
Rational ® IBM Rational Robot

Documentation Supplement

Version 7.0.0.1

Windows

GI11-6387-00

���

Rational ® IBM Rational Robot

Documentation Supplement

Version 7.0.0.1

Windows

GI11-6387-00

���

Note:

Before using this information and the product it supports, read the information under “Notices,” on page 39.

2nd edition (December 2006)

This edition applies to version 7.0.0.1 of IBM Rational Robot (product number 5724-G24) and to all subsequent

releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Who should read this document v

Typographical conventions v

Contacting IBM Customer Support for Rational

software products vi

Downloading the IBM Support Assistant vi

Chapter 1. Login 1

Chapter 2. Managing Projects 3

Using Robot Project Administrator 3

Creating a project 3

Registering and unregistering a project 4

Importing assets from Rational Suite Projects . . 4

Deleting a project 4

Chapter 3. Managing test scripts and

associated assets 5

Creating a GUI script 5

Creating a GUI shell script 5

Creating a Project Header file 5

Creating a SQA Basic file 5

Editing a GUI script, Project Header file or SQABasic

file 6

Deleting a GUI script 6

Chapter 4. Managing datapools 7

Creating a datapool 7

About datatypes 8

Editing datapools 12

Importing datapools 12

Exporting datapools 13

Chapter 5. Logs 15

Chapter 6. Customizing IBM Rational

Robot modes 17

Asset management 17

Initialize() 17

LoginToProject() 17

CreateScript() 18

GetScriptByName() 18

Logging 19

SetLogParam() 19

GenericLogEvent () 19

LaunchViewer() 20

Chapter 7. Configuring Robot with test

management solutions 21

COM Interface APIs 21

LoginToProject() 21

ExecuteScript() 21

ExecuteScriptEx() 22

Logoff() 22

GetState() 22

AbortPlayback() 23

OpenScript() 23

Chapter 8. IBM Rational Robot 7.0

supplement documentation 25

General and functional testing 25

Changes and enhancements 25

Product support 27

Performance testing 31

Session recording and script generation

extensibility 31

NTLM feature enhancement 31

SQABasic 31

DataGrid 31

TreeView 32

ListView 33

ListBox 34

CheckedListBox 35

TabControl 35

Calendar 36

ToolBar 37

Appendix. Notices 39

Trademarks 41

© Copyright IBM Corp. 2000, 2006 iii

iv Documentation Supplement

About this document

This documentation supplement describes IBM® Rational® Robot features that have

been introduced in the past several service releases, from version 2003.06.12 to

version 7.0.0.1. The information in this document supplements the information in

the Help and the IBM Rational Robot User’s Guide.

IBM Rational Robot 7.0.0.1 is integrated with ClearQuest Test Manager 7.0.0.1. For

more information about working with ClearQuest Test Manager, refer to the

ClearQuest Test Manager Help.

Who should read this document

The information in this document is intended for Rational Robot users.

Typographical conventions

This manual uses the following typographical conventions:

v ccase–home–dir represents the directory into which Rational ClearCase, Rational

ClearCase LT, or Rational ClearCase MultiSite has been installed. By default, this

directory is /opt/rational/clearcase on the UNIX system and Linux, and

C:\Program Files\Rational\ClearCase on Windows.

v cquest-home-dir represents the directory into which Rational ClearQuest has been

installed. By default, this directory is /opt/rational/clearquest on the UNIX

system and Linux, and C:\Program Files\Rational\ClearQuest on Windows.

v Bold is used for names the user can enter; for example, command names and

branch names.

v A sans-serif font is used for file names, directory names, and file extensions.

v A serif bold font is used for GUI elements; for example, menu names and

names of check boxes.

v Italic is used for variables, document titles, glossary terms, and emphasis.

v A monospaced font is used for examples. Where user input needs to be

distinguished from program output, bold is used for user input.

v Nonprinting characters appear as follows: <EOF>, <NL>.

v Key names and key combinations are capitalized and appear as follows: Shift,

Ctrl+G.

v [] Brackets enclose optional items in format and syntax descriptions.

v { } Braces enclose a list from which you must choose an item in format and

syntax descriptions.

v | A vertical bar separates items in a list of choices.

v ... In a syntax description, an ellipsis indicates you can repeat the preceding item

or line one or more times. Otherwise, it can indicate omitted information.

Note: In certain contexts, you can use “...” within a pathname as a wildcard,

similar to “*” or “?”. For more information, see the wildcards_ccase

reference page.

v If a command or option name has a short form, a “slash” (/) character

indicates the shortest legal abbreviation. For example:

lsc/heckout

© Copyright IBM Corp. 2000, 2006 v

Contacting IBM Customer Support for Rational software products

If you have questions about installing, using, or maintaining this product, contact

IBM Customer Support as follows:

The IBM software support Internet site provides you with self-help resources and

electronic problem submission. The IBM Software Support Home page for Rational

products can be found at http://www.ibm.com/software/rational/support/.

Voice Support is available to all current contract holders by dialing a telephone

number in your country (where available). For specific country phone numbers, go

to http://www.ibm.com/planetwide/.

Note: When you contact IBM Customer Support, please be prepared to supply the

following information:

v Your name, company name, ICN number, telephone number, and e-mail

address

v Your operating system, version number, and any service packs or patches

you have applied

v Product name and release number

v Your PMR number (if you are following up on a previously reported

problem)

Downloading the IBM Support Assistant

The IBM Support Assistant (ISA) is a locally installed serviceability workbench that

makes it both easier and simpler to resolve software product problems. ISA is a

free, standalone application that you download from IBM and install on any

number of machines. It runs on AIX®, (RedHat Enterprise Linux® AS), HP-UX,

Solaris, and Windows® platforms.

ISA includes these features:

v Federated search

v Data collection

v Problem submission

v Education roadmaps

For more information about ISA, including instructions for downloading and

installing ISA and product plug-ins, go to the ISA Software Support page.

IBM Support Assistant: http://www.ibm.com/software/support/isa/

vi Documentation Supplement

http://www.ibm.com/software/rational/support/
http://www.ibm.com/planetwide/
http://www.ibm.com/software/support/isa/

Chapter 1. Login

This chapter describes the login procedure of Rational Robot Standalone mode.

Rational Robot is enhanced so that it can be used in a standalone mode, without

any integration with Rational Test Manager or any other Rational Test

Management solutions. Although the Rational Robot changed, Rational Test

Manager functions and login procedure. For more information, see the Rational

Test Manager Help.

Before you read this chapter, you should be familiar with the functions of Rational

Test Manager and Rational Robot.

To log in to Robot Standalone mode, perform the following steps:

1. Start the IBM Rational Robot application by selecting Programs -> IBM

Rational -> IBM Rational Robot or clickIBM Rational Robot icon on your

desktop.

The Select a Mode dialog box appears.

2. Select the Robot Standalone mode from the Mode list. The Select a Project

dialog box appears.

Note:

To set the default mode to Standalone Robot, select Use this as default

and do not ask again check box.

3. Do one of the following in the Select a Project dialog box:

v Select an existing Robot project from the Project list.

v Select an unregistered project, by selecting Browse from the Project list and

the required project from the Select Robot Project dialog box.

v Manage projects by clicking Manage. For more information, see Chapter 2

Managing Projects.

© Copyright IBM Corp. 2000, 2006 1

2 Documentation Supplement

Chapter 2. Managing Projects

This chapter describes how Robot Standalone projects are managed using the

Robot Project Administrator. By using the Robot Project Administrator, you can do

the following:

v Create projects

v Register and unregister projects

v Import assets from Rational Suite Projects to Robot project

You can delete the registered Robot projects from the location in which they are

created. For more information, see Deleting a Project.

Using Robot Project Administrator

You use the Robot Project Administrator to manage projects. To use the Robot

Project Administrator, perform one of the following steps:

v Log into Robot Standalone mode and click Manage in the Select a Project dialog

box. The Robot Project Administrator window appears.

OR

v From the Rational Robot menu, select Tools -> Manage Robot Projects. The

Robot Project Administrator window appears.

The Robot Project Administrator window is composed of two parts, the Project

pane and the Details pane. The Project pane displays a list of Rational Robot

projects and the Details pane displays the details of an item such as a project that

you selected in the Project pane.

Creating a project

To create a new project, perform the following steps:

1. Right-click on Projects and select New Project.

The New Projects - General page appears.

2. Enter the project name and the location (in UNC format).

Note: The following is an example of a possible path name (in UNC format):

\\computer_name\directory\sub_directory, where the subdirectory

would be an empty directory. If the directory is not empty, an error

message is displayed asking you to specify an empty directory.

3. Select Customize TestAssets Path checkbox, to customize the TestAssets path.

Note: By customizing the test assets path, you are storing the test assets in a

path other than the default one.

4. Click Browse to select the TestAssets path.

5. Click Next.

6. Read the summary of the project settings provided in the New Project -

Summary page.

7. Click Finish to accept the settings, or click Back to change the settings.

The project that you created is displayed in the Projects list in the Robot Project

Administrator window with the following information:

v Location - The location of the Robot project.

© Copyright IBM Corp. 2000, 2006 3

v Path - The complete pathname of the Robot project.

Registering and unregistering a project

If you plan to administer a Rational Robot project on a computer other than the

one on which it was created, register the project after creating and configuring it.

You can also register any unregistered project. You register the Rational Robot

project on the same computer you used to create and configure the project. To

register a project, perform the following steps:

1. Right-click on Projects and select Registering Existing Project.

2. Select the required project and click Open.

After a project is registered, the project name appears in the project hierarchy in

the Rational Robot Administrator’s left pane.

Unregistering a project makes it disappear from the project hierarchy. To unregister

a Robot project, perform the following steps:

1. Expand the Projects folder from the Robot Project Administrator's left pane.

The registered projects are displayed.

2. Select a project to unregister, right-click , and select Unregister Project.

The project is unregistered and removed from the project hierarchy in the

Rational Robot Administrator’s left pane.

Importing assets from Rational Suite Projects

When you import assets from a Rational Suite Project to an existing or new Robot

project, the GUI assets and datapools are imported into the Robot Project. To

Import assets from a Rational Suite Project to an existing or a new Robot project,

perform the following steps:

1. Right-click on Projects and select the option, Importing Assets from Rational

Suite Project.

2. Select a Rational Suite Project and a Robot Project in the Import Assets (Page 1

of 2) page.

3. (Optional) Click New to create a new Robot project and then import test assets

from a Rational Suite Project.

4. Select Overwrite Assets to overwrite the existing assets.

5. Click Next and read the instructions and project summary in the Import Assets

(Page of 2 of 2) page.

6. Click Finish if you are satisfied with the settings or click Back to change the

settings.

The assets are imported into the Robot project.

Deleting a project

You can delete the registered Robot projects only from the location in which they

are created. Once the project is deleted from its location, you can unregister it from

the Robot Project Administrator or it will be removed from the projects hierarchy

the next time you open the Robot Project Administrator window.

 To delete a project, perform the following steps:

1. Go to the project folder and delete the entire project folder.

2. Unregister the project from Robot Project Administrator. For more information,

see Registering and Unregistering a project.

4 Documentation Supplement

Chapter 3. Managing test scripts and associated assets

This chapter describes how you can manage test scripts and associated assets in

Robot Standalone mode. The test scripts and associated assets are now stored in

Robot projects instead of in any test management solutions and can be managed in

the following ways:

v Creating a GUI script, GUI shell script, Project Header file, or SQABasic file

v Editing a GUI script, Project Header file, or SQABasic file

v Deleting a GUI script

Creating a GUI script

In Robot Standalone, you can only create a GUI script but not a VU script. To

create a GUI script, perform the following steps:

1. Select File -> New ->Script from the Rational Robot menu.

2. Type a name (40 characters maximum) and optionally, a description in the New

Script dialog box.

3. Click the radio button GUI.

4. Click OK.

The GUI Script window displays the script that you created. For more

information on GUI scripts, see the Rational Robot Help.

Creating a GUI shell script

To create a GUI shell script, perform the following steps:

1. Select File -> New ->GUI Shell Script or File -> Record GUI from the Rational

Robot menu. Or click CTRL+N or CTRL +R.

2. Type a name (40 characters maximum) and optionally, a description in the New

GUI Shell Script dialog box.

3. Click OK.

The GUI Shell Script window displays the shell script that you created. For

more information on GUI shell script, see the Rational Robot Help.

Creating a Project Header file

To create a Project Header file, select File -> New ->Project Header File from the

Rational Robot window.

The Project Header file window opens with a default name. You can specify the

name of the file when you save it. The new project header file is saved with the

file extension .sbh. For more information on project header files, see the Rational

Robot Help.

Creating a SQA Basic file

To create a SQA Basic file, perform the following steps:

1. Select File -> New-> SQA Basic File from the Rational Robot menu.

2. Select the file type as Header File or Library Source File and click OK.

© Copyright IBM Corp. 2000, 2006 5

The SQA Basic File type window appears with the header or library source file.

For more information on SQA file types, see the Rational Robot Help.

Editing a GUI script, Project Header file or SQABasic file

You can edit the existing GUI scripts, header files, or SQA file types.

To edit, select File -> Open and select GUI script, Project Header file, or SQA Basic

file option.

The appropriate window is displayed to edit the script, header file, or SQA file

type. For more information, see Rational Robot Help.

Deleting a GUI script

You can delete a GUI script from a project in Robot Standalone mode. To delete

GUI script, perform the following steps:

1. Select File -> Delete -> GUI Script from the Rational Robot menu.

2. Select a script from the list in the Delete Script window.

3. Click Delete. Click OK to confirm the deletion.

4. Click Close.

Deleting a GUI script from the project also deletes its corresponding script file

(.rec), executable file (.sbx), verification points, and low-level scripts.

6 Documentation Supplement

Chapter 4. Managing datapools

This chapter describes how datapools are managed in Robot Standalone mode.

Datapools let you automatically pump test data to virtual testers under

high-volume conditions that potentially involve hundreds of virtual testers

performing thousands of transactions.

Typically, you use a datapool so that:

v Each virtual tester that runs the script can send realistic data (which can include

unique data) to the server.

v A single virtual tester that performs the same transaction multiple times can

send realistic data to the server in each transaction.

To make the managing of datapools easier, Robot Standalone offers similar

functionality as Test Manager for managing datapools. You can manage datapools

by doing the following:

v Creating a datapool

v Editing datapools

v Exporting and importing datapools

Creating a datapool

To create and automatically populate a datapool, perform the following steps:

 1. From the Robot Standalone menu, select Tools > Manage Datapools.

 2. Click New.

 3. Type a name for the datapool (40 characters maximum).

 4. Click OK.

 5. Click Yes to acknowledge that you want to define the datapool now.

The Data Type Specification dialog box appears, in which you define the

columns (that is, fields) in the datapool file. Datapool column definitions are

listed as rows in this dialog box.

 6. Click Insert before or Insert after to add a datapool column to the datapool.

 7. Type a name for the new datapool column (40 characters maximum).

 8. Assign a data type to the Type datapool column plus any other settings

required for the column you are creating. For more information on datatypes,

see About datatypes.

 9. Repeat steps 6 through 8 until you have defined all the columns in the

datapool.

10. Type a number in the No. of records to generate field. Alternatively, if you do

not want to generate any data now, click Save to save your datapool column

definitions, and then click Close.

Note: If you are generating unique values for an Integers - Signed data type,

Length, Minimum, Maximum, and No. of records to generate must be

consistent. For example, if you want unique numbers from 0 through

999, errors may result if you set Length to 1, Maximum to 5000, and/or

No. of records to generate to a number greater than 1000.

11. When you are finished defining datapool columns, click Generate Data.

© Copyright IBM Corp. 2000, 2006 7

Note: You cannot automatically generate data to a datapool that has more

than 150 columns defined for it in the Data Type Specification dialog

box.

12. Optionally, click Yes to see a brief summary of the generated data. If there are

errors, an error message appears, you can correct the error in the Datapool

Fields grid.

Note: You cannot automatically generate data to a datapool that has more

than 150 columns defined for it in the Datapool Specification dialog

box.

To see the generated values, close the Data Type Specification dialog box. In the

Manage Datapools dialog box, select the datapool you just created, click Edit, and

then click Edit Datapool Data.

About datatypes

A datapool data type is a source of data for one datapool column. For example, the

Names - First data type (shipped with Rational Test as a standard data type)

contains a list of persons’ first names. Suppose you assign this data type to the

datapool column FNAME. When Robot automatically generates the datapool, it

populates the FNAME column with all the values in the Names - First data type.

The two kinds of datapool data types are:

v Standard data types that are included with Rational Test. These data types

include commonly used, realistic sets of data in categories such as first and last

names, company names, cities, and numbers. For more information, see About

Standard data types.

v User-defined data types that you create. In Robot Standalone mode, you cannot

create user-defined data types however, you can create them in Test Manager.

For more information, see the Test Manager Help.

About standard datatypes

Data types supply datapool columns with their values. You assign data types to

datapool columns when you define the columns in the Datapool Specification

dialog box. The standard data types listed in the following table are included with

your Rational Robot software. Use these data types to help populate the datapools

you create. The standard data types are listed in the Datapool Specification dialog

box under the heading Type, and the other datapool column definitions (such as

Length and Interval) referenced in the following table are some of the definitions

you set in this dialog box.

 Table 1.

Type Description

Address – Street Street numbers and names. No period after abbreviations.

Cities – U.S. Names of U.S. Cities

Company Name Company names (including designations such as Co and Inc where

appropriate).

Date – Aug 10,

2006

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 01011900 and Maximum to 12312050. The

day portion of the string is always two characters. Days 1 through 9

begin with a blank space. To include the comma (,) as an ordinary

character rather than as the .csv file delimiter, the dates are enclosed

in double quotes when stored in the datapool.

8 Documentation Supplement

Table 1. (continued)

Type Description

Date – August 10,

2006

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 01011900 and Maximum to 12312050. The

day portion of the string is always two characters. Days 1 through 9

begin with a blank space. To include the comma (,) as an ordinary

character rather than as the .csv file delimiter, the dates are enclosed

in double quotes when stored in the datapool.

Date –

MM/DD/YY

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 1999, set Minimum to 010100 and Maximum to 123199. You can

only specify a range of dates in the same century (that is, the year in

Maximum must be greater than the year in Minimum). To include the

slashes (/) as ordinary characters rather than as the .csv file

delimiter, the dates are enclosed in double quotes when stored in the

datapool.

Date –

MM/DD/YYYY

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 01011900 and Maximum to 12312050. To

include the slashes (/) as ordinary characters rather than as the .csv

file delimiter, the dates are enclosed in double quotes when stored in

the datapool.

Date – MMDDYY Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 1999, set Minimum to 010100 and Maximum to 123199. You can

only specify a range of dates in the same century (that is, the year in

Maximum must be greater than the year in Minimum).

Date –

MM-DD-YY

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 1999, set Minimum to 010100 and Maximum to 123199. You can

only specify a range of dates in the same century (that is, the year in

Maximum must be greater than the year in Minimum).

Date –

MMDDYYYY

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 01011900 and Maximum to 12312050.

Date –

MM-DD-YYYY

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 01011900 and Maximum to 12312050.

Date –

YYYY/MM/DD

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 19000101 and Maximum to 20501231. To

include the slashes (/) as ordinary characters rather than as the .csv

file delimiter, the dates are enclosed in double quotes when stored in

the datapool.

Date –

YYYYMMDD

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 19000101 and Maximum to 20501231.

Date, Julian –

DDDYY

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 1999, set Minimum to 00100 and Maximum to 36599. DDD is the

total number of days that have passed in a year. For example, January

1 is 001, and February 1 is 032.

Chapter 4. Managing datapools 9

Table 1. (continued)

Type Description

Date, Julian –

DDDYYYY

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 1999, set Minimum to 00001 and Maximum to 99365. DDD is the

total number of days that have passed in a year. For example, January

1 is 001, and February 1 is 032.

Date, Julian –

YYDDD

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 1900001 and Maximum to 2050365. DDD is

the total number of days that have passed in a year. For example,

January 1 is 001, and February 1 is 032.

Date, Julian –

YYYYDDD

Dates in the format shown.

Note: To set a range of dates from January 1, 1900 through December

31, 2050, set Minimum to 1900001 and Maximum to 2050365. DDD is

the total number of days that have passed in a year. For example,

January 1 is 001, and February 1 is 032.

Float – X.XXX Positive and negative decimal numbers in the format shown. Set

Length to the number of decimal places to allow (up to 6). Set

Minimum and Maximum to the range of numbers to generate. To

generate numbers with more than 9 digits (the maximum allowed

with the Integers - Signed data type), use the Float - X.XXX data type

and set Decimals to 0. For example, credit card numbers typically

have more than nine digits. To generate credit card numbers with the

Float - X.XXX data type:

1. Set Decimals to 0.

2. Set Length to the number of digits in a credit card number.

3. Set Sequence to Random.

4. Set Repeat to 1 to ensure unique credit card numbers.

5. Set Minimum and Maximum to the smallest and largest possible

credit card numbers.

Float –

X.XXXE+NN

Positive and negative decimal numbers in the exponential notation

format shown. Set Length to the number of decimal places to allow

(up to 6). Set Minimum and Maximum to the range of numbers to

generate.

Gender Either M or F, with no following period.

Hexadecimal Hexadecimal numbers.

Integers – Signed Positive and negative whole numbers. This is the default data type. To

include negative numbers in the list of generated values, set Minimum

to the lowest negative number you want to allow. Maximum range:

v Minimum = -999999999 (-999,999,999)

v Maximum = 999999999 (999,999,999)

For larger numbers, use a float data type. If you do not specify a

range, the default range is 0 through 999,999,999. Use this data type to

generate unique data in a datapool column (for example, when you

need a ″key″ field of unique data). You can also use Read From File

and user-defined data types to generate unique data.

Name – Middle Masculine and feminine middle names. If the middle name is

preceded by a field with masculine or feminine value (such as a

masculine or feminine first name), the middle name is in the same

gender category as the earlier field.

10 Documentation Supplement

Table 1. (continued)

Type Description

Name – Prefix

(e.g., Mr)

Mr or Ms, with no following period. If the name prefix is preceded by

a field with masculine or feminine value (such as a masculine or

feminine gender designation), the name prefix is in the same gender

category as the earlier field.

Names – First Masculine and feminine first names. If the first name is preceded by a

field with masculine or feminine value (such as a masculine or

feminine name prefix), the first name is in the same gender category

as the earlier field.

Names – Last Surnames.

Name – Middle

Initial

Middle initials only, with no following period.

Packed Decimal A number where each digit is represented by four bits. Digits are

non-printable. Note that commas and other characters that may be

used to represent a packed decimal number may cause unpredictable

results when the datapool file is read.

Phone – 10 Digit Telephone area codes. To generate correct area code lengths, set

Length to 3.

Phone – Area

Code

Telephone area codes. To generate correct area code lengths, set

Length to 3.

Phone – Exchange Telephone exchanges. To generate correct exchange lengths, set Length

to 3.

Phone – Suffix Four-digit telephone numbers (telephone numbers without area code

or exchange). To generate correct telephone number suffix lengths, set

Length to 4.

Random

Alphabetic String

Strings of random upper case and lower case letters and digits. Length

determines the number of characters generated.

Random

Alphanumeric

String

Strings of random upper case and lower case letters and digits. Length

determines the number of characters generated.

Read From File Assigns values from an ASCII text file to the datapool column. For

example, you could export a database column to a text file, and then

use this data type to assign the values in the file to a datapool column.

You can use this data type to generate unique data. You can also use

the Integers - Signed and user-defined data types to generate unique

data.

Space Character An empty string.

State Abbrev –

U.S.

Two-character state abbreviations.

String Constant A constant with the value of Seed. The datapool column is filled with

this one alphanumeric value.

Time – HH.MM.SS Times in the format shown. Hours range from 00 (midnight) through

23 (11 pm).

Note: To set a range of times from midnight to 2 pm, set Minimum to

0 and Maximum to 140000.

Time – HH:MM:SS Times in the format shown. Hours range from 00 (midnight) through

23 (11 pm). To include the colons (:) as ordinary characters rather

than as the .csv file delimiter, the dates are enclosed in double quotes

when stored in the datapool.

Note: To set a range of times from midnight to 2 pm, set Minimum to

0 and Maximum to 140000.

Chapter 4. Managing datapools 11

Table 1. (continued)

Type Description

Time – HHMMSS Times in the format shown. Hours range from 00 (midnight) through

23 (11 pm).

Note: To set a range of times from midnight to 2 pm, set Minimum to

0 and Maximum to 140000.

Zip Code – 5 Digit Five-digit U.S. postal zip codes. To generate the correct zip code

lengths, set Length to 5.

Zip Code – 9 Digit Nine-digit U.S. postal zip codes.

Zip Code – 9 Digit

with Dash

Nine-digit U.S. postal zip codes with a dash between the fifth and

sixth digits.

Zoned Decimal Zoned decimal numbers.

Editing datapools

When you create a .csv file and import it as a datapool, Robot Standalone

automatically assigns column names (that is, datapool field names) to each

datapool column. You can edit the data in the columns of an existing or an

imported datapool.

To edit datapools columns, perform the following steps:

Note: Datapool columns are also called fields.

1. From the Robot Standalone menu, select Tools > Manage Datapools.

2. Click the name of the datapool whose names you want to edit.

3. Click Edit.

4. Click Define Datapool Fields.

5. Modify the datapool column names. Datapool column names appear in the

Name column of the grid.

6. When you finish editing datapool column names, click Save, and then click

Close.

Importing datapools

Robot Standalone imports data from .csv files and automatically creates and

populates datapools for you. You can import the data using the Robot Standalone

Import feature.

To import a datapool perform the following steps:

1. From the Robot Standalone menu, selectTools > Manage Datapools.

2. Click Import.

3. In the Look in box, specify the directory where the datapool you created is

located.

4. In the File name box, specify the name of the datapool .csv file.

5. Click Open. The Import Datapool dialog box appears, containing the datapool

name.

6. Accept the default datapool name or type a new name (40 characters

maximum).

7. In the Field Separator box, make sure the character(s) displayed are the same

as the field separator used in the .csv file you are importing as a datapool.

12 Documentation Supplement

8. Optionally, type a description of the datapool (255 characters maximum).

9. Click OK, and then click Close.

Exporting datapools

You can export a datapool to any directory on your computer’s directory structure.

When you export a datapool, the original datapool remains in its project.

To export a datapool:

1. From the Robot Standalone menu, select Tools > Manage Datapools.

2. Click the datapool to export.

3. Click Export.

4. In Save In, specify the directory where you want to copy the datapool.

5. Click Save.

6. Click OK to acknowledge that the datapool was exported to the correct

location.

Chapter 4. Managing datapools 13

14 Documentation Supplement

Chapter 5. Logs

In IBM Rational Robot Standalone mode, the logs are generated in .xml format.

You can customize the appearance of the XML file by attaching a template.

When you play back a script the test results are generated as raw XML data and

are published in a log file. By default, these log files are saved in <Project

Name>\TestAssets\Log.

© Copyright IBM Corp. 2000, 2006 15

16 Documentation Supplement

Chapter 6. Customizing IBM Rational Robot modes

IBM Rational Robot provides APIs to extend different Robot functions. With these

APIs, you can create your own mode in IBM Rational Robot.

To create a new mode in IBM Rational Robot, perform the following:

v Create the AssetLibrary and a LogLibrary DLLs using the APIs

v Configure the AssetManager.xml file located in the IBM Rational Robot install

directory to include the AssetLibrary and LogLibrary DLLs.

Note: You have an option to use the AssetLibrary provided by Robot and create

your own LogLibrary to customize the log options.

Asset management

You can use the following APIs to manage assets in Standalone Robot:

 Table 2.

Function Description

Initialize() Initializes the Asset Manager

LoginToProject() Logs in to project

CreateScript() Creates new script

GetScriptByName() Gets script by name

Initialize()

This command initializes the Asset Manager.

Syntax

INT Initialize()

Return Values

v If the function succeeds, the return value is nonzero

v If the function fails, the return value is zero

LoginToProject()

This command encapsulates all the steps you need to perform to log in to a Robot

project.

Syntax

INT LoginToProject (INT paramCount, NamedValue *param)

 Table 3.

Parameters Description

paramCount Specifies the number of rows in the parameter array.

param An array containing parameter name/value pairs, where

param[n].name is the property name and param [n].value is its value.

© Copyright IBM Corp. 2000, 2006 17

Return Values

v If the function succeeds, the return value is nonzero

v If the function fails, the return value is zero

Remarks

NamedValue is defined as follows:

typedef struct

{

 char *Name;

 char *Value;

} NamedValue;

Example

LoginToProject(int propertyCount, NamedValue *property, PROJECTINFORMATION** pProjectInfo)

CreateScript()

This command creates a new script.

Syntax

INT CreateScript(TCHAR *scriptName)

 Table 4.

Parameters Description

scriptName scriptName is a pointer to the string that specifies the script name

Return Values

v If the function succeeds, the return value is nonzero

v If the function fails, the return value is zero

Example

createScript(int iOption, SCRIPTPROPERTY *pScriptProperty)

GetScriptByName()

This command returns the location of the scripts in a project.

Syntax

INT GetScriptPath(TCHAR * scriptPath)

 Table 5.

Parameters Description

scriptPath [out] scriptPath is a pointer to the string that returns the script path

Return Values

v If the function succeeds, the return value is nonzero

v If the function fails, the return value is zero

Example

getScriptByName(char * szScriptName, SCRIPTPROPERTY **pScriptProperty)

18 Documentation Supplement

Logging

You can use the following APIs for logging test results in Standalone Robot:

 Table 6.

Function Description

SetLogParam() Sets the log info from user

GenericLogEvent() Publishes the event data

LaunchViewer() Launches the log viewer

SetLogParam()

This API is called before the playback engine starts.

Syntax

INT SetLogParam (TCHAR** logparams)

 Table 7.

Parameters Description

logparams Array of string values

Return Values

v If the function succeeds, the return value is nonzero

v If the function fails, the return value is zero

Remarks

If logparams does not contain all the necessary values then the API can open a

dialog and collect the data form the user.

Example

setLogParam(NamedValue *property)

GenericLogEvent ()

This command publishes the event data.

Syntax

INT GenericLogEvent(int eventCategory, int eventType, int result, int reason, tchar

*description, int propertyCount, NamedValue*property);

 Table 8.

Parameters Description

eventCategory Category of events

eventType Type of event

result Result

reason Reason

description Description of the event

propertyCount Number of properties

property Array of property

Chapter 6. Customizing IBM Rational Robot modes 19

Return Values

v If the function succeeds, the return value is nonzero

v If the function fails, the return value is zero

Example

genericLogEvent(s16 eventCategory, s16 eventType, s16 result, s16 reason, char *description, s32 propertyCount, NamedValue *property)

LaunchViewer()

This command launches the log viewer.

Syntax

INT LaunchViewer(TCHAR * logfile)

 Table 9.

Parameters Description

logfile The name of the log file that needs to be opened in the viewer

Return Values

v If the function succeeds, the return value is nonzero

v If the function fails, the return value is zero

Example

launchViewer(char* pszDefaultLog)

20 Documentation Supplement

Chapter 7. Configuring Robot with test management solutions

IBM Rational Robot Standalone provides COM Interface APIs for integration with

any test management solution.

COM Interface APIs

You can use the following COM Interface APIs to perform tasks in IBM Rational

Robot Standalone mode:

 Table 10.

Function Description

LoginToProject() To log in to a Robot project

ExecuteScript() To playback a recorded script

ExecuteScriptEx() Extension of ExecuteScript()

Logoff() To log off from the project

GetState() To get the current state of Robot

AbortPlayback() To abort playback

OpenScript() To open a script from the project that you are logged

in to

LoginToProject()

This command logs you in to a Robot project.

Syntax

HRESULT LoginToProject([in] BSTR sProjectPath, [in] BSTR sUserName, [in] BSTR

sPassword, [in] BOOL bUseLoginService, [in, optional] SAFEARRAY NamedValue)

 Table 11.

Parameters Description

sprojectPath The full path of the Robot project file

sUsername The user name (if any) for authentication

sPassword The password (if any) for authentication

bUseLoginService

NamedValue The extra login parameters

Return Values

v If the function succeeds, the return value is S_OK

v If the function fails, the return value is E_FAIL or failure HRESULT

ExecuteScript()

This command executes a recorded script from the project you are logged in to.

© Copyright IBM Corp. 2000, 2006 21

Syntax

HRESULT ExecuteScript(BSTR scriptName, [out,retval] long* retVal)

 Table 12.

Parameters Description

scriptName The name of the script to be played back

retVal Legacy param [not used]

Return Values

v If the function succeeds, the return value is S_OK

v If the function fails, the return value is E_FAIL or failure HRESULT

ExecuteScriptEx()

This command is an extension to ExecuteScript().

Syntax

HRESULT ExecuteScriptEx(BSTR scriptName, [in,optional] BSTR SMode)

 Table 13.

Parameters Description

scriptName The name of the script to be played back

Return Values

v If the function succeeds, the return value is S_OK

v If the function fails, the return value is E_FAIL or failure HRESULT

Logoff()

This command closes Standalone Robot.

Syntax

HRESULT Logoff()

Return Values

v If the function succeeds, the return value is S_OK

v If the function fails, the return value is E_FAIL or failure HRESULT

GetState()

This command returns the current state of Standalone Robot.

Syntax

HRESULT GetState([out,retval] int * nRetVal)

 Table 14.

Parameters Description

nRetVal The current state of Robot

Return Values

v If the function succeeds, the return value is S_OK

v If the function fails, the return value is E_FAIL or failure HRESULT

22 Documentation Supplement

Remarks

Standalone Robot returns the following values:

 Table 15.

STATE_IDLE 0x0000

STATE_PLAYBACK 0x0001

STATE_COMPILE 0x0004

STATE_ERROR 0x0008

STATE_OO_RECORD 0x0010

STATE_LL_RECORD 0x0020

STATE_VU_RECORD 0x0040

STATE_PAUSE_RECORD 0x0080

AbortPlayback()

This command stops the playback. If the playback option is set to close, then it will

close Standalone Robot and logoff from the project.

Syntax

HRESULT AbortPlayback()

Return Values

v If the function succeeds, the return value is S_OK

v If the function fails, the return value is E_FAIL or failure HRESULT

OpenScript()

This command opens a recorded script from the project that you are logged in to.

Syntax

HRESULT OpenScript(BSTR scriptName)

 Table 16.

Parameters Description

scriptName The name of the script to be opened

Return Values

v If the function succeeds, the return value is S_OK

v If the function fails, the return value is E_FAIL or failure HRESULT

Chapter 7. Configuring Robot with test management solutions 23

24 Documentation Supplement

Chapter 8. IBM Rational Robot 7.0 supplement documentation

This chapter describes IBM Rational Robot features that were introduced in the

past several service releases, from version 2003.06.12 to version 7.0. The

information in this chapter supplements the information in the Help and the IBM

Rational Robot User’s Guide.

General and functional testing

This section describes changes, enhancements to Rational Robot from version

2003.06.12 through version 7.0

Changes and enhancements

Alphanumeric verification points

The use of user-defined types for alphanumeric verification points (VPs) is now

supported as described in the IBM Rational Robot User’s Guide.

To use alphanumeric VPs:

1. Select an object to capture.

2. Click Display GUI Insert Toolbar on the GUI Record Toolbar (if recording) or

on the standard toolbar (if editing).

3. Click Alphanumeric Verification Point.

4. In the Alphanumeric Verification window, select Apply a User-Defined DLL

Test Function.

5. Click OK.

6. In the DLL Function Call window, enter values for a Library Filename and

Function.

7. Click OK.

Icon and splash screen

There is a new product icon and splash screen for this release of Rational Robot.

Password encryption support

The password encryption API feature was previously undocumented.

InputEncKeys

Decrypts the input string and sends one or more keystrokes to the active window

as if they had been entered at the keyboard. If the control has the password style

set, Rational Robot encrypts the keystrokes and records the string. If the password

style is not set, InputKeys is used. This feature works only with HTML text and

standard edit controls.

Syntax: InputEncKeys encryptedKeyText$

encryptedKeyText$ is the encrypted form of the string that would be decrypted

before sending it to the control.

© Copyright IBM Corp. 2000, 2006 25

Creating test datastores

There is a new wizard that streamlines the process of creating test datastores. You

can also use it to add test assets, test users, and groups from an existing project to

the datastore that you are creating. For more information, see the test datastore

help in the Rational Administrator.

Validation and repair of test datastores

The Datastore Doctor application verifies the current status of your test datastores,

and if necessary, repairs them. To access the Datastore Doctor, in Rational

Administrator, click Tools > Rational Test > Rational Datastore Doctor.

SiteCheck and TestFactory

SiteCheck® and TestFactory® are no longer integrated with Rational Robot and are

not supported at any level. References to them in product documentation and the

Help should be ignored.

Mouse pause support

There is support for recording a mouse pause at a point.

API: returnCode = MousePause RecString, ActionParams, milliSecondsToWait

Description: Rational Robot does not record mouse movements. It records only

mouse actions, such as a click, and keyboard actions. This is a common problem

for AUT testing, which is sensitive to mouse hovers. This affects HTML pages with

popup menus and certain hover help controls. Rational Robot fails to record these

accurately.

With the provided fix, a mouse pause (configurable in milliseconds) over an object

will be recorded by Rational Robot using the MousePause API. This API allows

mouse positions to be captured. During playback, Rational Robot will pause over

the object for the recorded time.

Parameters:

RecString

Object recognition string.

ActionParams

Object specific action items, such as coordinates.

milliSecondsToWait

Time in milliseconds that Rational Robot would pause over the object.

Note: returnCode is standard values returned by other APIs in Rational Robot.

Configuration: You can configure the minimum pause period that Rational Robot

waits to detect mouse pauses. To do this, click Tools > GUI record options >

General in the Rational Robot user interface. The GUI Record Options window

opens, displaying the General page.

In the window, make sure that the Enable Mouse Pause check box is selected. In

the Pause Limit field, type the time in milliseconds after which a mouse pause

should be recorded.

You can also control recording using a Rational Robot hot key. The default hot key

to enable or disable mouse pause recording is Ctrl + Shift + P. You can modify the

hot key in the Robot Window page of the GUI Record Options window.

26 Documentation Supplement

Because mouse pause recording can be slow at times, depending on the kind of

AUT and the extensions enabled, this feature is designed so you can enable and

disable it during the recording process.

Sample: The following script represents what might be recorded against popup

menu items on a website after enabling mouse pause. Use the GUI Record Options

window to enable or disable mouse pause support.

Sub Main

 Dim Result As Integer

 Window SetContext, "Caption=IBM Rational software -

 Microsoft Internet Explorer", ""

 MousePause "Type=HTMLLink;HTMLText=Products", "", 1172

 MousePause "Type=HTMLLink;HTMLText=Services", "", 4146

 MousePause "Type=HTMLLink;HTMLText=Support", "", 3596

 MousePause "Type=HTMLLink;HTMLText=Shop", "", 1162

 MousePause "Type=HTMLLink;HTMLText=Events", "", 3405

End Sub

After you apply the fix and enable mouse pause, playing the script will position

the mouse over the specified menu items without clicking any of the items.

ScrollIntoView

There is support for an API to force an HTML element to scroll into view.

Syntax: SQAScrollIntoView (recMethod$,viewCode&)

Note: viewCode should be set to 5.

The CompileAll command-line option

Rational Robot has a new command-line option, CompileAll, to compile all the

scripts and SQABasic library source files in a project.

Syntax: rtrobo.exe [/user <userid>] [/password <password>] [/project <full

path and full projectname>] /compileall

Related options:

/user

User name for login.

/password

Optional password for login. Do not specify this option if there is no

password.

/project

Name of the project that contains the script referenced, preceded by its full

path.

Product support

This section describes the vendor software that Rational Robot supports

Oracle 9i and 11i

This version of Rational Robot supports testing Oracle 9i and 11i applications that

were developed with Forms Developer, with the following restrictions:

Chapter 8. IBM Rational Robot 7.0 supplement documentation 27

v Testing Oracle ERP and CRM applications released with Oracle 11i is not

supported.

v This version of Rational Robot does not have object-level support for tab control.

Support is coordinate-based for this control.

To test Oracle Forms 9i and 11i applications:

1. If the Oracle container for Java™ service is not already running, start it by

clicking Start > Programs > Oracle 9i Developer Suite > Forms Builder >

Start OC4J.

2. For Rational Robot to detect Oracle 9i or 11i objects, you must install the Java

Enabler. Make sure the Java Enabler is installed by performing these tasks:

v To install the Java Enabler, click Start > Programs > IBM Rational >

Rational Test.

v Review the information about the Java Enabler in Chapter 15 of the IBM

Rational Robot User’s Guide.

To enable the client test machine:

1. Verify that the HTML and Java extensions are loaded in Rational Robot. For

information, see Chapters 14 and 15 of the IBM Rational Robot User’s Guide .

2. Install the Java Runtime Environment (JRE) on the client machine.

Note: Oracle documentation does not specify any JRE requirements; however,

Rational Robot support works best with Sun JRE 1.3.

3. Before starting Rational Robot for testing, make sure that the Java Enabler is

installed and enabled. To install the Java Enabler, click Start > Programs >

IBM Rational > Rational Test.

Internet Explorer 6.0

Rational Robot supports recording and playing back scripts on Internet Explorer

6.0.

Terminal Server

For functional testing, Rational Robot supports the following Terminal Server

environments:

v Citrix MetaFrame (WIN2K)/Citrix MetaFrame client

v Microsoft® Terminal (WIN2K)/Microsoft Terminal Server Client

v Windows 2000 Server

v Windows Terminal Server (Windows NT® 4)

Both the application-under-test and Rational Robot are installed on the server.

From within the client session you can start both the application-under-test and

Rational Robot to run on the server. Rational TestManager Log Viewer edition can

be run from the server or from within the client session.

Note:

v Rational TestManager does not support Citrix or Microsoft Windows

Terminal Server.

v Rational Robot requires floating licenses for terminal servers.

v Make sure that the screen resolution for the client matches the screen

resolution on the server.

28 Documentation Supplement

Logging control: The main toolbar now has a Log button to turn logging results

on and off. It displays automatically. If you are upgrading from an earlier release,

you can add the button to the main toolbar by using the following procedure:

1. Click View > Toolbars > Customize, or right-click the toolbar and click

Customize.

2. Click the Commands tab.

3. In the File category, drag the Log button to the main toolbar. Make sure that

you release the mouse button within the toolbar.

4. Click OK to close the Customize window.

VS.NET support

Rational Robot provides complete support for VS.NET Windows Forms controls.

Rational Robot has been enhanced to recognize these user interface controls at the

object level. Rational Robot supports the following features:

v VS.NET 7.1

v Recording and playing back actions on all standard Windows Forms controls

included with Visual Studio.NET

v VS.NET 1.0 SP2

v VS.NET applications with multiple domains

v Performing verification based on object data, object properties, the

application-under-test menu, and alphanumeric data

v Integration with IBM Rational PurifyPlus™ for Windows

v Managed code in unmanaged space (for example, a C# user control embedded

in a VisualBasic form or an HTML page)

v Unmanaged code in a managed application (for example, a VisualBasic control

in a C# application)

Note: The VS.NET Enabler that is available for Rational Testing Products version

2002.05.00 is not required for version 2003.06.00 and later. For more

information, see the Rational Robot Help and the IBM Rational Robot User’s

Guide.

Cross-browser support

Cross-browser support is improved in this release. In prior releases, by default,

you could test every property of the browser-under-test. This caused problems

because the default set of properties was different not only between Internet

Explorer and Netscape, but also between one version of Internet Explorer and

another. To resolve this issue, default testing covers a smaller subset of properties

that are common to all browsers. This improves cross-browser support. You can

add back any properties that are no longer part of the default, but the resulting

script might not be compatible across different browsers. This change has no effect

on older scripts. Previously recorded scripts will play back with whatever

properties they contained when they were recorded.

Object Data tests by contents can fail cross-browser testing because IE and

Netscape add extra line feeds and the contents might not be compared properly. To

resolve this issue, use the Filtered Contents option. This strips out any line feeds

and extra white spaces.

The default width and height properties for any object that contains them might

not be compatible across browsers. Netscape returns a value for height and width

Chapter 8. IBM Rational Robot 7.0 supplement documentation 29

regardless of whether this value is specified in the source. Internet Explorer does

not return a value for height and width unless these values are specified in the

source.

The default size property for combination boxes (select tag) might not be

compatible across browsers. In Netscape, if the size property is not defined,

Netscape returns a value of one, which results in a drop-down combination box. If

the size property is defined, Netscape returns the value that is specified in the

source. In Internet Explorer, if the size property is not defined, IE returns a value

of zero, which results in a drop-down combination box. If the size property is

defined, IE returns the value that is specified in the source. (If the size is zero or

one, the result is a drop-down combination box. If the size is greater than one, the

result is a list box.)

Netscape 4.7

Administrator’s GuideRational Robot has a new extension for the Netscape 4.7x

environment. This extension is selected by default in the Rational Robot Extension

Manager. A key feature of this new extension is that it supports the testing of SSL

pages over HTTPS.

The Netscape 4.7x extension has the following restrictions:

v Some browser properties cannot be tested using Netscape 4.7x. For example, you

cannot test whether a form element is disabled.

v Rational Robot does not support recording a script with the Netscape 4.x

extension and then playing it back in Netscape 4.7x.

v For cross-browser testing, you should record scripts using Netscape and then

play them back using Internet Explorer. One reason for this is that Netscape

does not support the ID attribute. Internet Explorer, however, records using the

ID attribute, if it exists. Recording under the Netscape 4.7x extension ensures

that the recorded script defaults to using a recognition string that can play back

under both browsers.

v To record HTML image clicks, the Alt attribute must be used in the underlying

HTML for successful cross-browser testing between Netscape 4.7x and Internet

Explorer.

v In Internet Explorer and earlier versions of Netscape, it was possible to create an

Object Data verification point on HTMLText (in addition to Contents) for almost

all supported objects. For example, for an HTMLlink, a test on Contents

captured the URL, and a test on HTMLText captured the entire tag. Netscape

4.7x cannot test HTMLText, so the HTMLText option was removed for all

ObjectData verification points under Netscape. As a result, scripts that were

recorded in Internet Explorer or in earlier Netscape versions that used

HTMLText will fail on playback under Netscape 4.7x. The verification point

would need to be re-recorded to test Contents.

Note: You can use Internet Explorer to test HTMLText.

v The name attribute is valid only for forms and links.

v Netscape ignores the thead, tbody, and tfoot tags within the table tag.

JDK 1.4 support

Rational Robot now supports JDK 1.4. For more information, see the IBM Rational

Robot User’s Guide and the Rational Robot Help.

30 Documentation Supplement

Delphi 7 support

Rational Robot supports Delphi 7, which includes enhancements to object

recognition. Users of any currently supported version of Delphi should carefully

review the "Guidelines and Restrictions" section in the IBM Rational Robot Release

Notes.

PowerBuilder support

Rational Robot supports PowerBuilder versions 8, 9, and 10.

Performance testing

This section describes features of Rational Robot that you can use to test

performance.

Session recording and script generation extensibility

Rational Robot now supports customer-written adapters for session recording and

script generation. This new framework is explained in the Session Recording and

Script Generation Extensibility Reference Guide.

NTLM feature enhancement

HTTP session recording and TestManager VU script execution now support

Microsoft Windows NT Challenge/Response Authentication (NTLM). For more

information, see the VU Language Reference Guide.

SQABasic

This section describes the following additional and enhanced commands for .NET

actions:

v DataGrid

v CheckedListBox

v TreeView

v ListView

v ListBox

v TabControl

v Calendar

v Toolbar

DataGrid

This command performs an action on a DataGrid component.

Syntax

DataGrid action%, recMethod$, parameters$

Parameters

action%

Select one of these mouse actions:

MakeSelection

Selects the specified item in a DataGrid

Check

Selects a check box

Chapter 8. IBM Rational Robot 7.0 supplement documentation 31

Uncheck

Clears a check box

recMethod$

Valid values: (Separate with a semicolon)

Type=

Used to identify the object within a specific context or environment

Name=

A name that a developer assigns to a parent or child object to identify the

object.

parameters$

Valid values: (Separate with a semicolon)

Row=

Row number in the DataGrid.

Col=

Column number in the DataGrid.

Location=

See “Comments.”

Comments

If the DataGrid is displaying a different table as a result of user navigation, the

user can click on the ParentDetailsButton to navigate back to the parent table.

Rational Robot would record the action in the following manner:

DataGrid Click,Type=Datagrid;Name=dg1,Location=BackButton

When child table information is displayed by the DataGrid, the parent row

information is displayed. Users can show/hide the parent row information by

clicking on the ShowParentDetails button. Rational Robot would record the action

in the following manner:

DataGrid Click,Type=Datagrid;Name=dg1, Location=ParentDetailsButton

Examples

 DataGrid MakeSelection,Type=Datagrid;Name=dg1,Row=1

 DataGrid MakeSelection,Type=Datagrid;Name=dg1,Col=1

 DataGrid Click,Type=Datagrid;Name=dg1, Row=1;Col=1

TreeView

This command performs an action on a tree view control.

Syntax

TreeView action%, recMethod$, parameters$

Parameters

action%

Select one of these mouse actions:

MakeSelection

Selects the specified item in a TreeView

Check

Selects a check box

32 Documentation Supplement

Uncheck

Clears a check box

Expand

Expands the tree

Collapse

Collapses the tree

recMethod$

Valid values: (Separate with a semicolon)

Type=

Used to identify the object within a specific context or environment

Name=

A name that a developer assigns to a parent or child object to identify the

object.

 See “Comments.”

parameters$

Valid values: (Separate with a semicolon)

Text=

Display text associated with an item.

Comments

The action string includes the complete path information of a node from the top

level parent. For example, if node1->node1.1->node1.2 is a node hierarchy, it

should be included in the action string.

Examples

TreeView MakeSelection,Type=TreeView;Name=treeView1,Text=Node-

TreeView Check,"Type=TreeView;Name=treeView1","Text=Node-"

TreeView Uncheck,"Type=TreeView;Name=treeView1","Text=Node-"

TreeView Expand,"Type=TreeView;Name=treeView1","Text=Node-"

TreeView Collapse,"Type=TreeView;Name=treeView1","Text=Node

ListView

This command performs an action on a list view control.

Syntax

ListView action%, recMethod$, parameters$

Parameters

action%

Select one of these mouse actions:

MakeSelection

Selects the specified item in a ListView

Check

Selects a check box

Uncheck

Clears a check box

Chapter 8. IBM Rational Robot 7.0 supplement documentation 33

recMethod$

Valid values: (Separate with a semicolon)

Type=

Used to identify the object within a specific context or environment

Name=

A name that a developer assigns to a parent or child object to identify the

object.

parameters$

Valid values: (Separate with a semicolon)

Index=

Index of an item in the ListView items collection.

Text=

Display text associated with an item.

Comments

The action string can include Index only, Text only, or both to identify an item in

the ListView.

Examples

ListView MakeSelection,Type=ListView;Name=lv1,Index=0;Text=John

ListView Check,Type=ListView;Name=lv1,,Index=0;Text=John

ListView Uncheck,Type=ListView;Name=lv1,,Index=0;Text=John

ListBox

This command performs an action on a list box control.

Syntax

ListBox action%, recMethod$, parameters$

Parameters

action%

Select one of these mouse actions:

MakeSelection

Selects the specified item in a ListBox

Ctrl_Click

Selects one or more specified items in a list box

ShiftCtrl_Click

Selects a range of specified items in a list box.

recMethod$

Valid values: (Separate with a semicolon)

Type=

Used to identify the object within a specific context or environment

Name=

A name that a developer assigns to a parent or child object to identify the

object.

parameters$

Valid values: (Separate with a semicolon)

34 Documentation Supplement

Index=

Index of an item in the list items collection.

Text=

Display text associated with an item.

Comments

The action string can include Index only, Text only, or both to identify an item in

the ListBox.

Examples

ListBox MakeSelection,Type=ListBox;Name=lb1,Index=0;Text=Check

CheckedListBox

This command performs an action on a checked list box control.

Syntax

CheckedListBox action%, recMethod$, parameters$

Parameters

action%

Select one of these mouse actions:

MakeSelection

Selects the specified item in a CheckedListBoxView

Ctrl_Click

Selects one or more specified items in a list box

ShiftCtrl_Click

Selects a range of specified items in a list box.

recMethod$

Valid values: (Separate with a semicolon)

Type=

Used to identify the object within a specific context or environment

Name=

A name that a developer assigns to a parent or child object to identify the

object.

parameters$

Valid values: (Separate with a semicolon)

Index=

Index of an item in the list items collection.

Text=

Display text associated with an item.

Comments

The action string can include Index only, Text only, or both to identify an item in

the CheckedListBox.

Examples

CheckedListBox MakeSelection,Type=ListBox;Name=lb1,Index=0;Text=Check

TabControl

This command performs an action on tab control.

Chapter 8. IBM Rational Robot 7.0 supplement documentation 35

Syntax

TabControl action%, recMethod$, parameters$

Parameters

action%

Select one of these mouse actions:

MakeSelection

Selects the specified tab page in the tab control.

Click

Selects the specified tab page in the tab control.

DblClick

Selects the specified tab page in the tab control.

recMethod$

Valid values: (Separate with a semicolon)

Type=

Used to identify the object within a specific context or environment

Name=

A name that a developer assigns to a parent or child object to identify the

object.

parameters$

Valid values: (Separate with a semicolon)

Index=

Index of an item in the tab pages collection.

Text=

Display text associated with a tab page.

Comments

The action string can include Index only, Text only, or both to identify a page in

the TabControl.

Examples

TabControl MakeSelection,Type=TabControl;Name=TabControl 1,Index=0;Text=tabPage1

Calendar

This command performs an action on a calendar control.

Syntax

Calendar action%, recMethod$, parameters$

Parameters

action%

Select one of these mouse actions:

Click

Selects a date in the calendar.

Shift_Click

Selects an end date in the calendar to indicate a date range.

recMethod$

Valid values: (Separate with a semicolon)

36 Documentation Supplement

Type=

Used to identify the object within a specific context or environment

Name=

A name that a developer assigns to a parent or child object to identify the

object.

parameters$

Valid values: (Separate with a semicolon)

StartDate=

Individual date or beginning of a date range.

EndDate=

End of a date range.

Comments

The action string can include StartDate only or both StartDate and EndDate.

Examples

Calendar Click,"Type=Calendar;Name=monthCalendar1","StartDate=8/16/2004"

Calendar Shift_Click,"Type=Calendar;Name=monthCalendar1","StartDate=8/9/2004;

EndDate=8/15/2004"

ToolBar

This command performs an action on a toolbar control.

Syntax

ToolBar action%, recMethod$, parameters$

Parameters

action%

Click

recMethod$

Valid values: (Separate with a semicolon)

Type=

Used to identify the object within a specific context or environment

Name=

A name that a developer assigns to a parent or child object to identify the

object.

parameters$

Valid values: (Separate with a semicolon)

Text=

Display text associated with a toolbar item.

Index=

Unique index to identify an item in the toolbar.

Location

See “Comments.”

Comments

The action string can include Text only or both Text and Index.

If the toolbar item is displaying drop down menus, it can be displayed by clicking

on the drop down button arrow. This could be recorded as:

Chapter 8. IBM Rational Robot 7.0 supplement documentation 37

Toolbar Click, "Type=Toolbar;Name=toolBar1", "Text=File;Location=DropDown"

Examples

Toolbar Click, "Type=Toolbar;Name=toolBar1", "Text=File"

Toolbar Click, "Type=Toolbar;Name=toolBar1", "Text=File;Index=1"

Toolbar Click, "Type=Toolbar;Name=toolBar1", "Text=”Index=1"

38 Documentation Supplement

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2006 39

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department BCFB

20 Maguire Road

Lexington, MA 02421

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change

without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

40 Documentation Supplement

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

(c) (your company name) (year) Portions of this code are derived from IBM Corp.

Sample Programs. (c) Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Additional legal notices are described in the legal_information.html file that is

included in your Rational software documentation.

Trademarks

AIX, ClearCase®, ClearCase Attache®, ClearCase MultiSite®, ClearDDTS®,

ClearGuide®, ClearQuest®, DB2®, DB2 Universal Database™, DDTS®, Domino®,

IBM, Lotus® Notes®, MVS™, Notes, OS/390®, Passport Advantage®,

ProjectConsole™ Purify®, Rational, Rational Rose®, Rational Suite®, Rational Unified

Process®, RequisitePro®, RUP®, S/390®, SoDA®, SP1, SP2, Team Unifying Platform™,

WebSphere®, XDE™, and z/OS® are trademarks of International Business Machines

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Appendix. Notices 41

42 Documentation Supplement

Readers’ Comments — We’d Like to Hear from You

IBM Rational Robot

Documentation Supplement

Version 7.0.0.1

 Publication No. GI11-6387-00

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 GI11-6387-00

GI11-6387-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Attn. Dept. CZLA

20 Maguire Road

Lexington, MA

02421-3112

USA

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

GI11-6387-00

	Contents
	About this document
	Who should read this document
	Typographical conventions
	Contacting IBM Customer Support for Rational software products
	Downloading the IBM Support Assistant

	Chapter 1. Login
	Chapter 2. Managing Projects
	Using Robot Project Administrator
	Creating a project
	Registering and unregistering a project
	Importing assets from Rational Suite Projects

	Deleting a project

	Chapter 3. Managing test scripts and associated assets
	Creating a GUI script
	Creating a GUI shell script
	Creating a Project Header file
	Creating a SQA Basic file
	Editing a GUI script, Project Header file or SQABasic file
	Deleting a GUI script

	Chapter 4. Managing datapools
	Creating a datapool
	About datatypes
	About standard datatypes

	Editing datapools
	Importing datapools
	Exporting datapools

	Chapter 5. Logs
	Chapter 6. Customizing IBM Rational Robot modes
	Asset management
	Initialize()
	Syntax
	Return Values

	LoginToProject()
	Syntax
	Return Values
	Remarks
	Example

	CreateScript()
	Syntax
	Return Values
	Example

	GetScriptByName()
	Syntax
	Return Values
	Example

	Logging
	SetLogParam()
	Syntax
	Return Values
	Remarks
	Example

	GenericLogEvent ()
	Syntax
	Return Values
	Example

	LaunchViewer()
	Syntax
	Return Values
	Example

	Chapter 7. Configuring Robot with test management solutions
	COM Interface APIs
	LoginToProject()
	Syntax
	Return Values

	ExecuteScript()
	Syntax
	Return Values

	ExecuteScriptEx()
	Syntax
	Return Values

	Logoff()
	Syntax
	Return Values

	GetState()
	Syntax
	Return Values
	Remarks

	AbortPlayback()
	Syntax
	Return Values

	OpenScript()
	Syntax
	Return Values

	Chapter 8. IBM Rational Robot 7.0 supplement documentation
	General and functional testing
	Changes and enhancements
	Alphanumeric verification points
	Icon and splash screen
	Password encryption support
	Creating test datastores
	Validation and repair of test datastores
	SiteCheck and TestFactory
	Mouse pause support
	ScrollIntoView
	The CompileAll command-line option

	Product support
	Oracle 9i and 11i
	Internet Explorer 6.0
	Terminal Server
	VS.NET support
	Cross-browser support
	Netscape 4.7
	JDK 1.4 support
	Delphi 7 support
	PowerBuilder support

	Performance testing
	Session recording and script generation extensibility
	NTLM feature enhancement

	SQABasic
	DataGrid
	Syntax
	Parameters
	Comments
	Examples

	TreeView
	Syntax
	Parameters
	Comments
	Examples

	ListView
	Syntax
	Parameters
	Comments
	Examples

	ListBox
	Syntax
	Parameters
	Comments
	Examples

	CheckedListBox
	Syntax
	Parameters
	Comments
	Examples

	TabControl
	Syntax
	Parameters
	Comments
	Examples

	Calendar
	Syntax
	Parameters
	Comments
	Examples

	ToolBar
	Syntax
	Parameters
	Comments
	Examples

	Appendix. Notices
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

