Rational Software Corporatione

RATIONAL® CLEARCASE®
MAINFRAME CONNECTORS

User’s Guide
VERSION: 2002.05.20

R at i O Nna]® support@rational.com

the software development company http://www.rational.com

Legal Notices

©1992-2002, Rational Software Corporation. All rights reserved.
Version Number: 2002.05.20

Publication Date: August 2002

IMPORTANT NOTICE

Copyright

Copyright © 1992, 2002 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984-1991 by Raima Corporation

Permitted Usage

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION
PROPRIETARY TO RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUB-
LIC DISPLAY OF THIS DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF
RATIONAL IS STRICTLY PROHIBITED. THE RECEIPT OR POSSESSION OF THIS DOCU-
MENT DOES NOT CONVEY ANY RIGHTS TO REPRODUCE OR DISTRIBUTE ITS CON-
TENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN
WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF RATIONAL.

Trademarks

Rational, Rational Software Corporation, the Rational logo, Rational Suite ContentStudio,
ClearCase, ClearCase MultiSite ClearQuest, Object Testing, Object-Oriented Recording, Objec-
tory, PerformanceStudio, PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify,
Rational Apex, Rational CRC, Rational PerformanceArchitect, Rational Rose, Rational Suite,
Rational Summit, Rational Unified Process, Rational Visual Test, Requisite, RequisitePro, RUP,
SiteCheck, SoDA, TestFactory, TestMate, TestStudio, The Rational Watch, among others are
trademarks or registered trademarks of Rational Software Corporation in the United States
and in other countries. All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.
Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, Windows, the Windows
logo, Windows NT, the Windows Start logo are trademarks or registered trademarks of
Microsoft Corporation in the United States and other countries.

AIX, IBM, OS/390, MVS, System /390, Sys /390, zSeries, among others, are trademarks of IBM
Corporation.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Government Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the

applicable Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14,
as applicable.

Warranty Disclaimer

This document and its associated software may be used as stated in the underlying license
agreement. Rational Software Corporation expressly disclaims all other warranties, express or
implied, with respect to the media and software product and its documentation, including
without limitation, the warranties of merchantability or fitness for a particular purpose or
arising from a course of dealing, usage, or trade practice.

Technical Acknowledgments

This software and documentation is based in part on BSD Networking Software Release 2,
licensed from the Regents of the University of California. We acknowledge the role of the
Computer Systems Research Group and the Electrical Engineering and Computer Sciences
Department of the University of California at Berkeley and the Other Contributors in its
development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the
mod_dav module for Apache (http://www.webdav.org/mod_dav/).

Preface

Rational ClearCase is a comprehensive configuration management (CM) system that
manages multiple variants of evolving software systems and tracks changes.
ClearCase maintains a complete version history of all software development artifacts,
including code, requirements, models, scripts, test assets, and directory structures.

About This Manual

This manual describes how to install and configure Remote Build components, create
JCL build scripts, and submit build requests.

Using Remote Build, programmers who write COBOL and other mainframe
applications on client workstations can submit remote build requests to the
mainframe.

ClearCase Documentation Roadmap

Orientation

Introduction
Release Notes
Online Tutorials

Project

Development Management

Developing Software Managing Software Projects

More Information

Command Reference
Quick Reference
Online documentation

Build

Management Administration

OMAKE Guide Installation Guide
(Windows platforms) Administrator's Guide
Building Software (Rational ClearCase)
S —

Administrator's Guide
(Rational ClearCase MultiSite)

Platform Information
(See online help)

iv. Mainframe Connector’s User Guide

Typographical Conventions

This manual uses the following typographical conventions:

ccase-home-dir represents the directory into which the ClearCase Product Family
has been installed. By default, this directory is /opt/rational/clearcase on UNIX and
C:\Program Files\Rational\ClearCase on Windows.

cquest-home-dir represents the directory into which Rational ClearQuest has been
installed. By default, this directory is /opt/rational/clearquest on UNIX and
C:\Program Files\Rational\ClearQuest on Windows.

Bold is used for names the user can enter; for example, command names and
branch names.

A sans-serif font is used for file names, directory names, and file extensions.

A sans-serif bold font is used for GUI elements; for example, menu names and
names of check boxes.

Italic is used for variables, document titles, glossary terms, and emphasis.

A monospaced font is used for examples. Where user input needs to be
distinguished from program output, bold is used for user input.

Nonprinting characters appear as follows: <EOF>, <NL>.

Key names and key combinations are capitalized and appear as follows: SHIFT,
CTRL+G.

[1 Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices.

In a syntax description, an ellipsis indicates you can repeat the preceding item
or line one or more times. Otherwise, it can indicate omitted information.

Note: In certain contexts, you can use “...” within a pathname as a wildcard, similar
to “*” or “?”. For more information, see the wildcards_ccase reference page.

“uyy

If a command or option name has a short form, a “medial dot” (-) character
indicates the shortest legal abbreviation. For example:

Isc-heckout

Preface v

Technical Support

If you have any problems with the software or documentation, please contact Rational
Technical Support by telephone, fax, or electronic mail as described below. For
information regarding support hours, languages spoken, or other support information,
click the Technical Support link on the Rational Web site at www.rational.com.

Your Location

Telephone

Facsimile

Electronic Mail

East, and Africa

Netherlands

Netherlands

North America |800-433-5444 408-863-4194 support@rational.com
toll free or Cupertino, CA
408-863-4000 781-676-2460
Cupertino, CA Lexington, MA
Europe, Middle |+31-(0)20-4546-200 |+31-(0)20-4546-201 |support@europe.rational.com

Asia Pacific

61-2-9419-0111
Australia

61-2-9419-0123
Australia

support@apac.rational.com

Vi

Mainframe Connector’s User Guide

Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Processingan MVS Build Request 14
Processinga USS Build Request 15
Handling Multiple MVS Build Requests. 16
Handling Multiple USS Build Requests 17
Build Files in ClearCase Explorer 56
Derived Objects in ClearCase Explorer. 57

vii

viii Mainframe Connector’s User Guide

Tables

Table 1
Table 2
Table 3

Authentication Modes and Run-time Job Names
USS Trace File Location
Sample Files

X Mainframe Connector’s User Guide

Contents

Preface.ccii i i s iii
About This Manual iii
ClearCase Documentation Roadmap oo iv
Typographical Conventions v
Technical SUPPOIto Vi

.. Vi

OVeIVIeW . .. it e e e e nmn e e 1
Platforms and Components 1
About the Remote Build Server 1

Starting a Remote Build Request 2
Hardware and Software Requirements for Remote Build 2
Client Requirements. 2
Connectivity 2
Supported Hardware and Operating Systems 2

Server Requirements 3
Connectivity 3
Supported Hardware and Operating Systems 3

Installing Remote Build Client and Server Components 5
Installing the Client Component i 5
Setting Up the Server Component 5

About Installing Remote Build Server. 5
About Remote Build Server Files 6
MVS Deliverables. 6
USS Deliverables. 6
Installation Prerequisites 7
Uploading the file RCCOS390 7
Runningthe RCCOS390 EXEC. e 7
SettingUpthe MVS Server 8
Setting Up Run-time Parameters. 8
Setting up SMP/E Libraries 8
Running SMP/E RECEIVE-APPLY-ACCEPT 9
SettingUpthe USS Server.o e 9
Setting Up Run-time Parameters. 9

Xi

Setting Up JCL DD Definitions for SMP/E 10

Running SMP/E RECEIVE-APPLY-ACCEPT 10
Configuring the Remote Build Server 13
About Processing Build Requests. 13
Running a Build Serverin MVS 13
Running a Build Serverin USS 13
Processing Multiple Requests 16
Queuing Requestsot 17

Setting Queue Size e 18
Authenticating Users. 18
Understanding Server Authentication Modes. 18
Making MVS Users Owners of Their Remote BuildJobs 19
Overriding the DefaultJob Name i 19
Returning MVS Output Files to the Client Machine. 20
Returning USS Output Files to the Client Machine. 20
Logging Server Messages and Tracesottt it e 20
Activating Server Tracing oot e 21
Activating Build Request Tracing i 21
MVS BuUilds. 21

USS BUIldS. . .ot 21
Determining the USS Trace File Location 22
Configuring the Server Under MVS. 22
Modifying JCL 22
Editing the RCCRUNM Member 23
Editingthe RCCMVS Member. i 24
Starting the Server 24
Stopping the Server 25
Configuring the Server Under USS. 25
Modifying JCL 25
Editing the RCCRUNU Member. i 25

Editing the RCCUSS Member 26
Starting and Stoppingthe Server. 26
Verifying Client/Server Communication (MVS). 26
Verifying Client/Server Communication (USS) 27
Running the Sample Executable 28

xii Mainframe Connector’s User Guide

SendingaBuildRequest................. i 29

Using the Client Command (rccbuild).o 29
SYNOPSIS. .« v v it e 29
DESCRIPTION. . . e e 31

Repeating Command Options 31
EBCDIC Translation (MVS Only). 31
Sending User IDs and Passwords. i, 31
OPTIONS AND ARGUMENTS e e 31
Obtaining the Remote Build Client Version. 31
Specifying a Remote Build Server. L, 32
Pinginga Remote Build Server i 32
Specifying a Local Build Script 32
Specifying a Server-Side Build Script L 33
Specifying a Server-Side Build Script in a Nondefault PDS 33
Specifying Client-Based Source Files, 34
Returning Output Files to Client Machine 35
Keeping Output Filesonthe Server 35
Specifying the Directory fora USSBuild. 35
Specifying TSO Login Details 36
Specifying Codepages for ASCII to EBCDIC Conversion 37
Setting Message Verbosity 37
Setting the Condition for Valid Return Codes 37
Specifyinga Time-out Factor. 38
Setting Environment Variables L 38
Passing Variables to Build Scripts. 39
Specifying Prefix for Messages Returned to Client LogFile 39

Using the —i, —0 and —d Options with USS Builds 40

Specifying Input and Dependent Files 40

Input File Examples. 40

Specifying Output Files 41

Output File Examples 41

Working with Build Scriptso 43

Identifying Build Scriptsat RunTime 43

Understanding JCL Build Scripts o 43
Understanding Coding Requirements, 43
Testing Scripts on the Mainframe 44

Identifying Build Files 44
Sample Scenarios e 45

Input File on Client Machine 45

Contents xiii

Dependent File on Client Machine. 45

Output File, Link-Edit Stepo 45

Codingthe EXEC Statement. 46
Codingthe DD Statement. e 47
Identifying Files Using RCCEXT DD Parameters. 48
Identifying Input Files 48

Identifying Dependent Files 48

Sending Output Messagestoa ClientFile. 49

Sending Output Messages to the Client’'s Screenand aFile. 49

Using Variables e 50

Using Predefined Variables i 50

Using User-Defined Variables 52

Setting Defaults for User-Defined Variables 52

File Name Conversions forMVS 53
Conversion Examples 53

Using Remote Build withclearmake 55
Creating a makefile fora Remote Build 55
Runningthe makefile 56
Returning Derived Objectstothe Client. 56

Aboutthe Sample Files. 59
Submitting the COBOL Build Request 59
Editingthe Batch File 60
Understanding the User-Defined Variables in the Build Script. 60
Runningthe Batch File 60
Running the COBOL Load Module e 61
Editingthe Batch File 61
Runningthe Batch File 62
SamplerccbuildCommands. iiinennn. 63
Sample Commands.o 63
INdeX e e e e 65

xiv Mainframe Connector’s User Guide

Overview

Using the Remote Build feature of Mainframe Connectors, you can submit build
requests from Windows and UNIX client platforms for ClearCase to OS/390 MVS and
USS. You can configure Remote Build to return the derived objects to the client
platforms where you can version them in ClearCase. In addition, you can audit the
builds using the clearmake facility.

Platforms and Components

Remote Build runs on the following platforms:

Client platforms AIX, Linux/390, Windows NT, Windows 2000, Windows XP

Server platforms 0S/390 and UNIX System Services (USS)

Remote Build has the following major components:

Client executable rccbuild

Control statements Job Control Language statements (JCL)
Mainframe executables Load modules, such as RCCBLDW
USS deliverables Executables (.exe and .dll)

ClearCase clearmake utility and client-based VOBs

Mainframe connectivity TCP/IP

About the Remote Build Server

The Remote Build server is multithreaded and starts a new job for each request. Builds
run concurrently and are limited only by system resources, such as MVS JES initiators,
and by a server option.

Remote Build supports multiple server instances, which you set up through different
0S/390 ports.

Starting a Remote Build Request

You can start a build request at the operating system prompt, or through a script or
makefile. In addition, you can point to build scripts and input files on client or server
machines.

Hardware and Software Requirements for Remote Build

This section describes software requirements for the client and server components.
Client Requirements

Connectivity
TCP/IP

Supported Hardware and Operating Systems

Hardware Platform Operating System

IBM RISC System /6000 | AIX4.3.2,4.3.3, 5.1 (32-bit support)

IBM PC-compatibles Windows NT 4.0 SP5 and higher

Windows 2000 SP1 and higher

Windows XP Pro
IBM System /390 SuSE Linux Enterprise Server 7 (2.4.7 kernel)
IBM zSeries SuSE Linux Enterprise Server 7 (2.4.7 kernel)

The zSeries platform refers to "Linux S/390" running on the IBM zSeries hardware in
the 31-bit run-time environment. "Linux for zSeries" in a 64-bit run-time environment
is not supported.

This release has not been tested on the IBM S/390 under VIFE.

2 Mainframe Connectors User’s Guide

Server Requirements

Connectivity
TCP/IP

Supported Hardware and Operating Systems

Hardware Platform Operating System
IBM System /390 0S/390 2.9 and higher, including UNIX System Services (USS)
IBM zSeries 0S/390 2.9 and higher, including USS

1-Overview 3

4 Mainframe Connectors User’s Guide

Installing Remote
Build Client and
Server Components

This chapter describes how to install the Remote Build client and server components.

Installing the Client Component

Install all versions of the Remote Build client as a patch to ClearCase. Individual
patches are available through this password-protected Rational Software site:

http://www.rational.com/support/downloadcenter/patches/clearcase/index.jsp

Setting Up the Server Component

This section describes how to install the Remote Build server component on the
mainframe. This component is included in the same ClearCase patch with the Remote
Build client component

About Installing Remote Build Server

Using ISPF panels and the ISPF Editor, you set up both the MVS and USS Remote Build
servers. From the main panel, you pick MVS or USS. You must install the MVS server
before installing the USS server.

The installation process accomplishes the following tasks:
= Allocates PDSs, including:

s JCL library, which contains JCL that starts the Remote Build server load
modules.

2 Load library, which contains server load module.

2 Object library, which contains server object code.

a Procedures library, which can contain production build scripts that you write.
2 Samples library, which can contain sample JCL build scripts.

» Creates the JCL required to generate the SMP/E control file (CSI).

= Customizes run-time JCL using the high-level qualifier that you specify.

= Prompts for the location of the Language Environment library (SCEEKLED).
= Prompts for the VOLSER for all Remote Build PDSs.

= Creates the JCL to receive, apply, and accept the SMP/E installation files.

» Link-edits the Remote Build object modules.

* Installs USS executables.

* Removes all work files when the installation completes successfully.

= Sets execute and read permissions on the USS executables and shell script.
About Remote Build Server Files

MVS Deliverables

These load modules are created during installation:

RCCBLDS Main executable that accepts MVS and USS build requests.
RCCBLDW Executable that processes MVS build requests.

RCCDLL Dynamic link library for MVS.

RCCINIT Wrapper executable that calls RACF and the RCCBLDS module.
RCCMSENU English-language messages.

RCCMSG Executable that formats messages.

These JCL members are used by the MVS server.
RCCMVS Calls the RCCBLDW load module.

RCCRUNM Calls the RCCINIT load module.

USS Deliverables

The USS deliverables include:
= JCL
= RCCRUNU - JCL that calls the RCCBLDS load module.

6 Mainframe Connector’s User Guide

2 RCCUSS - JCL that calls the USS shell script rccbldw.sh.
= Executables

» rccbldw — Executable that processes USS build requests.

2 rccbldw.sh — Shell script that calls the recbldw executable.

s rcedll - Dynamic link library.

Installation Prerequisites
Before installing the servers, you need to take the following steps:
1 Upload the REXX exec RCCOS390 in binary mode to a partitioned data set.
2 Using IBM’s RACF, define RATIONAL as a valid high-level qualifier.

Uploading the file RCCOS390
To upload RCCOS390 from a Remote Build client workstation:

1 Open an FTP connection to OS/390 MVS.

Warning: When using the FTP led command, enter a local directory path in double
quotes. For example, led “C:\Program Files\dir\subdir”

2 Change to binary transfer mode: binary

3 Change the destination to the desired partitioned data set.
cd 'pds'

4 Upload the file:
put RCCOS390

5 Quit the FTP session.

Running the RCCOS390 EXEC

1 From the ISPF Command Shell panel, run the command
ex 'pds(RCCOS390)'
where pds is the destination PDS for the REXX exec.
The SMP/E INSTALLATION menu opens.

2 - Installing Remote Build Client and Server Components 7

Setting Up the MVS Server

Type 1, for INSTALLING MVS SERVER, and press ENTER. The MVS REMOTE BUILD
SERVER menu opens.

Warning: During the installation process, do not exit from the SMP/E panels until the

install completes successfully.

Setting Up Run-time Parameters

To set up run-time parameters:

1

N o a b

Type 1, for SET UP INSTALLATION OPTIONS, and press ENTER.
A panel for entering run-time parameters opens.
Add a JOB statement that includes this information:

2 Job Name that ends with a numeral, if the total length is less than eight
characters.

2 Region size of 48 MB: REGION=48M

In the SCEELKED LIBRARY field, specify the location of the Language
Environment library.

In the DISK VOLSER field, special a volume serial number.
In the HIGH-LEVEL QUALIFIERS field, specify one or more high-level qualifiers.
Press ENTER to save these values as defaults.

Press F3 to return to the MVS REMOTE BUILD SERVER menu.

Setting up SMP/E Libraries
To set up the SMP/E libraries:

1

From the MVS REMOTE BUILD SERVER menu, type 2, for SET UP SMP/E
LIBRARIES, and press ENTER.

An ISPF Editor session opens, in Edit mode.
Edit the JCL as needed.
On the Command line, type SUB and press ENTER.

On successful completion, a JES2 message like the following one appears:

8 Mainframe Connector’s User Guide

userid ENDED AT N1 MAXCC=0 CN (INTERNAL)

4 In the ISPF editor, press F3 to return to the SMP/E INSTALLATION menu.

Running SMP/E RECEIVE-APPLY-ACCEPT

To set up the JCL for RECEIVE-APPLY-ACCEPT processing:

1 From the MVS REMOTE BUILD SERVER menu, type 3, for RUN SMP/E
RECEIVE, APPLY, AND ACCEPT, and press ENTER.

An ISPF Editor session opens, in Edit mode.

2 Edit the JCL as needed.
3 On the Command line, type SUB and press ENTER.

On successful completion, a JES2 message like the following one appears:

userid ENDED AT N1 MAXCC=4 CN (INTERNAL)

Setting Up the USS Server
To set up a USS server, you need to do the following;:
1 Install the MVS server, whose discussion starts on page 8.

2 Run the USS SMP/E installation, as described Setting Up Run-time Parameters on
page 9.

Setting Up Run-time Parameters

To set up run-time parameters:

1 From the SMP/E INSTALLATION menu, type 2, for INSTALLING USS SERVER,
and press ENTER.

The USS REMOTE BUILD SERVER menu opens.

2 Type1, for SET UP INSTALLATION OPTIONS, and press ENTER.
A panel for entering run-time parameters opens.

3 Add a JOB statement that includes this information:

2 Job name that ends with a numeral, if the total length is less than eight
characters.

2 - Installing Remote Build Client and Server Components 9

2 Region size of 48 MB: REGION=48M

4 The DISK VOLSER default is the value from the corresponding MVS Server step.
Change this value, as needed.

5 In the HFS TARGET DIRECTORY field, specify an existing USS directory. This is
the destination for Remote Build server executables and a shell script.

6 DPress ENTER to save these values as defaults.

The installation exec displays the following additional parameters that were used
in the MVS server installation:

s TARGET CSI DATASET value
s HIGH LEVEL QUALIFIERS values
7 Press F3 to return to the USS REMOTE BUILD SERVER menu.

Setting Up JCL DD Definitions for SMP/E
To set up DD definitions for SMP/E:

1 From the USS REMOTE BUILD SERVER menu, type 2, for SET UP SMP/E
DDDEF, and press ENTER.

An ISPF Editor session opens, in Edit mode.
2 Edit the JCL as needed.
3 On the Command line, type SUB and press ENTER.
4 Press F3 to return to the USS REMOTE BUILD SERVER menu.

Running SMP/E RECEIVE-APPLY-ACCEPT

To set up the JCL for RECEIVE-APPLY-ACCEPT processing:

1 From the USS REMOTE BUILD SERVER menu, type 3, for RUN SMP/E RECEIVE,
APPLY, AND ACCEPT, and press ENTER.

An ISPF Editor session opens, in Edit mode.

2 Edit the JCL as needed.
3 On the Command line, type SUB and press ENTER.
4 Press F3 to return to the USS REMOTE BUILD SERVER menu.

10 Mainframe Connector’s User Guide

On successful completion, a JES2 message like the following one appears:

userid ENDED AT N1 MAXCC=0 CN (INTERNAL)

2 - Installing Remote Build Client and Server Components 11

12 Mainframe Connector’s User Guide

Configuring the
Remote Build Server

This chapter describes how to configure and run a Remote Build server. It also explains
how to verify client/server communication.

About Processing Build Requests

The Remote Build server performs the following tasks:
= Receives build requests and files from the client.

» Performs character conversions (MVS only).

* Runs builds within its environment.

» Optionally collects and returns results to the client.

Running a Build Server in MVS

In MVS, the server load module RCCBLDS receives client build requests. RCCBLDS
triggers the JCL member RCCMVS, which executes the RCCBLDW module.
RCCBLDW processes your build scripts (Figure 1 on page 14).

Running a Build Server in USS

For USS operations, the server load module RCCINIT and RCCBLDS run in MVS.
RCCBLDS triggers the JCL member RCCUSS, which starts the USS shell script
rccbldw.sh. This script starts the executable recbldw, which processes build requests
(Figure 2 on page 15).

13

Figure1 Processing an MVS Build Request

RCCINIT B e —— IBM's RACF
User ID
validation
Y
0 RCCBLDS
Remote Build TCP/IP
client Y
-~ RCCMVS TCP/IP
(JCL) session
) ’/
RCCBLDW
Child process \

Script

processing

MvVS

14 Mainframe Connectors User’s Guide

Figure 2 Processing a USS Build Request

RCCINIT

W— RCCBLDS

Remote Build TCP/IP
client Y
RCCUSS
(JCL)

MVS

USS
rccbldw.sh
RCCBLDW

Child process

e S
User ID
validation

IBM's RACF

N

TCP/IP
session

Y,
J

Script

processing

- Configuring the Remote Build Server

15

Processing Multiple Requests

The server is multithreaded. Each build request starts a new process to handle the
build transaction. You control the number of concurrent jobs using the -n server
option. Concurrency is limited by system resources (such as JES initiators) and
workload policies.

Figure 3 illustrates the spawning process for multiple MVS build requests.

Figure 3 Handling Multiple MVS Build Requests

RCCBLDS
First Second Third
RCCMVS RCCMVS RCCMVS
(JCL) (JCL) (JCL)
Y Y Y
RCCBLDW RCCBLDW RCCBLDW

Figure 4 illustrates the spawning process for multiple USS build requests.

16 Mainframe Connectors User’s Guide

Figure 4 Handling Multiple USS Build Requests

RCCBLDS
First Second Third
RCCUSS RCCUSS RCCUSS
(JCL) (JCL) (JCL)
rccbldw.sh rccbldw.sh rccbldw.sh
RCCBLDW RCCBLDW RCCBLDW

Queuing Requests

When the concurrency limit is reached, the server queues any additional requests and
submits them on a first-come-first-served basis. Each queued request uses a TCP/IP
socket in a finite pool. The default queue size is 10. You control the queue size with the

server option —q.

When the queue is full, the client waits 10 seconds and retries indefinitely. Retries are
recorded in the client log file (rccbuild.log). The queue size must not exceed the pool

size.

3 - Configuring the Remote Build Server

17

Setting Queue Size

We recommend that the sum of queue size and number of concurrent builds be less
than the number of sockets that the server can keep active at a time:

queue_size + concurrent builds < number_sockets

Authenticating Users

Remote Build server interfaces with IBM’s RACF to perform the following tests:
= Validate TSO user IDs and passwords that are passed by the client command.

= Check user privileges for accessing MVS libraries and USS directories accessed
during a build request.

A user ID that passes these tests becomes the owner of the remote build process.
To enable user authentication:
1 Start the Remote Build server with authentication mode 1 or 2.

2 Store the RCCINIT module in an APF-authorized library.

Understanding Server Authentication Modes

There are three authentication modes, as described below.

Mode | Description

0 No user authentication. The user ID that starts the Remote Build server becomes the
owner for build processes requested by all users.

1 TSO user ID and password, passed by the client, are optional. If supplied, RACF
validates them.

2 TSO user ID and password, passed by the client, are required. RACF validates them.

For information about setting the authentication mode in MVS, see Editing the
RCCRUNM Member on page 23.

For information about setting the authentication mode in USS, see Editing the
RCCRUNU Member on page 25.

18 Mainframe Connectors User’s Guide

Making MVS Users Owners of Their Remote Build Jobs

When you use a JOB statement in your RCCMVS JCL that specifies a hardcoded job
name, Remote Build Server generates a job name as follows:

your_job_name + n

where 7 is a number from 0 through 9. For example, the first job that is named
ACPRUN becomes ACPRUNO.

Overriding the Default Job Name
You can override the job name in RCCMVS with the TSO user ID of the build

requestor.

To override the job name:

1 Substitute the job name value with the user-defined parameter &USERID. For

example:

/{&USERID JOB (ACCT#),'DEFINE TSO ID',CLASS=A

2 Specify a valid TSO user ID as the rccbuild —au parameter. For example:

rccbuild -h...—au RBUSER...

3 Start the Remote Build server using authentication mode —al or —a2.

Table 1 describes the requirements for substituting a TSO user ID as a remote build

job name.

Table 1 Authentication Modes and Run-time Job Names

Server UserID supplied | ¢ ;qpRID value in RCCMVS JCL o

authentication | in recbuild Run-time job name
Member

mode command

-a0 No Replaced by RACF user ID that starts server | Server job ID plus suffix

-a0 Yes Replaced by RACF user ID that starts server | Server job ID plus suffix

-al No Replaced by RACF user ID that starts server | Server job ID plus suffix

—al Yes Replaced by the —au supplied name —au name plus suffix

-a2 Yes Replaced by the —au supplied name —au name plus suffix

3 - Configuring the Remote Build Server 19

Returning MVS Output Files to the Client Machine

To send output files from an MVS build to the client machine:

1

Identify the file extension of the output file in your JCL build script using a DD
statement with the RCCEXT extension parameter.

For example:

//SYSOUT DD RCCEXT=PRO,DISP=(NEW,DELETE),
// UNIT=VIO, SPACE= (TRK, (10,10)),
// DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)

For more information about using the extension parameters to identify output
files, see Identifying Files Using RCCEXT DD Parameters on page 48.

Specify the output file, using the rccbuild —o option.
For example:

rccbuild ... —o c:\builds\banner.pro

Returning USS Output Files to the Client Machine

To send output from a USS build to the client machine:

1

Specify a build directory, using the rccbuild -1 or —la options. For example:
rccbuild ... -la /accounts/q3

Include an instruction in your build script or program that copies the output files
to the current build directory. For example:

cp myoutput.exe .

Specify the output file on the command line using the recbuild —o option. For
example:

rccbuild ... —o c:\builds\myoutput.exe

Logging Server Messages and Traces

Remote Build server logs the trace for the server and for build runs in separate data
sets.

20 Mainframe Connectors User’s Guide

Server (RCCINIT) messages

Server messages are captured in the RCCBLOG data set. Trace entries are
captured in a data set called SYSn. The default location for both data sets is the
JES2 output queue.

Build Run (RCCBLDW) messages

Messages for a specific build run are recorded in a data set pointed to by the
RCCMVS JCL.

Activating Server Tracing

To specify the RCCBLOG location, modify the RCCBLOG DD statements in the
RCCRUNM and RCCMVS JCL.

To activate tracing, add the -t option to the PARM EXEC parameter in the RCCRUNM
JCL.

Activating Build Request Tracing

Activating build tracing varies by build platform.

MVS Builds

To activate tracing for build requests, make the following changes to RCCMVS JCL:

1

Add this directive to the PARM clause within the EXEC statement that calls the
RCCBLDW load module.

PARM='ENVAR("_CEE_ENVFILE=DD:EDCENV")'

Add an EDCENYV statement, in which you point to a sequential data set or a PDS
member. For example:

//[EDCENV DD DSN=sequential.dataset, DISP=SHR
In the sequential data set that the DSN parameter points to insert this line only:

RCC_TRACE=*

USS Builds

To activate tracing, modify the shell script recbldw.sh:

1

Add the following EXPORT commands:

3 - Configuring the Remote Build Server 21

EXPORT RCC_TRACE=*
EXPORT RCC_TRACEFILE=~/filename

where Ifilename specifies the trace file.

Determining the USS Trace File Location

The location of the trace file depends on the following factors:
» Authentication mode of the Remote Build server.

* rccbuild —au value.

= Directory where rccbldw is running.

Table 2 describes the effect of these factors.

Table 2 USS Trace File Location

ileli';z;tication —au value | Directory running rccbldw Trace file location
mode

-a0 any value | /rational/smith [rational/smith
-al acp /rational/smith [rational/acp
-al no value [/rational/smith [/rational/smith
-a2 gls [/rational/journal [rational/gls

Configuring the Server Under MVS

This section describes how to customize the JCL that is used in running the server.

Modifying JCL
Customize the following JCL members:
= RCCRUNM, which executes the RCCINIT module.
= RCCMYVS, which executes the RCCBLDW module.

22 Mainframe Connectors User’s Guide

Editing the RCCRUNM Member

1

2

Customize the JOB statement, as needed.

The RSERVER PROC contains default values for user-defined variables in the
PARM EXEC parameter. Modify the RSERVER parameters as follows:

2 HLQ="hlg": Replace hlg with the high-level qualifier of the library that contains
the Remote Build load modules and RCCMVS JCL.

2 PORTNO=portno: Replace portno with the server listening port.

2 AUTH=number: Replace number with the server authentication mode. Valid
values are 0, 1, 2. For more information about authentication modes, see
Understanding Server Authentication Modes on page 18.

2 MAXBUILD=number: Replace number with the maximum number of concurrent
builds. The default is 1. For more information about concurrency, see Processing
Multiple Requests on page 16.

Modify the STEPLIB DD statement to point to the load library that contains the
server modules.

Modify the RCCWJCL DD statement to point to the library that contains the
RCCMVS JCL member.

Specify the following run-time parameters by adding options to the PARM EXEC
parameter:

—t Activates tracing. Trace entries are captured in the RCCBLOG data set.
—q number Specifies the size of the queue for client requests. The default is 10.
-V Optional. Specifies the verbosity level of server messaging (1, 2, or 3). The

first instance sets the level at 1. Specify up to three instances. There is no
default verbosity level.

The following string sets the verbosity level at 2.
PARM='... -V -V'

For example:

// PARM= ('ENVAR (" CEE_ ENVFILE=DD:EDCENV")/
// -p &PORTNO -a &AUTH -n &MAXBUILD -q 5 -t -V -V')

3 - Configuring the Remote Build Server 23

Editing the RCCMVS Member

Following are required modifications for RCCMVS. Do not make any other
modifications. The maximum number of JCL statements is 25.

1

Customize the JOB statement. To use the remote build requestor name (TSO ID) as
the job name, insert &USERID in the job name field. For example:

/{&USERID JOB (ACCT#),'DEFINE TSO ID',CLASS=A

For more information about using the requestor name, see Overriding the Default
Job Name on page 19.

Edit the STEPLIB DD statement to point to the load library that contains the server
modules. You can concatenate it with load libraries of other applications.

Modify the RCCPROC DD statement to point to the data set that contains your
MVS build scripts.

This modification is needed only if your build scripts reside on the MVS system. If
your build script resides on the client, you must pass it to the server as part of the
build transaction. For more information about build scripts, see Chapter 5, Working
with Build Scripts.

If you want to activate tracing for build requests, modify the EXEC statement that
calls the RCCBLDW load module. For more information, see Activating Build
Request Tracing on page 21.

Starting the Server

You can start the server in two ways:

As a started task
As a batch job

To enable Remote Build to run as a started task:

1

Modify the RCCRUNM JCL, as needed.
a Delete the JOB statement.

b Delete all lines starting from the PEND statement.

2 Copy the modified RCCRUNM JCL to the library SYS1.PROCLIB.

To start the Remote Build server as a batch job, submit the RCCRUNM JCL.

24 Mainframe Connectors User’s Guide

Stopping the Server

To stop the Remote Build server, cancel the job that was used to start it.

Configuring the Server Under USS

This section describes how to customize the JCL that is used in running the server.

Modifying JCL
Customize the following JCL:

RCCRUNU, which executes the RCCINIT module.

RCCUSS, which calls the BPXBATCH utility to run the recbldw shell script.

Editing the RCCRUNU Member

1

2

Customize the JOB statement.

Modify the PARM EXEC parameter:

/Il PARM="-p portno —a number —n number —q number -t =V '

where:

—p portno

—a number

—n number

—-q number

-t

Required. Specifies the server listening port.

Specifies the authentication mode of the server. The default mode is
2. You can use authentication modes 1 and 2 only if the RCCINIT
module is run from an APF-authorized library.

Specifies the number of concurrent builds. The default is 1. When this
limit is reached, the server queues any additional requests and
submits them on a first come, first serve basis.

Specifies the size of the queue for client requests. The default is 10.

Activates tracing. Trace entries are captured in the RCCBLOG data
set.

3 - Configuring the Remote Build Server 25

-V Specifies the verbosity level of the server (1, 2, or 3). The first instance
sets the level at 1. Specify up to three instances. There is no default
verbosity level.

The following string sets the verbosity level at 2.
PARM='... -V -V'

3 Modify the RCCWJCL DD statement to point to the library that contains the
RCCUSS JCL member.

Editing the RCCUSS Member
1 Customize the JOB statement, as needed.

2 Modify the PARM EXEC to point to the shell script recbldw.sh.

Starting and Stopping the Server
To start the Remote Build server, submit the RCCRUNU JCL.

To stop the server, determine the server process ID, and use the system kill command.

Verifying Client/Server Communication (MVS)

This section describes how to verify the connection between an MVS server and a client
workstation by processing a sample text file.

1 On the client machine, run the following rccbuild command:

rccbuild -h servermachine@portno —ft sample.jcl —-b sample —it sample.inp
—ot sample.out -k IBM-850 —r IBM-037

where:
servermachine Specifies the server machine.
portno Specifies the listening port on the server machine. The port

number must match the number in the RCCRUNM member.
AIX and Linux/390 users, remove these codepage parameters:
-k IBM-850 —-r IBM-037

26 Mainframe Connectors User’s Guide

Sample JCL and an input file (sample.inp) are sent to the server. The input file is

copied to the file sample.out and returned to the client machine.

Messages, like the following ones, appear on the client screen:

02/03/15 12:18:31 *** Success ***

02/03/15 12:18:31

RCCI-003

Program Name : 'IEBGENER'.

PARM HEL

RCCI-004

The MVS step 'TEST1' return code is '000000'.
02/03/15 12:18:31 Message files from build:
02/03/15 12:18:31 1:TEST1.SYSPRINT
02/03/15 12:18:32

In the directory that contains the rccbuild executable, browse the file sample.out

for the following messages:

The Remote Build server and client components are communicating.
To see the server output messages, view the file RCCBLDC.LOG.

Verifying Client/Server Communication (USS)

This section describes how to verify the connection between an MVS server and a client
workstation by compiling a C-language program and returning the output executable
to the client machine.

1

On the client machine, run the following rccbuild command:

rccbuild -h servermachine@portno —b cc —it rcopy.c —p --o rcopy.ob rcopy.c —o

rcopy.ob -V
where:
servermachine Specifies the server machine.
portno Specifies the listening port on the server machine. The port

number must match the number in the RCCRUNU member.

AIX and Linux/390 users, remove these codepage parameters:

-k IBM-850 —-r IBM-037

3 - Configuring the Remote Build Server

27

The C-language source file rcopy.c is sent to the server and compiled. The output
file rcopy.ob is returned to the client machine.

Messages, like the following ones, appear on the client screen:
The build job has been queued by the server. Position is 1.

02/05/06 13:33:55
RCCI-014
Job 'BUILDOO0O.' has been started by the server.

02/05/06 13:33:58 *** Success ***
02/05/06 13:33:58
Input Files: rcopy.c

Output Files: rcopy.ob

2 In the directory from which you ran rccbuild, browse for the file rcopy.ob.

Running the Sample Executable

The rcopy executable copies the list of files in a specified directory and their associated
permissions to the client screen.

On the client machine, run the following rccbuild command:

rccbuild -h servermachine@portno —b rcopy.ob —fb rcopy.ob —p path -V

where:

servermachine Specifies the server machine.

portno Specifies the listening port on the server machine. The port number
must match the number in the RCCRUNU member.
AIX and Linux/390 users, remove these codepage parameters:
-k IBM-850 —-r IBM-037

path Specifies an existing directory path on the server machine.

The server runs the rcopy executable and returns a list of files and associated
permissions to the client machine.

28 Mainframe Connectors User’s Guide

Sending a Build
Request

This chapter describes how to configure and send a build request.

The server creates a build job when you run the client program rccbuild. The client
then waits for completion of the build while the server runs the build script. After
running the build script, the server returns the results of the build to the client along
with a return code of 0 (success) or 1 (failure).

If both the rccbuild -0 option and the appropriate server options are used, build results
are sent to the remote workstation’s file system. These results include return codes,
messages and any files that are returned to the client.

Using the Client Command (rccbuild)

This section describes rccbuild options and processing.

Synopsis

Find out the version of the Remote Build client:

rccbuild —version

Specify a Remote Build Server:

rccbuild -h servermachine@portno...

Find out whether a Remote Build server is running on a specific port:
rccbuild -h servermachine@portno —testServer

Specify a build script that resides on the client machine:

rccbuild -h servermachine@portno £ [t| b] client_build_script —b copy_to_name...
Specify a build script that resides on the server:

rccbuild -h servermachine@portno —b server_build_script...

Specify a build script that resides on the server in a nondefault PDS:

29

rccbuild -h servermachine@portno —b server_build_script
—proclib mvs_buildscript_library...

= Specify client-based input and dependent files to the build process:
rccbuild -h servermachine@portno —i [t| b | n] input_file —d [t | b | n] dependent _file
» Return output files, such as compiled objects, to the client machine.
rccbuild -h servermachine@portno o [t| b] output_file...
» Keep derived files on the server:
rccbuild -h servermachine@portno —on output_file...
= Specify the directory for a USS build:
rccbuild -h servermachine@portno —1lallc] build_directory...
» Specify TSO login details:
rccbuild -h servermachine@portno...—au userid —ap password
» Specify codepages for ASCII to EBCDIC conversion (MVS server only):
rccbuild -h servermachine@portno...—k client_codepage —r server_codepage
= Set message verbosity level:
rccbuild -h servermachine@portno...[-V | -V=V | -V-V-V]
» Set the condition for valid return codes:
rccbuild -h servermachine@portno...—c condition —n good_rc
» Specify a time-out factor, in minutes:
rccbuild -h servermachine@portno...—T timeout
= Set environment variables:
rccbuild -h servermachine@portno...—v varl=value var2=value2...
= Pass run-time variables to the build script:
rccbuild -h servermachine@portno...—p build_parameters
» Specify a prefix for server messages returned to the client log file rccbuild.log:

rccbuild -h servermachine@portno...—P message_prefix

30 Mainframe Connectors User’s Guide

DESCRIPTION

Use the rccbuild executable to submit a build request to an OS/390 server.

Repeating Command Options

You can repeat command options. The effect varies, as follows:

= For the following options, when there are conflicts in option values, the last value
overrides other instances.

s -ap,-au, -b, —¢c, -f, -h, -k, -1, -n, —proclib, -P, -, -T
= Each instance of the following options supplements the current value:

a —db, —dn, —dt, —ib, —in, —it, —ob, —on, —ot, -p, -V, —v

EBCDIC Translation (MVS Only)

During a client-to-server transfer, text files are converted to EBCDIC. When server files
are transferred to the client, text files are converted to ASCII. Binary files are not
converted in either direction.

The rccbuild processor cannot handle files that contain both text and binary data. If
you have text files with imbedded binary data, transfer these files to the appropriate
data sets before issuing the recbuild command.

Sending User IDs and Passwords

Using the —au and —ap options, specify user IDs and passwords in uppercase.
Lowercase and mixed-case names are not converted.

OPTIONS AND ARGUMENTS

You must specify the —h option with all recbuild options except the —version option,
which does not make a server request.

Obtaining the Remote Build Client Version

-version
Returns the following information about the executable. For example:

rccbuild Version:1.0.3.5

4 - Sending a Build Request 31

Specifying a Remote Build Server

—h servermachine@portno
Required except when —version is specified. Specifies the server name and the
listening port. For example:

-h 0s390@2600

Supported server platforms: MVS, USS.

Pinging a Remote Build Server

—testServer
Returns the following information about the server: operating system, Remote
Build server version, and authentication mode. The only other required option
is —h.

Supported server platforms: MVS.

Sample output:

Operating System: 0S/390 MVS
Version: 2002.05.20
Authentication Mode: 2

Specifying a Local Build Script

—f [t| b] client_build_script —b copy_to_name
where:
—f [t| b] client_build_script
Specifies a build script file that resides on the client machine, which is
transferred to the server for processing. The t option (default) specifies that the
build script file is a text file. Specify the b option if the file is binary. Note that
the MVS server only accepts build files in text format.

-b copy_to_name

Specifies a copy-to name for the build script. Remote Build script copies the
local script to the server under the copy-to name.

32 Mainframe Connectors User’s Guide

Supported server platforms: MVS, USS.
Examples:

This MVS example identifies a local JCL file on Windows, which is in text
format:

—f D:\MYCOMP.JCL -b MYCOMP

Specifying a Server-Side Build Script

—b server_build_script
Without the —f option, the —b option specifies that the build script resides on
the server.

In MVS, the server looks for the script in the partitioned data set that is pointed
to by the RCCPROC DD statement in the RCCMVS JCL. The RCCMVS JCL
is stored in the JCL installation library. To override this partitioned data set,
use the —proclib option.

Supported server platforms: MVS, USS.

Example:

In the following example, the server looks for the script MYSCRIPT in the
default PDS.

rccbuild...—b MYSCRIPT

Specifying a Server-Side Build Script in a Nondefault PDS

—proclib mvs_buildscript_library
Specifies an override to the default partitioned data set (PDS) that contains JCL
build scripts. Use a fully qualified PDS name, and also specify the -b option.
For information about the default PDS, see the —b option. The —proclib option
is ignored when you use the —f option.
Supported server platforms: MVS.

Example:

rccbuild... —proclib REMOTE.BUILD.SCRIPTS

4 - Sending a Build Request 33

Specifying Client-Based Source Files

-i[t|b|n] input_file...
Specifies the names of one or more input files (separated by blanks) or a file
that contains a space-delimited or comma-delimited list of files. Precede the
name of a file that contains a file list with an at sign (@). For example:
@mylist.txt

Supported server platforms: MVS, USS.

To indicate that the files are in text format, specify the t option. This is the
default.

To indicate that the files are in binary format, specify the b option.

To indicate that the input files already exist on the server and are not
transferred to the server, specify the n option. Use a DD statement in your JCL
build script to indicate the location.

For more information about specifying files for USS builds, see Using the —i, —o
and —d Options with USS Builds on page 40.

—d [t| b|n] dependent_file...
Specifies the names of one or more dependent files (separated by blanks) or a
file that contains a list of files. Precede the name of a file that contains a file list
with an ampersand (@). For example: @mylist.txt

Supported server platforms: MVS, USS.

To indicate that the files are in text format, specify the t option. This is the
default.

To indicate that the files are in binary format, specify the b option.

To indicate that the input files already exist on the server and are not
transferred to the server, specify the n option.

For more information about specifying files for USS builds, see Using the —i, —o
and —d Options with USS Builds on page 40.

34 Mainframe Connectors User’s Guide

Returning Output Files to Client Machine

—o [t|b] output_file...
Specifies the names of one or more output files (separated by blanks).

Supported server platforms: MVS, USS.

To indicate that the files to be transferred to the client are in text format, specify
the t option.

To indicate that the files are in binary format, specify the b option. This is the
default.

For more information about specifying files for USS builds, see Using the —i, —o
and —d Options with USS Builds on page 40.

Keeping Output Files on the Server

—on output_file...
Keeps a copy of the derived files on the server. To prevent transfer of the
specified files to the client, specify the n option. After a successful build, the
client creates the files specified after the n option as empty files.

The actual build output remains on the server, and an empty file is returned to
the client. This provides a record on the client (with a time stamp) that the
build was done. This file can be used to prevent unnecessary builds when used
in conjunction with a make file.

Supported server platforms: MVS, USS.

Specifying the Directory for a USS Build

-1 [a] [c] build_location
Specifies the path for the build location. To identify a relative path, omit the a
option. To identify an absolute path, specify the a option and a fully qualified
path. The server creates any directories that do not exist.

If you use the —la options, copying the output file to the current directory (.) is
not needed.

Supported server platforms: USS.

4 - Sending a Build Request 35

To delete new directories when the build completes, specify the ¢ option.
Examples:

The following example creates, if not present, the directory Driver01 and
compiles hello.c in that directory. Because the ¢ option is not specified (-1
instead of —Ic), the directory Driver01 is not deleted, and the object file hello.o
is left in the directory.

rccbuild... -1 Driver01 ... —b cc —p --c --0 hello hello.c —i hello.c
The following example builds the hello object using hello.o (from the previous

example). Because the ¢ option is specified (-lc instead of -1), the directory
Driver01 is deleted after the build is complete.

rccbuild... -1c Driver01 ... —b cc —p --c --o hello hello.c i hello.c

The following example builds the hello object using hello.o (from the previous
example). Because the a option is specified (-la instead of -1) therefore, the
server creates the directory /Driver01 and makes the directory /Driver01 the

current directory for the build transaction.

Because the ¢ option is not specified (-la instead of —lac), Driver01 is not
deleted, and the object file hello.o is left in the directory.

rccbuild... -la /Driver01 ... —b cc —p --hello hello.o —o hello
The following example builds the hello object using hello.o (from the previous
example). Because the ¢ option is specified (-lac instead of -1a), the directory
Driver01 is deleted after the build is complete.
rccbuild... -lac /Driver01 ... -b cc —p --hello hello.o —o hello

Specifying TSO Login Details

—au userid
Specifies a TSO ID.

Supported server platforms: MVS and USS.
The server authentication mode determines whether a TSO ID is required. This

is specified in the RCCRUNM JCL. For more information about authentication
modes, see Editing the RCCRUNM Member on page 23.

36 Mainframe Connectors User’s Guide

—ap password
Specifies a TSO password.

Supported server platforms: MVS and USS.

The server authentication mode determines whether a TSO password is

required. This is specified in the RCCRUNM JCL. For more information about

authentication modes, see Editing the RCCRUNM Member on page 23.
Specifying Codepages for ASCIl to EBCDIC Conversion

-k client_codepage
Specifies the codepage for the input, output, and build script files on the client.
Codepage conversion occurs only on text files. The default codepage for the
Windows NT client is IBM-850. The AIX and Linux/390 default is ISO-8859-1.

Supported server platforms: MVS, USS.

—r server_codepage
Specifies the codepage used on the server. The default codepage is IBM-1047.

Supported server platforms: MVS, USS.

Setting Message Verbosity
[-V|-V-V|-V-V-V]

Specifies the verbosity level of the server (1, 2, or 3). The first instance sets the
level at 1. Specify up to three instances.

Supported server platforms: MVS, USS.
Example:
The following command sets the verbosity level at 2: rccbuild... -V -V

Setting the Condition for Valid Return Codes

—n good_rc
Specifies a comparison value for determining whether the return code from a
build run signals success. The default value is 0. The -n option works in
conjunction with the —c option.

4 - Sending a Build Request 37

Supported server platforms: MVS, USS.

—c condition
Specifies the comparison operator for determining whether the return code
from a build run signals success. The —c option works in conjunction with the
-n option.

The comparison operators include the following;:

LT
LE
GT
GE
EQ
NE

—~~

less than)

less than or equal to)
greater than)

greater than or equal to)
equal to)

not equal to)

~~

—_~ N N~

Supported server platforms: MVS, USS.

Examples:

rccbuild options Return code Success?
-n4-cLT 4 No
-n4-cLE 4 Yes
n4-cGT 3 No

Specifying a Time-out Factor

=T timeout
Specifies the number of minutes that the server waits for an invoked build
script to return before stopping the build event. The minimum time-out
interval is 5 minutes.

Supported server platforms: MVS, USS.

Setting Environment Variables

-v var=value...
Specifies the list of variables and their values that are used to modify the build
environment. Variable names are limited to 30 characters.

Supported server platforms: MVS, USS.

38 Mainframe Connectors User’s Guide

Build environment variables are used differently in MVS and USS.

In MVS, the —v option works in conjunction with user-defined variables on a
DD statement. For more information about the MVS implementation, see
Using User-Defined Variables on page 52.

In USS, the —v option changes or sets an environment variable. It is the
equivalent of using the C-language command putenv().

Passing Variables to Build Scripts

—p build_parameters

Specifies parameters that are passed to the build script. Build parameters are
used differently by MVS and USS servers.

Supported server platforms: MVS, USS.

In MVS, the —p option works in conjunction with the PARM parameter on a
DD statement. For more information about the MVS implementation, see
Using Predefined Variables on page 50.

For UNIX platforms, specify two hyphens (- -) instead of one (-) when you
need to pass a hyphen to your build script. This enables the server to
distinguish between rccbuild parameters and your build script parameters.
Example:

The passed values of the —p option are —o hello hello.c, which are preceded by
an extra hyphen. If the hyphen is omitted, the values are interpreted by the

rccbuild command.

rccbuild -b cc —i hello.c —o hello -p --o hello hello.c

Specifying Prefix for Messages Returned to Client Log File

-P prefix

Specifies a prefix that is added to messages that the server returns to the client
log file.

Supported server platforms: MVS, USS.

Example:

4 - Sending a Build Request 39

Prefix Server message file Client message file

122500 COMPILE.SYSPRINT 122500COMPILE.SYSPRINT

Using the -i, -0 and -d Options with USS Builds

The file specifications on the —o and —d options are interpreted differently by the client
and server.

Specifying Input and Dependent Files

The client treats file locations specified with the —i and —d options as absolute or
relative to the client's current directory. The server places input and dependent files in
a subdirectory relative to where the server is running. The server has a concept of build
location, which is the directory the server uses as the current working directory.

= To use the default location, which is a subdirectory relative to the directory in
which the Remote Build server starts, omit the -1 and —la options. The subdirectory
is deleted after the build request completes.

= To force Remote Build server to create a subdirectory relative to a specified
directory, use the -1 option. The relative is not deleted unless the —1c options are
specified.

» To specify an absolute path, use the -la options.

Input File Examples

command Description

rccbuild... —it foo.c The client reads the file foo.c from its current directory. The server
creates a temporary directory (typically named tbnnnn) and creates
foo.c there. At the end of the build, the server deletes the directory.

rccbuild... —it foo.c -1 MyDir The server creates or reuses the subdirectory MyDir as the build
location, and does not delete it at the end of the build.

rccbuild... it foo.c -la The server uses the absolute directory /u/server/test as the build

Ju/server/test location. The directory is not deleted after the build.

rccbuild... —it foo.c -1c MyDir The server deletes the directory MyDir after the build.

40 Mainframe Connectors User’s Guide

command

Description

rccbuild..

. —it temp/temp1/foo.c

When you omit the -1 option, the server creates a temporary
directory path that is relative to the directory where you start the
server. The name of the temporary directory varies.

For example, you start the server in the directory RemoteBuild.
The server creates a subdirectory beneath it, such as tmp0001.

Given the example rccbuild command, the server then creates the
directory path temp/temp1 beneath tmp0001. The file foo.c is
copied to the directory temp1.

The full path is: /RemoteBuild/tmp0001/temp/temp1/foo.c

rccbuild..

. —it temp/temp1(foo.c

The client interprets the left parenthesis as a slash (/) and finds the
appropriate directory. You can use the left parenthesis in place of a
slash anywhere in the path.

On the server, the left parenthesis forces the file foo.c to be created
in the current directory, not in a subdirectory.

Specifying Output Files

For output files, the client and server work similarly.

Output File Examples

command Description

rccbuild... —o foo.obj The server reads the file from the build location and returns it to the
client. The client places the file in its current directory.

rccbuild... —o c:\output\foo.obj The server reads the output \ foo.0bj relative to the build location.
The client creates the file C:\output\foo.obj.

rccbuild... —o c:\output(foo.obj The server reads the file foo.obj relative to the build location. The
client creates the file C:\output\foo.obj.

rccbuild... —-o output(foo.obj The server reads foo.obj relative to the build location, and the

client creates the file output\f00.0Dbj in the current directory.

4 - Sending a Build Request 41

42 Mainframe Connectors User’s Guide

Working with Build
Scripts

This chapter describes how to create JCL build scripts for MVS builds.

For builds on the USS platform, you can use a makefile or an executable on USS.

Identifying Build Scripts at Run Time

You identify the build script with the client command rccbuild.
= To specify a build script that is stored on the client machine:
rccbuild —ft build_script —b server_filename

where build_script is the local file and server_filename is the copy-to name when the
file is transferred to the server.

» To specify a build script that is stored on the server machine:
rccbuild —b server_script

In MVS, the script must be stored in the PDS that is associated with the RCCPROC
DD statement of the RCCMVS member. This PDS must have the following
attributes: RECFM=FB, LRECL=80.

Understanding JCL Build Scripts

You must write JCL build scripts using pseudo JCL for Remote Build. Each file must

have an LRECL of 80 characters. Any lines with more than 80 characters are truncated
during the transfer process. Pseudo JCL syntax is similar to standard JCL, with some
extensions and restrictions. We recommend starting with an existing JCL fragment.

Understanding Coding Requirements
The key coding requirements include the following items:
* Omit a JOB statement.

» Start all statements, except in-stream data, with two slashes — //.

43

» Identify the following build files using DD statements with either RCCEXT
parameter:

2 Input source files
2 Dependent files

2 OQOutput files

2 Output listings

Testing Scripts on the Mainframe

We strongly recommend testing JCL build scripts directly on your mainframe before
submitting them remotely using Remote Build

Identifying Build Files

To identify files that Remote Build processes, you need to customize your build script
and, depending on the type and location of a file, specify a client command option. This
coordination is required to send output files, such as object modules and executables,
to the client machine where they can be checked in to a ClearCase view.

The DD statement parameter RCCEXT identifies the file extension of a build file used
in a specific I/O operation.

The following table describes JCL script and client command requirements.

Files DD statement syntax rccbuild option
Input files that reside on the client | //SYSIN DD RCCEXT=ext... -1

machine

Dependent files that reside on the | //ddname DD RCCEXT=ext -d

client machine

Output files to be sent to the client | After a compile step: —0 (Required)
machine /ISYSLIN DD RCCEXT=ext...

After a link-edit step:
/ISYSLMOD DD RCCEXT=ext...

Output listings to be sent to the /ISYSPRINT DD RCCEXT=RCCOUT | (Not applicable)

client machine

44 Mainframe Connectors User’s Guide

Sample Scenarios

This section describes several build scenarios.

Input File on Client Machine

The input file BANNER.CBL resides in a Windows directory.
Sample rccbuild Command

Use the —i option to specify the input file.

rccbuild -h... -i C:\MYCOBOL\BANNER.CBL -b... -f...
Sample DD Statement

//SYSIN DD RCCEXT=CBL,DISP=(NEW,DELETE) ,
// UNIT=VIO, SPACE= (TRK, (10,10)),
// DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)

Dependent File on Client Machine

The dependent file BANNER.LED resides in a Windows directory.
Sample rccbuild Command

Use the —d option to specify the dependent file.

rccbuild -h... -d C:A\MYHEADERS\BANNER.LED -b... -f...
Sample DD Statement

//SYSLIN DD RCCEXT=LED,DISP= (NEW,DELETE),
// UNIT=VIO, SPACE= (TRK, (10,10)),
// DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)

Output File, Link-Edit Step

The generated executable BANNER is sent to the client as BANNER.LOD.
Sample rccbuild Command

Use the —o option to specify the output file.

rccbuild -h... -i CAMYCOBOL\BANNER.CBL —-o BANNER.LOD -b... -f...
Sample DD Statement

//SYSLMOD DD RCCEXT=LOD,DISP=(NEW,DELETE) ,
// UNIT=VIO, SPACE= (CYL, (10,10)),
// DCB= (RECFM=U, LRECL=0, BLKSIZE=6233)

5 - Working with Build Scripts

45

Coding the EXEC Statement

Use the EXEC statement for these purposes:

» To define a new job step

= To specify the name of a load module or build script
» To define parameters whose values you pass from the client

Syntax:

/ /stepname EXEC [PGM=program_name | proc_name] [PARM="parm_string |

COND=(code,operator|,stepname]))
where:
program_name

proc_name

PARM-="parm_string'

46 Mainframe Connectors User’s Guide

Specifies a load module.

Specifies a build script whose location is identified by
the RCCPROC DD statement in the RCCMVS JCL
member.

Specifies a parameter string or variable. To pass a value
for a user-defined variable from the client, use the
rccbuild —v option.

A parameter string can contain imbedded blanks and
quotes. To imbed a single quote, concatenate two single
quotes.

Imbedded Quote Example

Your build script has the parameter:
PARM='&X'"'s'

You enter the following client command:
rccbuild ... -v X=it

The script value expands to:
PARM-='it's'

Variables Example

To specify a variable, type an ampersand (&) followed
by the variable name.

For example:
I&XI

COND=(code,operator|,stepnamel)) Specifies a condition to testbefore executing the current
step. You can code multiple conditions per EXEC
statement.

The parameter code is the value to test against the
return code from a previous job step.

The parameter operator is the comparison
operator.

The parameter stepname identifies the job step that
issues the return code.

For example:
/ /STEP1 EXEC PGM=ONE
/ /STEP2 EXEC PGM=TWO

//STEP3 EXEC PGM=THRE,COND=(4,LE,STEP1
COND=(4,LE, STEP2)

Coding the DD Statement

Use the DD statement to describe data sets, including source, dependent, and output
files.

Syntax:

llddname DD

[DISP | DISP=(status disposition=) | DCB=value | DSN=value | DSNAME=dataset |
DSORG-=dataset_organization | SPACE=value | UNIT=type | VOL=SER=volume] |
[RCCEXT=ext | RCCEXT=(ext1,ext2,..) | RCCEXT=RCCOUT | RCCEXT=RCCSTD
| RCCEXT=RCCERR] | *

where the following standard JCL variables must be adapted for use with Remote

Build:
ddname Specifies the DD name.
status Valid Remote Build values include: NEW, OLD,

DELETE, SHR

5 - Working with Build Scripts 47

disposition Valid Remote Build values: DELETE, KEEP, CATLG,
UNCATLG.

unit_type The default is VIO.

For more information about the RCCEXT parameter, see Identifying Files Using
RCCEXT DD Parameters on page 48.

Identifying Files Using RCCEXT DD Parameters

You must identify input files, dependent files, output files, and output listings with a
DD statement and a RCCEXT parameter.

Identifying Input Files

Include a SYSIN DD statement for each input file that you pass using the —i option.
Change

//ISYSIN DD DSN=

to

/ISYSIN DD RCCEXT=ext

where ext is the file extension for the input file, such as CBL or C.

Identifying Dependent Files

Include one DD statement for one or more dependent files, such as header files and
COBOL copybooks. Use one of the following formats:

» //ddname DD RCCEXT=ext
» //ddname DD RCCEXT=(ext1,ext2,..extN)

The following DD statement specifies that all dependent files with extension .h and
Jhpp (case- insensitive) are placed in the datas et allocated to the ddname USERLIB.
The same extension can appear only once in the JCL script.

//USERLIB DD DSN=MY.HEADERS, DISP=SHR, RCCEXT= (H, HPP)

48 Mainframe Connectors User’s Guide

Sending Output Messages to a Client File

Use the RCCOUT extension to send output messages to the client, in a file called
prefix.stepname.ddname.

where:

prefix The value, if any, specified with the recbuild —P option.
stepname The step name in the EXEC statement.

ddname The DD name in the DD statement.

In a build script run that omits the P option, Remote Build overwrites an existing
SYSOUT file called stepname.ddname. By using the —P option, you can create and keep
message files from multiple build script runs. This is useful when more than one source
program (-i) uses the same build script. For example, you might use the program name
as the —P option.

When you use the RCCOUT extension with the SYSOUT ddname, COBOL DISPLAY
messages are included.

In the following example, after the program CBCDRVR executes, the contents of
SYSOUT are transferred to the client as file COMPILE.SYSOUT. This assumes that the
-P option is omitted.

//COMPILE EXEC PGM=CBCDRVR, ..

//SYSIN...

//SYSOUT DD RCCEXT=RCCOUT,DISP=(NEW,DELETE) , SPACE= (32000, (30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

Sending Output Messages to the Client’s Screen and a File

Use the RCCERR or RCCSTD extension to send output messages to the client console
and in a file called prefix.stepname.ddname.

where:

prefix The value, if any, specified with the recbuild —P option.
stepname The step name in the EXEC statement.

ddname The DD name in the DD statement.

In a build script run that omits the —-P option, Remote Build overwrites an existing
SYSOUT file called stepname.ddname. By using the —P option, you can create and keep

5 - Working with Build Scripts 49

message files from multiple build script runs. This is useful when more than one source
program (-i) uses the same build script. For example, you might use the program name
as the —P option.

In the following example, after the program CBCDRVR executes, the contents of
SYSOUT are transferred to the client as file COMPILE.SYSOUT. This assumes that the
rccbuild —P option is omitted.

//COMPILE EXEC PGM=CBCDRVR, ..

//SYSIN...

//SYSOUT DD RCCEXT=RCCSTD,DISP=(NEW,DELETE) , SPACE= (32000, (30,30)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)

Using Variables

The parameters of a DD statement can have variables similar to standard JCL. Variable
names must start with an ampersand (&) and contain alphanumeric characters. They
are terminated by a nonalphanumeric character or a period (.), if needed. Variable
names are limited to 30 characters.

The pseudo JCL supports predefined and user-defined variables.

Using Predefined Variables

The following variables are predefined:

&INPUT
Returns the names of input files, passed by the recbuild —i option. The path
and file extensions are discarded, and names are converted to
MVS-compatible names.

Example:

If the input files include src/hello.obj hellol.obj, the &INPUT variable returns
HELLO HELLO1.

&OUTPUT
Returns the names of output files, passed by the rccbuild —o option.

Example:

If the output file is src/hello.obj, the &OUTPUT variable returns HELLO.

&DEP
Returns the names of dependent files, passed by the rccbuild —d option.

50 Mainframe Connectors User’s Guide

Example:

If the dependent file is header/stdout.h, the &DEP variable returns STDOUT.

&PARM
Returns the value of a parameter, passed by the rccbuild —p option. This string
is passed as is (without folding). In the EXEC statement, the &PARM variable
must be enclosed in single quotes.

Example:

The command issued on the client machine:

rccbuild ... -p TYPERUN=DEBUG

The corresponding command located in the build script:
//COMPILE EXEC PGM=COMPILER, PARM='&PARM'

The server performs the variable substitution and changes the EXEC
statement:
//COMPILE EXEC PGM=COMPILER, PARM='TYPERUN=DEBUG'

&COMMA
Returns a comma.

&SP
Returns a single space.

The following behavior is associated with in-stream statements that contain predefined
variables &INPUT, &OUTPUT, and &DEP:

The statement that contains the variable is repeated for each file associated with the
variable.

Example:
Your build script has this DD statement:

//SYSLIN DD *
INCLUDE OBJ (&INPUT)
/*

You enter the following client command:

5 - Working with Build Scripts 51

rccbuild ... -i hello.obj hellol.obj
The server expands the input stream to this:

//SYSLIN DD *
INCLUDE OBJ (HELLO)
INCLUDE OBJ (HELLO1)
/*

Using User-Defined Variables

To pass user-defined variables, use the recbuild —v option.
Example:

Your build script has the DD statement:
//OBJ DD DISP=SHR,DSN=&USERID..OBJ

You enter the following client command:
rccbuild ... -v USERID=QEORD1

The script value expands to:

//OBJ DD DISP=SHR,DSN=QUEORD1 .OBJ

Setting Defaults for User-Defined Variables

Using a VARS statement, you can set default values for user-defined variables. The
VARS statement defines a comma-delimited list of name-value pairs.

/llabel VARS namel=valuel,...nameN=valueN

where:

label Specifies a label for the statement. The label has the same constraints as a DD
name.

namel Specifies the name of a user-defined variable.

valuel Specifies the default value of the variable.

Example:

In the following example, default values are set for two variables.

//PRODVAR VARS USER=USERO1,HLQ=V40021

52 Mainframe Connectors User’s Guide

File Name Conversions for MVS
Client file names must conform to these rules:
= Names must contain the following valid MVS characters:
0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZS$@#
* Names must begin with an alphabetic character.
The server makes the following transformations:

= The directory path of a file name is not used. All characters of a file name up to and
including the rightmost slash (/ or \) are discarded.

= Lowercase characters are converted to uppercase characters.

» The file extension is stripped from the right, up to and including the separating
period. The extension, minus the period, is used by the MVS server to direct the
file to particular data sets according to RCCEXT parameters in the JCL build
scripts.

* The remaining name is truncated from the left, to a maximum of eight characters.

= Underscore characters (_) in a file name are converted to at signs (@).

Conversion Examples

The following examples demonstrate file name conversions:
» File name src\build\fhbldobj.C converts to FHBLDOB]J.
» File name src/build/fhbtruncate.c converts to FHBTRUNC.

5 - Working with Build Scripts 53

54 Mainframe Connectors User’s Guide

Using Remote Build
with clearmake

The clearmake utility is the Rational ClearCase variant of the UNIX make utility. Using
clearmake, you can audit remote builds and trigger future build events.

During the process of building executables and load modules, ClearCase tracks the
following actions:

* One or more source files that are under source control in a VOB are opened, read,
and sent to the Remote Build server.

= Other files are created or updated as a result of the processes running.

An audit record indicates that the updated files are dependent upon files that were
read. When source files change and you reprocess the makefile, clearmake knows
which derived objects need to be recompiled.

Creating a makefile for a Remote Build

To create a makefile that integrates with Remote Build, replace build script commands
with a recbuild command string.

In the following example, the file banner.cbl is compiled to generate the object module
BANNER. The object file is link-edited, and the generated load module returns to the
client as banner.pro. Only the link-edit step needs to be reflected in the first statement.
banner.pro: banner.cbl

rccbuild -h 0s390@3604 -b cobcomp -ft cobcomp.jcl -k IBM-850 \

-r IBM-037 -it banner.cbl -dt banner.led -0 banner.pro -v MBR=BANNER \
COBCOMP=IGY210.SIGYCOMP LERUN=CEE150.SCEELKED HLQ=SMITH \
SYSTEM=MVSCICS -V -V -V

The following Windows example shows the versioned files that are used to generate
the load module BANNER.

55

Figure 5 Build Files in ClearCase Explorer

Build files
|Z]| banner.chl 6353 | File Element Wersion 04242002 10:29:53 AM maint 1
Q banner.led 4z | File Element Yersion 04242002 10:29:54 AM \maint 1
E ZobiZomp, jcl 1973] File Element Yersion 04242002 10:29:55 AM \maint 1
| CobComp,bat 374 View-private File 05/22(2002 10:13:02 AM
[ﬂrccbuild.exe 122544 Wiew-private File 03032002 09:05:21 AM
mmakﬂ.bat 294 File Element 0303/ 2002 01:51:39 PM irmaint 1

Running the makefile
To run the makefile, use a clearmake command. For example:
clearmake —f makefile

After the makefile is run, the clearmake utility creates an audit record that indicates
that banner.pro depends upon the three files read: banner.cbl, bannerjcl, and
banner.led. When you rerun the makefile, the build is executed again only if one or
more dependent files have changed. If all of them remain unchanged, the build request
is not submitted to the mainframe.

Returning Derived Objects to the Client
To return a derived object to the client:

1 Specify the derived object using the rccbuild —o option. The default format is
binary. If the file is in text format, specific the —ot option.

2 Include the file extension of the derived object using the RCCEXT extension
parameter in your build script. For more information about extension parameters,
see Identifying Build Files on page 44.

The following Windows example shows the derived object, load module
BANNER.PRO, and three other files: log file rccbuild.log, and two SYSPRINT
message listings.

56 Mainframe Connectors User’s Guide

Figure 6 Derived Objects in ClearCase Explorer

Derived objects

[Z] banner.chl 65853 File Element Yersior 04242002 10:29:53 AM imaint 1
El banner.led 4z File Element Yersior 04242002 10:29:54 AM \raint 1
% CabCamp.jcl 1972 File Elerment Yersior 04)24)2002 10:29:55 4M \raint 1
ECDbCDmp.bat 374 View-private File 05/22/2002 10:13:02 AM
ﬂrccbuild.exe 122544 Wiew-private File 03/03) 2002 09:05:21 AM
5 | make. bat 204 File Element O8(08(2002 01:51:39 PM imaini]
|| BAMNER. . PR.O 7771 Wiew Derived Object 03032002 02:13:01 PM
fm COBC.SYSPRINT 21184 Wiew Derived Object 03/03) 2002 02:13:01 FM
E] LKED. SYSPRIMT 115386 Miew Derived Object 03032002 02:13:01 PM
ips-l. .cmake.skake 2348 Wiew-private File 03/03) 2002 02:13:02 PM
|Z] rechuild. log 1191 Wiew Derived Object 03/03) 2002 02:13:02 PM

The SYSPRINT and log files are sent to the directory from which you run the recbuild
command. If you run the rccbuild command from a directory other than the view that
contains the source files, direct the derived object and other output files to the view by
specifying an output path (—o path).

6 - Using Remote Build with clearmake 57

58 Mainframe Connectors User’s Guide

Sample Build Files

This appendix demonstrates how to submit two types of remote requests using the
client command rccbuild:

* Building a COBOL load module.
* Running the COBOL load module.

Each process generates output files that are returned to the client machine.

About the Sample Files

Table 3 describes the sample files.

Table 3 Sample Files

Sample File Description
banner.cbl Source code for a sample COBOL program that displays the Rational logo.
bannerled | Linkage Editor control statements. This file is passed as a dependent file to the rccbuild

command.

cobcomp.bat

Batch file that runs the rccbuild command to submit a build request to MVS.

cobcomp.jcl

JCL script that invokes the COBOL compiler and Linkage Editor in MVS.

runscr.bat

Batch file that runs the recbuild command to submit the JCL file runscr.jcl.

runscr.jcl

JCL script that executes the BANNER load module.

Submitting the COBOL Build Request

This section describes the following;:
= Editing the rccbuild command within the batch file cobcomp.bat.

* Running the batch file on the client machine.

59

Editing the Batch File

The batch file cobcomp.bat contains the following rccbuild command:

rccbuild -h servername@portno —b cobcomp —ft cobcomp.jcl -k IBM-850 —r IBM-037
—it banner.cbl —dt banner.led -v MBR=BANNER COBCOMP=cobol_lib
LERUN-=langenv_lib HLQ=hlgname SYSTEM=hlq2name -V -V -V

This recbuild command passes a JCL script, COBOL source, Linkage Editor
statements, and values for user-defined variables to the server.

Edit the batch file:

Change To

servername@portno The MVS server name, followed by the at sign and the listening port
for the Remote Build server.

cob_lib Your COBOL library name.

langenv_lib Your Language Environment library name.

hlgname The high-level qualifier for your object and load libraries.

hlg2name The second-level qualifier for your object and load libraries.

AIX and Linux/390 users, remove these codepage parameters:

-k IBM-850 —r IBM-037

Understanding the User-Defined Variables in the Build Script

The —v option in the sample rccbuild command supplies values for user-defined
variables that are declared in the build script cobcomp.jcl. The variables are
highlighted in the following example.

//COBC EXEC PGM=IGYCRCTL,REGION=4096K,
//STEPLIB DD DISP=SHR,DSN=&COBCOMP
//SYSLIN DD DISP=SHR,DSN=&HLQ..&SYSTEM..OBJECT (&MBR)

// DD DISP=SHR, DSN=&LERUN

Running the Batch File

To run the batch file on the client:

60 Mainframe Connectors User’s Guide

1 Update your system search path, if needed, to include the directory that contains
the executable rccbuild.

2 Make the directory that contains the sample files the current directory.
3 At the command prompt, enter the following:
cobcomp.bat

The build server returns two output files, whose names are derived from information
in the COBCOMP JCL.:

» COBC.SYSPRINT contains COBOL compiler messages. COBC is the step name
on the EXEC statement that calls the COBOL compiler.

» LKED.SYSPRINT contains Linkage Editor messages. LKED is the step name on
the EXEC statement that calls the Linkage Editor.

These files are returned to the client because COBCOMP JCL also has SYSPRINT DD
statements that include the extension parameter RCCEXT=RCCOUT.

Running the COBOL Load Module

To execute the COBOL module in MVS, you can run the recbuild command.This
section describes the following:

= Editing the rccbuild command within the batch file runscr.bat.

* Running the batch file on the client machine.

Editing the Batch File

The batch file runscr.bat contains the following rccbuild command:

rccbuild -h servername@port —b runscr —ft runscr.jcl -k IBM-850 —r IBM-037 —v
HLQ=hlgname SYSTEM=hlq2name

This recbuild command passes JCL and values for user-defined variables to the server.

Edit the batch file:
Change To

servername@portno The MVS server name, followed by the at sign and the listening port for
the Remote Build server.

61

hlgname The high-level qualifier for your object and load libraries.

hlg2name The second-level qualifier for your object and load libraries.

AIX and Linux/390 users, remove these codepage parameters:

-k IBM-850 —r IBM-037

Running the Batch File
To run the batch file on the client:

1 Update your system’s search path, if needed, to include the directory that contains
the executable rccbuild.

2 Make the directory that contains the sample files the current directory.
3 At the command prompt, enter the following:
runscr.bat

The build server returns two output files, whose names are derived from information
in the RUNSCR JCL:

* RUNLOG.SYSPRINT is an empty file. RUNLOG is the stepname on the EXEC
statement that calls BANNER, the COBOL load module.

= RUNLOG.SYSOUT contains the Rational logo, as shown below.

These files are returned to the client because RUNSCR JCL also has SYSPRINT and
SYSOUT DD statements that include the extension parameter RCCEXT=RCCOUT.

62 Mainframe Connectors User’s Guide

Sample rccbuild
Commands

This appendix describes several sample recbuild commands. It also demonstrates that
command options are not positional. For more information on recbuild command
options, see Chapter 4, Sending a Build Request.

Sample Commands

= Ping a Remote Build server called 0s390. No build request is passed.
rccbuild —testServer —~h 0s390@42310

» Return the version of the client executable rccbuild.
rccbuild —version

= Send local files (JCL and COBOL program) to the server for processing.
rccbuild —b reccomp —ft reccomp.jcl —i banner.cob —h 0s390@42310

= Set a time-out factor of one minute for starting the previous build request.
rccbuild —h 0s390@42310 -T 1 —ft rcccomp.jcl —i banner.cob —b rcccomp

» Send TSO login details to the server. If the login details are valid and the user has
access to the required libraries and directories, the makefile is processed.

rccbuild -h prodserv@24434 —au BOSMAO01 —ap DEL34 —ft helpux.mak -b hlp
= Point to an MVS-based library that contains thebuild script INVMAIN.
rccbuild -h prodserv@24434 —proclib ACPDEV.LONDON.JCL -b INVMAIN

= Pass values for user-defined variables for a script through the —v option. The
command also identifies input (-i) and dependent (-d) files.

rccbuild —h 0s390@55323 -b cobcomp —ft cobcomp.jcl —it banner.cbl —dt
banner.led -v MBR=BANNER COBCOMP=MYCOB.LIB LERUN=MY.LE.LIB
HLQ=HAZLTON SYSTEM=INVENT

= Set up a line prefix for messages that are recorded in the client log (rccbuild.log)
during an MVS build run.

63

rccbuild —h 0s390@47123 —b rcccomp —ft rcccomp.jcl —i banner.cob
-P MONDAYJSMITH

= Set the maximum verbosity for messages recorded in the file rccbuild.log.

rccbuild -h prodserv@24434 —proclib ACPDEV.LONDON.JCL -b INVMAIN
-V-V-V

= Use the —c and —n options to set a test for continuing processing. It also
demonstrates overlaying the two options with new values.

rccbuild —h 0s390@4602 —b cob —ft cobcomp.jcl —it banner.cbl -dt banner.led
-GT-cEQ-n10-n0

64 Mainframe Connectors User’s Guide

Index

&COMMA variable 51
&DEP variable 50
&INPUT variable 50
&OUTPUT variable 50
&PARM variable 51
&SP variable 51

@ signs in filenames 53

A

absolute directory paths 40
APF-authorized libraries 18
authenticating users

inTSO 18
authentication users

setting level for 18

B

BPXBATCH utility

running Remote Build script with 25
build environment

passing variables to 38
build requests

handling multiple MVS 16

handling multiple USS 16

queuing 17
build scripts

indicating build filesin 44

passing parameters to 39

remote 32
specifying 43
specifying local 32

build server

passing login information 36

pinging 32
builds 35
codepages for 37

dependent files for 34

input files for 34

setting timeout factor

working directory for (USS)

C

ccase-home-dir directory v

clearmake utility
makefile example 55
overview 55

client command
repeating options 31

submitting 43

38

35

65

client command (rccbuild) 29
client command examples 63
client software 5

client version 31

COBOL build example 59
codepages 37

command syntax, rccbuild 29
concurrency considerations 17
configuring MVS server 22
connectivity requirements 2

conventions, typographical v

D

DD statements

user-defined variables for 38
deliverables

MVSonly 6

UsS 6
dependent files 34
USsS 40

derived objects, sample output 27

E

EBCDIC conversions 31
EXEC statement
build requirements 46

imbedding rccbuild in makefile 55
input files 34
MVS 34

66 Name of Manual

USss 40
installing 5
Remote Build client 5
Remote Build server 5
Installing Remote Build server
overview 5

IVP 26

J

JCL build scripts

overview 43
JCL members

customization requirements 22
JOB statement

in build scripts 43

L

Log files
rccblde 17

log files
ccublde 56

logging server messages 21
logging trace entries 21

login details 36

LRECL consideration, build scripts

M

makefile

running 56

makefile example 55
message line prefix 39
multithreaded server 1

MVS deliverables 6
MYVS server

running 13

N

national language messages 6

o)

operating systems, supported 2
output files
returning to client 35
USsS 40
output messages 49
overriding JCL PDS 33

P

passing build script parameters 39
passing options to script 39
passing variables to build server 38
PDS locations 33
pinging server 32
port number

selecting 25

setting 26—28

predefined variables

&COMMA 51
&DEP 50
&INPUT variable 50
&OUTPUT 50

&SP 51
prefix, message line prefix 39
prefixing server messages 39
prerequisites, server installation 7

proclib location, for JCL scripts 33

Q

queue size, setting 17

queuing build requests 17

R

RACEF authentication 18
RCCBLDS module 6
RCCBLDW module 6
rccbldw script 25
rccbuild command options

-ap 37
-au 36
b 32
-c 38
-d 34
-f 32
-h 32
i 34
-k 37
-1 35
-n 37
-0 35
-P 39
p 39
-proclib 33
r 37
-T 38

Index 67

-testServer 32 returning derived objects to client 56
-V 37 returning output to client 35
v 38 running MVS server 13

-version 31 running USS server 13

rccbuild command syntax 29
rccbuild commands, samples 63

RCCDLL module 6 S
RCCEXT extension parameters

examples 44 sample input file 27
overview 20 sample output file 27
RCCMAIN module 6 sample rccbuild commands 63
RCCMSENU module 6 security
RCCMSG module 6 for MVS objects 18
RCCMVS member 22 server machine 32
RCCRUNM member 22 SCIVEr messages
RCCUSS member logging 21
editing 26 server port 32
region size requirement (MVS) 10 server timeout 38
relative directory paths 40 SMP/E for MVS installation
Remote Build RECEIVE-APPLY-ACCEPT 9
processing overview 13 runtime parameters 8
Remote Build client SMP/E libraries 8
requirements 2 SMP/E for USS installation
remote build script 32 DD definitions 10
Remote Build server RECEIVE-APPLY-ACCEPT 10
installing 5 runtime parameters 9
requirements 3 spawning build processes 16
repeating rccbuild options 31 starting the MVS server 24
required rccbuild options 29 starting the USS server 26
requirements stopping
client 2 MVS server 25
Remote Build server 3 USS server 26

return codes

logic for processing 37

68 Name of Manual

submitting local build scripts 32

submitting the startup job (USS)

Synopsis (rccbuild command)

T

TCP/IP

sockets 17
TCP/IP requirement 2-3
technical support vi
timeout factor for builds 38
trace entries

logging 21
typecase conversions 31

typographical conventions v

U

underscores in filenames 53
UNIX working directories 40
USS deliverables 6
USS server

installing 9

running 13

\'

verbosity (messaging) 37

verifying client/server communication 26

MVS 26
uss 27

version, client 31

w

working directories (UNIX)

40

Index 69

70 Name of Manual

	User’s Guide
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	Typographical Conventions
	Technical Support

	Figures
	Tables
	Contents
	Overview
	Platforms and Components
	About the Remote Build Server
	Starting a Remote Build Request

	Hardware and Software Requirements for Remote Build
	Client Requirements
	Connectivity
	Supported Hardware and Operating Systems

	Server Requirements
	Connectivity
	Supported Hardware and Operating Systems

	Installing Remote Build Client and Server Components
	Installing the Client Component
	Setting Up the Server Component
	About Installing Remote Build Server
	About Remote Build Server Files
	MVS Deliverables
	USS Deliverables

	Installation Prerequisites
	Uploading the file RCCOS390
	Running the RCCOS390 EXEC

	Setting Up the MVS Server
	Setting Up Run-time Parameters
	Setting up SMP/E Libraries
	Running SMP/E RECEIVE-APPLY-ACCEPT

	Setting Up the USS Server
	Setting Up Run-time Parameters
	Setting Up JCL DD Definitions for SMP/E
	Running SMP/E RECEIVE-APPLY-ACCEPT

	Configuring the Remote Build Server
	About Processing Build Requests
	Running a Build Server in MVS
	Running a Build Server in USS
	Processing Multiple Requests
	Queuing Requests
	Setting Queue Size

	Authenticating Users
	Understanding Server Authentication Modes

	Making MVS Users Owners of Their Remote Build Jobs
	Overriding the Default Job Name

	Returning MVS Output Files to the Client Machine
	Returning USS Output Files to the Client Machine
	Logging Server Messages and Traces
	Activating Server Tracing
	Activating Build Request Tracing
	MVS Builds
	USS Builds
	Determining the USS Trace File Location

	Configuring the Server Under MVS
	Modifying JCL
	Editing the RCCRUNM Member
	Editing the RCCMVS Member

	Starting the Server
	Stopping the Server

	Configuring the Server Under USS
	Modifying JCL
	Editing the RCCRUNU Member
	Editing the RCCUSS Member

	Starting and Stopping the Server

	Verifying Client/Server Communication (MVS)
	Verifying Client/Server Communication (USS)
	Running the Sample Executable

	Sending a Build Request
	Using the Client Command (rccbuild)
	Synopsis
	DESCRIPTION
	Repeating Command Options
	EBCDIC Translation (MVS Only)
	Sending User IDs and Passwords

	OPTIONS AND ARGUMENTS
	Obtaining the Remote Build Client Version
	Specifying a Remote Build Server
	Pinging a Remote Build Server
	Specifying a Local Build Script
	Specifying a Server-Side Build Script
	Specifying a Server-Side Build Script in a Nondefault PDS
	Specifying Client-Based Source Files
	Returning Output Files to Client Machine
	Keeping Output Files on the Server
	Specifying the Directory for a USS Build
	Specifying TSO Login Details
	Specifying Codepages for ASCII to EBCDIC Conversion
	Setting Message Verbosity
	Setting the Condition for Valid Return Codes
	Specifying a Time-out Factor
	Setting Environment Variables
	Passing Variables to Build Scripts
	Specifying Prefix for Messages Returned to Client Log File

	Using the –i, –o and –d Options with USS Builds
	Specifying Input and Dependent Files
	Input File Examples

	Specifying Output Files
	Output File Examples

	Working with Build Scripts
	Identifying Build Scripts at Run Time
	Understanding JCL Build Scripts
	Understanding Coding Requirements
	Testing Scripts on the Mainframe

	Identifying Build Files
	Sample Scenarios
	Input File on Client Machine
	Dependent File on Client Machine
	Output File, Link-Edit Step

	Coding the EXEC Statement
	Coding the DD Statement
	Identifying Files Using RCCEXT DD Parameters
	Identifying Input Files
	Identifying Dependent Files
	Sending Output Messages to a Client File
	Sending Output Messages to the Client’s Screen and a File

	Using Variables
	Using Predefined Variables
	Using User-Defined Variables
	Setting Defaults for User-Defined Variables

	File Name Conversions for MVS
	Conversion Examples

	Using Remote Build with clearmake
	Creating a makefile for a Remote Build
	Running the makefile
	Returning Derived Objects to the Client

	Sample Build Files
	About the Sample Files
	Submitting the COBOL Build Request
	Editing the Batch File
	Understanding the User-Defined Variables in the Build Script
	Running the Batch File

	Running the COBOL Load Module
	Editing the Batch File
	Running the Batch File

	Sample rccbuild Commands
	Sample Commands

	Index

