
Anna Olczak

DB2 – Strzał w dziesi ątkę
Nowszy Silnik Bazy Danych
Jak migrowa ć do DB2 V9 ?

.......... A mo Ŝe warto do V10 ?

18-19 listopada 2010
Naruszewo, hotel Szkockie Ranczo

Legal Information

© Copyright IBM Corporation 2010. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

 Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR I NFORMATIONAL PURPOSES ONLY. WHILE EFFORTS
 WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE I NFORMATION CONTAINED IN THIS PRESENTATION, IT IS

PROVIDED “AS IS” WITHOUT WARRANTY OF ANY K IND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON
IBM’ S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT

 BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTH ERWISE RELATED TO, THIS PRESENTATION OR
ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT

 OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE
 TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE U SE OF IBM PRODUCTS AND/OR SOFTWARE.

The information on the new product is intended to outline our ge neral product direction and it should not be r elied on in making a purchasing
decision. The information on the new product is for information al purposes only and may not be incorporated into any contract. The information

 on the new product is not a commitment, promise, or legal obligation to deliver any material, code or functionality. The development, release,
 and timing of any features or functionality described for our p roducts remains at our sole discretion.

IBM, the IBM logo, ibm.com, DB2, and DB2 for z/OS are trademarks or registered trademarks of International Business Machines Corporation in
the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with
a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on
the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

WdraŜajmy now ą wersj ę !!!!
Kiedy ? JAK?

3

GA 26.03.2004 16.03.2007 22.10.2010

EOS 30.03.2012

Wykorzystanie CPU DB2 10 z/OS

4

Na ogół redukcja zu Ŝycia CPU 5%-10% po wykonaniu bindowania
Dla niektorych worklodów nawet 20% redukcji

Poprzedni skok dla DB2 2, przez następne lata inne priorytety
• wydajność zapytań

• skalowalność

• przepustowość

Skalowalność, dostępność, wydajność

• 5-6 większa ilo ść wątków w jednym subsystemie
(poniewaŜ 80%-90% pamięci wirtualnej przeniesiono
powyŜej 32GB)

• Większa konkurencyjność w dostępie do katalogu i
programów usługowych

• 10 - krotnie więcej uŜytkowników subsystemu
• Większa funkcjonalność on-line w DDL
• Opóźniony ALTER

V10V09

DB2 SQL
z z/OS V7
common
luw Linux, Unix & Windows V8.2

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation, Global
Temporary Tables, CASE, 100+ Built-in Functions, Limited Fetch, Insensitive Scroll Cursors,
UNION Everywhere, MIN/MAX Single Index, Self Referencing Updates with Subqueries, Sort
Avoidance for ORDER BY, and Row Expressions, Call from trigger, statement isolation

Updateable UNION in Views, ORDER BY/FETCH FIRST in subselects & table expressions,
GROUPING SETS, ROLLUP, CUBE, INSTEAD OF TRIGGER, EXCEPT, INTERSECT, 16 Built-
in Functions, MERGE, Native SQL Procedure Language, SET CURRENT ISOLATION, BIGINT
data type, file reference variables, SELECT FROM INSERT, UPDATE, or DELETE, multi-site join,
2M Statement Length, GROUP BY Expression, Sequences, Scalar Fullselect, Materialized Query
Tables, Common Table Expressions, Recursive SQL, CURRENT PACKAGE PATH, VOLATILE
Tables, Star Join Sparse Index, Qualified Column names, Multiple DISTINCT clauses, ON
COMMIT DROP, Transparent ROWID Column, FOR READ ONLY KEEP UPDATE LOCKS, SET
CURRENT SCHEMA, Client special registers, long SQL object names, SELECT from INSERT,
MDC

z

l
u
w

c
o
m
m
o
n

Range partitioning

DB2 SQL
z z/OS V8
common
luw Linux, Unix & Windows V8.2

Multi-row INSERT, FETCH & multi-row cursor UPDATE, Dynamic Scrollable Cursors, GET
DIAGNOSTICS, Enhanced UNICODE for SQL, join across encoding schemes, IS NOT
DISTINCT FROM, Session variables, range partitioning

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation, Global
Temporary Tables, CASE, 100+ Built-in Functions including SQL/XML, Limited Fetch, Insensitive
Scroll Cursors, UNION Everywhere, MIN/MAX Single Index, Self Referencing Updates with
Subqueries, Sort Avoidance for ORDER BY, and Row Expressions, 2M Statement Length,
GROUP BY Expression, Sequences, Scalar Fullselect, Materialized Query Tables, Common
Table Expressions, Recursive SQL, CURRENT PACKAGE PATH, VOLATILE Tables, Star Join
Sparse Index , Qualified Column names, Multiple DISTINCT clauses, ON COMMIT DROP,
Transparent ROWID Column, Call from trigger, statement isolation, FOR READ ONLY KEEP
UPDATE LOCKS, SET CURRENT SCHEMA, Client special registers, long SQL object names,
SELECT from INSERT

Updateable UNION in Views, ORDER BY/FETCH FIRST in subselects & table expressions,
GROUPING SETS, ROLLUP, CUBE, INSTEAD OF TRIGGER, EXCEPT, INTERSECT, 16 Built-
in Functions, MERGE, Native SQL Procedure Language, SET CURRENT ISOLATION, BIGINT
data type, file reference variables, SELECT FROM UPDATE or DELETE, multi-site join, MDC

z

l
u
w

c
o
m
m
o
n

DB2 SQL
z z/OS V9
common
luw Linux, Unix & Windows V9

Multi-row INSERT, FETCH & multi-row cursor UPDATE, Dynamic Scrollable Cursors, GET
DIAGNOSTICS, Enhanced UNICODE for SQL, join across encoding schemes, IS NOT
DISTINCT FROM, Session variables, TRUNCATE, DECIMAL FLOAT, VARBINARY,
optimistic locking, FETCH CONTINUE, ROLE, MERGE, SE LECT from MERGE

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation, Global
Temporary Tables, CASE, 100+ Built-in Functions including SQL/XML, Limited Fetch, Insensitive
Scroll Cursors, UNION Everywhere, MIN/MAX Single Index, Self Referencing Updates with
Subqueries, Sort Avoidance for ORDER BY, and Row Expressions, 2M Statement Length, GROUP
BY Expression, Sequences, Scalar Fullselect, Materialized Query Tables, Common Table
Expressions, Recursive SQL, CURRENT PACKAGE PATH, VOLATILE Tables, Star Join Sparse
Index, Qualified Column names, Multiple DISTINCT clauses, ON COMMIT DROP, Transparent
ROWID Column, Call from trigger, statement isolation, FOR READ ONLY KEEP UPDATE LOCKS,
SET CURRENT SCHEMA, Client special registers, long SQL object names, SELECT from INSERT,
UPDATE or DELETE, INSTEAD OF TRIGGER, Native SQL Pr ocedure Language, BIGINT, file
reference variables, XML, FETCH FIRST & ORDER BY in subselect and fullselect, caseless
comparisons, INTERSECT, EXCEPT, not logged tables , range partitioning, compression

Updateable UNION in Views, GROUPING SETS, ROLLUP, CUBE, 16 Built-in Functions, SET
CURRENT ISOLATION, multi-site join, MERGE, MDC, XQuery

z

l
u
w

c
o
m
m
o
n

DB2 10 – Kluczowe zmiany - wydajność i dostępność

� Full 64-bit support
� Reducing various latch contentions
� Internal performance enhancements
� Large buffer pools optimization
� Improving query parallelism
� I/O parallelism for index updates
� Inline LOBs
� Non-key columns in index
� Workfiles enhancements
� UTS support for MEMBER CLUSTER
� PBG tablespace enhancements
� No LOB/XML materialization within DB2
� Hash access to data
� Fine granularity DBA privileges
� Row and Column Access Control
� Bi-temporal support
� SQL PL in the engine
� Moving aggregate functions for OLAP
� Timestamp with Timezone
� Greater timestamp precision
� Special ‘null’ indicator
� Automatic SPs management
� ...

� Enhanced monitoring support
� DB2 catalog enhancements
� Automatic checkpoint, Pre-emptable backout
� Rotating ‘n to last’ partitions
� Instance-based hints
� Plan stability
� Safe query optimization
� Dynamic Statements Cache enhancements
� SQL pagination
� IN-list predicate performance
� UTSERIAL elimination
� Automatic Statistics
� Online schema evolution
� Currently committed data access
� Adding active log
� XML enhancements
� DEFINE NO for LOBs and XML
� Compressing at insert
� Reducing need for reorganization
� REORG enhancements
� Support for EAV
� FlashCopy enhacements
� ...

Insert Performance Bottlenecks - Part 1

What is the largest, often unavoidable, contributor to insert elapsed time?

• Locating page to insert?
• Contention, e.g. on space map page, particularly in data sharing?
• Logging?
• Writing inserted pages?
• Read I/O?

Each index is inserted into consecutively, without any overlap of operations.

index
page in

BP?

Wait for
I/O

initiate I/O

update index
page

index
page in

BP?

Wait for
I/O

initiate I/O

update index
page

index
page in

BP?

Wait for
I/O

initiate I/O

update index
page

Insert into index 1 Insert into index 2 Insert into index 3

Y Y Y

N N N

DB2 9DB2 9

☞

Index Read I/O Parallelism at Insert

index
page in

BP?

initiate I/O

update index
page

index
page in

BP?

initiate I/O

update index
page

index
page in

BP?

initiate I/O

update index
page

Insert into index 1 Insert into index 2 Insert into index 3

N

Y

• There is still one processing task, but the index read I/Os are overlapped.
• It applies to LOAD SHRLEVEL CHANGE as well

• Conditions under which index read I/O parallelism is used:
• DB2 10 compatibility mode or higher

• Typically, three or more indexes defined on the table
• Partitioned or Universal table space

• zparm INDEX_IO_PARALLELISM set to its default value (YES)

DB2 10DB2 10

Insert Performance Bottlenecks -

Part 2
By default, which of the following characteristics DB2 prefers when inserting rows?

a) Speed of insert

b) Space usage efficiency
c) Speed of subsequent queries with range predicates

The default preference can be changed by specifying:

• APPEND tables
• ... which entirely ignores clustering and space reuse

• MEMBER CLUSTER tablespaces
• ... which ignores clustering only,
• ... but also provides the lowest space map page contention in data sharing,
• ... and enables a kind of ‘space efficient APPEND’ behaviour, also known

as the MC00 algorithm triggered by table space settings:
• MEMBER CLUSTER
• FREEPAGE = 0
• PCTFREE = 0

So ... what’s the problem?
In DB2 9, MEMBER CLUSTER cannot be defined for UTS.

DB2 9DB2 9

2

3

1

MEMBER CLUSTER Enhancements

In DB2 10 MEMBER CLUSTER can be defined for UTS as well.

• For both, Partitioned by Growth and Partitioned by Range UTS
• Each space map covers 10 segments
• A new column MEMBER_CLUSTER is added to the SYSTABLESPACE catalog

table.
• The values ‘I’ and ‘K’ in the TYPE column of SYSTABLESPACE are no longer used.

And the added bonus:

• MEMBER CLUSTER attribute can be ALTERed
• Pending ALTER

• Tablespace placed in Advisory Reorg Pending status
• REORG materializes the change

DB2 10DB2 10

Single Row Retrieval

What is the fastest way to retrieve a single row in DB2?
EqualEqual--unique index access path!unique index access path!

Selected by DB2 when predicate consists of equality conditions connected
by AND operator, e.g.

SELECT * FROM ... WHERE COL1=? AND COL2=? AND COL3=?
and there is a unique index on (COL1, COL2, COL3).

For fastest performance of dynamic SELECT, additionally use FETCH
FIRST 1 ROW ONLY

But, even the equal-unique access path might not be good enough:

.

.

.

.

• Large indexes result in increased
number of getpages:

• number of getpages = n + 1, where n
is the index depth

• Likelihood of read I/Os increases
• Disorganized indexes exacerbate the

problem

DB2 9DB2 9

Hash Access to Data
DB2 10 introduces a new, specialized, access path
that results in a single getpage (most of the time)

• Applicable to a subset of cases where a unique index could be used
• Single, unique row retrievals with equality or IN predicates

• Results in less getpages, lower CPU, less I/O

• Rows in a hash-organized table reside in fixed hash space and, optionally, in
an overflow space

• More than one getpage per retrieved row can happen if the row is relocated to the
overflow space due to shortage of the fixed hash space

• To minimize getpages the fixed hash space should be typically 1.2 to 2 times
larger than a tablespace without hash organization

• RTS is enhanced to include indicators assisting in detecting over-allocation or under-
allocation of space (too many collisions)

• Overall space usage might not increase as much if the corresponding index can
be dropped (use RTS to check)

CREATE TABLE ... HASH KEY (key columns) HASH SPACE(number of bytes)
ALTER TABLE ... ADD HASH KEY (key columns) HASH SPACE(number of bytes)
ALTER TABLE ... DROP HASH ORGANIZATION

DB2 10DB2 10

Index-only Access Path
‘Overloading’ index with non-key columns, i.e. columns that are not
necessarily used for locating data pages, is a common tuning technique

• Resulting index-only access path is very often a great trade-off to negative
ramifications of enlarged redundancy

• However, in one specific case, the negative effects are particularly large

Unique index!

Unique indexes do not allow ‘overloading’ with non-key columns:
• It compromises the unique constraint they are enforcing

• Creating another index that includes all the key and non-key columns, but
without the UNIQUE constraint comes with well-known drawbacks

DB2 9DB2 9

Non-key Index Columns
DB2 10 supports adding non-key columns, also known as ‘include
columns’, to unique index without affecting the unique constraint.

• INCLUDE (column name, ...) clause added to CREATE/ALTER INDEX

• The include columns have different characteristics than the key columns
• Can be added only to unique indexes

• Do not participate in ordering of the key (they are just appended to the key)

• Cannot be used to enforce referential integrity constraints

• Cannot be converted to key columns (nor vice versa) without recreating the index
• Cannot be used in:

Benefits:
• Improved performance of DB2 statements and utilities that result in index

maintenance

• Disk space savings - by dropping otherwise redundant index

• Indexes on expression
• System-defined catalog indexes
• Auxiliary indexes

• XML indexes
• Partitioning indexes with explicitly

specified limit key values

DB2 10DB2 10

Delayed Compression
Unlike index compression, data compression is dictionary based.

• Data cannot be compressed before the compression dictionary has been built

• The compression dictionary is built only by:
• LOAD

• REORG

What is the main deficiency of this restriction?

Excessive space usage if tables are initially populated by INSERTs!

What is the remedy for this challenge?

1. Stop inserting after 1000 or so inserted rows

2. Reorganize tablespace

3. Resume inserting

Remaining problem? Operational complexity!

DB2 9DB2 9

Early Compression
DB2 10 enables early compression of inserted rows by ‘just in time’
building compression dictionary during:
• INSERT

• MERGE

• LOAD SHRLEVEL CHANGE RESUME YES

No changes to the applications are needed.

• Applies to all COMPRESS YES tablespaces and partitions

• DB2 transparently builds compression dictionary
• The triggering operation and following operations do not wait

• After the dictionary is built, the subsequent inserted rows are compressed

• Compression dictionary built this way is spread over the whole tablespace

What to do, if for some reason, the old behavior is needed:
1. Create tablespace with COMPRESS NO

2. Populate table by INSERTs

3. Alter tablespace to COMPRESS YES
4. Reorganize tablespace

DB2 10DB2 10

SLOBs - ‘Small’ Large Objects
What is the largest inhibitor for more intensive use of LOBs?

• Operations on LOB columns always require access to additional pages which drives
higher CPU, memory and I/O utilization

• LOB column, no matter how small the value might be, is stored in a separate tablespace

Performance and space utilization for LOBs with relatively smaller size.

Base table pages

Auxiliary table pages

lob�char
integ

er

lob value

lob�char
integ

er

lob value

DB2 9DB2 9

LOBs Inlining
DB2 10 supports collocating the entire LOB column or a
part of it with other columns within the base row.

Base table pages

Auxiliary table pages

lob valuecharinteger

remaining lob value

lob valuecharinteger

free page

• Improved elapsed and CPU time through fewer getpages and I/Os
• Improved space use (both disk and memory)

• Completely inlined LOB values do not require pages in LOB tablespace (one per LOB!)
• Inlined LOB values are subject to regular data compression

• LOB tablespace cannot be compressed!

• Index key on a substring of the inlined part is allowed

prior to DB2 10

DB2 10DB2 10

LOBs Inlining - How to Control It?
• LOB Inlining requires UTS

• LOB_INLINE_LENGTH zparm
• Specifies the default inline length for any new LOB column

• Valid values: 0 (default) to 32680 bytes

• INLINE LENGHT clause on CREATE DISTINCT TYPE

• INLINE LENGHT clause on CREATE TABLE
• Overrides the value specified in zparm or distinct type definition

• INLINE LENGTH clause on ALTER TABLE
• When adding new LOB column

• When changing the inline length of the existing LOB column
• REORG materializes change for existing rows

• REORG SHRLEVEL REFERENCE is required

• Full support for DEFAULT values on LOB’s inline part

DB2 10DB2 10

Lock Contentions on DB2 Catalog

The following processes can create incompatible locks on DB2
catalog, leading to lock suspensions, timeouts and deadlocks:

• Utilities (most often RUNSTATS)

• DDL

• Prepares (Bind)

What is the key reason for the increased lock contention?

Page level locking that is used for a number of DB2 catalog tablespaces

DB2 V7 introduced lock size ROW for selected catalog tablespaces, but
the rest contain so called ‘links’ and could not have been enabled for row
level locking:

• SYSDBASE
• SYSPLAN

• SYSVIEWS

• SYSDBAUT
• SYSGROUP

DB2 9DB2 9

Row Level Locking for All Catalog Tablespaces

• Simplifies tablespaces growth management by converting a
number of catalog and directory tablespaces to being
partitioned by growth

• Automates underlying data set management by converting all
the DB2 catalog and directory tablespaces into SMS-managed

• Uses LOB data type to consolidate SQL statement text that is
split across multiple rows in a number of DB2 catalog tables

• Combines SYSUTIL and SYSUTILX into a single table

DB2 10 removes dependency on the ‘links’ and extends row level
locking option to all the catalog tablespaces.

Independently of this DB2 10 introduces the following enhancements:

DB2 10DB2 10

Literals Reduce Dynamic Statements Cache Efficiency

• Intentionally

– To force new access path selection for each set of different values

– Always the case in SAP applications

• Unintentionally

– Bad coding practice

– Forced by the development tooling

Applications programmers use literals in the statement text :

Unintentional use results in dynamic statements cache inefficiency
• A short (cost efficient) prepare is possible only if the new statement

matches a cached statement character-for-character

– Any difference in literal values results in a full (expensive) prepare

– This is why SAP in most cases uses parameter markers

• New copies of statements that could have shared already cached

statement ‘thrash’ dynamic statement cache

DB2 9DB2 9

Is it possible to avoid the thrashing?
Yes, by using REOPT ALWAYS, but at the cost of not having statements caching
at all!

Concentrating Cached Statements

• CONCENTRATE STATEMENTS WITH LITERALS

– New option for ATTRIBUTES on PREPARE

– CONCENTRATE STATEMENTS OFF (default) causes pre-V10 behaviour

• Before a prepared statement is cached each literal is replaced by a single ‘&’

– Additionally, DB2 removes the trailing blacks that follow the statement

– ‘&’s are shown instead of literals in instrumentation (e.g. IFCID 317)

• Subsequent prepares of the same statement with different literals can result in

short prepares

– The exact match has a precedence over matching with ‘&’

– The literals must be ‘reusable’ in the prepare context

– Mixture of parameter markers ‘?’ and literals results in the pre-V10 behaviour

• Monitoring support

– Values ‘R’, ‘D’ or ‘ ‘

• for new column LITERAL_REPL in DSN_STATEMENT_CACHE_TABLE

• for new field in IFCID 316

– New statistics counters

DB2 10 introduces an option to reuse a cached, previously prepared
statement irrespective of literal values

DB2 10DB2 10

How To Drop Partition in DB2?

• A partition can be emptied by DELETE or LOAD REPLACE

• ... but it stays around forever

Strictly speaking, it cannot be done.
DB2 9DB2 9

There is a special case when a partition can be effectively dropped.

• If the partition to be dropped is the very first logical partition, ROTATE
effectively drops that partition and creates a new one in its place.

In all other cases you are faced with a growing number of partitions

• Only exceptionally the growth can be slowed down by redistributing data
after changing key ranges

• Associated with significant operational complexity

ALTER TABLE ROTATE PARTITION
FIRST TO LAST
ENDING AT constant | MAXVALUE | MINVALUE

ROTATE n to LAST as Means to Drop the nth Partition

DB2 10 extends the ROTATE PARTITION scope DB2 10DB2 10

ALTER TABLE ROTATE PARTITION
FIRST | integer TO LAST
ENDING AT constant | MAXVALUE | MINVALUE

integer specifies the physical partition that will be:

• reset, i.e. emptied

• it’s limit key set to value specified at ENDING AT

• FIRST continues to refer to the first logical partition

DB2 10 also improves availability by not requiring reorganization for a
number of partition altering operations if the involved partition is
empty.

Long Running Readers Prevent REORG to Complete

DB2 9DB2 9Even threads that do nothing else but reading without locking
(isolation level UR) prevent REORG completion.

Tips for handling the situation:

• Use appropriate REORG drain specification options

– DRAIN_WAIT, RETRY, RETRY_DELAY

• Identify long running, non-committing readers

– Set zparm LRDRTHLD to a non-zero value (default is zero, which means no

reporting)

– DB2 will generate IFCID 313 for each thread which holds a claim without

committing for longer than specified LRDRTHLD value

– Capture and format IFCIDs 313 (or use suitable monitoring tool)

• Identify threads for a given object for which REORG cannot proceed and

cancel them (if appropriate)

DISPLAY DATABASE(dbname) SPACENAM(tsname) CLAIMERS or LOCKS

• They use locking serialization mechanism called ‘claims’

• Claims need to be removed before final stages of REORG can proceed

REORG’s Weapon Against Long Running Readers
DB2 10DB2 10

REORG TABLESPACE | INDEX ...
FORCE NONE | READERS | ALL

FORCE specifies which threads, if any, will be cancelled by REORG
at the last attempt (last RETRY) to take over control of an object.

For REORG to succeed, the cancelled threads must free the objects
(release claims) before DRAIN_WAIT time expires.

Long running readers detection changes:

• System console message

• Default for zparm LRDRTHLD is 5 min

All claimers cancelled at DRAIN ALL or

WRITERS
ALL

Read claimers cancelled at DRAIN ALLREADERS

No claimers are cancelled. Existing behaviour.

Default.
NONE

Refreshing Catalog Statistics: What, Which, When?

DB2 9DB2 9
DBAs spend lots of time managing catalog statistics.

The common reason for answering these questions in optimal way is:

• What objects have stale statistics?

• Which statistical data needs to be collected for a given object?

• When should the jobs for collecting and refreshing statistics be run?

Collecting catalog statistics is resource-intensive and not transparent
to other concurrent database activity.

• Often there is a very large number of objects, not all have stale statistics

– Real Time Statistics is the answer to this challenge

• Different objects might need different level of statistics details

– Associated with time-consuming analysis of workload for each of the objects

– Tools can help

• The jobs to collect and refresh statistics should ideally be as transparent to the

concurrent transaction and batch processing as possible

– CPU contention

– Catalog locking contention

Building Blocks for Automating RUNSTATS

• The new Auto-Stats feature provides the following:
• Profile support for RUNSTATS utility:

• RUNSTATS TABLESPACE.... SET / USE / UPDATE / DELETE PROFILE

• New stored procedures
• ADMIN_UTL_MONITOR checks need for new/better statistics
• ADMIN_UTL_EXECUTE collects new statistics using

ADMIN_UTIL_SCHEDULE

• Control tables:
• SYSIBM.SYSTABLES_PROFILES contains the RUNSTATS options at

table level
• SYSIBM.SYSAUTOTIMEWINDOWS defines when autonomic procedures

can be run
• SYSIBM.SYSAUTOALERTS is populated when ADMIN_UTL_MONITOR

detects that an action needs to be scheduled for execution

• DB2 Admin Scheduler can be used to automatically run the stored
procedures

DB2 10DB2 10

Online Schema Change - The Journey Continues

• Page size and buffer pool assignment
• DSSIZE, SEGSIZE, MEMBER CLUSTER
• Tablespace type:

• Simple (single table) into UTS PBG
• Segmented (single table) into UTS PBG
• Classic partitioned into UTS PBG
• UTS PBR into UTS PPG
• UTS PBG into hash table (but overflow index in RBDP state)

DB2 V8 and 9 focused on online changes of table attributes, while
DB2 10 on online changes of tablespace and index structural attributes.

DB2 10DB2 10

New concept, Pending Definition Change, is introduced to maximize
availability of altered objects.

• ALTER statement is put on a ‘to-do list’ and returns sqlcode +610
• Object placed in AREOR state: REORG Advised
• Change of mind allowed: ALTER ... DROP PENDING CHANGES
• Next REORG materializes changes

The following ALTERations are now possible:

