matches the second rule. If no versions of an element match any rule

in the config spec, no versions of the element appear in the view.

The order in which rules appear in the config spec determine which version of a given element

is selected. The various examples in this chapter examine this behavior in different contexts. For

details about preparing config specs, see the config_spec reference page.
11 - Defining Project Views 147

11.2 Default Config Spec

This config spec defines a dynamic configuration, which selects changes made on the main
branch of every element throughout the entire source tree, by any developer:

This is the default config spec, to which each newly created view is initialized. When you create a

view with the mkview command or the View Creation Wizard, the contents of file

default_config_spec (located in ccase-home-dir) become the new view’s config spec.

A view with this config spec provides a private work area that selects your checked-out versions

(Rule 1). By default, when you check out a file, you check out from the latest version on the main
branch (Rule 2). While an element is checked out to you, you can change it without affecting

anyone else’s work. As soon as you check in the new version, the changes are available to

developers whose views select \main\LATEST versions.

The view also selects all other elements (that is, all elements that you have not checked out) on a

read-only basis. If another user checks in a new version on the main branch of such an element,

the new LATEST version appears in this dynamic view immediately.

By default, snapshot views also include the two version selection rules shown above. In addition,

snapshot view config specs include load rules, which specify which elements or subtrees to load

into the snapshot view. For details on creating snapshot views see Developing Software or online

help.

PRODUCT NOTE: Rational ClearCase LT supports only snapshot views.

The Standard Configuration Rules

The two configuration rules in the default config spec appear in many of this chapter’s examples.

The CHECKEDOUT rule allows you to modify existing elements. If you try to check out

elements in a view that omits this rule, you can do so, but cleartool generates this warning:

(1)
(2)

element * CHECKEDOUT
element * \main\LATEST
148 Managing Software Projects

Z:\vob_pr3\src> cleartool checkout –nc cmd.c
cleartool: Warning: Unable to rename "cmd.c" to "cmd.c.keep": Read-only
filesystem.
cleartool: Error: Checked out version, but could not copy to "cmd.c": File
exists.
Correct the condition, then uncheckout and re-checkout the element.
cleartool: Warning: Copied checked out version to "cmd.c.checkedout".
cleartool: Warning: Checked-out version is not selected by view.
Checked out "cmd.c" from version "\main\7".

In this example, the config spec continues to select version 7 of element cmd.c, which is

read-only. A read-write copy of this version, cmd.c.checkedout, is created in view-private

storage. (This is not a recommended way of working.)

The \main\LATEST rule selects the most recent version on the main branch to appear in the

view.

In addition, a \main\LATEST rule is required to create new elements in a view. If you create a

new element when this rule is omitted, your view cannot “see” that element. (Creating an

element involves creating a main branch and an empty version, \main\0.)

Omitting the Standard Configuration Rules

It makes sense to omit one or both of the standard configuration rules only if a view is not going

to be used to modify data. For example, you can configure a historical view, to be used only for

browsing old data. Similarly, you can configure a view in which to compile and test only or to

verify that sources have been labeled properly.

11.3 Config Spec Include Files

ClearCase supports an include file facility, which makes it easy to ensure that all team members

are using the same config spec. For example, the configuration rules in this config spec can be

placed in file \\main_svr\public\c_specs\major.csp. Each developer then needs a one-line

config spec:

NOTE: If you are sharing config specs between UNIX and Windows NT computers where the

VOB-tags are different, you must have two sources, or you must store the config spec in a UNIX

directory that is accessible from both platforms.

(1) include \\main_svr\public\c_specs\major.csp
11 - Defining Project Views 149

If you want to modify this config spec (for example, to adopt the no-directory-branching policy),

only the contents of major.csp need to change. You can use this command to reconfigure your

view with the modified config spec:

Z:\> cleartool setcs –current

11.4 Project Environment for Sample Config Specs

You can use different config specs for different kinds of development and management tasks.

The three sections that follow present sample config specs useful for various aspects of project

development, project management and research, and project builds. This section presents the

development environment that these config specs are based on.

Developers use a VOB whose VOB-tag is \monet, which has this structure:

For the purposes of this chapter, suppose that the lib directory has this substructure:

Sources for libraries are located in subdirectories of lib. After a library is built in its source

directory, it can be staged to \monet\lib. You can use the libraries in this directory (the library

staging area) instead of a more standard location by setting the LIB environment variable or by

changing the makefile.

\monet (VOB-tag)
src\ (C language source files)
include\ (C language header files)
lib\ (project’s libraries)

lib\
libcalc.lib (checked-in staged version of library)
libcmd.lib (checked-in staged version of library)
libparse.lib (checked-in staged version of library)
libpub.lib (checked-in staged version of library)
libaux1.lib (checked-in staged version of library)
libaux2.lib (checked-in staged version of library)
libcalc\ (sources for calc library)
libcmd\ (sources for cmd library)
libparse\ (sources for parse library)
libpub\ (sources for pub library)
libaux1\ (sources for aux1 library)
libaux2\ (sources for aux2 library)
150 Managing Software Projects

The following labels are assigned to versions of monet elements.

These version labels have been assigned to versions on the main branch of each element. Most

project development work takes place on the main branch. For some special tasks, development

takes places on a subbranch.

NOTE: Config specs allow absolute VOB pathnames—absolute pathnames that begin with a

VOB-tag but do not include drive letter or view-tag prefixes. This form of pathname is required

to specify VOB elements without regard for current drive assignments or active views. For

example:

11.5 Views for Project Development

The config specs in this section are useful for project development because they enforce various

branching policies.

Version Labels Description

R1.0 First customer release

R2_BL1 Baseline 1 prior to second customer release

R2_BL2 Baseline 2 prior to second customer release

R2.0 Second customer release

Subbranches Description

major Used for work on the application’s graphical user interface, certain

computational algorithms, and other major enhancements

r1_fix Used for fixing bugs in Release 1.0

\vob_gopher\lib* (absolute VOB pathname, where \vob_gopher is the VOB-tag)
\monet\src* (absolute VOB pathname, where \monet is the VOB-tag)
Z:\monet\src* (drive-specific pathname; not recommended)
M:\myview\vob_gopher\lib* (view-extended pathname; not recommended)
11 - Defining Project Views 151

View for New Development on a Branch

You can use this config spec for work to be isolated on branches named major:

In this scheme, all checkouts occur on branches named major (Rule 2).

major branches are created at versions that constitute a consistent baseline: a major release, a

minor release, or a set of versions that produces a working version of the application. In this

config spec, the baseline is defined by the version label BASELINE_X.

Variation That Uses a Time Rule

Sometimes, other developers check in versions that become visible in your view, but are

incompatible with your own work. In such cases, you can continue to work on sources as they

existed before those changes were made. For example, Rule 2 in this config spec selects the latest

version on the main branch as of 4:00 P.M. on November 12:

Note that this rule has no effect on your own checkouts.

View to Modify an Old Configuration

This config spec allows developers to modify a configuration defined with version labels:

Note the following:

➤ Elements can be checked out (Rule 1).

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * ...\major\LATEST
element * BASELINE_X –mkbranch major
element * \main\LATEST –mkbranch major

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * ...\major\LATEST –time 12-Nov.16:00
element * BASELINE_X –mkbranch major
element * \main\LATEST –mkbranch major

(1)
(2)
(3)

element * CHECKEDOUT
element * ...\r1_fix\LATEST
element * R1.0 –mkbranch r1_fix
152 Managing Software Projects

➤ The checkout command creates a branch named r1_fix at the initially selected version (the

auto-make-branch clause in Rule 3).

A key aspect of this scheme is that the same branch name, r1_fix, is used in every modified

element. The only administrative overhead is the creation of a single branch type, r1_fix, with the

mkbrtype command.

This config spec is efficient: two rules (Rules 2 and 3) configure the appropriate versions of all

elements:

➤ For elements that have been modified, this version is the most recent on the r1_fix
subbranch (Rule 2).

➤ For elements that have not been modified, this version is the one labeled R1.0 (Rule 3).

Figure 39 illustrates these elements. The r1_fix branch is a subbranch of the main branch. But

Rule 2 handles the more general case, too: the ... wildcard allows the r1_fix branch to occur

anywhere in any element’s version tree, and at different locations in the version trees of different

elements.

Figure 39 Making a Change to an Old Version

element that has not been
modified in this configuration

element that has been
modified in this configuration

R1.0

0

1

2

3

4

main

0

1

2

3

0

1

r1_fix

main

2
Rule 2:
most recent modification
to the old version

Rule 3:
version that was
labeled R1.0
11 - Defining Project Views 153

Omitting the \main\LATEST Rule

The config spec in View to Modify an Old Configuration on page 152 omits the standard

\main\LATEST rule. This rule is not useful for work with VOBs in which the version label R1.0
does not exist. In addition, it is not useful in situations where new elements are created. If your

development policy is to not create new elements during maintenance of an old configuration,

the absence of a \main\LATEST rule is appropriate.

To allow creation of new elements during the modification process, add a fourth configuration

rule:

When a new element is created with mkelem, the –mkbranch clause in Rule 4 causes the new

element to be checked out on the r1_fix branch (which is created automatically). This rule

conforms to the scheme of localizing all changes to r1_fix branches.

Variation That Uses a Time Rule

This baseline configuration is defined with a time rule.

View to Implement Multiple-Level Branching

This config spec implements and enforces consistent multiple-level branching.

A view configured with this config spec is appropriate in the following situation:

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * \main\r1_fix\LATEST
element * R1.0 –mkbranch r1_fix
element * \main\LATEST –mkbranch r1_fix

(1)
(2)
(3)

element * CHECKEDOUT
element * \main\r1_fix\LATEST
element * \main\LATEST –time 4-Sep:02:00 –mkbranch r1_fix

(1)
(2)
(3)
(4)
(5)

element * CHECKEDOUT
element * ...\major\autumn\LATEST
element * ...\major\LATEST –mkbranch autumn
element * BASELINE_X –mkbranch major
element * \main\LATEST –mkbranch major
154 Managing Software Projects

➤ All changes from the baseline designated by the BASELINE_X version label must be made

on a branch named major.

➤ Moreover, you are working on a special project, whose changes are to be made on a

subbranch of major, named autumn.

Figure 40 shows what happens in such a view when you check out an element that has not been

modified since the baseline.

Figure 40 Multiple-Level Auto-Make-Branch

For more on multiple-level branching, see the config_spec and checkout reference pages.

0

1

2
0

1

main

major

before checkout
Rule 4 selects
baseline version,
labeled
BASELINE_X

0

1

2

main

0

1

major

0

1

2

main

0

1

autumn

checkout creates
branch -mkbranch
clause in Rule 4
creates major branch at
BASELINE_X version

create another branch
Rule 3 now applies;
-mkbranch clause creates
autumn branch at
\main\major\0

complete checkout
Rule 2 now applies;
its most recent version,
\main\major\autumn\0
is checked out

0

1

2
0

1

main

major

0

autumn
11 - Defining Project Views 155

View to Restrict Changes to a Single Directory

This config spec is appropriate for a developer who can make changes in one directory only,

\monet\src:

The most recent version of each element is selected (Rules 2 and 3), but Rule 3 prevents checkouts

to all elements except those in the directory specified.

Note that Rule 2 matches elements in any directory named src, in any VOB. The pattern

\monet\src* restricts matching to only one VOB.

This config spec can be extended easily with additional rules that allow additional areas of the

source tree to be modified.

11.6 Views to Monitor Project Status

The config specs presented here are useful for views used for research and monitoring project

status.

View That Uses Attributes to Select Versions

Suppose that the QA team also works on the major branch. Individual developers are

responsible for making sure that their modules pass a QA check. The QA team builds and tests

the application, using the most recent versions that have passed the check.

The QA team can work in a view that uses this config spec:

To make this scheme work, you must create an attribute type, QAOK. Whenever a new version

that passes the QA check is checked in on the major branch, an instance of QAOK with the value

Yes is attached to that version. (This can be done manually or with a ClearCase trigger.)

(1)
(2)
(3)

element * CHECKEDOUT
element src* \main\LATEST
element * \main\LATEST –nocheckout

(1)
(2)

element –file src* ...\major\{QAOK=="Yes"}
element * \main\LATEST
156 Managing Software Projects

If an element in the \src directory has been edited on the major branch, this view selects the

branch’s most recent version that has been marked as passing the QA check (Rule 1). If no

version has been so marked or if no major branch has been created, the most recent version on

the main branch is used (Rule 2).

NOTE: Rule 1 on this config spec does not provide a match if an element has a major branch, but

no version on the branch has a QAOK attribute. This command can locate the branches that do

not have this attribute:

cleartool find . –branch "{brtype(major) && ! attype_sub(QAOK)}" –print

The attype_sub primitive searches for attributes on an element’s versions and branches, as well

as on the element itself.

This scheme allows the QA team to monitor the progress of the rest of the group. The

development config spec always selects the most recent version on the major branch, but the QA

config spec may select an intermediate version (Figure 41).

Figure 41 Development Config Spec vs. QA Config Spec

0

1

2

3

4

0

1

2

3

main

major

QA config spec selects version using
attributes—it may be an intermediate version:

\main\major\{QAOK=="Yes"}

Development config spec selects most
recent version on branch:

\main\major\LATEST
11 - Defining Project Views 157

Pitfalls of Using This Configuration for Development

You may be tempted to add a CHECKEDOUT rule to the above config spec, turning the QA

configuration into a development configuration:

It may seem desirable to use attributes, or other kinds of metadata, in addition to (or instead of)

branches to control version selection in a development view. But such schemes introduce

complications. Suppose that the config spec above selects version \main\major\2 of element

...\src\cmd.c (Figure 42).

Figure 42 Checking Out a Branch of an Element

Performing a checkout in this view checks out version \main\major\3, not version

\main\major\2:

cleartool: Warning: Version checked out is different from version previously
selected by view.
Checked out "cmd.c" from version "\main\major\3".

This behavior reflects the ClearCase restriction that new versions can be created only at the end

of a branch. Although such operations are possible, they are potentially confusing to other team

members. And in this situation, it is almost certainly not what the developer who checks out the

element wants to happen.

(0)
(1)
(2)

element * CHECKEDOUT
element –file src* \main\major\{QAOK=="Yes"}
element * \main\LATEST

intermediate version selected
by config spec rule:

\main\major\{QAOK=="Yes"}

0

1

2

3

major

checkout command
always checksout most recent
version on branch
158 Managing Software Projects

You can avoid this problem by modifying the config spec and creating another branching level

at the version that the attribute selects. This is the new config spec:

View That Shows Changes of One Developer

This config spec makes it easy to examine all changes a developer has made since a certain

milestone:

A particular date, April 25, is used as the milestone. The configuration is a snapshot of the main

line of development at that date (Rule 2), overlaid with all changes that user jackson has made

on the main branch since then (Rule 1).

The output of the cleartool ls command distinguishes jackson’s files from the others: each entry

includes an annotation as to which configuration rule applies to the selected version.

This is a research view, not a development view. The selected set of files may not be consistent:

some of jackson’s changes may rely on changes made by others, and those other changes are

excluded from this view. Thus, this config spec omits the standard CHECKEDOUT and

\main\LATEST rules.

Historical View Defined by a Version Label

This config spec defines a historical configuration:

This view always selects the set of versions labeled R1.0. In this scenario, all these versions are

on the main branch of their elements. If the R1.0 label type is one-per-element, not one-per-branch,

(0)
(0a)
(1)
(2)

element * CHECKEDOUT
element * \main\major\temp\LATEST
element –file src* \main\major\{QAOK=="Yes"} –mkbranch temp
element * \main\LATEST

(1)
(2)

element * '\main\{created_by(jackson) && created_since(25-Apr)}'
element * \main\LATEST –time 25-Apr

NOTE: Rule 1 must be contained on a single physical text line.

(1) element * R1.0 –nocheckout
11 - Defining Project Views 159

this config spec selects the R1.0 version on a subbranch. (For more information, see the mklbtype
reference page.)

The –nocheckout qualifier prevents any element from being checked out in this view. (It also

prevents creation of new elements, because the parent directory element must be checked out.)

Thus, there is no need for the CHECKEDOUT configuration rule.

NOTE: The set of versions selected by this view can change, because version labels can be moved

and deleted. For example, using the command mklabel –replace to move R1.0 from version 5 of

an element to version 7 changes which version appears in the view. Similarly, using rmlabel
suppresses the specified elements from the view. (The cleartool ls command lists them with a [no

version selected] annotation.) If the label type is locked with the lock command, the

configuration cannot change.

You can use this configuration to rebuild Release 1.0, verifying that all source elements have been

labeled properly. You can also use it to browse the old release.

Historical View Defined by a Time Rule

This config spec defines a frozen configuration in a slightly different way than the previous one:

This configuration selects the version that was the most recent on the main branch on September

4 at 2 A.M. Subsequent checkouts and checkins cannot change which versions satisfy this

criterion; only deletion commands such as rmver or rmelem can change the configuration. The

–nocheckout qualifier prevents anyone from checking out or creating elements.

This configuration can be used to view a set of versions that existed at a particular point in time.

If modifications must be made to this source base, you must modify the config spec to “unfreeze”

the configuration.

11.7 Views for Project Builds

The config specs in this section are useful for running the various types of builds required for a

project.

(1) element * \main\LATEST –time 4-Sep.02:00 –nocheckout
160 Managing Software Projects

View That Uses Results of a Nightly Build

Many projects use scripts to run unattended software builds every night. The success or failure

of these builds determine the impact of any checked-in changes on the application. In layered

build environments, they can also provide up-to-date versions of lower-level software (libraries,

utility programs, and so on).

Suppose that every night, a script does the following:

➤ Builds libraries in various subdirectories of \monet\lib
➤ Checks them in as DO versions in the library staging area, \monet\lib
➤ Labels the versions LAST_NIGHT

You can use this config spec if you want to use the libraries produced by the nightly builds:

The LAST_NIGHT version of a library is selected whenever such a version exists (Rule 2). If a

nightly build fails, the previous night’s build still has the LAST_NIGHT label and is selected. If

no LAST_NIGHT version exists (the library is not currently under development), the stable

version labeled R2_BL2 is used instead (Rule 3).

For each library, selecting versions with the LAST_NIGHT label rather than the most recent

version in the staging area allows developers to stage new versions the next day, without

affecting developers who use this config spec.

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element lib*.lib LAST_NIGHT
element lib*.lib R2_BL2
element * \main\LATEST
11 - Defining Project Views 161

Variations That Select Versions of Project Libraries

The scheme described above uses version labels to select particular versions of libraries. For

more flexibility, the LAST_NIGHT version of some libraries may be selected, the R2_BL2
version of others, and the most recent version of still others:

(Rule 3b is not required here, because Rule 4 handles all other libraries. It is included for clarity

only.)

Other kinds of metadata can also be used to select library versions. For example, lib_selector
attributes can take values such as experimental, stable, and released. A config spec can mix and

match library versions like this:

View That Selects Versions of Application Subsystems

This config spec selects specific versions of the application’s subsystems:

In this situation, a developer is making changes to the application’s source files on the main
branch (Rule 4). Builds of the application use the libraries in directory \lib that were used to

build Baseline 1, and the header files in directory \include that were used to build Baseline 2.

(1)
(2a)
(2b)
(3a)
(3b)
(4)

element * CHECKEDOUT
element lib\libcmd.lib LAST_NIGHT
element lib\libparse.lib LAST_NIGHT
element lib\libcalc.lib R2_BL2
element lib*.lib \main\LATEST
element * \main\LATEST

(1)
(2)
(3)
(4)
(5)
(6)

element * CHECKEDOUT
element lib\libcmd.lib {lib_selector=="experimental"}
element lib\libcalc.lib {lib_selector=="experimental"}
element lib\libparse.lib {lib_selector=="stable"}
element lib*.lib {lib_selector=="released"}
element * \main\LATEST

(1)
(2)
(3)
(4)
(5)

element * CHECKEDOUT
element \monet\lib\... R2_BL1
element \monet\include\... R2_BL2
element \monet\src\... \main\LATEST
element * \main\LATEST
162 Managing Software Projects

View That Selects Versions That Built a Particular Program

This config spec defines a view that selects only enough files required to rebuild a particular

program or examine its sources:

All elements that were not involved in the build of monet appear in the output of ClearCase ls
with a [no version selected] annotation.

This config spec selects the versions listed in the config record (CR) of a particular derived object

(and in the config records of all its build dependencies). It can be a derived object that was built

in the current view, or another view, or it can be a DO version.

In this config spec, monet is a derived object in the current view. You can reference a derived

object in another view with an extended pathname that includes a DO-ID:

But typically, this kind of config spec is used to configure a view from a derived object that has

been checked in as a DO version.

Configuring the Makefile

By default, a derived object’s config record does not list the version of the makefile that was used

to build it. Instead, the CR includes a copy of the build script itself. (Why? When a new version

of the makefile is created with a revision to one target’s build script, the configuration records of

all other derived objects built with that makefile are not rendered out of date.)

But if the monet program is to be rebuilt in this view using clearmake (or omake), a version of

the makefile must be selected somehow. You can have clearmake record the makefile version in

the config record by including the special clearmake macro invocation $(MAKEFILE) in the

target’s dependency list:

monet.exe: $(MAKEFILE) monet.obj ...
link –out:monet.exe monet.obj ...

clearmake always records the versions of explicit dependencies in the CR.

Alternatively, you can configure the makefile at the source level: attach a version label to the

makefile at build time, and then use a config spec like the one in Historical View Defined by a

(1) element * –config \monet\src\monet

(1) element * –config \monet\src\monet@@09-Feb.13:56.812
11 - Defining Project Views 163

Version Label on page 159 or View to Modify an Old Configuration on page 152 to configure a view

for building. You can also use the special target .DEPENDENCY_IGNORED_FOR_REUSE; for

more information, see Building Software.

Fixing Bugs in the Program

If a bug is discovered in the monet program, as rebuilt in a view that selects only enough files

required to rebuild a particular program, it is easy to convert the view from a build configuration

to a development configuration. As usual, when making changes in old sources, follow this

strategy:

➤ Create a branch at each version to be modified

➤ Use the same branch name (that is, create an instance of the same branch type) in every

element

If the fix branch type is r1_fix, this modified config spec reconfigures the view for performing the

fix:

Selecting Versions That Built a Set of Programs

It is easy to expand the config spec that selects only enough files required to rebuild a particular

program to configure a view with the sources used to build a set of programs, rather than a single

program:

There can be version conflicts in such configurations, however. For example, different versions

of file params.h may have been used in the builds of monet and xmonet. In this situation, the

version used in monet is configured, because its configuration rule came first. Similarly, there can

be conflicts when using a single –config rule: if the specified derived object was created by

actually building some targets and using DO versions of other targets, multiple versions of some

source files may be involved.

You can modify this config spec as described in Fixing Bugs in the Program on page 164, to change

the build configuration to a development configuration.

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * ...\r1_fix\LATEST
element * –config \monet\src\monet –mkbranch r1_fix
element * \main\LATEST –mkbranch r1_fix

(1)
(2)
(3)

element * –config \monet\src\monet
element * –config \monet\src\xmonet
element * –config \monet\src\monet_conf
164 Managing Software Projects

11.8 Sharing Config Specs Between UNIX and Windows

You can, in principle, share config specs between UNIX and Windows systems. That is, users on

both systems, using views whose storage directories reside on either platform, can set and edit

the same set of config specs.

We recommend that you avoid sharing config specs across platforms. If possible, maintain

separate config specs for each platform. However, if you must share config specs, adhere to the

following requirements:

➤ Use slashes (/), not backslashes (\) in pathnames.

➤ Use relative, not full, pathnames whenever possible, and do not use VOB-tags in

pathnames. You can ignore this restriction if your UNIX and Windows VOB-tags both use

single, identical pathname components that differ only in their leading slash characters—

\src and /src, for example.

➤ Always edit and set config specs on UNIX.

The following sections describe these requirements in detail.

Pathname Separators

When writing config specs to be shared by Windows and UNIX computers, you must use slash

(/), not backslash (\), as the pathname separator. ClearCase on UNIX recognizes slashes only.

(Note that cleartool recognizes both slashes and backslashes in pathnames; clearmake is less

flexible. See Building Software for more information.)

Pathnames in Config Spec Element Rules

Windows and UNIX network regions often use different VOB-tags to register the same VOBs.

Only single-component VOB-tag names, such as \proj1, are permitted on Windows computers;

multiple-component VOB-tags, such as /vobs/src, are common on UNIX.

When VOB-tags differ between regions, any config spec element rules that use full pathnames

(which include VOB-tags) can be resolved when the config spec is compiled (cleartool edcs and

setcs commands) but only by computers in the applicable network region. This implies a general

restriction regarding shared config specs: a given config spec must be compiled only on the
11 - Defining Project Views 165

operating system for which full pathnames in element rules make sense. That is, a config spec

with full pathnames is shareable across network regions, even when VOB-tags disagree, but it

must be compiled in the right place.

The restrictions do not apply if either of the following is true (see Example on page 166):

➤ The config spec’s element rules use only relative pathnames, which do not include

VOB-tags.

➤ Shared VOBs are registered with identical, single-component VOB-tags in both Windows

and UNIX network regions. (The VOB-tags \r3vob and /r3vob are treated as if they were

identical because they differ only in the leading slashes.)

Config Spec Compilation

A config spec that is in use exists in both text file and compiled formats. A config spec’s compiled

form is portable. The restriction is that full VOB pathnames in element rules must be resolvable

at compile time. A config spec is compiled when you edit or set it (with the cleartool edcs or

cleartool setcs command or a ClearCase GUI). If a user on the other operating system recompiles

a config spec (by issuing the edcs or setcs command or causing the GUI to execute one of these

commands) the config spec becomes unusable by any computer using that view. If this happens,

recompile the config spec on the original operating system.

Example

This config spec element rule may cause problems:

element \vob_p2\abc_proj_src* \main\rel2\LATEST

If the VOB is registered with VOB-tag \vob_p2 on a Windows network region, but with VOB-tag

/vobs/vob_p2 on a UNIX network region, only Windows computers can compile the config spec.

To address the problem, do one of the following:

➤ Use relative pathnames that do not include VOB-tags, for example:

element ...\abc_proj_src* \main\rel2\LATEST

➤ On UNIX, change the VOB-tag so that it has a single component, /vob_p2.
166 Managing Software Projects

1212 Implementing Project Development
Policies

This chapter presents brief scenarios that show how you can implement and enforce common

development policies with Rational ClearCase. The scenarios use various combinations of these

functions and metadata:

➤ Attributes

➤ Labels

➤ Branches

➤ Triggers

➤ Config specs

➤ Locks

➤ Hyperlinks

Sharing Triggers Between UNIX and Windows on page 179 describes how to define triggers for use

on UNIX and Windows computers.

12.1 Good Documentation of Changes Is Required

Each ClearCase command that modifies a VOB creates one or more event records. Many such

commands (for example, checkin) prompt for a comment. The event record includes the user

name, date, comment, host, and description of what was changed.

To prevent developers from subverting the system by providing empty comments, you can

create a preoperation trigger to monitor the checkin command. The trigger action script analyzes
12 - Implementing Project Development Policies 167

the user’s comment (passed in an environment variable), disallowing unacceptable ones (null or

empty comments, for example).

NOTE: When ClearCase fires a trigger, it proceeds based on the success or failure of the trigger

operation, as determined by the trigger script’s exit code. A .bat file returns the exit code of its

last command. Preoperation triggers are the only kind of trigger that cause the ClearCase

execution to fail.

Trigger Definition:

cleartool mktrtype –element –all –preop checkin ^
–c "must enter descriptive comment" –exec \\neon\scripts\comm_pol.bat CommentPolicy

Trigger Action Script:

@echo off
rem comm_pol.bat
rem
rem Check for null comment
rem
if "%CLEARCASE_COMMENT%"=="" copy > NUL:

12.2 All Source Files Require a Progress Indicator

You may want to monitor the progress of individual files or determine which or how many files

are in a particular state. You can use attributes to preserve this information and triggers to collect

it.

In this case, you can create a string-valued attribute type, Status, which accepts a specified set of

values.

Attribute Definition:

cleartool mkattype –c "standard file levels" ^
–enum "\"inactive\",\"under_devt\",\"QA_approved\"" Status
Created attribute type "Status".

Developers apply the Status attribute to many different versions of an element. Its value in early

versions on a branch is likely to be inactive and under_devt; on later versions, its value is

QA_approved. The same value can be used for several versions, or moved from an earlier

version to a later version.
168 Managing Software Projects

To enforce conscientious application of this attribute to versions of all source files, you can create

a CheckStatus trigger whose action script prevents developers from checking in versions that do

not have a Status attribute.

Trigger Definition:

cleartool mktrtype –element –all –preop checkin ^
–c "all versions must have Status attribute" ^
–exec "ccperl \\neon\scripts\check_status.pl" CheckStatus

Trigger Action Script:

$pname = $ENV{’CLEARCASE_PN’};
$val = "";
$val = ‘cleartool describe -short -aattr Status $pname‘;

if ($val eq "") {
exit (1);
} else {

exit (0);
}

12.3 Label All Versions Used in Key Configurations

To identify which versions of which elements contributed to a particular baseline or release, you

can attach labels to these versions. For example, after Release 2 is built and tested, you can create

label type REL2, using the mklbtype command. You can then attach REL2 as a version label to

the appropriate source versions, using the mklabel command.

Which are the appropriate versions? If Release 2 was built from the bottom up in a particular

view, you can label the versions selected by that view:

Z:\vob_hw> cleartool mklbtype –c "Release 2.0 sources" REL2

Z:\vob_hw> cleartool mklabel –recurse REL2 top-level-directory

Alternatively, you can use the configuration records of the release’s derived objects to control the

labeling process:
12 - Implementing Project Development Policies 169

Z:\vob_hw> clearmake vega

... sometime later, after QA approves the build:

Z:\vob_hw> cleartool mklabel –config vega@@17-Jun.18:05 REL2

Using configuration records to attach version labels ensures accurate and complete labeling,

even if developers have created new versions since the release build. Development work can

continue while quality assurance and release procedures are performed.

To prevent version label REL2 from being used again, you must lock the label type:

Z:\vob_hw> cleartool lock –nusers vobadm lbtype:REL2

The object is locked to all users except those specified with the –nusers option, in this case,

vobadm.

12.4 Isolate Work on Release Bugs to a Branch

You may want to fix bugs found in the released system on a named bug-fix branch, and to begin

this work with the exact configuration of versions from that release.

This policy reflects the ClearCase baseline-plus-changes model. First, a label (REL2, for example)

must be attached to the release configuration. Then, you or any team member can create a view

with the following config spec to implement the policy:

element * CHECKEDOUT
element * ...\rel2_bugfix\LATEST
element * REL2 -mkbranch rel2_bugfix

If all fixes are made in one or more views with this configuration, the changes are isolated on

branches of type rel2_bugfix. The –mkbranch option causes such branches to be created, as

needed, when elements are checked out.

This config spec selects versions from rel2_bugfix branches, where branches of this type exist; it

creates such a branch whenever a REL2 version is checked out.
170 Managing Software Projects

12.5 Avoid Disrupting the Work of Other Developers

To work productively, developers need to control when they see changes and which changes

they see. The appropriate mechanism for this purpose is a view. Developers can modify an

existing config spec or create a new one to specify exactly which changes to see and which to

exclude.

To implement this policy, you can also require developers to write and distribute the config spec

rule that filters out their checked-in changes. Some sample config specs:

➤ To select your own work, plus all the versions that went into the building of Release 2:

element * CHECKEDOUT
element * REL2

➤ To select your own work, plus the latest versions as of Sunday evening:

element * CHECKEDOUT
element * \main\LATEST -time Sunday.18:00

➤ To select your own work, new versions created in the graphics directory, and the versions

that went into last night’s build:

element * CHECKEDOUT
element graphics* \main\LATEST
element * -config myprog@@12-Jul.00:30

➤ To select your own work, the versions either you (jones) or Mary has checked in today, and

the most recent quality-assurance versions:

element * CHECKEDOUT
element * ’\main\{ created_since(06:00) && (created_by(jones) ||
created_by(mary)) }’
element * \main\{QAed=="TRUE"}

➤ You can also use the config spec include facility to set up standard sets of configuration

rules for developers to add to their own config specs:

element * CHECKEDOUT
element msg.c \main\18
include C:\cspecs\rules_r2
12 - Implementing Project Development Policies 171

12.6 Deny Access to Project Data When Necessary

Occasionally, you may need to deny access to all or most project team members. For example,

you may want to prevent changes to public header files until further notice. The lock command

is designed to enforce such temporary policies:

➤ Lock all header files in a certain directory:

cleartool> lock src\pub*.h

➤ Lock the header files for all users except Mary and Fred:

cleartool> lock –nusers mary,fred src\pub*.h

➤ Lock all header files in the VOB:

cleartool> lock eltype:c_header

➤ Lock an entire VOB:

cleartool> lock vob:\my_vob

12.7 Notify Team Members of Relevant Changes

To help team members keep track of changes that affect their own work, you can use

postoperation triggers to send notifications of various events. For example, when developers

change the GUI, an e-mail message to the doc group ensures that these changes are documented.

To enforce this policy, create a trigger type that sends mail, and then attach it to the relevant

elements.

Trigger Definition:

cleartool mktrtype –nc -element –postop checkin ^
–exec "ccperl \\neon\scripts\informwriters.pl" InformWriters
Created trigger type "InformWriters".

Trigger Action Script:
172 Managing Software Projects

use Net::SMTP;

my $smtp = new Net::SMTP ’neon.purpledoc.com’;

$smtp->mail(’ClearCase Admin’);
$smtp->to(’ClearCase Admin’);
$smtp->to(’docgrp’);

$smtp->data();
$smtp->datasend("From: ClearCase Admin\n");
$smtp->datasend("To: docgrp\n");
$smtp->datasend("Subject: checkin\n");
$smtp->datasend("\n");

create variables for pathname/user/comment

$ver = $ENV{’CLEARCASE_XPN’};
$user = $ENV{’CLEARCASE_USER’};
$comment = $ENV{’CLEARCASE_COMMENT’};

$var = "Version: $ver\nUser: $user\nComment: $comment\n";

$smtp->datasend($var);
$smtp->dataend();
$smtp->quit;

To attach triggers to existing elements:

1. Place the trigger on the inheritance list of all existing directory elements within the GUI source

tree:

cleartool find \gui_src -type d ^
-exec "cleartool mktrigger -nattach InformWriters %CLEARCASE_PN%"

2. Place the trigger on the attached list of all existing file elements within the GUI source tree:

cleartool find \gui_src –type f ^
–exec "cleartool mktrigger InformWriters %CLEARCASE_PN%"
12 - Implementing Project Development Policies 173

12.8 All Source Files Must Meet Project Standards

To ensure that developers are following coding guidelines or other standards, you can evaluate

their source files. You can create preoperation triggers to run user-defined programs, and cancel

the commands that trigger them.

For example, you may want to disallow checkin of C-language files that do not satisfy quality

metrics. Suppose that you have defined an element type, c_source, for C language files (*.c).

Trigger Definition:

cleartool mktrtype –element –all –eltype c_source ^
–preop checkin –exec "\\neon\scripts\appl_met.bat %CLEARCASE_PN%" ApplyMetrics

This trigger type ApplyMetrics applies to all elements; it fires when any element of type

c_source is checked in. (When a new c_source element is created, it is monitored.) If a developer

attempts to check in a c_source file that fails the appl_met.bat test, the checkin fails.

NOTE: The appl_met.bat file can read the value of CLEARCASE_PN from its environment. Having

it accept a file-name argument provides flexibility because the batch file can be invoked as a

trigger action, and developers can also use it manually.

12.9 Associate Changes with Change Orders

To keep track of work done in response to an engineering change order (ECO), you can use

attributes and triggers. For example, to associate a version with an ECO, define ECO as an

integer-valued attribute type:

cleartool mkattype –c "bug number associated with change" –vtype integer ECO
Created attribute type "ECO".

Then, define an all-element trigger type, EcoTrigger, which fires whenever a new version is

created and runs a script to attach the ECO attribute:

Trigger Definition:

cleartool mktrtype –element –all –postop checkin –c "associate change with bug number" ^
–execunix "Perl /public/scripts/eco.pl" –execwin "ccperl \\neon\scripts\eco.pl" ^
EcoTrigger
Created trigger type "EcoTrigger".
174 Managing Software Projects

Trigger Action Script:

$pname = $ENV{’CLEARCASE_XPN’};

print "Enter the bug number associated with this checkin: ";
$bugnum = <STDIN>;
chomp ($bugnum);
$command = "cleartool mkattr ECO $bugnum $pname";

@returnvalue = ‘$command‘;
$rval = join "",@returnvalue;
print "$rval";

exit(0);

When a new version is created, the attribute is attached to the version. For example:

cleartool checkin –c "fixes for 4.0" src.c
Enter the bug number associated with this checkin: 2347
Created attribute "ECO" on "G:\dev\src.c@@\main\2".
Checked in "src.c" version "\main\2".

cleartool describe src.c@@\main\2
version "src.c@@\main\2"
...

Attributes:
ECO = 2347

12.10 Associate Project Requirements with Source Files

You can implement requirements tracing with hyperlinks, which associate pairs of VOB objects.

The association should be at the version level (rather than the branch or element level): each

version of a source code module must be associated with a particular version of a related design

document.

For example, the project manager creates a hyperlink type named DesignDoc, which is used to

associate source code with design documents:

cleartool mkhltype –c "associate code with design docs" ^
DesignDoc@\dev DesignDoc@\design
Created hyperlink type "DesignDoc".
Created hyperlink type "DesignDoc".
12 - Implementing Project Development Policies 175

The hyperlink inheritance feature makes the implementation of requirements tracing easy:

➤ When the source module, hello.c, and the design document, hello_dsn.doc, are updated,

the project manager creates a new hyperlink connecting the two updated versions:

cleartool mkhlink -c "source doc" DesignDoc hello.c \design\hello_dsn.doc
Created hyperlink "DesignDoc@90@\dev".

➤ When either the source module or the design document incorporates a minor update, no

hyperlink-level change is required: the new version inherits the hyperlink connection of its

predecessor.

cleartool checkin -c "fix bug" hello.c
Checked in "hello.c" version "\main\2".

To list the inherited hyperlink, use the –ihlink option to the describe command:

➤ When either the source module or the design document incorporates a significant update,

which renders the connection invalid, the project manager creates a null-ended hyperlink to

sever the connection:

cleartool mkhlink -c "sever connection to design doc" DesignDoc hello.c
Created hyperlink "DesignDoc@94@\dev".

Figure 43 illustrates the hyperlinks that connect the source file to the design doc.

version that
inherits hyperlink->

cleartool describe –ihlink DesignDoc hello.c@@\main\2
hello.c@@\main\2

version to which ->
hyperlink is explicitly
attached

Inherited hyperlinks: DesignDoc@90@\dev
\dev\hello.c@@\main\1 ->
\doc\hello_dsn.doc@@\main\1
176 Managing Software Projects

Figure 43 Requirements Tracing

12.11 Prevent Use of Certain Commands

To control which users can execute certain commands on ClearCase objects, you can create a pair

of trigger types—one to control the use of the command on element-related objects, and one to

control the use of the command on type objects. Both trigger types use the –nuser flag to specify

the users who are allowed to use the command.

NOTE: You cannot use triggers to prevent a command from being used on an object that is not

element related or a type object. For example, you cannot create a trigger type to prevent

operations on VOB objects or replica objects.

For a list of commands that can be triggered, see the events_ccase and mktrtype reference pages.

For example, the following commands create two trigger types that prevent all users except

stephen, hugh, and emma from running the chmaster command on element-related objects and

type objects in the current VOB:

0

1

2

3

4

hello.c

source module design document

0

1

2

3

hello_dsn.c

DesignDoc

DesignDoc

DesignDoc
12 - Implementing Project Development Policies 177

cleartool mktrtype –element –all –preop chmaster –nusers stephen,hugh,emma ^
–execunix "Perl –e \"exit –1;\"" –execwin "ccperl –e \"exit (–1);\"" ^
–c "ACL for chmaster" elem_chmaster_ACL

cleartool mktrtype –type –preop chmaster –nusers stephen,hugh,emma ^
–execunix "Perl –e \"exit –1;\"" –execwin "ccperl –e \"exit (–1);\"" ^
–attype –all –brtype –all –eltype –all –lbtype –all –hltype –all ^
–c "ACL for chmaster" type_chmaster_ACL

When user tony tries to run the chmaster command on a restricted object, the command fails. For

example:

cleartool chmaster –c "give mastership to london" london@\dev \
\dev\acc.c@@\main\lex_dev
cleartool: Warning: Trigger "elem_chmaster_ACL" has refused to let chmaster
proceed.
cleartool: Error: Unable to perform operation "change master" in replica "lex"
of VOB "\dev".

12.12 Certain Branches Are Shared Among MultiSite Sites

PRODUCT NOTE: Rational ClearCase LT does not support ClearCase MultiSite.

If your company uses ClearCase MultiSite to support development at different sites, you must

tailor your branching strategy to the needs of these sites. The standard MultiSite development

model is to have a replica of the VOB at each site. Each replica controls (masters) a site-specific

branch type, and developers at one site cannot work on branches mastered at another site. (For

more information on MultiSite mastership, see the Administrator’s Guide for Rational ClearCase

MultiSite.)

However, sometimes you cannot, or may not want to, branch and merge an element. For

example, some file types cannot be merged, so development must occur on a single branch. In

this scenario, all developers must work on a single branch (usually, the main branch). MultiSite

allows only one replica to master a branch at any given time. Therefore, if a developer at another

site needs to work on the element, mastership of the branch must be transferred to that site.

MultiSite provides two models for transferring mastership of a branch:

➤ The push model, in which the administrator at the replica that masters the branch uses the

chmaster command to give mastership to another replica.
178 Managing Software Projects

This model is not efficient in a branch-sharing situation, because it requires communication

with an administrator at a remote site. For more information about this model, see the

Administrator’s Guide for Rational ClearCase MultiSite.

➤ The pull model, in which the developer who needs to work on the branch uses the

reqmaster command to request mastership of it.

NOTE: The developer can also request mastership of branch types. For more information, see

the Administrator’s Guide for Rational ClearCase MultiSite.

This model requires the MultiSite administrators to enable requests for mastership in each

replica and to authorize individual developers to request mastership. If you decide to

implement this model, you must provide the following information to your MultiSite

administrator:

➣ Replicated VOBs that should be enabled to handle mastership requests

➣ Identities (domain names and user names) of developers who should be authorized to

request mastership

➣ Branch types and branches for which mastership requests should be denied (for

example, branch types that are site specific, or branches that must remain under the

control of a single site)

The Administrator’s Guide for Rational ClearCase MultiSite describes the process of enabling

the pull model and a scenario in which developers use the pull model. The Developing
Software manual describes the procedure developers use to request mastership.

12.13 Sharing Triggers Between UNIX and Windows

You can define triggers that fire correctly on both UNIX and Windows computers. The following

sections describe two techniques. With one, you use different pathnames or different scripts;

with the other, you use the same script for both platforms.

Using Different Pathnames or Different Scripts

To define a trigger that fires on UNIX, Windows, or both, and that uses different pathnames to

point to the trigger scripts, use the –execunix and –execwin options with the mktrtype
command. These options behave the same as –exec when fired on the appropriate platform
12 - Implementing Project Development Policies 179

(UNIX or Windows, respectively). On the other platform, they do nothing. This technique allows

a single trigger type to use different paths for the same script or to use completely different

scripts on UNIX and Windows computers. For example:

cleartool mktrtype –element –all –nc –preop checkin ^
–execunix /public/scripts/precheckin.sh –execwin \\neon\scripts\precheckin.bat ^
pre_ci_trig

On UNIX, only the script precheckin.sh runs. On Windows, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers that specify only

–execunix always fail on Windows. Likewise, triggers that specify only –execwin fail on UNIX.

Using the Same Script

To use the same trigger script on both Windows and UNIX platforms, you must use a batch

command interpreter that runs on both operating systems. For this purpose, ClearCase includes

the ccperl program. On Windows, ccperl is a version of the Perl program available on UNIX.

The following mktrtype command creates sample trigger type pre_ci_trig and names

precheckin.pl as the executable trigger script.

cleartool mktrtype –element –all –nc –preop checkin ^
–execunix "Perl /public/scripts/precheckin.pl" ^
–execwin "ccperl \\neon\scripts\precheckin.pl" ^
pre_ci_trig

Notes

➤ To conditionalize script execution based on operating system, use environment variables in

Perl scripts.

➤ To collect or display information interactively, you can use the clearprompt command.

➤ For more information on using the –execunix and –execwin options, see the mktrtype
reference page.
180 Managing Software Projects

1313 Setting Up the Base
ClearCase-ClearQuest Integration

This chapter provides an overview of the base ClearCase-ClearQuest integration and describes

how to set up the integration. For information on working in the integration, see Developing
Software.

13.1 Overview of the Integration

Rational ClearQuest manages change requests, which report defects or request modifications for

a project or product. Rational ClearCase manages versions of the elements that represent a

project or product. Each version embodies one or more changes to an element.

The integration of ClearQuest and ClearCase associates one or more ClearQuest change requests

with one or more ClearCase versions.

A single change request may be associated with more than one version. The set of versions that

implement the requested change is called the change set for that request.

A single version may be associated with more than one change request. These change requests

are called the request set for that version.

The integration has the following interfaces:
13 - Setting Up the Base ClearCase-ClearQuest Integration 181

➤ As a ClearCase project manager, you specify the conditions under which users are

prompted to associate versions with change requests. You can specify VOBs, branches, and

element types for which users can or must associate change requests.

➤ As a ClearQuest administrator, you add ClearCase definitions to a ClearQuest schema.

These definitions enable change requests in databases that use the schema to contain and

display associated change sets.

➤ As a ClearCase developer, you can:

➣ Associate a version with one or more change requests at the time you check in or check

out the version.

➣ View the change set for a request.

➣ Submit queries to identify the change requests that are associated with a project over a

period of time.

13.2 Configuring ClearQuest and ClearCase

Before developers can associate ClearCase versions with ClearQuest change requests, you need

to configure ClearQuest and ClearCase as follows:

1. Add ClearCase definitions to a ClearQuest schema. If you have ClearQuest 2.0 (or a more

recent release) installed, use the ClearQuest Designer’s Package Wizard to add these

definitions. If you have an earlier release of ClearQuest installed, use the ClearQuest

Integration Configuration application on Windows to add the definitions. You associate the

ClearCase definitions with one or more record types and with one or more forms for each

associated record type. Each form then contains a ClearCase tab that displays the change set

for a change request.

2. Use the ClearQuest Designer to upgrade the database with the new version of the schema.

See the Upgrading an existing database topic in the ClearQuest Designer help. If you move the

integration to a different database, be sure to repeat this step for that database. For example,

you can try out the integration on a sample database before deciding to use it on a production

database.

3. Using the ClearQuest Integration Configuration application, set a policy for each VOB that

determines the conditions under which users are prompted to associate versions with

change requests. You can specify that users are prompted on checking out a version,

checking in a version, or both. You can also specify that prompting occurs only for some
182 Managing Software Projects

branch types or element types. Associations of checked-in versions with change requests can

be either optional or required.

Adding ClearCase Definitions to a ClearQuest Schema

A ClearQuest schema contains the attributes associated with a set of ClearQuest user databases,

including definitions of record types, fields, and forms. Before developers can associate

ClearCase versions with ClearQuest change requests in a user database, you must add some

ClearCase definitions to the schema that the database uses. To do so, use the Package Wizard

within ClearQuest Designer, as follows:

1. Click Start > Programs > Rational ClearQuest > Rational ClearQuest Designer.

2. In ClearQuest Designer, click Package > Package Wizard.

3. In the Package Wizard, look for the ClearCase 1.0 and ClearCase Upgrade 1.0 packages. If

these packages are not listed, click More Packages, and add them to the list from the Install

Packages dialog box.

4. If you are upgrading a schema that currently uses the ClearCase-ClearQuest integration

from ClearQuest release 1.1 to release 2.0, select ClearCase Upgrade 1.0, and click Next. If
you are enabling a schema to use the ClearCase-ClearQuest integration for the first time,

select ClearCase 1.0, and click Next.

5. Select the schema for the ClearQuest user database that you want to use in the integration

with ClearCase. Click Next.

6. Select the record type of ClearQuest records to be associated with ClearCase versions. This

record type must match the record type that you specify on the ClearCase tab of the

ClearQuest Integration Configuration application. Click Finish.

7. Click File > Check In to save the new version of the schema.

8. Click Database > Upgrade Database to upgrade the ClearQuest user database with the new

version of the schema.

If you are using a pre-2.0 release of ClearQuest, use the ClearQuest Integration Configuration

application to add ClearCase definitions to a ClearQuest schema. To start the application, click

Start > Programs > Rational ClearCase Administration > Integrations > ClearQuest
Integration Configuration. Alternatively, you can start the application by entering cqconfig at

the command prompt. Click the ClearQuest tab. Click Help for instructions on completing the

fields on the tab.
13 - Setting Up the Base ClearCase-ClearQuest Integration 183

Installing Triggers in ClearCase VOBs

The integration uses ClearCase triggers on cleartool checkin, checkout, and uncheckout
commands to allow developers to associate versions with ClearQuest change requests. To install

these triggers in a VOB, use the ClearQuest Integration Configuration application.

PRODUCT NOTE: To start the ClearQuest Integration Configuration:

➤ In ClearCase, click Start > Programs > Rational ClearCase Administration >

Integrations > ClearQuest Integration Configuration.

➤ In ClearCase LT, click Start > Programs > Rational ClearCase LT Server > ClearQuest
Integration Configuration.

Alternatively, you can start the Configuration application by entering cqconfig at the command

prompt.

In previous releases, the integration used a Visual Basic trigger on Windows and a Perl trigger

on UNIX. This release adds a new Perl trigger that runs on Windows and UNIX. Specify which

trigger you want to use by clicking V1 or V2 in the Windows Trigger Selection and UNIX
Trigger Selection fields of the application. V1 refers to the Visual Basic and Perl triggers used in

previous releases. V2 refers to the new Perl trigger.

The V2 trigger provides a text-based user interface for developers who use the cleartool
command-line interface and a clearprompt pop-up window user interface for developers who

use one of the ClearCase GUIs such as ClearCase Explorer (on Windows) or xclearcase (on

UNIX). The V2 trigger does not provide a GUI for developers. For Windows client machines that

have ClearQuest installed, you may want to use the V1 Visual Basic trigger, which provides a

GUI for developers.

The V2 trigger uses a configuration file, which specifies your local configuration parameters.

When you select V2, the Configuration application fills in the Path field with CQCC/config.pl,
the path to the configuration file. In this path, CQCC resolves to

ccase-home-dir/lib/perl5/CQCCTrigger/CQCC on each local client. You can change the path to

a UNC path name so that the integration uses one central configuration file.

For information on completing the other fields in the application, click Help within the

application.
184 Managing Software Projects

Quick Start for Evaluations

The default configuration file is set to use the SAMPL user database that ClearQuest provides for

evaluations. You can test the integration with the SAMPL ClearQuest user database. If

ClearQuest is installed on the client machine, the integration uses the ClearQuest Perl API to

communicate with the ClearQuest user database. If ClearQuest is not installed on the client

machine, the integration uses the ClearQuest Web Interface to communicate with the ClearQuest

user database.

Setting Environment Variables for the ClearQuest Web Interface

To enable a client to use the ClearQuest Web Interface, set the following environment variables:

➤ CQCC_SERVER: name of the host where the ClearQuest Web server resides

➤ CQCC_SERVERROOT: root directory where the ClearQuest Web Interface files are installed

Setting the Environment for the ClearQuest Perl API

To enable a client to use the ClearQuest Perl API, perform the following tasks:

On Windows:

➤ Use the ClearQuest Maintenance Tool to connect to the schema repository that stores the

schema used by the ClearQuest user database. From the Windows Start menu, click Start >

Programs > Rational ClearQuest Administration > Rational ClearQuest Maintenance
Tool.

For Windows and UNIX:

➤ If the ClearQuest database set is something other than the default, set the

CQCC_DATABASE_SET environment variable.

On Windows, the ClearQuest Perl API attempts to connect to the schema repository that the

ClearQuest Maintenance Tool has most recently connected to. On UNIX, the API uses the default

schema repository specified for your ClearQuest installation.

Database sets allow users to select from multiple schema repositories when they start

ClearQuest, or the base ClearCase-ClearQuest integration, without having to use the ClearQuest

Maintenance Tool.
13 - Setting Up the Base ClearCase-ClearQuest Integration 185

Editing the Configuration File

The configuration file contains parameters that define local policy choices and how to access

ClearQuest. The configuration file is set to access the ClearQuest SAMPL user database. To use

the integration with a different ClearQuest user database, you need to change parameters. The

configuration file contains comments that describe how to set the parameters. Before you can edit

the configuration file, change its permissions to make it modifiable.

Testing the Integration

After you install the triggers on one or more VOBs and edit the configuration file, you can test

the connection between ClearCase and ClearQuest by entering the following command:

On Windows:

cqcc_launch CQCC\config.pl -test

On UNIX:

cqcc_launch CQCC/config.pl -test

NOTE: The commands shown above use the default path for the configuration file. If you

specified a different path when you installed the triggers, use that path when invoking the

cqcc_launch command.

The command displays output indicating whether it is able to connect to the target ClearQuest

user database. For more detailed output messages, set the CQCC_DEBUG environment variable

to 2.

Checking Performance

The performance of the integration triggers can vary depending on how they access ClearCase

and ClearQuest. You can set the CQCC_TIMER environment variable to 1 to record timing

information about the trigger session. The integration writes the information to standard output

and cqcc_output.log in the directory defined by the TMPDIR environment variable.
186 Managing Software Projects

13.3 Using the Integration Query Wizard

After you establish associations between ClearCase versions and ClearQuest change requests,

you can use the ClearQuest Integration Query wizard on Windows to identify the change

requests that are associated with a project over a period of time. For example, you might use the

wizard to answer the question, “Which change requests were associated with Release 3.1 of

Project X?”

To start the wizard from the Windows Start menu, click Start > Programs > Rational ClearCase
Administration > ClearQuest Integration Query. Alternatively, you can start the wizard by

entering cqquery at the command prompt. Click Help for instructions on completing each page

of the wizard.
13 - Setting Up the Base ClearCase-ClearQuest Integration 187

188 Managing Software Projects

1414 Integrating Changes

In a parallel development environment, the opposite of branching is merging. In the simplest

scenario, merging incorporates changes on a subbranch into the main branch. However, you can

merge work from any branch into any other branch. This chapter describes techniques and

scenarios for merging versions of elements and branches. ClearCase includes automated merge

facilities for handling almost any scenario.

14.1 How Merging Works

A merge combines the contents of two or more files or directories into a single new file/directory.

The ClearCase merge algorithm uses the following files during a merge (see Figure 44):

➤ Contributors, which are typically one version from each branch you are merging. (You can

merge up to 15 contributors.) You specify which versions are contributors.

➤ The base contributor, which is typically the closest common ancestor of the contributors.

(For selective merges, subtractive merges, and merges in an environment with complex

branch structures, the base contributor may not be the closest common ancestor.) ClearCase

determines which contributor is the base contributor.

➤ The target contributor, which is typically the latest version on the branch that will contain

the results of the merge. You determine which contributor is the target contributor.

➤ The merge output file, which contains the results of the merge and is usually checked in as a

successor to the target contributor. By default, the merge output file is the checked-out

version of the target contributor, but you can choose a different file to contain the merge

output.
14 - Integrating Changes 189

Figure 44 Versions Involved in a Typical Merge

To merge files and directories, ClearCase takes the following steps:

1. It identifies the base contributor.

2. It compares each contributor against the base contributor. (See Figure 45.)

3. For any line that is unchanged between the base contributor and any other contributor, it

copies the line to the merge output file.

4. For any line that has changed between the base contributor and one other contributor, it

accepts the change in the contributor; depending on how you started the merge operation,

ClearCase may copy the change to the merge output file. However, you can disable the

4

5

6

7

/main

Contributor

8

4

5

6

0

1

2

3

Base contributor

Target contributor

Merge output
file

element: opt.c

merge

/r1_fix
190 Managing Software Projects

automated merge capability for any given merge operation. If you disable this capability,

you must approve each change to the merge output file.

5. For any line that has changed between the base contributor and more than one other

contributor, ClearCase requires that you resolve the conflicting difference.

Figure 45 ClearCase Merge Algorithm

To merge versions, you can use the GUI tools, described briefly in the next section, or the

command-line interface, described in Using the Command Line to Merge Elements on page 192.

Using the GUI to Merge Elements

ClearCase provides three graphical tools to help you merge elements:

➤ Merge Manager

➤ Diff Merge

➤ Version Tree Browser

The Merge Manager manages the process of merging one or more ClearCase elements. It

automates the processes of gathering information for a merge, starting a merge, and tracking a

merge. It can also save and retrieve the state of a merge for a set of elements.

You can use the Merge Manager to merge from many directions:

➤ From a branch to the main branch

➤ From the main branch to another branch

➤ From one branch to another branch

You can start the Merge Manager in several ways:

▲ (b, c1)

B

C1 C2

▲ (b, c2)

Destination version = B + ▲ (b, c1) + ▲ (b, c2)

Base
contributor

Source
contributors
14 - Integrating Changes 191

➤ Click Start > Programs > ClearCase > Merge Manager.
➤ In ClearCase Explorer, click Base ClearCase, and then click Merge Manager.

The Diff Merge utility shows the differences between two or more versions of file or directory

elements. Use this tool to compare up to 16 versions at a time, navigate through versions, merge

versions, and resolve differences between versions.

You can start Diff Merge in several ways:

➤ On the shortcut menu in Windows Explorer, click Compare.

➤ In the Merge Manager, click Compare.

The Version Tree Browser displays the version tree for an element. The version tree is useful

when merging to do the following:

➤ Locate versions or branches that have contributed to or resulted from a merge

➤ Start a merge by clicking on the appropriate symbol

The merge can be recorded with a merge arrow, which is implemented as a hyperlink of type

Merge.

You can start the Version Tree Browser in several ways:

➤ Click Start > Programs > ClearCase > Version Tree Browser

➤ On the shortcut menu in Windows Explorer, click Version Tree.

Using the Command Line to Merge Elements

Use the following commands to perform merges from the command line:

➤ cleartool merge
➤ cleartool findmerge
➤ cleardiff

For more information on these commands, see the Command Reference.
192 Managing Software Projects

14.2 Common Merge Scenarios

The following sections present a series of merge scenarios that require work on one branch of an

element to be incorporated into another branch. Each scenario shows the version tree of an

element that requires a merge and indicates the appropriate command to perform the merge.

Scenario: Selective Merge from a Subbranch

In this scenario, you want to incorporate the changes in version \main\r1_fix\4 into new

development. To perform the merge, you specify which versions on the r1_fix branch to include.

See Figure 46.
14 - Integrating Changes 193

Figure 46 Selective Merge from a Subbranch

In a view configured with the default config spec, enter these commands to perform the selective

merge:

Z:\avob> cleartool checkout opt.c
Z:\avob> cleartool merge –to opt.c –insert –version \main\r1_fix\4

You can also specify a range of consecutive versions to be merged. For example, this command

merges only the changes in versions \main\r1_fix\2 through \main\r1_fix\4:

Z:\avob> cleartool merge –to opt.c –insert –version \main\r1_fix\2 \main\r1_fix\4

merge

4

5

6

7

8

4

5

6

0

1

2

3

element: opt.c

Exclude changes
in these versions
from merge

/r1_fix

Exclude changes
in these versions
from merge

Include changes
in this version onlyQA_APPROVED

/main
194 Managing Software Projects

No merge arrow is created for a selective merge.

Scenario: Removing the Contributions of Some Versions

A new feature, implemented in versions 14 through 16 on the main branch, will not be included

in the product. You must remove the changes made in those versions. See Figure 47.

Figure 47 Removing the Contributions of Some Versions

Enter these commands to perform this subtractive merge:

Z:\avob> cleartool checkout opt.c
Z:\avob> cleartool merge –to opt.c –delete –version \main\14 \main\16

No merge arrow is created for a subtractive merge.

17

18

13

14

15

16

element: opt.c

These versions
contributions to
be removed

/main
14 - Integrating Changes 195

Scenario: Merging All Project Work

Your team has been working on a branch. Now, your job is to merge all the changes into the main
branch.

The findmerge command can handle most common cases easily. It can accommodate the

following schemes for isolating the project’s work.

All Project Work Is Isolated on a Branch

The standard approach to parallel development isolates all project work on the same branch.

More precisely, all new versions of source files are created on like-named branches of their

respective elements (that is, on branches that are instances of the same branch type). This makes

it possible for a single findmerge command to locate and incorporate all the changes. Suppose

the common branch is named gopher. You can enter these commands in a view configured with

the default config spec:

Z:\avob> cd root-of-source-tree
Z:\avob> cleartool findmerge . –fversion ...\gopher\LATEST –merge –graphical

The –merge –graphical syntax causes the merge to take place automatically whenever possible,

and to start the graphical merge utility if an element’s merge requires user interaction. If the

project has made changes in several VOBs, you can perform all the merges at once by specifying

several pathnames, or by using the –avobs option to findmerge.

All Project Work Isolated in a View

Some projects are organized so that all changes are made in a single view (typically, a shared

view). For such projects, use the –ftag option to findmerge. Suppose the project’s work has been

done in a view whose view-tag is goph_vu. These commands perform the merge:

Z:\avob> cd root-of-source-tree
Z:\avob> cleartool findmerge . –ftag goph_vu –merge –graphical

NOTE: Working in a single shared view is not recommended because doing so can degrade

system performance.
196 Managing Software Projects

Scenario: Merging a New Release of an Entire Source Tree

Your team has been using an externally supplied source-code product, maintaining the sources

in a VOB. The successive versions supplied by the vendor are checked in to the main branch and

labeled VEND_R1, VEND_R2, and VEND_R3. Your team’s fixes and enhancements are created

on subbranch enhance. The views that your team works in are configured to branch from the

VEND_R3 baseline:

element * CHECKEDOUT
element * ...\enhance\LATEST
element * VEND_R3 -mkbranch enhance
element * \main\LATEST -mkbranch enhance

The version trees in Figure 48 show various likely cases:

➤ An element that your team started changing at Release 1 (enhance branch created at the

version labeled VEND_R1)

➤ An element that your team started changing at Release 3

➤ An element that your team has never changed
14 - Integrating Changes 197

Figure 48 Merging a New Release of an Entire Source Tree

Release 4 has arrived, and you need to integrate this release with your team’s changes.

To prepare for the merge, add the new release to the main branch and label the versions

VEND_R4. Merging the source trees involves merging from the version labeled VEND_R4 to the

most recent version on the enhance branch; if an element has no enhance branch, nothing is

merged.

This procedure accomplishes the integration:

1. Load the vendor’s Release 4 media into a standard directory tree:

previous
merges

0

1

2

3

4

0

1

2

3

VEND_R1

main

enhance

VEND_R3

VEND_R2

5

'main' branch used
for vendor's releases,
not for development

'enhance' branch used
for your organization's
changes

0

1

2

3

0

1

2

3

VEND_R1

main

enhance

VEND_R3

VEND_R2

0

1

2

3

VEND_R1

main

VEND_R3

VEND_R2
198 Managing Software Projects

C:\> cd %TMP%
C:\> xcopy drive\path options

The directory tree created is mathlib_4.0.

2. As the VOB owner, run clearexport_ffile, to create a datafile containing descriptions of the

new versions.

C:\> cd \mathlib_4.0
C:\mathlib_4.0> clearexport_ffile
 . (lots of output)
 .

3. In a view configured with the default config spec, start clearimport on the file

clearexport_ffile created. This creates Release 4 versions on the main branches of elements

(and creates new elements as needed).

C:\mathlib_4.0> net use z: \\view\mainline
The command completed successfully.
C:\mathlib_4.0> z:
Z:\> cd \vob_proj\mathlib
Z:\vob_proj\mathlib> clearimport %TMP%\mathlib_4.0\cvt_data

4. Label the new versions:

Z:\vob_proj> cleartool mklbtype –c "Release 4 of MathLib sources" VEND_R4
Created label type "VEND_R4".
Z:\vob_proj> cleartool mklabel –recurse VEND_R4 \vob_proj\mathlib
 . (lots of output)
 .

5. Set to a view that is configured with your team’s config spec and selects the versions on the

enhance branch:

Z:\vob_proj> net use y: \\view\enh_vu
The command completed successfully.
Z:\vob_proj> y:
Y:\vob_proj>

6. Merge from the VEND_R4 configuration to your view:

Y:\vob_proj> cleartool findmerge -nback \vob_proj\mathlib –fver VEND_R4 –merge
^ –graphical

The –merge –graphical syntax instructs findmerge to merge automatically if possible, but if

not, start the graphical merge tool.
14 - Integrating Changes 199

7. Verify the merges, and check in the modified elements.

You have now established Release 4 as the new baseline. Developers on your team can update

their view configurations as follows:

Elements that have been active continue to evolve on their enhance branches. When elements are

revised for the first time, their enhance branches are created at the VEND_R4 version.

Scenario: Merging Directory Versions

One of the most powerful features of ClearCase is versioning of directories. Each version of a

directory element catalogs a set of file elements and directory elements. In a development project,

directories change are as often as files do. Merging the changes to another branch is as easy

merging files.

Take a closer look at the source tree scenario from the previous section. Suppose you find that the

vendor has made several changes in directory M:\view1\vob_proj\mathlib\src:

➤ File elements Makefile, getcwd.c, and fork3.c have been revised.

➤ File elements readln.c and get.c have been deleted.

➤ A new file element, newpaths.c, has been created.

element * CHECKEDOUT
element * ...\enhance\LATEST

element * VEND_R4 –mkbranch enhance
element * \main\LATEST –mkbranch enhance

(change from VEND_R3 to VEND_R4)
200 Managing Software Projects

When you use findmerge to merge the changes made in the VEND_R4 sources to the enhance
branch, the changes to both the files and the directory are handled automatically. The following

findmerge excerpt shows the directory merge activity:

If you have changes to merge from both files and directories, it may be a good idea to run

findmerge twice: first to merge directories, and again to merge files. Using the –print option to a

findmerge command does not report everything that is merged, because findmerge does not see

new files or subdirectories in the merge-from version of a directory until after the directories are

merged. To report every merge that takes place, use findmerge to merge the directories only, and

then use findmerge –print to get information about the file merges needed. Afterward, you can

cancel the directory merges by using the uncheckout command on the directories.

14.3 Using Your Own Merge Tools

You can create a merged version of an element manually or with any available analysis and

editing tools. Check out the target version, revise it, and check it in. Immediately before (or after)

the checkin, record your activity by using the merge command with the –ndata (no data) option:

<<< directory 1: M:\view1\vob_proj\mathlib\src@@\main\3
>>> directory 2: .@@\main\enhance\1
>>> directory 3: .

-------[removed directory 1]-------|----------[directory 2]------------
get.c 19-Dec-1991 drp |-
*** Automatic: Applying REMOVE from directory 2
-----------[directory 1]-----------|--------[added directory 2]---------

-| newpaths.c 08-Mar.21:49 drp
*** Automatic: Applying ADDITION from directory 2
-------[removed directory 1]-------|-----------[directory 2]------------
readln.c 19-Dec-1991 drp |-
*** Automatic: Applying REMOVE from directory 2
Recorded merge of ".".
14 - Integrating Changes 201

Z:\avob> cleartool checkout nextwhat.c
Checkout comments for "nextwhat.c":
merge enhance branch
.
Checked out "nextwhat.c" from version "\main\1".

Z:\avob> <invoke your own tools to merge data into checked-out version>

Z:\avob> cleartool merge –to nextwhat.c –ndata –version ...\enhance\LATEST
Recorded merge of "nextwhat.c".

This form of the merge command does not change any file system data; it merely attaches a

merge arrow (a hyperlink of type Merge) to the specified versions. After you’ve made this

annotation, your merge is indistinguishable from one performed with ClearCase tools.
202 Managing Software Projects

1515 Using Element Types to Customize
Processing of File Elements

Most projects involve many different file types. For example, in a typical software release,

developers may work on C-language source files, C-language header files, document files in

binary format, and library files.

Every file that is stored in a ClearCase VOB is associated with an element type. Rational

ClearCase provides predefined element types for various kinds of file types, and every element

type has an associated type manager, which handles the operations performed on versions of the

element.

For some file types in your project, you may want to create your own element types so that you

can customize the handling of the files.

This chapter describes how ClearCase uses element types and type managers to classify and

manage files. It also describes how you can customize file classification and management.

15.1 File Types in a Typical Project

Table 4 lists the files used in a typical development project.
15 - Using Element Types to Customize Processing of File Elements 203

15.2 How ClearCase Assigns Element Types

In various contexts, ClearCase determines one or more file types for an existing file system object,

or for a name to be used for a new object. When you create a new element and do not specify an

element type, ClearCase determines the file type for the element.

The file-typing routines use predefined and user-defined magic files, as described in the cc.magic
reference page. A magic file can use many different techniques to determine a file type, including

file-name pattern-matching and stat data.

For example, the following magic file specifies several file types for each kind of file listed in

Table 4.

Table 4 Files Used in a Typical Project

Type of File Identifying Characteristic

Source Files

C-language source file .c file-name extension

C-language header file .h file-name extension

FrameMaker binary file .doc or .mif file-name extension, first line

of file begins with <Maker

Derived Files

library, shared library .lib, .dll file-name extension

compiled executable .exe file-name extension

Sample Magic File

(1)
(2)
(3)
(4)
(5)

c_src src_file text_file file: -name "*.c";
hdr_file text_file file: -name "*.h" ;
frm_doc binary_delta_file doc file: -magic 0, "<MakerFile" ;
library derived_file file: -name "*.lib";
program compressed_file: -name "*.exe" ;
204 Managing Software Projects

15.3 Element Types and Type Managers

ClearCase can handle different classes of files differently because it uses element types to

categorize elements. Each file element in a VOB must have an element type. An element gets its

type when it is created; you can change an element’s type subsequently, with the chtype
command. (An element is an instance of its element type, in the same way that an attribute is an

instance of an attribute type and a version label is an instance of a label type.)

Each element type has an associated type manager, a suite of programs that handle the storage and

retrieval of versions from storage pools. (See the type_manager reference page for information

on how type managers work.) Thus, the way in which a file element’s data is handled depends

on its element type.

NOTE: Each directory element also has an element type. But directory elements do not use type

managers; the contents of a directory version are stored in the VOB database itself, not in storage

pools.

Figure 49 shows how an element type is assigned to a newly created element.
15 - Using Element Types to Customize Processing of File Elements 205

Figure 49 Data Handling: File Type, Element Type, Type Manager

For example, a new element named monet.h is assigned an element type as follows:

1. A developer creates an element:

Z:\myvob> cleartool mkelem monet.h

name for new
file element

mkelem command
without -eltype option

element type for
new file element

rule from the
magic file that

matches file name

mkelem command
with -eltype option

magic file(s) and
file-typing routines

type manager for
element type

use first file type in
matching rule that

 names an existing
element type

use specified
element type
206 Managing Software Projects

2. Because the developer did not specify an element type (–eltype option), mkelem uses one or

more magic files to determine the file types of the specified name.

NOTE: ClearCase supports a search path facility, using the environment variable

MAGIC_PATH. See the cc.magic reference page for details.

Suppose that the magic file shown in Sample Magic File on page 204 is the first (or only) one

to be used. In this case, rule (2) is the first to match the name monet.h, yielding this list of file

types:

hdr_file text_file file

3. This list is compared with the set of element types defined for the new element’s VOB.

Suppose that text_file is the first file type that names an existing element type; in this case,

monet.h is created as an element of type text_file.

4. Data storage and retrieval for versions of element monet.h are handled by the type manager

associated with the text_file element type; its name is text_file_delta:

Z:\myvob> cleartool describe eltype:text_file
element type "text_file"
...

type manager: text_file_delta
supertype: file
meta-type of element: file element

File-typing mechanisms are defined on a per-user or per-site basis; element types are defined on

a per-VOB basis. (To ensure that element types are consistent across VOBs, the ClearCase

administrator can use global types.) In this case, a new element, monet.h, is created as a text_file
element; in a VOB with a different set of element types, the same magic file may have created it

as a hdr_file element.

Other Applications of Element Types

Element types allow differential and customized handling of files beyond the selection of type

managers. Following are some examples.

Using Element Types to Configure a View

Creating all C-language header files as elements of type hdr_file allows flexibility in configuring

views. Suppose that one developer has reorganized the project header files, working on a branch
15 - Using Element Types to Customize Processing of File Elements 207

named header_reorg to avoid disrupting the team’s work. To compile with the new header files,

another developer can use a view reconfigured with one additional rule:

element * CHECKEDOUT
element -eltype hdr_file * \main\header_reorg\LATEST
element * \main\LATEST

Processing Files by Element Type

Suppose that a coding-standards program named check_var_names is to be executed on each

C-language source file. If all such files have element type c_src, a single cleartool command runs

the program:

cleartool> find –avobs –visible –element 'eltype(c_src)' ^
–exec 'check_var_names %CLEARCASE_PN%'

15.4 Predefined and User-Defined Element Types

Some of the element types described in this chapter (for example, text_file) are predefined.

Others (for example, c_src and hdr_file) are not; the previous examples work only if user-defined

element types with these names are created with the mkeltype command.

When a new VOB is created, it contains a full set of the predefined element types. Each is

associated with one of the type managers provided with ClearCase. The mkeltype reference

page describes the predefined element types and their type managers.

When you create a new element type with mkeltype, you must specify an existing element type

as its supertype. By default, the new element type uses the same type manager as its supertype;

in this case, the only distinction between the new and old types is for the purposes described in

Other Applications of Element Types on page 207. For differential data handling, use the –manager
option to create an element type that uses a different type manager from its supertype.
208 Managing Software Projects

1616 Using ClearCase Throughout the
Development Cycle

The previous chapters describe various aspects of managing a project with Rational ClearCase.

This chapter presents one way in which you can use ClearCase to organize the work throughout

a development project. During this cycle, developers create a new release and maintain the

previous release.

This chapter describes concepts and methods to address typical organizational needs. Instead of

using command-line tools that are described here, consider using GUI tools such as the Merge

Manager to accomplish similar goals.

16.1 Project Overview

Release 2.0 development of the monet project includes the following kinds of work:

➤ Patches. Several high-priority bug fixes to Release 1.0 are needed.

➤ Minor enhancements. Some commands need new options; some option names need to be

shortened (–recursive becomes –r); some algorithms need performance work.

➤ Major new features. A graphical user interface is required, as are many new commands and

internationalization support.

These three development efforts can proceed largely in parallel (Figure 50), but critical

dependencies and milestones must be considered:

➤ Several Release 1.0 patch releases will ship before Release 2.0 is complete.
16 - Using ClearCase Throughout the Development Cycle 209

➤ New features take longer to complete than minor enhancements.

➤ Some new features depend on the minor enhancements.

Figure 50 Project Plan for Release 2.0 Development

The plan uses a baseline-plus-changes approach. Periodically, developers stop writing new code,

and spend some time integrating their work, building, and testing. The result is a baseline: a

stable, working version of the application. ClearCase makes it easy to integrate product

enhancements incrementally and frequently. The more frequent the baselines, the easier the tasks

of merging work and testing the results.

After a baseline is produced, active development resumes; any new efforts begin with the set of

source versions that went into the baseline build.

You define a baseline by assigning the same version label (for example, R2_BL1 for Release 2.0,

Baseline 1) to all the versions that go into, or are produced by, the baseline build.

Release
2.0

Release
1.0 FreezeFreeze

Release
1.0.1

Baseline
1

MAJ Team

MIN Team

FIX Team

major
development

minor
development

Release 1
bugfixing

Freeze Freeze

integration:
merge bugfixes
with minor
enhancements

integration:
merge Baseline 1
work with major
enhancements

integration:
merge major
enhancements,
minor enhancements,
and further bugfixes

Baseline
2

Release
1.0.2
210 Managing Software Projects

The project team is divided into three smaller teams, each working on a different development

effort: the MAJ team (new features), the MIN team (minor enhancements), and the FIX team

(Release 1.0 bug fixes and patches).

NOTE: Some developers may belong to multiple teams. These developers work in multiple views,

each configured for the respective team’s tasks.

The development area for the monet project is shown here. At the beginning of Release 2.0

development, the most recent versions on the main branch are labeled R1.0.

16.2 Development Strategy

This section describes the ClearCase issues to be resolved before development begins.

Project Manager and ClearCase Administrator

In most development efforts, the project manager and the system administrator are different

people. The user name of the project manager is meister. The administrator is the vobadm user,

who creates and owns the monet and libpub VOBs.

Use of Branches

In general, different kinds of work is done on different branches. The Release 1.0 bug fixes, for

example, are made on a separate branch to isolate this work from new development. The FIX

team can then create patch releases that do not include any of the Release 2.0 enhancements or

incompatibilities.

Because the MIN team will produce the first baseline release on its own, the project manager

gives the main branch to this team. The MAJ team will develop new features on a subbranch,

and will not be ready to integrate for a while; the FIX team will fix Release 1.0 bugs on another

subbranch and can integrate its changes at any time.

\monet (project top-level directory)
src\ (sources)
include\ (include files)
lib\ (shared libraries)
16 - Using ClearCase Throughout the Development Cycle 211

Each new feature can be developed on its own subbranch, to better manage integration and

testing work. For simplicity, this chapter assumes that work for new features is done on a single

branch.

The project manager has created the first baseline from versions on the main branches of their

elements. But this is not a requirement; you can create a release that uses versions on any branch,

or combination of branches.

Figure 51 shows the evolution of a typical element during Release 2.0 development, and

indicates correspondences to the overall project plan (Figure 50).
212 Managing Software Projects

Figure 51 Development Milestones: Evolution of a Typical Element

 1. (All branches) Start minor and major
 enhancements, along with R1.0 bug fixing

 2. (main) Freeze minor enhancements work

 3. (main) Merge bug fixes from Release 1.0.1
 into minor enhancements

 4. (main) Baseline 1 release

 5. (major) Freeze major enhancements work

 6. (major) Merge Baseline 1 changes into
 major enhancements

 7. (main) Freeze minor enhancements work

 8. (main) Merge additional bugfixes into
 minor enhancements

 9. (major) Freeze major enhancements work

10. (main) Merge major enhancements work
 with minor enhancements work

11. (main) Baseline 2 release

12. (main) Final testing period

13. (main) Release 2.0

merge

0

1

3

4

0

1

2

3

R1.0

main

major

R2_BL1

5

0

1

2

r1_fix

4

5

6

7

8

9

2

3

R2_BL2

R2.0

(R1.0.1)

4(R1.0.2) 6

merge

merge

merge

10
16 - Using ClearCase Throughout the Development Cycle 213

Creating Project Views

The MAJ team works on a branch named major and uses this config spec:

The MIN team works on the main branch and uses the default config spec:

The FIX team works on a branch named r1_fix and uses this config spec:

For the MAJ and FIX teams, use of the auto-make-branch facility in Rule (3) and Rule (4) enforces

consistent use of subbranches. It also relieves developers of the task of creating branches

explicitly and ensures that all branches are created at the version labeled R1.0.

16.3 Creating Branch Types

The project manager creates the major and r1_fix branch types required for the config specs in

Creating Project Views on page 214:

cleartool mkbrtype –c "monet R2 major enhancements" major@\libpub major@\monet
Created branch type "major".
Created branch type "major".

cleartool mkbrtype –c "monet R1 bugfixes" r1_fix@\libpub r1_fix@\monet
Created branch type "r1_fix".
Created branch type "r1_fix".

NOTE: Because each VOB has its own set of branch types, the branch types must be created

separately in the monet VOB and the libpub VOB.

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * ...\major\LATEST
element * R1.0 –mkbranch major
element * \main\LATEST –mkbranch major

(1)
(2)

element * CHECKEDOUT
element * ...\main\LATEST

(1)
(2)
(3)
(4)

element * CHECKEDOUT
element * ...\r1_fix\LATEST
element * R1.0 –mkbranch r1_fix
element * \main\LATEST –mkbranch r1_fix
214 Managing Software Projects

16.4 Creating Standard Config Specs

To ensure that all developers in a team configure their views the same way, the project manager

creates files containing standard config specs:

➤ \\vulcan\c_specs\major contains the MAJ team’s config spec.

➤ \\vulcan\c_specs\fix contains the FIX team’s config spec.

These config spec files are stored in a standard directory outside a VOB, to ensure that all

developers get the same version.

16.5 Creating, Configuring, and Registering Views

Each developer creates a view on his or her own machine. For example, developer arb enters

these commands on her local host quark:

C:\> mkdir c:\users\arb\vw_store
C:\> net share users c:\users
C:\> cleartool mkview –tag arb_major \\quark\users\arb\vw_store\arb_major.vws
Created view.
Host-local path: quark:C:\users\arb\vw_store\arb_major.vws
Global path: \\quark\users\arb\vw_store\arb_major.vws

NOTE: The net share command makes arb’s view publicly accessible.

A new view has the default config spec. Thus, developers on the MAJ and FIX teams must

reconfigure their views, using the standard file for their team. arb edits her config spec with the

cleartool edcs command, deletes the existing lines, and adds the following line:

\\vulcan\c_specs\major

If the project manager changes the standard file, arb must enter the command cleartool setcs
–current to pick up the changes.
16 - Using ClearCase Throughout the Development Cycle 215

16.6 Development Begins

To begin the project, a developer sets a properly configured view, checks out one or more

elements, and starts work. For example, developer david on the MAJ team enters these

commands:

C:\> mn (mn is a common convention; it stands for “main”)
C:\> z:
Z:\> cd \monet\src
Z:\monet\src> cleartool checkout –nc opt.c prs.c
Created branch "major" from "opt.c" version "\main\6".
Checked out "opt.c" from version "\main\major\0".
Created branch "major" from "prs.c" version "\main\7".
Checked out "prs.c" from version "\main\major\0".

The auto-make-branch facility causes each element to be checked out on the major branch (see

Rule 4 in the MAJ team’s config spec in Creating Project Views on page 214). If a developer on the

MIN team enters this command, the elements are checked out on the main branch, with no

conflict.

ClearCase is fully compatible with standard development tools and practices. Thus, developers

use the editing, compilation, and debugging tools they prefer while working in their views.

Developers check in work periodically to make their work available to other team members (that

is, those whose views select the most recent version on the team’s branch). This allows intrateam

integration and testing to proceed throughout the development period.

Techniques for Isolating Your Work

Individual developers may need or prefer to isolate their work from the changes made by other

team members. To do so, they can use these techniques to configure their views:

➤ Time rules. When someone checks in an incompatible change, a developer can reconfigure

the view to select the versions at a point before those changes were made.

➤ Private subbranches. A developer can create a private subbranch in one or more elements

(for example, \main\major\anne_wk). The config spec must be changed to select versions

on the \main\major\anne_wk branch instead of versions on the \main\major branch.

➤ Viewing only their own revisions. Developers can use a ClearCase query to configure a

view that selects only their own revisions to the source tree.
216 Managing Software Projects

16.7 Creating Baseline 1

The MIN team has implemented and tested the first group of minor enhancements, and the FIX

team has produced a patch release, whose versions are labeled R1.0.1. It is time to combine these

efforts, to produce Baseline 1 of Release 2.0 (Figure 52).

Figure 52 Creating Baseline 1

Merging Two Branches

The project manager asks the MIN developers to merge the R1.0.1 changes from the r1_fix branch

to their own branch (main). All the changes can be merged by using the findmerge command

once. For example:

cleartool> findmerge \libpub \monet\src ^
–fversion ...\r1_fix\LATEST –merge –graphical

.

. <lots of output>

.

Release
1.0

Freeze

Release
1.0.1

Baseline
1

MIN Team

FIX Team

minor
development

Release 1
bugfixing
16 - Using ClearCase Throughout the Development Cycle 217

Integration and Test

After the merges are complete, the \main\LATEST versions of certain elements represent the

efforts of the MIN and FIX teams. Members of the MIN team now compile and test the monet
application to find and fix incompatibilities in the work of both teams.

The developers on the MIN team integrate their changes in a single, shared view. The project

manager creates the view storage area in a shared directory that is accessible from all developer

hosts:

C:\> mkdir c:\vw_store
C:\> net share c c:\
C:\> cleartool mkview –tag base1_vu \\nt_svr\c\vw_store\base1_vu.vws
Created view.
Host-local path: nt_svr:C:\vw_store\base1_vu.vws
Global path: \\nt_svr\c\vw_store\base1_vu.vws

Because all integration work takes place on the main branch, there is no need to change the

configuration of the new view from the ClearCase default. MIN developers use this view (net
use drive: \\view\base1_vu) and coordinate builds and tests of the monet application. Because

they are sharing a single view, the developers are careful not to overwrite each other’s

view-private files. Any new versions created to fix inconsistencies (and other bugs) go onto the

main branch.

Labeling Sources

The monet application’s minor enhancements and bug fixes are now integrated, and a clean

build has been performed in view base1_vu. To create the baseline, the project manager assigns

the same version label, R2_BL1, to the \main\LATEST versions of all source elements. He

begins by creating an appropriate label type:

Z:\> cleartool mklbtype –c "Release 2, Baseline 1" R2_BL1@\monet R2_BL1@\libpub
Created label type "R2_BL1".
Created label type "R2_BL1".

He then locks the label type, preventing all developers (except himself) from using it:

Z:\> cleartool lock –nusers meister lbtype:R2_BL1@vob:\monet lbtype:R2_BL1@\libpub
Locked label type "R2_BL1".
Locked label type "R2_BL1".
218 Managing Software Projects

Before applying labels, he verifies that all elements are checked in on the main branch (checkouts

on other branches are still permitted):

Z:\> cleartool lscheckout –all \monet

Z:\> cleartool lscheckout –all \libpub

No output from this command indicates that all elements for the monet project are checked in.

Now, the project manager attaches the R2_BL1 label to the currently selected version

(\main\LATEST) of every element in the two VOBs:

Z:\> cleartool mklabel –recurse R2_BL1 \monet \libpub
Created label "R2_BL1" on "\monet" version "\main\1".
Created label "R2_BL1" on "\monet\src" version "\main\3".

<many more label messages>

Removing the Integration View

The view registered as base1_vu is no longer needed, so the project manager removes it:

C:\> cleartool rmview –force –tag base1_vu

16.8 Merging Ongoing Development Work

After Baseline 1 is created, the MAJ team merges the Baseline 1 changes into its work (Figure 53).

The team now has access to the minor enhancements it needs for further development. Team

members also have an early opportunity to determine whether any of their changes are

incompatible.
16 - Using ClearCase Throughout the Development Cycle 219

Figure 53 Updating Major Enhancements Development

Accordingly, the project manager declares a freeze of major enhancements development. MAJ

team members check in all elements and verify that the monet application builds and runs,

making small source changes as necessary. When all such changes have been checked in, the

team has a consistent set of \main\major\LATEST versions.

NOTE: Developers working on other major enhancements branches can merge at other times,

using the same merge procedures described here.

Preparing to Merge

1. The project manager makes sure that no element is checked out on the major branch:

Z:\> cleartool lscheckout –all \monet \libpub

NOTE: Any MAJ team members who want to continue with nonmerge work can create a

subbranch at the “frozen” version (or work with a version that is checked out as unreserved).

2. The project manager performs any required directory merges:

Release
1.0

Freeze Baseline
1

MAJ Team

MIN Team

major
development

minor
development

Freeze
220 Managing Software Projects

Z:\> net use y: \\view\major_vu (use any MAJ team view)
Z:\> y:
Y:\> cleartool findmerge \monet \libpub –type d –fversion \main\LATEST –merge
Needs merge \monet\src [automatic to \main\major\3 from \main\LATEST]

.

. <lots of output>

.
Log has been written to “findmerge.log.04-Feb-99.09:58:25”.

3. After checking in the files, the project manager determines which elements need to be

merged:

Y:\> cleartool findmerge \monet \libpub –fversion \main\LATEST –print
.
. <lots of output>
.

A 'findmerge' log has been written to
"findmerge.log.04-Feb-99.10.01.23"

This last findmerge log file is in the form of a batch file: it contains a series of cleartool
findmerge commands, each of which performs the required merge for one element:

Y:\> type findmerge.log.04-Feb-99.10.01.23
cleartool findmerge \monet\src\opt.c@@\main\major\1 -fver \main\LATEST -merge
cleartool findmerge \monet\src\prs.c@@\main\major\3 -fver \main\LATEST -merge

.

.
cleartool findmerge \libpub\src\dcanon.c@@\main\major\3 -fver \main\LATEST -merge
cleartool findmerge \libpub\src\getcwd.c@@\main\major\2 -fver \main\LATEST -merge
cleartool findmerge \libpub\src\lineseq.c@@\main\major\10 -fver \main\LATEST -merge

4. The project manager locks the major branch, allowing it to be used only by the developers

who are performing the merges:

cleartool lock –nusers meister,arb,david,sakai ^
brtype:major@\monet brtype:major@\libpub
Locked branch type "major".
Locked branch type "major".

Merging Work

Because the MAJ team is not contributing to a baseline soon, it is not necessary to merge work

(and test the results) in a shared view. MAJ developers can continue working in their own views.
16 - Using ClearCase Throughout the Development Cycle 221

Periodically, the project manager sends an excerpt from the findmerge log to an individual

developer, who executes the commands and monitors the results. (The developer can send the

resulting log files back to the project manager, as confirmation of the merge activity.)

A merged version of an element includes changes from three development efforts: Release 1.0

bug fixing, minor enhancements, and new features (Figure 54).

Figure 54 Merging Baseline 1 Changes into the major Branch

The project manager verifies that no more merges are needed, by entering a findmerge command

with the –whynot option:

Development here when
BL1 complete

merge

0

1

3

4

0

1

2

3

R1.0

main

major

R2_BL1

5

0

1

2

r1_fix

4

5

2(R1.0.1)

6

merge

Development Freeze
222 Managing Software Projects

Y:\> cleartool findmerge \monet \libpub –fversion \main\LATEST –whynot –print
.
.

No merge "\monet\src" [\main\major\4 already merged from \main\3]
No merge "\monet\src\opt.c" [\main\major\2 already merged from \main\12]

.

.

The merge period ends when the project manager removes the lock on the major branch:

Y:\> cleartool unlock brtype:major@\monet brtype:major@\libpub
Unlocked branch type "major".
Unlocked branch type "major".

16.9 Creating Baseline 2

The MIN team is ready to freeze for Baseline 2, and the MAJ team will be soon (Figure 55).

Baseline 2 will integrate all three development efforts, thus requiring two sets of merges:

➤ Bug fix changes from the most recent patch release (versions labeled R1.0.2) must be

merged to the main branch.

➤ New features must be merged from the major branch to the main branch. (This is the

opposite direction from the merges described in Merging Ongoing Development Work on

page 219.)
16 - Using ClearCase Throughout the Development Cycle 223

Figure 55 Baseline 2

ClearCase supports merges from more than two directions, so both the bug fixes and the new

features can be merged to the main branch at the same time. In general, though, it is easier to

verify the results of two-way merges.

Merging from the r1_fix Branch

The first set of merges is almost identical to those described in Merging Two Branches on page 217.

Preparing to Merge from the major Branch

After the integration of the r1_fix branch is completed, the project manager prepares to manage

the merges from the major branch. These merges are performed in a tightly controlled

environment, because the Baseline 2 milestone is approaching and the major branch is to be

abandoned.

NOTE: It is probably more realistic to build and verify the application, and then apply version

labels before proceeding to the next merge.

The project manager verifies that everything is checked in on both the main branch and major
branches:

Freeze

Freeze

Baseline
2

Release
1.0.2
224 Managing Software Projects

Y:\> cleartool lscheckout –brtype main –recurse \monet \libpub
Y:\> cleartool lscheckout –brtype major –recurse \monet \libpub
Y:\>

No output from these commands indicates that no element is checked out on either its main
branch or its major branch.

Next, the project manager determines which elements require merges:

Y:\> net use x: \\view\minor_vu (use any MIN team view)
Y:\> x:
X:\> cleartool findmerge \monet \libpub –fversion ...\major\LATEST –print

.

. <lots of output>

.
A 'findmerge' log has been written to
"findmerge.log.26-Feb-99.19.18.14"

All development on the major branch will stop after this baseline. Thus, the project manager

locks the major branch to all users, except those who are performing the merges. Locking allows

ClearCase to record the merges with a hyperlink of type Merge:

X:\> cleartool lock –nusers arb,david brtype:major@\monet brtype:major@\libpub
Locked branch type "major".

Locked branch type "major".

Because the main branch will be used for Baseline 2 integration by a small group of developers,

the project manager asked vobadm to lock the main branch to everyone else:

X:\> cleartool lock –nusers meister,arb,david,sakai ^
brtype:main@\monet brtype:main@\libpub
Locked branch type "main".
Locked branch type "main".

(To lock the branch, you must be the branch creator, element owner, VOB owner, or a member of

the ClearCase administrators group. See the lock reference page.)

Merging from the major Branch

Because the main branch is the destination of the merges, developers work in a view with the

default config spec. The situation is similar to the one described in Preparing to Merge on
16 - Using ClearCase Throughout the Development Cycle 225

page 220. This time, the merges take place in the opposite direction, from the major branch to the

main branch. Accordingly, the findmerge command is very similar:

X:\> cleartool findmerge \monet \libpub –fversion \main\major\LATEST ^
–merge –graphical

.

. <lots of output>

.
A 'findmerge' log has been written to
"findmerge.log.23-Mar-99.14.11.53"

After checkin, the version tree of a typical merged element appears as in Figure 56.

Figure 56 Element Structure After the Pre-Baseline-2 Merge

0

1

2

3

4

4

0

1

2

3

R2_BL1

R2_BL2 merge

main

major

5

merge

merge

1R1.0.2
226 Managing Software Projects

Decommissioning the major Branch

After all data has been merged to the main branch, development on the major branch will stop.

The project manager enforces this policy by making the major branch obsolete:

X:\> cleartool lock –replace –obsolete brtype:major@\monet brtype:major@\libpub
Locked branch type "major".
Locked branch type "major".

Integration and Test

Structurally, the Baseline 2 integration-and-test phase is identical to the one for Baseline 1 (see

Integration and Test on page 218). At the end of the integration period, the project manager

attaches version label R2_BL2 to the \main\LATEST version of each element in the monet and

libpub VOBs. (The Baseline 1 version label was R2_BL1.)

16.10 Final Validation: Creating Release 2.0

Baseline 2 has been released internally, and further testing has found only minor bugs. These

bugs have been fixed by creating new versions on the main branch (Figure 57).

Figure 57 Final Test and Release

Before it is shipped to customers, the monet application goes through a validation phase:

➤ All editing, building, and testing is restricted to a single, shared view.

➤ All builds are performed from sources with a particular version label (R2.0).

➤ Only the project manager has permission to make changes involving that label.

Baseline
2

Release
2.0

minor bugfixes
16 - Using ClearCase Throughout the Development Cycle 227

➤ All labels must be moved by hand.

➤ Only high-priority bugs are fixed, using this procedure:

a. The project manager authorizes a particular developer to fix the bug, by granting her

permission to create new versions (on the main branch).

b. The developer’s checkin activity is tracked by a ClearCase trigger.

c. After the bug is fixed, the project manager moves the R2.0 version label to the fixed

version and revokes the developer’s permission to create new versions.

Labeling Sources

In a view with the default config spec, the project manager creates the R2.0 label type and locks it:

cleartool mklbtype –c "Release 2.0" R2.0@\monet R2.0@\libpub
Created label type "R2.0".
Created label type "R2.0".

cleartool lock –nusers meister lbtype:R2.0@\monet lbtype:R2.0@\libpub
Locked label type "R2.0".
Locked label type "R2.0".

The project manager labels the \main\LATEST versions throughout the entire monet and

libpub development trees:

cleartool mklabel –recurse R2.0 \monet \libpub
<many label messages>

During the final test phase, the project manager moves the label forward, using mklabel
–replace, if any new versions are created.

Restricting Use of the main Branch

At this point, use of the main branch is restricted to a few users: those who performed the merges

and integration leading up to Baseline 2 (see Merging from the major Branch on page 225). Now,

the project manager asks vobadm to close down the main branch to everyone except himself,

meister:
228 Managing Software Projects

Z:\> cleartool lock –replace –nusers meister brtype:main
Locked branch type "main".

The main branch is opened only for last-minute bug fixes (see Fixing a Final Bug on page 230.)

Setting Up the Test View

The project manager creates a new shared view, r2_vu, that is configured with a one-rule config

spec:

Z:\> cleartool mkview –tag r2_vu \\nt_svr\public\integ_r2.vws
Created view.
Host-local path: nt_srv:c:\public\integ_r2.vws
Global path: \\nt_srv\public\integ_r2.vws
Z:\> cleartool edcs –tag r2_vu

This is the config spec:

element * R2.0

This config spec guarantees that only properly labeled versions are included in final validation

builds.

Setting Up the Trigger to Monitor Bug-fixing

The project manager places a trigger on all elements in the monet and libpub VOBs; the trigger

fires whenever a new version of any element is checked in. First, he creates a script that sends

mail (for an example script, see Notify Team Members of Relevant Changes on page 172).

Then, he asks vobadm to create an all-element trigger type in the monet and libpub VOBs,

specifying the script as the trigger action:

cleartool mktrtype –nc -element all –postop checkin –brtype main ^
–exec "ccperl \\neon\scripts\notify_manager.pl" r2_checkin@\monet r2_checkin@\libpub
Created trigger type "r2_checkin".
Created trigger type "r2_checkin".

Only the VOB owner or a member of the ClearCase administrators group can create trigger

types.
16 - Using ClearCase Throughout the Development Cycle 229

Fixing a Final Bug

This section demonstrates the final validation environment in action. Developer arb discovers a

serious bug and requests permission to fix it. The project manager grants her permission to create

new versions on the main branch, by having vobadm enter this command.

Z:\> cleartool lock –replace –nusers arb,meister brtype:main
Locked branch type "main".

arb fixes the bug in a view with the default config spec and tests the fix there. This involves

creating two new versions of element prs.c and one new version of element opt.c. Each time arb
uses the checkin command, the r2_checkin trigger sends mail to the project manager. For

example:

Subject: Checkin \monet\src\opt.c by arb
\monet\src\opt.c@@\main\9
Checked in by arb.

Comments:
fixed bug #459: made buffer larger

When regression tests verify that the bug has been fixed, the project manager revokes arb’s

permission to create new versions. Once again, the command is executed by vobadm:

Z:\> cleartool lock –replace –nusers meister brtype:main
Locked branch type "main".

The project manager then moves the version labels to the new versions of prs.c and opt.c, as

indicated in the mail messages. For example:

Z:\> cleartool mklabel –replace R2.0 z:\monet\src\opt.c@@\main\9
Moved label "R2.0" on "prs.c" from version "\main\8" to "\main\9".

Rebuilding from Labels

After the labels have been moved, developers rebuild the monet application again, to verify that

a good build can be performed using only those versions labeled R2.0.
230 Managing Software Projects

Wrapping Up

When the final build in the r2_vu passes the final test, Release 2.0 of monet is ready to ship. After

the distribution medium has been created from derived objects in the r2_vu, the project manager

asks the ClearCase administrator to clean up and prepare for the next release:

➤ The ClearCase administrator removes the checkin triggers from all elements by deleting the

all-element trigger type:

cleartool rmtype trtype:r2_checkin@\monet trtype:r2_checkin@\libpub
Removed trigger type "r2_checkin".
Removed trigger type "r2_checkin".

➤ The ClearCase administrator reopens the main branch:

cleartool unlock brtype:main
Unlocked branch type "main".
16 - Using ClearCase Throughout the Development Cycle 231

232 Managing Software Projects

AA Moving from View Profiles to UCM

This appendix compares view profile features with UCM features and describes how to move a

project from view profiles to UCM. PRODUCT NOTE: Rational ClearCase LT does not support

view profiles.

A.1 View Profiles and UCM

Base ClearCase includes a set of features called view profiles, which you can use to automate much

of the work required to set up and maintain your team’s shared Rational ClearCase

configuration. The Unified Change Management (UCM) process provides a more complete

solution for organizing software development teams. If you currently use view profiles, you may

want to move to UCM.

Feature Comparison

This section compares the features of view profiles and UCM.

Branches and Streams

In UCM, the project and its integration stream take the place of the view profile. Views attached to

the integration stream are configured to select the project’s shared integration branch, just as a

view profile’s config spec selects a shared common branch.

In view profiles, developers can work independently by setting up private branches for

development work. In UCM, team members join a project at which time they create their own
A - Moving from View Profiles to UCM 233

development work areas. A development work area consists of a development stream and a

development view.

Moving Work Among Branches or Streams

When working on a private branch in view profiles, there is no automated way to incorporate

changes from other developers onto the private branch. In UCM, developers use the rebase
operation to update their development work areas with the latest work delivered by other

developers to the integration stream and incorporated into a baseline.

In view profiles, developers finish a private branch when they complete a task. Finishing a

private branch closes that branch and merges work to the integration branch, where it is merged

with other sources. In UCM, activities record the versions that you create to complete a

development task as change sets. The deliver operation moves activities from the development

stream to the integration stream or a feature-specific development stream. Your development

stream remains in place after a deliver operation, and you can continue to work in it.

VOBS and Components

View profiles contain a list of VOBs that hold project data. UCM projects organize directory and

file elements into components, and each stream keeps a list of components.

Checkpoints and Baselines

View profiles capture stable configurations of a project with checkpoints, a set of labeled

versions. UCM uses baselines, which capture a set of versions per component.

Table 5 summarizes the key differences between view profiles and UCM features.

Table 5 View Profile Features and Their UCM Counterparts

View profile construct UCM counterpart

View profile Project and integration stream

Integration branch Integration stream

Private branch Development stream

Set up private branch Create a development stream/join project

Finish private branch Deliver work to integration stream
234 Managing Software Projects

A.2 How to Move View Profile Information to UCM

This section presents some general guidelines on how to move projects from view profiles to

UCM.

Preparing Your View Profile Project

Before moving work to UCM, finish all private branches. Work on private branches cannot be

moved directly to a UCM project. After work has been merged into the integration branch, create

a checkpoint that labels all versions to be migrated to the UCM project.

Moving the View Profile Information

1. Convert each VOB of the view profile project into a component.

2. For each component, import the label used for the checkpoint created in Step #1. By

importing a label, you are creating a new baseline for each component.

3. Create a UCM project, adding each baseline created in Step #2.

Members of the project team can now join the project, creating their own development streams

and views.

For more information about creating a UCM project, see Chapter 6, Setting Up the Project.

Branch is closed when work is completed

and merged to integration branch.

Development stream is not closed after a

deliver operation.

No automated support for updating private

branch with work from other developers.

Rebase operaton adds changes from the

integration stream to private work area.

Views are configured with information from

profiles.

Views are configured with information from

streams.

Table 5 View Profile Features and Their UCM Counterparts

View profile construct UCM counterpart
A - Moving from View Profiles to UCM 235

236 Managing Software Projects

BB ClearCase-ClearQuest Integrations

Rational ClearCase supports two integrations with Rational ClearQuest. This appendix provides

information that you need to manage both integrations in the same development environment.

B.1 Understanding the ClearCase-ClearQuest Integrations

The integration of ClearQuest and ClearCase associates one or more ClearQuest records with one

or more ClearCase versions, allowing you to use features of each product. ClearCase supports

two separate integrations with ClearQuest:

➤ The base ClearCase-ClearQuest integration

➤ The UCM-ClearQuest integration

For information on setting up the base ClearCase-ClearQuest integration, see Chapter 13, Setting
Up the Base ClearCase-ClearQuest Integration. Note that this integration cannot be used with UCM

projects.

For further information on the UCM-ClearQuest integration, see Part 1 of this book.

In general, we recommend that you use the base ClearCase and UCM integrations separately,

and avoid using a common ClearQuest user database. However, it is possible for both

integrations to use the same ClearQuest user database. This can be useful if you are moving a

project to UCM and have a substantial amount of information in a ClearQuest user database that

was created with the base ClearCase-ClearQuest integration. You may want the new work in

UCM to be reflected in new ClearQuest records in the same ClearQuest user database.
B - ClearCase-ClearQuest Integrations 237

The remainder of this appendix discusses considerations in managing the coexistence of the base

ClearCase-ClearQuest integration and the UCM-ClearQuest integration.

Managing Coexisting Integrations

When a ClearQuest user database that had been integrated with ClearCase previously is

configured for integration with UCM, the existing change sets are preserved intact in the

ClearQuest user database, but cannot be migrated to the UCM integration.

Change sets of existing records in the ClearQuest user database are preserved, and you can

access them from ClearQuest. To continue work on a task in a project that has been migrated to

UCM, create a new, corresponding, UCM activity and continue work there.

See Planning How to Use the UCM-ClearQuest Integration on page 44 for related information.

Schema

A ClearQuest schema can contain modifications from both the base ClearCase-ClearQuest

integration and the UCM-ClearQuest integration. A record type in such a schema would include

both the ClearCase package and the Unified Change Management package.

An individual record of that record type can store either ClearCase or UCM change set

information, but not both.

Presentation

The form for a record type that uses both integrations includes two tabs to show the change set

information associated with each integration, as shown in Figure 58. The Unified Change
Management tab lists the change set for a UCM activity. The ClearCase tab shows the change set

associated with a ClearQuest record.
238 Managing Software Projects

Figure 58 Change Sets in ClearQuest GUI
B - ClearCase-ClearQuest Integrations 239

240 Managing Software Projects

CC Customizing ClearCase Reports

This appendix explains how to customize ClearCase Reports. Specifically, it introduces the

ClearCase Reports Programming Interface and gives examples of how you can customize the

the report procedures and the user interface.

C.1 How ClearCase Reports Works

ClearCase Reports consists of two parts:

➤ The report procedures, which you can modify

➤ The ClearCase Reports applications (Report Builder and Report Viewer), which you cannot

modify

The report procedures are hooks into the applications; they implement all the operations

necessary to generate and view a specific report. The applications collect user input, interpret it,

and run the appropriate report procedure. At run time, ClearCase Reports executes as two

applications: ClearCase Report Builder and ClearCase Report Viewer. The Report Builder is used

to select and define a report’s parameters; the Report Viewer is used to view the report output.

All report procedures require an interface specification. This specification determines the user

interface information presented to users in the Report Builder and Report Viewer. When users

select a folder, the Report Builder scans the interface specification of each report in the associated

subdirectory and places the contents in a temporary buffer. When users select a specific report,

Report Builder extracts from this buffer the interface information associated with the report that

is displayed in the Report Builder and Report Viewer. After users provide the required report

parameters, the Report Builder generates the report and passes the data to the Report Viewer.
C - Customizing ClearCase Reports 241

The commands that the Report Builder uses include an -i option, which extracts the interface

specification from the report procedure. If the report procedure does not include an interface

specification or if the structure and contents of that specification are not what the Report Builder

expects, report processing stops.

For more information on the processing sequence between the ClearCase Reports applications

and the report procedures, see Run-Time Processing Sequence for Reports Programming Interface on

page 244

C.2 What You Can Customize in ClearCase Reports

The ClearCase programming interface enables you to customize four parts of the Report Builder

user interface and two parts of the Report Viewer. You can customize by adding, changing, or

removing information for the annotated areas of the Report Builder (Figure 59):

➤ Area 1. The name of the folders in the tree pane.

➤ Area 2. The directory organization displayed in the tree pane.

➤ Area 3. The report description.

➤ Area 4. The report parameters
242 Managing Software Projects

Figure 59 Customizable Areas of Report Builder Interface

You can customize by adding, changing, or removing information for the annotated areas of the

Report Viewer (Figure 60).

➤ Area 1. The position of a column heading can be moved, a column heading name can be

added, modified, or deleted and a default sort order can be added or removed from any

column heading.

➤ Area 2. The commands on the shortcut menu.

2

1
3

4

C - Customizing ClearCase Reports 243

Figure 60 Customizable Interface for Report Viewer Window

For programming examples that demonstrate how you can make these customizations, see

Report Programming Examples on page 263

Run-Time Processing Sequence for Reports Programming Interface

Before you begin to customize report procedures, it is important to understand the run-time

processing flow for Report Builder and Report Viewer. Processing occurs in three phases.

In phase 1, the user opens one of the subfolders in the Reports folder. The Report Builder

processes the interface specification of all report procedures associated with the reports in that

subfolder and presents the description of each report in the reports pane of the Report Builder.

1

2

244 Managing Software Projects

The parameters associated with the first report listed appear in the parameters pane. This

processing is done with the command that uses the -i option.

In phase 2, the user selects a report in the reports pane. The Report Builder populates the

parameters pane with the parameters required for that report. When the user clicks a parameter,

the associated parameter chooser prompts the user to provide a value. When all parameters have

values, the user can run the report. (The Run Report button is not available until all parameters

have values.)

In phase 3, the report is generated. A command line, whose parameters are defined in the

interface specification, is passed to the Report Viewer, with the parameter values. The Report

Viewer runs the report procedure and uses either cleartool or the ClearCase Automation Library

(CAL) interface to retrieve information from the VOB. The report procedure returns the

information to the Report Viewer, which sorts, formats, and displays it. The right-click behavior

for all rows in the report (as defined in the interface specification) is now enabled, and the user

can also manipulate the report data.

Figure 61 illustrates this processing sequence.
C - Customizing ClearCase Reports 245

Figure 61 Run-Time Processing Sequence

Report Builder

Description 1
Description 2

Parameter 1
Parameter 2

Reports
 Folder 1
 Folder 2

Phase 1

Report Builder

Report 1
Report 2

Parameter 1
Parameter 2

Reports
 Folder 1
 Folder 2

Report Builder

Report 1
Report 2

Reports
 Folder 1
 Folder 2

Parameter 1
Parameter 2

Phase 2

Report Viewer
Column 1 Column 2

Row 1
Row 2 Command 1

Command 2
Command 3

Phase 3

Report Builder application

Runs command with -i
option to extract interface
specification from report
procedure.

Report
procedures
in Folder 2

Report Builder application

Caches parameter values
and sends them to Report
Viewer.

Report Viewer application

Starts report procedure with
a command that passes
parameter values.

Formats report data returned.

Procedure
for Report 1

USER ACTIONS RUN-TIME PROCESSING
246 Managing Software Projects

To execute these processing steps correctly, a report procedure must meet the following

requirements:

➤ The directory that contains the report procedure must be found at known location. The

Report Builder reads the \reports\scripts directory to determine the report procedure file

names, which it calls when a user clicks the associated directory folder.

➤ The report procedure must have a valid interface specification. If the expected format is not

present, the report will not run.

➤ The interface specification in the report procedure must use parameters and choosers

supplied by ClearCase Reports. See Parameters Supplied with ClearCase Reports on page 254.

➤ The report procedure must support a command line interface that the Report Viewer can

use to pass user-defined parameter values to the report procedure.

Configuring Shared Report Directories

When Rational ClearCase is installed on the client, the files for ClearCase Reports are installed in

ccase-home-dir\reports. Before you modify the contents of this directory, create a copy of it in a

shared location. You can then delete or rename folders and add or modify report procedures.

To create the copy, do one of the following:

➤ Copy the files to a new directory.

➤ Place a copy of the files under source control and create a ClearCase view to serve as the

shared location.

We recommend that you place the copy of the report procedures under source control.

You must remove the .dll and .exe files from the customization directory. The subdirectories for

\scripts,\script_tools, and \scripts_rightclick must be present. The \scripts directory becomes

the root node Reports in the Report Builder tree pane; you can modify this directory tree. We

recommend that you do not delete any files that are in \script_tools and \scripts_rightclick; you

may add your own, of course.

The help file used by the reports cannot be modified and is not included in the \reports directory.

The help file for ClearCase Reports is located in ccase-home-dir\bin\cc_reports.hlp.
C - Customizing ClearCase Reports 247

Adding Report Procedures to Source Control

To place a copy of ccase-home-dir\reports under source control:

1. Copy all files to a temporary directory.

2. In the temporary directory, enter a command of this form:

clearexport_ffile -o name-of-data-file

3. In the \reports directory in an existing VOB, enter a command of this form:

clearimport -verbose -directory \reports\name-of-data-file

4. Create a dynamic or snapshot view for the ClearCase reports data that is now under source

control .

Setting the Report Builder to the Customized Directory

After you have copied the installed files for ClearCase Reports from ccase-home-dir\reports to a

shared directory location, you can set Report Builder to use this location:

1. In the Report Builder window, click Report > Set Scripts Location to open the Configure
Reports Directory dialog box.

2. In the dialog box, do one of the following:

➣ Type the directory path for the customized directory in the text box.

➣ Click ... to open the Browse for scripts location dialog box to select a directory location.

NOTE: After changing the ClearCase Reports user interface, you must restart Report Builder

to activate the changes.

Default Directory Structure for ClearCase Reports

All files for ClearCase Reports are stored in ccase-home-dir\reports. This is the directory structure:
248 Managing Software Projects

reports\
ccreportbuilder.exe
ccreportviewer.exe
cctypechooser.dll
ccpathchooser.dll
scripts\

ClearCase_Tools\
Elements\

Attributes\
Branches\
Labels\
Triggers\

UCM_Projects\
UCM_Streams\
Views\
VOBs\

scripts_rightclick\
script_tools\

Populating the Report Builder Tree Pane

As Figure 62 shows, the Report Builder window contains three panes: the left pane is the tree

pane, the top-right pane is the reports pane, and the bottom-right pane is the parameter pane.

When the user clicks any folder in the tree pane, the Report Builder runs the associated report

procedures from the command line. The -i option in the command line enables the Report

Builder to use a discovery algorithm to collect the user interface information for Report Builder.
C - Customizing ClearCase Reports 249

Figure 62 Report Builder User Interface

The Report Builder “walks” through the \scripts subdirectory. Directories in the tree appear as

folders in the tree pane. Any files whose extensions match those listed below are listed in the

reports pane.

.exe Typically a Visual C++ application that uses ClearCase Automation Library

(CAL) to extract data

.pl Perl, executed under perl.exe from user’s PATH environment variable, for

example, ActiveState Perl

.prl ccperl

.js JavaScript, run under Windows Scripting Host (cscript.exe)

.vbs VBScript, run under Windows Scripting Host (cscript.exe)
250 Managing Software Projects

All other files are ignored. The file name extension of report procedures supplied with ClearCase

Reports is .prl, which the Report Builder associates with ccperl.exe.

At run time, the Report Builder displays all folder names, substituting a space for the underscore

and dropping the file name extension. There is one exception: the root directory is always named

Reports. This convention cannot be changed.

For example, for this on-disk directory tree

scripts\
Admin_Reports

view_aging.prl
all_views.prl

UCM_Reports\
lagging_streams.prl
completed_acts.prl

the Report Builder displays text in the tree pane as

\Reports
Admin Reports\
UCM Reports\

C.3 Report Procedure Interface Specifications

As the Report Builder finds report procedures in the customized directory, it queries each report

procedure for its interface specification. It does this by starting a separate process with

CreateProcess(). A valid report procedure must implement an interface specification and return

formatted text to STDOUT that conforms to this specification:

description : ["<text to display in description pane for this report>"]

id : <numeric help id>

helpfile : ["<full path to user-written help file for what’s this report
help>"]

parameters : [<parameter_spec_1>] [<parameter_spec_2>] ...
[<parameter_spec_N>]

rightclick : [<rightclick_spec_1>] [<rightclick_spec_2>] ...
[<rightclick_spec_N>]
C - Customizing ClearCase Reports 251

fields : [<field_spec_1>] [<field_spec_2> ... [<field_spec_N>]

If a serious parsing error occurs in processing the interface specification, the report does not

appear in the reports pane. The helpfile specification is reserved for future use and is not

supported in this release. For information on troubleshooting parsing errors, see Troubleshooting
on page 287.

The examples in the following sections show how the interface specification is defined in specific

report procedures.

Interface Specification for All_Views.prl

The Report Builder uses this command to run All_Views.prl:

ccperl "D:\Program Files\Rational\Clearcase\Reports\scripts\Views\All_Views.prl" -i

This is the interface specification:

description : "All Views"
id : 2001
helpfile :
parameters :
rightclick : Properties_of_View(single)
fields : "View Tag"(view_tag, rightclick, initial_width 30, sort 1) "View
Owner"(user_dq)

The report interface attaches the Report Viewer to the View Tag and View Owner fields; the

right-click event in the Report Viewer window calls Properties _of_View.prl, which is based on

a data stream from the View Tag field.

Interface Specification for test_null.prl

The Report Builder uses this command to run test_null.prl:

ccperl "D:\Program Files\Rational\Clearcase\Reports\scripts\samples\test_null.prl" -i

This is the interface specification:

description : "null interface"
fields : "field1"(string)

This report interface attaches the Report Viewer to the field named field1.
252 Managing Software Projects

Interface Specification for test2_null.prl

The Report Builder uses this command to run test2_null.prl:

ccperl "D:\Program Files\Rational\Clearcase\Reports\scripts\samples\test2_null.prl" -i

This is the interface specification:

description : "null interface"

When only description is defined, a report procedure can run other graphical user interfaces (for

example, clearprompt) or otherwise interact with the user. Note, the only required line in the

interface specification is description; all other interface definitions are optional. The reports in

the \ClearCase_Tools folder define description only.

Description Specification

The description is the only required part of an interface specification. Descriptions can contain

anything other than the delimiter, a double quote (“). There is no maximum length for this

definition, but long strings do not wrap in the reports pane.

Help ID Specification

Help IDs for the description and parameter fields are supplied for the Report Builder user

interface. The help id specification is the ID that supports context-sensitive help for the

description or parameter fields in the Report Builder user interface. The IDs are integers in the

following range:

The help file for ClearCase Reports is ccase-home-dir\bin\cc_reports.hlp. The help IDs for the

parameter and description fields are included in this file. In this version of ClearCase Reports,

you cannot add an ID for your own report.

0-999 Context help for parameters

2000-2999 Context help for report descriptions
C - Customizing ClearCase Reports 253

Parameters Specification

When specifying parameters, you can use only those supplied with ClearCase Reports. Each

parameter has an associated chooser control, parameter text, and a help ID (Table 6). When you

use one of these parameters, naming it is all that is required. For example, this is the parameters
specification for the Elements Changed Between Two Labels report:

parameters : LOOKIN LABEL LABEL

The order of parameters is important. They are displayed in the parameter pane in the order of

the specification. (Each parameter appears as a link; when users click the link, they are prompted

to enter a parameter value.) At run time, the Report Viewer calls the report procedure, which

must handle the parameter values in the same order as defined in the specification.

The parameters in Table 6 that are associated with the Type Chooser must also include the

LOOKIN parameter in the interface specification. The LOOKIN parameter must have a value

before any values for other parameters that use the Type Chooser can be specified. The paths that

are the values for the LOOKIN parameter are used to build the set of VOBs that types can be read

from. At run time, if a user attempts to set a type parameter in reverse order, the Report Builder

displays this error message:

Before this parameter can be set, you must first set a value for the “Select
pathnames in view to report on” parameter.

Table 6 Parameters Supplied with ClearCase Reports (Part 1 of 3)

Parameter
Default text displayed in
the parameter pane

Help
ID

Chooser Selection

PROJECTS Select projects in UCM

Process VOB

1 Path (UCM) Multiple

STREAMS Select streams in UCM

Process VOB

2 Path (UCM) Multiple

ACTIVITIES Select activities in UCM

Process VOB

3 Path (UCM) Multiple

PROJECT Select project in UCM

Process VOB

4 Path (UCM) Single

STREAM Select stream in UCM

Process VOB

5 Path (UCM) Single
254 Managing Software Projects

ACTIVITY Select activity in UCM

Process VOB

6 Path (UCM) Single

ISTREAM Select Integration Stream in

UCM Process VOB

7 Path (UCM) Single

PVOB Select one Process VOB Tag 8 Path (file

selection)

Single

COMPONENT Type a single UCM

component object selector

(no verification performed)

9 Text Single

BASELEVEL Type a single UCM baseline

object selector (no

verification performed)

10 Text Single

ISTREAMS Select Integration Streams

in UCM Process VOB

11 Path (UCM) Multiple

PVOBS Select Process VOBs Tags 12 Path (file

selection)

Multiple

COMPONENTS Type a list of UCM

components object

selectors (no verification

performed)

13 Text Multiple

BASELEVELS Type a list of UCM

baselines object selectors

(no verification performed)

14 Text Multiple

LOOKIN Select pathnames in view to

report on

15 Path (file

selection)

Multiple

USER Associated with user

(values are

non-domain-qualified)

17 Text Single

Table 6 Parameters Supplied with ClearCase Reports (Part 2 of 3)

Parameter
Default text displayed in
the parameter pane

Help
ID

Chooser Selection
C - Customizing ClearCase Reports 255

Rightclick Specification

The rightclick specification is a list of commands available on the shortcut menu in the Report

Viewer. All right-click events are supported by a list of scripts in the \scripts_rightclick
directory. This specification allows you to control the text on the shortcut menu. At run time,

underscores in these text strings are replaced by spaces.

GROUP Associated with group

(values are

non-domain-qualified)

18 Text Single

LABEL With label 19 Type Single

ATTRIBUTE With attribute 20 Type Single

ATTRIBUTE_VALUE With value for attribute 21 Text Single

TRIGGER With trigger 22 Type Single

BRANCH With branch 23 Type Single

ELTYPE With element type 24 Text Single

HLTYPE With hyperlink type 25 Type Single

CCTIME Since date/time 26 Date/time Single

BRANCHLEVELS With integer levels of

branching

27 Text Single

FILE_NAME With filename 28 Text Single

PATH Enter pathname 29 Text Single

STRING With string 30 Text Single

INTEGER Enter integer 31 Text Single

REGULAR_

EXPRESSION

Enter regular expression 32 Text Single

Table 6 Parameters Supplied with ClearCase Reports (Part 3 of 3)

Parameter
Default text displayed in
the parameter pane

Help
ID

Chooser Selection
256 Managing Software Projects

rightclick : properties_of_view delete_view

By default, the commands are valid for both single and multiple selections of result records in

the Report Viewer. This behavior can be controlled by using the single modifier:

rightclick : properties_of_view(single) delete_view(single)

A special string, sep, allows visual separators to group commands. At run time, these commands

appear on the shortcut menu in the order specified.

Fields Specification

The fields specification defines the names of the field headings and a number of modifiers to

describe the results a report procedure returns to the Report Viewer. Table 7 describes the

supported modifiers.

For example, the following fields specification describes a single field with the minimum

specification allowed. The field_type modifier is required.

fields: "view tag"(view_tag)

Table 7 Fields Modifiers

Modifier Description

sort N Optional. Specifies the sort order for returned records. If specified, this

modifier must be a sequence of integers that begin with 1. If no sort

specification is made, the records remain in the same order as returned

from the report procedure.

Inital_width N Optional. Overrides the default width for the field.

<field_type> Required.

hidden Optional. Prevents display of values for this field in the Report Viewer.

If this modifier is used, there is usually an associated sort N modifier for

the field.

rightclick Optional. The field value stream that is sent where any right-click action

occurs in the Report Viewer. Only one field can be designated as the

rightclick field.
C - Customizing ClearCase Reports 257

In this example, the fields specification defines two fields, view tag and last mod time, with all

the allowable modifiers:

fields: "view tag"(view_tag, rightclick, initial_width 10) "last mod
time"(time_t, hidden, sort 1)

field_type Conventions

Table 8 lists the names for field_types and the kind of data represented. We encourage you to use

these definitions in your own report procedures wherever possible, but you can use your own

definitions.

Depending on the column width required to display for a user-defined field_type, the fields
specification in a report procedure may need to adjust the display column size with the

Inital_width N modifier.

Table 8 Field Type Supplied with ClearCase Reports (Part 1 of 2)

Field name Data description Example

project UCM Project headline name V4.1

project_objsel UCM project object selector Project:v4.1@\projects

stream UCM Stream headline name George_v4.1

stream_objsel UCM Stream object selector George_v4.1@\projects

activity UCM Activity headline name My activity

activity_objsel UCM Activity object selector Activity:my_act@\projects

view_tag View-tag such as returned by lsview main_latest_view

time_t Integer ticks since 1/1/1970 946934277

cctime Readable time, format is

%dfmt_ccase
20-Dec-99.16:01:12

User User name georgem

User_dq Domain-qualified user name atria\georgem

string Random text hello world

Host Host name georgemnt
258 Managing Software Projects

Parameter Choosers

When a user opens a folder in the Report Builder tree pane, the reports pane is populated with

the list of descriptions that the Report Builder discovered in the interface specification. When the

user selects a report, the associated parameters are loaded in the Report Builder. Each parameter

in the interface specification has associated parameter text, a help ID, and a chooser. All

parameters have an associated chooser (Table 6).

Hpath Local machine path to view/VOB

directory

D:\ClearCase_Storage\views\jet

View_sttrs View attributes snapshot, ucmview

Element_xpn Full path to element ending in @@ S:\frontpage\accts\web\photo.htm@@

Element_pn Full path to element without @@ S:\frontpage\accts\web\photo.htm

Version_pn Version specifier, after @@ \main\v4.0.bl5_main\2

label Label instance name V4.0

Integer Integer number 5

Yes_no yes or no enumerated string Yes

Branch_xpn Full path to branch S:\frontpage\accts\web\photo.htm@@\main

version_xpn Full path to version S:\frontpage\accts\web\photo.htm@@\main\3

branch Branch name main

Attribute Attribute name normalize_html

Objsel Object selector VOB:\my_vob

Trigger Trigger name post_ci

Eltype Element type text_file

Vob_tag VOB Tag \projects

Table 8 Field Type Supplied with ClearCase Reports (Part 2 of 2)

Field name Data description Example
C - Customizing ClearCase Reports 259

These choosers are supplied with ClearCase Reports:

➤ Path Chooser

➤ UCM Targets Chooser

➤ Types Chooser

➤ Date/Time Chooser

➤ Text Chooser

For user information, click Help in any chooser dialog box.

Path Chooser

The Path Chooser is associated with the LOOKIN parameter. It presents a list of view pathnames

for users to select, and then sends the selected pathnames to the report procedure. It is also used

for the PVOB and PVOBS parameters to choose the VOB-tag of a UCM project VOB.

UCM Targets Chooser

The UCM Targets Chooser is associated with the PROJECT, PROJECTS, STREAM, STREAMS,

ACTIVITY, ACTIVITIES, ISTREAM, and ISTREAMS parameters and allows you to select

UCM objects.

Type Chooser

The Type Chooser presents values for the BRANCH, ATTRIBUTE, LABEL, HYPERLINK, and

TRIGGER parameters. All parameters that the Type Chooser supports require an initial value

LOOKIN parameter.

Date/Time Chooser

The Date/Time Chooser is used to select date/time values for the CCTIME parameter.

Text Chooser

The Text Chooser presents values for these parameters: COMPONENT, COMPONENTS,

BASELINE, BASELINES, USER, GROUP, ATTRIBUTE_VALUE, ELTYPE, BRANCHLEVELS,

FILE_NAME, PATH, STRING, INTEGER, and REGULAR_EXPRESSION.

Data typed into the Text Chooser is not validated or parsed in any way by the Report Builder or

Report Viewer. The report procedure that accepts the parameter value must perform any

validation required.
260 Managing Software Projects

For most parameters, the text above the text box is Enter value for user. For parameters that

require the name of a baseline, a component, or an element type, the text changes to reflect the

parameter. For example: Enter value for baseline.

Viewing the Report

When all required parameters have values, clicking Run Report opens the Report Viewer

window (Figure 63). The Report Builder creates a command line to pass the user-defined

parameters, in the order defined by interface specification . For example, if a report procedure

asks for parameters LOOKIN LABEL, the Report Viewer passes these values as follows:

ccperl elements_with_label.prl %LOOKIN='s:\frontpage\acctst';%LABEL=V4.0;

The Report Viewer creates a process to run the report procedure using ccperl.exe for .prl, perl for

.pl, cscript.exe for .js and .vbs, and default activation for .exe. The report procedure returns

results to STDOUT. The results are separated by semicolons, in the same order, number, and type

specified in the fields definition in the interface specification.

When the report procedure has collected all its data, it exits. The report procedure must return

records to STDOUT in the most efficient manner possible; the Report Viewer sorts the results and

formats them for display. At run time, users can change the default sorting order by clicking the

column headings in the Report Viewer. Simple text sorting is used for all fields except those

whose field_type is time_t, integer, or cctime. For these three fields only, Report Viewer uses

numeric sorting.
C - Customizing ClearCase Reports 261

Figure 63 Report Viewer Window

Saving Report Data

Clicking Save As in the Report Viewer window opens a standard file selection dialog box to

prompt the user to save the results in one of the following output formats:

Saving the file is performed by the save_results.prl script in \script_tools. This script supports

two switches, -html and -csv, and the header, followed by semicolon-separated data rows. This

.CSV Comma-separated, for import into Access or Excel

.HTML For viewing in a Web browser

.XML For viewing in Internet Explorer 5 using XSL style sheets
262 Managing Software Projects

script also needs a pathname value for the -out option, where pathname is the value that the Report

Viewer passes from the Path Chooser.

XML output is supported directly by the Report Viewer. You can reimplement the .CSV and

.HTML output by modifying save_result.prl. You can also define additional XSL style sheets

that can be referred to in XML output. We recommend that you start with the style sheet supplied

with ClearCase Reports (\script_tools\table.xsl) to create customized XSL files.

C.4 Report Programming Examples

All report procedures supplied with ClearCase Reports are written in ccperl. The programming

examples presented in this section are modifications of these report procedures. Report

procedures can be written in many other scripts and programming languages; report procedures

that use other programming languages are available from the ClearCase Customer Web site at

http://www.rational.com/support/downloadcenter/addins/clearcase/contrib/index.jsp in the

T0046 package. The following programming examples are presented in this section:

➤ Example 1: Adding a new column to the report for Versions_byDate.prl.

➤ Example 2: Changing the directory organization and report description, modifying the

version path to a use different field name, and adding an element type column to report

output for Elements_with_New_Versions_Since_Date.prl.

➤ Example 3: Changing the report description, parameter types, and report output for

Elements_Created_by_User.prl.

➤ Example 4: Changing the order of commands and adding a command to the shortcut menu

for Element_with_Labels.prl.

➤ Example 5: Adding a user-defined command to the shortcut menu for

Element_with_Branches.prl.

In the source code listings that accompany each example, the string ### customization change

marks the changes to the original report that accomplish the task.
C - Customizing ClearCase Reports 263

Example 1: Adding a Column to Report Output

The Versions by Date report lists all versions that exist for the pathname that the user specified.

This report includes the following columns:

➤ Version Path

➤ Version Creation Time

The change to this report adds a column that lists the user name associated with each version.

The report procedure is located in

ccase-home-dir\Reports\Scripts\Elements\Versions_by_Date.prl

Processing Logic

The processing logic of Versions_by_Date.prl is as follows:

1. The LOOKIN parameter, which is the sole parameter for this function, is received in a string

of this form:

LOOKIN = "<path1> [<path2> ...]"

This parameter specifies the list of paths with which the cleartool find command is to be

invoked.

2. The routine, when invoked, extracts the paths from the LOOKIN string and passes them to

the check_lookin() routine (located in common_script.prl).

3. check_lookin() then puts the paths into the global variable $ctfind_paths, enclosing each

path in double quotes; it also performs simple validations on the paths received.

4. The report procedure calls cleartool lshistory, passing $ctfind_paths as the paths parameter,

and with a -fmt parameter to return the necessary information.

5. The report procedure executes a print statement with parameters (that is, the items to print)

of the same number and order as the list passed during interface specification processing.

The Report Builder has the information required to set up the column headings; the report

procedure must conform to this specification to print its output.

Interface Specification

This is the existing interface specification for Versions_by_Date.prl:
264 Managing Software Projects

if (/^-i/) {
print "description : 'Versions by Date'\n";
print "id : 2018\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN ";
print "\n";
print_version_rightclick();
print "fields : ";
print "\"Version Path\”(version_xpn, rightclick, sort 2) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, sort 1, hidden) ";
print "\n";
exit(0);

}

Changes Required

To add an additional column of report output:

1. Add a properly coded print statement to the interface specification that the Report Builder

can pass to the Report Viewer.

2. Add a %Fu; to the -fmt parameter in the cleartool lshist call, to get this information from

ClearCase.

3. Properly extract the user information into some variable after the cleartool lshist call returns

its output, so that it can be printed.

4. Print the user variable in the same order as it appeared in the interface specification so that

it appears under the correct column heading.

Modified Report Procedure

Here is the modified version of Versions_by_Date.prl. This report procedure is example1.prl in

the T0046 package, which is available at

http://www.rational.com/support/downloadcenter/addins/clearcase/contrib/index.jsp.
C - Customizing ClearCase Reports 265

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};
$ct = ""; if ($ct) {;};
$debug = ""; if ($debug) {;};
$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @_);
if ("$err" != "") {

print STDERR "$err\n";
}
sleep(2);
if ("$err" != "") {

exit(1);
} else {
exit(0);

}
}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_dir\\common.prl'");
$buf = "";
while(<INCLUDE>) {

$buf = $buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.prl'");

my $args = $ARGV[0];
$args =~ s/%/ /g;
@args = split(";", $args);
$required_args = 0;
foreach(@args) {

s/^[]+//;
s/[]+$//;
validate_arg_length($_);
if (/^-i/) {
266 Managing Software Projects

print "description : 'Versions by Date'\n";
print "id : 2018\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN ";
print "\n";
print_version_rightclick();
print "fields : ";

print "\"Version Path\"(version_xpn, rightclick, sort 2) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, sort 1, hidden) ";

customization change *** added following line
print "\"User'(user) ";

print "\n";
exit(0);

}
if (/^LOOKIN[]*=[]*('.*')/) {

check_lookin($1);
$required_args++;
next;

}
print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
}
if ($required_args != 1) {

print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

}
$ENV{"d;"} = "‰d;‰";
open(CTHIST, "cleartool lshist -fmt '%d;%e;%n\\n' -recurse -nco $ctfind_paths
|");
C - Customizing ClearCase Reports 267

while(<CTHIST>) {
chomp;
if (/create directory version/ || /create version/) {

($date, $event, $xpn) = split /;/, $_, 3;
if ($date) {;}
if ($event) {;}
if ($xpn) {;}
$timet = time_to_ticks($date);

customization change *** added following line
$user = ‘cleartool desc -fmt '%Fu' '$xpn'‘;

customization change *** added ";$user" to following line
print "$xpn;$date;$timet;$user\n";

}
}
do_exit();

Example 2: Changing Report Directory Organization, Report Description,
and Report Output

The Elements with New Versions Since Date report lists all new versions for the pathname and

since the date and time specified by the user. This report includes the following columns:

➤ Element Path

➤ Version Path

➤ Version Creation Time

The changes to the report procedure do the following:

➤ Display in the Report Builder tree pane a new directory named

ccase-home-dir\Reports\Scripts\Elements\New_Versions directory.

➤ Display a new report description: Types of Elements with New Versions Since Date.

➤ Display the version path information in the version_xpn field in a different format.

➤ Add a column in the report output to display a new column for Element Type.

The report procedure is located in

ccase-home-dir\Reports\Scripts\Elements\Elements_with_New_Versions_Since_Date.prl.
268 Managing Software Projects

Processing Logic

The processing logic of Elements_with_New_Versions_Since_Date.prl is as follows:

1. When the Report Builder processes the interface specification, the report procedure yields

two parameters:

LOOKIN

CCTIME

The mechanics of the LOOKIN parameter are described in Example 1: Adding a Column to
Report Output. When the report procedure receives CCTIME, it is a string of this form:

CCTIME = "time"

This parameter specifies the times that the cleartool find command uses.

2. When the report procedure is invoked by the Report Viewer using a fully qualified command

line, it extracts the values from the CCTIME string and passes them to the

chooser_time_to_cctime() subroutine (located in common.prl). This routine converts the

string to the correct format (for passing to cleartool) and returns it.

3. The report procedure opens a pipe from a cleartool find -print command, with the converted

cctime value passed in as a created_since(<cctime>) string. created_since is a

query_language(1) predicate, which is frequently used in conjunction with the find
command.

4. As the values from the cleartool find are returned, the report procedure calls cleartool
describe on the output to get the version-creation time. The routine calls the time_to_ticks()
routine (in common.prl) to get the time equivalent in ticks.

5. The report procedure gets the path and version ID from the cleartool find output, splitting

it on the value of the $CLEARCASE_XN_SFX extended naming symbol for the host. Finally,

the report procedure prints the information in the same order as defined in the interface

specification.

Interface Specification

This is the existing interface specification for Elements_with_New_Versions_Since_Date.prl:
C - Customizing ClearCase Reports 269

if (/^-i/) {
print "description : 'Elements with New Versions Since Date'\n";
print "id : 2017\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN CCTIME";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_pn, sort 2, rightclick) ";
print "\"Version Path\"(version_pn) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, hidden, sort 1) ";
print "\n";
exit(0);

}

Changes Required

To change the directory organization and report description, to modify the version path to use a

different field name, and to add an element type column to the report output:

1. Create a new folder, New_Versions, and move the report procedure there.

2. Add a properly coded print statement to the interface specification that does the following:

➣ Specifies how to display the report description information in the Report Builder

➣ Specifies how to display the report in the Report Viewer

3. Add additional processing to the cleartool find output as required to get the desired

information for element type.

4. Properly extract the new information for element type into a variable.

5. Print the new information in the proper position so that it appears under the correct column

heading.

Modified Report Procedure

Here is the modified version of Elements_with_New_Versions_Since_Date.prl. This report

procedure is example2.prl in the T0046 package, which is available at

http://www.rational.com/support/downloadcenter/addins/clearcase/contrib/index.jsp.
270 Managing Software Projects

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};
$ct = ""; if ($ct) {;};
$debug = ""; if ($debug) {;};
$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @_);
if ("$err" != "") {

print STDERR "$err\n";
}
sleep(2);
if ("$err" != "") {

exit(1);
} else {

exit(0);
}
}
open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_dir\\common.prl'");
$buf = "";
while(<INCLUDE>) {

$buf = $buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.prl'");

my $args = $ARGV[0];
$args =~ s/%/ /g;
@args = split(";", $args);
my $cctime = "";
$required_args = 0;
foreach(@args) {
C - Customizing ClearCase Reports 271

s/^[]+//;
s/[]+$//;
validate_arg_length($_);
if (/^-i/) {

customization change *** changed following line
print "description : 'Types of Elements with New Versions Since
Date'\n";
print "id : 2017\n";
print "helpfile :\n";
print "parameters : ";

print "LOOKIN CCTIME";
print "\n";
print_element_rightclick();
print "fields : ";

print "\"Element Path\"(element_pn, sort 2, rightclick) ";
customization change *** changed following line

print "\"Version Path\"(version_xpn) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, hidden, sort 1) ";

customization change *** added following line
print "\"Element Type\"(eltype) ";

print "\n";
exit(0);

}
if (/^LOOKIN[]*=[]*('.*')/) {

check_lookin($1);
$required_args++;
next;

}
if (/^CCTIME[]*=[]*'*([^']*)'*/) {
$cctime = chooser_time_to_cctime($1);
$required_args++;
next;
}
print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

}
if ($required_args != 2) {

print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

}

272 Managing Software Projects

open(CTFIND, "cleartool find $ctfind_paths -version 'created_since($cctime)'
-print |");
while(<CTFIND>) {

chomp;
if (/CHECKEDOUT/) {next;}
$vertime = ‘cleartool desc -fmt '%d' '$_'‘;

customization change *** added following line
$eltype = ‘cleartool desc -fmt '%[type]p' '$_'‘;
$vertime_t = time_to_ticks($vertime);
($path, $verid) = split $CLEARCASE_XN_SFX, $_, 2;

customization change *** changed following line
print "$_;$verid;$vertime;$vertime_t;$eltype\n";
#print "$path;$verid;$vertime;$vertime_t\n";

}
do_exit();

Example 3: Changing Report Description, Parameter Types, and Report
Output

The Elements Created by User report lists all elements created by the user-defined user name.

This report includes the following columns:

➤ Element Path

➤ Creating User

The changes to this report do the following:

➤ Display a new report description: Elements with Group.

➤ Remove the existing user parameter and add a new parameters for group.

➤ Compare the group associated with an element with the group specified in a user-defined

group parameter.

➤ Add a column in the report output for Group and Yes/No. The Yes/No column will reflect

the result of the comparing whether the group associated with each element is the same as

the value of the user-defined group parameter.

The script is located in

ccase-home-dir\Reports\Scripts\Elements\Elements_Created_by_User.prl.
C - Customizing ClearCase Reports 273

Processing Logic

The processing logic of Elements_Created_by_User.prl is as follows:

1. When the Report Builder processes the interface specification, the report procedure yields

two parameters:

LOOKIN

USER

The mechanics of the LOOKIN parameter are described in Example 1: Adding a Column to
Report Output on page 264. The report procedure receives USER as a string of this form:

USER= "user-name"

This parameter specifies the user name that the cleartool subcommand uses.

2. The USER string is extracted and stored as $ccuser. It is then passed to the

created_by($ccuser).

3. The created_by ($ccuser) query language primitive filters the paths specified to cleartool
find and returns only those that match the predicate, in this case, those created by the user

by setting a parameter value for USER.

4. The user variable is printed in the same order specified in the interface specification so that

it appears under the correct column heading.

Interface Specification

This is the existing interface specification for Elements_Created_by_User.prl:
274 Managing Software Projects

if (/^-i/) {
print "description : 'Elements Created by User'\n";
print "id : 2016\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN USER";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_xpn, sort 2, rightclick) ";
print "\"Creating User\"(user, sort 1) ";
print "\n";
exit(0);

}

Changes Required

To remove the user parameter, to add parameters for group and date/time, and to adjust the

report output for group and date/time information:

1. Change the interface specification of the report procedure to correspond to required interface

changes.

2. Change the logic in the report procedure to handle data requests for group information; add

a %Gu; to the -fmt parameter in the cleartool describe call, to get group information from

ClearCase.

3. Properly extract the group information into a variable after the cleartool describe call

returns its output, so that it can be printed.

4. Determine whether the element’s group is the same group parameter value entered by the

user and print the result of this comparison as a column heading.

5. Print the group variables in the order specified in the interface specification so that they

appear under the correct column heading.

Modified Report Procedure

Here is the modified version of Elements_Created_by_User.prl. This report procedure is

example3.prl in the T0046 package, which is available at

http://www.rational.com/support/downloadcenter/addins/clearcase/contrib/index.jsp.
C - Customizing ClearCase Reports 275

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};
$ct = ""; if ($ct) {;};
$debug = ""; if ($debug) {;};
$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @_);
if ("$err" != "") {
print STDERR "$err\n";
}
sleep(2);
if ("$err" != "") {

exit(1);
} else {
exit(0);
}

}
open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_dir\\common.prl'");
$buf = "";
while(<INCLUDE>) {

$buf = $buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.prl'");

my $args = $ARGV[0];
$args =~ s/%/ /g;
@args = split(";", $args);
my $ccuser = "";
$required_args = 0;
foreach(@args) {

s/^[]+//;
s/[]+$//;
validate_arg_length($_);
if (/^-i/) {
276 Managing Software Projects

customization change *** changed following line
print "description : 'Elements With Group'\n";
print "id : 2016\n";
print "helpfile :\n";
print "parameters : ";

customization change *** changed following line
print "LOOKIN GROUP";

print "\n";
print_element_rightclick();
print "fields : ";

print "\"Element Path\"(element_xpn, sort 2, rightclick) ";
customization change *** added following 2 lines

print "\"Element’s Group\"(group, sort 1) ";
print "\"Same\"(yes_no) ";

customization change *** deleted following line
#print "\"Creating User\"(user, sort 1) ";

print "\n";
exit(0);

}
if (/^LOOKIN[]*=[]*('.*')/) {

check_lookin($1);
$required_args++;
next;

}
customization change *** deleted following 2 lines

#if (/^USER[]*=[\t]*\"*([^\"]*)\"*/) {
#$ccuser = $1;

customization change *** added following 2 lines
if (/^GROUP[]*=[\t]*\"*([^\"]*)\"*/) {

$ccgroup = $1;
$required_args++;

customization change *** deleted following line
#validate_user($ccuser);
next;

}
print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
}
if ($required_args != 2) {

print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

}

C - Customizing ClearCase Reports 277

customization change *** deleted following 3 lines
#if ($ccuser =~ /[]+/) {
do_clearprompt("cleartool find does not allow spaces in user names;
cannot proceed.");
#}

customization change *** changed following line
open(CTFIND, "cleartool find $ctfind_paths -nxname -print |");
while(<CTFIND>) {

chomp;
customization change *** added following 6 lines

$grp = ‘cleartool desc -fmt '%Gu' '$_'‘;
if ($grp eq $ccgroup) {

$same = "yes";
} else {
$same = "no";

}
customization change *** changed following line

print "$_;$grp;$same\n";
#print "$_;$ccuser;\n";

}
do_exit();

Example 4: Changing the Shortcut Menu for the Right-Click Handling
Mechanism

The Elements with Labels report lists all elements with labels for a user-defined pathname. This

report includes one column:

➤ Element Path

The change to this report adds the Compare with Previous Version command to the shortcut

menu. Currently, these commands appear on the shortcut menu:

➤ Properties of Element

➤ Version Tree

➤ History

The report procedure is located in

ccase-home-dir\Reports\Scripts\Elements\Labels\Elements_with_Labels.prl.
278 Managing Software Projects

Interface Specification

This is the existing interface specification for Elements_with_Labels.prl:

if (/^-i/) {
print "description : ";
print "'Elements with Labels'";
print "\n";
print "id : 2003\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN ";
print "LABEL ";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_pn, rightclick, sort 1)";
print "\n";
exit(0);

}

Note the call to print_element_rightclick() in the middle of the interface specification. The code

for this routine is located in\script_tools\common.prl:

sub print_element_rightclick {
print "rightclick : ";
print "Properties_of_Element(single) ";
print "sep ";
print "Version_Tree(single) ";
print "History(single) ";
print "\n";

}

Changes Required

A convention used in the report procedures is to put the same commands on shortcut menus for

all reports that use the same primary sort field. For example, all the reports whose primary sort

key is element or element_xpn display the same set of commands.

To make an additional command available for all reports whose primary sort key is element or

element_xpn, modify the routines stored in \script_rightclick and then edit the associated

routine in \script_tools\common.prl.
C - Customizing ClearCase Reports 279

To change the report procedure, copy the contents of sub print_element_rightclick (located in

\script_tools\common.prl) and paste it into the appropriate part of the interface specification.
Then, add a declaration to display the new command.

Modified Report Procedure

Here is the modified version of Elements_with_Labels.prl. This report procedure is

example4.prl in the T0046 package, which is available at

http://www.rational.com/support/downloadcenter/addins/clearcase/contrib/index.jsp.

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};
$ct = ""; if ($ct) {;};
$debug = ""; if ($debug) {;};
$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @_);
if ("$err" != "") {

print STDERR "$err\n";
}
sleep(2);
if ("$err" != "") {

exit(1);
} else {
exit(0);

}
}
open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_dir\\common.prl'");
$buf = "";
while(<INCLUDE>) {

$buf = $buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.prl'");
280 Managing Software Projects

my $args = $ARGV[0];
$args =~ s/%/ /g;
@args = split(";", $args);
my $cclabel = "";
$required_args = 0;
foreach(@args) {

s/^[]+//;
s/[]+$//;
validate_arg_length($_);
if (/^-i/) {

print "description : ";
print "'Elements with Labels'";

print "\n";
print "id : 2003\n";
print "helpfile :\n";
print "parameters : ";

print "LOOKIN ";
print "LABEL ";

print "\n";
customization change *** deleted following line

#print_element_rightclick();
customization change *** added following 7 lines

print "rightclick : ";
print "Properties_of_Element(single) ";
print "sep ";
print "Compare_with_Previous_Version(single) ";
print "Version_Tree(single) ";
print "History(single) ";

print "\n";
print "fields : ";

print "\"Element Path\"(element_pn, rightclick, sort 1)";
print "\n";

exit(0);
}
if (/^LOOKIN[]*=[]*('.*')/) {

#print "paths are $1\n";
check_lookin($1);
$required_args++;
next;

}
if (/^LABEL[]*=[]*'*([^']*)'*/) {

$cclabel = $1;
#print "label is $cclabel\n";
$required_args++;
next;

}

C - Customizing ClearCase Reports 281

print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
}
if ($required_args != 2) {

print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

}
open(CTFIND, "cleartool find $ctfind_paths -element 'lbtype_sub($cclabel)'
-print |");
while(<CTFIND>) {

chomp;
($path, $rest) = split $CLEARCASE_XN_SFX, $_, 2;
if ($rest) {;}
print "$path;\n";

}
do_exit();

Example 5: Adding a New Command to the Report Viewer Shortcut Menu

The Elements with Branches report lists all elements associated with a branch and pathname that

the user provides. This report includes the following columns:

➤ Element Path

➤ Branch

The report procedure is located in

ccase-home-dir\Reports\Scripts\Elements\Branches\Elements_with_Branches.prl.

The change to this report adds the Merge Manager command to the shortcut menu. This

command is not supplied with ClearCase Reports, so the work required to included it is different

from that in Example 4: Changing the Shortcut Menu for the Right-Click Handling Mechanism.

These commands currently appear on the shortcut menu:

➤ Properties of Element

➤ Version Tree

➤ History
282 Managing Software Projects

Interface Specification

This is the existing interface specification for Elements_with_Branches.prl:

if (/^-i/) {
print "description : 'Elements with Branches'\n";
print "id : 2013\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN BRANCH";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_xpn, sort 1, rightclick) ";
print "\"Branch\"(branch) ";
print "\n";
exit(0);

}

Changes Required

Making this modification requires a new script for the new command functions.

You must place this script in the \scripts_rightclick directory. (The script can be written in any

of the supported programming languages.) The script must be coded to receive a stream on input

from STDIN from a field that is designated by a rightclick modifier in the interface specification

of the report procedure. For example, to create my_rc.prl, which starts clearmrgman.exe (Merge

Manager), you must place my_rc.prl in \scripts_rightclick.

Modified Report Procedure

Here is the modified version of Elements_with_Branches.prl. This report procedure is

example5.prl in the T0046 package, which is available at

http://www.rational.com/support/downloadcenter/addins/clearcase/contrib/index.jsp.
C - Customizing ClearCase Reports 283

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};
$ct = ""; if ($ct) {;};
$debug = ""; if ($debug) {;};
$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @_);
if ("$err" != "") {

print STDERR "$err\n";
}
sleep(2);
if ("$err" != "") {

exit(1);
} else {

exit(0);
}

}
open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_dir\\common.prl'");
$buf = "";
while(<INCLUDE>) {

$buf = $buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.prl'");

my $args = $ARGV[0];
$args =~ s/%/ /g;
@args = split(";", $args);
my $ccbranch = "";
$required_args = 0;
foreach(@args) {

s/^[]+//;
s/[]+$//;
validate_arg_length($_);
if (/^-i/) {

print "description : 'Elements with Branches'\n";
284 Managing Software Projects

print "id : 2013\n";
print "helpfile :\n";
print "parameters : ";

print "LOOKIN BRANCH";
print "\n";

customization change *** deleted following line
#print_element_rightclick();

customization change *** added following 8 lines
print "rightclick : ";

print "my_rc(single) ";
print "Properties_of_Element(single) ";
print "sep ";
print "Compare_with_Previous_Version(single) ";
print "Version_Tree(single) ";
print "History(single) ";

print "\n";
print "fields : ";

print "\"Element Path\"(element_xpn, sort 1, rightclick) ";
print "\"Branch\"(branch) ";

print "\n";
exit(0);

}

if (/^LOOKIN[]*=[]*('.*')/) {
#print "paths are $1\n";
check_lookin($1);
$required_args++;
next;

}
if (/^BRANCH[]*=[]*'*([^']*)'*/) {

$ccbranch = $1;
$required_args++;
next;

}
print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
C - Customizing ClearCase Reports 285

}
if ($required_args != 2) {

print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

}
open(CTFIND, "cleartool find $ctfind_paths -nxname -branch 'brtype($ccbranch)'
-print |");
while(<CTFIND>) {

chomp;
print "$_;$ccbranch;\n";

}
do_exit();

Here is the new command of my_rc.prl that has been created to support a new shortcut menu

command for starting Merge Manager. This report procedure is available in the T0046 package,

which is available at

http://www.rational.com/support/downloadcenter/addins/clearcase/contrib/index.jsp.

these are all set by set_record_vars in common_rightclick.prl
#
$CLEARCASE_PN = "", $CLEARCASE_XN_SFX = "", $CLEARCASE_ID_STR = "",
$CLEARCASE_XPN = "";
$CLEARCASE_BRANCH_PATH = "", $CLEARCASE_VERSION_NUMBER = "";
$ELEMENT_RESULTS = "", $BRANCH_RESULTS = "", $VERSION_RESULTS = "";
$results = "";

$debug = "no";

$start_dir = $0; $start_dir =~
s/\\scripts_rightclick\\.*/\\scripts_rightclick/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts_rightclick/$1\\script_tools/;

open(INCLUDE, "<$common_dir\\common_rightclick.prl") or do_exit("error opening
include file '$common_dir\\common_rightclick.prl'");
$buf = "";
while(<INCLUDE>) {

$buf = $buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common_rightclick.prl'");
286 Managing Software Projects

if ($CLEARCASE_PN) {;}
if ($CLEARCASE_XN_SFX) {;}
if ($CLEARCASE_ID_STR) {;}
if ($CLEARCASE_XPN) {;}
if ($CLEARCASE_BRANCH_PATH) {;}
if ($CLEARCASE_VERSION_NUMBER) {;}
if ($ELEMENT_RESULTS) {;}
if ($BRANCH_RESULTS) {;}
if ($VERSION_RESULTS) {;}
if ($debug) {;}

$first = "yes";

while(<STDIN>) {
chomp;
set_record_vars($_);

##
things to be done a record at a time are done here

if ($first eq "yes") {
$first = "no";
open(COMMAND, "clearmrgman |");
while(<COMMAND>) {;}
close(COMMAND);

}
##
}
things to be done with the result set as a whole go here

$results =~ s/ $//;

#print "results are $results\n";

C.5 Troubleshooting

There are two primary areas that you may need to troubleshoot:

➤ Errors in the interface specification

➤ Coding high-level languages other than ccperl
C - Customizing ClearCase Reports 287

Errors in the Interface Specification

These are the common errors you may make when coding the interface specification for your

report procedure:

➤ The interface syntax used in your program does not conform to the interface specification.

➤ Invalid parameter names are used for the parameter specification.

➤ The rightclick specification calls a routine that does not exist in \right_click.

➤ The print statements to STDOUT are in a different order from that defined by the fields
specification.

You can identify errors in the interface specification easily by using the testing script, ifaces.prl.
This script checks customized report procedures that have been written in ccperl. It is available

at clearcase.rational.com/contrib/ T0046/T0046.zip.

To start the testing script, use a command of this form:

ccperl ifaces.prl <path-to-script-or-directory-tree>

We recommend that you test your report procedures before checking them in to the shared

directory tree that you have configured.

If you do not run the testing script before using your report in Report Builder and a parsing error

occurs in processing the interface specification, the new report does not appear in the list of

reports in the reports pane. There is no feedback; you see the report desciption in the reports pane

or you see nothing. If you don’t see a description, the parsing error is serious. If you do see a

description, the interface specification is somewhat correct, but you may still be using an invalid

parameter, referencing a nonexistent right-click routine, or sending output in the wrong order to

STDOUT.

The Report Builder does not check for valid parameters. For example, consider the interface

specification for a new report procedure, my_custom_report.prl, with the following interface

specification:

description : "This test report asks for a three known parameters and two
unknown parameters"

id : 2500

parameters : LOOKIN UNKNOWN_1 STREAMS FOO PROJECT

rightclick :
288 Managing Software Projects

fields : "field 1"(string)

The second and fourth parameters of this interface specification are invalid. At run time, the

description for this report appears in the Report Builder reports pane, but the second and fourth

parameters are displayed as blank lines in the parameter pane (Figure 64).

Figure 64 Report Builder Window with Invalid Parameters

However, the testing script detects these errors because these parameter names are not supplied

with ClearCase Reports (see Table 6):

my_custom_report.prl:

desc: this test report asks for a three known parameter and two unknown
parameters
C - Customizing ClearCase Reports 289

id: 2500

parm: LOOKIN

ERROR: illegal parameter: UNKNOWN_1

continue? (y/n) > y

UNKNOWN_1 STREAMS

ERROR: illegal parameter: FOOBAR

continue? (y/n) > y

C.6 Coding High-Level Languages Other Than ccperl

When coding report procedures in languages other than ccperl, such as Visual C++, Java,

Javascript or Visual Basic, refer to the programming examples available in the T0046 package,

which is available at

http://www.rational.com/support/downloadcenter/addins/clearcase/contrib/index.jsp.
290 Managing Software Projects

Index

A

activities
about 9
creating and assigning in ClearQuest (procedure) 86
decomposing in ClearQuest 66
fixing ClearQuest links 87
migrating to ClearQuest integration 84
state transition after delivery 56
verifying owner of 55

administrative VOBs and PVOBs 42

assignments, verifying 26

attache-home-dir directory xxiv

attributes
about 143
change request policy 174
use in config specs 156
use in monitoring project status 168

B

base ClearCase and UCM, compared 1

baselines in base ClearCase
creating, extended example 217, 223
labeling policy 169

baselines in UCM
about 14
benefits of frequent 39
comparing (procedure) 105
creating 20
creating for imported files (procedure) 81
creating new (procedures) 98
creating streams for testing (procedure) 91
fixing problems (procedure) 101
foundation 74
naming convention 40
promoting and demoting (procedure) 102
promotion levels 21
recommended, promotion policy 49
strategy for 36
test planning 40
when to delete 111
Index

/vobs/doc/ccase/projlead/cc_proj.winIX
branch types, example 214

branches
about 140
bug-fix policy 170
config spec rules for 152, 154
controlling creation of 142
example of project strategy 211
in MultiSite 141
mastership transfer models 178
merge policies 145
merging elements from UCM projects 135
merging to main 196
multiple levels, config specs for 154
naming conventions 141
stopping development on 227

building software, view configurations 160

C

ccase-home-dir directory xxiv

change requests
See also ClearQuest integration
tracking in base ClearCase 174
tracking states 25

change sets 9

ClearCase Reports
customizable features 242
customization examples 263
how it works 241
interface specification in report procedures 251
parameter choosers 259
run-time processing 244
setting up shared directories 247

ClearQuest integration
about 16, 23
customizing policies 65
database, setting up 59
decomposing activities 66
disabling links to project 87
enabling custom schema (procedure) 60
enabling projects to use (procedure) 84
planning issues 44
policies available 55
querying database 107
291

.fm — September 14, 2001 4:29 pm

recommended use of 237
setting up 16
setting up UCM schemas (procedure) 59

Component Tree Browser 105

components
about 13
adding to integration stream (procedure) 93
ancillary 32
candidates for read-only 34
conversion of VOBs (procedure) 80
creating new (procedure) 72
design considerations 28
importing files for (procedure) 79
mapping to projects 29
organizing for project 30
recommended directory structure 32
when to delete 111

config specs
about 142, 147
default, standard rules in 148
examples for builds 160
examples for development tasks 151
examples for one project 214
examples of time rules 152, 154, 159–160
examples to monitor project 156
include file facility 149
project environment for samples 150
restricting changes to one directory 156
selecting library versions 162
sharing across platforms 165
use of element types in 207

conventions, typographical xxiv

D

deliver operations
element types and merging 43
finding posted work (procedure) 97
MultiSite and 19, 96
pending checkouts policy 51
rebase policy 51
remote deliver 96
remote, completing (procedure) 97
state transition policy 56

development policies
See policies in base ClearCase; policies in UCM

development streams 14
creating for testing (procedure) 91
rebasing (procedure) 101
when to delete 110

directories, merging 200

directory structure
creating new (procedure) 78
recommended, for UCM components 32

documentation
online help description xxv

E

element types
customizing 203
how assigned 204
predefined and user-defined 208

element types in UCM 43

event records 145

F

foundation baselines 74

G

global types 42, 144

H

hyperlinks
about 143
requirements tracking mechanism 175

I

importing files and directories 79

include file facility 149

integration streams
about 14
adding components (procedure) 93
locking 91
locking considerations 41
merging to base ClearCase branch 135
rebasing between projects (procedure) 131
unlocking (procedure) 100
updating development view load rules 95
when to delete 110

integration views
creating for UCM project (procedure) 75
recommended view type 50
292 Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winIX.fm — September 14, 2001 4:29 pm

J

Join Project Wizard 50

L

labels
about 143
baselines in base ClearCase 169
use in config specs 159, 161

load rules, updating for integration stream 95

locks
about 144
examples 172

M

main branch 140

makefiles and config specs 163

mastership
about 19
models of transfer 178

merging files
how it works 189

merging in base ClearCase
about 145
commands for 192
directory versions 200
entire source tree 197
extended example 219, 224
GUI tools for 191
how it works 189
non-ClearCase tools 201
removing merged changes 195
selective merge 193
to main branch 196

merging in UCM
See deliver operations; rebase operations

MultiSite
branches and 141
ClearQuest links in PVOBs 87
mastership transfer models 178
remote deliver 96
use in UCM 19

N

naming conventions
branches 141
ClearQuest schema 45
UCM baselines 40
views in base ClearCase 142

O

online help, accessing xxv

P

parallel development
base ClearCase mechanisms 140
extended example in base ClearCase 209
UCM scenarios 129

parent/child controls in ClearQuest 66

patch release in UCM project 132

policies in base ClearCase
access to project files 172
bug-fixing on branches 170
change requests 174
coding standards 174
documenting changes 167
enforcement mechanisms 143, 167
labeling baselines 169
monitoring state of sources 168
notification of new work 172
on merging 145
requirements tracking 175
restricting changes visible 171
restricting use of commands 177
transfer of branch mastership 178

policies in UCM
about 17
approval before delivery 55
customizing ClearQuest 65
default view types 50
delivery transition state 56
delivery with pending checkouts 51
modifiable components 49
promotion levels 21
rebase before deliver 51
recommended baselines 49
setting ClearQuest (procedure) 85
verify activity owner before checkout 55

Project Explorer 74

projects in base ClearCase
branching strategy 140
config specs 142
development policies 143
extended example of lifecycle 209
generating reports 145
merging policies 145
planning and setup 140
views to monitor progress 156

projects in UCM
about 9
cleanup tasks 110
concurrent, managing 129
Index 293

/vobs/doc/ccase/projlead/cc_proj.winIX.fm — September 14, 2001 4:29 pm

creating 12
creating from existing configuration 80
creating from existing projects 82
creating new (procedure) 74
disabling links to ClearQuest database 87
factors in gauging scope 29
fixing ClearQuest activity links 87
importing components 79
incorporating patch release 132
maintenance tasks 93
mapping components to 29
merging to base ClearCase branches 135
planning issues 27
setting up new 70
tools to monitor progress 104

promotion levels
about 21
changing (procedure) 102
default 40
defining in new project (procedure) 75
policy for recommended baselines 49

PVOBs
about 12
as administrative VOBs 42
ClearQuest links and MultiSite 87
creating from existing configuration 80
creating new (procedure) 70
mapping to ClearQuest database 44
number needed 41

Q

querying ClearQuest database 26, 107

R

Rational Unified Process 27–28

rebase operations
between projects (procedure) 131
element types and merging 43
policy for deliver operations 51
updating development view load rules 95

recommended baselines 49

record types for schemas, custom 62

remote deliver operations 96–97

reports
ClearQuest queries 107
for base ClearCase projects 145

S

schemas (ClearQuest)
about 25
enabling custom for UCM 48
enabling custom for UCM (procedure) 60
predefined, using 59
queries 26
requirements for UCM 46
storage issues 45

selective merge 193

smoke tests 40

state types
about 25
default transition requirements 64
setting for custom schemas 63

streams 14

subtractive merge 195

system architecture 27

T

technical support xxv

time rules in config specs 152, 154, 159–160

triggers
about 143
checkin command example 167
example script for 172
sharing in mixed environments 116, 179
to disallow checkins 174
to notify team of new work 172
to restrict use of commands 177

type managers
about 205

typographical conventions xxiv

U

UCM and base ClearCase, compared 1

UCMPolicyScripts package 46

UnifiedChangeManagement package 46–47

user accounts
creating ClearQuest profiles (procedure) 67

V

version control, candidates for 28

view profiles
about 142
moving to UCM 233
294 Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winIX.fm — September 14, 2001 4:29 pm

views
config specs 147
configuring for builds 160
configuring for development tasks 151
configuring historical 159–160
configuring to monitor project 156
naming conventions in base ClearCase 142
policy for default types in UCM 50
restricting changes visible in 171
sharing for merges 196

VOB Creation Wizard 70

VOBs
converting to UCM components (procedure) 80
creating and populating in base ClearCase 140

W

work areas 14
Index 295

/vobs/doc/ccase/projlead/cc_proj.winIX.fm — September 14, 2001 4:29 pm

296 Managing Software Projects

/vobs/doc/ccase/projlead/cc_proj.winIX.fm — September 14, 2001 4:29 pm

	Managing Software Projects
	Contents
	Figures
	Tables
	Preface
	About This Manual
	Product-Specific Features
	Organization

	ClearCase Documentation Roadmap
	ClearCase�LT Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support
	Choosing Between UCM and Base ClearCase
	1.1 Differences Between UCM and Base ClearCase
	Branching and Creating Views
	Using Components to Organize Files
	Creating and Using Baselines
	Managing Activities
	Enforcing Development Policies

	Part 1: Working in UCM
	Understanding UCM
	2.1 Overview of the UCM Process
	2.2 Creating the Project
	Creating a PVOB
	Organizing Directories and Files into Components
	Shared and Private Work Areas
	Starting from a Baseline
	Setting Up the UCM-ClearQuest Integration

	2.3 Setting Policies
	2.4 Assigning Work
	2.5 Creating a Testing Stream
	2.6 Building Components
	MultiSite Consideration

	2.7 Making a New Baseline
	2.8 Recommending the Baseline
	2.9 Monitoring Project Status
	2.10 Overview of the UCM-ClearQuest Integration
	Associating UCM and ClearQuest Objects
	UCM-Enabled Schema
	State Types
	Queries in a UCM-Enabled ClearQuest Schema

	Planning the Project
	3.1 Using the System Architecture as the Starting Point
	Mapping System Architecture to Components
	Deciding What to Place Under Version Control
	Mapping Components to Projects
	Amount of Integration
	Need for Parallel Releases
	Example

	3.2 Organizing Components
	Deciding How Many VOBs to Use
	Identifying Additional Components
	Defining the Directory Structure
	Identifying Read-Only Components

	3.3 Choosing a Stream Strategy
	3.4 Specifying a Baseline Strategy
	Identifying a Project Baseline
	When to Create Baselines
	Identifying the Initial Baseline
	Ongoing Baselines

	Defining a Naming Convention
	Identifying Promotion Levels to Reflect State of Development
	Planning How to Test Baselines

	3.5 Planning PVOBs
	Deciding How Many PVOBs to Use
	Understanding the Role of the Administrative VOB

	3.6 Identifying Special Element Types
	Nonmerging Elements
	Nonautomerging Elements
	Defining the Scope of Element Types

	3.7 Planning How to Use the UCM-ClearQuest Integration
	Mapping PVOBs to ClearQuest User Databases
	MultiSite Requirement
	Projects Linked to Same Database Must Have Unique Names
	Use One Schema Repository for Linked Databases

	Deciding Which Schema to Use
	Overview of the UnifiedChangeManagement Schema
	Enabling a Schema for UCM

	Setting Policies
	4.1 Components and Baselines
	Modifiable Components
	Default Promotion Level for Recommending Baselines

	4.2 Default View Types
	4.3 Deliver Operations
	Allow Deliveries from Stream with Pending Checkouts
	Rebase Before Deliver
	Deliver Operations to Nondefault Targets
	Allow Deliveries from Streams in Other Projects
	Allow Deliveries That Contain Changes in Foundation Baselines
	Allow Deliveries That Contain Changes Made to Components Not in Target Stream
	Allow Deliveries That Contain Changes to Nonmodifiable Components

	4.4 UCM-ClearQuest Integration
	Check Before Work On
	Check Before ClearCase Delivery
	Do ClearQuest Action After Delivery
	Check Mastership Before Delivery

	Setting Up a ClearQuest User Database
	5.1 Using the Predefined UCM-Enabled Schemas
	5.2 Enabling a Schema to Work with UCM
	Requirements for Enabling Custom Record Types
	Setting State Types
	State Transition Default Action Requirements for Record Types

	5.3 Upgrading Your Schema to the Latest UCM Package
	5.4 Customizing ClearQuest Project Policies
	5.5 Associating Child Activity Records with a Parent Activity Record
	Using Parent/Child Controls

	5.6 Creating Users
	Setting Up the Project
	6.1 Creating a Project from Scratch
	Creating the Project VOB
	Creating a Component for Storing the Project Baseline
	Creating Components for Storing Elements
	Creating One Component Per VOB
	Creating a VOB That Stores Multiple Components

	Creating the Project
	Defining Promotion Levels

	Creating an Integration View
	Creating the Composite Baseline That Represents the Project
	Creating the Directory Structure
	Importing Directories and Files from Outside ClearCase
	Making and Recommending a Baseline

	6.2 Creating a Project Based on an Existing ClearCase Configuration
	Creating the PVOB
	Making a VOB into a Component
	Making a Baseline from a Label
	Creating the Project
	Creating an Integration View

	6.3 Creating a Project Based on an Existing Project
	Using a Composite Baseline to Capture Final Baselines
	Reusing Existing PVOB and Components
	Creating the Project
	Creating an Integration View

	6.4 Enabling a Project to Use the UCM-ClearQuest Integration
	Migrating Activities
	Setting Project Policies
	Assigning Activities
	Disabling the Link Between a Project and a ClearQuest User Database
	Fixing Projects That Contain Linked and Unlinked Activities
	Detecting the Problem
	Correcting the Problem

	How MultiSite Affects the UCM-ClearQuest Integration
	Replica and Naming Requirements
	Transferring Mastership of the PVOB’s Root Folder
	Transferring Mastership of the Project
	Linking Activities to ClearQuest Records
	Changing Project Policy Settings
	Changing the Project Name

	6.5 Working with Rational Suite
	6.6 Creating a Development Stream for Testing Baselines
	6.7 Creating a Feature-Specific Development Stream
	Managing the Project
	7.1 Adding Components
	Making the Component Modifiable
	Synchronizing the View
	Updating Snapshot View Load Rules

	7.2 Building Components
	Locking the Integration Stream
	Finding Work That Is Ready to Be Delivered
	Completing Remote Deliver Operations
	Undoing a Deliver Operation
	Building and Testing the Components

	7.3 Creating a New Baseline
	Making the New Baseline
	Making a Baseline for a Set of Activities
	Making a Baseline of One Component

	Unlocking the Stream

	7.4 Testing the Baseline
	Fixing Problems

	7.5 Recommending the Baseline
	7.6 Resolving Baseline Conflicts
	Conflicts Between a Composite Baseline and a Noncomposite Baseline
	Conflicts Between Two Composite Baselines

	7.7 Monitoring Project Status
	Comparing Baselines
	Querying ClearQuest User Databases
	Using ClearCase Reports

	7.8 Cleaning Up the Project
	Removing Unused Objects
	Projects
	Streams
	Components
	Baselines
	Activities

	Locking and Making Obsolete the Project and Streams

	Using Triggers to Enforce Development Policies
	8.1 Overview of Triggers
	Preoperation and Postoperation Triggers
	Scope of Triggers
	Using Attributes with Triggers
	When to Use ClearQuest Scripts Instead of UCM Triggers

	8.2 Sharing Triggers Between UNIX and Windows
	Using Different Pathnames or Different Scripts
	Using the Same Script
	Tips

	8.3 Enforce Serial Deliver Operations
	Setup Script
	Preoperation Trigger Script
	Postoperation Trigger Script

	8.4 Send Mail to Developers on Deliver Operations
	Setup Script
	Postoperation Trigger Script

	8.5 Do Not Allow Activities to Be Created on the Integration Stream
	8.6 Implementing a Role-Based Access Control System
	Preoperation Trigger Script

	8.7 Additional Uses for UCM Triggers
	Managing Parallel Releases of Multiple Projects
	9.1 Managing a Current Project and a Follow-On Project Simultaneously
	Example
	Performing Interproject Rebase Operations

	9.2 Incorporating a Patch Release into a New Version of the Project
	Example
	Delivering Work to Another Project

	9.3 Using a Mainline Project
	9.4 Merging from a Project to a Non-UCM Branch

	Part 2: Working in Base ClearCase
	Managing Projects in Base ClearCase
	10.1 Setting Up the Project
	Creating and Populating VOBs
	Planning a Branching Strategy
	Branch Names
	Branches and ClearCase MultiSite

	Creating Shared Views and Standard Config Specs
	Recommendations for View Names

	10.2 Implementing Development Policies
	Using Labels
	Using Attributes, Hyperlinks, Triggers, and Locks
	Global Types
	Generating Reports

	10.3 Integrating Changes
	Defining Project Views
	11.1 How Config Specs Work
	11.2 Default Config Spec
	The Standard Configuration Rules
	Omitting the Standard Configuration Rules

	11.3 Config Spec Include Files
	11.4 Project Environment for Sample Config Specs
	11.5 Views for Project Development
	View for New Development on a Branch
	Variation That Uses a Time Rule

	View to Modify an Old Configuration
	Omitting the \main\LATEST Rule
	Variation That Uses a Time Rule

	View to Implement Multiple-Level Branching
	View to Restrict Changes to a Single Directory

	11.6 Views to Monitor Project Status
	View That Uses Attributes to Select Versions
	Pitfalls of Using This Configuration for Development

	View That Shows Changes of One Developer
	Historical View Defined by a Version Label
	Historical View Defined by a Time Rule

	11.7 Views for Project Builds
	View That Uses Results of a Nightly Build
	Variations That Select Versions of Project Libraries
	View That Selects Versions of Application Subsystems
	View That Selects Versions That Built a Particular Program
	Configuring the Makefile
	Fixing Bugs in the Program
	Selecting Versions That Built a Set of Programs

	11.8 Sharing Config Specs Between UNIX and Windows
	Pathname Separators
	Pathnames in Config Spec Element Rules
	Config Spec Compilation
	Example

	Implementing Project Development Policies
	12.1 Good Documentation of Changes Is Required
	12.2 All Source Files Require a Progress Indicator
	12.3 Label All Versions Used in Key Configurations
	12.4 Isolate Work on Release Bugs to a Branch
	12.5 Avoid Disrupting the Work of Other Developers
	12.6 Deny Access to Project Data When Necessary
	12.7 Notify Team Members of Relevant Changes
	12.8 All Source Files Must Meet Project Standards
	12.9 Associate Changes with Change Orders
	12.10 Associate Project Requirements with Source Files
	12.11 Prevent Use of Certain Commands
	12.12 Certain Branches Are Shared Among MultiSite Sites
	12.13 Sharing Triggers Between UNIX and Windows
	Using Different Pathnames or Different Scripts
	Using the Same Script
	Notes

	Setting Up the Base ClearCase-ClearQuest Integration
	13.1 Overview of the Integration
	13.2 Configuring ClearQuest and ClearCase
	Adding ClearCase Definitions to a ClearQuest Schema
	Installing Triggers in ClearCase VOBs
	Quick Start for Evaluations
	Setting Environment Variables for the ClearQuest Web Interface
	Setting the Environment for the ClearQuest Perl API

	Editing the Configuration File
	Testing the Integration
	Checking Performance

	13.3 Using the Integration Query Wizard
	Integrating Changes
	14.1 How Merging Works
	Using the GUI to Merge Elements
	Using the Command Line to Merge Elements

	14.2 Common Merge Scenarios
	Scenario: Selective Merge from a Subbranch
	Scenario: Removing the Contributions of Some Versions
	Scenario: Merging All Project Work
	All Project Work Is Isolated on a Branch
	All Project Work Isolated in a View

	Scenario: Merging a New Release of an Entire Source Tree
	Scenario: Merging Directory Versions

	14.3 Using Your Own Merge Tools
	Using Element Types to Customize Processing of File Elements
	15.1 File Types in a Typical Project
	15.2 How ClearCase Assigns Element Types
	15.3 Element Types and Type Managers
	Other Applications of Element Types
	Using Element Types to Configure a View
	Processing Files by Element Type

	15.4 Predefined and User-Defined Element Types
	Using ClearCase Throughout the Development Cycle
	16.1 Project Overview
	16.2 Development Strategy
	Project Manager and ClearCase Administrator
	Use of Branches
	Creating Project Views

	16.3 Creating Branch Types
	16.4 Creating Standard Config Specs
	16.5 Creating, Configuring, and Registering Views
	16.6 Development Begins
	Techniques for Isolating Your Work

	16.7
Creating Baseline 1
	Merging Two Branches
	Integration and Test
	Labeling Sources
	Removing the Integration View

	16.8 Merging Ongoing Development Work
	Preparing to Merge
	Merging Work

	16.9 Creating Baseline 2
	Merging from the r1_fix Branch
	Preparing to Merge from the major Branch
	Merging from the major Branch
	Decommissioning the major Branch
	Integration and Test

	16.10 Final Validation: Creating Release 2.0
	Labeling Sources
	Restricting Use of the main Branch
	Setting Up the Test View
	Setting Up the Trigger to Monitor Bug-fixing
	Fixing a Final Bug
	Rebuilding from Labels
	Wrapping Up

	Moving from View Profiles to UCM
	A.1 View Profiles and UCM
	Feature Comparison
	Branches and Streams
	Moving Work Among Branches or Streams
	VOBS and Components
	Checkpoints and Baselines

	A.2 How to Move View Profile Information to UCM
	Preparing Your View Profile Project
	Moving the View Profile Information

	ClearCase-ClearQuest Integrations
	B.1 Understanding the ClearCase-ClearQuest Integrations
	Managing Coexisting Integrations
	Schema
	Presentation

	Customizing ClearCase Reports
	C.1 How ClearCase Reports Works
	C.2 What You Can Customize in ClearCase Reports
	Run-Time Processing Sequence for Reports Programming Interface
	Configuring Shared Report Directories
	Adding Report Procedures to Source Control
	Setting the Report Builder to the Customized Directory

	Default Directory Structure for ClearCase Reports
	Populating the Report Builder Tree Pane

	C.3 Report Procedure Interface Specifications
	Interface Specification for All_Views.prl
	Interface Specification for test_null.prl
	Interface Specification for test2_null.prl
	Description Specification
	Help ID Specification
	Parameters Specification
	Rightclick Specification
	Fields Specification
	field_type Conventions

	Parameter Choosers
	Path Chooser
	UCM Targets Chooser
	Type Chooser
	Date/Time Chooser
	Text Chooser

	Viewing the Report
	Saving Report Data

	C.4 Report Programming Examples
	Example 1: Adding a Column to Report Output
	Processing Logic
	Interface Specification
	Changes Required
	Modified Report Procedure

	Example 2: Changing Report Directory Organization, Report Description, and Report Output
	Processing Logic
	Interface Specification
	Changes Required
	Modified Report Procedure

	Example 3: Changing Report Description, Parameter Types, and Report Output
	Processing Logic
	Interface Specification
	Changes Required
	Modified Report Procedure

	Example 4: Changing the Shortcut Menu for the Right-Click Handling Mechanism
	Interface Specification
	Changes Required
	Modified Report Procedure

	Example 5: Adding a New Command to the Report Viewer Shortcut Menu
	Interface Specification
	Changes Required
	Modified Report Procedure

	C.5 Troubleshooting
	Errors in the Interface Specification

	C.6 Coding High-Level Languages Other Than ccperl

	Index

